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Resumen

El título de esta tesis alude al estudio de tres problemas clásicos. Los resultados
que se han obtenido, que son el fruto del arduo trabajo llevado a cabo durante los
últimos cuatro años, están relacionados, total o parcialmente, con algunos de estos
tres temas clásicos del Análisis Matemático:

• Espacios de Banach de polinomios: Este es un tema muy extenso, como
cualquier lector avezado entendrá enseguida. Siendo más concretos, estudia-
mos propiedades relacionadas con la continuidad de polinomios en espacios de
Banach. También estudiamos la relación existente entre las topologías induci-
das por diversas normas en un espacio de polinomios.

• Genericidad Algebraica y lineabilidad: Este tema consiste en el estudio de las
estructuras algebraicas contenidas en determinados conjuntos de un espacio
vectorial o un álgebra. En este sentido, aportamos una solución completa
a un problema planteado por V. Gurariy poco después del año 2000. De
hecho, la solución proporcinada aquí es, en realidad, una generalización del
problema original formulado por V. Gurariy. También investigamos problemas
vinculados a la noción de genericidad algebraica en el contexto de sucesiones
de operadores relacionados con series de Taylor.

• El problema clásico del radio de Bohr: Como principal aportación a este pro-
blema, damos una acotación (inferior) del radio de Bohr n-dimensional para
el polidisco Dn que mejora estimaciones previas.

Esta memoria está dividida en cinco capítulos. El tema de polinomios es la
cuestión central de los capítulos 1 y 4. De alguna forma, también aparece en el
capítulo 3. Los problemas resueltos en los capítulos 2 y 3 están claramente vincila-
dos con la genericidad algebraica y lineabilidad. También aparecen problemas de
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2 Resumen

lineabilidad en el capítulo 4. Por último, el capítulo 5 está enteramente dedicado al
problema del radio de Bohr.

A continuación damos una breve descripción de lo que se hace en cada capítulo.

Capítulo 1.
Este capítulo inicial se titula “Caracterización de la continuidad de polinomios
en un espacio normado”.

En pocas palabras, lo que hacemos es darle una vuelta más a un resultado
elemental del Análisis Real: En particular, una función f ∈ RR es continua
si, y solo si f transforma cojuntos compactos y conexos de la recta real en
conjuntos compactos y conexos de la rexta real. En realidad este resultado
también se pude probar en un contexto más amplio, y de hecho es cierto para
funciones entre espacios normados (reales o complejos). Cuando se consideran
únicamente polinomios P ∶ E → K, donde E es un K-espacio normado, en-
tonces se probó en 2012 que P es continuo si, y solo si P transforma conjuntos
compactos de E en conjuntos compactos de K. En el caso en que K = C, en este
capítulo demostramos que P es continuo si y solo si P transforma conjuntos
conexos de E en conjuntos conexos de C. Aunque también hemos estudiado el
caso real de este problema, solo hemos conseguido dar una respuesta parcial.
Así, cuando K = R este problema sigue, en esencia, abierto.

Capítulo 2.

En el segundo capítulo de la tesis, titulado Solución a un problema abierto
de Vladimir I. Gurariy, tratamos el conceto de lineabilidad. Esta noción ha
atraído el interés de una parte significativa de la comunidad matemática de
todo el mundo durante las dos últimas décadas. Este capítulo tiene como
particularidad más destacada el contener una solución de una cuestión par-
cialmente resuelta por V. I. Gurariy (1935–2005) en 2003. El problema aludido
está relacionado con la dimensión del espacio vectorial más grande posible que
se puede considerar en un conjunto de funciones continuas que cumplen cierta
propiedad. Siendo más concretos, si V es un subespacio de C(R) tal que sus
elementos no nulos alcanzan el máximo en un único punto, entonces probamos
que dim(V ) ≤ 2. Es más, aportamos una generalización del resultado anterior
en los siguientes términos: Si m ∈ N y Vm es un subespacio de C(R) cuyos
elementos no nulos alcanzan su máximo en exactamente m puntos, entonces
dim(Vm) ≤ 2 para m > 1. Tratándose de un problema estrechamente rela-
cionado con el Análisis Real, no es de extrañar que en su solución hayamos
precisado de herramientas sacadas de Topología General, Geometría y Análisis
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Complejo, entre las que cabe destacar el uso de particiones de variedades y el
Teorema de Moore, entre otras.

Capítulo 3.

El tercer capítulo de la tesis se encuadra en el contexto de los polinomios y
la teoría de operadores. Su título, Universalidad de sucesiones de operadores
relacionados con series de Taylor incluye la noción de universalidad. Este
concepto, a su vez relacionado con el de genericidad algebraica, lineabilidad y
residualidad, ha sido profusamente estudiado a lo largo del último siglo. En
este capítulo investigamos la universalidad de las sucesiones de sumas parciales
de operadores asociadas a la serie de Taylor de una función holomorfa. Es
preciso destacar el hecho de que las series de Taylor se evalúan en un conjunto
preestablecido de puntos y que se considera como variable el centro de la serie.
También se estudia el comportamiento de la suceción de operadores asociada
a las sumas parciales de las series de potencias que no están ligadas a una
función entera.

Capítulo 4.

Aquí retomamos el estudio de espacios de Banach de polinomios, y más con-
cretamente nos centramos en las normas polinomiales. De hecho, Normas poli-
nomiales es el título de este capítulo. En particular estudiamos las topologías
generadas por diversas normas polinomiales, estableciendo qué relaciones exis-
te entre ellas. Hablando con más precisión, consideramos el espacio de todos
los polinomios complejos de una variable, P, al que dotamos de las siguientes
normas:

∥p∥Dr ∶= sup{∣p(z)∣ ∶ ∣z∣ < r}, y ∥p∥1 ∶=
n

∑
i=0

∣ai∣,

donde p(z) = ∑n
i=0 aiz

i.

En este capítulo demostramos que, si 0 < ε < ε′ < 1 < r < r′, entonces

∥ ⋅ ∥Dε ≺ ∥ ⋅ ∥Dε′ ≺ ∥ ⋅ ∥D1 ≺ ∥ ⋅ ∥1 ≺ ∥ ⋅ ∥Dr ≺ ∥ ⋅ ∥Dr′ ,

donde ≺ representa el orden natural parcial (estricto) de las topologías induci-
das por las normas consideradas. El tema de la lineabilidad también aparece
en este capítulo.
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Capítulo 5.

El último capítulo de la tesis, titulado Cálculo del radio de Bohr n-dimensional
está dedicado a encontrar una estimación del radio de Bohr de la familia de
las funciones holomorfas en el polidisco n-dimensional. La estimación que
obtenemos, usando un método original, es la mejor conocida que nosotros
sepamos.

Como es habitual, H(D) representa el espacio de las funciones analíticas en
el disco unidad abierto D = {z ∈ C ∶ ∣z∣ < 1} del plano complejo C. En 1914,
H. Bohr demostró que cualquier función f(z) ∶= ∑∞

k=0 akz
k ∈ H(D) tal que

f(D) ⊂ D, cumple
∞
∑
k=0

∣akzk∣ ≤ 1, (∗)

siempre que ∣z∣ ≤ 1
6 . El número K1 definido como el mejor radio para el cual

lo anterior ocurre, es decir,

K1 ∶= sup{r ∈ [0,1) ∶ (∗) se cumple para todo f ∈ H(D)
tal que f(D) ⊂ D y todo z con ∣z∣ ≤ r},

recibe el nombre de radio de Bohr para D. Según los resultados del propio
Bohr, K1 ≥ 1

6 . Con posterioridad, Wiener, Riesz y Schur determinaron, de
forma independiente, que el valor exacto de K1 está dado por K1 = 1

3 .

En 1997 Boas y Khavinson estudiaron, para cada n ∈ N ∶= {1,2, . . .} el concepto
de radio de Bohr n-dimensional, representado por Kn, para el polidisco Dn =
D × ⋯ ×D. Como es de prever, Kn se define como el número más grande r
que satisface la desigualdad ∑α ∣cαzα∣ < 1 para todo z con ∥z∥∞ < r y todo
f(z) = ∑α cαz

α ∈ H(Dn) tal que ∣f(z)∣ < 1 para cada z ∈ Dn. Aquí α es una
n-tupla (α1, . . . , αn) de enteros no negativos, z es una n-tupla (z1, . . . , zn) de
números complejos, ∥z∥∞ = max{∣z1∣, . . . , ∣zn∣}, y zα representa el producto
zα = zα1

1 ⋯zαnn . Boas y Khavinson demostraron las siguientes acotaciones de
Kn:

Para cada n ∈ N con n ≥ 2, el radio de Bohr n-dimensional Kn

cumple
1

3
√
n
<Kn < 2

√
logn

n
.

La ámplia literatura existente sobre este tema recoge aproximaciones al valor
de Kn en los casos n = 1 o n ≥ 2 en múltiples situaciones, como por ejemplo
cuando se consideran dominios más generales que D o Dn, o cuando se con-
sideran subclases específicas de funciones holomorfas o relacinadoas con las
funciones holomorfas, como el caso de las funciones armónicas, estre otras.
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También se ha considerado el caso de funciones holomorfas en dominios con-
tenidos en espacios de dimensión infinita o funciones holomorfas que toman
valores en un espacio vectorial.

En lo referente al comportamiento asintótico de Kn cuando n → ∞, se ha
demostrado recientemente que el crecimiento asintótico exacto de Kn viene
dado por

lim
n→∞

Kn√
(logn)/n

= 1.

A pesar del hecho de que el límite anterior proporciona una descripción precisa
de cómo se comporta Kn asintóticamente, se deconoce por completo cuáles son
los valores exactos de Kn para n ≥ 2. En este capítulo nos centramos en pro-

porcionar una acotación inferior deKn que mejore
1

3
√
n
<Kn, proporcionando

la mejor estimación inferior conocida de Kn.
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Abstract

The title of this dissertation alludes to the study of three classical problems of
mathematical analysis. All the results that have been obtained as the fruit of four
years of hard work are related, wholly or partially to at least one of the following
three fields:

• Banach spaces of polynomials: This is a vast field as the educated reader knows
well. In particular we have studied continuity properties of polynomials on
Banach spaces and topological relationships among polynomial spaces.

• Algebraic genericity and lineability: This is the study of the algebraic structure
within certain sets in a linear space. We give an answer to a question posed by
Gurariy in the early 2000’s and, as a matted of fact, we prove a generalization
to the question formulated by Gurariy. We also link the notion of algebraic
genericity to the study of sequences of operators related to Taylor series.

• The classical Bohr radius problem: We provide an estimated on the n-dimensional
Bohr radius for the polydisk Dn that improves other previous estimates.

This dissertation is divided into five main chapters. Polynomials appear in chap-
ters 1 and 4. This topic is present to in some sense in chapter 3. Algebraic genericity
and lineability are the main topic of chapters 2 and 3, although chapter 4 contains
too lineability questions. Finally, chapter 5 is devoted entirely and solely to the
Bohr radius problem.

We provide next a brief description of the content of each chapter.

7



8 Abstract

Chapter 1.
This initial chapter is entitled “Characterization of Continuity of Polynomials
on Normed Spaces”.

In a nutshell, we “revolve” around a classical real analysis result: A function
f ∈ RR is continuous if and only if f maps continua (compact, connected sets)
to continua. The same holds for mappings between any two (real or complex)
normed spaces. However, when we restrict ourselves to polynomials P ∶ E → K,
where E is a K-normed space, then it was proved in 2012 that P is continuous
if and only if it transforms compact sets into compact sets. In this chapter we
show that (if K = C) P is continuous if and only if it transforms connected sets
into connected sets. Although we also provide some partial results for K = R,
the general case in the real setting remains still an open question.

Chapter 2.

In the second chapter of this dissertation, entitled Answering an open question
of Vladimir I. Gurariy, we deal with the notion of lineability, notion that
has (for the past two decades) attracted the attention of the mathematical
community all over the World. This chapter has the peculiarity that solves
a question that was partially answered by V. I. Gurariy (1935–2005) in 2003.
This question is related to the largest possible dimension of a vector space of
continuous functions enjoying certain special properties. More particularly, if
V stands for a subspace of C(R) such that every nonzero function in V attains
its maximum at one (and only one) point, then we prove that dim(V ) ≤ 2.
Moreover, we generalize the previous result in the following terms: If m ∈ N
and Vm stands for a subspace of C(R) such that every nonzero function in
Vm attains its maximum at m (and only m) points, then dim(Vm) ≤ 2 for
m > 1 as well. Besides being a problem closely related to real analysis, this
problem actually needs the use of tools from General Topology, Geometry
and Complex Analysis, such as decompositions (or partitions) of manifolds or
Moore’s Theorem, among others.

Chapter 3.

The third chapter in this thesis falls into the area of polynomials and operator
theory. Its title, Universality of sequences of operators related to Taylor series
considers, this time, the notion of universality. This notion, linked to that
of algebraic genericity, lineability and residuality, has been the object of deep
study for the last century. On this occasion, the universality of a sequence of
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operators associated to the partial sums of the Taylor series of a holomorphic
function is investigated. The emphasis is put on the fact that the Taylor
series are evaluated at a prescribed point and the variable is the center of the
expansion. The dynamics of the sequence of operators linked to the partial
sums of a power series that is not generated by an entire function is also
studied.

Chapter 4.

This time we keep studying Banach space polynomials and Polynomial norms
(its title). More particularly we focus on the topologies that can be consider
within them and on “sorting them out”. More precisely, consider the following
two norms in the vector space P of all complex polynomials:

∥p∥Dr ∶= sup{∣p(z)∣ ∶ ∣z∣ < r}, and ∥p∥1 ∶=
n

∑
i=0

∣ai∣,

where p(z) = ∑n
i=0 aiz

i.

In this chapter we show that, if 0 < ε < ε′ < 1 < r < r′, then

∥ ⋅ ∥Dε ≺ ∥ ⋅ ∥Dε′ ≺ ∥ ⋅ ∥D1 ≺ ∥ ⋅ ∥1 ≺ ∥ ⋅ ∥Dr ≺ ∥ ⋅ ∥Dr′ ,

where ≺ represents the natural (strict) partial order in their corresponding
induced topologies. Some lineability results are also studied in this chapter.

Chapter 5.

The final chapter of this dissertation, entitled Estimating the n-dimensional
Bohr radius, is devoted to the study of a new estimate for the Bohr radius
of the family of holomorphic functions in the n-dimensional polydisk. This
estimate, obtained via a new approach, is sharper than those that are known
up to date.

Let H(D) denote the space of all analytic functions on the open unit disk
D = {z ∈ C ∶ ∣z∣ < 1} of the complex plane C. In 1914, H. Bohr proved that
any function f(z) ∶= ∑∞

k=0 akz
k ∈ H(D) such that f(D) ⊂ D satisfies

∞
∑
k=0

∣akzk∣ ≤ 1, (∗)

whenever ∣z∣ ≤ 1
6 . The number K1 defined as the best radius for which this

happens, that is,
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K1 ∶= sup{r ∈ [0,1) ∶ (∗) holds for all f ∈ H(D)
such that f(D) ⊂ D and all z with ∣z∣ ≤ r},

is called the Bohr radius for D. Then K1 ≥ 1
6 . Subsequently later, Wiener,

Riesz and Schur, independently established the exact value K1 = 1
3 .

In 1997 Boas and Khavinson introduced, for each n ∈ N ∶= {1,2, . . .} the n-
dimensional Bohr radius Kn for the polysdisk Dn = D × ⋯ ×D. As expected,
Kn is defined as the largest number r satisfying ∑α ∣cαzα∣ < 1 for all z with
∥z∥∞ < r and all f(z) = ∑α cαz

α ∈ H(Dn) such that ∣f(z)∣ < 1 for all z ∈ Dn.
Here α denotes an n-tuple (α1, . . . , αn) of nonnegative integers, z stands for
an n-tuple (z1, . . . , zn) of complex numbers, ∥z∥∞ = max{∣z1∣, . . . , ∣zn∣}, and
zα denotes the product zα = zα1

1 ⋯zαnn . They showed the following bilateral
estimate:

For every n ∈ N with n ≥ 2, the n-dimensional Bohr radius Kn

satisfies
1

3
√
n
<Kn < 2

√
logn

n
.

Approximations for the value ofKn, in the cases n = 1 or n ≥ 2, have been given
in domains more general than D or Dn (with appropriate definitions for such
domains), for specific subclasses of holomorphic functions, for functions related
to holomorphic ones (such as harmonic functions, among others), and even for
holomorphic functions on domains contained in infinite dimensional spaces or
for vector-valued analytic functions. Concerning the asymptotic behaviour of
Kn when n →∞, it was recently proved that the exact asymptotic behaviour
of Kn is established, namely,

lim
n→∞

Kn√
(logn)/n

= 1.

Despite the fact that the above limit gives a very precise description of the
asymptotic behavior of the sequence (Kn), no exact value of Kn is known
for any n ≥ 2. In this chapter of the dissertation we focus on the (non-

asymptotical) lower estimate
1

3
√
n
< Kn, providing the best known to date

lower estimate for Kn.



Chapter 1
Characterization of Continuity of
Polynomials on Normed Spaces

For convenience let us represent the space of all mappings f ∶ R → R by RR. The
starting point of this chapter in the dissertation is the following (not very famous)
characterization of continuity in RR:

Theorem 1.1. A function f ∈ RR is continuous if and only if the following two
conditions hold:

1. For every compact set C ⊂ R, we have that f(C) is also compact, and

2. for every connected set C ⊂ R (i.e., for every interval C), we have that f(C)
is also connected.

In every basic course in Analysis of one real variable it is shown that if f ∶ R→ R
is continuous, then it fulfills (1) and (2) above. For a proof of the reverse implication
we refer to Velleman [89]. Actually, the following holds as a particular case of a result
by Hamlett [61] (see also [68] and [90]):

Theorem 1.2. A functional f ∶ E → R, where E is a normed space is continuous
if and only if f transforms compact sets and connected sets of E into compact sets
and connected sets of R, respectively.

In [53] the authors studied the algebraic size of the sets of mappings on the real
line satisfying one and only one of the conditions (1) and (2). In order to understand
the main conclusions of [53] it might be necessary to briefly introduce the concept
of lineability (we will not delve too much on this, since it will be the object of full
study of the next chapter).

11
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Definition 1.3. If E is a linear space and λ is a cardinal number, we say that
M ⊂ E is λ-lineable if there exists a λ-dimensional linear subspace V of E such that
V ⊂M ∪ {0}. If λ is an infinite cardinal, we simply say that M is lineable.

Recall that c, as usual, stands for the cardinality of R. Then, in [53] the following
was proved:

Theorem 1.4. Let

A1 = {f ∈ RR ∶ f maps compact sets into compact sets} and
A2 = {f ∈ RR ∶ f maps connected sets into connected sets}.

Then both A1 ∖ A2 and A2 ∖ A1 are 2c-lineable, and this is optimal (in terms of
dimension). Moreover, both (A1 ∖ A2) ∪ {0} and (A2 ∖ A1) ∪ {0} contain a 2c-
dimensional space of nowhere continuous functions.

The above result is very much related to the question we consider in this chapter.
We need to introduce the notion of polynomial on a normed space. Given a normed
space E over K, with K = R or K = C, a map P ∶ E → K is an n-homogeneous
polynomial if there is an n-linear mapping L ∶ En → K for which P (x) = L(x, . . . , x)
for all x ∈ E. In this case it is convenient to write P = L̂. According to a well-
known algebraic result, for every n-homogeneous polynomial P ∶ E → K there exists
a unique symmetric n-linear mapping L ∶ En → K such that P = L̂. When this
happens, L is called the polar of P .

We let Pa(nE), La(nE) and Lsa(nE) denote, respectively, the linear spaces of all
scalar-valued, n-homogeneous polynomials on E, the scalar-valued, n-linear map-
pings on E and the symmetric, scalar-valued, n-linear mappings on E. More gener-
ally, a map P ∶ E → K is a polynomial of degree at most n if

P = P0 + P1 +⋯ + Pn,

where Pk ∈ Pa(kE) (1 ≤ k ≤ n), and P0 ∶ E → K is a constant function. The
polynomials of degree at most n on E are denoted by Pn,a(E).

Polynomials on a finite dimensional normed space are always continuous; how-
ever, the same statement is not valid for infinite dimensional normed spaces. Bound-
edness is a characteristic property of continuous polynomials on a normed space. The
interested reader can find in [49] the details on the proof of the latter fact, as well
as a complete and modern account on polynomials on normed spaces. In particular,
it is well-known that P ∈ Pn,a(E) is continuous if and only if P is bounded on the
open unit ball of E, denoted by BE. This fact allows us to endow the space of
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contintinuous polynomials on E of degree at most n, represented by Pn(E), with
the following norm:

∥P ∥ = sup{∣P (x)∣ ∶ x ∈ BE}.
The space of continuous n-homogeneous polynomials on E is denoted by P(nE).

The following result refines Theorem 1.2 when restricting our attention to poly-
nomials (see [53]):

Theorem 1.5. If E is a real normed space, a polynomial P ∈ Pn,a(E) is continuous
if and only if P transforms compact sets into compact sets.

In [53] it was conjectured that a similar result to Thereom 1.5 for polynomials
that transform connected sets into connected sets also holds, i.e., P ∈ Pn,a(E) is
continuous if and only if it transforms connected sets into connected sets. The
conjecture was proved (see [53, Proposition 2.2]) for real polynomials in Pa(nE) with
n = 1,2. In this chapter we show that the conjecture is also true for polynomials
in P2,a(E), being E a real normed space, and for polynomials in Pn,a(E) for every
n ∈ N whenever E is a complex normed space.

1.1 The complex case

From the classical Maximum Modulus Principle one can obtain the following result.

Theorem 1.6. Let Ω ⊂ C be an open, connected and bounded set and let f ∈ H(Ω)∩
C(Ω). If there is a z0 ∈ Ω such that ∣f(z0)∣ ≥ max∂Ω ∣f ∣ then f is constant. Moreover
max∂Ω ∣f ∣ = maxΩ ∣f ∣.

Corollary 1.7. Let Ω ⊂ C be open, connected and bounded, and let f ∈ H(Ω)∩C(Ω).
If f is non-constant then, for every z ∈ Ω, there is η ∈ ∂Ω such that ∣f(η)∣ > ∣f(z)∣.

Theorem 1.8. Let f ∈ H(C) be non-constant. Then for all z1 ∈ C and r,R > 0 with
∣f(z1)∣ > r, there exists a continua (connected compact set) B ⊂ C such that z1 ∈ B,
B ∩ ∂D(z1,R) ≠ ∅ and ∣f(z)∣ > r

2 for every z ∈ B.

Proof. Let R > 0. Since ∣f ∣ is uniformly continuous over D(z1,R), there exists δ > 0
such that

∣∣f(z)∣ − ∣f(η)∣∣ < r/4, (1.1)

for all z, η ∈ D(z1,R) with ∣z − η∣ < δ. Next, define zn in D(z1,R) by recursion as
follows:
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Suppose z1, . . . , zk have already been defined in D(z1,R). Now set

Dk =D(zk, δ) ∩D(z1,R),
Mk ={z ∈ ∂Dk ∶ ∣f(z)∣ = max

∂Dk
∣f ∣}.

Observe that ∂Dk ⊂ ∂D(zk, δ)∪∂D(z1,R) and zk ∈Dk. Two cases are possible now:

1. IfMk∩∂D(z1,R) ≠ ∅, we choose zk+1 ∈Mk∩∂D(z1,R) and we stop the process.

2. If Mk ∩∂D(z1,R) = ∅, we choose zk+1 ∈Mk ∩∂D(zk, δ) and the process contin-
ues. Notice that in this case zk+1 ∈Mk∩D(z1,R). Also, since f is not constant
in Dk (otherwise f would be constant on C by the Identity Principle), the fact
that zk ∈Dk and ∣f(zk+1)∣ = max∂Dk ∣f ∣ imply that ∣f(zk+1)∣ > ∣f(zk)∣ by virtue
of the Maximum Modulus Principle (Theorem 1.6).

Let us now show that this process, actually, has an end, that is, there exists
N ∈ N such that zN ∈ ∂D(z1,R). On the contrary, we would have that zn ∈D(z1,R)
for all n ∈ N. Then (zn) has a convergent subsequent (zin). Let z0 ∈D(z1,R) be the
limit of (zin). By construction we have ∣f(zn)∣ < ∣f(zn+1)∣ for all n ∈ N, which implies
that ∣f(zn)∣ < ∣f(z0)∣, for every n ∈ N. If we choose s ∈ N such that ∣zis − z0∣ < δ, then
z0 ∈Dis and, also,

max
∂Dis

∣f ∣ = ∣f(zis+1)∣ < ∣f(z0)∣ ≤ max
Dis

∣f ∣ = max
∂Dis

∣f ∣,

which is a contradiction.

Therefore r < ∣f(z1)∣ < . . . < ∣f(zN)∣ and, by (1.1), we have that ∣f(z)∣ > 3r/4 for
all z ∈ ∪N−1

n=1 Dn. If we define B = ∪N−1
n=1 Dn, then B is compact and connected since

the Dn’s are continua with zn, zn+1 ∈ Dn (1 ≤ n ≤ N − 1), ∣f(z)∣ ≥ 3r/4 > r/2 for all
z ∈ B, zN ∈ B ∩ ∂D(z1,R) and, of course, z1 ∈ B. This concludes the proof.

Theorem 1.9. Let P ∈ C[z]. Recall that C[z] is a quite standard notation for the
space of complex polynomials of one variable (in Chapter 4 we will use the alternative
notation P). If there are r > 0 and η1, η2 ∈ C with

min{∣P (η1)∣, ∣P (η2)∣} > r,

then there is a continua B such that η1, η2 ∈ B and, for all z ∈ B, ∣P (z)∣ > r/2.

Proof. If P is constant, there is nothing to prove. Let us suppose that P is non-
constant. We have that K = {z ∈ C ∶ ∣P (z)∣ ≤ r/2} is bounded, thus there is d > 0

such that K ⊂D(0, d). If we choose R > max{d+ ∣η1∣, d+ ∣η2∣}, by Theorem 1.8 there
are two connected subsets B1 and B2 such that (for i = 1,2) ηi ∈ Bi, ∣P (z)∣ > r/2 for
all z ∈ Bi and there is a η′i ∈ Bi with R = ∣η′i − ηi∣, and ∣η′i∣ ≥ R − ∣ηi∣ > d. Therefore
we can construct a continuous curve γ ∶ [0,1]→ C∖D(0, d) such that γ(0) = η′1 and
γ(1) = η′2. We just need to put B = B1 ∪B2 ∪ γ([0,1]) to conclude the proof.
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Figure 1.1: Setting of the proof of Theorem 1.9

Theorem 1.10. Let r > 0 and let F be a C-normed space. Also, let P = ∑m
j=0Pj with

Pj ∈ P(jF ) and P0 ∈ C be such that there are x, y ∈ F with min{∣P (x)∣, ∣P (y)∣}∣ > r.
Then there exists a continua A such that x, y ∈ A and, for all a ∈ A, ∣P (a)∣ > r/2.

Proof. We define ϕ ∶ C → F as ϕ(z) ∶= zx + (1 − z)y and consider the complex
polynomial in one variable given by Q(z) = P (ϕ(z)). Since ∣Q(0)∣ = ∣P (y)∣, ∣Q(1)∣ =
∣P (x)∣ > r, by Theorem 1.9 there is a continua B ⊂ C such that 0,1 ∈ B and, for
all z ∈ B, ∣Q(z)∣ > r/2. Then it follows that A = ϕ(B) is a connected and compact
subset of F such that x, y ∈ A and for all a ∈ A, ∣P (a)∣ > r/2.
Theorem 1.11. Let E be a C-normed space and let P = ∑m

j=0Pj with Pj ∈ Pa(jE)
and P0 ∈ C. If P is not continuous then there is a connected subset C of E such
that P (C) is not connected.

Proof. We can assume, without loss of generality, that P0 = 0 by replacing P by
P − P0 if necessary. Since P is not continuous, there exists a sequence (xn) such
that limn xn = 0 and, for every n ∈ N, ∣P (xn)∣ > r > 0. Observe that the xn’s cannot
be contained in a finite dimensional space. Therefore we can assume that they are
pairwise linearly independent. This guaranties that the spaces Fn = span{xn, xn+1}
with n ∈ N are not trivial. By Theorem 1.10, for every n ∈ N there exists a connected
subset An of Fn such that xn, xn+1 ∈ An and for every x ∈ An we have ∣P (x)∣ > r/2.
Thus, it follows that both A = ∪n∈NAn and C = A∪{0} are connected, but ∣P (x)∣ > r/2
for all x ∈ A. Since P (0) = 0 we have that P (C) is not connected.
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Finally, as a corollary, we have the desired result.

Corollary 1.12. Let E be a C-normed space and P ∈ Pa(E). P is continuous if
and only if P transforms connected subsets of E into connected subsets of C.

1.2 The real case

In [53] it was proved that if E is a real normed space and P ∈ P(nE) (for n = 1,2) then
P transforms connected sets of E into intervals if and only if P is continuous. The
proof provided in [53], however, cannot be adapted to homogeneous polynomials of
higher degrees, not to mention non-homogeneous polynomials. We show below that,
at least for polynomials of degree at most 2 (homogeneous or not), connectedness is
equivalent to continuity.

Theorem 1.13. If E is a real normed space and P ∈ P2,a(E), then P is continuous
if and only if it transforms cennected sets of E into connected sets of R.

Proof. Connectedness is always a consequence of continuity, so let us assume that
P transforms connected sets of E into connected sets of R. Suppose that P =
P2 +P1 +P0, where Pn ∈ Pa(nE), with n = 1,2, and P0 is a real number. Notice that
P −P0 transforms connected sets into intervals as well, so we can assume, replacing
P by P − P0 if necessary, that P0 = 0. If P were not continuous, we would have the
following cases:

Case 1: P1 is continuous but P2 is not or vice versa.

Assume first that P1 is continuous and P2 is non-continuous. Since P2 is not
continuous, we can construct a sequence (xk) in BE such that lim

k→∞
xk = 0 and either

lim
k→∞

P2(xk) = −∞ or lim
k→∞

P2(xk) =∞. Replacing P by −P if needed, we can assume
that lim

k→∞
P2(xk) = ∞. We can also choose the xk’s so that the sequence (P2(xk))

is strictly increasing and P2(x1) > 0. Furthermore, if L ∈ Lsa(2E) is the polar of
P2, we can assume that L(xk, xk+1) ≥ 0 replacing xk+1 by −xk+1 if necessary. Notice
that this possible alternation of signs does not alter the fact (P2(xk)) is an strictly
increasing divergent sequence of positive numbers because P2(xk) = P2(−xk) for all
k ∈ N. Since

P2(λxk + (1 − λ)xk+1) = λ2P2(xk) + 2λ(1 − λ)L(xk, xk+1) + (1 − λ)2P2(xk+1)
≥ λ2P2(xk) + (1 − λ)2P2(xk+1)
≥ [λ2 + (1 − λ)2]P2(xk)
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≥ 1

2
P2(xk), (1.2)

for every λ ∈ [0,1], we have that P2(x) ≥ P2(xk)/2 for every x ∈ [xk, xk+1], where
[xk, xk+1] is the segment with endpoints xk and xk+1. Now choose N ∈ N such that

1

2
P2(xk) > ∥P1∥ + 1,

for all k ≥ N (recall that lim
k→∞

P2(xk) = ∞). Define C = ⋃∞
k=N[xk, xk+1] and C∗ =

C ∪ {0}, which is a connected set. Therefore, if x ∈ C and k ∈ N is such that
x ∈ [xk, xk+1], we have that

P (x) = P2(x) + P1(x) ≥
1

2
P2(xk) − ∥P1∥ > 1,

from which P (C) ⊂ (1,∞). Since P (0) = 0, it follows that P (C∗) is not connected.

The previous proof can be adapted to the case in which P2 is continuous but
P1 is not. Indeed, as in the previous case, there exists a sequence (xk) in BE
converging to 0 such that (P1(xk)) is strictly increasing and divergent. By linearity,
it is straightforward that

P1(λxk + (1 − λ)xk+1) ≥ P1(xk),
for every k ∈ N. As above, let N ∈ N such that

P1(xk) > ∥P2∥ + 1,

for every k ≥ N . The proof now proceeds as previously.

Case 2, Both P1 and P2 are not continuous: Observe that Z = ker(P1) is
dense in E because P1 is unbounded. The polynomial P2 can be continuous on Z
or not.

In the case where P2 is not continuous on Z, we can construct (as in case 1) a
sequence (xk) in BZ ⊂ BE such that lim

k→∞
xk = 0 and (P2(xk)) is an strictly increasing

divergent sequence of positive real numbers with P2(x) ≥ P2(xk)/2 for every x ∈
[xk, xk+1] and every k ∈ N. If we define C = ⋃∞

k=1[xk, xk+1] and C∗ = C ∪{0}, which is
a connected set in Z, we have that P (C) ⊂ [P2(x1)/2,∞) whereas P (0) = 0. Since
P2(x1) > 0, we have shown that P (C∗) is not connected.

Now, if P2 is continuous on Z, let L = sup{∣P2(z)∣ ∶ z ∈ BZ} < ∞. Since P2 is
not bounded on BE, there exists x0 ∈ BE (then ∥x0∥ < 1) such that ∣P2(x0)∣ > L.
We can assume that P2(x0) has the same sign as P1(x0), changing the sign of x0 if
needed. Therefore ∣P (x0)∣ = ∣P2(x0)∣+ ∣P1(x0)∣ ≥ ∣P2(x0)∣ > L. Since x0 ∈ BE and Z is
dense, there exists a sequence (zk) in BZ with lim

k→∞
zk = x0. Define C = ∪∞k=1[zk, zk+1],

which is a connected subset of BZ and C∗ = C ∪ {x0}, which is connected. Then,
if z ∈ C, ∣P (z)∣ = ∣P2(z)∣ ≤ L, whereas ∣P (x0)∣ > L. Therefore P (C∗) cannot be
connected.
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To finish, it is in order to make a couple of comments on the real case and the
proof of Theorem 1.13.

Remark 1.14. Suppose E is a real normed space and assume we manage to prove
that any polynomial P ∈ Pn(E) that transforms connected sets into intervals is con-
tinuous. Then Theorem 1.11 would follow immediately by considering the underlying
real space within a complex space. However, this seems, as the reader might have
guessed, quite a hard issue to tackle.

Remark 1.15. The proof given of Theorem 1.13 has been adapted from the proof of
[53, Proposition 2.2]. Observe that we have corrected a flaw appearing in the proof
of [53, Proposition 2.2]. In particular, the factor 1

2 appearing in (1.2) is missing in
[53, Proposition 2.2]. This, in fact, is a minor mistake that can easily be mended
without altering the validity of that proof.



Chapter 2
Answering an open question of

Vladimir I. Gurariy

2.1 Introduction

Let X be any topological vector space and M any subset of X. We say that M is
spaceable ifM ∪{0} contains a closed infinite dimensional subspace. The setM shall
be called lineable if M ∪ {0} contains an infinite dimensional linear (not necessarily
closed) space. At times, we shall be more specific, referring to the setM as κ-lineable
if it contains a vector space of dimension κ (finite or infinite cardinality).

These notions of lineability and spaceability were originally coined by V. I. Gu-
rariy and they first appeared in [8, 60, 88]. During the last decade, many authors
have invested a lot of effort in studying special cases of lineable sets and pathological
real-valued functions (see, e.g., [7, 22,33,38,50,54,55]).

Let us recall that most results obtained in this theory are “positive” results, in
the sense that the sets that authors have considered were (usually) lineable. Thus,
nowadays, some authors aim for finding (nontrivial) nonlineable subsets. This theory
has experienced a fast development in the last decade. However, there are many
problems still unsolved. Here, we shall solve one of them, posed by V. I. Gurariy
during a Non-linear Analysis Seminar at Kent State University (Kent, Ohio, USA)
in the Academic Year 2003/2004 (and that has resisted the efforts of many authors
until now). Let us give some preliminaries on the problem we are dealing with.

19
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Figure 2.1: Vladimir Ilyich Gurariy (Kharkov, Ukraine, 1935). In 1991 he moved
to the USA and worked in Kent State University (Ohio) until his passing in 2005.
Photograph courtesy of Larisa Lev Altshuler.

Let A ⊆ R and denote by Ĉ(A) the subset of C(A) of functions attaining their
maximum at a unique point and, unless said otherwise, endowed with the usual sup
norm. In [60] it was shown that Ĉ[0,1] is not 2-lineable. This could certainly be
called surprising if we keep in mind that the set Ĉ[0,1] is a very large subset –in a
topological sense– of C[0,1]. To be more specific, we have the following proposition,
that was communicated by V. I. Gurariy during a Non-linear Analysis Seminar at
Kent State University (Kent, Ohio, USA) in the Fall of 2004 and proved in detail
in [29].

Proposition 2.1. The set Ĉ[0,1] is a Gδ-dense subset of C[0,1].

Thus, roughly speaking, the functions from Ĉ[0,1] are everywhere within C[0,1],
but there is not even a 2-dimensional vector space of such functions. Also in [60],
the authors proved (constructively) that Ĉ(R) is 2-lineable. Namely, they took the
two linearly independent functions f(x), g(x) defined on R as

f(x) ∶= µ(x) cos(4 arctan(∣x∣)) and g(x) ∶= µ(x) sin(4 arctan(∣x∣)),

where µ is the real valued continuous function defined on R by

µ(x) = { ex if t ≤ 0,
1 if t ≥ 0,
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Figure 2.2: Plots of f(t) and g(t), respectively.

and, then, considered the 2-dimensional vector space given by V = span{f(x), g(x)}
(see Figure 2.2). It can be seen, quite easily, that V /⊂ Ĉ(R) ∪ {0}.

During the last mentioned Seminar, Gurariy posed the following problem (see
also the paper [60] by Gurariy and Quarta, where this question is addressed as well).

Question 2.2. Is there an n-dimensional vector space, with n > 2, every nonzero
element of which belongs to Ĉ(R) (or even an infinite dimensional vector space, for
that matter)?

Summarizing, the main results obtained in [60] are the following:

(A) There is a 2-dimensional linear subspace of C[a, b) contained in Ĉ[a, b)∪ {0}.

(B) There is a 2-dimensional linear subspace of C(R) contained in Ĉ(R) ∪ {0}.

(C) There is no 2-dimensional linear subspace of C [a, b] contained in Ĉ [a, b]∪{0}.

Also, later, in further attempts to give an answer to the Question 2.2, in [29],
the authors proved the following result, that generalizes (C) above.

Theorem 2.3. If K is a compact subset of Rn and if V is a subspace of C(K)
inside Ĉ(K) ∪ {0} then dim(V ) ≤ n.

One of the interesting points from the proof of Theorem 2.3 is that, whereas
Gurariy and Quarta used classical real analysis tools in [60], Theorem 2.3 requires a
topological technique (namely, the Borsuk–Ulam Theorem). More recently, Cariello,
in his Ph.D. dissertation, was able to reduce the above problem to a topological
conjecture [32, §4].
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Unfortunately, no more advances have been obtained regarding the original Ques-
tion 2.2. Here, we shall close this problem in the negative by showing that Ĉ(R) is
not 3-lineable. In other words, if V stands for a subspace of C(R) such that every
nonzero function in V attains its maximum at only one point, then dim(V ) ≤ 2.

Again, the technique we shall employ is far from being a classical real analysis
tool. We shall use a combination of tools from General Topology, Geometry and
Complex Analysis. In particular we shall use decompositions (or partitions) of
manifolds, topic that dates back to the work of R.L. Moore in the 1920s (see [77]),
and that was renewed by results of R.H. Bing in the 1950s. This area of research
has proven to be of extreme importance to the recent characterization of higher-
dimensional manifolds in terms of elementary topological properties. In particular
we shall make use of Moore’s Theorem (Theorem 2.27).

In this chapter we shall have a section which contains several topological results
that may not have a great inherent interest, but that play a crucial role in the
proof of the main results. The statement and proof of the main results are given
later on. There, a chain of results of topological nature leads us to the application of
Moore’s Theorem, which finally proves the nonexistence of a 3-dimensional subspace
in Ĉ(R) ∪ {0}.

We also show an even stronger result: actually, we solve a generalization of
Gurariy’s problem. If we let Vm stand for a subspace of C(R) such that every
nonzero function in Vm attains its maximum at m (and only m) points, then we
show that Vm can be constructed having dimension 2, for every m ∈ N, but it cannot
be constructed having dimension 3. In other words, the subset of C(R) of functions
attaining their maximum at m (and only m) points is 2-lineable but not 3-lineable
for every m ∈ N. It is relevant to mention that the approach employed to tackle the
problem for m = 1 does not work for m ≥ 2.

2.2 Some preliminaries on Algebraic Geometry

Given an arbitrary topological space X, a quotient space is, intuitively speaking,
the result of “gluing together” certain points of X. Let F be a decomposition of X
into non-empty subsets. For every element F of F , all the points of F are identified
topologically as a unique point that we will denote simply as F in F , giving to F
the following topology τ ∶= {U ⊂ F ∶ ⋃F ∈U U is open in X}. The topological space
(F , τ) is called the quotient space constructed with the topological space X and its
decomposition into non-empty subsets F .
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Another way to see what the quotient space is would be the following: Let X
be a topological space and let F be a decomposition of X into non-empty susbets.
Consider the decomposition map p ∶ X → F defined as p(x) ∶= F , where F is the
unique element of F such that x is in F . The set F , in principle, is just a family of
subsets without any topological substrate. There is no possible way to say whether
p is continuous or not unless a topology in F is defined. If we consider the finest
topology τp in F that turns p into a continuous mapping, then τp and τ coincide.
We conclude that the quotient space is in fact the finest topology in F that turns
the decomposition mapping p into a continuous function.

When X is a “geometrical space” like an interval or a finite-dimensional manifold,
if we consider an arbitrary decomposition F , the quotient space may be seem a
very strange topological space but, as a matter of fact, the quotient space is often
homeomorphic to another “geometrical space”. For example, if X is the interval
[0,1] and we consider the decomposition F ∶= {{x} ∶ x ∈ (0,1)}⋃{{0,1}}, then
the quotient space is homeomorphic to S1. The latter is easily seen since, if we
join the points 0 and 1 (the extremes of the interval [0,1]) then the interval [0,1]
becames, topologically, S1. On the other hand, if f is a surjective, continuous, and
closed function between two topological spaces X and Y , if we consider the following
decomposition in X: F ∶= {f−1(y) ∶ y ∈ Y }, then the quotient space is homeomorphic
to Y . Further, if f is a surjective and continuous function between a compact
topological space X and a Hausdorff space Y , then, under these conditions, f is
automatically a closed map, so the quotient space given by X and the decomposition
F ∶= {f−1(y) ∶ y ∈ Y } is homeomorphic to Y . As we see, when we have a topological
space X and a decomposition F , in certain cases, the quotient space may be a well-
known topological space. As we will see, when X is a specific finite-dimensional
manifold and F satisfies certain conditions, the quotient space will be a finite-
dimensional manifold, moreover, it will be homeomorphic to X.

Here X will always be a 2-manifold like either the plane C or the sphere S2.
If a decomposition into non-empty subsets F is considered in X, we would like to
find out what conditions on F should be assumed so that the quotient space is
homeomorphic to X. First of all, if the quotient space is homeomorphic to X then
it has to be a Hausdorff space. Therefore, in particular each point has to be a closed
subset of the quotient space. However, as it has been seen above, the decomposition
map p ∶ X → F is continuous. We conclude that for each F ∈ F , F = p−1(F ) is a
closed subset of X. Furthermore, in the case where X = S2, since X is compact we
deduce that each F ∈ F is a closed subset, and hence it is compact.

On the other hand, if F is a decomposition of X into compact subsets of X,
if the quotient space, that is the result of identifying each F ∈ F with a point,
is homeomorphic to X, then, intuitively, we can assume that each F ∈ F has to
be equivalent to a point in some topological sense. For example, we may assume
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that each F ∈ F may be a contractible subset or almost a connected set that does
not separate X. Let us observe that with these conditions there is little difference
between the cases X = C and X = S2, because if we consider S2 as C ∶= C⋃{∞}
and F is a decomposition into compact and connected subsets of S2, none of which
separates S2, then for one fixed F ∈ F , C ∖ F ≃ S2 ∖ F is connected. Therefore,
by elementary complex variable analysis, Ω ∶= C ∖ F is a simply connected domain
contained in C. However, it is well-known that if Ω ⊊ C, then there exists a bijective
and biholomorphic function h ∶ Ω → D(0,1) (in particular each simply connected
domain of C is homeomorphic to C). Thus S2 ∖ F ≃ C and naturally F ∖ {F} is
a decomposition into compact subsets of S2 ∖ F . Finally we shall prove that (with
their respective identification topologies) F ∖{F} ≃ C if and only if F ≃ S2. Indeed,
if F ≃ S2 then naturally F ∖ {F} ≃ S2 ∖ {p} ≃ C. Reciprocally if F ∖ {F} ≃ C then
we can see, almost intuitively, that F = {F}⋃F ∖ {F} ≃ {∞}⋃C = C ≃ S2.

Let as continue with the question about the assumptions we have to consider on
F so that the quotient space is homeomorphic to X. So far we have consider very
reasonable conditions on the decomposition F . Our main concern emerges from the
fact although X is a Hausdorff space (since it is a 2-manifold), we cannot dedude
that the quotient space is a Hausdorff space as well. Therefore it is necessary to
consider another condition on F to resolve this. Let us suppose that F1 and F2 are
two different elements of F . Since X is a normal topological space, it is well-known
that there exist two open disjoint subsets U1, U2 of X such that Fi ⊂ Ui for each
i = 1,2. However if we now define (for each i = 1,2)

Vi ∶= ⋃
F ∈F ,F⊂Ui

F,

then V1 and V2 are two disjoint, non-empty subsets of X and, of course, p−1(Vi) = Vi,
where Vi ∶= p(Vi). Observe that Vi (i = 1,2) are open in the quotient space if and
only if Vi (i = 1,2) are open in X. We conclude that if we assume this condition we
will have that the quotient space will be a Hausdorff space. In Daverman’s book
[40] this condition is called “upper semicontinity”. We present next some equivalent
statements to upper semicontinuity:

Proposition 2.4. Let F be a decomposition of a topological space X into closed
subsets. The following statements are equivalent:

1. F is upper semicontinuous.

2. For each open subset U in X the set V ∶= ⋃F ∈F ,F⊂U F is an open subset in X.

3. The decomposition map p ∶X → F is closed.

As for the case X = C, in the 1920s and 1930s, R. L. Moore proved the following
sufficient condition on F so that the quotient is X = C:
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Theorem 2.5 (Moore). If F is an upper semicontinuous decomposition of the plane
C into continua, none of which separates C, then F is homeomorphic to C.

It has already been mentioned that the case X = S2 is very similar. As far as we
are concerned, the case X = S2 is more important and, as a matter of fact, we will
have to deal with it in this section.

Next we provide provide a brief account of some auxiliary results from topology
and complex analysis that will be crucial in order to proceed with the proof of our
main result.

2.3 Preliminary results from topology and
complex analysis

We begin with a couple of propositions on convex analysis and topology. Recall first
that the convex hull (or convex envelope) of a set X of points in Rn is defined as the
smallest convex set that contains X, and it is denoted by co{X} (see, e.g., [73]).

Proposition 2.6. Let A be a 2-dimensional Euclidean affine space and let ∅ ≠ C ⊂
A be a convex, compact set. Then exactly one of the following properties holds:

1. C is a segment.

2. Int(C) ≠ ∅.

Proof. Let us suppose that C is not a segment. Since card(C) ≥ 2, let x, y ∈ C
with x ≠ y. Now, consider the straight line r defined by x and y. Since C is not
a segment, there is z ∈ C that does not belong to r. Consider now the convex hull
of x, y, z, denoted co{x, y, z}. We have that C ⊃ Int(co{x, y, z}) ≠ ∅, from what we
have that Int(C) ≠ ∅.

The following result is the 3-dimensional analogue of Proposition 2.6.

Proposition 2.7. Let A be a 3-dimensional Euclidean affine space and let ∅ ≠ C ⊂ A
be a convex, compact set. Then exactly one of the following properties holds:

1. C lies in a plane.
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2. Int(C) ≠ ∅.

Proof. Suppose that C does not lie in a plane. Let x, y ∈ C, with x ≠ y, and let r be
the straight line defined by x and y. Since C does not lie in a plane, we have that
there exists z ∈ C, and not belonging to r, such that the Euclidean affine space E
generated by x, y, z is a plane with E ⊂ A. Next, take w ∈ C ∖E. We now have that
the tetrahedral of vertices x, y, z,w lies in C and, thus, co{x, y, z,w} ⊂ C. Hence, as
we inferred in the proof of Proposition 2.6, Int(C) ≠ ∅.

The following result shall also be of crucial importance for our purposes.

Theorem 2.8. Let A be a n-dimensional Euclidean affine space and let C ⊂ A be
a convex, compact subset such that Int(C) ≠ ∅. We have that ∂C is homeomorphic
to Sn−1 (∂C ≃ Sn−1).

Proof. Let x0 ∈ C and ε > 0 such that B(x0, ε) ⊂ C. Since C is convex, given u ∈ Sn−1

there is a unique xu ∈ ∂C such that

∂C ∩ {x0 + tu ∶ t > 0} = {xu}.

Also, notice that the mapping
h ∶ Sn−1 → ∂C

given by h(u) ∶= xu is a bijection. Moreover, given any sequence {un}n∈N ⊂ Sn−1

with un
n→∞Ð→ u we have that xun

n→∞Ð→ xu. Therefore, h is the homeomorphism we are
looking for.

Next, let us recall some well known-results from Complex Analysis (that can be
found in, for instance, [72]). These shall also be of need in what follows. Recall
that a domain –that is, a connected open nonempty set Ω ⊂ C– is said to be simply
connected if it contains the geometrical interior of any closed Jordan curve contained
in it.

Proposition 2.9. Let Ω ⊂ C be a domain, then it is simply connected if and only if
(C ∪ {∞}) ∖Ω is connected.

Corollary 2.10. Let ∅ ≠ F ⊂ S2 be a closed connected set. We have that, if S2 ∖F
is connected, then there exists a simply connected domain Ω ⊂ C with S2 ∖ F ≃ Ω.

Theorem 2.11. If Ω ⊂ C is a simply connected domain then Ω ≃ C.
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2.4 The solution to Gurariy’s original question

Here, we shall build a series of constructions in order to prove that Ĉ(R) is not
3-lineable (Theorem 2.33). The basic idea is to proceed by contradiction, assuming
that there is a 3-dimensional linear space E ⊂ C(R) of functions such that every
nonzero function f ∈ E attains its maximum at one (and only one) point t0 ∈ R. As
usual, we endow E with the sup norm, defined by

∥f∥∞ ∶= sup{∣f(t)∣ ∶ t ∈ R}.

Also, if SE denotes the unit sphere of E, the dual space of E, E′, shall be endowed
with the dual norm

∥x′∥ ∶= sup{⟨x′, f⟩ ∶ f ∈ SE}.
If t ∈ R, we represent the linear evaluation form on E at t as δt, that is, δt(f) = f(t)
for every f ∈ E.

Let us begin this section with some simple, although necessary, results. We
denote by w∗ the weak topology on the dual of a topological vector space.

Proposition 2.12. The mapping ϕ ∶ R→ E′ given by ϕ(t) = δt is continuous.

Proof. Let {tn}n∈N ⊂ R be a convergent sequence of limit t. Thus, for every f ∈ E ⊂
C(R), we have

⟨δtn , f⟩ = f(tn)
n→∞Ð→ f(t) = ⟨δt, f⟩,

from which we have that δtn
n→∞Ð→ δt in (E′,w∗) = (E′, ∥ ⋅ ∥) = E′.

Corollary 2.13. The set

J = {t ∈ R ∶ ∃f ∈ SE such that max{f(s) ∶ s ∈ R} = f(t)}

is closed.

Proof. Let {tn}n∈N ⊂ J be a convergent sequence tn
n→∞Ð→ t ∈ R. For every n ∈ N there

is fn ∈ SE such that
max{fn(s) ∶ s ∈ R} = fn(tn).

Since SE is compact, we can assume (taking a subsequence if needed) that fn
n→∞Ð→ f

for some f ∈ SE which, by Proposition 2.12, gives

⟨δtn , fn⟩
n→∞Ð→ ⟨δt, f⟩,
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implying that

f(t) = ⟨δt, f⟩
= lim
n→∞⟨δtn , fn⟩

= lim
n→∞max{fn(s) ∶ s ∈ R}

= max{f(s) ∶ s ∈ R},

and, thus, t ∈ J . This finishes the proof. Notice that the last equality we have used
the fact (left as a simple exercise) that under the hypothesis we are dealing with,
the identity

lim
n→∞max{fn(s) ∶ s ∈ R} = max

s∈R
{ lim
n→∞ fn(s)}

holds (although this is not true in general).

The set J defined in Corollary 2.13 will play a crucial role in this section and in
the proof of the main result. Note that, by definition, J ≠ ∅ and card(J) ≥ 2 (as a
matter of fact, it can be proved that card(J) = c, but this will not be needed here).

Also, from now on we shall need to refer to the following set:

C ∶= ⋂
f∈SE

{x′ ∈ E′ ∶ ⟨x′, f⟩ ≤ max{f(s) ∶ s ∈ R}} . (2.1)

Let us now see some properties of the previous set.

Proposition 2.14. The set C is a continuum. In particular, it is convex, compact
and Int(C) ≠ ∅.

Proof. We have the following:

1. C is convex and closed since, by definition, C is the intersection of closed and
convex sets.

2. C is bounded. To see this, take x′ ∈ C. Then

⟨x′, f⟩ ≤ max{f(s) ∶ s ∈ R} ≤ ∣∣f ∣∣∞ = 1,

for all f ∈ SE. Therefore ∥x′∥ ≤ 1 for all x′ ∈ C.

3. Int(C) ≠ ∅. Indeed, assume that Int(C) = ∅. By Proposition 2.7, C is
contained in a plane. Hence there exist f ∈ E ∖ {0} and c ∈ R such that
⟨x′, f⟩ = c for every x′ ∈ C. Observe that {δt ∶ t ∈ R} ⊂ C. Then f(t) = ⟨δt, f⟩ = c
for all t ∈ R. This contradicts the fact that f ∈ E ∖ {0} attains its maximum
at a single point.
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Corollary 2.15. ∂C ≃ S2.

Proof. It follows from Proposition 2.14 and Theorem 2.8.

Lemma 2.16. ∂C = ⋃f∈SE{x′ ∈ C ∶ ⟨x′, f⟩ = max{f(s) ∶ s ∈ R}}.

Proof. The fact that

⋃
f∈SE

{x′ ∈ C ∶ ⟨x′, f⟩ = max{f(s) ∶ s ∈ R}} ⊂ ∂C

is clear.

Now take x′ ∈ ∂C. Then there is a sequence {x′n}n∈N in E′ ∖ C such that
limn→∞ x′n = x′. Hence, for each n ∈ N there is fn ∈ SE such that ⟨x′n, fn⟩ ≥
max{fn(s) ∶ s ∈ R}. Since SE is compact, we can assume (taking an appropri-
ate subsequence if necessary) that {fn}n∈N converges to an element f of SE. It
follows that ⟨x′, f⟩ ≥ max{f(s) ∶ s ∈ R} and therefore ⟨x′, f⟩ = max{f(s) ∶ s ∈ R}
(notice that x′ ∈ C).

Definition 2.17. Consider the set J defined in Corollary 2.13. For every t ∈ J , we
define the set

Ft = {x′ ∈ C ∶ ∃f ∈ SE with ⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t)}.

Lemma 2.18. Assume that H is an affine plane such that IntH(D) ≠ ∅, where
D = C ∩H and IntH(D) stands for the interior of D in H. Then one and only one
of the following statements is true:

(a) IntH(D) ⊂ Int(C) and ∂H(D) ⊂ ∂C, where ∂H(D) represents the boundary of
D in the topological subspace H.

(b) There exists f ∈ SE such that

H = {x′ ∈ E′ ∶ ⟨x′, f⟩ = max{f(s) ∶ s ∈ R}}.

In particular, by Lemma 2.16, we have D ⊂ ∂C.
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Proof. Notice that D is compact, so D = ∂HD ∪ IntH(D). This shows that (a) and
(b) do not hold simultaneously. To finish we have to prove that either (a) or (b) is
true. Assume that (a) does not hold. Since ∂HD ⊂ ∂C is always true, there exists
y′ ∈ IntH(D) such that y′ ∈ ∂C. By Lemma 2.16 we can find f ∈ SE such that

⟨y′, f⟩ = max{f(s) ∶ s ∈ R}.

If π = {x′ ∈ E ∶ ⟨x′, f⟩ = max{f(s) ∶ s ∈ R}}, we need to prove that H = π. If H = π
were not true, the set π ∩H would be a line passing through y′ as in Figure 2.3.
This line divides the plane H into two halves. Let us choose z′ in the upper half
plane in such a way that z′ ∈D (see Figure 2.3). For this z′ we would have

⟨z′, f⟩ > max{f(s) ∶ s ∈ R},

which implies that z′ ∉ C. This contradicts the fact that D ⊂ C. Therefore (b) holds
whenever we assume that (a) is not true, which concludes the proof.

D

y′

H

z′

π ∩H

{x′ : 〈x′, f〉 < M(f)}

{x′ : 〈x′, f〉 > M(f)}

Figure 2.3: Illustration of elements in the proof of Lemma 2.18. Here, M(f) stands
for max{f(s) ∶ s ∈ R}.

The following theorem shall deal with describing some properties of the set Ft
given in Definition 2.17.
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Theorem 2.19. The following statements hold true:

1. ∂C = ⋃t∈J Ft.

2. {Ft}t∈J is a family of pairwise disjoint closed sets.

3. δt ∈ Ft for every t ∈ J and [δt, x′] ⊂ Ft for all x′ ∈ Ft. In particular, Ft is a
nonempty connected set. Here [δt, x′] stands for the segment with endpoints δt
and x′.

4. ∂C ∖ Ft is path-connected for all t ∈ J and therefore it is connected.

Proof. We prove each statement separately:

1. It follows easily from Lemma 2.16 and the definition of J .

2. Let {x′n}n be a sequence in Ft such that limn→∞ x′n = x′ and choose fn ∈ SE such
that ⟨x′n, fn⟩ = max{fn(s) ∶ s ∈ R} = fn(t) for every n ∈ R. Since SE is compact,
we can assume (considering a subsequence if necessary) that limn fn = f . Then

⟨x′, f⟩ = lim
n→∞⟨x′n, fn⟩

= lim
n→∞max{fn(s) ∶ s ∈ R}

= max{f(s) ∶ s ∈ R}.

On the other hand max{fn(s) ∶ s ∈ R} = fn(t) for all n ∈ N, from which
max{f(s) ∶ s ∈ R} = f(t). It follows that ⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t)
and hence x′ ∈ Ft. The previous reasoning shows that Ft is closed for all t ∈ J .
Suppose now that there exist t1, t2 ∈ J with t1 ≠ t2 such that Ft1 ∩Ft2 ≠ ∅. Let
x′ ∈ Ft1 ∩ Ft2 and f1, f2 ∈ SE be such that

⟨x′, fi⟩ = max{fi(s) ∶ s ∈ R} = fi(ti) (i = 1,2).

Choose λ,µ > 0 such that λf1 +µf2 ∈ SE. Since fi attains it maximum only at
ti, i = 1,2, we have:

(a) λf1(t) + µf2(t) < λmax{f1(s) ∶ s ∈ R} + µmax{f2(s) ∶ s ∈ R}, for all
t ∈ R ∖ {t1, t2}.

(b) λf1(t1) + µf2(t1) = λmax{f1(s) ∶ s ∈ R} + µf2(t1) < λmax{f1(s) ∶ s ∈
R} + µmax{f2(s) ∶ s ∈ R}.

(c) λf1(t2) + µf2(t2) = λf1(t2) + µmax{f2(s) ∶ s ∈ R} < λmax{f1(s) ∶ s ∈
R} + µmax{f2(s) ∶ s ∈ R}.
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From (a), (b) and (c) above it follows that

max{(λf1 + µf2)(s) ∶ s ∈ R} < λmax{f1(s) ∶ s ∈ R}
+ µmax{f2(s) ∶ s ∈ R}

= λ⟨x′, f1⟩ + µ⟨x′, f2⟩
= ⟨x′, λf1 + µf2⟩,

from which x′ ∉ C. We arrive at a contradiction.

3. By definition of J it is obvious that δt ∈ Ft for all t ∈ J . Now, if x′ ∈ Ft there
exists f ∈ SE such that

⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t).

Therefore, since C is convex, λδt + (1 − λ)x′ ∈ C for every λ ∈ [0,1] and hence

⟨λδt + (1 − λ)x′, f⟩ = λf(t) + (1 − λ)f(t)
= f(t) = max{f(s) ∶ s ∈ R}.

Consequently [δt, x′] ⊂ Ft.

4. We will prove that for a fixed t ∈ J and x′, y′ ∈ ∂C∖Ft there exists a continuous
path γ ∶ [0,1] → ∂C ∖ Ft such that γ(0) = x′ and γ(1) = y′. Two cases will be
considered:

• Case 1. The points x′, y′, δt are aligned: As in the proof of Theorem 2.8
we can find p ∈ Int(C) such that p does not lie in the straight line defined
by x′, y′, δt. Therefore, if H is the convex hull of {x′, y′, δt, p}, then H is
a plane. Observe that D = C ∩H is a compact, convex subset of H that
cannot be a segment since x′, y′, δt, p ∈D and x′, y′, δt, p generate H. Now,
from Proposition 2.6 we have that IntH(D) ≠ ∅. Also p ∈ Int(C). Hence,
using Lemma 2.18 we arrive at intHD ⊂ Int(C) and ∂HD ⊂ ∂C.
Let us now show that ∂HD∩Ft is connected. Indeed, let z′ ∈ (∂HD)∩Ft.
By (3) and the convexity of D we have that

[δt, z′] ⊂D ∩ Ft ⊂ Ft ⊂ ∂C.

Therefore [δt, z′] ⊂ (∂HD) ∩ Ft since IntH(D) ⊂ Int(C) and ∂HD ⊂ ∂C.
Then [δt, z′] ⊂ (∂HD)∩Ft for all z′ ∈ (∂HD)∩Ft proving that (∂HD)∩Ft
is connected.
On the other hand ∂HD ≃ S1 by Theorem 2.8. Putting this together with
the fact that (∂HD)∩Ft is connected it follows that (∂HD)∖Ft is path-
connected. Hence there exists a continuous path γ ∶ [0,1]→ (∂HD)∖Ft ⊂
(∂C) ∖ Ft such that γ(0) = x′ and γ(1) = y′.
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• Case 2. The points x′, y′, δt are not aligned. In this case, consider H to
be the affine plane determined by x′, y′, and δt. By Proposition 2.6 we
have that, if D = H ∩ C, IntH(D) ≠ ∅. Thus, by Lemma 2.18 we have
that:

(I) Either ∂HD ⊂ ∂C and IntH(D) ⊂ Int(C),
(II) or there exists f ∈ SE such that

H = {z′ ∈ E′ ∶ ⟨z′, f⟩ = max{f(s) ∶ s ∈ R}}.

Let us suppose that (II) holds. Then, since

x′, y′, δt ∈H = {z′ ∈ E′ ∶ ⟨z′, f⟩ = max{f(s) ∶ s ∈ R}},

we have that

x′, y′ ∈H = {z′ ∈ E′ ∶ ⟨z′, f⟩ = max{f(s) ∶ s ∈ R} = f(t)},

having that (since x′, y′ ∈ C) x′, y′ ∈ Ft, a contradiction. Therefore we
have that, by exclusion, (I) holds.

Next, proceeding as in Case 1 above we have that there exists a continuous
mapping

γ ∶ [0,1]Ð→ (∂HD) ∖ Ft ⊂ (∂C) ∖ Ft
such that γ(0) = x′ and γ(1) = y′.

From now on we denote ∂C by X. Then X is a compact metric space. By the
previous theorem, {Ft}t∈J is a partition of X into nonempty continua. The following
proposition shall provide us with more properties enjoyed by the set {Ft}t∈J .

Proposition 2.20. We have X ∖ Ft0 ≃ C for all t0 ∈ J .

Proof. We know from Corollary 2.8 that S2 ≃ X. Then Ft0 ⊂ S2 where Ft0 has to
be understood as the image of Ft0 by the homomorphism existing between X and
S2. By Theorem 2.19 we know that Ft0 and S2 ∖ Ft0 are connected. Applying now
Corollary 2.10 and Theorem 2.11 we have that there is a simply connected domain
Ω ⊂ C such that X ∖ Ft0 ≃ S2 ∖ Ft0 ≃ Ω ≃ C.

Lemma 2.21. Let {tn}n∈N ⊂ J be such that δtn
n→∞Ð→ y′ ∈ Ft. Given any sequence

{x′n}n∈N with x′n ∈ Ftn for every n ∈ N, we have that, if x′n
n→∞Ð→ x′ and t ∈ J satisfies

y′ ∈ Ft, then x′ ∈ Ft.
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Proof. For every n ∈ N there is fn ∈ SE such that

⟨x′, fn⟩ = max{fn(s) ∶ s ∈ R} = fn(tn) = ⟨δtn , f⟩.

Taking a subsequence if needed, we can assume that fn
n→∞Ð→ f ∈ SE, from which we

have
lim
n→∞⟨x′n, fn⟩ = lim

n→∞max{fn(s) ∶ s ∈ R} = lim
n→∞⟨δtn , fn⟩

and, thus,
⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = ⟨y′, f⟩.

Therefore, we have that

max{f(s) ∶ s ∈ R} = ⟨y′, f⟩ = f(t).

By Theorem 2.19, and since y′ ∈ Ft, we have that y′ ∉ Fs for every s ∈ J ∖{t}. Hence
⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t), from which x′ ∈ Ft, and the proof is finished.

The following proposition makes use of the notion of upper semicontinuous de-
composition. Although its proof is self-contained, we refer the reader to the work
[40] for more information and a detailed study of this notion. First we define upper
semicontinuous decomposition.

Definition 2.22. Let S be a topological space and let G be a partition of S into
closed sets. Then G is upper semicontinuous if and only if for every open set U ⊂ S
the set

U∗ = ⋃
g∈G,g⊂U

g

is an open subset of S.

Proposition 2.23. For every t0 ∈ J we have that

{Ft}t∈J∖{t0}

is an upper semicontinuous partition into continua of X ∖ Ft0.

Proof. By Theorem 2.19 it can be seen that {Ft}t∈J∖{t0} is a decomposition of con-
tinua of X ∖ Ft0 . To see that this decomposition is upper semicontinuous we just
need to show that for every U ⊂X ∖ Ft0 open in X ∖ Ft0 , the set

V = ⋃
t∈J∖{t0}, Ft⊂U

Ft

is open in X ∖ Ft0 (see, e.g., [40]). Suppose, by contradiction, that there is an
open set U in X ∖ Ft0 such that the corresponding V defined above is not open in
X ∖Ft0 . Then, we would have that there are x′ ∈ Ft ⊂ U (for some t ∈ J ∖ {t0}) and
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{x′n} ⊂ (X ∖Ft0) ∖ V with x′n
n→∞Ð→ x′. This implies that, for every n ∈ N, Ftn ∖U ≠ ∅

(where x′n ∈ Ftn). Thus, for every n ∈ N, we can select y′n ∈ Ftn ∖U .

Next, taking a subsequence if necessary, we can assume that

δtn
n→∞Ð→ z′ ∈X

and
y′n

n→∞Ð→ y′ ∈X.
Therefore, there exists t′ ∈ J such that z′ ∈ Ft′ . Now, by Lemma 2.21, x′, y′ ∈ Ft′
implies t′ = t, which yields y′ ∈ Ft. This is a contradiction because the fact {y′n}nN ⊂
(X ∖ Ft0) ∖ U implies y′ ∈ (X ∖ Ft0) ∖ U , which gives y′ ∉ U ⊃ Ft. The proof is
concluded.

Proposition 2.24. For every pair of points t1, t2 ∈ J , the set X ∖ (Ft1 ∪ Ft2) is
connected.

Proof. Using Proposition 2.20, we obtain

X ∖ Ft1 ≃ C ≃ S2 ∖ {(0,0,1)}.

Therefore, there exists a homeomorphism g1 ∶ X ∖ Ft1 → S2 ∖ {(0,0,1)}. We can
extend g1 toX by defining g1(x′) = (0,0,1) for x′ ∈ Ft1 . Let us show that g1 ∶X → S2

is continuous and surjective. Surjectivity is obvious. To prove continuity, observe
that g1 restricted to X ∖ Ft1 is continuous and that X ∖ Ft1 is open. Then g1 is
continuous in X ∖ Ft1 . Now suppose that g1 is not continuous at a given point
x′ ∈ Ft1 . Hence there exists a sequence (x′n) in X such that x′n

n→∞Ð→ x′ but (g1(x′n))
does not converge to g1(x′) = (0,0,1). Considering a subsequence if necessary we can
assume that (g1(x′n)) converges to a certain u ∈ S2 ∖{(0,0,1)} and g1(x′n) ≠ (0,0,1)
for all n ∈ N. Since (x′n) ⊂ X ∖ Ft1 and g1∣X∖Ft1 ∶ X ∖ Ft1 → S2 ∖ {(0,0,1)} is a
homeomorphism, there exists y′ ∈ X ∖ Ft1 such that x′n

n→∞Ð→ y′, which contradicts
the fact that (x′n) also converges to x′.

Next, notice that, by Theorem 2.19, the set X ∖ Ft2 is connected, and so is
g1(X ∖Ft2). It is also simple to check that {g1(Ft2), g1(X ∖Ft2)} is a partition of S2

in which g1(Ft2) is compact (and, thus, closed) and, therefore, g1(X ∖ Ft2) is open.
Now, by Corollary 2.10 and Theorem 2.11,

g1(X ∖ Ft2) ≃ C ≃ S2 ∖ {(0,0,1)}.

Thus, there exists an homeomorphism

g2 ∶ g1(X ∖ Ft2)→ S2 ∖ {(0,0,1)},
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that can be extended to S2 by defining g2(u) ∶= (0,0,1) if u ∈ g1(Ft2), having
that g2 ∶ S2 → S2 is continuous and surjective. Taking now the composite mapping
g = g2 ○ g1, we see (by construction and by Theorem 2.19) that δti ∈ Fti , g∣X∖(Ft1∪Ft2)
in an homeomorphism onto its image and g(Fti) = {g(δti)} for i = 1,2. Therefore,
and since g is surjective,

X ∖ (Ft1 ∪ Ft2) ≃ S2 ∖ {g(δt1), g(δt2)},

and, consequently, X ∖ (Ft1 ∪ Ft2) is connected.

Corollary 2.25. For every t0 ∈ J we have that X ∖Ft0 ≃ C. That homeomorphism
transforms {Ft}t∈J∖{t0} into an upper semicontinuous decomposition of C into con-
tinua that do not separate C.

Proof. It is the result of applying Propositions 2.20, 2.23, and 2.24.

In the rest of the chapter we shall be using the concept of identification topology.
Recall that this topology is defined as follows: Let X be a topological space, Y a
partition of X and the surjective mapping π ∶ X → Y given by π(x) = y, where
x ∈ y. Then the identification topology in Y , denoted by Tπ, is defined as

Tπ = {U ⊂ Y ∶ π−1(U) is open in X}.

We can consider the identification topology in the family F ∶= {Ft ∶ t ∈ J} induced
by the surjective mapping p ∶X → F defined by p(x′) = Ft whenever x′ ∈ Ft. Notice
that the Ft’s are topological continua for every t ∈ J by Theorem 2.19.

Similarly, if t0 ∈ J then we can also consider the partition of X ∖ Ft0 given by
Ft0 ∶= {Ft ∶ t ∈ J ∖ {t0}}, and the initial topology in Ft0 induced by the surjective
mapping pt0 ∶X ∖ Ft0 → Ft0 defined by pt0 ∶= p∣X∖Ft0 .

Proposition 2.26. Let t0 ∈ J and U ⊂ Ft0. The following statements are equivalent:

1. U is Tp-open in Ft0.

2. U is Tp-open.

3. U is Tpt0 -open.

Proof. That (1) and (2) are equivalent follows from the fact that Ft0 is a Tp-open
set. On the other hand, U is Tpt0 -open if and only if p−1

t0
(U) is open in X ∖ Ft0 , or

equivalently, if p−1(U) = p−1
t0
(U) is open in X. Hence, (2) is equivalent to (3).
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The previous result justifies the identification (Ft0 , Tpt0) = (Ft0 , Tp) for every
t0 ∈ J . We will use from now on the notation Ft0 to denote (Ft0 , Tpt0) or (Ft0 , Tp).

Now, let us recall a result by Moore (see, e.g., [40, 77]) which will be of crucial
importance in order to achieve our main result (this version of the theorem is stated
for the complex plane).

Theorem 2.27. Assume that G is an upper semicontinuous decomposition of the
plane C into continua, none of which separates C. If G is endowed with the iden-
tification topology, then G is homeomorphic to C.

Theorem 2.28. For every t0 ∈ J , Ft0 ≃ C.

Proof. It is the result of, first, applying Corollary 2.25 and, then, Moore’s theorem
(Theorem 2.27).

Lemma 2.29. The topological space F satisfies the first axiom of countability.

Proof. Let Ft ∈ F with t ∈ J . Fix t0 ∈ J ∖ {t}. Then Ft ∈ Ft0 , which is an open set
and Ft0 ≃ C. Hence Ft possesses a countable basis of open neighborhoods.

Theorem 2.30. F ≃ S2.

Proof. Let us fix t∞ ∈ J . By Lemma 2.29 we know that Ft∞ ≃ C ≃ S2 ∖ {(0,0,1)}.
Consider a homeomorphism h ∶ Ft∞ → S2 ∖ {(0,0,1)}. If we extend h to F by
defining h(Ft∞) ∶= (0,0,1), h is continuous at Ft for all t ∈ J ∖{t∞} since Ft∞ is open
and h∣Ft∞ is continuous by definition. It remains to prove that h is also continuous
at Ft∞ .

Assume h is not continuous at Ft∞ . Since F enjoys the fist axiom of countability,
there exists {Ftn} ⊂ F such that Ftn Ð→ Ft∞ but h(Ftn) does not converge to h(Ft∞).
By compacity of S2 we can take for granted that {Ftn} ⊂ Ft∞ and h(Ftn) Ð→ u ∈
S2∖{(0,0,1)} (considering a subsequence if needed). Now, h ∶ Ft∞ → S2∖{(0,0,1)}
is a homeomorphism, so there exists t ∈ J ∖{t∞} such that h(Ft) = u and Ftn Ð→ Ft.
Taking t0 ∈ J with t0 ≠ t, t∞, tn for all n ∈ N we see that {Ftn} ⊂ Ft0 and Ftn Ð→ Ft∞ .
Therefore Ft0 would not be a Haussdorff space, contradicting the fact that Ft0 ≃ C.

Therefore h ∶ F → S2 is continuous. Also, since h is bijective and F is compact,
we conclude that h is a homeomorphism.

Remark 2.31. From now on we will consider the mapping γ ∶ J → X defined by
γ(t) = δt for every t ∈ J . Observe that γ is continuous from Proposition 2.12.
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We are now ready to prove that there are no 3-dimensional spaces in Ĉ[a, b)∪{0}
or Ĉ(R) ∪ {0}. The proof of the latter statement is based on the construction of a
continuous bijection q ∶ J → S2 and the following remark:

Remark 2.32. Suppose q ∶ J → S2 is a continuous bijection. Notice that the sets
Jn = J ∩ [−n,n] are compact since J is closed (see Corollary 2.13). Then q∣Jn would
be continuous, injective and closed. Then q∣Jn ∶ Jn → q(Jn) is a homeomorphism.
Hence Int(q(Jn)) = ∅ and q(Jn) would be closed. Since S2 = ⋃∞

n=1 q(Jn), S2 would
be a first category space, which is impossible because S2 is a Baire space.

Theorem 2.33. Let a, b ∈ R, a < b. Let V stand for a subspace of either C[a, b) or
C(R) such that every nonzero function in V attains its maximum at one (and only
one) point. Then dim(V ) ≤ 2.

Proof. The existence of a 3-dimensional space in Ĉ[a, b)∪{0} or Ĉ(R)∪{0} implies, as
we have seen throughout the chapter, the existence of the following three mappings:

1. γ ∶ J →X, which is continuous.

2. p ∶X → F , which is continuous and surjective.

3. h ∶ F → S2 which is a homeomorphism.

Then the composition q ∶= h ○ p ○ γ turns out to be a continuous bijection between
J and S2. Indeed:

• q is injective: If t1, t2 are two distinct elements of J then p(γ(t1)) = p(δt1) =
Ft1 ≠ Ft2 = p(δt2) = p(γ(t1)), and since h is injective we have q(t1) = h(p(γ(t1))) =
h(Ft1) ≠ h(Ft2) = h(p(γ(t2))) = q(t2).

• q is surjective: Let u ∈ S2. Then there exists t ∈ J such that h(Ft) = u because
h is surjective. Hence q(t) = h(p(γ(t))) = h(p(δt)) = h(Ft) = u.

• q is continuous because it is the composition of continuous functions.

Thus we arrive at a contradiction by Remark 2.32.
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2.5 The generalization of Gurariy’s problem

It is natural to wonder whether a similar problem could be considered for values of
m ≥ 2, that is:

Let m ≥ 2. If m ∈ N and Vm stands for a subspace of mappings in C(R)
such that every nonzero function in Vm attains its maximum at m (and
only m) points, then ... How big can dim(Vm) get?

Here we shall show that dim(Vm) ≤ 2. Let us first show first that there actually
exists a 2-dimensional vector space of C(R) such that every nonzero function in it
attains its maximum at m (and only m) points.

Example 2.34. First of all, it is clear that for every λ,µ ∈ R with (λ,µ) ≠ (0,0),
there is a unique point t0 ∈ [0,2π) such that {t0, t0 +2π, . . . , t0 + (m−1)2π} is the set
of points of [0,2πm) at which the function λ sin t + µ cos t attains its maximum.

Next, consider the functions

f(t) = cos(4marctan t) and g(t) = sin(4marctan t).

It is a simple exercise to check that every nontrivial linear combination of f and g
above attains its maximum at exactly m points in [0,∞).

Secondly, take

h1(t) = { etf(−t) if t ≤ 0,
f(t) if t ≥ 0,

and

h2(t) = { etg(−t) if t ≤ 0,
g(t) if t ≥ 0,

Having defined h1 and h2 (see Figure 2.4) as elements of C(R), the linear space we
are looking for is, precisely, span{h1, h2}.

In the remaining of this section we shall focus on proving that if Vm is a subspace
of C(R) whose non-zero elements attain their maximum at exactly m points, with
m > 1, then dim(Vm) ≤ 2. As in Section 3, we shall proceed by contradiction,
assuming that there is a 3-dimensional linear space E ⊂ C(R) of mappings such that
every nonzero function f ∈ E attains its maximum at m (and only m) points. Again,
we endow E with the sup norm ∥f∥∞ and, if SE denotes the unit sphere of E, the
dual space E′ of E will be endowed with the dual norm ∥x′∥ ∶= sup{⟨x′, f⟩ ∶ f ∈ SE}.
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Figure 2.4: Plots of h1(t) and h2(t), respectively, for m = 4.

As in the previous section, we represent the linear evaluation form on E at the point
t ∈ R as δt, that is, δt(f) = f(t) (f ∈ E).

Recall from the previous section that the set

J ∶= {t ∈ R ∶ ∃f ∈ SE such that max{f(s) ∶ s ∈ R} = f(t)}

is closed and that, by definition, J ≠ ∅ and card(J) ≥ 2.

Proposition 2.35. For every t1 ∈ J there is a unique set of m − 1 points

{t2, . . . , tm} ⊂ J

such that, given any function f ∈ SE, the following are equivalent:

1. There is i0 ∈ {1, . . . ,m} such that f(ti0) = max{f(t) ∶ t ∈ R}.

2. For every i ∈ {1, . . . ,m}, f(ti) = max{f(t) ∶ t ∈ R}.

Proof. We shall first prove the existence part. Since t1 ∈ J , there is g ∈ SE such that
g(t1) = max{g(t) ∶ t ∈ R} and, thus, there exist t2, . . . , tm ∈ J such that {t ∈ R ∶ g(t) =
max{g(s) ∶ s ∈ R}} = {t1, . . . , tm}. Next, given f ∈ SE, we have (2) implies (1) above
is trivial. Let us see that (1) implies (2).

In order to see this, let λ,µ > 0 such that λf + µg ∈ SE. Notice that

max{λf(s) + µg(s) ∶ s ∈ R} ≤ λmax{f(s) ∶ s ∈ R} + µmax{g(s) ∶ s ∈ R}

and λf(ti0) + µg(ti0) = λmax{f(s) ∶ s ∈ R} + µmax{g(s) ∶ s ∈ R}.

Therefore, we obtain the following equivalence:
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λf + µg attains its maximum at t if and only if f and g attain their
corresponding maxima at t.

Consequently, we have that

{t ∈ R ∶ λf(t) + µg(t) = max{λf(s) + µg(s) ∶ s ∈ R}} ⊂ {t1, . . . , tm},

and, for being a set of cardinality m, we have that the following identity holds

{t ∈ R ∶ λf(t) + µg(t) = max{λf(s) + µg(s) ∶ s ∈ R}} = {t1, . . . , tm},

and, finally, by the previous equivalence, we have that f attains its maximum at
t1, . . . , tm.

Next, let us see about the uniqueness. Suppose we have two distinct sets of m−1
points, t2, . . . , tm and s2, . . . , sm, with the property. Since t1 ∈ J there exists g ∈ SE
with g(t1) = max{g(t) ∶ t ∈ R}. Thus, notice that

{t1, t2, . . . , tm} ∪ {t1, s2, . . . , sm} ⊂ {t ∈ R ∶ g(t) = max{g(s) ∶ s ∈ R}},

is a set of cardinality m, and, therefore we can conclude that

{t1, t2, . . . , tm} = {t1, s2, . . . , sm},

as required.

The following definition shall be crucial in what follows. As usual, we denote by
P(J) the family of subsets of J .

Definition 2.36. We define the mapping ψ ∶ J → P(J) as

ψ(t1) = {t1, . . . , tm},

where t2, . . . , tm are the points defined in Proposition 2.35 (and related to t1 in the
natural way given in the previous proposition). We shall also denote, for short,
H = ψ(J).

Remark 2.37. For every h = {t1, . . . , tm} ∈ H, we have ψ(ti) = h for every i ∈
{1, . . . ,m}.

Proposition 2.38. For every h1, h2 ∈H, if h1 ∩ h2 ≠ ∅ then h1 = h2.

Proof. Let t ∈ h1 ∩ h2. Then, by the previous remark, we have h1 = ψ(ti) = h2.

Corollary 2.39. The set H is a partition of J in subsets of cardinality m.
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Recall now the definition of the set C from the previous section:

C = ⋂
f∈SE

{x′ ∈ E′ ∶ ⟨x′, f⟩ ≤ max{f(s) ∶ s ∈ R}}.

We have already proved that C is a convex and compact set with nonempty
interior, which, together with Theorem 2.8 shows the following.

Corollary 2.40. ∂C ≃ S2.

The following definition is the analogue of the earlier Definition 2.17.

Definition 2.41. Given h ∈H, we define the set

Fh = {x′ ∈ C ∶ ∃f ∈ SE with ⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t)∀t ∈ h}.

The following theorem shall deal with describing some properties of the set Fh
given in Definition 2.41. Its proof is similar to that of Theorem 2.19, so we leave
the details to the reader.

Theorem 2.42. The following statements hold true:

1. ∂C = ⋃h∈H Fh.

2. {Fh}h∈H is a family of pairwise disjoint closed sets.

3. For every h ∈H and every t ∈ h, one has that δt ∈ Fh and [δt, x′] ⊂ Fh for all
x′ ∈ Fh. In particular, Fh is a nonempty connected set. Here [δt, x′] stands
for the segment with endpoints δt and x′.

4. ∂C ∖ Fh is path-connected for all h ∈H and therefore it is connected.

From now on we denote ∂C by X. Then X is a compact metric space. By
the previous theorem, {Fh}h∈H is a partition of X into nonempty continua. The
following proposition, whose proof can be mimicked from Proposition 2.20 in the
previous section, shall provide us with more properties enjoyed by the set {Fh}h∈H
that will be used later.

Proposition 2.43. For all h0 ∈H, we have X ∖ Fh0 ≃ C.

The following lemma is analogous to Lemma 2.21.
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Lemma 2.44. Let {tn}n∈N ⊂ J be such that δtn
n→∞Ð→ y′ ∈ Fh. Given any sequence

{x′n}n∈N with x′n ∈ Fhn where tn ∈ hn for every n ∈ N, we have that, if x′n
n→∞Ð→ x′ and

h ∈H satisfies y′ ∈ Fh, then x′ ∈ Fh.

Proof. For every n ∈ N there is fn ∈ SE such that

⟨x′, fn⟩ = max{fn(s) ∶ s ∈ R} = fn(tn) = ⟨δtn , f⟩.

Taking a subsequence if needed, we can assume that fn
n→∞Ð→ f ∈ SE, from which we

have
lim
n→∞⟨x′n, fn⟩ = lim

n→∞max{fn(s) ∶ s ∈ R} = lim
n→∞⟨δtn , fn⟩

and, thus,
⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = ⟨y′, f⟩.

Since y′ ∈ Fh and, by Theorem 2.42, y′ ∉ Fh′ for all h′ ∈H ∖ {h}, we have

max{f(s) ∶ s ∈ R} = ⟨y′, f⟩ = f(t),

for every t ∈ h. Therefore ⟨x′, f⟩ = max{f(s) ∶ s ∈ R} = f(t), for all t ∈ h, from which
x′ ∈ Fh, and the proof is finished.

The following proposition, which is analogous to Proposition 2.23, makes use of
the notion of upper semicontinuous decomposition given in Section 3.

Proposition 2.45. For every h0 ∈H we have that

{Fh}h∈H∖{h0}

is an upper semicontinuous partition into continua of X ∖ Fh0.

Proof. From Theorem 2.42 it follows that {Fh}h∈H∖{h0} is a decomposition of con-
tinua of X ∖ Fh0 . To see that this decomposition is upper semicontinuous we just
need to show that for every U ⊂X ∖ Fh0 open in X ∖ Fh0 , the set

V = ⋃
h∈H∖{h0}, Fh⊂U

Fh

is open in X ∖Fh0 (see e.g. [40]). Suppose, by contradiction, that given U , an open
set in X ∖Fh0 , the corresponding V defined above is not open in X ∖Fh0 . Then, we
would have that there are x′ ∈ Fh ⊂ U (for some h ∈H∖{h0}) and {x′n} ⊂ (X∖Fh0)∖V
with x′n

n→∞Ð→ x′. This implies that, for every n ∈ N, Fhn ∖ U ≠ ∅ (where x′n ∈ Fhn).
Thus, for every n ∈ N, let us take y′n ∈ Fhn ∖U .
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Next, taking a subsequence if necessary, we can assume that

δtn
n→∞Ð→ z′ ∈X, where tn ∈ hn

and that
y′n

n→∞Ð→ y′ ∈X.
Therefore, there exists h′ ∈ H such that z′ ∈ Fh′ . Now, by Lemma 2.44, x′, y′ ∈ Fh′
implies h′ = h, which gives that y′ ∈ Fh. This is a contradiction because the fact
{y′n}n∈N ⊂ (X ∖ Fh0) ∖U implies y′ ∈ (X ∖ Fh0) ∖U , which gives y′ ∉ U ⊃ Fh.

The following proposition is a direct consequence of Proposition 2.45.

Proposition 2.46. For every h1, h2 ∈H, the set X ∖ (Fh1 ∪ Fh2) is connected.

Corollary 2.47. For every h0 ∈H we have that X ∖Fh0 ≃ C. That homeomorphism
transforms {Fh}h∈H∖{h0} into an upper semicontinuous decomposition of the complex
plane C into continua that do not separate C.

Proof. It is the result of applying Propositions 2.43, 2.45 and 2.46.

We can consider the topology in the family F ∶= {Fh ∶ h ∈ H} induced by the
surjective mapping p ∶ X → F defined by p(x′) = Fh whenever x′ ∈ Fh. Notice
that the Fh’s are topological continua for every h ∈ H by Theorem 2.42. Similarly,
if h0 ∈ H we can also consider the partition of X ∖ Fh0 given by Fh0 ∶= {Fh ∶ h ∈
H ∖{h0}}, and the identification topology in Fh0 induced by the surjective mapping
ph0 ∶X ∖Fh0 → Fh0 defined by ph0 ∶= p∣X∖Fh0 . Similarly to Proposition 2.26, we also
have the following assertion.

Proposition 2.48. Let h0 ∈ H and U ⊂ Fh0. The following statements are equiva-
lent:

1. U is Tp-open in Fh0.

2. U is Tp-open.

3. U is Tph0 -open.

The previous result, as we did in Section 3, justifies the identification (Fh0 , Tph0) =
(Fh0 , Tp) for every h0 ∈ H. We will use from now on the notation Fh0 to denote
(Fh0 , Tph0) or (Fh0 , Tp).

Again, as in Section 3, we have that the following assertion is the result of, first,
applying Corollary 2.47 and, then, Moore’s Theorem (Theorem 2.27).
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Theorem 2.49. For every h0 ∈H, Fh0 ≃ C.

Of course, as we previously showed, we also have:

Theorem 2.50. F ≃ S2.

Remark 2.51. From now on we will consider the mapping γ ∶ J → X defined by
γ(t) = δt for every t ∈ J . Observe that γ is continuous from Proposition 2.12.
Moreover, we observe that γ−1(Fh) = h for all h ∈H.

Definition 2.52. Let us consider the following three mappings:

1. γ ∶ J →X, which is continuous.

2. p ∶X → F , which is continuous and surjective.

3. g ∶ F → S2, which is an homeomorphism.

We define the mapping q ∶ J → S2 as q ∶= g ○ p ○ γ.

The following result and its corresponding corollary is also a consequence of
previous calculations from Section 3 as well.

Proposition 2.53. By construction, the mapping q is continuous and, for every
u ∈ S2, there exists a unique h ∈H such that q−1(u) = h.

Corollary 2.54. If m = 1 then the mapping q ∶ J → S2 is a bijection.

Now, we are ready to, finally, tackle the case m ≥ 2. That is, if m ∈ N and Vm
stands for a subspace of C(R) of mappings such that every nonzero function in Vm
attains its maximum at m (and only m) points, then dim(Vm) ≤ 2.

Let us recall that, by Corollary 2.39, H is a partition of J into sets of cardinality
m with m ≥ 2.

Definition 2.55. Given h ∈H, we define

σ(h) ∶= min{∣t − s∣ ∶ t, s ∈ h and t ≠ s}.

Definition 2.56. Let n ∈ N. We denote by Jn the set

Jn = ⋃
h∈Hn

h,

where Hn = {h ∈H ∶ σ(h) ≥ 1
n and h ⊂ [−n,n]}.
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Remark 2.57. It is clear that, for every h ∈ H, we have that σ(h) > 0. Then one
can select an n = n(h) ∈ N such that σ(h) ≥ 1/n. As h is a finite set, the number
n can be chosen so that, in addition, n ≥ max{∣t∣ ∶ t ∈ h}. Then h ∈ Hn. Since
J = ⋃h∈H h, we obtain J = ⋃n∈N Jn.

Theorem 2.58. For every n ∈ N the set Jn is compact.

Proof. Since Jn is bounded, we only need to show that Jn is closed. With this aim,
let {t1,k}k∈N ⊂ Jn with t1,k

k→∞Ð→ t1. Let us recall that, since by Corollary 2.13, the set
J is closed, we have t1 ∈ J and, therefore, there is a unique h ∈H with t1 ∈ h.

Next, let hk = {t1,k, . . . , tm,k} ∈ Hn for every k ∈ N. Since J ∩ [−n,n] is compact,
we can assume (taking a subsequence if needed) that for every i ∈ {2, . . . ,m} there is
ti ∈ J∩[−n,n] such that ti,k Ð→ ti. Thus, by Proposition 2.12, for every i ∈ {1, . . . ,m}
we have that δti,k Ð→ δti as k →∞.

Now we have that δt1,k Ð→ δt1 ∈ Fh and, for every i ∈ {2, . . . ,m}, δti,k Ð→ δti
with δti,k ∈ Fhk for each k ∈ N. Hence, by Lemma 2.44, we also have that for every
i ∈ {2, . . . ,m}, δti ∈ Fh and, therefore, t2, . . . , tm ∈ h.

Moreover, notice that for every i, j ∈ {1, . . . ,m} with i ≠ j, we have

∣ti − tj ∣ = lim
k→∞

∣ti,k − tj,k∣ ≥
1

n
.

We can, thus, conclude that t1, . . . , tm are all pairwise different and, therefore, h =
{t1, . . . , tm} ⊂ [−n,n] and σ(h) ≥ 1

n . Hence, h ∈ Hn and t1 ∈ h ⊂ Jn, which proves
that Jn is closed.

Proposition 2.59. Let q ∶ J → S2 be the mapping from Definition 2.52. Then, for
every n ∈ N, the set q(Jn) has empty interior in S2.

Proof. Suppose, by contradiction, that there exists n ∈ N such that q(Jn) has
nonempty interior. That is, there exists u ∈ Int(q(Jn)). By Proposition 2.53 and
by the construction of Jn we can find h ∈ H with h ⊂ Jn such that q−1(u) = h =
{t1, . . . , tm}.

Next, for i ∈ {1, . . . ,m}, let ai < ti < bi such that bi − ai < 1
n . Notice that

A ∶= q(Jn ∖
m

⋃
i=1

(ai, bi))
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is compact, and hecen closed too. Moreover, u ∉ A. Thus,

u ∈ Int(q(Jn)) ∖A ⊂ B ∶= q(Jn) ∖A,

and, therefore,

u ∈ Int(B) ⊂ B ⊂ q(
m

⋃
i=1

[ai, bi] ∩ Jn).

Now, given i ∈ {1, . . . ,m}, the mapping

q∣[ai,bi]∩Jn ∶ [ai, bi] ∩ Jn Ð→ q([ai, bi] ∩ Jn)

is continuous and closed. Let us see that it is also a bijection.

Suppose, by way of contradiction, that there exist t, t′ ∈ [ai, bi] ∩ Jn, t ≠ t′, such
that q(t) = q(t′). By Proposition 2.53 there exists h′ ∈ H with h′ ⊂ Jn and so that
t, t′ ∈ h′. Thus,

σ(h′) ≤ ∣t − t′∣ ≤ bi − ai <
1

n
,

reaching a contradiction. Therefore the previous mapping Ψ ∶= q∣[ai,bi]∩Jn is con-
tinuous, bijective and closed, thus it is a homeomorphism. Hence, for every i ∈
{1, . . . ,m}, the set q([ai, bi]∩ Jn) is compact and, in addition, it has empty interior
in S2.

Finally, applying the Baire category theorem, we obtain that

q(
m

⋃
i=1

[ai, bi] ∩ Jn) =
m

⋃
i=1

q([ai, bi] ∩ Jn)

has empty interior, which is absurd, since

u ∈ Int(B) ⊂ B ⊂ q(
m

⋃
i=1

[ai, bi] ∩ Jn).

This contradiction concludes the proof of the proposition.

Summarizing, under the assumption that there exists such a 3-dimensional linear
space E, we obtain by using Remark 2.57 that the sphere

S2 = q(J) = q(⋃
n∈N

Jn) = ⋃
n∈N

q(Jn)

is the countable union of compact (so closed) sets with empty interior, which is
absurd due to the Baire category theorem. This completes the result and the chapter
itself.
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Chapter 3
Universality of sequences of

operators related to Taylor series

3.1 Introduction, preliminaries and background

Universal Taylor series and universal sequences of differential operators have been
largely investigated along the last decades; see [12, 13, 15, 35, 36, 58], [7, Chapter 3]
and the references contained in them. This chapter deals with specific points inside
both topics, which are, in a certain sense, connected. We will use notation that is
mostly standard, so that the reader who is already acquainted with it may skip the
next three paragraphs.

Throughout this chapter, N, N0, Q, R, C, D, C∞ and B(z0, r) will represent,
respectively, the set of positive integers, the set N ∪ {0}, the field of rationals, the
real line, the complex plane, the open unit disc {z ∈ C ∶ ∣z∣ < 1}, the extended
complex plane C ∪ {∞}, and the open ball {z ∈ C ∶ ∣z − z0∣ < r} with center z0 and
radius r. By a domain we mean a nonempty connected open set G ⊂ C. We say that
a domain G is simply connected whenever C∞ ∖G is connected. For any domain
G, the vector space H(G) of holomorphic functions G → C is endowed with the
topology of uniform convergence on compact subsets of G. It is well-known (see,
e.g. [39]) that, under this topology, H(G) becomes an F-space, that is, a complete
metrizable topological vector space. Moreover, H(G) is separable. If K is a compact
subset of C, then A(K) will stand for the space of all continuous functions K → C
that are holomorphic in the interior K○ of K. The set A(K) becomes a separable
Banach space under the norm ∥f∥∞ = maxz∈K ∣f(z)∣, that generates the topology of
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uniform convergence on K. By A we denote the closure in a topological space X of
a subset A ⊂X.

Some additional terminology, borrowed from the theories of lineability and of
linear chaos, will be needed. For background on them, the reader may consult
[7,8,13,21,22,50,58,88]. Assume that X and Y are (Hausdorff) topological vector
spaces. Then a subset A ⊂ X is said to be dense-lineable (spaceable, resp.) in X
whenever there is a dense (a closed infinite dimensional, resp.) vector subspace M
of X such that M ∖ {0} ⊂ A.

Let us denote by L(X,Y ) the space of all continuous linear mappings X → Y ,
and by L(X) the space L(X,X) of all operators on X. A sequence (Tn)n ⊂ L(X,Y )
is said to be hypercyclic (or universal ) provided that there is a vector x0 ∈X –called
hypercyclic or universal for (Tn)n– such that the orbit {Tnx0 ∶ n ∈ N} of x0 under
(Tn)n is dense in Y . An operator T ∈ L(X) is said to be hypercyclic if the sequence
(T n)n of its iterates is hypercyclic. The corresponding sets of hypercyclic vectors will
be respectively denoted by HC((Tn)n) and HC(T ). A sequence (Tn)n ⊂ L(X,Y )
is said to be transitive (mixing, resp.) provided that, given two nonempty open sets
U ⊂X,V ⊂ Y , there is n0 ∈ N such that Tn0(U)∩V ≠ ∅ (such that Tn(U)∩V ≠ ∅ for
all n ≥ n0, resp.). From Birkhoff Transitivity Theorem (see, e.g., [58]), we have that,
provided that X and Y are F-spaces and Y is separable, a sequence (Tn)n ⊂ L(X,Y )
is transitive if and only if HC((Tn)n) is residual (in fact, a dense Gδ subset) in X.
Moreover, (Tn)n is mixing if and only if any subsequence (Tnk)k is transitive.

Let G ⊂ C be a domain with G ≠ C, ζ ∈ G and f ∈ H(G). Then f is said to
be a universal Taylor series with center ζ provided that it satisfies the following
property: For every compact set K ⊂ C ∖ G with C ∖ K connected, and every
g ∈ A(K), there exists a (strictly increasing) sequence (λn) ⊂ N such that

lim
n→∞ sup

z∈K
∣S(λn, f, ζ)(z) − g(z)∣ = 0,

where S(N,f, ζ) represents the Nth partial Taylor sum of f at ζ, that is,

S(N,f, ζ)(z) =
N

∑
j=0

f (j)(ζ)
j!

(z − ζ)j (z ∈ C, N ∈ N0).

This concept dates back to Nestoridis [79], who studied a kind of universality which
was slightly stronger than the one considered by Luh [69, 70] and Chui and Parnes
[37] (where K is supposed not to cut G). The set of universal Taylor series in G
with center ζ is denoted by U(G, ζ). It is proved in [79] that U(D,0) is a dense Gδ

subset of H(D), and this is generalized in [80] by showing that U(G, ζ) is a dense
Gδ subset of H(G) for any simply connected domain G and any ζ ∈ G. Now, for a
domain G ⊂ C, let U(G) denote the family of all functions f ∈ H(G) satisfying that,
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for every compact set K ⊂ C∖G with C∖K connected, and every g ∈ A(K), there
exists a sequence (λn) ⊂ N0 such that, for every compact set L ⊂ G, one has

lim
n→∞ sup

ζ∈L
sup
z∈K

∣S(λn, f, ζ)(z) − g(z)∣ = 0.

Obviously, U(G) ⊂ U(G, ζ) for all ζ ∈ G. It is shown in [80] that U(G) is a dense Gδ

subset of H(G) if G is simply connected, in [74] that U(G) = ∅ if G is not simply
connected, and in [78] that U(G, ζ) = U(G) if G is simply connected and ζ is any
point of G.

According to [87], Nestoridis posed the question of whether the universality of
Taylor series is preserved if we fix the point of evaluation z (without loss of generality,
we may assume z = 0) and the center ζ of expansion is variable. To be more specific,
the question is whether the set

S(G) ∶= {f ∈ H(G) ∶ {T̃nf}n≥0 is dense in H(G)}

is not empty, where

(T̃nf)(ζ) ∶=
n

∑
j=0

f (j)(ζ)
j!

(−ζ)j (ζ ∈ G, n ≥ 0). (3.1)

We remark the connection: S(G) = HC((T̃n)n), where we are considering T̃n ∈
L(H(G)) (n ≥ 0). It is proved in [87, Section 4] that S(G) is always a Gδ subset
of H(G) (the proof is there given for a simply connected domain G, but it can be
extended to any domain, just by replacing the dense sequence (pj) of polynomials
by a dense sequence in H(G), which exists thanks to the separability of H(G)), that
S(G) = ∅ if 0 ∈ G and that, if G is simply connected, then S(G) is either empty
or dense (so either empty or residual). In [87] the broader class

St(G) ∶= {f ∈ H(G) ∶ {T̃nf}n≥0 ⊃ {constants}}

is also considered, and it is shown to be a Gδ subset of H(G). Once again, St(G) = ∅
if 0 ∈ G. Moreover, if G is simply connected and 0 /∈ G, then St(G) is dense
(hence residual) in H(G). Recently, Panagiotis [81] has answered the conjecture by
Nestoridis (see [87]) in the affirmative by proving that S(G) ≠ ∅ in the special case
where G is an open disc not containing 0.

In this chapter we prove –with methods that are rather different from those in
[81]– that the condition 0 /∈ G characterizes the non-vacuousness of S(G) if G is
simply connected. In fact we shall study the universality of sequences that are more
general than (T̃n). Finally the dynamics of the sequence of differential operators
generated by a power series with finite radius of convergence is investigated, and
lineability properties of the corresponding sets of universal functions are shown.
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3.2 Universality of Taylor-like series

In this section, the hypercyclicity of the sequence of operators T̃n
(n ≥ 0) given by (3.1) will be studied. In order to tackle the problem, we shall
adopt a slightly general point of view, by considering the following more general
families of operators.

For each (a,n, f, z) ∈ C ×N0 ×H(G) ×G , we set

(Ta,nf)(z) ∶=
n

∑
j=0

f (j)(z)
j!

⋅ (az)j. (3.2)

Note that T̃n = T−1,n. From the continuity of the derivative operator D (Df ∶= f ′), it
follows that every Ta,n is a well defined continuous linear mapping H(G)→ H(G),
that is, (Ta,n)n ⊂ L(H(G)) for all a ∈ C. We start with a necessary condition for
universality. As usual, ∂A represents the boundary of a set A ⊂ C.

Proposition 3.1. Let a ∈ C. Assume that G ⊂ C is a domain, and that the sequence
of operators Ta,n ∶ H(G) → H(G) (n ∈ N) defined by (3.2) is universal. Then we
have:

(a) 0 /∈ G, and

(b) ∣a∣ ≥ sup
z∈G

dist (z, ∂G)
∣z∣ .

Proof. (a) By hypothesis, there is f ∈ HC((Ta,n)n). Proceeding by way of contra-
diction, assume that 0 ∈ G. Consider the constant function g(z) ∶= 1 + f(0). Then
there would exist a sequence (nk) ⊂ N such that Tnkf → g (k → ∞) uniformly on
every compact set K ⊂ G. In particular, for K = {0}, we would obtain

f(0) = f
(0)(0)
0!

= (Tnkf)(0)Ð→ g(0) = 1 + f(0) as k →∞,

which is clearly absurd.

(b) We proceed, again, by way of contradiction, so that we are simultaneously
assuming ∣a∣ < supz∈G

dist (z,∂G)
∣z∣ and the existence of an f ∈HC((Ta,n)n). Then there

exists z0 ∈ G such that ∣a∣ < R
∣z0∣ , where R ∶= dist (z0, ∂G). Therefore B(z0,R) ⊂ G.

Consequently, the Taylor expansion f(z) = ∑∞
n=0

f(n)(z0)
n! (z−z0)n holds in B(z0,R) for

our function f . Due to the hypercyclicity of f , some subsequence of (Ta,nf)n should
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tend in the compact set K = {z0} ⊂ G to any prescribed constant, in particular,
to the constant 1 + f((a + 1)z0): this is, indeed, a well defined number because
∣(a + 1)z0 − z0∣ = ∣az0∣ < R, and so (a + 1)z0 ∈ B(z0,R) ⊂ G. However,

(Ta,nf)(z0) =
n

∑
j=0

f (j)(z0)
j!

(az0)j =
n

∑
j=0

f (j)(z0)
j!

((a + 1)z0 − z0)j

Ð→
∞
∑
n=0

f (n)(z0)
n!

((a + 1)z0 − z0)n = f((a + 1)z0)

as n→∞, which is the sought-after contradiction.

Remark 3.2. 1. In the case a = −1, condition (a) above was already obtained in
[87], and (b) is always satisfied as soon as 0 /∈ G, because we would have ∣ − 1∣ ⋅ ∣z∣ =
∣z∣ = ∣z − 0∣ ≥ dist (z, ∂G) for all z ∈ G.

2. From condition (a) in Proposition 3.1 one derives as in the last remark that

∣z∣ = ∣z −0∣ ≥ dist (z, ∂G) for all z ∈ G. Then we have sup
z∈G

dist (z, ∂G)
∣z∣ ≤ 1. Therefore,

according to (b), if ∣a∣ < 1 and G is a domain such that some sequence (zn) ⊂ G
satisfies lim

n→∞
dist (zn, ∂G)

∣zn∣
= 1 (for instance G = B(c, ∣c∣), where c ∈ C ∖ {0}), then

(Ta,n) is not universal on H(G). Another example in which (Ta,n) is not universal
(even though 0 /∈ G) is obtained when G is a sector {reiθ ∶ r > 0, 0 < θ < α}
(0 < α < 2π) and ∣a∣ < sin α

2 .

In order to provide sufficient conditions for universality, we distinguish two cases,
namely, a ≠ −1 and a = −1. The reason is that the approaches of the proofs are rather
different. Note that we obtain in fact (see Theorem 3.10 below) a characterization
of universality in the case a = −1: this follows from Proposition 3.1 and the fact that
the condition G∩ (a+1)G = ∅ given in the next theorem means 0 /∈ G in that case.
As usual, we have set cS ∶= {cz ∶ z ∈ S} for c ∈ C, S ⊂ C.

The auxiliary results contained in the next lemma are needed to face the case
a ≠ −1. If M ⊂ N0 is an infinite set and G ⊂ C is a domain, then we denote by
U(G,M) the family of all functions f ∈ H(G) satisfying that, for every compact
set K ⊂ C ∖G with C ∖K connected, and every g ∈ A(K), there exists a strictly
increasing sequence (λn) ⊂M such that, for every compact set L ⊂ G, one has

lim
n→∞ sup

ζ∈L
sup
z∈K

∣S(λn, f, ζ)(z) − g(z)∣ = 0.

Note that U(G,N0) = U(G).

Lemma 3.3. Let G ⊂ C be a simply connected domain with G ≠ C, and M ⊂ N0

be an infinite subset. Then the following holds:
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(a) U(G,M) is a dense Gδ subset of H(G).

(b) U(G) is dense-lineable in H(G).

(c) U(G) is spaceable in H(G).

Proof. Part (a) is a refinement of an assertion of [80] given in Section 1, and it is
a consequence of Theorem 3.4 in [74] just by choosing A = the infinite unit matrix
there.

Part (b) can be derived from Theorem 6 in [12]. In fact, we only need the con-
clusion (ii) of such theorem (for l = 0), together with the property that –thanks to
Mergelyan’s Approximation Theorem (see, e.g., [52])– the set of entire functions is
dense in A(K), provided that K is a compact subset of C with connected comple-
ment.

Part (c) follows from the just mentioned denseness property together with Theorem
4.2 in [75] (see also [34]). We need only the conclusion (i) (for l = 0) of this theorem.

Remark 3.4. In 2005, Bayart established the dense-lineability ([10]) and the space-
ability ([11]) of U(D).

Theorem 3.5. Let G ⊂ C be a simply connected domain, and consider the sequence
of operators Ta,n ∶ H(G) → H(G) (n ∈ N) defined by (3.2), where a ∈ C ∖ {−1}. If
G ∩ (a + 1)G = ∅ then we have:

(a) The sequence (Ta,n) is mixing (hence universal ).

(b) The set HC((Ta,n)) is dense-lineable and spaceable in H(G).

Proof. (a) To show that (Ta,n) is mixing, we are going to prove that, for every fixed
sequence M = {n1 < n2 < n3 < ⋯} ⊂ N0, the set HC((Sk)k≥1) is residual in H(G),
where we have set Sk ∶= Ta,nk . According to Lemma 3.3(a), it is enough to prove
that U(G,M) ⊂ HC((Sk)k≥1) or, equivalently, that for each f ∈ U(G,M) the orbit
{Skf ∶ k ∈ N} is dense in H(G). Since G is simply connected, the set of polynomials
is dense in H(G). Therefore it is sufficient to exhibit, for every fixed polynomial P ,
a sequence (k(l))l ⊂ M such that Sk(l)f Ð→ P (l → ∞) uniformly on compacta in
G. Choose an increasing sequence of compact sets {Ll}l≥1 such that G = ⋃l≥1Ll and
every set C ∖Ll is connected; this is possible due to the simple connectedness of G
(see, e.g., [85, Chapter 13]). Then every compact set L ⊂ G is contained in some
Ll(L).
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Fix f and P as above. Since a + 1 ≠ 0, the set (a + 1)G is a simply connected
domain contained in C ∖G. Moreover, each set Kl ∶= (a + 1)Ll is compact, C ∖Kl

is connected and Kl ⊂ C ∖ G. In addition, every mapping z ∈ Kl z→ P ( z
a+1) ∈ C

belongs to A(Kl). Thus, there is ml = nk(l) ∈M such that

sup
ζ∈Ll

sup
z∈Kl

∣S(ml, f, ζ)(z) − P ( z

a + 1
)∣ < 1

l
.

It is evident that (ml) can be selected so as to be strictly increasing. Notice that
we have, in particular, that ∣S(ml, f, z)((a + 1)z) − P (z)∣ < 1/l for all z ∈ Ll. But

S(ml, f, z)((a + 1)z) =
ml

∑
j=0

f (j)(z)
j!

((a + 1)z − z)j = (Sk(l)f)(z).

On the other hand, given a compact set L ⊂ G, there is l0 ∈ N such that L ⊂ Ll for
all l ≥ l0. This yields supz∈L ∣(Sk(l)f)(z)−P (z)∣ < 1/l for all l ≥ l0 and, consequently,
liml→∞ supz∈L ∣(Sk(l)f)(z)−P (z)∣ = 0, which proves the desired uniform convergence.

(b) This follows from Lemma 3.3(b,c) together with the fact that

U(G) ⊂HC((Ta,n)),

proved in the preceding paragraph (with M = N0).

For instance, if Π is one of the two open half-planes determined by a straight
line passing through the origin and G is any simply connected domain contained in
Π, then G ∩ (−G) = ∅, and so the sequence (T−2,n) is universal on H(G).

Remark 3.6. Contrary to the case a = −1 (Theorem 3.10), we do not know whether
or not the condition G∩(a+1)G = ∅ in Theorem 3.5 is necessary for the universality
of (Ta,n).

For any meromorphic function R we will consider the set PR of its poles in the
extended plane, that is, PR = {z ∈ C∞ ∶ R(z) =∞}. The following three lemmas will
be used in the proof of our main result, with which we conclude this section.

Lemma 3.7. Let G ⊂ C be a simply connected domain such that 0 /∈ G. Then the
family R0 of rational functions R with PR ⊂ {0} is a dense subset of H(G).

Proof. As a consequence of the Runge Approximation Theorem, if A is a subset of
C∞ containing exactly one point in each connected component of C∞ ∖G, then the
family of rational functions R with PR ⊂ A is a dense subset of H(G) (see, e.g.,
[85, Chapter 13]). In our case, the set C∞ ∖G is connected and 0 ∈ C∞ ∖G, so it
is enough to choose A = {0}.
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Lemma 3.8. Assume that X and Y are separable F-spaces. Let (Tn) ⊂ L(X,Y ) be
a mixing sequence. Then HC((Tn)) is dense-lineable.

Proof. In [19] it is proved that, if X and Y are metrizable separable topological
vector spaces and (Tn) is a sequence in L(X,Y ) such that HC((Tnk)) is dense for
every sequence {n1 < n2 < ⋯} ⊂ N, then HC((Tn)) contains, except for 0, a dense
vector subspace of X. The conclusion of this lemma follows from the fact that being
mixing implies transitivity of each subsequence (Tnk), and this in turn is equivalent
to the denseness of each set HC((Tnk)) (in fact, all that is needed is X to be, in
addition, a Baire space).

Lemma 3.9. Let G ⊂ C be a simply connected domain with 0 /∈ G, and M be an
infinite subset of N0. Then the set

St,M(G) ∶= {f ∈H(G) ∶ {T̃nf}n∈M ⊃ {constants}}

is dense in H(G).

Proof. In [87, Theorem 4.7], the statement of the lemma is proved for the case
M = N0 by showing that U(G) ⊂ St(G) = St,N0(G). With the same approach it can
be seen that U(G,M) ⊂ St,M(G). But, by Lemma 3.3, the set U(G,M) is dense
in H(G). Thus, St,M(G) is dense too.

Theorem 3.10. Let G ⊂ C be a simply connected domain, and consider the sequence
of operators T̃n ∶ H(G) → H(G) (n ∈ N) defined in (3.1). Then the following
properties are equivalent:

(a) 0 /∈ G.

(b) The sequence (T̃n) is universal, that is, S(G) ≠ ∅.

(c) The sequence (T̃n) is mixing.

(d) The set S(G) is residual in H(G).

(e) The set S(G) is dense-lineable in H(G).

Proof. Recall that S(G) =HC((T̃n)n≥0), where

T̃nf(z) =
n

∑
j=0

f (j)(z)
j!

(−z)j.
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The implication (b) ⇒ (a) has been already proved in [87] (alternatively, see
Proposition 3.1), while (c)⇒ (b) is trivial because any mixing sequence of operators
on a separable F-space is universal. On the other hand, the implications (d) ⇒ (b)
and (e)⇒ (b) are also evident because if a set is dense then it is, trivially, nonempty.
That (c) ⇒ (d) is a consequence of the fact that mixing implies transitive. And (c)
⇒ (e) follows from Lemma 3.8 as applied to our sequence (T̃n) and X = H(G) = Y .

Consequently, all we need to prove is that (a) implies (c). So, we assume 0 /∈ G.
Our goal is to show that (T̃n)n∈N0 is mixing. This is equivalent to show that (T̃n)n∈M
is transitive for every infinite subset M ⊂ N0. With this aim, fix such a subset M
as well as two nonempty open sets U, W of H(G). We should find n0 ∈ M such
that T̃n0(U) ∩W ≠ ∅. Recall that the family of all sets of the form

V (f,K, ε) = {g ∈ H(G) ∶ ∣g(z) − f(z)∣ < ε for all z ∈K}

(f ∈ H(G), ε > 0,K a compact subset ofG) is an open basis for the topology ofH(G).
Now, recall that since G is simply connected, the set P of all polynomials and the
set R0 (Lemma 3.7) are dense in H(G). Moreover, we have V (f,K, ε) ⊂ V (f,L,α)
if K ⊃ L and ε < α. Then there are ε > 0, P ∈ P , R ∈ R0 and a compact subset
K ⊂ G such that U ⊃ V (P,K, ε) and W ⊃ V (R,K, ε).

Thus, we should search for an m ∈ M enjoying the property that there is a
function f ∈ H(G) such that f ∈ V (P,K, ε) and T̃mf ∈ V (R,K, ε) or, equivalently,
such that

∣f(z) − P (z)∣ < ε and ∣(T̃mf)(z) −R(z)∣ < ε for all z ∈K. (3.3)

Let p ∶= degree(P ). On the one hand, if n ≥ p and z ∈ C, we obtain from the Taylor
expansion that

(T̃nP )(z) =
n

∑
j=0

P (j)(z)
j!

(−z)j =
p

∑
j=0

P (j)(z)
j!

(−z)j

=
p

∑
j=0

P (j)(z)
j!

(0 − z)j = P (0). (3.4)

On the other hand, there are b0, b1, . . . , bq ∈ C such that

R(z) = b0 +
b1

z
+⋯ + bq

zq
=∶ b0 +R0(z).

According to Lemma 3.9, we can find a function ϕ ∈ H(G) and an infinite subset
M0 ⊂M such that

∣ϕ(z)∣ < ε
2

and ∣(T̃nϕ)(z) − (−P (0) + b0)∣ < ε (z ∈K, n ∈M0). (3.5)
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Now, since K ⊂ G is compact and 0 /∈ G, we can find CK ∈ (0,1) such that

∣z∣ > CK for all z ∈K. (3.6)

Since M0 is infinite, we can choose m ∈M0 (hence m ∈M) satisfying

m > p and m > 2q ⋅max1≤k≤q ∣bk∣
ε ⋅Cq

K

. (3.7)

For each k ∈ {1, . . . , q}, let us define the numbers dk and ak by

dk ∶=
m

∑
j=0

k(k + 1)⋯(k + j − 1)
j!

and ak ∶=
bk
dk
, (3.8)

with the convention k(k+1)⋯(k+j−1)
j! ∶= 1 if j = 0. Observe that dk ≥ m + 1 for all

k ∈ {1, . . . , q}. We also define the function

f ∶= P + ϕ + S, where S(z) ∶= a1

z
+⋯ + aq

zq
. (3.9)

Obviously, f ∈ H(G). Let ψk(z) ∶= z−k for k ∈ N. An easy computation gives
T̃mψk = dkψk. Hence, by linearity, T̃mS = ∑q

k=1 akdkψk = ∑
q
k=1 bkψk = R0. On the one

hand, we have by (3.5), (3.6), (3.7), (3.8), (3.9) and the triangle inequality that, for
all z ∈K,

∣f(z) − P (z)∣ ≤ ∣ϕ(z)∣ + ∣S(z)∣ ≤ ε
2
+

q

∑
k=1

∣ak
zk

∣

= ε
2
+

q

∑
k=1

∣bk∣
∣dkzk∣

≤ ε
2
+

q

∑
k=1

∣bk∣
mCk

K

< ε
2
+ q ⋅max1≤k≤q ∣bk∣

mCq
K

< ε
2
+ ε

2
= ε.

On the other hand, from (3.4), (3.5), (3.7), (3.9), the triangle inequality and the
linearity of T̃m we get for all z ∈K that

∣(T̃mf)(z) −R(z)∣ = ∣(T̃mP )(z) + (T̃mϕ)(z) + (T̃mS)(z) − b0 −
q

∑
k=1

bk
zk

∣

≤ ∣P (0) + (T̃mϕ)(z) − b0∣ + ∣(T̃mS)(z) −R0(z)∣ < ε + 0 = ε.

Consequently, (3.3) holds for the chosen function f , and we are done.

Question 3.11. Let G ⊂ C be a simply connected domain with 0 /∈ G. Is S(G)
spaceable?
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3.3 Differential polynomials associated to power
series

Let G ⊂ C be a domain. We can associate to each polynomial P (z) = ∑N
k=0 akz

k

with complex coefficients ak a differential operator P (D) = ∑N
k=0 akD

k ∈ L(H(G)),
where Dkf = f (k) for k ∈ N0. Then P (D)f = ∑N

k=0 akf
(k). Therefore, any (formal)

power series ∑∞
n=0 cnz

n (or, that is the same, any sequence c = (cn) ∈ CN0) defines, in
a natural way, a sequence {Tc,n}n≥0 of operators on H(G) given by Tc,n = ∑n

j=0 cjD
j,

that is,

(Tc,nf)(z) =
n

∑
j=0

cjf
(j)(z) (f ∈ H(G)). (3.10)

Then it is natural to ask for the universality of such a sequence.

However, before going on, it is worth mentioning that there are some restrictions
on the desired universality. For instance, if the series ∑∞

n=0 cnz
n is “very convergent”,

we should not get our hopes up too much. To be more explicit, assume that Φ(z) =
∑∞
n=0 cnz

n is an entire function of subexponential type, that is, given ε > 0, there is
a constant K = K(ε) ∈ (0,+∞) such that ∣Φ(z)∣ ≤ K eε∣z∣ for all z ∈ C. Then the
infinite order differential operator Φ(D) = ∑∞

n=0 cnD
n is well defined on H(G); see,

e.g., [17] (in fact, it makes sense on H(C) if Φ is just of exponential type, that is,
if there are constants A,B ∈ (0,+∞) satisfying ∣Φ(z)∣ ≤ AeB∣z∣ for all z ∈ C). The
corresponding sequence {Tc,n}n≥0 of operators satisfies

Tc,nf Ð→ Φ(D)f =
∞
∑
k=0

ckf
(k) (n→∞)

uniformly on compacta in G, so we have a kind of “anti-hypercyclicity” in this case.

With this in mind, we have got a partial positive result (Theorem 3.13) by
assuming that c is not the sequence of Taylor coefficients of an entire function (i.e.,
lim supn→∞ ∣cn∣1/n > 0) as well as some “angular” behavior of these coefficients. The
remaining cases in which the series ∑∞

n=0 cnz
n does not define an entire function of

subexponential type stay –as far as we know– as an open problem. For the proof,
we need the following lemma, which is in the line of the eigenvalue criteria given in
[20, 23, 56]. However, the lemma cannot be deduced from those criteria. Moreover,
its content might be of some interest by itself. By span(A) we represent the linear
span of a subset A of a vector space.

Lemma 3.12. Assume that X is a separable F-space and that (Tn)n≥0 ⊂ L(X).
Suppose that there are subsets D,E ⊂X satisfying the following conditions:
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(a) D and span(E) are dense in X.

(b) For each d ∈D, the sequence {Tn d}n≥0 converges in X.

(c) Each e ∈ E is an eigenvector of every Tn (n ≥ 0), with eigenvalue λ(Tn, e),
say.

(d) limn→∞ λ(Tn, e) =∞ for all e ∈ E.

Then (Tn)n is mixing and the set HC((Tn)n) is dense-lineable in X.

Proof. The second conclusion follows from Lemma 3.8. As for the first conclusion,
we want to prove that every subsequence (Tnk) of (Tn) is transitive. Let us denote
Rk ∶= Tnk for k ∈ N.

In order to show that (Rk) is transitive, fix two nonempty open sets U,V ⊂ X.
Our goal is to exhibit an m ∈ N such that Rm(U) ∩ V ≠ ∅. By the denseness
of D assumed in (a), there is d ∈ D ∩ U . It follows from (b) the existence of a
vector f ∈ X such that Rk d → f as k → ∞. Now, by the denseness of span(E)
this time, there is e ∈ span(E) ∩ (V − f), because the translate V − f of V is also
open and nonempty. Since e ∈ span(E), we can find finitely many scalars µj and
vectors ej ∈ E (j = 1, . . . , q) such that e = ∑q

j=1 µjej. Thanks to (c) and (d), we have
Rkej = λ(Tnk , ej)ej and limk→∞ λ(Tnk , ej) = ∞ for all j ∈ {1, . . . , q}. In particular,
there is k1 ∈ N such that λ(Tnk , ej) ≠ 0 for all k ≥ k1 and all j ∈ {1, . . . , q}. Next, for
any k ≥ k1, we define

xk ∶= d +
q

∑
j=1

µj
λ(Tnk , ej)

ej.

Since µj
λ(Tnk ,ej)

→ 0 (k →∞) for j ∈ {1, . . . , q}, it follows from the continuity of the
multiplication by scalars in a topological vector space that xk → d+0 = d as k →∞.
As d ∈ U and U is open, there exists k2 ≥ k1 such that xk ∈ U for all k ≥ k2. Finally,
we get

Rkxk = Rk d +Rk(
q

∑
j=1

µj
λ(Tnk , ej)

ej) = Rk d +
q

∑
j=1

µj
λ(Tnk , ej)

Rkej

= Rk d +
q

∑
j=1

µjej = Rk d + eÐ→ f + e as k →∞.

Since f + e ∈ f + (V − f) = V and V is open, one can find k3 ≥ k2 such that
Rkxk ∈ V for all k ≥ k3. Consequently, we obtain Rm(U) ∩ V ≠ ∅ as soon as we
choose m ∶= k3. This had to be shown.

We are now ready to state our final theorem.
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Theorem 3.13. Let G ⊂ C be a simply connected domain, and consider the sequence
of operators Tc,n ∶ H(G) → H(G) (n ∈ N0) defined in (3.10), where c = (cn)n≥0

satisfies the following conditions:

(i) lim supn→∞ ∣cn∣1/n > 0.

(ii) There exist α ∈ R and a sequence (θn)n≥0 ∈ RN0 with

min{lim sup
n→∞

∣θn∣, lim sup
n→∞

∣θn −
π

2
∣, lim sup

n→∞
∣θn − π∣, lim sup

n→∞
∣θn −

3π

2
∣} < π

2

such that arg cn = nα + θn whenever cn ≠ 0.

Then (Tc,n) is mixing and, in particular, universal. Moreover, the set HC((Tc,n))
is dense-lineable in H(G).

Proof. The second part of the conclusion follows from the first one and Lemma 3.8.
Hence, our goal is to prove that (Tc,n) is mixing. We will use Lemma 3.12 with
X ∶= H(G), Tn ∶= Tc,n (n ≥ 0), D ∶= P = {polynomials} and E ∶= {eλ ∶ λ ∈ {t e−iα ∶
t > R}}, where ea(z) ∶= eaz (a ∈ C) and R is the radius of convergence of the power
series ∑∞

n=0 cnz
n, that is, R = (lim supn→∞ ∣cn∣1/n)−1. Observe that 0 ≤ R < +∞ by

(i), which yields E ≠ ∅.

On the one hand, the denseness of D in X follows from the simple connectedness
of G. On the other hand, it is known (see, e.g., [58, Lemma 2.34]) that if Λ ⊂ C is
a set with an accumulation point, then span({eλ ∶ λ ∈ Λ}) is dense in H(C), and
hence in H(G) due to Runge’s approximation theorem and the simple connectedness
of G. Consequently, span(E) is dense in X and condition (a) of Lemma 3.12 is
fulfilled. Now, if P ∈ P and N = degree(P ) then P (n) = 0 for all n > N , and so
TnP = ∑N

j=0 cjP
(j) ∶= Q for all n ≥ N . Hence TnP → Q as n → ∞, which tells us

that condition (b) in Lemma 3.12 is also satisfied. As for condition (c), notice that
e
(n)
λ = λneλ for all λ ∈ C and all n ∈ N0, which entails Tneλ = λ(Tn, eλ)eλ, where
λ(Tn, eλ) = ∑n

j=0 cjλ
j, that is, each eλ ∈ E is in fact an eigenvector for all Tn. Let

us verify, finally, condition (d) in Lemma 3.12.

For this, take any n ∈ N0 and any λ = t e−iα with t > R. From (ii), at least
one of the following inequalities is true: lim supn→∞ ∣θn∣ < π

2 , lim supn→∞ ∣θn − π
2 ∣ < π

2 ,
lim supn→∞ ∣θn − π∣ < π

2 , lim supn→∞ ∣θn − 3π
2 ∣ < π

2 . Suppose that the first inequality
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holds. Then there is N ∈ N such that supn>N ∣θn∣ < π
2 . Let γ ∶= infn>N cos θn. Note

that γ > 0. Let n > N . Also by (ii) and the triangle inequality, we can estimate:

∣λ(Tn, eλ)∣ = ∣
n

∑
j=0

cj λ
j ∣ = ∣

n

∑
j=0

∣cj ∣ ei(jα+θj)(t e−iα)j ∣ = ∣
n

∑
j=0

∣cj ∣ tj ei θj ∣

≥ Re (
n

∑
j=N+1

∣cj ∣ tj ei θj) −
N

∑
j=0

∣cj ∣ tj

=
n

∑
j=0

∣cj ∣ tj cos θj −
N

∑
j=0

∣cj ∣ tj

≥ γ ⋅
n

∑
j=0

∣cj ∣ tj −
N

∑
j=0

∣cj ∣ tj Ð→ +∞ as n→∞

because the series with positive terms ∑∞
n=0 ∣cn∣tn diverges: indeed, t > R, the radius

of convergence. If lim supn→∞ ∣θn− π
2 ∣ < π

2 holds, the reasoning is similar by consider-
ing γ ∶= infn>N sin θn and taking imaginary parts instead of real parts. The remain-
ing third and four cases lim supn→∞ ∣θn −π∣ < π

2 and lim supn→∞ ∣θn − 3π
2 ∣ < π

2 are anal-
ogous, just by considering the inequalities ∣∑n

j=0 ∣cj ∣ tj ei θj ∣ ≥ Re (∑n
j=N+1 −∣cj ∣ tj ei θj)−

∑N
j=0 ∣cj ∣ tj ∣∑n

j=0 ∣cj ∣ tj ei θj ∣ ≥ Im (∑n
j=N+1 −∣cj ∣ tj ei θj) − ∑N

j=0 ∣cj ∣ tj and letting γ ∶=
infn>N ∣ cos θn∣, γ ∶= infn>N ∣ sin θn∣, respectively. Thus, (d) is satisfied and the proof
is concluded.

Corollary 3.14. Let G ⊂ C be a simply connected domain, and assume that c =
(cn)n≥0 is a sequence satisfying cn ≥ 0 for all n ≥ 0 and lim supn→∞ c

1/n
n > 0. Then

(Tc,n) is mixing on H(G).

Remark 3.15. 1. For instance, the sequence of operators on H(G) given by
{∑n

k=0(k + i)(1 + i)kDk}
n∈N0

is universal, for any simply connected domain G ⊂ C.

2. In [56] the hypercyclicity of a nonscalar operator Φ(D) on H(C) is established,
which in particular yields Birkhoff’s Theorem [24] and MacLane’s Theorem [71] on
hypercyclicity of the translation operator and the derivative operator, respectively.
Note that this is equivalent to the universality of the sequence (Φn(D)). Concerning
universality of sequences of differential operators not being the iterates of a single
one, the reader can find a number of results in [18,20,23,83], but none of them covers
Theorem 3.13. Moreover, the set HC(Φ(D)) is spaceable, as proved by Petersson,
Shkarin and Menet [76, 82, 86] (see also [58, Section 10.1]). This fact together with
the results of this section motivates the next and final question.

Question 3.16. Let G ⊂ C be a simply connected domain. Under what conditions
is HC((Tc,n)) spaceable in H(G)?



Chapter 4
Polynomial norms

4.1 Introduction and preliminaries

Let us denote by P and Pn, respectively, the vector spaces of all complex poly-
nomials and all complex polynomials of degree at most n ∈ N. Since Pn is finite
dimensional, all norms defined on Pn are equivalent. In other words, if ∥ ⋅∥a and ∥ ⋅∥b
are two norms defined on Pn, there there exist constants k(n),K(n) > 0 such that

k(n)∥p∥a ≤ ∥p∥b ≤K(n)∥p∥a (4.1)

for all p ∈ Pn. Inequalities of this type have been studied in the past for several
polynomial norms. For instance, we can endow P with the following norms:

1. ∥p∥Dr ∶= sup{∣p(z)∣ ∶ ∣z∣ < r}, and

2. ∥p∥1 ∶= ∑n
i=0 ∣ai∣,

where p is given by p(z) = ∑n
i=0 aiz

i, a0, . . . , an ∈ C, r > 0, and Dr = rD with D
being the open unit disk. The optimal constants k(n, r),K(n, r′) > 0 in (4.1), where
r, r′ > 0, ∥ ⋅∥a = ∥ ⋅∥Dr and ∥ ⋅∥b = ∥ ⋅∥Dr′ are known (see for instance [28] and [84] for a
complete account on polynomials and polynomial inequalities). A natural question
would be whether or not ∥ ⋅ ∥Dr and ∥ ⋅ ∥Dr′ are equivalent too in P . The answer
is no. However we can establish a relationship between the topologies induced by
∥ ⋅ ∥Dr and ∥ ⋅ ∥Dr′ in P .

Given two norms ∥ ⋅ ∥ and ∥ ⋅ ∥′ on P, we can define a relation representing the
natural partial order (⪯) in their respective induced topologies T∥⋅∥ and T∥⋅∥′ as
follows.

63
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Definition 4.1. We say that ∥ ⋅ ∥ ⪯ ∥ ⋅ ∥′ if the following three equivalent statements
hold:

(a) There exists a constant K > 0 such that, for all p ∈ P, we have ∥p∥ ≤K∥p∥′.

(b) The identity operator I ∶ (P, ∥ ⋅ ∥′)→ (P, ∥ ⋅ ∥) is continuous.

(c) T∥⋅∥′ is finer than T∥⋅∥, that is, T∥⋅∥ ⊂ T∥⋅∥′.

Remark 4.2. The relation ⪯ is not really a partial order on P . If we consider any
two equivalent norms ∥ ⋅ ∥, ∥ ⋅ ∥′ on P then ∥ ⋅ ∥ ⪯ ∥ ⋅ ∥′ and ∥ ⋅ ∥′ ⪯ ∥ ⋅ ∥. Then we
should always see ⪯ as the natural partial order on their induced topologies, that is,

∥ ⋅ ∥ ⪯ ∥ ⋅ ∥′ if and only if T∥⋅∥ ⊂ T∥⋅∥′ .

We also consider the corresponding strict order relation, that is:

Definition 4.3. Given two norms ∥ ⋅ ∥ and ∥ ⋅ ∥′ in P, we say that ∥ ⋅ ∥ ≺ ∥ ⋅ ∥′ if
∥ ⋅ ∥ ⪯ ∥ ⋅ ∥′ but ∥ ⋅ ∥′ â ∥ ⋅ ∥.

The content of the next proposition is well-known.

Proposition 4.4. Let ∥⋅∥ and ∥⋅∥′ be two norms on a vector space Z. The following
are equivalent:

1. ∥ ⋅ ∥ ≺ ∥ ⋅ ∥′.

2. The identity operator I ∶ (Z, ∥ ⋅ ∥′) → (Z, ∥ ⋅ ∥) is continuous but it is not a
topological isomorphism.

A very simple way of proving that ∥ ⋅∥ ≺ ∥ ⋅∥′, is by means of compact operators.

Lemma 4.5. Let (E, ∥ ⋅ ∥′), (F, ∥ ⋅ ∥) be normed spaces and Z ⊂ E,F be an infinite
dimensional vector space. Suppose that T ∶ (E, ∥ ⋅ ∥′)→ (F, ∥ ⋅ ∥) be a linear operator
with T ∣Z = I, the identity operator. If T is a compact operator then ∥ ⋅ ∥ ≺ ∥ ⋅ ∥′ on
Z.

Proof. Since T is compact, T is continuous and, thus, the operator I = T ∣Z ∶
(Z, ∥ ⋅∥′)→ (Z, ∥ ⋅∥) is also continuous. Moreover, by Riesz’s Theorem (see, e.g., [63])
there exist ε0 > 0 and a sequence {pn}n∈N ⊂ B(Z,∥⋅∥′) with ∥pn − pm∥′ ≥ ε0 > 0. Since
T is a compact operator, we can assume, passing to a subsequence if necessary,
that {T (pn) = pn}n∈N is a Cauchy sequence in (Z, ∥ ⋅ ∥). Therefore the operator
I ∶ (Z, ∥ ⋅∥)→ (Z, ∥ ⋅∥′) does not transform Cauchy sequences into Cauchy sequences
and it cannot be uniformly continuous (nor continuous, by the linearity of I). Hence
its inverse I ∶ (Z, ∥ ⋅∥′)→ (Z, ∥ ⋅∥) is not a topological isomorphism. By the previous
proposition, we conclude that ∥ ⋅ ∥ ≺ ∥ ⋅ ∥′ on Z.
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On the one hand, it follows from the triangle inequality that ∥p∥D1 ≤ ∥p∥1 for
all p ∈ P (and, thus, ∥ ⋅ ∥D1 ⪯ ∥ ⋅ ∥1). On the other hand, we shall prove that, for all
r > 1, there exists a constant K(r) > 0 such that ∥p∥1 ≤K(r)∥p∥Dr for p ∈ P (and,
thus, ∥ ⋅ ∥D1 ⪯ ∥ ⋅ ∥1 ⪯ ∥ ⋅ ∥Dr for all r > 1).

It might seem intuitive the fact that, if r → 1+, then

∥ ⋅ ∥D1 ⪯ ∥ ⋅ ∥1 ⪯ ∥ ⋅ ∥Dr Ð→ ∥ ⋅ ∥D1

and that, as a consequence, the norms ∥⋅∥D1 and ∥⋅∥1 are really equivalent. However,
and as we will also prove, this is not true. We shall prove that, although none of
these previous norms are actually equivalent in any sense, what we do have is that

∥ ⋅ ∥Dε ≺ ∥ ⋅ ∥Dε′ ≺ ∥ ⋅ ∥D1 ≺ ∥ ⋅ ∥1 ≺ ∥ ⋅ ∥Dr ≺ ∥ ⋅ ∥Dr′

for every 0 < ε < ε′ < 1 < r < r′. Moreover, it is provided a rather general criterion
about topological largeness of sets arising naturally when comparing two norms.
The notation will be rather usual and the tools we employ are classical ones from
the fields of Topology and Complex Variables.

4.2 The results

First of all, we shall need some additional notation.

Definition 4.6. For every r > 0, we denote Hb(Dr) ∶= {f ∈ H(Dr) ∶ ∥f∥Dr < +∞},
where H(Dr) stands for the space of all holomorphic functions on Dr. Here

∥f∥Dr = sup{∣f(z)∣ ∶ ∣z∣ < r}.

Remark 4.7. We consider Hb(Dr) as the Banach space (Hb(Dr), ∥ ⋅ ∥Dr) and,
naturally, if 0 < r < r′ then, by the Identity Principle, we may consider Hb(Dr′) as
a subset of Hb(Dr).

Definition 4.8. If r′ > r > 0, we define the linear operator Ir,r′ ∶ Hb(Dr′)→ Hb(Dr)
as Ir,r′(f) = f .

Now, we can obtain the first of one main results. By BX we will denote the
closed unit ball of a normed space X.

Theorem 4.9. Assume that 0 < r < r′. Then the following holds:

1. The ball BHb(Dr′) is compact in Hb(Dr).
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2. Ir,r′ is a compact operator.

3. ∥ ⋅ ∥Dr ≺ ∥ ⋅ ∥Dr′ on P.

Proof. Obviously (1) implies (2) and, by Lemma 4.5 (withE = Hb(Dr′), F = Hb(Dr), Z =
P, ∥ ⋅ ∥ = ∥ ⋅ ∥Dr , and ∥ ⋅ ∥′ = ∥ ⋅ ∥Dr′ ), (2) implies (3). So we only have to prove (1).

With this aim, let {fn}n∈N ⊂ BHb(Dr′). By Montel’s Theorem (see, e.g., [57]) there
exist a subsequence {fnk}k∈N and an f ∈ H(Dr′) such that fnk Ð→ f uniformly in
compact subsets of Dr′ . We conclude that f ∈ BHb(Dr′) and fnk Ð→ f in H(Dr).
So BHb(Dr′) is compact in Hb(Dr).

On the other hand, if we now consider r > 1, we have that, for all f(z) =
∑∞
n=0 anz

n ∈ Hb(Dr), its radius of convergence is not less than r > 1, so ∑∞
n=0 ∣an∣ <

+∞. This allows us to consider the linear operator given in the next definition,
where `1 denotes the set of all absolutely summable sequences of complex numbers,
which becomes a Banach space when endowed with the norm ∥(an)n≥0∥ = ∑∞

n=0 ∣an∣.

Definition 4.10. For all r > 1 we define the operator Ir ∶ Hb(Dr) → `1 as
Ir(f) ∶= (an)n≥0, where f is as above.

In order to prove that Ir is continuous, it will be useful to recall some basic
concepts and results related to the compact-open topology.

Definition 4.11. Let r > 0, f ∈ H(Dr), K ⊂ Dr be a compact subset and ε > 0.
We define Bf(K,ε) ∶= {g ∈ H(Dr) ∶ sup{∣g(z) − f(z)∣ ∶ z ∈K} ≤ ε}.

Theorem 4.12. Let Tc be the compact-open topology in H(Dr). Then we have:

1. The family {Bf(K,ε) ∶ f ∈ H(Dr), ε > 0, K compact ⊂ Dr} is a neighborhood
base for (H(Dr), Tc).

2. fn Ð→ f in (H(Dr), Tc) if and only if fn Ð→ f uniformly on compact subsets
of Dr.

3. (H(Dr), Tc) is a completely metrizable space, hence a Baire space.

Definition 4.13. Let r > 1. For every N ∈ N, we denote
FN ∶= {f ∈ H(Dr) ∶ ∑∞

n=0 ∣an∣ ≤ N with f(z) = ∑∞
n=0 anz

n}.

Remark 4.14. Notice that H(Dr) = ⋃N∈NFN .
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The easy proof of the following result is left to the reader. If α is an scalar and
S is a subset of a vector space, then αS stands for {αx ∶ x ∈ S}.

Lemma 4.15. Assume that r > 1 and R > 0. Let {(ai,n)i≥0}n∈N ⊂ RB`1 be a
sequence such that

lim
n→∞ai,n = ai

for all i ∈ N. Then ∑∞
i=0 ∣ai∣ ≤ R.

In the following theorem, we collect a number of properties of the sets FN given
in Definition 4.13.

Theorem 4.16. Let r > 1. We have:

(a) The set FN is a closed subset of (H(Dr), Tc) for all N ∈ N.

(b) There exists an N ∈ N such that:

(1) FN has non-empty interior in (H(Dr), Tc).
(2) 0 ∈ int(H(Dr),Tc)FN .

(3) There exists ε > 0 such that εBHb(Dr) ⊂ FN .

Proof. (a) Let {fn}n∈N be a sequence such that limn→∞ fn = f in
(H(Dr), Tc), where fn(z) = ∑∞

i=0 ai,nz
i and f(z) = ∑∞

i=0 aiz
i. Since fn Ð→ f

uniformly in compact subsets of Dr, byWeiestrass’ Theorem (see [57]), limi→∞ f
(i)
n (0) =

f (i)(0) for all i ∈ N ∪ {0}, and hence limi→∞ ai,n = ai. By Lemma 4.15, ∑∞
i=0 ∣ai∣ ≤ N

and so f ∈ FN .

(b) Part (1) follows from (a), Theorem 4.12(3) and Remark 4.14.

(2) By (1) and Theorem 4.12(1), there exist f ∈ H(Dr), a compact set K ⊂Dr and
ε > 0 such that f +B0(K,ε) = Bf(K,ε) ⊂ FN . Since FN is a symmetric set, we get

−2f +Bf(K,ε) = −f +B0(K,ε) = B−f(K,ε) = −Bf(K,ε) ⊂ FN

and, since FN is convex, B0(K,ε) = −f +Bf(K,ε) ⊂ FN .

(3) Obviously εBHb(Dr) ⊂ B0(K,ε) ⊂ FN .

Now, one of our main results can be easily derived:

Theorem 4.17. Assume that r > 1. Then the following holds:
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(a) The linear operator Ir ∶ Hb(Dr)→ `1 is compact.

(b) ∥ ⋅ ∥1 ≺ ∥ ⋅ ∥Dr on P.

Proof. By Theorem 4.16(b)(3), Ir is a bounded operator. Fix any d ∈ (1, r). We can
see Ir as the composition Ir = IdId,r. Since Id is continuous and Id,r is compact,
Ir is compact. This proves (a). Finally, (b) follows from (a) and Lemma 4.5.

Given a normed space E, we shall denote by E its completion.

Remark 4.18. Let us recall that:

1. (P, ∥ ⋅ ∥1) = `1.

2. (P, ∥ ⋅ ∥D1) = H(D1) ∩ C(D1) =∶ A(D1), the disk algebra.

The content of the following auxiliary assertion is well known.

Lemma 4.19. Let E and F be normed spaces and let T ∶ E → F be a linear and
continuous operator. Then the following holds:

1. There exists a unique linear continuous operator T ∶ E → F such that T ∣E = T .

2. If T is a topological isomorphism then T is also a topological isomorphism.

We denote by I ∶ P → P the identity mapping I(P ) = P , where the space P
on the left should be thought as identified with c00, the space of eventually zero
complex sequences.

Corollary 4.20. The linear operator I ∶ (an)n∈N ∈ `1 ↦ f(z) = ∑∞
n=0 anz

n ∈ A(D1)
is continuous and injective.

Proof. By using the Weierstrass M-test, the series ∑∞
n=0 anz

n converges uniformly
on D1. Since each term anzn is continuous on D1, so is its sum f . Moreover,
the Weierstrass convergence theorem guarantees that f is holomorphic in D1, so
that f ∈ A(D1) and the mapping (an)n∈N ∈ `1 ↦ f ∈ A(D1) is well defined and,
obviously, linear. That this mapping equals I is clear because its restriction to P
equals I (via the identification P = c00), and P is dense both in `1 and A(D1).
The continuity of I is derived from Lemma 4.19(1), while its injectivity follows from
the uniqueness of the Taylor coefficients around 0.
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However, is I also topological isomorphism? In order to answer this question,
let us focus on the following four conjectures.

Conjecture 4.21.
(CI) ∥ ⋅ ∥1 and ∥ ⋅ ∥D1 are equivalent norms in P.

(CII) The linear operator I ∶ `1 → A(D1) is a topological isomorphism.

(CIII) For every f ∈ A(D1) there exists (ai)i∈N ∈ `1 such that f(z) = ∑∞
i=0 aiz

i for
all z ∈D1.

(CIV) The set

A ∶= {f ∈ A(D1) ∶
∞
∑
i=0

∣ai∣ < +∞ where f(z) =
∞
∑
i=0

aiz
i ∀z ∈D1} (4.2)

is of second category in A(D1).

Proposition 4.22. The previous four conjectures (CI), (CII), (CIII) and (CIV) are
equivalent.

Proof. To start with, the facts (CII)Ô⇒ (CIII) and (CIII)Ô⇒ (CIV) are straight-
forward.

● (CI) is equivalent to (CII): ∥ ⋅ ∥1 and ∥ ⋅ ∥D1 are equivalent norms in P if and only
if I ∶ (P, ∥ ⋅ ∥1)→ (P, ∥ ⋅ ∥D1) is a topological isomorphism and, by Remark 4.18 and
Lemma 4.19, the last property is equivalent to the fact that I ∶ `1 → A(D1) is a
topological isomorphism.

● (CIV) Ô⇒ (CII): The set I(`1) = A is a second category set. Now, since I
is linear, continuous and injective, the Banach–Schauder Theorem (Open Mapping
Theorem) implies that I is a topological isomorphism.

Proposition 4.23. (CIII) is false, and so are (CI), (CII) and (CIV) by Proposition
4.22.

Proof. The following result can be found in [62, §6]: There exists f ∈ A(D1) such
that ∑∞

i=0 ∣ai∣ = +∞, where f(z) = ∑∞
i=0 aiz

i for all z ∈D1. This disproves (CIII).

Since (CI) is false but we have ∥ ⋅ ∥D1 ⪯ ∥ ⋅ ∥1, we obtain another promised result:

Theorem 4.24. ∥ ⋅ ∥D1 ≺ ∥ ⋅ ∥1 on P.
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Corollary 4.25. ∥Ir∥Ð→ +∞ as r → 1+.

Proof. By way contradiction, suppose that there exist K > 0 and a sequence {rn}n∈N
with rn → 1+ such that ∥Irn∥ ≤K for all n ∈ N. We have that, for every n ∈ N and
for all p ∈ P ,

∥p∥1 = ∥Irn(p)∥1 ≤K∥p∥Drn Ð→K∥p∥D1 as n→∞.

Thus, ∥p∥1 ≤K∥p∥D1 and so ∥ ⋅ ∥1 ⪯ ∥ ⋅ ∥D1 , which is absurd.

Let A be the set defined in (4.2). Since (CIV) is false, A is a first category set.
We will show that A enjoys, actually, a nice topological structure; namely, A is an
Fσ set. Note that, in addition, A is dense since it contains the class P .

Let f ∈ A(D1) with f(z) = ∑∞
i=0 aiz

i for all z ∈ D1. We know that its radius of
convergence is at least 1. Then, for all ε ∈ (0,1), we obtain ∑∞

i=0 ∣ai∣εi < +∞. Thus,
we can define the following operator.

Definition 4.26. For every ε ∈ (0,1) we define the linear operator

iε ∶ A(D1)Ð→ `1

as
iε(f) = (aiεi)i≥0,

where f(z) = ∑∞
i=0 aiz

i for every z ∈D1.

Proposition 4.27. For every ε ∈ (0,1), we have that iε is a compact operator.

Proof. We are going to define a linear operator

Tε ∶ A(D1)→ Hb(D1/ε).

For this, making the substitution z = εω we set Tε(f)(ω) ∶= f(εω). Now, since

∥Tε(f)∥D1/ε = ∥f∥D1

for every f ∈ A(D1), we have that Tε is continuous. Moreover, we can see iε as
the composition iε = I1/εTε, where I1/ε is a compact operator. To sum up, iε is
the composition of a compact operator and of a continuous operator, from which we
conclude that it is compact.
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Corollary 4.28. For every ε ∈ (0,1) and every M > 0, we have that

CM,ε ∶= {f ∈ A(D1) ∶
∞
∑
i=0

∣ai∣εi ≤M where f(z) =
∞
∑
i=0

aiz
i ∀z ∈D1}

is a closed subset of A(D1).

Proof. It suffices with noticing that CM,ε = i−1
ε (MB`1).

Corollary 4.29. The set

CM ∶= {f ∈ A(D1) ∶
∞
∑
i=0

∣ai∣ ≤M where f(z) =
∞
∑
i=0

aiz
i ∀z ∈D1} (4.3)

is closed for every M > 0.

Proof. Let us show that CM = ⋂
ε∈(0,1)

CM,ε. It is clear that CM ⊂ ⋂
ε∈(0,1)

CM,ε. Let us

see that CM ⊃ ⋂
ε∈(0,1)

CM,ε. If f ∈ ⋂
ε∈(0,1)

CM,ε (where f(z) = ∑∞
i=0 aiz

i for all z ∈ D1)

then (taking a sequence {εn}n∈N with εn → 1−) we have that, for every n ∈ N,
∑∞
i=0 ∣ai∣εin ≤ 1. Finally, by Lemma 4.15, ∑∞

i=0 ∣ai∣ ≤ 1 and f ∈ CM , which concludes
the proof.

Theorem 4.30. The set A defined in (4.2) is an Fσ set of first category in A(D1).
Hence the set

{f ∈ A(D1) ∶
∞
∑
i=0

∣ai∣ = +∞ where f(z) =
∞
∑
i=0

aiz
i ∀z ∈D1}

is a dense Gδ set, so residual in A(D1).

Proof. It suffices with noticing that A is of first category due to Propostion 4.23 and
to the fact that we can write A = ⋃N∈NCN , where the CN ’s are given in (4.3).

To finish this chapter, and inspired by the last theorem and its proof, we can
furnish a rather general criterion of topological largeness inside normed spaces, see
Theorem 4.33 below. Actually, the criterion also contains assertions about algebraic
largeness.

Let us denote by [−∞,+∞] the extended real line, endowed with the order
topology. Recall that, if X is a topological space, a mapping Φ ∶X → [−∞,+∞] is
called lower semicontinuous (see, e.g., [30] for concepts and properties) whenever,
given any α ∈ N, the set {x ∈ X ∶ Φ(x) > α} is open. If X is a metric space, this is
equivalent to Φ(x0) ≤ lim infx→x0 Φ(x) for all x0 ∈X.

In the next definition, we are considering on [0,+∞] the natural extension of
the usual order in [0,+∞).
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Definition 4.31. Let X be a vector space and Φ ∶ X → [0,+∞] be a lower semi-
continuous mapping. We say that Φ is an extended norm on X provided that the
following properties are satisfied:

(i) Φ(x) = 0 if and only if x = 0.

(ii) If {Φ(x),Φ(y)} ⊂ [0,+∞) then Φ(x + y) ≤ Φ(x) +Φ(y).

(iii) If Φ(x) < +∞ and α is a scalar then Φ(αx) = ∣α∣Φ(x).

It is easy to see that, under the notation of the last definition, the set

XΦ ∶= {x ∈X ∶ Φ(x) < +∞}

is a vector subspace of X and that the restriction of Φ to XΦ is a norm on XΦ.

The following concepts, which are taken from the theory of lineability (see [7]
for background) are also needed.

Definition 4.32. Assume that X is a vector space and that A ⊂ X. We say that
A is lineable if it contains, except for zero, an infinite dimensional vector space.
If X is, in addition, a topological vector space, then A is said to be dense-lineable
(spaceable, resp.) in X provided that it contains, except for zero, a dense (a closed
infinite dimensional, resp.) vector subspace.

Theorem 4.33. Assume that (X, ∥ ⋅∥) is a Banach space and that Φ is an extended
norm on X. Let us denote

A∞ ∶=X ∖XΦ = {x ∈X ∶ Φ(x) = +∞}.

Then the following holds:

(a) If Φ /⪯ ∥ ⋅ ∥ on XΦ, then the set A∞ is residual in X.

(b) If XΦ is dense in X, ∥ ⋅ ∥ ≺ Φ on XΦ and (XΦ,Φ) is a Banach space, then
A∞ is spaceable in X. If, in addition, (X, ∥ ⋅ ∥) is separable, then A∞ is
dense-lineable too.

Proof. (a) We have to prove that XΦ is of first category in X. For this, note that
Xφ = ⋃∞

n=1Fn, where we have set Fα ∶= {x ∈ X ∶ Φ(x) ≤ α} for every α ∈ (0,+∞).
Therefore it suffices to show that each set Fα is closed and has empty interior in
X. That Fα is closed is derived from the openness of X ∖Fα = {x ∈X ∶ Φ(x) > α},
which in turn comes from the assumption of lower semicontinuity for Φ.
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In order to prove that Fα has empty interior in X, assume, by way of contra-
diction, that there are x0 ∈X and R > 0 such that {x ∈X ∶ ∥x − x0∥ ≤ R} ⊂ Fα or,
that is the same, Φ(x) ≤ α for every x ∈X satisfying ∥x−x0∥ < R. Since Φ /⪯ ∥ ⋅∥ on
XΦ, we can find a sequence {xn}n≥1 ⊂ XΦ such that Φ(xn) > n∥xn∥ for all n ∈ N.
Note that xn ≠ 0, and so ∥xn∥ > 0 (n = 1,2, . . . ). Select an N ∈ N with N > 2α/R
and define x ∶= x0+ R

∥xN ∥xN . Note, on the one hand, that ∥x−x0∥ = R, which implies
Φ(x) ≤ α. But, on the other hand, since Φ is a norm on XΦ, thanks to the triangle
inequality we get

Φ(x) ≥ Φ( R

∥xN∥xN) −Φ(x0) > RN − α > 2α − α = α,

which is absurd. This proves the residuality of A∞.

(b) Here we shall make use of the following facts. The first of them is a special case
of Theorem 3.3 in [67], while the second one can be found in [21, Theorem 2.5]:

(1) Let Y be a Banach space and X be a Fréchet space. If T ∶ Y → X is a
continuous linear mapping and T (Y ) is not closed in X, then the complement
X ∖ T (Y ) is spaceable in X.

(2) Let X be a metrizable separable topological vector space and Y be a vector
subspace of X. If X ∖ Y is lineable, then X ∖ Y is dense-lineable in X.

Let us apply (1) with Y ∶= (XΦ,Φ) and T ∶= I ∶ x ∈ XΦ ↦ x ∈ X, the inclusion
mapping, which is linear, but also continuous because ∥⋅∥ ⪯ Φ on XΦ. Observe that,
under this notation, A∞ = X ∖ T (Y ). Assume, via contradiction, that T (Y ) = XΦ

is closed in X. Since ∥ ⋅ ∥ ≺ Φ, we have in particular that Φ /⪯ ∥ ⋅ ∥ on XΦ. Hence,
by part (a), A∞ is residual in X, so nonempty. But XΦ =X because XΦ is dense
and closed, which entails A∞ = ∅, that is absurd. Consequently, T (Y ) is not closed
in X and (1) tells us that A∞ is spaceable.

Finally, if we assume that (X, ∥ ⋅ ∥) is separable, the dense-lineability of A∞
follows from the above result (2) (with Y ∶= XΦ) and the fact that spaceability
implies lineability.

Remark 4.34. Theorem 4.30 follows from Theorem 4.33(a) just by taking X ∶=
A(D1), ∥f∥ ∶= supz∈D1

∣f(z)∣ and Φ(f) ∶= ∑∞
n=0 ∣an∣, where f ∈ A(D1) and f(z) =

∑∞
n=0 anz

n for all z ∈ D1. Since ∥ ⋅ ∥ ≺ Φ on the space A ∶= {f ∈ A(D1) ∶ ∑∞
n=0 ∣an∣ <

+∞}, we obtain in particular that Φ /⪯ ∥ ⋅∥. Then the unique property to be checked
is the lower semicontinuity of Φ. For this, observe that each mapping

Sn ∶ f ∈ A(D1)z→
n

∑
k=0

∣ak∣ =
n

∑
k=0

∣f
(k)(0)
k!

∣ ∈ R (n ∈ N)
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is continuous, due to the Weierstrass convergence theorem for derivatives and the
fact that convergence in A(D1) implies uniform convergence on compacta (hence
convergence at 0). In particular, each Sn is lower semicontinuous. But, evidently,
Φ = sup{Sn ∶ n ∈ N}, and the supremum of a family of lower semicontinuous functions
is known to be lower semicontinuous (see [30]). The spaceability (already proved in
[67]) and the dense lineability of {f ∈ A(D1) ∶ ∑∞

n=0 ∣an∣ = +∞} follow from Theorem
4.33(b) since the set A is dense in the (separable) space A(D1) and (A,Φ) is a
Banach space.



Chapter 5
Estimating the n-dimensional Bohr

radius

5.1 Introduction

As in the previous chapters, denote the space of all analytic functions on the open
unit disk D = {z ∈ C ∶ ∣z∣ < 1} of the complex plane C by H(D). In 1914, H. Bohr
[27] proved that any function f(z) ∶= ∑∞

k=0 akz
k ∈ H(D) such that f(D) ⊂ D satisfies

∞
∑
k=0

∣akzk∣ ≤ 1 (5.1)

whenever ∣z∣ ≤ 1
6 . The number K1 defined as the best radius for which this happens,

that is,

K1 ∶= sup{r ∈ [0,1) ∶ (5.1) holds for all f ∈ H(D)
such that f(D) ⊂ D and all z with ∣z∣ ≤ r},

is called the Bohr radius for D. Then K1 ≥ 1
6 . Subsequently later, Wiener, Riesz

and Schur, independently established the exact value K1 = 1
3 . A detailed account of

the development of the topic can be read in the survey article [2] and the references
therein.

In 1997 Boas and Khavinson [26] introduced for each n ∈ N ∶= {1,2, . . .} the
n-dimensional Bohr radius Kn for the polysdisk Dn = D × ⋯ × D. As expected,
Kn is defined as the largest number r satisfying ∑α ∣cαzα∣ < 1 for all z with

75
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∥z∥∞ < r and all f(z) = ∑α cαz
α ∈ H(Dn) such that ∣f(z)∣ < 1 for all z ∈ Dn.

Here α denotes an n-tuple (α1, . . . , αn) of nonnegative integers, z stands for an
n-tuple (z1, . . . , zn) of complex numbers, ∥z∥∞ = max{∣z1∣, . . . , ∣zn∣}, and zα denotes
the product zα = zα1

1 ⋯zαnn . In [26, Theorem 2] the following bilateral estimate is
proved.

Theorem 5.1. For every n ∈ N with n ≥ 2, the n-dimensional Bohr radius Kn

satisfies
1

3
√
n
<Kn < 2

√
logn

n
. (5.2)

Approximations for the value ofKn, in the cases n = 1 or n ≥ 2, have been given in
domains more general than D or Dn (with appropriate definitions for such domains),
for specific subclasses of holomorphic functions, for functions related to holomor-
phic ones (such as harmonic functions, among others), and even for holomorphic
functions on domains contained in infinite dimensional spaces or for vector-valued
analytic functions (see, e.g., [1,3–6,9,16,25,26,31,42,45,47,48,51,59,64–66] and the
references contained in them). For information about the state of the art on Bohr
radii we refer to [46]. Concerning the asymptotic behaviour of Kn when n →∞, it
was proved in [41] that Kn ≥ c

√
logn/(n log logn) for some constant c > 0, while in

[43] it was shown that Kn = bn
√

(logn)/n with 1/
√

2+o(1) ≤ bn ≤ 2. Finally, in [14],
the exact asymptotic behaviour of Kn is established, namely,

lim
n→∞

Kn√
(logn)/n

= 1.

Despite the fact that the above limit gives a very precise description of the
asymptotic behavior of the sequence (Kn), no exact value of Kn is known for any

n ≥ 2. In this chapter we focus on the (non-asymptotical) lower estimate
1

3
√
n
<Kn

of (5.2). In Remark 1 of the paper [26] itself a small improvement is stated, namely,
Kn is not less than the solution r > 0 of the equation

r +
∞
∑
k=2

(n + k − 1

k
)

1/2
rk = 1

2
.

However, no further non-asymptotical enhancement has been given since then.

The aim of this chapter is to provide such an improved lower estimate. Moreover,
it will be shown that the new estimate is better than the previously mentioned
estimate found in [41] and, finally, that it is not less than an absolute constant
times the n-dimensional Bohr radius. We shall begin by establishing a number of
preliminary assertions. The main result of this chapter shall be Theorem 5.14.
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5.2 Some preliminary results and notation

Let k,n ∈ N. Define Nk(n) as the combinatorial number

Nk(n) = (n + k − 1

k
) = (n + k − 1)!

(n − 1)!k!
.

Since lim
k→∞

Nk(n)
Nk+1(n)

= 1 for each fixed n ∈ N, we derive from Cauchy–Hadamard’s

formula that the radius of convergence of the series

∞
∑
k=2

√
Nk(n)xk

equals 1. Therefore, the function

fn(x) ∶= x +
∞
∑
k=2

√
Nk(n)xk (5.3)

is well-defined and analytic in (−1,1), and hence in [0,1) as well.

Lemma 5.2. For every n ∈ N, let fn ∶ [0,1) → R be the restriction to [0,1) of the
function defined by equation (5.3). We have

(a) f ′n(x) > 0 for all x ∈ (0,1).

(b) fn is strictly increasing.

(c) fn is injective.

(d) lim
x→1−

fn(x) = +∞.

(e) For every M ∈ (0,+∞) there exists a unique S ∈ (0,1) such that fn(S) =M .

Proof. (a) follows straightforwardly because all coefficients of the series defining fn
are positive. Also, (a) implies (b), and (b) implies (c). Finally, (d) implies the
existence part of (e) (the uniqueness part follows from (c)) by the intermediate
mean value and the fact fn(0) = 0. As for (d), since Nk(n) ≥ 1 for all n we obtain
that f(x) ≥ ∑∞

n=1 x
n = x/(1 − x) and the conclusion follows.

The following definition makes sense by taking M = 1
2 in Lemma 5.2(e).
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Definition 5.3. For every n ∈ N, we denote by Sn the unique positive solution –a
fortiori, in (0,1)– of the equation:

Sn +
∞
∑
k=2

√
Nk(n)Skn =

1

2
. (5.4)

In other words, Sn is the estimate given in [26, Remark 1] (see Section 1). In
[26] it is not explicitly proved that Sn is a better lower estimate than 1

3
√
n
. We do it

in the following proposition for the sake of completeness.

Proposition 5.4. For every n ∈ N, n ≥ 2, we have Sn >
1

3
√
n
.

Proof. Since Nk(n) < nk for all k ∈ N, k ≥ 2, we have

fn (
1

3
√
n
) =

∞
∑
k=1

√
Nk(n)(

1

3
√
n
)
k

<
∞
∑
k=1

√
nk ( 1

3
√
n
)
k

=
∞
∑
k=1

(1/3)k = 1

2
= fn(Sn).

Thus,
1

3
√
n
< Sn due to Lemma 5.2(b).

Prior to going on, note that for all n, k ∈ N we have the linear isomorphism
P(kCn) ≈ CNk(n). We recall that P(kCn) is the space of all k-homogeneous poly-
nomials of n complex variables. Also ∣α∣ ∶= α1 + ⋯ + αn for α = (α1, . . . , αn) ∈ Nn

0 .
Here, as in previous chapters, N0 ∶= N∪ {0}. The symbol Λ(n, k) will stand for the
set of all α = (α1, . . . , αn) ∈ Nn

0 such that ∣α∣ = k, while ∆(n, k) will represent the
set {ν = (ν1, . . . , νn) ∈ Zn ∶ ∣ν1∣ + ⋅ ⋅ ⋅ + ∣νn∣ ≤ k}, where, as usual, Z is the set of all
integers. For x = (x1, . . . , xn) ∈ Rn and ν = (ν1, . . . , νn), we set ν x ∶= ν1x1+⋯+νnxn.
Note that Λ(n, k) contains Nk(n) elements. We also denote T = ∂D = {z ∶ ∣z∣ = 1},
the unit circle. The remaining of this section is devoted to provide a number of
properties of homogeneous polynomials that will be used to prove our results.

Definition 5.5. Let p ∈ P(kCn) with p(z) = ∑α∈Λ(n,k) aαzα. We define

1. ∥p∥2 = (∫[0,1]n
∣p(e2πit1 , . . . , e2πitn)∣2 dt1 . . . dtn)

1
2

,

which is equal to
⎛
⎝ ∑
α∈Λ(n,k)

∣aα∣2
⎞
⎠

1
2

.
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2. ∥p∥∞ = sup{∣p(z)∣ ∶ z ∈ Tn}.

3. ∥p∥1 = ∑α∈Λ(n,k) ∣aα∣.

It is very well-known that ∥ ⋅ ∥∞, ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are norms on P(kCn).

The following lemma, whose proof is elementary and so left to the reader, will
be used several times along this section.

Lemma 5.6. For all p ∈ P(kCn) with p(z) = ∑α∈Λ(n,k) aαzα the following holds

1. ∥p∥2 ≤ ∥p∥∞, and ∥p∥2 = ∥p∥∞ if and only if ∣p∣ is constant on the circle product
Tn.

2. ∥p∥∞ ≤ ∥p∥1.

3. ∥p∥1 ≤
√
Nk(n)∥p∥2, and ∥p∥1 =

√
Nk(n)∥p∥2 if and only if for all α ∈ Λ(n, k),

∣aα∣ = ∥p∥2√
Nk(n)

.

Definition 5.7. A mapping T ∶ Rn → C is a trigonometric polynomial of degree
k on n variables if there exists a finite family {cν}ν∈∆(n,k) ⊂ C such that T (x) =
∑ν∈∆(n,k) cν eiνx for all x ∈ Rn.

Note that norms like ∥⋅∥∞, ∥⋅∥1, ∥⋅∥2 above can be similarly defined on the vector
space of trigonometric polynomials given in the last definition. It is straightforward
to check, and well-known, that (with the previous notation) T = 0 if and only if
cν = 0 for all ν ∈ ∆(n, k).

Next, let us adopt some notation. For each p ∈ P(kCn), we set

Tp(x) ∶= ∣p(eix1 , . . . , eixn)∣2 (x = (x1, . . . , xn) ∈ Rn),

that is, Tp(x) = p(eix1 , . . . , eixn)p(eix1 , . . . , eixn). It is also straightforward to see
that Tp is a trigonometric polynomial of degree 2k on n variables. And if p(z) =
∑α∈Λ(n,k) aαzα and j ∈ {1, . . . , n}, then we denote

pj(z) = ∑
α∈Λ(n,k)

bαz
α,

where bα = αjaα for every α = (α1, . . . , αn) ∈ Λ(n, k).

For each j ∈ N, we denote by ej the n-tuple (0,0, . . . ,0,1,0, . . . ,0), with the 1
at the jth place, so that the n-tuple kej consists of zeros except for k at the jth
place.
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Lemma 5.8. Assume that n ≥ 2. Let p ∈ P(kCn) with

p(z) = ∑
α∈Λ(n,k)

aαz
α

satisfying that there exist j, j′ ∈ {1, . . . , n} with j ≠ j′ such that akej ≠ 0 ≠ akej′ .
Then ∥p∥2 < ∥p∥∞.

Proof. We have that

∂Tp
∂xj

(x) = ipj(eix1 , . . . , eixn)p(eix1 ,⋯, eixn) − ip(eix1 , . . . , eixn)pj(eix1 , . . . , eixn)

= ibkejakej′eik(xj−xj′) +⋯ − iakej′ bkejeik(xj′−xj) −⋯
= ikakejakej′eik(xj−xj′) +⋯ − ikakej′akejeki(xj′−xj) −⋯.

Since akejakej′ ≠ 0 it follows that ∂Tp
∂xj

≠ 0. Thus Tp is non-constant. However Tp
is nothing but ∣p∣2 on Tn. From Lemma 5.6(1) we conclude that ∥p∥2 < ∥p∥∞.

Proposition 5.9. Let n ∈ N with n ≥ 2. Then for all p ∈ P(kCn) with ∥p∥∞ = 1
we have

∥p∥1 <
√
Nk(n).

Proof. By Lemma 5.6 we obtain

∥p∥1 ≤
√
Nk(n)∥p∥2 ≤

√
Nk(n).

Let us suppose, by way of contradiction, that there exists p ∈ P(kCn), p(z) =
∑

α∈Λ(n,k)
aαz

α, with ∥p∥∞ = 1 such that ∥p∥1 =
√
Nk(n). By the previous inequali-

ties we deduce that
∥p∥1 =

√
Nk(n)∥p∥2 =

√
Nk(n).

Then ∥p∥2 = 1 = ∥p∥∞ and, by Lemma 5.6(3), for all α ∈ Λ(n, k) there exists tα ∈ R
such that aα = 1√

Nk(n)
eitα . Finally, by Lemma 5.8 we conclude that 1 = ∥p∥2 < ∥p∥∞ =

1, a contradiction.

Definition 5.10. We recall that for each pair n, k ∈ N, the Sidon constant S(k,n)
is defined as

S(k,n) = sup{ ∑
∣α∣=k

∣cα∣ ∶ P (z) = ∑
∣α∣=k

cαz
α ∈ P(kCn) and ∣P (z)∣ ≤ 1, ∀z ∈ Dn}

= inf{M > 0 ∶ ∥P ∥1 ≤M∥P ∥∞ for all P ∈ P(kCn)}.
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Clearly S(k,n) ≥ 1 for every k,n. Moreover, S(1, n) = 1 for all n. Indeed, if
P (z) = ∑n

j=1 cjzj, consider tj ∈ [0,2π] such that ∣cj ∣ = eitjcj for j = 1, . . . n. We have
that

n

∑
j=1

∣cj ∣ =
n

∑
j=1

cje
itj = P (eit1 , . . . , eitn) ≤ ∥P ∥∞.

Hence S(1, n) ≤ 1. Clearly the Sidon constant coincides with the norm of the identity
operator

I ∶ (P(kCn), ∥ ⋅ ∥∞)Ð→ (P(kCn), ∥ ⋅ ∥1). (5.5)

As P(kCn) is finite dimensional, S(k,n) is actually a maximum, i.e., for each k ∈ N,
there exists a polynomial Pk ∈ P(kCn) satisfying ∥Pk∥∞ = 1 and ∥Pk∥1 = S(k,n).

Corollary 5.11. For each pair n, k ∈ N with n ≥ 2, we have

0 < S(k,n) <
√
Nk(n).

5.3 The new estimate for the n-dimensional Bohr
radius

The following lemma is needed in order to prove our estimate. It is an application
of a classical result by Wiener (see e.g. [46, Lemma 8.4, p.183], or [26, Theorem 3]).
Actually it is, implicitly, contained in the proof of [43, Theorem 2] as well. We give
the proof here for the sake of completeness.

Lemma 5.12. Let f(z) =∑
α

cαz
α be an analytic function of modulus less than 1

in the n-dimensional polydisk Dn. Then the following holds

∑
∣α∣=k

∣cα∣ ≤ S(k,n)(1 − ∣c0∣2),

for all k ≥ 1.

Proof. For every j ∈ N we consider the polynomial pj(z) ∶= ∑∣α∣=j cαzα and for a
fixed k take u = (u1, . . . , un) ∈ Tn such that ∣pk(u)∣ = ∥pk∥∞. Now, for ω ∈ D we
define

g(ω) ∶= f(u1ω, . . . , unω) =
∞
∑
j=0

bj ω
j.

Then g is an analytic function in D of modulus less than 1 satisfying bj = pj(u)
for all j. Now, Wiener’s result ([46, Lemma 8.4, p.183]) yields

∥pk∥∞ = ∣bk∣ ≤ 1 − ∣b0∣2 = 1 − ∣c0∣2,
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for all k. Finally, by definition,

∑
∣α∣=k

∣cα∣ ≤ S(k,n)∥pk∥∞ ≤ S(k,n)(1 − ∣c0∣2).

Analogously to Lemma 5.2, and taking into account that S(k,n) <
√
Nk(n) for

n ≥ 2 (Corollary 5.11), we obtain that the function

f̃n(x) ∶=
∞
∑
k=1

S(k,n)xk (5.6)

is well-defined and analytic in (−1,1), it is strictly increasing on [0,1) and satisfies
f̃n(0) = 0 and f̃n(x) > x for all x ∈ (0,1). Then, for every M ∈ (0,1) there exists a
unique H ∈ (0,1) such that f̃n(H) =M . Taking, in particular, M = 1

2 , the following
definition makes sense.

Definition 5.13. For every n ∈ N, we denote by Hn the unique positive solution
–a fortiori, in (0,1)– of the equation

Hn +
∞
∑
k=2

S(k,n)Hk
n =

1

2
. (5.7)

The next statement shows that Hn is a lower estimate for the Bohr radius that
is better than Sn (we shall later also show that Hn is sharper than that from [41]).

Theorem 5.14. Let n ∈ N with n ≥ 2, and consider the n-dimensional Bohr radius
Kn as well as the numbers Sn, Hn that had been respectively defined by (5.4) and
(5.7). Then we have

Sn <Hn ≤Kn ≤ 3Hn.

Proof. Since S(k,n) <
√
Nk(n), for all k ∈ N, we get f̃n(x) < fn(x) for all x ∈ (0,1),

where fn, f̃n are respectively defined by (5.3) and (5.6). Observe that

fn(Sn) =
1

2
= f̃n(Hn) < fn(Hn).

Then the inequality Sn <Hn follows from the strict monotonicity of fn.

Next, we prove Hn ≤ Kn. For this, assume that f(z) ∶= ∑α cαz
α is an analytic

function of modulus less than 1 in the polydisk Dn. Take a point z = (z1, . . . , zn) ∈
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Dn with ∣zj ∣ ≤Hn for all j ∈ {1, . . . , n}. From Lemma 5.12, we obtain

∑
α

∣cαzα∣ ≤ ∣c0∣ +
∞
∑
k=1

∑
∣α∣=k

∣cα∣Hk
n

≤ ∣c0∣ +
∞
∑
k=1

(1 − ∣c0∣2)S(k,n)Hk
n

= ∣c0∣ + (1 − ∣c0∣2) ⋅ (
∞
∑
k=1

S(k,n)Hk
n)

= ∣c0∣ + (1 − ∣c0∣2) ⋅
1

2
≤ 1.

From the definition of Kn we infer that Hn ≤Kn.

Now, let us show that Kn ≤ 3Hn. In order to do this, fix n ∈ N with n ≥ 2. It is
well-known that Kn <K1 = 1

3 . Let us fix δ ∈ (3, 1
Kn

). Then 1
δ < 1− 2

δ , so that we can
choose r ∈ (1

δ ,1− 2
δ ). Also, for each k, we take a polynomial Pk ∈ P(kCn) satisfying

∥Pk∥∞ = 1 and ∥Pk∥1 = S(k,n). The series

∞
∑
k=1

rkPk(z)

converges absolutely and uniformly on Dn. Hence it defines a holomorphic function
F in Dn. This function satisfies

∣F (z)∣ ≤
∞
∑
k=1

rk = r

1 − r for all z ∈ Dn.

Let us denote by ∑α cα z
α the monomial expansion of F on the n-dimensional poly-

disk.

Let R ∶= δHn. Observe that 0 < R ≤ δKn < 1. By using δ r > 1 and δ > 2
1−r , we

obtain for any z ∈ RTn the following:

∑
α

∣cα zα∣ =
∞
∑
k=1

∑
∣α∣=k

∣cα zα∣ =
∞
∑
k=1

∑
∣α∣=k

∣cα∣(δHn)k

=
∞
∑
k=1

(δHn)krk∥Pk∥1 =
∞
∑
k=1

rkδkHk
n S(k,n)

= δ r ⋅
∞
∑
k=1

(rδ)k−1Hk
n S(k,n) > δ r ⋅

∞
∑
k=1

S(k,n)Hk
n

= δ r ⋅ 1

2
> r

1 − r ≥ ∥F ∥∞.

According to the definition of Kn, this implies δHn = R ≥ Kn. Letting δ → 3+, we
get Kn ≤ 3Hn. This completes the proof.
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Remark 5.15. Notice that trivially, S(k,1) = 1 for all k ∈ N. Therefore H1 is
nothing but the unique solution, in (0,1), of the equation ∑∞

k=1 x
k = 1/2. Moreover,

∑∞
k=1 x

k = x
1−x and, consequently, H1 = 1

3 =K1, obtaining that

Hn ≤Kn ≤ 3Hn

also holds for n = 1.

Finally, we show that for every n ≥ 2, our estimate Hn is sharper than that from
[41], which was the best known estimate for low dimensions up to date.

Consider now in Cn any norm ∥ ⋅ ∥ (like ∥ ⋅ ∥1, ∥ ⋅ ∥2 or ∥ ⋅ ∥∞ defined above)
and for each k ∈ N now P(kCn) stands for the finite dimensional Banach space
of all k-homogeneous polynomials P (z) = ∑∣α∣=k cαzα (z ∈ Cn) endowed with the
norm ∥P ∥ ∶= sup∥z∥≤1 ∣P (z)∣. We denote by χmon(P(kCn)) the unconditional basic
constant for all monomials zα (∣α∣ = k), that is,

χmon(P(kCn)) = sup{∥ ∑
∣α∣=k

∣cα∣zα∥ ∶ ∥ ∑
∣α∣=k

cαz
α∥ ≤ 1}.

The following inequality is given in [44, (0.5)] (see also [45, (2.5)]):

1

3 ⋅ supk(χmon(P(kCn)))1/k ≤K(BCn),

where K(BCn) is the Bohr radius of BCn . In the case ∥ ⋅ ∥ = ∥ ⋅ ∥∞ we have that BCn

is the polydisk Dn, so K(BCn) =Kn. But, in addition, it is clear that

χmon(P(kCn), ∥ ⋅ ∥∞) = S(k,n).

Consequently, one has 1
3Cn

≤Kn, where

Cn ∶= sup{(S(k,n))1/k ∶ k ∈ N}.

In Theorem 1.1 of Defant–Frerick’s paper [41], it is proved the existence of an
absolute constant c > 0 such that

1

c

√
`(n)
n

≤Kn for all n ≥ 2, (5.8)

where `(n) ∶= max{l ∈ N ∶ ll ≤ n}. From this and the fact that `(n) ≥ c̃
√

logn/ log logn

for another absolute constant c̃ > 0, it is derived that Kn ≥ C
√

logn/(n log logn)
for some absolute constant C > 0. Now, we show that our estimate is better than
the one in [41].
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Proposition 5.16. If C > 0 is the above constant, then

C
√

logn/(n log logn) <Hn ≤Kn for all n ≥ 2.

Proof. The right hand inequality Hn ≤Kn has been proved in Theorem 5.14. Con-
cerning the left hand inequality, note that in the proof of Theorem 1.1 of [41] the

authors showed in fact, by using (3.1) of their article, that 1
c

√
`(n)
n ≤ 1

3Cn
, where

c > 0 is the constant in (5.8) above.

Fix n ≥ 2. Firstly, we are going to show that there exists k ∈ N such that
(S(k,n))1/k < Cn. Indeed, if this were not the case, then S(k,n) = Ck

n for all k ∈ N.
In particular, since ∥ ⋅∥∞ = ∥ ⋅∥1 for homogeneous polynomials of degree 1, we would
obtain 1 = S(1, n) = Cn, so S(k,n) = 1 for all k ∈ N, which is false.

The function f̃n(x) = ∑∞
k=1 S(k,n)xk satisfies that f̃n(Hn) = 1

2 , and

f̃n(
1

3Cn
) =

∞
∑
k=1

S(k,n) ⋅ 1

3kCk
n

=
∞
∑
k=1

S(k,n)
Ck
n

⋅ 1

3k
<

∞
∑
k=1

1

3k
= 1

2
= f̃n(Hn).

Since f̃n is strictly increasing, we get
1

3Cn
< Hn. Consequently, Hn > 1

c

√
`(n)
n

which, together with the earlier comments, leads to the desired inequality.
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