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Resumen
 

Los glicanos constituyen unos de los tipos de moléculas más variadas y complejas entre los 

sistemas biológicos. Las diferentes ramas del árbol de la vida se pueden distinguir en base a la 

composición de los glicanos de los propios glicoconjugados. Sin embargo, cuánto conocemos 

acerca de la función y distribución de los glicanos y glicoconjugados es una cuestión todavía 

abierta. Hace no demasiados años, nuestro conocimiento acerca de las glicoproteinas era 

considerablemente escaso. 

De hecho, durante mucho tiempo se creyó que la N-glicosilación de proteínas se daba sólo en los 

organismos eucariotas. Sin embargo, hoy está firmemente establecido que esta compleja 

modificación ocurre también en bacterias y arqueas. Por lo tanto, en los últimos 10 años, el 

campo de las glicoproteínas ha sido testigo de enormes avances en el descubrimiento de nuevos 

e inusuales carbohidratos, así como en la elucidación de las enzimas responsables de la 

construcción y procesamiento de glicanos y en la comprensión del impacto biológico que estas 

modificaciones tienen sobre la estructura y función de la proteína diana. La razón de este 

“retraso”, probablemente radica en la intrínseca complejidad estructural, heterogeneidad y 

flexibilidad de los glicanos. Como contrapeso, numerosos y exhaustivos trabajos en el campo de 

la glicómica han demostrado que es exactamente gracias a su complejidad estructural, 

heterogeneidad y flexibilidad el porqué los glicanos han sido seleccionados, entre otras 

biomoléculas, como intermedios claves para los procesos celulares de proliferación, 

diferenciación, adhesión, infección, comunicación, etc. 

En esta tesis, hemos intentado mirar profundamente en el interior de la estructura de los 

glicanos, con el objetivo de conciliar sus propiedades estructurales intrínsecas, a nivel atómico, 

con los motivos de su flexibilidad molecular. Cuando los glicanos interaccionan con sus 

receptores, esta flexibilidad se une a la plasticidad del sistema global para dar al lugar al proceso 

de reconocimiento molecular. De hecho, las dos partes que participan en la interacción 

intermolecular pueden adaptar su superficie de contacto de manera que se maximice la entalpia 

de unión. De manera alternativa o complementaria, el glicano y el receptor podrían mantener 

movimientos moleculares internos, incluso en el estado unido, de tal manera que se minimizase 

la penalización entrópica del proceso de unión. Como consecuencia de ello, el papel de la 

compensación entálpico/entrópica no es fácil de evaluar ni de medir. 

A lo largo de esta tesis nos hemos enfocado en la interacción entre azúcares y proteínas, 

empezando por el estudio de la flexibilidad en los anillos de los monosacáridos, siguiendo por la 

investigación de los movimientos alrededor de los enlaces glicosidicos en disacáridos, para 

después pasar a la descripción cuantitativa de los movimientos macromoleculares internos de 

un receptor. Por último, se han discutido las interacciones intermoleculares de tipo CH/ que 

contribuyen a la estabilidad de los complejos de proteína-azúcar y se ha propuesto una nueva 

estrategia para su detección directa. 

Capítulo I. 
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La introducción de esta tesis se ha centrado en el código de los carbohidratos, en cómo la 

información biológica se almacena en la estructura de los glicanos y cómo este mensaje es leído 

y traducido por sus receptores. También se discute el uso de glicomiméticos y su empleo como 

moléculas de interés bio-médico y espectroscópico. El capítulo concluye con una descripción de 

los métodos experimentales que se han empleado en esta tesis para elucidar la estructura y las 

interacciones de los glicanos. 

Capítulo II. 

En este capítulo se discute la flexibilidad de los azúcares a nivel de monosacárido. Se presenta 

una nueva generación de glicomiméticos que contienen átomos de flúor. Hemos aplicado una 

combinación de espectroscopia de RMN y métodos computacionales para investigar el 

comportamiento dinámico de los anillos de idosa y glucosa. Más especificamente, se han 

utilizado experimentos de RMN a baja temperatura para ralentizar el intercambio 

conformacional de los anillos de idosa. En estas condiciones, el intercambio es lento en la escala 

de tiempos del desplazamiento químico de 19F, permitiendo así arrojar luz sobre las 

características termodinámicas y cinéticas del equilibrio. 

Capítulo III. 

De los monosacáridos a los disacáridos. En este capítulo se discute el origen de la flexibilidad del 

enlace glicosídico. En concreto, el uso de miméticos moleculares proporciona resultados clave 

en el diseño de glicanos sintéticos, y permite modular las componentes estereoelectrónicas 

relevantes para definir la distribución de poblaciones para los posibles confórmeros. Mediante el 

uso de métodos de RMN y de cálculos teóricos, se ha demostrado que es posible restablecer el 

efecto anomérico de un acetal cuando se sustituye uno de los átomos de oxígeno por un grupo 

CF2. 

Capítulo IV. 

Receptores de glicanos. La relación que existe entre la dinámica de proteínas y sus funciones 

está todavía poco caracterizada desde el punto de vista energético. En este capítulo hemos 

utilizado GGBP, una proteína de unión a glucosa y galactosa, como modelo para definir los 

movimientos conformacionales asociados a su función, tanto desde el punto de vista estructural 

cómo el energético. Para llevar a cabo este estudio hemos usado un enfoque innovador que 

combina los experimentos de RMN de compuestos paramagnéticos con simulaciones de 

Dinámica Molecular. Nuestros resultados demuestran que la proteína en su estado libre coexiste 

entre conformaciones abiertas y cerrada, con una velocidad de intercambio de 25 ns. A pesar de 

esta heterogeneidad conformacional, la presencia del ligando provee el ímpetu para desplazar el 

equilibrio hacia la forma cerrada. Estos resultados demuestran que, en algunos casos, el evento 

de reconocimiento molecular no se puede describir como un proceso puro de tipo “induced fit” 

o “conformational selection”. 

Capítulo V. 

Las interacciones tipo CH/ aportan importantes contribuciones a los procesos de 

reconocimiento molecular. En complejos de glicano-proteína, estas interacciones débiles 

implican un sistema  de un residuo aromático de la proteína, como aceptor, y un grupo polar 
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CH en el azúcar, como donante. A pesar de su amplia difusión, caracterizada por estudios 

estructurales de Rayos X y de RMN, no existe evidencia experimental directa de esta interacción. 

Nosotros proponemos que la RMN podría proporcionar evidencias directas de la existencia de 

un acoplamiento débil via una constante de acoplamiento intermolecular J. En este capítulo se 

discuten los resultados preliminares dedicados al diseño de un sistema de etiquetas isotópicas 

apropiadas para mejorar la sensibilidad experimental necesaria a la detección directa. 

Capítulo VI. 

Aquí se presentan las conclusiones generales procedentes del trabajo que se ha realizado 

durante este programa de estudios de doctorado. 
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Abstract
 

Glycans are among the most varied and complex molecules in biological systems. The different 

branches of the tree of life could be differentiated on the basis of the glycan composition of the 

own glycoconjugate molecules. However, how much we already know about glycans and 

glycoconjugate function and distribution is still an open question. Not so many years ago our 

knowledge about protein N-glycosylation was considerably scarce. In fact, while protein N-

glycosylation was once believed to be limited to eukaryotes, it is now firmly established that this 

complex modification also occurs in bacteria and archaea. Consequently, in the past 10 years, 

the field of protein glycosylation has witnessed enormous strides in the discovery of new and 

unusual carbohydrates, in the elucidation of the enzymes involved in glycan assembly and 

processing, and in the understanding the biological impact that these glycan modifications have 

on the structure and function of target protein. The reason for this “late” discovery probably lies 

in the intrinsic structural complexity, heterogeneity and flexibility of glycans. As counterweight, 

numerous and exhaustive works in glycomics have demonstrated that it is due to their structural 

complexity, heterogeneity and flexibility why glycans have been selected as key intermediates 

for cell proliferation, differentiation, adhesion, infection, communication, etc. 

With this thesis we have tried to look inside into glycan structure, with the aim to reconcile their 

structural features at the atomic level with the reasons of their molecular flexibility at a more 

complex scale. When glycans are recognized by their receptors, their intrinsic flexibility and the 

plasticity of the whole system has enormous effects in the molecular recognition phenomenon. 

In fact, both partners involved in the intermolecular interaction could adapt their contact 

surface in a way that enhances enthalpy-based favourable intermolecular interactions. 

Alternatively or simultaneously, the glycan and the receptor could strategically keep internal 

molecular motions, even in the bound state, in a way that minimizes the entropy penalty to the 

binding event. As consequence, the role of enthalpic/entropic compensation is not easy to 

predict and even, to assess. 

Along this thesis we have explored these features, focusing our attention on sugar protein 

interactions, starting from the sugar flexibility at the monosaccharide level, passing then to the 

study of disaccharides, and later investigating the complex motions within a sugar receptor. 

Finally, CH/ intermolecular interactions, which essentially contribute to the stability of sugar-

protein complexes, have also been discussed and a new strategy for their direct detection has 

been proposed. 

Chapter I. 

The introduction of this thesis is focused on the sugar code, how key biological information is 

stored into glycan structure and how this message is read and is translated by specific glycan 

receptors. The use of stable and useful glycomimetics with bio-medical and spectroscopic 

interest is also presented. The chapter concludes with a description of the experimental 

methods that have been employed in this thesis to elucidate glycan structure and interactions. 

Chapter II. 
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In this chapter, we discuss sugar flexibility at the monosaccharide level. Herein, a new 

generation of fluorine-containing glycomimetics is presented. We have applied a combination of 

NMR spectroscopy and computational methods to investigate the conformational behaviour of 

idose- and glucose-like rings. We have used low-temperature NMR experiments to slow down 

the conformational exchange of the six-membered rings. Under these conditions, the exchange 

rate becomes slow in the 19F NMR chemical shift time scale and allows shedding light on the 

thermodynamic and kinetic features of the dynamic equilibrium. 

Chapter III. 

From the monosaccharide to the disaccharide level. In this chapter, we discuss the origin of 

glycosidic linkage flexibility. Specifically, the use of molecular mimicry has provided key findings 

in glycan engineering and on how to modulate relevant stereoelectronic components that define 

the population distribution for the possible glycoside conformations. By using NMR methods and 

theoretical calculations, we have shown that it is possible to restore the anomeric effect for an 

acetal when replacing one of the oxygen atoms by a CF2 group. 

Chapter IV. 

A flexible paradigmatic glycan receptor. Protein dynamics related to function are still- ill-defined 

energetically. In this chapter, we have used GGBP, the glucose-galactose binding protein, as a 

model to define a functional conformational landscape, both structurally and energetically, by 

using an innovative approach that combines paramagnetic NMR experiments and MD 

simulations. Our results demonstrate that the protein, in its unbounded state, coexists between 

open-like and closed-like conformations, with an exchange rate around 25 ns. However, despite 

such conformational heterogeneity, the presence of the ligand is the ultimate driving force to 

unbalance the equilibrium toward the closed form. These results demonstrate that, even in this 

case, ligand recognition event cannot be described by pure “induced fit” or pure 

“conformational selection” modes. 

Chapter V. 

CH/ interactions are essential for many intermolecular recognition processes. In glycan-protein 

complexes, these weak interactions involve the -system on an aromatic residue on the protein, 

as acceptor, and the polarized CH moiety on the sugar, as donor. Despite their common spread, 

which has been identified from the detailed X-ray or NMR-based structural analysis of the 

complex, their direct detection by experimental means at atomic resolution has still been 

elusive. We herein propose that NMR could provide direct evidences for the existence of a weak 

intermolecular scalar J coupling between the donor and the acceptor. In this chapter, we discuss 

preliminary results devoted to the design of an appropriate isotope labelling scheme that could 

improve the necessary experimental sensitivity. 

Chapter VI. 

The general conclusions arising from the different investigations that have been performed 

during this phD student program are here presented. 
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Route map of this thesis 

This section provides a comprehensive link between the chapters presented in this thesis. 

Sugar/protein interactions arise from the delicate interplay between structure, molecular 

recognition features, and dynamics. Both partners involved in the recognition processes are 

flexible molecules. Therefore, the effectiveness and specificity of the resulting biochemical 

response is associated to the plasticity of binding. Respect to the classical lock and key molecular 

recognition model, nowadays a more complex adaptive model is largely endorsed, especially 

when sugars or sugar mimics act as ligands. Actually, the sugar code is significantly enriched by 

the intrinsic flexibility of monosaccharide rings or at higher complexity level, by the flexibility of 

the interglycosidic linkages. Usually, only few of all possible conformers are recognized by the 

proper receptor. Thus, the access to these bio-relevant structures and the possibility of 

unravelling the origin of sugars flexibility is of paramount importance. On the other hand, 

segmental dynamics in proteins are also functional and also must be taken into account to get a 

full picture of the ligand recognition process. In fact, in flexible proteins, one single structural 

model unsatisfactory describes the vast conformational space that these systems could cover in 

solution. The existence of induced-fit or conformational selection processes has been largely 

discussed. 

However, studies on structure-activity relationships are only rarely complemented by a detailed 

analysis of dynamics related to function. In this scenario, NMR assisted by computational 

chemistry has the privilege to uncover the conformational and recognition features associated 

to sugar/protein recognition. NMR provides high-resolution structural information and is almost 

the only bio-physic technique that allows exploring the dynamic behaviour at different time 

scales of biological systems in their proper environment, in solution. However, the interpretation 

of the NMR data is elusive because of the involved time scales and amplitude of molecular 

motions and averaged observations. Thus, when the desired data are experimentally ill-defined, 

molecular modeling methods are essential to gain insights at the atomistic scale. In this thesis, 

we have combined a thorough experimental approach with computational techniques at 

different levels of complexity, including molecular mechanics (MM), molecular dynamics (MD), 

and quantum mechanics (QM), to characterize the sugar and protein dynamics. The first chapter 

of this thesis contains an overview about all the employed methods. Specifically, an introduction 

on carbohydrates, from monosaccharides to oligosaccharides, their implications as bio-relevant 

molecules in cell processes, and the stereoelectronic properties that are behind the origin of 

molecule flexibility have been addressed. Following this introduction, glycomimetics with bio

medical and spectroscopic interest are presented. In particular, the advantage of using 19F 
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labelled sugar mimics is discussed. Further, an interesting sugar receptor is presented as model 

system. This protein has been used as model for describing the complex dynamics behavior of 

receptors, since the particular recognition process not only involves the typical side chain 

adjustments, but also large scale structure rearrangements. This chapter concludes with a brief 

description of the NMR spectroscopic and computational techniques used in this work. Chapter 

II focuses on sugar function, structure and dynamics. In this chapter, detailed studies on 

flexibility in monosaccharides and mimetics thereof are presented, its consequences in 

modulating the interaction with biological receptors, as well as approaches to extract the energy 

values associated to conformer interconversion. To achieve this goal, a new generation of 

fluorine-containing glycomimetics is presented. A combined approach of NMR and 

computational methods at QM level has been used to investigate the conformational behaviour 

of idose- and glucose-like glycomimetics. Chapter III deals with the understanding of the 

features governing glycoside conformation in oligosaccharides. The relative orientation of a 

monosaccharide unit respect to its vicinal one in a disaccharide moiety is strongly determined by 

the anomeric effects, despite that, its origin is still the subject of virulent scientific debates. Key 

findings are provided in the relevance of the stereoelectronic component of the anomeric effect, 

by demonstrating that CF2 sugar analogues are able to adopt the natural glycoside conformation, 

providing new avenues for sugar-based drug design. Chapter IV gathers the characterization of 

interdomain dynamics in a sugar receptor system, the glucose-galactose binding protein (GGBP). 

An iterative approach using experimental NMR restraints, combining pseudo contact shifts 

(PCSs) and residual dipolar couplings (RDCs) with molecular dynamics simulations has allowed 

the complete description of the energetic landscape associated to this highly dynamic protein in 

solution and their molecular recognition events. The energy barrier associated with open-to

closed transitions has been estimated using non equilibrium molecular dynamic calculations. 

Finally, chapter V refers to ongoing work where one of the key intermolecular interactions that 

contribute to the stability of sugar/protein complexes could be directly elucidated via NMR 

methods. CH/� interactions can be defined as a non-conventional hydrogen-bond interaction in 

which the �-electron cloud on the aromatic residue acts as an acceptor and the CH group on the 

sugar as a donor. We propose that NMR could be used to directly detect glucose/tryptophan 

interactions in the GGBP/Glc system. Though each chapter of this thesis presents partial 

conclusions regarding the different topics, chapter VI gathers the main conclusions arising from 

the particular topics. 
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CHAPTER I
 

1.1 Glycomics: The study of carbohydrates and carbohydrates containing biomolecules their 

receptors and their functions. 

1.1.1 Language The sugar code 

The human origin has a sweet origin. Actually, mammalian sperm-egg binding is primarily 

mediated by the interaction of the egg-binding protein (EBP) on the sperm plasma membrane 

with carbohydrate sequences expressed on glycoproteins of the egg’s zona pellucida/ Evidence 

that carbohydrate recognition plays a major role in human fertilization was disclosed when the 

polysaccharide fucoidan was shown to potently block this interaction.[1] The most abundant 

carbohydrate sequence responsible for this recognition process has been identified to be a well

known selectin ligand, the sialyl-Lewisx sequence.[2] 

Conversely, aberrant glycosylation is a hallmark of cancer cells. The Tn antigen ({ -O-GalNAc-

Ser/Thr) is one of the most specific human tumor-associate structures. This chemical moiety is 

expressed in approximately 90% of carcinomas, and a direct correlation between the 

aggressiveness of the carcinoma and the occurrence of the antigen has been observed.[3] As a 

consequence, the Tn antigen has found useful application as biomarker and as a potential 

therapeutic target against cancer.[4,5,6,7,8] These two examples show how glycans conjugate to 

cognate biomolecules spread in almost all aspects of life as reflected by the term “sugar code”/[9] 

Generally speaking, molecular recognition processes are the pillars of bio-chemical 

communication. Subtle differences in chemical substitution, geometry and structure in the 

molecular partners guarantee the effectiveness and specificity of the resulting response. Of all 

the natural bio-molecule, glycans are unequalled in their capacity for biological coding and signal 

translation into cellular message.[10,11,12,13] The origin of this “power” arises in the tremendous 

structural variability of glycans with respect to chemical singularity, conformation, sequence and 

shape.[14] Thus, glycosylated molecules carry diverse information in their glycan chains, encoded 

at different levels of complexity.[10] Glycoconjugates, including glycoprotein, glycolipids, 

proteoglycans and free complex carbohydrates [15] play a relevant role in molecular recognition 

processes by establishing specific interactions that trigger intra- and extra-cellular physiological 

and pathological events. In fact, they are, very often, the primary contact points in cell/cell or 

cell/host pathogen interaction. In this context, knowledge inside the chemical features 

responsible for triggering biological responses is of paramount importance. The main goal of 
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glycoscience is to decipher the sugar code in order to open wide new avenues for therapeutic 

applications. 

1.1.2 Alphabet Monosaccharides 

Monosaccharides are the building blocks of complex carbohydrates/ The word “carbohydrate” 

means hydrate of carbon. Thus, formally a monosaccharide is composed by carbon atoms and 

water molecules. The high solubility of sugars is easily inferred; however, it would be incorrect 

to say that carbohydrates are exclusively hydrophilic molecules. Actually the carbon chain, 

usually from five to seven carbon atoms, cyclizes to form rings of different size, e. g. the hexoses 

(six carbon atoms) can cyclize either to six-membered pyranose or to five-membered furanose 

rings.[16] Fig. 1.1. Depending on the spatial orientation of each of the hydroxyl group in the sugar 

ring, a highly polar and a less polar face of the molecule are defined. In fact, monosaccharides 

and, in general, carbohydrates are amphiphilic molecule, with a dual character. In other words, 

carbohydrates, even at monosaccharide level, are water soluble molecules that give rise to 

hydrophilic as well as hydrophobic interactions with the right molecular partner. 

Figure 1.1 Structural variability of a monosaccharide (galactose, Gal). Schematic representation of D-Gal in 

its open-chain form, {  and |  anomeric cyclic pyranose forms and |  anomeric cyclic furanose form. The 

prochiral planar sp
2
-carbonyl carbon atom is labeled with the symbol †. Once cyclized, a high polar and a 

less polar face of the sugar are defined. The majority of the CH groups of the Gal ring point in the same 

direction, so defining the less polar face. 
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The types of monosaccharides used for building up oligo- and poly-saccharides or 

glycoconjugates are not exceedingly large. Commonly, around a dozen of monosaccharides 

occur as constituent of glycosides in higher organisms. However, the bacteria kingdom is rich in 

rare carbohydrates that are biomarkers of bacteria species or families, as Kdo for Gram negative 

bacteria.[17,18] The chemical difference between two types of sugars, e.g. glucose (Glc) or 

mannose (Man), resides in the absolute configuration at each chiral center of the carbon 

backbone. Starting from a linear hexose as reference, which contains four chiral centers, we can 

generate four different types of sugars simply by changing the absolute configuration of only 

one carbon atom. Fig. 1.2. shows the variability obtained by changing the configuration of more 

than one chiral center. 

5 



 
 

 

 

     

      

  

      

 

    

     

    

    

    

 

  

     

       

       

  

          

        

    

        

   

          

       

     

      

  

       

     

          

Figure 1.2 Schematic representation of 

D-Glc and its epimers for the four chiral 

carbon atoms. The absolute 

configuration is labeled with the (R) or 

(S) descriptors. The possible 

permutations by changing the absolute 

configuration of only one stereocenter 

are illustrated. Not all of them are 

relevant in nature. Actually, L-Glc, idose, 

does not occur naturally, but can be 

synthesized. 

During ring formation, due to the conversion of the planar sp2-carbonyl carbon atom into a chiral 

tetrahedral sp3 carbon, the glycosidic hydroxyl group can acquire two configurations, called {  

and |  anomers. The difference resides in the orientation of the hydroxyl group in the anomeric 

position (C1) that can be either axial ({ ) or equatorial (| ) with respect to the plane containing 

the sugar ring. However, the consequences are significant in terms of biochemical interactions; 

anomer selectivity has been studied in enzymes involved in carbohydrate metabolism using 

kinetic approaches,[19] while, more recently it has been shown a robust NMR based method to 

measure anomer selectivity in the ConcanavalinA/Man complex without requirement for 

chemical modification.[20] Furthermore, the variability of the sugar code is increased by the 

intrinsic structural plasticity. Once cyclized, the sugar ring experiences conformational flexibility. 

They may acquire different 3D ring conformations in fast equilibrium among them. The absolute 

configuration and the consequent spatial orientation of the hydroxymethyl and hydroxyl groups 

determine the population distribution of the different geometries that may take place.[21,22] In 

the case of | -Glc, the 4C1 chair conformation ensures that all the hydroxyl groups are in 

equatorial disposition, since this 3D arrangement minimizes the steric clashes that characterize 

the 1C4 conformation. In this case, the 1,3-diaxial hydroxyl groups are oriented in the same 

direction, with the consequent steric and dipolar repulsion. Due to this | -Glc exists almost 

exclusively in the 4C1 conformation. Fig. 1.3. However, other high energy conformations have 
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mechanistic implications in sugar/receptor recognition processes, as in glycoside hydrolysis. In 

particular, the distortion of the | -Glc sugar ring in the Michaelis complexes of several 

Glc/Glycoside hydrolases (GHs) determines its efficiency in the degradation of 

polysaccharides.[23,24] 

Figure 1.3 Ring conformations adopted by monosaccharide rings. The energetically favored chair 

conformations are labeled as 4C1 or 1C4, depending on the position of carbons 1 and 4 (above or below the 

sugar ring plane, as noted by the position of the numeral). The other conformations, as Skew boat (labeled 

as S) or boat (labeled as B) are adopted by sugar rings when recognized by different glycoside hydrolases 

or at Michaelis complexes. However, these conformations for some sugars can be adopted also in absence 

of enzymes, depending on the ring substituents and configuration of the stereocenters, as for { -L-

Idopyranose (Ido) in the 2SO geometry, or as in the case of xylose. 

Furthermore, chemical modification of the hydroxyl groups, e.g. acylation, sulfation, methylation 

and phosphorylation, contributes to glycan differentiation. More than 40 modifications are 

known in gangliosides (glicolipids of cellular membranes). Their biological importance is well 

illustrated by comparing the histo-blood group A and B determinants. Fig. 1.4. The chemical 

difference resides in the presence or absence of the NHAc substituent at position 2 of the 

terminal galactose unit of the glycoconjugate. The medical complications related to the 

transfusion of blood belonging to the wrong group are well known, demonstrating how subtle 

the carbohydrate/antibody interactions are. 
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Figure 1.4 A- and B-type trisaccharides in histo-blood group determinants. The extension at the anomeric 

position of the branched Gal moiety is indicated by R. The sole structural difference resides in the 

highlighted 2’-position of the Gal/GalNAc extension. 

Summarizing, monosaccharides are the letters composing the alphabet that nature uses to build 

words and sentences in the sugar code. Even if, apparently, this alphabet is not as rich as that of 

protein, different ring size, mutarotation, ring flexibility and chemical modifications contribute to 

enrich the sugar alphabet of an enormous number of letters. With this potential, it appears clear 

that sugars provide the cell with a huge structural variability that is translated into an 

understandable and efficient communication. 

1.1.3 Vocabulary Oligosaccharides 

A disaccharide originates from the condensation reaction (glycosylation) between two 

monosaccharides. The reaction involves the so-called “glycosidic” hydroxyl group of one 

monosaccharide moiety (glycosyl donor) and one attachment point of the other monosaccharide 

(glycosyl acceptor), which can be any of the available hydroxyl groups, including the glycosidic 

function itself. Since the formed glycosidic bond can acquire two configurations, {  and | , and 

due to the availability of several attaching points the glycosylation reaction between two glucose 

units, if not enzymatically driven, can generate 11 different disaccharides. Fig. 1.5. This potential 

for permutations on the level of linkage points and anomeric configuration is translated into 

physical-chemical property permutations. In between the eleven possible dimers of glucose, 
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nearly all occur in nature and their function is surprisingly various[25] and in some of the cases, 

their functions have been only very recently proposed.[26] 

Figure 1.5 The building blocks, donor/acceptor pairs, in disaccharides synthesis. Between all possible 

combinations in the glycosylation reaction between two glucose units, nearly all occurs in nature. The 

occurrence is specified in bracket. 

When introducing another building block to one disaccharide moiety, the possibility to extend 

the chain competes with the alternative to branch it, since other hydroxyl groups on the original 

glycosyl acceptor are still available. Precisely, the ramification strongly contributes to the spatial 

organization of the molecule that is translated into a different biochemical message, converting 

the branched oligosaccharide into a different structure respect to the linear one. The 

conformations around the glycosidic linkage are described by the torsion angles �,  and  

where � is defined as (H1(i)-C1(i)-O1(i)-Cx(i-1)),  as (C1(i)-O1(i)-Cx(i-1)-Hx(i-1)) and O5 as (O5(i)-C5(i)

C6(i)-O6(i)); C4 as (C4(i)-C5(i)-C6(i)-O6(i)).
[27] Fig. 1.6. 
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Figure 1.6 Methyl 3,6-di-O-({ -D

mannopyranosyl)-{ -D

mannopyranoside. This sugar is 

ubiquitous in the inner core of N

glycans. Glycosidic angles are �,  and 

. 

Again, the flexibility around the glycosydic linkage introduces a new level of complexity in 

carbohydrates. Of course, not all the possible geometries are equally populated, and some of 

them are energetically unfavorable. Specifically, the  angle is confined by steric and electronic 

clashes, while � is mainly defined by the exo-anomeric effect. 

1.1.4 The anomeric effect 

The origin of the anomeric effect is still subject to virulent scientific debate.[28,29] Nevertheless, it 

plausibly lies in the favorable interaction between a lone electron pair located in a molecular 

orbital (n) on either glycoside oxygen atoms and the vicinal anti-bonding molecular orbital (�*). 

Thanks to the contribution of Lemieux, it is mandatory to distinguish between the exo-anomeric 

effect and the endo-anomeric effect.[30] The endo-anomeric effect arises from the favorable 

electronic interaction between the electronic lone pair on the endo-cyclic oxygen atom O5 and 

the periplanar anti-bonding molecular orbital (�*) of the C1-O1 bond. The donation of electron 

density from the ring oxygen is possible only if the acceptor empty molecular orbital is 

geometrically properly oriented. This is the case of {  glycosides, but not of |  glycosides. As a 

result, in {  glycosides the O5-C1 bond is slightly short if compared to the O5-C5 bond, because 

of its partial double bond character, while the C1-O1 bond is slightly longer. In contrast, the exo

anomeric effect is common to both {  and |  glycosides. The anti-parallel arrangement of one 

lone pair on the exo-cyclic oxygen with respect to the anti-bonding O5-C1 bond may allow the 

electron back donation, thus stabilizing those conformations for which the values of � are 

consistent with this geometric requirement. More precisely, this interaction is more favorable 

than the interaction of a lone pair orbital of the same oxygen with the C1-C2 �*. This difference 

is attributed to the difference in polarization between the C1-O5 and C1-C2 bonds, producing a 

larger �* orbital centered on the less electronegative atom of the polarized bond. This remark is 

supported by the observation that the anomeric effect increases with the electronegativity of 
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the substituent and decreases in solvents of high dielectric constant. As result of the exo 

anomeric effect, the C1-O1 bond is shorter than the other C-O bonds. Fig. 1.7. 

Figure 1.7 Schematic representation of the lone pair-�* interactions responsible for the endo- (right) or 

exo-anomeric (left) effects in { - and | - glycosides. The endo-anomeric effect exists only in { -glycosides 

due to the geometrical requirements that allow the molecular orbital overlapping. For the exo-anomeric 

effect, different conformers are represented, both for { - and | -glycosides. However, the overlapping 

between the �* and the lone electron pairs is possible only for two of the three conformations. The fill 

color of the orbitals does not refer to the orbital phase, but it is a schematic representation for full or 

empty orbitals. 

An important consequence concerns the molecular dynamics features. Actually, due to the 

anomeric effect, some conformations around the glycosidic bond are negligible. As mentioned, 

even if the phenomenon is experimentally observable, the origins of the anomeric effect are still 

debated. In order to shed light on the stereo-electronic contributions behind the anomeric 

effect, the use of glycomimetics that lack of the chemical moiety responsible for the suggested 

orbital stabilization has been proposed.[31,32,33,34,35] 

1.2 Glycomimetics 

Sugar mimicry is an essential part of the development of carbohydrate-based therapeutics, an 

area that has already proved successful with molecules such as Miglustat, Acarbose or 

Voglibose.[36] The mimics are sugar scaffolds bearing a relatively minimal modification that 

changes its properties while still resembling the natural sugar. These modifications can be 
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divided into two main groups; the first includes sugar mimics where the glycosidic linkage has 

been modified,[37] while the second group includes sugar mimics in which the modified moiety is 

one or more of the pendant hydroxyl groups.[38] In the first group, when the aglycone is another 

glycoside, the replacement of the exocyclic-anomeric oxygen atom by another atom type, as 

carbon, nitrogen or Sulphur, leads to C-, N-, or S-glycoside[16,39,40,41] while the replacement of the 

endocyclic oxygen produces carba-, amino- and thio-sugar, in many cases these transformations 

leads to non-enzymatically hydrolysable glycoside analogues.[42,43] In the second group, deoxy

glycan analogues have been widely employed to monitor interaction events and to deduce the 

enthalpy contributions of specific hydroxyl groups of the sugar to the binding processes with 

different receptors. Fig. 1.8. 

Figure 1.8. Sugar mimics. On the left, non-hydrolysable glycoside analogues. On the right, deoxy-glycans. 

The R group can be a methyl moiety or another glycoside. 

From a bio-medical view-point, the knowledge about both the chemical and structural factors 

that are decisive for establishing effective interactions is of great interest for the development of 

new potential glycan-based drugs.[44] Hence, the field of glycosciences has experienced in the 

last years a blossom in the research to reveal the structure-activity relationships (SARs) that 

govern the effectiveness of carbohydrate-protein interactions.[45,46] Thus, different 

glycomimetics have been reported that compete with their natural counterparts for the same 

receptors or enzymes acting, consequently, as molecular probes or enzyme inhibitors.[47] In this 

context, the use of non endogenous atoms as molecular spies generates great expectation for 

clarify the binding mode of oligosaccharide to the proper receptor. Between those, fluorine 

seems to be the best candidate for the innocuous substitution of endogenous nuclei in 

saccharides. 
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1.2.1 19F as spy atom 

Fluorine is not an endogenous nucleus, but medicinal chemistry studies have demonstrated its 

useful introduction in bioactive substances to improve their pharmacokinetics properties and to 

modulate its biological properties.[48,49,50,51] From the NMR perspective, F-19 NMR provides an 

attractive alternative. This is due to both the lack of F-containing molecules in 

biomatrixes[52,53,54,55] and the high intrinsic sensitivity of 19F, a ½ spin nuclei with 100% natural 

abundance and a gyromagnetic ratio only slightly smaller than that of proton.[56] In addition, the 

F-19 chemical shift is highly sensitive to even subtle changes in the magnetic environment, 

making it an ideal probe for distinguishing closely related molecules, as saccharides, in their free 

or bound states.[57,58] The presence of 19F atoms in sugar rings may also deliver important 

conformational and structural information, complementary to that provided by 1H and 13C 

nuclei.[59] For all these reasons, fluorinated glycomimetics have received careful attention.[37] 

Depending on the substituted position, the fluorine substituent can have a remarkable effect 

upon the physical and chemical properties of the molecule.[60] It could induce increase of 

lipophilicity,[61,38] decrease in pKa values of certain groups by OH-F electrostatic interactions,[62] 

modulate the hydrogen bond acceptor/donor ability,[62,63] or foster the presence of a particular 

ring conformation.[64] The functional/structural outcome of fluorine substitution should be 

explored. 

1.3 Lectins 

1.3.1 Interlocutor Sugar Receptor 

Carbohydrates are recognized by a wide pool of proteins that include lectins, antibodies and 

enzymes. Enzymes are catalytic proteins responsible for synthesis or degradation of 

carbohydrates and for the transfer of oligo- and polysaccharides to the cognate biological 

scaffolds. Actually, the synthesis of glycoproteins involves the action of multisubunit 

oligosaccharide transferase complexes, while the glycan maturation processes happens with a 

concerted mechanism of glycosidases and glycosyl transferases responsible for the high 

structural variability of glycans. For example, in mammals, the repertoire of glycan structures 

biosynthesized by a given cell is largely based on the expression of a subset of more than 200 

glycosidases and glycosyl transferases found in the mammalian genome.[65] Anti-glycan 

antibodies are generated by the immune system and play a key role in the defense against 

pathogens, based on their ability to distinguish self-antigens from pathogen-derived antigens.[66] 
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Lectins are non-catalytic proteins with exquisite target specificity for carbohydrates and 

therefore they are being exploited as biomarkers and valuable models for the study of protein

carbohydrate interactions, in either free form or attached to lipids or proteins.[67] Both glycan 

and lectin structures can reach equal levels of sophistication. Fig. 1.9 illustrates two examples of 

carbohydrate recognition domains (CRD) of mammalian lectins showing the diversity of possible 

recognition modes. C-type lectins strategically host one Ca2+ ion in the CRD that acts as a linking 

point in between the ligand and negatively charged aminoacids in the binding pocket.[68] On the 

other hand, Galectin-1 traps the ligand, N-acetyllactosamine, by stacking the less polar face of 

the galactose ring against the aromatic residue tryptophan while the side-chains of conserved 

residues provide a hydrogen bond network with the polar groups of the sugar. These differences 

in recognition mode are at the origin of lectin’s differentiation/classification and are the reason 

why lectins are considered the favorite partners of glycans. The best way to decipher the sugar 

code lies in the elucidation, at atomic level, of the ligand/receptor interactions that contribute to 

the high specificity and accuracy of bio-chemical communication. As further example of 

carbohydrate binding proteins, those belonging to the family of Periplasmic Binding Proteins 

selectively recognize and actively transport small glycans across the inner membrane in gram 

negative bacteria.[69] Respect to lectins, the affinity of this sensor/transport proteins for the 

substrate is significantly higher (KD ≈ nM). The sugar binding site is here located in between two 

globular domains that ensure a tight hydrogen bond network surrounding the ligand, while two 

aromatic residues fix the ligand into a “sandwich” fashion.[70] Ligand binding provides the 

impetus to drive the protein conformational equilibrium to the bound closed geometry. 

Figure 1.9. Ligand selection by three types of sugar binding proteins. (a) Interactions of the C-type lectin 

DC-SIGN with GlcNAc2Man3. Ca
2+ 

coordination or CH/� interactions are shown as dashed orange lines, 

while hydrogen bonds as green lines. The calcium ion in the CRD acts as bridge between the ligand, OH(3) 

and OH(4) of the Man moiety, and the protein residues, (N377, E366, D378, E359) in the binding pocket. 

[PDB 1K9J]. (b) Interactions of human galectin 1 with N-Acetyllactosamine. Hydroxyl groups four and six of 
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the Gal moiety engage in cooperative donor/acceptor hydrogen bonds, while the less polar face of the 

same ring stacks against the aromatic residue W68. N-AcetylGlc participates with additional contacts. [PDB 

4XBL]. (c) Binding pocket of GGBP. The selection of either epimer, Glc or Gal, is justified by the fact that 

the hydroxyl group in position four does not interact with the protein residues. Conversely, all the OHs are 

involved into a dense hydrogen bond network with residues on both protein domains. The two faces of 

the sugar are stacked against aromatic residues, W183 and F16. [PDB 2FVY]. 

In conclusion, sugar receptors are supplied with the chemical features necessary to modulate 

the specificity and effectiveness of sugar recognition. The huge number of sugar receptors, their 

biological ubiquity and the possibility to be organized in oligomeric forms and even in clusters, 

with the consequent regulation of chemical response upon sugar binding, is an additional 

demonstration of the role that carbohydrates cover in communication processes. Biophysical 

techniques as X-ray crystallography and Nuclear Magnetic Resonance (NMR) have contributed 

during the last decades to the structural elucidation of glycan/receptor complexes at atomic 

level. 

1.4 NMR 

1.4.1 The reader Nuclear Magnetic Resonance 

The fruitful application of NMR in biochemical and biomedical research lies on its sensitivity to 

chemical structure and molecular dynamics, in addition to the non-invasive and non-destructive 

nature of the technique. Since the discovery of the NM moment of protons by Stern (Nobel prize 

in Physics 1943), the development of a method to measure NM moments by Rabi (Nobel prize in 

Physics 1944), and the NMR experiments performed by Bloch and Purcell (Nobel prize in Physics 

1952), the technique has been enriched with numerous continuous advances that have led to a 

highly active and fertile field of work recognized in several Nobel prizes in other disciplines 

(Chemistry in 1991 and 2002 and Physiology and Medicine in 2003). In the last few years, NMR 

has become a powerful tool to monitor molecular interactions and to deduce features of 

recognition processes at different level of complexity, both from the perspective of the receptor 

and of the ligand.[71,72,73, 15] Nevertheless, there is still an open window for further development 

of new NMR methods and their applications to unravel molecular recognition problems and 

transient interaction and states. Actually, advances in chemical protein modification,[74] the use 

of paramagnetic metals as molecular tags,[75] the employment of MAS or HR-MAS spectroscopy 
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methods,[76,77] together with new computational tools and the access to larger magnetic fields 

are examples of new developments that are taking place. 

1.4.2 Principles of NMR [78,79] 

NMR is an intrinsic property of atomic nuclei having a nuclear spin quantum number, I, different 

to zero/ Those nuclei are defined as “NMR active” nuclei, while those having I=0 are termed 

“NMR silent”/ The spinning nuclei possess angular momentum, P, and together with its charge 

and motion it is associated the magnetic moment according to the equation: ሉ =�P, where the 

term � is the magnetogyric ratio, which is characteristic for each nucleus and may be viewed as a 

measure of the magnetic sensitivity of the nucleus. The angular momentum and the magnetic 

moment are vector quantities, having both magnitude and direction. They are quantized, this 

means that both the magnitude and orientation can only adopt a discrete number of values. For 

a spin of magnetic quantum number I there exist 2c+1 possible spin sates, taking values from -I 

to +I. For the ½ spin nuclei, as 1H, 13C, 15N and 19F between others, the two states correspond to 

ms = +1/2 ({ ) and ms = -1/2 (| ). In the absence of an external magnetic field, these two levels are 

degenerate, both states have the same energy, this means that they are equally populated. 

However, in the presence of an external magnetic field, B0, the degeneracy is broken and, with 

it, the population is redistributed in favor of the lowest energy level, according to the law of 

Boltzmann. 

ዬዼዿሇ 
ቜ^ዛ 

ቱ ቦ ዻዓዪ eq. 1.1 
ዬህሀሀ 

Where Nlow/upp is the spin state population distribution, k is the �oltzmann’s constant, T the temperature 

and ^E the energy difference between both momentum states. 

The difference between the energy level is proportional to the applied magnetic field according 

to equation 1.2. 

^E = �ħB0 eq. 1.2 

Where ^E is the energy difference between both momentum states, B0 is the external magnetic field, � is 

the magnetogyric ratio and ħ is the reduced Planck constant or Dirac constant. Fig. 1.10. 
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Figure 1.10 On the left, the magnetization vector rotates about the field direction, sweeping out a cone of 

constant angle to the z-axis; this motion is called precession. On the right, splitting of nuclei spin states in 

an external magnetic field. 

Comprehensibly, dealing with higher magnetic fields will increase the sensitivity of the 

technique. Actually, the signal in NMR arises from the perturbation of population distribution 

when a precise energy, corresponding to the energy difference between the two levels, hits the 

nuclei. That is the resonance condition. It inverts the population of the energetic levels and the 

signal is produced when the equilibrium distribution is restored. The NMR signal, therefore, is 

proportional to the population difference between both states. Since this energy difference is 

relatively small, with respect to others spectroscopic phenomenon such as IR and UV, the NMR 

is a less sensitive technique. The magnetic moment of each nucleus describes its own precession 

motion around the magnetic vector B0. The frequency of the precession is termed Larmor 

frequency, 0, which is the precession rate about the axis B0. As expressed in equation 1.3, the 

frequency of resonance, that coincides with the Larmor frequency value, depends from the 

magnetogyric ratio, this means from the kind of nucleus, and from the external magnetic field 

and it is equivalent to the energy difference between the two spin levels: 

0 = �B0 = ^E/ħ eq. 1.3 

Where 0 is the Larmor frequency. 
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Fortunately, each active nucleus of one type (i.e. 1H) in a given molecule experiences different 

perturbation of its local magnetic field, Bi, due to the shielding or de-shielding effects produced 

by nearby atoms or functional groups. 

0 = �(B0-Bi) eq. 1.4 

Where Bi is the local magnetic field. 

As result, nuclei within different chemical environments are characterized by slightly different 

(chemical shift) Larmor frequencies, which permits to identify them, converting NMR into a 

powerful tool. 

1.4.3 NMR for carbohydrates 

NMR is one of the most widely used techniques to characterize molecular features of 

carbohydrates,[27] thanks to its versatility, recent advances in resolution and sensitivity[80] and to 

the development of procedures for structural determination, conformation and dynamics of 

complex oligosaccharides.[81] These avenues are associated to the impressive advances in 

synthesis of carbohydrates and labeled or modified carbohydrates.[82] Significantly, NMR 

techniques provide the possibility to work in solution, in conditions similar to the physiological 

ones. Of note, carbohydrates are highly flexible molecules and precisely, this flexibility has 

important consequences on their recognition features. Among the experimental data that can 

be gathered for the structural determination of sugars, vicinal 1H-1H coupling constants, 3JHH, 

are particularly useful to determine the relative orientation of the coupled nucleus. Nuclear 

Overhauser enhancement spectroscopy (NOESY) is employed for structural characterization in 

general and is a key parameter for the conformational analyses of the glycosidic linkage. Finally, 

paramagnetic data are used to obtain longer-range restraints. 
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1.4.4 Coupling constants 

In the late fifties, Nobel Laureate Martin Karplus, after Raymond Lemieux empirical 

observations,83 described a relationship between the dihedral torsion angle established between 

vicinal hydrogens and the 3JHH coupling constant, by using a theoretical approach:[84] 

3JHH = A+Bcos�+Ccos2
�eq. 1.5 

Where � is the dihedral angle between the two protons. 

According to equation 1.5, for dihedral angles of 0° or 180°, the observed coupling constant is 

large, while conversely, dihedral angles around 90° lead to cos2
� values close to zero, and thus 

the observed coupling constant is small or null. For its part, coefficients A, B and C are 

parametrized for each particular kind of molecule, atom, and substituent. In this regard, and for 

instance, eight new Karplus relationships have been refined for use in conformational studies of 

saccharides.[85] In chapter II we have made extensive use of J coupling analysis for the 

characterization of the conformational equilibrium in Glc and Ido mimics. Among all different 

found conformers, the two energy minima for Glc are dubbed as 1C4 and 4C1. In the case of the 

4C1 conformer, almost all the dihedral angles between protons of adjacent carbon atoms are 

maximum, being their respective vicinal coupling constants of around 10 Hz, while in the 1C4 

conformer, the trans-diequatorial disposition implies a gauche geometry between vicinal 

protons and their J coupling values smaller than 5 Hz. Fig. 1.11. 

Figure 1.11 On the top, | -D-Glc in 
4
C1 conformation, left, and 

1
C4 conformation, right. The relative spatial 

orientation for vicinal hydrogen atoms is more clearly schematized in the Newman projection on the 

bottom. The dihedral angle between those nuclei is of 180° in 
4
C1 conformation and of 60° in 

1
C4. 

Consequently, the 3JHiHi+1 coupling constants are around 10 Hz in 
4
C1 chair conformation and less than 5 Hz 

in 
1
C4. 
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Of note, scalar coupling constants have the advantage that calculation of average values over an 

ensemble of conformations is simple, allowing the characterization of the conformational 

equilibrium in terms of population distribution.[86] Today, the Karplus equation is behind every 

conformational analysis studied by NMR. Variations of the Karplus equation are profusely used 

in elucidating the structure of organic compounds from NMR data. Furthermore, not only 3JHH 

coupling constants, but also longer-range coupling (xJHH, x > 3), as well as single and multiple

(x 13bond heteronuclear coupling[87,88] JHY, 1 ≤ x ≤ 4, and Y = C, 15N, 19F, etc.)[89] and homonuclear 

xJYY coupling constants can provide a wealth of connectivity information on how molecular 

fragments are linked together, a geometric information that complements the one provided by 

NOE spectroscopy. 

1.4.5 Nuclear Overhauser Effect NOE Spectroscopy (NOESY) 

Three-dimensional structures of carbohydrates become complicate to infer as the number of 

saccharide units increases. Knowledge on the spatial relationships among nuclei belonging to 

different sugar units can be provided by both NOESY studies and paramagnetic restraints. These 

two sources of structural information are based on their dependency on the interproton 

distance through space. In 2002, Kurt Wüthrich was awarded with the Nobel Prize in Chemistry 

for demonstrating that 2D NOE spectroscopy could be used to determine the 3D structures of 

biological macromolecules in solution. The NOE is defined as the change in intensity of a nucleus 

signal when the spin transitions of another nucleus cause a perturbation of its equilibrium 

populations. The two nuclei do not share a scalar, through bond, coupling; instead, they are 

sufficiently close in space to share a dipolar coupling. Thus, the NOE originates from dipolar 

cross-relaxation between pairs of protons, and depends on the proton-proton distance and on 

the molecular motion of the interproton vector: 

INOE ≈ የ1/r6ዩ f(Wc) eq. 1.6 

Where INOE is the NOE intensity, r is the proton-proton distance, and f is a function that depends, among 

others factors, on the correlation time (Wc) that describes the motion of the interproton vector. 

The inverse-sixth relationship in equation 1.6 implies that the NOE only develops between 

nuclei that are close in space, usually within 5 Å. Of course, not only homonuclear NOESY, but 

also heteronuclear studies are possible. For instance, 19F-1H heteronuclear NOE spectroscopy 
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(HOESY)[64] has been used in Chapetr III of this thesis to estimate the conformation of 

disaccharides mimics at the glycosidic linkage. 

1.4.6 Long range restraints PCSs, RDCs and PREs 

The structural complexity in saccharides proportionally increases with the number of 

monosaccharidic units, making the study of the conformational preferences of large 

oligosaccharides a challenging task. In this scenario, residual dipolar coupling (RDCs),[90,91] 

pseudo contact shifts (PCSs)[92] and paramagnetic relaxation enhancements (PREs)[93] actively 

contribute to the structural characterization of large molecules in solution.[94] 

RDC provides relative orientations among internuclei vectors independently of their distance 

separation. This property of RDC has opened new avenues in the structural determination of 

large macromolecules with highly flexible functional arms or domains.[95,96] In the presence of a 

magnetic field, RDCs arise when the molecule in solution weakly align relative to the field, thus 

creating an anisotropic condition. Under such anisotropic condition, with the presence of an 

external field, a magnetic dipole-dipole interaction does not average to zero and yields a 

measurable dipolar coupling. The magnitude of the dipolar coupling depends on the angle 

between the internuclei vector and the external magnetic field as well as the internuclei 

distance. If the dipolar interaction is between two covalently bonded nuclei, then the 

internuclear distance is fixed and only the orientation dependence remains.[97] 

ሀዠቑ
ቓ�ዟ�ዠ ቤቜ ቩ} ቜ DAB = ታዟዠ ኚቤተቴቛk ቫ ኘበ ቪ }

ሊሀ
ቴቪቯቛk ቤተቴኙ` ቅ ቦቲሉ ኘሉኞ 

ቛቝሼቔሃዲ ዹሐ ቛ 

Where DAB is the residual dipolar coupling observed between nuclei A and B, rAB is the distance between 

nuclei A and B, k is the angle between the A-B internuclear vector and the z axis of the }-tensor, ` is the 

angle between the projection of the A-B internuclear vector on the xy plane and the x axis of the }-tensor, 

B0 is the static magnetic field strength and h is Planck’s constant/ Fig. 1.12. 
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Figure 1.12 Vectorial representations of magnetic nuclei in an isotropic or anisotropic media. On the right, 

definition of the angular parameters used in equation 1.7 and 1.8, respectively. 

In a normal solution, the solute tumbles almost isotropically, the interaction of intrinsic magnetic 

susceptibility of the macromolecule with the magnetic field produce a very weak alignment. As a 

result, the time average of the angular term የcos 2kዩ is close to zero, leading to small values of 

dipolar couplings that are close to the experimental error- hence the term “residual” to refer to 

RDCs. Alternatively, the molecule sample has to be conjugated or mixed with an alignment 

medium with substantially large susceptibility anisotropy that can be aligned under an external 

magnetic field. With this approach, the degree of alignment is roughly one order of magnitude 

stronger than the former one and thus, practical for general application. The calculation of the 

dipolar interaction between a pair of dipolar-coupled nuclei requires the value of የcos 2kዩ, which 

can be determined using the alignment tensor methodology.[98] The alignment tensor is 

described for a rigid part of the molecule using a minimum of five RDCs pointing in nonparallel 

direction. These values are used as restraints for structural determination of the flexible region 

of the molecule under study. The back calculated values for different minimized structures are 

compared with the experimental ones. A good fit between the experimental RDCs values and 

those obtained for one or for an ensemble of different conformations defines the three

dimensional structure of the macromolecule in solution.[99] 

PCSs also arise from dipolar interactions. However, in this case, the effect is due to the dipolar 

interaction between the unpaired electrons of a paramagnetic entity, e.g. a lanthanide ion, and 

the nuclei in its vicinity. The PCS effect occurs only when the paramagnetic center presents a 

non-isotropic magnetic susceptibility, which is the case of some lanthanide cations, and it is 

dependent on the relative position of the paramagnetic center (its magnetic susceptibility 

tensor, ^}) and the affected nuclei. The equation that governs PCS is given in eq 1.8. 
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^~ ዮዡዱ ቱ 
ኘ 

ታቤቜ ኁ^}
ዹሐ

ኚቤተቴቛ� ቫ ኘበ ቪ 
ኚ 
^}

ሊሀ
ቴቪቯቛ� ቤተቴኙሓኅ ቦቲሉ ኘሉኟ 

ኘኙል ኙ 

where ^~ PCS is the difference in chemical shift between diamagnetic and paramagnetic samples, r is the 

distance between the metal ion and the nuclear spin, � and � are the angles describing the position of the 

nuclear spin with respect to the principal axes (with the metal ion at the origin) of the magnetic 

susceptibility tensor (}), and ^}ax and ^}rh are the axial and rhombic components, respectively, of the 

magnetic susceptibility tensor. 

This restraint depends from the distance between the metal ion and the nuclear spin, with a 1/r3 

dependence. Thus, PCSs, respect to NOE, provide longer-range structural information, being 

observable up to 40 Å distance for certain paramagnetic metals. In this scenario, it does not 

surprise that the attachment of a small molecular fragment as metal chelating tag to flexible 

macromolecules, as oligosaccharides,[100] and dynamic proteins[101] or protein/ligand 

complexes[102] gives excellent results in terms of structural and dynamic determination of the 

macromolecular system. In chapter IV of this thesis, we have applied this strategy for unravel 

the conformational landscape of GGBP, a highly flexible sugar binding protein. 

As consequence of the proximity to the paramagnetic metal ion, a second effect has to be taken 

into account. Paramagnetic relaxation enhancement also arises from magnetic dipolar 

interactions between a nucleus and the unpaired electrons of the paramagnetic center, which 

results in an increase in nuclear relaxation rates.[103] In contrast to PCSs, PRE vanishes faster, 

owing to its dependency with 1/r6, where r is the distance between the affected nuclei and the 

paramagnetic center. The key for using the PRE to study low populated states resides in the 

finding that the observed broadening of the NMR signals in the fast exchange regime are 

population weighted averages of the PREs for the major and minor species, thereby enabling 

extracted.[104,105,106] structural information on the minor species to be However, the main 

advantage of PRE is that can be detected in the presence of any paramagnetic system, being 

independent from the isotropic or anisotropic conditions. 

Respect to the above mentioned NMR techniques, additional and more accurately described 

NMR based methods can be found in specialized books and reviews.[107,108] These methods, when 

assisted by computational protocols, yield to the elucidation of the structural and dynamics 

features of flexibles biomolecules is solution. 
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1.5 Computational Chemistry 

Although the next paragraphs are devoid to the practical and advantageous use of 

computational chemistry for structural and dynamic characterization of small molecules and 

macromolecules, it is important to highlight that the acquisition of experimental data play an 

essential role in validating the simulation methodology. Actually, comparisons of simulation and 

experimental data serve to test the accuracy of the calculated results and to provide criteria for 

improving the methodology. This is particularly important because the errors introduced by the 

use of empirical potentials are difficult to quantify. A number of studies comparing the 

simulations with experimental data have been used to validate computational techniques.[109] 

NMR data are particularly useful, as the many receptor and ligand conformations sampled 

computationally can be used to predict values of NMR parameters like spin relaxation, dipolar 

interactions or coupling constants, permitting direct comparison between experimental and 

theoretical techniques. Indeed, a number of studies have shown good agreement between 

computational and experimental measurements.[110,111,112] According to the Born-Oppenheimer 

approximation, the Schrodinger equation for a given molecule can be separated into a part 

describing the motion of the electrons, the part at which quantum mechanics (QM) is interested, 

and a part describing the motions of the nuclei and that these two motions can be studied 

independently. The structural problem associated to the latter part is the aim of Molecular 

Mechanics (MM) studies. 

1.5.1 Quantum Chemical Models 

When the molecular structure is critically determined by electron delocalization, it is not 

possible to neglect the energy contribution coming from the stabilizing molecular orbital 

interactions. This is the case for carbohydrates, where the glycosidic linkage is largely controlled 

by the anomeric effect. For these systems, the structural problem has to be solved considering 

the electrons as discrete particles or as a cloud, not restricted to the proper nucleus. Highly 

expensive computational methods are necessary. However, if the molecule is not too large, QM 

calculations can be achieved in a reasonably time and the resulting data are usually very 

accurate. QM describes the molecules in terms of interactions between nuclei and electrons, 

and the molecular geometry in terms of minimum energy arrangements of them. All QM 

methods ultimately trace back to the Schrödinger equation. For a molecular system, which 

obviously includes more than one electron, the Schrödinger equation cannot be solved, and thus 
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approximations need to be introduced to provide practical results. The different kind of possible 

approximations and their choice depends on the molecular system under study, and can be 

found in specialized books.[113,114] 

1.5.2 Density Functional Models 

The density functional theory (DFT) assumes that the sum of the exchange and correlation 

energies of a uniform electron gas can be calculated knowing only its density. The main 

advantage in DFT is that, unlike the wave function, the electron density is an observable and can 

be measured experimentally, e. g. by X-ray diffraction. The approximation assumes that we can 

reduce the numbers of all the electrons that are in the molecule to a single electron density, 

reducing considerably the computational cost that would be otherwise too demanding. The 

complete physical-mathematic description of the equations behind DFT is beyond the scope of 

this thesis, just a brief discussion of the main properties of the electron density is presented. 

i)	 The density integrates to the number of electrons; this means that the density is a 

function of all the electrons in the molecule. 

ii)	 The density has maxima only at the position of the nuclei; in others terms, the 

density take into account the attractive force exerted by the positive charge of the 

nuclei. 

iii)	 The density at the position of the nucleus contains information about the nuclear 

charge Z. Defining, in this way, the chemical nature of molecular constituent 

elements. 

iv)	 The theory includes a term for the exchange and correlation electron interaction. 

This means that exist solutions for the problems of Coulombic repulsion and 

exclusion Pauli principle. 

Thus, the electron density already provides all the ingredients necessary for a complete 

characterization of electronic structure in molecule.[115] The success of DFT in computational 

chemistry field is demonstrated by the increasing number of publication where the method has 

been applied. Among these, numerous are the application for characterization of mono- and 

oligosaccharides where the stereoelectronic effects strongly define the molecular geometry and 

energy, as for the anomeric effect.[116,117,118,119,120] 
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1.5.3 Molecular Mechanics (MM) Models 

When the molecular system under study is composed of a considerable number of atoms the 

more sophisticated quantum molecular modeling techniques are too demanding of computer 

time resources to be of general use. In these cases, MM calculations, based on empirically 

parameterized force field and classic mechanic calculations are of practical use in the qualitative 

descriptions of the molecular model. MM focus on the structural aspect and not on the 

electronic properties of the molecule. In this, the motions of the nuclei are studied and the 

electrons are not explicitly examined at all, but are assumed to find an optimal distribution 

about the nuclei. The resulting potential energy surface (PES) is a multi-dimensional surface 

describing the potential energy of the molecule in function of the nuclear position. In MM, the 

atoms in the molecule are considered as a series of points with mass and charge linked by a 

spring, the bond. Chemical bonds and atomic angles are modeled using simple virtual springs, 

and dihedral angles are modeled using a sinusoidal function that approximates the energy 

differences between eclipsed and staggered conformations.[121] Non-bonded forces arise due to 

van der Waals interactions, modeled using the Lennard-Jones 6-12 potential,[122] and charged 

(electrostatic) interactions, modeled using �oulomb’s law/ The laws of classic mechanics are 

used in order to calculate the energy of the system, while simple mathematical derivations are 

used to find the energy minimum. The total molecular energy is a sum of different terms: 

eq. 1.9 

Where Es is the energy for bond deformation, stretching or compression, Eb is for angle bending, Ew is the 

torsional angle energy, and Enb is the energy for not bonded interactions and contains van der Waals, 

Coulombic and hydrogen bond interactions. 

Each one of these energy contribution is calculated as function of the position of the nuclei, in 

practical terms the function is a force field. In order to reproduce the actual behavior of real 

molecules, in the force field all the parameters defining the atom type, charge and their relative 

position are experimentally defined or, when experimentally ill-defined, they are 

computationally determined using high level molecular modeling methods (QM calculations). 

This parametrization includes identifying the ideal stiffness and lengths of the springs that 

describe chemical bonding and atomic angles, determining the best partial atomic charge used 

for calculating electrostatic-interaction energies, identifying the proper van der Waals atomic 

26 



 
 

            

       

        

        

    

            

      

       

            

          

          

     

      

          

    

     

    

        

       

   

     

       

     

      

    

     

      

 

  

 

 

 

radii, and so on. Different force fields are now available and their choice depends on the specific 

molecular system. Some advanced force fields include additional types of terms, such as dipole 

interactions or stretch-bend couplings. In a conformational analysis the final goal is to locate the 

minimum energy structures, assuming that these are the best representation of the molecule. 

However, the search for the global minimum starts from a specific set of atomic coordinates, 

those used as input for the energy calculation, and the program finally finds the minimum which 

is close to the starting point coordinates. In others terms, the simulation is not able to cross 

transition states or saddle points those are in between two energy minima. This means that the 

found minimum could be a relative minimum and not the absolute one. A way to overcome this 

issue consists in an iterative variation, step by step, of the critical molecular coordinates without 

changing the others, followed by energy minimizations of the entire structures (conformational 

scanning for example). Specifically for carbohydrates, the higher flexible points are those that 

define the glycosidic linkages. The torsions � and  are monitored independently and the 

molecular potential energy is computed. As a result, a three dimensional plot is obtained, where 

the two variables, � and , are plotted against the structural associated energy. The map 

provides practical information on the global and relative minima of the system. The obtained 

structures simplify significantly the conformational analysis excluding such conformations that 

are not populated on the basis of steric hindrances. This information has to be taken carefully, 

being some general force fields inadequate for describe molecular structures in which the 

determinant.[123,124,125,126] stereoelectronic effects, as the anomeric effect, are In order to 

overcome this lack a specific force field for carbohydrates has been developed. GLYCAM06 force 

field[127] implements the so called CHI Energy Functions. The carbohydrate intrinsic (CHI) energy 

functions were developed to score oligosaccharide structures based on glycosidic linkage 

conformations. QM calculations were used to obtain the torsional energy profiles of glycosidic 

torsion angles using several tetrahydropyran-based disaccharide models. Similar energy profiles 

were grouped, and an average energy curve for each group was calculated, resulting in final four 

CHI energy equations. Currently, CHI energy functions are applied to all standard glycosidic 

linkages between pyranoses in the chair conformation. 

Finally, the calculated structures have to be validated experimentally. 
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1.5.4 Molecular Dynamics (MD) 

The term MD refers to a simulation that analyzes biomolecule motions and determines 

conformation and stability patterns. These simulations provide a complete description of the 

system’s evolution as function of time, what is called trajectory/[128,129,121] MD fill the gap that 

exists in between the most powerful techniques that are currently used in structural 

characterization of biomolecules. Actually, if X-ray crystallography gives with the structural 

details at atomic resolution of the molecule under study, it provides a static representation of 

the molecular system. On the other side, NMR has the privilege to provide dynamic features of 

the system in its proper environment, in solution. However, the time scales and the amplitude of 

the motions may be ill-defined by such techniques, often because some molecular motions are 

too fast and the different states cannot be singularly detected and weighted mean values are 

observed. When this happens, MD provides key dynamic information on the structure, 

dynamics, and even thermodynamics of biological molecules and their complexes.[130] The 

simplest description of the dynamics between two atoms, arms or domains of the molecule in 

solution should define the speed at which they move, as well as the time scale, and the 

amplitude of the motions. MD is based on Newtonian physics to simulate atomic motions. The 

general protocol used is outlined in scheme 1.1. 

Scheme 1.1. How a MD simulation is 

performed. First, a computer model of 

the molecular system is prepared. An 

equation like eq. 1.9 is used to 

estimate the force acting on each of 

the system atoms. The positions of the 

atoms are moved according to 

Newton’s laws of motion/ The 

simulation time is advanced, and the 

process is repeated many times. 

First, a computer model of the molecular system is prepared from NMR, X-ray crystallography or 

homology-modeling data. The forces acting on each of the atoms of the system are then 

estimated from the same equation described for MM (eq. 1.9). In brief, forces arising from 

interactions between bonded and non-bonded atoms contribute. According to the second law or 
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the equation of motion, F = ma, where F is the force exerted on the particle, m is its mass and a 

is its acceleration. From knowledge of the force on each atom, it is possible to determine the 

acceleration of each atom in the system. Integration of the equations of the motion then yields a 

trajectory that describes the positions, velocities and acceleration of the particles as they vary 

with time. From this trajectory, the average values of properties can be determined. The method 

is deterministic; once the positions and velocities of each atom are known, the state of the 

system can be predicted at any time. The two dramatic limitations of MD are the time scale and 

the accuracy of the selected force field. MD are time consuming and computationally expensive. 

However, recent advances in hardware, software, and algorithms have increased the timescales 

accessible to simulation by several orders of magnitude, enabling millisecond-scale simulations 

and allowing MD to capture many critical biochemical processes as active transport or channel 

gating.[131] Recently, it has been proposed that long MD simulations in the millisecond regime are 

necessary to well describe the conformational behavior of oligosaccharides in solution.[132] Many 

reactions and conformational transitions exhibit long time scales because they consist of one or 

more activated processes, such as local conformational changes associated with ligand 

binding.[133] In these cases, conventional MD is unsuitable for investigating activated processes 

because of the simulation time scale. Steered Molecular Dynamics (SMD) simulations introduce 

a time-dependent or position-dependent force.[134] The purpose of this force is to steer systems 

along particular pathways. This allows focusing on dynamic events of interest while keeping 

computational expense to a minimum.[135,136,137] In chapter IV of the thesis, an example where 

external forces drive the binding event between GGBP and Glc is analyzed. SMD is the 

computational analogue of the experimental techniques which apply external mechanical 

manipulations to biomolecules, as AFM, optical tweezer or dynamic force spectroscopy 

experiments.[138,139,140] Free energy differences can be obtained as a function of the work done 

on the system. Albeit, accelerated, targeted or steered MD simulations give only an estimation 

of the energetic cost associated to the transition, their benefit in significant reduction of the 

computational cost is a reason of its growing use. 
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1.6 Objectives 

The general objective of this Thesis is the study of the dynamic behavior of sugars and proteins 

and to advance into the knowledge of its functional role in their interactions. Special focus has 

been placed on the development of novel NMR procedures that permit to advance in the 

knowledge of carbohydrates structure and recognition features. 

This Thesis is divided into different Chapters, which have the following specific objectives:
 

Chapter 2:
 

-Characterize the dynamic behavior of sugar rings. Define the thermodynamic and kinetic
 

features of conformational exchange in pyranose rings.
 

Chapter 3:
 

-Demonstrate the importance of the stereoelectronic component for the exo-anomeric effect.
 

Show that gem-Difluorocarbadisaccharides are suitable glycomimetics able to restore the exo

anomeric effect that is absent in carbadisaccharides. 

Chapter 4:
 

-By combining paramagnetic NMR experiments and MD simulations, it is possible to define a
 

functional conformational landscape for a protein model, both structurally and energetically.
 

Chapter 5:
 

-Design and synthesis of a strategically isotope-labeled sugar, useful for the direct detection of
 

weak intermolecular interaction.
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CHAPTER II
 

Glycomimetics: understanding conformational plasticity in sugar rings 

Fluoro-carba-methyl-L-idopyranosides mimic the intrinsic dynamic behavior of natural 

idose rings 

The work presented in this chapter has been performed in collaboration with the group of Dr.
 

Matthieu Sollogoub, Sorbonne Université in Paris, France. Dr. Bixue Xu has been responsible for
 

the synthesis of the glycomimetics discussed herein. 

“It is important to note that the definition of equilibrium as fast or slow is not a molecular 

feature, because it depends on the difference in frequency between the two states in exchange, 

which is different for each spin of the molecule” 

Prof. Jorge Santoro 
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2.1 Introduction 

One of the paradigmatic cases of conformational dynamics in glycosciences[1] is that of the 

Iduronic acid (L-IdoA) moiety present in heparin, L-IdoA. The extent of conformational mobility 

of L-IdoA in heparin oligosaccharides in both the free and bound states has also been matter of 

debate,[2] especially focused on the 4C1 chair-skew boat-1C4 chair equilibrium of the pyranose 

rings[3] in the free and protein-bound states. Fig. 2.1. Interestingly, depending on the protein 

receptor, distinct conformations of the L-IdoA ring are recognized.[4] Indeed, AT-III recognizes the 

skew boat conformer,[5] while the IdoA rings of a heparin hexasaccharide maintain the chair

skew boat flexibility when bound to FGF-1.[6] Fittingly, for AT-III case, Sinaÿ et al. prepared skew

boat conformationally-locked compounds that keep the biological activity, thus providing direct 

evidence on the recognition of these conformers by AT-III.[7] Obviously, this dynamic behavior 

has key implications in the kinetics and thermodynamics of the molecular recognition event.[8] 

Nevertheless, the access to idose (Ido) mimics that retain conformational plasticity and the 

quantification of the experimental values of the energy barriers and free energy differences for 

the chair-skew boat interconversion processes in water solution has remained elusive. Recent 

efforts using O-substituted Ido compounds have provided energy values in organic solvents.[9,10] 

However, given the intrinsic relative low energy barrier for this equilibrium, NMR experiments in 

water using hydroxylated natural compounds have failed to slow down the equilibrium to 

provide quantitative and non-ambiguous values. 

Figure 2.1. Sugar ring conformations of -IdoA unit. Structural representation of the sugar ring 

conformations (chairs, C, and skew-boat, S) of the -IdoA unit, observed in glycosaminoglycans, such as 

heparin and heparin sulfate. Carbon atoms are numbered according to their positions within the sugar 

ring. 
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In this chapter, a new generation of fluorine-containing glycomimetics is presented. We have 

applied a combination of NMR and computational methods to investigate the conformational 

behavior of Ido- and Glc-like rings. We have used low temperature NMR experiments to slow 

down the conformational exchange of the Ido-like rings. Under these conditions, the exchange 

rate becomes slow in the 19F NMR chemical shift time scale and allows shedding light on the 

thermodynamic and kinetic features of the equilibrium. Despite the minimal structural 

differences between these compounds, a remarkable difference in their dynamic behavior 

indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also 

highlighted. Only the use of 19F NMR experiments has permitted to unveil key features of the 

conformational equilibrium that would have been otherwise remained unobserved. On this 

basis, we present the conformational analysis of different fluorine-containing sugar-mimetics. 

Thus, we have investigated two gem-difluorocarbasugars, 1a and 2, both analogues to methyl- 

L-idopyranoside and possessing either a quaternary or a ternary C5 respectively. As model 

compound, we have also studied the corresponding Glc analogue 1b (Fig. 2.2), since Glc 

pyranose rings are usually conformationally stable. 19F and 1H homo and heteronuclear NMR 

methods have been applied in water and dimethyl sulfoxide solutions to determine their 

intrinsic conformational and structural properties. The experimental NMR data have been 

supported by computational methods in order to unambiguously unravel the structural and 

conformational effects of the di-fluoro-methylene function. 

Figure 2.2. Schematic representation of glycomimetics discussed in this work. C atoms follow the 

carbohydrate related numbering where C5a corresponds to the endociclyc oxygen. 
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2.2 Results and Discussion 

2.2.1 NMR analysis. Compounds 1a and 1b only differ in the configuration of the stereogenic 

center at C5. Fig. 2.2. Strikingly, the observed 1H, and especially the 19F NMR spectra for both 

molecules, are dramatically different. Figure 2.3. The assignment of the two 19F resonances 

permitted to assess that the broad signal observed in 1a corresponds to the axially oriented 

fluorine atom. As deduced from the visual inspection of the shape of the equatorial fluorine in 

1a, as well as of those of both fluorine atoms in 1b, the behavior of the axial fluorine of 1a is 

rather unique. 

Figure 2.3. 
19

F NMR (470 MHz) spectra of 1b (left) and 1a (right) in the solvent D2O, 298 K. Notice the 

broad shape of the axial fluorine resonance signal of 1a. The integrals (1:1) are also shown. 

Given this particular feature, a detailed conformational analysis by using NMR methods had to 

be performed. Tables 2.1-2.2 gather the J-coupling and chemical shift data for the three studies 

molecules compared to the data for natural methyl-L-idopyranoside[11] and methyl-D

glucopyranoside[12] used as reference compounds. 

The observations for the different molecules are given below: 

Compound 1b (gluco-like, difluoro, C5 is quaternary) 

Evidences on the major shape of the six-membered ring of 1b have been extracted from the 

analysis of the vicinal 3JHH coupling constants (Table 2.1), measured with and without 19F

decoupling conditions. Fig. 2.4 left. As expected, very large 3JH2H3 and 3JH3H4 values were 

observed in water solution, thus demonstrating that it adopts a very major 4C1 chair 

conformation. No significant variations of chemical shifts and coupling constants were 
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appreciated upon decreasing the temperature (Fig. 2.4 right) from 298 down to 248 K (adding 

20% of deuterated methanol). 

Figure 2.4. On the left, (top) 
1
H-{

19
F} decoupled spectrum. (bottom) 

1
H NMR spectrum of 1b at 298 K in 

D2O. Notice the solved H2, H4, H1 and H6’ signals. On the right, 
1
H NMR spectra between 248 (bottom), 

263 (middle) and 298 K (top) in D2O in the presence of 20% methanol. Methanol has been used as internal 

reference. 500 MHz Bruker spectrometer. 

Similar couplings have been observed for 1b in DMSO-d6 solution. Intermediate values for the 

3JH,OH coupling constants have been measured, ranging between 5.0 and 6.6 Hz (Table 2.3). 

Temperature coefficient factors are also of medium size for all the hydroxyl groups, between 4.9 

and 7.0 ppb/° (Table 2.4). These facts suggest that no particular orientations of the hydroxyl 

groups are favored. No strong intramolecular hydrogen bond between the hydroxyl moieties is 

present in DMSO-d6. Obviously, the presence of competing water molecules in the water 

samples further precludes this possibility. Through-space coupling constants between the axial 

fluorine atom with H2, H4 and H6’ have been also deduced. Indeed, these couplings are also 

supported by heteronuclear 1H-19F NOEs between the corresponding atom pairs in the HOESY 

spectra. Fig. 2.5. 
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Figure 2.5. 
1
H-

19
F Hoesy 2D spectrum of 

1b in D2O. Key heteronuclear NOEs 

cross peaks are highlighted. 

No significant features have been observed in the 19F NMR spectra of 1b acquired at low 

temperature (Fig. 2.6). Therefore, all the NMR parameters and observations were in agreement 

with the existence of a 4C1 chair conformation, with no additional experimental observations 

worth of mentioning. 

Figure 2.6. From top to bottom, the 
19

F NMR 

spectra of 1b at 248, 263, and 298 K in D2O in 

the presence of 20% of methanol. 

Trifluoroethanol has been used as internal 

reference. No significant changes are 

appreciated. 

Compound 1a (Ido-like, difluoro, C5 is quaternary)
 
19F NMR spectrum of 1a is drastically different to that of 1b (Fig. 2.3) at room temperature.
 

Strikingly, the signal of the axial fluorine sharpened in a noticeable manner upon decreasing the
 

temperature down to 238 K ,using 20% of methanol, or increasing it at 333 K. Fig. 2.7. This fact
 

suggests the existence of a dynamic process, which especially affects the transverse relaxation
 

features of Fax.
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Figure 2.7. From bottom to top. 
19

F NMR (470 MHz) spectra of 1a at 238 K, 273 K and 298 K (left) and at 

283 K, 323 K and 333 K (right) in D2O in presence of 20% of methanol. Left doublet, and right doublet 

4
correspond to axial and equatorial Fluorines in C1 conformation respectively. 

Curiously, the 3JH2H3 and 3JH3H4 coupling constant values (Table 2.1) are also relatively large in 

water solution, suggesting that a major 4C1 chair conformation indeed exists at room 

temperature (see below, in discussion). As for 1b, similar couplings are observed in DMSO-d6 

solution, together with medium-size values (between 4.1 and 7.2 Hz) for the 3JH,OH couplings 

constants, (Table 2.3), and a narrow range of temperature coefficients (between 4.6 and 6.9 

ppb/°) for the hydroxyl groups, (Table 2.4) suggesting the presence of conformational averaging 

around the corresponding C-O bonds. Again, there is no strong intramolecular hydrogen bond 

between the hydroxyl moieties in the employed solvents, in contrast with the observations for 

protected fluorine-containing carbohydrates in non-polar solvents.[13] Long range coupling 

constants could also be detected, from the inspection of the 1H NMR spectrum, between the 

axial fluorine with H2 (medium), H4 (small) and H6’ (2.8 Hz). Again, the corresponding 

heteronuclear 1H-19F NOEs have been observed for the 1H/19F pairs in the HOESY spectrum (Fig. 

2.8). 
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Figure 2.8. Top panel, schematic representation of the three major conformations present for 1a. The 

arrows highlight the existence of NOE cross-peaks. No unique geometry is able to completely explain the 

NOE data, but a combination of all three represented structures does it.  is defined by (O6-C6-C5-C5a) 

and (O6-C6-C5-C4) torsion angles. The 
4
C1 gt conformer also justifies the H6’/Fax long range coupling 

constant given its relative W-like arrangement between the two coupled nuclei. Left, 2D NOESY spectra 

(700 ms mixing time) of compound 1a at 600 MHz and 298 K in D2O. Key NOEs are highlighted in the strip 

taken at H3 frequency. Right, 
1
H-

19
F HOESY spectrum (470/500 MHz Bruker spectrometer) of 1a in D2O in 

the presence of 20% methanol (800 ms mixing time). 

Indeed, additional information on the geometry of 1a has been obtained through the careful 

analysis of the 1H/1H homo and 1H/19F heteronuclear NOE experiments. Two key cross peaks 

have been observed for 1a. There is a medium size H3/H6 NOE, and a weak H3/H6’ one. 

Moreover, a clear heteronuclear H6/Feq NOE has been also observed, while the corresponding 

H6’/Feq NOE is rather weak. The vicinal couplings between the two H6 protons in 1a and the 

corresponding OH6 are somehow different (2.6 Hz of difference). These findings are only 

compatible with the existence of conformational averaging in solution. The HOESY spectrum in 

DMSO (Fig. 2.9) showed the Fax/OH5 NOE, besides those observed in D2O solution. No NOEs 

with other hydroxyl groups have been observed for the two 19F atoms. 
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Figure 2.9. On the top, HOESY 1D spectrum of 

compound 1a, in DMSO-d6. Below, proton 

spectrum. The hydroxyl protons are labeled. The 

NOEs signals at upper field are related to ring 

protons. From lower to upper field: H1, H2, and 

H4 respectively. The NOE signal at lower field is 

in between the axial fluorine and the proton of 

the hydroxyl group 5. 

The observed data suggests that the differences in the 19F NMR spectra between 1b and 1a 

derive from a different dynamic behavior of both molecules. Nevertheless, still for 1a, the 

relatively large 3JH2H3 and 3JH3H4 coupling constant values point out the existence of a major 4C1 

conformation for the six-membered ring. Moreover, the simultaneous spatial proximity between 

the H3/H6 and Feq/H6 pairs, together with the through space coupling constant between Fax 

and H6’ strongly suggest the existence of two orientations around C5-C6, as schematized in 

figure 2.8. In order to justify the weak H6’/Feq NOE, a minor contribution of the 2S5a conformer 

has to be also considered (see below). Low-temperature NMR experiments in water solution 

(with 20% methanol) provided additional information on the nature of the conformational 

equilibrium. It has been observed that H1 shifted downfield upon decreasing temperature, while 

H2, H3 and H4 shifted upfield (Figure 2.10). Strikingly, H6 and H6’ interchanged chemical shifts 

during the cooling process. As mentioned above, the axial 19F NMR signal became sharper at low 

temperature and no additional 19F signals appear. 

49 



 
 

 

              

          

           

         

           

 

 

 

     

    

           

    

       

     

      

 

 

 

            

   

   

Figure 2.10. On the left, (top) 
1
H-{

19
F} decoupled spectrum. (bottom) 

1
H NMR spectrum of 1a at 298 K in 

D2O. Notice the solved H2, H4, H1 and H6’ signals. On the right, 
1
H NMR spectra between 248 (bottom), 

263 (middle) and 298 K (top) in D2O in the presence of 20% methanol. Methanol has been used as internal 

reference. 500 MHz Bruker spectrometer. Notice that H1 move downfield upon decreasing temperature, 

while H2, H3 and H4 move upfield. Strikingly, H6 and H6’ interchanged chemical shifts during the cooling 

process. 

Compound 2 

The 19F NMR spectrum of 2 displayed two broad 19F NMR signals (Fig. 2.11) at room 

temperature. Interestingly, the signals sharpened in a noticeable manner upon decreasing the 

temperature and two new clear 19F NMR signals appeared at 253 K, using a 20% of methanol. 

The conformational equilibrium is slow in the 19F NMR chemical shift scale at this temperature. 

Using the observed coalescence temperature between 283 K and 298 K and the estimated 

chemical shift difference of the two set of fluorine signals at 253 K, the energy barrier was 

calculated to be ca. 11.8 ±0.4 kcal∙mol-1 .[14] The relative populations of the two signals were 

70:30, indicating that the free energy difference was of only ca. 0.4 kcal∙mol-1 . 

Figure 2.11. Variable temperature 
1
H NMR (left) and decoupled 

19
F-{

1
H} NMR spectrum (right) of 2 in D2O 

(with 20% methanol) at 500 (
1
H) or 470 (

19
F) MHz. A) 318 K; B) 298 K; C) 283 K; D) 273 K; E) 263 K; F) 253 K. 

Notice that the chemical shifts of the 
1
H NMR signals do not show major shifts with temperature. 
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Because of the severe proton overlapping, the J coupling constants were extracted from spectral 

simulation. (Fig. 2.12). The 3JH2H3 and 3JH3H4 (Table 2.1) values were intermediate (ca. 5.5 Hz for 

both) in solution, suggesting the presence of a conformational equilibrium, as shown by the two 

sets of 19F signals at 253 K. In contrast to the observations for 1a, in this case, it was observed 

that none of the 1H NMR signals was significantly shifted at low temperature. As will be 

described below, this behavior also contains key conformational information. 

Figure 2.12. Top. Simulated 
1
H NMR spectrum using Mestre Nova. Bottom 

1
H NMR spectrum of 2 in D2O in 

the presence of 20% methanol. Methanol used as internal reference. 

Table 2.1. 3JHH and nJHF coupling constants for 1a, 1b, 2 [Hz] in D2O solution at 300 K and 500 MHz. 

Molecule 3JH1H2 
3JH2H3 

3JH3H4 
3JH4H5 

2JH6H6’ 
3JH1Fax 

3JH1Feq JH2Fax JH4Fax JH6Fax 
4JH6’Feq 

2JFeqFax 

1a 4.1 9.0 9.5 - 12.5 3.8$ 7.3$ 3.3 2.1 <1 2.8 270.0 

1b 3.6 10.0 10.0 - 12.5 1.7 3.7 2.5 3.4 1.2 - 278.0 

2 3.3 5.5 5.5 4.3 11.5 2.0 9.0 2.8 2.8 n.a. - 270.0 

Glc 3.8 9.8 9.1 10.1 12.3 - - - - - - -

Ido 1.7 4.1 4.6 2.5 - - - - - - - -

The observed values are in agreement with those expected for a very predominant 
4
C1 conformation for 

1a and 1b isomers, while intermediate values for 2 are observed. The experimental J-coupling values for 

natural compounds are also provided. $ Estimated from the corresponding 
1
H NMR spectroscopic signals. 
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Table 2.2. 
1
H and 

19
F NMR chemical shifts for 1a, 1b, 2 [Hz] in D2O solution at 300 K and 500 MHz. 

Molecule H1 H2 H3 H4 H5 H6 H6’ Fax Feq Ome 

1a 3.82 3.64 3.60 3.50 - 3.89 3.96 -109.10 -119.40 3.48 

1b 3.75 3.54 3.72 3.42 - 3.66 3.76 -110.20 -119.40 3.47 

2 3.80 3.90 3.92 3.55 2.58 4.00 3.96 -98.70 -110.0 3.56 

Glc 4.79 3.54 3.65 3.38 3.63 3.85 3.74 - - 3.50 

Ido 4.69 3.53 3.73 3.75 4.09 3.79 3.82 - - 3.45 

Experimental chemical shift data for Methyl--L-idopyranoside and Methyl--D-glucopyranoside are also 

provided. 

Table 2.3. Observed 3JH,OH coupling constants [Hz] in DMSO-d6 solution at 300 K and 500 MHz. 

Molecule Coupling constants [Hz] 

3 3 3 3 3JH4,OH4 JH2,OH2 JH3,OH3 JH6’,OH6 JH6,OH6 

1a 5.5 4.1 5.6 4.6 7.2 

1b 6.1 5.0 6.6 5.9 5.9 

Table 2.4. Temperature coefficients measured for the different hydroxyl groups of 1a and 1b, from the 

analysis of the 
1
H NMR spectra recorded in DMSO-d6 between 298 and 343 K. The temperature 

coefficients of the fluorine atoms were deduced in D2O using the same temperature range. 

Molecule T (ppb/K) 

Fax Feq OH4 OH2 OH3 OH6 OH5 

1a 8.4 17.2 6.9 6.5 6.5 5.1 4.6 

1b 18 20 6.2 7.0 7.0 5.7 4.9 
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2.2.2 Computational analysis. The molecular modelling protocol described in the Methods 

section was adopted for structure assessment, providing different possible conformers for the 

molecules discussed here. Fig. 2.13. 

Figure 2.13. Ball and stick representation and relative steric energy values of the major conformers of 1a, 

1b, and 2, according to DFT calculations. 

For the Glc-configurated 1b, the theoretical calculations satisfactorily predicted the 4C1 as unique 

possible conformer. The other two local minima, 1C4 and 1S3, displayed much larger relative free 

energy, ca. 11.0 kcal∙mol-1 and 8.0 kcal∙mol-1, respectively. For this system, the transition state 

structures were also deduced. The activation energies to reach intermediate states were 

estimated as ca. 15.0 kcal∙mol-1 for the 3E envelope and 13.5 kcal∙mol-1 for the 5aH5 half-chair 

shapes. (see SI Table 2.1) 

For 2, the alternative 1C4 chair was predicted as the global minimum, with the 4C1 chair 

destabilized in ca. 1.7 kcal∙mol-1. In this case, the equatorial orientation of the two bulky groups 

is probably the driving force for the calculated energy values. In this case, the 2S5a conformer 

displayed the less favorable energy value. 
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For 1a, the 1C4 form was strongly destabilized with respect to the global minimum, the 4C1 

conformer. The presence of several 1,3-diaxially oriented groups provides the structural basis for 

these predictions. The 2S5a skew boat displays most of the bulky groups in pseudo equatorial 

orientations, resulting in a relative low destabilizing energy value (4.0 kcal∙mol-1). 

As mentioned above, the conformational behavior of idose rings and derivatives thereof has 

been a matter of investigation for years.[2,10,15,16] It is well known that for L-idopyranoses, the 

theoretically more favorable 1C4 chair displays three axially oriented hydroxyl groups, with the 

corresponding steric consequences. The alternative 4C1 chair places the bulky hydroxymethyl 

group at the axial orientation, with the corresponding collapse. Therefore, alternative skew-boat 

conformers are also present in the conformational equilibrium, depending on the hydroxyl 

solvent.[17,18,19] substitution, chemical environment and Therefore, the description of the 

conformational flexibility of these rings in terms of thermodynamic parameters as activation free 

energy, and entropic and enthalpy contributions to the Gibbs free energy difference represents 

a challenge to the experimental study. Such a description implies access to a detailed and 

accurate proton-proton coupling constant analysis, which is hampered by signal broadening 

and/or overlapping. In fact, the situation becomes even more arduous, and most of the times 

inaccessible, in cases of fast and medium conformational equilibria in the NMR chemical shift 

time scale, especially when it involves entropically favored isoforms such as skew boat 

conformers, which it is often the case of idose ring derivatives. 

For ido-like sugars, flexibility is intrinsically related to biological activity.[20,21] The sulfated L

iduronic rings represent the paradigmatic example of how plasticity modulates the interaction 

with biological receptors. From the chemical perspective, these molecular recognition processes 

are the consequence of the balance between enthalpy and entropy factors and 

solvation/desolvation effects. In this context, since conformational entropy becomes an issue, it 

is essential to consider that the conformational entropy of chair and skew boat conformers is 

intrinsically different. Chair conformers are defined in well-characterized potential energy wells, 

while the conformational entropy of skew boat conformers is larger, due to the low-energy cost 

geometry interconversions that conduct to basically the same conformer. The energy well for 

skew boat conformers is much wider than that for the chairs. 

Under these premises, the obtained results can now be accounted for in a satisfactory manner. 

Compound 1b (Glc-like) displays exclusively the 4C1 chair conformer with a very well defined 

geometry, as in the natural compound. (Table 2.5). Compound 2, similarly to the natural Ido-like 

molecule, displays significant conformational flexibility. 19F-based variable temperature 

experiments demonstrate the existence of a conformational equilibrium between two forms 
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with a ca. 70:30 population distribution. The observed coupling constants are in fact in 

agreement with a 70:30 distribution between the canonical 4C1 (minor) and 1C4 (major) chair 

forms (Table 2.6). No changes in either chemical shifts or coupling constants are observed with 

temperature, indicating that the conformational distribution is temperature-independent. 

Therefore, the conformational entropy of the contributing geometries is similar, as expected for 

the two alternative 4C1 and 1C4 chair conformers. The free energy difference between the two 

forms is ca. 0.4 kcal∙mol-1, favoring the 1C4 chair in the same trend as the energy differences 

estimated by the calculations. The energy barrier for interconversion is relatively low (ca. 11.8 

kcal∙mol-1), extremely difficult to access by variable temperature 1H NMR experiments in water 

solution. The use of 19F-NMR has permitted to access this value, due to the wide chemical shift 

difference between both conformers (ca 3 ppm, 1500 Hz), making possible, at low temperature, 

to reduce the exchange rate below such frequency thus appearing the system under slow 

exchange regime in the 19F chemical shift scale (it was not possible to determine the amplitude 

of proton chemical shift difference between both conformers but, as a gross approximation, 

comparing delta of protons H2 and H3 in compound 1b (4C1) and 2 (preferentially 1C4) the 

differences are in the order of 0.3 ppm or 150 Hz (table 2.2), one order of magnitude smaller 

than in the 19F chemical shifts). Indeed, computational chemistry calculations using ab initio 

methods (DFT (B3LYP) in vacuum with the different basis sets: 6-31++G, for the 4C1 and 1C4 

geometries; 6-31++G +freq, for 2S5a; and 6-31++GTS +freq, for 3E and 5aH5), provided energy 

values fairly similar to those experimentally detected (12.5 kcal∙mol-1 for 3E and 13.0 for 5aH5). 

(see SI Table 2.1). 

In contrast, compound 1a shows a singular conformational behavior. The chemical shift and 

coupling constant values drastically changed upon temperature variation (Fig. 2.10) indicating 

that its conformational distributions depend on the temperature. This observation strongly 

suggests that the conformational entropy of the contributing geometries is different. At low 

temperature, the enthalpy-favored conformer should be predominant, since the entropy 

contribution to free energy will be largely attenuated (G=H-TS). Fittingly, H2, H3 and H4 shift 

upfield more than 0.1 ppm upon decreasing temperature. Concomitantly, H1 shifted downfield. 

This fact evidences that, at low temperature, the predominant conformer of 1a displays H2, H3 

and H4 in axial orientation, while H1 shows an equatorial arrangement. Therefore, the major 

and enthalpy-favored conformer is the 4C1 chair. The other participating conformer should 

display a skew boat geometry since its contribution to the conformational equilibrium strongly 

decreases at low temperature. Computational chemistry calculations found the 2S5a conformer 

as the most stable skew boat form, with a relative energy of ca. 4.0 kcal∙mol-1 with respect to the 
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4C1 chair. The 1C4 form was strongly destabilized, in more than 10 kcal∙mol-1. In fact, for the 2S5a 

conformer, H2, H3 and H4 display a quasi-axial orientation, providing large 3JH2H3 and 3JH3H4 

couplings. Since these observed 3JH2H3 and 3JH3H4 couplings at room temperature for both 

molecules were already rather large (above 9 Hz), the contribution of the skew boat conformers 

would have been clearly neglected from the inspection of the 1H and 13C NMR spectra, unless 

the 19F NMR spectra would not have shown dramatically broad signals. (Table 2.7). 

Interestingly, the conformational behavior of these 19F-containing glycomimetics remarkably 

resembles the intrinsic flexibility of the natural Ido-configurated sugars. Although this fact might 

not be completely surprising, as a matter of fact, regular Ido-like carbasugars,[22] with a CH2 

group mimicking the endocyclic oxygen, did not show any conformational plasticity (see SI Table 

2.1). In contrast, the molecules presented herein, with CF2 moieties, show important 

conformational plasticity resembling the behavior of endocyclic oxygen in natural carbohydrates. 

The dynamic process has been quantified in terms of energy barriers and free energy 

differences. The destabilizing energies for the 4C1 conformer in 2 is 0.4 kcal∙mol-1 above that for 

the 1C4 chair. However, when C5 is modified (as in 1a, with one additional OH substituent), there 

is a participation of skew boat conformers, while the proportion of the 1C4 conformer is strongly 

diminished. The OH3 group displays an equatorial orientation in the 4C1 and 2S5a geometries, 

minimizing the influence of steric conflicts with the additional OH5. However, it would adopt an 

axial disposition in the 1C4 form, provoking important additional steric clashes. For the Glc-like 

molecules, the conformational behavior of the CF2 analogue also mimics that of natural 

glucopyranosides. Therefore, these glycomimetics can behave as conformational bioisosters. 
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nTable 2.5. Experimental and calculated 3JHH and JHF coupling constants for different conformers of 1b 

[Hz] in D2O solution at 300 K and 500 MHz. The observed values are in agreement with those expected for 

a unique 
4
C1 conformation. 

3 3 3 2 3 3 4 2
Conformer JH1H2 JH2H3 JH3H4 JH6H6’ JH1Fax JH1Feq JH2Fax JH4Fax JH6Fax JH6Feq JH6’Fax JH2Feq JH4Feq JH6’Feq JFeqFax 

1C4 3.6 3.6 3.1 13.3 3.8 6.5 3.9 4.3 0.5 2.0 1.3 2.2 0.4 4.3 255.0 
4C1 4.1 9.2 9.1 12.8 1.5 2.6 2.6 2.4 1.6 0.5 0.3 1.9 1.2 0.5 280.0 
1S3 8.5 9.3 6.8 8.3 7.6 7.1 0.3 2.6 1.7 1.2 1.0 0.3 0.9 1.8 239.0 

Experimental 3.6 10.0 10.0 12.5 1.7 3.7 2.5 3.4 1.2 n.a n.a 2.0 n.a n.a 278.0 

Table 2.6. Experimental and calculated 3JHH and nJHF coupling constants for different conformers and 

ensemble average structure of 2 [Hz] in D2O solution at 300 K and 500 MHz. The observed values are in 

agreement with those expected for an 70:30 average 
1
C4: 

4
C1 conformation. 

3 3 3 3 3 3 3 3 2 3 3
Conformer JH1H2 JH2H3 JH3H4 JH4H5 JH5H6 JH5H6’ JH5Feq JH1Feq JH6H6’ JH1Fax JH5Fax JH2Fax JH2Feq JH4Fax JH4Feq 

1C4 3.0 3.0 2.9 1.8 5.5 7.5 22.5 13.5 10.2 0.3 0.6 5.1 2.0 3.8 0.4 
4C1 3.9 9.2 9.1 8.6 5.2 7.2 2.9 3.6 13.2 2.4 1.5 2.6 2.5 0.7 1.7 
1C4(70%)4C1(30%) 3.3 5.0 4.7 3.8 5.4 7.4 16.6 10.5 11.1 1.0 0.9 4.3 2.0 2.8 0.8 

Experimental 3.3 5.5 5.5 4.3 5.3 6.5 14.0 9.0 11.5 2.0 5.0 2.8 n.a 2.8 1.5 

Table 2.7. Experimental and calculated 3JHH and nJHF coupling constants for different conformers and 

ensemble average structure of 1a [Hz] in D2O solution at 300 K and 500 MHz. The observed values are in 

agreement with those expected for an average 
4
C1: 

2
S5a conformation. 

3 3 3 2 3 3 4 2
Conformer JH1H2 JH2H3 JH3H4 JH6H6’ JH1Fax JH1Feq JH2Fax JH4Fax JH6Fax JH6Feq JH6’Fax JH2Feq JH4Feq JH6’Feq JFeqFax 

1C4 3.0 3.0 2.9 8.1 2.6 9.2 4.2 4.1 1.4 1.4 0.8 2.4 0.8 0.0 246.0 
4C1 3.9 9.2 9.1 12.3 0.5 4.5 2.3 3.0 1.0 0.4 4.2 1.7 1.4 0.2 256.0 
2S5a 5.3 8.0 9.6 14.4 8.4 12.4 6.2 1.5 0.4 0.5 0.1 1.6 0.9 4.6 230.0 
4C1(75%)2S5a(25%) 4.2 8.9 9.2 12.9 2.5 6.5 3.4 2.6 0.8 0.4 3.2 1.7 1.2 1.3 248.0 

Experimental 4.1 9.0 9.5 12.5 3.8 7.3 3.3 2.1 <1 0.0 2.8 2.0 1.2 0.0 270.0 
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2.3 Conclusions 

A new generation of fluorine-containing glycomimetics is presented. The importance of 

introducing fluorine atoms in these glycomimetics is also highlighted. First, only the use of 19F 

NMR experiments has permitted to detect a dynamic process of paramount significance that 

would have been otherwise remained unobserved. Additionally, only in the presence of fluorine 

atoms at C5a, the Ido-like six-membered ring recovers its required flexibility, absent in regular 

CH2-Ido-carbasugars,[11] while the presence of a bulky substituent at position C5 strongly reduces 

the ring flexibility and introduces important steric clashes. Herein, we demonstrate that the 

presence of the fluorine in the ring restores the plasticity of Ido-like six-membered rings. 

Thus, the combination of NMR experiments and computational methods has permitted to show 

that these idose-like analogues resemble the conformational plasticity of the natural parent 

molecules that is anticipated to be required for key molecular recognition process and ultimately 

for biological activity. 

2.4 Methods 

2.4.1 NMR Spectroscopy: 19F NMR experiments were performed at 470 MHz with a Bruker 

AVANCE spectrometer equipped with the proper fluorine probe SEF, at 298 K unless otherwise 

stated while low temperature experiments were done with Bruker DRX 500 MHz equipped with 

BBOF plus probe. 1H NMR experiments were performed at 600 and 700 MHz with a Bruker 

AVANCE spectrometer equipped with TXI probe. Experiments were performed in D2O, DMSO-d6 

and in D2O in the presence of 20% methanol for low temperature analysis. The concentration 

employed was 2mM for all the discussed molecules. In addition to standard 1D 1H NMR spectra, 

COSY, TOCSY, NOESY and HOESY (800 ms mixing time) and 1H/ 13C HSQC experiments based on 

the standard BRUKER sequences were also acquired, in order to assign the resonance of all NMR 

signals. Because of the severe proton overlapping, the J coupling constants were extracted from 

spectral simulation using MestreNova software. The method of determining activation energy 

parameters is through the estimation of the coalescence temperature and chemical shift 

difference for each fluorine signals measured in the spectrum at lower temperature (253 K) 

giving 2900 Hz for low field signals and 4010 Hz for higher field signals.[14] The exchange rate for 

both fluorine signals can be now estimated applying the equation: 
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Observing the fluorine NMR spectra at different temperature (Figure 2.11) it was possible to 

enclose the activation energy barrier between the limiting values calculated for 283 K and 298 K 

applying the Eyring equation: 

! ! 

Where R is the gas constant, Tc the coalescence temperature, k the Boltzmann constant, h the Planck 

constant and kc the determined exchange rate. 

With this equation the activation energy barrier relative to the low field signal lies between the 

limiting values of 11.6 kcal∙mol-1 at 283 K and 12.2 kcal∙mol-1 at 298 K, giving an average value of 

11.9 kcal∙mol-1 at the estimated coalescence temperature of 290 K, while for high field signal it 

lies between 11.4 and 12.0 kcal∙mol-1 with an average value of 11.7 kcal∙mol-1 at 290 K. The final 

estimation for activation energy is G‡ = 11.8 kcal∙mol-1 ± 0.4. 

2.4.2 Computational Methods: A conformational search on these molecules 1a, 1b, and 2 was 

performed by using Macromodel at the Maestro suite of programs, with the MM3* force field. 

Different local minima conformers were chosen within a conservative 20 kcal∙mol-1 threshold 

from the global minimum. Their expected coupling constant values and proton-proton distances 

(related to NOEs) were estimated from the corresponding structures using Maestro. The 

transition-state geometries for the interconversion process were chosen based on the well 

known Cremer-Pople sphere conformational routes. Then, the MM3*-optimized structures were 

used as starting conformations for additional calculations. Thus, density functional theory (DFT) 

geometry optimizations were performed with the Gaussian 03 program using the hybrid B3LYP 

functional and the 6-31++G(d,p) basis set followed by vibrational frequency analysis. This 

protocol allowed assessing whether the optimized structures were true energy minima, 

transition states, or saddle points. For the transition states structures, the final geometry 

optimization was achieved by applying the TS Berny algorithm. In all cases, the presence of 

solvent was accounted for by the integral equation formalism polarizable continuum model 

(IEFPCM). The NMR isotropic shielding constants were calculated using the standard Gauge 

Independent Atomic Orbital (GIAO) approach. The experimental and calculated NMR coupling 

constants were then compared. 
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2.5 Supporting Information 

Table 2.1 SI. Optimized Conformations and Relative Thermodynamic Stabilities (related to the lowest 

energy conformer) of Compounds 1a-1b-2 and of Compounds Ido (Methyl--L-Idopyranoside) and CH2-Ido 

(Carbasugar). DFT calculations with B3LYP/6-31++G(d,p) indicates minor ring flexibility for methylene 

carbasugars respect to fluoro-carbasugars. In the case of the natural sugar, Methyl--L-Idopyranoside, the 

plasticity of the ring is evidenced. 

Structure Ring conformation Flap 
atoms 

G° m,calc 
(kcal/mol) Selected bond lengths (Å) Selected atoms 

charge 

1a 4C1 

Chair 

C4; C1 0.0 Fax-C5a 1.43956; Feq-C5a 1.41316 
C5a-C1 1.53842; C1-C2 1.54228 
C2-C3 1.53565; C3-C4 1.52543 
C4-C5 1.54362; C5-C6 1.54701 
C5-C5a 1.53889; C1-O1 1.44815 

C5-O5 1.45741 

Fax -0.342323; 
Feq -0.326481 

C5a 0.344813; C1 
-0.011405 

C5 0.170801; C6 
-0.200980 

O1 -0.334405; O5 
-0.585938 

O6 -0.510305 

Imaginary Frequency 

0 

1a 5aH5 

Half Chair 
C5a;C5 13.5 Fax-C5a 1.45058; Feq-C5a 1.41583 

C5a-C1 1.55688; C1-C2 1.53422 
C2-C3 1.52607; C3-C4 1.51820 
C4-C5 1.55686; C5-C6 1.55093 
C5-C5a 1.58954; C1-O1 1.44813 

C5-O5 1.46562 

Fax -0.218683; 
Feq -0.132654 

C5a 0.197905; C1 
-0.165365 

C5 -0.022661; 
C6 -0.271305 

O1 -0.254422; O5 
-0.380270 

O6 -0.519556 

Imaginary Frequency 

1 

1a 2S5a 

Skew boat 

C2; C5a 4.0 Fax-C5a 1.35723; Feq-C5a 1.35514 
C5a-C1 1.53712; C1-C2 1.54693 
C2-C3 1.55376; C3-C4 1.53638 
C4-C5 1.56245; C5-C6 1.54561 
C5-C5a 1.55756; C1-O1 1.43879 

C5-O5 1.44583 

Fax -0.331818; 
Feq -0.283616 

C5a 0.396607; C1 
-0.395338 

C5 0.121481; C6 
-0.209145 

O1 -0.382483; O5 
-0.531553 

O6 -0.571920 

Imaginary Frequency 

0 

1a 3E 

Envelope 
C3 14.0 

Fax-C5a 1.45067; Feq-C5a 1.41571 
C5a-C1 1.55676; C1-C2 1.53407 
C2-C3 1.52610; C3-C4 1.51821 
C4-C5 1.55699; C5-C6 1.55092 
C5-C5a 1.58974; C1-O1 1.44812 

C5-O5 1.46570 

Fax -0.21859; Feq 
-0.132500 

C5a 0.19515; C1 
-0.16671 

C5 -0.023495; 
C6 -0.270054 

O1 -0.254093; O5 
-0.380422 

O6 -0.519513 

Imaginary Frequency 

1 

1a 1C4 

Chair C1; C4 10.0 
Fax-C5a 1.38720; Feq-C5a 1.38334 
C5a-C1 1.53665; C1-C2 1.54124 
C2-C3 1.54213; C3-C4 1.54850 
C4-C5 1.56387; C5-C6 1.53463 
C5-C5a 1.54567; C1-O1 1.41709 

C5-O5 1.43459 

Fax -0.315879; 
Feq -0.284173 
C5a 0.716041; 
C1 -0.512203 

C5 -0.467328; 
C6 +0.167238 

O1 -0.269825; O5 
-0.531553 

O6 -0.660548 

Imaginary Frequency 

0 
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1b 4C1 

Chair 
C4; C1 0.0 

Fax-C5a 1.35706; Feq-C5a 1.35560 
C5a-C1 1.54588; C1-C2 1.53954 
C2-C3 1.54211; C3-C4 1.54389 
C4-C5 1.54414; C5-C6 1.54461 
C5-C5a 1.55109; C1-O1 1.43734 

C5-O5 1.44214 

Fax -0.269793; 
Feq -0.341537 
C5a 0.416180; 
C1 -0.161477 

C5 0.010982; C6 
0.239725 

O1 -0.248329; O5 
-0.513954 O6 -

0.607389 

Imaginary Frequency 

0 

1b 5aH5 

Half Chair 
C5a;C5 13.5 

Fax-C5a 1.42635; Feq-C5a 1.42178 
C5a-C1 1.54274; C1-C2 1.56530 
C2-C3 1.52390; C3-C4 1.52624 
C4-C5 1.57202; C5-C6 1.53262 
C5-C5a 1.55224; C1-O1 1.44121 

C5-O5 1.43986 

Fax -0.187195; 
Feq -0.139305 
C5a 0.336574; 
C1 -0.181908 

C5 -0.542419; 
C6 -0.131974 

O1 -0.140100; O5 
-0.393859 O6 -

0.668517 

Imaginary Frequency 

1 

1b 1C4 

Chair 
C1; C4 11.0 

Fax-C5a 1.35305; Feq-C5a 1.35576 
C5a-C1 1.54863; C1-C2 1.53963 
C2-C3 1.53732; C3-C4 1.54383 
C4-C5 1.54051; C5-C6 1.53709 
C5-C5a 1.52492; C1-O1 1.44089 

C5-O5 1.41001 

Fax -0.373125; 
Feq -0.298781 
C5a 0.811003; 
C1 -0.151437 

C5 0.313122; C6 
0.046358 

O1 -0.375614; O5 
-0.566436 O6 -

0.651274 

Imaginary Frequency 

0 

1b 3E 

Envelope 

C3 15.0 Fax-C5a 1.44420; Feq-C5a 1.41051 
C5a-C1 1.56234; C1-C2 1.57107 
C2-C3 1.53472; C3-C4 1.52026 
C4-C5 1.53581; C5-C6 1.55698 
C5-C5a 1.54155; C1-O1 1.44034 

C5-O5 1.45677 

Fax -0.117127; 
Feq -0.161451 

C5a -0.102798; 
C1 -0.552383 

C5 0.354594; C6 
0.155486 

O1 -0.327271; O5 
-0.487561; O6 -

0.503988 

Imaginary Frequency 

1 

1b 1S3 

Skew boat C1; C3 8.0 
Fax-C5a 1.35687; Feq-C5a 1.35827 
C5a-C1 1.55281; C1-C2 1.55596 
C2-C3 1.53445; C3-C4 1.54534 
C4-C5 1.56233; C5-C6 1.54124 
C5-C5a 1.54948; C1-O1 1.44253 

C5-O5 1.45100 

Fax -0.343562; 
Feq -0.303648 
C5a 0.931232; 
C1 -0.112874 

C5 -0.152003; 
C6 -0.081032 

O1 -0.381354; O5 
-0.542436 O6 -

0.651124 

Imaginary Frequency 

0 

2 1C4 

Chair C1; C4 0.0 
Fax-C5a 1.35305; Feq-C5a 1.35576 
C5a-C1 1.54863; C1-C2 1.53963 
C2-C3 1.53732; C3-C4 1.54382 
C4-C5 1.54051; C5-C6 1.53708 
C5-C5a 1.52492; C1-O1 1.44089 

Fax -0.357254; 
Feq -0.299348 
C5a 0.374882; 
C1 -0.024751 

C5 0.289206; C6 
-0.258116 

O1 -0.378896; O6 
-0.612554 

Imaginary Frequency 

0 

2 5aH5 

Half Chair 
C5a;C5 13.0 

Fax-C5a 1.44077; Feq-C5a 1.39573 
C5a-C1 1.55454; C1-C2 1.53422 
C2-C3 1.51803; C3-C4 1.52620 
C4-C5 1.54884; C5-C6 1.54923 
C5-C5a 1.59152; C1-O1 1.45012 

Fax -0.322553; 
Feq -0.313336 
C5a 0.354992; 
C1 -0.030081 

C5 0.290105; C6 
-0.261114 

O1 -0.376789; O6 
-0.62253 

Imaginary Frequency 

1 
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2 4C1 

Chair 
C4; C1 1.7 

Fax-C5a 1.35713; Feq-C5a 1.35556 
C5a-C1 1.54591; C1-C2 1.53950 
C2-C3 1.54215; C3-C4 1.543882 
C4-C5 1.54410; C5-C6 1.54453 
C5-C5a 1.55110; C1-O1 1.43732 

Fax -0.309334; 
Feq -0.333848 
C5a 0.227588; 
C1 -0.043661 

C5 0.148949; C6 
-0.251668 

O1 -0.318747; O6 
-0.536749 

Imaginary Frequency 

0 

2 3E 

Envelop 
C3 12.5 

Fax-C5a 1.44288; Feq-C5a 1.42684 C5a-C1 1.550221; 
C5a-C1 1.55767; C1-C2 1.52994; C2-C3 1.52803; C3-
C4 1.51602; C4-C5 1.554989; C5-C6 1.550844; C5-C5a 

1.588947: C1-O1 1.44784 

Fax -0.22464; Feq 
-0.172542 

C5a 0.207588; 
C1 -0.144362 

C5 0.153628; C6 
-0.261586 

O1 -0.289446; O6 
-0.516738 

Imaginary Frequency 

1 

2 2S5a 

Skew boat C2; C5a 5.0 
Fax-C5a 1.35723; Feq-C5a 1.35514 
C5a-C1 1.53712; C1-C2 1.54693 
C2-C3 1.55376; C3-C4 1.53638 
C4-C5 1.56245; C5-C6 1.54561 
C5-C5a 1.55756; C1-O1 1.43879 

Fax -0.335046; 
Feq -0.305884 
C5a 0.181858; 
C1 -0.191234 

C5 0.125636; C6 
-0.280518 

O1 -0.384653; O6 
-0.571941 

Imaginary Frequency 

0 

Structure Ring conformation Flap 
atoms 

G° m,calc 
(kcal/mol) Selected bond lengths (Å) Selected atoms 

charge 

Ido 4C1 

Chair 

C4; C1 0.3 
O5-C1 1.41375; C1-C2 1.53701 
C2-C3 1.53018; C3-C4 1.52566 
C4-C5 1.53987; C5-C6 1.53648 
C5-O5 1.44222; C1-O1 1.41240 

O1 -0.324480; 
O5 -0.238686; 
C1 -0.031640 
C2 -0.365494; 
C3 0.320474 
C4 -0.216140; 
C5 0.038237 
C6 -0.233577 

Imaginary Frequency 

0 

Ido 1S3 

Skew boat 
C1; C3 3.0 O5-C1 1.42055; C1-C2 1.55182 

C2-C3 1.53199; C3-C4 1.52718 
C4-C5 1.55888; C5-C6 1.53436 
C5-O5 1.43907; C1-O1 1.38965 

O1 -0.357819; 
O5 -0.353587; 
C1 0.158253 
C2 -0.169525; 
C3 0.174443 
C4 -0.198965; 
C5 -0.233237 
C6 -0.024668 

Imaginary Frequency 

0 

Ido 1C4 

Chair C1; C4 0.0 
O5-C1 1.42108; C1-C2 1.53479 
C2-C3 1.53561; C3-C4 1.54573 

C4-C5 1.53965; C5-C6 1.52276 
C5-O5 1.43523; C1-O1 1.39676 

O1 -0.344493; 
O5 -0.349919; 
C1 0.086719 
C2 -0.129037; 
C3 0.087769 
C4 -0.062110; 
C5 -0.349550 
C6 -0.060004 

Imaginary Frequency 

0 

CH2Ido 

1C4 

Chair 
C1; C4 12.0 

Hax-C5a 1.09470; Heq-C5a 1.09531 
C5a-C1 1.53784; C1-C2 1.53383 
C2-C3 1.54095; C3-C4 1.54550 
C4-C5 1.55883; C5-C6 1.53162 
C5-C5a 1.53415; C1-O1 1.43243 

C5-O5 1.444874 

Hax 0.132963 
Heq 0.206132 

C5a -0.574254 
C1 -0.545914 
C5 0.442489 
C6 -0.220086 
O1 -0.322411 
O5 -0.530056 
O6 -0.554663 

Imaginary Frequency 

0 
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CH2Ido 

Chair C4; C1 0.0 
Hax-C5a 1.09665; Heq-C5a 1.09301 
C5a-C1 1.53914; C1-C2 1.53599 

Hax 0.179992 
Heq 0.143318 
C5a -0.430828 
C1 0.282794 C2-C3 1.53457; C3-C4 1.52571 C5 -0.165423 

4C1 Imaginary Frequency C4-C5 1.53763; C5-C6 1.54539 
C5-C5a 1.53865; C1-O1 1.43229 

C5-O5 1.44325 

C6 -0.122076 
O1 -0.343676; 
O5 -0.474192; 
O6 -0.441194 0 

CH2Ido 

Skew boat C2;C5a 6.4 
Hax-C5a 1.09732; Heq-C5a 1.09486 
C5a-C1 1.54804; C1-C2 1.54823 

Hax 0.136309 
Heq 0.209956 
C5a -0.466162 
C1 -0.151929 C2-C3 1.53063; C3-C4 1.52714 C5 -0.073664 

2S5a Imaginary Frequency C4-C5 1.55832; C5-C6 1.54633 
C5-C5a 1.53777; C1-O1 1.43439 C6 0.056863 

O1 -0.324407 C5-O5 1.44513 O5 -0.410273; 
O6 -0.457687 0 
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CHAPTER III
 

gem-diF-carbadisaccharides: the importance of the stereoelectronic component for the exo

anomeric effet 

gem-Difluorocarbadisaccharides: Restoring the exo-Anomeric Effect 

The work presented in this chapter has been performed in collaboration with the group of Dr. 

Matthieu Sollogoub, Sorbonne Université in Paris, France. Dr. Bixue Xu has performed the 

synthesis of the glycomimetics discussed herein. 
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3.1 Introduction 

Molecular mimicry is an essential part of the development of drugs and molecular probes. In the 

chemical glycobiology field, although many glycomimetics have been developed in the past 

years, it has been considered that many failures in their use are related to the lack of the 

anomeric effects in these analogues. Additionally, the origin of the anomeric effects is still the 

subject of virulent scientific debates. The precise understanding of the parameters governing 

those effects is therefore essential to the design of new and more efficient therapeutic 

molecules. More specifically, the replacement of the exocyclic-anomeric oxygen atom by a 

carbon leads to C-glycosides[1] while replacement of the endocyclic one produces carbasugars.[2] 

In both cases, when the aglycone is another glycoside, this transformation leads to non

hydrolysable disaccharide analogues: C-disaccharides and carbadisaccharides. Figure 3.1. 

Figure 3.1. Schematic perspective of the different glycomimetics mentioned in the text. 

In both cases, the conformational behavior of those molecules changes drastically: more 

flexibility in the interglycosidic linkage as well as the population of unnatural conformations are 

observed.[3,4,5,6,7] These changes are often detrimental to the efficient interaction of such 

molecules with target proteins, mainly due to the entropic penalty it induces. This phenomenon 

has been tentatively attributed to the absence of the anomeric effects, especially the exo

anomeric one.[8] The anomeric effects, introduced in the late fifties, still is subject of scientific 

debate,[9,10,11] (see introduction page 10). In the case of the exo-anomeric effect, plausibly, as 

mentioned in the introduction, it has origin in the favorable interaction between a lone pair of 

the exocyclic anomeric oxygen atom with the parallel * orbital of the adjacent C1-O5 bond. 

68 



 
 

         

        

  

      

         

      

       

 

 

 

           

           

              

        

            

  

 

       

 

       

      

     

 

      

      

This favourable interaction with C1-O5 over C1-C2 can be attributed to the different polarization 

between the C1-O5 and C1-C2 bonds, producing a larger * orbital centered on the less 

electronegative atom of the polarized bond. Therefore, the search for closer “stereoelectronic” 

mimics retaining this feature is essential. According to the previous statement, replacement of 

the endocyclic oxygen atom by a CF2 group instead of a CH2 should induce a polarization of the 

C1-CF2 bond and restore the exo-anomeric effect. Figure 3.2. Conversely, when the exo-cyclic 

oxygen is replaced by a CF2 rather than by a CH2 it populates the unnatural non-exo 

conformation due to hyperconjugation of the C1-H1 and C1-C2 bonds with the C-F bonds.[12,13] 

Figure 3.2. Schematic representation of the lone pair-* interactions responsible for the exo-anomeric 

effect. The exo-anomeric conformers are represented in the top row. For the regular glycoside (left), a 

good overlapping between the * and the lone pair is possible. The possibility of restoration of the exo 

anomeric effect in gem-difluoro-carbadisaccharides is presented at the right-hand side. The non-exo 

anomeric geometries are depicted in the bottom row. In this case, no proper overlapping between the * 

and the lone pair is possible for any molecule. 

Herein, by combining NMR, and theoretical calculations, we show that it is possible to restore 

the exo-anomeric effect for an acetal when replacing the endocyclic oxygen atom by a CF2 group. 

This result provides key findings in Glycosciences. On the one hand, it strongly suggests the key 

relevance of the stereoelectronic component of the anomeric effect. On the other hand, as far 

as the the CF2 analogue can adopt the natural glycoside conformation, it might provide new 

avenues for sugar-based drug design. 

In this chapter we therefore embarked in the study of gem-diF-carbadisaccharides to explore the 

possibility to restore the exo-anomeric effect in a sugar mimic and to, consequently, narrow the 
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range of accessible  dihedral angles at the glycosidic linkage similarly as happen with natural O

glycosides. 

3.2 Results and Discussion 

3.2.1 Ab initio calculations. First, we tested our hypothesis in silico. Hence, we performed 

Density functional theory (DFT) calculations on simple methyl -D-glucopyranoside (1a) and its 

CH2 (2a) and CF2 (3a) counterparts. Solvent effects were included using the polarizable 

continuum model (PCM) representing water. The obtained geometries were then submitted to 

Natural Bonding Orbital[14,15,16] (NBO) analysis. We focused our attention on investigating how 

the endo- and exo-anomeric effects were affected by these structural modifications, since NBO 

analysis allows the elucidation of the role of intramolecular orbital interactions. The protocol 

considers all possible interactions between the filled donors and empty acceptors and estimates 

their energetic importance using second-order perturbation theory. For each donor NBO (i) and 

acceptor NBO (j), the stabilization energy E(2) associated with the corresponding electron 

delocalization is estimated as: 

! !!! 

! 

Where qi is the orbital occupancy, εi, εj are the diagonal elements (orbital energies), and Fi,j is the off

diagonal NBO Fock matrix element. 

Table 3.1 lists the calculated stabilization energies corresponding to the anomeric effects. As 

expected, they coexist in the natural glycoside 1a, but disappear in the analogous CH2 

carbasugar 2a. However, the exo-anomeric effect reappears in the gem-diF-carbaglycoside 3a. 

Furthermore, a small but unexpected interaction between a lone pair of the axial fluorine atom 

and the *C1-O1 is also observed, slightly mimicking the endo-anomeric effect. 

(2) -1
Table 3.1. Second-order interaction energy (E , kcal∙mol ) between donor and acceptor orbitals in a 

natural sugar (1a) and analogous carbasugars (2a; CH2, and 3a; CF2). 
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The energy contribution to the exo-anomeric effect in the natural sugar compared to that in the 

corresponding CH2 and CF2 carbasugars clearly suggests that the fluorine atoms, due to their 

high electronegativity, favor the recovery of the exo-anomeric effect through polarization of the 

C1-CF2 bond. The optimized structural parameters of the studied molecules obtained at the DFT 

(B3LYP/6-31++G PCM) level[17] are given in Table 3.2. 

Table 3.2. Selected bond lengths (in Å) for compounds 1a-3a. 

Compound 1a 2a 3a 

C1-C2 1.52816 1.53367 1.54290 

C2-C3 1.52883 1.52779 1.53860 

C3-C4 1.52891 1.52889 1.53044 

C4-C5 1.53293 1.54297 1.54082 

C5-C6 1.52512 1.53131 1.55162 

C1-O1 1.43150 1.47008 1.44414 

C1-O5 1.46277 - -

C1-C5a - 1.53380 1.53438 

C5-O5 1.47763 - -

C5-C5a - 1.54779 1.53899 

C5a-Hax - 1.10037 -

C5a-Heq - 1.09619 -

C5a-Fax - - 1.45071 

C5a-Feq - - 1.42382 
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The calculated bond lengths for 2a and 3a, compared to those of 1a, are in agreement with the 

presence of exo-anomeric effect in 3a (Table 3.2). According to the calculated molecular orbital 

diagrams (Figure 3.3), the uneven electron density distribution in the C1-X5a  bonding orbitals 

for 3a and 1a compared to those of 2a, translates in a better orbital overlapping between the (n) 

lone pair molecular orbital of the exocyclic oxygen and the unoccupied anti-bonding (*) 

molecular orbital at C-1. Moreover, the inductive effect of the electron-withdrawing fluorine 

atoms at C5a also contributes to the preservation of a large stereoelectronic exo-anomeric 

contribution in 3a. 

Figure 3.3. Molecular Orbital representation. On the left, schematic representation of bonding and anti

bonding molecular orbitals (MOs) for the C1-X bond, where X is either O5, or CF2 or CH2 functionalities. 

According to the MOT, the resulting bonding molecular orbital has a lower energy than that of the 

constituent atomic orbitals, while the resulting antibonding molecular orbital * have higher energy 

compared to the constituent atomic orbitals. The higher energy value associated with the atomic orbital of 

the carbon atom of the CH2 compared to that of CF2 and O5, implies a higher energy value for the 

corresponding antibonding molecular orbital. On the right hand side a schematic representation shows 

the hyperconjugation of the O1 electronic lone pair to the C1-X antibonding molecular orbital, which is the 

origin of the exo-anomeric effect. This orbital overlapping is energetically more favorable for the C1-X * 

MO of lower energetic value, that is for C1-O5 better than C1-CF2, better than C1-CH2. Furthermore, 

because of the higher electronegativity of oxygen with respect to carbon, the resulting  MO for the C1

O5 bond has higher electron density close to O5 and lower close to C1. Thus, the corresponding * MO 

has the opposite shape, which is more favorable for hosting the electron lone pair from O1. This effect is 

preserved when X is CF2 because this functionality is still more electronegative than C1, while when X is 

CH2 this effect no longer applies. 
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Encouraged by these preliminary results, and to experimentally validate this concept, the group 

of Prof. Matthieu Sollogoub also synthesized a gem-diF-carbadisaccharide 1 as well as its 

methylene carbasugar analogue, 2, glycomimetics related to maltose. Figure 3.4. 

Figure 3.4. Schematic representation of synthetic glycomimetics of maltose 1 and 2. The atoms labels are 

also shown. 

3.2.2 NMR Conformational studies. The conformation of 1 was investigated by a combination of 

NMR and molecular modeling methods, and compared to the carbasugar analogue 2, where 

fluorine atoms are replaced by hydrogen atoms, to probe the stereoelectronic effect of the CF2 

group. We first performed molecular mechanics calculations (MM3*)[18] and found that, for both 

1 and 2, there were three stable conformations around the  glycosidic linkages. They 

correspond to the exo-/syn- ( ca. -40/-20), exo-/anti- (ca. -40/180) and non-exo 

/syn- (ca. 40/0) conformations. The calculated conformers are represented in figure 3.5, 

together with the steric energy values provided by MM3*. 
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Figure 3.5. Stick representations and relative steric energy values of the major conformers of 1, panel A, 

and 2, panel B, according to MM3* calculations. Fluorine and hydrogen atoms of CF2 and CH2 respectively 

are highlighted as balls. 

1 H-19H-1H NOESY and/or 1 F HOESY NMR experiments were carried out on both 1 and 2. As shown 

on figure 3.6 the pattern of correlations for H1’ is strikingly different between the gem-diF

carbadisaccharide 1 and the carbadisaccharide 2. While the only inter-residue correlation of H1’ 

is with H4 for 1, H1’ correlates with H3, H4, H5 and H6 in the case of 2 (Figure 3.6A and 3.6B). 

Both the Feq in 1 and and H5aeq (further referred to as Heq) in 2 correlate with H4 and H6 

(Figure 3.6C and 3.6D). 

74 



 
 

 

        

    

   

 

 

    

      

        

       

Figure 3.6. (Upper) Strips of 2D NOESY spectra (700 ms mixing time) of compounds 1 (A) and 2 (B) taken at 

1 19 1 1
frequency of H1’. (Lower) Strips of 2D H- F HOESY (500 ms mixing time) of 1 (C) and H- H NOESY (700 

ms mixing time) for 2 (D). Key NOEs are highlighted. No other interresidue NOEs are observed above the 

noise level. 

We next estimated the interatomic distances using the calculated structures (figure 3.5) as well 

as the experimental proton-proton and proton-fluorine distances from the integration of the 

observed NOEs cross peaks using the Isolated Spin Pair Approximation (ISPA).[19] The results are 

summarized in the table 3.3 and illustrated on the different conformers in figure 3.7. For the 
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gem-diF-carbasugar 1, the exo-/anti- conformer can be easily dismissed because no 

correlation are observed between H1’ and H5, nor between Feq and H3. The fact that H1’ only 

correlates with H4 cannot discriminate between the exo-/syn-and the non-exo-/syn

conformers, but the presence of a Feq-H4 correlation together with the absence of the H1’-H6 

correlation allows the clear discrimination between both geometries, exclusively in favor of the 

exo-/syn-conformer as only geometry for 1 In striking contrast, the simultaneous presence 

of Heq-H4, Heq-H6, H1’-H3, H1’-H4, H1’-H5, H1’-H6 correlations for carbadisaccharide 2 clearly 

indicate a conformational equilibrium between the three conformers depicted in figure 3.7. In 

particular, the presence of the Heq/H4 NOE can only be explained by the exo-/syn

geometry. The presence of the Heq/H6S NOE and H1’/H6R NOEs can only be satisfied by the 

alternative non-exo-/syn-conformer. The observation of the H1´/H3 and H1´/H5 NOEs is 

only compatible with the presence of the third exo-/anti-conformation. (Figure 3.7) 

Therefore, the three conformations of 2 indeed exist in solution. 

76 



 
 

 

  

 

           

           

          

           

              

                

     

Figure 3.7. Schematic view of the NOE contacts and distances for each conformer. 

Table 3.3. Relevant inter-atomic distances (Å) for the conformers of 1 and 2 from molecular mechanics 

calculations. For the data involving the H6 protons, the estimated distances for the gg and gt rotamers are 

indicated. The comparison with the key experimental NOE contacts with conformational information is 

-6 -1/6 
also provided. The relevant intra and inter residue and ensemble average <r > proton-proton and 

proton-fluorine distances (Å) were estimated from the integration of the observed NOEs cross peaks 

(measured in NOESY and HOESY experiments with mixing times of 300, 500, and 700 ms) using the ISPA 

approximation. The data for the “best” conformer of 1 and 2 are underlined. 
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*overlap 

3.2.3 Intramolecular hydrogen bond. The possibility of establishing an intra-residue OH5’∙∙∙O1’, 

figure 3.4, hydrogen bond was also scrutinized because it could stabilize one or the other 

conformation. According to the calculations, this possibility would exist for both exo- and non

exo conformers. However, since the experiments have been performed in water (D2O) solution, 

given the massive presence of water molecules, the importance of any intra-residue OH∙∙∙O 

interaction should be minimum and not influence the conformational behavior. Nevertheless, it 

has been suggested that conventional[20] and nonconventional[21] inter-residues hydrogen bonds 

could lock the sugar conformation, even in water solution, resulting in a narrow cluster of / 

torsion angles. Therefore the possibility of occurrence of the intra-molecular HB for 1 was also 

experimentally addressed. Among many others, two approaches have extensively been used to 

characterize secondary weak interactions as hydrogen bonds. The first one consists in 

monitoring the chemical shift perturbation of the hydroxyl protons as function of 

temperature.[22] In fact, protons directly involved in HB interactions are less sensitive to 

temperature changes. The magnitude of thermal motions increases with the temperature, and it 

results in lengthening of average hydrogen bond lengths or, finally, in the complete break of the 
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interaction. In a protic solvent, it is expected that all the hydrogen bond donor/acceptor groups 

in the solute are satisfied by their counterparts on the solvent molecules. However, in aprotic 

solvents, these interactions are not possible and the solute balances the dipolar interactions via 

intra-molecular interactions. As result, the discussed secondary interactions, if present, are 

maximized in aprotic solvents. Therefore, we analysed the NMR spectra of 1 in the aprotic 

solvent DMSO. We assumed that, if an intramolecular HB exists, it should be easily detectable in 

this non-competitive media. The values of the temperature coefficients of the different hydroxyl 

protons of 1 as potential hydrogen bond indicators are represented in figure 3.8. The narrow 

range of temperature coefficients for all the hydroxyl protons demonstrates that no significant 

differences between them exist, even in the aprotic solvent, so further dismissing the possibility 

of the existence of any stabilizing intramolecular interaction in water. 

Figure 3.8. Temperature coefficients measured for the different hydroxyl groups of 1, from the analysis of 

the 
1
H NMR spectra recorded in DMSO-d6 between 295 (bottom) and 321 K (top). The range of 

temperature coefficients is very narrow for all the hydroxyl groups, being in between -4.2 and -6.5 ppb/°. 

Left, proton NMR spectra of 1 at different temperature. Right, graphic representation of temperature 

coefficients. 

However, among all the sugar hydroxyl protons, the one that showed the lowest temperature 

coefficient (-4.2ppb/°) was indeed OH5’. Therefore, in order to definitively discard the existence 

of any HB interaction, even weak, a second approach was also employed. Hydrogen/Deuterium 

exchange experiments have been extensively used in protein NMR structural characterization.[23] 

Specifically, several intra-molecular HB contribute to the stabilization of the secondary structural 

elements in proteins, with the protein folding defining those protein regions that are solvent 

exposed. Therefore, an amide proton which is part of an intramolecular HB or that is buried from 

the solvent will exchange slowly with respect to those that are solvent exposed or not involved in 

HBs. Thus, H/D exchange experiments has been largely applied to characterize protein folding,[24] 
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protein-protein interactions[25] or protein conformational changes.[26] In our context, differences 

in H/D exchange rates between hydroxyl protons of the fluorinated carbadisaccharide can be, 

obviously, only related to intramolecular HB interactions. The results for H/D exchange in gem

difluorocarbadisaccharide are reported in table 3.4 and plotted in the associated graphics. In 

particular, to a sample prepared in neat DMSO-d6, 1μL (first point) and 2μL (second point) of D2O 

were added and the reduction in the intensities of the hydroxyl 1H NMR signals monitored 

immediately and after 30 minutes. (see also SI Figure 3.1). All the exchangeable protons on the 

sugar mimic experienced the same signal decrease, between 40-50% after the first addition, and 

50-60% after the second one. In fact, OH5’ experienced the faster exchange rate. The third point 

corresponds to the addition of 4μL of H2O. The presence of light water introduces protons into 

the system, with the consequent exchange process. All the hydroxyl protons recovered the 70% 

of the original signals intensity. These observations unequivocally demonstrate that no persistent 

intraresidue hydrogen bond exists for this molecule, even in non-competitive solvent. 

Consequently, we can ensure that the stereoelectronic component of the exo-anomeric effect is 

the only reason for the natural conformational behavior of the gem-diF-carbasugar. 

Table 3.4. Exchange rate and chemical shift perturbation. 

Left. The table refers to the chemical shift perturbation and relative signal intensity for all hydroxyl groups 

and for H1 and H1’ (used as references). First row, upon addition of 1μL of D2O to compound 1 in neat 

DMSO-d6. Second row, upon addition of 2μL of D2O, and third row, after addition of 4μL of H2O. Right. 

Graphic representation of the data in the table. Where (x) is pure DMSO-d6, (y) is 1μL of D2O and (z) 1μL of 

H2O. The Integral values indicate the same behavior for all the hydroxyl protons, with no evidences of 

inter-residual hydrogen bonds. 
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3.3 Conclusions 

Our theoretical calculations predicted that the exo-anomeric effect of maltose, which is almost 

completely abolished in its carbasugar analogue, is significantly restored when a CF2 group is 

present at the endocyclic position, corresponding to O5 in the natural sugar. As an experimental 

demonstration, we have determined the conformational behavior of a gem-diF-carbasugar 

maltose analogue 1, which indeed only exists in solution in the exo-anomeric conformation. In 

striking contrast, the corresponding carbasugar 2 displays a mixture of the exo- and non-exo- 

geometries in solution. It has therefore been demonstrated that it is possible to restore the exo 

anomeric effect for an acetal when replacing one of the oxygen atoms by a CF2 group. This result 

provides key findings in chemical sciences as it strongly suggests the importance of the 

stereoelectronic component for the exo-anomeric effect. Additionally, the obtained mimicking 

of the natural glycoside conformation may open new avenues for sugar-based drug design. 

3.4 Methods 

3.4.1 Ab initio calculations: Calculations were carried out with the Gaussian 03 suite of 

programs. The geometry optimization was performed utilizing �ecke’s hybrid three-parameter 

exchange functional and the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP). 

Electron correlation energies were calculated by applying the second order Møller–Plesset 

(MP2) perturbation theory. The geometry of molecules (1a), (2a) and (3a) was optimized at the 

MP2/6-311++G(d,p) level of approximation. Natural bond orbital (NBO) calculations using the 

density by the Hartree-Fock (HF) calculations were performed with the NBO keyword included in 

Gaussian 03. In order to incorporate all contributions of the solvent to the molecular geometry, 

the solvent effects are included using the polarizable continuum model (PCM) representing 

water. 

3.4.2 NMR spectroscopy: 1H and 13C NMR spectra were acquired with Bruker Avance 500 MHz 

and 600 MHz spectrometers equipped with a 5mm TXI probe. Experiments were carried out at 

298K. 1H and 13C NMR chemical shift	 assignments were performed using standard 2D 

1 1H,13 1H,13homonuclear experiments. In particular, H,1H-COSY/TOCSY/NOESY, C-HSQC and C

HMBC. All experiments employed 256 t1-increments of 2 K points each, with a relaxation delay of 

2 s. The 1H dimensions were 3 ppm for 1 and 5 ppm for 2. The 13C dimensions were 50 ppm for 1 

and 80 ppm for 2. 8 scans were employed for COSY, HSQC, and TOCSY (mixing time 66 ms), while 

32 scans were employed for the NOESY and 64 for the HMBC and HOESY experiments (mixing 
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times of 300, 500, and 700 ms). The 19F dimension was 22 ppm (for 1). The 1H NMR chemicals 

shifts are given in ppm and TSP was used as standard proton reference (δH 0 ppm). 13C Chemical 

shifts are expressed in ppm relative to internal acetone (2.225 and 31.4 ppm for 1H and 13C, 

respectively). The 19F NMR experiments were performed at 470MHz on a Bruker Avance 500MHz 

equipped with a 5mm SEF probe. Assignment of 1D 19F NMR spectra were completed with the 

information extracted from 1D and 2D HOESY experiments. TFE, trifluoroethanol, was used as 

internal reference. 3mm NMR tubes were used to prepare the NMR samples. Thus, 1–2 mg of 

the glycomimetic was dissolved into 0.2mL of deuterated water. The purchased deuterated 

solvents were used without further purification. The experimental data were acquired and 

processed using the Topspin software (Bruker GmbH, Karlsruhe, Germany) on a PC station. 1H 

chemical shifts and nJHH and nJFH coupling constants were determined with the aid of the 

MestReNova spin simulation software. 

3.4.3 Molecular Mechanics calculations: The geometry optimization was performed by using the 

Jaguar/Schroedinger package (version 9.1) and the MM3* force field, with the GB/SA continuum 

solvent model for water. The glycosidic torsion angles were defined as  (H1’-�1’-O4-C4) and  

(�1’-O4-C4-H4). Extended nonbonded cut-off distances (van der Waals cut-off of 8.0 Å and 

electrostatic cut-off of 20.0 Å) were used. The three conformers for each molecule 1 and 2 were 

generated employing the optimized exo-anomeric and non-exo-anomeric geometries. The 

extension of the aglycon moiety was generated manually and the three possible staggered 

rotamers around  were then built and minimized. The two syn- conformers (either positive 

or negative) always converged to the same geometry, while the anti- alternative was a local 

minimum, as described in the text. The coordinates of the obtained local minima were employed 

to measure the key inter-proton distances that were then compared to those obtained 

experimentally by the NOESY and HOESY NMR methods. 
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3.5 Supporting Information 

Figure 3.1 SI. H/D exchange rate in gem-difluorocarbadisaccharide (1). 

No changes in the NMR signal intensities of the hydroxyl protons signals were detected with time. Bottom 

row. The regular 
1
H NMR spectrum of 1 in neat DMSO-d6 is shown in black. The red and green spectra 

correspond to the spectra recorded immediately after the addition of 2μL of D2O to the sample (red) and 

after 30 minutes (green). There is no difference in the signal intensities. The yellow and violet spectra 

correspond to the spectra recorded immediately after the addition of 2μL more of D2O to the sample 

(yellow) and after 30 minutes (violet). There is no difference in the signal intensities. 
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CHAPTER IV
 

Sugar Receptor: unraveling the amplitude and time scale of macro-molecular motions 

Unraveling the conformational landscape of ligand binding to Glucose/Galactose-

binding protein by paramagnetic NMR and MD simulations 

The work presented in this chapter has been performed in collaboration with the group of Dr. 

Oscar Millet at CICbioGUNE in Derio (Bizkaia), Spain. The expression, purification and NMR 

assignment of the 15N labeled protein was carried out by Dr. Gabriel Ortega at his lab. 
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4.1 Introduction 

Protein function arises from the delicate interplay among structure, molecular recognition 

features and dynamics, but unraveling such contributions is often elusive. The periplasmic 

binding protein family (PBPs) represents a paradigm for describing functional conformational 

changes in flexible proteins.[1] In Gram-negative bacteria, PBPs selectively recognize and actively 

transport various nutrients across the inner membrane. The family is composed of about 100 

members, classified according to the recognized ligand: amino acids, carbohydrates, oxyanions 

and vitamins.[2] Almost all of them share a common structural fold consisting of two globular 

Rossman fold domains connected by three short linkers, thus suggesting interdomain 

flexibility.[3,4,5] This hypothesis is further supported by the different interdomain orientations 

found in the X-ray structures. For instance, one of the paradigmatic glycan-binding protein 

family, the glucose/galactose binding proteins (GGBP) from different organisms have generated 

a plethora of crystal structures that trap the biomolecule at distinct conformational instances: 

some unloaded structures are canonically open (apo_op) while others are closed (apo_cl) and 

resemble the holo-ligand-bound state (holo_cl).[6,7,8,9,10] In the last years, segmental inter-domain 

reorientations in periplasmic binding proteins have been extensively investigated by solution 

NMR spectroscopy.[11] Clore and co-workers have demonstrated that a conformational selection 

process undergoes an open-to-closed transition in maltose binding protein (MBP)[12] , while 

Tjandra and co-workers have shown that an induced fit mechanism well describes open-closed 

transition of another PBP, glutamine-binding protein.[13] In a comparative NMR study of GGBP 

and the structurally homologous ribose binding protein, it is shown that the (apparent) ligand 

affinity can be modulated by redesigning the flexible hinge region, thus emphasizing the 

functional role of inter-domain dynamics.[14] However, the time scale and amplitude of these 

motions are experimentally ill-defined for all the investigated cases. Molecular dynamics 

simulations have also been widely used to characterize the conformational landscape of PBPs.[3] 

For instance, advanced sampling techniques have been used to study the allosteric equilibrium 

of the ribose-binding protein,[15] while accelerated MD simulations provided a detailed picture of 

the transition between the open and partially closed states in MBP.[16] Moreover, these proteins 

have been the target of intense studies in protein engineering[17] and the computational 

redesign of PBPs to build up nanobiosensors have raised great expectations.[18,19] For instance, 

Daunert and coworkers have proposed GGBP as a possible biosensor of glucose in blood.[20] 

However, ironically, the main limitation of the method is the high affinity for the substrate (nM 

range). Then, despite the extensive use of MD simulations in the study of PBPs, integrative 

approaches of protein design with experimental data are still largely unedited. 
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In this chapter, we propose an integrated approach by combining experimental NMR data with 

molecular dynamics simulations to quantitatively characterize interdomain dynamics in GGBP. 

First, pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) allowed disentangling the 

population distribution of conformers in the open-closed transition that GGBP undergoes. Next, 

the time scale for open-closed transition is defined by detailed molecular dynamics simulations. 

Finally, the energy barrier in the protein landscape has been estimated using non-equilibrium 

molecular dynamics calculations. Our results demonstrate that, in its apo state, the protein 

coexists between the open (68%) and closed (32%) conformations. The time scale for closed

open inter-conversion is around 25 ns. The presence of the ligand is the driving force for closing, 

largely through a conformational selection mechanism. 
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Figure 4.1. (A) Crystal structures of apo_opGGBP (left, 2FW0) and holo_clGGBP (right, 2FVY). The bound  

anomer of D-glucopyranose and residues Asp14, Asn91, His152, Asp154, Arg158, Asn211, Asp 236, Asn256 

forming stabilizing H-bonds with the ligand are drawn as stick models (ligand in violet). Inset: schematic 

representation of globular domains (cylinders) and the hinge region (lines). The difference in N-terminal 

domain position highlights the difference in closure angle, according to X-ray structures. (B) Domain 

reorientation of GGBP. Left, side view illustrating hinge domain rearrangement between apo_op (blue) 

and holo_cl (orange) GGBP. Right, front view illustrating twist motion. Inset: the angle between the 

segments connecting the center of mass of the hinge region and those of C-terminal domain and N-

terminal domain is defined as hinge angle, while the center of mass of the N-terminal domain, the base of 

the N-terminal domain, the C-terminal domain and the base of the C-terminal domain define three 

segments. The dihedral angle formed by these three segments is defined as twist angle. 
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4.2 Results and Discussion 

4.2.1 Self-alignment with a paramagnetic Tag. GGBP consists of two globular domains, the C-

terminal domain (residues 112-254 and 297-306) and the smaller N-terminal domain (residues 3

108 and 258-291), linked by a three-strand hinge (residues 109-111, 255-258 and 292-296) 

(Figure 4.1, panel A). The  anomer of glucose binds to GGBP through an extensive network of 

hydrogen bonds and CH- interactions with high affinity and specificity (KD = 290 nM at 37 °C 

and pH 7.0) into the cleft near the hinge region, invoking a large conformational change from the 

open unbound (apo_op) to closed bound (holo_cl) state.[6] This segmental interdomain 

reorientation is well described by a rotation of 40° in the twist () angle accompanied by a 23° 

rotation in the hinge () angle[14,15] (Figure 4.1, panel B). Since closed unloaded structures are 

available for some PBPs, an open question is whether apoGGBP can make excursions to the 

holo_cl conformation in the absence of ligand. Structural data for GGBP in solution can be 

integrated by anisotropic NMR parameters that are induced by self-alignment of paramagnetic 

molecules. Such self-alignment has been achieved by binding paramagnetic metal ions to a small 

molecule metal chelating tag, covalently attached to the biomolecule.[21] The alignment tensors 

for the tagged and non-tagged domains have been determined by a combined use of residual 

dipolar couplings (RDCs) and pseudocontact shifts (PCSs). Actually, owing to the large magnetic 

moment of the unpaired electrons on the paramagnetic lanthanide ion, the paramagnetic 

effects are detectable up to large distances (> 40 Å).[22] In a system comprising two or more 

species in rapid exchange, the observed effect is a population-weighted average of the 

component conformers. As a result, PCSs and RDCs provide a unique way to describe complex 

mixtures of translational and rotational interdomain motions, simply aligning the tagged domain 

by the paramagnetic tag and determining the induced alignment on the other moieties.[23] To 

that end, the paramagnetic probe has been conjugated through nucleophilic substitution to an 

engineered cysteine residue, M182C, located in the C-terminal domain at the periphery of the 

interface between the two domains. Several factors were considered for the insertion of the tag 

molecule: i) the minimal bio-relevant mutation Cys instead of Met, ii) an adequate distance 

between the tag molecule and the target binding site, so the spin-label does not perturb the 

backbone structure nor the ligand-binding site and iii) surface-accessible aminoacids that 

experience minimum variation in chemical environment upon sugar binding (Figure 4.2). 
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Figure 4.2. Single point mutation. Selection of the amino acids for effective TAG insertion (in gray lines). 

The inserted probe should be sensible to (A) Chemical environment change as function of open to closed 

transition. (B) Spatial coordinates perturbation in C as function of open to closed transition. (C) Spatial 

coordinates perturbation in NH as function of open to closed transition. The useful aminacids are 

highlighted with grey bars. (D) Schematic representation of paramagnetic Tagged protein M182C GGBP. 

The protein backbone is schematized according to its secondary structure, while the tag molecule is drawn 

as stick model. The green sphere represents the metal ion. The TAG conformation has been generated by 

steepest descents minimization to remove bad contacts with the protein residues. 

The NMR signals for the residues within the shell around the paramagnetic center (C182 and 

A181) were broadened beyond detection due to paramagnetic relaxation enhancement (PRE). 

Nevertheless, the chemical nature of the Tag molecule (the metal is located at a distance >16 Å 

away from the protein backbone) allowed collecting 135 measurable PCSs (Figure 4.3) and 35 

RDCs. Clearly, two regions of the protein orient differently with respect to the paramagnetic 

metal ion. One region undergoes negative chemical shift perturbation, close in space to the 

negative lobe of the magnetic susceptibility tensor. The other region experiences opposite 

changes due to its orientation towards the positive lobe of the paramagnetic metal isosurface. 

92 



 
 

 

             

            

        

           

 

 

    

        

     

 

 

 

          

   

 

Figure 4.3. Left, cartoon of the protein GGBP conjugated to the paramagnetic probe. On the right, Pseudo 

contact shifts (PCSs) obtained as the difference in the chemical shift of the protons signals in diamagnetic 

(lanthanum) and paramagnetic (dysprosium) conditions, for the observable H
N
, N nuclei. Resonances of 

residues within the shell around the paramagnetic center were broadened beyond detection due to 

paramagnetic relaxation enhancement (PRE). 

To take into account the flexibility of the linker, two main conformations with staggered dihedral 

angles around the di-sulfide bond have been generated (90° and -90°). Only the -90° conformer 

fits well the experimental data, confirming the inaccessibility of the 90° conformer due to steric 

clashes (Figure 4.4). 

Figure 4.4. Geometric models of the two disulfide conformers, -90º (orange) and 90 (green). Steric clashes 

on the -90° conformer are easily predictable. 
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PCSs of HN, N nuclei, and RDCs of HN-N pairs for paramagnetic lanthanide (Dy3+) were 

1H,15 La3+determined from N HSQC spectra. A -loaded complex was used as diamagnetic 

reference, as this metal has an ionic radius similar to the dysprosium ion. The protein shows 

excellent signal dispersion in both 1H,15N-HSQC spectra,(Dy3+ and La3+), (Figure 4.5). Chemical 

shifts between unloaded and diamagnetic metal ion loaded molecules are virtually identical and 

nearly complete assignments could be obtained based on previously published data.[14] The lack 

of chemical shifts perturbation in GGBP backbone amide signals after metalation of the sample 

indicates that all the lanthanide ions are bound to the tag and not directly to the protein, 

M-1 consistent with the high affinity of the tag for lanthanides (in the 1018 range).[24,25] 

Figure 4.5. (A) 
1
H, 

15
N HSQC for GGBP loaded with diamagnetic lanthanum (orange) and paramagnetic 

Dysprosium (blue). Spectra were recorded at 310 K and pH 7.0 in a 600 MHz NMR spectrometer. (B) 

Selected spectral region of the 
1
H, 

15
N HSQC spectra. 

Representative structures for the apo_op and apo_cl conformations (with 5° stepwise changes in 

the closure and twisting angles) were extracted from a molecular dynamic simulation (vide infra) 

and used for the alignment tensor estimation, using RDCs and PCSs as experimental restraints. 

The structures providing the lowest quality factors (Q factor, lower value indicates best fitting to 
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experimental data) for the tagged domain were selected and subsequently used for the 

prediction of the NMR parameters in the tagged-free domain. Two structures showed the best 

Q-factor when fitting the experimental data for tagged domain: one representative for the 

apo_op form ( = 145° and  = 64°) and another for the apo_cl conformation ( = 137° and  = 

20°). When the data for each domain are analyzed independently, PCSs and RDCs provided 

excellent fits for the tagged domain for both conformers, as reflected in the range of the Q-

factor values: 0.084-0.099 (PCSs) and 0.420-0.494 (RDCs). These results demonstrate that the C-

terminal domain with the attached Tag molecule behaves as a rigid body (Figure 4.6, panels A 

and intra Q-factor in panels C-E). Interestingly, Q-factors increase drastically when both domains 

are included in the analysis (Figure.4.6, panel B and overall Q in panels C, D). When fitting the 

PCS dataset, the quality factor referred to the open structure rises up to 0.231 while, when 

referred to a closed-like structure, it reports a value of 0.281. These results demonstrate that a 

single structure is not able to explain the experimental dataset, likely because the N-terminal 

domain fluctuates with respect to the C-terminal. A model contemplating an average ensemble 

of differently populated states was tested and a combination of the two above mentioned 

conformations (68% for the apo_op and 32% for the holo_cl) provides a very good correlation 

with the experimental data (Figure 4.6, panel E). 
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Figure 4.6. Correlation between experimental and back-calculated restraints relative to apo_opGGBP 

(blue), holo_clGGBP (orange) and an average of 68% and 32% of both structures respectively (violet). (A) 

PCSs of H
N
, N nuclei belonging to only the protein tagged domain. (B) PCSs of H

N
, N nuclei of the entire 

protein. (C) RDCs of H
N
-N pairs of different selected aminoacids in apo_opGGBP. Label 4 in figure 4.7. (D) 

RDCs of H
N
-N pairs of different selected aminoacids in holo_clGGBP. Label 8 in figure 4.7. (E) RDCs of H

N
-N 

pairs of different selected aminoacids in apo_clGGBP. This latter structure is an ensemble average 

structure of 68% apo_op and 32% holo_cl GGBP. The values for hinge and twist angles are 137° and 40° 

respectively and its position in the conformational space is specified in figure 4.7. 

Thus, the RDCs and PCSs experimental data reported here on apoGGBP fully agree with a model 

where the apo state undergoes a rapid equilibrium between a major and a minor species, the 

latter one occupying a region of the conformational landscape similar to the ligand bound form 

(Figure 4.7, panel C). These results also demonstrate the existence of the postulated dynamic 

equilibrium between open and partially closed apo states and gives credit to the hypothesis that 

large-scale domain rearrangements are already present in many two-domain periplasmic 

proteins. 
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4.2.2 MD simulations. Due to the dynamic nature of apoGGBP, MD simulations have been 

employed to investigate its conformational landscape. In a first set of calculations, the 

experimental RDCs were included as restraints in a conjoined rigid body-torsion angle simulated 

annealing followed by an MD simulation of 200 ps. (see Methods). An intermediate 

conformation, partially closed, complies well with the experimental restrains and can be 

interpreted in terms of a combination of the open (68%) and closed (32%) states. Specifically, 

the values for the inter-domain hinge/twist angle that satisfies the NMR restraints lies around 

135± 5°/ 40 ± 10° (see Figure 4.7). 

Figure 4.7. Trajectories of interdomain hinge (A) and twist (B) angles along the MD simulations for 

apo_opGGBP(300ns) and holo_clGGBP (100ns) The derived 200ns of collective motion for holo_clGGBP 

are marked with tenuous line. (C) Free-energy landscapes of apo_opGGBP (blue) and holo_clGGBP 

(orange) as a function of Hinge () and Twist () angles. Selected snapshot along the trajectory, red dashed 

line, are labelled with numbers in circles. From apo_op MD (1-3), (5-6); (4) is the X-ray structure (2FW0); 

(4) and (8) have been used for derive ensemble average population from experimental NMR restraints. 

From holo_cl MD (8-9); From SMD (7) is the high energy structure corresponding to the transition state. 

The values are similar but statistically different from the consensus conformation obtained from 

fitting experimental diamagnetic RDCs in weakly aligned media ( 127°;  32°)[14] , thus 

suggesting the existence of inter-domain dynamics. To further characterize such motions, a 

second calculation, without including the experimentally determined NMR costraints (i. e. PCSs 

and RDCs) for avoiding biases in the conformational landscape, was accomplished. Two MD 

simulations, one starting from X-ray structures of apo_op (2FW0) and other from holo_cl GGBP 

bound to glucose (2FVY), were performed with the ff10_Amber and GLYCAM_06h force fields in 
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explicit water at 310 K to generate datasets of atomic coordinates that describe the protein 

ensemble. Due to the expected higher dynamic complexity, MD simulation for apo_op run for 

300 ns, while holo_cl run for a time of 100 ns (figure 4.7). It is important to emphasize that both 

free-MD simulations are long enough to explore a wide conformational space and to define the 

periodic dynamic behavior of GGBP (apo and holo) in solution. After excluding the preparatory 

steps from the trajectory, MD trajectories were analyzed in terms of the inter-domain hinge and 

twist angles (Figure 4.7, panels A-B). For apo_op GGBP, a range of twist and hinge angle are 

accessible, oscillating between a partially closed conformation ( 135°;  40°) and a widely open 

conformation ( 170°;  160°), consistent with previous studies.[6] Conformational 

interconversion in apo_op GGBP involves concerted changes in both angles: the twist angle 

fluctuates between 30° and 160°, with equally low energy conformers, and it is always 

accompanied by a hinge angle oscillation between 140° and 160°. The time scale for such 

collective dynamics, between crest and wave of the periodic motion, is around 25 ns. As 

expected, MD simulation for holo_cl GGBP structure is characterized by minor excursions within 

the conformational space. The hinge and the twist angles oscillate between ±10° and ±20° 

respectively around the starting values. The overall Q-factor value estimated for the ensemble 

structure between the apo_op(X-ray) (label 4 in Figure 4.7) and holo_cl, (label 8 in Figure 4.7) 

markedly improves with respect the single conformation ones (see Figure 4.6, panel C-E). The 

results demonstrate that the conformational behavior of GGBP in its unbound state is 

compatible with a dynamic process that involves partially closed conformations suggesting that 

ligand recognition event cannot be described by pure “induced-fit” or pure “conformational 

selection” models. 

The free energy of the conformational landscape explored by the MD simulations has been 

estimated from the populations by dividing the conformational space into regular intervals of (2° 

x 4°) hinge/twist angles. The population for each interval has been converted into the energy 

difference with respect to the highest populated one according to the expression: 

! 
! 

!! 

Where R is the gas constant, T the temperature, PA and PB are the populations for all the considered 

intervals along the conformational space. 

The free energy landscape for apo_opGGBP (Figure 4.7, panel C) shows a wide global minimum 

corresponding to an ensemble of highly variable structures in terms of twist/hinge angles. 
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Remarkably, a variety of conformations expanding the open-to-close conformational coordinate 

(i.e. superopened and closed-like conformations) have a free energy excess of only 1-2 kcal∙mol-1 

as compared to the global minimum, indicating that these structures are also accessible. As 

inferred from the apo_opGGBP MD trajectory (Figure 4.7, panels A-B), these conformations are 

periodically revisited, demonstrating that they are not transiently populated high energy states. 

On the other hand, the free energy landscape for holo_clGGBP fluctuates around a global 

minimum, structurally corresponding to the starting conformation of the MD calculation. Large 

scale conformational changes can follow multiple trajectory processes. Nevertheless, the two 

independent molecular dynamic simulations seem to energetically coalesce, defining the 

conformational coordinate for the most likely open-to-close trajectory. 

In order to well define the energy profile associated with the open-to-close transition in GGBP, 

steered molecular dynamic simulations (SMD) have performed. This computational approach 

has been extensively used to calculate the free energy associated to unfolding/refolding 

pathways of macromolecules,[26,27] ligand-receptor binding events[28] or DNA starching.[29] SMD 

employs a pulling force to cause a structural change so that different conformations may be 

sampled along a given pathway. To gain access to timescales that would be otherwise 

computationally too demanding, SMD simulations accelerate (or force) the dynamic process, 

thus providing the required energy associated to the induced change: while the force is executed 

and the motion occurs along a given coordinate, the potential energy of the system is calculated 

and the potential of mean force (PFM) is related to the free energy profile of the process.[30] 

Even if we cannot exclude the existence of other trajectories for the open-to-close event, the 

method ensures that the work done on the system is a function of the activation energy 

associated to the process. Two SMD simulations have been carried out. In the first one the value 

of the critical hinge angle was fixed to 124°, which corresponds to the X-ray structure 

determined for the holo_cl conformation, and a pulling force was applied to reach the holo_op 

conformation. In the second one the starting geometry corresponds to the X-ray structure of the 

unbound open GGBP (apo_op), with a hinge angle of 145°, in order to achieve the closed 

unbound (apo_cl) structure. (Figure 4.8, orange line) plots the resistance applied by the system 

in opening holo_clGGBP as a function of the hinge angle. According to the SMD simulations, the 

transition state corresponds to a hinge angle of 132° and its height is only ≈3.5 kcal∙mol-1 higher 

that the free energy of the open structure. 
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Figure 4.8. The potential of mean force as a function of the hinge angle  (°) in protein/ligand binding. The 

calculated energy profile relative to holo_cl structure (orange) indicates that the free energy minimum for 

closed conformation is lower than that of the open state by roughly 6 kcal∙mol
-1 

. Superimposed is the 

energy profile for apo_op structure (blue). The result indicates that the energy of the open structure 

increases with the closing of the hinge angle. On top, structural change associated with inter-domain 

closure and ligand binging. The structures correspond to snap-shots along the trajectory. 

These data allow concluding that the energetic barrier for open-to-closed interconversion can be 

easily crossed via thermal fluctuations or with the help of water molecules that attack 

interdomain hydrogen bonds. Not surprisingly, giving value to the function of the protein, the 

closed structure is significantly stabilized by intermolecular interactions with the ligand 

(hydrogen bond and CH/ interactions) that contribute with 6 kcal∙mol-1 to the binding energy of 

the complex. The thick hydrogen bond network between the polar face of the sugar and the 

polar aminoacids on both domains of GGBP and the two aromatic residues Trp181 and Phe16 on 

the C-terminal and N-terminal domain, respectively, stacked against the less polar faces of the 

sugar provide the necessary enthalpy contribution to stabilize the holo_clGGBP structure. The 

second SMD simulation starting in the apo_opGGBP is also shown in (Figure 4.8, blue line). In 

here, a quasi-linear energy dependence is observed in the transition from the open to the closed 

states of GGBP, with an associated Gibbs free energy that is inversely proportional to the closing 

angle. The stability of the protein decreases at a rate of about 300 cal∙mol-1·deg-1. Considering a 

range of 3 kcal∙mol-1 accessible by thermal fluctuations at 310 K, domain closure of 10° to 20° is 

expected. Then, the apo_cl conformation of the protein, which is almost 6 kcal∙mol-1 higher in 

energy than the apo_op, would be inaccessible by thermal fluctuations, consistent with previous 

results reported for MBP.[11] The intersection between the two independent SMD define the 
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transition state, where only the incoming ligand provides the necessary energy stabilization to 

shift the equilibrium in favor of the most stable ligand-protein complex. 

4.2.3 The synergy between structure and dynamics is essential for proteins function. 

Segmental dynamics in proteins are often functional being at the basis of protein allosterism. 

Yet, they are often very loosely characterized due to the lack of experimental tools available. 

Here, we demonstrate that a combination of NMR spectroscopy and MD simulations successfully 

unravels the energy landscape for the functional conformational coordinate of GGBP. 

A single structural model is not enough to describe the vast conformational space covered by 

apo_opGGBP in solution. According to unrestricted MD simulations, the conformational 

dynamics are well characterized by large amplitude motions between hemi-closed and open 

structures in the nanosecond time scale. Actually, the first reported X-ray structure of apo_GGBP 

is partially closed.[6] The authors noticed the presence of the citrate ion in the binding cleft and 

hypothesized that they may be thermodynamically relevant for crystal growth. Our results 

agree, demonstrating that the ion coordinates at the hinge position, thus stabilizing the hemi

closed structures in apo_GGBP. Importantly, these conformational interconversions are 

experimentally validated: while the combined use of PCSs and RDCs induced by self-alignment of 

paramagnetic metal provides a fine method to unveil the existence of functional closed 

conformations that are consistent with a 32% of the total population of apo_GGBP. Albeit the 

limited range of hinge angles for the deposited X-ray structure of apo_opGGBP that spans 

between 147° and 149°, our data suggest that excursions toward more open states are 

permitted (150° and 170°, “superopen” structures). Such conformations have been also 

predicted and observed for other bi-domain proteins like uroporphyrinogen III synthase[31] and it 

is probably dependent on the hinge region structure and composition since it reflects the 

maximum torque force that this region allows. On the other hand, closed like states, between 

132° and 147°, are also represented supporting the existence of closed like structures for 

apoGGBP as observed via X-ray crystallography.[32] The inter-domain excursions found for 

apo_GGBP are largely quenched in holo_GGBP but, interestingly, they are not completely 

abrogated (Figure 4.7). Actually, when bound to glucose, holo_clGGBP still holds some degree of 

flexibility, with inter-domain librations of up to 10-15° in the closure and hinge angles. According 

to MD simulations, such motions also fall in the nano-second timescale and they are consistent 

with the increased dynamics previously observed in the order parameter of holo_GGBP,[14] that 

likely interfered on the spectral density function motional parameters. The functional role of 

these dynamics naturally emerges when the energetics are introduced and the integrative 
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analysis of MD simulations and NMR analysis comply largely with a mainly conformational 

selection mechanism for which the presence of the ligand is indispensable for the open-to

closed transition. MD simulations reveal a gap in the conformational landscape between 

apo_opGGBP and holo_clGGBP (125-140° hinge and 30-40° twist, Figure 4.7, panel C). This high 

energetic point corresponds to the transition state with an activation barrier of ≈3,5 kcal∙mol-1 as 

estimated by SMD simulations (Figure 4.8). Thus, ligand binding provides the energy to 

overcome such barrier and shift the conformational ensemble towards holo_clGGBP in a second 

step that agrees well with an induced fit mechanism. Remarkably, apo_opGGBP is predicted to 

unfold at low values of the closing angle due to the increase in nonpolar character in the solvent 

accessible area located on the hinge region on the opposite site respect to the ligand binding 

pocket. This negative term, if not balanced by the enthalpic surplus of the binding event, will 

result in the protein unfolding. This mechanism is equivalent to the that experimentally found 

for maltose binding protein, where the analysis of hinge mutants with different closure angles 

shows protein unfolding at low closure angles, within a similar free energy range.[11] 

4.3 Conclusions 

In conclusion, the amplitude and time scale of GGBP inter-domain dynamics have been unveiled 

by NMR spectroscopy and detailed MD simulations. The population contribution of bio

functional relevant conformers has been determined by PCSs and RDCs induced by 

paramagnetic metal ion attached to the protein. Subsequently, the energetic barrier in open-to

closed transition has been defined by non-equilibrium MD simulations. We conclude that the 

population of apo_cl like conformations is essential in activate the transition to holo_cl form, 

according to a conformational selection mechanism coupled to a final rearrangement that obeys 

an induced-fit kinetics process. 

From a general perspective, the protocol exemplified herein can be extended to the study a 

variety of molecular recognition processes in which significant molecular rearrangements take 

place, thus expanding the limits of the application of NMR methods when exploring binding 

events. 
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4.4 Methods 

4.4.1 Sample preparation for Paramagnetic studies. Protein samples for NMR studies were 

prepared at a final protein concentration of 0.5 mM in 20mM Tris (pH 7.0), 150mM NaCl, 10 M 

CaCl2, 1mM NaN3 with 10% D2O. In order to conjugate the paramagnetic tag to the C-terminal 

domain cysteine, the protein was titrated with 10mM solution of lanthanide (Ln) chelating tag 

previously loaded with the lanthanide (Ln = La3+, Dy3+). The titrations were performed by 

monitoring the changes in the chemical shift in a 1H, 15N HSQC spectrum. The nucleophilic 

substitution reaction is instantaneous and the excess of chelating tag molecule was removed by 

filtration. 

4.4.2 NMR Spectroscopy. All the NMR experiments were carried out on a 600 MHz AVANCE-III 

Bruker spectrometer. Spectra were acquired at 310 K. All NMR spectra were processed with the 

software TopSpin. The Program CARA was used for the analysis of the 2D spectra. Lanthanum 

was used as diamagnetic reference as it has an ionic radius similar to the paramagnetic 

dysprosium. PCSs were measured as the difference between the chemical shift of the 

corresponding nuclei in the paramagnetic and diamagnetic samples. Residual dipolar couplings 

1DHN were measured as the 1H-doublet splitting of the paramagnetic sample minus the 

equivalent splitting difference in the diamagnetic sample. 

PCSs and RDCs analyses were performed using MSpin software. In order to assess inter-domain 

dynamics, we used selected conformations from molecular dynamics simulation, including some 

that resemble the experimentally obtained x-ray open and closed GGBP conformations. The 

optimal ensemble of conformations was found after evaluating the tensor from the tag domain 

using both PCSs and RDCs independently. The PCSs and RDCs for the other domain were back 

calculated for different protein coordinates and the ensemble of structures that better fits the 

experimental values was selected on the basis of best quality factor. 

4.4.3Molecular Dynamic simulations. The coordinates from the X-ray structure of apo_op GGBP 

(PDB code 2FW0) and holo_cl GGBP (PDB code 2FVY) were used as starting points to generate 

intermediate models by molecular dynamics (MD) simulations at 310 K applying the ff10 and 

GLYCAM_06h[33] amber force fields. Missing hydrogens were added to the starting PDB 

structures using the program LEAP. The N- and C-terminal residues were acetylated and 

amidated according to the AMBER standard database. The latter structure was solvated in a 

cubic TIP3P water box[ and eight sodium ions were added to neutralize the system. In order to 

fulfill all the proteins cavities by water molecules, a previous minimization for only solvent and 

ions was made. Moreover, to reach a reasonable starting structure, the entire system was 
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minimized with a higher number of cycles, using the accurate steepest descent algorithm. The 

system was subjected to two short molecular dynamic simulations of 20ps and 100 ps 

respectively, before start the real dynamic simulation of 270 ns for apo_op and 100 ns for 

holo_clGGBP. During these two preparatory steps, the structure was slowly heated from 0 to 

310 K. Fifty-thousand additional steps were performed to switch from constant volume to 

constant pressure. A relaxation time of 2 ps was used in order to equilibrate the entire system in 

each step. The final simulations of 270 and 100 ns were performed starting from equilibrated 

structures. Coordinates and energy values were recorded every 2 ps for a total of 135000 MD 

frames for apo_op and 50000 for holo_clGGBP. For the SMD (Steered Molecular Dynamics) 

simulations, the starting structures, with a hinge value of 124° and 147° have been extracted by 

unrestricted MD simulations of holo_cl and apo_opGGBP respectively, so the entire system was 

already equilibrated. The center of mass of the N-terminal domain together with the center of 

mass of the hinge segment has been fixed, while the center of mass of the C-terminal domain 

has been pulled with a constant force K = 500 kcal∙mol-1∙Å2. The total time for the molecular 

dynamics simulation was of 10ns with an angle opening or closing of 2 degree per ns. Atomic 

coordinates were saved every 2ps and the energy information extracted. 

Constrained MD simulations were initiated from the X-ray structures apo_op(2FW0) and 

holo_cl(2FVY), pointed as blue and orange circles, numbered 4 and 8 respectively, in figure 4.7. 

Conjoined rigid body-torsion angle simulated annealing was performed as previously 

described[34,14]. The hinge region for the GGBP is defined by residues 109-111, 253-256 and 293

296. The starting structure (apo_op, F2W0) was heated to 600 K for 3 ps with tautp equal to 0.4. 

Then, the system was cooled to 100 K for 297 ps (tautp = 4.0). The final cooling to 0 K was 

carried out for 100 ps with tautp varying from 1.0 to 0.1. The tensor anisotropy parameters, 

calculated with MSpin software, were extracted from the structures with lowest Q-Factors. MD 

simulations were performed with ff10_Amber and GLYCAM_06h force fields incorporating the 

experimentally derived NMR restrains. The restrained MD calculations were performed in 

explicit water solvent and using a simulated annealing approach. 

4.4.4 Analysis of the trajectories. Root mean-square deviation (RMSD) and thermodynamic data 

were monitored throughout the whole trajectories to confirm that all simulations evolved along 

a stable plateau. For the analysis of the collective motions, the closure (hinge), twisting and 

bending coordinate system were used.[35] Hinge and twist angles, were obtained from clusters of 

one in every 100 models/frames (1350 in total) for apo_op and one in every 50 models/frames 

for the closed bound GGBP conformation (holo_clGGBP). For all structures the values of hinge  

and twist  angles were calculated using an in house scrip run in Matlab to adequately represent 
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the conformational landscape in terms of the hinge and twist angles. For the evaluation of the 

tag-domain data, the structures were aligned with respect to the backbone of residues 112-254. 

The Tag molecule was accommodated for all the structures and a rapid minimization on the tag 

region was made. The structures were visualized and evaluated by using the programs VMD and 

Discovery studio. 
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CHAPTER V
 

CH/ interactions: elucidating fundamental weak intermolecular forces 

Towards the direct detection of CH/ interactions in sugar/protein complexes 

The work presented in this chapter has been performed in collaboration with the group of Dr. 

Niels Reichardt, CIC biomaGUNE, at San Sebastian, Spain. The synthesis of the deuterated sugar 

discussed herein was performed as part of my secondment therein. Expression and purification 

of the triple labeled [2H,13C,15N] protein was carried out in the laboratory of Dr. Oscar Millet, CIC 

bioGUNE, Derio, Spain, by Dr. Sivanandam Veeramuthu. 
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5.1 Introduction 

The characterization of protein-carbohydrate interactions is experiencing a growing interest due 

to their implications in diverse biological and biomedical processes. In parallel, the control and 

manipulation of these interactions would provide clues to dose and predict biological responses, 

as consequence of the ligand-protein recognition process.[1] Therefore, the achievement of 

robust SAR (Structure Activity Relationships) in this context is a key objective, following the 

paradigm developed by the pharmaceutical industry.[2,3,4] However, it is obvious that this is not 

an easy task, specially due to the incomplete quantitative understanding of the physical

chemical laws behind weak intermolecular interactions. The importance of hydrogen bonds 

between the sugar hydroxyl groups and the polar moieties of amino acids at the protein binding 

pocket has been well recognized. A major advance in the study of the importance of such 

hydrogen bonds has come with the direct evidence that the intermolecular scalar (J) coupling 

between the acceptor and donor nuclei can be measured using high-resolution nuclear magnetic 

resonance (NMR) spectroscopy experiments.[5,6] This approach has allowed the unambiguous 

identification of the involved donor and acceptor groups and the study of the relevance of the 

individual hydrogen bonds. Besides hydrogen bonds, CH- interactions are also of paramount 

importance to stabilize sugar/protein complexes,[7] as well as other supramolecular 

[8,9,10] structures. In the glycosciences field, their importance is assessed by the wide presence of 

aromatic amino acids in the binding pocket of saccharide binding proteins. Figure 5.1. 

Figure 5.1. Amino acids proximal to carbohydrates in the X-ray diffraction structures of protein-glycan 

complexes, as compared to the distributions of amino acids across all PDB structures.
[11] 

CH- interactions are usually described as weak polar interactions in which the delocalized 

system of sp2-hybridized covalent bonds can act as an acceptor group, while the hydrogen atom 
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on the polarized C-H moiety acts as donor. Despite their initial classification as non-conventional 

hydrogen-bond-like interactions, the dual dispersive/electrostatic nature of these CH- forces 

has been a matter of debate for years.[12,13,14,15,16,17] Theoretical analyses have revealed that, in 

the gas phase, the stability of CH- complexes largely arises from dispersion forces.[18,19,20] 

However, detailed investigations of different simple systems, including benzene and water or 

ammonium or methane and benzene have revealed the existence of intermolecular hydrogen

bond-like interactions in which the -electrons of benzene act as an acceptor group. The 

interaction energies oscillate between 1 and 4 kcalmol-1 when the donor is methane, ammonium 

or water respectively, demonstrating the importance of the polarity of the donor group.[21] 

Specifically, in sugars, the CH donors groups are polarized by the geminal hydroxyl groups, 

making the CH vector a suitable moiety for establishing significant interactions.[22] From the 

point of view of the acceptor, a direct correlation between the type of aromatic amino acid and 

their electrostatic potential surface (ESP) has been found. Actually, the ranking of amino acids 

involved in CH- interactions is Trp > Tyr > Phe > His. This order reflects the ESPs of these side 

chains and implies that electron-rich aromatic systems are the most likely to be engaged in CH- 

interactions.[11] In 2015, Asensio and co-workers provided convincing evidences that polarization 

of the CH moieties in water largely stabilizes the CH- contacts, which are further exacerbated 

by the hydrophobic “solvent cage” effect. Thus, electrostatics and charge transfer forces are 

remarkably relevant.[17] As a consequence, it appears plausible that NMR could provide direct 

evidences for the existence of a weak polarized and directional electron density between the 

aromatic  system, the acceptor at the protein site, and the C-H donor at the ligand. In 

spectroscopic terms, the existence of this non-covalent bond could be encoded by a weak scalar 

intermolecular (J) coupling between the hydrogen nucleus on the sugar and the sp2 carbon 

nucleus on the aromatic moiety of the amino acid. However, the direct detection of extremely 

weak intermolecular (J) coupling constants is not exempt of severe methodological problems. 

Sugar-protein interactions are usually rather weak, with KD in mM-M range. From the 

experimental point of view, this means that the life time for the complex may be too short to be 

detected within the different NMR time scales. Under this premise, an unusually tighter glycan 

binder is necessary. As anticipated in chapter IV of this thesis, the  anomer of glucose binds to 

GGBP, the glucose/galactose binding protein, with high affinity and specificity, KD = 290 nM at 

37° C and pH 7.0.[23] The binding site of GGBP presents a tryptophan amino acid that is stacked 

against the less polar  face of the sugar, engaging protons 1, 3 and 5 in a well-defined CH- 

interaction as shown in Figure 5.2. Therefore, we guessed that the glucose/GGBP system could 

be suitable for direct detection of the intermolecular (J) coupling. 
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Figure 5.2. The GGBP binding pocket. The Trp183 surface is highlighted. The CH-1, -3 and -5 vectors of the 

sugar point towards the sp
2
-hybridized electron cloud of the aromatic ring. 

First, we tested our hypothesis in silico. Previous works have shown that hybrid density 

functional theory (DFT) calculations may predict the existence of weak J couplings between the 

nuclei involved in Me- intramolecular interactions in well-structured proteins domains.[24] We 

believed that with the proper experimental set up and with the aid of an optimized isotope

labelling scheme, both on the ligand and protein partners, the system could be suitable for our 

aims. 

5.2 Results and Discussion 

5.2.1 DFT prediction of J couplings between the nuclei involved in CH- intermolecular 

interactions. A series of DFT calculations were first performed to assess whether measurable J 

couplings indeed exist between the donor and acceptor nuclei involved in CH- interactions. A 

model system consisting of -D-glucose (Glc) and tryptophan (Trp) was used to explore the 

variation of JHn-Caro couplings within the parameters describing the geometry of the CH- 

interaction. Consistent with previous published data,[24] three geometric parameters were used 

to identify the putative CH- interactions: d, the distance between the donor carbon atom (CH 

on the sugar) and the centre of the acceptor ring; , the angle between the ring normal and a 

vector connecting the CH carbon atom and the centre of the ring, and , the angle between the 

C-H and the ring centre-H vectors. Figure 5.3. 
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Figure 5.3. Schematic view of the three parameters (d,  and ) used to describe CH/ interactions. The 

atoms that share J coupling constants are labelled as circles. The colour coding corresponds to that used in 

table 5.1. 

The results are gathered in table 5.1. Due to the employed sugar isotope labelling scheme (vide 

infra), the only CH moiety considered in table 5.1 is C(5)-H; however, the complete JHn-Caro 

analysis is reported in the Supporting Information (SI table 5.1). 

Table 5.1. Variation of JH5-Caro as a function of the d,  and  geometric parameters. The aromatic carbon 

atom that is involved in J coupling with the sugar proton H5 is marked as coloured circle, as represented in 

figure 5.3. 

The results in table 5.1 show that the size of JH5-Caro depends on the distance between the 

sugar carbon atom and the aromatic plane, with optimal values for d < 4.40 Å. At a distance 
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greater than 5.0 Å, the coupling is significantly reduced. In model 5, the sugar CH vector points 

at the pyrrol moiety of the tryptophan, and the J coupling drastically diminishes. For models 2, 3, 

and 4, JH5-Caro is almost constant, even when coupled to the different sp2-hybridized carbon 

nuclei, depending on the different orientation of the sugar ring with respect to the Trp moiety. 

In fact, the location of the donor CH group above the aromatic ring greatly affects the size of the 

coupling. The maximum coupling is observed for model 4 (J = 0.32 Hz), which displays the CH 

vector directly above the CD2 aromatic carbon ( = 21.5°). In the X-ray structure of GGBP 

complexed to -D-Glc, pdb code 2FVY, the geometric parameters are very similar to those 

defined in model 4, d = 4.43 Å;  = 20.86°;  = 145,21°, suggesting that a measurable value of 

JH5-Caro could reasonably be expected. Nevertheless, the estimated magnitude of the JH5-Caro 

coupling is very weak to be detected even using long-range HCC and HMQC experiments.[24,25,26] 

To our purpose, the sensitivity of the NMR experiments should be improved by complete 

deuteration of all but the C5-H hydrogen atom on the sugar and by employing a uniformly [2H, 

13C, 15N]-labelled protein sample. This scheme would ensure a maximal experimental sensitivity 

during the long transfer periods required to evolve the JH5-Caro coupling. It is well known that 

fractional or complete deuteration of proteins improves the resolution and sensitivity of NMR 

experiments.[27] The origin of this effect is that the substitution of 1H for 2H strongly reduces the 

rate of dipole-dipole relaxation of the observed nuclei, since the gyromagnetic ratio of 

deuterium is 6.5 times smaller than that of proton (Equation 5.1). In uniformly deuterated 

proteins, 13C carbon and 15N nitrogen atoms relax slowly, thus allowing more magnetization to 

be transferred between the J-coupled nuclei and thus, providing better signal/noise ratio. From 

the sugar point of view, the absence of JHH scalar coupling constants in the molecule also implies 

the presence of a sharper proton signal. Thus, the presence of a JHC coupling constant for C5H 

could only be originated by its long range coupling with the labelled protein carbon atoms. 

ቖ ዼ ቖ
ቕቖቛዞዞቜ ቭ ቭ ዼዲ

 ዏ ዼዢ
 ቡ ቁ ልዷ ቓ Eq.5.1. 

ዮቛዖዖቜ ሸ ሆዚዪ 

The equation governing Dipole-Dipole (DD) relaxation of an X nucleus by nearby protons. Since the proton 

has the highest magnetic dipole of common nuclei, it is the most effective nucleus for causing DD 

relaxation. DD relaxation is the principal relaxation pathway for protons in regular molecules, and for 

nuclei with directly attached protons. c is the rotational motion correlation time, the average time for the 

H-X vector to rotate 1 radian. X, H are the gyromagnetic ratios and rHX is the distance between H and X 

nucleus being relaxed. 
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5.2.2 Sugar deuteration. In 2012, Sajiki and coworkers described a stereo- and region 

(chemo)selective deuterium-labelling method of various sugars under mild Ru/C-H2-D2O 

conditions.[28] The authors suggested that deuterium-labelled sugars can be utilized as powerful 

tools for the structural analyses of high-sugar-containing molecules as nucleic acids or 

glycoproteins, due to their spectroscopic advantages. To our purpose, site-specific isotope 

labelling on the sugar should benefit both spectral simplicity and relaxation properties, with the 

consequent sensitivity improvement, line sharpening and slow relaxation. The direct H-D 

exchange reaction selectively proceeds on carbons adjacent to free hydroxyl groups, whereas it 

never proceeds at the -position of protected-hydroxyl groups. In other terms, for D-Glc, the 

reaction should provide a selectively C(5)-H D-Glc(1,2,3,4,6,6-D6). However, the authors also 

showed that deuteration of D-Glc causes a complete decomposition of the starting material, 

presumably due to the hydrolysis of the hemi-acetal moiety and the subsequent Ru/C-catalyzed 

hydrogenation. Differently, the corresponding methyl glucoside underwent the H-D exchange 

reaction with the deuterium atoms incorporated at the 2, 3, 4 and 6 positions to give the multi

deuterated methyl glycoside. Our strategy for the synthesis of fully deuterated -D

methylglucoside but C(5)-H is thus outlined in scheme 5.1. 

Scheme 5.1. Reagents and conditions: a) Anhydrous Sodium Acetate (1.76 eq.), Acetic anhydride (9.5 eq.), 

90 °C, 2h. b) CD3OD (1.1 eq.), SnCl4 (1.2 eq.), 40 °C, 3h. c) MeOH/(CH3CH2)3N/H2O (2mL), RT, 24h. d) Ru/C 

(5mol%), D2O, 80 °C, 72h, H2 atmosphere. 

The synthesis started from commercially available D-[1-2H]Glc (1), from Cortecnet, which was 

peracetylated to give compound (2), in order to protect the hydroxyl group for the successive 

glycosylation reaction with deuterated methanol.[29,30,31] The participation of the acetyl group at 

position two, as anchimeric assistance, ensures that the main product of the reaction is the 

protected -D-methyl glucoside (3), which was easily purified from the mixture. As final step, the 
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full-protected sugar was deprotected under basic conditions to provide -D-methyl(2H

3)glucoside(1-2H) (4), employed as starting material for the H-D exchange reaction. According to 

the authors, the H-D exchange reaction of the sugar is initiated by the formation of the H2- and 

D2O-activated Ru catalyst and it is driven by the hydroxyl group of the sugars as a directing 

group.[28] The subsequent oxidative addition at the C-H bond adjacent to the hydroxyl group 

afforded the tetra-coordinate intermediate. The intramolecular H-D exchange reaction and 

reductive elimination gives the regio- and stereo-selectively deuterated sugar (5). The details for 

chemical synthesis are presented in the methods section, while the complete NMR spectra are 

provided in the SI section. 

5.3 Partial Conclusions 

DFT calculations predict that intermolecular J coupling constants indeed exist in a simple model 

constituted by a glucose unit and a tryptophan amino acid. The values for the direct J coupling 

indicate that this spectroscopic parameter could be detected with the aid of an optimized 

isotope-labelling scheme. We have designed a synthetic procedure to obtain a single proton 

labelled glucose. The fully deuterated -D-methylglucoside but C(5)-H has been synthetized 

successfully. As upcoming objective the triple labelled [2H,13C,15N] protein should be expressed 

and purified in good yields and the experiments set up properly. 

5.4 Methods 

5.4.1 DFT calculations. All DFT calculations of indirect nuclear spin-spin (J) coupling constants 

were carried out using the Gaussian 03 suite of programs.[32] Calculations of the intermolecular J 

couplings were performed using the hybrid B3LYP functional and the 6-311++G** basis set on all 

atoms; In order to take into account the role of solvent due to the hydrophobic “solvent cage” 

effect, we used the polarizable continuum model (PCM) representing water.[33] The NMR 

isotropic shielding constants were calculated using the standard Gauge Independent Atomic 

Orbital (GIAO) approach. 
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5.4.2 Synthesis. 

5.4.3 Acetyl 2,3,4,6-tetra-O-acetyl--D-[1-2H]glucopyranoside, compound 2. 

D-[1-2H]glucose (2.77 mmol) and anhydrous sodium acetate (4.88 mmol, 1.76 eq) were dissolved 

in acetic anhydride, 2.47 mL (9.50 eq.). The reaction mixture was attached to a reflux condenser 

and heated at 90 °C for 2 hours. The reaction was cooled to room temperature and neutralized 

with NaHCO3 saturated solution. The aqueous phase was extracted with ethyl acetate and the 

organic extracts were washed with fresh water. Drying (MgSO4) and evaporation gave a white 

solid, which was recrystallized from hot methanol (2mL), giving 1.04 mmol, 38%, of pure  

anomer of the per-O-acetylated glucoside. 

Rf: 0.68 (Hexane / EtOAc, 1:1) 

[]20 
D = +6.6 (c = 1.0, CHCl3) 

1H NMR (400 MHz, CDCl3)  5.18 (t, J = 9.7 Hz, 1H, H-3), 5.07 (d, J = 9.7 Hz, 1H, H-2), 5.06 (t, J = 

9.7 Hz, 1H, H-4), 4.22 (dd, J = 4.8, 12.5 Hz, 1H, H-6R), 4.04 (dd, J = 2.4, 12.5 Hz, 1H, H-6S), 3.77 

(m, J = 9.7, 4.8, 2.4 Hz, 1H, H-5), 2.05 (s, 3H, H-OAc), 2.02 (s, 3H, H-OAc), 1.97 (s, 6H, H-OAc), 1.95 

(s, 3H, H-OAc).  

13C NMR (101 MHz, CDCl3)  91.3 (t, JCD = 25.2 Hz, 1C, C-1), 72.8 (C-3), 72.7 (C-5), 70.2 (C-2), 67.7 

(C-4), 61.5 (C-6), 20.6-20.9 (5C, C-OAc). 

MS m/z (%): calcd for C16H21DO11Na [M+Na]+ 414.1123, found 414.076 [M+Na]+ (90); calcd for 

C16H22O11Na [M+Na]+ 413.1100, found 413.066 [M+Na]+ (100). 
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5.4.4 [1,1,1-2H]Methyl 2,3,4,6-tetra-O-acetyl--D-[1-2H]glucopyranoside, compound 3 

The peracetylated product, acetyl 2,3,4,6-tetra-O-acetyl--D-[1-2H]glucopyranoside (0.77 mmol) 

and molecular sieves (300mg) were suspended in anhydrous dichloromethane (6mL) at room 

temperature for 1-2 hours; 1;1 eq; of deuterated methanol, previously dissolved in 500 μl of 

dichloromethane, and 1.2 eq. of tin(IV) chloride were added. The reaction was immediately 

warmed at 40 °C and followed via NMR. The starting material was completely wearied out after 

3h. The reaction was cooled to room temperature and neutralized with a NaHCO3 saturated 

solution. The aqueous phase was extracted with dichloromethane and the organic layers were 

washed with fresh water. Drying (MgSO4) and evaporation gave a yellow oil that was triturated 

with ether to give a pure crystalline product. 0.56 mmol, 73%, of the  anomer of per-O

acetylated methyl glucoside were obtained. 

[]20 
D = -1.4 (c = 1.0, CHCl3) 

1H NMR (400 MHz, CDCl3)  5.21 (t, J = 9.7 Hz, 1H, H-3), 5.10 (t, J = 9.7 Hz, 1H, H-4), 4.99 (d, J = 

9.7 Hz, 1H, H-2), 4.28 (dd, J = 4.8, 12.5 Hz, 1H, H-6R), 4.15 (dd, J = 2.4, 12.5 Hz, 1H, H-6S), 3.70 

(m, J = 9.7, 4.8, 2.4 Hz, 1H, H-5), 2.09 (s, 3H, H-OAc), 2.05 (s, 3H, H-OAc), 2.03 (s, 3H, H-OAc), 2.00 

(s, 3H, H-OAc).  

13C NMR (101 MHz, CDCl3)  102.0 (C-1), 72.8 (C-3), 72.7 (C-5), 71.1 (C-2), 68.4 (C-4), 61.8 (C-6), 

20.6-20.9 (4C, C-OAc). 

MS m/z (%): calcd for C15H18D4O10Na [M+Na]+ 389.1362, found 389.079 [M+Na]+ (100). 
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5.4.5 [1,1,1-2H]Methyl--D-[1-2H]glucopyranoside, compound 4. 

The product from the glycosylation reaction (0.409 mmol) was deacetylated by treatment with 2 

mL of methanol:triethylamine:water (2:1:1) at room temperature for 24 hours. The deprotection 

reaction was stopped by filtration on Amberlite IR120 hydrogen form. The methanol was 

evaporated and the product in water was freeze-dried. The product stills showed a yellow color, 

because of the presence of triethylamine. So, the deacetylated glucoside was dissolved in water 

and flowed through a C18 chromatography column. The residual salts and the triethylamine 

were eluted in water while the monosaccharide was eluted in water/methanol (1:1). Again, the 

methanol was evaporated and the product in water was freeze-dried. 0.360 mmol, 88% of pure 

 anomer of [1,1,1-2H]methyl--D-[1-2H]glucopyranoside were obtained. 

[]20 
D = -25.0 (c = 0.1, H2O) 

1H NMR (400 MHz, D2O) 3.84 (d, J = 2.4, 12.5 Hz, 1H, H-6S), 3.63 (d, J = 4.8, 12.5 Hz, 1H, H-6R), 

3.40 (t, J = 9.7 Hz, 1H, H-3), 3.37 (m, J = 9.7, 4.8, 2.4 Hz, 1H, H-5), 3.29 (t, J = 9.7 Hz, 1H, H-4), 3.17 

(d, J = 9.7 Hz, 1H, H-2). 

13C NMR (101 MHz, D2O)  102.7 (C-1), 75.9 (C-5), 75.7 (C-3), 72.6 (C-2), 69.3 (C-4), 60.2 (C-6), 

56.3 (C-Me). 

MS m/z (%): calcd for C7H10D4O6Na [M+Na]+ 221.0939, found 221.00966 [M+Na]+ (100). 
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5.4.6 Selective deuterium-labelling, compound 5. 

A suspension of [1,1,1-2H]methyl--D-[1-2H]glucopyranoside (60;5 μmol) and 5% Ru/� (5 mol%) 

in D2O (1mL) was stirred at 80 °C in a test tube under a hydrogen atmosphere (balloon). The 

reaction was followed via NMR. After 72 hours, a full conversion of the partially protonated 

sugar into the fully deuterated -D-methylglucoside, but C(5)-H, was reached. The mixture was 

cooled to room temperature and filtered by a membrane filter (Milipore, Millex-LH, 0.45 um) to 

remove the 5% Ru/C catalyst. The filtrate was freeze-dried; 43;6 μmol, 72%, of the  anomer of 

[1,1,1-2H]methyl--D-[1,2,3,4,6,6-2H9]glucopyranoside were obtained. 

[]20 
D = -29.0 (c = 0.1, H2O) 

1H NMR (800 MHz, D2O) 3.36 (s, 1H, H-5). 

2H NMR (123 MHz, H2O)  4.23 (m, 1D, D-1), 3.78 (m, 1D, D-6S), 3.57 (m, 1D, D-6R), 3.40 (s, 3D, 

D-Me), 3.34 (m, 1D, D-3), 3.25 (m, 1D, D-4), 3.12 (m, 1D, D-2). 

13C NMR (200 MHz, H2O)  102.7 (C-1), 76.0 (C-5), 75.3 (C-3), 72.6 (C-2), 69.3 (C-4), 60.2 (C-4), 

56.3 (C-Me). 

MS m/z (%): calcd for C7H5D9O6Na [M+Na]+ 226.1253, found 226.1283 [M+Na]+ (100). 
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5.5 Supporting Information 

Table 5.1 SI. DFT analysis of JHn-Caro couplings in CH/ interactions in a model system consisting of 

tryptophan and -D-glucose. The models differ in the orientation of the sugar ring with respect to the 

aromatic amino acid plane. A threshold value of 0.07 Hz for JHn-Caro was considered. Atom labels are 

shown in the figure at the right side. 
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Figure 5.2 SI. Selected 1D and 2D NMR spectra of compound 2 recorded in a 500 MHz Bruker 

1 13 1 13 1 1
spectrometer (CDCl3, 298 K). a) H-NMR spectrum; b) C-NMR spectrum; c) H- C-HSQC; d) H- H-COSY. 

a) 

b) 
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Figure 5.3 SI. Selected 1D and 2D NMR spectra of compound 3 recorded in a 500 MHz Bruker 

1 13 1 13 1 1
spectrometer (CDCl3, 298 K). a) H-NMR spectrum; b) C-NMR spectrum; c) H- C-HSQC; d) H- H-COSY. 

a) 

b) 
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Figure 5.4 SI. Selected 1D and 2D NMR spectra of compound 4 recorded in a 500 MHz Bruker 

1 13 1 13 1 1
spectrometer (D2O, 298 K). a) H-NMR spectrum; b) C-NMR spectrum; c) H- C-HSQC; d) H- H-COSY. 

a) 

b) 
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Figure 5.5 SI. Selected 1D NMR spectra of compound 5 recorded in 500 or 800 MHz Bruker spectrometers 

(D2O, 298 K). a) 
1
H-NMR spectrum; b) 

13
C-NMR spectrum; c) 

2
H-NMR spectrum. 

a) 

b) 
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Conclusions
 

The dynamic behavior of different sugars and mimetics and of their receptors has been studied
 

at atomic scale using Nuclear Magnetic Resonance spectroscopy and Computational methods.
 

The topic of structural flexibility in carbohydrates has been addressed at different level of
 

structural complexity.
 

1.-For the analysis of the conformational equilibria in monosaccharides, a new generation of
 

fluorine-containing glycomimetics has been presented.
 

The importance of introducing fluorine atoms in these glycomimetics has also been highlighted.
 

Only the use of 19F NMR experiments has permitted to detect a dynamic process of paramount
 

significance that would have been otherwise remained unobserved.
 

2.-Additionally, only in the presence of fluorine atoms, within a CF2 moietiy that replaces the
 

endocyclic oxygen atom, the Ido-like six-membered ring recovers its required flexibility, absent
 

in regular CH2-Ido-carbasugars.
 

The combination of NMR experiments and computational methods has permitted to show that
 

these idose-like analogues resemble the conformational plasticity of the natural parent
 

molecules that is required for key molecular recognition process and ultimately for biological
 

activity.
 

3.-For the analysis of glycosidic linkage conformations in disaccharides, the theoretical
 

calculations predicted that the exo-anomeric effect of maltose, which is almost completely
 

abolished in carbasugar analogue, is significantly restored when a CF2 group is present at the
 

endocyclic position.
 

4.-We have experimentally determined the conformational behavior of a gem-diF-carbasugar
 

maltose analogue, which indeed only exists in solution in the exo-anomeric conformation, 


strikingly different from the methylene counterpart, CH2-carbasugar, which shows a marked 


dynamic behaviour with the population of exo- and non exo-anomeric conformations. It has
 

therefore been experimentally demonstrated that it is possible to restore the exo-anomeric
 

effect for an acetal when replacing one of the oxygen atoms by a CF2 group. This result is of
 

fundamental interest as it strongly suggests the importance of the stereoelectronic component
 

for the exo-anomeric effect.
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5.-Large scale domain rearrangements in glycan receptor have been studied theoretically and 

experimentally. The amplitude and time scale of GGBP inter-domain dynamics have been 

unveiled by NMR spectroscopy and detailed MD simulations. 

GGBP protein has been modified through single point mutation and chemical conjugation with a 

substituent able to chelate lanthanides cations. The modified protein has been labeled with 

dysprosium, as paramagnetic ion, and lanthanum, as diamagnetic ion. 

6.-The population contribution of the bio-functional relevant conformers that contribute to the 

equilibrium has been determined through the analysis of proteins chemical shift perturbation, 

pseudocontact chemical shift (PCSs) and residual dipolar couplings (RDCs) induced by 

paramagnetic metal ion. 

7.-Moreover, the energy barrier for the open-to-closed transition process has been defined by 

non-equilibrium MD simulations. 

8.-All the data point out that the population of apo_cl like conformations is essential for 

activating the transition to holo_cl form, according to a conformational selection mechanism 

coupled to a final rearrangement that obeys an induced-fit kinetics process. 

From a general perspective, the protocol exemplified herein can be extended to the study a 

variety of molecular recognition processes in which significant molecular rearrangements take 

place, thus expanding the limits of the application of NMR methods to explore binding events. 

9.-Following with intermolecular interactions in sugar-proteins complexes, specifically with CH/ 

interactions, DFT calculations have predicted that intermolecular J coupling constants indeed 

exist in a simple model constituted by a glucose unit and a tryptophan amino acid. The 

theoretical values for the direct J coupling indicate that this spectroscopic parameter could be 

detected with the aid of an optimized isotope-labelling scheme that minimizes the 

intramolecular coupling constants, which could hide the intermolecular couplings. 

10.-We have designed a synthetic procedure to obtain a single proton labelled glucose through 

the substitution of all hydrogen atoms by deuterium, save H5 that participate in the 

intermolecular coupling. Thus, the fully deuterated -D-methylglucoside, except for C(5)-H, has 

been synthetized. 
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Conclusiones
 

El comportamiento dinámico de distintos azúcares, glicomiméticos y sus receptores se ha 

estudiado a escala atómica usando técnicas de espectroscopia de Resonancia Magnética Nuclear 

y métodos computacionales. El tema de la flexibilidad ha sido abordado en diferentes niveles de 

complejidad estructural. 

1.- Para el estudio de equilibrio conformacional en monosacáridos, se ha presentado una nueva 

generación de glicomiméticos fluorados. Se ha demostrado la importancia de introducir átomos 

de flúor en estos glicomimeticos. Solamente mediante el uso de experimentos de RMN de 19F se 

ha podido detectar y describir un proceso dinámico de suma importancia que, de otra manera, 

no se hubiera podido observar. 

2.-Además, la presencia de átomos de flúor dentro de un sistema CF2 en lugar del átomo de 

oxígeno endocíclico, ha facilitado que el anillo de idosa recupere su propia flexibilidad, ausente 

en el análogo CH2-Ido-carbaazucar. 

La combinación de experimentos de RMN y métodos computacionales ha permitido demostrar 

que estos análogos de idosa mantienen la plasticidad conformacional de los análogos naturales, 

que es clave para el proceso de reconocimiento molecular y en última instancia para su actividad 

biológica. 

3.-Para el análisis conformacional del enlace glicosídico en disacáridos, los cálculos teóricos 

predicen que el efecto exo-anomérico en maltosa, que no existe en los análogos de tipo carba-

azúcar, se restaura significativamente cuando un grupo CF2 está presente en la posición 

endocíclica. 

4.-Se ha determinado experimentalmente el comportamiento conformacional de un gem-diF

carbaazucar análogo de maltosa. Este muestra una conformación exclusiva de tipo exo

anomérica. Esta observación es diferente a la que se da con el correspondiente CH2-carbaazucar, 

que muestra un comportamiento dinámico, con la presencia de conformaciones de tipo exo- y 

no exo-anoméricas. Por lo tanto, se ha demostrado que es posible restablecer el efecto exo

anomérico de un acetal cuando se sustituye uno de los dos átomos de oxígeno por un grupo CF2. 

Este resultado es de interés fundamental dado que demuestra la importancia de la componente 

estereoelectrónica del efecto exo-anomérico. 
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5.-Se han estudiado, teórica y experimentalmente, los movimientos intramoleculares inter

dominios en receptores de glicanos. En concreto, se ha determinado la amplitud y la escala de 

tiempo de los movimientos inter-dominio del receptor de glucosa y galactosa GGBP mediante 

espectroscopia de RMN y simulaciones de dinámica molecular. El receptor GGBP se ha 

modificado mediante técnicas de mutación dirigida y marcaje químico covalente con un 

sustituyente capaz de enlazar cationes lantánidos. La proteína así modificada ha sido etiquetada 

con disprosio, catión paramagnético, y con lantano, catión diamagnético. 

6.-La distribución de poblaciones de los diferentes conformeros bio-funcionales ha sido 

determinada por medidas de desplazamientos químicos de pseudocontacto ("pseudocontact 

chemical shifts", PCSs) y de constantes residuales dipolares ("residual dipolar constants", RDCs). 

7.-Se ha determinado la barrera energética de la transición entre la estructura abierta y cerrada 

mediante simulaciones de dinámica molecular de no equilibrio. 

8.-Todos los datos obtenidos han permitido demostrar que la población de conformaciones tipo 

apo_cl es esencial por la activación de la transición hacia la forma holo_cl, de acuerdo con un 

mecanismo de selección conformacional seguido de una reorganización entre los dos dominios, 

que obedece a un proceso de ajuste inducido. Desde una perspectiva general, el protocolo 

usado en este trabajo puede extenderse al estudio de diferentes procesos de reconocimiento 

molecular, ampliando de esta manera los límites de los métodos de RMN para explorar 

acontecimientos de unión. 

9.-Siguiendo con las interacciones intermoleculares en complejos entre proteínas y azucares y, 

en concreto, interacciones CH-pi, el uso de cálculos DFT ha permitido estimar los valores de 

constantes de acoplamientos (J) intermoleculares en un modelo simple, constituido por una 

unidad de glucosa y un aminoácido de triptófano. 

10.-Los valores teóricos calculados para la constante de acoplamiento (J) indican que, para 

poder determinar este parámetro, es necesario diseñar un procedimiento donde se minimicen 

otras posibles J presentes en el sistema. Se ha diseñado una estrategia basada en un etiquetado 

isotópico optimizado mediante la sustitución de todos los hidrógenos por deuterio excepto 

aquel participante en el acoplamiento intermolecular objeto de estudio. Así, se ha diseñado, y 

usado con éxito, un procedimiento de síntesis para obtener el -metil glucopiranósido 
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selectivamente protonado en posición 5, sustituyendo el resto de hidrógenos de la molécula por 

átomos de deuterio. 
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