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Resumen

El título de esta tesis engloba el estudio de dos temas fundamentales en los que se ha
trabajado en los últimos años. Los resultados que se han obtenido, que son el fruto
del arduo trabajo llevado a cabo durante los últimos tres años, están relacionados
con los siguientes temas:

• Genericidad algebraica y lineabilidad: Este tema consiste en el estudio de las
estructuras algebraicas contenidas en determinados conjuntos de un espacio
vectorial o un álgebra. En este sentido, estudiamos problemas de lineabilidad
y algebrabilidad para ciertas clases de espacios de sucesiones y series. Así
como, la clase de funciones singulares reales en el intervalo unitario. Este
tema ha demostrado ser extremadamente fructífero en la última década y esto
dió lugar a que la American Mathematical Society introdujese las referencias

15A03 : Espacios vectoriales, independencia lineal, grado, lineabilidad.
46B87 : Lineabilidad en analisis funcional.

en su última revisión y actualización de la Mathematical Subject Classification
2020.

• Convexidad: una función f ∶ V → R (donde V es un espacio vectorial sobre R)
se dice que es convexa si, para todo x, y ∈ V y 0 ≤ � ≤ 1, tenemos:

f(�x + (1 − �)y) ≤ f(x) + (1 − �)f(y).

En relación con esta definición, en [80], se propuso una definición de funciones
multiplicativas convexas centrándose en la media geométrica. Se propone una
definición centrándose en la media aritmética y se estudian en profundidad.
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2 Resumen

Esta memoria está dividida en dos partes. Temas de lineabilidad son la cuestión
central y el nexo de unión de los tres capítulos de la primera parte. En el primer
capítulo se da una prueba corta y simple de un clásico resultado de Henry Blumberg.
En el segundo capítulo estudiamos los problemas de lineabilidad y algebrabilidad
para ciertas clases de espacios de sucesiones y series. En el último capítulo se
estudia la clase de funciones singulares desde el punto de vista de la lineabilidad.
La convexidad es el tema que genera el estudio realizado en los tres capítulos de
la segunda parte. En el primer capítulo se estudian las funciones multiplicativas
convexas con la condición extra f(1) = 1. En el segundo capítulo se generalizan y se
inicia el estudio sin la condición de f(1) = 1. En el último capítulo de esta parte se
estudian la inyectividad de las funciones multiplicativas convexas y el conjunto de
estas funciones que son discontinuas.

A continuación damos una descripción de lo que se hace en cada una de las dos
partes de esta tesis, por capítulos:

Parte I

Capítulo 1

En este capítulo tratamos un resultado de Henry Blumberg de 1922 que afirma
que para toda función f ∶ R → R, existe un conjunto denso D ⊂ R tal que la
restricción f �D es continua. En particular, se da una prueba nueva y corta de este
resultado. Este trabajo viene motivado por el estudio realizado en las memorias
del TFG y TFM de la candidata en las que se estudian las funciones SZ1 desde
el punto de vista de la lineabilidad y espaciabilidad. Estas funciones son funciones
cuya restricción a cualquier conjunto de cardinal c es discontinua.

Capítulo 2

En este capítulo estudiamos los problemas de lineabilidad y algebrabilidad para
ciertas clases de espacios de sucesiones y series. En particular, extendemos algunos
resultados de algebrabilidad en el contexto de cuerpos p-ádicos. También propor-
cionamos una prueba completa de una pregunta abierta (previamente contestada
incorrectamente) en la c algebrabilidad de la clase de sucesiones cuyo conjunto de
puntos de acumulación es un espacio de Cantor, es decir, es homeomorfo al conjunto
de Cantor.

Capítulo 3
1Funciones conocidas como “de Sierpiński-Zygmund.”



Resumen 3

Estudiamos la clase de funciones singulares reales en el intervalo unitario, es
decir, las funciones de variación acotada continua que tienen derivada nula en casi
todas partes, desde el punto de vista de lineabilidad. En particular, grandes sube-
spacios vectoriales cerrados, grandes álgebras lineales y grandes retículos de Banach
viven, a excepción del cero, dentro de varias subclases de la misma. Estas subclases
están relacionadas, entre otras propiedades, al tamaño del conjunto cero, a la mono-
tonía en ninguna parte, o a la existencia de puntos no críticos. También la familia de
funciones continuas quasi-constantes se analiza bajo ese punto de vista. Además, se
estudia lo que sucede en este contexto, cuando uno pasa de la topología de variación
acotada a la topología de convergencia uniforme.

Parte II

Capítulo 4

Las funciones convexas multiplicativas [80] han estado imitando el compor-
tamiento de las funciones convexas, pero centrándose en la media geométrica, en
lugar de la media aritmética. En este capítulo introducimos una noción diferente
de función multiplicativa convexa que se centra en las operaciones aritméticas. Es-
tudiamos las funciones resultantes con la condición f(1) = 1, llegando a dar una
caracterización de las mismas.

Capítulo 5

Este capítulo es una continuación natural del trabajo iniciado en el capítulo
anterior. Se estudian las funciones multiplicativas convexas, sus propiedades de
continuidad y sus generalizaciones (sin la condición f(1) = 1). Se presentan algunos
resultados de genericidad algebraica que relacionan el tema con la lineabilidad, tema
principal de la parte I de la memoria. También se plantean algunas preguntas
abiertas.

Capítulo 6

Estudiamos el conjunto de funciones multiplicativas convexas. En concreto, nos
centramos en las propiedades de la inyectividad y discontinuidad. Demostraremos
que una función multiplicativa convexa no constante es (como mucho) 2−inyectiva.
Construimos funciones multiplicativas convexas que son discontinuas sobre un con-
junto infinitos de puntos y estudiamos la dimensión algebraica del tronco de cono
que forman.
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Abstract

The title of this dissertation encompasses the study of two disparate topics that
have been worked on. All the results that have been obtained in this dissertation,
as the fruit of three years of tedious work, are related to the following fields within
Mathematical Analysis:

• Algebraic genericity and lineability: This is the study of the algebraic structure
within certain sets in a linear space or an algebra. In this sense, we study
lineability and algebrability problems of sequences spaces and series. Just
as, for the class of real singular functions on the unit interval. This topic
has shown to be extremely fruitful in the last decade and this resulted in the
American Mathematical Society introducing references

15A03 : Vector spaces, linear dependence, rank, lineability.
46B87 : Lineability in functional analysis.

in its latest Mathematical Subject Classification 2020.

• Convexity: a function f ∶ V → R (where V is a vector space over sobre R) is
called convex if, whenever x, y ∈ V and 0 ≤ � ≤ 1, we have:

f(�x + (1 − �)y) ≤ f(x) + (1 − �)f(y).

In connection with this definition, in [80], a definition of multiplicative con-
vex functions was proposed focusing on the geometric average. A definition
focusing on the arithmetic average is also proposed and studied in depth.

This dissertation is divided into two parts. Lineability problems represent the core
and the connecting link of the three chapters in the first part. The first chapter
provides a short and simple proof of a classic result by Henry Blumberg. In the
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6 Abstract

second chapter we study the lineability and algebrability problems for certain classes
of sequence and series spaces. In the last chapter the class of singular functions is
studied from the point of view of lineability. Convexity is the theme that generate
the study carried out in the three chapters of the second part. In the first chapter, we
study multiplicative convex functions with the additional condition f(1) = 1. In the
second chapter, the latter are generalized and the study begins without the condition
of f(1) = 1. The last chapter of this part focuses on the injectivity of multiplicative
convex functions and the set of these functions that are discontinuous.

We provide next a brief description of the content of each one of these chapters:

Part I

Chapter 1

In this chapter we discuss an amazing 1922 result of Henry Blumberg stating
that for an arbitrary f ∶ R→ R, there is a dense D ⊂ R such that the restriction f �D

is continuous. In particular, we provide a new short proof of this theorem. This
work is motivated by the study carried out in the reports of Master’s thesis and
final degree project in which SZ functions are studied from the point of view of
lineability and spaciability. These functions are functions whose restriction to any
set of cardinal c is discontinuous.

Chapter 2

In this chapter we study the lineability and algebrability problems for certain
classes of sequence spaces and series. In particular, we extend some algebrability
results to the context of p-adic fields. We also provide a complete proof of an (pre-
viously inaccurately answered) open question on the c-algebrability of the class of
sequences whose set of accumulation points is a Cantor space, i.e., it is homeomor-
phic to the Cantor set.

Chapter 3

In this chapter, the class of real singular functions on the unit interval, that is,
those continuous bounded variation functions having null derivative almost every-
where, is studied from the point of view of lineability. In particular, large closed
vector subspaces, large linear algebras and large Banach lattices are found to live,
except for zero, inside several subclasses of it. These subclasses are related, among
other properties, to the size of the zero set, to nowhere monotonicity, or to the exis-
tence of noncritical points. Also the family of continuous functions being constant
on full measure sequences of sets is analyzed under this point of view. Moreover,
it is studied what happens in this context when one moves from bounded variation
topology to uniform convergence topology.
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Part II

Chapter 4

Multiplicative convex functions ([80]) have been mimicking the behaviour of
convex functions, but focusing on geometric average, instead of arithmetic average.
In this chapter we propose a different definition which focuses on the arithmetic
operations taking part and we study the resulting functions. We study the resulting
functions with the condition f(1) = 1, a characterization is also provided.

Chapter 5

This chapter is a natural continuation of the ongoing work started in the previ-
ous chapter. We study multiplicative convex functions, their continuity properties
and their generalizations (without the condition f(1) = 1). Some results regarding
algebraic genericity are also presented, this results related the topic with lineability,
principal issue of part I. Also some open questions are posed.

Chapter 6

In this chapter we study the set of multiplicative convex functions. More par-
ticularly, we focus on the properties of injectiveness and discontinuity. We will
show that a not constant multiplicative convex function is at most 2-injective and
construct multiplicative convex functions which are discontinuous over a set with
infinite points and we study the algebraic dimension of the truncated cone that they
form.



8 Abstract



Part I

Lineability
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Chapter 1
“Big” Continuous Restrictions of

Arbitrary Functions

1.1 Introduction

As soon as a student is introduced to the notion of continuity for one variable
real-valued functions, f ∶R → R, it is natural to note that not all such maps are
(everywhere) continuous. Perhaps the most natural examples illustrating this are
maps having just a single jump discontinuity, such as the famous characteristic
function �(0,∞)∶R → {0,1} of (0,∞). Most undergraduate students are, usually,
pleased after learning such examples, without even wondering whether anything
“worse” could happen. However, some students may inquire if an arbitrary f ∶R→ R
must have “a lot” of points of continuity, as �(0,∞) does. Fortunately, there is yet
another simple example of a function f that is, actually, discontinuous at every
point: the characteristic function �Q of the set Q of all rational numbers, known
as the Dirichlet function, and named after P. Dirichlet (1805–1859). This example
would surely satisfy all but the most curious students. However, such extremely
curious (probably graduate) students may notice that the restriction f �Qc of f = �Q
to the (very big) set Qc ∶= R�Q of irrational numbers is still continuous. A natural
question arises: Must something like this be true for every function f ∶R→ R?

In the early 20th century Henry Blumberg (1886–1950, see Figure 1.1), a Russian-
American mathematician, proved the following astonishing result [27].

Theorem 1.1. For every f ∶R→ R there exists a dense subset D of R such that f �D
is continuous.

11



12 Introduction

Of course, the key property of the set D in Theorem 1.1 is that it is “big,” in
the sense that it is dense in R. However, the set D provided in the construction is
just countable. Consequently, a natural question is whether the existence of an even
bigger set D in the theorem above can always be ensured.

A negative answer to this last question was given only a year later, in the 1923
paper [88] by two Polish mathematicians, Wacław Sierpiński (1882–1969) and Antoni
Zygmund1 (1900–1992); see Figure 1.2. More particularly, they proved the following
result (where c denotes the cardinality of the continuum, that is, of R). Any function
as in the following theorem is nowadays called a Sierpiński–Zygmund (or just SZ-)
function.

Theorem 1.2. There exists a function f ∶R→ R such that f �S is discontinuous for
every S ⊂ R of cardinality c.

Thus, by Theorem 1.2, the countable set D constructed in the proof of Theo-
rem 1.1 is the best we can do within the standard axiom system ZFC (the Zermelo–
Fraenkel axioms with the axiom of choice) of set theory. Indeed, under the contin-
uum hypothesis CH,2 if f is an SZ-function, then any set D with continuous f �D

1After the Second World War Zygmund worked in the United States.
2Recall that CH, the statement that there is no cardinal number between c and ! (where ! is

the cardinality of N), is independent of the usual axioms ZFC of set theory.

Figure 1.1: H. Blumberg in 1914 (courtesy of Dr. George Blumberg and the Blum-
berg family).
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Figure 1.2: A. Zygmund in 1980 Summer Symposium in Real Analysis (courtesy of
the Real Analysis Exchange) and W. Sierpiński.

must be countable, as it has cardinality less than c. Still, one might wonder if under
the negation of the continuum hypothesis something more can be said about the
cardinality of the set D from Blumberg’s theorem. However, even ¬CH does not
decide anything definitive on the possible size of D. Specifically, this follows from
the following two results.

(1) In a model of ZFC obtained by adding at least !2 Cohen reals, the continuum
hypothesis fails, while there exists an f ∶R → R for which f �X is discontinuous for
every uncountable X ⊂ R. This has been proved by Gruenhage (see the work of
Recław [83, Theorem 4]) and Shelah [86, §2]. Of course, in such a model of ZFC the
set D from Blumberg’s theorem can be at most countable, while ¬CH holds.

(2) Under Martin’s axiom MA, for every function f ∶R → R and every infinite
cardinal  < c there exists a -dense set X ⊂ R (i.e., such that X ∩ (a, b) has
cardinality  for every a < b) for which f �X is continuous. This was proved by
Baldwin [13]. In particular, under MA+¬CH, which is consistent with ZFC, the set
D from Blumberg’s theorem can actually be !1-dense.

Another possible generalization of Theorem 1.1 studied in the literature is whether
there is a model of ZFC in which the set D (not necessarily dense) can be always
chosen either of second category or of positive Lebesgue outer measure. Of course,
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neither of these holds either in the model from (1) or under MA (since, under MA,
every set of cardinality less than c is both meager and of measure 0). But each of
these questions has a positive answer. A model of ZFC in which for every f ∶R→ R
there exists a second category set D with f �D continuous is constructed in a 1995
paper [86] of Shelah. It is easy to see that this property implies that the set D can
also be of second category in every nonempty open set in R (see, e.g., [34, Theorem
2.10]). In the measure case, Rosłanowski and Shelah proved, in a 2006 paper [84],
that it is consistent with ZFC that for every f ∶R → R there exists a continuous
function g∶R→ R that agrees with f on a set D of positive Lebesgue outer measure.
Of course, for f = �(0,∞), this last set D cannot be dense. But, even if we require
only that f �D be continuous, such a D cannot be expected to be of positive outer
measure in every nonempty open set in R. This is prevented by an example of
Brown [30]. (Compare also [34, Theorem 2.11].)

There is also a multitude of other generalizations of Blumberg’s theorem (e.g.,
concerning functions between topological spaces X and Y ). See, for example, [29,
59, 69, 75]. To see these results from a more general real analysis perspective, see
[34,73].

1.2 The proofs.

The proof of Blumberg’s theorem relies on the following lemma from [27]. (See also
[73].) For f ∶R → R, a point x ∈ R is said to be f -pleasant provided for every open
B ∋ f(x) there is an open UB

x ∋ x such that the set f−1(B) is categorically dense in
UB
x (i.e., f−1(B) ∩ V is of second category for every nonempty open V ⊂ UB

x ).

Lemma 1.3. For every f ∶R→ R the set Pf of all f -pleasant points is residual (i.e.,
it contains an intersection of countably many dense open sets) in R.

Proof. Let B be a countable basis for R. For every B ∈ B let

EB ∶= �x ∈ f
−1
(B)∶f−1(B) is not categorically dense in any open U ∋ x�

and notice that EB is of first category. Indeed, it is a union of two first category
sets: W ∩ EB, where W = �{V ∈ B∶V ∩ EB is of first category}, and bd(W ) ∩ EB

(where bd(W ) is the boundary of W ).

Since E ∶= �B∈BEB is of first category, it is enough to show that R�E ⊂ Pf . To
see this, fix an x ∈ R �E and an open W ∋ f(x). Choose B ∈ B with f(x) ∈ B ⊂W .
Since x ∉ EB, there is an open UB

x ∋ x such that f−1(B) is categorically dense in
UB
x . Then f−1(W ) ⊃ f−1(B) is also categorically dense in UB

x ; that is, UW
x ∶= U

B
x is

as needed.
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New proof of Blumberg’s Theorem. Let B = {Bn∶n < !} be a basis for R. We con-
struct, by induction on n < !, the sequences �xn ∈ Bn ∩ Pf � {xi∶ i < n}∶n < !� and
��Un

k , V
n
k � ∈ B

2∶k ≤ n < !�, aiming for D ∶= {xn∶n < !} to be our desired set. The
continuity of f �D is ensured by the properties of the constructed sets Un

k and V n
k :

each family {V n
i ∶n < !} will form a basis of R at f(xi) and each D-open U

j
i ∩D ∋ xi

will be contained in f−1(V j
i ).

To ensure this, we will assume that for every n < ! and i ≤ j ≤ n, k ≤ ` ≤ n with
j ≤ `:

(an) f−1(V j
i ) is categorically dense in U

j
i , xi ∈ U

j
i ∩ f

−1(V j
i ), and V

j
i has diameter

less than 2−j;
(bn) if U j

i ∩U
`
k ≠ � and �i, j� ≠ �k, `�, then j < ` and U `

k × V
`
k ⊂ U

j
i × V

j
i .

These properties guarantee that D ∶= {xn∶n < !} is as needed. Indeed, D is dense,
since it intersects every Bn ∈ B. Each family {V n

i ∶n < !} will form a basis of R at
f(xi), since each open set V n

i contains xi and the diameters of V j
i go to 0 as j →∞.

Thus, to show that f �D is continuous at xi, it is enough to show that f maps each
D-open U

j
i ∩D ∋ xi into V

j
i . To see this, fix an xk ∈ D ∩U

j
i . We cannot have k < i,

since then xk would belong to disjoint U
j
k and U

j
i . By (aj), we have f(xi) ∈ V

j
i .

Thus, assume that i < k. Then xk ∈ U
j
i ∩ U

k
k and, by (bk), f(xk) ∈ V

k
k ⊂ V

j
i , as

needed.

To make the nth step in our construction, choose a nonempty interval B̂n ⊂ Bn

such that, for every i ≤ j < n, B̂n is either contained in U
j
i or it is disjoint from U

j
i .

Let
Fn ∶= {U

j
i ∶ i ≤ j < n & B̂n ⊂ U

j
i }.

If Fn ≠ �, then n > 0 and, by (bn−1), Fn contains a smallest element, say U
µ
 . We

choose
xn ∈ B̂n ∩ Pf ∩ f

−1
(V

µ
 ) � {xi∶ i < n}.

This choice can be made since B̂n ⊂ U
µ
 is open and nonempty, f−1(V µ

 ) is categori-
cally dense in U

µ
 , and Pf �{xi∶ i < n} is residual. If Fn = �, take xn ∈ B̂n∩Pf �{xi∶ i <

n}.

To finish the construction we first choose, for each k ≤ n, a V n
k as an open interval

containing f(xk) of length less than 2−k small enough such that if f(xk) ∈ V
j
i for

some i ≤ j < n, then V n
k ⊂ V

j
i . The existence of sets Un

k , k ≤ n, satisfying (an) follows
from {xi∶ i ≤ n} ⊂ Pf . Shrinking them if necessary, we can also ensure that they
are pairwise disjoint and that if, for some i ≤ j < n, xk ∈ U

j
i , then Un

k ⊂ U
j
i . These

choices ensure that (an) and (bn) are satisfied.
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Construction of a Sierpiński–Zygmund function. The key fact needed in the con-
struction is the following result of Kuratowski (1896–1980), see, e.g., [71, p. 16]:

(E) For every continuous g from an S ⊂ R into R there exists a G�-set G ⊃ S and a
continuous extension ḡ∶G → R of g. In particular, g admits a Borel extension
ĝ∶R→ R.

Indeed, for every x ∈ cl(S) define

oscg(x) ∶= inf{diam(g[U ∩ S])∶U ∋ x is open}

and notice that G ∶= {x ∈ cl(S)∶oscg(x) = 0} contains S and is a G�-set in R since
G ∶= �n∈NWn, where each set Wn ∶= {x ∈ cl(S)∶oscg(x) < 1�n} is open. Now, if cl(g)
is the closure in R2 of the graph of g, then ḡ = cl(g) ∩ (G ×R) is the graph of our
desired function ḡ. A Borel extension ĝ of ḡ can be defined to be 0 on R �G.

To construct a Sierpiński–Zygmund function f ∶R → R, let {x⇠ ∶ ⇠ < c} be an
enumeration, with no repetition, of R and let {ĝ⇠ ∶ ⇠ < c} be an enumeration of all
Borel functions from R to R. For every ⇠ < c define f(x⇠) so that

f(x⇠) ∈ R � {ĝ⇣(x⇠)∶ ⇣ < ⇠}.

This defines our SZ-function. Indeed, if f �S is continuous for some S ⊂ R then, by
(E), there exists a Borel extension ĝ∶R → R of f �S. Let ⇣ < c be such that ĝ⇣ = ĝ.
Then S ⊂ {x⇠ ∶ ⇠ ≤ ⇣}, since f(x⇠) ≠ ĝ⇣(x⇠) = ĝ(x⇠) for every ⇠ > ⇣. Thus, S has
cardinality < c, as needed, and we are done.



Chapter 2
Algebraic genericity and special

properties within sequence spaces
and series

2.1 Introduction and preliminaries

This chapter contributes to the search for large vector spaces of sequences and
series having certain special (or pathological) property. Let us recall, for the sake of
completeness, the following definitions of lineability and algebrability, that shall be
recurrent throughout this Ph.D. dissertation.

This terminology of lineable and spaceable coined by V.I. Gurariy and it was first
introduced in [9, 85] (Figure 2.1). There has been plenty of work in this direction
since its appearance about a decade ago. As a matter of fact, this notion was (just
recently) introduced by the American Mathematical Society under the MSC2020
15A03 and 46B87 references.

Definition 2.1. Assume that X is a vector space, that ↵ is a cardinal number and
that A ⊂X. Then A is said to be:

● lineable if there is an infinite dimensional vector space M such that M�{0} ⊂
A, and

17
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Figure 2.1: Vladimir Ilyich Gurariy (1935–2005) was born in Kharkov (Ukraine).
In 1991 he moved to the USA and worked in Kent State University (Ohio) until his
passing.

● ↵-lineable if there exists a vector space M with dim (M) = ↵ and M�{0} ⊂ A.

If, in addition, X is a topological vector space, then A is said to be spaceable
whenever there is a closed infinite dimensional vector subspace M of X satisfying
M � {0} ⊂ A.

As introduced in [8], A is called dense-lineable if A∪{0} contains a dense vector
subspace.

Trivially, spaceability implies lineability and, if X is infinite-dimensional, then
dense-lineability implies lineability too.

Finally, when X is a topological vector space contained in some (linear) algebra
then A is called:

● algebrable if there is an algebra M so that M � {0} ⊂ A and M is infinitely
generated, that is, the cardinality of any system of generators of M is infinite.

● ↵-algebrable if there is an ↵-generated algebra M with M � {0} ⊂ A.

● strongly ↵-algebrable if there exists an ↵-generated free algebra M with M �

{0} ⊂ A.
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Of course, strong ↵-algebrability implies ↵-algebrability, which implies ↵-lineability.
However, in general, the converse implications do not hold, see, e.g., [7,17,25]. Recall
that these notions of algebrability and their variants first appeared in [10,11,15].

The interested reader may also consult [7–10,17,20,22,25,33,35,37,45,53,55–58,
67, 68, 77, 85] for a complete account on lineability, spaceability, algebrability and
related topics.

The aim of this chapter is to study the lineability/algebrability problem for
certain classes of sequence spaces and series. In particular, we extend a result from
[3] to the setting of p-adic fields. Also, we solve a problem posed in [16] and continue
with the line proposed in [21]. First we provide a number of definitions and notations
that, although rather usual, we shall need in this chapter. Next, in Section 3.2 we
shall present and prove the main results of this chapter (Theorems 2.5, 2.9, 2.10,
2.11, 2.12, and 2.14).

Let us, then, start off with recalling several notions we shall need from now on.
As usual ! denotes the cardinal of N, c the cardinal of R and in general card(X)
denotes the cardinal of X. The concepts and terminology appearing in the following
definition can be found in [43].

Definition 2.2. For K = R or C, we have that

1. `∞ (K) stands for the vector space of bounded sequences, c denotes the subspace
of convergent sequences, c0 denotes the subspace of sequences converging to 0,
and c00 is the subspace of c0 consisting of sequences that are eventually zero.

2. BS(K) is the Banach space of the series ∑i ai satisfying that

sup��
n

�
i=1

ai� ∶ n ∈ N� <∞,

endowed with the norm given by

�(ai)i� = sup��
n

�
i=1

ai� ∶ n ∈ N� <∞.

3. The subspace of BS(K) consisting of all the convergent series is denoted
CS(K), which is a closed subspace of BS(K).

4. The subspace of CS(K) formed by the unconditionally convergent series, UC(K),
is not closed in CS(K). On the other hand, UC(K) endowed with the norm

�(ai)i� = sup���
i∈F

ai� ∶ F ⊂ N, F finite� <∞

is a Banach space.
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5. The set of the conditionally convergent series shall be denoted by CC(K).

Next, and for the sake of completeness, let us also recall certain concepts regard-
ing p-adic numbers and convergence of series within the p-adic field Qp (see, e.g.,
[60, 70]).

Definition 2.3. 1. Given a prime number p, the p-adic absolute value � ⋅ �p in
Q is defined as follows: for any non-zero x ∈ Q, there is a unique integer n

allowing us to write x = pn(
a
b ), where none of the integers a and b is divisible

by p. Observe that if the numerator and denominator of x in lowest terms do
not contain p as a factor, then n is 0. Thus, we define

�x�p =

�
��
�
��
�

p−n if x ≠ 0,
0 if x = 0.

2. In Q we have the non-Archimedean distance dp(x, y) = �x − y�p. It is known
that (Q, dp) is not a complete metric space, [60,70]. The completion of (Q, dp)

is the Qp field with a metric that we also denote dp.

3. A series ∑∞n=1 an is said to be convergent in Qp if the sequence of its partial
sums converges in Qp, i.e., if

lim
m→∞ �Sm+1 − Sm�p = lim

m→∞ �am+1�p = 0

where Sm = ∑
m
n=1 an.

The series is said to be absolutely convergent if ∑∞n=1 �an�p converges in R.

We shall denote by CS(Qp) the space of the convergent series of Qp and by
CC(Qp) the subspace of CS(Qp) of the non-absolutely convergent series. The fol-
lowing definition is rather standard (see, [3]).

Definition 2.4. A family {A↵ ∶ ↵ ∈ I} of infinite subsets of N is called almost
disjoint if A↵ ∩A� is finite whenever ↵,� ∈ I and ↵ �= �.

2.2 The main results

In [3, Theorem 2.1] the authors showed that CS(K) contains a vector space E, of
dimension c, such that every x ∈ E�{0} is a conditionally convergent series. Besides
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this previous result, they also stated that span{E ∪ c00} is, actually, an algebra and
its elements are either elements of c00 or conditionally convergent series.

We are going to show that the proof of [3, Theorem 2.1] can be used to see that
the result is also true for K = Qp. However, in Qp we do not have the concept
of conditionally convergent series and, thus, we shall work with series which are
convergent but not absolutely convergent.

Theorem 2.5. CS(Qp) contains a vector space E verifying the following properties:

1. For every x ∈ E � {0}, we have that x ∈ CC(Qp).

2. dim(E) = c.

3. span{E∪c00} is an algebra and its elements belong to either c00 or to CC(Qp).

Proof. Let us define {an}n∈N by a1 = p and an = p
k where k satisfies the following:

k−1
�
j=1

j
j
< n ≤

k

�
j=1

j
j
.

Its easy to see that ∑n∈N an converges (limn→∞ �an�p = 0). Let us see that it is not
absolutely convergent. We have that

�

n∈N
�an�p =�

k∈N
�
k

p
�

k

which shows clearly that {an}n∈N is not absolutely convergent.

Analogously we can prove that {arn}n∈N is a convergent series but it is not abso-
lutely convergent.

Let us take a family (A↵)↵∈I of almost disjoint subsets of N with card(I) = c
(see, e.g., [3]) and define, for every ↵ ∈ I, the sequence given by

x↵,i = �
xn if i = nth element of A↵,

0 otherwise. (2.1)

Next, define the space

E = span{xr
↵ ∶ r ∈ N and ↵ ∈ I}.
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Now, we assume that

z =�

i∈S
M

�
m=1

b↵i,mx
rm
↵i
= 0

for some M ∈ N, {r1, . . . , rM} ⊂ N and ↵i ∈ I for every i ∈ S with card(S) < !. Then,
for every i ∈ S, there exists n0 ∈ N such that, for every n > n0,

M

�
m=1

b↵i,mx
rm
↵i,n = 0.

Therefore, we have that ∑M
m=1 b↵i,mx

rm
n = 0 for every n > n0. But there exists k0

such that if k > k0 then ∑M
m=1 b↵i,mp

krm = 0, i.e., the polynomial ∑M
m=1 b↵i,my

rm has
infinite zeros. Then b↵i,m = 0 for every m ∈ {1, . . . ,M}. Since the latter is proved
for every i ∈ S, we have that b↵i,m = 0 for every m ∈ {1, . . . ,M} and i ∈ S. Therefore,
dim(E) = c.

If z �= 0, it easy to see that z ∈ CC(Qp), and since x
k1
↵ ⋅ x

k2
� ∈ c00 for every ↵ �= �

and k1, k2 ∈ N, we have that span{E ∪ c00} is an algebra.

Some of the results in [3] are refined in [16]. In particular, it is proved that
{x ∶ x ∈ `∞(C) and x is a divergent sequence} is c-strongly algebrable. Interestingly,
this result turns out to be true in a real setting too, as we will see in this section.
In order to do so, we need to introduce some notions typical from Ergodic Theory.

Definition 2.6 ([92]). Suppose (X1,B1,m1) and (X2,B2,m2) are probability spaces.

1. A transformation T ∶X1 →X2 is measurable if T −1(B2) ⊂ B1 (i.e., B2 ∈ B2⇒

T −1B2 ∈ B1).

2. A transformation T ∶ X1 → X2 is measure-preserving if T is measurable and
m1(T

−1(B2)) =m2(B2) for every B2 ∈ B2.

Definition 2.7 ([92]). Let (X,B,m) be a probability space and T a measure-preserving
transformation of (X,B,m). T is called ergodic if the only members B of B with
T −1B = B satisfy m(B) = 0 or m(B) = 1.

Example 2.8. A well-known example of a continuous transformation that is ergodic
is T2 ∶ [0,1]→ [0,1] defined by

T2(t) = �
2t if x ∈ [0,1�2]
2 − 2t if x ∈ ]1�2,1].
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Given a transformation T ∶ [0,1] → [0,1] and a set I with card(I) = c we define
T I ∶ [0,1]I → [0,1]I by T I(x) = {T (xi)}i∈I .

If we consider the Lebesgue measure � in [0,1], we can define in [0,1]I the
product measure given in [18, Chapter II]. Remember that this measure is defined
in the �-algebra generated by the sets of the form ∏i∈I Ji where Ji = [0,1] excepting
in a finite set of indexes for which Ji = [ai, bi[. The class of this sets is denoted
by C. We will denote this measure by ⇤. If T ∶ [0,1] → [0,1] is a �-measure
preserving transformation, it can be proved that T I is also a ⇤-measure preserving
transformation. To do that, notice that it is true for the sets in C that generate the
�-algebra in [0,1]I .

Also, we can adapt the proof of [92, Theorem 1.24] to the case [0,1]I , by taking
into consideration that result is true for A = B1 ∩B2 with B1,B2 ∈ C.

Observe that [92, Theorem 1.24] holds for weakly-mixing functions. In our ver-
sion we consider strongly-mixing functions, proving that T I is strongly-mixing and
then, T I is ergodic.

Theorem 2.9. {x ∶ x ∈ `∞(R) and x is a divergent sequence} is c-strongly alge-
brable.

Proof. Given a transformation T ∶ [0,1]→ [0,1], since T I is ergodic, we can choose
z ∈ [0,1]I such that, for every A =∏i∈I Ji ∈ C we have that

lim
n→∞

card({j ∶ (T I)(j)(z) ∈ A})
n

=�(bi − ai),

where the product is considered in the set of indexes in which Ji ≠ [0,1], f (j) denotes
the iteration of composition j times, and if f ∶ [0,1]I → R is continuous then

lim
n→∞
∑

n
j=1 f((T I)(j)(z))

n
= �[0,1]I fd⇤,

where ⇤ denotes the product of the Lebesgue measure. Observe that the set with
these properties is of ⇤−measure 1.

Let us define the sequences x↵ with ↵ ∈ I as x↵,n = T
(n)(z↵), where (T I)(n)(z) =

{x↵,n}↵∈I = {T (n)(z↵)}↵∈I .

It is clear that x↵ ∈ `∞(R) for every ↵ ∈ I. Since every x↵ is dense in [0,1], we
have that x↵ is not convergent for every ↵ ∈ I. Thus, we need to see that the set
{x↵ ∶ ↵ ∈ I} is algebraically independent.
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Suppose that
m

�
s=1

cs�
↵∈Is

x
↵s
↵ = 0,

where m ∈ N, Is is a finite subset of I and cs ∈ R � {0} for every s ∈ {1, . . . ,m}.
↵s ∈ N for every ↵ ∈ Is and every s ∈ {1, . . . ,m}. We now take an element of A ∈ C
such that if Ji ≠ [0,1] then Ji = [0, bi[ and we define

fA(y) = �

m

�
s=1

cs�
↵∈Is

y
↵s
↵ ��A(y)

and
f(y) =

m

�
s=1

cs�
↵∈Is

y
↵s
↵ .

So, when A satisfies that �m
s=1 Is is the set of indexes in which Ji ≠ [0,1], we have

that

0 =
∑

k
j=1(∑m

s=1 bs∏↵∈Is a↵s
↵,j)�A((T

I)(j)(z))
k

=
∑

k
j=1∑m

s=1 bs∏↵∈Is(T (j)(x↵))
↵s�A((T

I)(j)(z))
k

=
∑

k
j=1 fA((T I)(j)(z))

k
.

Since fA can be discontinuous, we have to investigate the behaviour of

∑
k
j=1 fA((T I)(j)(z))

k
.

When 0 < b, we define the functions �b,r in such a way that they coincide with �[0,b[
except for the set ]b − 1�r, b[, where the function is linear and its graph joins the
points (b−1�r,1) and (b,0). The function �b,r is continuous and converges pointwise
to �[0,b[. We define �A,r(y) = ∏

t
i=1 �bi,r(yn). In addition, we define Ar = ∏i∈I J ′i ∈ C

with J ′i = [0,1] when Ji = [0,1], and J ′i = [ai, bi − 1�r[ when Ji = [ai, bi[. The set
A�Ar is a continuity set (its boundary is of zero measure).

Using �A,r, we introduce the function fA,r(y) = (∑
m
s=1 cs∏↵∈Is y↵s

↵ )�A,r(y).

Fix " > 0, and take r large enough, for k > k0. We have
�����������

∑
k
j=1 fA((T I)(j)(z))

k
−
∑

k
j=1 fA,r((T

I)(j)(z))
k

�����������

=

�����������

∑
k
j=1 (fA − fA,r) ((T

I)(j)(z))
k

�����������
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≤
∑

k
j=1 2Mf�A�Ar((T

I)(j)(z))
k

< "�3.

where Mf is the maximum value of f (this maximum exists because f is a continuous
function on a compact set). The inequality follows as a consequence of taking r

large enough, the fact that A�Ar is a continuity set and Portmanteau’s Theorem
(See [26, Th. 2.1]).

Also, since fA,r is continuous, we have that
�����������

�[0,1]I fA,rd⇤ −
∑

k
j=1 fA,r((T

I)(j)(z))
k

�����������

< "�3.

Now, applying the Dominated Convergence Theorem, we obtain

��[0,1]I fA,rd⇤ −�[0,1]I fAd⇤� < "�3.

From the Triangle Inequality and the inequalities above we conclude that
�����������

∑
k
j=1 fA((T I)(j)(z))

k
−�[0,1]I fAd⇤

�����������

< ".

Therefore,

lim
n→∞
∑

k
j=1 fA((T I)(j)(z))

k
= �[0,1]I fAd⇤.

As �m
s=1 Is is a finite set, t, and f is a polynomial that depends only on the

“t coordinates”, we can see the integral as an integral in [0,1]t. However, these
integrals are zero if and only if f = 0 so that cs = 0 for every s ∈ {1, . . . ,m}.

The set

ECantor ∶= �
x ∈ l∞ ∶ LIM(x) is the union of a finite set and

a homeomorphic set to the Cantor set � ,

where LIM(x) is the set of all limit points of x, is studied in [16]. The authors prove
that ECantor is strongly c−algebrable and ask (Problem 8.3) whether the set

EC = {x ∈ l
∞
∶ LIM(x) is homeomorphic to the Cantor set}

is c−algebrable.

We solve the latter question below using Brouwer’s characterization of the sets
that are homeomorphic to the Cantor set (see [71]). Namely, those sets are metriz-
able, compact, perfect and totally disconnected topological spaces.
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Theorem 2.10. EC is strongly c−algebrable

Proof. If x = {xn} is a sequence and s ∈ R, we use the notation xs = {xs
n} . Supponse

H ⊂]1,2[ is a Hammel basis of R over the rationals. Let a = {an} be a sequence
that takes infinitely many times each of the elements of the set C ∩Q, where C is
the Cantor set. Hence LIM(a) = C. Now consider the family of sequences ah with
h ∈H. Since LIM(ah) = Ch = {ch ∶ c ∈ C} , we have that ah ∈ EC .

We see now that the ah’s are algebraically independent. If they were not we
could take a set {h1, . . . , hs} ⊂H, nonzero real numbers ci and nonnegative integers
nj,i such that

k

�
i=1

cia
h1n1,i . . . a

hsns,i = 0.

We have
k

�
i=1

cia
h1n1,i . . . a

hsns,i =

k

�
i=1

cia
h1n1,i+�+hsns,i =

k

�
i=1

cia
ti .

Consider the function f(z) = ∑
k
i=1 cizti , which is holomorphic on a certain neigh-

borhood of 1. If ∑k
i=1 ciati = 0, then f vanishes on a set such that 1 is one of its

accumulation points. Applying the identity principle to f , it follows that f is iden-
tically null on a neighborhood of 1, that is, ci = 0 ∀i. This proves the algebraic
independence.

On the other hand ∑k
i=1 ciah1n1,i . . . ahsns,i ∈ EC . In this case LIM(x) = f(C).

We show below that f(C) is homeomorphic to C. Here is where we use Brouwer’s
characterization of the Cantor spaces.

1. It is obvious that f(C) is metrizable and compact.

2. If p ∈ f(C), there exists c ∈ C such that p = f(c). Then we can choose a conver-
gent subsequence �a�(n)� converging to c. The sequence �f �a�(n)�� converges
to p. If p were isolated, then we would have that f �a�(n)� = p for n large
enough. Again, the Identity Principle tells us that ci is zero for every i. We
conclude that f(C) is perfect.

3. The mapping f ∶ R+ ∪ {0} → R is absolutely continuous, and hence, it maps
sets of measure zero into sets of measure zero. Since C is of measure zero, so
is f(C). This shows that the only open convex sets are singletons.
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The previous result holds as well if we replace R by Qp, as we are about to see.
First, define

EC (Qp) ∶= {x ∈ l
∞
(Qp) ∶ LIM(x) is homeomorphic to the Cantor set} .

A proof of the following result was already shown in [14, Theorem 5.6]. However,
it contained some inaccuracies and was not fully complete. We now proved it here
below in full detail.

Theorem 2.11. EC (Qp) is strongly c−algebrable

Proof. Let {an} be an enumeration of Q ∩ pZp, H ⊂Zp a Hamel basis of Qp over Q
and the functions

f� ∶ pZp → Zp, f�(x) = exp (�x) ,

with � ∈ Zp. Define the sequences bh given by bh,n = fh(an) for n ∈ N. Let us prove
that the bh’s are algebraically independent. Assume that ∑n

i=1 c�ib�i = 0, that is
∑

n
i=1 c�if�i (an) = 0. Since {an} es dense in pZp, it follows that ∑n

i=1 c�if�i (x) = 0 in
pZp. Also, observe that ∑n

i=1 c�if�i (x) is in Qp[[x]] and it has infinitely many zeros.
Hence it must be identically zero by the Strassman Theorem.

Now, using the series expansion of exp and the fact that ∑n
i=1 c�if�i(x) is iden-

tically null, we have a system of infinitely many equations such that it turns into
a Vandermonde system if we truncate it. Hence, ∑n

i=1 c�if�i(x) = 0 if and only if
c�i = 0 for each i.

We have that LIM(∑n
i=1 c�ib�i) = F (pZp) . Let us see that F (pZp) is homeomor-

phic to C. In order to prove it, we use once again Brouwer’s characterization. It is
straightforward that F (pZp) is metrizable, compact and completely disconnected.
It only remains to prove that it does not have isolated points. If d is an isolated
point in F (pZp), choose q ∈ pZp such that d = f(q). There is a neighborhood of q
where F vanishes. Hence, by Strassman’s Theorem F is identically null.

To finish, and in an attempt to link the results within this manuscript with the
recent ones from [21] regarding highly tempering infinite matrices (that is, infinite
matrices that not only preserve convergence and limits of sequences but also convert
divergent sequences into a convergent sequence) we would like to present two more
results (Theorems 2.12 and 2.14) sharing this direction of work.

Theorem 2.12. There exists a vector space E of CC(R) that is dense in RN (with
the product topology). Moreover, CC(R) is c-dense-lineable.
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Proof. First, let a be a conditionally convergent series with a1 �= 0 and {qn}n∈N a
numeration of Q ∩ [0,1]. For every ↵ ∈ [0,1], we are going to choose sequences b↵

such that b↵,i
i→∞
�→ ↵ and satisfying the following properties:

• b↵,i ∈ Q ∩ [0,1] for every i ∈ N.

• If b↵,i = qn↵i
and b↵,i+1 = qn↵i+1 , then n↵i < n↵i+1 .

• bqn,1 = qn for every n ∈ N.

Let us put
Bqn = {qm ∶ ∃i ∈ N, such that bqn,i = qm}

and
Aqn = {m ∶ qm ∈ Bqn}.

Notice that the first element of Aqn is n. Now, we define xqn for every n ∈ N as
xqn,i = am if i is the m-th element of Aqn and xqn,i = 0 otherwise.

We can write xq1 , xq2 , . . . as the rows of an infinite upper triangular matrix

xq1 �→

xq2 �→

xq3 �→

⋮

�

�
�
�

�

a1 ∗ ∗ ∗ �

0 a1 ∗ ∗ �

0 0 a1 ∗ �

⋮ ⋮ 0 � �

�

�
�
�

�

.

Let y ∈ RN, then for every n ∈ N there exists �1, . . . ,�n ∈ R such that yj =

∑
n
i=1 �ixqi,j for every j ∈ {1, . . . , n}. Therefore,

E = span({xq1 , xq2 , . . . , xqn , . . .})

is dense in RN.

Next, and for the second statement, if we set E1 = span({x↵ ∶ ↵ ∈ [0,1]}) with
x↵ defined as x↵,i = am if i is the m-th element of A↵ (where {A↵}↵∈[0,1]�Q is an
almost disjoint family of subset of N) and x↵,i = 0 otherwise, then it is clear that E1

is dense in RN since E ⊂ E1. Furthermore, the dimension of E1 as vector space is c
(See [3]).

Finally, we are going to study the Cesàro summability of the set `∞(R). To this
end we recall the definition of uniformly distributed series.
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Definition 2.13. The sequence {xn}n∈N ⊂ [0,1[ of real numbers is said to be uni-
formly distributed if for every a, b ∈ R with 0 ≤ a < b ≤ 1 we have

lim
n→∞

card([a, b[∩{x1, x2, . . . , xn})

n
= b − a.

Theorem 2.14. There exists E ⊂ `∞(R) that is dense in RN with dimension c and
such that for every x ∈ E � {0}, x is not convergent but Cx ∈ c0, where C is the
Cesàro matrix

C =

�

�
�
�

�

1 0 0 0 �
1
2

1
2 0 0 �

1
3

1
3

1
3 0 �

⋮ ⋮ ⋮ ⋮ �

�

�
�
�

�

.

Proof. Let {qn}n∈N be an enumeration of Q ∩ [0,1[ uniformly distributed (See [74,
Corollary 4.2, p. 135]). Let us take x ∈ `∞(R) not convergent with x1 �= 0, then we
take an almost disjoint family {A↵}↵∈[0,1]�Q and we choose {Aqn}n∈N as in the proof
of Theorem 2.12.

We are going to prove that A↵ has density zero for every ↵ ∈]0,1[ (recall that
the density of a set X ⊂ N is

d(X) = lim
n→∞

card(X ∩ {1,2, . . . , n})

n

provided this limit exists).

Let us write B↵ = {qn ∶ n ∈ A↵}. As {qn}n∈N is uniformly distributed, then for
every ↵ ∈ (0,1) and " small enough we have that

lim
n→∞

card(]↵ − ",↵ + "[∩{q1, q2, . . . , qn})

n
= 2".

Then
lim sup
n→∞

card(]↵ − ",↵ + "[∩B↵ ∩ {q1, q2, . . . , qn}))

n
≤ 2".

Since card(B↵�]↵ − ",↵ + "[) < !, we have that

0 ≤ lim inf
n→∞

card(B↵ ∩ {q1, q2, . . . , qn}))

n

≤ lim sup
n→∞

card(B↵ ∩ {q1, q2, . . . , qn}))

n
≤ 2".

Then,

lim
n→∞

B↵ ∩ {q1, . . . , qn}

n
= 0.
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However, and since card(B↵ ∩ {q1, . . . , qn}) = card(A↵ ∩ {1, . . . , n}), we have that
d(A↵) exists and it is actually zero.

Finally, for every ↵ ∈ [0,1] define x↵ as x↵,i = am if i is the m-th element of A↵

and x↵,i = 0 otherwise. Also, define E = span({x↵ ∶ ↵ ∈ [0,1]}). Then for every
z ∈ E, we have that z is not convergent and, since it is bounded and zero except for
a set of density zero, Cx converges to zero. Proceeding as in Theorem 2.12 we see
that span({xq1 , xq2 , . . . , xqn , . . .}) is dense in RN.



Chapter 3
Banach spaces and Banach
lattices of singular functions

3.1 Introduction, notation and preliminaries

As we mentioned in the previous chapter, the search for large algebraic structures
inside non-linear families of mathematical objects has become a trend in functional
analysis since the beginning of this millennium. This chapter intends to shed light on
this line of research, as we did in Chapter 2, in the specific realm of real continuous
functions defined on the unit interval [0,1], with focus on the so-called singular
functions.

We start with some notation and several known preliminary results. As usual, �
will stand for the Lebesgue measure in the Borel �-algebra B in [0,1]. In general,
and unless otherwise specified, the measures we are going to consider are defined in
B, any set we use will be in B and we shall be working with functions in R[0,1]. The
indicator function of a subset A ⊂ [0,1] will be denoted by 1A. For background
about measures, the reader is referred to, for instance, the book [62].

The symbol C will stand for the set of all continuous [0,1] �→ R. It is a
Banach space under the norm � ⋅ �∞ of uniform convergence. Moreover, we set
C0 ∶= {f ∈ C ∶ f(0) = 0}, which is a closed (so Banach) vector subspace of C. Finally,
we shall consider the vector space CBV ∶= {continuous functions of bounded variation
[0,1] �→ R} as well as its subspaces CBV0 ∶= {f ∈ CBV ∶ f(0) = 0} and CBV0,1 ∶=
{f ∈ CBV ∶ f(0) = 0 = f(1)}. Then CBV becomes a Banach space under the total
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variation norm �f�F ∶= �f(0)� + Var[0,1](f), and both CBV0, CBV0,1 are closed in
CBV (so they are also Banach spaces). It is straightforward that convergence in
� ⋅ �F is strictly stronger than convergence in � ⋅ �∞.

It is well known that every f ∈ CBV0 can be expressed as the difference of
two continuous monotone functions, and that every function of bounded variation
and continuous from the right has an associated signed measure µf . For a family
{fi}i∈J ∈ CBV0 we will use {µi}i∈J to represent the corresponding family of signed
measures when there is no room for confusion. Also, if µ is a signed measure then
�µ� will denote the measure of the total variation of µ, that is, for every B ∈ B we
have

�µ�(B) = sup�
p

�
i=1
�µ(Bj)� ∶

B =

p

�
j=1Bj; B1, . . . ,Bp ∈ B mutually disjoint; p ∈ N� .

Of course, �µf � = µf if f is nondecreasing.

Recall that a Riesz space, also called a vector lattice, is a partially ordered (with,
say, the order �) vector space X where the order structure is a lattice, that is, the
order � satisfies the following properties for every pair of vectors x, y ∈ X: there
is a supremum x ∨ y ∈ X; for any z ∈ X and any scalar ↵ ≥ 0, the fact x � y

implies x + z � y + z and ↵x � ↵y. Then the existence of infimum x ∧ y ∈ X is
automatically satisfied; namely, x∧ y = −((−x)∨ (−y)). A Banach lattice is a Riesz
space X endowed with a norm � ⋅ � such that (X, � ⋅ �) is a Banach space and
�x� � �y� implies �x� ≤ �y�, where �z� ∶= z ∨ (−z). See, for instance, the book [76] for
fundamentals of Banach lattices.

In CBV0, with the norm of the bounded variation, we can define an structure of
Banach lattice by using the following order:

f � g if and only if f − g is a nondecreasing function.

Note that this is equivalent to say that f � 0 if and only if f is nondecreasing. We
have that

f ∨ g = (f − g)
+
+ g and f ∧ g = −((−f) ∨ (−g)), (3.1)

where

f
+
(x) = sup�

n

�
i=1

max{0, f(xi) − f(xi−1)} ∶
with 0 = x0 < x1 < � < xn = x, n ∈ N} .
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In addition, we have the following property: If f, g � 0 then �f + g�F = �f�F +�g�F .

One of the main tools we shall use is that the space (CBV0, �⋅�F ,�) and the space
of finite signed measures without atoms (endowed with the norm �µ�M ∶= �µ�([0,1])
and the natural order ≤ such that µ ≤ ⌫ if and only if µ(B) ≤ ⌫(B) for all B ∈ B)
are lattice isometric: see [4].

The definitions of lineability theory 2.1, introduced in chapter 2, will be impor-
tant in the development of this chapter.

Note that if X is contained in some commutative algebra, then a set B ⊂ X is a
generating set of some free algebra contained in A if and only if for any N ∈ N,
any nonzero polynomial P in N variables without constant term and any distinct
f1, . . . , fN ∈ B, we have P (f1, . . . , fN) ∈ A � {0}.

In 2016 Oikhberg [81] introduced the notion of latticeability. Namely, a subset
A of a Banach lattice X is said to be latticeable whenever there is an infinite
dimensional sublattice M such that M ⊂ A � {0}. Results on latticeability can
be seen in [28, 81]. In the next definition, we sharpen this concept by considering
cardinalities.

Definition 3.1. Let X be a Riesz space, A a subset of X, and ↵ a cardinal
number. Then:

1. A is said to be ↵-latticeable if A ∪ {0} contains a Riesz space of dimension
↵.

2. If X is a normed Riesz space and A ∪ {0} contains a Banach lattice of di-
mension ↵, the set A is said to be ↵-B-latticeable.

This chapter is organized as follows. Section 3.2 is devoted to study lineability
properties of the class of singular functions in CBV , that is, functions of bounded
variation having derivative equal to zero almost everywhere. In fact, several sub-
classes are analyzed, related to the size of the zero set, to the nonexistence of intervals
of monotonicity, and to the existence of many noncritical points. In Section 3.3, the
lineability, in its diverse degrees, of the family of the so-called quasi-constant func-
tions and of a subfamily of it is investigated. Finally, in Section 3.4, the spaceability
of some of the previous families when bounded variation convergence is moved to
uniform convergence topology will be studied; also the algebrability of the family
of sequences of strongly singular functions converging in the latter sense but not in
the former one is established.
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3.2 Singular functions

This section is devoted to analyze the diverse degrees of lineability of the class of
singular functions and several subclasses of it. Under this point of view, singular
functions were first studied by Balcerzak et al. [12].

The history of singular functions can be traced back to 1884 when Cantor and
Schefer published two works introducing the currently known as Cantor function.
(See [44].) Since then, these functions have been considered within different frame-
works of study. Among others, we find them within conjugations between repre-
sentation systems (see, e.g., [42, 82, 87, 90]) in the form of Fourier series, as Riesz
product [93], or functions that appear dealing with self similar fractal sets in Har-
monic Analysis [40,41].

We first recall the concept of singular function. The abbreviation “�-a.e.” stands
for “almost everywhere with respect to the Lebesgue measure �”.

Definition 3.2. A function f ∈ CBV is called singular if f ′(x) exists and is equal
to zero �-a.e. on [0,1]. If, in addition, f is non-constant on any non-degenerate
subinterval of [0,1], the function f is said to be strongly singular. The set of
strongly singular functions will be denoted by S.

3.2.1 Lineability of S

It is well known that, if f ∈ CBV is nondecreasing and satisfies f([0,1]) = [0,1],
then the following are equivalent: (a) f is a singular function (not necessarily from
S); (b) there exists B ∈ B such that �(B) = 0 and �(f(B)) = 1 or, equivalently,
µf(B) = 1. The last property can be re-phrased by saying that � and µf are
mutually singular probabilities. In general, two signed measures µ1 and µ2 defined
on B are said to be mutually singular if there exists B ∈ B satisfying �µ1�(B) = 0
and �µ2�([0,1] � B) = 0. For a pair of functions f, g ∈ CBV , we shall say that are
mutually singular whenever µf and µg are.

The following theorem provides a constructive way to generate closed vector
spaces of singular functions.

Theorem 3.3. Let {fi}i∈I ⊂ CBV0 be an infinite family of functions with associated
measures µi (i ∈ I) satisfying the following properties:

(i) The functions fi are singular and mutually singular.
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(ii) Their measures of total variation are probabilities, that is,

�µi�([0,1]) = 1 for all i ∈ I.

(iii) For every non-degenerate interval I ⊂ [0,1], we have

inf
i∈I �µi�(I) > 0.

Let us define
A ∶= span{fi ∶ i ∈ I} ,

where the closure is taken in the variation norm � ⋅ �F . Assume that f ∈ A. Then
the following holds:

(a) f ∈ S ∪ {0}.

(b) There are a countable subset L ⊂ I and a set {ck ∶ k ∈ L} ⊂ R such that
∑k∈L �ck� < +∞ and f = ∑k∈L ckfk.

Proof. Since f ∈ A, there is a sequence {Fn}n≥1 ⊂ span{fi ∶ i ∈ I} such that
�Fn −f�F �→

n→∞0. And for each n ∈ N there exists a finite set In ⊂ I (the case In = �

is not discarded) as well as nonzero reals cn,i (i ∈ In) satisfying Fn = ∑i∈In cn,ifi.
Equivalently, ⌫n = ∑i∈In cn,iµi, where ⌫n is the associated signed measure of Fn.
Note that the expression Fn = ∑i∈In cn,ifi is unique because, due the mutual singu-
larity of the fi’s, these functions are linearly independent. Moreover, �⌫n−µf�M → 0
as n→∞ and, in particular, �⌫n�(B)→ �µf �(B) (n→∞) for all B ∈ B.

Assume first that f is constant on some non-degenerate interval I ⊂ [0,1]. Let
✓I ∶= infi∈I �µi�(I). By the assumption (iii), ✓I > 0. Now, �µf �(I) = 0. Since the
measures µi are mutually singular, we have that

�⌫n� (I) =�
i∈I
�cn,i� �µi�(I) ≥ ✓I ⋅�

i∈In
�cn,i�.

But �⌫n� (I)→ �µf � (I) = 0 as n→∞, from which we derive that

�

i∈In
�cn,i�→ 0

as n→∞. On the other hand, we have

0 ≤ �⌫n� ([0,1]) = �
i∈In
�cn,i� �µi� ([0,1]) = �

i∈In
�cn,i� .

Letting n→∞ we get �µf � ([0,1]) = limn→∞ �⌫n�([0,1]) = 0, so that f = 0.
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Consequently, in order to prove (a), it is enough to show that any given f ∈ A

is singular, that is, f ′ = 0 �-a.e. on [0,1]. For this, we need to prove that µf and
the Lebesgue measure � are mutually singular. With this aim, take for each i ∈ I

a set Bi ∈ B satisfying �µi� (Bi) = 1 and � (Bi) = 0. This is possible thanks to
assumptions (i) and (ii). Then the set

B ∶= �
n≥1 �i∈In

Bi

is a �-null set since it is a countable union of �-null sets. Therefore

�µf � ([0,1] �B) = lim
n→∞ �⌫n� ([0,1] �B)
= lim

n→∞�
i∈In
�cn,i� �µi�([0,1] �B)

= lim
n→∞�

i∈In
�cn,i� ⋅ 0 = 0.

Then �µf �([0,1]�B) = 0 = �(B), which proves the desired mutual singularity of µf

and �.

In order to prove (b), let us define L ∶= �
n≥1 In, which is plainly a countable subset

of I. For each n ∈ N, we can write Fn = ∑k∈L cn,kfk, or equivalently, ⌫n = ∑k∈L cn,kµk,
where we have defined cn,k ∶= 0 if k ∈ L � In. In the norm of the total variation,
the measures µk can be seen as independent atoms due to the fact that they are
mutually singular. With this in mind, if we could prove that

f =�

k∈L
ckfk (A)

for an appropriate family {ck}k∈L ⊂ R, then we would obtain

�µf � ([0,1]) =�
k∈L
�ck�.

Since f has bounded variation, �µf � ([0,1]) is finite, and so ∑k∈L �ck� is finite too.
It remains to show that (A) is true.

With this aim, observe that (A) is equivalent to

µf =�
k∈L

ckµk (B)

for some sequence (ck) ⊂ R. For each pair j, l ∈ L with j ≠ l, there is Bj,l ∈ B

such that �µj �(Bj,l) = 1 and �µl�(Bj,l) = 0. Then the Borel sets Cj ∶= �j∈L�{l}Bj,l

(j ∈ L) satisfy �µj �(Cj) = 1 and �µl�(Cj) = 0 for all l ∈ L � {j}. Notice that we can
assume that the Cj’s are pairwise disjoint: indeed, if this were not the case, then
we first would identify L = {1,2, ...,N} or L = {1,2,3, . . .} = N, and then we would
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set �C1 ∶= C1, �C2 ∶= C2 �C1, �C3 ∶= C3 � (C1 ∪C2), and so on; it is easy to check that
the �Cj’s are mutually disjoint and still satisfy �µj �(

�Cj) = 1 and �µl�(
�Cj) = 0 (j ≠ l).

Then if D ∈ B is a Borel set with D ⊂ [0,1] � �j∈LCj, then µk(D) = 0 for
all k ∈ L, and so ⌫n(D) = ∑k∈L cn,kµk(D) = 0 for all n ∈ N. Hence µf(D) =

limn→∞ ⌫n(D) = 0. Then if we expand µf as a generalized sum µf = ∑i∈I ciµi, we
could take ci = 0 for every i ∈ I � L, since each µk (k ∈ L) is concentrated in Ck.
Now, for fixed l ∈ L we have �µl�(Cl) = 1 ≠ 0; then there is a Borel set Dl ⊂ Cl with
µl(Dl) ≠ 0. But �µk�(Dl) = 0 for all k ∈ L � {l}, which entails ⌫n(Dl) = cn,lµl(Dl).

On the other hand, ⌫n(Dl)�→ µf(Dl) as n→∞. Then cn,l �→
µf(Dl)

µl(Dl)
as n→∞

(observe that, by the uniqueness of the limit, the quotient
µf(A)

µl(A)
is independent of

the set A ⊂ Cl, provided that µl(A) ≠ 0). Therefore, by selecting

cl ∶=
µf(Dl)

µl(Dl)
(l ∈ L),

it is easy to verify that µf = ∑k∈L ckµk, that is (B): just take E ∈ B, divide it into
countably many mutually disjoint sets E = (E ∩�j∈LCj) ∪�l∈L(E ∩ Cj), compute
each ⌫n (n ∈ N) as well as ∑k∈L ckµk at every part P of this union and, finally, let
n→∞, take into account that µn(P )→ µf(P ), and add up the resulting equalities
over all P . The proof is finished.

Remark 3.4. Under the assumptions of Theorem 3.3, the functions fi are mutually
singular, so for different i, j ∈ I we have

�fi − fj�F = �µi − µj�M = �µi�M + �µj�M = 2.

Consequently, if the family {fi}i∈I is uncountable, the Banach space A is not
separable.

Let us now see some applications of this result. In order to do that, we shall use
the functions Si for i ∈ (0,1) (terminology borrowed from [39]). These functions
are known differently in the literature. Maybe, the best known are De Rham and
Lebesgue functions. Each Si is characterized by being the only function g ∈ [0,1][0,1]
enjoying

g(x) = �
i g (2x) if x ∈ [0,1�2]
i + (1 − i)g (2x − 1) if x ∈ [1�2,1] .

(3.2)

Specifically, each function Si is defined as

Si(x) =�
n=0

i
mn−n(1 − i)n, (3.3)
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provided that ∑∞n=0 2−mn is the dyadic expansion of x ∈ [0,1]. Note that Si(0) =
0 ≤ Si(x) ≤ Si(1) = 1 for all x ∈ [0,1]. It is well known that the functions Si are
continuous, singular and nondecreasing, that their associated measures µi (which
are probabilities) are mutually singular and that, for the intervals � k

2n ,
k+1
2n � (k ∈

{0,1, . . . ,2n−1}, n ∈ N), we have µi ��
k
2n ,

k+1
2n �� = i

c(1 − i)u, where c and u depend
only on k (see [39]). In addition, when i < i′, we have that Si(x) < Si′(x) for
x ∈ (0,1).

It was proved in [12] that the set S is spaceable. Now, we improve this result
by establishing its latticeability.

Theorem 3.5. The set S is c-B-latticeable in CBV.

Proof. As for mere spaceability, we apply Theorem 3.3 with I ∶= (0,1�2) and fi ∶=

Si. As seen above, hypotheses (i) and (ii) in the mentioned theorem are satisfied.
As for (iii), we have to show that, given a non-degenerate interval I ⊂ [0,1], there
is ✓I > 0 satisfying µi(I) ≥ ✓I for all i ∈ (0,1�2). To this end, note that there exist
n ∈ N and k ∈ {0, . . . ,2n − 1} such that � k

2n ,
k+1
2n � ⊆ I. Hence µi(I) ≥ µi ��

k
2n ,

k+1
2n �� =

ic(1 − i)u. Fix any ↵ ∈ (0,1�2). As the function t � tc(1 − t)u is continuous and
positive on [↵,1�2], it reaches a minimum bigger than zero. It is enough to select
✓I as such a minimum.

Let us show that the Banach space

A = span{Si ∶ i ∈ (↵,1�2)}

that we have just obtained by using Theorem 3.3 yields in fact (c-B) latticeability.
Observe first that dim (A) = c because this dimension is not less than card (↵,1�2) =
c but not greater that card (C) = c. Since CBV0 is a Banach lattice by itself, it is
sufficient to prove that f ∨g, f ∧g ∈ A for all f, g ∈ A. To this end, fix two functions
f, g ∈ A. According to Theorem 3.3, there are a countable set L ⊂ (↵,1�2) as well
as real numbers ck, dk (k ∈ L) such that

f =�

k∈L
ckSk and g =�

k∈L
dkSk.

Let J ∶= {k ∈ L ∶ ck > dk}. Using the lattice isometry with the signed measures, we
obtain that (f − g)+ = ∑k∈J(ck − dk)Sk is in A. Therefore, keeping in mind (3.1)
and the fact that A is a vector space, we get that f ∨ g and f ∧ g belong to A, as
required.

Remark 3.6. Since (↵,1�2) is uncountable, we get from Remark 3.4 that the
existing Banach sublattice in CBV is nonseparable.
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3.2.2 Singular functions and zeros

In [38] (see also [49]) the authors study the subset of smooth functions in R having
an uncountable set of zeros. Let us show that the set of strongly singular functions
is also a large set in the sense of lineability. The subset of R[0,1] consisting of all
functions with uncountably many zeros that are not constant in any subinterval of
[0,1] will be denoted by U .

We shall make use of the following two special transforms. For a function f ∶

[0,1]→ R, we define the new function f∗ as follows:

f
∗
(x) = �

f (2x) x ∈ [0,1�2]
1 − f (2x − 1) x ∈ (1�2,1] .

Given a function T ∈ CBV01, we define FT ∶ CBV01 �→ CBV01 as follows:

FT (g)(x) =

�
���
�
���
�

g (3x) �3 x ∈ [0,1�3]
T (3x − 1) x ∈ [1�3,2�3]
g (3x − 2) �3 x ∈ [2�3,1] .

(3.4)

It is easy to see that FT is a contraction under the distance of the total variation
that has a unique fixed point. This fixed point will be represented by T.

If the total variation of T is t and that of T is t,taking into account that

T(x) =

�
���
�
���
�

T (3x) �3 x ∈ [0,1�3]
T (3x − 1) x ∈ [1�3,2�3]
T (3x − 2) �3 x ∈ [2�3,1] .

(3.5)

we have that t = t + t
3 +

t
3 . That is, t = 3t.

Theorem 3.7. The set S ∩ U is spaceable in CBV. In particular, CBV ∩ U is
spaceable in CBV.

Proof. If we use for each i ∈ (0,1�2) the above described transform FS∗i then we
obtain the function S∗i as its unique fixed point. This function is continuous and
of bounded variation. Moreover, it has an uncountable amount of zeros: indeed, S∗i
is null on the Cantor set C. Hence every function in A ∶= span{S∗i ∶ 0 < i < 1�2}
vanishes on C and, by adapting the reasoning of Theorem 3.3 to these functions, we
get that every nonzero member of A is strongly singular. This entails the desired
spaceability.

Remark 3.8. Note that, again, the existing closed subspace in S∩U is nonseparable.
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3.2.3 Singular functions and monotonicity

By SNM we shall denote the set of all strongly singular functions of bounded
variation that are not monotone in any subinterval of [0,1]. The next assertion
shows that spaceability still holds when nowhere monotonicity is added to strong
singularity.

Theorem 3.9. The set SNM is spaceable in CBV.

Proof. Consider the family of functions fi ∶= (Si−S1−i)�2 (0 < i < 1�2). Let us denote
by µi (µ′i, resp.) the associated measure to fi (to Si, resp.). Then µi = (µ

′
i −

µ′1−i)�2 and, by mutual singularity, we have �µi� = (µ
′
i +µ

′
1−i)�2. In particular, the

�µi�’s are probabilities. If I is a non-degenerate subinterval of [0,1] and 0 < ↵ < 1
2 ,

then
inf

i∈(0,1�2) �µi�(I) =
1

2
⋅ inf
i∈(↵,1�2)(µ

′
i(I) + µ′1−i(I)) > 0

by the same argument given in the proof of Theorem 3.5. Then Theorem 3.3 yields
that A ∶= span {fi ∶ i ∈ (↵,1�2)} is a closed vector space contained, except for zero,
in S. Moreover, the mutual singularity of the µi’s gives that A is infinite dimen-
sional (in fact, it is non-separable).

Now, fix a function f ∈ A � {0}. It remains to show that f is not monotone
at any subinterval of [0,1]. According to Theorem 3.3, there are a countable set
L ⊂ (↵,1�2) and reals ci (i ∈ L) such that f = ∑i∈L cifi in the � ⋅ �F -topology.
Moreover, if µf stands for the measure associated to f , we have µf = ∑i∈L ciµi.
Since f ≠ 0, there is t ∈ L such that ct ≠ 0.

Now, since the probabilities µ′i (0 < i < 1) are mutually singular and L is
countable, there are (see, for instance, the construction made in the proof of Theorem
3.3) mutually disjoint Borel sets Cj (j ∈ L ∪ (1 − L) =∶ T ) such that µ′j(Cj) = 1
for all j ∈ T and µ′j(Cl) = 0 for all j, l ∈ T with j ≠ l (in particular, µ′j(C1−j) = 0
for all j ∈ T ). If f were monotone on some non-degenerate interval I ⊂ [0,1]
(without loss of generality we may assume that f is increasing) then, on the one
hand, we would have 0 ≤ µf(Ct ∩ I) = ct µ

′
t(Ct ∩ I)�2 and, on the other hand,

0 ≤ µf(C1−t ∩ I) = −ct µ′1−t(C1−t ∩ I)�2. Finally, note that

µ
′
t(Ct ∩ I) = µ′t(I) > 0 < µ′1−t(I) = µ′1−t(C1−t ∩ I).

Since ct ≠ 0, we have a contradiction. Hence, f cannot be monotone on I, as
required.
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3.2.4 Singular functions and derivability

The strongly singular functions that appear in most researches has the property
that when it admits finite derivative then it is zero and it does not take any other
value. In [50] (see also [51, 52]) some examples of functions without this property
were created. That is, the latter functions are strongly singular functions such that
there exist uncountable many points in which the derivative exists as a real number
and it is not zero; in other words, such points are noncritical. Let us see that in the
lineability sense this family of functions is not small.

Definition 3.10. By SD we denote the set of strongly singular functions f such
that there exists an uncountable set Af ⊂ [0,1] in which the derivative exists and it
is nonzero.

Lemma 3.11. Assume that ↵,� > 0 and that f, g ∶ [0,1] → R are two con-
tinuous, strictly increasing and strongly singular functions such that f(0) = 0 =
g(0), f(1) = 1 = g(1) and f, g are mutually singular. Suppose also that ', ∶

[0,1] → R are strictly increasing, absolutely continuous functions satisfying '(0) =
0 =  (0), '(1) = 1 =  (1). Then the functions F ∶= ' ○ f, G ∶=  ○ g are continu-
ous, strictly increasing, strongly singular, mutually singular and satisfy F (0) = 0 =
G(0), F (1) = 1 = G(1).

Proof. It is clear that, except for mutual singularity, it is enough to prove that all
properties in the conclusion hold for F . That F is continuous, strictly increasing
and satisfies F (0) = 0 and F (1) = 1 is immediate from the assumptions. Let us
show that is strongly singular. Since F is strictly increasing, it is nonconstant on
any non-degenerate subinterval of [0,1]. Then it suffices to prove that F is singular.
To this end, note that the singularity of f is equivalent to the existence of a set
E ∈ B such that �(E) = 0 and �(f(E)) = 1. Now, as ' is absolutely continuous,
then it maps �-null sets into �-null sets. Observe that f([0,1]) = [0,1] = '([0,1])
and that all three functions f, ', F are injective. From this and the fact that
�([0,1] � f(E)) = 0, it follows that

�([0,1] � F (E)) = �('([0,1]) �'(f(E))) = �([0,1] � f(E)) = 0,

whence �(F (E)) = 1 and we are done.

Finally, since f, g are mutually singular, there is a set A ∈ B such that µf(A) = 0
and µg([0,1]�A) = 0. Since f, g are increasing with image [0,1], those conditions
are equivalent to �(f(A)) = 0 and �(g(A)) = 1. Now, by using that ',  are
absolutely continuous, we can conclude as in the previous paragraph that �(F (A)) =
�('(f(A))) = 0 and �(G(A)) = �( (g(A))) = 1. Hence F and G are mutually
singular.
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Theorem 3.12. The set SD is spaceable in CBV.

Proof. Recall that, when constructing the classical Cantor set C, in the nth-step,
we remove 2n−1 open intervals of length 1�3n. Let us denote these intervals by
Jn,r = (an,r, bn,r) (r = 1, . . . ,2n−1). Let us represent by C1 the collection of points of
the Cantor set that are not extreme of the intervals Jn,r.

In [50], the authors construct an example of a function in SD enjoying the
following properties:

1. It is derivable at every point of C1 and the derivative equals 1.

2. It coincides with the identity at every point of C1.

The construction used a modification of the identity in the sets Jn,r by using
strictly increasing singular functions. The fundamental condition that they used for
the mentioned modification is that �S(x) − x� ≤ 1�3n for all x ∈ Jn,r. In particular,
it is created a function by using the function S1�(2−3−(n+1)) in the intervals Jn,r. If
we use the functions S1�(2−3−(ni+1)) with 1 ≤ i < 2, we obtain a continuous strictly
increasing function gi ∈ SD satisfying conditions (1) and (2) (in particular, gi(0) = 0
and gi(1) = 1). Since S1�(2−3−(ni+1)) and S1�(2−3−(ni′+1)) are mutually singular when
i ≠ i′, we have that the functions gi are mutually singular. In addition, by taking
intervals of the form �

k
2t ,

k+1
2t � and using an argument similar to the one at the

beginning of the proof of Theorem 3.5, we deduce that they satisfy the condition
infi∈[1,2) µgi (I) > 0 for each non-degenerate interval I ⊂ [0,1].

Now, we define fi(x) ∶=
eigi(x) − 1
ei − 1

for every i ∈ [1,2). Note that

f
′
i(x) = g

′
i(x) ⋅

ieigi(x)
ei − 1

=
ieix

ei − 1
(3.6)

for every x ∈ C1. Since we have

fi �
k + 1

2t
� − fi �

k

2t
� =

fi �
k+1
2t � − fi �

k
2t �

gi �
k+1
2t � − gi �

k
2t �
�gi �

k + 1

2t
� − gi �

k

2t
��

=
iei↵k,i

ei − 1
�gi �

k + 1

2t
� − gi �

k

2t
��

with ↵k,i ∈ �g �
k
2t � , g �

k+1
2t �� (for the existence of such ↵k,i’s, just apply the mean

value theorem to the function t � eit, together with the strict monotonicity of gi),
we obtain that the fi’s also satisfy

inf
i∈[1,2)µfi (I) > ✓I.
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By using Lemma 3.11 (with '(x) =
eix−1
ei−1 for each function f = gi) we have that

the functions fi’s are mutually singular and fulfill the conditions of Theorem 3.3.
In particular, any nonzero member of the � ⋅ �F -closure A of span{fi ∶ i ∈ [1,2)} is
strongly singular.

In order to obtain functions belonging to SD, we consider a subfamily of A.
Namely, we fix any strictly increasing sequence {ik}k≥1 ⊂ [1,2) (for instance ik =
2k+1
k+1 ) and define Ã ∶= span{fik ∶ k ∈ N}, where the closure is in the norm � ⋅ �F .
Plainly, the members of Ã enjoy the property of being strongly singular. Now, fix
a function f ∈ Ã � {0}. Our goal is to prove that f ′ is nonzero on each point of an
uncountable set. By using Theorem 3.3, we have for such a function f that

f =

∞
�

k=1
ckfik and

∞
�

k=1
�ck� is finite.

for a certain sequence {ck}k≥1 ⊂ R. The absolute convergence allows us to express
the equality f(x) = ∑k≥1 ckfik(x) as the difference of two integrals in N; namely,
with the positive measures �1, �2 on the family of all subsets of N determined by
�1 ({k}) = ck1R+ (ck) , �2 ({k}) = −ck1R− (cik) (k = 1,2, . . . ). That is, we have

f(x) = �
N
fik(x)d�1(k) −�N

fik(x)d�2(k) for every x ∈ [0,1].

Note that both �1, �2 are finite. Let us analyze the behaviour of f with respect to
the derivative in the set C1. For every x0 ∈ C1 we define the function h ∶ (k, x) ∈

N × [0,1]� R by

h(k, x) = �

fik(x)−fik(x0)
x−x0

x ≠ x0

f ′ik (x0) x = x0.

We also define the function H ∶ x ∈ [0,1] � {x0} �→
f(x)−f(x0)

x−x0
∈ R. Under this

notation, we obtain

H(x) =

∞
�

k=1
ckh(k, x) = �

N
h(k, x)d�1(k) −�

N
h(k, x)d�2(k).

Since

fik(x) − fik(x0)

x − x0
=

1

ei − 1

eigi(x) − eigi(x0)
x − x0

≤
gi(x) − gi(x0)

x − x0
2e2. (3.7)

If we consider that x ≤ g1(x) ≤ gi(x) ≤ g2(x) ∀(x, i) ∈ [0,1] × [1,2),
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gi(x) − gi(x0)

x − x0
≤

�
���
�
���
�

1 x < x0

g2(x) − x0

x − x0
x > x0.

If we take K =max{
g2(x) − x0

x − x0
∶ x > x0}, by using (3.7) we can conclude that H

is bounded since
fik(x) − fik(x0)

x − x0
≤K2e2.

By using that

sup{�f ′ik(x0)� ∶ k ∈ N} ≤ sup�
i(eix0 − 1)

ei − 1
∶ i ∈ [1,2)� ≤

2(e2 − 1)

e − 1
,

we obtain that the function h is bounded, so h is dominated by a �j-integrable
function (j ∈ {1,2}) that is independent of the parameter x (because a measurable
bounded function is integrable with respect to any finite measure). Hence, by a
well-known result about integrals depending on a parameter, we can exchange the
integrals with the limit whenever the limits inside the integrals exist. Taking into
account (3.6), we obtain as a consequence that there exists

f
′
(x0) = lim

x→x0
H(x) =

∞
�

k=1
ckf

′
ik(x0) =

∞
�

k=1
ckike

ikx0

eik − 1
.

Finally, consider the function �(z) = ∑∞k=1 ckike
ikz

eik−1 (z ∈ C), so that f ′(x0) = �(x0) for
all x0 ∈ C1. Define dk ∶=

ckik
eik−1 (k ≥ 1). Observe that �dk� ≤ �ck� for all k ∈ N. Thanks

to the Weierstrass convergence theorem (see, e.g., [1]), � is well defined and entire
because, given a compact set K ⊂ C, there is R > 0 such that K ⊂ {�w� < R}, and
an application of the Weierstrass M-test yields the uniform convergence of the series
∑
∞
k=1 dkeikz on K: indeed, �dkeikz � ≤ �ck�e2R and the majoring series ∑∞k=1 �ck�e2R

converges.

If we proved that � is not identically zero, then the Identity Principle for analytic
functions would yield that the equality f ′(x0) = 0 can only be satisfied at isolated
points x0. Therefore, the set F ∶= {x0 ∈ C1 ∶ f

′(x0) = 0} would be finite and, as a
consequence, f ′ is not zero at every point of the uncountable set C1�F , so f ∈ SD.
Consequently, it remains only to prove that � is not the zero function. By way of
contradiction, assume that �(z) = ∑∞k=1 dkeikz = 0 for all z ∈ C. Since f ≠ 0, there
is some ck ≠ 0, so dk ≠ 0. Let m ∶=min{k ∈ N ∶ dk ≠ 0}. Then

dm +

∞
�

k=m+1
dke

(ik−im)x = 0 for all x ∈ (−∞,0].
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Since {ik}k≥1 is increasing, we have ik − im > 0 for all k > m, and so
limx→−∞ dke

(ik−im)x = 0 for such k’s. Now, the Weierstrass M-test (recall that
∑
∞
k=1 �dk� < +∞) guarantees the uniform convergence of the series
∑
∞
k=m+1 dke(ik−im)x on (−∞,0], which allows us to exchange the summation and

the limit when x→ −∞. This yields dm + 0 = 0, which is absurd.

If for every function fi of Theorem 3.12 we create the functions f∗i and f∗i , then
we can get the following result just by adapting the reasoning given in the proof of
the mentioned theorem. Recall that U denotes the family of all functions [0,1]→ R
having uncountable zeros and being nonconstant on any non-degenerate interval of
[0,1].

Theorem 3.13. The set of functions of SD∩U with uncountable zeros is spaceable
in CBV.

To study the algebrability of this set, we shall use the following adapted result
which is proved in [49, Theorem 2.6].

Theorem 3.14. Let K ⊆ R[0,1] and f ∈ R[0,1] be respectively a family of functions
and a function satisfying the following properties:

(a) f ∈ K is so that f([0,1]) has, at least, one accumulation point.

(b) The vector space generated by the functions of the form

f(x)
n
e
↵f(x)

(n = 1,2, . . . ; ↵ > 0)

is contained in K ∪ {0}.

Then K is strongly c-algebrable.

Theorem 3.15. The sets SD and SD ∩ U are strongly c-algebrable.

Proof. Trivially, it is enough to prove the strong c-algebrability for SD ∩ U . In [50]
it is constructed a function J ∈ R[0,1] that is continuous, strictly increasing, strongly
singular, and satisfies J ′(x) = 1 for an uncountable set of [0,1] (in fact, for a subset
C1 of the Cantor set C). Consider the function f = J∗ (the fixed point of FJ∗ , see
(3.4)). Then f ∈ K ∶= SD∩U and the condition (a) in Theorem 3.14 is immediately
fulfilled for this function.

It remains to verify (b) for f . It is easy to check that the entire functions xne↵x

(n ∈ N, ↵ > 0) are linearly independent, so any nontrivial finite linear combination
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of them is a nonzero entire function that is not identically zero and vanishes at the
origin. Therefore, in order to apply Theorem 3.14, it is sufficient to prove that for
every nonzero entire function ' ∶ R → R with '(0) = 0, the function g ∶= ' ○ f

belongs to SD ∩ U . Note that '′ is not identically zero either. Since f ∈ C and is
not constant, the image f([0,1]) is a non-degenerate interval [a, b]. Let us choose
a set B ∈ B with �(B) = 1 and f ′(x) = 0 for all x ∈ B. Then the chain rule yields
g′(x) = '′(f(x)) ⋅ f ′(x) = 0 on B. Moreover, by the Identity Principle for analytic
functions, the respective sets F1, F2 of 0-points of ' and '′ in [a, b] are finite.
There are uncountable sets U1, U2 ⊂ [0,1] such that f(x) = 0 for every x ∈ U1

and there exists f ′(x) ≠ 0 for every x ∈ U2. Hence g(x) = '(f(x)) = '(0) = 0 for
all x ∈ U1. If g were constant on some non-degenerate interval I ⊂ [0,1] then '

would be constant on the non-degenerate interval f(I) (it is not degenerate because
f ∈ S); hence the Identity Principle would imply ' = 0 on a set that is strictly
greater than F1, a contradiction. Up to the moment, we have got g ∈ S ∩ U .

Finally, again by the chain rule, there exists g′(x) = '′(f(x)) ⋅ f ′(x) ≠ 0 for
all x ∈ U2 � f

−1(F2). But the function J was constructed in [50] in such a way
that J(x) = x for all x ∈ C, in particular for all x ∈ C1. This carries out that the
uncountable set U2 given above can be chosen to satisfy that f(U2) = J∗(U2) is
uncountable. Since F2 is finite, the set U2 � f

−1(F2) is uncountable. This finishes
the proof.

3.3 Quasi-constant functions

This section is devoted to study lineability properties of families consisting of
continuous functions that are virtually constant in the Lebesgue measure sense.

Definition 3.16. A function f ∈ CBV is said to be quasi-constant if it is not
constant and there exists a countably many mutually disjoint sets, In, such that
∑n � (In) = 1 and f is constant on each In. The set of such functions f will be
denoted by Q.

Example 3.17. For every i ∈ (0,1), let us consider the transform Fi ∶ [0,1][0,1] �→
[0,1][0,1] given by

Fi(h)(x) =

�
���
�
���
�

ih(3x) 0 ≤ x ≤ 1�3
i 1�3 < x < 2�3
i + (1 − i)h(3x − 2) 2�3 ≤ x ≤ 1.

(3.8)

for each h ∈ [0,1][0,1]. Then there exists a unique function Si ∶ [0,1]→ [0,1] being a
fixed point for Fi, that is, Fi is the unique function h such that Si(x) = Fi(Si)(x)
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for all x ∈ [0,1]. Then Si is quasi-constant. The symbol �i will represent the
associated measure of Si. Note that for i = 1�2 we obtain the so-called Cantor
function (also known as Devil’s staircase) c ∶= S1�2. We shall denote the ternary
Cantor set by C.

The following auxiliary result about the family of measures {�i ∶ i ∈ (0,1)} will
be used to reveal lineability properties of the class of quasi-constant functions.

Lemma 3.18. All measures �i (0 < i < 1) are concentrated in C. Furthermore,
these measures are mutually singular.

Proof. We shall make use of the equality Si = Si ○ c. To get it, we are going to see
that Si ○ c(x) = Fi(Si ○ c)(x). Suppose that x ∈ [0,1�3]. Then

Si ○ c(x) = Si (c(3x)�2) = iSi (c(3x)) .

The first equality is consequence of c = S1�2, while the second one comes from
the equation (3.2). In a similar way we get the corresponding equalities when x ∈

(1�3,2�3) and x ∈ [2�3,1].

It is well known that c maps �n,r(an,r, bn,r] to the numbers of (0,1) having
finite representation in 2 base, that form a countable set. Therefore the set

Si ��
n,r
(an,r, bn,r]� = Si ○ c��

n,r
(an,r, bn,r]�

is countable. Since Si ○ c is continuous, we have that �i ��n,r(an,r, bn,r]� = 0. That
is, �i is concentrated in C ′ = [0,1]��n,r(an,r, bn,r] = C �{br,n}r,n. The mapping c is
a bijection between C ′ and [0,1]. Specifically, if x = ∑

∞
n=1 xn

3n ∈ C
′ with xn ∈ {0,2},

we have c(x) = ∑
∞
n=1 xn�2

2n . On the other hand, it is well known that Si maps the
null �-measure set

Bi ∶=�x =

∞
�
n=1

xn

2n
∶ {xn}n≥1 ⊂ {0,1} and

lim
n→∞
�{k ∈ {1,2, . . . , n} ∶ xk = 0} �

n
= i�

onto a set with �-measure equal to 1 (see [39]), where we have denoted by �A� the
cardinality of a set A.

Consequently, we have that Si ○ c maps the subset of C ′ given by

C
′
i ∶=�x =

∞
�
n=1

xn

3n
∶ {xn}n≥1 ⊂ {0,2} and

lim
n→∞
�{k ∈ {1,2, . . . , n} ∶ xk = 0} �

n
= i�
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in a set of �-measure equal to 1. In other words, the measure �i is concentrated
in C ′i . Finally, as the sets C ′i ’s are pairwise disjoint, we have that the �i’s are
mutually singular.

We are now ready to state the following theorem, where lineability properties of
the family of quasi-constant functions are gathered. As for the properties involving
topological concepts, recall that we are considering CBV as endowed with the norm
� ⋅ �F of total variation.

Theorem 3.19. The sets Q and Q ∩ U enjoy the following properties:

(a) The set Q is B-latticeable. In particular, it is spaceable.

(b) The set Q ∩ U is spaceable.

(c) The spaces Q and Q ∩ U are not separable.

(d) The sets Q and Q ∩ U are strongly c-algebrable.

Proof. (a) Recall that µi denotes the measure associated to Si. By taking into
account that c is a bijection between C ′ and [0,1] and that Si = Si ○ c, we obtain
that

�i(B) = �i(B ∩C
′
) = µi (c(B ∩C

′
)) = µi (c(B))

for every Borel set B. Therefore, we can translate properties satisfied by the mea-
sures µi to the measures �i. In particular, the measures �i (0 < i < 1) are singular
and mutually singular (as seen in Lemma 3.18), and they are probabilities on B. In
addition, if one fix any ↵ ∈ (0,1�2), then for every non-degenerate interval I ⊂ [0,1]
we have supi∈(↵,1�2) �i(I) = supi∈(↵,1�2) µi(I) > 0. Then we can proceed as in the proof
of Theorem 3.5 to conclude that the set

A ∶= span�Si ∶ i ∈ (↵,1�2)� (3.9)

is a c-dimensional Banach lattice contained in Q ∪ {0}.

(b) Let us consider the family of functions Au ∶= {A ∶ A = a∗ with a ∈ A} with A
given in (3.9). Since every A ∈ Au is zero in the Cantor set, we have that Au ⊂ U .
As A ⊂ Q, given a ∈ A, we have that there is a countable amount of subintervals
J↵
n,r,k of Jn,r in which the function A is constant and ∑k � �J

↵
n,r,k� = � (Jn,r). As

this happens at every interval Jn,r, the total length of the subintervals J↵
n,r,k is

∑k,n,r �(J
↵
n,r,k) = ∑n,r �(Jn,r) = 1. That is, Au ⊂ Q. We define the map e ∶ A→ Au as
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e(a) = A. Since �e(a1) − e(a2)�F = �e(a1 − a2)�F = 6�a∗1 − a∗2�F , we have that Au is
closed.

(c) If a subset E of a normed space contains an uncountable subset S satisfying
inf{�u− v� ∶ u, v ∈ S, u ≠ v} > � > 0 then E cannot be separable. Moreover, if X is
a metric space, D ⊂ E ⊂ X and D is not separable, then E is also nonseparable.
In our setting, and with the notation of (b), we are going to consider the functions
ai = Ŝi and Ai = e(ai). Since the measures µai are mutually singular, we have that
�a∗i −a∗i′�F = 4 when i �= i′, we derive that �Ai −A∗i′�F = 12. Therefore, as Ai ∈ Q∩U

for every i ∈ (0,1), we can conclude that the set Q ∩ U is not separable. Then its
superset Q is also nonseparable.

(d) Plainly, it is enough to show that Q ∩ U is strongly c-algebrable. But this
is nothing but a new application of Theorem 3.14. Indeed, its condition (a) is
trivial because the image of [0,1] under a nonconstant continuous function is a
non-degenerate interval. Finally, its condition (b) is also fulfilled, because if f is
constant on a set E ⊂ [0,1] then any function g = fn ⋅ e↵f (n ∈ N, ↵ > 0) is also
constant on E and satisfies {zeros of f} = {zeros of g}.

3.4 Spaceability and uniform convergence

In view of the previous sections, one can wonder what happen if we change the
topology of the bounded variation to the uniform convergence topology. It turns to
be that most results concerning spaceability are still true.

Theorem 3.20. The sets S, Q, SD, S ∩ U , SNM and Q ∩ U are spaceable in the
space C when endowed with the topology of uniform convergence.

Proof. We are going to use a remarkable result by Gurariy and Lusky (see [61,
pp. 80–81]) asserting that if {0 < �1 < �2 < �} is a sequence with ∑∞k=1 1��k < +∞
and infk∈N(�k+1 − �k) > 0 (for instance, �k = k2) then span�⋅�∞{t�k ∶ k ≥ 1} ⊂ C!,
where C! represents the set of all analytic functions in (0,1). Consequently, the
set C! ∩ C0 is spaceable in C. To sum up, we can choose a � ⋅ �∞-closed infinite
dimensional vector space T that is contained in C! ∩ C0.

Fix g ∈ C with g([0,1]) ⊂ [0,1]. Then for each f ∈ C, the composite function
f ○ g makes sense and belongs to C. Now, assume that g([0,1]) = [0,1] and define
the set

Tg ∶= {f ○ g ∶ f ∈ T } ,
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which is clearly a vector subspace of C.

Moreover, Tg is closed. Indeed, assume that {hn}n≥1 is a sequence in Tg such
that hn → h uniformly on [0,1] for some h ∈ C. Then there is a sequence {fn}n≥1 ⊂
T satisfying hn = fn ○ g for all n ∈ N, and the sequence {hn}n≥1 is � ⋅ �∞-Cauchy.
Since g([0,1]) = [0,1], we get �hn −hm�∞ = �fn − fm�∞ (m,n ∈ N), whence {fn}n≥1
is � ⋅ �∞-Cauchy too. It follows from the completeness of C that there is f ∈ C such
that fn → f as n →∞. Since T is closed, we obtain f ∈ T . Define h̃ ∶= f ○ g ∈ C.
Then �hn − h̃�∞ = �fn − g�∞ → 0 as n → ∞, and so hn → h̃ uniformly on [0,1].
Therefore, the uniqueness of the limit yields h = h̃ = f ○ g ∈ Tg, which shows that
the last set is closed. Moreover, the fact g([0,1]) = [0,1] implies that if D ⊂ T is a
linearly independent set then {f ○ g ∶ f ∈ D} (⊂ Tg) is too, from which it is derived
that Tg has infinite dimension.

Assume now that g is strongly singular. Then the chain rule tells us in this case
that, for every h ∈ Tg, we have h′(x) = 0 in a set of measure 1. Furthermore, the
Identity Principle implies that every nonzero member h = f ○g of Tg is nonconstant
on any non-degenerate subinterval I of [0,1]: indeed, if h were constant on I,
then f would be constant on the non-degenerate interval g(I), so f is constant on
[0,1], hence f = 0 because f(0) = 0, whence h = 0, a contradiction. We conclude
that if g is strongly singular and g([0,1]) = [0,1] then the set Tg is a closed
infinite dimensional vector subspace of C all of whose nonzero elements are strongly
singular.

Now, we are going to analyze every case considered in the statement. Plainly, it
is enough to prove spaceability for the classes SD, S ∩ U , SNM and Q ∩ U .

Case SD. Consider the strongly singular function g ∶= J , the function considered
in the proof of Theorem 3.15 and studied in [50]. Since J(x) = x for every x ∈ C

(the Cantor set), we get J(0) = 0 and J(1) = 1. But J is strictly increasing, hence
g([0,1]) = J([0,1]) = [0,1]. Then Tg is a closed infinite dimensional subspace of
C such that Tg � {0} ⊂ S. Let h = f ○ g ∈ Tg � {0}. It remains to show that h

admits a finite nonzero derivative at uncountably many points. Recall that there is
an uncountable set A ⊂ (0,1) satisfying J ′(x) = 1 for all x ∈ A. Then the chain rule
gives h′(x) = f ′(g(x)) ⋅ J ′(x) = f ′(g(x)) for all x ∈ A. But f is analytic on (0,1)
and not identically zero, so it is not identically constant (because f ∈ C0). Therefore
the Identity Principle implies that the set Z ∶= {x ∈ (0,1) ∶ f ′(x) = 0} is discrete,
hence countable. Since g is injective, the set B ∶= g(A) � Z is uncountable, and
h′(x) ∈ R � {0} for all x ∈ B.

Case S∩U . Consider the function g ∶= J∗ ∈ S∩U this time, where J∗ is the function
given in the proof of Theorem 3.15, that is, the fixed point of FJ∗ , and J is, again,
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the function studied in [50]. Since J is strongly singular and J([0,1]) = [0,1],
we derive that g shares the same properties, that is, it is strongly singular and
g([0,1]) = [0,1]. Then Tg is a closed infinite dimensional subspace of C such that
Tg �{0} ⊂ S. Let h = f ○g ∈ Tg �{0}. Since g has uncountable many zeros, the same
holds for h, because f(0) = 0. To sum up, we obtain Tg � {0} ⊂ S ∩ U , as desired.

Case SNM. Fix any i ∈ (0,1�2) and define the function

g ∶=
S1−i − Si

�
,

where � ∶=max[0,1](S1−i −Si). Since being strongly singular is stable under scalings
and translations, we can derive as in the proof of Theorem 3.9 that g is strongly
singular. Since it also satisfies g([0,1]) = [0,1], we derive that Tg is a closed infinite
dimensional vector subspace of C satisfying Tg � {0} ⊂ S. Recall that g is nowhere
monotone. Let h ∶= f ○ g ∈ Tg � {0}. In particular, f ≠ 0. We need to show that h is
nowhere monotone. Assume, by way of contradiction, that there is a non-degenerate
interval I ⊂ [0,1] such that h is monotone on I. Since g is strongly singular, it
is not constant on I, so I1 ∶= g(I) is a non-degenerate subinterval of [0,1]. Now,
f is analytic and, in addition, nonconstant (because f ∈ C0, and f ≠ 0). Then
the Identity Principle implies the existence of a non-degenerate interval I2 ⊂ I1 on
which f ′ is nonzero and of constant sign, so f is injective and strictly monotone on
I2. Finally if f−1 denotes the inverse of the restricted mapping f ∶ I2 → I3, where
I3 ∶= f(I2), then f−1 is strictly monotone on I3 and g = f−1 ○ h on I ∩ g−1(I2).
Since g is continuous, the set I∩ g−1(I2) contains some non-degenerate interval I4.
As a composition of two monotone functions, g would be monotone on I4, which is
absurd.

Case Q ∩ U . Take a function g ∈ Q ∩ U with g([0,1]) = [0,1] (for instance, one
of the functions Ti considered in the proof of Theorem 3.19) and construct the
corresponding set Tg, which is a closed infinite dimensional vector subspace of C.
By using that that the members of T � {0} are analytic, and nonconstant on any
non-degenerate subinterval of [0,1], we can obtain as in the previous cases that
every nonzero member of Tg � {0} belongs to both Q and U .

To finish this chapter, we shall state and prove the following algebrability theo-
rem about the convergence of sequences of SN. For recent results about lineability
in function sequence spaces, see [6, 31, 32]. In order to study the existence of alge-
bras, we endow the space of function sequences (R[0,1])N with the coordenatewise
multiplication.

Prior to the theorem, we need the following auxiliary assertion.
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Lemma 3.21. Let X, Y, Z be three metric spaces, such that Y is compact. Assume
that f, fn ∶X → Y and g, gn ∶ Y → Z (n ∈ N) are mappings satisfying that fn �→ f

uniformly on X, gn �→ g uniformly on Y , and the family {gn ∶ n ∈ N} is uniformly
equicontinuous. Then gn ○ fn �→ g ○ f uniformly on X.

Proof. Since there is no chance of confusion, we denote by d the distance in all three
spaces X,Y,Z. Fix " > 0. Then there is n1 ∈ N such that d(gn(y), g(y)) < "�2 for
all n ≥ n1 and all y ∈ Y . The assumptions imply that g is uniformly continuous on
Y . Therefore there is �1 > 0 with the property that d(g(y), g(y′)) < "�2 whenever
d(y, y′) < �1. Moreover, there is �2 > 0 such that, if y, y′ ∈ Y and d(y, y′) < �2, then
d(gn(y), gn(y

′)) < "�2 for all n ∈ N0. Now, if � ∶= min{�1, �2}, then the uniform
convergence fn → f implies the existence of n2 ∈ N such that d(fn(x), f(x)) < �

for all x ∈ X and all n ≥ n1. Hence d(g(fn(x)), g((f(x))) < "�2 whenever x ∈ X

and n ≥ n0, where n0 ∶=max{n1, n2}. Finally, the triangle inequality yields that

d((gn ○ fn)(x), (g ○ f)(x)) ≤ d(gn(fn(x)), gn(f(x)))

+ d(gn(f(x)), g(f(x)))

<
"

2
+
"

2
= "

provided that n ≥ n0 and x ∈X, as desired.

Theorem 3.22. The set of sequences of SN converging under the uniform conver-
gence topology but not converging under the topology generated by � ⋅ �F is strongly
c-algebrable.

Proof. Let H ⊂ [1,2] be a Hamel basis of R over Q, and G be a division of H in
c sets of cardinal !, the cardinality of N. If � ∈ G, we can state a bijection between
� and N. Let us represent by h′�,n the element of � to which the positive integer n

is assigned. Now, we can modify h′�,n by multiplying it by an appropriate rational,
say q�,n, in such a way that the sequence �q�,nh′�,n�n≥1 converges to a point h� ∈H

with h� ≠ h�′ when � ≠ �′. Then we write h�,n ∶= q�,nh
′
�,n for each n ∈ N. Note that

{h�,n ∶ � ∈ G and n ∈ N}

is still a Hamel basis of R over Q. For future purposes, without loss of generality we
can assume that all q�,n’s are in [1,2], so that all h�,n’s are in [1,4]. In addition,
we can also assume that, given � ∈ G, the q�,n’s may be selected so that one has
h�,n ≥ h� for all but finitely many n ∈ N.

Next, let us select the sequence {in}n≥1 ∶= {14 + 1
3n}n≥1 ⊂ (0,1�2). Note that it

consists of pairwise different terms, converging to 1
4 ∈ (0,1�2). From the chain rule

it is derived that if f ∶ [0,1] → [0,+∞) is in S and g ∶ [0,+∞) → R is derivable
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and one-to-one (in particular, if g(x) = (1 + x)↵ with ↵ ≥ 1) then g ○ f ∈ S too.
With this in mind, we define

d� = {d�,n}n≥1 ∈ SN by d�,n ∶= (1 + Sin)
h�,n ,

where Si (0 < i < 1�2) is defined by (3.3). Let A be the linear algebra generated
by the set {d� ∶ � ∈ G}. The theorem will be proved along the following four steps:

(a) A is freely generated by the d�’s, that is, if �1, . . . ,�N ∈ G are pairwise different
and P is a polynomial of N variables such that P (d�1 , . . . , d�N ) = 0, then
P = 0.

(b) Each nonzero member of A is a sequence of strongly singular functions.

(c) Each nonzero member of A converges uniformly on [0,1] to some function.

(d) Each nonzero member of A does not converge in the norm � ⋅ �F .

Proof of (a). For such a polynomial P , there are a nonempty finite set L ⊂ (N ∪
{0})N�{(0, . . . ,0)} and reals cm (m = (m1, . . . ,mN) ∈ L) such that P (x1, . . . , xN) =

∑m∈L cmx
m1
1 �x

mN
N . Denote z = {zn}n≥1 ∶= P (d�1 , . . . , d�N ). Then for every n ∈ N we

have

zn = �
m∈L

cm d
m1
�1,n�d

mN
�N ,n

= �

m∈L
cm (1 + Sin)

m1h�1,n�(1 + Sin)
mNh�N,n

= �

m∈L
cm (1 + Sin)

⇢(m,n)
,

where ⇢(m, n) ∶= ∑
N
j=1mjh�j ,n. Observe that, since we are using a Hamel basis, we

have that for every n ∈ N, the ⇢(m, n)’s (m ∈ L) are pairwise different. Of course,
they are ≥ 1. If z = 0 then zn = 0 for all n ∈ N. In particular, for n = 1 we
get ∑m∈L cm (1 + Si1)

⇢(m,1) = 0. But, by a well-known result due to Pólya (see for
instance [63, Corollary 3.2]), a “generalized polynomial”

↵0 + ↵1x
�1 +� + ↵px

�p

(with ↵j ∈ R and 0 < �1 < � < �p) has only finitely many A-points in [0,+∞)
except that ↵0 = A and ↵1 = � = ↵p = 0. Since the function 1 + Si1 assumes all
values of [1,2], it follows that cm = 0 for all m ∈ F , and so P = 0.

Proof of (b). Let z = {zn}n≥1 ∈ A � {0}, so that, as in the previous paragraph,
there are � ≠ L ⊂ (N ∪ {0})N � {(0, . . . ,0)} and {cm ∶ m ∈ L} ⊂ R � {0} with
zn = ∑m∈L cm (1+Sin)

⇢(m,n), where ⇢(m, n) = ∑
N
j=1mjh�j ,n (n ∈ N). Again by Pólya’s
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result, we have, on the one hand, that for each n ∈ N the function zn cannot be
constant on any non-degenerate subinterval of [0,1]. On the other hand, there is
B ∈ B such that �(B) = 1 and S′in(x) = 0 for all x ∈ B. Furthermore, we have that
zn = 'n ○ Sin , where 'n ∶ [0,+∞)→ R is the differentiable function given by

'n(x) = �
m∈L

cm (1 + x)
⇢(m,n)

. (3.10)

Then the chain rule yields z′n(x) = '′n(Sin(x))⋅S
′
in
(x) = 0 for all x ∈ B, which proves

that each zn is strongly singular, as required.

Proof of (c). Let z = {zn}n≥1 = �∑m∈L cm (1 + Sin)
⇢(m,n)�

n≥1 ∈ A � {0} be as above.

Observe that ⇢(m, n) �→ ∑
N
j=1mjh�j =∶ ⇢(m) as n → ∞, for every m ∈ L. Define

the function
� ∶= �

m∈L
cm (1 + S0.25)

⇢(m)
,

which is clearly continuous on [0,1]. According to (3.3), we have

Sin(x) =�
j=0

i
mj(x)−j
n (1 − in)

j
(n ∈ N)

and
S0.25(x) =�

j=0
(0.25)mj(x)−j(0.75)j,

where ∑∞j=0 2−mj(x) is the dyadic expansion of x ∈ [0,1]. Recall that in = 0.25 +
1
3n ,

hence i
mj(x)−j
n (1− in)j → (0.25)mj(x)−j(0.75)j (n→∞) for every (j, x) ∈ (N∪ {0})×

[0,1]. In addition, �imj(x)−j
n (1− in)j � ≤ (0.75)j (x ∈ [0,1], n ∈ N, j ≥ 0), and the series

∑
∞
j=0(0.75)j converges and does not depend on (x,n). Hence Sin → S0.25 (n →∞)

uniformly on [0,1].

Now, observe that ⇢(m, n), ⇢(m) ∈ [1,↵] for all n ∈ N and all m ∈ L, where
we have set ↵ ∶= 4∑N

j=1mj. Note that, for each m ∈ L, one has ⇢(m, n) − ⇢(m) ≥ 0
for all but finitely many n ∈ N. Define the spaces X ∶= [0,1], Y ∶= [0,1], Z ∶= R,
endowed with the usual distance, as well as the functions

f ∶= S0.25, g(x) ∶= �
m∈L

cm(1 + x)
⇢(m)

, fn ∶= Sin and gn ∶= 'n (n ∈ N),

where 'n is given by (3.10). Fix m ∈ L. Then for all but finitely many n ∈ N we
have

sup
x∈[0,1] �(1 + x)

⇢(m,n)
− (1 + x)⇢(m)� ≤ 2⇢(m) ⋅ �2⇢(m,n)−⇢(m)

− 1��→ 0 (n→∞),

which proves the uniform convergence of (1+x)⇢(m,n) to (1+x)⇢(m) on [0,1]. Since
finite summations keep uniform convergence, we get that gn → g uniformly on Y .



Banach spaces and Banach lattices of singular functions 55

Also, under the given notation, we have already obtained that fn → f uniformly
on X. Let us show that the family {gn}n≥1 is uniformly equicontinuous on Y . For
this, it is enough to prove that it is uniformly Lipschitz, and this property, in turn,
would become apparent (just use the mean value theorem) as soon as we will be able
to show that supn∈N sup[0,1] �g′n(x)� < +∞. This follows from the simple computation

�g
′
n(x)� ≤ �

m∈L
�cm�⇢(m, n)(1 + x)⇢(m,n)−1

≤ ↵ ⋅ 2↵−1 ⋅ �
m∈L
�cm� < +∞,

which is valid for all (n,x) ∈ N × [0,1].

Putting all together, an application of Lemma 3.21 yields zn = gn○fn �→
n→∞ g○f = �

uniformly on [0,1], as desired.

Proof of (d). Finally, we have to show that z = {zn}n≥1 cannot converge with the
total variation. Indeed, since this convergence is stronger than uniform convergence,
the unique possible �⋅�F -limit would be the function � defined above. Observe that,
reasoning as in (b) and taking into account that the exponents ⇢(m) (m ∈ F ) are
pairwise different (because the h�j ’s are pairwise different and belong to the basis
H), we have that � is strongly singular, hence nonconstant, and so Var[0,1](�) > 0.
Now, since in ≠ 0.25 (n ∈ N), we get that the associated measures of Sin and
S0.25 are mutually singular. Hence, for each n ∈ N, the functions zn and � are
mutually singular too. Observe that zn(0) = ∑m∈F cm = �(0) for all n ∈ N, and
recall that Var[0,1](f + g) = Var[0,1](f) + Var[0,1](g) if µf and µg are mutually
singular. Consequently,

�zn −��F = �zn(0) −�(0)� +Var[0,1](zn −�)
= Var[0,1](zn) +Var[0,1](�) > Var[0,1](�) > 0

for all n ∈ N. Then �zn −��F ��→ 0, and the theorem is proved.
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Chapter 4
Describing multiplicative convex

functions

4.1 Introducction

The theory of convex functions keeps playing a central role in operator theory, in real
analysis and in some realms of applied mathematics, such as management science
or optimization theory (we refer the interested reader to [5, 19, 79] for applications
of the property of convexity). Since the beginning of their study by Jensen, they
have been thoroughly described and many of their properties have been unveiled.

We recall that a function f ∶ V → R (where V is a vector space over R) is called
convex if, whenever x, y ∈ V and 0 ≤ � ≤ 1, we have

f(�x + (1 − �)y) ≤ �f(x) + (1 − �)f(y).

The study of convex functions has extended to the consideration of other in-
equalities. In this direction, Niculescu proposed the following definition (see [80]):

Let I ⊆ (0,∞) be an interval. A function f ∶ I → (0,∞) is called multiplicative
convex if, for every x, y ∈ I and � ∈ [0,1], we have

f(x
1−�

y
�
) ≤ f(x)

1−�
f(y)

�
. (4.1)

Functions satisfying inequality (4.1) are also known as GG-convex functions,
since they are supposed to substitute the arithmetic mean in the inequality that

59
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defines the convex functions by the geometric mean. Yet, the definition of the mul-
tiplicative convex functions could be regarded as a way of upgrading the operations
that take part in the definition of convex functions. In this direction, we see that
the addition operation turns into multiplication operation, and the multiplication
operation turns into power operation.

If we adopt this point of view, the upgrade is yet not complete. � and µ = 1 − �
are related by � + µ = 1. If we keep in mind that addition turns into multiplication,
then the exponents � and µ should be related by � ⋅ µ = 1. Following that idea, we
propose the following variation for the definition of multiplicative convex functions:

Definition 4.1. Let f ∶ (0,∞) → [0,∞) be such that f(1) = 1. We will say that f
is multiplicative convex if, for every µ > 0 and x, y ≥ 0 we have

f(x
µ
y
1�µ
) ≤ f(x)

µ
f(y)

1�µ
. (4.2)

In particular, by setting µ = 1, we obtain f(xy) ≤ f(x)f(y) for every x, y ≥ 0.

The aim of this chapter is to study the properties that the multiplicative convex
functions, in the setting of definition 4.1, verify. In fact, we will be able to completely
describe what those functions look like.

4.2 Describing multiplicative convex functions

We will start by studying some of the features that the inequality introduced in Def-
inition 4.1 enjoys. The first result tells us about the increasing/decreasing behavior
of such functions.

Theorem 4.2. Let f be a multiplicative convex function. Then, f is either mono-
tone or it decreases until x = 1 and then increases (for simplicity, we will call the
functions of the third kind increasing-decreasing functions).

Proof. Assume there is 0 < ✓ < 1 so that f(✓) ≤ 1. Let us show that in that case
f( ) ≤ 1 for every 0 <  < 1. Having shown that, we will have also proved that if
there is 0 < ✓ < 1 so that f(✓) > 1, then f( ) > 1 for every 0 <  < 1 (otherwise it
contradicts the previous statement). Indeed, let 0 <  ≤ ✓2. Then, we can find 1 ≤ µ
so that  = ✓µ+1�µ and, hence,

f( ) = f(✓
µ
✓
1�µ
) ≤ f(✓)

µ
f(✓)

1�µ
≤ 1.
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Next, let ✓2 <  < ✓. We can find 1 ≤ µ < 2 with  = ✓µ and, therefore,

f( ) = f(✓
µ11�µ) ≤ f(✓)µf(1)1�µ ≤ 1.

Finally, if ✓ <  < 1, then there is µ ≥ 1 so that  = ✓1�µ and hence

f( ) = f(1µ✓1�µ) ≤ f(✓)1�µ ≤ 1.
Assume then that x < y. We can write

f(x) = f �xy
1

y
� ≤ f(y)f �

x

y
� ≤ f(y)

and hence f is increasing.

Let us define g(x) = f(1�x). Then, g is also a multiplicative convex function.
Furthermore, if there is x > 1 so that f(x) ≤ 1, then g(1�x) ≤ 1 with 1

x < 1 and hence
g is increasing (and therefore f is decreasing).

If, on the contrary, there is x > 1 with f(x) > 1, then we would have that
f(x) > 1 for every x > 1 (again, using the function g, which has to be higher than
1 over (0,1)). Hence, if 1 < x < y, then we can find 0 < µ < 1 so that x = yµ and
therefore

f(x) = f(y
µ11�µ) ≤ f(y)µ ≤ f(y),

so that f is increasing on (1,∞). Via another argument involving the function g(x),
we would conclude that f is decreasing on (0,1).

The following Lemma will be crucial in the theorems to come.

Lemma 4.3. Let f be a multiplicative convex function and q ∈ Q+. Then, f(xq) =

f(x)q

Proof. Assume, first, that q ∈ N. Since f(xy) ≤ f(x)f(y), we obtain f(xq) ≤ f(x)q.
On the other hand,

f(x) = f((x
q
)
1�q
) ≤ f(x

q
)
1�q

f(1)q = f(xq
)
1�q

,

so that f(x)q ≤ f(xq) ≤ f(x)q.

If now q is of the form 1
n , with n ∈ N, we obtain, similarly,

f(x
1�n
) ≤ f(x)

1�n
f(1)n = f(x)1�n,

being f multiplicative convex. Conversely, f(x) = f((x1�n)n) ≤ f(x1�n)n, from which
f(x1�n) ≥ f(x)1�n.

For the general case, f(xq) = f(xn�m) = f(x1�m)n = f(x)n�m.
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Theorem 4.4. Let f be a multiplicative convex function. Then, f is continuous.

Proof. We claim first that f is continuous at x = 1. Indeed, otherwise we can find
a sequence {xn}

∞
n=1 and a number M > 0 so that either xn ↑ 1 or xn ↓ 1, and

�f(xn) − 1� >M for every n ∈ N.

Assume that f is increasing. If we are in the case xn ↑ 1, then M < 1−f(xn) < 1,
so that f(xn) < 1 −M < 1.

Let n ∈ N. Then, we can find mn ∈ N so that x1 ≤ x
n
mn

. Then,

f(x1) ≤ f(x
n
mn
) = f(xmn)

n
→ 0 as n→∞

and hence f(x1) = 0. On the other hand,

1 = f(x1
1

x1
) ≤ f(x1)f(

1

x1
) = 0,

and we reach a contradiction.

If we are in the case of xn ↓ 1, then f(xn) − 1 >M for every n, so that f(xn) >

M + 1 > 1. Since f is increasing, we can also deduce that f(y) > M + 1 for every
y > 1.

On the other hand, if y > 1, we can find µ ≥ 1 so that f(y)1�µ <M + 1. Let x < 1
so that xµy1�µ > 1. Then,

M + 1 < f(xµ
y
1�µ
) ≤ f(x)

µ
f(y)

1�µ
<M + 1

(let us recall that f(z) < 1 for every z < 1 if f is an increasing multiplicative convex
function), reaching a contradiction.

Assume next that f is decreasing. Then, we just need to apply the previous
study to the function g(x) = f(

1
x).

Assume finally that f is increasing-decreasing. Since, in that case, g is also an
increasing-decreasing multiplicative convex function, we may assume, w.l.o.g., that
we can find a sequence xn ↑ 1 and M > 0 so that f(xn) > M + 1, for every n ∈ N.
Again, for n ∈ N, we can find mn ∈ N so that xn

mn
≥ x1. Then,

f(x1) ≥ f(x
n
mn
) = f(xmn)

n
> (M + 1)n →∞ as n→∞,

and the claim is proved also for this case.
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We will prove continuity in the general case. Let x ∈ (0,∞) and " > 0. Since f is
continuous at 1, we can find 0 < � < 1 so that, if �1 − ⇣ � < �, then �1 − f(⇣)� < "

f(x) .

Let us assume first that f is increasing (which will also cover the case of f

being decreasing, via the use of the function g(x) = f(
1
x)) and let y > 0 so that

�x − y� <
�x
2 <

x
2 . If y < x, then

x

y
− 1 =

x − y

y
<

�x
2
x
2

= �,

so that
0 < f �

x

y
� − 1 <

"

f(x)
.

On the other hand,

0 < f(x) − f(y) = f �y
x

y
� − f(y)

≤ f(y) �f �
x

y
� − 1�

≤ f(x) �f �
x

y
� − 1� < ".

For the case of f decreasing-increasing, we may reproduce the argument for f in-
creasing and x < y to show that f is continuous from the right. We can conclude
the situation for y < x using the function g(x) = f(

1
x).

With Theorem 4.4, we can extend Lemma 4.3 to positive exponents:

Lemma 4.5. Let f be a multiplicative convex function. Then, f(xt) = f(x)t for
every t > 0.

Proof. If t > 0, we can find a sequence {qn}∞n=1 ⊆ Q+ so that qn → t as n→∞. Using
the fact that f is continuous,

f(x
t
) = f �x

limn→∞ qn� = lim
n→∞f(x

qn) = lim
n→∞f(x)

qn = f(x)
t
.

We are now ready to describe the way the multiplicative convex functions are,
as in Definition 4.1.
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Theorem 4.6. Let f ∶ (0,∞)→ [0,∞). Then, f is a multiplicative convex function
if and only if it can be written of the form

f(x) =

�
��
�
��
�

bloga(x) if 0 < x ≤ 1,
b′ loga′(x) if x > 1,

(4.3)

where a, b, a′ and b′ satisfy the following conditions:

1. 0 < a < 1 and a′ > 1.
2. If b < 1, then logb(b

′) ≤ loga(a′) < 0 (which, in particular, implies b′ > 1).
3. If b > 1, then logb(b

′) ≥ loga(a′).

Proof. Assume first f is multiplicative convex. Let us fix 0 < x0 < 1 and x1 > 1.

If 0 < x < 1, we can find µ > 0 so that x = x
µ
0 . More concretely, we can write

µ = logx0
(x) > 0. Therefore,

f(x) = f(x
µ
0) = f(x0)

µ
= f(x0)

logx0(x).
Similarly, we can write f(x) = f(x1)

logx1(x) for x > 1, so we can identify a = x0 ∈ (0,1),
b = f(x0), a′ = x1 > 1, b′ = f(x1).

Notice now that we can find µ ≥ 1 so that x
µ
0x

1�µ
1 < 1. Then,

f(x
µ
0x

1�µ
1 ) = f(x0)

logx0(xµ
0x

1�µ
1 )

= �f(x0)
logx0(x0)�µ �f(x0)

logx0(x1)�1�µ

= f(x0)
µ
�f(x0)

logx0(x1)�1�µ .

On the other hand, f(xµ
0x

1�µ
1 ) ≤ f(x0)

µf(x1)
1�µ. Therefore, f(x0)

logx0(x1) ≤ f(x1)

and hence

logx0
(x1)

�
��
�
��
�

≤ logf(x0)(f(x1)) if f(x0) > 1,

≥ logf(x0)(f(x1)) if f(x0) < 1.

Reciprocally, let f(x) be defined as Equation (4.2), with a, a′, b and b′ satisfying
the corresponding conditions. Assume first b < 1 (so that logb(b

′) ≤ loga(a′)).

Let x, y > 0 and µ > 0 so that xµy1�µ > 1 (we may assume, w.l.o.g., that y > 1).
Then,

f(x
µ
y
1�µ
) = b

′ loga′(xµy1�µ)
= �b

′ loga′(x)�µ �b′ loga′(y)�1�µ .
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Figure 4.1: The functions are defined as in Equation (4.2) by using the following
constants: af = 0.27, bf = 1.8, a′f = 2.35, b′f = 2.25, ag = 0.45, bg = 3.45, a′g = 2.62,
b′g = 0.75, ah = 0.18, bh = 0.45, a′h = 1.86, and b′h = 2.4

If x > 1, we obtain trivially f(xµy1�µ) ≤ f(x)µf(y)1�µ.
If x < 1, then we need to show that b′ loga′(x) ≤ bloga(x), which is equivalent to show

that
loga′(x) logb(b′) ≥ loga(x), (4.4)

since b < 1.

Now, having that a′ > 1, we obtain that loga′(x) < 0 and therefore

loga′(x) logb(b′) = loga(x)

loga(a′)
logb(b

′
) ≥ loga(x),

as desired.

Assume next that we are in the situation of xµy1�µ < 1 (so that, w.l.o.g., x < 1).
Then,

f(x
µ
y
1�µ
) = �b

loga(x)�µ �bloga(y)�1�µ

and we only need to show that, if y > 1, then bloga(y) ≤ b′ loga′(y), which is equivalent
to show that

loga(y) ≥ loga′(y) logb(b′).
On the other hand, notice that a, b < 1, so loga(y), loga(a

′) < 0 and hence

loga(y) ≥ loga(y)
logb(b

′)
loga(a′)

= loga′(y) logb(b′).
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If now b > 1 (so logb(b
′) ≥ loga(a′)) we have that the conditions 1,2,3 imply

loga(x)

loga(a′)
logb(b

′
) = loga′(x) logb(b′) ≤ loga(x) for every 0 < x < 1,

loga(y)

loga(a′)
logb(b

′
) = loga′(y) logb(b′) ≥ loga(y) for every y > 1.

Notice again that loga(a′) < 0 and therefore
logb(b

′)
loga(a′)

≤ 1.

The previous theorem characterizes the multiplicative convex functions and al-
lows us, through the use of appropriate values of the constants, to graphically show
different types of multiplicative convex functions (See Figure 4.1).

In the definition 4.1 we make the distinction f(1) = 1. But since f(1) = f(1 ⋅
1) ≤ f(1)2, we can deduce that f(1) ≥ 1. On the other hand, if C > 1 and f is
multiplicative convex, then Cf verifies (4.2). Then, we wonder if every function
that verify (4.2) can be set as Cf with C a constant higher than 1 and f a function
as in Theorem 4.6. That is, if a function f satisfies (4.2) would we have that
g(x) = f(x)�f(1) verifies (4.2)? We can state, by a negative answer, that the
distinction f(1) = 1 is essential in Theorem 4.6.

Remark 4.7. The function f(x) = x + 1 is multiplicative convex (condition (4.2))

but g(x) =
f(x)

2
is not. Indeed, we have to see that for every µ > 0 and x, y ≥ 0 we

have
x
µ
y
1�µ
+ 1 ≤ (x + 1)µ(y + 1)1�µ.

If µ = 1, then (x + 1)(y + 1) = xy + x + y + 1 ≥ xy + 1. Next, if µ > 1 (it will be
analogous for µ < 1) we will have that

(x + 1)µ(y + 1)1�µ ≥ (xµ
+ 1)(y + 1)1�µ.

Then, if y ≥ 1 we have that 1 ≤ y1�µ ≤ (y + 1)1�µ so,

(x
µ
+ 1)(y + 1)1�µ ≥ (xµ

+ 1)y1�µ = xµ
y
1�µ
+ y

1�µ
≥ x

µ
y
1�µ
+ 1

And, if y < 1, we have that y1�µ ≤ 1 ≤ (y + 1)1�µ, so

(x
µ
+ 1)(y + 1)1�µ ≥ (xµ

+ 1)1 = xµ
+ 1 ≥ xµ

y
1�µ
+ 1

Therefore f(x) = x + 1 verifies condition (4.2).
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Next, let us see that g(x) does not verify (4.2). Taking x = y =
1
2 and µ = 10, we

have that, on the one hand,

xµy1�µ + 1
2

=
�
1
2�

10+1�10
+ 1

2
≈ 0.50045,

and, on the other hand,

�
x + 1

2
�

µ

�
y + 1

2
�

1�µ
= �

3

4
�

10+1�10
≈ 0.05471,

and we are done, since we have just showed that, for this previous choice of x, y,

and µ we actually have
g(x

µ
y
1�µ
) > g(x)

µ
g(y)

1�µ
.
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Chapter 5
Generalizing multiplicative convex

functions

5.1 Introduction and new notation

In chapter 4, the following definition was proposed.

Definition 5.1. Let f ∶ (0,∞) → [0,∞) be a function. We will say that f is
multiplicative convex (or f is an mc−function, for short) if, for every µ > 0 and
x, y > 0 we have

f(x
µ
y
1�µ
) ≤ f(x)

µ
f(y)

1�µ
. (5.1)

The inequality in (5.1) implies that f(1) ≥ 1. In chapter 4 the following distinc-
tion was made:

Definition 5.2. A function f ∶ (0,∞) → [0,∞) is said to be 1-multiplicative
convex (or f is a mc1−function) if, for every µ > 0 and x, y > 0 we have

f(x
µ
y
1�µ
) ≤ f(x)

µ
f(y)

1�µ
.

and the function satisfies also the condition f(1) = 1.

We will denote

MC ∶= {f ∶ (0,∞)→ [0,∞) �f is a mc−function}
MC1 ∶= {f ∶ (0,∞)→ [0,∞) �f is a mc1−function}.

69
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In chapter 4 the property f(1) = 1 was of great importance to give the following
characterization of mc1−functions:

Theorem 5.3. [64, Theorem 2.5] Let f ∶ (0,∞)→ [0,∞). Then, f is a mc1−function
if and only if it can be written in the form

f(x) =

�
��
�
��
�

bloga(x) if 0 < x ≤ 1,
b′ loga′(x) if x > 1,

(5.2)

where a, b, a′ and b′ satisfy the following conditions:

1. 0 < a < 1 and a′ > 1.
2. If b < 1, then logb(b

′) ≤ loga(a′) < 0 (which, in particular, implies b′ > 1).
3. If b > 1, then logb(b

′) ≥ loga(a′).

In the direction of generalizing mc1−functions into mc−functions we can find the
following remark.

Remark 5.4 ([64]). If f is a mc1−function and C > 1 then g(x) = Cf(x) is a
mc−function (but not mc1).

The problem of the characterization of the mc-functions which are not mc1
remains open, but a natural approach would be to relate both classes. We can then
find the following natural question:

Problem 5.5 ([64]). If f is a mc−function, is g(x) =
f(x)
f(1) a mc1−function?

That was negatively answered with the following example.

Example 5.6. [64] The function f(x) = x + 1 is a mc−function but g(x) =
f(x)

2
is

not mc1.

In section 5.2 we shall focus on the study of certain features of mc−functions in
order to see some of the algebraic properties of the setMC. In the following sections,
we shall use those properties to describe the algebraic structure of this set and we
provide an example of a discontinuous mc-function, which leads to the conclusion
that the mc-property does not imply continuity. We will then focus our attention
to the question of whether continuous mc-functions may be all obtained via basic
manipulations of mc1-functions. Some results regarding algebraic genericity are also
presented and open questions will be posed in the last section. This work is a natural
continuation of [64].
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5.2 Some algebraic properties of the set MC

Before stating the main points of this section, let us mention a well-known result
that will be crucial in some of the proofs presented here. The following lemma
can be found in [46] and it is very well known, however we include it here for self-
containment.

Lemma 5.7. For 1 ≤ p ≤∞, let `p denote the space

`p = �x = (x1, x2, . . .) ∈ RN
∶

∞
�
i=1
�xi�

p
<∞�

endowed with the usual norm, which we denote by �⋅�p. Then, `p may be continuously
embedded into `q for 1 ≤ p ≤ q ≤∞.

In particular, for every 1 ≤ p ≤ q ≤∞ and x ∈ `p, �x�q ≤ �x�p

A natural, and straightforward, consequence of the previous lemma is the fol-
lowing result.

Corollary 5.8. If a, b are positive numbers and µ ≥ 1, then aµ + bµ ≤ (a + b)µ.

The first algebraic property ofMC indicates that this set is closed under addition:

Lemma 5.9. If f and g are mc−functions, then h(x) = f(x)+g(x) in a mc−function
as well.

Proof. Let f, g be mc-functions, x, y ∈ (0,∞) and µ ≥ 1, then

(f + g)(x
µ
y

1
µ ) = f(x

µ
y

1
µ ) + g(x

µ
y

1
µ ) ≤ f(x)

µ
f(y)

1
µ + g(x)

µ
g(y)

1
µ

≤ f(x)
µ
(g(y) + f(y))

1
µ + g(x)

µ
(f(y) + g(y))

1
µ

= (f(x)
µ
+ g(x)

µ
)(g(y) + f(y))

1
µ

≤ �f(x) + g(x)�
µ
(g(y) + f(y))

1
µ

= [(f + g)(x)]
µ
[(f + g)(y)]

1
µ

Therefore, f + g is a mc−function.

Corollary 5.10. If f is a mc−function and c ≥ 1, then g(x) = f(x) + c is a
mc−function as well.
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For the case g(x) = f(x) + c with c ∈ (0,1) we will study first the case where f

is a mc1-function.

Lemma 5.11. If f is a mc1−function and f(x) ≥ 1 for every x ∈ (0,∞), then
g(x) = f(x) + c is a mc-function for 0 < c < 1.

Proof. We know that f is decreasing in (0,1) and increasing in (1,∞), so we can
proof that:

f(x)
µ
+ c ≤ (f(x) + c)

µ (5.3)

If we define h(x) = (f(x) + c)µ − f(x)µ − c, then h′(x) = µf ′(x)[f(x) + c)µ−1 −
f(x)µ−1]. Due to the monotonicity of f we have that h(x) has an absolute minimum
in x = 1 but h(1) = (1 + c)µ − (1 + c) ≥ 0 for every µ ≥ 1, therefore h(x) ≥ 0 for every
x ∈ (0,∞) and we have (5.3).

Lets see that g is a mc−function. Since 1 ≤ f(y)1�µ we have

g(x
µ
y

1
µ ) = f(x

µ
y

1
µ ) + c ≤ f(x)

µ
f(y)

1
µ + c ≤ f(x)

µ
f(y)

1
µ + cf(y)

1
µ

= f(y)
1
µ (f(x)

µ
+ c) ≤ (f(y) + c)

1
µ (f(x)

µ
+ c)

≤ (f(x) + c)
µ
(f(y) + c)

1
µ = g(x)

µ
g(y)

1
µ ,

where the latter inequality is due to (5.3).

Notice that, according to Theorem 5.3, the situation described in Lemma 5.11
refers to the decreasing-increasing type of functions. For the other two types, we
have the following:

Lemma 5.12. If f is a monotone mc1−function then g(x) = f(x) + c is not a
mc−function for 0 < c < 1.

Proof. We are going to suppose that f is increasing (using that if f is a decreasing
and mc−function, then f(

1
x) is increasing and mc as well and we can generalize the

result). So that we can use the characterization given in Theorem 5.3 with a ∈ (0,1),
a′ > 1, b < 1 and b′ > 1.

Next, taking

x = y = a

log 1−c
4

log b ∈ (0,1)

and µ = 1 we have that



Generalizing multiplicative convex functions 73

g(xy) = b
loga(xy) + c,

g(x)g(y) = b
loga(xy) + c(bloga x

+ b
loga y

+ c), but

b
loga x

+ b
loga y

+ c =
1 − c

4
+
1 − c

4
+ c =

1 + c

2
< 1.

Therefore g(xy) > g(x)g(y) and g(x) is not a mc−function.

Hence, being closed under addition by a positive constant smaller than 1 depends
on the function: f(x) = x + c is not mc for any c < 1 but g(x) = x + 1 + c is mc for
every c > 0.

The following result tells us thatMC has structure as an algebra:

Lemma 5.13. If f and g are mc−functions, then h(x) = f(x)g(x) is a mc−function.

Proof. Let f an g be mc-functions and let h(x) = f(x)g(x).

h(x
µ
y

1
µ ) = f(x

µ
y

1
µ )g(x

µ
y

1
µ ) ≤ f(x)

µ
f(y)

1
µ g(x)

µ
g(y)

1
µ

= (f(x)g(x))
µ
(f(y)g(y))

1
µ = h(x)

µ
h(y)

1
µ

Corollary 5.14. Let f be a mc-function and � ≥ 1. Then, �f is a mc−function as
well.

Lemma 5.15. If f and g are mc-functions and f is increasing then f(g(x)) is a
mc−function.

Proof. f(g(xµy
1
µ )) ≤ f(g(x)µg(y)

1
µ ) ≤ f(g(x))µf(g(y))

1
µ

Corollary 5.16. If f is a mc-function then fn is a mc−function for every n ∈ N.

With respect to convergence of mc−functions, we have the following result:

Lemma 5.17. Let f(x) = limn→∞ fn(x) with fn ∈MC (resp. fn ∈MC1) for every
n ∈ N. Then, f(x) is a mc−function (resp. a mc1−function).

Proof. Just notice that

f(x
µ
y
1�µ
) = lim

n→∞fn(x
µ
y
1�µ
) ≤ lim

n→∞fn(x)
µ
fn(y)

1�µ
= f(x)

µ
f(y)

1�µ
.

If, furthermore, fn(x) = 1 for every n, f(1) = limn→∞ fn(1) = 1.
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The previous battery of examples, specially Lemma 5.9, Lemma 5.13 and Corol-

lary 5.14, describes a very specific structure for theMC functions. We will need to
introduce some considerations before carrying on with the results.

Definition 5.18. [72] A cone is a set P endowed with two operations, addition and
multiplication by positive scalars, which fulfill the usual properties (commutativity,
associativity, existence of neutral element, etc.).

If this set contains a linearly independent subset of infinite cardinality, the cone
is said to be infinite. The dimension of the cone is the maximal possible cardinality
of such a linearly independent set.

The theory of cones provides a different scoop to work in settings more general
than the usual Banach or vector spaces. We refer the interesting reader to [72], where
the authors make an introduction to the functional analysis on cones, overviewing
the basic notions and definitions and studying how some of the classical results on
Banach spaces (such as the Hahn-Banach Theorem) can be extended to this theory.

In particular, cones may be useful when being closed under scalar multiplication
is not fulfilled but for positive scalars. In this direction, let us briefly recall the
recently introduced notion of lineability (see, e.g., [2, 7, 9, 20, 25,37,45,85]).

Definition 5.19. Let X be a vector space, M ⊆X and let µ any (finite or infinite)
cardinal number. We say that M is µ−lineable if M ∪ {0} contains a vector space of
dimension µ. If X is a topological vector space, we shall say that M is µ−spaceable if
M ∪{0} contains a closed vector space of dimension µ. We say that M is µ−coneable
if M ∪ {0} contains a cone of dimension µ.

The idea behind Definition 5.19 is the search of algebraic structure on certain sets
(whose elements usually verify some pathological property) of the greatest possible
dimension. Depending on the set under study, some of the structures introduced in
5.19 will be allowed and some will not. For example (see, [67]):

Theorem 5.20. There exist two closed cones of dimension c, C1, C2, with the prop-
erty that, if f ∈ C1 � {0} and g ∈ C2 � {0}, then:

1. f ∈D[−1,1].

2. g ∈D[−1,1].

3. f ∗ g ∉D[−1,1].
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Nevertheless, two analogous structures can not be found if we are requiring them to
be closed vector spaces (so the spaceability analogue does not exist).

For the properties we are interested in this mansucript we can not search for
cones, since being closed under multiplication by positive scalars is not ensured.
Because of this, we have to consider another definition.

Definition 5.21. Let X be a vector space and M ⊆X. We say that M is an infinite
dimensional truncated cone if M fulfills the following properties:

1. M is closed under addition.

2. M is closed under multiplication by scalar no less than 1.

3. M contains a set of infinite cardinality of linearly independent elements.

The maximal possible cardinality of a set like in the property (3) is the dimension
of the truncated cone.

If, furthermore, we can define a multiplication on X (satisfying the usual prop-
erties on itself and with respect to addition) and M is closed under products, then
we say that M is an algebraic truncated cone. In that case,

1. the linear dimension of the truncated cone will be the maximal possible cardi-
nality so that there exists a subset of such cardinality and consisting on linearly
independent elements.

2. The algebraic dimension will be the maximal possible cardinality so that
there exists a subset of such cardinality and consisting on algebraic independent
elements (that is, so that the only polynomial vanishing on them is the null
polynomial).

Trivially we obtain that the algebraic dimension is not greater than the linear di-
mension.

The relationship between truncated cones and cones, appart from the usual ge-
ometric one, can be represented in the following:

Proposition 5.22. Let A be an infinite dimensional truncated cone of linear di-
mension µ. Then A −A = {a1 − a2 ∶ ai ∈ A} is an infinite dimensional cone of the
same dimension.
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Proof. Let a1, a2, b1, b2 ∈ A, a ∈ A −A and � ≥ 0. Then

�a = �(a1 − a2) = [(� + 1)a1 + a2] − [(� + 1)a2 + a1] ∈ A −A,

(a1 − a2) + (b1 − b2) = (a1 + b1) − (a2 + b2) ∈ A −A.

Let next {fi ∶ i ∈ �} ⊆ A be a linearly independent set of cardinality µ, i0, i(1) ∈ � be
different elements and h ∶ (� � {i(0)}) × (� � {i(1)}) → � be a bijection. If we define
the set

B = �fh(i,i(0)) − fh(i(1),i) ∶ i ∈ � � {i(0), i(1)}�
then card(B) = µ and we claim that B ⊆ A−A is a linearly independent set: Indeed,
assume �k ∈ R, ik ∈ � � {i(0), i(1)} for 1 ≤ k ≤ n. Then, we notice that the elements
h(ik, i

(0)), h(i(1), ik) ∈ � are all different and therefore

0 =
n

�

k=1
�k �fh(ik,i(0)) − fh(i(1),ik)� =

n

�

k=1
�kfh(ik,i(0)) −

n

�

k=1
�kfh(i(1),ik)

leads to the conclusion �k = 0 for every 1 ≤ k ≤ n.

Let us come back to our object of study and focus our attention on continuous
mc−functions. We can summarize the main results of this section so far in the
following theorem:

Theorem 5.23. Let A = C(0,∞) ∩MC. Then,

1. A is closed for the compact-open topology.

2. A is an algebraic truncated cone.

The question that we may ask ourselves is if the truncated cone from Theorem
5.23 is of infinite dimension and, in which case, what is the maximal dimension we
can consider.

Theorem 5.24. The set A defined in Theorem 5.23 is a truncated cone of algebraic
dimension c (the continuum), that is, of the largest possible dimension.

Proof. Let us define, for b ∈ (0,1),

fb(x) =

�
��
�
��
�

b
log1�2(x) if 0 < x ≤ 1,
�
1
b�

log2(x) if x > 1.
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Then, by Theorem 5.3, fb is a mc1−function for every b ∈ (0,1). Let us show, to
finish with, that this set is algebraically independent. Indeed, let �i ∈ R, bj ∈ (0,1)
and ki,j ∈ N for 1 ≤ i ≤ n and 1 ≤ j ≤m. We define

g(x) =

n

�
i=1

m

�
j=1

fbj(x)
ki,j .

Assume then that g(x) = 0. In particular, evaluating in g(
1
2s ) for 0 ≤ s ≤ n − 1 we

obtain
0 = g(1) =

n

�
i=1
�i

0 = g �
1

2
� =

n

�
i=1
�ib

ki,1
1 b

ki,2
2 ⋅ . . . ⋅ b

ki,m
m

0 = g �
1

22
� =

n

�
i=1
�ib

2ki,1
1 b

2ki,2
2 ⋅ . . . ⋅ b

2ki,m
m

=

n

�
i=1
�i �b

ki,1
1 b

ki,2
2 ⋅ . . . ⋅ b

ki,m
m �

2

(5.4)

and so on, also having that:

0 = g �
1

2n−1� =
n

�
i=1
�ib
(n−1)ki,1
1 b

(n−1)ki,2
2 ⋅ . . . ⋅ b

(n−1)ki,m
m

=

n

�
i=1
�i �b

ki,1
1 b

ki,2
2 ⋅ . . . ⋅ b

ki,m
m �

n−1
.

(5.5)

Denote ⇤ = (�1,�2, . . . ,�n), hi = �b
ki,1
1 b

ki,2
2 ⋅ . . . ⋅ b

ki,m
m � and

A =

�
�
�
�
�
�
�
�
�
�
�

1 1 1 � 1
h1 h2 h3 � hn

h2
1 h2

2 h2
3 � h2

n

⋮ ⋮ ⋮ � ⋮

hn−1
1 hn−1

2 hn−1
3 � hn−1

n

�
�
�
�
�
�
�
�
�
�
�

.

Then, the system given by (5.4) and (5.5) may be summarized as A⇤T = 0, where A

is a Van der Monde type matrix and therefore it is invertible, leading us to conclude
⇤ = (0, . . . ,0)

5.3 Discontinuous mc−functions

In this section we focus on the question whether every mc-function is continuous
or not. The following example shows that there are mc-functions that are not
continuous.
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Example 5.25. f(x) = �
2 if x < 1
4 if x ≥ 1

is a mc−function which is not continuous.

Proof. f(xµy
1
µ ) ≤ 4 ≤ 2(µ+ 1

µ
)
≤ f(x)µf(y)

1
µ

Following Example 5.25, we generalize it in our next result:

Theorem 5.26. Let ↵ > 1, ↵ < � ≤ ↵2 and f be a mc1−function. Define the function

g(x) =

�
��
�
��
�

↵f(x) if 0 < x ≤ 1,
�f(x) if x > 1.

Then g is a discontinuous mc−function.

Proof. It is trivial to prove that g is discontinuous, since

lim
x→1− g(x) = ↵ < � = lim

x→1+ g(x).

Let x, y > 0 and µ > 0.

Assume first that xµy1�µ ≤ 1. Then

g(x
µ
y
1�µ
) = ↵f(x

µ
y
1�µ
) ≤ ↵f(x)

µ
f(y)

1�µ
≤ ↵

µ+1�µ
f(x)

µ
f(y)

1�µ
= [↵f(x)]

µ
[↵f(y)]

1�µ
≤ g(x)

µ
g(y)

1�µ
.

If now xµy1�µ > 1 and x, y > 1, then g(xµy1�µ) ≤ g(x)µg(y)1�µ, analogously as in the
previous case.

If x ≤ 1 (without loss of generality), then

g(x
µ
y
1�µ
) = �f(x

µ
y
1�µ
) ≤ ↵

2
f(x

µ
y
1�µ
)

≤ ↵
µ+1�µ

f(x)
µ
f(y)

1�µ
= [↵f(x)]

µ
[↵f(y)]

1�µ
≤ g(x)

µ
g(y)

1�µ
.

The functions defined in Theorem 5.26 are all discontinuous at x = 1. Concerning
other points of discontinuity, we may prove the following result:
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Proposition 5.27. Let x0 > 0. Then, there exists a mc−function that is discontin-
uous at x0

Proof. Assume first x0 < 1 and let f be an increasing mc1−function and g be a
function from Theorem 5.26. Then,

hx0(x) = g�
1

f(x0)
f(x)�

is a mc−function which is discontinuous at x0.

If now x0 > 1, then we may just define

h
(x0)(x) = h 1

x0

�
1

x
�.

Even though we can not ensure that the set of discontinuous mc−functions is a
truncated cone (being closed under multiplication is not guaranteed), we can take
the idea from Definition 5.19 and search for certain algebraic structures:

Proposition 5.28. The set

A = {f ∶ (0,∞)→ [0,∞) ∶ f is a discontinuous mc−function}

contains an algebraic truncated cone of algebraic dimension c.

Proof. Similarly as in Theorem 5.24, we define, for b ∈ (0,1),

fb(x) =

�
��
�
��
�

2blog1�2(x) if 0 < x ≤ 1,
4 �1b�

log2(x) if x > 1.

Each fb is a discontinuous mc−function, by means of Theorem 5.26, and they form a
linearly independent set (the proof follows similarly as the proof in Theorem 5.24).
We can just define the following truncated cone

T = ��

n

�
i=1

fbi(x) ∶ � ≥ 1, n ∈ N b1, . . . , bn ∈ (0,1)� ,

finishing the proof.
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5.4 Other continuous mc−functions

Multiplicative convexity is closed under the majority of the algebraic operations,
similarly as continuity. In this section we will examine whether the set of mc1−functions
can serve as a system of generators of the set

A = C(0,∞) ∩MC,

that is, if we can obtain every element of the set A by means of algebraic operations
over elements fromMC1.

Lemma 5.29. The function h(x) = f(x) + c with f ∈ MC1, f(x) ≥ 1 for every
x ∈ (0,∞) and c ∈ (0,1) verifies that h ∈ A but can not be set as ∑m

n=1 �nfn(x) with
fn ∈MC1 and �n ∈ [1,∞).

Proof. We have shown in Lemma 5.11 that if f is a mc1−function that satisfies
f(x) ≥ 1 for every x ∈ (0,∞) and c ∈ (0,1), then h(x) = f(x)+c is also a mc−function.
Since f is continuous we have that h ∈ A.

Notice that h(1) = 1 + c < 2. If m > 1, �1, . . . ,�m ≥ 1 and f1, . . . ,�m are
mc1−functions, then ∑m

n=1 �nfn(x) > 2, so that if h(x) = ∑m
n=1 �nfn(x) then m = 1

and the function h will be a product of a mc1−function and a constant bigger than 1.
Let see that the function g(x) =

f(x)+c
1+c is not mc1. Taking µ = 1, x = y = alogb2 ∈ (0,1).

g(x)g(y) = �
f(x) + c

1 + c
�

2

= �
blogaa

logb2
+ c

1 + c
�

2

= �
2 + c

1 + c
�

2

=
c2 + 4c + 4

c2 + 2c + 1

g(xy) =
f(xy) + c

1 + c
=
bloga(alogb2) + c

1 + c

=
b2logb2 + c

1 + c
=
4 + c

1 + c
=
c2 + 5c + 4

c2 + 2c + 1

Since g(xy) > g(y)g(x), g ∉MC1.
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5.5 Open questions

We finish this work by posing some open directions of study in order to continue
this ongoing research theory of multiplicative convex functions.

1. The cardinality of the set {f ∶ R→ R} is 2c. What is the cardinality ofMC?

2. In Proposition 5.28 we proved the existence of an algebraic truncated cone
of algebraic dimension c contained in MC �C(0,∞). What is the maximum
possible algebraic dimension of such a truncated cone (if it is greater than c)?

3. Is MC � C(0,∞) a truncated cone itself? That is, is MC � C(0,∞) closed
under addition and multiplication?

4. What can be said about the general behavior of not continuous mc−functions?
Can they be of the three types described in [64] for mc1−functions (monotone
or decreasing-increasing type)?

5. What can be said about the set of points of discontinuity of a multiplicative
convex function, in general?



82 Open questions



Chapter 6
Injectiveness and discontinuity of
multiplicative convex functions

6.1 Introduction

In chapter 5 it was shown that the distinction between the sets MC and MC1
(namely, f(1) = 1) was crucial. In fact, the condition f(1) = 1 suffices to completely
describe the setMC1:

Theorem 6.1. [64] Let f ∶ (0,∞)→ [0,∞). Then, f is a mc1−function if and only
if it can be written of the form

f(x) =

�
��
�
��
�

bloga(x) if 0 < x ≤ 1,
b′ loga′(x) if x > 1,

(6.1)

where a, b, a′ and b′ satisfy the following conditions:

1. 0 < a < 1 and a′ > 1.
2. If b < 1, then logb(b

′) ≤ loga(a′) < 0 (which, in particular, implies b′ > 1).
3. If b > 1, then logb(b

′) ≥ loga(a′).

On the other hand, requiring f(1) > 1 (for a mc−function can not have f(1) < 1)
implied a huge difference with respect to the previous situation, where everything
was under control: for one thing, MC is closed under addition, product, multipli-
cation by a scalar no smaller than 1 and composition (if the first function in the
composition is not decreasing), but it was also proved the existence of discontinuous
mc−functions:

83
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Theorem 6.2. [65] Let ↵ > 1, ↵ < � ≤ ↵2 and f be a mc1−function. Define the
function

g(x) =

�
��
�
��
�

↵f(x) if 0 < x ≤ 1,
�f(x) if x > 1.

Then g is a discontinuous mc−function.

The following theorem can be used to prove the existence of a mc−function which
is discontinuous at any given point. We include the constructive proof for the sake
of completeness.

Proposition 6.3. [65] Let x0 > 0. Then, there exists a mc−function that is discon-
tinuous at x0

Proof. Assume first x0 < 1 and let f be a mc1−function and g be an increasing
discontinuous function from Theorem 6.2. Then,

hx0(x) = g�
1

f(x0)
f(x)�

is a mc−function which is discontinuous at x0.

If now x0 > 1, then we may just define

h
(x0)(x) = h 1

x0

�
1

x
�.

Given the aim of this chapter, we shall introduce some notation to denote the
set of points of discontinuity of functions.

Definition 6.4. Let f ∶ R→ R be a function. We shall denote

D(f) = {x ∈ R ∶ f is discontinuous on x}.

This set has some regular algebraic properties. For example, what follows is a
standard Calculus exercise:

Proposition 6.5. Let f and g be two functions so that D(f) ∩D(g) = �. Then,

D(f + g) =D(fg) =D(f) ∪D(g).
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In general, we can not ensure that, given a mc−function f , ↵f is also a mc−function
for ↵ ≥ 0 but for ↵ ≥ 1. Because of this, we have to consider the following definition
from chapter 5.

Definition 6.6. [65] Let X be a vector space and M ⊆ X. We say that M is an
infinite dimensional truncated cone if M fulfills the following properties:

1. M is closed under addition.

2. M is closed under multiplication by scalar no less than 1.

3. M contains a set of infinite cardinality of linearly independent elements.

The maximal posible cardinality of a set like in the property (3) is the dimension
of the truncated cone.

If, furthermore, we can define a multiplication on X (satisfying the usual prop-
erties on itself and with respect to addition) and M is closed under products, then
we say that M is an algebraic truncated cone. In that case,

1. the linear dimension of the truncated cone will be the maximal posible cardi-
nality so that there exists a subset of such cardinality and consisting on linearly
independent elements.

2. The algebraic dimension will be the maximal posible cardinality so that there
exists a subset of such cardinality and consisting on algebraic independent el-
ements (that is, so that the only polynomial vanishing on them is the null
polynomial).

Trivially we obtain that the algebraic dimension is not greater than the linear di-
mension.

In this chapter there are two main aims: the first one is to complete a description
of the set of general mc−functions in a similar way as how the set of mc1−functions
was described in 4 (where, before succeeding in giving a complete characterization
of the set, the authors proved that mc1−functions were continuous and either mono-
tone or not increasing-not decreasing). The results in Section 6.2 will lead to the
conclusions that a general mc−function is of one of the mentioned two behaviors
(monotone or not increasing-not decreasing), which in particular implies that the
set MC is of cardinality c and that a mc−function is continuous but a set at most
countable.

The second aim is to provide examples of mc−functions which are discontinuous
over an infininte set of points. The main result in Section 6.3 is held by some
propositions and lemmas encompassed in Number Theory.

The following two classical results will be of great importance for those two goals.
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Theorem 6.7. [54, Darboux-Froda’s Theorem] The set of points of discontinuity
of a monotone function is at most countable.

Theorem 6.8. [78] The cardinality of the set of monotone functions is c.

Section 6.4 follows the line of action shown in 5 and focuses on the existence of
certain algebraic structures whose non-zero elements fulfill some properties.

6.2 Study of the injectiveness of a mc-function

Theorem 6.9. Let f be a mc−function. Then, there is no 0 < ✓1 < ✓2 so that
f(✓1) = f(✓2) = c < 1. In other words, if f is a multiplicative convex function and
A = f−1(0,1), then f�A is injective.

Proof. Assume first that we can find such points and that 1 < ✓1, ✓2. We claim that
we must have ✓2 < ✓41. Indeed, if ✓2 ≥ ✓41, then

1 = log✓2(✓2) ≥ 4 log✓2(✓1) so
0 ≤ 1 − 4 log✓2(✓1)

and therefore we can define

µ =
1 +
�
1 − 4 log✓2(✓1)

2
> 0,

which is a solution to ✓1�µ1 ✓
µ
2 = ✓2. This allows us to conlcude

f(✓2) = f(✓
1�µ
1 ✓

µ
2 ) ≤ f(✓1)

1�µ
f(✓2)

µ
= f(✓2)

µ+1�µ
,

finding a contradiction to the condition f(✓2) < 1 and proving our claim.

Define next
g(x) = f�

✓41

✓2
x�.

Then,

g�
✓1✓2

✓41

� = g�
✓22

✓41

�,

so by our previous claim,

✓22

✓41

< �
✓1✓2

✓41

�

4

=
✓41✓

4
2

✓161

from which

✓
8
1 < ✓

2
2,
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reaching a contradiction.

If 0 < ✓1 < 1 < ✓2, then log✓2(✓1) < 0 and therefore such number

µ =
1 +
�
1 − 4 log✓2(✓1)

2

is always well-defined and positive, so we can again reach the contradiction f(✓2) ≤

f(✓2)
µ+1�µ.

Any other situation may be reduced to one of the previous two via the auxiliary
function h(x) = f(1�x).

Theorem 6.10. There is no mc-function, f , so that we can find 1 < ✓1 < ✓2 such
that max{f(1), f(✓2)} < f(✓1).

Proof. If we choose
µ = log✓2(✓1) < 1

then it must be
f(✓1) ≤ f(✓2)

µ
f(1)1�µ.

Let us choose 0 < a, b < 1, a′, b′ > 1, and ↵ > 1 so that

logb(b
′
) = loga(a

′
),

↵b
′ loga′(✓1)f(✓1) > f(1),

b
′ loga′� ✓1✓2 �f(✓1) > f(✓2),

↵
2−(2µ+1�µ)

>
f(✓2)

µf(1)1�µ
f(✓1)

.

(6.2)

Then, if we define the function

g(x) =

�
��
�
��
�

↵bloga(x) if 0 < x ≤ 1,
↵2b′ log a′(x) if x > 1

we can apply Theorems 6.1 and 6.2 to conclude that g is a (discontinuous) mc−function.
Hence, h(x) = f(x)g(x) would also be a mc−function. Now, we can deduce the fol-
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lowing chain of equivalent inequalities:

↵
2−�2 log✓2(✓1)+1� log✓2(✓1)� > f(✓2)

log✓2(✓1)f(1)1� log✓2(✓1)
f(✓1)

,

↵
2
f(✓1) > �↵

2
f(✓2)�

log✓2(✓1) [↵f(1)]1� log✓2(✓1) ,
↵
2
b
loga(✓1)f(✓1) > �↵2

f(✓2)�
log✓2(✓1) bloga(✓1) [↵f(1)]1� log✓2(✓1) ,

↵
2
b
loga(a′) loga′(✓1)f(✓1) > �↵2

f(✓2)�
log✓2(✓1) bloga(a′) loga′(✓2) log✓2(✓1)

⋅ [↵f(1)]1� log✓2(✓1) ,
↵
2
b
logb(b′) loga′(✓1)f(✓1) > �↵2

b
logb(b′) loga′(✓2)f(✓2)�log✓2(✓1)

⋅ [↵f(1)]1� log✓2(✓1) ,
↵
2
b
′ loga′(✓1)f(✓1) > �↵2

b
′ loga′(✓2)f(✓2)�log✓2(✓1) [↵f(1)]1� log✓2(✓1) ,

h(✓1) > h(✓2)
µ
h(1)1�µ.

On the other hand, applying the requisites over a, a′, b, b′ and ↵ from equation (6.2),

h(✓1) = ↵
2
b
′ loga′(✓1)f(✓1) >max{↵2

b
′ loga′(✓2)f(✓2),↵f(1)}

=max{f(✓2), f(1)},

reaching a contradiction.

Corollary 6.11. Let f be an mc−function and ✓1 < ✓2 < ✓3. Then, it can not be
max{f(✓1), f(✓3)} < f(✓2).

Proof. Assume otherwise. If ✓1 = 1, then this corollary is just Theorem 6.10. For
1 < ✓1, consider g1(x) = f(✓1x). For ✓3 > 1, consider g2(x) = f�

✓3
x �.

For ✓3 < 1, consider first g̃3(x) = f� 1x� and then g3(x) = g̃3�
1
✓3
x�.

In any case, gi would be a mc−function which contradicts Theorem 6.10

Corollary 6.12. Let f be a mc−convex function which is not locally constant (that
is, for every real number x and interval I with x in I we can find x1 ≠ x2 also in I

so that f(x1) ≠ f(x2)).

Then, f is at most 2-injective (meaning that for every real number y #f−1(y) ≤
2).
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Proof. Let y be a real number and x1, x2, x3 be so that f(x1) = f(x2) = f(x3).
Because f is not locally constant, we can find x1 < x(1) < x2 < x(2) < x3 so that
f(x(1)) ≠ f(x2) ≠ f(x

(2)) and this is a contradiction with Theorem 6.10.

The following Corollary generalizes Theorem 4.2 from 4:

Corollary 6.13. Let f be a mc−function (continuous or not). Then, f is either
monotone or not increasing-not decreasing.

Proof. This Corollary is easily proved if we consider the situation where f is not
monotone and we apply Theorem 6.10 repeatedly.

In conclusion, Theorem 6.10 and its corresponding corollaries, in combination
with Theorem 6.8, lead to the following Theorem, which answers several questions
posted in chapter 5:

Theorem 6.14. The set MC has cardinality c.

In particular, this implies that the algebraic structures considered in chapter 5
are of the greatest possible dimension.

6.3 On the set of points of discontinuity of a

mc−function

It is obvious that, if A = {x1, x2, . . . , xn} is any finite set and, for 1 ≤ k ≤ n, fxk
is a

mc−function that is discontinuous at xk, then g(x) = fx1(x) + fx2(x) + . . . + fxn(x)

is discontinuous over the set A. The question we will focus on now is whether it
is posible to find a mc−function which is discontinuous over an infinite set. We
remark that, taking Theorem 6.3 and Corollary 6.13 into account, the set A must
be countable.

The main result of this section is as follows:

Theorem 6.15. Let X = {xn}
∞
n=1 ⊆ (0,1) be a decreasing sequence. Then, there

exists a mc−function which is discontinuous on X .

Before giving the proof, we will need some preliminary lemmas and definitions.
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Lemma 6.16. Let {f↵}↵∈� ⊆MC and assume that, for x > 0,

{f↵(x) ∶ ↵ ∈ �}

is a bounded set.

Then,
g(x) = sup

↵∈�{f↵(x)}

is a mc−function.

Proof. We shall use the following fact, if {yn}∞n=1 and {zn}∞n=1 are bounded sequences,
then

lim
n→∞ sup

k≥n ykzk ≤ � lim
n→∞ sup

k≥n yk�� lim
n→∞ sup

k≥n zk�.

Let now y, z, µ > 0. Then, we can find a sequence {↵n}
∞
n=1 ⊆ � so that g(yµz1�µ) =

limn→∞ f↵n(y
µz1�µ). Now,

g(y
µ
z
1�µ
) = lim

n→∞f↵n(y
µ
z
1�µ
)

≤ lim
n→∞ sup

k≥n f↵k
(y

µ
z
1�µ
)

≤ lim
n→∞ sup

k≥n �f↵k
(y)

µ
f↵k
(z)

1�µ
�

≤ � lim
n→∞ sup

k≥n f↵k
(y)

µ
�� lim

n→∞ sup
k≥n f↵k

(z)
1�µ
�

≤ g(y)
µ
g(z)

1�µ
.

Definition 6.17. We will define the following elements, for n ≥ 1:

an = �
xn

xn+1�
xn+1

,

↵n =�
k≥n

ak,

�n =�
k≥n

a
2
k.

Lemma 6.18. For every n ≥ 1, ↵n and �n are well-defined.

Proof. We will just show that �1 is well-defined.
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Indeed, the product that defines �1 converges if and only if ∑∞k=1 log(a2k) con-
verges. Now,

∞
�

k=1
log(a2k) = 2

∞
�

k=1
log ��

xk

xk+1�
xk+1
� = 2

∞
�

k=1
xk+1 log � xk

xk+1�

= 2
∞
�

k=1
xk+1 log �1 + xk − xk+1

xk+1 � ≤ 2
∞
�

k=1
xk+1xk − xk+1

xk+1
= 2

∞
�

k=1
(xk − xk+1) ≤ 4x1.

Lemma 6.19 (Steiner’s problem, [89]). The maximum of the function f(x) = x1�x
is attained at x = e. In fact, the function f is increasing on (0, e) and decreasing on
(e,∞)

Lemma 6.20. Let n ≥ 3 and 1 ≤m ≤ n − 2. Then,

�
xn

xm
�

xm n−1
�

k=m
ak < �

xn

xm+1�
xm+1 n−1

�

k=m+1
ak

Proof. Just notice that

�
xn

xm
�

xm n−1
�

k=m
ak = �

xn

xm
�

xm

am

n−1
�

k=m+1
ak

= �
xn

xm
�

xm

�
xm

xm+1�
xm+1 n−1

�

k=m+1
ak

= �
xn

xm
�

xm

�
xm

xm+1�
xm+1
�
xm+1
xn
�

xm+1
�

xn

xm+1�
xm+1 n−1

�

k=m+1
ak

= �
xn

xm
�

xm−xm+1
�

xn

xm+1�
xm+1 n−1

�

k=m+1
ak

< �
xn

xm+1�
xm+1 n−1

�

k=m+1
ak,

based on the fact that {xk}
∞
k=1 is a decreasing sequence.

Lemma 6.21. For every n ≥ 1 and m ≥ n + 2,

�
xn

xn+1�
xn+1
�
xn+1
xn+2�

xn+2
⋅ . . . ⋅ �

xm−1
xm
�

xm

> �
xn

xm
�

xm
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Proof. We will proceed via induction on m. If m = n + 2, then

�
xn

xn+1�
xn+1
�
xn+1
xn+2�

xn+2
= �

xn

xn+1�
xn+1−xn+2

�
xn

xn+1�
xn+2
�
xn+1
xn+2�

xn+2

= �
xn

xn+1�
xn+1−xn+2

�
xn

xn+2�
xn+2

> �
xn

xn+2�
xn+2

.

Assuming the result is true for m, then

�
xn

xn+1�
xn+1
�
xn+1
xn+2�

xn+2
⋅ . . . ⋅ �

xm−1
xm
�

xm

�
xm

xm+1�
xm+1

> �
xn

xm
�

xm

�
xm

xm+1�
xm+1

= �
xn

xm
�

xm−xm+1
�
xn

xm
�

xm+1
�
xm

xm+1�
xm+1

> �
xn

xm+1�
xm+1

,

as desired.

Corollary 6.22. For every n ≥ 1 and m ≥ n + 2,

↵m�
xn

xm
�

xm

< ↵n+1� xn

xn+1�
xn+1

and

�m�
xn

xm
�

xm

< �n+1� xn

xn+1�
xn+1

Theorem 6.23. Let yn → y0 and {fk}∞k=1 ⊆ RR. Then,

sup
k∈N lim

n→∞� supm≥n fk(ym)� ≤ lim
n→∞ sup

m≥n � supk∈N fk(ym)�.

Proof. Let l, n ∈ N. We notice that

fl(yn) ≤ sup
k∈N fk(yn).

Therefore,
sup
m≥n fl(ym) ≤ supm≥n � supk∈N fk(ym)�

and hence
lim
n→∞� supm≥n fl(ym)� ≤ lim

n→∞ sup
m≥n � supk∈N fk(ym)�

for every l ∈ N. Finally,

sup
k∈N lim

n→∞� supm≥n fk(ym)� ≤ lim
n→∞ sup

m≥n � supk∈N fk(ym)�.
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Corollary 6.24. Let {fk}∞k=1 be a sequence of functions so that, for every x ∈ R,
{fk(x) ∶ k ≥ 1} is a bounded set and limx→x0 fk(x) exists for every k ≥ 1. Define the
function g(x) = supk≥1 fk(x). Then, if limx→x0 g(x) also exists,

sup
k≥1 lim

x→x0
fk(x) ≤ lim

x→x0
g(x) = lim

x→x0
sup
k≥1 fk(x). (6.3)

Remark 6.25. The inequality in (6.3) cannot be turned into an equality: as a
counterexample, we choose the functions

fk(x) = 1 − �
1

1 + x
�

k

, x > −1, k ≥ 0.

Then, limx→0 fk(x) = 0 for every k ≥ 1, so that supk≥1 limx→0 fk(x). On the other
hand, supk≥1 fk(x) = 1 for every k ≥ 1, x > −1, so that limx→0 supk≥1 fk(x) = 1.

proof of Theorem 6.15. Define, given m ∈ N, the following function:

fm(t) =

�
���
�
���
�

↵m�
t

xm
�

xm

if 0 < t ≤ xm,

�m�
t

xm
�

xm

if t > xm.

The function fm is multiplicative convex and it is discontinuous at t = xm, since it
has been defined following the contruction from Proposition 6.3.

We will show that the function g(t) = sup{fn(t) ∶ n ∈ N} is discontinuous on the
set X . First of all, for t > 0 the set {fn(t) ∶ n ∈ N} is bounded, since

↵n,�n ≤ �1 ≤ e
4x1 ,

t
xn ≤

�
��
�
��
�

1 if 0 < t ≤ 1,
t if t > 1,

for every n ≥ 1 and

x
−xn
n ≤ e

1�e because of Lemma 6.19.

Let n,m ∈ N. Then,

fm�xn� =

�
���
�
���
�

↵m�
xn
xm
�

xm

if 1 ≤m ≤ n,

�m�
xn
xm
�

xm

if m ≥ n + 1.
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Notice that, if m < n

↵m�
xn

xm
�

xm

= �
xn

xm
�

xm

�

k≥m
ak

= �
xn

xm
�

xm

�
xm

xm+1�
xm+1
�
xm+1
xm+2�

xm+2
⋅ . . .

. . . ⋅ �
xn−1
xn
�

xn

�

k≥n
�
xk

xk+1�
xk+1

= �
xn

xm
�

xm

�
xm

xm+1�
xm+1
�
xm+1
xm+2�

xm+2
⋅ . . . ⋅ �

xn−1
xn
�

xn

↵n

< �
xn

xn−1�
xn−1
�
xn−1
xn
�

xn

↵n

< ↵n,

via Lemma 6.20.

If m ≥ n + 2, and using Corollary 6.22, we can prove that

�n = �
xn

xn+1�
2xn+1

�n+1
> �

xn

xn+1�
xn+1

�n+1
> �

xn

xm
�

xm

�m.

In conclusion, we can say that g(xn) < �n.

On the other hand,

lim
x→x+n

fm(x) =

�
���
�
���
�

↵m�
xn
xm
�

xm

if 1 ≤m ≤ n − 1,

�m�
xn
xm
�

xm

if m ≥ n.

With a similar argument as before, sup� lim
x→x+n

fm(x) ∶ m ≥ 1� = �n.

Hence, by Corollary 6.24

lim
x→x+n

g(x) = lim
x→x+n

sup{fm(x) ∶ m ≥ 1}

≥ sup� lim
x→x+n

fm(x) ∶ m ≥ 1�

= �n > g(xn).

As a consequence, g is not continuous at xn.
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The following result complements Theorem 6.15 and shows that D(g) = X :

Proposition 6.26. The function g considered in the proof of Theorem 6.15 is con-
tinuous on (0,∞) �X .

Proof. Let fm be the functions defined in the proof of Theorem 6.15, m0 ≥ 1 and
xm0 < x < xm0−1. Then,

fm(x) =

�
��
�
��
�

↵m �
x
xm
�
xm if m ≤m0 − 1,

�m �
x
xm
�
xm if m ≥m0.

If m ≤m0 − 1, then x < xm so that

x
xm+1−xm
m ≤ x

xm+1−xm , from which

�
xm

xm+1�
xm+1
�
x

xm
�

xm

≤ �
x

xm+1�
xm+1

and therefore

↵m �
x

xm
�

xm

≤ ↵m+1 � x

xm+1�
xm+1

,

leading us to conclude that

sup{fm(x) ∶ 1 ≤m ≤m0 − 1} = ↵m0−1 � x

xm0−1
�

xm0−1
.

If now m ≥ m0, then xm < x, which implies that xxm+1−xm < x
xm+1−xm
m . On the other

hand, from xm+1 < xm we can deduce that

x
xm+1−xm
m <

x
2xm+1−xm
m

x
xm+1
m+1

,

which allows us to deduce that

x
xm+1−xm <

x
2xm+1−xm
m

x
xm+1
m+1

.

This last inequality is equivalent to

�
x

xm+1�
xm+1
< �

xm

xm+1�
2xm+1

�
x

xm
�

xm

,

that is,
�m+1 � x

xm+1�
xm+1
< �m �

x

xm
�

xm

.

As a consequence,

sup{fm(x) ∶ m ≥m0} = �m0 �
x

xm0

�

xm0
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and therefore

g(x) = sup{fm(x) ∶ m ≥ 1}

=max�↵m0−1 � x

xm0−1
�

xm0−1
,�m0 �

x

xm0

�

xm0

�.

Hence, on (xm.xm−1), g can be expressed as the maximum of two continuous func-
tions and, in conclussion, it is continuous over the interval.

If next 0 < x < x0 = limn→∞ xn (which in particular implies that x0 ≠ 0), then
fm(x) = ↵m �

x
xm
�
xm and, same way as before, we would have

↵m �
x

xm
�

xm

≤ ↵m+1 � x

xm+1�
xm+1

.

Therefore,
g(x) = lim

m→∞↵m �
x

xm
�

xm

= �
x

x0
�

x0

,

which again is a continuous function.

For the case x = x0 we notice that g(x0) = 1. Assume {yn}∞n=1 is such that yn → x0

as n→∞. If yn < x0 then g(yn) = �
yn
x0
�
x0 . On the other hand, if yn > x0 then we can

find {mn}
∞
n=1 ⊆ N so that xmn ≤ yn < xmn−1. As before,

g(yn) =max�↵mn−1 � yn

xmn−1
�

xmn−1
,�mn �

yn

xmn

�

xmn

�.

Since

lim
n→∞�

yn

x0
�

xm0

= lim
n→∞↵mn−1 � yn

xmn−1
�

xmn−1
= lim

n→∞�mn �
yn

xmn

�

xmn

= 1

we are able to conclude that limn→∞ g(yn) = g(x0).

Finally, for the case x > x1 we would obtain that fm(x) = �m �
x
xm
�
xm and hence

(again, similarly as before)

g(x) = �1 �
x

x1
�

x1

,

so g is continuous on x.

Remark 6.27. If X ⊆ (0,1) is an increasing sequence, then there exists a mc−function
so that D(f) = X .

Indeed, we only need to change the definition of the elements an in Definition
6.17 as follows:

an = �
xn+1
xn
�

xn

.
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Corollary 6.28. If X is a monotone sequence, then we can find a mc−function
which is discontinuous on X .

Proof. Let X1 = X ∩ (0,1) and X2 = X ∩ [1,∞). We can find two functions f1 and
f2 so that f1 is discontinuous only on X1 and f2 is discontinuous only on the set
�
1
x ∶ x ∈ X2�.

The required function is then f(x) = f1(x) + f2(
1
x).

6.4 Algebraic structure on MC �C(0,∞)

Theorem 6.29. There exists an algebraic truncated cone of algebraic dimension c
every non-trivial algebraic combination of which is a mc−function which is discon-
tinuous over an infinite set.

Proof. Let us consider a Q−linearly independent set of cardinality c, {a⇣ ∶ ⇣ < c} ⊆
(4,6). Then, for every ⇣ < c we consider a decreasing sequence, X↵ = {xk,⇣}

∞
k=1

converging to 1
a⇣

and so that x1,⇣ =
1
4 .

Using Theorem 6.15 for every ⇣ < c there exists a mc−function f̃⇣ which is
discontinuous on X⇣ .

In particular, taking a look to the proof of Theorem 6.15, the function f̃⇣ is
defined as f̃⇣(x) = sup{fk,⇣(x) ∶ k ∈ N}, where

fk,⇣(x) =

�
���
�
���
�

↵k,⇣�
x

xk,⇣
�

xk,⇣

if 0 < x ≤ xk,⇣ ,

�k,⇣�
x

xk,⇣
�

xk,⇣

if x > xk,⇣

,

↵k,⇣ =�
l≥n
�

xl,⇣

xl+1,⇣ � ,

�k,⇣ =�
l≥n
�

xl,⇣

xl+1,⇣ �
2

.

In particular, if x > x1,⇣ then

f̃⇣(x) = sup��k,⇣�
x

xk,⇣
�

xk,⇣

∶ k ∈ N� .
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Because of Lemma 6.19 and since � 1
xk,⇣
�
∞
k=1 is an increasing sequence with 1

x1,⇣
= 4 > e,

we obtain that if x > x1,⇣ =
1
4 then f̃⇣(x) = �1,⇣(4x)1�4.

Define, for ⇣ < c, the auxiliary function

g⇣(x) =
4

41�4�1,⇣ x
a⇣−1�4

From the proof of Lemma 6.18, �1,⇣ < e4x1,⇣ = e and therefore

1 <
4

41�4�1,⇣ ,

so g⇣ is a (continuous) mc−function.

Define then the function

f⇣(x) = f̃⇣(x)g⇣(x).

Then f⇣ is a mc−function (for being the product of two mc−functions) which is
discontinuous on the set X⇣ .

Furthermore, if 1
4 < x,

f⇣(x) = f̃⇣(x)g⇣(x) = �1,⇣(4x)
1�4 4

41�4�1,⇣ x
a⇣−1�4 = 4xa⇣ .

Let us show that B = {f⇣ ∶ ⇣ < c} is an algebraically independent set.

Indeed, let ⇣1, ⇣2, . . . , ⇣n < c, �1, . . . ,�m be non-zero numbers and N = {ni,j}
n,m
i,j=1

be a matrix consisting of natural numbers as entries and without two equal columns.

Assume that
f =

m

�
j=1
�j

n

�
i=1

f
ni,j

⇣i
= 0.

Then, we notice that for 1
4 < x it must be

0 = f(x) =
m

�
j=1
�j

n

�
i=1

f
ni,j

⇣i
(x)

=

m

�
j=1
�j

n

�
i=1
�4xa⇣i�

ni,j

=

m

�
j=1
�j�4∑n

i=1 ni,j�x∑n
i=1 a⇣ini,j .
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Since the elements a⇣1 , a⇣2 , . . . , a⇣n are Q−linearly independent and the columns of
N = {ni,j}

n,m
i,j=1 are different one from each other, we can conclude that the exponents

n

�
i=1

a⇣ini,j

are all different from each other.

Therefore, f�(1�4,∞) is an identically null extended polynomial (with positive ex-
ponents). Hence, all its coefficients must be zero and, in conclusion, if 1 ≤ j ≤m

�j4∑n
i=1 ni,j = 0, which implies that �j = 0

and in conclusion B is algebraically independent.

Let us choose to finish with an element f in the trunkated cone generated by B.
Then, we can find ⇣1, ⇣2, . . . , ⇣n < c, �1, . . . ,�m ≥ 1 and a matrix consisting of natural
numbers as entries and without two equal columns N = {ni,j}

n,m
i,j=1 so that

f =

m

�
j=1
�j

n

�
i=1

f
ni,j

⇣i
.

Without loss of generality we may assume that a⇣i < a⇣i+1 for every 1 ≤ i ≤ n − 1.
Then, f⇣i is continuous on (0, a⇣2) for every i ≥ 2.

For any function h ∶ R→ R we denote ha− = limx→a− h(x) and ha+ = limx→a+ h(x).
We can then write

f =f
n1,1

⇣1
g1 + . . . + f

nj,1

⇣1
gj + . . . + f

nm,1

⇣1
gm

where gj is a mc−function continuous on (0, a⇣2).

For every � ∈ X⇣i ∩ (0, a⇣2), we have that

f
�+
= (f

�+
⇣1
)
n1,1g1(�) + . . . + (f

�+
⇣1
)
nj,1gj(�) + . . . + (f

�+
⇣1
)
nm,1g1(�)

and
f
�−
= (f

�−
⇣1
)
n1,1g1(�) + . . . + (f

�−
⇣1
)
nj,1gj(�) + . . . + (f

�−
⇣1
)
nm,1gm(�).

Since the function f⇣1 is not continuous on � we may assume without loss of gener-
ality that f

�−
⇣1
< f

�+
⇣1

(the procedure would be analogous for the case f
�−
⇣1
> f

�+
⇣1

) and
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observe that if f�−

⇣1
< f

�+
⇣1

then (f�−
⇣1
)q < (f

�+
⇣1
)q for every q ∈ N � {0}. We can now

write

f
�+
− f

�−
=(f

�+
⇣1
)
n1,1g1(�) + . . . + (f

�+
⇣1
)
nm,1gm(�)

− �(f
�−
⇣1
)
n1,1g1(�) + . . . + (f

�−
⇣1
)
nm,1gm(�)�

=g1(�) �(f
�+
⇣1
)
n1,1 − (f

�−
⇣1
)
n1,1� + . . . + gj(�) �(f

�+
⇣1
)
nj,1 − (f

�−
⇣1
)
nj,1�

+ . . . + gm(�) �(f
�+
⇣1
)
nm,1 − (f

�−
⇣1
)
nm,1�

>0,

so that f is discontinuous on X⇣1 ∩ (0, a⇣2) and the proof is done.



Bibliography

[1] L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, London, 1979.

[2] A. Aizpuru, C. Pérez-Eslava, F. J. García-Pacheco, and J. B. Seoane-Sepúlveda, Lineability
and coneability of discontinuous functions on R, Publ. Math. Debrecen 72 (2008), no. 1-2,
129–139.

[3] A. Aizpuru, C. Pérez-Eslava, and J. B. Seoane-Sepúlveda, Linear structure of sets of di-
vergent sequences and series, Linear Algebra Appl. 418 (2006), no. 2-3, 595–598, DOI
10.1016/j.laa.2006.02.041.

[4] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis: A hitchhiker’s guide, 3rd
edition, Springer, Berlin, 2006.

[5] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Generalized convexity and inequal-
ities, J. Math. Anal. Appl. 335 (2007), no. 2, 1294–1308, DOI 10.1016/j.jmaa.2007.02.016.

[6] G. Araújo, L. Bernal-González, G. A. Muñoz-Fernández, J. A. Prado-Bassas, and J. B. Seoane-
Sepúlveda, Lineability in sequence and function spaces, Studia Math. 237 (2017), 119–136.

[7] R. M. Aron, L. Bernal González, D. M. Pellegrino, and J. B. Seoane Sepúlveda, Lineability: the
search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC
Press, Boca Raton, FL, 2016.

[8] R. M. Aron, F. J. García-Pacheco, D. Pérez-García, and J. B. Seoane-Sepúlveda, On
dense-lineability of sets of functions on R, Topology 48 (2009), no. 2-4, 149–156, DOI
10.1016/j.top.2009.11.013.

[9] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Lineability and spaceability of sets
of functions on R, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803, DOI 10.1090/S0002-
9939-04-07533-1.

[10] R. M. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda, Algebrability of the set of non-
convergent Fourier series, Studia Math. 175 (2006), no. 1, 83–90, DOI 10.4064/sm175-1-5.

[11] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective
functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31.

[12] M. Balcerzak, A. Bartoszewicz, and M. Filipczak, Nonseparable spaceability and strong al-
gebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), no. 2,
263–269.

101



102 Bibliography

[13] Baldwin, S. (1990/91). Martin’s axiom implies a stronger version of Blumberg’s theorem. Real
Anal. Exchange. 16(1): 67–73. www.jstor.org/stable/44153681

[14] A. Bartoszewicz, M. Bienias, M. Filipczak, and S. Gła̧b, Strong c-algebrability of strong
Sierpiński-Zygmund, smooth nowhere analytic and other sets of functions, J. Math. Anal.
Appl. 412 (2014), no. 2, 620–630, DOI 10.1016/j.jmaa.2013.10.075.

[15] A. Bartoszewicz and S. Gła̧b, Strong algebrability of sets of sequences and functions, Proc.
Amer. Math. Soc. 141 (2013), no. 3, 827–835, DOI 10.1090/S0002-9939-2012-11377-2.

[16] A. Bartoszewicz, S. Gła̧b, and T. Poreda, On algebrability of nonabsolutely convergent series,
Linear Algebra Appl. 435 (2011), no. 5, 1025–1028, DOI 10.1016/j.laa.2011.02.008.

[17] F. Bastin, J. A. Conejero, C. Esser, and J. B. Seoane-Sepúlveda, Algebrability and nowhere
Gevrey differentiability, Israel J. Math. 205 (2015), no. 1, 127–143, DOI 10.1007/s11856-014-
1104-1.

[18] H. Bauer, Probability theory, De Gruyter Studies in Mathematics, vol. 23, Walter de Gruyter
& Co., Berlin, 1996. Translated from the fourth (1991) German edition by Robert B. Burckel
and revised by the author.

[19] E. F. Bechenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439–460, DOI
10.1090/S0002-9904-1948-08994-7.

[20] L. Bernal-González, H. J. Cabana-Méndez, G. A. Muñoz-Fernández, and J. B. Seoane-
Sepúlveda, On the dimension of subspaces of continuous functions attaining their maxi-
mum finitely many times, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3063–3083, DOI
10.1090/tran/8054.

[21] L. Bernal-González, J. A. Conejero, M. Murillo-Arcila, and J. B. Seoane-Sepúlveda, Highly
tempering infinite matrices, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM
112 (2018), no. 2, 341–345, DOI 10.1007/s13398-017-0385-8.

[22] L. Bernal-González, J. A. Conejero, M. Murillo-Arcila, and J. B. Seoane-Sepúlveda, [S]-linear
and convex structures in function families, Linear Algebra Appl. 579 (2019), 463–483, DOI
10.1016/j.laa.2019.07.003.

[23] L. Bernal-González, P. Jiménez-Rodríguez, G. A. Muñoz-Fernández, and J. B. Seoane-
Sepúlveda, On inequalities for convex functions, J. Convex Anal. 26 (2019), no. 2.

[24] L. Bernal-González, J. Fernández-Sánchez, M. E. Martínez-Gómez, and J. B. Seoane-
Sepúlveda, Banach spaces and Banach lattices of singular functions, Studia Mathematica,
accepted for publication.

[25] L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear
sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71–130, DOI
10.1090/S0273-0979-2013-01421-6.

[26] P. Billingsley, Convergence of probability measures, Second, Wiley Series in Probability and
Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. A Wiley-
Interscience Publication.

[27] Blumberg, H. (1922). New properties of all real functions. Trans. Amer. Math. Soc. 24(2):
113–128. doi.org/10.2307/1989037

[28] G. Botelho and J. L. P. Luiz, A note on latticeability in vector-valued sequence spaces, available
at arXiv:3115436 [math.FA], Preprint (2020).

[29] Bradford, J. C., Goffman, C. (1960). Metric spaces in which Blumberg’s theorem holds. Proc.
Amer. Math. Soc. 11(4): 667–670. doi.org/10.2307/2034731

https://www.jstor.org/stable/44153681
http://doi.org/10.2307/1989037
http://doi.org/10.2307/2034731


Bibliography 103

[30] Brown, J. B. (1977). A measure theoretic variant of Blumberg’s theorem. Proc. Amer. Math.
Soc. 66(2): 266–268. doi.org/10.2307/2040943

[31] M. C. Calderón-Moreno, P. J. Gerlach-Mena, and J. A. Prado-Bassas, Algebraic structure of
continuous, unbounded and integrable functions, J. Math. Anal. Appl. 470 (2019), 348–359.

[32] , Lineability and modes of convergence, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A
Mat. RACSAM 114 (2020), paper no. 18.

[33] D. Cariello and J. B. Seoane-Sepúlveda, Basic sequences and spaceability in `p spaces, J. Funct.
Anal. 266 (2014), no. 6, 3797–3814, DOI 10.1016/j.jfa.2013.12.011.

[34] Ciesielski, K. C. (1997). Set-theoretic real analysis. J. Appl. Anal. 3(2): 143–190.
doi.org/10.1515/JAA.1997.143

[35] K. C. Ciesielski, M. E. Martínez-Gómez, and J. B. Seoane-Sepúlveda, “Big” continuous restric-
tions of arbitrary functionss, American Mathematical Monthly 126 (2019), no. 6, 547–552.

[36] K. C. Ciesielski and J. B. Seoane-Sepúlveda, A century of Sierpiński-Zygmund functions, Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 3863–3901, DOI
10.1007/s13398-019-00726-0.

[37] K. C. Ciesielski and J. B. Seoane-Sepúlveda, Differentiability versus continuity: restriction
and extension theorems and monstrous examples, Bull. Amer. Math. Soc. (N.S.) 56 (2019),
no. 2, 211–260, DOI 10.1090/bull/1635.

[38] J. A. Conejero, G. A. Muñoz-Fernández, M. Murillo Arcila, and J. B. Seoane-Sepúlveda,
Smooth functions with uncountably many zeros, Bull. Belg. Math. Soc. Simon Stevin 22 (2015),
no. 1, 71–75.

[39] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, Singular functions with applications to
fractal dimensions and generalized Takagi functions, Acta Appl. Math. 119 (2012), 129–148.

[40] E. de Amo, M. Díaz Carrillo, and J. Fernández Sánchez, Harmonic analysis on the Sier-
piński gasket and singular functions, Acta Math. Hungar. 143 (2014), no. 1, 58–74, DOI
10.1007/s10474-013-0373-1.

[41] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, A family of singular functions and
its relation to harmonic fractal analysis and fuzzy logic, Open Math. 14 (2016), no. 1, DOI
10.1515/math-2016-0094.

[42] , Pisot numbers and strong negations, Chaos Solitons Fractals 104 (2017), 61–67, DOI
10.1016/j.chaos.2017.08.002.

[43] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92,
Springer-Verlag, New York, 1984.

[44] O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, The Cantor function, Expo. Math.
24 (2006), no. 1, 1–37, DOI 10.1016/j.exmath.2005.05.002.

[45] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Some results and open questions on
spaceability in function spaces, Trans. Amer. Math. Soc. 366 (2014), no. 2, 611–625, DOI
10.1090/S0002-9947-2013-05747-9.

[46] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory: The
Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer New York,
2010.

[47] M. Fenoy-Muñoz, J. L. Gámez-Merino, G. A. Muñoz-Fernández, and E. Sáez-Maestro, A
hierarchy in the family of real surjective functions, Open Math 15 (2017), no. 1, 486-501, DOI
10.1515/MATH-2017-0042.

http://doi.org/10.2307/2040943
http://doi.org/10.1515/JAA.1997.143


104 Bibliography

[48] J. Fernández-Sánchez, M. E. Martínez-Gómez, G. A. Muñoz-Fernández, and J. B. Seoane-
Sepúlveda, Algebraic genericity and special properties within sequence spaces and series, The
Rocky Mountain Journal of Mathematics 96 (2020), accepted for publication.

[49] J. Fernández-Sánchez, G. A. Muñoz-Fernández, D. L. Rodríguez-Vidanes, and J. B. Seoane-
Sepúlveda, Obtaining algebrability in subsets of real functions, Publ. Math. Debrecen 96
(2020), no. 1-2, 231–244.

[50] J. Fernández Sánchez, P. Viader, J. Paradís, and M. Díaz Carrillo, A singular function with
a non-zero finite derivative, Nonlinear Anal. 75 (2012), no. 13, 5010–5014.

[51] , A singular function with a non-zero finite derivative on a dense set, Nonlinear Anal.
95 (2014), 703–713.

[52] , A singular function with a non-zero finite derivative on a dense set with Hausdorff
dimension one, J. Math. Anal. Appl. 434 (2016), no. 1, 713–728.

[53] J. Ferrer, D. García, M. Maestre, and J. B. Seoane-Sepúlveda, On the zero-set of 2-
homogeneous polynomials in Banach spaces, Linear Multilinear Algebra 67 (2019), no. 10,
1958–1970, DOI 10.1080/03081087.2018.1476448.

[54] A. Froda, Sur la distribution des propriétés de voisinage des fonctions de variables réelles,
Doctorat d’État, 1929 (fr).

[55] J. L. Gámez-Merino, G. A. Muñoz-Fernández, V. M. Sánchez, and J. B. Seoane-Sepúlveda,
Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138
(2010), no. 11, 3863–3876.

[56] J. L. Gámez-Merino, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, Lineability and
additivity in RR, J. Math. Anal. Appl. 369 (2010), no. 1, 265–272.

[57] J. L. Gámez-Merino, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, A characterization
of continuity revisited, Amer. Math. Monthly 118 (2011), no. 2, 167–170.

[58] J. L. Gámez-Merino and J. B. Seoane-Sepúlveda, An undecidable case of lineability in RR, J.
Math. Anal. Appl. 401 (2013), no. 2, 959–962, DOI 10.1016/j.jmaa.2012.10.067.

[59] Goffman, C. (1954). On a theorem of Henry Blumberg. Michigan Math. J. 2(1): 21–22.

[60] F. Q. Gouvêa, p-adic numbers, 2nd ed., Universitext, Springer-Verlag, Berlin, 1997. An intro-
duction.

[61] V. I. Gurariy and W. Lusky, Geometry of Müntz spaces and related questions, Lecture Notes
in Mathematics, Springer-Verlag, Berlin, 2005.

[62] E. Hewitt and K. R. Stromberg, Real and abstract analysis, Springer, Berlin, 1965.

[63] G. J. O. Jameson, Counting zeros of generalized polynomials: Descartes’ rule of signs and
Laguerre extensions, Math. Gazette 518 (2006), 223–234.

[64] P. Jiménez-Rodríguez, M. E. Martínez-Gómez, G. A. Muñoz-Fernández, and J. B. Seoane-
Sepúlveda, Describing multiplicative convex functions, J. Convex Anal. 27 (2020), no. 3.

[65] , Generalizing multiplicative convex functions, Journal of Convex Analysis (2020).

[66] , Injectiveness and discontinuity of multiplicative convex functions, Mathematics 9
(2021), no. 1035.

[67] P. Jiménez-Rodríguez, G. A. Muñoz-Fernández, E. Sáez-Maestro, and J. B. Seoane-Sepúlveda,
Algebraic genericity and the differentiability of the convolution, Journal of Approximation
Theory 241 (2019), 86-106, DOI 10.1016/j.jat.2019.01.002.



Bibliography 105

[68] P. Jiménez-Rodríguez, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, On Weierstrass’
Monsters and lineability, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 4, 577–586.

[69] Jordan, F. (2001/2002). Generalizing the Blumberg theorem. Real Anal. Exchange. 27(2):
423–439.

[70] S. Katok, p-adic analysis in comparison with real, Amer. Math. Soc., Providence, RI, 2003.

[71] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156,
Springer-Verlag, New York, 1995.

[72] K. Keimel and W. Roth, Ordered cones and approximation, Lecture Notes in Mathematics,
vol. 1517, Springer-Verlag, Berlin, 1992. MR1176514

[73] Kharazishvili, A. B. (2006). Strange Functions in Real Analysis. Pure and Applied Mathe-
matics 156. Boca Raton, FL: Chapman & Hall/CRC.

[74] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John
Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics.

[75] López Pellicer, M. (1984). A note on the Blumberg property. Rev. Real Acad. Cienc. Exact.
Fís. Natur. Madrid. 78(1–2): 147–150.

[76] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.

[77] G. A. Muñoz-Fernández, N. Palmberg, D. Puglisi, and J. B. Seoane-Sepúlveda, Lineability in
subsets of measure and function spaces, Linear Algebra Appl. 428 (2008), no. 11-12, 2805–
2812.

[78] Y. Moschovakis, Notes on set theory, 2nd ed., Undergraduate Texts in Mathematics, Springer,
New York, 2006. MR2192215

[79] C. T. Ng, On midconvex functions with midconcave bounds, Proc. Amer. Math. Soc. 102
(1988), 538–540.

[80] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 2 (2000),
155–167.

[81] T. Oikhberg, A note on latticeability and algebrability, J. Math. Anal. Appl. 434 (2016), no. 1,
523–537.

[82] J. Paradís, P. Viader, and L. Bibiloni, Riesz-Nágy singular functions revisited, J. Math. Anal.
Appl. 329 (2007), no. 1, 592–602, DOI 10.1016/j.jmaa.2006.06.082.

[83] Recław, I. (1993). Restrictions to continuous functions and Boolean algebras. Proc. Amer.
Math. Soc. 118(3): 791–796. doi.org/10.2307/2160122

[84] Rosłanowski, A., Shelah, S. (2006). Measured creatures. Israel J. Math. 151(1): 61–110.
doi.org/10.1007/BF02777356

[85] J. B. Seoane, Chaos and lineability of pathological phenomena in analysis, ProQuest LLC,
Ann Arbor, MI, 2006. Thesis (Ph.D.)–Kent State University.

[86] Shelah, S. (1995). Possibly every real function is continuous on a non-meagre set. Publ. Inst.
Math. (Beograd) (N.S.) 57(71): 47–60.

[87] Y.-G. Shi and Y. Tang, On conjugacies between asymmetric Bernoulli shifts, J. Math. Anal.
Appl. 434 (2016), no. 1, 209–221, DOI 10.1016/j.jmaa.2015.09.019.

[88] Sierpiński, W., Zygmund, A. (1923). Sur une fonction qui est discontinue sur tout ensemble
de puissance du continu. Fund. Math. 4: 316–318. doi.org/10.4064/fm-4-1-316-318.

http://doi.org/10.2307/2160122
http://doi.org/10.1007/BF02777356
http://doi.org/10.4064/fm-4-1-316-318


106 Bibliography

[89] J. Steiner, Über das grö�te Product der Theile oder Summanden jeder Zahl, Journal für die
reine und angewandte Mathematik 40 (1850), 208–208.

[90] P. Viader, J. Paradís, and L. Bibiloni, A new light on Minkowski’s ?(x) function, J. Number
Theory 73 (1998), no. 2, 212–227, DOI 10.1006/jnth.1998.2294.

[91] J. von Neuman, Ein System algebraisch unabhängiger zahlen, Math. An. 99 (1928), 134–141.

[92] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79,
Springer-Verlag, New York-Berlin, 1982.

[93] A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 2002.


	Tesis María Elena Martínez Gómez
	Portada
	Contents
	Resumen
	Abstract
	Part I. Lineability
	Chapter 1. ``Big'' Continuous Restrictions of Arbitrary Functions
	Introduction
	The proofs.

	Chapter 2. Algebraic genericity and special properties within sequence spaces and series
	Introduction and preliminaries
	The main results

	Chapter 3. Banach spaces and Banach lattices of singular functions
	Introduction, notation and preliminaries
	Singular functions
	Lineability of S
	Singular functions and zeros
	Singular functions and monotonicity
	Singular functions and derivability

	Quasi-constant functions
	Spaceability and uniform convergence


	Part II. Convexity
	Chapter 4. Describing multiplicative convex functions
	Introducction
	Describing multiplicative convex functions

	Chapter 5. Generalizing multiplicative convex functions
	Introduction and new notation
	Some algebraic properties of the set MC
	Discontinuous mc-functions
	Other continuous mc-functions
	Open questions

	Chapter 6. Injectiveness and discontinuity of multiplicative convex functions
	Introduction
	Study of the injectiveness of a mc-function
	On the set of points of discontinuity of a mc-function
	Algebraic structure on MC C(0,)


	Bibliography




