
PARALELIZACIÓN Y DEPURACIÓN DE
APLICACIONES USANDO PROGRAMACIÓN

BASADA EN PATRONES

APPLICATION PARALLELIZATION AND
DEBUGGING USING PATTERN-BASED

PROGRAMMING

CRISTINA VÍLCHEZ MOYA

DOBLE GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS
FACULTAD DE INFORMÁTICA

UNIVERSIDAD COMPLUTENSE DE MADRID

Trabajo Fin de Grado

Junio 2020

Directores:

Katzalin Olcoz Herrero
Luis Maŕıa Costero Valero

Agradecimientos

A Katzalin, por su papel de profesora y tutora durante la carrera, por su confianza
en mı́, por su apoyo y compromiso con este trabajo.

A Luis, por su inmensa paciencia y dedicación.

A mis padres, por su amor incondicional.

A mis amigos, por cinco años inolvidables.

1

Resumen

La búsqueda de un rendimiento mejorado de nuestros sistemas informáticos es
un viaje interminable. Hasta principios de los 2000, los ordenadores uni-core dom-
inaban el marcado tecnológico; sin embargo, el problema del calor y las limitaciones
del paralelismo a nivel de instrucción (ILP) condenaron esta rama de las computa-
doras a la obsolescencia, a favor de los procesadores multicore. Ahora, el desaf́ıo
para los programadores es escribir programas que puedan aprovechar al máximo
los recursos de la CPU, gracias al paralelismo. Los programadores se enfrentan a
múltiples marcos de patrones paralelos y APIs (C++ Multihreads, OpenMP, Intel
TBB, etc.), cada uno de los cuales tiene su propio estándar de programación. La
falta de abstracciones de patrones paralelos de alto nivel y la dificultad de traducir
programas entre estos modelos de patrones paralelos tan especializados aumentan la
complejidad en el desarrollo de aplicaciones paralelas. GrPPI es una interfaz de alto
nivel genérica de patrones paralelos de C++ que se presenta como una solución a
este problema, ya que proporciona a los usuarios una API común para una colección
de estos marcos paralelos.

En este trabajo, estudiamos el rendimiento de GrPPI usándolo para adaptar
cuatro programas del conjunto de benchmark de referencia PARSEC y comparando
su tiempo de ejecución con la implementación paralela original. Comparamos su
rendimiento para tres back-end de ejecución (secuencial, paralelo nativo y OpenMP).

Veremos que los resultados de las pruebas testifican a favor de GrPPI, que tiene
un tiempo de ejecución tan bueno como las versiones paralelas originales y más
espećıficas de los programas, a la vez que necesita menos ĺıneas de código y ningún
conocimiento sobre los diferentes estándares de programación.

Palabras clave

API de alto nivel, patrones de paralelismo, programación paralela, programación
basada en patrones, grppi, paralelismo de alto nivel, PARSEC, benchmark

2

Abstract

The search for improved performance of our computer systems is a never-ending
journey. Up until the early 2000s, single-core processors dominated the technol-
ogy market; however, the problem of heat and the limitations of instruction-level
parallelism sentenced this branch of computers to obsolescence, in favour of multi-
core processors. Now, the challenge for programmers is to write programs that can
take full advantage of the CPU resources, thanks to parallelism. Programmers are
now presented with multiple parallel pattern frameworks and APIs (C++ threads,
OpenMP, Intel TBB, etc), each of which has its own programming standard. The
lack of high-level parallel pattern abstractions and the difficulty to port programs
between these very specialised parallel pattern models increase the complexity in
developing parallel applications. GrPPI is a generic high-level C++ parallel pat-
tern interface that presents itself as a solution to this problem, for it provides users
with a common API for a collection of these parallel frameworks.

In this work, we study the performance of GrPPI by using it to adapt four pro-
grams from the PARSEC benchmark suite and comparing its execution time to the
original parallel implementation. We compare its performance for three execution
back-ends (sequential, parallel native and OpenMP).

We will see that the results of the tests testify in favour of GrPPI, which has
an execution time as good as the original, more specific parallel versions of the
programs while needing fewer lines of code and no knowledge about the different
programming standards.

Keywords

high-level API, parallel pattern, parallel programming framework, pattern-based
programming, grppi, high-level parallelization, PARSEC, benchmark

3

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Previous work . 7
1.3 Objectives and Work plan . 8

2 Theoretical Background 9
2.1 Parallelization . 9
2.2 PARSEC . 10
2.3 GrPPI . 11

3 Test Environment 14
3.1 Arquitecture and compilation settings 14
3.2 Work methodology . 14

4 Swaptions 16
4.1 Description . 16
4.2 GrPPI Adaptation . 16
4.3 Results . 17
4.4 GrPPI Threads . 20

5 Blackscholes 26
5.1 Description . 26
5.2 GrPPI Adaptation . 26
5.3 Results . 27

6 Streamcluster 32
6.1 Description . 32
6.2 GrPPI Adaptation . 33
6.3 Results . 34

7 Ferret 38
7.1 Description . 38
7.2 GRPPI Adaptation . 39
7.3 Results . 39
7.4 Core-distribution analysis . 42

8 Conclusions 45
8.1 Tests Analysis . 45
8.2 Usability . 46

4

8.3 Future Work . 46

Bibliography 47

5

List of Figures

2.1 Parallelization Techniques. 13

4.1 Swaptions test graphs . 19
4.2 Block test . 21
4.3 num swaptions - num threads . 22
4.4 Improved GrPPI threads . 24

5.1 Blackscholes test 1 graphs . 29
5.2 Blackscholes test 2 graphs . 30

6.1 Streamcluster diagram . 33
6.2 Streamcluster Version 2 diagram . 34
6.3 Streamcluster test graphs . 36

7.1 Ferret diagram . 38
7.2 Ferret test graphs . 41
7.3 Ferret core-distribution . 42
7.4 Ferret core-distribution - k = 50 . 43

8.1 Lines of code per implementation . 46

6

1

Introduction

1.1 Motivation

Parallel computing has become essential in our current society in the search for faster
and more efficient programs. As the number of processors that can be built into one
computer increases, so does the challenge of taking fully advantage of the hardware
available to make the programs run faster. The trend for future processors is to fo-
cus on improving their performance through increasing their number of cores while
only providing modest serial performance improvements; consequently, applications
that require additional processing power will need to be parallel [6]. However, par-
allelization is, most of the time, not a trivial task; a number of problems arise when
writing parallel code, such as deadlocks, data races or starvation. Furthermore,
programmers are faced with different parallel pattern frameworks (FastFlow [3]) or
APIs (OpenMP [1], C++ Multithreading [4]), each of which presents a different
programming standard that the user must learn and comprehend. GrPPI presents
itself as a possible solution to these trials.

GrPPI [7] is a generic and reusable high-level C++ parallel pattern interface that
creates a layer between users and existing parallel programming frameworks to allow
programmers to benefit from the improved parallel performance without requiring
a deep understanding of the low-level processes. It allows programmers to take
advantage of the benefits of using parallel patterns, being able to choose among dif-
ferent parallel programming models such as OpenMP, C++ threads and Intel TBB
[9], without needing to worry about writing and correcting the synchronization code.

The questions that arise naturally, and that constitute the main motivation for
this paper, are:

1. Is the generic GrPPI interface as efficient as the specific code it aims to sub-
stitute?

2. Can we measure the effort-savings this library provides?

1.2 Previous work

A thorough description of GrPPI’s features and a study of its performance have
been done previously by del Rio Astorga et al. [7]. This study, however, uses a sin-

7

gle video stream-processing application as evaluation benchmark, a program which
is parallelized using a pipeline pattern. We would like to make a more extensive
analysis of this library by studying its performance in a range of programs suffi-
ciently representative of the actual programs of interest, that is, the applications
that in-real-life computers must execute nowadays. As explained later in Section
2.2, the PARSEC benchmark [13] matches this criteria.

There are studies on the characteristics of the PARSEC benchmarks and its
parallel implementation efficiency. We highlight the PhD paper by Bienia [5], where
a detailed description of the purpose and implementation of each program can be
found, among other interesting data related to these benchmarks.

1.3 Objectives and Work plan

The main goal of this paper is to analyse the efficiency of the GrPPI library in com-
parison to more specific methods and patterns of parallelization. This efficiency will
be measured by comparing the execution time of the different versions, PARSEC’s
original parallelized version and our own GrPPI adaptation, and, ultimately, the
effort of implementation, measured as lines of code written.

In order to do this, we will select some representative applications from the PAR-
SEC’s benchmark suite and study its implementation in order to write the equivalent
code using functions from the GrPPI library. Once it is guaranteed that both pro-
grams do the same, that is their outputs are identical, we can perform measurements
of their execution time for different inputs and discuss the results.

The source code can be found in the GitHUb repository https://github.com/

crivilch/GrPPI-Library

8

https://github.com/crivilch/GrPPI-Library
https://github.com/crivilch/GrPPI-Library

2

Theoretical Background

2.1 Parallelization

Parallel computing is a type of computation where more than one calculation is
done simultaneously. Parallelizing a problem means breaking it into smaller ones
that can be processed at the same time, thus obtaining a solution at a faster speed.

There are two main types of parallelism [8]: Data Level Parallelism (DLP - data
items can be operated on at the same time) and Task Level Parallelism (TLP - tasks
of work that can be operated simultaneously) and two ways computer hardware can
exploit application parallelism are:

1. Instruction Level Parallelism (ILP): exploits DLP through pipelining and mul-
tiple instruction issue.

2. Thread Level Parallelism (TLP): exploits both DLP and TLP via hyper-
threading or multicore architecture.

Only the ILP approach can be effectively hidden from the application software.
In contrast, TLP and DLP leave the problem of how to develop parallel applications
that exploit these features to optimize performance to programmers [11].

Since 2003, single-processor performance improvement has dropped to less than
22% per year due to lack of usable instruction-level parallelism and low efficiency of
silicon and energy consumption of its components [8]. However, the need for faster
programs has only increased, exponentially, with the growing interest in cloud com-
puting and analysis of the vast amounts of data available on the Internet. This has
translated into a shift from ILP to DLP and TLP.

In order to ease the programmer’s hard task, the idea of compiler support gained
popularity. Ideally, the compiler for a multicore processor would take a sequential
program and automatically translate it into a parallel program that makes the most
optimal use of all the cores. Loops can be parallelized if each iteration is independent
of the rest or if the operation behaves ’well’ enough to allow reading and writing
the same data in parallel. Compilers use dependence analysis to study if accesses to
an array refer to the same memory cell and, if so, how many iterations apart they
stand. This analysis not only helps to parallelize the program, but it is also used
for other optimizations such as increasing cache locality [10].

9

This automatic parallelization is not always optimal, as it is often limited to
loop analysis; in the end, performance of multicore processors is as good as the
parallelization of the program they are executing; therefore parallel computing has
become a must-know for programmers and computer engineers around the world.

There are many APIs and libraries for users to choose from when writing parallel
applications; two of the most spread ones are OpenMP and POSIX threads.

OpenMP: OpenMP (Open MultiProcessing) is a specification for a set of com-
piler directives, library routines, and environment variables based on the fork-join
model [1]. Initially a single master thread is executed until the apparition of a par-
allel constructor; then, the slave-threads are created as forks by the master, who
then is in charge of synchronizing these threads and continuing the execution. The
number of threads to be created can be set via a call to the library. When using
OpenMP, the programmer can use directives to mark parallel regions of the program
and then have the compiler generate efficient code for its execution [10]

POSIX threads: pthreads is the thread programming interface specified by
IEEE POSIX. It consists of a set of C language programming types and procedure
calls, implemented with a pthread.h header and a thread library. The subroutines
included in this library can be classified into thread management (creating, detach-
ing, joining), mutexes (synchronization via creation of mutually exclusive zones),
condition variables (for communication between threads sharing a mutex) and syn-
chronization (routines for reading/writing locks and barriers)[4].

OpenMP was designed to be a simpler, user-friendly approach to the use of
threads, since it frees the programmer from having to create, synchronize and join
them.
These two are the main back-ends we will focus on during the study of the GrPPI
library’s performance.

2.2 PARSEC

The Princeton Application Repository for Shared-Memory Computers (PARSEC)
is a benchmark suite composed of multithreaded programs. It consists of 9 applica-
tions and 3 kernels which were chosen from a wide range of application domains.

The reason why we decided to use this benchmark in the study of GrPPI’s perfor-
mance is its diversity and its intensive coverage of multi-threaded applications. This
benchmark was conceived for the study of Shared Memory Chip-Multiprocessors,
which currently are our best tool to meet the requirements of demanding applica-
tions such as video-games and data-mining; thus, the set of applications was de-
signed to capture the characteristics of the target application space. Furthermore,
the PARSEC benchmark applications have been parallelized, which provides us with
a very adequate ’competitor’ to time the GrPPI applications against.

Table 2.1 shows a qualitative summary of the characteristics of the benchmark
programs. Every benchmark includes sets of inputs of different sizes - test, simsmall,

10

Table 2.1: Summary of the inherent key characteristics of PARSEC benchmarks.

Source: Princeton University Technical Report TR-811-08, January 2008

simmed, simlarge and native - which pretend to be increasingly accurate approxi-
mation on real-world inputs. An input consists of all the input files required by the
program and a predetermined way to invoke the binary.

2.3 GrPPI

GrPPI is a generic and reusable high-level C++ parallel pattern interface that cre-
ates a layer between users and existing parallel programming frameworks to allow
programmers to benefit from the improved parallel performance without requiring
a deep understanding of the low-level processes. It contains both stream and data-
parallel patterns, which work as follows [7]:

• Map: computes the function f : α→ β for each element of the input xi. The
output is yi, where yi = f(xi).

• Reduce: computes the function ⊗ : α× α→ α, which takes possibly multiple
elements from the input and combines them in one output alone. The final
output is one value y = x1 ⊗ ...⊗ xn.

• Stencil: a generalization of the map pattern, where the function can access
one element of the inputs and its neighbours.

• Divide&Conquer: this pattern solves a problem by recursively dividing it into
two equivalent smaller problems, until a base case with a known answer is
reached; the final output is created by merging the solutions of these sub-
problems.

As for stream-based parallel patterns, we highlight:

• Pipeline: processes the items from the input stream though several parallel
stages. Each stage takes the output of the previous one as input and delivers
the results to the next one. The functions related to each stage, fi, must be
able to be executed in parallel, so that the final output is fn(fn−1(...(f1(xi))..)).

• Farm: computes the function f : α → β in parallel over all the items of the
input stream. The operations performed by f for each element of the input
should be completely independent to each other.

11

Every function call follows the following pattern:
grppi_function(ex, input, size, output, lambda)

The first parameter ex is the execution mode; this determines the back-end
for the parallel execution and allows the programmer to choose among parallel na-
tive back-end (pthreads in UNIX), OpenMP, TBB and FastFlow in execution time.
When creating the execution object, the user must set the number of underlying
threads used by the execution implementation. Next, the GrPPI function receives
pointers to the input sets the user wants to apply the function on and its size. The
output parameter is a pointer to the structure where the result of the function will
be stored. The pattern used and the function to execute determine the type of this
object. The last parameter is the lambda-function that must be executed in parallel.
Some patterns, like Divide&Conquer or Pipeline, require/can accept more than one
function for different stages.

Each back-end has its own code file where all parallel patterns are implemented
accordingly. The map function, for example, is implemented as follows:

– Sequential: iterates through the input set, applying the transformer function
to one element after another.

– Native (C++ threads): divides the input in as many subsets as total number
of threads and creates a pool of workers (threads). Each worker takes one
subset and applies the transformation to all its elements sequentially.

– OpenMP: invokes the #pragma parallel for directive that iterates through
the input set and applies the transformation to every element.

Of course, the programmer doesn’t need to know anything about the underlying
implementation; it remains hidden behind the GrPPI call.

Figure 2.1 presents different possible approaches for parallelizing PARSEC’s
benchmark programs. More abstract APIs are presented in higher levels of the
diagram and they are joined to their underlying implementation method with ar-
rows. Once the user chooses one of the boxes as their parallelization tool, they don’t
need to worry about the layers under it; these will be managed by the higher-level
pattern. The higher the level, the simpler the code that must be written by the final
user.

Orange arrows represent PARSEC’s existing implementation, while yellow arrows
represent the GrPPI version of the code (that is, a version of the program where
parallelization is done via calls to GrPPI functions instead of other mechanisms),
which must be implemented by us. Our goal in the following sections is to study
whether the use of the GrPPI library, which works as a layer between user and
parallel programming frameworks, remains as efficient as the original ’hand-written’
code, or if it provides better usability at the expense of performance.

12

Figure 2.1: Parallelization Techniques.

13

3

Test Environment

3.1 Arquitecture and compilation settings

In this section we present the software and hardware setup for all the tests performed
in this study [2].

Microprocessor: Intel(R) Xeon(R) Gold 6138 CPU 64-bit 20-core x86 multi-socket
high performance server microprocessor
Arquitecture: Skylake x86 64
Cores: 20
Sockets: 2
Frequency: 1700 MHz
Hyperthreading: Off
OS: GNU\Linux, Debian 9.11
Kernel: Linux 4.9.0-11-amd64
Cache size:

L1 - core level: 32KB for instructions, 32KB for data
L2 - core level : 1024KB Instructions + Data
L3 - processor level: 28 MB

RAM Memory: 93GB (2 NUMA nodes: 46+47GB)
Compiler: g++ (Debian 6.3.0-18+deb9u1) 6.3.0 20170516
Compilation options: -O3 -mno-sse2 –std=c++14

Generic Reusable Parallel Pattern Interface (GrPPI) 2018 Universidad Carlos III de
Madrid. Version: Apr 26, 2019. Commit: 1c677f0

PARSEC 3.0-beta-20150206

3.2 Work methodology

For every studied PARSEC benchmark, we compare the performance of the GrPPI
version of the code written for this paper against the original PARSEC’s implemen-
tation, for both sequential and parallel (pthreads and OpenMP) execution modes.

14

To do this, time marks are set before and after the section of the code that has been
adapted into a call to one of the functions in the GrPPI library in order to measure
the time spent on its execution. This includes the time necessary for the creation
and destruction of threads in the parallel modes.

Each benchmark is tested for different input sizes: small, medium and large. The
same set of inputs of each size are used for each execution mode and for different
number of threads in the parallel modes. Five different inputs are prepared for each
input size in order to work with the mean of the results; that is, for any given input
size and number of threads, the program is executed five times with the five different
inputs prepared beforehand.

The number of threads is set during execution time - a maximum of 20 - and we
ensure each thread doesn’t use more than one core by setting the CPU affinity with
taskset. All threads are created in the same socket to prevent data movement from
one socket to the other. The CPU’s clock rate is fixed to 1700MHz before each test
launch.

15

4

Swaptions

4.1 Description

The swaptions application [5] uses the Heath-JarrowMorton (HJM) framework to
price a portfolio of swaptions, employing Monte Carlo simulation to compute the
prices. The program stores the portfolio in the swaptions array. In PARSEC’s
thread version, this array is then evenly partitioned into a number of blocks equal
to the number of threads and one block is assigned to each thread. Each thread
iterates through the swaptions in the work unit it was assigned, calling the function
HJM_Swaption_Blocking for every entry in order to compute the price. Calculating
the price of one swaption only requires information of that one swaption, and so
each call to HJM_Swaption_Blocking is independent of the rest. Listing 4.1 shows
a pseudo-code for this application’s implementation.

1 parm swaptions [];

2 ftype pdSwaptionPrice [2];

3

4 for each element in swaptions:

5 pdSwaptionPrice = HJM_Swaption_Blocking(swaptions[i]);

6

7 swaptions.dSimSwaptionMeanPrice = pdSwaptionPrice [0];

8

9 swaptions.dSimSwaptionStdError = pdSwaptionPrice [1];

10

11 return swaptions;

Listing 4.1: Swaptions Pseudocode

The input for this application is not read from a file; it is randomly generated
within the application using a given seed. The list of parameters that must be spec-
ified in the executable call are: number of swaptions (ns), number of simulations for
every input set (sm), number of threads (nt), random number seed (sd).

4.2 GrPPI Adaptation

Since every call to HJM_Swaption_Blocking for each element of the input is inde-
pendent of the rest, the for loop is equivalent to using the grppi::map function

16

with HJM_Swaption_Blocking as its lambda, as shown in Listing 4.2. The orig-
inal code used the index of the element in the swaptions vector during the call
to HJM_Swaption_Blocking as part of randomness seed; as we don’t have access
to that index when writing the lambda function, an extra parameter index was
included. index is a vector of integers that contains all ordered numbers from 0
to nSwaptions; thus index[i]=i and the map function will work as desired. The
results of the price calculation are stored in the very same array swaptions, which
is passed as input to the map function; therefore, the elements of this array are
returned as output.

1 grppi :: dynamic_execution ex = execution_mode(opt , nThreads);

2

3 map(ex , std:: make_tuple(swaptions , index.begin()),size , swaptions ,

4 [](parm swaptions , int index){

5

6 FTYPE pdSwaptionPrice [2];

7 int iSuccess = HJM_Swaption_Blocking(pdSwaptionPrice , swaptions.

dStrike , swaptions.dCOpenMPounding , swaptions.dMaturity ,

swaptions.dTenor , swaptions.dPaymentInterval , swaptions.iN,

swaptions.iFactors , swaptions.dYears , swaptions.pdYield ,

swaptions.ppdFactors , swaption_seed+index , NUM_TRIALS ,

BLOCK_SIZE , 0);

8

9 assert(iSuccess == 1);

10 swaptions.dSimSwaptionMeanPrice = pdSwaptionPrice [0];

11 swaptions.dSimSwaptionStdError = pdSwaptionPrice [1];

12

13 return swaptions ;}

14);

Listing 4.2: Swaptions GrPPI call

4.3 Results

The set of inputs for this benchmark’s test consists of one small-size set (-ns 32
-sm 10000), a medium-size set (-ns 64 -sm 20000) and a large set (-ns 148 -sm 1000000),
with five different seeds to generate comparable outputs (-sd {27, 33, 100, 555, 1939}).
The number of threads used range from 1 to 20 in the pthread and OpenMP exe-
cution modes.

The mean value of the tests is shown in Table 4.1, where the results for each
execution mode using PARSEC’s implementation and GrPPI’s version are presented
in adjacent columns for comparison. The columns corresponding to PARSEC imple-
mentation are P OMP, P THR and P SEQ (for OpenMP, pthreads and sequential
execution, respectively); G OMP, G THR and G SEQ are the GRPPI equivalent.

The results are displayed in three graphs in Figure 4.1, one for each input size.
The curve of the graphs suggest an inversely proportional relation between the time
cost and the number of threads in use. Table 4.2 shows the values of the speedup
for each set of inputs in PARSEC’s OpenMP execution mode, with almost perfect
escalation for large input sizes even with 20 threads - for small and medium sized

17

Table 4.1: Swaptions test results

inputs, there is not enough work as the number of threads increases. Other execution
modes show similar results.

Table 4.2: Speedup for Swaptions for OpenMP

Another thing to highlight is how the performance of GrPPI’s version is just
as good as PARSEC’s original implementation if we compare the execution with
OpenMP as backend. Even for small inputs, GrPPI doesn’t seem to add any signif-
icant workload.

However, there is an abnormality regarding GrPPI’s parallel native execution,
which seems to be taking longer than the other execution modes as the number
of threads increases. This poses one main question: How are the threads used by
PARSEC’s default thread execution mode different from the threads used by GrPPI?

18

Figure 4.1: Swaptions test graphs

19

4.4 GrPPI Threads

Considering the Swaptions benchmark results, we would like to study the reason for
GrPPI’s native implementation’s bad performance in comparison to the rest of the
execution modes.

One possible theory that came to mind was that as the number of threads in-
creases, but not so the total number of swaptions to calculate, the amount of work
for each thread diminishes; it is possible that the advantage of sharing the work
doesn’t make up for the time cost of creating the threads. In order to study this,
we performed a test where the size of each chunk remains constant no matter the
number of threads. So for each run of the test, the number of swaptions computed
is block size ∗ number threads. The number of simulations was fixed (-sm 20000)
and the same five seeds as in the original test were used.

We see in the graphs (Figure 4.2) that the performance of GrPPI’s threads is
just as good as the rest of the execution modes. The time spent in execution is
directly proportional to the size of the block, and it remains practically constant
as the number of threads increases. In order to see this, Table 4.3 shows the time
cost over block size ratio for all block sizes and all number of threads for the GrPPI
thread execution mode - the results are the same for the others.

Table 4.3: Time/Size ratio for GrPPI thread

The code of the map function for the parallel execution native mode divides the
total amount of elements that need to be worked on in equally sized chunks, as
presented in Listing 4.3 (extract from parallel_execution_native::map)

1 const int chunk_size = sequence_size / concurrency_degree_;

2 {

3 worker_pool workers{concurrency_degree_ };

4 for (int i=0; i!= concurrency_degree_ -1; ++i) {

5 const auto delta = chunk_size * i;

6 const auto chunk_firsts = iterators_next(firsts ,delta);

7 const auto chunk_first_out = next(first_out , delta);

8 workers.launch (*this , process_chunk , chunk_firsts , chunk_size

, chunk_first_out); }

9

10 const auto delta = chunk_size * (concurrency_degree_ - 1);

11 const auto chunk_firsts = iterators_next(firsts ,delta);

12 const auto chunk_first_out = next(first_out , delta);

13 process_chunk(chunk_firsts , sequence_size - delta ,

chunk_first_out);

14 }

Listing 4.3: Chunk size for GrPPI parallel execution

20

Figure 4.2: Block test

21

The last chunk is processed by the parent thread.

This makes us believe that the problem may arise when the number of swap-
tions is not multiple of the number of threads; that is, when num swaptions =
block size ∗ num threads + i, i ∈ [1, 2, ..., num threads − 1]. As it is implemented
now, those i additional elements would be assigned to the parent thread. We ask
ourselves: how does time scale as we increase i?

To answer this question, a new test was performed where we measured the time
spent in execution for the different values of i relevant for each block size and
num threads. Figure 4.3 shows the results for block size = 32 and num threads = 20
as an example.

Figure 4.3: num swaptions - num threads

The conclusion seems straightforward: there’s a direct linear relation between
the number of additional elements the parent thread has to take care of and the
time consumption of the program. The simplest solution to this problem would
be to share the i additional elements among all the working threads; in order to
do this, we suggest the following change to the parallel_execution_native::map

code (Listing 4.4).

1 const int chunk_size = sequence_size / concurrency_degree_;

2 const auto offset = sequence_size % concurrency_degree_;

3

4 {

5 worker_pool workers{concurrency_degree_ };

6 for (int i=0; i!= concurrency_degree_ -1; ++i) {

7

8 auto cs = chunk_size;

9 auto delta = 0;

10

11 if(i<offset){

12 cs = chunk_size +1;

13 delta = cs * i;

14 }

22

15 else{

16 cs = chunk_size;

17 delta = (chunk_size + 1)*offset + (i-offset)*chunk_size;

18 }

19 const auto chunk_firsts = iterators_next(firsts ,delta);

20 const auto chunk_first_out = next(first_out , delta);

21 workers.launch (*this , process_chunk , chunk_firsts , cs ,

chunk_first_out);

22 }

23

24 const auto delta = (chunk_size +1)*offset + chunk_size * (

concurrency_degree_ - 1 - offset);

25 const auto chunk_firsts = iterators_next(firsts ,delta);

26 const auto chunk_first_out = next(first_out , delta);

27 process_chunk(chunk_firsts , sequence_size - delta ,

chunk_first_out);

28 }

Listing 4.4: Modification of GrPPI parallel execution

Now the first i = num swaptions%num threads threads get a chunk of size
bloq size+ 1, while the rest receive a chunk of size bloq size as expected.

This change could mean a significant improvement in the performance of the
GrPPI library’s parallel native execution. To prove this, the test for the Swaptions
benchmark was repeated, with the same initial conditions and parameters (Table
4.4 & Figure 4.4).

Table 4.4: Improved GrPPI threads

The new version of the GrPPI parallel native execution proves to be as efficient
as PARSEC’s pthread implementation.

23

Figure 4.4: Improved GrPPI threads

24

This chapter’s final conclusions could be summarized as:

1. The Swaptions benchmark’s speedup is virtually optimal, as long as the work-
load (input size) is big enough for the number of threads we want to use.

2. GRPPI OpenMP doesn’t add any excess workload and is just as efficient as
PARSEC’s OpenMP and pthread versions.

3. GRPPI thread’s performance was worse than other execution modes due to an
inefficient workload distribution. By improving it, we have achieved optimal
performance just like the other back-ends.

25

5

Blackscholes

5.1 Description

The Blackscholes application [5] calculates the prices for a portfolio of European op-
tions analytically with the Black-Scholes partial differential equation. The program
divides the portfolio into a number of work units equal to the number of threads
and processes them concurrently. Each thread iterates through all derivatives in its
contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute
its price. This calculation is repeated a total of NUM RUNS = 100 times Listing
5.1 shows a pseudo-code for this application.

1 data data_vector [];

2 fptype prices [];

3

4 for j in range(NUM_RUNS){

5 for i in data_vector:

6 prices[i] = BlkSchlsEqEuroNoDiv(data_vector[i]);

7 }

8 return prices;

Listing 5.1: Blackscholes pseudo-code

As indicated in the pseudo-code, each call to BlkSchlsEqEuroNoDiv depends on
only one element of the data array, and so all calls are independent.

This benchmark’s executable receives parameters nthreads number of threads,
inputFile name of input file and outputFile name of output file.

5.2 GrPPI Adaptation

Just as in the Swaptions benchmark, this for loop is equivalent to a call to the
grppi::map function with BlkSchlsEqEuroNoDiv as its lambda because all ele-
ments in the data vector are processed individually. There are two ways to adapt
the external for (j in range(NUM_RUNS)) loop. One option is shown in Listing
5.2: the for is enveloping the map call.

1 grppi :: dynamic_execution ex = execution_mode(opt , nThreads);

2

26

3 for (int j=0; j<NUM_RUNS; j++){

4 map(ex , std:: make_tuple(sptprice.begin(), strike.begin(), rate.

begin (),volatility.begin (), otime.begin (), otype.begin ()),s,

prices.begin(),

5 [](fptype s1 ,fptype s2 , fptype s3 , fptype s4 , fptype s5

, int s6) {

6 return BlkSchlsEqEuroNoDiv(s1 , s2 ,s3 , s4 , s5 , s6 , 0);

7 });

8 }

Listing 5.2: Blackscholes GrPPI call 1

Another option is to include the for loop inside the lambda, as shown in Listing
5.3

1 map(ex , std:: make_tuple(sptprice.begin(), strike.begin(), rate.

begin (),volatility.begin (), otime.begin (), otype.begin ()),s,

prices.begin(), [](fptype s1 ,fptype s2 , fptype s3 , fptype s4 ,

fptype s5 , int s6) {

2 fptype p;

3 for (int j=0; j<NUM_RUNS; j++) {

4 p = BlkSchlsEqEuroNoDiv(s1, s2,s3, s4, s5, s6, 0);

5 }

6 return p;

7 });

Listing 5.3: Blackscholes GrPPI call 2

Version 1 makes NUM RUNS calls to the grppi:map function and each time the
threads execute one operation, whereas Version 2 makes one single call to the GrPPI
library and each of the created threads execute NUM RUNS operations. We will
compare the results of both versions in the next section.

5.3 Results

Three sets of input files were prepared, varying their size from small (1K options),
to medium (100K options) and large (1M options). These input sets were created
by dividing PARSEC’s native input file (100M options) into files with said size. 6
tests were performed for each input size and each number of threads (in execution
with OpenMP or parallel native).

The results for Version 1 are shown in Table 5.1 and Figure 5.1. The graphs for
Version 2 are displayed in Figure 5.2

For the small input case, we see there’s a surprising decrease of efficiency for the
GrPPI threads execution, which becomes more significant as the number of threads
increases. This penalisation disappears in the Version 2 execution, where the for

was included inside the map. There is not such a remarkabe difference between the
other input sets, where the total execution time is at least 100 times larger.

The grppi:map function for C++ threads creates and destroys the set of threads
at the beginning and at the end of the call; that means that Version 1 of our Blacksc-
holes adaptation creates and destroys nthr threads NUM RUNS times, while in Ver-
sion 2 we only create them once. The time penalty of creating and destroying the

27

threads is only significant for small inputs and becomes meaningless for larger inputs.

Table 5.1: Blackscholes test results

Observing the application’s speedup, we can say that it’s proportional to the
number of threads (Table 5.2), much like the Swaptions benchmark.

Table 5.2: Speedup for Blackscholes

Speedup for each set of inputs in PARSEC’s OpenMP execution mode - other execution
modes show similar results.

Finally, let’s compare the original GrPPI’s performance with our improved ver-
sion from Section 4.4 (G THRv2). We see that for all input sets, both implementa-
tions are just as efficient. This is due to the fact that the time cost of calculating a
single option is minimal, about 20 times smaller than the ones measured for Swap-
tions; this, together with the difference in the number of elements to be processed
in every test (32 VS 1K for the small input case) explains the lack of difference
between the old and new GrPPI thread mode even when the number of elements
isn’t divisible by the number of threads.

28

Figure 5.1: Blackscholes test 1 graphs

29

Figure 5.2: Blackscholes test 2 graphs

30

The main conclusions for this chapter are:

1. The Blackscholes benchmark’s speedup is virtually optimal, as long as the
workload (number of options) is big enough for the number of threads we
want to use.

2. Excess creation of threads adds little penalization to the program’s execution
time; it is only perceivable for small inputs.

3. For applications where the time-consumption of the lambda operation is small,
GrPPI’s native parallel back-end’s original workload distribution is as efficient
as the improved version.

From now on we will only show the results for GrPPI’s modified version.

31

6

Streamcluster

6.1 Description

The streamcluster kernel [5] solves the clustering problem: given a number of points,
it finds a predetermined number of medians so that each point is assigned to its
nearest center.

As input, it receives numbers k1, k2 - minimum and maximum number of centers
allowed; d dimension of the points; n number of data points; chunksize number of
points to handle per step; clustersize maxinum number of intermediate centers;
nproc the number of threads to use; and a seed s to generate the input points ran-
domly.

This benchmark only has a native parallel version implemented and it works as
follows:
The only parallel function is the one where the program spends most of the time,
pkmedian. This function calculates the cost of opening a new center, and it divides
the work among all the threads created by assigning one block of points to each
thread.

There are, however, some sections of the code that shouldn’t be executed by
more than one thread, such as writing global variables or shuffling the set of points.
For this, PARSEC uses a thread barrier to make sure all the threads have finished all
the operations before and then checks for the thread with id 0 to do the sequential
work. Listing 6.1 shows an example of this situation.

1 #ifdef ENABLE_THREADS

2 pthread_barrier_wait(barrier);

3 #endif

4

5 if(pid == 0) {

6 // sequential code

7 }

Listing 6.1: Example barrier call

Figure 6.1 is an abstract representation of this benchmark’s parallel execution.
It begins with a first sequential section, followed by a call to the localSeachSub

function. This function creates nproc threads, each of which will execute pkmedian.
The vertical black line represents the barrier that will affect all these threads by

32

Figure 6.1: Streamcluster diagram

making them wait to be synchronized at more than one point throughout the exe-
cution. After that first call to localSeachSub there is another sequential section,
after which there is a new call to localSeachSub.

The need for a synchronization barrier is clearly the bottleneck of this program’s
performance.

6.2 GrPPI Adaptation

To adapt it into a GrPPI version, two approaches were implemented. The first one
is quite straightforward: where PARSEC creates nproc threads calling the pkmedian
function, one call to grppi::map that creates nproc threads with this function as
its lambda works equivalently.

1 grppi ::map(ex, arg.begin (), nproc , arg.begin (),

2 [](pkmedian_arg_t & r){

3 pkmedian ((void*)&r);

4 return r;

5 });

Listing 6.2: Streamcluster Version 1

The arg vector is a vector of size nproc, and it contains the id for each thread
and the barrier that will synchronize the threads just like in PARSEC’s implemen-
tation.

Another approach was to study the code of the pkmedian function and make the
calls to the GrPPI library inside it. In this case, we would be able to protect the
sequential parts of the code by keeping them outside these calls; that is: where we
used to have a call to the barrier followed by a piece of sequential code, now we
have the same code outside any GrPPI calls, and thus executing sequentially. List-
ing 6.3 shows an extract of pkmedian where the parallel section has been adapted
into a call to GrPPI patterns, and the section of the code that should be executed

33

by only one thread sequentially (protected by if (pid == 0) before) is left outside:

1 grppi ::map(ex, points ->p, points ->num , points ->p,[p0, dim](Point

punto)

2 {float distance = dist(punto , p0, dim);

3 punto.cost = distance * punto.weight;

4 punto.assign =0; return punto ;});

5

6

7 for(int i = 1; i < points ->num; i++) {

8 //... sequential code

9 }

10

11 Point out = grppi :: reduce(ex, points ->p, points ->num , p, [](const

Point & x, const Point & y){ Point w; w.cost = x.cost + y.cost;

return w;});

Listing 6.3: Streamcluster Version 2

Figure 6.2 shows a graphic representation of this execution. Instead of having
multiple threads executing pkmedian, we have identified the parallel sections and
isolated the threads to those sections.

Figure 6.2: Streamcluster Version 2 diagram

Where there was a barrier in Version 1, there’s a gray square (sequential) now

6.3 Results

The parameters for each input size were:

– small size - n = 4096, d = 32, chunksize = 4096

– medium size - n = 8192, d = 64, chunksize = 8192

– large size - n = 16384, d = 128, chunksize = 16384

with values k1 = 10, k2 = 20, clustersize = 1000 and seeds 27, 33, 100, 555, 1939
for every test set. The results are shown in Table 6.1 and Figure 6.3. G THR and
G SEQ are the execution times for the high-level parallelism adaptation (Version
1). G THR LLP and G SEQ LLP are the times for Version 2.

34

Table 6.1: Streamcluster test results

There are two observations worth highlighting:

– The performance of both GrPPI implementations is the same and just as good
as the original PARSEC pthread mode.

– This benchmark shows terrible speedup as the number of executing threads
increases.

One may have thought that Version 1 of our GrPPI implementation (one unique
call to the GrPPI library from a high-level function) would have obtained better
results, since it allows the program to divide the work from an early stage and in-
volves only one call to the GrPPI library, thus the threads are only created once.
The results show, however, that the low-level calls are just as efficient, despite the
threads being created and destroyed with each call. This makes us think that the
sequential section of the program could be affecting the efficacy of the parallelization
- which brings us to the second point.

Table 6.2 presents the speedup for the different input sizes. Unlike previous
benchmarks, where the speedup was nearly optimal for all number of threads, we
see a decrease in the execution speed for all execution modes as the number of
threads increases, the most obvious one being the small-sized input case, where run-
ning the program with 20 threads is 100% slower than running with 1 thread. The
maximum speedup is found at 5 threads, except for the large input where 15 threads
gain a speedup of only 7.

Table 6.2: Speedup for Swaptions

35

Figure 6.3: Streamcluster test graphs

36

The fact that there seems to be a limit to the degree of parallelization of this
program when there wasn’t one for the previous benchmarks seems to point to the
barrier as the main cause of this limitation. The cost of synchronizing all the threads
in order to protect the execution in certain sections of the code surpasses the bene-
fits of distributing the workload. Other studies of this benchmark have reached the
same conclusion [12] and the best solution is to improve the implementation of the
barrier in order to make it more efficient. That work is, however, beyond the scope
of this paper.

The conclusions that arise from this Chapter are:

1. Both versions of the GrPPI adaptation show the same efficiency.

2. This benchmark’s performance worsens as the number of threads increases due
to the synchronization barrier.

37

7

Ferret

7.1 Description

The ferret application [5] is used for image similarity search; that is, given a set of
image queries, its output is a list of the k images from an image database that are
most similar to each of the queries. As input, this program must receive: database
path to image database, table name of .lsh file, query dir path to folder of image
queries, numbers k, d, nt (search for the k most similar images, with queue size be-
tween stages d and nt threads for the middle stages, and out name of output file).

The benchmark is parallelized using a pipeline model with six stages. The first
and last stages are for input and output. The middle four stages are for image
segmentation, feature extraction, indexing of candidates sets and ranking, and are
completely parallelizable, since they take one element (one image) from the previous
stage and process it independently. To allow communication between stages, 5
queues are created at the beginning of the program; each stage takes elements from
their own queue and sends its output onto the next stage’s queue. Figure 7.1 shows
a diagram of this program execution pattern.

Figure 7.1: Ferret diagram

38

7.2 GRPPI Adaptation

This benchmark seems like the perfect match for the grppi::pipeline function.

1 grppi :: pipeline(ex,

2 [&pd]() ->std:: experimental ::optional <load_data *>{return t_load ()

;},

3

4 grppi ::farm(NTHREAD_SEG ,

5 [](load_data * v_in){return t_seg(v_in);}),

6 grppi ::farm(NTHREAD_EXTRACT ,

7 [](seg_data * v_in){return t_extract(v_in);}),

8 grppi ::farm(NTHREAD_VEC ,

9 [](extract_data * v_in){return t_vec(v_in);}),

10 grppi ::farm(NTHREAD_RANK ,

11 [](vec_query_data* v_in){return t_rank(v_in);}),

12

13 [](rank_data * v_in){return t_out(v_in);}

14);

Listing 7.1: Ferret GrPPI call

The first and last stages must be executed sequentially, since they read from and
write to files. That is not the case for the other four stages, that can distribute the
work among various threads without synchronization problems. In order to achieve
different number of threads for the different stages, the farm parallel pattern is called
with the number of threads as its first parameter. As with the other patterns, the
pipeline’s parallel implementation is controlled via the execution model parameter,
that can be set to operate in sequential or in parallel through the different supported
frameworks.

7.3 Results

For this test, PARSEC’s input image databases were used as input. Small-size test
had 64 query images; medium-size, 256; and large-size input had 1000 images. For
all tests parameters k and d had value 10. The number nthreads shown in the table
is the number of threads assigned for each middle stage, so for each execution the
total number of threads is nthreads ∗ 4 + 2.

One of the first things to appreciate from the collected data in Table 6.1 is how
the pipeline execution, both PARSEC’s original and our GrPPI version, are at least
twice as fast as PARSEC’s serial version, even when executed with only one thread
per stage. This speaks about the efficiency of the pipeline as a parallelization pat-
tern, where one stage doesn’t have to wait for the previous one to finish processing
the whole input, but can start working on the elements that have already been out-
putted.

The speedup gained by increasing the number of threads comparing with the
serial execution is shown in Table 7.2. The speedup for larger input sizes is closer
to the number of threads for the middle stages, nthreads, than to the total number
of threads 4 ∗ nthreads+ 2. Even not taking into account the first and last stages -
sequential - this speedup is far from optimal; we are comparing the execution with

39

Table 7.1: Ferret test results

Total number of threads = 4*NTHREADS + 2

one single thread to the execution with 4 ∗ nthreads threads, but the increase of
speed is much smaller.

Table 7.2: Speedup for ferret - 1

Speedup for each set of inputs in GrPPI’s native parallel execution mode against PARSEC’s
sequential execution.

Table 7.3 shows the speedup comparing to the nthreads = 1 execution.

Table 7.3: Speedup for ferret - 2

Speedup for each set of inputs in GrPPI’s native parallel execution mode against native
execution with 1 thread.

From this point of view, the speedup nthreads is optimal, since we are adding
one thread to each stage. It is important to consider that for nthreads > 4, the
number of threads is greater than the total number of computer cores, thus gener-

40

ating oversubscription, so those results aren’t completely reliable.

Figure 7.2: Ferret test graphs

41

Stage-wise, the program is parallelizable and behaves as it should. However, the
application as a whole doesn’t show most optimal speedup. What is the cause for
this? Section 7.4 studies this question

7.4 Core-distribution analysis

A first idea that could explain the non-optimal speedup for the Ferret benchmark is
that maybe not all stages are equally time-consuming, and so the number of cores
assigned to each one of them should be different.

We measured the time spent in each stage every time one element is processed,
for the large input set with k = 10 and, although the values measured varied for
each image, the upper values for each of the middle stages are:

t seg t ext t ind t rank
0.006 0.001 0.003 0.030

We see that there is one stage about 10 times slower than the rest: the ranking
stage. Will the application’s performance improve if we assign more cores to this
one stage instead of sharing them evenly among all stages? Figure 7.3 shows the
times measured for different core-distribution strategies on the left graph. The table
on the right shows how many threads were assigned to each stage in each execution.
Note that the first and last stage must be executed sequentially and therefore only
have 1 thread.

Figure 7.3: Ferret core-distribution

For a given number of total cores in use, four different distributions are presented:

– EqualNTHR: all middle stages have the same number of threads.

– NTHR=1 : all middle stages have 1 thread except for the Ranking stage, which
has total cores− 3 ∗ 1− 2 threads.

– NTHR=2 : all middle stages have 2 threads except for the Ranking stage,
which has total cores− 3 ∗ 2− 2 threads.

42

– NTHR=3 : all middle stages have 3 threads except for the Ranking stage,
which has total cores− 3 ∗ 3− 2 threads.

– NTHR=4 : all middle stages have 4 threads except for the Ranking stage,
which has total cores− 3 ∗ 4− 2 threads.

We see that executions where the Ranking stage is executed in only 1 thread show
a much worse performance than other executions, even if the number of threads for
the other stages is greater (i.e. compare EqualNTHR and NTHR=3 for a total of 10
cores). However, assigning all threads to the Ranking stage isn’t the best solution
either. Observing the NTHR=1 columns, we see how the three stages with only 1
thread are preventing the application from running faster in spite of the Ranking
stage running on a big number of threads.

Best performance is found in executions with a ranking−threads
other−stages

ratio of about 2;

for greater ratios, the other stages become the application’s bottleneck (i.e. See
NTHR=3 for 18 and 22 cores, where there is barely any improvement).

Increasing the number of image queries doesn’t affect the time spent in each
stage; it only increases the number of times they will be called. Increasing the
number of similar images we want to find, the k parameter, does affect the time
spent in one stage:

t seg t ext t ind t rank
0.006 0.001 0.003 0.300

The Ranking stage continues to be the most expensive stage, but now the time
difference is even greater. We performed the same core-distribution experiments,
presented in Figure 7.4

Figure 7.4: Ferret core-distribution - k = 50

For this test, we see that the NTHR=1 is behaving much better than the Equal-
NTHR. The time-difference between the Ranking stage and the other three is so big
that assigning the maximum number of threads to this one stage is the best strategy
when using a small number of cores. Note how the NTHR=1 strategy with 10 cores
is faster than EqualNTHR with 18 cores. For greater number of cores available, the

43

three fast stages may become the bottleneck, and we can obtain a somewhat better
execution time with a ranking−threads

other−stages
ratio of 6 (See NTHR=2 for 18 cores).

This Chapter’s conclusions are listed below:

1. GrPPI’s pipeline works just as well as a manually implemented pipeline pattern
like PARSEC’s.

2. When the pipeline stages are unbalanced, time-consumption wise, finding the
optimal ratio between the stages’ assigned number of threads yields the best
performance.

44

8

Conclusions

Throughout the course of this work we have worked with and studied the efficiency
of the GrPPI library as an alternative for more standard parallelization APIs. This
section presents a recap of the conclusions obtained thus far.

8.1 Tests Analysis

1. The Swaptions and Blackscholes benchmarks’ speedup is virtually optimal, as
long as the workload (input size, number of options) is big enough for the
number of threads in use.

2. GrPPI OpenMP doesn’t add any excess workload and is just as efficient as
PARSEC’s OpenMP and pthread versions.

3. GrPPI thread’s performance was worse than other execution modes due to an
inefficient workload distribution. By improving it, we have achieved optimal
performance just like the other back-ends.

4. This optimization is only relevant for applications where the main function’s
execution time per element / number of elements ratio is big enough.

5. Multiple calls to the GrPPI library imply a hidden work of creating and de-
stroying threads; however, this has insignificant influence in the program’s
total execution time.

6. The need of thread synchronization will affect the application’s performance,
decreasing its speedup for larger number of threads

7. GrPPI’s pipeline works just as well as a manually implemented pipeline pattern
like PARSEC’s.

8. When the pipeline stages’ are unbalanced, time-consumption wise, finding the
optimal ratio between the stages’ assigned number of threads yields the best
performance.

45

8.2 Usability

In the previous sections of this work we have studied the performance of GrPPI in
comparison to more specific parallel implementations in terms of execution time.
Now we want to compare the programming effort required when using GrPPI. Al-
though this may seem like quite a subjective criterion, we will measure it through
an objective variable: lines of code [7].

Table 8.1 shows the number of lines of code added to the sequential version of
each benchmark for the different parallel implementations.

Figure 8.1: Lines of code per implementation

We see that GrPPI requires on average 84% fewer lines of code than its pthreads
counterpart. This difference is mainly due to the requirement to create the threads
by invoking the pthread_create(...) function and then synchronizing with
pthread_join(...). All this work is done automatically by the GrPPI call when
using a parallel_execution_native backend, and thus translates into lines of code
saved.

For the Streamcluster benchmark, the low level parallelization version was con-
sidered. The number of lines of code is higher than the other applications because,
since some functions required major modifications in order to be adapted for GrPPI
use, we decided to compare the length of these functions as a whole.

8.3 Future Work

GrPPI proves to be an efficient, user-friendly parallel pattern interface which pro-
vides programmers with the benefits of existing parallel frameworks without the
hardship of understanding their implementation. GrPPI promises to help make
more readable, versatile parallel programs with no additional overheads.

As future work, we would like to further look into the compatibility of the GrPPI
patterns among themselves. Studying the behaviour of GrPPI’s other back-ends
would also be interesting, specially the Intel TBB execution mode, since the TBB
runtime library manages threads differently than OpenMP.

We also want to study the GrPPI adaptation of more applications from the
PARSEC benchmark, which might give us the chance to use other parallel patterns
from the GrPPI library. In particular the Dedup application, although tagged as
a pipeline pattern due to its five stages, doesn’t have a direct translation into the
grppi::pipeline function like Ferret did. The challenge this benchmark presents

46

is that some stages fragment their input, producing more than one output element.
This doesn’t sit well with the pipeline pattern, where the number of inputs and
outputs for each stage must be the same. Finding the best solution to this problem
is our first priority.

47

Bibliography

[1] OpenMP - Enabling HPC since 1997. https://www.openmp.org, 2007-2019.
Accessed 2020/06/10.

[2] Xeon Gold 6138 - Intel. https://en.wikichip.org/wiki/intel/xeon_gold/
6138, 2019. Accessed 2020/05/25.

[3] Danelutto M. Kilpatrick P. Aldinucci, M. and M. Torquati. Fastflow: High-
Level and Efficient Streaming on Multicore. In Programming multi-core and
many-core computing systems. https://doi.org/10.1002/9781119332015.

ch13, 2017.

[4] Blaise Barney. POSIX Threads Programming. https://computing.llnl.gov/
tutorials/pthreads/#Pthread, 2020. Accessed 2020/06/10.

[5] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[6] Jaswinder Pal Singh Christian Bienia, Sanjeev Kumar and Kai Li. The PAR-
SEC Benchmark Suite: Characterization and Architectural Implications. PhD
thesis, Princeton University, January 2008.

[7] David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and J. Daniel
Garćıa. A generic parallel pattern interface for stream and data process-
ing. Concurrency and Computation: Practice and Experience, 29(24), 2017.
doi: 10.1002/cpe.4175. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/cpe.4175.

[8] John L. Henessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Fifth Edition. Elsevier, 225 Wyman Street, Waltham, MA
02451, USA, 2012.

[9] Intel. Intel R© Threading Building Blocks. https://github.com/oneapi-src/
oneTBB, 2020.

[10] Samuel P. Midkiff. Automatic Parallelization: An Overview of Fundamental
Compiler Techniques. Morgan Claypool, Purdue University, 2012.

[11] Luis Miguel Sanchez, Javier Fernández, Rafael Sotomayor, Soledad Escolar, and
J. Daniel Garcia. A comparative study and evaluation of parallel programming
models for shared-memory parallel architectures. New Generation Computing,
2013.

48

https://www.openmp.org
https://en.wikichip.org/wiki/intel/xeon_gold/6138
https://en.wikichip.org/wiki/intel/xeon_gold/6138
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://computing.llnl.gov/tutorials/pthreads/#Pthread
https://computing.llnl.gov/tutorials/pthreads/#Pthread
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4175
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4175
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB

[12] G. Southern and J. Renau. Analysis of parsec workload scalability. In 2016
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), 2016.

[13] Princeton University. PARSEC. https://parsec.cs.princeton.edu/, 2007-
2009. Accessed 2020/06/10.

49

https://parsec.cs.princeton.edu/

	Introduction
	Motivation
	Previous work
	Objectives and Work plan

	Theoretical Background
	Parallelization
	PARSEC
	GrPPI

	Test Environment
	Arquitecture and compilation settings
	Work methodology

	Swaptions
	Description
	GrPPI Adaptation
	Results
	GrPPI Threads

	Blackscholes
	Description
	GrPPI Adaptation
	Results

	Streamcluster
	Description
	GrPPI Adaptation
	Results

	Ferret
	Description
	GRPPI Adaptation
	Results
	Core-distribution analysis

	Conclusions
	Tests Analysis
	Usability
	Future Work

	Bibliography

