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Experimental investigation of photoconductivity in Si-rich silicon oxide (SRSO)/SiO2 multilayer

(ML) structures prepared by magnetron reactive sputtering is reported. Photocurrent (PC)

measurements show that the PC threshold increases with decreasing the thickness of SRSO layer.

Photo-conduction processes in our samples are shown to be dominated by carrier transport through

quantum-confined silicon nanocrystals embedded in the SiO2 host. In addition, the observed

bias-dependence of photocurrent intensity is consistent with a model in which carrier transport

occurs by both tunneling and hopping through defect states in the silicon oxide matrix. A

photocurrent density Jph of 1–2 mA cm�2 is extracted from our results. Although this photocurrent

density along the ML absorber film is relatively low, the results presented in this work are believed

to be a valuable contribution toward the implementation of all-Si tandem solar cells. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4737579]

I. INTRODUCTION

Silicon nanocrystals (Si NCs) are a fascinating area of

science and one that has significant technological implica-

tions. Such nanostructures have been extensively studied in

the last decade for high efficiency light emission, which hold

promise for some innovative applications in photonics based

on silicon technology.1–3 More recently, it has been proposed

to take advantage of the quantum confinement effect in Si

NC for photovoltaic applications by managing the silicon

bandgap and consequently producing efficient tandem solar

cells.4,5 Different technological approaches allowing forma-

tion of such Si nanostructures have already been developed

either in silicon-rich dielectric layer6–8 or in multilayer (ML)

structure.9–11 It has been reported the advantage of such

nanostructure to tune the energy band gap of Si NC in the

appropriate range (1.7–1.8 eV) which is required to maxi-

mize conversion efficiency.12 Among these approaches,

SiO2-based nanometric multilayer structures attract consider-

able interest since they allow managing the silicon grain size

in the Si-rich sublayer for an optimization of the carrier

transport.13 Such features indicate that compositional peri-

odic Si-rich silicon oxide (SRSO)/SiO2 multilayer system

may be a promising structure for “third generation” photo-

voltaic applications.14 Previous studies of these structures

focused on structural and optical properties have been

reported elsewhere15–18 but a lack of quantitative measure-

ments of photogenerated current persists.

Photocurrent (PC) spectroscopy is one of the important

tools for the opto-electrical characterization of semiconduc-

tor materials.19,20 The generation of photocurrent can be di-

vided into three steps: (i) the absorption of optical energy

and generation of carriers, (ii) the transport of photogener-

ated carriers, and (iii) the collection of the carriers at the

electrodes. The movement of carriers gives rise to the photo-

current, which persists until both electrons and holes are col-

lected at the electrodes or until they recombine in the

material before reaching their respective electrodes. This

measurement provides an idea about the electronic properties

(optical bandgap) of the material as well as its intrinsic trans-

port features. The photocurrent equation is given by21

Iph/
I0

�hx
ð1� expð�adÞÞ�

aL 1�exp �d aþ 1

L

� �� �� �

1þ ssr

sb

� �
ð1þaLÞ

2
664

3
775;
(1)

where Iph is the photocurrent at a particular energy, a is the

absorption coefficient at that energy, I0 is the impinging light

intensity on the surface, I0/�x is the photon flux, L is the

light penetration depth, d is the film thickness, and ssr/sb is

the ratio of surface to the bulk recombination time. This

equation describes the proportionality between Iph and the

absorbance minus loss due to surface recombination.

Recently, it has been shown that a high density of Si

NCs, close to 1019 cm�3, in such multilayer systems can be

reached.15 In addition, absorption coefficient was found to

be dependent on the nanocrystal size.16 The higher concen-

tration of Si NCs would be advantageous for the carrier pho-

toconductivity and therefore the solar cell performance. In

this paper, the opto-electrical properties of SRSO/SiO2 mul-

tilayer structures prepared by magnetron reactive sputtering

method are studied. In particular, the PC dependence on the

grain size and on the applied bias is investigated. We demon-

strate the improvement of the photocurrent response througha)Electronic mail: bechir.rezgui@im2np.fr.
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the bias voltage control. Finally, the current density in the

multilayers was evaluated under equivalent photon flux of

the AM1.5 solar spectrum.

II. EXPERIMENTAL DETAILS

Multilayer structures based on silicon oxide were depos-

ited by reactive magnetron sputtering on a p-type (100)-

oriented silicon substrate at 500 �C. The ML growth process

which alternates the deposition of stoichiometric SiO2 fol-

lowed by SRSO layer consists in sputtering a pure SiO2 tar-

get with hydrogen-rich plasma for incorporating Si excess in

the growing layer. The thickness of SRSO layer (tSRSO), and

consequently the Si grain size, was controlled by adjusting

the deposition time. The power density applied for the sput-

tering of the SiO2 target was 0.76 W cm�2, whereas the

hydrogen and argon partial pressures were fixed at 6.0 and

1.5 Pa, respectively. Four SRSO/SiO2 multilayer structures,

referred as ML1, ML2, ML3, and ML4, were prepared under

the same conditions and distinguished only by the thickness

of the active SRSO layer and, therefore, the size of Si NCs.

More details of the fabrication process can be found else-

where.16 After deposition, the samples were annealed at

1100 �C during 1 h under N2 atmosphere in order to assure

the good Si/SiO2 phase separation. Detailed characteristics

of the different ML films are listed in Table I. In order to per-

form lateral PC measurements, the transmission line model

(TLM) pattern, consisting of Al isolated square contacts sep-

arated by variable distances, was fabricated. A post-

metallization annealing at 500 �C during 15 h under N2

atmosphere was performed in order to improve the contact

resistances. Photocurrent spectra were measured with lock-in

technique by exciting the sample surface with chopped

(110 Hz) light. The sample was irradiated with a 150 W halo-

gen lamp, whose emission was monochromatically dispersed

by means of a Jobin-Yvon HR640 monochromator. The pho-

togenerated current was collected by a current amplifier

(Keithley 428) and the biases were applied using a Keithley

2410 voltage source. Before exciting the sample, the mono-

chromatic light passed through a long pass filter, in order to

eliminate higher order diffraction replica, and through a

chopper wheel, which provided the lock-in reference fre-

quency. The schematic diagram of the experimental setup

used for our PC measurement is shown in Fig. 1. The PC

spectra have been corrected with a calibrated pyroelectric

optical detector. In addition, room-temperature photolumi-

nescence (RT-PL) analyses were carried out using the

458 nm line from an Arþ ion laser source. The emission was

detected with a Jobin-Yvon iHR320 spectrometer coupled to

a liquid-nitrogen-cooled CCD Hamamatsu camera.

III. RESULTS AND DISCUSSION

To investigate the absorption characteristics, photocur-

rent measurements were carried out for each of the multi-

layers. Fig. 2 shows the spectral dependence of lateral

photocurrent of the ML films measured at 300 K and at bias

voltage of �2 V. As can be observed in the figure, the photo-

current signal starts from photon energy close to the band-

gap of silicon. Therefore, we can assign the PC threshold

around 1.05 eV to the crystalline silicon which could be

explained by the diffusion of aluminum through the ML film

to the substrate as illustrated in the inset of Fig. 2. More

importantly, our experiments reveal two photocurrent edges

which can be clearly observed in sample ML4 in the photon

energy range between 1.05 and 1.4 eV. Furthermore, the PC

maximum is shifted towards higher energy region when the

grain’s size is reduced from 8 nm to 1.5 nm. This variation of

photocurrent peak position is mainly caused by the change

of electronic energy levels in Si NCs due to the quantum

confinement effect. The light absorption in the active SRSO

layer which corresponds to the electronic transition between

quantized energy levels in Si NCs could explain the second

PC edge in ML4. Accompanying the blueshift in the PC

maximum, the broadening of the photocurrent peak is a sig-

nature of the increase of the size distribution of Si NCs. It

TABLE I. Characteristics of the investigated SRSO/SiO2 multilayer films.

Sample tSiO2 (nm) tSRSO (nm) Number of bilayers

ML1 1.5 8 3

ML2 1.5 6 11

ML3 1.5 3 7

ML4 1.5 1.5 5

Keithley 
428

Monochromatic
light

Lock-in
amplifier

Power 
supply SRSO/SiO2

film

Si
substrate

Al front 
contact

FIG. 1. Schematic diagram of lateral photocurrent measurements.
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FIG. 2. Normalized photocurrent spectra of SRSO/SiO2 multilayers versus

energy. Inset: schematic of the sample structure for lateral photocurrent

measurements.
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could also reflect the effect of the vibronic coupling between

the electronic states in silicon nanocrystals and the SiO2 ma-

trix on the photocurrent response. This phenomenon has

been interpreted well in Ref. 22. Considering the high den-

sity of Si NCs of �1019 cm�3, which was previously meas-

ured using transmission electron microscopy, the nanocrystal

spacing was estimated to be about 1 nm.15 This distance

between Si NCs is small enough compared to the tunneling

thickness predicted for silicon oxide embedded with silicon

nanoparticles.23 This process of carrier tunneling is consist-

ent with the relatively strong coupling between the adjacent

Si NCs.24

The dependence of the photocurrent threshold on the

grain size is evidenced by photoluminescence (PL) measure-

ment performed at room temperature. The variation of the

bandgap energy obtained from PL and the maximum of PC

peaks versus the nanocrystal diameter is shown in Fig. 3. As

can be seen in this figure, our results are in good agreement

with theoretical data.25 The peak energy is shifted towards

higher energies (with respect to bulk silicon) according to an

inverse power law with an exponent of 1.39 (the solid curve

in Fig. 3).

Fig. 4 depicts the room-temperature lateral photocurrent

spectra of the multilayer films measured under different

applied bias voltages. A very weak photocurrent signals

(<20 pA) was observed at zero bias pointing to the fact that

the films possess an intrinsic potential which is probably due

to the nonuniformity of SRSO layer. The spectra show a

rapid increase in PC signal with both negative and positive

bias voltages due to the enhancement of the free photocarrier

generation and transport. Significantly, an enhanced photo-

current was measured at negative bias in particular for ML2

and ML4 films. It should be noted that no photocurrent peak

shift is observed with bias voltages. It is well known that the

external field not only helps the free photocarrier generation

but also enhances the photocarrier hopping by increasing the

tunneling probability. Therefore, the observed PC in our ML

films could be assigned to the contribution of both tunneling

effect and hopping through defect states in the dielectric

matrix.26 Moreover, it can be seen in Fig. 4(d) that the

photocurrent peak below the photon energy of 1.4 eV

becomes more and more distinguishable with the increasing

applied voltage bias.

Fig. 5 illustrates the extracted photocurrent intensity at

the maximum of the PC peak as a function of the bias volt-

age. The IPC-V curves present a linear behavior which gives

reasons to believe that the current passing in the active

SRSO layer is due to the tunneling mechanism.27 The car-

riers preferentially move along the nanocrystalline silicon
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FIG. 3. Correlation between nanocrystal diameter, PL (closed circles) and

PC (open triangles) peak energies. The experimental data points compare

nicely with theoretical results obtained from linear combination of atomic

orbitals (LCAO) calculation25 (solid curve).
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chains in the active SRSO layer and tunnel through the

a-SiO2 matrix, which separates the neighbouring nanocrys-

tals. When the voltage is increased, thin oxide barriers

between neighbouring nanocrystals are tunneled and the cur-

rent increases quasi-linearly. However, carrier tunneling

through defects in the dielectric host matrix cannot be

excluded in such systems.28

Fig. 6(a) shows the PC spectra of ML3 sample versus

energy, measured at a voltage bias of �2 V and temperature

ranging from 13 to 300 K. Similar features were obtained for

the other samples which contain smaller and bigger Si NCs.

As expected, the overall structure of the photocurrent spec-

trum is shifted toward high energy as the sample is cooled

down to 13 K. This shift is due to the temperature-dependent

bandgap change which occurs in most semiconducting mate-

rials. Fig. 6(b) displays the variation of the bandgap energy

extracted from PC measurements as a function of tempera-

ture on the ML3 sample. The temperature dependence of the

bandgap energy in our experiment is well fitted by using the

Varshni equation,29

EgðTÞ ¼ Egð0Þ �
aT2

ðT þ bÞ ; (2)

where a and b are parameters known as the Varshni thermal

coefficient and the Debye coefficient, respectively. Eg(0) is

the bandgap energy at 0 K which is estimated to be 1.73 eV.

When a and b are taken to be 9.63� 10�4 eV/K and 336 K,

respectively, the curve plotted by Eq. (2) closely fits the ex-

perimental values. The temperature dependency of the

bandgap of silicon nanocrystals shows the same characteris-

tic features as those in the crystalline silicon. In multilayer

system, the carrier transport is governed by the potential bar-

rier due to the thin silicon dioxide interlayer between Si

NCs. In addition, the transport is generally determined by

the competition between two main mechanisms depending

on the temperature regimes: thermal activation and tunneling

through the potential barrier. At high temperatures, carriers

acquire the activation energy Eact necessary to overcome the

potential barrier and the photogenerated current is due to the

thermionic emission from Si NCs. As the temperature

decreases, the probability of the thermal activation for the

carriers localized in Si NCs is very low and tunneling

through the potential barrier becomes the only possible

mechanism of the transport.

One of the important physical parameters that need to be

known for future photovoltaic applications is the photocur-

rent density Jph produced in the nanostructured films. There-

fore, to demonstrate the performance of such a structure for

wide bandgap absorber layer in tandem solar cells, the light

intensity was calibrated using a pyroelectric detector to pro-

duce a photocurrent equivalent to that obtained under AM1.5

(100 mW cm�2) illumination. A photocurrent density of 1–2

mA cm�2 has been extrapolated for the investigated ML

films. Although the structures studied in this work show a

relatively small photocurrent values, a photovoltaic effect

related to the presence of Si NCs is clearly observed. More-

over, it has been reported that the tunneling probability for a

square potential well is given by30

Te ¼ 16 exp �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m�

�h2
DE

r( )
; (3)

where m* is the bulk effective mass in the respective band of

the matrix, d is the spacing between nanocrystals and DE is

the energy difference between the conduction band edge of

the matrix and the confined energy level of the nanocrystals.

Hence, transport between nanocrystals can be significantly
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0

40
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C
 (p

A
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FIG. 5. Room-temperature photocurrent intensity versus bias voltage for

different SRSO/SiO2 multilayers

FIG. 6. (a) Plot of the photocurrent spectra of ML3 sample versus energy

for temperatures varying from 13 to 300 K. (b) Variation of the bandgap

energy (extracted from PC measurement) versus temperature for ML3 sam-

ple. The solid line is the fitting curve using the Varshni equation.
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increased by the adoption of another dielectric matrix with

smaller barrier height such as silicon nitride or silicon car-

bide in silicon-based multilayer structures.

IV. CONCLUSION

In conclusion, the nanocrystal size and voltage bias-

dependent photogenerated current in SRSO/SiO2 multilayer

structures containing high density silicon nanocrystals were

studied by photocurrent spectroscopy. The strong depend-

ence of the PC threshold on the nanocrystal size was attrib-

uted to tunneling processes through Si NCs. This is clearly

confirmed by the observed blueshift of the photolumines-

cence peak energy due to the confinement effect related to

the decreased size of Si NCs. The effect of the voltage bias

on the photocurrent of different multilayers was also investi-

gated. The carrier transport in our samples is believed to be

governed by tunneling conduction via Si NCs and hopping

transport through defect states in the silicon oxide matrix.

The photocurrent density extracted from the multilayer films

show a promising but not sufficient values paving the way to

a successful application of such absorber material in all-

silicon tandem solar cells.
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