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CHAPTER 1 - 
GENERAL INTRODUCTION 

“Birds were flying from continent to continent long before we were. They reached the coldest 
place on Earth, Antarctica, long before we did. They can survive in the hottest of deserts. Some 

can remain on the wing for years at a time. They can girdle the globe. Now, we have taken over 
the earth and the sea and the sky, but with skill and care and knowledge, we can ensure that 

there is still a place on Earth for birds in all their beauty and variety — if we want to… And 
surely, we should” 

- DAVID ATTENBOROUGH 
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INTRODUCTION 

Animal migration consists of the relocation of individuals on large spatial scales, which 

habitually implies seasonal journeys from one range to another (Dingle, 2014). Compared to 

other animal groups, birds are well adapted for migration because, in addition to their ability 

to fly, they display efficient behaviour and extraordinary physiological and morphological 

adaptability (Newton, 2010). This combination of features produces some of the most 

incredible migrations in the animal world. This is the case, for instance, of the endurance 

flights exceeding 10,000 km carried out by bar-tailed godwits (Limosa lapponica) or the non-

stop flight of common swifts (Apus apus), which complete the equivalent of up to seven round-

trips to the moon during their lifetimes (Gill et al., 2009; Hedenström et al., 2016). Overall, 

10,000 or so bird species are known to be migratory and move distances ranging from short 

hops to extraordinarily long journeys across continents (Greenberg & Marra, 2005; Newton, 

2008). All these characteristics make bird migration a fascinating natural phenomenon. 

 Migratory movements enable birds to take advantage, for example, of seasonal highs 

in food abundance and better weather conditions. However, these benefits are offset by the 

challenges associated with migration, a very energy-demanding activity that obliges birds to 

cope with new environmental conditions, predators and parasites on their journeys (Alerstam 

et al., 2003; Pulido, 2007; Ramenofsky & Wingfield, 2007). Analyses of bird population trends 

across Europe (Sanderson et al., 2006) and North America (Robbins & Sauer, 1989) have 

found, for instance, that migrant birds are currently suffering more severe and more sustained 

declines than non-migrants. This general trend is associated with the accumulative impact of 

certain human activities (habitat loss, hunting, climate change, etc.) on the areas used by birds 

in their migratory circuits (Crick 2004). Thus, knowledge of the relationships between 

migratory species and the environments present on migratory circuits is a core requirement 

in any conservation strategy aimed at protecting these species (i.e. Rushton et al. 2004; Guisan 

& Thuiller 2005).  

 The study of range dynamics in migratory birds is a challenge given that these birds 

are present in areas separated by large geographical and temporal distances. As a result, 

migratory birds are vulnerable to habitat degradation or loss anywhere on their migratory 

circuit (Sherry & Holmes, 1995; Marra, 1998; Norris et al., 2004). Winter is a critical period for 

birds in many temperate areas since they have to cope with low temperatures and a scarcity 

of food (Carrascal et al., 2012). Unfortunately, a lack of data on birds’ movements throughout 

the year has hampered to date the study of migratory birds in winter in comparison with 

studies conducted in the breeding season (Marra et al., 2015; Somveille et al., 2015).  
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 The conservation of migratory birds relies on implementing appropriate conservation 

plans in all their seasonal habitats (Brochet et al., 2016). This is a difficult issue and, despite 

knowledge of certain aspects of bird winter ecology (Newton, 2010), conservation strategies 

for migratory birds have often failed to consider how populations are geographically linked 

between seasons (i.e. migratory connectivity; Webster et al., 2002). This has reduced our 

ability to detect where precisely migratory birds are affected by change. Fortunately, 

researchers today have unprecedented access to standardized high-quality methodologies 

that can follow migratory birds (Table 1; Robinson et al. 2010). The results of such studies, 

with support from citizen-science projects, are often stored in public databanks where it is 

possible to access information provided by satellite tracking devices (e.g. Movebank; 

www.movebank.org), ring-recoveries (e.g. EURING; www.euring.org) and geo-localized 

occurrences (eBird, www.ebird.org; Sullivan et al. 2016). These data, processed with ever-

more powerful sets of statistical analyses (Hochachka et al., 2012), provide novel 

opportunities for advancing knowledge of migratory bird ecology throughout the year.  

 In this thesis, we combine ring-recovery data from Euring and species-distribution 

modelling techniques (Elith & Leathwick, 2009; Broennimann et al., 2012) to investigate how 

different migratory passerines (O. Passeriformes, C. Aves) respond to variations in 

environmental conditions during their annual cycles. Specifically, we study the distribution 

patterns and the related environmental traits of these birds on their wintering grounds in the 

Western Palearctic, an important area for European birds (Busse, 2001). This area in the 

western Mediterranean Basin is used by millions of migratory birds coming from breeding 

areas in central and north Europe and so any effort to protect these wintering quarters will 

have a huge impact on the overall conservation of European avifauna. 
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Table 1 Techniques used to study animal movement. Modified from Robinson et al. (2010) 

 

RING-RECOVERY DATA AND SPECIES DISTRIBUTION MODELLING  

This thesis uses ring-recovery datasets to explore migratory bird distributions during the 

whole year and to understand how birds respond to environmental changes. Given that a lack 

of funding sometimes makes it difficult to carry out large-scale studies of species distribution 

using the most sophisticated methods (Table 1), data collected by citizen scientists represent 

a suitable alternative for use in this type of research (Du Feu et al., 2016; Sullivan et al., 2016). 

Technique  Distances 
tracked (short, 

medium, long)

 Uses Limitations 

Chemicals 
(isotopes) in 

tissues 

Short–long Assign approximate locations 

where individual birds molted 

feathers 

Coarse spatial resolution. In North 

America, north–south resolution 

better than east–west. Also tends 

to vary with altitude and elevation, 

and may vary considerably within 

single site. Maps for other locations 

are less “finished” than the North 

America map. Maps may also vary 

from year to year.

Genetic markers Short–long Assign individuals to populations 

based on  different genetic 

markers 

Limited genetic differentiation in 

many species reduces ability to 

establish locations.

PTT tags (RFID; 
Radio Frequency  

Identification) 

High Frequency)  

telemetry 

 Short Identify a marked individual with 

a reader placed at a strategic  

location (feeding or nesting site) 

Readers are expensive and  must be 

placed within a few meters of a 

nest or feeding site. 

Radio (VHF; Very Short–medium  

(long in rare 

situations with  

certain 

landscape and 

extraordinary  

effort)

Provide an individual animal’s  

location, relay physiological data 

gathered from sensors 

Transmission distance relatively  

short to ground-based receivers. 

Battery life of small transmitters a 

few weeks. Transmitter may also 

influence animal behavior.

Geolocators Medium–long Use day length to estimate 

latitude and longitude; primarily 

used on seabirds, but now small  

enough for medium-sized  

passerines

Spatial resolution varies seasonally 

across globe. Must recapture 

smaller animals  to retrieve data.

Satellite 
telemetry 

Short-long Track larger animals across globe Unless combined with GPS, accuracy 

can be low. Expensive to access 

data. Minimum size (about 8 g, 22 g 

with GPS) still too large for many 

species.

Radar Short Track intensity, speed, and 

direction of migration; track  

short flights of individuals 

For most systems, there is no 

individual- or species-specific  

information. Low flying birds  may 

be missed.
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 The ring-recovery data used in this thesis have potential biases (Busse, 2001; Korner-

Nievergelt et al., 2010) but also certain advantages if compared to other citizen-science 

databanks (i.e. eBird or GBIF): they provided the exact geographical origin and destination of 

individuals on migratory circuits (Figure 1). More explicitly, they can be used to link 

individuals between their breeding and wintering grounds, or between breeding/wintering 

grounds and stopover sites. As a result, the vast number of ringing recoveries stored in the 

main European database (EURING, http://www.euring.org/) can be used to improve the 

knowledge of population dynamics and movements that is required for addressing large-scale 

conservation projects (Tellería et al., 2012). About 115 million birds have been ringed in 

Europe and have generated around two million recoveries in Eurasia and Africa. Similar 

figures are reported from North America, with 63 million ringed birds and 3.5 million 

recoveries (Tautin 2005; Baillie et al. 2007). Thus, it is important to emphasize the potential 

of this extensive network of ringers, composed of a community of skilful and rigorous citizen 

scientists, as well as its suitability for use in coordinated projects (Du Feu et al., 2016). 

 

Figure 1 Lines connecting the ringing and recovery locations of 1103 migratory birds of 13 species 
showing the links between breeding ranges in northern and central Europe and wintering grounds in the 
Iberian Peninsula. 

 The development of new species-distribution modelling techniques has been 

accompanied by a growth in the accessibility to this huge amount of data. These techniques – 

known as Species Distribution Models (SDMs; Elith et al., 2006) – attempt to provide detailed 

predictions of bird distributions by relating the occurrence of species to a number of 

environmental predictors. In the past decade, this methodology was widely applied in 

different fields of ecology and evolution (Franklin, 2009; Peterson, 2011). However, little 

attention has been devoted to exploring the usefulness of bird ring-recovery data in modelling 

species distribution (Tellería et al., 2012). This approach provides an excellent opportunity 

http://www.euring.org/
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for researching the main environmental features affecting the seasonal distribution of 

migratory birds and for understanding how changes in these factors contribute to shaping bird 

distribution along the migratory circuit (Webster et al., 2002; Boucher-Lalonde et al., 2014). 

Nevertheless, despite the vast ring-recovery databases with information on the spatial 

distribution of migratory birds, ringing recoveries could provide a skewed view of the actual 

distribution of species due to the effects of human activity (Busse, 2001). Indeed, there are 

more recoveries near cities where people live than in uplands and mountain ranges (Reddy & 

Dávalos, 2003; Korner-Nievergelt et al., 2010). To tackle spatial variation in ringing recoveries, 

researchers have to take into account this geographical bias (Korner-Nievergelt et al., 2014) 

by, for example, examining the spatial distribution of the human footprint (HFP), a global index 

of population density, land transformation, accessibility and other infrastructures (Sanderson 

et al., 2002). This spatial index of human activity indicates the probability of detecting ringed 

birds (Figure 2) and, combined with environmental and ring- recovery data, can be used to 

predict bird distribution. After validation, the resulting SDM can be used to tackle questions 

about migratory bird ecology and distribution (Tellería et al., 2013b).  

 

Figure 2 Left: a sample of winter ringing recoveries in the Iberian Peninsula and Maghreb of European 
robins (Erithacus rubecula). Right: the Human Foot Print (HFP) in Europe. It is clear that ringing recoveries 
are spatially correlated with high HFP values. Photograph: Elena Tena 

STRUCTURE AND AIMS OF THE THESIS 

In this thesis, we study the drivers of migratory bird distribution throughout the year by 

combining ring-recovery data with present and future environmental variables. The main goal 

is to update our knowledge of the mechanisms that determine the size, location and spatial 

dynamics of migratory species wintering in the Western Palearctic for application in 

conservation and spatial ecology. We have organised this thesis into three main parts. 
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Part A: Validation of SDM derived from ring-recovery data 

This first part of the thesis evaluates the ability of SDM derived from ringing records to predict 

migratory birds’ winter distribution. Despite the potential importance of using ringing records 

to describe the range of migratory birds, few studies have ever been performed that validate 

this methodological approach (Tellería et al., 2012; Cano et al., 2014). This validation is 

essential owing to the potential bias effects of inaccurate spatial locations of ringing recoveries 

(many of which were made before the use of GPS technology became widespread) and of the 

uneven spatial distribution of people reporting the presence of ringed birds (Busse, 2001). 

The aim of this part is to determine using field surveys whether or not the occurrence 

probabilities provided by the SDM do in fact predict the actual winter distribution of a 

migratory bird (Chapter 2) and if, as predicted, they are good predictors, this validation will 

demonstrate the usefulness of ringing records in the study of the dynamic nature of ranges in 

migratory birds (Part B). They will also be useful for detecting important conservation areas 

and forecasting the effects of environmental change in the winter distribution of migratory 

birds (Part C).  

Part B: Understanding seasonal niche dynamics in migratory birds 

Despite moving across different landscapes with varying environmental conditions, species-

environmental relationships in migratory birds have often been regarded as static (Laube et 

al., 2015). However, environmental conditions in breeding and wintering sites may differ and 

so migratory birds have been classified as either ‘niche-trackers’ (i.e. they move in search of 

similar environmental conditions throughout the whole year; Nakazawa et al. 2004) or ‘niche-

switchers’ (i.e. they change their environmental preferences between seasons; Laube et al., 

2015; Gomez et al., 2016). In this second part of the thesis (Chapter 3), we use ringing 

recoveries to explore how migratory birds track spatio-temporal dynamics in the 

environmental conditions they encounter along their migratory circuit. The aim is to test the 

prediction that migratory behaviour should make birds use similar niche dimensions that are 

dynamic throughout the year (i.e. temperature or precipitation) more so than their sedentary 

counterparts.  

Part C: Applications for Conservation 

The decline of migratory species is a pressing concern worldwide and to protect them it is 

essential to know their distribution and environmental correlates. Chapter 2 opens up the 

possibility of using SDM derived from ring-recovery data to predict the range of migratory 

birds throughout the year and to forecast the distribution of these species under climate 

change scenarios. Thus, in chapter 4, we explore the distribution and size of seasonal ranges 

of some migratory passerines wintering in the Iberian Peninsula and Maghreb to test whether 

or not there is a reduction of non-breeding range size in relation to the breeding range. This 
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imbalance between seasonal ranges has been shown to be one of the main correlates of 

species’ vulnerability to global change (Gilroy et al., 2016). In chapter 5, we use climate 

projections to study the effect of climate change on the winter distribution of two migratory 

birds as a means of understanding the consequences of forecasted environmental changes for 

these model species.  

The three sections of this thesis are covered by a number of chapters, some of which have been 

published, accepted or submitted to different international journals: 

CHAPTER PAPERS STATUS 

2 Tellería, J. L., Fernández-López, J., & Fandos, G. (2014). 

Using ring records and field surveys to predict the winter 

distribution of a migratory passerine. Bird Study, 61(4), 

527-536. 

Published 

3 Fandos, G. and Tellería, J. L. Seasonal niche tracking in 

migratory populations of two partial migratory passerines 

Submitted 

4 Fandos, G. and Tellería, J. L. (2017). Range compression of 

migratory passerines in wintering grounds of the Western 

Mediterranean: conservation prospects. Bird Conservation 

International. 

Accepted 

5 Tellería, J. L., Fernández-López, J., & Fandos, G. (2016). 

Effect of climate change on Mediterranean winter ranges of 

two migratory passerines. PloS one, 11(1), e0146958. 

Published 

GENERAL METHODS 

MODEL SPECIES 

This thesis was conducted using a group of small migratory passerines wintering in the Iberian 

Peninsula and Maghreb, most of which breed on the western side of the migratory divide 

crossing Europe between 10–20oE (Busse, 2001; Møller et al., 2011; Figure 1).  

We selected passerines as model species for three reasons. Firstly, they are small abundant 

birds that occur in a broad range of habitats (Cramp & Simmons, 1988; Cramp, 1992; Cramp 

& Perrins, 1993, 1994; Tellería et al., 1999), which enables them to track environmental 

changes throughout the year; this makes them good models for exploring the environmental 

drivers of seasonal bird distribution. Secondly, small passerine species represent the bulk of 

the migratory avifauna in most regions and so play a significant functional role in certain 
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ecosystems (Whelan et al., 2008). Finally, they are conspicuous animals that are easy to count 

in field sampling and so can be used to validate the species distribution models. 

SPECIES DISTRIBUTION MODELS  

Species distribution models (SDMs) employ statistical models to combine information on the 

presence (or absence) of a species with environmental patterns as a means of predicting the 

probability of occurrence of species. The environmental conditions of presences are compared 

with the environmental conditions defined in a set of randomly selected locations (i.e. the 

background or pseudo-absence dataset); if the environmental variables are spatially explicit, 

it is thus possible to assess the probability of occurrence (or suitability index) of sites in a 

given area by projecting the SDM predictions (Figure 3; Guisan & Zimmermann 2000). In 

addition, we can use the model and occurrence and environmental data from the 

environmental space to describe and compare niches (Broennimann et al., 2012). This 

framework allows us to measure differences in environmental availability and performs a 

principal components analysis (PCA) that relates environmental values to species-occurrence 

densities. For instance, this multidimensional environmental space allows us to measure the 

niche differences between seasons in migratory birds – independently of the number of 

occurrences – with an arbitrary choice of spatial resolution (Figure 3; Broennimann et al., 

2012). 
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Figure 3 Main steps in SDM approaches. The presence records are linked to environmental variables to 
estimate the niche within an environmental space and to predict the geographical distribution of the 
species. 

 

Occurrence data 

The data used for the computation of the SDM refer to all birds recovered or ringed in winter 

(December–February) in the Iberian Peninsula or the Maghreb that, respectively, had been 

ringed or were subsequently recovered in central and northern Europe (for migratory 

populations) or in the Iberian Peninsula and Maghreb (for sedentary populations) during the 

breeding period (April–August). The data dates from 1925–2011 and were provided by the 

European Union for Bird Ringing (EURING) and the Spanish Office of Migratory Species 

(Spanish Ministry of Agriculture, Food and Environment). Additional data on the number of 

ringed birds were taken from the official page of EURING (http://www.euring.org). These data 

provide geo-referenced clusters of ringing records per species and show the location of 

marked individuals on breeding and wintering grounds.  

Environmental variables 

Fitting SDM relies on the existence of explanatory variables that define suitable environmental 

conditions for the species (Guisan & Zimmermann, 2000). Today, thanks to massive research 

in climate and the use of satellite remote-sensing techniques that explore the Earth’s surface, 

we now have access to a massive amount of data from which we can select the variables most 

likely to have the greatest impact on the biology and distribution of study species. Due to their 

overall importance in species biology, we used climate data, cover topography and land use to 

approach the seasonal distribution of these migratory birds.  
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CHAPTER 2 - 
USING RING RECORDS AND FIELD SURVEYS TO PREDICT THE 

WINTER DISTRIBUTION OF A MIGRATORY PASSERINE 

“All models are wrong, but some are useful” 

- GEORGE E. P. BOX 
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This chapter is based on the manuscript: Tellería, J. L., Fernández-López, J., & Fandos, G. 

(2014). Using ring records and field surveys to predict the winter distribution of a migratory 

passerine. Bird Study, 61(4), 527-536. 
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ABSTRACT 

Ring records can be used to predict spatial changes in habitat suitability in wintering grounds 

of migratory birds as shown by a case study with the Meadow Pipit (Anthus pratensis). To 

forecast the winter distribution of the Meadow Pipit in the Iberian Peninsula and the Maghreb 

(1700000 km2) by combining ring records and fields surveys. We processed winter ring 

records with Maxent, a popular machine-learning technique used to predict the occurrence 

probability of species. We then tested whether the occurrence probabilities predicted by the 

model were significantly positively related to the actual abundance of the Pipit in Spain and 

Morocco. Occurrence probabilities provided by Maxent explained 6% of Pipit abundance 

distribution in partial least squares regression analyses. There was, in addition, a weak effect 

of geographical location (1.5%) and a strong effect of local vegetation (17.6%) on Pipit 

distribution. The occurrence probabilities were used to classify the winter range of the 

Meadow Pipit in sectors of high, medium and low suitability. The most suitable sector occupied 

9% of the region (153000 km2) and was restricted to warm and moist lowlands where Pipits 

gather in grasslands. These results support the potential usefulness of cartographic models 

derived from ring records to describe the wintering range of migratory birds. 

INTRODUCTION 

Migratory birds spend a significant part of the year in wintering grounds where they occur in 

the most suitable habitats (Kelly, 1999). As a result, the extent and quality of wintering areas 

can restrict population sizes (Mills, 2006) or affect the subsequent reproductive success of 

migratory species (Webster et al., 2002; Norris et al., 2004). Consequently, the state of 

wintering grounds is a key issue in the conservation of migratory birds (Kirby et al., 2008). 

The extent and quality of wintering grounds can be difficult to assess if it requires the use of 

extensive surveys in areas where skilled researchers or resources are scarce (Gillings, 2008). 

In such circumstances, it can be useful to explore alternative, cost effective approaches to the 

evaluation of the wintering grounds of bird populations (Wisz et al., 2007b). Clusters of ring 

records across a map have proven useful in detecting the location of wintering grounds, 

relating them to environmental traits or describing the seasonal displacement of migratory 

populations (e.g. Clark et al. 2009; Calenge et al. 2010). However, clusters of ring records do 

not show within range distribution of most suitable habitats despite this information being 

key to detecting the sectors where most individuals remain in the winter. 

In the last decade, a set of mathematical algorithms has been developed to predict species 

distribution by combining occurrence data (latitude and longitude) with environmental 

variables provided by cartographic data banks (Elith & Leathwick, 2009). These methods map 
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the occurrence probabilities of species, which can be used to predict species distribution 

(Franklin, 2009). In this context, occurrences provided by ringing schemes could be useful for 

predicting bird distributions in wintering grounds. However, predictions resulting from ring 

recoveries can give a skewed view of the actual distribution of birds (Busse, 2001) so that the 

models must be validated through the use of independent data (Araujo & Guisan, 2006). 

Despite the potential interest of such approaches to broaden the use of ring data banks, few 

studies have been carried out to validate this methodological approach (Tellería et al., 2012; 

Cano et al., 2014). 

In this paper we use Maxent, a popular machine learning technique based on the principle of 

maximum entropy (Phillips et al., 2006), to predict the distribution of the Meadow Pipit Anthus 

pratensis (F. Motacillidae, O. Passeriformes) wintering in the Iberian Peninsula and Western 

Maghreb. This program has been designed to minimize the relative entropy between two 

probability densities (one estimated from the presence data and one from automatically 

generated presences) defined in covariate space (Elith et al., 2011). The study area (1700000 

km2) is located at the southern border of the Palaearctic, a region that may act as the main 

wintering ground for many European birds (Busse 2001;Figure 4). Our aim is to: (1) model 

with Maxent the potential distribution of wintering Pipits using the information provided by 

the spatial distribution of ring records; (2) validate with field surveys whether the occurrence 

probabilities provided by the model predict the actual distribution of the species; (3) use the 

results to identify areas of different suitability for wintering Pipits and (4) identify the best 

habitats for Pipits within these areas. 
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Figure 4 Distribution of winter localities in which ringed Meadow Pipits were recovered in the Iberian 
Peninsula and the Maghreb (yellow circles). The localities where Pipits were ringed are also recorded (blue 
circles). Inset: Distribution of sites where Meadow Pipit abundance was assessed. 

METHODS 

THE SPECIES 

The Meadow Pipit is a small (14–23 g) insectivorous passerine that breeds in moorlands and 

pasturelands across the Palaearctic (over 42°N; Cramp 1988). The European population of the 

Meadow Pipit has decreased over the last few years (BirdLife International., 2014), probably 

due to land-use changes in breeding areas (Evans et al., 2005; Kosicki & Chylarecki, 2013). 

Many Pipits from the British Islands, central Europe and Scandinavia migrate to winter in the 

Iberian Peninsula and the Maghreb where the species occurs in meadows, fallows, irrigated 

fields and wooded pasturelands (Tellería et al., 1999; Thévenot et al., 2003; Vera & Giménez, 

2012). Since this Pipit shows a dispersed distribution, the location and extent of the most 

suitable areas for wintering are not as yet known completely (see, however, Vera & Giménez 

2012). This makes it difficult to detect the potential threats to the most suitable wintering 

areas for the species. The Meadow Pipit is, in addition, a good model to test the usefulness of 

ring recoveries to predict within range distribution of habitat suitability. Since the species 

does not breed in the Iberian Peninsula and the Maghreb, predictions based on ring recoveries 
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in wintering grounds can be validated by the abundance distribution of the same migratory 

populations. This avoids the confounding effects of local birds that, in some partial migratory 

species, occupy different wintering habitats to migratory conspecifics (De la Hera et al., 2012). 

RING RECOVERY DISTRIBUTION MODELLING 

We used 318 localities where ringed Meadow Pipits were recorded at least once during 

December, January and February (Figure 4). Ring records were provided by the European 

Union for Bird Ringing (EURING) and the Spanish Office of Migratory Species (Spanish 

Ministry of Agriculture, Food and Environment). These records result from birds ringed in 

breeding grounds or migratory displacements that have been recovered during winter in the 

study region from 1960 to 2010 (Figure 4). The geographical location of ring records (latitude 

and longitude) was used to run Maxent by selecting a set of explanatory variables related to 

the distribution of this passerine within the Iberian Peninsula and the Maghreb. Since small 

birds avoid cold areas to avoid the need for excessive thermoregulatory requirements (Calder 

& King, 1974), and precipitation may affect the availability of moist grasslands suitable for this 

bird (e.g. Vanhinsberg & Chamberlain 2001; Atkinson et al. 2002; Kosicki & Chylarecki 2013), 

we selected the Mean Temperature of Coldest Quarter (bio11; TEMP) and Precipitation of 

Coldest Quarter of the year (bio19; RAIN) from Worldclim 1.4 for the period 1950–2000 

(Hijmans et al., 2005). We also included January Normalized Difference Vegetation Index 

(NDVI) as a surrogate of primary productivity (Pettorelli et al., 2011). Finally, according to the 

landscape preferences of the Meadow Pipit (see above), we considered mean cover provided 

by the variable collection Vegetation Continuous Fields MOD44B for the period 2000–10 at 1 

× 1 km spatial resolution (DiMiceli et al., 2011): bare ground (BARE; unsuitable), woody 

vegetation (WOODY; unsuitable) and herbaceous vegetation (HERBACEOUS; suitable) cover. 

We ran Maxent (log output; regularization multiplier b = 1; autofeatures; convergence 

threshold = 0.00001) in ten replicates with 70% of the presences as training data and the rest 

as test data for internal verification. Duplicate records in the same localities were removed in 

each replicate. Since ring recovery distribution can be affected by human activity (e.g. more 

records are gathered in the most populated areas; Busse 2001), we used the layer of human 

footprint (HFP, an index of population density, land transformation and road density; 

Sanderson et al. 2002) as a bias grid in Maxent to distribute 10 000 background points with a 

likelihood of presence proportional to the human footprint index (Dudík et al., 2005). We used 

the Area Under the Curve (AUC) provided by receiver operating characteristic curves to assess 

the congruence between observed and detected records in the test data reserved to 

verification in Maxent (Phillips et al. 2006; see, however, Lobo et al. 2008). Data were managed 

with Quantum GIS 1.8 and GRASS GIS in 1×1 km squares (Grass Development Team, 2012). 
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VALIDATION OF THE MODEL 

We assumed that the ability of occurrence probabilities produced by Maxent to predict Pipit 

abundance within the winter range of the Meadow Pipit was affected by at least two 

confounding effects: Geographical effects. Since Pipits move to the Iberian Peninsula and the 

Maghreb from the North, it is possible that the number of individuals will decrease at the 

southern border of the winter range producing variation in abundance that will not reflect the 

actual differences in carrying capacity (Sexton et al., 2009). This effect of migratory flyways on 

the abundance of wintering Meadow Pipits and other species has been detected elsewhere 

(Tellería et al., 2009; Cano et al., 2014). Habitat effects. Predictions of Pipit abundance 

resulting from large-scale species distribution models can be distorted at local scales by 

habitat preferences (Seoane et al., 2004). This means that Pipit abundance reported in line 

transects will be strongly affected by the local structure of habitats. Because grass and tree-

covered patches represent suitable and unsuitable conditions for the Meadow Pipit (Mason & 

Macdonald, 1999; Vanhinsberg & Chamberlain, 2001; Atkinson et al., 2006; Suarez-Seoane et 

al., 2008; Kosicki & Chylarecki, 2013), we test whether the local availability of these habitat 

patches is able to distort the ability of occurrence probabilities to predict Pipit abundance. 

FIELD WORK AND HABITAT CLASSIFICATION 

We carried out field work in Morocco and Spain in December and January from 2006 to 2013. 

We assessed Pipit abundance in 737 localities ranging from 7 to 2057 m a.s.l along a 1500 km 

belt crossing the Iberian Peninsula and the Maghreb (Figure 4). We counted all Pipits seen or 

heard at either side of 500 m long transects irrespective of the perpendicular distance at which 

each individual was detected. In this way, assuming a constant inter-habitat detectability 

(Meadow Pipits occur in open landscapes), we obtained the number of individuals recorded 

per transect, a common index of bird abundance in extensive bird counts (Bibby et al., 2000). 

Abundance counts were checked against density estimates controlling for detectability 

variation using a two belt 25 m and 25+ m comparison (unpublished data): there was a strong 

positive correlation (r = 0.92, P < 0.001 n = 737), between density (no of Pipits/2.5 ha; 2.5 ha 

results from the sampled surface per transect 500 × 50 m) and abundance index (no 

Pipits/500 m). Given that the number of Pipits per transect involved more birds (1378 vs. 837) 

we therefore decided to use this abundance index to asses Pipit distribution. In addition, we 

measured vegetation traits related to the local distribution of the Meadow Pipit in 560 out of 

the 737 line transects used to assess abundance. Measures were taken in each transect in two 

25 m radius circles separated by 200 m intervals. In each circle, we visually estimated grass 

layer (PASTURE), shrub (the percentage of vegetation between 0.5 and 2 m in height; SHRUB) 

and tree cover (the percentage of vegetation above 2 m in height, TREE). We averaged the 
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scores of the two sampling circles to characterize each line transect. The location of each 

sampling point (LAT, LONG decimal degrees) was recorded with global positioning system 

devices. 

Given the habitat preferences of the species during winter (Mason & Macdonald, 1999; 

Atkinson et al., 2006; Suarez-Seoane et al., 2008), we assumed that herbaceous cover was the 

main habitat correlated to the presence of the Pipit. Accordingly, we arranged the bird counts 

into three rough habitat types: arable lands (e.g. cereal fields and olive groves with some grass 

patches but mostly covered by bare ploughed grounds unsuitable for the species), 

pasturelands (meadows and tree-covered pastures – Iberian dehesas and montados – with 

high herbaceous cover) and woodlands (coniferous and broadleaved forests and scrublands). 

Bare ground unsuitable for the Meadow Pipit (e.g. rocky slopes, sandy areas, etc.) was not 

included in our sampling protocol. 

ANALYSES 

We explored the ability of occurrence probabilities to explain Pipit abundance distribution by 

means of partial least squares (PLS) regression, in which the effects of geographical location 

and habitat structure were included. This method is useful to solve the problem of lack of 

independence among the predictors since they are grouped in orthogonal gradients of 

covariation. The relative contribution of each variable to the derived factors was calculated by 

means of the square of predictor weights (Carrascal et al., 2009). We controlled for the effect 

of geographical location (including the potential effect of spatial autocorrelation) on Pipit 

abundance by means of the line transects’ coordinates, LAT, LONG and LAT×LONG (Legendre, 

1993). To explore the effect of local habitat structure we included PASTURE, SHRUB and TREE 

covers assessed in line transects. We repeated PLS regression analysis after splitting 

occurrence probabilities into three similar intervals (low, medium and high). They were used 

to define, respectively, wintering sectors of low, medium and high suitability within the winter 

range of the Meadow Pipit. Our aim was to test whether occurrence probability (OP) intervals 

predicted Pipit abundance distribution despite the effect of local habitat structure and 

geographical location. Finally, we used General Linear Models to test if Pipit abundance 

differed significantly among suitability sectors and habitats to identify the location of the best 

wintering habitats for the Meadow Pipit. We used the PLS–GLM modules of STATISTICA 7.0 

(StatSoft 2004). 

RESULTS 
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RING RECOVERY DISTRIBUTION MODELLING 

TEMP was the most important variable according to Maxent and the jackknife test showed 

that eliminating it from the analyses dramatically lowered the predictive power of the model 

(Table 2). RAIN and BARE followed it in importance, and the remaining variables 

(HERBACEOUS, WOODY and NDVI) were only marginally important. The AUC value was 0.881 

(Table 2), which suggests a good performance of the model according to current standards 

(Elith et al., 2002) 

Table 2 Estimates of the relative contribution of the environmental variables. Percent contribution indicates 
the change in regularized gain by adding the corresponding variable. Permutation importance represents, 
for each environmental variable in turn, the resulting drop in training AUC when the values of that variable 
on training presence and background data are randomly permuted. They are normalized to show 
percentages. Values are averages over replicate runs. The large decrease observed in TEMP (Minimum 
Temperature of Coldest Month) indicates that the model depends heavily on this variable. Symbols in 
parentheses show the trend of the response curves for the quantitative variables +, increase; –, decrease and 
=, no change). 

Variable Percent contribution Permutation importance 

Temperature (TEMP) 43.8 (+) 46.4 

Precipitation (RAIN) 24.1 (+) 25.0 

Bare ground (BARE) 23.5 (-) 24.1 

Herbaceous vegetation (HERBACEOUS) 5.8 (+) 9.4 

Woody vegetation (WOODY) 1.6 (=) 2.8 

Normalized Difference Vegetation Index (NDVI) 1.2 (+) 2.3 

AUC±SD 0.881±0.009  

VALIDATION OF THE MODEL 

Meadow Pipit abundance had a similar latitudinal trend to occurrence probabilities over the 

study belt crossing Spain and Morocco (Figure 5). Along the gradient there were many line 

transects where the species was absent. According to PLS regression, these seemed to 

correlate with unsuitable local conditions for the Meadow Pipit. These analyses identified one 

significant predictor (P < 0.001), among the eight variables, which explained 25% of Pipit 

abundance variation (Table 3). An important amount of abundance variation was attributable 

to the structural complexity of habitats (17.6%), with more Pipits in areas covered by 
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pastures. Geographical location accounted for 1.5% of abundance variation suggesting a weak 

effect of geography. After controlling for these effects, occurrence probabilities explained 6% 

of abundance variation, with more Pipits in the most suitable sites according to Maxent’s 

predictions (Table 2). 

 

Figure 5 Latitudinal distribution of sampling sites representing the occurrence probabilities of the Meadow 
Pipit predicted by Maxent (a) and the actual distribution of abundances (b). 

WINTERING SECTORS AND HABITATS 

Since the OP produced by the model ranged from 0 to 0.825, we defined three intervals of 

similar OP (0–0.286, 0.287–0.555 and 0.556–0.825) to delimit wintering sectors of low, 

medium and high suitability for Meadow Pipits. These sectors explained 6% of Pipit 

abundance variation (Table 3). The suitability sectors defined by occurrence probabilities 

intervals showed an uneven distribution across the region (low: 75%, medium: 16% and high: 

9%), with the high suitability sector covering 153 000 km2 of coastlines and lowlands (Figure 

7). 
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Table 3 Predictor weights of PLS regression analyses and the relative contribution (%) of the variables used 
to explain the abundance variation of the Meadow Pipit. Only one multivariate factor was obtained per 
model. R2: percentages of original abundance variation. The predictor variables have been grouped into 
the three main categories (see text) with the whole variation (%) accounted for. OP, occurrence probability. 

  
Model 1 (OP scores) Model 2 (OP zones) 

weight R2 weight R2 

  LAT -0.079 0.15 -0.07 0.13 

  LONG -0.133 0.44 -0.131 0.38 

  LAT x LONG -0.186 0.87 -0.183 0.74 

GEOGRAPHICAL DISTRIBUTION (TOTAL)   1.46    1.25  

  GRASS 0.450 4.13 0.441 4.21 

  SHRUB -0.484 4.77 -0.474 4.86 

  TREE -0.529 5.70 -0.518 5.81 

VEGETATION STRUCTURE (TOTAL)    14.60    14.88 

  Occurrence probability 0.494 4.97 - - 

  Low occurrence probability - - -0.395 3.37 

  Medium occurrence probability - - 0.111 0.27 

  High occurrence probability - - 0.325 2.29 

OCCURRENCE PROBABILITY (TOTAL)   4.97    5.93  

Total     20.38    18.96  

 

Habitat (arable lands, pasturelands and woodlands) produced a strong effect on Pipit 

abundance distribution within suitability sectors (GLM; sector F2,711 = 58.1, P < 0.001; 

habitat F2,711 = 79.7, P < 0.001; sector*habitat interaction F4,711 = 25.6, P = 0.003; R2 = 

0.31;Figure 6). The Meadow Pipit was more abundant in pasturelands and arable lands than 

in woodlands. Interestingly, pasturelands in the highly suitable sector defined by the ringing 

model had the highest abundances reported by transects of the entire study area (a posteriori 

Tukey honest significant difference tests for differences, P < 0.001 in all potential 

comparisons; Figure 6). This seemed to be associated with the preferences of the Meadow 

Pipit for grass-covered habitats because the trends in grass cover detected in line transects 

were also the highest in these grasslands (GLM; sector F2,552 = 13.2, P < 0.001; habitat F2,552 

= 49.2, P < 0.001; sector–habitat interaction F4,552 = 5.7, P < 0.001; R2 = 0.18; Figure 6). To 

show the location of the most suitable habitats for the species, we mapped the distribution of 

herbaceous cover provided by the collection Vegetation Continuous Fields (see Methods) 

within the high suitability sector. Plots with increasing herbaceous cover >50%, >75% and 

>90% occupied, respectively, 94.5% (145000 km2), 65% (99450 km2) and 26.5% (40 545 

km2) of the most suitable sectors (Figure 7). 
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Figure 6 Distribution of the Meadow Pipit abundance (log10- transformed, a) and grass cover (b) among 
the three sectors of habitat suitability defined by ring recoveries and the three main habitats occupied by 
the species. Results show mean with 0.95 confidence intervals. 
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Figure 7(a) Occurrence probabilities of the Meadow Pipit in the study area. (b) Distribution of high (dark 
blue), medium (green) and low (yellow) suitability sectors according to similar OP intervals. (c) Distribution 
of herbaceous cover within the high suitability sector (green: cover > 50%, light blue: cover >75% and dark 
blue: cover >90%). 

DISCUSSION 

The relative contribution of the explanatory variables (Table 2) to the model resulting from 

ring recoveries, are congruent with some biological requirements of the species. For example, 

strong preferences for warm areas (TEMP) can be explained because low temperatures 

increase the risk of starvation in small birds, particularly if food availability is not sufficient to 

cope with energetic demands for thermoregulation (Calder & King, 1974; Canterbury, 2002). 

In this context, thermal constraints can play a key role in Pipit distribution in an area 

dominated by cold mountains and highlands where temperatures are under the suitable 

thermal limit for passerines (around 20°C; Calder & King 1974). Since the average mean and 

minimum January temperatures at our sampling points were 7.0°C (range 0.3–14.7) and 

2.64°C (–5.2 to 9.6), respectively (Hijmans et al., 2005), the thermal landscape of the Iberian 

Peninsula and the Maghreb could explain the strong preference of Pipits for temperate sectors. 

This pattern has already been detected in small birds of other areas (Root, 1988; Meehan et 

al., 2004; Carrascal et al., 2012). 
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In addition to warm areas, the Meadow Pipit selected rainy sectors (RAIN). Rain is required to 

maintain moist grasslands suitable for this bird (Vanhinsberg & Chamberlain, 2001; Kosicki & 

Chylarecki, 2013). In warmer sectors of the Mediterranean region, autumn and winter rains 

improve winter productivity after summer drought, favouring the growth of a grass layer 

suitable for the species (Fernández-Ales et al., 1993). Our field surveys strongly support this 

interpretation because the grass layer (PASTURE) available to the Meadow Pipit at local scales 

was the highest in pasturelands of the high suitability sectors in the study region (Figure 6). 

However, NDVI, a surrogate of primary productivity (Pettorelli et al., 2011), was not a main 

correlate of Pipit distribution, perhaps because this index of photosynthetic activity increases 

in wooded areas, which are typically avoided by the Pipit. Finally, the model reflects a strong 

avoidance of bare ground in Pipit distribution. Therefore, according to the model, the 

wintering population of the Meadow Pipits excludes bare areas and includes warmer and 

rainier sectors. 

The results of the validation model support the view that species distribution is shaped by 

features working at different spatial scales (McGill, 2010). In migratory birds, large-scale 

distribution is usually related to geographical and climate events affecting the historical 

configuration of migratory routes, and local distribution results from the arrangement of 

individuals among habitat patches according to specific preferences (Hutto, 1985; Zink, 2011). 

In our case, the geographical distribution of the study sites explained 1.5% of abundance 

variation (Table 3), indicating a weak effect of geography on the distribution of migratory 

Pipits. This suggests that Pipits distributed themselves across the region without constraints 

related to the effect of migratory flyways. Large-scale environmental variables involved in 

occurrence probabilities could explain 6% of the variation in the geographical distribution of 

the Meadow Pipit across the study area (Table 3;Figure 6) despite the fact that the final 

distribution of individuals was strongly affected by the local structure of habitats. In our case, 

the abundance of the Meadow Pipits was positively affected by pasture cover and negatively 

affected by shrub and tree cover, which explained most of the variation in abundance over the 

wintering region (15–18%; Table 3). 

Sectors defined by occurrence probabilities intervals provided a clear view of the suitability 

of the study area for the Meadow Pipit, with the best sectors delimited by coastlines and inland 

highlands or deserts (Figure 7). Within this geographical arrangement of the Meadow Pipit, 

our study indicates a strong effect of habitats on species distribution. Sectors and habitats 

were able to explain more than 30% of the species’ distribution over the region, with 

pasturelands located in high suitability sectors being key habitats for the species (Figure 6). 

They include coastal farmlands devoted to hay and cattle production in northern Iberia and 

extensive pasturelands and wooded grasslands in warmer sectors of the South (Suarez-Seoane 

et al., 2008; Vera & Giménez, 2012; Santos et al., 2014). This distribution is congruent with the 
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habitat preferences of the Meadow Pipit reported in previous studies on the breeding and 

wintering areas of Europe (Mason & Macdonald, 1999; Vanhinsberg & Chamberlain, 2001; 

Atkinson et al., 2006; Kosicki & Chylarecki, 2013). 

This dual approach to studying Meadow Pipit distribution (sectors vs. habitat) makes it 

feasible to map the location and extent of the best wintering habitats using the herbaceous 

cover provided by the collection Vegetation Continuous Fields (DiMiceli et al., 2011); Figure 

7). This lends two additional perspectives to the distribution of Pipits in the Iberian Peninsula 

and the Maghreb. First, the best sectors (highest occurrence probabilities and extensive 

herbaceous cover) are constrained to the south-western quarter of the Iberia Peninsula 

(Tagus, Guadiana and Guadalquivir river basins) and the Sebou River basin in Morocco (Figure 

7). These are agricultural areas situated in rainy sectors that drain the autumn–winter rains 

produced by low-pressure systems into the Atlantic. Moist and warm conditions support grass 

growth and invertebrate activity suitable for the Meadow Pipit. Second, the continuous 

herbaceous cover provided by Vegetation Continuous Fields allows a view of the geographical 

compression of the most suitable sectors for the Meadow Pipit, as has been reported for many 

migratory species in areas where land masses and habitats suitable for birds are restricted 

(Mills, 2006). For instance, the high suitability sector was distributed over only 9% of the 

region with the best plots (over 90% herbaceous cover) limited to 2.4% of the area (Figure 7). 

The best areas for the Meadow Pipit and other species associated with warm, moist 

pasturelands are located in sectors of high human activity and will strongly rely on the 

development agenda of these regions, particularly as agricultural and urban encroachment 

increases. But the true consequences of these activities on Pipits are difficult to predict. In 

winter, Meadow Pipits select a broad set of managed habitats and seem to be quite adaptable 

to current changes to agro-ecosystems if moist grass and fallow patches are available 

(Atkinson et al., 2002; Suarez-Seoane et al., 2008; Vera & Giménez, 2012). Overgrazing and 

agriculture intensification are two main drivers of Meadow Pipit declines on the breeding 

grounds (Evans et al., 2005; Kosicki & Chylarecki, 2013). However, we do not know the impact 

of either process on the wintering ground studied here despite strong overgrazing in some 

areas of Northern Africa and the wholesale agricultural intensification of mild Mediterranean 

areas for fruit and vegetable growing (Mrabet & Moussadek, 2012; Schilling et al., 2012). 

Further investigations are also required to assess the effect of global warming at the southern 

border of the Palaearctic. This can affect the number of birds arriving to winter (Visser et al., 

2009; Onrubia & Tellería, 2012) and may amplify the damaging effect of drought on soil water 

content and the extent and productivity of the grasslands used by Meadow Pipits (Falloon & 

Betts, 2010; García-Ruiz et al., 2011). 

To conclude, the results in this paper demonstrate the usefulness of ring records to model the 

abundance distribution of the Meadow Pipit using Maxent, one of several methodological 
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approaches available to model species distribution (e.g. Franklin 2009). Results agree with 

similar studies carried out on wintering birds in which ringing data were shown to be sound 

predictors of abundance distribution (Tellería et al., 2012; Cano et al., 2014) and suggest two 

main conclusions. First, the usefulness of the many millions of ring records stored in national 

and transnational data banks (Tautin, 2005; Baillie et al., 2007) to predict changes in habitat 

suitability in different seasons, historical periods and geographical scenarios. Second, the 

potential usefulness of linking the traditional use of ring records with the bourgeoning activity 

of new methodological approaches designed to model species distribution from occurrence 

data (Shirley et al., 2013). 
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CHAPTER 3: SEASONAL NICHE TRACKING IN MIGRATORY 

POPULATIONS OF TWO PARTIAL MIGRATORY PASSERINES 

“En la ladera de un monte, más alto que el horizonte; quiero tener buena vista; mi cuerpo será 
camino, le daré verde a los pinos y amarillo a la genista. Cerca del mar, porque yo nací en el 

Mediterráneo.”.  

- JOAN MANUEL SERRAT 
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This chapter is based on the manuscript: Fandos, G. & Tellería, J. L. Seasonal niche tracking in 

migratory populations of two partial migratory passerines. Submitted. 
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ABSTRACT 

Migratory birds spend periods of the year in different locations due to particular ecological 

circumstances. In terms of the way they track environmental conditions, migratory birds are 

classified as either ‘niche-trackers’ (i.e. they move in the search of similar conditions) or 

‘niche-switchers’ (i.e. they change their preferences). Here we examine how migratory robins 

(Erithacus rubecula) and blackcaps (Sylvia atricapilla) track seasonal changes in the 

environment and how they differ from their sedentary counterparts. We used ringing data 

from breeding and non-breeding grounds to explore the conditions relating to the seasonal 

distribution of migratory and sedentary individuals wintering sympatrically in the Iberian 

Peninsula. We explored seasonal niche-tracking using multivariate analyses of increasingly 

more comprehensive sets of landscape and climate variables that produce different 

environmental scenarios. Migratory individuals tracked climatic conditions more than 

sedentary birds, which, on the other hand, coped with sharp changes in their permanent 

ranges. Migratory birds overlapped habitat structure less than sedentary individuals, which 

remained in the same areas throughout the year. These results suggest a trade-off between 

the greater ability of migratory individuals to track climatic conditions throughout the year 

and the capability of sedentary birds to tolerate climatic changes within their breeding ranges.  

INTRODUCTION 

Migration has evolved independently in numerous bird species in many parts of the world 

(Helbig, 2003). Indeed, an estimated 19% of the world’s bird species are migratory, with the 

greatest rates of migratory individuals being found in highly seasonal areas of the Northern 

Hemisphere (Somveille et al., 2013). According to the way they respond to seasonal changes 

in environmental conditions, migratory birds are classified as ‘niche-trackers’ (i.e. they move 

seasonally in the search of similar conditions) or ‘niche-switchers’ (i.e. they change their 

preferences according to the period of the year; Joseph & Stockwell 2000; Martínez-Meyer et 

al. 2004; Nakazawa et al. 2004). However, it is not clear how migratory birds follow these 

strategies since it has been reported that they may display either niche-tracking or niche-

switching behaviour (Joseph & Stockwell, 2000; Martínez-Meyer et al., 2004; Nakazawa et al., 

2004; Laube et al., 2015; Gomez et al., 2016). These differences may be related to certain 

biological traits of the study species or to the effects of methodological constraints. It has been 

hypothesized, for instance, that niche-tracking is a plesiomorphic trait typical of sedentary 

birds that will develop into apomorphic niche-switching in migratory individuals (Martínez-

Meyer et al., 2004; Nakazawa et al., 2004). As a result, niche-tracking and -switching will 

balance each other out according to the idiosyncratic evolutionary rates of migratory 
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behaviour (Gomez et al., 2016). It has been also pointed out that early approaches to niche-

tracking were probably flawed due to the inherent difficulties in working with multi-specific 

approaches (Peterson, 2011; Laube et al., 2015), the problems involved in comparing realized 

niches between areas where environmental conditions are unequally represented (Warren et 

al., 2008; Broennimann et al., 2012), and the use of unsuitable environmental traits to explore 

resource-tracking by birds (Peterson, 2011). Hence, resource-tracking should ideally be 

conducted using well-known model species for which the environmental variables used in the 

analyses are easily interpretable in terms of their biology (Tellería & Pérez-Tris, 2003).  

 Here we examine seasonal niche-tracking in migratory and resident European robins 

(Erithacus rubecula) and Eurasian blackcaps (Sylvia atricapilla), two common woodland 

passerines (O. Passeriformes) found in the West Palaearctic. They are both partially migratory 

(i.e. their populations are composed of individuals displaying different types of migratory 

behaviour; Chapman et al. 2011) and some individuals move from their breeding grounds in 

the north to wintering areas in the south (Cramp & Simmons, 1988; Cramp, 1992). On 

wintering grounds in the Iberian Peninsula, sedentary individuals occur sympatrically with 

their migratory counterparts, which carry out ‘breeding partial migration’ in spring (sensu 

Chapman et al. 2011) to breeding areas in the north (Pérez-Tris & Tellería, 2002a; Tellería & 

Pérez-Tris, 2003). This gives us the opportunity to explore how migratory robins and 

blackcaps track seasonal environmental changes operating in breeding and non-breeding 

periods.  

 It has been hypothesized that niche-tracking in birds will be affected by a trade-off 

between the cost for migrants of adaptations related to the tracking ability over long distances 

and the increased flexibility required by sedentary birds to tolerate a wider suite of conditions 

(Sol et al., 2005; Laube et al., 2015). This hypothesis thus predicts that migratory birds will 

move within a narrower range of environmental conditions than sedentary individuals, which 

will be obliged to cope with the changing conditions within their permanent ranges (Laube et 

al., 2015). However, this prediction will not apply to all niche dimensions and, for instance, 

migratory individuals may experience fewer seasonal changes in the dynamic niche 

dimensions they track (e.g. climate) than in the dimensions that are static over time (e.g. land 

cover; Laube et al. 2015). 

 To approach these issues we explore here the realized niches of robins and blackcaps 

that lie within an abstract hyperspace defined by different environmental variables 

(Hutchinson, 1957; Soberón, 2007). As we know that these passerines track food resources, 

thermal conditions and wooded landscapes (Telleria & Santos, 1993; Tellería & Pérez-Tris, 

2003), we use several sets of variables to create different environmental hyperspaces (Gomez 

et al., 2016) to study seasonal niche-tracking (Warren et al., 2008; Broennimann et al., 2012). 

We used ringing data for individuals trapped in breeding and wintering localities (Du Feu et 
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al., 2016) and two complementary methodological approaches to explore niche-tracking. (i) 

Seasonal niche overlap: we examined whether migratory individuals overlap seasonal niches 

more than their sedentary counterparts (Laube et al., 2015; Gomez et al., 2016). Given that 

birds do not maintain a perfect balance between niche-tracking and niche-switching (Laube 

et al., 2015; Gomez et al., 2016), we used overlap metrics to assess the strength of the 

differences between migratory and sedentary individuals. (ii) Seasonal niche change breadth: 

we took advantage of data linking individuals in breeding and non-breeding periods and an 

alternative method for assessing the strength of seasonal changes. To do so, we tested to see 

whether migratory birds have smaller Euclidean distances than sedentary birds in both 

breeding and non-breeding periods within the hyperspace defined for exploring niche overlap 

(see above). 

METHODS 

STUDY AREA  

The Iberian Peninsula covers 580,000 km2 and is located between 36º and 44ºN on the 

southwestern edge of the Palearctic (Figure 8). The mountain ranges and plateaus that are the 

most outstanding features of this wintering area give rise to sharp changes in elevation and 

concomitant variation in environmental conditions (Körner, 2007). In winter, this area 

receives migratory blackcaps and robins from the western side of the migratory divide that 

crosses Europe between 10–20º E (Cantos, 1995; Bueno, 1998). 

OCCURRENCE DATA 

We used recoveries of robins and blackcaps trapped in the Iberian peninsula provided by the 

European Union for Bird Ringing (EURING) and the Spanish Office of Migratory Species 

(Spanish Ministry of Agriculture, Food and Environment) to classify birds according to their 

migratory status (Du Feu et al., 2016). We considered migratory individuals to be all those 

birds that were ringed/recaptured in the Iberian Peninsula in winter (December–February) 

and then recaptured/ringed more than 500 km away in central and northern Europe during 

the breeding period (April–August). We considered sedentary birds to be those that were 

ringed and recovered in the Iberian Peninsula in these same two periods within a distance of 

50 km. These data provide two sets of geo-referenced clusters of ringing records per 

population (Figure 8) for which we explored seasonal niche overlap and breadth by 

establishing the environmental variables (see below) relating to bird occurrence (Warren et 

al., 2008; Broennimann et al., 2012). 
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Figure 8 Distribution of individual ringing recoveries in breeding and non-breeding areas of migratory (top) 
and sedentary (bottom) robins (Erithacus rubecula) and blackcaps (Sylvia atricapilla). 

ENVIRONMENTAL VARIABLES  

The seasonal distribution of species in a given area is explained by an idiosyncratic 

combination of environmental traits that complicates any aprioristic selection of the variables 

that define bird distribution. Large-scale approaches are further hampered by the difficulties 

that occur when using certain key variables (Peterson, 2011) such as food availability or the 

accessibility of specific microhabitats that can be tracked by blackcaps and robins (Tellería & 

Pérez-Tris, 2003; Tellería et al., 2008). In this study, we considered a set of variables available 

in large-scale data sets that may affect birds direct or indirectly (Finally, due to the important 

effects of vegetation cover on the large-scale distribution of these birds (Telleria & Santos, 

1993), we also included wood and herbaceous cover from Vegetation Continuous Fields 

MOD44B (DiMiceli et al., 2011). We did not include elevation in our analyses because, despite 

its impact as a surrogate of environmental change (Körner, 2007), most of its effects are 

already assessed more directly by the other previously mentioned variables. Climate data 

were taken from Worldclim 1.4 (Hijmans et al., 2005) and prepared as ASCII raster maps with 

a resolution of 1x1 km using the raster package in R (Hijmans & van Etten, 2013; R Core Team, 

2015). 
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Table 4). For instance, we selected maximum and minimum temperatures for both periods 

because small birds track thermal conditions to reduce thermoregulatory costs (Joseph & 

Stockwell, 2000; Carrascal et al., 2012; Khaliq et al., 2014). In addition, we included mean 

precipitation because rainfall improves primary productivity in the warmer parts of the study 

area (Nahal, 1981; Chu et al., 2016). We also included the effect of temperature and 

precipitation seasonality (standard deviation of the monthly means x 100) to assess the 

seasonal pulses of productivity tracked by many migratory birds (Wisz et al., 2007a), as well 

as aspect as a source of microclimatic variation (Gomez et al., 2016). All these variables were 

combined to produce a gradient of climate and productive suitability for birds (Finally, due to 

the important effects of vegetation cover on the large-scale distribution of these birds (Telleria 

& Santos, 1993), we also included wood and herbaceous cover from Vegetation Continuous 

Fields MOD44B (DiMiceli et al., 2011). We did not include elevation in our analyses because, 

despite its impact as a surrogate of environmental change (Körner, 2007), most of its effects 

are already assessed more directly by the other previously mentioned variables. Climate data 

were taken from Worldclim 1.4 (Hijmans et al., 2005) and prepared as ASCII raster maps with 

a resolution of 1x1 km using the raster package in R (Hijmans & van Etten, 2013; R Core Team, 

2015). 

Table 4). Finally, due to the important effects of vegetation cover on the large-scale 

distribution of these birds (Telleria & Santos, 1993), we also included wood and herbaceous 

cover from Vegetation Continuous Fields MOD44B (DiMiceli et al., 2011). We did not include 

elevation in our analyses because, despite its impact as a surrogate of environmental change 

(Körner, 2007), most of its effects are already assessed more directly by the other previously 

mentioned variables. Climate data were taken from Worldclim 1.4 (Hijmans et al., 2005) and 

prepared as ASCII raster maps with a resolution of 1x1 km using the raster package in R 

(Hijmans & van Etten, 2013; R Core Team, 2015). 

Table 4 Description and classification of variables used in the niche estimation. Abbreviations 

are as used in the figures 

Variables Dimension Abbreviation  Description 

Mean 

precipitation 

C
li

m
at

e 

P
re

ci
p

it
at

io
n

 

prec The mean precipitation for the breeding (April to 

August) and for the wintering period (December to 

February) 

Precipitation 

seasonality 

bio15 Precipitation Seasonality (Coefficient of Variation) 
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Maximum 

temperature 

T
em

p
er

at
u

re
 

tmax The maximum temperature for the breeding (April 

to August) and for the wintering period (December 

to February) 

Minimum 

temperature 

tmin The minimum temperature for the breeding (April 

to August) and for the wintering period (December 

to February) 

Temperature 

seasonality 

bio4 Temperature Seasonality (standard deviation 

*100) 

Aspect aspect Aspect as a source of microclimatic variation 

Bare ground 

H
ab

it
at

 

L
an

d
 C

o
v

er
 

bare High values specify areas without vegetation 

Wood cover tree High values specify high vegetation development 

as woodlands 

Herbaceous cover herb High values specify open areas with vegetation 

NICHE OVERLAP 

We explored the environmental overlap between seasons using the multivariate approach 

described in Warren et al. (2008), Broennimann et al. (2012) and Cola et al. (2016). This 

method accounts for the seasonal differences in environmental availability between breeding 

and wintering grounds and performs a principal components analysis (PCA) that relates 

environmental values to species-occurrence densities (ringing controls) in breeding and 

wintering periods (Broennimann et al., 2012). Thus, it creates a multivariate environmental 

grid defined by PC1 and PC2 in which each cell represents a unique combination of the 

environmental conditions available to birds on breeding and wintering grounds. 

Subsequently, the method applies Gaussian kernel density functions to estimate the 

occupancy of each cell by the species and uses the D metric (Schoener, 1970), which ranges 

from 0 (completely different niches) to 1 (identical niches), to calculate the overlap between 

seasons. This methodological approach tests whether the environmental conditions selected 

by migratory and sedentary populations on breeding and non-breeding grounds are identical 

(niche equivalency) and whether the environmental conditions occupied in winter are more 

similar to conditions in breeding periods than would be expected by chance and vice-versa 

(niche similarity; Warren et al. 2008). We ran four PCAs to produce five PC1i and PC2i 

dimensions to assess seasonal overlap (D) and to apply equivalency and similarity tests: i) 

land cover variables (tree, plant and bare-ground cover), ii) temperatures (minimum, 
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maximum and temperature seasonality), iii) climate (minimum, maximum and temperature 

seasonality, mean and precipitation seasonality, and aspect), and iv) all environmental 

variables (climate + land cover). 

For test niche equivalency and niche similarity (Warren et al., 2008; Broennimann et al., 2012), 

we performed paired comparisons of the realized niches of each population between seasons. 

The first test evaluates if the environmental conditions that define the niches of the two 

populations are identical. The second test assesses the similarity in the relative distribution 

over the environmental conditions defining the niches of two populations, and is tested by 

comparing the overlap between the two realized niches to the expected distribution of overlap 

obtained by reallocating the density of occurrence of one entity across its range of occupancy, 

while the occurrence of the other remains constant. We used rand.type = 1, as both breeding 

and wintering niche, are randomly shifted. For both tests, expected distributions were based 

on 1000 iterations of the randomization procedure. All analyses were conducted in R 2.13.2 

(R Core Team, 2015) using ecospat package (Cola et al., 2016). 

NICHE CHANGE 

We measured the Euclidean distances between the breeding and winter locations of each 

individual blackcap and robin in the space defined by PC1i and PC2i. This distance assesses 

the differences in environmental conditions experienced by individuals in breeding and non-

breeding periods and is thus a synthetic approach to the seasonal niche shift of populations. 

We used ANOVA to test whether sedentary birds had greater Euclidean distances than 

migratory individuals. All analyses were conducted in R 2.13.2 (R Core Team, 2015). 

RESULTS 

We documented 131 sedentary blackcaps that moved 1.7 ± 0.6 km (mean ± s.e; min-max: 0.0–

46.5 km) and 125 migratory blackcaps that moved 1563.4 ± 31.9 km (min-max: 509.2–2567.8 

km) between their breeding and wintering sites; likewise, we logged 53 sedentary robins (1.3 

± 0.6 km; min-max: 0.0–23.4 km) and 85 migratory robins (1948.3 ± 69.7 km; min-max: 817.5–

3658.9 km; Figure 8).  
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Figure 9 Representation of the environmental spaces described by the two first components of the PCA on 
the total set of variables. Spaces are occupied by sedentary and migratory populations of blackcaps (Sylvia 
atricapilla) and robins (Erithacus rubecula) in breeding (green) and wintering (red) periods. Shading 
represents the highest densities of occurrence; the solid and dashed contour lines illustrate, respectively, 
100% and 50% of the available (background) environment. The blue colour shows seasonal overlapping. 
The panels on the right represent the correlation circle of the environmental variables used in the PCA 

 Migratory robins and blackcaps showed a greater overlap in temperature and climate 

than sedentary individuals (Table 5,Figure 9), a trend that was not present in land cover, 

which remained similar throughout the year in resident birds (Table 5; Figure 10). The 

Euclidean distances between the breeding and winter occurrences of individual robins and 

blackcaps in the space created by PC1i and PC2i (Table 5) provide support for the differences 

between sedentary and migratory populations reported above (Figure 11). Migratory birds 

experienced fewer changes in temperature and climate but greater differences in land cover 

than sedentary individuals. Results of ANOVA analysis were for Erithacus rubecula: Total 

variables (F(1,137)=76.202, p<0.001); climate (F(1,137)=137.836, p<0.001); temperature 

(F(1,137)=85.354, p<0.001); land cover (F(1,137)=4.087, p=0.045) and Sylvia atricapilla: Total 

variables (F(1,255)=299.546, p<0.001); climate (F(1,255)=480.914, p<0.001); temperature 

(F(1,255)=247.619, p<0.001); land cover (F(1,255)=16.533, p<0.001).  
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Table 5 Niche overlap, equivalency test, and similarity test between breeding and wintering grounds of 
migratory and sedentary blackcaps (Sylvia atricapilla) and robins (Erithacus rubecula). Tests were carried 
out on different multivariate environmental grids produced by PCA analyses of different sets of variables. 
n.s.: not significant. Niche equivalency test H1: Is the overlap between the breeding and wintering niche 
higher than two random niches? Niche similarity H1: Is the overlap between the breeding and wintering 
higher than when the wintering niche is randomly introduced in the breeding ground and vice versa? 
 

  Migratory Residents 

 Var. expl. 

PC1i + PC2i 

(%) 

Overlap Equivalency Similarity Overlap Equivalency Similarity 

(D) test test (D) test test: 

Sylvia atricapilla        

Land cover  99.27 0.327 n.s. 0.029 0.896 0.039 0.009 

Temperature  74.10 0.343 0.009 0.029 0.010 n.s. n.s. 

Climate  59.41 0.219 0.009 0.059 0.031 n.s. n.s. 

Total  52.81 0.250 n.s. 0.019 0.031 n.s. n.s. 

Erithacus rubecula        

Land cover  99.26 0.295 n.s. 0.108 0.910 0.009 0.009 

Temperature  74.15 0.282 0.009 0.089 0.028 n.s. 0.049 

Climate  59.31 0.269 0.009 0.049 0.003 n.s. n.s. 

Total  52.73 0.477 0.019 0.019 0.037 n.s. n.s. 
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Figure 10 Seasonal overlap in maximum temperature and tree cover in sedentary and migratory 
populations of Erithacus rubecula and Sylvia atricapilla in breeding (green) and wintering (red) periods. 
The blue colour shows seasonal overlapping. 

DISCUSSION 

EVOLUTIONARY PROSPECTS 

Variation in migratory behaviour is a widespread trait within species from the Northern 

Hemisphere, which shift from being essentially sedentary individuals at low latitudes to 

completely migratory at high latitudes (Chapman et al., 2011). These changes in migratory 
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behaviour affect individuals, which differ in certain migration-related morphological and 

demographic traits (e.g. Pérez-Tris et al. 2000; Pérez-Tris & Tellería 2002b; Pérez-Tris et al. 

2004a for robins and blackcaps in the study area). Although the selective pressures affecting 

this differentiation are far from fully known, it ioverlaps commonly agreed that adaptation for 

long-distance flight does not require profound changes in other biological traits (Salewski & 

Bruderer, 2007). In addition, it has been suggested that the ubiquity of genetic variation 

affecting long-distance movements in partially migratory species could produce sedentary or 

migratory individuals depending on prevalent conditions (Pulido, 2007). This seems to be an 

intrinsic trait of partially migratory birds (Salewski & Bruderer, 2007) that could explain their 

capability to adapt rapidly their migratory behaviour via micro-evolutionary processes to 

change (e.g. Bearhop et al. 2004). This suggests that the plesiomorphic state of partially 

migratory species is an ill-defined state from which migratory or sedentary individuals will 

split off according to circumstances. Thus, at the onset of migratory differentiation the 

partially migratory robins and blackcaps considered in this study are suitable models for 

exploring the way migration affects seasonal resource-tracking.  
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Figure 11 Mean Euclidean distances (and 95% confidence intervals) of individuals within the environmental 
space created by the PC1 and PC2 in blackcaps (Sylvia atricapilla) and robin (Erithacus rubecula). The 
results of ANOVA between migratory and sedentary populations are reported in the results section.  

SEASONAL NICHE TRACKING 

Migratory populations of robins and blackcaps overlapped more than their sedentary 

counterparts in the temporally dynamic niche dimensions considered in this study (e.g. 

climate variables; Finally, due to the important effects of vegetation cover on the large-scale 

distribution of these birds (Telleria & Santos, 1993), we also included wood and herbaceous 

cover from Vegetation Continuous Fields MOD44B (DiMiceli et al., 2011). We did not include 

elevation in our analyses because, despite its impact as a surrogate of environmental change 

(Körner, 2007), most of its effects are already assessed more directly by the other previously 

mentioned variables. Climate data were taken from Worldclim 1.4 (Hijmans et al., 2005) and 
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prepared as ASCII raster maps with a resolution of 1x1 km using the raster package in R 

(Hijmans & van Etten, 2013; R Core Team, 2015). 

Table 4). However, the seasonal overlap of migratory individuals was far from perfect (D=1), 

a pattern reported in previous work (Peterson, 2011; Laube et al., 2015). Incomplete 

overlapping may result from misinformation on the spatial-temporal distribution of 

resources, travel costs, intra- and inter-specific interactions, fidelity to sites or a lack of 

coincident spatial-temporal patterning of traits relevant to birds (Kennedy & Gray, 1993; 

Tellería & Pérez-Tris, 2003; Jiménez-valverde et al., 2009).  

 Overlap scores (Table 5) and reduced niche changes (Figure 11) give support for the 

importance of temperature in bird tracking (Joseph & Stockwell, 2000) since, when 

precipitation and aspect were included in a more comprehensive climate scenario, no 

improved patterns were found (Table 5). Thermal preferences related to the direct and/or 

indirect effects of temperature on birds (see Methods) are more similar in migratory than in 

sedentary birds since residents are compelled to face warm conditions during the breeding 

period (Figure 10). This suggests that sedentary individuals have to cope with the hot (and 

dry) summer conditions of the Mediterranean region, a constraint that is usually linked to 

active selection by forest birds of colder and moister woodlands for breeding in the Iberian 

peninsula (Telleria & Santos, 1993; Tellería & Pérez-Tris, 2003). We can speculate that the lack 

of these constraints in temperate and moist sectors of central Europe, where European 

woodland species find the most suitable habitats (Cramp & Simmons, 1988; Cramp, 1992), 

could explain the use of landscapes with less cover on breeding grounds (Figure 10). As a 

result, migratory birds overlap land cover less than residents in Iberia, which remain year-

round within their permanent breeding sites (Table 5, Figure 11; see Laube et al. 2015). 

However, despite the shift from dense vegetation cover in breeding grounds to more open 

habitats in wintering areas that is typical of many forest birds (Zuckerberg et al., 2016), 

migratory individuals of both species avoided open areas, which supports the importance of 

specific habitat preferences in the seasonal distribution of migratory birds (Hutto, 1985). 

The link between migration and small changes in the climatic niche of robins and blackcaps 

reported in this study is not backed up by previous work (Laube et al., 2015; Gomez et al., 

2016), perhaps due to methodological differences or to the idiosyncratic traits of the study 

species. For instance, the analysis of niche-tracking at species level ignores within-species 

variation (Laube et al., 2015) and may be flawed due to the difficulties of inferring causality 

from multi-specific data (Garamszegi, 2014). In addition, not all individuals track the same 

resources under all circumstances and so an environmental trait that is closely tracked in one 

area may be ignored in another (Gomez et al., 2016). From this it follows that the results in 

this paper may also be inconsistent due to the idiosyncratic traits of the study species. For 

instance, our results will probably apply to other sedentary individuals in seasonal areas 
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where residents balance out the cost of coping with abrupt environmental changes during the 

year with the benefits of an early occupation or defence of suitable breeding sites (Kokko, 

1999).  

CONCLUSIONS  

The results in this paper support the hypothesis that partially migrant robins and blackcaps 

behave as ‘niche-trackers’ of certain temporally dynamic environmental traits (e.g. 

temperature), a behaviour pattern that agrees with the hypothetical role of niche-tracking in 

long-distance displacements (Levey & Stiles, 1992; Martínez-Meyer et al., 2004; Nakazawa et 

al., 2004; Gomez et al., 2016). Our results also suggest the potential effect of a trade-off 

between the cost of adaptations related to the tracking ability of migrants and the increased 

flexibility of sedentary individuals to tolerate a wider suite of conditions (Laube et al., 2015). 

Given that niche differentiation requires very long periods (Peterson, 2011), our results 

suggest that migratory and sedentary individuals of robins and blackcaps are good candidates 

for showing similar environmental preferences. More explicitly, migratory individuals appear 

as a specialized group occupying a restricted subset of the environmental conditions exploited 

by sedentary counterparts, which are able to confront all sudden seasonal changes in 

environmental conditions other than changes in land cover (e.g. those related to the 

Mediterranean summer drought). In this way, given that the sedentary populations in 

southern Iberian refugia seem to be linked to populations of migratory individuals that started 

to move northwards after the glacial withdrawal (Pérez-Tris et al., 2004), observed patterns 

support the view that migrants should be regarded as a stenoic fraction of southern 

populations that have evolved to carry out migratory movements. 
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CHAPTER 4 - 
RANGE COMPRESSION OF MIGRATORY PASSERINES IN 

WINTERING GROUNDS OF THE WESTERN MEDITERRANEAN: 
CONSERVATION PROSPECTS 

“In a migrant species, reproduction and the main mortality may occur in regions several 
hundred miles apart. This greatly complicates the study of the factors influencing numbers.” 

- DAVID LACK  
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ABSTRACT 

Because migrant birds occur in different parts of the world in different seasons, their numbers 

may be limited by the size of the smallest area they inhabit during the year. In addition, 

restricted ranges make populations more susceptible to local perturbations such that range 

size is frequently considered a correlate of species vulnerability. Despite this, little is known 

about the balance between seasonal ranges in the migrant populations of partial migratory 

species. These migrants are difficult to segregate from sedentary conspecifics in winter 

grounds and thus the extent of their ranges is difficult to assess. Here, we studied the extent of 

potential breeding and wintering ranges of 10 partial migratory passerines moving to winter 

in the Iberian Peninsula and the Maghreb. After testing migratory connectivity of the 

individual species, we used niche modelling to calculate the extent of potential breeding and 

wintering ranges in 1,113 pairs of ring recoveries linking individuals between breeding and 

wintering localities. The results indicate that most species show migratory connectivity and 

that all of them show range compression in winter relative to the breeding range, with scores 

ranging between 19% and 58% (mean 37%) of breeding ranges. We discuss the importance 

of non-breeding grounds to conserve migratory passerines in the Western Mediterranean 

Basin, an area under pressure from climate change and agricultural intensification. 

 

Key words: Iberian Peninsula, Maghreb, migratory dispersion, niche modelling, potential 

distribution 

 

INTRODUCTION 

Range size is considered a main correlate of species vulnerability because restricted ranges 

make species more vulnerable to local perturbations (Purvis et al., 2000; Lee & Jetz, 2011; 

Marco & Santini, 2015). However, the study of ranges is usually flawed by methodological 

difficulties in migrant species, which, as in birds, spend different periods of the year in 

separate locations (Sherry & Holmes, 1995; Klaassen et al., 2014; Runge et al., 2015b). As many 

migratory birds are in decline (Sanderson et al., 2006; Vickery et al., 2014), exploring the 

distribution and size of seasonal ranges is key to designing conservation measures at proper 

spatial-temporal scales (Marra et al., 2015).  

Birds express a variety of migratory movements, with populations spreading or converging in 

non-breeding grounds (Gilroy et al., 2016). In the case of partial migratory species (comprising 

both migratory and residents individuals; Chapman et al. 2011) studies on range compression 
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(reduction of non-breeding range size relative to breeding range and vice versa) are lacking. 

This is concerning because partial migration occurs in many species (e.g. 40% of European 

birds; Gilroy et al. 2016) and range compression can affect the size and vulnerability of 

migratory populations (Newton, 1995; Rappole et al., 2003; Mills, 2006; Norris et al., 2007; 

Runge et al., 2015b). This lack of information can be explained by the difficulties of separating 

migratory and local individuals in sympatric non-breeding grounds (De la Hera et al., 2012). 

This complicates the mapping of non-breeding ranges if compared with long-distance 

migrants in which range compression can be assessed using current distribution maps 

available in conventional atlases (Newton, 1995; Mills, 2006; Gilroy et al., 2016).  

Here, we explore the seasonal range compression of some partial migratory passerines (O. 

Passeriformes) moving to winter in the Iberian Peninsula and the Maghreb, a region reputed 

as a primary wintering ground for many European birds (Busse, 2001). Widely-dispersed, 

abundant passerines are often neglected in projects focused on locating and protecting 

important bird areas for conservation despite the fact that they represent the bulk of the 

avifauna in most regions and play a significant functional role in some ecosystems (Whelan et 

al., 2008). Thus, it is interesting to explore whether seasonal changes in the range size of 

migratory populations reveal the existence of small areas of particular conservation concern. 

It has been shown that the western Mediterranean Basin is not a homogeneous wintering 

ground since the best areas are mainly restricted to mild lowlands and coastal areas (Tellería 

et al., 1999; Carrascal & Palomino, 2012). However, we do not know if these geographical 

features reduce the wintering range of migratory populations compared to their breeding 

grounds in central Europe. 

We use ring records linking individuals between breeding and non-breeding localities to 

explore if winter ranges are smaller than summer ranges. Clusters of ring records have proven 

useful in detecting the location of ranges of migratory birds (e.g. Clark et al. 2009; Calenge et 

al. 2010), but do not depict the spatial patterning of areas suitable for populations involved in 

these movements. However, a set of mathematical algorithms has been developed in the last 

decade to predict the potential distribution of species by combining occurrence data (latitude 

and longitude) with environmental variables (Peterson, 2001; Elith & Leathwick, 2009). We 

combine these methods with the use of ringed bird’s data to estimate potential range sizes and 

to explore the environmental drivers of bird distribution (Rodríguez et al., 2007; Wisz et al., 

2007b; Rivera et al., 2011). The potential ranges resulting from these analyses are used to test 

whether wintering ranges of migratory populations in the Iberian Peninsula and the Maghreb 

are smaller than their breeding ranges in central Europe. 

METHODS 
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STUDY AREA 

The wintering area covers 1,700,000 km2 located between 28º and 44ºN at the southwestern 

border of the Palearctic (Figure 12). It receives many migratory birds, most of them from the 

western side of the migratory divide crossing Europe between 10º-20ºE (Busse, 2001; Møller 

et al., 2011). The most outstanding environmental gradients of this wintering ground are the 

sharp changes in elevation and the concomitant variation in climate conditions and vegetation 

(Figure 12). The area is dominated by cereal fields, vineyards, olive groves and Mediterranean 

woodlands and scrublands located between the moist broadleaved woodlands and meadows 

of northern Iberia and the southern expanses of the Sahara.  

RING RECOVERIES 

The data used in this paper refer to all birds recovered/ringed in winter (December to 

February) in the Iberian Peninsula and the Maghreb that were ringed/recovered in central 

and northern Europe during the breeding period (April to August; Figure 12). The data, 

ranging from 1925 to 2011, were provided by the European Union for Bird Ringing (EURING) 

and the Spanish Office of Migratory Species (Spanish Ministry of Agriculture, Food and 

Environment). Additional data on the number of ringed birds were recorded from the official 

page of EURING (http://www.euring.org; Appendices S4.1 in the supplemental materials). 

From a previous set of 13 species, we excluded Anthus pratensis, Saxicola torquata and 

Carduelis carduelis because they had less than 50 ring recoveries, a sample size that we 

considered too small for a comprehensive view of their seasonal ranges. The final data set 

included 1,113 pairs of ringed-recovered individuals for 10 species (Figure 12; Table 6). These 

data provided geo-referenced clusters of ring records per species, which show the location of 

the marked individuals in breeding and wintering grounds (Figure S 4.2-1 in the supplemental 

materials). Finally, we explored the strength of migratory connectivity of populations (most 

individuals from one breeding population move to the same wintering locations; Webster et 

al. 2002) by testing if individuals that breed close to each other also winter close to each other. 

To test this we conducted a Mantel test (Ambrosini et al., 2009) with the R package `vegan´ in 

which the statistical significance of correlation coefficients was determined by 9,999 random 

permutations (Oksanen et al., 2015).  

ENVIRONMENTAL PREDICTORS 

The geographical location of ring records was used to run Maxent by selecting a set of 

explanatory variables related to the large-scale distribution of birds in breeding and wintering 

areas. The aim was to obtain useful models and to use the response curves provided by Maxent 
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to explore the relationships between the species occurrence probabilities and the involved 

variables. We used variance inflation (VIF) analysis to avoid highly correlated variables 

(Marquaridt et al., 1970). From a set of 11 variables (seasonal maximum, minimum and mean 

temperature, temperature seasonality, seasonal precipitation, precipitation seasonality, sun 

radiation, NDVI, bare ground, herbaceous cover and tree cover) we selected five 

environmental predictors per season (VIF scores under 5, range: 1.15 -4.56). Mean 

temperatures in breeding (April to August) and wintering (December to February) ranges 

were selected because small birds avoid cold areas to limit excessive thermoregulatory costs 

(Calder & King, 1974). We also included mean precipitation in breeding and wintering 

grounds. Precipitation improves primary productivity in wintering grounds after the 

Mediterranean summer (Nahal, 1981), thus increasing the carrying capacity for wintering 

birds (Carrascal & Palomino, 2012; Tellería et al., 2014b). However, higher precipitation has 

been related in temperate areas with poor breeding success. Thus, it can be suggested that the 

moistest sectors will be suboptimal areas for breeding (e.g. Öberg et al. 2015). We also 

included the annual Normalized Difference Vegetation Index (NDVI) as a surrogate of primary 

productivity from MODIS satellite-based sensor (30” resolution, or ~1 km; (Carroll et al., 2004; 

Pettorelli et al., 2011) and, according to the strong effect of vegetation cover on passerine 

distribution (Wiens, 1989), we included wood cover from Vegetation Continuous Fields 

MOD44B (DiMiceli et al., 2011). Finally, we considered the effect of two different variables 

related to the seasonal pulses of productivity tracked by migratory birds in breeding and 

wintering grounds (Wisz et al., 2007b; Engler et al., 2014). We used precipitation seasonality 

(standard deviation of month means x 100) as a surrogate of the rain-mediated productive 

pulses in Mediterranean wintering grounds, and temperature seasonality as a surrogate of the 

productive output in central and northern European summer grounds. Climate data were 

recorded from Worldclim 1.4 (Hijmans et al., 2005) and prepared as ASCII raster maps with a 

resolution of 5x5 km with the raster package in R (Hijmans & van Etten 2013, R Development 

Core Team, 2015). 

SPECIES DISTRIBUTION MODELS 

We used Maxent, a machine-learning technique based on the principle of maximum entropy 

(Phillips et al., 2006), to predict the occurrence probability of marked populations from 

presence data (ring records) within breeding and wintering ranges. This program has been 

designed to minimize the relative entropy between two probability densities (one estimated 

from the presence data and one from automatically generated presences) defined in covariate 

space (Elith et al., 2011). In this way, it is possible to model the probability of the occurrence 

of species over a given study area. To select the area with which to calibrate the models in 

breeding and wintering grounds, we used the minimum convex polygon (convex hull) 
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produced by the full set of ring records. This is the smallest polygon in which no internal angle 

exceeds 180º and contains the records of all species. In both seasons and for all species, we 

ran Maxent (log output; regularization multiplier b = 1; autofeatures; convergence threshold 

= 0.00001) in 10 replicates with 70% of the presences as training data and the rest as test data 

for internal verification. Duplicate records in the same localities (e.g. ringing stations) were 

removed in each replicate and spatial autocorrelation was minimized by randomly removing 

occurrences within 5 km of each other. In addition, and since the distribution of ring recoveries 

can be affected by human presence (e.g., more records will be gathered in the most populated 

areas; Busse 2001), we used the layer of human footprint (HFP), an index of population 

density, land transformation and road density (Sanderson et al., 2002), as a bias grid (10,000 

background points with a likelihood of presence proportional to HFP; Dudík & Phillips 2005). 

We used mean human footprint per country because it is positively related to the density of 

all ring recoveries reported per country (r=0.53, p=0.036, n=16), a plain index of the effort 

applied to control ringed birds (Appendices S4.1 in the supplemental materials). To explore 

the importance of each predictor (see below), we carried out jackknife analyses of the 

regularized gain with training data. The models were evaluated using 10-fold cross-

validations measuring the accuracy by means of the area under the receiver operating 

characteristics curve (AUC, Fielding & Bell 1997) to assess the congruence between observed 

and detected records in the test data reserved for verification in Maxent (Phillips et al., 2006). 

Finally, we obtained a map by averaging the suitability models of individual species. With this 

map, we try to establish a comprehensive view of the main areas used by partial migratory 

passerines during the breeding and wintering periods. We used the dismo package (Hijmans 

& van Etten, 2013)in R (R Core Team, 2015) to perform all analyses  

POTENTIAL RANGE MAPS 

Geographic ranges can be derived from species distribution models by applying a cut-off 

threshold value to distinguish suitable from unsuitable areas. The resulting maps from the 

previous niche modelling process were converted into binary ‘presence–absence’ maps using 

the threshold selection method based on maximizing the sum of sensitivity and specificity 

(Manel et al., 2001). This threshold is recommended for conservation purposes as omission 

errors are avoided and sensitivity favored (Jiménez-Valverde & Lobo, 2007; Liu et al., 2013). 

We considered areas with an occurrence probability above the threshold as ‘presence’ and 

those below as ‘absence’. The geographic area occupied by species in each season were 

calculated by converting the ‘presence’ raster to a polygon shape file and calculated polygon 

areas using the WGS 84 / UTM zone 30N (32630) projection. Finally, we measured winter 

range compression dividing potential winter range by breeding range (Table 6). We used the 
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raster and dismo packages (Hijmans & van Etten, 2013; Hijmans et al., 2013) in R (R Core 

Team, 2015) to calculate the potential range map of the species in both seasons. 
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Table 6 Number of pairs of ring records used to model the distribution of migratory populations in breeding and wintering grounds. R statistics and p values resulting from Mantel 
tests. Estimated breeding and wintering ranges of the studied passerines and range compression in wintering grounds in percentage ([wintering area/breeding area]*100) 

Species Pairs of ring 

records 

Mantel test 

(R) 

Mantel test (p-

value) 

Breeding range 

 (x 10^5 Km2) 

Wintering range  

(x 10^5 Km2) 

Range compression (%) 

Carduelis cannabina  62 0,155 0,041 53.95 27.23 50.48 

Erithacus rubecula  170 0,005 0,410 119.88 24.99 20.84 

Fringilla coelebs  55 0,040 0,099 111.20 21.11 18.98 

Motacilla alba  99 0,266 0,001 118.53 41.19 34.75 

Phoenicurus ochruros  68 0,189 0,001 74.00 37.53 50.71 

Phylloscopus collybita  79 0,174 0,006 111.67 26.29 23.54 

Sylvia atricapilla  125 0,010 0,048 57.31 24.57 42.88 

Turdus iliacus  94 -0,077 0,919 35.94 20.71 57.63 

Turdus merula  60 0,149 0,007 68.20 13.49 19.77 

Turdus philomelos  301 0,044 0,002 75.57 38.52 50.97 

Mean    82.62 27.56 37.06 
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RESULTS 

Strong correlation exists between breeding and wintering sites in most species (all but robins 

Erithacus rubecula and redwings Turdus iliacus, Table 6) supporting the maintenance of 

spatial structuring in populations between breeding and wintering ranges.  

The AUC values resulting from niche modelling suggest a good performance of models 

according to current standards (AUC>0,7; Elith et al. 2002) and the response curves provide 

some additional information on the way birds are distributed within breeding and wintering 

ranges (Table 7). For instance, the occurrence probability of species in breeding grounds was 

positively related to temperature and strongly affected by temperature seasonality (Table 7). 

In wintering grounds, most species were related to temperature and woodland cover (Table 

7).  
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Table 7 Estimates of relative contributions of the environmental variables in models predicting occurrence probability of species in breeding and wintering grounds. AUC scores show 
the fitting of models (max values = 1) and the two following values represent the percent contribution/permutation importance of each variable in the model. Percent contribution 
indicates the change in regularized gain by adding the corresponding variable. Permutation importance represents, for each environmental variable in turn, the resulting drop in 
training AUC when the values of that variable on training presence and background data are randomly permuted, normalized to show percentages. Values are averages over 10 
replicate runs. Symbols in parentheses show the trend of the response curves for the quantitative variables: +, increase; -, decrease; Ω, hump-shaped = no trend). 
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Potential range maps suggest that most of the migratory populations wintering in the western 

Mediterranean Basin extend their breeding grounds in central Europe west to Poland and in 

southern Scandinavia (Figure S4.2-2 in the supplemental materials). These maps show that 

the wintering grounds occupied by migratory populations were smaller (mean 37%) than 

breeding grounds in all species (t-test for paired samples t=5.92, p<0.001, n=10; Table 5). 

More explicitly, potential winter ranges covered a mean area of 275,600 km2 (min-max 

134,900-411,190 km2,Table 6) accounting for 16% (7.9-24.2%) of the Iberian Peninsula and 

the Maghreb (Figure 12). 

 

Figure 12 a) Distribution of the Human Foot Print (HFP) index in Europe. Increasing dark tones show 
increasingly high values of HFP. The study area is located within the striped square. b) Elevation map of the 
western Palearctic. Increasing dark tones show increasing elevations, with the darkest tone showing the 
areas over 1,000 m a.s.l. c) Distribution in breeding and wintering areas of the 1,113 pairs of birds controlled 
in breeding grounds (black dots) and wintering grounds in the study area (white dots). Vertical lines show 
the longitudinal range within which are distributed the migratory divides of most migratory birds in 
Europe, according to Møller et al. (2011). d) Potential distribution of migratory populations as reported by 
the number of species (0-10) present in breeding and wintering grounds) 

DISCUSSION 

DISTRIBUTION OF POTENTIAL BREEDING AND WINTERING RANGES 
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The potential breeding ranges of individual species depicted a patchy distribution, with 

migratory populations reporting the highest occurrence probabilities in different inland or 

coastal areas of central Europe west of the migratory divide (Figure S4.2-2 in the supplemental 

materials). This suggests a diverse geographical origin of populations moving to winter in the 

western Mediterranean. When the mean potential distribution of these species is represented 

(Figure 12), the emerging map reveals that the most probable source area of migratory birds 

is located in a region that extends from the Alps to the North and Baltic seas, and from the 

French Massif Central to the Slovakian Tatra Mountains, constrained to the east by the 

migratory divide of European bird populations (Figure 12). This seems to be the core range of 

the bulk of migratory passerines moving to winter in the Iberian Peninsula and the Maghreb.  

 The response curves provided by Maxent indicated that, in breeding and wintering 

areas, the potential distribution of migratory populations tends to avoid the colder areas and 

to distribute in most seasonal areas under a given threshold of summer (cold) and winter 

(dryness) conditions (Table 7). The importance of temperature in shaping migratory bird 

distribution is widely recognized, and is the result of the high thermoregulation costs of living 

in areas under bird thermo-neutral ranges (Swanson & Jr., 2008; Carrascal et al., 2012; Khaliq 

et al., 2014). This could explain the avoidance by birds of elevated areas in breeding and 

wintering ranges (Figure 12). The potential wintering range of migratory passerines depicted 

a homogeneous pattern, with most birds constrained to similar lowlands and coastal sectors 

of the Iberian Peninsula and the Maghreb (Figure S4.2-2 in the supplemental materials, Figure 

12), where wood cover was positively (thrushes) or negatively (the rest of species) supporting 

the effect of specific habitat preferences on bird distribution (see Tellería et al. 1999; Palomino 

et al. 2012). These patterns are similar to the wintering maps reported by ring modelling of 

meadow pipits (Anthus pratensis), chiffchaffs (Phylloscopus collybita), blackcaps (Sylvia 

atricapilla) and robins (Erithacus rubecula), validated by field sampling of abundances 

(Tellería et al., 2012, 2014b, 2016).  

RANGE COMPRESSION IN WINTERING GROUNDS  

Compression of winter ranges reported by common distribution maps of species seems to 

occur in half of the western Palearctic migratory birds (Gilroy et al., 2016). This reveals the 

importance of a phenomenon that varies between species (and populations) according to the 

idiosyncratic features of the species and regions involved in this process. Because of this 

potential variability, range contraction is a context-dependent process whose effect on the 

conservation of migratory populations must be approached on particular migratory 

populations within their geographical ranges (Gilroy et al., 2016).  
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This study, which has focused on migratory passerines wintering in the Iberian Peninsula and 

the Maghreb, supports a sharp reduction of potentially suitable areas in winter ranges 

affecting all the study species, with compression scores ranging from 19% to 58% (mean 37%) 

of breeding ranges (Table 6). This effect of range compression affecting all species is higher 

than that reported in Palearctic land birds moving to winter south of the Sahara, where 69% 

of species (n=62) experienced a reduction of ranges in non-breeding grounds (Newton, 1995). 

In fact, our results are more similar to those reported in North American land birds moving to 

winter in Mesoamerica, where most birds (94%, n=89) showed a reduction of non-breeding 

range (Mills, 2006). In this case, range contraction was explained by the sharp reduction of 

emerged lands available to birds in the Mesoamerican corridor (Mills, 2006). We suspect a 

similar effect in the southwestern border of the Palaearctic, where migratory populations are 

restricted to a minor part of emerged lands (mean range covers 16% of the Iberian Peninsula 

and the Maghreb) because suitable areas are constrained by coastlines, cold highlands and the 

dry expanses of the Sahara (Tellería et al., 2014b, 2014c).  

CONSERVATION PROSPECTS 

Disentangling the geographic distributions of the migratory populations throughout the year 

may provide valuable knowledge for conservation decisions (Chen et al., 2002). Although 

breeding and non-breeding conditions have been studied independently, the study of 

migratory connectivity is essential for understanding the effects of threats along the year on 

migratory birds (Cresswell, 2014). Results in this paper support migratory connectivity 

between wintering and breeding ranges of most passerines moving to the Iberian Peninsula 

and the Maghreb. Lack of migratory connectivity in redwings and robins could result of within-

range movements typical of some birds (Tellería et al., 2014a; Stutchbury et al., 2016) or the 

small scale of approach in this study (e.g. Ambrosini et al. 2016 report migratory connectivity 

of robins at continental scale). In addition, small Mantel r scores suggest that winter ranges of 

the species may extend outside the study area (Table 6), a pattern probably related to the high 

mobility of many birds in the non-breeding period (Newton, 2010). But connectivity of 

migratory populations seems to be a common pattern in birds (Cresswell, 2014), even at very 

small spatial scales of approach (Cormier et al., 2016). As a result, connectivity is expected to 

underpin the response of breeding populations to any local deterioration in non-breeding 

ranges, a main issue in migratory bird conservation (Webster et al., 2002). 

 

The results in this study suggest that, because of small range size, the wintering grounds in the 

Iberian peninsula and the Maghreb may act as ‘bottlenecks’ of passerine populations involved 

in these migratory movements (Weber et al., 1999; Gilroy et al., 2016). This will likely occur 
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in species tied to scarcer habitats, or limited by food availability. However, evidence available 

in the study area does not clearly show such limitations in the case of common passerines. 

Most migratory passerines arrive at this area in October, when autumn rains begin a period of 

primary productivity, invertebrate activity and fruit abundance (Nahal, 1981; Guo et al., 2012). 

Common passerines rely on seeds, invertebrates and fruit available in extensive human-

modified landscapes (e.g. cereal fields, olive groves, etc.) and Mediterranean scrublands and 

woodlands (Rey, 2011; Del Moral et al., 2012; Tellería et al., 2014c) where field studies do not 

support food restriction (Díaz & Tellería, 1994; Hampe, 2008; Tellería et al., 2013a). We 

acknowledge that this balance will be disrupted in winters of food scarcity, a situation that 

many birds cope by food-tracking (Rey, 2011; Tellería et al., 2014a). However, movement 

among suitable areas will not be enough if changes affect simultaneously the carrying capacity 

of the whole range. The southwestern border of the Palearctic is expected to suffer the strong 

effects of climate change, with increasing temperature and decreasing rainfall (Giorgi & 

Lionello, 2008; Schilling et al., 2012). In this context, it has been predicted the depletion or 

altitudinal shifts of lowland habitats suitable for wintering birds (Ruiz-Labourdette et al., 

2012; Ponti et al., 2014; Tellería et al., 2016). The response of birds to these changes in 

wintering areas is difficult to predict (La Sorte et al., 2009) but the resulting carry over effects 

of these environmental changes (Norris et al., 2004) will affect populations in larger breeding 

areas of Europe.  
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CHAPTER 5 - 
EFFECT OF CLIMATE CHANGE ON MEDITERRANEAN WINTER RANGES 

OF TWO MIGRATORY PASSERINES 

“Prediction is very difficult, especially if it's about the future” 

- NIELS BOHR 
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This chapter is based on the manuscript: Tellería, J. L., Fernández-López, J., & Fandos, G. (2016). Effect 

of climate change on mediterranean winter ranges of two migratory passerines. PloS one, 11(1), 

e0146958. 
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ABSTRACT 

We studied the effect of climate change on the distribution of two insectivorous passerines (the 

meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the 

Western Mediterranean basin. In this region, precipitation and temperature can affect the 

distribution of these birds through direct (thermoregulation costs) or indirect effects (primary 

productivity). Thus, it can be postulated that projected climate changes in the region will affect the 

extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several 

hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and 

other geographical and habitat predictors on bird distribution. Multivariate analyses reported a 

positive effect of temperature on the present distribution of the two species, with an additional effect 

of precipitation on the meadow pipit. These climate variables were used with Maxent to model the 

occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy 

of the two species in the study localities adjusted to the distribution models, with more birds in 

sectors of high climate suitability. After validation, these models were used to forecast the 

distribution of climate suitability according to climate projections for 2050-2070 (temperature 

increase and precipitation reduction). Results show an expansion of climatically suitable sectors into 

the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from 

southern sectors related to rain reduction. The predicted patterns show a mean increase in climate 

suitability for the two species due to the warming of the large highland expanses typical of the 

western Mediterranean. This suggests that highlands can serve as refuge areas for wintering birds, a 

trend that could be applied to other areas in the Mediterranean basin and worldwide.  

INTRODUCTION 

Modern climate change is a main driver of large-scale species distribution, but its actual effects on 

individual species will result from a variety of context-dependent processes that need to be explicitly 

studied at the proper scales (Stenseth et al., 2002; Walther et al., 2002; Parmesan, 2006). This 

involves investigating the way climate change affects the environment requirements of organisms 

and how they cope with the changes through relocation, phenotypic plasticity or adaptation (Heller 

& Zavaleta, 2009). Only in this way it is possible to understand the potential effects of changes on 

species and to design preventive or proactive measures to cope with them realistically (Moritz & 

Agudo, 2013).  

Migratory birds are sensitive to climate change in the different geographical sectors along their 

migratory journeys (Knudsen et al., 2011). This itinerancy makes it difficult to explore the potential 

effect of climate change on these species (Sanderson et al., 2006). In the case of European migratory 

birds, it has been predicted that many trans-Saharan species will shift their wintering range due to 

the effect of climate change (Barbet-Massin et al., 2009), but little is known about the fate of wintering 
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grounds in the Palaearctic. Some evidence suggests a shift northwards of wintering ranges in some 

European birds but few studies have investigated the impacts of climate change on wintering areas 

in the Mediterranean Basin (Pautasso, 2012). This is, however, a main wintering ground for the 

Western European avifauna (Busse, 2001) because the arrival of autumn rains mitigates the limiting 

effects of summer drought initiating a period of primary productivity, invertebrate activity and fruit 

ripening suitable for wintering birds (Nahal, 1981).  

The Mediterranean basin is located at the southwestern border of the Palaeartic (Figure 13), which 

is expected to suffer stronger effects in terms of climate change (Giorgi & Lionello, 2008; Schilling et 

al., 2012). Thus, it is suspected that climate change will influence the extent and suitability of this 

wintering ground for birds, but no information is available on the potential strength and spatial 

distribution of changes. These changes have potential conservation implications because can affect 

the survival or the subsequent reproductive success of migratory birds and thus their populations 

trends (Rappole et al., 2003; Norris et al., 2004; Kirby et al., 2008). In the current work, we study the 

potential effect of climate change in two common passerines (the meadow pipit Anthus pratensis and 

the chiffchaff Phylloscopus collybita) wintering in the Iberian Peninsula and the Maghreb. More 

explicitly, we address the following objectives: 

 

Figure 13 Elevation map of the Western Palaearctic. The study area is located within the stripped square. 
Increasing dark tones show increasing elevations, with the darkest tone showing the areas over 1,000 m a.s.l. 

EFFECTS OF CLIMATE ON THE PRESENT DISTRIBUTION OF MIGRATORY BIRDS  
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We assess the effects of climate on the abundance distribution of pipits and chiffchaffs in a set of 

study localities along a 1500 km-long belt crossing Spain and Morocco (Figure 14). This is a 

preliminary step to understand the effect of climate change on birds. We assume that climate can 

affect the distribution of wintering passerines in two main ways. First, food availability (e.g. seeds, 

fruits, invertebrates) is ultimately derived from plants and the effect of climate on plant productivity 

(e.g. through precipitation or temperature) influences bird abundance (Lennon et al., 2000; Evans et 

al., 2006). Second, low temperatures increase the energy demands of these small birds, which are 

then forced to increase food intake to cope with thermoregulatory requirements (Calder & King, 

1974; Schmidt-Nielsen, 1984). As a result, it can be postulated that the occupation of warm areas will 

decrease the need for thermogenesis and thus reduce individual daily energy requirements, enabling 

more birds to occur at a given level of productivity (Wright, 1983; Meehan et al., 2004). However, 

this effect of climate on bird distribution could be affected by the competing effects of other 

geographical and environmental features (Seoane et al., 2004; Melles et al., 2011). For instance, pipits 

and chiffchaffs arrive at the study area from the north. This seasonal afflux of birds could decrease 

the number of individuals involved in the colonization of the southern border of the winter range. 

This is usually related to the positive effect of migration length on mortality and energetic costs 

(Wikelski et al., 2003; Newton, 2010). Similar effects have already been reported in this wintering 

ground, where migratory fluxes affect winter distribution of birds (Tellería et al., 2009; Cano et al., 

2014). In addition, birds are strongly affected by vegetation structure so that the availability of 

suitable sites will strongly affect their presence in a given area (Hutto, 1985). Thus, given the multiple 

determinants of bird distribution, we use a multivariate approach to assess the relative contribution 

of climate vs. other geographical and habitat predictors on the distribution of pipits and chiffchaffs.  
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Figure 14 Study area and sampling effort distribution. A. Distribution of tree cover and political division of the study 
area. AR: Algeria, MO: Morocco, PO: Portugal, SP: Spain. B. Distribution of localities where the occupancy and 
abundance of species was sampled. C and D. Distribution of winter localities in which ringed meadow pipits and 
chiffchaffs were recorded. 

MODELLING THE PRESENT DISTRIBUTION OF CLIMATE SUITABILITY  

We use climate variables affecting pipit and chiffchaff abundance to predict the distribution of the 

most suitable wintering grounds. To do this, we use the spatial distribution of winter ring records 

provided by the European Union for Bird Ringing (Euring; http://www.euring.org/) to explore the 

distribution of species. As these recoveries are widely distributed throughout the study area (Figure 

14) they can be used to explore the environmental preferences of birds. The models will be 

constructed with Maxent, a popular machine-learning technique designed to predict the occurrence 

probabilities of species by combining species presences (latitude and longitude) with the 

geographical distribution of climate variables (Phillips et al., 2006; Elith et al., 2011). The ability of 

these maps to identify sectors of different climatic suitability will be tested with the distribution of 

pipits and chiffchaffs in the study localities (Figure 14). If the actual occupancy and abundance 
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(Gaston et al., 2000) of birds agree with the occurrence probability maps, we will use the models to 

forecast the changes in the extent and suitability of wintering areas according to predictions of 

climate change. This approach assumes a "space-for-time" design, which attempts to predict 

temporal changes from present spatial correlates between species distribution and climate variables 

(La Sorte et al., 2009).  

EFFECTS OF CLIMATE CHANGE ON THE WINTER DISTRIBUTION OF MIGRATORY BIRDS  

Finally, we use the validated distribution models to forecast the suitability of wintering grounds 

according to climate projections. The effect of climate change on breeding bird distribution has 

already been studied in the western Mediterranean (Seoane & Carrascal, 2008; Triviño et al., 2013), 

but little is known about the way climate change will affect winter bird ranges. It has been predicted, 

for instance, that warming will improve the suitability of colder sectors, such as mountain and 

highlands (Carrascal et al., 2012). Climate predictions also suggest a reduction in precipitation in 

some southern areas that could reduce primary productivity (García-Ruiz et al., 2011; Guo et al., 

2012) and the concomitant suitability of present wintering grounds for some species (Carrascal & 

Palomino, 2012; Tellería et al., 2014b). Thus, climate changes will likely be affected by latitudinal and 

altitudinal gradients producing a patchy distribution of the future climate trends. This study attempts 

to map the location and extent of these changes in climate suitability of the Iberian Peninsula and the 

Maghreb for the two study species. 

MATERIALS AND METHODS 

THE MODEL SPECIES 

The meadow pipit (mean body mass 18.4 g; (Dunning, 1992)) feeds on invertebrates in meadows 

and grasses of open habitat patches (Cramp & Simmons, 1988). The chiffchaff (7.8 g) feeds on insects 

within a broader set of substrata and occurs in tree- and shrub-covered habitats (Cramp, 1992). 

These passerines were selected as model species for two reasons. First, they do not breed in the study 

area (the meadow pipit) or mainly breed in some areas of the northern Iberian Peninsula (the 

chiffchaff; Cuesta & Balmori 2003)). Thus, most if not all birds wintering in the study area are 

migratory individuals (Tellería et al., 1999; Thévenot et al., 2003; Del Moral et al., 2012). This trait is 

interesting from a methodological point of view because it will attenuate the confounding effects of 

local conspecifics on the abundance patterning of migratory individuals (De la Hera et al., 2012). In 

this way, predictions based on ring recoveries in wintering grounds can be validated by the 

abundance distribution of the same migratory populations (Tellería et al., 2014c). Second, pipits and 

chiffchaffs are small insectivorous passerines that occur in a broad range of habitats (Cramp, 1992). 

Small body size makes birds more sensitive to temperature (Schmidt-Nielsen, 1984) and a diet based 
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on insects makes them potentially ubiquitous since these invertebrates are available in a wide range 

of habitats (Levey & Stiles, 1992). This implicitly assumes the potential of these species to track 

climate changes across the entire study area. 

STUDY AREA 

The study area is located between 28º and 44ºN at the southwestern border of the Palaearctic, 

covering an area of 1,700,000 km2 (Figure 13). It is a transitional, Mediterranean region located 

between the moist woodlands and meadows of the northern and western half of Iberia and the dry 

expanses of the Sahara (Figure 14). The area is covered by extensive bare lands, grasslands and 

farmlands (e.g., cereal fields, olive groves) interspersed with Mediterranean scrublands (Pistacia 

lenticus, Olea europaea, etc.) and oak (Quercus ilex, Quercus suber, etc.) and conifer (Pinus halepensis, 

Pinus pinaster, etc.) woodlands. The most outstanding trends along this latitudinal gradient are the 

sharp changes in elevation and the concomitant changes in climate conditions (Figure 15). 

 

Figure 15 Elevation, climate and bird abundance distribution along the latitudinal gradient defined by the sampling 
localities in Figure 14B. A) Elevation, B) temperature, C) precipitation seasonality, D) precipitation. Climate 
variables are averages provided by the WorldClim-Global Climate Data facility (http://www.worldclim.org) for the 
1950-2000 and 2050-2070 periods (see text). The abundances along the gradient of the meadow pipit (E) and the 
chiffchaff (F) are also reported. 
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EFFECTS OF CLIMATE ON THE PRESENT DISTRIBUTION OF BIRDS  

Field sampling  

Field work was carried out from 2006 to 2013 to assess meadow pipit and chiffchaff abundance in 

556 localities ranging from 7 to 2110 m a.s.l. along a 1500 km belt crossing the Iberian Peninsula and 

the Maghreb (Figure 14). At these points, located in free-access sites, we recorded all individuals seen 

or heard at either side of 500 m-long line transects irrespective of the perpendicular distance at 

which each individual was detected. The number of individuals recorded per line transect is a 

common index of bird abundance in extensive bird counts (Bibby et al., 2000). In each transect, we 

measured some vegetation traits in two 25-m radius circles separated by 200-m intervals. In each 

circle, we visually estimated grass cover and shrub and tree layers (shrub under 0.5 m, between 0.5- 

2 m and >2 min height). We also recorded the number of tree and shrub species within the circles. 

The scores of the two sampling circles were averaged to characterize each line transect. We 

conducted a principal components analysis to reduce tree and shrub cover and richness to just one 

score. We retained a single principal component (eigenvalue: 2.80), which explained 55.94% of 

variance and was interpreted as a gradient of increasing vegetation cover (factor loadings for 

vegetation cover under 0.5m height: -0.01; cover 0.5-2 m height; 0.84; cover >2 m height: 0.77; shrub 

species: 0.84 and tree species: 0.90). Factor scores of each locality within the component were used 

as an index of shrub and tree development (woodland). The location of locality (latitude and 

longitude in decimal degrees) was recorded with GPS devices.  

Climate 

We assessed climate conditions of the study sites by using mean scores provided by Worldclim 1.4 

for the 1950-2000 period (Hijmans et al., 2005). Since we propose that small birds avoid cold areas 

to prevent excessive thermoregulatory requirements, and precipitation may affect the productivity 

of Mediterranean habitats after summer drought (see Introduction), we selected Mean Temperature 

of Coldest Quarter (bio11) and Precipitation of Coldest Quarter of the year (bio19) as the two main 

climate correlates of bird distribution. In addition, we included Precipitation Seasonality (bio15) as 

a surrogate of the rain-mediated productive pulses typical of many dry habitats that track migratory 

birds (Alerstam & Enckell, 1979; Wisz et al., 2007b). Finally, to test if the present spatial patterning 

of climate variables is similar to that provided by Worldclim for the second half of the twentieth 

century, we requested from World Weather (http://en.tutiempo.net/) the available climate data 

(years 2012-2013) in 25 meteorological stations located along the study area (from Avilés 43.55ºN, 

6.03ºW to Sidi Ifini 29.36ºN, 10.18ºW). Despite strong differences in sample size affecting the means 

(50 vs. 2 years), climate variables depicted similar trends (bio 11, r: 0.93; bio15:0.69 and bio19:0.70, 

p<0.001 in all cases) supporting the usefulness of climate data used in this paper to explore the 

features affecting the present spatial distribution of birds.  
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Analyses 

 We used meadow pipit and chiffchaff abundance distribution as response variables and climate 

(temperature, precipitation, precipitation seasonality) and vegetation structure (grass and woodland 

cover) as predictor variables. The effect of latitude (and the potential effect of spatial 

autocorrelation) (Legendre, 1993) on bird abundance was also included by means of the line 

transects’ coordinates, latitude, longitude and latitude x longitude. To deal with the large number of 

zeros in transects (Figure 14) we used the hurdle count model approach provided by pscl-R 

(Jackman, 2015). These models are two-component models with a hurdle component that models 

the zero counts and a truncated count component for positive counts (Zuur et al., 2009). The count 

model is normally a truncated Poisson or negative binomial regression (with log link). The hurdle 

model is a bionomial logit regression or a censored count distribution model (Jackman, 2015). We 

used the Akaike's Information Criterion (Burnham & Anderson, 2002) to select the best model and 

variable combination with lmtest-R (Zeileis & Hothorn, 2002). 

MODELLING THE PRESENT DISTRIBUTION OF CLIMATE SUITABILITY  

Ring recovery distribution modelling  

 We used the localities where ringed birds were recorded in December, January and February 

(374 for the meadow pipit and 516 for the chiffchaff; duplicate records in the same localities were 

removed in each replicate) as presence data (Figure 14). These records result from birds ringed in 

breeding grounds or during the migratory displacements that have been recovered in the study 

region from 1960 to 2010. The geographical location of ring recovery localities (latitude and 

longitude) was used to run Maxent combined with the climate variables (temperature, precipitation, 

precipitation seasonality; see above). Since ring recovery distribution can be affected by human 

activity (e.g. more records are gathered in the most populated areas) (Busse, 2001), the layer of 

human footprint (an index of population density, land transformation and road density) (Sanderson 

et al., 2002) was used as a bias grid to distribute 10,000 background points with a likelihood of 

presence proportional to the human footprint index. Maxent (log output; regularization multiplier b 

= 1; autofeatures; convergence threshold = 0.00001) was run in 10 replicates with 75% of the 

presences as training data and the rest as test data for internal verification. The Area Under the Curve 

(AUC) provided by the receiver operating characteristic curves was used to assess the congruence 

between observed and detected records in the test data reserved for verification in Maxent (Phillips 

et al., 2006).  

External validation  

 We used the data provided by line transects to test the ability of Maxent models to predict 

bird distribution. To do this, we divided the occurrence probability resulting from Maxent into three 

similar interval sectors between the min-max intervals. The resulting ranges were used to define 
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maps of low, medium and high climate suitability for each species. The line transects were distributed 

within these sectors to test with χ2 or ANOVA analyses if the number of localities at which the species 

are found to occur (occupancy) (Gaston et al., 2000) and mean abundance increased from low to high 

climate-suitable sectors (Tellería et al., 2014c). In addition, since the distribution models were 

launched to predict climate suitability, the effect of habitat structure on bird distribution was 

controlled by selecting the habitats mainly used by pipits (grasslands, farmlands, wooded 

pasturelands; n=375) and chiffchaffs (wooded pasturelands, farmlands, scrublands, woodlands; 

n=320) according to current information on winter habitat preferences (Tellería et al., 1999; 

Thévenot et al., 2003; Del Moral et al., 2012). In this way, we tried to avoid the absences resulting 

from the unsuitability of some habitats.  

EFFECTS OF CLIMATE CHANGE ON BIRD DISTRIBUTION  

After validation, the Maxent models were used to project the changes in species distribution under 

RCP2.6 and RCP8.5 scenarios for 2050 and 2070 (AR5 report) [61] provided by the WorldClim-Global 

Climate Data facility (http://www.worldclim.org/). Scenario RCP2.6 is representative of mitigation 

policy aiming to limit the increase of global mean temperature to 2°C. Scenario RCP8.5 does not 

include any mitigation target (Harris et al., 2014). We used two independent global circulation 

models (MIROC5 and CCSM4) suitable for the study area to predict the changes. To obtain a 

straightforward view of the species distribution in the future, we also averaged all predicted trends 

for scenarios, models and time periods (2050 and 2070). 

Present occurrence probabilities were subtracted from future occurrence probabilities to map the 

distribution of increasing and decreasing climate suitability sectors. To explore the spatial 

distribution of climate and climate suitability changes for pipits and chiffchaffs, we distributed 500 

random points over the Iberian Peninsula and Morocco (there were actually 493 because seven 

points were discarded for lack of data). In each point, the reported changes in climate suitability and 

climate variables were used as response variables and latitude, longitude, latitude x longitude, 

altitude and altitude2 (to detect hump shaped distributions along the elevation gradient) were used 

as predictors. Present and future scores were compared by repeated measures ANOVA and the 

spatial trends of changes by GLM analyses. All cartographic data were managed with Quantum GIS 

2.8 and GRASS GIS in 10 x 10 km squares (Grass Development Team, 2012). Statistical analyses were 

carried out with Statistica 8.1 (StatSoft, USA).  

RESULTS 

EFFECTS OF CLIMATE ON THE PRESENT DISTRIBUTION OF MIGRATORY BIRDS  
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A negative binomial distribution for the count model and a logistic regression for the binomial model 

was the best zero hurdle model for the two species (Table 8). The meadow pipit occurred more 

frequently in warm and rainy areas covered by grasses with low woodland cover, and the chiffchaff 

was more frequent in southern, warm sites covered by woodlands. The best count model was a zero 

altered negative binomial regression with log link (Table 8). According to this model, the meadow 

pipit was more abundant in northern, rainy sites covered by grasses and the chiffchaff in warm sites 

covered by grasses. The two methodological approaches support an effect of climate variables on the 

species distribution, with more frequent and abundant meadow pipits in warm and rainy sectors and 

more frequent and abundant chiffchaffs in warmer areas. 

Table 8 Zero truncated models to explain occurrence and abundance distribution of the Meadow pipit and the 
Chiffchaff in wintering grounds of the Iberian peninsula and the Maghreb. Zero hurdle models show the features 
related to the occurrence of species and count models the features affecting abundance. These models have been 
selected according to AIC criterion from a broad set of alternative models and variable combinations (see text). 

 Zero hurdle model Count model 

 Meadow pipit Chiffchaff Meadow pipit Chiffchaff 

 Estimate P Estimate P Estimate P Estimate P  

Intercept -18.15 <0.001 7.47 0.206 16.15 0.004 -13.98 <0.001  

Lat. -  -0.49 <0.001 0.20 0.013 - -  

Long. 1.17 <0.001 2.46 0.003 0.54 0.009 - -  

Lat. x Long. -0.04 <0.001 -0.07 0.003 - - - -  

Temperature 3.54 <0.001 3.95 <0.001 - - 6.78 <0.001  

Prec. season. - - - - 2.41 0.280 - -  

Precipitation 3.37 <0.001 - - 4.25 <0.001 - -  

Grass 0.92 <0.001 - . 0.61 0.041 0.87 <0.001  

Woodland -1.49 <0.001 0.92 <0.001 - - - -  

MODELLING THE PRESENT CLIMATE SUITABILITY  

Winter temperatures and precipitations were the most important variables in modelling the 

occurrence probabilities of the meadow pipit and the chiffchaff with Maxent (Table 9). In the two 

species, the most suitable areas were located on coastlines and in lowlands of the study region 

(Figure 16). The occupancy and abundance distribution of the two species fitted well to the 

distribution of low, medium and high climate suitability sectors resulting from ring recovery 

occurrences (Table 10). As predicted, the main difference between the all habitats vs. suitable 

habitats approaches was related to increased occupancy and abundance scores in suitable habitats. 

This supports the ability of occurrence probabilities provided by Maxent to predict the distribution 

of pipits and chiffchaffs in the Iberian Peninsula and the Maghreb.  
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EFFECTS OF CLIMATE CHANGE ON BIRD DISTRIBUTION.  

According to predictions for the period 2050-2070, mean temperature in winter will increase (mean 

± SE, 1950-2000: 7.47 ± 0.16 ºC; 2050-2070: 9.28 ± 0.16 ºC; repeated measures ANOVA F1,492= 

7,240.27, P<0.001) and mean precipitation in winter (177.732 ± 5.057 mm,161.02 ± 4.73 mm; 

F1,492= 518.22, P<0.001) and precipitation seasonality (48.34 ± 0.82 mm,42.73±0.64 mm; F1,492= 

513.22, P<0.001) will decrease in the Iberian Peninsula and the Maghreb. These trends will be 

followed by a predicted increase in mean climate suitability for the meadow pipit in the winter area 

(mean ± SE, 1950-2000: 0.28 ± 0.01; 2050-2070: 0.33 ± 0.01; repeated measures ANOVA F1, 492= 

114.21, P<0.001) and the chiffchaff (0.36 ± 0.01; 0.46±0.0.01 mm; F1, 492= 663.53, P<0.009). The 

changes will not be distributed evenly across the region (Figure 16). For instance, the increase in 

temperature and the loss of precipitation (and precipitation seasonality) will be reduced in northern 

sites (Table 11). Elevation will also affect climate change suggesting a hump-shaped relationship with 

temperature increase and precipitation reduction (the changes will be reduced at mean altitudes; 

Table 4). As a result, climate suitability for the meadow pipit and the chiffchaff will shift from 

lowlands to highlands and from southern to northern areas (Table 11; Figure 17).  

Table 9 Estimates of the relative contribution of the climate variables. Percent contribution indicates the change in 
regularized gain by adding the corresponding variable. Permutation importance represents, for each variable in 
turn, the resulting drop in training AUC when the values of that variable on training presence and background data 
are randomly permuted. They are normalized to show percentages. Values are averages over 10 replicate runs. 

Species Variable Percent 

contribution 

Permutation 

importance 

Meadow pipit Temperature (bio11) 42.4 65.4 

 Precipitation seasonality (bio15) 3.8 5.3 

 Precipitation (bio19) 53.8 65.4 

 AUC±SD 0.877±0.018  

    

Chiffchaff Temperature (bio11) 48.2 29.1 

 Precipitation seasonality (bio15) 12.2 9.6 

 Precipitation (bio19) 39.6 61.3 

 AUC±SD 0.836±0.017  
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Figure 16 Trends of climate suitability. A. Distribution of high (red), medium (yellow) and low (blue) climate 
suitability sectors for the meadow pipit and the chiffchaff according to similar occurrence probability intervals. B. 
Mean predicted distributions for the period 2050-2070. C. Change in climate suitability from present to 2050-2070. 
Blue color represents decrease and yellow to red represent increasing rates of climate suitability. 

DISCUSSION 

EFFECTS OF CLIMATE ON THE PRESENT DISTRIBUTION OF MIGRATORY BIRDS  

 Species distribution is shaped by features acting at different scales (McGill, 2010). In the case 

of migratory birds, distribution results from large-scale geographical and climate processes affecting 

the historical configuration of migratory routes (Zink, 2011) and the local arrangement of individuals 

according to their particular habitat preferences (Hutto, 1985). Multi-scale approaches are thus 

required to detect the contribution of climate versus other features on the distribution of migratory 

birds (Seoane et al., 2004; Triviño et al., 2011). This has been the aim of the present study in which 

the distribution of wintering pipits and chiffchaffs has been related to large scale (geography and 

climate) and local (vegetation cover) predictor variables (Table 8).  
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Table 10 Distribution of the species occurrences and abundances among the three sectors of climate suitability 
defined by ring recoveries. The results of ANOVA and χ2 analyses to test for differences in species distribution are 
shown. 

Species Climate suitability Occurrence 

(presences/absences) 

Abundance 

(no birds ± SE) 

Meadow pipit Low (n=141 ) 0.18 (26/115) 0.62 ± 0.33 

 Medium (n= 132) 0.31 (42/90) 1.31 ± 0.34 

 High (n=102 ) 0.54 (55/47) 2.87 ± 0.38 

 test χ2= 33.90, P<0.001 F2,372=10.22, P<0.001 

    

Chiffchaff Low (n=46 ) 0.11 (5/41) 0.13 ± 0.20 

 Medium (n= 164) 0.25 (41/123) 0.41 ± 0.11 

 High (n=110 ) 0.70 (77/33) 1.76 ± 0.13 

 test χ2= 73.60, P<0.001 F2,317=53.35, P<0.001 

    

 

The effect of latitude on bird distribution provided inconclusive results. The meadow pipit increased 

abundance in the northernmost sectors supporting the predicted effect of the distance to breeding 

grounds on winter distribution. However, the occupancy of the chiffchaff showed an opposite 

pattern, perhaps because in this species, many individuals move to wintering grounds in the Sahel 

(Cramp, 1992). Thus, the study area is not the actual southern border of its wintering area. After 

controlling for the geographical effects, the results supported habitat structure and climate as key 

players in bird distribution. Woodland cover was related to the occurrence of the chiffchaff (positive) 

and the meadow pipit (negative). In both cases, abundance was positively related to grass cover. 

These results are congruent with the habitat preferences of the species since the meadow pipit 

prefers grass patches in open habitats and the chiffchaff feeds on a broad variety of substrata 

(included tall grasses) in shrub- and tree-covered habitats (Cramp, 1992).  
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Table 11 Mean changes of climate and climate suitability (c.s) for birds between 1950-2000 and 2050-2070 in 493 random selected sampling points distributed over the study area. The 
results of GLM analyses on the effects of geographical location and elevation on changes are shown. Beta (ß) figures inform about the magnitude and sign of the partial relationships of 
predictor variables. They have not showed in the case of non-significant effect.  

 

 Change  ß figures    Model 

 mean ± SE Min / max  Lat. Long. Lat x Long Elevation Elevation2 F5,486 P R2  

Temperature (ºC) +2.02 ± 0.02 -33.38 / +5.50   -0.21 - 0.73 0.45 -0.30 27.84 <0.001 0.22  

Precipitation seasonality -5.61 ± 0.25 -12.00 / +52.00  0.42 1.56 -1.39 - - 351.10 <0.001 0.78  

Precipitation (mm) -1.67 ± 0.07 -10.98 / +2.60  0.75 -2.12 2.13 0.48 -0.53 24.22 <0.001 0.20  

Meadow Pipit (c.s.) +0.05 ± 0.01 -0.27 / +0.49  0.89 -1.37 1.14 1.04 -0.57 85.03 <0.001 0.47  

Chiffchaff (c.s.) +0.10 ± 0.01 -0.23 / +0.39  0.42 - 0.66 0.66 -0.37 23.07 <0.001 0.19  
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Figure 17 Latitudinal and altitudinal change in the climate suitability for wintering meadow pipits and 
chiffchaffs across the study region. These results have been reported by 493 random distributed sampling 
points across the Iberian Peninsula and Morocco (see text). 

Climate variables were related to bird distribution supporting the presence of more pipits and 

chiffchaffs in warmer sectors (Table 8). Preferences for warmer areas could be explained by 

the predicted direct effect of low temperatures on thermoregulation costs (see Introduction). 

In an area dominated by cold mountains and highlands (Figure 13), where most sectors show 

mean winter temperatures (mean ± SE: 9.36ºC ± 0.18; min-max: -2.2 to 16.7ºC; n=493; see 

methods) under the usual thermoneutral zone of passerines (Khaliq et al., 2014), birds may 

be forced to increase metabolism (Swanson & Jr., 2008) or to leave colder sectors (Root, 1988; 

Carrascal et al., 2012). In addition to this effect of thermal landscape on bird distribution, 
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meadow pipits were positively related to precipitation. This is probably related to their use of 

ground as a feeding substratum (Cramp, 1992). In the Mediterranean region, grass growth and 

the superficial activity of ground invertebrates are strongly related to the moisture produced 

by autumn and winter rains on dry ground layers resulting from summer drought (Fernández-

Ales et al., 1993; Doblas-Miranda et al., 2009; Guo et al., 2012). In this way, more precipitation 

will result in more suitable food patches for this species (De la Hera et al., 2012). Thus, it can 

be concluded that rain-mediated productivity and thermal landscapes can provide a causal 

explanation of climate features affecting the distribution of these small passerines in the study 

area.  

MODELLING THE DISTRIBUTION OF CLIMATE SUITABILITY  

Temperature and precipitation were the best contributors to the models such that the 

resulting maps depicted similar distribution patterns in both species (Fig 4). The sectors with 

high occurrence probabilities were distributed in lowlands and low occurrence areas were 

restricted to highlands and inland deserts. There were, however, some differences. While the 

meadow pipit was mostly related to western lowlands where Atlantic rains drain, the 

chiffchaff showed a broader distribution. Interestingly, the models fitted well to the present 

distribution of the species, with higher occupancy and abundance in sectors where the Maxent 

models suggest high climate suitability (Table 10). This supports the usefulness of models 

resulting from ring recoveries and suitable climate variables to predict the geographical 

distribution of wintering in these birds (Wisz et al., 2007b). 

EFFECTS OF CLIMATE CHANGE ON BIRD DISTRIBUTION 

According to IPCC predictions (IPCC, 2014), mean temperature will increase and precipitation 

will decrease in the study area over the next few decades. These changes will not be spatially 

homogeneous in the study area. Some southern sectors will be more affected by changes 

(Figure 15) and, within this latitudinal trend, temperature increases will grow and 

precipitation loss will decline in the highlands (Table 11). This change has been reported in 

other studies of the effect of elevation on climate change (Kotlarski et al., 2012; Rangwala & 

Miller, 2012). As a result, and according to the reported effects of temperature and 

precipitation on the meadow pipit and chiffchaff, the models predict two main trends in 

climate suitability. First, mean climate suitability will improve for the two species in the 

Iberian Peninsula and the western Maghreb. This change seems to be related to the warming 

of a region where 80% of the land is over 300 m and 60% over 600 m a.s.l. (Figure 13). In this 

way, the improvement of winter conditions produced by warming, similar to that reported in 

northern areas, will provide small birds the possibility to cope with winter conditions more 
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successfully (Carrascal et al., 2012). Second, despite the overall improvement of winter 

conditions, some sectors will be more vulnerable to the damaging effects of climate change in 

some species. This is true for the warmer lowlands of the south where the predicted decrease 

in precipitation will reduce the climate suitability for the meadow pipit, a species linked to 

moist areas (see above). The fate of water resources is a key concern in the drier sectors of the 

Iberian Peninsula and the Maghreb (Giorgi & Lionello, 2008; García-Ruiz et al., 2011; Schilling 

et al., 2012).  

PROSPECTS 

This study suggests five main aspects for consideration in the assessment of the weaknesses 

and strengths of the resulting patterns. First, it is important to consider the representativeness 

of the two model species. They are insectivorous and ubiquitous birds similar to many other 

European partial-migratory passerines (Busse, 2001). However, the alleged ability of pipits 

and chiffchaffs to track climate change over the study region may not apply to stenotopic 

species or birds forced to track resources with patchy distribution (e.g. water birds, 

frugivorous species). Second, it is important to state that these results refer to a scenario in 

which other features (e.g. vegetation cover and composition, agricultural practices, etc.) will 

also vary as a response to climate change (Clavero et al., 2011). As a result, climate change 

could promote synergetic interactions within and among species, evolutionary and ecological 

processes and human activity that are difficult to predict (La Sorte et al., 2009; Moritz & Agudo, 

2013). Third, temperature and precipitation appear to be two main drivers of bird distribution 

because changes in these parameters affect the energy available for birds (see Introduction). 

Since energy availability has been reported to be a global driver of bird distribution, changes 

in these variables are probably suitable indicators of changes in other species and regions 

(Hawkins et al., 2003; Pearce-Higgins et al., 2015). Finally, the results highlight the main role 

of elevation in shaping the retreat of low latitudinal margins of Mediterranean winter ranges 

of birds reported in this paper. This role of elevation will probably apply in other highlands of 

the Mediterranean basin (Figure 13) and the planet where winter conditions for birds can 

benefit from warming (Fernández-Ales et al., 1993; Khaliq et al., 2014). This main role of 

highlands in reshuffling the wintering ranges of migratory birds in the Mediterranean basin 

suggests two additional observations: a) Mediterranean highlands are usually reported as 

refuges for species retreating northwards due to the effect of postglacial warming (Hampe & 

Petit, 2005). The results in this paper suggest a similar buffer effect on wintering ranges of 

migratory birds. The huge expanses of Mediterranean highlands (Figure 13), usually avoided 

by many birds in winter (Dunning, 1992; Carrascal & Palomino, 2012; Tellería et al., 2014b), 

would progressively increase climate suitability as warming progresses. b) However, this 

projected climate improvement of highlands will not be sufficient to predict an increase in 
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migratory populations in this wintering region since warming in northern areas may reduce 

migratory journeys to the south (Walther et al., 2002). Alternatively, it has been postulated 

that warming of Mediterranean highlands could exert a positive influence on the size of local 

bird populations favouring winter residency and enhancing winter survival (Cano et al., 2014). 

 

 



SYNTHESIS AND PERSPECTIVES 

97 

 

CHAPTER 6 - 
SYNTHESIS AND PERSPECTIVES 

“The important thing is not to stop questioning. Curiosity has its own reason for existing.” 

- ALBERT EINSTEIN 
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In this thesis, we attempt to advance our understanding of the factors influencing the 

distribution of migratory birds given that it is crucial to study these species throughout the 

whole of their annual cycles (Somveille et al. 2015). We used species distribution models 

(SDM) and other multivariate statistics to explore the potential value of ringing recoveries for 

investigating the seasonal distribution of passerines. However, it must be stressed that it is 

essential that models are validated (Tellería et al., 2012). Overall, the results of this thesis 

show that the information provided by the ring-recovery dataset is useful for unravelling 

range-wide distributional patterns in small migratory birds throughout their annual cycle. 

Thus, given open access and the large scale of the data used (Sullivan et al., 2014; Du Feu et al., 

2016), the methodological approach developed in this thesis will be useful for improving our 

knowledge of migratory birds and thus will help conservation efforts in light of rapid 

anthropogenic change.  

 Global change significantly threatens migratory birds. To cope with shifts in prevalent 

environmental conditions, it is vital to understand the processes affecting migratory species 

at different scales (Runge et al., 2015a). Migratory populations seem to be distributed within 

more restricted environmental ranges than sedentary populations in dynamic niche 

dimensions (climate). This probably makes sedentary populations more resilient to climate 

variability within their ranges. However, sedentary populations demonstrate poor plasticity 

in their seasonal vegetation cover selection (Pérez-Tris et al., 2015). Thus, the results 

presented in this thesis suggest that niche-tracking migrants and resident individuals require 

different analytical and conceptual approaches when exploring the emerging threats related 

to global change.  

 Finally, it is important to realize that species are not uniform entities but, rather, are 

composed of individuals whose relationships with the environment differ. This view is usually 

lacking from most approaches to the effect of global change (Valladares et al., 2014; Pacifici et 

al., 2015; Kawecki & Ebert 2004). Therefore, integrating information about ecological and 

genetic differences within populations will constitute an effective approach for identifying 

how adaption plays a role in the effects of global change on biodiversity (Manel et al., 2003). 

It is interesting to note the potential of partially migratory species (composed of individuals 

and populations that differ in migratory behaviour) for exploring birds’ reactions to 

environmental changes. We believe that resident and migratory populations of European 

forest passerines in the Mediterranean Basin are good models for examine these issues (Pérez-

Tris et al., 2004, 2015; Hampe & Petit, 2005).  
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CONCLUSIONS 

"I'd should think you Jedi would have more respect for the difference between knowledge and 
wisdom." 

- DEXTER JETTSTER 
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I. Large-scale surveys of migratory birds can be both logistically and financially 

unviable. However, here we show the potential of a citizen-science database (ringing 

recoveries) for studying the spatio-temporal distribution of migratory birds with species 

distribution models (SDM).  

II. Using the meadow pipit as a case study, we show that species abundance is positively 

correlated with the habitat suitability reported by SDM. This result supports the use of these 

models to track the spatio-temporal location of the best sectors for wintering birds. In 

addition, these models can be used to understand the consequences of current and future 

environmental changes for species. 

III. Ringing data were also used to examine how resident and migrant European robins 

and blackcaps cope with seasonal changes in environmental conditions. Using multivariate 

approaches we showed the existence of a trade-off between the costs of adaptations relating 

to the tracking ability of migrants over long distances and the increased ability of sedentary 

individuals to tolerate a wider suite of conditions within their permanent ranges.  

IV. Migratory populations wintering in the western Mediterranean Basin show a 

geographical ‘bottleneck’ effect since their non-breeding ranges are smaller than their 

breeding grounds. Thus, it is essential that these wintering areas are properly managed to 

conserve migratory birds breeding in large areas of northern and central Europe. 

V. Temperature and precipitation seem to be the two main drivers of chiffchaff and 

meadow pipit distribution on their wintering grounds in the western Mediterranean Basin. 

Future predictions of SDM suggest an expansion of climatically suitable sectors into upland 

areas due to the effect of warming and a retreat from lowlands as a result of decreasing rainfall. 

Hence, the huge expanses of mountains in the Iberian Peninsula and Maghreb will probably 

act as buffer areas that will help mitigate the effects of climate change on the winter 

distribution of the study species.  

VI. Finally, the results presented in this thesis highlight the potential of the new 

methodological approaches that use data provided by ringing schemes for improving our 

knowledge of migratory birds, a key issue in their conservation. 
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RESUMEN 

INTRODUCCIÓN 

Muchas de las poblaciones de aves son migratorias, es decir realizan desplazamientos en 

respuesta a los cambios estacionales en las condiciones ambientales. Esto provoca que los 

individuos envueltos en estos movimientos afronten diferentes condiciones y peligros a lo 

largo del año. A pesar de estos retos, la migración ha evolucionado debido a que las ventajas 

compensan en muchas ocasiones los inconvenientes asociados a los peligros de una vida 

itinerante. Sin embargo, el balance entre los beneficios y costes de la migración pudieran verse 

descompensados por culpa del cambio global dando lugar a cambios en el patrón actual de los 

movimientos de muchas poblaciones de aves. Para poder realizar un diagnóstico de su 

situación actual y elaborar estrategias específicas para su conservación, es indispensable 

conocer la relación de las especies migratorias con las condiciones ambientales que les rodean. 

 El estudio de los factores que determinan la distribución y la abundancia de las aves 

migratorias es difícil de abordar ya que estos se manifiestan a lo largo del ciclo anual en 

diferentes áreas. En este sentido, el invierno es una época crítica para este grupo de especies 

al tener que afrontar bajas temperaturas y escasez de alimentos. Esto ha sido difícil de estudiar 

en muchos casos por la falta de datos sobre la distribución de sus poblaciones en esa época del 

año. Sin embargo, la creciente disponibilidad de datos procedentes de emisores satélite de 

seguimiento (por ejemplo, Movebank), recuperación de anillas (por ejemplo, EURING) y 

programas de ciencia ciudadana (por ejemplo, eBird), junto con el acceso sin precedentes a 

potentes análisis bioinformáticos y diferentes técnicas estadísticas, nos permite avanzar hoy 

en el conocimiento de la ecología de las aves a lo largo de todo el año.  

 Esta tesis intenta contribuir al conocimiento de los factores ambientales que afectan 

a la distribución de las aves migratorias combinando los datos de las recuperaciones de anillas 

con las técnicas de modelización de la distribución potencial de las especies. Más 

explícitamente, su objetivo es describir los mecanismos que determinan el tamaño, la 

ubicación y la dinámica de distribución de las especies migratorias en las zonas de invernada 

localizadas en el oeste del Paleártico para así poder desarrollar una gestión adecuada de sus 

poblaciones. Esta zona, situada al oeste de la cuenca del Mediterráneo, actúa como área de 
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invernada principal para muchos individuos que crían en el centro y norte de Europa. Se trata, 

por ello, de una zona donde los esfuerzos dirigidos a la protección de los mejores sectores para 

las aves pueden tener un impacto sustancial en la conservación de las poblaciones de aves 

europeas.  

OBJETIVOS Y RESULTADOS  

Los objetivos de esta tesis están organizados en tres partes. En la primera validamos el uso de 

recuperaciones de anillas en la predicción de la distribución de las aves migratorias. En la 

segunda discutimos los diferentes aspectos relacionados con el comportamiento migratorio y 

la respuesta a los cambios estacionales en dos especies de aves migratorias parciales. Y, 

finalmente, en la última aplicamos estos conceptos en dos estudios relacionados con la 

conservación de las zonas de invernada de las aves migratorias en la Península Ibérica y el 

Magreb. 

 En el primer capítulo, validamos si la calidad de hábitat resultado de los modelos de 

distribución de especies construidos con recuperaciones de aves anilladas predice bien la 

distribución invernal de un ave migratoria. Esta validación es interesante pues errores de 

adscripción (por ejemplo con las coordenadas) o el potencial sesgo en la distribución de las 

recuperaciones de las anillas pudiera dar resultados equívocos. Para ello, hemos utilizado las 

recuperaciones en invierno de las anillas del Bisbita Pratense (Anthus pratensis) en la 

Península Ibérica y el Magreb. Los resultados muestran que la calidad de hábitat predicha por 

el modelo de distribución está positivamente relacionada con la abundancia de esta especie 

en una serie de muestreos realizados en España y Marruecos. Los resultados son utilizados 

para evaluar la utilidad de los modelos de distribución de especies derivados de las anillas 

para describir el área de invernada de las aves migratorias y poder así priorizar los esfuerzos 

en conservación sobre los mejores sectores de invernada. 

 En el siguiente capítulo se usan nuevamente las recuperaciones de aves anilladas para 

estudiar la respuesta de las poblaciones de aves migratorias a los cambios estacionales. Las 

condiciones ambientales que experimentan las aves migratorias en el área de cría y de 

invernada pueden diferir notablemente o ser muy similares. Testamos la hipótesis de que el 

comportamiento migratorio debiera distribuir a las aves entre condiciones más similares que 

las residentes, sobre todo en aquellas dimensiones del nicho más dinámicas (clima). Para ello, 

examinamos cómo responden a los cambios estacionales de las condiciones ambientales las 

poblaciones migratorias de petirrojos (Erithacus rubecula) y currucas capirotadas (Sylvia 

atricapilla) y la forma en que difieren de sus homólogos sedentarios. Los resultados muestran 

que las poblaciones migratorias rastrean a lo largo del año condiciones climáticas más 

similares que las sedentarias, las cuales experimentan drásticos cambios climáticos en sus 
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áreas de residencia. Por el contrario, las poblaciones migratorias difirieron en mayor medida 

en la estructura del paisaje seleccionada a lo largo del año. Estos resultados sugieren un 

equilibrio entre la capacidad de los individuos migratorios para rastrear las condiciones 

climáticas a lo largo del año y la de las aves sedentarias para tolerar fuertes cambios climáticos 

dentro de sus áreas de cría. 

 Los capítulos anteriores brindan la posibilidad de utilizar los modelos de distribución 

de especies derivados de las recuperaciones de anillas para predecir el área de distribución de 

las aves migratorias a lo largo del año. Esto nos permite comparar el área ocupada por estas 

poblaciones en sus cuarteles de cría e invernada y así identificar la presencia de potenciales 

cuellos de botella al tamaño de sus poblaciones. Para abordar este objetivo se estudió en un 

tercer capítulo la distribución potencial del área de cría e invernada en 10 especies de 

paseriformes migratorios parciales que invernan en la Península Ibérica y el Magreb. Los 

resultados indican que todas las especies muestran una compresión del área de invernada en 

relación con el de reproducción. Dado a que se considera que este desequilibrio entre las áreas 

estacionales es un buen indicador de la vulnerabilidad de las especies migratorias al cambio 

global, los resultados resaltan la importancia conservacionista de las zonas de invernada 

situadas en la Cuenca del Mediterráneo Occidental, un área que se encuentra bajo la presión 

continua del cambio climático y la intensificación agrícola.  

 Finalmente, a la vista de las reducidas áreas de invernada de las poblaciones 

invernantes en la Península ibérica y el Magreb, cobra mayor importancia entender su 

potencial evolución en un escenario de cambio global. En el último capítulo, se estudia el efecto 

del cambio climático en la distribución invernal de dos aves mayoritariamente migratorias (el 

bisbita pratense, Anthus pratensis y el mosquitero común, Phylloscopus collybita) en nuestra 

zona de estudio. Tras comprobar que la temperatura y la precipitación determinan 

fuertemente su actual distribución invernal, usamos los modelos de distribución de especies 

generados con las anillas para pronosticar la distribución potencial de las zonas de invernada 

según las proyecciones climáticas para 2050-2070 (aumento de la temperatura y reducción 

de la precipitación). Los resultados muestran que el incremento de temperatura provoca una 

expansión de los sectores climáticamente adecuados hacia zonas de mayor altitud, y un 

retroceso de la calidad de hábitat en las zonas más meridionales debido a una reducción 

drástica de la precipitación. Estos resultados invitan a analizar el papel amortiguador de la 

altitud sobre los futuros cambios en la distribución de las aves migratorias en un área que, 

como la península Ibérica y el Magreb, está fuertemente dominada por montañas y mesetas. 

DISCUSIÓN 
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Cada vez hay más evidencias de la importancia de conocer la distribución de las poblaciones 

migratorias a lo largo de todo el año ya que sus requerimientos de nicho pueden variar 

estacionalmente y los procesos que determinan el tamaño, la ubicación geográfica y la 

dinámica de distribución son muy complejos e involucran múltiples factores que interactúan 

entre sí. En esta tesis, se ha intentado avanzar en el conocimiento actual de los factores que 

influyen en la distribución invernal de las aves migratorias y su dinámica estacional con el fin 

de poder identificar los mejores sectores de invernada en donde priorizar las estrategias de 

conservación. 

 La tesis muestra el valor potencial de los datos obtenidos a partir de la recuperación 

de anillas para investigar los patrones de distribución invernal de los paseriformes y así poder 

predecir los posibles efectos de los cambios ambientales sobre su distribución. Para ello es 

esencial resaltar la necesidad de validar las predicciones resultantes de estos modelos con los 

resultados obtenidos mediante el estudio de la abundancia de las aves en las áreas de estudio. 

En general, las recuperaciones de anillas son útiles para esclarecer los patrones de 

distribución a lo largo del ciclo anual en aves migratorias de pequeño tamaño. Es previsible 

que el desarrollo de los dispositivos rastreadores por satélite, más precisos y cada vez más 

pequeños, pueda proporcionar nueva y fascinante información sobre las amenazas y los 

patrones migratorios de muchas aves de pequeño tamaño. 

 Debido al cambio global al que están sometidas las especies actualmente, es 

importante identificar los posibles factores que expliquen su vulnerabilidad y permitan 

evaluar los cambios en su distribución actual. En este sentido, y por lo comentado arriba, las 

poblaciones migratorias, con una estrategia más rastreadora, y las poblaciones residentes, con 

una estrategia opuesta, requieren diferentes enfoques a la hora de analizar sus reacciones a 

las cambiantes condiciones ambientales. 

 Por último, parece importante recordar que las especies no son entidades uniformes, 

sino que están compuestas por diferentes poblaciones que difieren en sus respuestas a las 

condiciones ambientales que les rodea. La adaptación local y la plasticidad de las poblaciones 

sedentarias de aves forestales podrían desempeñar un papel crucial en la persistencia de estas 

especies ante el cambio global. 
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SUMMARY 

BACKGROUND 

Many avian populations are migratory and make regular movements as responses to seasonal 

changes in environmental conditions. As a result, the individuals involved in these movements 

have to face up to a variety of environmental conditions and threats throughout the year. 

Nevertheless, the inherent advantages for migratory populations are greater than the risks 

associated with these movements. This trade-off may be disrupted by global change, which 

could affect the migratory behaviour of many birds. The understanding of the relationships 

between migratory birds and the environment is thus a key issue in any assessment of the 

impact of human change on these species and in the design of conservation measures. 

The factors that determine the distribution and abundance of migratory birds are 

difficult to determine exactly since they usually occur throughout the whole migratory circuit.  

The lack of data on bird movements during the year hampers the study of migratory species; 

this is the case of their distributions in winter, a critical period for migratory birds in which 

they have to cope with low temperatures and food shortages. However, the growing wealth of 

data provided by tracking devices (e.g. Movebank), ringing schemes (e.g. EURING) and other 

citizen-science programs (e.g. eBird), along with today’s unprecedented access to modelling 

techniques, now offer exciting opportunities for advancing knowledge of migratory bird 

ecology throughout the whole year 

The aim of this thesis was to improve our understanding of the environmental drivers 

shaping migratory bird distributions throughout the year by combining ring-recovery data 

and species-distribution modelling techniques. More explicitly, we aim to describe the 

features affecting the size, location and seasonal dynamics of the birds wintering in the 

Western Palearctic. The western Mediterranean is used by vast amounts of migratory birds 

from central and northern Europe and it is thus a region where the efforts aimed at protecting 

wintering birds will benefit the conservation of European avifauna on a broader scale. 
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OBJECTIVES AND RESULTS 

This thesis is arranged in three main parts. First of all, we validate the use of ringing recoveries 

as a means of predicting birds’ winter distribution. Then, we discuss different aspects of the 

relationship between migratory behaviour and the responses to seasonal changes, before, 

finally, applying these concepts and methods to two studies related to the conservation of 

migratory birds wintering in the Iberian Peninsula and the Maghreb. 

 In the first chapter, we test whether or not the habitat suitability scores provided by 

the species distribution models resulting from ring-recovery data predict the actual winter 

distribution of migratory birds. This is essential because ring-recoveries may give a skewed 

view of the real distribution of migratory birds. We used recoveries of wintering meadow 

pipits (Anthus pratensis) in the Iberian Peninsula and Maghreb to show that the species 

distribution models do predict the true abundance of this pipit in Spain and Morocco. Finally, 

we discuss the usefulness of the models derived from ringing records for predicting the 

wintering ranges of migratory birds. 

 In the next chapter, we also use ring-recoveries to explore how migratory birds relate 

to the spatio-temporal changes occurring in environmental conditions during the year. We 

tested the hypothesis that migratory birds look for similar conditions throughout the whole 

year, above all in niche dimensions that are dynamic (climate). We studied how migratory 

robins (Erithacus rubecula) and blackcaps (Sylvia atricapilla) track environmental changes 

and how they differ from their sedentary counterparts. The results show that migratory 

individuals overlapped more in terms of climate conditions than sedentary birds, which had 

to withstand severe climate changes in their permanent ranges. These results suggest that 

there is a trade-off between the increased ability of migratory individuals to track climate 

conditions during the year and the capability of sedentary birds to tolerate abrupt climatic 

changes within their breeding ranges. 

 These first two chapters highlight how the species distribution models derived from 

ring-recoveries can be used to predict the breeding and non-breeding ranges of migratory 

birds. This allows us to compare the size of these two ranges and to identify possible 

geographical bottlenecks that might affect migratory bird populations. We explored the 

potential size of breeding and wintering grounds in 10 partially migratory passerines that 

winter in the Iberian Peninsula and the Maghreb. The results indicate that, unlike in their 

breeding areas, all the species show range compression on winter grounds. This imbalance 

between seasonal ranges has been proved to be a potential correlate of species’ vulnerability 

to change. We continue by discussing the importance of the non-breeding grounds situated in 

the western Mediterranean Basin in the conservation of migratory passerines. 
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 Finally, we use climate projections to study the effects of climate change on the winter 

distribution of two migratory passerines (meadow pipit Anthus pratensis and chiffchaff 

Phylloscopus collybita). Climate predictions suggest that in coming decades temperatures will 

increase and precipitation will fall in the study area. After showing that temperature and 

precipitation are the main drivers of the winter distribution of both pipits and chiffchaffs, we 

use the models resulting from ring-recoveries to forecast the distribution of these birds for the 

period 2050–2070. Our results show that the predicted changes in climate will increase 

climatic suitability in uplands but reduce habitat suitability in lowlands, good evidence of how 

upland buffer areas will mitigate the effects of climate change on wintering birds in regions 

where both mountains and lowlands are present. 

SYNTHESIS 

This thesis provides support for the value of ring-recovery data in research into migration 

strategies and the seasonal distribution of passerines. The testing of the models (a highly 

important methodological part of the process) shows that the results of ringing recoveries are 

useful for unravelling the features affecting the seasonal distribution of small migratory 

passerines. We agree, however, that the development of satellite trackers and other, 

increasingly smaller devices will provide fresh (and better) information about migratory 

patterns and threats to songbirds. Nevertheless, our approach to ringing recoveries does 

provide three exciting results that merit further investigation: a) migratory and sedentary 

birds differ in resource tracking, a trait that could affect their ability to cope with global 

change; b) range contraction on wintering grounds may jeopardize the migratory populations 

of partially migratory passerines since habitat alteration in small wintering areas will affect 

individuals over larger breeding areas; c) climate change will potentially modify these 

wintering areas and its effects, according to our predictions, will be buffered by the huge 

expanses of mountains in the Iberian Peninsula and the Maghreb. Thus, data resulting from 

the selfless work of thousands of ringers provide excellent material for studying and 

conserving migratory passerines. 
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CHAPTER 4: Range compression of migratory passerines in wintering grounds of the Western 

Mediterranean: conservation prospects. 

SUPPLEMENT-S4.1. Relationships between human foot print index and ringing 

activity in Europe. 

Distribution modelling with Maxent provides the opportunity to cope with the effect of biased 

sampling effort by including any cartographical information in which the spatial distribution of 

sampling effort is reported (Dudík et al. 2005). We assumed that ringing or recovering a ringed bird 

is a contingent process related to the activity of ringers, hunters and people in general, something 

related to human density and the accessibility of habitats, as reported by the density of roads and 

other infrastructures. In this case, we used the Human Foot Print index (which considers a set of 

spatial data related to population density, land transformation, accessibility, and electrical power 

infrastructures; Sanderson et al. 2002) as a main predictor of the probability of capturing or 

recovering a ringed bird. To test this, we compared the density of living and dead ringed birds 

recovered by country as reported by EURING (http://www.euring.org/; Figure S 4.1-1, Table S4.1) 

with the mean HFP per country. Results support this relationship (Figure S 4.1-2). 

Dudík M., Phillips S. J. & Schapire R.E. (2005). Correcting sample selection bias in maximum entropy 

density estimation. Advances in neural information processing systems 18. MIT Press, 

Cambridge, Massachusetts 

Sanderson E.W., Jaiteh M., Levy M.A., Redford K.H., Wannebo A.V. & Woolmer G. (2002). The human 

footprints and the last of the wild. BioScience 52: 891–904 

 

Figure S 4.1-1. Distribution of bird ringing activity as reported by the total number of living and dead birds 
controlled by national schemes in Europe. The number of controlled birds, reported by EURING 
(http://www.euring.org/) was divided by the area of the country to obtain an index of the ringing effort (see Table 
S4.1) Data were log-transformed to smooth inter-country differences 



SUPLEMENTARY MATERIAL  

132 

 

Table S4.1. Number of controlled ringed living and dead birds per country reported by EURING 
(http://www.euring.org/), mean Human Foot Print Index and land surface. Ringing effort per country was obtained 
by surface the number of recoveries. 

Country Land surface (Km2) HFP Ring Recoveries 

Belgium 30528 50,46 99747 

Czech Republic 78866 43,22 52953 

Denmark 43094 48,23 189287 

Finland 338145 18,989 246429 

France 547030 40,127 21441 

Germany 357021 44,052 719996 

Latvia 64589 34 859 

Lithuania 65200 35,99 38065 

Netherlands 41526 48,175 1191960 

Norway 385156 21,147 26384 

Poland 312685 39,08 175618 

Slovakia 48845 39,06 4262 

Slovenia 20273 32,68 29 

Sweden 449964 22,222 143439 

Switzerland 41285 42,112 74622 

UK and Ireland 315100 44,06 689468 
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Figure S 4.1-2. Relationships between the mean human foot print and the rate of ring recoveries per country. This 
relationship can be improved when the highest recovery rate of the Netherlands (r=0.68, P=0.005) or the scores of 
the three Scandinavian (Sweden, Norway and Finland) countries in the left of the graph (r:0.83, P<0.001) are 
removed. Note than data were log10 transformed. 
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SUPLEMENT-S 4.2 

 

Figure S 4.2-1. Distribution of ring records in breeding and wintering populations. Last map shows the minimum 
convex polygons used to model distribution in the breeding and wintering grounds  
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Figure S 4.2-2. Range map of migratory populations in breeding and wintering grounds as reported by applying the 
´maximizing sum of sensitivity and specificity´ threshold to the occurrence probabilities map. Last map shows the 
minimum convex polygons used to model distribution in the breeding and wintering grounds. 
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