
Applying Game-Learning Environments to
Power Capping Scenarios via Reinforcement

Learning

Pablo Hernández, Luis Costero, Katzalin Olcoz, and Francisco D. Igual

Departamento de Arquitectura de Computadores y Automática
Universidad Complutense de Madrid

{pherna06,lcostero,katzalin,figual}@ucm.es

Abstract. Research in deep learning for video game playing has re-
ceived much attention and provided very relevant results in the last years.
Frameworks and libraries have been developed to ease game playing re-
search leveraging Reinforcement Learning techniques. In this paper, we
propose to use two of them (RLlib and Gym) in a very different scenario,
such as learning to apply resource management policies in a multi-core
server, specifically, we leverage the facilities of both frameworks coupled
to derive policies for power-capping. Using RLlib and Gym enables im-
plementing different resource management policies in a simple and fast
way and, as they are based on neural networks, guarantees the efficiency
in the solution, and the use of hardware accelerators for both training
and inference. The results demonstrate that game-learning environments
provide an effective support to cast a completely different scenario, and
open new research avenues in the field of resource management using
reinforcement learning techniques with minimal development effort.

Keywords: Reinforcement Learning · RLlib· Gym· Resource Manage-
ment · Power Capping · DVFS.

1 Introduction

Artificial Intelligence (AI) has been widely used in video games for quite a long
time, both for improving the user experience playing the game, and also de-
veloping automatic systems that learn how to win them [11]. In October 2015,
AlphaGo, an algorithm based on Deep Reinforcement Learning (RL), beat one
of the best human players, reaching a milestone in AI research for video game
playing [12]. Nowadays, deep learning for video game playing is an active area of
research [9]. The goal of these systems is to automatically learn policies that win
the game, with agents interacting with an environment and the achieved score
as a reward to be maximized.

In response to the increasing interest in learning environments for games,
different platforms and software ecosystems have emerged to improve both the

2 P. Hernández et al.

quality and the efficiency of the learning process. Among them, the tuple RLlib–
Gym1 is one of the most successful efforts. Gym provides an abstraction for the
construction of environments that can be interacted externally by means of the
application of actions, and sensed afterwards. RLlib is a complete distributed
infrastructure that provides a plethora of RL agent development primitives that,
together with a Gym environment, can yield policies in an easy way, leveraging
high performance computing strategies.

Environments provide an abstraction to build ad-hoc black boxes that mimic
the behaviour of virtually any stateful scenario, with the possibility of receiving
actions, modifying (and observing) the internal state of the environment and
receiving back a proper reward depending on the target optimization objective.
The behaviour of an environment can be easily personalized, maintaining a com-
mon external interface for an easy interaction and deployment. In this paper,
we leverage this abstraction to propose the application of the aforementioned
game-specific frameworks, to a dramatically different scenario: power capping on
modern multi-core servers. Power capping [15] is a strategy typically applied in
different datacenter-level scenarios to limit instantaneous power consumption at
different levels (chip, server, facility, etc.), in order to fulfill user-specific limits,
or system-wide power restrictions.

Modern multi-core servers exhibit a number of knobs that can directly im-
pact power consumption; one of the most effective is DVFS (Dynamic Voltage-
Frequency Scaling) that, assisted with the appropriate operating system support,
can adapt the effective operating frequency at different granularities. Addition-
ally, modern processors are armed with different mechanisms to measure the
instantaneous power consumption at different levels (usually per core, socket
and complete system). All in all, a computing server equipped with DVFS and
capabilities to measure power consumption can be considered as an ideal scenario
for a complete interaction with a RL agent, as it:

– Provides a stable observation space, in terms of sensed power consumption.

– Features a set of actions with impact on the observed power consumption.

– In a power capping scenario, allows the design and implementation of a con-
venient reward strategy that penalizes power states above the specified power
cap, and positively rewards power states below the power cap.

We explore the feasibility of extending state-of-the-art RL libraries widely
used in the video game arena, to a power capping scenario. Specifically, we will
show how a power capping scenario can be easily modelled as a RL problem,
and how little effort is required to implement it in terms of existing software
infrastructure. A discussion of how state and action definition impacts on the
outcome policy will also be presented. Additionally, we will show how the de-
scribed approach can deal with different workloads (in terms of different power
demands) and with different power capping limits.

1 https://docs.ray.io/en/latest/rllib.html – https://gym.openai.com/

Applying Game-Learning Environments to . . . 3

2 The RLlib and Gym frameworks

Reinforcement Learning [14] is one of the three basic pillars of Machine Learn-
ing, together with Supervised and Unsupervised learning. It is oriented towards
training a system by interacting with its environment, to automatically deter-
mine its ideal behaviour in a specific context, so that its profit is maximized.
This general goal is usually tackled by means of agent-environment paradigms,
in which one (or multiple) agent decides the actions that the environment needs
to perform, based on its state or observation. The agent receives a numeric value
(reward), calculated as a function of the previous environment state, and the
current state after applying an action. This way, the agent can learn which ac-
tions must be taken by the environment to maximize the cumulative reward.
Different RL algorithms implement different methods to obtain these policies
(e.g., table-based solutions as Q-Learning, or Neural Network based solutions as
DQN [10]). The benefit of using Neural Netwoks as a function approximator is
three-fold: (i) they scale in performance for large action-state spaces; (ii) they
can leverage software frameworks (e.g. Tensorflow) for efficient implementations;
and (iii) domain-specific hardware can be used to accelerate their execution.

RL has been successfully applied to game-learning systems in order to infer,
learn and apply game rules by means of observation and interaction with existing
game engines with minimum level of environmental knowledge. A representative
example is DQN, a complex Deep Reinforcement Learning architecture that is
able to learn policies directly from high-dimensional sensory inputs; specifically,
DQN receives only the pixels and the game score as inputs, and is able to surpass
a human games tester on a wide range of games.

2.1 RLlib

Ray is an open-source framework that aims at creating a universal API for
distributed applications. Within the framework, the Python library RLlib is
focused on supporting Reinforcement Learning applications at all necessary lev-
els. Ray/RLlib offer facilities to parallelize code across shared- or distributed-
memory architectures, optionally equipped with accelerators (GPUs). Internally,
RLlib uses Tensorflow to model the complete structure of a RL problem and
to integrate models (neural networks) that mimic the approximation functions
necessary on RL problems.

2.2 Gym

Gym is an open-source library designed to develop and compare RL algorithms.
Gym includes a rich collection of environments that allow an interaction with
agents trained via reinforcement learning. The interaction with these environ-
ments mimics the general idea of reinforcement learning: the agent can apply a
number of actions on an environment (the exact set of actions is defined in the
Gym environment) and, as a result, the Gym environment returns a tuple of
values, including the obtained reward and the new observation. Gym is mainly

4 P. Hernández et al.

focused on game learning, but offers mechanisms to define new environments
based on an API that allows a straightforward and portable interaction with the
environment from an external agent. This API orbits around two main routines:

– reset(): that obtains an initial state observation from the environment.
– step(action): invoked by an agent, and receiving an action to apply (an

integer within a range of pre-determined values).

The step() routine returns information of the effect of the action on the
environment, including:

– observation: object representing a new observation after the application of
an action. Its type and range of values depend on the specific environment.

– reward: reward obtained after the application of a new action on the envi-
ronment in a given state. It is represented as a floating point number and
its range is also defined by the specific environment.

– done: optional value that indicates the end of the environment lifetime.
– info: dictionary with additional debugging information, including informa-

tion regarding the evolution of the learning process.

Each environment features an action space (A) and an observation space
(S), that define the values that can be taken as actions (hence, the shape of
the output tensor of the underlying neural network) and the values that can be
obtained as an observation (hence, the shape of the input tensor). Additionally,
a reward function (R) that gives a score to each action applied by the agent is
used to train the system and obtain the desired policy (R : S × S ×A → R).

Obtaining a suitable RL policy is just the task of training the underlying
neural network. This task is transparently carried out by the RLlib framework
by means of interacting with the Gym environment.

3 RL for Resource Management

Computer architectures have evolved drastically in the last decades, seeking an
optimal combination of performance and energy efficiency. The strategies fol-
lowed in early-2000s, mainly dictated by a constant increase of the frequency,
cannot be further pursued due to the lack of technological support, keeping core
frequencies around 2-4 GHz to keep heat and power under control [1], leading to
a shift towards multi-core architectures. Together with the increase in the num-
ber of compute units, the addition of different technologies that allow processors
to adapt dynamically to the changes in the environment and running applica-
tions has accompanied the processor evolution. DVFS [2], Power Capping [5]
or Cache Partitioning [6] are only three examples of hardware-assisted support
to increase performance and/or energy efficiency. In addition, this type of sys-
tems usually expose a number of mechanisms to measure (or estimate) different
metrics with different granularity (e.g., modern processors offer mechanisms to
measure energy at a core, socket, and system level).

Applying Game-Learning Environments to . . . 5

This evolution has provoked a change in how resources are managed. In the
past, Resource Managers had to deal with simple scenarios with a limited num-
ber of parameters to configure and metrics to monitor. Nowadays, architectures
offer a plethora of different metrics to observe, and parameters to tune (pos-
sibly simultaneously), leading to more complex scenarios. Specifically, modern
resource managers need to deal with:

1. Malleability at system-level: Modern platforms support a plethora of different
mechanisms to adapt themselves to the running applications and environ-
ments. Examples are DVFS capabilities, support for core disabling/enabling,
or cache partitioning. In addition, one metric can be affected by multiple pa-
rameters, and one parameter can have effects on multiple metrics at the same
time, making the process of designing the policy an arduous task.

2. Malleability at application-level: Modern applications expose a number of
parameters that can be configured statically and dynamically, and affect
directly to different application- and system- metrics (e.g., changes on the
number of threads used during the computations).

3. Multiple optimization goals: As platforms and applications have evolved,
their requirements have evolved too. Modern resource managers should seek
to fulfill multiple optimization goals at the same time (e.g., energy efficiency,
performance, Quality of Experience (QoE), etc.). However, designing a multi-
objective system is not a trivial task.

4. Additional restrictions: Apart from the optimization goals defined by the
system designer, applications and platforms can present additional restric-
tions that the resource manager has to fulfill (e.g., power capping limits,
minimum Quality of Service (QoS) requirements, etc.).

In this scenario, a main question arises: how can we obtain a multi-objective
resource management policy able to modify multiple parameters concurrently at
the same time it deals with the previous problems?

Traditionally, complex heuristics have been used as the de-facto solution to
manage shared resources in computing platforms [7, 13]. On one hand, heuristics
are simple solutions to these problems, yielding easy-to-understand policies. On
the other hand, a deep knowledge of the problem is required to design effective
heuristics. In addition, the obtained policies are usually valid only for a specific
set of fixed conditions, and dependent on the problem input.

With the increasing interest on Machine Learning, RL has been proved as a
valid alternative to tackle these scenarios [4, 8], as it presents several advantages
over the traditional approaches. Among others, a less deep knowledge of the
problem is required to formulate the solution, as well as the ability to obtain
input-independent policies. As drawbacks, ML-based approaches can lead to
long training periods, as well as to solutions that, being valid, are difficult to
understand by a human compared with heuristics. However, the application of
these techniques to resource management is far from being trivial, and typically
requires ad-hoc implementations [4, 8].

6 P. Hernández et al.

(a) Game-learning environment (b) Power capping environment

Fig. 1: RLlib-based implementation applied to video games (left) and power
capping (right). Note that minimum changes are needed (marked in red).

4 Casting a power capping scenario with Gym

Our contribution lies on the design of Gym environments that tackle the afore-
mentioned power capping scenario. The proposed environments implement (i)
an observation space that can be filled by ad-hoc power measurement mecha-
nisms (ii) an action space, in which actions can range from selecting specific
frequencies between those offered by the processor, to increase/decrease on an
individual step basis; and (iii) a specific reward strategy, that implements tech-
niques to fulfill a specific goal (e.g. maximizing performance under a power cap).

All this logic is encapsulated within a Gym environment that keeps the same
interface as that previously described. Armed with this type of environments,
we integrate them in the RLlib environment and apply training procedures to
determine the ability of the system to extract efficient policies that, deployed on a
real multi-core server, can keep the power consumption under an established cap
for different workloads. Figure 1 shows the original game-learning environment
and the modifications that are needed in order to obtain a power capping policy.
Only two python modules are needed: pyRAPL, that obtains energy measurements
used as observations, and cpufreq, that applies the changes in frequency that
correspond to the different actions chosen. The remainder of this section shows
how to create a new environment, defining the set of actions, states and rewards.

4.1 Defining states

The observation space is formed by the different values of power consumed by
the system. Even if this value is a real number, we will use a discrete number of
states, each one comprising all the power consumption values in a given range.
However, there is not any golden rule about how states, actions and rewards have
to be defined, and expert knowledge of the problem is required. Their definition,
and specially the number of actions and states will ultimately determine the
quality of the learned policy as well as the training time required to obtain a
functional policy [3]. On one hand, if each state covers a wide range of power
values, the learning time will decrease as the number of states to explore will be
lower. However, the quality of the obtained policy may be negatively affected as
the system will not be able to apply different actions to different values in the

Applying Game-Learning Environments to . . . 7

same interval. On the other, increasing the number of states (i.e., decreasing the
power interval covered by each state) will improve the quality of the policy as
the agent will be able to apply actions in a finer granularity, at the expenses of
longer learning times, since the agent will need to explore more states.

So, different alternatives for the definition of states and actions will be ex-
plored in this work. In our first formulation of the problem, there will be one
state for all the power values lower than a certain power value, another for all
the power values greater than another certain value, and the interval between
those two values will be divided in equally sized states of a specific size.

In order to choose these three values (minimum power value, maximum power
value, and interval size), some profiling is required. After that, the minimum
power value will be the consumption when the system is in idle, and the maxi-
mum power value will correspond with the TDP of the machine (or maximum
power measured). Additionally, the size of the interval will be certain value that
guarantees that the power measurements obtained at different frequencies during
the profiling phase are not classified into the same state.

For running the experiments, different programs were run at each of the
available frequencies of the system, obtaining the results in Figure 2 and that
will be explained in the next section. Thus, the idle power (15W) and the TDP
(115W) will be chosen as the minimum and maximum values respectively. Based
on the results, a size of 3W will be chosen for creating the intervals in the first
set of experiments, since it is similar to the difference in power values consumed
by two adjacent frequencies. Sizes of 2W and 4W will be also explored. Finally,
other configuration with non-uniform distribution of states will be tried.

4.2 Defining actions and rewards

Similar to the state definition, the number of actions will ultimately determine
the quality of the obtained policy, as well as the learning time (greater number
of actions usually means greater quality at expenses of longer training periods).
In our first environment, we consider the actions limited to increase one step
the current frequency, and to decrease one step the frequency. Other definitions
are possible, like considering all the available frequencies as possible actions for
the agent. Nevertheless, a different set of actions will be considered later, that
includes the posibility of maintaining the frequency at the same level.

The reward function is defined based on how good or bad is the action taken
compared with the previous step. More specifically, the reward given at step t+1
(Rt+1) is defined as follows:

Rt+1(st, st+1) =


−1 if |st+1 − sgoal| > |st − sgoal|
+1 if |st+1 − sgoal| < |st − sgoal|
+2 if st+1 − sgoal = 0

(1)

where st+1 and st are the states the system is in the current and previous steps
respectively, and sgoal is the state containing the established power cap.

This reward definition guarantees that the system will move closer to the
desired power consumption at each step. Indeed, the reward will penalize the

8 P. Hernández et al.

Fig. 2: Power consumption profile for
the different workloads.

Fig. 3: Mean power error for different
power cap limits.

agent if the new power observation is farther from the cap than the previously
observed power (reward of -1), will give a reward of +1 if the new power obser-
vation is closer than the previous one, and will grant a maximum reward of +2
if the power observation is in the same interval as the established cap.

5 Experimental results

All experiments were implemented on a real server comprising two Intel Xeon
CPUs E5-2670 with a total of 16 physical cores and 64GB of DRAM. Thermal
Design Power (TDP) is 115W for each processor. Available frequencies range
from 1200MHz to 2600MHz, selectable with a 100MHz granularity. The following
libraries (and versions) were used in the experiments: Python (3.8.5), cpufreq
(0.3.3), pyRAPL (0.2.3.1), GYM (0.17.3), Ray (1.0.1), and NumPy (1.18.5).

All environments have been tested viaRLlib with different background work-
loads: matrix-matrix multiplication (called product in the following), vector sort
(sort) and matrix-matrix addition (sum), all using floating point elements. Each
experiment was initialized with a different frequency, covering all the possible
values. Each experiment was repeated 15 times with different initial frequency
values. Figure 2 shows the different power values measured for the previous work-
loads at different frequencies. Matrix-based operations (product and sum) were
configured to use 1, 000× 1, 000 elements, while a vector of 1, 000, 000 elements
was used for the sorting operation. Observe how these workloads cover all the
possible range of power values for the different frequency values tested, and how
the benchmarks exhibit a different behaviour as the frequency increases, covering
different situations present on real-life scenarios.

Power measurements correspond to average power consumption measured
during 150 ms. In addition, the following 100 ms after a frequency change were
not measured to not introduce noise in the system. For training the system, a
total of 5 epochs were run, with 4000 steps in each epoch, each of 250 ms. These

Applying Game-Learning Environments to . . . 9

values guarantee that the Reinforcement learning process does not influence
on the learning process. The product workload was used on this phase. For
testing each learned policy, 15 iterations of 200 steps each were run. For each
iteration, the environment was initialized with a different frequency to test all
the scenarios. Numerical results of each tested policy are presented in terms of
mean error (ϵ(t)) and mean accumulated error (E), defined as follows:

ϵj(t) = |xj(t)− x|, ϵ(t) =
1

15

15∑
j=1

ϵj(t), E =
1

201− T

200∑
t=T

ϵ(t) (2)

where x is the power target, xj(t) is the power value at step t and iteration
j, and T is the step number at which the iteration starts to converge. In our
experiments T was set to 75 experimentally.

5.1 Analysis under different power caps

Figure 3 shows a detailed trace of our approach when executing a matrix-matrix
product workload in the background under three different power caps: 97W (≈
84% TDP), 52.5W (≈ 46% TDP) and 40W (≈ 35% TDP). This three values
mimic possible values present in real-life scenarios. The simple definition of states
(fixed size of 3W) and actions (increase/decrease frequency) was used.

As observed, our approach exhibits a similar behaviour for all the tested
power caps: a first phase with constant decreasing error values, and a second
phase where the system has converged and the error keeps relatively constant
(t ≥ 75). This is the result of how the experiments were carried out. Indeed,
as the initial frequencies of the 15 testing iterations cover the whole frequency
spectrum, the agent needs to modify the frequency several times until an ideal
frequency producing power values near the required value is reached. However,
when comparing the three approaches, the error obtained when the power cap is
close to the limit is significantly higher than for the other values. This behaviour
is a direct consequence of the available actions of the agent. For a high power
cap, the optimal policy should maintain the frequency to the maximum most
of the time. However, our agent definition does not consider this option, being
constantly oscillating between the two highest frequencies. We show how this
behaviour can be improved in the next subsection. Nevertheless, our approach is
able to maintain the system with a power consumption close to the power cap,
with an average accumulated error (E) of 3.68W, 2.42W and 9.49W for 40W,
52.5W and 97W power cap values respectively.

Figure 4 offers an intuitive vision of the convergence of the training algorithm,
when establishing a power cap of 52.5W. Observe how, as the training process
proceeds, the agent takes less random decisions (in terms of frequency selection),
and the observed power converges to the target cap.

5.2 Impact of the state and action definitions

Figure 5 shows the mean power error (ϵ) for three different state definitions,
each with a different power interval size (2W, 3W and 4W), configured in the

10 P. Hernández et al.

Fig. 4: Power consumption for different training epochs, using a matrix-matrix
product workload. The black line represents the target power cap. Each other
color represent a different iteration with a different initial frequency.

same environment described before with a target power cap of 52.5W . The mean
accumulated error (E) is 2.54W , 2.42W and 2.71W respectively. Observe how,
for this specific scenario, the policy obtained in each case produces similar results.
This is due to the reduced number of actions the agent has to consider at each
state. Indeed, the agent will potentially take the same action for all the power
values in the same interval, producing the same results independently on how big
or small is each one. This behaviour will be different only in those states close
to the power cap imposed. However, the number of these states is negligible in
comparison with the amount of states far from this value.

To test how different state/action definitions impact our scenario, two addi-
tional environments (apart from the one defined) were defined:

– Env2: same strategy as Env1, but an additional action to maintain the fre-
quency at the same level was added. Thanks to this modification, the agent
can potentially learn to maintain the frequency when the power measure-
ments are close to the power cap, decreasing the error.

– Env3: An extension of Env2, but performing a non-uniform distribution of
the observation space. This distribution is based on the power profiling from
a specific workload (matrix-matrix product). For each power value mea-
sured, a new state was created containing this value but not any other value
measured. Considered actions are the same as in the previous environment.

Table 1 summarizes the configuration of the aforementioned environments, and
the parameters of the underlying neural network in terms of number of inputs,
neurons per layer, number of outputs and trainable parameters.

Applying Game-Learning Environments to . . . 11

Fig. 5: Mean power error for different state definitions (interval sizes) with a
power cap of 52.5W for the matrix-matrix multiplication workload.

Table 1: Overview of the different tested environments.

Neural network

State definition Actions Inputs L1 L2 Outputs
Trainable
parameters

Env1 Uniform (3W) ↑/↓ freq. 37 256 256 2 151,811
Env2 Uniform (3W) ↑/↓/↔ freq. 37 256 256 3 152,068
Env3 Non-uniform ↑/↓/↔ freq. 16 256 256 3 141,316

Figure 6 and Table 2 report the mean power error (ϵ) and mean accumulated
error (E) respectively for the three different power caps tested. Overall, observe
that Env2 and Env3 obtain low and similar error values (ϵ and E), while the policy
associated to Env1 produces worse results. This is a direct consequence of adding
to the agent the option to maintain the frequency, that improves drastically the
results for all the tested power caps, with improvements of 2×, 11× and 10×
for 52.5W, 40W and 97W respectively in the mean accumulated error (E) when
compared with Env2, and 2×, 9×, and 8× when compared against Env3. Lastly,
observe that there is not too much difference between environments Env2 and
Env3. However, using custom intervals for the state definition (Env3) allow us
to reduce the number of states drastically from 36 in Env2 to 15 in Env3, and
therefore, reduce the learning time (or equivalently, obtain a policy with greater
quality for the same learning time) at the cost of loosing generality.

5.3 Behaviour under different workloads

To show the effectiveness of our approach under different workloads, the environ-
ment Env2 was trained running matrix-matrix multiplications (product) in the
background and tested against the other two operations described above (i.e.,
matrix-matrix addition -sum- and vector sorting -sort-). Figure 7a shows the

12 P. Hernández et al.

(a) Pcap=52.5W (b) Pcap=40.0W (c) Pcap=97.0W

Fig. 6: Mean power error for different power cap limits and actions when running
the matrix-matrix multiplication workload in background.

Table 2: Mean accumulated error (E) under different power caps.

Env1 Env2 Env3

Pcap 52.5W 40.0W 97.0W 52.5W 40.0W 97.0W 52.5W 40.0W 97.0W

2.42W 3.68W 9.49W 1.17W 0.34W 0.98W 1.25W 0.39W 1.25W

mean power error (ϵ) produced for the different workloads with a power cap of
52.5 W. As observed, for both matrix-matrix multiplications and matrix-matrix
addition, the results are similar, producing an average error of 1W respect to the
power cap. However, a greater error is obtained when the sort workload is run
in the background. This error is the consequence of the different power consump-
tion each workload has (see Figure 2). Indeed, the sort operation presents power
values that are not produced by any of the other benchmarks at any frequency.
As a consequence, because the system was trained using the product operation
as workload, the agent still has some states not explored when running with
the sort operation in background, leading the agent to take actions randomly.
This behaviour can be seen more clearly in Figure 7b, that shows the frequency
taken by the agent at each iteration. As observed, although most of the actions
are centered around 2200MHz, there are noisy actions far from this value. This
behaviour ultimately produces the high error values described before.

These results reveal the importance of the input used for training, and how if
a workload able to produce all the different power values (or a mixed of multiple
workloads) is used, the obtained policy will yield better results.

6 Conclusions

In this paper, we have given clues and evidences towards the integration of power
capping mechanisms within frameworks (RLlib and Gym) that are conceived and
designed for other type of domains. By means of abstracting observations, actions
and rewards, we have shown how existing Reinforcement Learning frameworks

Applying Game-Learning Environments to . . . 13

(a) Mean power error (b) Actions applies for the sort workload

Fig. 7: Behaviour of the system under different workloads and a power cap of
52.5 W. On the left, mean power error. On the right, actions taken by the agent
(i.e., frequency set) for the sort workload at epoch 5.

can obtain efficient policies to automatically apply power capping techniques by
software. This idea opens a plethora of research lines, including the accelera-
tion of the training processes via multiple hardware accelerators, provided the
underlying infrastructure supports this kind of functionality.

We have experimentally proven how our proposal is able to control the power
consumption of a system running different workloads, each with a different
power-consumption profile. All the experiments were run considering different
power cap values, making them generic enough to be applicable to other scenar-
ios. Additionally, we have shown how the state and action definitions influence in
the quality of the policy obtained. In particular, adding an action to the original
environment has proved to decrease the obtained error by 2×, 11× and 10× for
executions with a power cap of 52.5W , 40W and 97W respectively.

Acknowledgements

This work was supported by the EU (FEDER) and Spanish MINECO (RTI2018-
093684-B-I00), and Comunidad de Madrid under the Multiannual Agreement
with Complutense University in the line Program to Stimulate Research for
Young Doctors in the context of the V PRICIT under projects PR65/19-22445
and CM S2018/TCS-4423.

References

1. Luiz André Barroso. The price of performance: An economic case for chip multi-
processing. Queue, 3(7):48–53, 2005.

14 P. Hernández et al.

2. Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, and Raffaele
Tripiccione. Evaluation of DVFS techniques on modern HPC processors and ac-
celerators for energy-aware applications. CC:PE, 29(12):e4143, 2017.

3. Luis Costero, Francisco D. Igual, Katzalin Olcoz, and Francisco Tirado. Leveraging
knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user
video transcoding. The Journal of Supercomputing, 2020.

4. Luis Costero, Arman Iranfar, Marina Zapater, Francisco D. Igual, Katzalin Ol-
coz, and David Atienza. Resource Management for Power-Constrained HEVC
Transcoding Using Reinforcement Learning. IEEE Trans. on Parallel and Dis-
tributed Systems, 31(12):2834–2850, 2020.

5. Wes Felter, Karthick Rajamani, Tom Keller, and Cosmin Rusu. A performance-
conserving approach for reducing peak power consumption in server systems. In
ACM Int. Conf. on Supercomputing, 2005.

6. Adrián Garcia-Garcia, Juan Carlos Saez, José Luis Risco-Martin, and Manuel
Prieto-Matias. PBBCache: An open-source parallel simulator for rapid prototyp-
ing and evaluation of cache-partitioning and cache-clustering policies. Journal of
Computational Science, 42:101102, 2020.

7. Vinay Hanumaiah, Digant Desai, Benjamin Gaudette, Carole Jean Wu, and Sarma
Vrudhula. STEAM: A smart temperature and energy aware multicore controller.
ACM Trans. on Embedded Computing Systems, 13, 2014.

8. Arman Iranfar, Marina Zapater, and David Atienza. Machine Learning-Based
Quality-Aware Power and Thermal Management of Multistream HEVC Encod-
ing on Multicore Servers. IEEE Trans. on Parallel and Distributed Systems,
29(10):2268–2281, 2018.

9. Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning
for video game playing. IEEE Trans. on Games, 12(1):1–20, 2020.

10. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533, February 2015.

11. Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey
of deep reinforcement learning in video games, 2019.

12. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, L. Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of go without human
knowledge. Nature, 550:354–359, 2017.

13. Amit Kumar Singh, Alok Prakash, Karunakar Reddy Basireddy, Geoff V. Merrett,
and Bashir M. Al-Hashimi. Energy-efficient run-time mapping and thread parti-
tioning of concurrent OpenCL applications on CPU-GPU MPSoCs. ACM Trans.
on Embedded Computing Systems, 16(5s), 2017.

14. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An introduction,
volume 1. MIT press Cambridge, 1998.

15. Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power cap:
A comparison of hardware, software, and hybrid techniques. In 21st Int. Conf. on
Architectural Support for Programming Languages and Operating Systems, pages
545–559, New York, NY, USA, 2016. ACM.

