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Abstract
Machine learning (ML) methods can learn from data and then be used for making predictions on
new data instances. However, some of the most popular ML methods cannot provide information
about the uncertainty of their predictions, which may be crucial in many applications. The Bayesian
framework for ML introduces a natural approach to formulate many ML methods, and it also has
the advantage of easily incorporating and reflecting different sources of uncertainty in the final
predictive distribution. These sources include uncertainty related to, for example, the data, the
model chosen, and its parameters. Moreover, they can be automatically balanced and aggregated
using information from the observed data. Nevertheless, in spite of this advantage, exact Bayesian
inference is intractable in most ML methods, and approximate inference techniques have to be
used in practice. In this thesis we propose a collection of methods for approximate inference, with
specific applications in some popular approaches in supervised ML.

First, we introduce neural networks (NNs), from their most basic concepts to some of their most
popular architectures. Gaussian processes (GPs), a simple but important tool in Bayesian regression,
are also reviewed. Sparse GPs are presented as a clever solution to improve GPs’ scalability by
introducing new parameters: the inducing points. In the second half of the introductory part
we also describe Bayesian inference and extend the NN formulation using a Bayesian approach,
which results in a NN model capable of outputting a predictive distribution. We will see why
Bayesian inference is intractable in most ML approaches, and also describe sampling-based and
optimization-based methods for approximate inference. The use of α-divergences is introduced next,
leading to a generalization of certain methods for approximate inference. Finally we will extend the
GPs to implicit processes (IPs), a more general class of stochastic processes which provide a flexible
framework from which we can define numerous models. Although promising, current IP-based ML
methods fail to exploit of all their potential due to the limitations of the approximations required
in their formulation.

In the second part of this thesis we present our contributions to approximate inference with a
specific focus on Bayesian NNs and IPs. First, we introduce a method to carry out approximate
inference by minimizing α-divergences with flexible implicit approximate distributions. The resulting
method, adversarial α-divergence minimization (AADM), optimizes a more general objective than
the one in other approaches such as variational inference or expectation propagation. Because of
this, AADM can capture complex patterns in the predictive distribution, which is not restricted
to be Gaussian. Moreover, AADM introduces a new parameter that can be tuned to optimize
specific metrics of the predictive distribution. We also carry out extensive experiments to show that
AADM outperforms previous work on approximate inference for Bayesian NNs. Finally, a second
contribution describes another method for approximate inference with IPs. Here, approximate
inference is carried out in the function space. This circumvents some of the inherent problems of
approximate inference in the parameter space, which can be high-dimensional and present strong
dependencies between parameters. Our method, sparse IPs (SIP), is the first general-purpose
approach based on IPs that is able of adjusting the prior distribution of latent function while also
producing flexible predictive distributions. Moreover, due to the use of approximations based on
inducing points, SIP remains efficient and scalable on large datasets with millions of data points.
In the experiments carried out, we demonstrate SIP achieves better results than all of the previous
methods, while also showing unique new features among IP-based approaches.
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Resumen
Los métodos de aprendizaje automático o machine learning (ML) son capaces de aprender a partir de
datos y producir predicciones para nuevos casos nunca vistos. Sin embargo, algunos de los métodos
de ML más usuales son incapaces de informar sobre la incertidumbre de sus predicciones, la cual
puede ser crucial en diversas aplicaciones. La perspectiva Bayesiana proporciona un marco natural
para ello, otorgando la capacidad de considerar diversas fuentes de incertidumbre en el análisis
y reflejarlas en las distribuciones predictivas finales. Esta incertidumbre puede tener diferentes
fuentes, como los datos, la selección del modelo y sus parámetros asociados, las cuales pueden ser
adecuadamente pesadas y agregadas usando las herramientas Bayesianas. Sin embargo, para la
mayoría de métodos de ML, la inferencia Bayesiana exacta es intratable, y para casos prácticos hay
que recurrir a aproximaciones de la misma. En esta tesis se proponen nuevos métodos de inferencia
aproximada, con aplicaciones concretas para algunos de los métodos más populares en ML.

En primer lugar introduciremos las redes neuronales (NNs), desde sus fundamentos básicos hasta
algunas de sus arquitecturas más comunes, así como los procesos Gaussianos (GPs), herramientas
importantes empleadas en diversos problemas de aprendizaje. Además, veremos cómo los sparse GPs
alivian los problemas de escalabilidad de los GPs mediante la introducción de un parámetro nuevo:
los puntos inducidos. En la segunda mitad de esta introducción describiremos los fundamentos
de la inferencia Bayesiana y extenderemos la formulación de las NNs al marco Bayesiano para
obtener NNs capaces de producir distribuciones predictivas. Veremos aquí por qué la inferencia
Bayesiana es intratable para muchos de los métodos de ML y revisaremos técnicas de aproximación
basadas tanto en muestreos como en la optimización de parámetros. Además de esto, veremos las
α-divergencias como una generalización de conceptos empleados en ciertos métodos de inferencia
aproximada. Finalmente extenderemos la formulación de los GPs a los procesos implícitos (IPs),
una clase más general y flexible de procesos estocásticos desde la cual podremos describir múltiples
modelos útiles. Aunque prometedores, los métodos actuales de ML basados en IPs no son capaces
de explotar todas sus propiedades debido a las limitaciones de las aproximaciones empleadas.

En la segunda parte de la tesis presentaremos nuestras contribuciones al campo de inferencia
aproximada, con especial interés para las NNs Bayesianas y los IPs. Primero veremos un método
para realizar inferencia aproximada usando α-divergencias con distribuciones aproximadas implícitas.
El método resultante, minimización adversaria de α-divergencias (AADM), optimiza un objetivo
más general que otros anteriores basados en inferencia variacional o expectation propagation, lo
cual le otorga la capacidad de capturar patrones más complejos de los datos y mostrarlos en su
distribución predictiva, la cual ya no estará restringida a ser Gaussiana. AADM incluye un nuevo
parámetro que puede emplearse para optimizar diversas métricas en los resultados finales, y a
través de numerosos experimentos se muestra que supera el rendimiento de métodos anteriores en
el contexto de NNs Bayesianas. Por último, veremos una segunda contribución que hace uso de
IPs para inferencia aproximada. Esta emplea optimización en el espacio de funciones, ya que el
espacio de parámetros usual padece de problemas intrínsecos por su alta dimensionalidad y las
interdependencias entre los mismos. Nuestro método, sparse IPs (SIP), es el primer sistema basado
en IPs completamente general, capaz de ajustar su modelo de probabilidad a priori y de producir
distribuciones predictivas flexibles simultáneamente. Además, debido al uso de la aproximación
de puntos inducidos, SIP es escalable y eficiente para conjuntos grandes de datos con millones
de instancias. En los experimentos SIP demuestra mejor rendimiento que los demás métodos,
presentando además nuevas propiedades únicas entre los sistemas basados en IPs.
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Chapter 1
Introduction

1.1 Motivation
In modern societies, gathering and managing data is a common practice. One effect
of this procedure, while also one of its main consequences, is the exploitation of
the resulting datasets for numerous tasks through statistics analysis and pattern
recognition techniques, also called machine learning (ML). The framework of ML
consists on the design and implementation of methods to automatically induce
patterns from data, which are assumed regular up to a certain degree (Bishop 2006).
Although taking advantage of previous data is not a new concept, the performance
achieved by modern techniques in ML has lead to a sharp increase in public interest
on this research field, which is also accompanied by a more important role in society
due to the ubiquity of ML in many aspects of life.

However, in certain scenarios it may be crucial to quantify the uncertainty
in the predictions provided by the ML algorithms to make informed decisions,
which is something that many of the currently used methods are not capable of
doing (Gal 2016). Therefore, it is essential to develop techniques that can provide
this type of information. To this end, the research community has focused on
combining ML with Bayesian statistics as a possible solution to this problem, since
the Bayesian framework provides many useful tools that can be employed to further
improve previous methods. Bayesian statistics relies on encoding information through
probability distributions, and through simple manipulations it allows for updating
a set of prior beliefs according to data observations in a procedure usually referred
to as Bayesian inference (MacKay 2003). A probability distribution is the result of
this process, where the uncertainty coming both from the data and the choice of
model itself is reflected. The main obstacle here is, in most cases, the intractability
of some of the calculations involved, which cannot be solved analytically. Therefore,
inference is mostly conducted in an approximate sense, i.e. the intractable terms are
obtained in an approximate manner to complete the inference process.

The quality of the predictions and the associated uncertainties provided by
approximate inference methods strongly depend on the properties of the selected
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approximation method. Usually, there is a trade-off between the simplicity of the
approximation and its convenience and expressiveness: simpler models may be easier
to fit and formulate, while may provide more restrictive predictive distributions. On
the other hand, more complex models may reproduce much more flexible distributions
at the expense of a more complicated mathematical formulation, as well as increases
in the computational cost. In this thesis we will focus on extending the existing
formulation for approximate inference techniques, proposing new models that enhance
the versatility, scalability and accuracy of current approaches. We will see that the
Bayesian approach to ML allows for the construction of methods whose predictions
are more informative and robust, while allowing to incorporate many useful features
inherited from Bayesian statistics, from extracting more information out of small
datasets to encoding previous information to help form the final predictions. To
motivate these topics, we will briefly review separately some of the developments
that have lead to this research.

1.1.1 Development of Machine Learning
During the last decades, the usage of ML has become widespread due to its flexibility
and performance across many different contexts. It has also proved to be essential
in trying to develop advanced solutions to new complex real-world problems, such
as autonomous vehicles (Fujiyoshi et al. 2019), sustainable agriculture (Sharma
et al. 2020), predictive diagnosis of neurodegenerative diseases (Liu et al. 2020),
and cybersecurity (Xin et al. 2018), to name only a few. The versatility and
performance needed to tackle these issues have only been achieved recently thanks
to advances in modern ML techniques, coupled with an increasing availability of
larger computational power. Therefore, it is important to introduce some of the
basic concepts that will serve as context in the following chapters.

During the length of this thesis, we will mostly refer to ML in the context of
supervised machine learning (Murphy 2012). Within this framework we are given a
certain training dataset D = {(xi, yi)}Ni=1, with N pairs of observations xi and target
values yi. The task here is to construct a model that is able to learn a predictor for
y when only the corresponding value of x is observed. Depending on if the labels
take values in a discrete or in a continous set we will refer to those problems as
classification and regression, respectively (Murphy 2012). In a supervised learning
set, the model’s parameters are fitted so that the estimated targets resemble as
closely as possible the real ones. For this, we need to define an objective function
that quantifies the similarity of the estimated predictions from the targeted values,
and we will correct the values of the parameters in the model to minimize this error
rate. However, this is not the only learning method: unsupervised learning deals
with data without labels (Hinton, Sejnowski, et al. 1999), while semi-supervised
learning uses data where only a few instances are labeled and tries to use that
information to assign labels to a bigger and unlabeled set of data (Chapelle et al.
2009). Finally, reinforcement learning is another important approach and one that
is closely related to decision processes, game theory and many other fields. Here,
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the methods developed are constructed to maximize a reward function by choosing
between a set of possible actions by trial and error, where no explicit data pairs as
the ones earlier are used (Sutton and Barto 2018).

Within supervised machine learning, one of the most proliferous techniques
currently are neural networks (NNs) (LeCun et al. 2015). In their core, NNs are
complex structures built from the combination of other simpler parts, i.e. perceptrons
(Rosenblatt 1958), that perform a very simple task applying a non-linear function to
a linear transformation of the input. In the next years to the excitement that followed
the creation of perceptrons, other tentative ML work would be introduced, as for
example the Bayesian Methods of Probabilistic Inference in the 1960’s (Solomonoff
1964). After a hiatus of almost two decades, interest in NNs would rise again thanks
to the advances on different techniques such as backpropagation (Rumelhart et al.
1986), which would allow to train complex NN models with the newly-developed
computational resources provided by the usage of Graphical Processing Units (GPUs).
This would pave the way for the widespread use of AI that we have nowadays.

Due to the advances achieved during the 1990’s in ML, NNs would become one
of the most popular type of algorithms in use today. During these years, the basis
for many of the current widespread methods would be set, including Support Vector
Machines (SVMs, Cortes and Vapnik 1995) as well as several NN architectures
such as Recurrent Neural Networks (RNNs, Pearlmutter 1990), Long-Short Term
Memory NNs (LSTMs, Hochreiter and Schmidhuber 1997) and early versions of
Convolutional NNs (CNNs, LeCun et al. 1998) in the late part of the decade. These
NN models can be framed inside deep learning, i.e. NN models where there are
several processing phases between the input and the estimated target value, which
allow NNs to produce much more flexible results. The main consequence of this
broad use of ML in a general sense, and more particularly NNs, is the change
of perspective from a knowledge-driven to a data-driven approach, in which the
algorithms are able to extract the necessary information from the data on their own,
automatically finding important features present in the database and fitting their
parameters accordingly. This is a key aspect of deep learning (DL) methods, which
by the 2000-2010’s had become one of the most common ML techniques thanks to
this ability and to the wide variety of tasks they could be implemented in while
achieving strong performance levels. DL is currently employed in very different tasks
that range from face recognition (Parkhi et al. 2015) to medical diagnosis (Yadav and
Jadhav 2019), text summarization (Song et al. 2019), weather and climate predictions
(Elhoseiny et al. 2015), self-driving cars (Fujiyoshi et al. 2019), etc. They also are
usually referred to as deep neural network models (DNNs).

Nevertheless, the flexibility of DL models comes with certain drawbacks. As an
example, they are prone to overfitting the data, i.e. fitting closely the training data
at the expense of worse results in the testing phase. Moreover, complex models can
require copious amounts of data to be trained properly, which may not always be the
case. Furthermore, the estimated outputs do not allow us to extract any information
about how certain the model is about that outcome. This is mostly caused by the
black-box nature of these algorithms, which implies that it is difficult for a human
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to understand what is being done in each part of the process. This represents a
complex problem which affects many usages of DL, specially in cases such as when
there may be intrinsic biases present in the data and may want to avoid the effects
of this in the final predictions (Serna et al. 2019). There are many possible paths
to deal with these problems, and one of the most popular ones is substituting the
point-wise predictions from the usual methods for predictive probability distributions.
This change would inform the user about the uncertainty of the output from the
algorithms, potentially encapsulating all uncertainty sources into the final results.
This would allow the user to make more informed decisions based on this detailed
data, which could be of utmost importance for certain sensitive problems. It is here
where the Bayesian formulation presents an important tool to extend models into
this probabilistic approach.

On the other hand, Gaussian processes (GPs) represent a different kind of
supervised learning model that are capable of conducting exact Bayesian inference
(Williams and Rasmussen 2006). GPs represent a stochastic process, i.e. a collection
of indexed random variables, such that any finite collection of those random variables
is normally distributed. The random variables in this case represent any function
that receives the observed data as input and outputs an estimate of the target
values, and due to the Gaussian restriction imposed, the calculations involved will
have a closed-form expression. However, GPs have important obstacles: they scale
poorly with big datasets, and their predictive distributions will only be Gaussian.
Sparse GPs (Quinonero-Candela and Rasmussen 2005; Titsias 2009; Snelson and
Ghahramani 2005) help to prevent the first of these issues by introducing an extra
mechanism in the GP formulation: the usage of inducing points. This new set
of parameters allow for summarizing the complete GP and improve the memory
requirements needed to execute the GP. However, the second problem of GPs is
much more difficult to deal with. This represents a major disadvantage for GP-based
models, since real-world problems present more complex behaviors. Nonetheless,
GPs represent an important introduction to approximate inference methods in the
function-space, which will prove to be crucial in later chapters of the thesis.

1.1.2 Bayesian Machine Learning
Bayesian statistics provides a framework that can be used in the context of ML
to compute uncertainties in a predictive model, among other things. In Bayesian
statistics, probability expresses a degree of belief in events (Bishop 2006). The
Bayesian approach to learning consists on encoding our prior beliefs in a prior
probability distribution and updating it according to the observed data through
Bayes’ theorem, which can be stated in words as

posterior ∝ likelihood × prior. (1.1.1)

Here, the prior distribution represents previous beliefs about the behavior of the model,
given previous information and considerations about the data and the model itself.
On the other hand, the likelihood factor expresses how probable the observed data set



1.1. Motivation 5

is for different settings of model parameters. Finally, the posterior distribution results
as the combination of both terms in the right side of the expression, representing
the uncertainty in the model parameters having observed the training data. This
procedure is usually referred to as Bayesian inference. The language introduced by
this formalism is naturally fit to describe ML models, where probability distributions
of the parameters are modified according to the data observed, obtaining an updated
version of those parameters’ distributions.

As an example within ML, applying the Bayesian approach to DNNs results in
the formulation of Bayesian Deep Neural Networks (BNNs). The usual approach for
BNNs implies substituting the usual parameters of NNs with probability distributions
to account for the sources of uncertainty on the model, which can be related to the
uncertainty in the model’s structure but also in its parameters. As far as in 1987,
Denker et al. 1987 hints at a Bayesian integration over the network parameters,
although a more solid formulation for BNNs would be presented later by MacKay
1992. Nevertheless, the BNNs there proposed could not be easily implemented since
they do not satisfy current requirements for their widespread use, mainly due to
concerns about their scalability and versatility. In general, Bayesian inference for
complex models is intractable and has no closed-form solutions, which posed a major
difficulty to the development of these models as well. This intractability is related
in most cases to obtaining the correct normalizing constant that would make the
posterior distribution in (1.1.1) a properly normalized probability distribution (i.e.
the posterior integrates to 1). The lack for a closed-form expression here represents
a major hindrance when conducting Bayesian inference, as well as other problems
that arise dealing with integrals in higher dimensions or evaluating sums that involve
exponential number of terms (Bishop 2006; MacKay 2003).

The stagnation of the field caused by all the issues raised in the inference procedure
would be overcome by using different approximation techniques for most practical
applications. In these cases, an approximate solution to some of the intractable
quantities would be constructed in order to be able to complete the inference process.
We can group approximate solutions to this problem in two main groups: sampling-
based and optimization-based solutions. In the first case, methods are mostly based on
Markov chain Monte Carlo (MCMC), a technique that employs Markov Chains whose
stationary distributions coincides with the distribution we are trying to approximate,
in most cases, the posterior distribution of the parameters of the model (Neal 2011;
Bishop 2006). The samples from the Markov Chain can be used to obtain an estimate
of the exact target distribution, which in the asymptotic limit provides the exact
distribution. However, these methods come with the issue of high computational
cost, even when more efficient formulations such as Hamilton Monte Carlo (HMC)
are used. For many practical purposes, this poses a strong limitation which makes
sampling-based methods prohibitively expensive.

The optimization-based approach to approximate inference is more recent (Jaakkola
2001; Minka 2001a; Beal 2003). These methods usually rely on approximating the
exact distributions with simpler, tractable distributions. Here we have approaches
such as Variational Inference (VI) and Expectation Propagation (EP) (Jordan et al.
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1999; Minka 2001a; Bishop 2006). In both cases, assumptions are needed to simplify
the calculations and to obtain closed-form solutions for many calculations needed
in the inference process. These restrictions usually introduce a strong bias in the
resulting approximation, restricting its flexibility in exchange for a more manageable
theoretical approach. Alternative approaches based on implicit distributions represent
an innovative way to obtain increased flexibility in the models, although they can be
more complex to train (Li and Liu 2016). In these models, one can easily sample from
the approximating distribution, while it lacks a closed-form density. This introduces
a new set of methods that could, in principle, provide more general and scalable
results (Salimans et al. 2015; Li and Liu 2016; Mescheder et al. 2017). Furthermore,
in many of these setups the approximating distribution is obtained as the result
of minimizing the divergence between the proposed approximation and the exact
posterior distribution, i.e. the Kullback-Leibler divergence (KL). The properties of
the KL divergence directly affect the outcome of the inference process, and therefore
much research has been put into characterizing it. The KL divergence can be seen
as a particular case of the more general Renyi divergences, also called α-divergences
(Van Erven and Harremos 2014; Amari 2012; Li and Turner 2016). New techniques
have attempted to exploit the properties of α-divergences to improve the inference
performance, although this is still an open research topic (Hernández-Lobato et al.
2016).

Finally, there have been recent efforts into extending the formulation of inference
problems from parameter-space to function-space. Although the formulation of the
methods becomes more complex, conducting optimization in function-space simplifies
many intrinsic problems in weight space, e.g. multiple modes, strong correlations
between different parameters and high dimensionality in bigger models (Sun et al.
2019). One of the most important tools here are implicit processes (IPs), which
serve as a general framework to implicitly define multivariate distributions over finite
collections of random variables (Ma et al. 2019). IPs can be seen as a generalization
of the GP formulation, which allows to get rid of the Gaussianity assumption made
in those models. However, due to the complexities in the mathematical formulation,
conducting inference with IPs is a challenging task. Despite of this, there have been
important advances in recent years with promising results (Ma et al. 2019; Sun et al.
2019).

1.2 Contributions
Given the ideas presented in Section 1.1, the main contributions of this thesis revolve
around the extension of approximate inference methods to try to improve their
scalability and performance, mostly in the context of supervised regression problems.
In general, we can summarize the main contributions made as the following:

1. Extend on the previous formulation of implicit approximate inference models
by including a more general set of divergences in the objective function. To
this end, we propose a new general method based on minimizing α-divergences
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that allows for flexible approximate distributions. This versatility could not be
achieved by previous models such as Adversarial Variational Bayes (Mescheder
et al. 2017), since its objective function presents important limitations, e.g.
it is restricted to optimizing the KL divergence. By employing the more
general class of α-divergences we are able to exploit their different properties
(Van Erven and Harremos 2014). We call this method adversarial α-divergence
minimization (AADM), where we expand on the setup of Hernández-Lobato
et al. 2016 to use it in implicit models, which adds extra flexibility to the
approximate distribution (Rodríguez Santana and Hernández-Lobato 2020).
We have evaluated AADM in the context of Bayesian neural networks, which
serve as base models to display the novel properties of the proposed approach.
We show that this new method is able to reproduce complex behaviors in the
predictive distribution such as multiple modes, heteroscedastic noise, heavy
tails, etc. Moreover, extensive experiments are used to prove that AADM
achieves better results overall in terms of various metrics in regression problems.
We have also conducted experiments in classification setups, where AADM
provides competitive results. Furthermore, we also show that the choice of
parameter α can be optimized to improve the performance of the method in the
selected metric. In general we observe that in most cases, optimal performance
is achieved by 0 < α < 1. Moreover, we show that α → 1 improves further
the log-likelihood loss at the expense of deteriorating the squared error, while
α → 0 does the opposite. Finally, we show that this improved flexibility is
obtained at a similar computational cost to previous methods such as AVB,
making our method highly scalable, flexible and efficient (Rodríguez Santana
and Hernández-Lobato 2020).

2. Improve the current approaches for function-space approximate Bayesian in-
ference through the usage of implicit processes (IPs), and propose a new,
general-purposed approach that is able to conduct inference without com-
promising the flexibility of the IP models. Existing methods employ IPs to
approximate the exact prior and/or the posterior of the model. As an example,
in one case they are able to find a good approximation to the prior by using an
IP, although they must resort to a Gaussian approximation for the predictive
distribution (Ma et al. 2019). On the other hand, another possibility is using
another IP to approximate the posterior at the expense of not being able to
train the parameters of the prior IP approximation (Sun et al. 2019). We
propose here the first general-purposed method that can carry out both tasks,
enabling us to train the parameters of both the prior IP and the IP approxima-
tion to the posterior in a simultaneous fashion, while also providing complex
predictive distributions in an scalable manner. To this end, we rely on an
inducing-point representation of the prior IP, as it is often done in the context
of sparse Gaussian processes (Titsias 2009; Snelson and Ghahramani 2005).
The resulting method conducts approximate inference using IPs with implicit
distributions, obtaining an approximate distribution that is decomposed into a
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sparse GP and an IP. We name this method Sparse Implicit Processes (SIP).
SIP is also capable of reproducing complex features such as multimodality,
heavy tails, heteroscedasticity, etc. Moreover, due to the usage of inducing
points, the method is kept scalable (in some setups, achieving substantially
shorter convergence times than other approaches). Moreover, we show that
SIP is capable of efficiently allocate its resources s.a. the inducing points’ loca-
tions, to improve its performance. Finally, we have also conducted extensive
experiments which show that SIP outperforms previously proposed methods
due to its flexibility, while also being the only IP-based approach capable of
training both the prior and the posterior according to the observed data (Sun
et al. 2019; Ma et al. 2019).

Publications
For the sake of reproducibility, all the code developed for the contributions and
experiments of this thesis is publicly available online1. In addition to this, the
following paper has been published

Rodríguez Santana, S. and Hernández-Lobato, D. (2020) Adversarial α-divergence
minimization for Bayesian approximate inference. Neurocomputing. ISSN 0925-
2312, https://doi.org/10.1016/j.neucom.2020.09.076.

while although of similar importance to the development of this thesis, currently
undergoing the review process

Rodríguez Santana, S., Zaldivar, B. and Hernández-Lobato, D. (2021) Sparse
Implicit Processes for Approximate Inference. Submitted to the 25th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS 2022).

Finally, although not described in detail here, work related to this thesis can be
found in

Naveiro, R., Rodríguez Santana, S. and Ríos Insua, D. (2019). Large scale
automated forecasting for network safety and security monitoring. Applied
Stochastic Models in Business and Industry, 35(3), 431–447, https://doi.
org/10.1002/asmb.2436.

1.3 Dissertation Structure
The organization of the remaining chapters of this thesis is as follows:

Chapter 2 is a review of neural networks and Gaussian processes. The
basic concepts are introduced and defined in both cases. The NNs section
goes over the fundaments of shallow nets, their activation functions and some

1https://github.com/simonrsantana

https://doi.org/10.1016/j.neucom.2020.09.076
https://doi.org/10.1002/asmb.2436
https://doi.org/10.1002/asmb.2436
https://github.com/simonrsantana
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regularization techniques. Afterwards we describe several architectures of deep
NN models, mainly feed-forward and convolutional neural networks, and point
out their core properties. Finally we describe Gaussian processes in their most
basic form, starting from the kernel formulation and exploring some of their
properties. To finish, we introduce one approximation to sparse GPs and the
concept of inducing points.

Chapter 3 introduces Bayesian inference in a more detailed manner, starting
from basic Bayesian formulation. Bayesian learning is then introduced in the
context of ML and, more importantly, Bayesian NN models. After explaining
the main obstacles for exact Bayesian inference in this context, we cover several
approximate inference techniques. Within this context, Variational Inference
(VI) is further detailed, including a new approximate solution for sparse GPs
that makes use of the VI formalism. The expectation propagation algorithm is
also introduced, followed by a first implicit model for approximate inference.
Some sampling-based approaches based on Markov chains are also summarized.
Finally, we describe current state-of-the-art methods based on function-space
inference with implicit processes (Ma et al. 2019; Sun et al. 2019), illustrating
their core properties and limitations.

Chapter 4 focuses on extending the existing formulation for approximate
inference in parameter space to employ α-divergences. These represent a more
general type of divergence whose properties can be beneficial for inference
tasks. Employing the formulation provided by previous literature works such
as power expectation propagation (Minka 2004) or Black-box α-minimization
(Hernández-Lobato et al. 2016), we propose a new approach to minimize
α-divergences with an implicit model for the approximate distribution by
making use of an adversarial approach, which we refer to as Adversarial α-
divergence minimization (AADM). We explore its properties through numerous
experiments, showing it achieves better overall performance than previous
methods proposed in the literature.

Chapter 5 introduces Sparse Implicit Processes, a new technique to conduct
approximate inference in the space of functions using implicit processes. Using
the introduction to IP-based methods in Chapter 3, we formulate the new
method, which employs an IP prior and a combination of another IP and
a sparse GP in the posterior. This results in a in a mixture of Gaussians
predictive distribution capable of reproducing complex patterns, while the
model remains fully trainable in a scalable manner. We report the results of
extensive regression experiments, showing that SIP’s performance improves
overall the achievements of the previous state-of-the-art, while it is the first
general-purposed, flexible and fully trainable model based on approximate
inference with IPs.

Chapter 6 summarizes the conclusions of this thesis and proposes new lines
for future research.
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Chapter 2
Neural networks and Gaussian Processes

In this chapter we will conduct a brief review of two of the most popular
approaches inside modern machine learning: neural networks (NNs) and
Gaussian processes (GPs). NNs represent the most widespread method
currently due to their adaptability and performance in many different tasks.
This is related to the multiple architectures that can be used here to take
advantage of different data, allowing to account for spatial and temporal
correlations in some cases. We will introduce the basic concepts on which
NNs rely on, followed by a description of some of the most successful
NN models. On the other hand, GP-based models are useful to conduct
Bayesian inference using functions as random variables. Imposing a set of
restrictions on the functions available, all of the important quantities for
inference have closed-forms, although that comes at the expense of low
scalability and forcing the predictions to be Gaussian. This will provide
us with a first approach for conducting inference in the space of functions,
which we will use again in following chapters. Finally, we will introduce
sparse GPs, a model that enables GPs to be used in cases with large
amounts of data, greatly reducing their computational requirements.

2.1 Fundaments of Neural Networks
We have experienced a rapid increase in public interest during the past few decades
on topics related to computer science, statistics and, more specifically, machine
learning and pattern recognition. The reasons behind this interest can be traced
to, although not exclusively, the appearance of new and powerful hardware, as
well as algorithms capable of exploiting this new set of capabilities available. The
creation and accessibility of GPUs (as well as more powerful CPUs) has allowed for
the development of a new array of techniques that, in turn, achieve a much higher
performance than previous methods on a very wide range of tasks (Oh and Jung
2004). Some of the most popular methods for dealing with complex problems, and
also one that has become almost ubiquitous nowadays, are neural networks (NNs)

11
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(Hu et al. 2015; Fujiyoshi et al. 2019; Song et al. 2019).
NNs are specially interesting nowadays because the have allowed to make use

of both different data structures in an efficient and highly precise manner, which
represents a strong contrast to what other popular methods are capable of (Gelman
et al. 2013; Bishop 2006). Specially, we here refer to non-tabulated data e.g. images,
audio, video etc. When dealing with these datasets, regular approaches resorted to
complex mathematical and statistical modelling needed to deal with the hardships
intrinsic to these problems: much of the effort was invested on dealing with the
data itself by identifying its features, and also on how to train and perfect the
model so it had the ability to extract as much information as possible from the
dataset (Goodfellow et al. 2016). Here, NNs represent a change of paradigm, on
which the modelling effort is exchanged by the computational burden that represents
training the system itself. This is due to NNs being able to automatically detect
important features and structure in the data thanks to the usage of simple but
effective approaches to processing the information through the network (Ruck et al.
1990). Moreover, what was a prohibitive computational cost for training these models
a couple of decades ago has now become a solved problem (at least for most cases)
thanks to the wide access to GPUs and an ever increasing amount of computational
power. Models that can be run in most modern computers can achieve what not
long ago was considered state-of-the-art performance. This is particularly the case
in some complex tasks, ranging from image classification (Krizhevsky et al. 2012) to
face and speech recognition (Hu et al. 2015; Li and Wu 2015), text summarization
(Song et al. 2019), captioning (Vinyals et al. 2015), etc.

One of the main features of NNs, asides from their ability to perform automatic
feature detection, is the flexibility of their framework. Many different architectures
can be employed to tackle different tasks, while the same principles for training apply
to most of them (if not all) (Goodfellow et al. 2016). Most models can be described
using very similar terms that could be employed to formulate the most simple setups,
being the Multilayer Perceptrons (MLPs) maybe one of the most common ones
(Rosenblatt 1961; Goodfellow et al. 2016). In this basic form, NNs can be easily
formulated and, to some extent, interpreted (Goodfellow et al. 2016). However, for
more complex models, interpretability has long been seen as an impossible task,
labeling most complex NNs as black-box models, which has been an important line
of research for the last years (Abbasi-Asl and Yu 2017). In some limits, however,
NNs are also strongly related to other types of methods that may be much more
interpretable. This is the case for Gaussian processes, a class of models which we
will introduce later as well.

In this part of the text we will describe the most basic concepts that are used in
NNs since they play a major role in a lot of ML solutions to real-world problems.
We will introduce their most fundamental components and see how to extend their
basic capabilities through changes in their architecture and other features, while
also describing their main drawbacks. Moreover, in the following chapters we will
also see how to extend their features to extract more complete information in their
predictions for each problem at hand.
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2.1.1 Shallow Neural Networks
Most of the popular NNs architectures can be described in the same terms since they
usually share most of their main principles, regardless of their specific architecture
or application (Goodfellow et al. 2016). This can be said for some of the most
widespread setups for NNs, some of which we will see later. Therefore, to explain
the main fundamental basis of NNs we will start by briefly covering the simpler
examples, and continue building from there.

One of the main concepts behind NNs are their processing units. Although NNs
could be considered somewhat new models by some, the introduction of this core
idea dates back to the 1950s, when Rosenblatt formulated the perceptron (Rosenblatt
1958) . This simple model would lay the ground for what we know now as NNs.

The perceptron was initially formulated as a classifier, although its formulation
could be easily extended to a regression objective. This model consists of a simple
linear transformation of an input x by a set of weights w and a bias parameter b:

ŷ = σ(wTx + b) =
1, if wTx + b > 0

0, otherwise
(2.1.1)

where σ is a non-linear function that outputs 1 if the input is positive, and 0 otherwise.
This transformation can be described as a threshold function, mapping a certain
input value to a binary output depending on this condition. Due to this behavior, the
perceptron is also referred to a an artificial neuron with a Heaviside function used as
an activation function (that is, the neuron is activated if the input is positive, where
returning a 1 is the analog of firing). This setup enabled the perceptron to create
linear decision boundaries to classify data (or also fit a linear regression model).

Different perceptrons could also be combined in parallel, resulting in single-layer
perceptrons. However, these models were only capable of learning linearly-separable
patterns, and otherwise they would not be capable of correctly performing the
classification task (this includes the inability for solving a Boolean XOR problem).
The development of NNs would mostly stall here since this problem was seen as an
important hindrance for the development of useful models. This issue could not be
solved unless more complex combinations of perceptrons could be trained in a multiple
layer manner, but the computational power available did not allow for it yet. In the
following years, important advances were made regarding the ability to train more
complex models, specially with the formulation and application of the backpropagation
algorithm to NNs (Werbos 1975; Rumelhart et al. 1986). Backpropagation provided
an scalable and flexible technique to estimate the gradients of the parameters in
a system with respect to an objective function, further enabling the construction
of more complex systems of different perceptrons. This, coupled with the rapidly
increasing computational power available, allowed for the creation of the first trainable
multilayer perceptrons (MLP), which in some instances are also called shallow neural
networks (as a counterpart to deep neural networks, which we will introduce shortly
as well).

Shallow NNs are usually seen as very simple models, constituted by a single



14 Chapter 2. Neural networks and Gaussian Processes

layer of computing units between input and output (which is why they are also
referred to as one-hidden-layer neural networks). Each one of those units is closely
related to the original perceptron. In this case, however, we will have two consecutive
transformations applied to the input data. Again, we will denote by x the inputs of
the model (column vector with Q elements). The part of the system on which the
data is provided is usually referred to as the input layer. Following this input, we
will have a weight matrix W1 that connects the input and the hidden layer, which
will act as a linear map of dimensions Q×K, and also certain biases b1 to complete
the linear transformation (row vector of dimension K). The result of this linear
transformation is usually referred to as the activations for the layer, which we will
denote as a1 (row vector of dimension K as well). As in the previous example, these
activations will be passed through an element-wise non-linear activation function
σ(·), which in the previous example was simply the standard Heaviside function,
providing the layer output h1 (row vector of shape K). Finally, we process these last
outputs through the hidden layer, where we conduct a new linear transformation
given by a weight matrix W2 (dimensions K ×D) and biases b2 (shape D). For
this system, the final output will be directly the activations of this second layer (a2,
a column vector of dimension D), without passing them a second time through an
activation function such as before. Therefore, the whole process for a given input x
through this system can be described with the following expressions:

ŷ = a2

= h1W2 + b1

= σ(a1)W2 + b1

= σ(xTW1 + b1)TW2 + b2. (2.1.2)

The dimensions of each component in the system reveals the number of units being
used in each part of the processing: for the first layer, we will have K units that have
to receive the input from x, with Q components. Afterwards, the second and final
layer consists in D units that receive the K-dimensional output from the first layer.
Since the output for this model is directly the activations for the second layer, we will
need to have that D is also the dimension of the desired output y. A representation
of this process is illustrated in Figure 2.1, on which the input x is passed through the
first linear transformation, given by W1 and b1 and where w[1]

i represents the i-th
column of W1. The output is then passed to the nonlinear activation function, and
finally undergoes the last linear transformation with the parameters of the hidden
layer (W2 and b2). In this case we have set x to be a 3-dimensional vector and we
will have 4 units in the hidden layer, represented by the four distinct components of
w[i]

1 . The number of hidden units in the output layer is left unspecified, although it
must coincide with the dimension of the output ŷ.
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Figure 2.1: One-hidden-layer NN

2.1.2 Activation Functions
As we have seen, the core idea behind NNs thus far is the combination of linear
and non-linear transformations to a given input. More specifically, the ability of
NNs to reproduce complex behaviors completely depends on having non-linearities
present, since otherwise the whole processing of the input could be summarized in a
linear transformation. The choice of the proper activation function for a given task
is therefore crucial both from the point of view of training (backpropagation) and
for the performance. There has been intensive research on the properties of many
possible nonlinear functions as candidates for activation functions. Some of the most
popular ones are the following:

• ReLU: Rectified Linear Units (ReLUs) are one of the most popular choices,
either in their standard form or with some modifications. The function can be
defined as

σReLU(x) = max(0, x), (2.1.3)
that is, the positive part of the argument. The ReLU function has important
properties such as the efficient computation of both the function and its
derivative (which aids when training the models) and sparsity (with a randomly
initialized network, approximately half of the outputs will be zero). However,
it does present some important drawbacks, for example the fact that it is
unbounded and that it is not differentiable at x = 0. This function is also widely
used in NNs, and in more complex models it has shown better performance
than other commonly used activation functions. Many different iterations have
been proposed for this activation function due its simplicity, being the Leaky
ReLU one of the most popular ones. On their parametric version, the function
consists in introducing an small slope α when x < 0:

σLeaky ReLU(x) =
x, if x > 0
αx, if x < 0.

(2.1.4)
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When α = 0.01, this function is commonly referred to simply as Leaky ReLU.

As a final remark, ReLU non-linearities also present the important feature of
avoiding the vanishing gradients problem. Using other non-linear transforma-
tions, the gradient of the activation function can get close to 0 at a certain range
of x, which difficults the learning since it depends on these values. However,
this is not the case for the ReLUs, since their gradient is always constant when
the input is positive. If a regular ReLU is employed, the gradient is only zero
in the region where x < 0, although this issue can be easily circumvented by
choosing a Leaky ReLU model and allowing for a small learning when the input
values are negative. This issue plays an important role in other activation
functions, such as the one we will introduce next.

• Logistic: The logistic function is also commonly used due to its behavior close
to zero, its smoothness and the fact that it gives bounded results. It is given
by:

σLogistic(x) = (1 + exp(−x))−1. (2.1.5)

This function is usually seen as an alternative smoothed version of the more
classical Heaviside model. This is specially useful for binary classification
tasks, since it provides more information than its counterpart. In this case, the
derivatives are more costly than those of the ReLU, although the additional
computational cost can be assumed with current setups. The logistic activation
function can be implemented in the last part of a model, where the output
can be interpreted as the probability of a certain input belongs to one of two
categories. Finally, the logistic function presents a vanishing gradients problem
when the input value is too far from the origin, where the gradient of (2.1.5)
becomes 0.

• Hyperbolic tangent: The hyperbolic tangent presents a similar shape to
that of the logistic function in (2.1.5), while also presenting bounded results
and a linear behavior close to the origin. This function can be written as

tanh(x) = ex − e−x

ex + e−x
. (2.1.6)

From this expression we see that, the larger the input, the closer the output
will be to 1. On the other hand, the smaller it is, the closer the resulting
value will be to −1. The behavior is therefore very similar to the logistic
function with a small translation and change in scale (and therefore suffers
from the vanishing gradient problem as well). The derivatives of the functions
can be estimated with cost similar to the ones of the logistic function as well.
Therefore, it provides another smooth way of mapping all possible inputs into
a bounded result and has readily accessible gradients, which makes it a very
popular choice likewise.
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2.1.3 Objective Functions
One of the other key ingredients to NNs is the usage of an objective function to
estimate the performance of the established setup for the problem at hand. This
objective function provides a formal specification of the problem, and thus its choice
is of crucial importance here. As could be expected, its shape and properties will
strongly condition the final values of the parameters in our model, since they will be
tuned in order to optimize it. In some cases, the optimal value for objective function
can be found analytically through a closed-form solution, although in most of the
cases we will face in the rest of this thesis this is usually not the case: either the
complexity of some parts of the system or the evaluation of the objective function
itself will prevent us from obtaining a closed-form solution. However, there are
ways of obtaining an approximate optimal solution through numerical approximate
methods.

In general, most machine learning algorithms assume an objective function that,
while training, can be written as a sum over the evaluation of the same objective
function over the training points such as the following:

L(θ) = 1
N

N∑
i=1

Li(θ), (2.1.7)

where θ represents the model’s parameters, N the total number of training instances,
and Li typically represents the objective function evaluated for the i-th data instance.
In supervised learning settings, usually each Li(θ) refers to an evaluation of the
objective function using parameters θ and a pair of input and output data, (x, y).
Using this description, by employing a method such as backpropagation, we can
estimate and propagate the gradient of the objective function across the parameters
of the model. This allows us to update their values according to this gradient in order
to optimize the function. Once the gradients are obtained, the values of the model’s
parameters can be updated using some technique of gradient descent (and in some
cases, using an approximation to the exact gradient can help with the optimization
procedure). In general, the update of the parameters is conducted as

θ := θ − η∇L(θ) = θ − η

N

N∑
i=1
∇Li(θ) (2.1.8)

where η is a parameter that controls the scale of the update, usually referred to as
learning rate. In some cases, SGD can be implemented without needing to evaluate
(2.1.8) for all the training inputs, allowing for a mini-batch gradient descent training.

The study of optimization techniques constitutes a complex and rich field of
research with historical roots, but with major importance today in the machine
learning research since it is completely crucial to the training and development of new
methods. In particular, some of the most popular techniques for conducting training
in ML, specifically NNs, make use of changing learning rates according to previous
values of the gradient for the parameters. This allows for a faster convergence to the
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optimal value in the objective function, since the model can be said to make use of
the properties in the optimization space to quickly arrive to the optima. Although
there are many different techniques that can be used here, one of the most relevant
ones, with widespread use, is Adaptive Moment Estimation or Adam (Kingma and
Ba 2014). In Adam, running averages of both the gradients of the objective function
and their second moments are used. Through a combination of momentum terms and
adaptive learning rates, convergence to the optimal value of the objective function is
accelerated. As well as previous methods, Adam takes advantage of concepts such as
the momentum of the updates, but does so in a manner that allows it to converge
faster than regular optimization techniques while remaining scalable, efficient, easy
to implement and with great performance across many different datasets.

Asides from the optimization techniques, and as we pointed out earlier, the choice
of the objective function is of utmost importance in each task. Depending on the
type of problem we are trying to model, certain functions are commonly used in
order to obtain better results. As an example, for regression problems it is very
popular to set the objective function (also referred to as loss function) as a distance
measure between the estimations of the model and the test data. We will write these
functions using θ to describe the model parameters (in the example of Figure 2.1, θ
would be W1,W2,b1,b2). The quadratic loss function, also called mean squared
error (MSE) loss, is given by

Lθ(x, y) = 1
2N

N∑
i=1
||yi − ŷi||2 (2.1.9)

where {yi|i = 1, ..., N} are N observed outputs and {ŷi|i = 1, ..., N} are the outputs
for the model with corresponding inputs (in our example, the activations of the
second layer of processing). This is a common choice when the main objective is
minimizing the error of the predicted outputs with respect to their observed values.
Many other distance definitions can be used depending on the specific details of the
regression task. As an example, we could also use the mean absolute error loss,
which is simply

Lθ(x, y) = 1
N

N∑
i=1
|yi − ŷi|. (2.1.10)

Different final results may be obtained for each distance metric we employ in the
loss function, since they tend to weight in a different manner different values for
the error in the regression task (e.g., MSE may penalize more strongly big error
terms than MAE due to its squared term, and thus may be an interesting choice if
strong deviations are not desirable in the specific problem they are being used in).
These two particular functions represent two of the most popular and widespread
loss functions for regression tasks, although there are certainly many more to choose
from and which can be implemented and tailored to each use (e.g. quantile loss,
log cosh loss, Huber loss) (Friedman et al. 2001).

On the other hand, if we intend to perform classification tasks it might be useful
to employ an objective function that allows us to discriminate between as many
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classes as needed. In general, these will need to provide us with an estimated value
that serves as a proxy to know if certain data instance belongs to a specific class.
Therefore, in these systems it is particularly useful to employ activation functions
such as (2.1.5) in the output of our system. In this manner, the output of our system
can be easily interpreted as said probabilities (we could also make use of a Heaviside
function, although in this case the binary output will be equivalent of labeling a
given input as belonging to one class or another). Both in the task of binary or
multi-class classification, the cross-entropy loss function is commonly used. This
function is based on the usage of a softmax function between D available classes
for each data instance. The score assigned for class d of a given predicted output ŷ
associated to an input x, will be:

p̂d = exp(ŷd)∑
d′ exp(ŷ′d)

for d ∈ {1, ..., D}. (2.1.11)

If for that same input x the observed label is y, we can construct the loss function
using the previous score function. Taking the log of p̂d and combining it with the
associated y for each data instance, we construct the cross-entropy loss function,
which in the binary case is simply given by

Lθ(x, y) = −y log(p̂y)− (1− y) log(1− p̂y), (2.1.12)

where y is 0 for one of the classes and 1 for the other (binarized label), and p̂y is the
probability of ŷ = y, given by (2.1.11). This can be generalized to the case with D
different classes, where the multiclass cross entropy loss function can be defined
as

Lθ(x, y) = − 1
N

N∑
i=1

D∑
d=1

yi,d log(p̂i,d), (2.1.13)

where i refers to each data instance (i ∈ {1, · · · , N}), yi,d is a binary label which
takes value 1 if for instance i the observed class is d and is 0 otherwise, and finally
p̂i,d is the probability of labeling data instance i as class d. The sum over all data
instances can also be performed batch-wise in some cases, and it serves as a manner
to quantify the classification error rate.

Models such as NNs are pretty flexible, and given an enough complex architecture
they are seen as universal approximators (Hornik et al. 1989). This means NNs
can represent a wide variety of functions, given the NN at hand is complex enough
in terms of the number of units in each processing layer (width of the layer) and
enough numbers of layers are applied, as we will see shortly. However, this also
means that these models can be prone to overfitting the data if they are flexible
enough. When this occurs, the model fits its parameters to model closely the training
dataset at the expense of the generalization error, which is evaluated in the test set
and exceeds the training error greatly. In most cases this is caused by employing a
model whose complexity goes beyond what may be needed to model the data, and its
also specially common if there are few data points to train the system and these few
datapoints available are being used multiple times. This is an important issue that
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can compromise the behavior of the system, and therefore there has been important
research efforts on how to deal with it. The methods that try to prevent the system
from overfitting are usually called regularization techniques, and here we will briefly
introduce some of the most widespread ones in the NN research literature: Lasso
(L1) and Ridge (L2) regularization. The discussion of both is relevant here since
they can be implemented as slight changes to the objective function, and although it
is not the case for dropout regularization, we will also include it here for the sake
of completeness since it is one of the most important regularization techniques in
current NN research development.

• Lasso regularization (L1): The least absolute shrinkage and selection
operator or Lasso was first introduced in the context of geophysics with the study
of band-limited reflection seismograms (Santosa and Symes 1986), although
the term Lasso and its introduction to the ML literature would be thanks to
the work of Tibshirani (Tibshirani 1996). The Lasso regularization implies
adding an extra term to the objective function in the form of the sum of the
absolute values of the model’s parameters

LL1
θ (x, y) = Lθ(x, y) + λ

M∑
m=1
|wm|, (2.1.14)

where wm represents each of the M -model’s parameters available, λ is a scale
parameter and Lθ(x, y) is the original loss function. When this term is added,
minimizing the resulting loss function LLasso

θ will also mean minimizing this sum
of absolute values, thus discouraging the parameters from setting parameter
values too high. Due to the usage of the absolute value, the Lasso regularization
is said to create sparse models since it forces many parameters to zero. This is
particularly useful if we are trying to compress our model, although may present
issues when dealing with high dimensional data and few training points).

• Ridge regularization (L2): The Ridge regularization technique (Hoerl and
Kennard 1970) uses the L2 norm of the vector of parameters in a similar fashion
to what is done in the L1 case. This can be written as

LL2
θ (x, y) = Lθ(x, y) + λ

M∑
m=1

w2
m = Lθ(x, y) + λwTw, (2.1.15)

where w is a column vector containing all the model’s parameters, of size M
and with entries w[i] = wi. The usage of the L2 norm does not yield as much
sparsity as the L1 regularization, but instead encourages the parameters to
take values close to zero (it penalizes in a stronger manner outliers with high
values). Therefore, the resulting model will be not as sparse as in the L1 case,
but all the non-zero parameter values will be more concentrated towards zero,
and smaller values for the parameters help restrict the overall flexibility of the
system.
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• Dropout: This approach to regularization is not implemented through the
objective function, although since its introduction to the ML research com-
munity (Hinton et al. 2012; Srivastava et al. 2014) it has become one of the
most widespread ones. Although there are others, dropout is the most popular
type of stochastic regularization technique (SRTs) on which the regularization
is conducted in a stochastic manner, controlled by a random variable. It is
mostly used in bigger NN systems, i.e. in Deep NNs, which we will describe in
further detail in the next section. In these cases, it is specially efficient in order
to perform model averaging, which means producing outputs from different
networks and averaging their results to obtain a better estimate for the final
value. This effectively addresses the issue of overfitting, while also being easily
implemented in most NN setups. The concept behind dropout is illustrated
in Figure 2.2, where the model being depicted is non other than a NN with
two hidden layers of processing units, being each unit represented here as a
circle. For each layer in a NN, we randomly drop out certain units, tuning
their output to 0 with given probability p. This p can be tuned according
to the position of the processing layer in the network, the number of units
in said layer, etc. This has the same effect as removing those units from the
structure itself, making the resulting system a thinned version from the original
one. Taking this into account, the system can be said to average between the
outputs of many thinned networks at test time, which reduces the chances
of overfitting and may improve the performance of the model overall. The

Figure 2.2: Dropout applied to a network. Left: Original network, with two
consecutive layers of 5 processing units each. Right: Same network with dropout
applied, where the crossed unit’s output has been set to 0 (dropped).

stochastic process for turning off certain units can be seen as noise injected
in the system. This noise can be interpreted as noise added in the parameter
space, or it can also be re-interpreted as noise coming from the feature space
as shown in (Gal 2016).
Moreover, although we will see it in further detail in the following chapter, the
implementation of dropout has a similar effect to some approximate Bayesian
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inference techniques such as Variational Inference (see Section 3.3.1 for more
details). Under certain constraints for the prior probability distribution and
the selected approximating distribution set in our models, dropout produces
the same results to those of variational inference. In fact, Gal 2016 conducts
the necessary calculations and arrive at the precise set of constraints under
which the results of these type of SRTs and variational inference are the same.

Finally, although we have described some of the main parts of shallow NNs, these
models still lack the performance expected for many complex tasks nowadays. To
solve this issue, we must pay attention to one of the main concepts about NNs that
we still have yet to explore here: their architecture. This is the key aspect that will
allow us to transition from shallow NNs to Deep NNs, where exploiting the inner
structure of the models can allow us to greatly improve the performance in a great
number of problems.

2.2 Deep Learning
As previously mentioned, ML practices are ubiquitous nowadays thanks to the
presence of large amounts of data along with high performance algorithms that allow
us to extract valuable information from these sets in an automated fashion. One
of the most used techniques in many different fields and a wide range of problems
are NNs, which thus far we have only described in a very limited manner. For the
most part, we have centered our discussion in shallow NNs, i.e. models of networks
with a certain number of connected processing units arranged in parallel in what
we have called a layer. At most, the models described previously had one of this
processing layers, and since are deemed shallow models (with the exception of the
network illustrated in Figure 2.2, with two processing layers). On the other hand,
Deep NNs (DNNs) can be seen as a simple extension of shallow NNs in the sense
that they include a series of layers of units one after another, therefore feeding the
output from one layer to the next. A NN is said to be deep if it is constituted by
2 or more hidden layers, i.e. it has 2 or more processing layers between the input
and output layers. From here, the concept of Deep Learning (DL) is also distilled,
making reference to the usage and training of DNN models.

Some of the first DNNs models were formulated long before there were enough
advances, both in the computational and theoretical side, to make them effective
and useful at a large scale. In some cases, these models were already attempting to
tackle difficult problems such as those related to computer vision (Fukushima and
Miyake 1982). The first attempts at using backpropagation in DNNs models showed
that these models could be trained, albeit in a time-costly manner (LeCun et al.
1989). For many years, the prohibitive computational cost would keep DNNs as an
impractical model to use. This would remain the case until the early 2000s, where
the combination of increasing computational resources such as the development on
Graphical Processing Units (GPUs) and the theoretical developments in the training
of these deep models would push DNNs to have an important role in ML as a whole
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and with strong applications to many different problems (Hinton et al. 2006; Hinton
2007). This all layed the ground work for the early 2010s, where the performance
of DL algorithms would improve on the previous state of the art, in some cases
by surprising margins. This is showcased by the victory of a DNN model in the
classification of the ImageNet database, where researchers beat the previous results
by employing a NN specialized in image processing (Krizhevsky et al. 2012). This
event is used in some cases to mark the starting of the deep learning revolution,
in which DL became one of the core fields inside Artificial Intelligence research
and began being implemented in a very wide variety of complex problems in many
different fields across industry and other scientific research fields.

One of the key ideas that have lead to the ubiquity of DL methods are their flexi-
bility and their ability to deal with complex data set without the need for performing
feature extraction in beforehand. Through manipulation in their architecture and
operators, DNNs allow for a wide range of tasks with datasets which were normally
not easy to deal with. This mainly refers to unstructured data, e.g. images, video and
audio files, which in some cases could be used as input data although they needed
a thorough preprocessing phase, in some cases needing hand-crafted features. This
means that DL algorithms are able to perform automated feature selection in an
unsupervised manner, which means that given an input and output pair (x, y), where
x may be an instance of unstructured data (e.g. an image) and y a label, the system
will be able to automatically detect which parts of x are relevant to obtain output y.
However, the performance of DNNs and their impressive properties come with some
caveats. To name a few, DNNs usually require large amounts of data to train all of
the parameters present in the network and thus can still be expensive to train, even
though some important parts of the computations involved can be parallelized and
accelerated with GPUs. Moreover, there is no clear manner to make a choice for the
hyperparameters of a model as well as its architecture, and therefore we may need
to resort to cross-validation techniques to ensure our model performs adequately
(which also increases the time and computational costs needed). Finally, and in some
cases the most important point, DNNs are usually black-box models, in the sense
that the inner working for a given deep NN cannot be easily interpreted by a human
(and therefore correcting certain behaviors may be a truly challenging task). Even
though these may be important drawbacks in some cases, in many instances they
can be dealt with for the most part, which is one of the reasons behind the huge
increase in interest in DL techniques of the past decade.

In this part of the text we will introduce a few of the most used DNN architectures,
although by no means this intends to be a comprehensive list. DL is used extensively
in later chapters of this thesis, and hence we will mostly focus on those models that
may come relevant to us in later parts of the text.

2.2.1 Feed-forward Deep Neural Networks
Feed-forward DNNs are one of the simplest DL architectures, since they use the
building blocks of previous shallow NNs and simply stack a number of hidden layers
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of processing units in consecutive fashion. As we mentioned before, each layer is an
array of units in parallel that process the input given by the previous part in the
model, and in the particular case of hidden layers, they are confined to the space
between the input and output layers. As we also pointed out, a NN is considered
deep if the number of hidden layers L is L ≥ 2 (otherwise, we return to the shallow
NN case).

In their most basic form, DNNs are simply stacks of layers that process one after
another the input given in the input layer, x, and that provide a final estimated
output ŷ. As is done in shallow NNs, this output is then compared against the
observed output y through an objective function, and the parameters for the layer
are fitted in order to minimize the final loss of the system. These types are similar to
the one depicted in Figure 2.3, on which we have an input layer for a 4 dimensional
input vector x, followed by four hidden layers of units, and finally an output layer,
where the estimated output will be a 2-dimensional vector ŷ = (ŷ1, ŷ2). The four
hidden layers in the figure have 6, 7, 6 and 4 units respectively. Each of these units
is represented by a white circle, and in each one of them we conduct a succession of a
linear and a non-linear transformation, as we did before in Section 2.1.1. This means
that the input for each unit is being linearly transformed through a weight matrix
Wl and a bias vector bl, where l represents the layer’s position (l ∈ {1, · · · , 5}).
Both the weights and biases can be described in terms of the specific weights and
biases for each unit in each layer, namely wl

i and bli, where i refers to the unit in
that layer, i ∈ {1, · · · , Nl}, and where N l is the number of units in layer l. The
index l = 5 will refer to the final output linear transformation, and the hidden layers
will be used when i ∈ {1, 2, 3, 4}. The output of each part of the model is fed to the
next layer, starting from the input layer and flowing all the way through until the
output layer is reached.

Using the definitions we established for shallow NNs, we can write the output
for a given processing layer hl given the output of the previous layer hl−1. This is
simply:

h[l] = σ(al) al = hl−1TWl + bl, (2.2.1)
where hl−1 is a column vector with size equal to the number of units in layer l − 1,
Wl is size (Nl−1 × Nl) and bl is a column vector of size N l. We see that here we
use the concept of activations of a layer as well as activation functions. Indeed, the
combination of linear transformation with these non-linearities is what gives DNNs
its power to approximate almost any function.

The example shown in Figure 2.3 represents a relatively small feed-forward fully-
connected DNN, which means that each layer output is simply passed forward and
where every unit in one layer is connected to all units in the following layer. However,
this is not always the case necessarily, since we may have interest on performing
certain operations to the inputs in each layer depending on what type of task we
may be facing (we will see some examples shortly). Moreover, the architecture of
DNNs such as this one can be extended, both in its width (number of units in each
layer) and its depth (number of layers stacked). However, one must be aware that
doing so will effectively increase the number of parameters in the model, maybe
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making it unfeasible to train unless we dispose of enough time and computing power.
Moreover, we have to keep in mind the potential drawbacks that may arise with the
choice of these models. This is the case with the cost of performing hyperparameter
selection (choosing the best architecture, activation functions, etc.) and the lack of
interpretability of the inner values processed by the NN. Moreover, we will need to
pay attention to all of the regular issues for every other ML model such as overfitting,
which may become specially prevalent here if we increase the flexibility of the DNN.
If used correctly, these types of NNs have shown the ability to outperform previous
state-of-the-art in various complex tasks.

The feed-forward DNN model represents a milestone in the development of DNNs.
Most other important DL techniques can be described in terms similar to these,
although they may have slightly different architectures which have been designed to
take advantage of the type of data that is being dealt with. This includes networks
designed to deal with image and text as input data, where the structure of the data
itself (pixels and words) provides relevant information. In the first case, we usually
refer to problems such as image classification, image segmentation, image recognition,
etc. On the other hand, for texts we have issues related to text summarization, speech
recognition, automated language translations, etc. There are many different DNN
architectures alternative to the feed-forward DNN, although we will limit ourselves
here to Convolutional DNNs, a system prepared to deal with and extract information
from images.

x2

x1

x3

x4

ŷ1

ŷ2

Input layer Hidden layers Output layer

Figure 2.3: Fully-connected feed-forward deep NN
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2.2.2 Convolutional Neural Networks
The feed-forward NN model can be extended to make the best out of spatially-
distributed data. The distribution of data can hold important information that
models such as those cannot properly extract all of the important information
contained in the spatial correlations between different input values. The most
obvious case here are image data, where the intensity value for each pixel is (usually)
strongly correlated to the values of neighboring pixels, since the spatial arrange of
elements in a picture is a crucial part of the image information. However, this is not
the only case, since developing a technique sensitive to spatial correlations in the
data can be potentially employed in any case we see fit, which may include Natural
Language Processing tasks (such as sentence modelling, classification and prediction),
time series forecasting and anomaly detection, study of chemical features depending
on the distribution of the atoms in molecules, etc.

Convolutional Neural Networks (CNNs) are the DL models that have been adapted
to all of these problems (and many others) due to their versatility and performance.
They can be said to be one of the most popular DL methods nowadays, although the
basis for such models have been formulated during the 1980s and 1990s (Denker et al.
1989; LeCun et al. 1989; LeCun et al. 1998). They consist in simple changes to the
original formulation of the feed-forward fully-connected DNN, on which removing
part of these connections is the key concept to exploit the local correlations inside
data. Indeed, CNNs extends the basic formulation of the linear transformation
and the activation function, and employ new types of processing layer to the DNN
architecture. These new layers are the ones responsible from extracting low and
high-level features from the data, converting them to numerical form, and then
feeding them to a fully connected DNN. Therefore, in a sense, CNNs can be seen as
a series of new types of layers stacked on top of a fully-connected DNN. These first
part of the model is specially adapted to complex spatially-distributed data and is
capable of extracting the relevant information from it. Then, once this procedure is
done, the results are passed through a regular DNN and the final output is obtained,
be it the type and shape we may need given a specific problem. To understand more
in detail how CNNs work, we will now briefly describe the three types of new layers
introduced in CNNs which are intrinsic to these types of models and that allow them
to make use of spatial correlation information in the data. These are the following:

• Convolutional layers: Taking an image as an input to for a given layer, each unit
in a convolutional layer performs a convolution on the input image employing
a kernel whose weights have been randomly initialized. In this context, the
convolution of the kernel and the image pixels is usually given by the dot
product between the kernel components and the image pixels at a given region.
The kernels, also called filters, are usually much smaller than the input image
itself (specially if the convolutional layer is close to the input layer). The N
convolutional kernels in a layer can be seen as N stacks of K matrices, where K
is the number of channels of the input image. To fully process an image, each
kernel defined will be run through the whole image, moving a predetermined
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number of positions (pixels) in each step until the whole image is covered. Each
kernel can be said to have a small perceptive field in terms of their smaller
height and width compared to those of the original image, but in each case
each kernel is defined in all of the channels of the input (full depth). The
resulting output will be a 2-D map of activations for each filter. In Figure
2.4 we can see a depiction of this process, where we must keep in mind that
we are referring to an image as a collection 2-D maps of intensities across a
certain number of channels. In the figure, N kernels of depth 3 are applied
to a region in the input image, which also has M = 3 channels. The results
from each convolution operation is represented in the output image as a region
with a different color for each kernel, where now the number of channels in the
output will match the number of kernels employed (N). During this process
the output image will have smaller dimensions, with the exact change in shape
given by the size of the kernels used and the length of the steps set to cover
the whole image.
Convolutional layers can be understood as each unit focusing on small portions
of the previous image one by one, and the stacking of these operations is what
allows the system to extract even high-level information about correlations in
the original image that may occur in in larger scales than what each individual
kernel is able to focus on. If several convolutional layers are stacked one after
another, the final convolutions will be made in an image for which each pixel
can represent a large portion of the original image. Therefore, this constitutes
a way of encoding that high and low-level spatial information originally present
in the input data.

• Pooling layers: Although convolutional layers are effective in terms of con-
centrating the information of a region of the image, in order to reduce the
dimensionality of the images used as input, pooling layers have to be used.
Usually placed directly after convolutional layers, pooling layers simply take
the input image and reduces its size by approximating certain parts of the
resulting image with some representative value. There are many conventions
taken here, since the main purpose here is to simply down-sample the input
image to reduce its size. Some of the examples include substituting each n× n′
block (usually n = n′) in the original image by its maximum, average, center
value, etc. Consecutive applications of pooling operations allow the image to
be converted into smaller and more manageable data, which in the end allow it
to be rearranged into a vector that can be fed to the fully connected layers.

• ReLU layers: As could be expected, ReLU layers simply take the input image
and passes it through ReLU functions such as we introduced them in Section
2.1.2. This effectively removes the negative values obtained as a result in
previous convolutional layers, and introduces the non-linear transformation
which we mentioned was crucial for the inner working of DNNs. The ReLU
functions here can be changed to other type of non-linear activation function
depending on the task at hand.
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Figure 2.4: Convolutional layer in a CNN. The input image has several channels, and
for each one a kernel is convolved with each image patch (depicted by the left-most
circle). Multiple kernels are used, and the output of each of them convolved with
the input patch is represented as a colored region in the right-most image circles.
Different colors imply different values for the filters on each kernel, since they are all
given the same inputs. Best seen in color.

• Fully connected layers: Finally, as we mentioned earlier, CNNs also have a
number of fully-connected layers such as the ones in the previous section. These
layers take as input the results of the iterative process of stacking convolutional,
pooling and ReLU layers, and process these values into the desired output.
These types of layers are the last ones to be used in a CNN, since they depend
on first extracting the information of the images through the previous process.
Once this is done and the input has been sufficiently compressed, CNNs flatten
the results of the last convolutional part of the model into a vector and feeds
it to these fully-connected part. That is when regular NN computations can
be performed to obtain the resulting outputs.

A key idea of CNNs is the sharing of weights inside each convolutional layer:
since each kernel is applied with the same values to the whole image, the number of
parameters in a CNN does not scale as fast as to make them prohibitive to train.
This, alongside their ability to extract important features from complex data such
as images with multiple channels, has made CNNs one of the most popular models
across different industry applications and research fields. The most obvious impact
of the development of CNNs is showcased by the huge improvements made in the
field of computer vision, on which since the conception of trainable CNNs and their
posterior refinement, they have remained the top-performing models, and in some
cases, by wide margins. This dates back to Krizhevsky et al. 2012, and from that
point CNNs have become present in security systems, autonomous vehicles, medicine,
finance, neuroscience, and many other areas of development (Kalchbrenner et al.
2014; Li et al. 2014; Hu et al. 2015; Sarraf and Tofighi 2016; Yamashita et al. 2018;
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Hosaka 2019). One important example that may be illustrative on how these models
are being used is climate and weather predictions and renewable energy production
forecasting, as can be seen in (Liu et al. 2016) and (Díaz-Vico et al. 2017). In this
cases, the input of the CNN is an image with several channels, each one containing
information about a different aspect of the climate data for the region observed (in
the first case they use mostly air pressure information, while for the second one they
encode temperature as well as pressure at different heights, maximum and minimum
temperatures, levels of solar radiation at different wavelengths, wind speed, etc.).
CNNs make use of all this spatially-distributed data to yield better better results
than previous algorithms applied to this same databases. The possibilities for CNNs
and DNNs in a broader sense are vast, and their performance and achievements
can be crucial to the development of potentially huge new technologies such as
automated medical diagnostics from medical images, self driving cars, drug design
and discovery and many others, while also being an important tool to help us
deal with complicated issues such as climate change and forecasting and control of
epidemic diseases. However, for more robust predictions it would be important to
have information about the certainty of their estimations, which is something we
will see in the following chapter.

2.2.3 Other Neural Network Systems
We have seen some examples of different usages and architectures that are available
when constructing NNs. There are many other relevant models asides from the ones
we have introduced earlier, and here we will briefly mention two more to serve as
further examples of the flexibility of NNs and their adaptability to different contexts
and issues.

• Generative Adversarial Networks (GANs), firstly introduced by Goodfellow et
al. 2014 represent a new available structure for DNNs which sets up a min-max
adversarial game between two neural networks (a generative model G and a
discriminator D). The discriminator network D(x) computes the probability
that a point x in data space is a sample from a certain data distribution
which we are trying to model (positive samples) rather than a sample from out
generative model G(z) (negative samples). Thus, the function G(z) is used by
the generator in order to map samples z from the prior p(z) to the data space,
and it is trained to maximally confuse the discriminator into believing that
samples it generates come from the original (positive) data distribution. The
solution to the game here involved can be expressed as

min
G

max
D
Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z))] (2.2.2)

Both D and G use stochastic gradient descent in two stages:

– Train the discriminator to distinguish between true (original) and fake
(made by the generator) samples
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– Train the generator so as to fool the discriminator with the generated
samples.

When trained this system can be used to generate new instances for the train
data. The combination between the generator model and the discriminator
allows the first to create new data instances that, in principle, can be interpreted
as very similar instances to the training data. As an example, if the GAN is
trained on a certain image dataset, it could learn to generate new images that
could look somewhat authentic to human observers. Because of this, GANs
were seen as an important type of generative model that was able to conduct
unsupervised learning, since it needed no data labels to be trained (Karras
et al. 2019). This usefulness has also been extended later to supervised (Isola
et al. 2017) and semi-supervised learning (Salimans et al. 2016), as well as
reinforcement learning (Ho and Ermon 2016). However, GANs are notoriously
hard to train since their convergence is not always guaranteed, which is a
currently open research topic (Mescheder et al. 2018; Salimans et al. 2016).

• Recurrent NNs (RNNs) represent a general class of NN architectures that
employ information of previous data passes through the network to conform
the outputs in later passes. The NN architecture here is set up so that it
conforms a directed graph along through a temporal sequence, using previous
outputs as inputs in different stages of the process. This encompasses a wide
range of models, most of which make use of time-dependent data and try to
exploit time correlations to improve the performance. The basic structure for
RNNs is shown in Figure 2.5 and the model works as follows: the input data is
represented as x[t], where t is an index that orders the data instances (which
could refer to time ordering). For each t, the input is processed alongside a[t−1],
which symbolizes here certain outputs from the run with index t− 1, and that
may include the outputs from hidden units, the final output of the system at
t− 1 or any type of similar results. Both of these are processed by the NN for
each value of t, which is represented with green squares in the figure, and in
each run the NN may produce an estimated output symbolized by ŷ[t−1].

Performing the computation in this time-dependent manner, where the ordering
of the data being used also encodes information, makes these NN models
specially useful when dealing with time-sensitive data such as those tasks
related to language. In this regard, one of the most extended models are the
Long Short Term Memory NNs (LSTMs), firstly introduced by Hochreiter and
Schmidhuber 1997. LSTMs are able to solve some of the issues that hinder the
performance of vanilla RNNs, mainly the vanishing gradients problem on which
the system fails to properly update its parameters according to data. LSTMs
are more robust to this problem by the usage of a forget gate, an extra part of
the system that stores part of the previous information passed to the model
and updates it according to new data being presented. This approach has
made LSTMs the go-to approach in language processing tasks, ranging from
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Figure 2.5: Basic unfolded representation of a general RNN model. Blue circular
nodes represent data inputs, red circular nodes represent estimated outputs and
green squares represent NN processing. Best seen in color.

speech recognition (Sak et al. 2014; Li and Wu 2015) to language modelling
(Jozefowicz et al. 2016), automated translation (Sutskever et al. 2014) and
image captioning (Vinyals et al. 2015). These are only a few examples, although
there are many others topics on which LSTMs have excellent performances
and other topics on which RNNs and LSTMs are still being optimized (Gao
et al. 2017; Qing and Niu 2018).

2.3 Gaussian Processes
During the last two decades, a lot of research has been conducted into kernel machines
inside machine learning. One of the most popular examples here are Support Vector
Machines, but Gaussian processes (GPs) have gathered increasing interest as well.
GPs represent a model class that is capable of providing a theoretically sound
probabilistic approach to learning in kernel machines (Rasmussen 2003). Thanks
to the theoretical and practical developments during these past few years, GPs can
be considered as a strong contender for supervised machine learning applications.
In this part of the text we will review in further detail the formalism of GPs to
understand in this approximation to Bayesian inference in an analytical fashion.
We will see that GPs are capable of obtaining closed-form expressions for all the
important quantities needed to conduct inference, which is an uncommon quality
among many other popular machine learning approaches. This makes GP models
specially interpretable when compared with current go-to approaches such as NNs,
which is another attractive quality that has lead to their usage across many different
setups (Rasmussen 2003; Bishop 2006).

GPs have been the object of extensive research to characterize and understand
their core properties. In fact, in specific areas, GPs have become the standard method
for modelling the data. This can be illustrated by their common use in weather
and climate-related problems, where GP models are widely used for interpolation
and prediction. Inside the context of weather and climate data, examples of the
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usage of GPs are wind and solar energy forecasts (Chen et al. 2013; Salcedo-Sanz
et al. 2014), precipitation forecast (Wang et al. 2021) and simulation (Kleiber et
al. 2012), forecasting greenhouse gas emissions (Fang et al. 2018), to name a few.
Other important examples include geostatistics (Datta et al. 2016), physics (Fox
1978), chemistry (Cui and Krems 2016), genetics (Chu et al. 2005), etc. Moreover,
kriging plays an important role in these contexts (Cressie 1990). Kriging is simply a
multidimensional GP regression model usually employed to conduct interpolation
and prediction in complex spatially-distributed data. It is a common technique in
environmental studies (Bayraktar and Turalioglu 2005), hydrogeology (Delhomme
1978; Chiles, Delfiner, et al. 1999; Zimmerman et al. 1998) and other fields of
research such as astrophysics (Pastorello et al. 2014) and material sciences (Zhang
et al. 2014), among many others. Therefore, although we cannot talk about a
complete widespread usage of GPs, they currently play an important role in many
applications of approximate inference due to properties such as their performance,
interpretability, ease-of-use and their analytical formulation of the problems, among
others. Nevertheless, we will also see some of their most important drawbacks, mostly
related to their scalability and the restrictive formulation of the predictive distribution.
There has been important advances on tackling these very same problems from
different perspectives, and in some cases they can be avoided altogether. An specially
important contribution to the work on this thesis is the formulation of Sparse GPs
(Snelson and Ghahramani 2007; Titsias 2009), a method that reduces the scalability
problem at the cost of introducing a parameter in the model. Although this is not
the only way to obtain better scalability in GPs, we will see that it is a very effective
approach to that end.

Finally, asides from their close relation to techniques such as Support Vector
Machines and other different kernel machines, GPs are also mathematically equivalent
to other important approaches such as Bayesian linear models and spline models.
More importantly for our case, there is a strong connection between GPs and very
large NNs, as we will also describe here. Thanks to this equivalence, in some cases
GPs may be a good alternative to these other models, such as certain types of neural
networks, since they may be easier to interpret and to handle. Nonetheless, we will
firstly describe briefly the basis of the GP formulation, kernel methods, and from
there we will advance to the description GPs and more.

2.3.1 Kernel Methods
Among many other frameworks for performing regression and classification tasks,
kernel methods (KM) are one of the most popular approaches. A comprehensive
description of these methods is out of the scope of the main objectives in this text,
but a brief introduction to the concept of kernel function may be beneficial to a more
organic view of the GP formulation. This is due to the fact that GPs can be seen
as an specific formulation of kernel method that make use of a Gaussian kernel to
define its prior (Bishop 2006; Williams and Rasmussen 2006). By doing this, GPs
automatically inherit important properties that have already been described and
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properly characterized for regular kernel methods, and therefore will benefit from
the previous work in this field. Moreover, KM lay the basic components that are
the same that set the basis for many other important techniques, among which we
find Support Vector Machines (Hearst et al. 1998; Steinwart and Christmann 2008),
Principal Component Analysis (Jolliffe 2005), Ridge regression (Hoerl and Kennard
1970) among many others (Williams and Rasmussen 2006).

Parameter-based models such as NNs make use of training points in order to
obtain estimated values for their respective parameters. After this procedure takes
place, these points are effectively discarded, since the model does not need to retain
them as long as they have already been used for optimizing these aforementioned
parameters (Williams and Rasmussen 2006). On the other hand, kernel methods are
constructed as a memory-based approach that makes us of the concept of kernel
functions. This means that, in most cases, KM will require storing the whole dataset
in memory or, at least, a significant part of it. This formulation differs strongly
from the parameter-based models, and it is done so that the input data can also be
used in the testing phase. This procedure is governed by the fact that the kernel
function is seen as a feature space mapping from the input space to a more abstract
representation, and it is in this newly obtained representation on which the model is
capable of quantifying how similar two different data instances are between them
(Bishop 2006). The same can be said in terms of the inference problem: in these
cases, the similarity measure is conducted between the new (test) and old (train)
points. The resulting outcome of the similarities for each new point will deliver us
the predictive values output by the method.

As one could expect from the previous description, the core ingredient in KM
is the kernel function k(·, ·), whose inputs are two arbitrary training points. This
function is responsible for that similarity measures between points in the feature
space, and therefore being able to properly characterize it and use it is of crucial
importance. In general, this kernel function can be decomposed into a scalar product
between the same function evaluated in the two different input points:

k(xi,xj) = φ(xi)Tφ(xj) (2.3.1)

with φ(·) representing the feature-space mapping we mentioned earlier. This formu-
lation allows for many different φ(·) functions to be employed in the kernel function:
as long as we can represent k(·, ·) as an inner product of a function times itself in
some space, we can use this description to construct a valid kernel. Moreover, certain
properties can be distilled from this expression alone, e.g. the kernel function must
be symmetric in its inputs (k(xi,xj) = k(xj,xi)).

As we mentioned, there are many possible kernel functions that can be chosen
from. This flexibility has lead to the development of many different techniques
that can benefit from a general-purposed framework such as this one. In most
cases, we can define a kernel by making sure that its associated Gram matrix K is
positive semi-definite. This matrix is constructed as Kij = k(xi,xj), with inputs
{xi,xj} ∈ {x1, · · · ,xN}, where {xk}Nk=1 represents our training dataset. However,
some cases has been shown to work even when K is not positive semi-definite (Ong
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et al. 2004).
One of the main features of kernel formulation is the ability to exchange kernels

according to the needs of each problem. As long as a kernel can be decomposed
into a inner product inside of a given feature space it will constitute also a valid
kernel, while also simple combinations of them will define a new valid kernel as well,
including (but not restricted to) linear transformations, exponentiation, additions,
etc. As an example of how this can be used to construct one of the most widely used
kernels, consider the following function

k(xi,xj) = exp
(
− 1

2σ ||xi − xj||2
)
. (2.3.2)

This function constitutes a well defined kernel since the exponential, product and
sum of valid kernels results in a valid kernel as well, and here we can decompose it
into

k(xi,xj) = exp(−xTi xi/2σ2) exp(xTi xj/σ2) exp(−xTj xj/2σ2). (2.3.3)
This reconstruction of the original function allow us to see how each factor constitutes
a valid kernel with the associated inner product well defined. Moreover, this can
be the starting point from which we can transform each of these components to
better suit the problem we try to solve in each case. Therefore, we could safely
use functions that could potentially be more useful for a given task in problems
where originally it would be very difficult. This is specially convenient for cases
on which a nonlinear transformation could ease the task at hand, as for example
separating different classes in a classification task by introducing a simple nonlinear
transformation that makes the decision boundary linear in the new transformed
space. This is known as the kernel trick (Scholkopf 2001), and is widely employed in
approaches such as Support Vector Machines and many others.

2.3.2 Inference with Gaussian Process
As we mentioned earlier, GP models represent a principled approach based on kernel
methods that can be seen as a convenient and simple manner to conduct inference
in the function space (rather than in the parameter space, such as what is being
done in NNs). To this end, in order to implement any GP model we will need to
make certain assumptions about the shape of the prior over the space of functions
themselves, and this will in return allow us to obtain in a closed-form fashion all of
the important quantities we may need to train and predict with our model.

In general, GPs are defined as a distribution over functions f(·) so that for
any finite {xi}Ni=1, (f(x1), · · · , f(xN )) follows an N -dimensional normal distribution
(Williams and Rasmussen 2006). Due to this Gaussian form, there are closed-
form solutions for the quantities we are interested in for doing inference, namely the
posterior distribution of the model parameters given the data, as well as the predictive
distribution. However, as one might expect, although placing this type of prior over
the functions allows for the calculations to be made analytically, this also restricts
our predictions to follow a Gaussian distribution. Therefore, GPs are only employed
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when this normality constrain on the prediction is not an important hindrance to
the problem at hand. Moreover, we will see there are important concerns about
the scalability of GPs, although we will discuss as well one of the most recurrent
methods to deal with this issue.

Using this previous definition of GPs, consider a linear model for the training
outputs for which we can define the marginal distribution over y as

y = wTφ(x), p(y) = N (y|0,Kθ). (2.3.4)

On the first part, we define the weight vector w ∼ N (0, α−1I) for the N function
samples obtained, being α the precision parameter. For the marginal of y, we set the
means to zero for convenience (without loss in generality). Finally, the covariance
matrix Kθ is obtained through φ(x). We will it element-wise as

[Kθ]i,j = C(xi,xj; θ), (2.3.5)

where we define the covariance function C(·, ·; θ) as

C(xi,xj; θ) = 1
α
φ(xi)Tφ(xj), (2.3.6)

and where we have explicitly included the dependency on θ, a set of parameters that
define the mapping φ(x). This covariance function plays a major role in the following
calculations for the inference process with GPs since all the relevant quantities can
be obtained once it is defined. In general, we can define the covariance function
directly, rather than through the choice of basis functions φ(x) (in which case, θ will
refer solely to the parameters of the selected covariance function itself). If chosen in
beforehand, the shape of this function can be used to enclose information already
known from the dataset prior to the analysis, e.g. periodic behavior, linear trends,
etc. To do this, we will simply have to choose the suitable function with these
behaviors.

It is when describing the covariance function where the connection to the kernel
methods is made apparent: the covariance function plays here the same role that the
kernel function does in KMs, and the covariance matrix is the Gram matrix associated
to each kernel. Using this idea, we can use all the tools already available for the kernel
methods to define valid covariance functions here. This makes GP models pretty
flexible in terms of their formulation since performing simple combinations between
already valid GPs also provides a new valid GP model that can attend to multiple
patterns in the data at the same time. For example, as famously shown in Gelman
et al. 2013, the addition of different GPs can be used to model complex patterns,
encapsulating all sorts of different seasonal trends as well as short-term variations
within the same model by simply using one GP for each type of behavior. This
allows also for a flexible construction of models, on which iterations and refinement
of individual parts of the global model can be done easily. Moreover, the results
provided in each part of the additive model remain somewhat interpretable, which
favors further understanding of the different underlying patterns on which the data
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can be decomposed into. Therefore, when dealing with a complex problems we can
use this fact to model separately the different contributions that may constitute the
data, and then improve the model in a piece-wise manner.

There are many different covariance functions to choose from, and that choice
will be made depending on the type of data and task we are facing in each partic-
ular case. Some of the most popular ones are the Squared Exponential (SE), the
Ornstein–Uhlenbeck (OU), the periodic exponential and the Matérn functions:

CSE(xn,xm) = σ2 exp
(
−(xn − xm)2

2`2

)
, (2.3.7)

COU(xn,xm) = σ2 exp
(
−||xn − xm||

`

)
, (2.3.8)

CPeriodic(xn,xm) = σ2 exp
(
− 1
`2 2 sin2

(
π||xn − xm||

ν

))
, (2.3.9)

CMatérn(xn,xm) = 1
Γ(γ)2γ−1

(√
2γ
l
d(xn,xm)

)γ
Kγ

(√
2γ
l
d(xn,xm)

)
. (2.3.10)

Both the SE and the OU covariance functions have only two parameters: σ2, which
works as an amplitude parameter (scale factor), and `, the length-scale, which controls
the smoothness of the functions sampled from the GP. These parameters appear
with the same functionality in the periodic kernel on (2.3.9), plus an additional
parameter ν which is used to parametrize the typical wavelength of the periodic
oscillations (i.e. distance between two consecutive maxima). Finally, in the Matérn
class of covariance functions is given by (2.3.10), with positive parameters l and
gamma, where Kγ is a modified Bessel function (Abramowitz and Stegun 1964) and
d(xn,xm) is the Euclidean distance between xn and xm (Williams and Rasmussen
2006). The Matérn covariance functions can be seen as a generalization over the
SE and OU cases, which can be recover as particular cases of it. In general, the
flexibility of behaviors available from these covariance functions are key to why GPs
are suited for many different tasks, since one can encode a lot of prior information in
the behavior of the functions here. It is this aspect which makes additive models of
GPs so interesting, since different patterns in the data can be separately modelled
using distinct GPs, each one with a suitable ready-made covariance function (Gelman
et al. 2013).

The behavior of the covariance function conditions the results provided by the
GP. The examples mentioned here are particularly common ones since they allow for
modelling patterns present in numerous problems. As an example of this, due to the
squared exponential term inside the SE function, the functions sampled using this
as covariance function present a smooth behavior (in general), whose features can
be tuned according to each problem by changing the parameters (σ2, l). In order to
showcase this change in behavior, in Figure 2.6 we present three different settings
and sample functions from the GP prior that uses each one of them: from left to
right, we have (l = 1, σ2 = 1), (l = 0.2, σ2 = 1), (l = 1, σ2 = 5). One can easily
see that higher σ” values result in a wider spread of the functions around the mean
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(here set to 0), while higher values of l makes the functions sampled smoother overall.
On the other hand, the Ornstein-Uhlenbeck has been used to parametrize stochastic
processes (Williams and Rasmussen 2006), while the periodic function is useful when
dealing with recurrent behaviors in the data with given seasonality.
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Figure 2.6: Function samples from the SE covariance function prior with different
parameters: from left to right, (l = 1, σ2 = 1), (l = 0.2, σ2 = 1), (l = 1, σ2 = 5).

To conduct inference we can also take into account a possible noise contribution
to the data. In this case, the target values will be obtain adding this noise to the
original output of the GP, that is:

yi = wTφ(xi) + εi = ŷi + εi, (2.3.11)
where we assume a linear model with w ∼ N (0, α−1), and εi ∼ N (0, β−1) representing
the additive noise, being α and β two different precision parameters (if we want to
discard the noise, we simply set y = ŷ). The conditional probability distribution of
all the target values y given the training outputs and will be

p(y|ŷ) = N (y|ŷ, β−1IN), (2.3.12)
with IN as the identity matrix of dimensions N ×N . Combining this expression with
(2.3.4) we can obtain the marginal probability of the target values by integrating out
the training outputs. This leaves

p(y) =
∫
p(y|ŷ)p(ŷ)dŷ = N (y|0,Kθ + β−1IN). (2.3.13)

In the case of not taking into account the additive noise in Eq.(2.3.11), one would
simply set β−1 = 0 and remove its contribution to the covariance matrix on the
marginal here. Again, the key aspect to this expression is estimating the different
components of the covariance matrix Kθ. For this, we will define the test data as
{x?i ,y?i }Mi=1 and the train data as {xi,yi}Ni=1, being the inputs x’s and the output y’s
in each case. Given the GP prior, the joint distribution for the test and training
outputs is going to be defined as

p(y?,y) = N
([

0
0

]
,

[
κθ kT

θ

kθ Kθ + β−1I

])
. (2.3.14)
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Here, a new pair of covariance matrices is needed, which will account for the
covariances in the test points given the training points observed. These matrices
are also obtained from the covariance function, similarly to what we used in (2.3.5),
although in this case they will depend on the values of the test input points:

[kθ]i,j = C(xi,x?j ; θ) , [κθ]i,j = C(x?i ,x?j ; θ) . (2.3.15)

Intuitively, kθ holds values estimated from the proximity of the test inputs given
the observed training points, while κθ represents the covariances estimated with the
covariance function inside the test data only.
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Figure 2.7: Process of fitting a GP prior using an increasing number of points
(beginning from the top left, with increasing number of points to the from left to
right and from top to bottom). The GP prediction mean is plotted as a black line,
the 95% CI as the shaded area and the ground truth as a discontinuous red line. The
more points are added, the better the fit of the GP is to the ground truth. Best seen
in color.

Given the previous definition for the joint distribution, the predictive distribution
will be:

p(y?|y,x?,x) ∼ N (m,Σ), (2.3.16)
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with mean and covariances given by

m = kT
θ [Kθ + β−1I]−1y , Σ = κθ − kT

θ [Kθ + β−1I]−1kθ . (2.3.17)

Samples for the predictions can easily be obtained through this expression by
evaluating both the mean and covariance functions using a source of Gaussian noise
(Williams and Rasmussen 2006).

Finally, we also need to be able to adjust the model’s hyperparameters θ according
to observed data. This falls inside the framework of model selection for GPs, which
is much more rich and complex than what we will present here. In our case, we will
simply begin by formulating the log of the marginal likelihood, p(y|θ), which is given
by

log p(y|θ,x) = −N2 log 2π − 1
2 log |Kθ + β−1I| − 1

2yT(Kθ + β−1I)−1y. (2.3.18)

The term marginal likelihood refers to the marginalization conducted over the function
values f , which are defined as f |x ∼ N (0,Kθ). The different terms in this function
can be easily interpreted as well: the first contribution is a normalization constant,
the second can be seen as a penalty depending only on the covariance functions
(regularization term) and the third is the only one related to the data fit of the model
(Williams and Rasmussen 2006). To fit the hyperparameters according to the data
we must obtain the partial derivatives of (2.3.18) w.r.t. θ. Considering θ as a vector
containing all different hyperparameters, these derivatives follow

∂

∂θi
log p(y|θ) = 1

2yTK−1∂K
∂θi
K−1y− 1

2tr
(
K−1∂K

∂θi

)
(2.3.19)

= 1
2tr

(
(ααT −K−1)∂K

∂θi

)
, (2.3.20)

for each possible hyperparameter θi, and where we have defined

K = Kθ + β−1I α = K−1y. (2.3.21)

Once K−1 is known, the computational cost of evaluating these derivatives is small,
so using this approach to optimize the hyperparameters can be a feasible approach
in many cases. The maximum value obtained here corresponds to the most likely
interpretation of the data from the hyperparameters. Therefore, maximizing 2.3.18 is
usually a sensible approach for optimizing θ (Williams and Rasmussen 2006). Other
techniques such as cross validation can also be useful to the same end (Williams and
Rasmussen 2006). This will allow us to optimize the values of the parameters of the
model when training. We see an example of fitting a GP to noiseless data (β−1 = 0)
in Figure 2.7. In each figure, the GP predictive mean and 95% CI are represented as
a black line and a grey-shaded area, while the ground truth for the data is shown
as a discontinuous red line. Starting from the top-left image, the GP prior behaves
as a standard normal distribution. Introducing observed training points (red dots)
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and training the GP in those makes the GP interpolate between values (also, the
variance in the training points is zero since we have noiseless data for this illustrative
example). The more points are added, the better the fit of the GP to the underlying
ground-truth for the data. Finishing with the bottom-right image, the GP closely
resembles the ground-truth once enough data points are employed.

GPs provide a simple way of obtaining closed-form solutions to the calculations
involved in Bayesian inference problems. Due to the Gaussianity assumption, ob-
taining the predictive distribution and the marginal log-likelihood is feasible by
just employing calculations related to multivariate normal distributions. GPs are
also non-parametric models, since the only hyperparameters involved are the free
parameters we choose to describe our covariance functions. The rest of the param-
eters involved are, in fact, integrated out. Therefore, GP-based models constitute
a strong candidate for practicing Bayesian inference thanks to the tractability of
all the expressions involved and the fact that their non-parametric formulation may
help with complex real-world problems. However, they present two very important
drawbacks as consequences:

1. The predictive distribution is exclusively Gaussian.

2. Their scalability is compromised when the training dataset is large.

The first of the two issues is difficult to solve in most cases. Other distributions can
be used to set the prior on the space of functions, which gave rise to alternative
formulations s.a. Student-t Processes (Shah et al. 2014). However, the flexibility
of these methods is limited since the calculations need to be estimated analytically.
Therefore, GP predictive distribution is mostly restricted to very specific types of
distributions.

On the other hand, the scalability issue is related to the inversion of the covariance
matrix in (2.3.17) and (2.3.18). The shape of Kθ is N × N , being N the number
of training points. Therefore, due to the inversion of this matrix, training the GP
scales as O(N3). This growth rate with N is prohibitive when the dataset is large
enough, therefore preventing us from using GPs when there is a large number of
training points (where the exact number will depend on other facts such as the
dimensionality, sparseness or other data features). However, some proposals have
achieved a much higher degree of success here than with the Gaussianity issue. One
of the most important additions are sparse Gaussian processes (SGPs), which we
will introduce briefly here.

2.3.2.1 Connection between Gaussian Processes and Neural Networks

As we mentioned earlier, there is a strong connection between GPs and NNs. Thus
far we have seen that both methods provide a good approach when trying to represent
very wide ranges of functions, that in turn may be used in many different applications.
In the case of GPs, the model is non-parametric (at least in its most basic form),
and its flexibility is conditioned only on the number of points available to train the
system and the computational requirements to train the system itself. On the other
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hand, we have seen that the flexibility and performance of NNs greatly depends on
the architecture used, both in terms of the number of hidden layers or their width.
In general we can say that a NN with a certain number of hidden units N can be
considered universal approximators (Hornik et al. 1989), meaning that given a large
enough N , the NN can approximate almost any function with arbitrary accuracy.
We saw in Section 2.1.3 that, if a NN model is much more complex than what
may be needed for the data available it may lead to overfitting (be it because there
are few training data points or for any other reason). Therefore, in most practical
cases it seems reasonable to set a maximum limit to N , which in each specific case
will depend different factors (computational resources, size of training data, time
available, etc.). It is when we remove this restriction when the relation between NNs
and GPs become apparent, which has been a known result since the late 1990s (Neal
1996).

When setting up a NN, in order to initialize the computations we may set a prior
distribution over all the NN’s parameters w, who are usually also referred as weights
(including both the weights and biases with together). One of the main results in
Neal 1996 is the fact that, for a wide class of priors over the NN parameters, the
resulting output from the NNs would converge to the same output of a GP if the
number of units in a layer tends to infinity (N →∞), which is there shown to hold
with one-layer feed-forward fully connected NN. Therefore, we could say that in the
limit of infinite width, a NN with one hidden layer is equivalent to a GP. Since this
is true, one could also construct the equivalent kernel function for the covariances
of the outputs, which is shown in Williams and Rasmussen 2006 for two specific
choices of the activation function of the hidden units, while this has been extended
in later works (Cho 2012). However, one of the main drawbacks of taking the limit
of width in multi-output problems (such as multi-class classification or multivariate
regression), is the fact that, as in GPs, the N →∞ one-layer feed-forward NN will
have independence among the final output values. This is common in GPs, although
it the interdependence of certain components in the NN models which allow fir their
improved performance in many cases. This could be seen as if in this limit, each
hidden unit does not effectively influence the rest of the units as much as in the finite
N case, and therefore these dependencies are lost when N →∞ (Bishop 2006).

Some later research has been focused on this connection, trying to extract useful
models and information on both NNs and GPs through it by combining these concepts
(Daniely et al. 2016; Lee et al. 2017). In these cases, the experiments revolve around
the construction of models such as GPs equivalent to NNs (Lee et al. 2017) and then
comparing the performance of the method against its NN counterpart, quantifying
the effects that may have changing certain model parameters in the way. This will
allow for a more detailed comprehension between both methods, and hopefully new
and better techniques to apply in real-world problems.
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2.3.3 Sparse Gaussian Processes
Sparse GPs represent an alternative formulation to regular GPs to try to improve
their scalability through the introduction of pseudo-inputs, also called inducing points.
This concept reduces the memory requirements from regular GPs when the number
of inducing points (M) is small in comparison with the number of total training
points (N , M � N). This also allows for a much more manageable size to perform
the operations that depend on covariance matrix, which was the major hindrance
to scalability in (2.3.17, 2.3.18). The number of inducing points is going to become
a sensitive parameter for these models, whose performance is going to be strongly
related to the selected value for M .

As defined earlier, the random function sampled from a GP will behave such that
for any finite dataset {xi}Ni=1 we have that

f = (f(x1), · · · , f(xN)), f ∼ GP(µ,K) (2.3.22)

where means µ and covariances K are defined, for each possible input, as

µi = E[f(xi)], [K]i,j = E[(f(xi)− µi)(f(xj)− µj)]. (2.3.23)

Consider now a new pseudo-dataset of size M , with pseudo-data {zi,ui}Mi=1, where
z represents the pseudo-inputs and u the pseudo-outputs (which we will consider
noiseless since they are not real observations). This means that we will have

uj = f(zj) with zj ∈ {z1, · · · , zM}. (2.3.24)

With this, we split the uncountably infinite set of random variables represented in
the GP into two separate parts: the finite subset {zi,ui}Mi=1, and the remaining
uncountable infinite set, which can be denoted as f(·) evaluated for all locations
except {zi}Mi=1.

Figure 2.8: Graphical model for the FITC approximation. Each fi is only dependent
from u, and conditioned on it each fi becomes independent from the others.

Here we will introduce the Fully Independent Training Conditional approximation
for Sparse GPs (FITC), although in later chapters we will see an alternative descrip-
tion based on variational inference (see Section 3.3.1.2). In the FITC approximation,
conditional independences are introduced, as the conditional distribution of f given
u is simply given by

p(f |u) =
N∏
i=1

p(fi|u), (2.3.25)
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which is illustrated in the Figure 2.8. This decomposition means that each fi is
independent from other fj (j 6= i) given u, hence the fully-independent of the
approximation (Quinonero-Candela and Rasmussen 2005). Given this, the joint
distribution of both types of outputs will be(

f
u

)
∼ N

([
0
0

]
,

[
Kxx Kxz
Kxz Kzz

])
, (2.3.26)

where we have fixed the means to zero and the different covariance matrices are
defined in terms of the selected covariance function as done in (2.3.5)

[Kzz]i,j = Cθ(zi, zj), [Kzx]i,j = Cθ(zi,xj), [Kxx]i,j = Cθ(xi,xj), (2.3.27)

with Kxz = Kzx due to the symmetry property of the covariance function we
discussed in (2.3.5). It is important to note here that Kz,z has dimensions M ×M ,
while Kx,x is N×N . This difference in shapes is the key reason why the pseudo-input
approach is formulated, since the much smaller size of Kz,z will prove to be crucial
to reduce the computational requirements needed to employ GPs. Also, Kx,z and
Kz,x are not square matrices and therefore do not define proper covariance matrices.

Marginalizing over u provides a new approximate prior for f

p(f) =
∫
p(f |u)p(u)du ≈

∫ N∏
i=1

p(fi|u)p(u)du = N (f |0, K̃xx) (2.3.28)

where the new covariance matrix will be given by

K̃xx = β−1I+ diag (Kxx −Qxx) + Qxx, Qxx = KxzK−1
zz Kzx (2.3.29)

being β the noise-precision constant parameter and Qxx has rank M . Using this
approximation we can write the new predicted value at each input location xi in
terms of the evaluations on the pseudo-input locations, which is given by

p(f |u) = N (f |KxzK−1
zz u, diag[Kxx −Qxx]). (2.3.30)

To make predictions f∗ at the test input locations x∗, we use the new approximate
GP prior, obtaining

p(f , f∗) = N
([

f
f∗

] ∣∣∣∣∣
[

0
0

]
,

[
K̃xx Qxx∗

Qx∗x Kx∗x∗

]
.

)
(2.3.31)

where the terms with x∗ underscript are defined in an analogous manner to the
original ones but using the values of the test input locations. Conditioning this joint
distribution on the observed data we can obtain the final predictions

p(f∗|f) = N (f∗|m∗f ,Σ∗f ) (2.3.32)

where the mean and covariance functions are

m∗f = Qx∗xK̃−1
xx f (2.3.33)

Σ∗f = Kx∗x∗ −Qx∗x
T K̃−1

xx Qx∗x (2.3.34)



44 Chapter 2. Neural networks and Gaussian Processes

Therefore, all the calculations needed up to this point will, at most, depend on the
inverse of Kzz and the product between matrices. As mentioned earlier, the shape of
this covariance matrix is only M ×M , where M � N , and therefore obtaining its
inverse is much more manageable than dealing with the inverse of Kxx that we had
in (2.3.17). Using this approximation, thanks to the structure we have employed to
decompose Kxx, its inverse and the calculations needed to train and predict with
the model will scale with a O(NM2) cost. Specifically, the computational cost will
be dominated by the calculation of Kzz and its inverse, which scales as O(NM2).
Once this term is obtained, the predictive moments can be obtained in the scales
of O(M) and O(M2) for the mean and covariances respectively. The location of
the inducing points can be optimized by computing and maximizing the marginal
likelihood, considering them as parameters from the prior and proceeding as we did
in (2.3.18) for the rest of the parameters on the exact GP case.
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Figure 2.9: Exact GP (left) and sparse GP (right) fits, with the predictive mean
(black line) and ±2σ region (shaded area inside discontinuous lines). The data used
is the same as in (Snelson and Ghahramani 2005), showing the training points as
green dots. In the SGP case, the top and bottom crosses mark the starting (top, in
red) and ending (bottom, in blue) position of the 10 inducing points employed. Best
seen in color.

In Figure 2.9 we see a comparison between the results of using an exact GP model
and a sparse GP approximation. This example is a repetition to what is shown in
(Snelson and Ghahramani 2005), using a similar setup and the same dataset they
provide. The plots here represent exact GP inference results on the left and SGP on
the right, showing in each case the mean of the predictive distribution (black line)
and the ±2σ region as a shaded area (delimited by discontinuous lines), with the
training data as green dots. In the case of the SGP we also have the initial location
of the 10 inducing points selected, i.e. the initial values for z as red crosses at the
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top, while the finishing locations are signaled at the bottom with blue crosses (the y
value for these markers has no meaning, is just chosen for illustration purposes). We
see that the predictive distribution of the SGP model resembles closely that of the
exact GP model: the predictive mean of both cases are very similar to each other,
and the places on which the predictions differ more are situated in the right-most
part of the dataset, where there is a slight variation in their behavior. However, in
the SGP case we are using calculations that are far less costly than in the exact case.
This is specially significative since in this case since there are only 10 inducing points,
and the results are comparable to those obtained by the exact approach that takes
into account hundreds of data points (in this case, the training dataset contains 200
instances).

Finally, the inducing points locations can be interpreted as regions on which the
GP is focused on while training, summarizing the training set into a much smaller
number of points. This may arise some concerns regarding the sensitivity of the
model to the number of inducing points, and in general we must be aware of the
effect that the choice of M makes: in the limit on which M is too small for a given
dataset, the SGP model may underperform since it could not be able to recognize
all of the important features from the data. On the other hand, if we make M = N
and position the inducing points in the locations of the training points, we recover
the exact GP model since Kzz = Kxx = Kzx. Therefore, we can assume that the
model should perform reasonably well somewhere in the range 0 < M < N .
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Chapter 3
Approximate Bayesian Inference

Bayesian statistics provides a powerful framework for extracting, manip-
ulating and combining information from data. The Bayesian approach
is a natural fit to many ML approaches where it may be important to
exchange regular point-wise predictions with more informative predictive
distributions. The probability distributions obtained at the end of the
inference process incorporate the uncertainty over different parts of the
model, resulting as the combination of prior knowledge with observed
data. However, Bayesian inference in ML is intractable for most cases,
and therefore practical implementations resort to approximate methods
for inference. We will review some of the most relevant methods here,
especially focused on the optimization-based and implicit approaches, but
also touching on sampling-based methods. Finally, after introducing the
concept of α-divergences, we will describe other alternative approximate
inference methods that rely on implicit process, a generalization of the
GP formulation of the previous chapter that gets rid of the Gaussian-
ity assumptions. This represents a promising line of research, although
the methods proposed thus far allow for further improvement in their
formulation.

3.1 Bayesian Machine Learning
Thus far we have introduced some of the most popular ML techniques, such as
GPs and NNs. In most cases, these are employed to make use of huge amounts of
labelled data in supervised learning tasks. Among other features, their performance
and adaptability have lead to deep changes in the way ML and AI research is done
altogether, specially during the last decade. However, as its usually the case, data
can be contaminated by noise, while also new instances that deviate strongly from the
training set can lead to worse final predictions. Moreover, there have been important
concerns raised about the robustness of algorightms to missing data, outliers and
purposefully mislabelled data in an adversarial setting (Naveiro et al. 2019). All of
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these remarks are important problems that must be faced in order to have better ML
tools to apply to any problem we see fit, and one of the main attempts at doing this
is obtaining information about the uncertainty of a given method about its output
values.

Quantifying the uncertainty of an output for a certain method is a simple measure,
but a crucial one at assessing how confidently we could trust the outcome predicted.
This uncertainty information has huge value in many cases as well, ranging from
medical diagnosis to self driving cars, weather predictions, financial forecasts and
many others. Accounting for this uncertainty would inform the user about how
certain the method is about a given prediction, where the level of uncertainty could
be influenced by any source of error, which may come in one of two forms: aleatoric
uncertainty (also called statistical uncertainty), caused by the stochastic behavior of
the experiments and the data collection itself, or epistemic uncertainty (also referred
to as systematic uncertainty), which is caused by a lack of knowledge about the
best model to fit the data. Aleatoric uncertainty is irreducible, meaning that it is
intrinsic to the data itself and cannot be reduced (unless the experiment or the
source of the data is changed), while on the other hand epistemic uncertainty can be
reduced by gathering more information on our models and improving them. This
has been an important topic of research inside ML, since it would provide much
needed information which could be of extended use across many fields of interest
(Der Kiureghian and Ditlevsen 2009; Senge et al. 2014; Kendall and Gal 2017).

The Bayesian approach for the interpretation of probabilities provides a framework
that can be used for the purpose of representing, manipulating and computing
uncertainty in a predictive model. This perspective is especially well suited to ML
due to its core components, which differ from the standard frequentist view where
the probabilities are seen as simply rates of occurrence of random events. From the
Bayesian point of view, however, probability describes a degree of belief in events
(MacKay 2003; Bishop 2006; Gelman et al. 2013). This means that Bayesian statistics
is subjective in the sense that final beliefs are obtained by updating previous beliefs
through the observation of data, which may conform to that set of previous beliefs
or not. These beliefs are expressed in terms of probability distributions over the
possible outcomes. The Bayesian learning approach consists therefore in encoding
our prior set of beliefs in a prior distribution, and then updating it according to
the data observed through the Bayes theorem to obtain and updated set of beliefs.
This process is usually referred to as Bayesian inference (Bishop 2006; Gelman et al.
2013).

In the context of supervised learning, the Bayesian approach functions as a
way of obtaining probability distributions about the quantities of interest and then
combining all of those probability distributions in our final predictions, which will
account for all the sources of uncertainty we will have introduced in our model to
that point. This procedure begins by setting a prior distribution over our model’s
parameters and updating this distribution by the observation of labelled data. This
will conform a posterior distribution on our model’s parameters, that we can then
use to infer the probability distribution of the output of the model once it is given
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an unlabelled data instance (testing phase) using Bayes’ theorem (Bishop 2006). To
describe it in more detail, the complete process of Bayesian learning can be divided
into three parts (Gelman et al. 2013):

i. Setting up a complete probability model, where a prior distribution over all
components in the model (both observed and unobserved) needs to be specified.
It is in this part of the process where we should encode our previous information
on the system, as well as any useful information that may be considered relevant
to the problem at hand. Usually, the more information that can be incorporated
in this part of the process, the better. If little is known about the behavior of
the data, the experiment or the expected outcomes, one should also reflect this
by establishing less restrictive distributions (e.g. uninformative priors).

ii. Conditioning the previous information on the observed data, updating the prior
distributions set in the previous step according to the observed data points
that serve as training for our model. This will output a posterior distribution
that contains a mixture between our previous beliefs and the data instances
observed, and therefore will provide us an updated version of our assumptions.

iii. Using our updated set of beliefs, encoded in the posterior distribution, to make
predictions and evaluate the fit of our model to the data being presented to
it. Here we will need to assess how good is the model fitting the data, how
reasonable may the resulting predictive distributions be given our previous
information, how much do these differ from the initial set of assumptions we
made at the beginning, etc.

Depending on the results obtained in the final part of the process, one could
modify and alter some of the assumptions made in previous parts of the modelling
process to obtain better outcomes in the final part. The whole idea of this process
is, for the most part, to be recursive and employ it as many times as needed until
a satisfactory model is obtained for the data presented. The main value behind
this approach is that the Bayesian framework provides a powerful approach to
account for the uncertainty sources to the model using the tools provided by research
on probability theory. Inside current research fields, Bayesian modelling and its
adaptability to different real-world issues is an important topic that mixes knowledge
from statistics, computer science and data analysis. The combination of Bayesian
inference with Bayesian data analysis has lead to the formulation of a complete
Bayesian workflow that attempts at presenting a systematic and comprehensive way
to go about modelling complex datasets, performing model selection, improving our
comprehension of the data and being able to assess the quality of model’s predictions,
among many other features (Gelman et al. 2020).

Due to the formulation of the approach itself, ML techniques based on Bayesian
inference count with several advantages that make this a very attractive approach
in most cases. As an example, these techniques are more robust to overfitting and
odd behavior in the data such as missing values or outliers, since the distributions
themselves will reflect the information needed in most cases to avoid these issues.
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Moreover, this approach allows for a simple manner to quantify the aleatoric uncer-
tainty in our data while also being useful for model selection, since now we will have
available measures to establish how confidently a model is fitting the data available.
Also in this regard, encoding information in the prior distribution can help us get
the most information on cases where there are not many data points to train the
model, since constructing an adequate prior will allow us to make the most out of
cases with small data samples. However, all of these good properties are mostly
dependent on the usage of Bayes’ theorem to perform inference, and in many cases
the calculations needed are intractable (Gelman et al. 2013). This is a common
problem, and therefore approximate techniques have to be employed. In this chapter
we will focus on all of these concepts, from basic Bayesian formulation to some of
the most relevant approximate inference techniques that are at the core of the main
contributions of this thesis.

3.2 Bayesian Learning
Bayesian statistics is built from the Bayes theorem, which allows us to combine prior
information and observations into a posterior distribution. To formalize the Bayesian
approach, let us begin by assuming we have a given dataset we denote by X,Y,
where X will represent the input features and Y the resulting output. Using θ to
describe our model’s parameters, Bayes theorem can be written as

p(θ|X,Y) = p(Y|X, θ)p(θ)
p(Y|X) . (3.2.1)

The different factors in this expression convey meaning about our experiment and
the expected results from our model, and therefore we will briefly introduce them
separately. In the numerator of the right side of the equation we have p(θ) and
p(Y|X, θ), where the first one corresponds to the prior probability distribution over
the parameters in our model, and the second one is referred to as the likelihood
term. This likelihood is a conditional probability distribution that informs about the
probability that, given an input X and model’s parameters θ, our model provides the
output Y. On the denominator of this part of the equation we have p(Y|X), which
is usually called the model evidence (Bishop 2006). This factor does not depend
on θ, and therefore many times is seen as a constant (and one could neglect it in
some cases where it is not needed). The model evidence is actually the result of
integrating the product of the likelihood and the prior in θ, and therefore can be
seen as a normalizing constant that makes the whole right-hand-side of the equation
behave as a proper probability distribution. Finally, on the left side of the equation
we have the posterior probability, that is, the probability that given data X,Y, our
model’s parameters have the value θ. This distribution includes the parameter values
more probable given our observed data, and therefore can be seen as the updated
version of the prior distribution we had to set over them firstly.

To make inference we need to be able to obtain the probability distribution of
new data instances once we have obtained the best possible values for θ in our model
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(given the training data). If the new data point is x∗, we can obtain the estimated
output by performing the following integral:

p(ŷ∗|x∗,X,Y) =
∫
p(ŷ∗|x∗, θ)p(θ|X,Y)dθ, (3.2.2)

where θ is being integrated on and thus dissapears from the final predictive distri-
bution, which is called marginalizing over θ. The first term in the integral is the
likelihood model applied to the new data instance, i.e. the probability distribution
of obtaining output ŷ∗ given input x∗ and a set of model’s parameters θ. The second
integrand is directly the posterior distribution we obtained in (3.2.1). Finally, the
distribution obtained informs us about the probability of observing the estimated
output ŷ∗ given the training data and the new data instance. The integration over
the model’s parameters is the part of the inference process that allow us to account
for the uncertainty in the parameters and other uncertainty sources in the model,
since this some of these uncertainties will be included in our posterior distribution
p(θ|X,Y). The combination of all these different parts to obtain predictions is the
process is known as Bayesian inference.

Finally, another important aspect about (3.2.1) is the model evidence term. As
we mentioned, this is given by integrating the numerator of the Bayes theorem over
the parameters θ, that is

p(Y|X) =
∫
p(Y|X, θ)p(θ)dθ. (3.2.3)

Since this integral means marginalizing over θ, this term also receives the name
of marginal likelihood. The marginalisation can be performed exactly in simple
cases, for which the likelihood is the conjugate to the prior, which means that
the posterior distribution will be in the same probability distribution family as
the prior distribution (Gelman et al. 2013). However, in most relevant cases, this
marginalisation calculations cannot be conducted analytically, and thus we must
resort to approximate techniques that allow us to obtain an estimated value to
complete the inference process. These approximate techniques do not necessarily
mean obtaining an approximate value for the model evidence itself, but could rather
give us a distribution that approximates the posterior or some other part of the
model as well. Statistical inference techniques for approximating the likelihood
represent one of the main research interests in this topic, and work is still being done
to further improve the current performance level. However, before we introduce these
techniques we will briefly discuss the construction of a model of key importance for
the thesis: Bayesian Neural Networks.

3.2.1 Bayesian Neural Networks and Approximate Inference
As we have discussed earlier, the common models employed in DL are not able to
provide detailed information about their uncertainties when providing an output.
This is highly valuable information, that in some problems may be crucial for making
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decisions and incorporating new information into the model. Bayesian NNs (BNNs)
offered a way of introducing a probabilistic interpretation to the DNNs parameters
by considering distributions over the network weights and biases. The simple fact of
introducing distributions to model these parameters lead to an increasing interest
on extending NNs with a Bayesian perspective, one which could allow us to benefit
from all of the power of Bayesian statistics. These types of models would be more
robust to overfitting, could take into account uncertainties in different parts of the
model, and, more importantly, give uncertainty estimations on the outputs of the
network. Also, they could potentially be trained on fewer data points than regular
NNs due to the usage of prior information. Therefore, this extension to NNs could
expand many of their already impressive features with tools that had been widely
studied and developed inside the statistics research.

The idea of mixing Bayesian statistics and ML is not something new. As an
example, the first instance of combining both topics in the context of neural networks
took place more than thirty years ago by Denker et al. 1987. In that work, Denker et.
al. proposed replacing the point-like weights in the networks with distributions over
the space of weights, therefore turning them into random variables and, for their case,
setting a uniform distribution on a compact space as priors for them. Denoting all the
inputs as {x1, ...,xN} they mapped each weight configuration to its correspondent
output {ŷ1, ..., ŷN}, which allowed them to obtain a marginal probability for each
pair (xi, ŷi). However, the first introduction of BNNs can be tracked to 1989 (Tishby
et al. 1989), which showed that inference could be performed theoretically through
the use of Bayes’ theorem. Early work at the end of the 1980s and the early 1990s
suggested different approaches to obtain approximated posterior distributions over
the BNNs parameters (Tishby et al. 1989; MacKay 1992). The first attempt at
using backpropagation to find values for the weights was introduced by LeCun et al.
1989. The mode for the parameters’ distribution was found and then a Gaussian
was fitted to that mode, the width of which would be given by the Hessian of the
likelihood. However, this technique was limited to small datasets since it involved
the inversion of a Hessian matrix, and therefore would scale poorly if the dataset
is big enough. Further on, thanks to an array of different experiments, MacKay
1992 showed important properties about the model evidence. They characterized the
correlation between model evidence and the generalization error, which meant that
in some cases this factor could be used to conduct model selection and choose the
model’s size. Moreover, they showed that misspecification of the models could lead
to situations on which that correlation is broken and model evidence is not indicative
of the model generalization, which could mean that low probability could be given
to models unjustifiably.

In the early 1990s, Hinton and Van Camp 1993 suggested the use of minimum
description length as a way for conducting model regularization and penalize accumu-
lating high amounts of information in few of the network’s weights (see Section 2.1.3).
They also showed that, for the case of a single hidden layer NN, their objective could
be computed analytically, which is also strongly related to the connection between
NNs and GPs. In this context, however, it can be seen as one of the first instances
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of approximating the parameters’ distributions through variational inference (VI),
an important set of techniques that are a major part of the research in approximate
Bayesian inference and that we will introduce during this chapter as well. Other
approximate inference techniques have also been implemented in this context. This
includes using Markov Chain Monte Carlo (MCMC) and Hamilton Monte Carlo
(HMC, also called Hybrid Monte Carlo) for BNNs, as proposed by Neal 2012. These
approaches for approximate inference do not rely on prior assumptions about the
form of the posterior distribution, which as we will see is a core concept for VI-based
approaches. In addition to this, Neal 2012 also tried to reproduce some of the results
of the Laplace’s approximations by MacKay 1992, and showed that in the limit of
a very high number of units, the model would converge to various stable processes
which would depend on the prior specified (see Section 2.3.2.1).

As a final remark, Barber and Bishop 1998 extended the formulation introduced
by Hinton and Van Camp 1993 using a fully VI interpretation and employing full co-
variance matrices. They highlighted that the obtained objective forms a lower bound
to the model evidence, and also performed VI with free-form variational distributions
over the hyper-parameters. From this point forward it was soundly established that
approximate techniques were one of the most important approaches to deal with the
intractability problems that arise when formulating Bayesian inference in ML (not
restricted solely to BNNs). This way we should be able to obtain an useful distribu-
tion which we can employ to perform our desired regression or classification tasks
while conserving the information about the system and its uncertainty. Techniques
such as these are a core concept of our work, which is mostly centered on being able
to provide better approximations to the distributions needed in Bayesian ML. Ideally,
this would provide more flexible and versatile predictive distributions, while also
updating the priors in a sensible manner according to the data present. This would
also maintain all of the important properties of the Bayesian approach, which are
broadly sought-for in ML research. Since this topic is of crucial importance for this
thesis, we will introduce here some of the most resorted techniques for approximate
inference, including both optimization-based and sampling based approaches.

3.3 Optimization Based Methods
The main contributions of this thesis revolve around concepts derived from optimization-
based methods for approximate inference. These approaches consist on obtaining a
new distribution that approximates the target as closely as possible, but that is also
more manageable and that allows us to successfully obtain what we may need to
conduct inference. Optimization-based methods can also be referred to as determin-
istic in most cases, since given a target distribution and a set of characteristics of
the approximating distribution, there is a fixed set of values for the approximation’s
parameters so that it resembles as closely as possible the objective distribution (albeit
in some cases finding that set of values is a complicated task, and in some cases we
only arrive to a close estimation of it). We will review some of the most popular
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methods, although there are many other to choose from depending on what we may
be interested on given a particular task.

3.3.1 Variational Inference
Variational inference (VI) is one of the most common approximations for the posterior
distributions in modern research in approximate inference. The key idea behind VI is
that, instead of calculating the true posterior distribution for the parameters in the
model, we will define an approximate variational distribution qθ(z), parametrized by
θ, and whose structure is easy to evaluate. qθ is usually set to belong to a certain
family of distributions, e.g. the exponential family, and in some of these cases the
computations involved will have analytical solutions. Once the family of distributions
is selected, we will make sure that this variational distribution approximates p(z|X,Y)
closely. To that end, we perform the following decomposition of the logarithm of the
marginal likelihood of the probability of the observed data

log p(D) = L(q) + KL(q|p), (3.3.1)

where q represents the parametric distribution we are looking to use as approximation
for p(θ|D), D represents the observed data (X,Y) and where we have defined

L(q) =
∫
qθ(z) log

(
p(D, z)
qθ(z)

)
dz, (3.3.2)

KL(q|p) =
∫
qθ(z) log

(
qθ(z)
p(z|D)

)
dz. (3.3.3)

The second term defined here, KL(q|p), is the Kullback-Leibler (KL) divergence
between the distributions qθ(z) and p(z|D). The KL divergence is not a proper
distance measure since it lacks the symmetry condition, although it allows us to
quantify how dissimilar both distributions are: it is only 0 when both of distributions
are the same, and takes values ≥ 0 otherwise. From this fact, it follows from
(3.3.1) that L(q) is a lower bound of log p(D), since log p(D) ≥ L(q). Moreover,
since log p(D) is independent of the choice of approximation q, we will have that
minimizing the KL term is the same as maximizing this lower bound, since both of
them have to add up to the constant value given by log p(D), as illustrated in Figure
3.1.

The decomposition performed in (3.3.1) can be done for any possible approximat-
ing distribution q. The same holds for the rest of the arguments we have used thus
far, namely the fact that choosing the best approximating distribution q is equivalent
to minimizing the KL divergence. In practice, this is done by maximizing the lower
bound term of (3.3.2) (L(q)), also named the Evidence Lower Bound (ELBO). Using
the parametric expression for q, this can be written in terms of θ as

L(θ) =
∫
qθ(z) log p(Y|X, z)dz−KL(qθ(z)|p(z)) (3.3.4)



3.3. Optimization Based Methods 55

Figure 3.1: Decomposition of the log p(D) in terms of the L(q) and KL(q|p), where
the sum of the latter two terms provide the value for the first term. Adapted from
Bishop 2006.

which is the objective function to which we will refer here. The first term is usually
referred to as the expected log-likelihood of the ELBO, while the second term ensures
that our approximate distribution does not stray too far away from the prior set on
the model since maximizing the ELBO will imply minimizing this term (and thus
can be said to work like a regularization term for the approximation). Maximizing
this function with respect to θ is what commonly is called as variational inference,
replacing the calculation of the Bayesian model marginalizations with optimization
problems. This formalism allows us to preserve many of the advantages of Bayesian
modelling, capturing the model uncertainty in the output, while also providing an
easy solution to the approximation problem. Inside this framework, once we have
obtained the minimum of the KL divergence by optimizing the parameters in our
approximating distribution, we can also write the approximate predictive distribution
as

p(y∗|x∗,D) ≈
∫
p(y∗|x∗, z)q∗θ(z)dz ≡ q∗θ(y∗|x∗). (3.3.5)

Therefore, once the approximation is optimized, the rest of the calculations can be
conducted in an easy manner.

The usage of a parametric approximating distribution is at the same time, one
of the most important features of VI and one of its main drawbacks as well. The
choice to have q restricted inside a parametric family of distributions allows for
most of the calculations to have closed-form solutions. The exact shape of the
resulting distribution will depend exactly on what type of restrictions we impose
over q. However, since q is forced to belong to the selected family, in some cases
this can incur in a bad fit to the original distribution due to the limited flexibility
of the family itself. A good example for this is performing VI with the exponential
family of distribution in a case where the target distribution has more than one
mode. Since the distributions to choose from will be unimodal, depending on how we
treat the problem, the resulting approximate distribution can have its mean among
the modes of the original distribution (where the probability allocated by the latter
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is rather low), or it can result in a mode-selection model, where the approximation
focuses on one mode and forgets about the others. In general, since VI makes use of
the KL divergence in the shape of (3.3.3), the mode-selecting behavior will be more
common (Bishop 2006), whereas an alternative use of this divergence can show a
mode-covering behavior (for more information, see Section 3.5).

For VI techniques, some modern approaches follows Hinton and Van Camp 1993,
where they assume a fully factorized approximation to the real posterior distribution
and performing optimization then in what has been named variational mean field
(Jaakkola 2001)

qθ(z) =
K∏
i=1

qθ(zi), (3.3.6)

where z are assumed to factorize into K disjoint groups of parameters. In the context
of NNs, if qθ(z) = qθ(w), where now the parameters for the model are represented as
w, referring to both the weights and biases. The approximation here is defined to
factorize over the weights for each unit in each layer, which could be expressed as

qθ(w) =
L∏
i=1

qθ(Wi) =
(L,Ki,Ki+1)∏

(i,j,k)=1
qmijkσijk(wijk) =

(L,Ki,Ki+1)∏
(i,j,k)=(1,1,1)

N (wijk|mijk, σ
2
ijk)

(3.3.7)
for L data inputs, being Ki and Ki+1 the number of units in layers i and i +
1 respectively, mijk the mean and σ2

ijk the variance for each of the wijk, which
have themselves the shape of a normal distribution with those parameters. Doing
optimization in this problem is challenging, and therefore the early attempts only
demonstrated VI could be implemented in NNs with a single hidden layer, for
which the result has a closed-form expression under certain restrictions regarding
the output units (Hinton and Van Camp 1993). However, this type of model is
expected to have issues in its performance, since assuming the factorization for the
approximating distribution makes that important information about the model’s
parameters correlations is lost. This can be accounted for with ad-hoc transformations,
although that also comes with important increases in the computational cost for the
method (Louizos and Welling 2017b). This is impractical for modern standards of
ML, so both in the context of DL and in the rest of ML VI had to be developed
further at this point.

In Graves 2011 a partial sollution to the problems above is presented through
the use of data sub-sampling techniques in a fully factorized VI objective, allowing
VI to scale to large amounts of data. Graves et. al. use Monte Carlo estimates
for the intractable terms that appear in the expected log-likelihood (Hoffman et al.
2013). This allowed them to apply this approach to models with more parameters,
such as NNs with more than one-hidden layer. Therefore, this constitutes the first
instance in which a VI approximation technique was scalable for complex models
and big data cases. Nevertheless, this model performed badly in practice, and it was
not extended until Blundell et al. 2015b proposed re-parametrizing the expected log
likelihood Monte Carlo estimates. The work by Blundell et al. 2015b is done inside
the context of BNNs, where they further change the model by imposing a mixture of
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Gaussian priors over each network weight and then optimizing the parameters of the
mixture components. This has a much better performance than previous models,
but it is again at the expense of an increase on the computational cost: the use of
Gaussian distributions doubles the number of parameters in the model, since now
we need to define a Gaussian distribution over each one of them. Although effective,
this change would make these models complex to fit.

Most current approaches to VI are based in the work Hoffman et al. 2013, where
mini-batch optimization for VI was introduced. This would allow to rewrite the VI
objective as

L̂(θ) ≡ −N
M

∑
i∈S

∫
qθ(z) log p(yi|fz(xi)dz +KL(qθ(z|p(z)), (3.3.8)

being S a random index set of size M . The data sub-sampling approximation forms
an unbiased stochastic estimator, which implies that

ES[L̂V I(θ)] = LV I(θ). (3.3.9)

Therefore we can use an stochastic optimizer to optimize this stochastic objective
and obtain a local optimum set of parameters θ∗, which would in turn be also an
optimum for LV I(θ). The gradients to train the system can also be attained in
a similar fashion, since usually noisy gradients are employed (). The remaining
difficulty is then the evaluation of the expected log likelihood term, which is done
through Monte Carlo integration and for which several MC estimators have been
built, depending on the purpose. We will introduce some of the most relevant here.

3.3.1.1 Monte Carlo Estimators for VI

There are many ways to perform the MC estimation in VI. To simplify the notation, we
will introduce these considering the general case of estimating the integral derivative

I(θ) = ∂

∂θ

∫
f(x)pθ(x)dx (3.3.10)

whose form is analogous to the optimization of the expected log likelihood term in
the ELBO objective (3.3.4). In this analogy, f(x) will be a function defined on R
and pθ(x) a probability density function parametrized by θ. As a concrete example,
if pθ(x) = N (x;µ, σ2) with θ = {µ, θ}, when we differentiate Eq.(3.3.10) with respect
to θ = µ we will refer to the estimator as the mean derivative estimator, while if
θ = σ we will refer to it as the standard deviation derivative estimator.

There are many types of MC estimators for Eq.(3.3.10), of which we will only
introduce two:

1. The score function estimator (Paisley et al. 2012), which relies on the following
identity

∂

∂θ

∫
f(x)pθ(x)dx =

∫
f(x) ∂

∂θ
pθ(x)dx

=
∫
f(x)∂ log pθ(x)

∂θ
pθ(x)dx.

(3.3.11)
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This leads to
Î1(θ) = f(x)∂ log pθ(x)

∂θ

Epθ(x)[Î1(θ)] = I(θ).
(3.3.12)

2. The pathwise derivative estimator, otherwise known as the reparametrization
trick (described in Glasserman 2013, among others). For this, assume that pθ(x)
can be reparametrized as a parameter-free distribution, p(ε), separating the
stochastic component from the parameters of the model such that x = g(θ, ε),
being g(·, ·) a deterministic differentiable bivariate distribution (for example,
for pθ(x) = N (x;µ, σ2), g(θ, ε) = µ+ σε and p(ε) = N (ε; 0, I)). The estimator
in this case will be

Î2(θ) = f ′(g(θ, ε)) ∂
∂θ
g(θ, ε), (3.3.13)

with Ep(ε)[Î2(θ)] = I(θ), being f ′(·) = ∂f(·)/∂θ.

The usage of these techniques is not exclusive to BNNs, although extensive work
has been conducted into applying them to these models. As an example for this, in
(Gal 2016) they use the results of Graves 2011 with the pathwise derivative estimator,
which we can employ non-Gaussian approximating distributions, trying to achieve
a more flexible model. Furthermore, Gal 2016 factorize the distribution for the
weights for each row wl,i in each Wl rather than over each weight alone. This is done
hoping this decomposition behaves better at preserving the correlations between
different parameters in the model. Here, a re-parametrization for each qθl,i(wl,i) as
wl,i = g(θl,i, εl,i) is needed, specifying some distribution over the random variable
ε given by p(εl,i). Reparametrizing Eq. (3.3.8) with respect to p(ε) = ∏

l,i p(εl,i)
and replacing each expected log likelihood term with the corresponding pathwise
estimator results in a new MC estimator

LMC(θ) = −N
M

∑
i∈S

log p(yi|f g(θ,ε)(xi)) +KL(qθ(w)|p(w)) (3.3.14)

where w = g(θ, ε), such that ES,ε[L̂MC(θ)] = ŁV I(θ). Therefore, optimizing L̂MC(θ)
with respect to θ will converge to the same optimum as optimizing the original
objective, LV I(θ). This is what is used in (Gal 2016), by calculating the stochastic
derivative estimator with respect to θ, ∆̂θ and then updating the parameters by
doing θ ← θ+η∆̂θ for some learning rate η until a previously set convergence criteria
is met.

Using the previous calculations, the actual posterior distribution on the weights
can be approximated by the optimized approximate posterior. This allows also to
approximate the predictive distribution from Eq.3.3.5 with MC integration as well

q̃θ(y∗|x∗) ≡
1
T

T∑
t=1

p(y∗|x∗, ŵt) ≈ p(y∗|x∗,X,Y), (3.3.15)
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where ŵt ∼ qθ(w). All of these procedures have been developed and researched exten-
sively in the literature (Gal and Ghahramani 2015; Gal 2016; Gal and Ghahramani
2016).

As a final note regarding VI, it is relevant here to mention that it has a close
connection to Stochastic Regularization Techniques such as dropout. As mentioned
in Section 2.1.3, under certain circumstances, VI can be said to provide the same
results as dropout. This is true when certain restrictions for qθ(w) and p(w) are in
place, as shown by Gal 2016.

3.3.1.2 VFE Approximation for Sparse GPs

As we mentioned in the previous chapter, one of the possible solutions to the
scalability problems of GPs is the introduction of a set of new parameters, namely
the inducing points, which lead to the calculations needed being performed in lower-
ranked matrices. Sparse GPs allowed for an important increase in the scalability of
GPs since the complexity of the model now followed, at most, an O(M2N), where M
is the number of inducing points, N the number of data points, and usually M � N .

In Section 2.3.3 we introduced the FITC approximation for sparse GPs. This
assumed that the conditional distribution of the functions sampled from the GP and
evaluated in each training point, (fi) were fully independent between them given the
evaluation of these functions on the locations of inducing points (u). This allowed
for a decomposition between terms that allowed for a simple solution to the sparse
GP approach by readjusting slightly the prior model from the one proposed initially.
However, now that we have introduced VI, it can be useful for later discussion to
introduce another type of approximation for sparse GPs: the variational free energy
approach (VFE) (Titsias 2009).

Using the same notation as in Section 2.3.3, consider the following decomposition
of the log-likelihood

log p(y|θ) = log
∫
p(y, f ,u|θ)dfdu, (3.3.16)

where θ represents the parameters in our model. We will now introduce a joint
distribution q(f ,u) as an approximating distribution to the true posterior p(f ,u|y).
We write the log-likelihood then as

log p(y|θ) = log
∫
p(y, f ,u|θ)q(f ,u)

q(f ,u)dfdu

≥
∫
q(f ,u) log

(
p(y, f ,u|θ)
q(f ,u)

)
dfdu ≡ L(q, θ), (3.3.17)

where L(q, θ) is an ELBO function such as the one described in (3.3.4)

log p(y|θ) = L(q, θ) + KL(q(f ,u)|p(f ,u|y)). (3.3.18)

By optimizing this distribution, we will make that q resembles the exact posterior as
closely as possible, which is the same objective of the original VI formulation. However,
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here we will not use the same type of parametric solution that is often employed
at this point. Rather, consider the following decomposition for the approximate
distribution:

q(f ,u) = p(f |u)q(u) = p(f |u)N (u|m.Σ) (3.3.19)
Here, the q(u) distribution is being approximated by a multivariate normal distri-
bution with means m and covariance matrix Σ, and the conditional p(f |u) is kept
fixed depending on the value of u. This approximate solution makes q(u) the only
tunable part of the approximating distribution, being the inducing points parameters
of this contribution exclusively as well. The whole approximation q(f ,u) can be seen
as a way to separate the contributions from the inducing points and the functions
evaluated at the original training inputs. Optimizing (3.3.17) according to this
decomposition will provide a more accurate approximation to the original GP than
what is obtained through the FITC approximation, which requires a change of priors,
while here we are just obtaining a different approximation to the exact GP posterior
and fitting it performing VI.

Minimizing the KL distribution between the exact GP posterior and the approx-
imation of (3.3.19) requires maximizing the ELBO, as we have seen before. If we
introduce the new decomposed approximation q(f ,u) we will have the objective
function behave as

L(q, θ) =
∫
q(f ,u) log

(
p(y, f ,u|θ)
q(f ,u)

)
dfdu

=
∫
p(f |u)q(u) log

(
p(y|f , θ)����p(f |u)p(u)

����p(f |u)q(u)

)
dfdu

= Eq(f)[log p(y|f , θ)]−KL (q(u)|p(u)). (3.3.20)

This objective function is analogous to the original VI ELBO, but in this case it
serves us to obtain an approximation to the exact GP posterior without having to
make changes in the model. The first term in (3.3.20) depends on the mean squared
prediction error of the model, while the KL divergence is calculated between two
Gaussian distributions and thus has a closed-form solution. The main part of the
calculations is dominated again by the inversion of the covariance matrices, but since
in the KL divergence we are using only the q(u) part of the approximation, here the
scalability will also be O(M2N) at most (the same as for the FITC approximation).
Finally, predictions are obtained marginalizing p(f∗|u)q(u) over u (Hensman et al.
2013b).

VFE in general provides more accurate predictions than FITC, which is closely
related to the fact that it does not need to change the model itself. However, in
general they are considered to be more difficult to optimize than the FITC approach
due to the complexity of the optimization space. In practice, VFE may be convenient
since we do not have to change the GP model to obtain the benefits of the inducing
points approach, and the performance outweights the intricacies of the optimization
problem (Quinonero-Candela and Rasmussen 2005; Bauer et al. 2016; Bui et al.
2017).
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3.3.2 Expectation Propagation
Asides from VI, there are other optimization-based approaches to approximate
inference that have an important role in research as well. One of the main alternatives
here is known as expectation propagation (EP), introduced mainly by the works of
Minka 2001b; Minka 2001a. This algorithm is constructed around the minimization
of the opposite KL divergence to the one being used in VI, which is given by

KL(p|q) =
∫
p(z) log

(
p(z)
q(z)

)
dz, (3.3.21)

being q(z) the approximating distribution to the real one, p(z). Usually q(z) is
assumed to belong to the exponential family of functions, as is done in VI as well
since this eases many of the calculations involved. If this assumption is taken, then
we can write q as

qη(z) = exp(ηTu(z)− g(η)), (3.3.22)

where η is a vector of natural parameters of q inside this family of functions, u(z) is
some vector function of z known as the sufficient statistics, and g(η) is the logarithm
of a partition function that acts as a normalizing constant, ensuring that q integrates
to one and is therefore a well-defined probability distribution. If this approximation is
introduced, minimizing the KL divergence can be done using closed-form expressions.
Thanks to this, it can be obtained that

Ep(z)[u(z)] = Eq(z)[u(z)], (3.3.23)

where we will write qη(z) = q(z) to simplify the notation. Thus, the optimal solution
for q is achieved by matching the expected sufficient statistics from q and p (which
is sometimes called as moment matching).

In a more general sense, in (Minka 2001b; Minka 2001a) it is assumed that, for
many probabilistic models, the joint distribution of the data D and hidden variables
z can be factorized as

p(D, z) =
∏
i

fi(z). (3.3.24)

The basic EP algorithm approximates the joint distribution of D and z as a product
of simple factors

p(D, z) ≈
∏
i

f̃i(z), (3.3.25)

where each factor f̃i in the approximation corresponds to one of the factors in the
true joint distribution and where f̃i is restricted to have a similar form: they will
belong to the exponential family of distributions, but do not need to be normalized.
Then, the posterior approximation for z is simply

q(z) = 1
Z

∏
i

f̃i(z) (3.3.26)
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where Z is a normalizing factor given by

Z =
∫ ∏

i

f̃i(z)dz. (3.3.27)

To obtain the distribution that minimizes the KL divergence, in EP we must
define a cavity distribution from our approximation q, which will be given as

q\j(z) ∝ q(z)
f̃j(z)

. (3.3.28)

This distribution can be interpreted as the original approximating distribution but
with the j-th factor removed from it and renormalized. We then compute the updated
posterior distribution p̂ as

p̂(z) = 1
Zj
fj(z)q\j(z) (3.3.29)

where Zj is the normalization constant to ensure integration to 1. With this,
the solution of the KL minimization will provide us with the new approximation
distribution qnew:

qnew = arg min
q

KL (p̂(z)|q(z)) . (3.3.30)

This is again solved by meeting the sufficient statistics, as we mentioned earlier.
With this, the approximating factor f̃j(z) will be updated to

f̃j(z) = Zi
qnew(z)
q\j(z) with Zi =

∫
f̃j(z)q\j(z)dz. (3.3.31)

Applying this procedure, each factor is approximated in a one at a time basis through
a cyclic algorithm. This is done in (Vehtari et al. 2020), where this cyclic approach
is followed. However, this requires to keep in memory several approximate factors
for each data point, which in a large scale data base is not feasible. As a response to
the low scalability of basic EP there has been two recent developments in the form
of Probabilistic Backpropagation (PBP) (Hernández-Lobato and Adams 2015) and
expectation backpropagation (EBP) (Soudry et al. 2014). The latter case is an online
extension of EP for NNs with sign activation functions and binary weights, and as
in the case for PBP, it includes a forward propagation of gradients. However, EBP
seems to lack some of the characteristics of PBP like the fact that it can only be
used to model data with binary targets and that EBP with continuouss weights only
updates the mean parameters of the Gaussian posterior approximations. In the other
side, PBP is thought-out to be scalable in larger data sets where only a few passes
over the data are possible (possibly due to the cost of evaluating each of the data
values). For the case of (Hernández-Lobato and Adams 2015), PBP improves the
results of VI approaches both in root square mean error and uncertainty estimation.
Moreover, the approximating distributions for this papers are rather simple, as is the
case for (Depeweg et al. 2017; Hernández-Lobato et al. 2016). The motivation behind
these choices is fitting a more dispersed distribution than the ones in VI techniques,
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which although seems to sacrifice their estimations of the dominant modes of the
posterior, they do achieve a correct search and exploration of the modes, which is
usually what we are interested on when performing prediction tasks. Finally, it is
interesting to remark the recent work done by Bui et al. 2016b, where deep Gaussian
processes are employed along with EP using the previous developments in order to
try to reduce the memory demand of EP. For this they dispose an approximation to
the factorized approximating function in terms of a average factor of the different
fi(θ)’s, significantly reducing the memory usage for EP by a factor of N (the number
of factors that had to be considered this far). This is also strongly related to the work
done by (Li et al. 2015). Their proposed method is Stochastic EP (SEP), in which
the approximating factors of EP can be interpreted to parametrize a global factor
that captures the average effect of the likelihood on the posterior. This extension to
the usual formulation of EP improves significantly the scalability of EP when applied
to large datasets.

As final remarks, the performance of EP may depend strongly on the case. It
has been shown that it does not always converge to a solution (Minka 2001a),
although certain modifications to the basic approach have been proposed in order
to ensure convergence (Heskes and Zoeter 2012). Moreover, the dependence of EP
on the moment-matching procedure can lead to poor performing results if the data
distribution is complex enough, e.g. when the data distribution is multimodal. If the
approximating distribution is selected within the exponential family in a case with
bimodal data, the mean of the predictive distribution can be placed between the two
modes of the true posterior, which may be a region with very low probability density.
This is a problem that is also faced in VI, and it represents a major challenge for
obtaining more flexible predictive distributions

3.3.3 Adversarial Variational Bayes
As we mentioned, the fact that VI uses a parametric family of distributions to find
the best approximation for a distribution has important features, but also comes at
the expense of limiting the behavior of the resulting distribution. The performance
achieved by the basic approach to VI is strongly dependent on the choice of family
of distributions for the approximation. Given certain data, VI can only choose the
distribution inside that family that most resembles the exact posterior distribution
we are looking for. This means that, if the exact posterior is far from the distributions
of the selected family from which we can choose from, we will obtain a loosely precise
approximating distribution, strongly biased by our selection of the family. This
could imply losing crucial information if the divergence between the exact posterior
and the approximation is large enough (Bishop 2006). For example, if we resort to
the exponential family of distributions (a very common assumption), we will miss
features such as multimodal behavior, heavy tails, skeweness, etc. Some different
techniques have been proposed to deal with this issue, attempting to remove this
restriction regarding the choice of family of the approximation function, and some of
the most successful ones are those relying on implicit models (Salimans et al. 2015;
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Rezende and Mohamed 2015; Li and Liu 2016; Mescheder et al. 2017).
An implicit distribution is usually referred to as a model from whom it is easy to

draw samples, although we may not have a closed-form expression for the p.d.f. of
said distribution. The Adversarial Variational Bayes approach makes extensive use
of this concept to obtain a more flexible approximating distribution than what the
regular VI approach is capable of producing (Mescheder et al. 2017). An example
for an implicit model can be a source of standard Gaussian noise that is non-linearly
transformed by a neural network. In this case, we can write the approximating
distribution as

qφ(z) =
∫
δ (z− fφ(ε))N (ε|0, I)dε , (3.3.32)

where fφ(ε) is the output of the transformation of the Gaussian noise, given by ε,
φ represents the transformation’s parameters, and δ(·) is the delta function. We
will mostly apply this for NNs, and therefore during this discussion we will use w
instead of z to refer more precisely to a NN parameters, although the approach can
be generalized to make use of other methods as well.

In general, the integral in (3.3.32) is intractable. This is caused by the fact that,
in order to obtain a fairly general approach, the original Gaussian noise can be
transformed through strong non-linearities such as the ones present in NNs. This is
the case for most instances since, in order to be able to transform that noise into
a sample from any given function, we may need an important degree of flexibility
on the transformation. However, even though we will not dispose of an explicit
expression for q, it is very easy to generate samples w from it (w ∼ qφ). For this,
one only has to generate ε ∼ N (0, I) to then compute w = fφ(ε), which consists in
simply passing the noise input through the transformations themselves. If the noise
dimension is large enough and fφ(·) is flexible enough, any probability distribution
can be described using these method, which makes NNs especially interesting in this
case since they can be used as universal approximators. Therefore, methods based
on this approach attempt to alleviate the approximation bias of VI by substituting
the parametric distributions q with an implicit model for it.

Using an implicit distribution inside the VI framework is challenging because the
lower bound of (3.3.4) cannot be easily evaluated nor optimized in the usual manner.
The KL divergence between the approximate distribution q and the prior on (3.3.3)
usually requires the p.d.f. of q to be able to estimate the value of the integral. This
is not the case here, since now we only have samples from the distribution but not
its distribution. AVB provides an elegant solution to this problem by just employing
samples from the approximate solution and the prior. In AVB, this term is written
as

KL(q(w)|p(w)) = Eqφ(w) [log qφ(w)− log p(w)]
= Eqφ(w) [T (w)] , (3.3.33)

where T (w) is simply the log-ratio between qφ and the prior. In AVB this log-ratio
is approximated as the output of an auxiliary problem: another neural network
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that discriminates between samples of w generated from qφ and from the prior p(w)
(Mescheder et al. 2017). Let us consider Tω(·) as the output of the discriminator.
Assuming qφ(w) is fixed, the objective function for the discriminator will be:

max
ω

Eqφ(w) log (σ(Tω(w))) + Ep(w) log (1− σ(Tω(w))) , (3.3.34)

where σ(·) is the sigmoid function of (2.1.5). Roughly speaking, this objective tries
to make the discriminator differentiate between samples generated from qφ(w) and
from the prior p(w).

If the discriminator Tω is considered flexible enough to represent any function
of w, it is possible to prove that the optimal discriminator behaves as expected
(Mescheder et al. 2017). If we rewrite (3.3.34) using the explicit form for the expected
values we obtain

max
ω

∫
[qφ(w) log σ(Tω(w)) + p(w) log(1− σ(Tω(w))] dw . (3.3.35)

This integral is maximal for Tω(w) if and only if the integrand is maximal for every
w value. The shape of the integrand is equivalent to

a log t+ b log(1− t), (3.3.36)

for a = qφ(w), b = p(w), and t = Tω(w). Thanks to this decomposition, it can be
shown that the maximum value for the integrand is attained at t = a

a+b (Mescheder
et al. 2017; Goodfellow et al. 2014). Therefore, the optimal solution for (3.3.35),
which we will denote as Tω? , is given by

σ(Tω?(w)) = qφ(w)
qφ(w) + p(w) , (3.3.37)

or equivalently,

Tω?(w) = log qφ(w)− log p(w). (3.3.38)

which is the result desired to correctly estimate the KL divergence between qφ and the
prior. In particular, the discriminator can be plugged in (3.3.33) and the expectation
can be approximated simply by a Monte Carlo average by generating samples from
qφ.

Given Tω? the lower bound employed in AVB is obtained by re-writing the
evaluation of the KL divergence between qφ and the prior:

L(φ) =
N∑
i=1
Eqφ(w)[p(yi|w,xi)]− Eqφ(w)[Tω?(w)] . (3.3.39)

Note that all the required expectations can be simply approximated by generating
samples from qφ and the sum across the training data can be approximated using
a mini-batch. This lower bound can be hence easily maximized w.r.t. φ using
stochastic optimization techniques. For this, however, we need to differentiate the
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stochastic estimate with respect to φ. This may seem complicated since Tω?(w)
is defined as the solution of an auxiliary optimization problem that depends on
φ. However, due to the expression for the optimal discriminator, it can be showed
that Eqφ(w) (∇φTω?(w)) = 0. Therefore the dependence of Tω?(w) w.r.t φ can be
ignored (see Mescheder et al. 2017 for further details). In practice, both qφ and
the discriminator Tω(w) are trained simultaneously. However, qφ is updated by
maximizing (3.3.39) using a smaller learning rate than the one used to update the
discriminator Tω, which considers the objective in (3.3.34). This guarantees that Tω
is an accurate estimator of the log-ratio between qφ and the prior, and that the KL
divergence is correctly estimated when updating qφ.

The AVB approach serves as a first approximation of what can be done to obtain
more flexible predictive distributions than those present in VI and EP. Although it
involves introducing the auxiliary discriminator problem, the performance of methods
based on this approach have shown that this framework can be truly productive for
conducting approximate Bayesian inference in ML and not only restricted to BNNs.
This ideas are one of the key concepts of some of the main contributions of this
thesis, and we will see how to expand on them later.

3.4 Sampling Based Methods
On the other hand, sampling based methods are a strong alternative to the optimization-
based approaches to approximate inference. Here, the approximations are usually
constructed around the concept of a Markov Chain. Instead of proposing an approx-
imating distribution for the posterior, these approaches look for approximating it
through a series of samples from it S = {θ1, · · · ,θN}, where θi represents a vector
containing all of the model’s parameters (Bishop 2006). Then, applying the law of
large numbers, an approximation to the predictive distribution can be written as

p(ŷ∗|x∗,D) ≈ 1
N

N∑
i=1

p(ŷ∗|x∗,θi,D), (3.4.1)

where D represents the training dataset (X,Y), and the samples θi are obtained from
a Markov Chain where the stationary distribution coincides with the exact posterior
we are looking to approximate (and which can be obtained without having to solve
(3.2.3)). Sampling methods converge to the exact values, although in practice they
have to run very long chains, which can be computationally demanding. A lot of
research has been put into accelerating and applying these approaches, and here we
will briefly introduce some of the basic concepts that we will later use as well.

3.4.1 Markov Chain Monte Carlo
Most sampling based approaches are based on Markov Chain Monte Carlo (MCMC),
a general framework that can be seen as a simple method for obtaining samples out
of a desired distribution, even if we do not know the exact shape this distribution
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may have (Bishop 2006; MacKay 2003) . Markov Chains can be defined using a set
of states S, where certain random variable z(n) ∈ S represents a fixed state at stage
n and where n can be interpreted as a position in a succession of states (chain). The
sequence z(1), · · · , z(n−1) is referred to as a Markov chain of first order if

p(z(n)|z(1), · · · , z(n−1)) = p(z(n)|z(n−1)), (3.4.2)

for any possible n ≥ 2. This means that the value of the fixed state at position n
in the chain will depend only on the previous state of the chain (n− 1) and not on
the chain’s history, which is usually referred to as the memoryless property. With
this description, the Markov Chain can be fully specified given the initial probability
distribution of states p(z(1)) and the matrix of transition probabilities, written as
p(z(i+1)|z(i)). The Markov Chain is also said to be homogeneous if these transition
probabilities do not depend on the position of a state in the chain.

The marginal probability at stage n in the chain can be easily obtained from the
decomposition in (3.4.2), since the memoryless property allows us to decompose so
that it only depends on the previous state

p(z(n)) =
∑

z(n−1)

p(z(n)|z(n−1))p(z(n−1)), (3.4.3)

where the summation is done across all possible values for the previous state in the
chain. A distribution is said to be stationary or invariant with respect to a Markov
Chain if each step in the chain leaves this previous marginal probability invariant.
The stationary distribution of a Markov Chain can be defined as

p∗(z) =
∑
z′∈S

p∗(z′)p(z|z′). (3.4.4)

The stationary distribution is important since it let us define the probability for
every given state at any random position in the chain, once it is reached. A
sufficient (although not necessary) condition that ensures a probability distribution
is a stationary distribution is that it follows the detailed balance property

p∗(z)p(z′|z) = p∗(z′)p(z|z′), (3.4.5)

for a given distribution p∗(z). From this equation we could obtain again the stationary
distribution of (3.4.4) marginalizing z′. Moreover, a Markov chain that follows the
detailed balance condition is said to be reversible.

The main concept behind the usage of Markov chains is that of constructing a
chain whose stationary distribution is precisely the distribution we are trying to
approximate. If done so, we would need to run the chain until it reached convergence,
and after that we would sample from the distribution itself, approximating it by a
Monte Carlo approach. Therefore, the very few components that shape the Markov
chain and the stochastic evolution of its states are the only things we may need
for these techniques. In the stationary distribution, the chain is expected to spend
more time in states with higher probability, therefore conducting the sampling
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proportionately to the probability of that distribution. In practice, several chains are
run at once for a long time. The first part of their chains is always discarded, since it
is assumed that it does not correspond to samples from the stationary distribution,
and afterwards samples are obtained from each chain to approximate the distribution,
where the more samples we have, the more precise our estimates will be. However,
ideally we would only use independent samples for the estimate. In order to consider
the values from a chain as independent samples, we have to be aware that strong
correlations may arise due to two states being close in the chain. Therefore, in order
to obtain more independent samples from the target distribution, we will need to
run the chain for a long time and afterwards keep only a given small portion of all
positions sampled, where the precise number will depend on each case. This is a
difficult problem to deal with, and in most cases it means that chains need to be run
for long before their samples can be useful at all.

Many successful approaches have been constructed based on the MCMC frame-
work. Among them, the most famous instances may be the Metropolis-Hastings and
the Gibbs sampling methods. In both approaches, a rule to the evolution of states in
the chain is set, which is usually referred to an acceptance rate. Depending on this
acceptance rate, the state evolves to a newly proposed value or it does not, and if
the evolution is rejected, the chain remains in the previous state for one more step
and a new candidate is proposed. These candidates for the evolution are obtained in
a random fashion following certain probability distribution that must be established
in beforehand. The Metropolis-Hastings algorithm builds a Markov chain whose
stationary distribution is the normalized version p(z) of another unnormalized one
p̃(z)

p(z) = 1
Z
p̃(z), (3.4.6)

with Z the normalization constant. Given the current state z(n) in the n-th step
of a Markov chain, a candidate state z∗ is generated from a proposal probability
distribution q(z|z′). The chain transitions to the proposed state with probability
given by

A(z∗|z(n)) = min
(

1, p(z∗)q(z(n)|z∗)
p(z(n))q(z∗|z(n))

)
. (3.4.7)

If the new state is accepted, then we set z(n+1) = z∗, and otherwise we set z(n+1) = z(n),
causing a repetition in the chain. From this expression, it can be seen that, if q is
symmetric, it can be ignored and the probability of acceptance of a new state will
only depend on the ratio of probabilities between the newly proposed one and the
current state of the chain. The Metropolis-Hastings algorithm must balance between
the number of states explored and sampling correctly regions with high probability
in the distribution, However, when done correctly, it can provide useful samples and
allow us to approximate the distribution we may need (Bishop 2006).

On the other hand, the Gibbs sampling method can be seen as a particular
case of the Metropolis-Hastings algorithm on which the acceptance probability of a
new candidate is always fixed to 1, and therefore it is encouraged that the chain of
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states explores the whole range of states possible. In Gibbs sampling, however, the
sampling is done in a cyclical manner across the different possible parameters in the
probability distribution we are looking to approximate. Sampling for each parameter
one at a time, leaving the rest fixed meanwhile, simplifies the sampling procedure,
and therefore allows to sample and approximate much more complex distributions
than originally possible with Metropolis-Hastings in its basic form (Bishop 2006;
MacKay 2003).

Although both the Metropolis-Hastings algorithm and Gibbs sampling are impor-
tant approaches, we will not describe them into further detail since we do not have
much use for them in later chapters. However, they are important techniques that
are still very much relevant to current research. We will, however, introduce another
sampling-based method that we will use later on: Hamilton Monte Carlo.

3.4.2 Hamilton Monte Carlo
The random walk model used in the previous MCMC models, although it works
in the asymptotic limit, can pose a drawback in terms of the convergence time of
the algorithm. This issue cannot be easily solved inside those approaches by simply
increasing the size of the steps taken, since this may incur in worse samples and
having to run the Markov chain for longer. Hamilton Monte Carlo can be seen as
a more sophisticated approach that makes use of classical physics concepts such as
Hamiltonian dynamics to make a more efficient sampler (Bishop 2006; MacKay 2003;
Neal 2011).

Hamiltonian dynamics are an extension to the classical Lagrangian mechanics,
on which a classical physical system is completely defined through few components
such as the position and momentum of particles and an energy function. The energy
function encodes information about the different forces being applied to the particles
in the system, and the location and momentum of the particles inside that system
evolve according to Hamilton’s equations. The position of a given particle can be
written as z, and its momentum p is given element-wise by

pi = m
dzi
dt

(3.4.8)

where m is the mass of said particle (for our purposes we can assume m = 1). Here,
for each time t, the state of the particle is completely determined by (z,p), given an
energy function that allow us to evolve the system through time.

The energies applying in a classical system such as this one could potentially
be just the kinetic and potential energy, and if this is the case, the sum of both of
them will provide the complete energy of a given particle for any given position and
momentum. Assume that p(z) is the probability distribution we are interested in
sampling from. This distribution can be interpreted as the probability distribution
around the location of the particle. In general, we can write this to be

p(z) = 1
Zp

exp(−E(z)), (3.4.9)
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where E(z) represents the potential energy of the system when it is on state z. This
holds without loss of generality, and it reflects that, as in physical systems, particles
subject to a potential energy tend to locate themselves in places where this energy is
minimized (which are positions with maximum probability here). Due to this fact,
whenever the system is not at its configuration of minimum energy, the resulting
effect is a force that appears in the opposite direction of the gradient of the potential
energy, tending to minimize it. This can be written as

dpi
dt

= −∂E(z)
∂z

, (3.4.10)

and it only depends on the location of the particle inside the system. On the opposite
side of this we have the kinetic energy term. This can be defined as

K(p) = 1
2 ||p||

2 = 1
2
∑
i

p2
i , (3.4.11)

which is exclusively dependent on the momentum of the particle.
The sum of both energies allow us to define the Hamiltonian of the system as its

total energy
H(z,p) = E(z) +K(p) (3.4.12)

where H is now the Hamiltonian of the system. The whole motivation for the
construction of the Hamiltonian is the fact that in this point we can make use of
Hamilton’s equations to study the evolution of the dynamic system in time

dzi
dt

= ∂H

∂pi
(3.4.13)

dpi
dt

= −∂H
∂zi

. (3.4.14)

Therefore, using this description we could obtain the position and momentum of a
given particle at any time t.

HMC makes use of all of the previous description, where in the case of the
sampling algorithm we will be interested in the position of the particle at each time
t, while not so much on its momentum. The joint probability for the system to be at
state z and with momentum p is

p(z,p) = 1
ZH

exp(−H(z,p))

= 1
ZH

exp(−E(z)−K(p)). (3.4.15)

Since this distribution factorizes z and p, to obtain samples from p(z) we can simply
sample from it and discard the momentum variables afterwards (which are easily
sampled from a Gaussian distribution). Moreover, due to the structure of the kinetic
energy function, the conditional probability for the momenta given z is simply

p(p|z) = exp
(
−1

2pTp
)
. (3.4.16)



3.4. Sampling Based Methods 71

The Hamiltonian framework has some important properties that are useful in
terms of sampling from a distribution. First, the value for the Hamiltonian remains
fixed throughout the evolution of the system, which is a direct consequence of the
Law of conservation of energy. Applying the chain rule to the derivatives, one could
easily see that

dH

dt
= 0. (3.4.17)

Another important feature is the fact that volumes that are evolved according to
Hamilton’s equations are preserved, also known as Liouville’s theorem

div V = div
(
dz
dt
,
dp
dt

)
= 0. (3.4.18)

These two conservation rules are important for our case since, from both of them,
it ensures us that evolving the probability distribution p(z,p) over time according
to these equations will also provide us with a well-defined probability distribution
(Bishop 2006). Moreover, integrating Hamilton equations we can make large changes
in z by selecting different times t, which is useful when trying to obtain samples
from p(z).

The HMC algorithm works by initially choosing a value for p, which is usually
implemented by sampling from the conditional Gaussian probability in (3.4.16).
Starting from an initial position for z, the system is evolved according to the
dynamics detailed by (3.4.13) and (3.4.14). This step can produce large changes
in (z,p), producing a new candidate configuration (z∗,p∗). Since the numerical
integration of Hamilton’s equations is not perfect, the acceptance probability will
not always be 1 (since ideally we would like the system to remain in the trajectories
defined by the Hamiltonian dynamics). To correct for this fact, an acceptance rule is
set similar to Eq.3.4.7

A((z∗,p∗), (z,p)) = min
(

1, p(z
∗,p∗)

p(z,p)

)
= min(1, exp(−∆H)), (3.4.19)

where ∆H quantifies the change in the estimation of H between configurations.
This case differs from those seen previously since it does not require a proposal
distribution, which is due to the fact of this system being reversible.

Among all of the sampling-based methods presented here, HMC is usually the
one used as a gold-standard for approximate inference. The approximate solution
that it converges to is actually the exact distribution, and it converges to it in much
fewer iterations than those other methods previously mentioned. HMC does suffer
from some of the same drawback, namely the need to run long chains to obtain
independent samples, the computational cost, etc. However, this is usually used as
a benchmark due to its performance, specially in datasets of manageable size and
given that the model choice for fitting the data is at least somewhat adequate.
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3.5 Alpha Divergence Minimization
As far as we have seen, the optimization-based approaches to approximate Bayesian
inference are mainly based on the idea of minimizing the KL divergence between
the exact posterior distribution of the parameters in our model p and a chosen
approximation q, who may be more tractable and convenient for our use. Finding
the best approximation usually implies maximizing the lower bound described in
(3.3.2), which has the effect of minimizing said divergence (as shown in Figure 3.1).
The object of the KL divergence has been widely studied in this context, since it
plays a key role inside approximate inference and its properties directly affect the
resulting distributions. The KL divergence can be extended to a more general class of
divergences called α-divergences, also called Renyi divergences. These have important
properties of which we will make extensive use, and therefore we will introduce them
here.

To discuss this in a fairly general language, we will denote as p and q two given
distributions defined over the vector θ. In general, the α-divergence between p and q
is a non-negative function that is only equal to zero if p = q (Amari 2012; Van Erven
and Harremos 2014). The corresponding expression for the α-divergence between
both distributions is

Dα[p|q] = 1
α(1− α)

(
1−

∫
p(θ)αq(θ)1−αdθ

)
. (3.5.1)

where α is a parameter defined such that α ∈ R \ {0, 1}. Depending on the value of
α, different divergences between the distributions can be recovered. This is the case
for some well-known measures, such as

D1[p|q] = lim
α→1

Dα[p|q] = KL(p|q) , (3.5.2)

D0[p|q] = lim
α→0

Dα[p|q] = KL(q|p) , (3.5.3)

D 1
2
[p|q] = 2

∫ (√
p(θ)−

√
q(θ)

)2
dθ = 4 Hel2[p|q] . (3.5.4)

The first two limiting cases, when α → 1 and when α → 0, represent the two
different KL divergences between p and q, being the first the KL divergence used
in EP (3.3.21), and the latter the one used in VI (3.3.3). Also, some other relevant
functions can be obtained in terms of α, as is the case for (3.5.4), which is known
as the Hellinger distance, which is the only instance in the family of α-divergences
where the function is symmetric w.r.t. both inputs (unlike the KL divergences).

The value of the α parameter in the α-divergence has a strong impact in the
inference results. To further understand its effect lets consider a toy problem in which
we try to approximate a slightly complex distribution p with a more simple one, q. If
we considered for example p as a bimodal distribution and q as a simple Gaussian
distribution we would obtain the results displayed in Figure 3.2 (reproduced from
Minka 2005). In this figure, the resulting (unnormalized) approximating distributions
exhibit different behaviors. First of all, in the limit of α→ −∞, q (here represented
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Figure 3.2: Changes on the approximate distribution q (in red) when trying to
approximate it to the original distribution p (in blue) using different values for α in
the α-divergence

in red) tends to cover only the mode with the larger mass of the two present in p.
By contrast, when α→∞, q tends to cover the whole p distribution, overlaying the
latter completely. This can be seen in terms of the form of the α-divergence. More
precisely, for α ≤ 0, the α-divergence emphasizes q to be small whenever p is small
(thus it could be considered as zero-forcing). On the other hand, when α ≥ 1, it can
be said that the divergence is inclusive, following the terminology of Frey et al. 2001.
In this case, the divergence enforces q > 0 wherever p > 0, hence avoiding not having
probability density in regions of the input space in which p takes large values.

In the remaining cases, α lays inside the interval (0, 1). The behavior of q is
intermediate between the two extreme possibilities that we have seen so far. In Figure
3.2 we can see that when α → 0 the q distribution is more centered in the main
mode of p, whereas in α→ 1 it begins to open to account for some of the mass of the
secondary peak of p. This type of changes happen also when the distributions being
considered are more complex than these ones, and therefore one should be careful
when choosing a value for α if an α-divergence is used as dissimilarity measure.
In particular, the optimal value of α may depend on the task at hand and the
particular model one is working with. As it has been pointed out before, when α
is restricted to be in the interval (0, 1) we can obtain two notable results at the
extremes, Dα = KL(q|p) for α → 0 and Dα = KL(q|p) for α → 1. This change of
behavior is strongly related to the output differences between VI and EP, which we
have mentioned before. Moreover, α-divergences have certain important properties,
some of which could be interesting in order to exploit them in the approximate
inference context (Van Erven and Harremos 2014).

3.5.1 Power Expectation Propagation

We will briefly introduce here the power expectation propagation algorithm (PEP)
(Minka 2004), the first approximate inference method based on optimizing α-
divergences constructed around the original EP algorithm. PEP is limited to use
parametric approximate distributions such as a Gaussian distribution, and does not
scale well to large datasets. However, it can be useful to better understand related
methods such as black-box-α (Hernández-Lobato et al. 2016), which we will see
later. In particular, we will restrict the description here to its objective function,
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since PEP allows for minimizing α-divergences in an approximate way. However,
it suffers from the constrains such as choosing the approximate distribution q(w)
from inside a family of distributions of exponential distributions, as we saw in other
optimization-based approximate inference approaches.

In general, the global minimization of the α-divergence is intractable except when
α → 0 (see Minka 2005 for further details). Here, as we did in EP, we will let
the unnormalized target distribution be described by the product of several factors,
i.e., p ∝ ∏

i fi. If we have i.i.d. data this is always the case, since the likelihood
factorizes. The approximation for p(w|D) will be q(w), which is again written as a
product of simple factors q ∝ ∏i f̃i. Each f̃i belongs to the exponential family (e.g.
a Gaussian factor) and approximates the corresponding exact factor fi, as in EP.
However, PEP minimizes the α-divergence locally, instead of globally, between the
tilted distributions of the model, and the approximate distribution q(w). Therefore,
PEP minimizes Dα[p\j|q] for all j. In general, it is expected that a local minimization
of the α-divergence gives similar results to a global minimization while being a much
simpler problem, as indicated by Minka 2005.

In the implementation of PEP, it is shown that the minimization of α-divergences
is equivalent to the minimization of the KL divergence if certain factors are raised
to the power of α (Minka 2005). In particular, we have to modify slightly the
definitions we made for EP, especially the cavity distribution in (3.3.28) and the
updated posterior distribution in (3.3.29). Now, they will be

q\j(z) ∝ q(z)
f̃j(z)α

, p̂(z) = 1
Zj
fj(z)αq\j(z). (3.5.5)

With these small changes, minimizing the KL divergence between the modified
updated posterior and the approximating distribution will be analogous to minimizing
the α-divergence. In order to conduct the local minimization of the α-divergence,
PEP finally maximizes the following objective function:

L(φ, {θi}Ni=1) = logZq − logZp(w) + 1
α

N∑
i=1

logEqφ(w)

[(
p(yi|w,xi)
f̃i(w)

)α]
, (3.5.6)

where Zq is the normalization constant of qφ, Zp(w) is the normalization constant
of the prior, φ are the parameters of q(w) and {θi}Ni=1 are the parameters of the
approximate factors f̃i. In this case, we have assumed that the prior distribution
need not be approximated and already belongs to the exponential family (i.e., it
is a Gaussian prior). When α → 0, (3.5.6) converges to the lower bound of VI
(Minka 2005). Therefore, a local minimization of the KL divergence employed in VI
is equivalent to a global minimization.

In practice, PEP solves the problem maxφ min{θi}Ni=1
L(φ, {θi}Ni=1), which is a

complicated task since it requires a slow double loop algorithm (Heskes and Zoeter
2002). Furthermore, PEP does not scale to big data since it maintains an approximate
factor associated to each likelihood factor, which results in a space complexity of
O(N). As we will see now, the Black-box-α approach provides a simple way of
addressing these problems.
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3.6 Approximate Inference with Implicit Processes

In the previous chapter we have seen that GPs are able to obtain good predictions
based on the idea of placing a prior distribution over the space of functions such that
functions sampled from it will behave in a Gaussian-like manner. This fact allowed
many of the calculations involved in the training of GPs to be solved analytically,
and in some cases it also enabled approximations that solved some of their scalability
issues, which introduced us to the concept of inducing points used in Sparse GPs.
These are important features from the GP model, but they come at the expense
of only being able to provide normally-distributed predictions. In many real-world
cases, this could be seen as a major drawback, since the data may behave in manners
that differ (sometimes strongly) from the Gaussian behavior that GPs are acquainted
with. Here we will introduce implicit processes (IPs), a new set of models that
generalize over the concepts that GPs use in order to be able to conduct approximate
inference inside the space of functions while avoiding restricting our predictions to
behave in a Normal-like fashion (Ma et al. 2019).

The use of implicit processes (IPs) in approximate inference is specially interesting
due to the fact that they allow to avoid many issues related to the optimization in the
weight-parameter space. As well as GPs, IPs are optimized using the function-space,
and although this may complicate a bit the mathematical formulation behind them,
it also carries important features and advances that may simplify and improve the
approximate inference methods we have introduced thus far. To be more specific,
as seen in (Sun et al. 2019), since the weight space is very large, achieving a
final good optimal value for the parameters will depend on the sheer number of
parameters and on the complexity of the model. When systems based on parameter-
space optimization, such as BNNs, increase in complexity, they are subject to the
appearance of undesirable behaviors in the final predictions. This behavior can
be explained by the model’s inability to properly balance between the increasing
relative weight of the prior in comparison to the data-provided information in the
objective function: using the language of VI, since the model’s size is increased, more
parameters are introduced (e.g. in a BNN, more layers are employed), which makes
the KL contribution to the ELBO (3.3.4) much bigger than the data-dependent
term. Although for simple setups, the model can comprehend the data and properly
fit it, raising its complexity makes it increasingly unable to do the same (unless
many extra data points are available, that is). This behavior has strong connections
to the fact that the parameter space has a great number of symmetric modes and
strong correlations between different parameters of the model, which translates in
bad final results in the optimization procedure since the global minima is not being
clearly defined. Among all of the different ways to deal with these issues, one of the
most relevant for current research in approximate Bayesian inference is using IPs to
perform inference in the function-space rather than in the weight-space, as recent
works such as Sun et al. 2019; Ma et al. 2019 have proposed.

An implicit process is defined as a collection of random variables f(·), such
that any finite collection (f(x1), . . . , f(xn)) has a joint distribution defined by the
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generative process:

z ∼ p(z), f(xn) = gθ(xn, z) ∀xn ∈ X. (3.6.1)

where θ represent the hyperparameters of the distribution over z, p(z), and g is a non-
linear function. We use the notation f(·) ∼ IP(gθ(·, ·), pz) = IPθ(·) to indicate that
f is sampled from the corresponding IP with parameters θ.This simple description
provides a wide framework from which we can define many other models: as an
example, a Bayesian neural network can actually be expressed in terms of an IP,
since it can be considered to define a prior distribution over functions

W ∼ N (W|0, I) , f(x) = gθ(W,x), (3.6.2)

where now the hyper-parameters θ are the means and variances of the weights
contained in W. Another example here are Neural Samplers (NS), where in this
case gθ(·, ·) is a NN with weights θ, i.e. NNθ(·, ·), and p(z) ∼ U([−a, a]d). In this
case the uniform noise is processed alongside the NN as well as the input data, and
the final output combines the result of both. The usage of NNs is important here
since using their strong non-linearities, the functions sampled from an IP can have as
much flexibility as we may need in any certain given issue, and thus we can consider
this type of networks as way of obtaining samples from the implicit distribution of
the implicit process. This therefore conforms an implicit model setup such as the
one we established in Section 3.3.3, where we will have a way to sample from a given
distribution for which we do not have a closed-form p.d.f.

Using implicit processes priors in any method would allow for an increment in the
flexibility of the model in comparison to most of the current state of the art. There
has been an increasing amount of work in this topic to try to provide a comprehensive
approach to approximate inference with IPs, and we will focus here on two of the
most popular methods thus far: Variational Implicit Processes (VIPs, introduced by
Ma et al. 2019, and Functional Bayesian Neural Networks (FBNNs), by Sun et al.
2019.

3.6.1 Variational Implicit Processes
Dealing with IPs in the formulation of a method leads to several theoretical difficulties.
As a first attempt at providing a more general approach for the usage of IPs,
Variational Implicit Processes were introduced in (Ma et al. 2019). The VIP approach
proposes the usage of an IP prior so that the flexibility of IPs can be of use for the
model. However, in order to keep all parts of the model trainable, they resort to
a series of approximations in the posterior that could in principle hinder the final
flexibility of the predictive distribution. VIPs approximate the marginal likelihood
of the IP by the marginal likelihood of a GP with an empirical covariance function,
whose mean and covariance function are estimated by generating samples from the
prior IP. The main part of the VIP approach consists in a slight modification to the
wake-sleep algorithm that works as follows:
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1. Generate S samples from the implicit process f θs (x) ∼ IP(gθ(x, z), pz), where
s ∈ {1, · · · , S} and z ∼ p(z).

2. Compute the moments of the samples using

m?
MLE(x) = 1

S

S∑
s=1

f θs (x), K?
MLE(x1,x2) = 1

S

S∑
s=1

∆θ
s(x1)∆θ

s(x2), (3.6.3)

where ∆s(x) = f θs (x)−m?
MLE(x).

3. Approximate p(y|X, θ) by the marginal likelihood of a GP with the previously
defined moments, denoted by qGP(y|X, θ).

4. Maximize qGP(y|X, θ) expecting that it will increase p(y|X, θ).

This approach, although simple, implies that the final approximate distribution is
here a standard Gaussian process (GP), which will approximate the intractable true
posterior given by the IP prior. Therefore, although VIP is able to employ IPs as
prior model, which may benefit the approach overall, it will also suffer from the same
type of issues that we saw before for the GPs, mainly the memory requirements
and the Gaussian-like predictions. The estimated values here will be those given
by (3.6.3). Then, the predictive distribution is approximated by the GP predictive
distribution as well

E[f(x∗)] = m?
MLE(x∗) + K∗,f (Kf ,f + Iσ2)−1(y−m?

MLE(X)), (3.6.4)
Var(f(x∗)) = K∗,∗ −K∗,f (Kf ,f + Iσ2)−1Kf ,∗ , (3.6.5)

which can be computed efficiently given that the covariance matrices have rank S. It
is important to remark here that the covariance matrices are empirically estimated,
as indicated before in (3.6.3).

To guarantee scalability and avoid the cubic cost of the GP they further approxi-
mate the GP using a linear model with the same mean and covariances. The linear
model is efficiently tuned by optimizing the α-energy function performing gradient
descent w.r.t. θ via the method described in (Hernández-Lobato et al. 2016). The
main issue with VIPs is therefore the need to resort to GPs as a final approximation
for the posterior distribution, and therefore restricting the intrinsic flexibility present
in the formulation of the IPs used as priors. Although they seem to give sensible
results, there is some room for improvement in the latter steps of the approach.

3.6.2 Functional Bayesian Neural Networks
Using IPs for all of the components of the Bayesian approach is a challenging task,
which explains the approximations made in (Ma et al. 2019) for VIP. The posterior
distribution that is produced by using a prior IP in the model is complex to deal
with, and therefore some sort of approximate solution needs to be set. In contrast to
what is proposed VIPs, functional BNNs (FBNNs) rely on using VI and another IP
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to approximate the posterior distribution of the IP specified in the prior (Sun et al.
2019). However, when evaluating the ELBO (3.3.4), the KL term now needs to be
estimated between two stochastic processes, which makes it intractable again. To
solve this issue, they resort to evaluating the KL over a finite set of points X. This
reduces the KL divergence to the following expression

KL(p|q) = sup
n∈N,X∈Xn

KL(p(fX|q(fX)), (3.6.6)

where the measurement set is defined as X ∈ X n, with X n a finite measurement
set of n data instances, and fX represents the functions sampled from the IP and
evaluated on each value of said set. The details of this identity are further explained
in (Sun et al. 2019). Once we have this approximation, we can rewrite the ELBO
expression so that it becomes

LX(q) = inf
n∈N,X∈Xn

N∑
i=1
Eq[log p(yi|f(xi))]−KL(q(fX)|p(fX)), (3.6.7)

where now the inf appears due to the sign of the KL in the objective function.
The crucial aspect in FBNN is how to choose the measurement set to estimate

the KL divergence, and also how to estimate the gradients of this term to be able to
train the model appropriately. Regarding the first point, it is important for X to be
sampled from the complete possible space of inputs, considering both the training and
testing points. This is a critical aspect of the method, since covering the test region is
relevant for the method to make correct predictions and interpolations. However, this
can be a difficult task, since in many cases we will not have this information available
in beforehand. Moreover, regarding the choice of the measurement set positions,
several different approaches are proposed here, showing that the only strict lower
bound on the log-marginal likelihood is using all training inputs as the measurement
set. This may lead to scalability issues if the dataset is large, so other methods
for choosing this set are proposed. The one with the best performance seems the
sampling-based approach, from which the measurement points are randomly sampled
from the training inputs and from the regions where one might be interested in
making predictions (incurring on the mentioned issue about the information of the
test regions).

Once there is a choice for measurement set, the KL term can be approximated
and therefore we can evaluate the objective function. In this point we still need to
estimate the gradients of the objective function to train the system, and in FBNN
this is done by the Stein Gradient Estimator and the Nymströn method. Here,
applying Monte Carlo and truncating several summation terms, an approximation
to the real gradient can be obtained (a more detailed discussion can be found in Sun
et al. 2019).

With FBNNs it can be shown that some of the pathologies of the weight-space
optimization are removed altogether thanks to the function-space-based optimization.
In this case, increasing the complexity of the model does not come at the expense of
progressively losing the quality of the predictions already achieved in simpler models.
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Hence, this approach allows a better balance more between the prior information
and the observed data distribution, compensating the behavior that appears in
approaches based in weight-space optimization. However, there are several important
drawbacks to this approach that can be of relevance: mainly, the need to resort
to a finite measurement set evaluation to approximate the KL term, and also the
inability for FBNN to train its prior model. The sampling-based system to estimate
the KL may be prompt to issues depending on the type of dataset we are dealing
with (curse of dimensionality), while also requiring information about the regions
on which the predictions will be set. On the other hand, due to the approximations
needed to estimate the gradients, FBNN is incapable of training the prior and the
rest of the model simultaneously. In practice, this can be solved by using a GP
as prior, training it on the data in beforehand, and only then training the rest of
the system, maintaining the IP approximation as a posterior (Sun et al. 2019). In
general, it can be shown that the posterior distribution will preserve the behavior of
the functions sampled from the prior. However, if an IP prior model is used and this
is not trained in beforehand, the prior will remain untrained, which may result in an
important hindrance for the performance of the model. This fact leads to (Sun et al.
2019) resorting to a sparse GP model as prior for most regression problems.

Even though the framework of IPs is promising, we have seen that both FBNNs
and VIPs present several important points that could be improved further. In the
following chapters we will present some proposals to solve some of these issues,
especially in Chapter 5.
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Chapter 4
Adversarial α-divergence Minimization

We have seen that estimating the uncertainty in the predictions of a ML
algorithm is a critical aspect with important applications. To this regard,
we have focused on providing Bayesian approaches to obtain posterior
distributions for the parameters in the models. These distributions
summarizes which parameter values are compatible with the observed
data, although are often intractable and need to be approximated in
practice. In this chapter we will introduce our first contribution to
approximated Bayesian inference in ML. To that end, we will start by
introducing black-box α-divergence minimization, which combines many
ideas we have introduced earlier and will allow us to construct a more
general approach based on minimizing α-divergences, and that allows
for flexible approximate distributions. We call this method adversarial
α-divergence minimization (AADM). We have evaluated AADM in the
context of Bayesian neural networks. Extensive experiments show that it
may lead to better results in terms of the test log-likelihood, and sometimes
in terms of the squared error, in regression problems. Moreover, we show
that the selection of the value of α can be exploited to achieve better
results for the desired performance metric.

4.1 Motivation
In Section 2.1 we have introduced how NNs have become such popular methods for
a wide variety of tasks. This is mostly related to their good empirical achievements
across multiple learning problems. Specifically, DNNs trained with back-propagation
have significantly improved the state-of-the-art in supervised learning tasks (LeCun et
al. 2015). Moreover, variations of the simple original NN models have been specifically
designed to take advantage of underlying structure on the input data. This is the case
for CNNs Krizhevsky et al. 2012 or LSTMs (Hochreiter and Schmidhuber 1997), both
of which represent some of the best performing models for dealing with structured
data such as images and texts, respectively (Krizhevsky et al. 2012; Jozefowicz
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et al. 2016; Sutskever et al. 2014). NNs can be trained on Graphical Processing
Units (GPUs), which significantly reduces the total training time and the effort
needed to produce highly accurate results. These models can therefore be trained
on huge amounts of data very quickly, showing excellent results in regression and
a competitive performance also in classification tasks. There we also mentioned
that, despite of these advantages, the good performance results come with concerns
about over-fitting due to the high number of parameters to be adjusted, or the
lack of a confidence measure on the predicted outputs associated to the input data
(Gal 2016). More precisely, regular NNs only produce point-estimate predictions
and do not provide any information about the certainty of such outcome. Even in
multi-class problems where the results are given in terms of a soft-max function
which outputs probabilities, it is important to keep in mind that the output values
do not correspond to the confidence of the prediction. In particular, a high class
label probability may correspond to a data instance that will be often misclassified
by the network.

The problems described can be addressed by following a Bayesian approach in
the training process as we described in Chapter 3, where we introduced different
possible techniques to conduct approximate Bayesian inference in complex models
such as NNs. One of the main features of Bayesian probabilistic models such as
Bayesian neural networks (BNNs) (Neal 2012) is that they are able to capture the
uncertainty in the model parameters (the network weights) and the effects it produces
in the final predictions, therefore providing an estimate of the models’ ignorance
on the target value associated to the input data in each specific case. This extra
output information can be used in different ways: for example, confronting problems
in artificial intelligence safety, performing active learning, or dealing with possible
adversaries which may manipulate the data (Gal 2016). Therefore, uncertainty
estimates associated to the model predictions can be very important to make optimal
decisions when dealing with input data that the machine learning algorithm has
never seen before.

As a summary from the basic ideas presented in Chapter 3, the Bayesian approach
relies on computing a posterior distribution for the model parameters given the data
(Bishop 2006; Gal 2016). This posterior distribution is obtained using Bayes’ rule
simply by multiplying a likelihood function (which captures how well specific values
of the parameters explain the observed data) and a prior distribution (which includes
prior knowledge about what potential values these parameters may take). This
posterior distribution summarizes which model parameters (i.e., the neural network
weights) are compatible with the observed data. Intuitively, if the model is rather
complex, the posterior will be very broad. By contrast, if the model is fairly simple,
the posterior will concentrate on a specific region of the parameters space. The
information contained in the posterior distribution can be readily translated into
a predictive distribution which carries information about the uncertainty on the
predictions made. For this, one simply has to average the predictions of the model for
each parameter configuration weighted by the corresponding posterior probability.

The need for approximate Bayesian inference arises from the fact that the posterior
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distribution is usually intractable for most problems. Therefore, one must resort to
approximate methods, using either an optimization-based approach (Section 3.3) or
a sampling-based model (Section 3.4). Here we will mostly focus on the first, on
which the parameters of an approximated distribution q are tuned by minimizing a
divergence between it and the exact posterior (Section 3.3). This is how methods
such as VI and EP work in practice, as well as some other more sophisticated
techniques such as black-box-α, which we will introduce here briefly (Hernández-
Lobato and Adams 2015; Hernández-Lobato et al. 2016; Graves 2011). Although
these methods are very fast and scalable, they often suffer from the lack of flexibility of
the approximate distribution q, which is typically set to be a parametric distribution
that cannot adequately match the exact posterior. Therefore, these methods may
suffer from strong approximation bias. Importantly, a poor approximation of the
exact posterior is expected to lead to a worse predictive distribution, less accurate
predictions, and a worse estimate of the uncertainty in the predictions made.

Recently, several methods have been proposed to increase the flexibility of the
approximate distribution q (Rezende and Mohamed 2015; Mescheder et al. 2017;
Liu and Wang 2016; Salimans et al. 2015; Tran et al. 2017). One of the main paths
to increase the flexibility of the approximation is the usage of implicit models (Li
and Liu 2016), such as AVB (Section 3.3.3). In implicit models, if the non-linear
transformations applied to the original input noise are flexible enough, almost any
distribution can be reproduced and sampled from. However, in these cases q has no
explicit p.d.f., which makes marginalizing the input noise intractable. This impedes
most of the calculations needed in the inference process, which makes training the
models a very challenging task. We showed in Section 3.3.3 that AVB was able
to bypass some of these problems and successfully train the system by employing
an auxiliary problem, a discriminator network that estimates the log-ratio between
the posterior approximation q and the prior distribution over the model parameters
(Mescheder et al. 2017). This provides one of the most relevant instances of successful
usage of implicit models for approximate inference, setting a trend that will continue
until today.

AVB and also other methods such as VI or EP (only locally and in the reversed
way) rely on minimizing the KL divergence between the approximate distribution q
and the exact posterior. The KL divergence can be understood as a regularization
term in the objetive function, and new research has shown that modifying this term
can provide better results (Wenzel et al. 2020). We have also seen that the KL
divergence can be generalized in terms of α-divergences, recovering the VI objective
when α → 0, and if α = 1, the α-divergence is equivalent to the KL divergence
which is locally optimized by EP (Minka 2005). Recently, it has been empirically
shown that one can obtain better results, in terms of the approximate predictive
distribution, by minimizing α-divergences locally using intermediate values of the α
parameter in the case of parametric q (Hernández-Lobato et al. 2016). However, it is
not clear if one can also obtain better results in the case of using implicit models for
q, such as the one considered by AVB.

Here we will try to provide a new extension to previous work, introducing a
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method to locally minimize α-divergences employing an implicit model for the
approximating distribution. We refer to such a method as Adversarial α-divergence
minimization (AADM), which can be seen as a generalization of AVB that allows
to optimize a more general class of divergences, resulting in flexible approximate
distributions q with different properties (Rodríguez Santana and Hernández-Lobato
2020). In particular, when α→ 0, AADM targets the same objective as AVB, and
if α = 1, its objective is similar to EP with a flexible approximate distribution q.
Intermediate values of α result in different properties of the approximate distribution.
We have evaluated AADM in the context of Bayesian Neural Networks and tested
different values of the α parameter. The experiments carried out involve several
benchmark regression and classification problems. These show that in regression
problems one can obtain, in general, better prediction results than those of AVB
and standard VI by using intermediate values of α. In particular, the mean squared
error, test log-likelihood, and other performance metrics of the predictive distribution
such as the continuous ranked probability score (CRPS) (Gneiting and Raftery 2007)
improve when intermediate values of α are used. We have also evaluated AADM in
the context of binary and multi-class classification problems. In these cases, however,
we have observed that AADM gives similar results to those of AVB, both in terms
of the prediction error and test log-likelihood, as well as with other performance
metrics based on the Brier score (Gneiting and Raftery 2007).

4.2 Black-box α-divergence Minimization
Black-box-α (BB-α) (Hernández-Lobato et al. 2016) is an improvement over the
power expectation propagation method for approximate inference introduced in
Section 3.5.1. This approach is able to address some of the previous limitations like
PEP’s O(N) memory space requirements while allowing for approximate inference
on complicated probabilistic models (Hernández-Lobato et al. 2016). In order to do
so, BB-α maximizes a modified version of the objective of PEP. Namely,

L(φ) = logZq − logZp(w) + 1
α

N∑
i=1

logEqφ(w)

[(
p(yi|w,xi)
f̃(w)

)α]
, (4.2.1)

where Zq is the normalization constant of qφ, Zp(w) is the normalization constant of
the prior, φ are the parameters of q(w), p(yi|w,xi) is a likelihood factor and f̃(w)
is a global approximate likelihood factor that is replicated N times, one per each
likelihood factor (i.e., we will only have one factor N -times, instead of the N that
PEP requires). This results in qφ(w) ∝ f̃(w)Np(w), which solves PEP’s problem of
having to store in memory the parameters of N approximate factors (as before, one
per each likelihood factor). Furthermore, there is a one to one map between f̃(w)
and qφ(w). This means that the max-min optimization problem of the PEP objective
is transformed into just a standard maximization problem (w.r.t to the parameters of
q(w), φ), which can be solved using standard optimization techniques. Importantly,
the expectations in (4.2.1) can be approximated via Monte Carlo sampling and
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the sum across the training data can be approximated using a mini-batch. The
consequence is that BB-α scales to big datasets, as (4.2.1) can be optimized using
stochastic techniques, and moreover, it can be applied to complicated probabilistic
models (e.g., Bayesian neural networks) in which the required expectations are
usually intractable.

As in PEP, BB-α minimizes locally the α-divergence. In particular, it minimizes
the sum of α-divergences between the approximate distribution qφ and the tilted
distributions, which can be written here as

p̂i(w) ∝ f̃(w)N−1p(yi|w,xi)p(w) for i ∈ {1, . . . , N}. (4.2.2)

The local minimization of α-divergences is expected to give similar results to the
global case, while being much simpler to optimize (Minka 2005). As we mentioned
earlier, when α → 0 (4.2.1) converges to the lower bound of VI (Section 3.5). On
the other hand, when α = 1, (4.2.1) becomes approximately equal to the objective
optimized by EP (Hernández-Lobato et al. 2016). A limitation of BB-α is, however,
that the approximate distribution q(w) is restricted to be inside the exponential
family since it must be written as the product of an approximate factor times the
prior distribution and this restriction makes this a simpler task. Therefore, our
approximation should be able to be decomposed as

qφ(w) ∝ f̃(w)Np(w). (4.2.3)

This is a major limitation, since this restricts the BB-α algorithm to be used on
parametric distributions with the ability to be expressed in a factorizes manner. That
fact makes difficult using implicit models for q(w) here, which we have mentioned
can be important alternatives when trying to find a more flexible approximation
model. Therefore, in order to be able to implement this new set of models, we will
need to reformulate the BB-α objective accordingly.

4.2.1 Reparametrization of the BB-α Objective
In this section we introduce the reparametrization for the general expression of the
BB-α objective that is suggested by Li and Gal 2017 for approximate distributions
with a closed form expression for the p.d.f. We combine this reparametrization
with the trick of AVB to estimate the log-ratio between probability distributions.
This will allow to provide the first original contribution of this thesis, that is to
approximately minimize α-divergences with flexible distributions q(w) such as the
ones resulting from implicit models. All of these ingredients together will provide
a complete definition of our newly-proposed method, AADM, which extends the
existing literature on these topics. With this goal, we first consider the following
alternative expression for the BB-α objective that is described by Li and Gal 2017:

Lα(φ) = 1
α

N∑
i=1

logEqφ(w)

[(
p(yi|xi,w)p(w)1/N

qφ(w)1/N

)α]
. (4.2.4)
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In this expression we observe that the hypothesis that qφ(w) ∝ f̃N(w)p(w) is not
required anymore, since both Zq and f̃(w) are removed from the expression, and
q(w) can be an arbitrary distribution. It is possible to show that (4.2.4) and (4.2.1)
are equivalent expressions if q(w) belongs to the exponential family (Li and Gal
2017). However, this expression requires the evaluation of the density qφ(w), which in
practice may be hard to compute when using an implicit model for that distribution.
This is the first difficulty we will need to address here in order to improve on the
current methods available.

To overcome these previous limitations about the imposed shape of the ap-
proximate distribution we will follow similar steps to the ones of Li and Gal 2017,
reparametrizing (4.2.4) using the cavity distribution, that is, the distribution given
by the ratio qφ/f̃α. If q̃φ(w) denotes a free-form cavity distribution, the posterior
approximation qφ is given by:

qφ(w) = 1
Zq
q̃φ(w)

(
q̃φ(w)
p(w)

) α
N−α

(4.2.5)

where we assume Zq < +∞ is the normalizing constant to make q(w) a valid
distribution. When α/N → 0 we have that q → q̃ (and Zq → 1 by assumption),
and this is the case either if we choose α → 0, or when N is sufficiently large (i.e.
N → +∞), see (Li and Gal 2017). We rewrite now (4.2.4) in terms of q̃ rather than
q(w), as in (Li and Gal 2017):

Lα(φ) = 1
α

N∑
i=1

log
∫  1

Zq
q̃φ(w)

(
q̃φ(w)
p(w)

) α
N−α

1− α
N

p(w) αN p(yi|w,xi)αdw (4.2.6)

= −N
α

(
1− α

N

)
log

∫
q̃φ(w)

(
q̃φ(w)
p(w)

) α
N−α

dw

+ 1
α

N∑
i=1

logEq̃φ(w) [p(yi|xi,w)α] (4.2.7)

= 1
α

N∑
i=1

logEq̃φ(w) [p(yi|xi,w)α]− Rβ[q̃|p] , (4.2.8)

where β = N/(N − α) and Rβ[q̃|p] represents the Rényi divergence of order β Rényi
1961, which is defined as

Rβ[q|p] = 1
β − 1 log

∫
q̃(w)βp(w)1−βdw. (4.2.9)

Importantly, when α/N → 0 we recover q → q̃ and Lα(φ) converges to the
objective of VI, which can be used here as a baseline. Also, we have that Rβ[q̃|p]→
KL(q̃|p) = KL(q|p) if Rβ[q̃|p] < +∞ (which is true assuming Zq < +∞ and α/N →
0). Therefore, following Li and Gal 2017, when this quotient tends to zero, we can
make further approximations for the BB-α energy function, as described in (4.2.4),
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finally obtaining

Lα(φ) ≈ 1
α

N∑
i=1

logEqφ(w)[p(yi|xi,w)α]−KL(qφ(w)|p(w)) . (4.2.10)

This will be the objective function that we will maximize in our approach. Note
that the expectations in (4.2.10) can be estimated via Monte Carlo sampling. In
particular, we have that

logEqφ(w)[p(yi|xi,w)α] ≈ log[K−1
K∑
k=1

p(yi|xi,wk)α] (4.2.11)

forK samples of w drawn from qφ. Of course, this estimate is biased, as a consequence
of the non-linearity of the log(·) function. However, the bias can be controlled with
K. Furthermore, we expect a similar behavior as in standard BB-α, in which the bias
has been shown to be very small even for K = 10 samples. See (Hernández-Lobato
et al. 2016) for further details.

The objective in (4.2.10) has been obtained under some conditions that need not
be true in practice, e.g. the quotient α/N → 0 (i.e., either α is small, N is sufficiently
large or a combination of both). Nevertheless, it is much simpler to estimate and
maximize than the objective in (4.2.4). It is also similar to the objective functions
found in the deep learning bibliography (i.e., a loss function plus some regularizer,
such as the KL divergence), but it still maintains the qualities of an approximate
Bayesian inference algorithm. Importantly, (4.2.10) allows for implicit models for
qφ. The only term that is difficult to approximate is KL(qφ(w)|p(w)). However, the
approach described in Section 3.3.3 for AVB can be used here for that purpose. We
can simply use an independent classifier to estimate the log-ratio between p(w) and
qφ(w), as in AVB. This enables using implicit distributions when maximizing the
objective in (4.2.10).

By changing the α parameter of the method we will be able to interpolate between
the objective function of AVB (α → 0) and one of an EP-like algorithm (α = 1).
Note that when α→ 0, (4.2.10) is expected to focus on reducing the training error
since the factor α−1 logEqφ(w)[p(yi|xi,w)α] will converge to Eqφ(w)[log p(yi|xi,w)],
with p(yi|xi,w) typically a Gaussian distribution with mean given by the output of
the neural network and noise variance σ2. By contrast, when α = 1, (4.2.10) will be
expected to focus more on the training log-likelihood. Intermediate values of α will
trade-off between these two tasks, which may lead to better generalization properties
of the predictive distribution.

The specific details of the structure of the proposed approach, AADM, are
analogous to the ones described for AVB (Mescheder et al. 2017). The structure
of AADM can be divided into three main components: An implicit model for qφ,
which takes as input Gaussian noise and outputs neural network weight samples w
from the approximated weights posterior distribution (i.e., the generator network); a
discriminator, which estimates the KL term present in (4.2.10) as done in (Mescheder
et al. 2017) and Section 3.3.3; and finally the main network, that uses the samples
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of the weights generated previously to evaluate the factor p(yi|xi,w). The whole
system is optimized altogether. Furthermore, any potential hyper-parameter (e.g.,
the prior variance σ2

0 or the output noise variance σ2) is tuned simply by maximizing
the objective in (4.2.10).

Figure 4.1: Graphical models for AADM. Left - Assumed probabilistic graphical
model for the observed data. Point-like vertices denote deterministic variables
and circular ones indicate random variables, which can either be observed (red) or
unobserved (white). Right - Probabilistic graphical model of the implicit distribution
q used to approximate the posterior. A source of S samples of Gaussian noise (we
assume independence) with mean µnoise and variances Σnoise is let through through
a deep neural network with parameters φ to generate S samples of the weights of
the main neural network. Best seen in color.

Figure 4.1 (left) shows the main probabilistic graphical model corresponding
to the observed data. Point-like vertices indicate deterministic variables. Circular
vertices denote random variables, which can be observed (red) or unobserved (white).
Figure 4.1 (right) shows the probabilistic graphical model of the implicit approximate
posterior distribution. In this case, we generate S samples of Gaussian noise in
the form of ε ∼ N (µnoise,Σnoise), with Σnoise a diagonal matrix. These samples
are passed through a deep neural network with weights φ to obtain S samples for
the weights of the main neural network. These weights are then used in the main
network, shown in Figure 4.1 (left), to estimate the predictive distribution during
training and testing.

As a last remark concerning the implementation of the proposed method, we have
also included as trainable parameters both the mean and variances of the Gaussian
noise which is used as input in the generator network (the implicit model for the
weights, qφ(w), in (3.3.32)). This allows for a more expressive implicit model for
qφ(w), since it increases its flexibility by enabling the tuning of the broad parameters
that control its input. Using this in combination with the approximate minimization
of α-divergences, the proposed method AADM is expected to reproduce to a higher
degree of accuracy the original posterior distribution of the model parameters (neural
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network weights). Our hypothesis here is that this will lead to more accurate
predictive distributions.

Finally, the proposed method AADM may suffer from convergence to bad local
optima. This may happen as a consequence of the strong regularization effect of
the term KL(qφ(w)|p(w)) at the beginning of the training process. To alleviate this
problem and obtain better results, we have considered also the approach suggested
by Sønderby et al. 2016 that consists in adding an extra annealing parameter
β that penalizes the KL term. This parameter takes value 0 at the beginning
and progressively, after each epoch, it increases until it takes value 1. See the
supplementary material for further details.

4.3 Adaptive Contrast
Both the performance of AADM and AVB rely on a good approximation Tω(w) to the
optimal discriminator, which would be the one to provide us with the correct value for
the log ratio between our approximating distribution and the prior. Although in the
non-parametric limit this is achieved, in practice Tω(w) can fail to be sufficiently close
to the optimal discriminator. This a consequence of calculating the discriminator
between qφ, the posterior approximation and the prior, which are often very different
distributions. This results in practice in a more relaxed performance of the estimated
discriminator, which has no problem telling apart samples from one density or
the other, but that fails to correctly estimate the log-ratio between probability
distributions.

Adaptive Contrast is introduced in (Mescheder et al. 2017) as a solution to this
issue. It consists in using a new auxiliary conditional probability distribution rα(w)
with known density that approximates qφ. This auxiliary distribution is set to be a
factorizing Gaussian whose mean and variances match those of qφ. Using this extra
distribution, the objective defined for VI through the ELBO is rewritten as

L(φ) = −KL(qφ(w)|rα(w)) + Eqφ(w) [log p(y|w,X) + log p(w)− log rα(w)] ,
(4.3.1)

using X as the matrix containing all input vectors xi. If rα(w) approximates well
qφ(w), the KL divergence between these distributions will often be much smaller
than KL(qφ(w)|p(w)), which facilitates learning the correct probability ratio.

This technique is called adaptive contrast, because the divergence is not being
calculated between qφ and the prior, but between qφ and the adaptive distribution rα.
Therefore, the discriminator now estimates KL(qφ(w)|rα(w)) and hence the log-ratio
between qφ and rα. More precisely, introducing this new auxiliary distribution, the
lower bound becomes

L(φ) = Eqφ(w) [−Tω(w)− log rα(w) + log p(y|w,X) + log p(w)] , (4.3.2)

where now Tω(w) approximates the optimal discriminator between samples from
rα(w) and qφ(w). Moreover, the KL divergence in (4.3.1) is invariant under any
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change of variables. Therefore, it can be rewritten as:

KL(qφ(w)|rα(w)) = KL(q̃φ(w̃)|r0(w̃)) (4.3.3)

where q̃φ(w̃) is the distribution of the standardized vector w̃, whose j-th component
is given by w̃j := wj−µj√

Σj,j
(with µj and Σj,j the mean and variance of wj , respectively),

and r0(w̃) is a standard Gaussian distribution. Therefore, the discriminator Tω(w)
just needs to look for differences between samples from the normalized posterior
approximation and from a standard Gaussian distribution. The mean and variances
of w under qφ can simply be estimated using samples from this distribution.

4.4 Related Work
As has been mentioned earlier, obtaining uncertainty estimates associated to the
predictions of machine learning algorithms is a widely spread problem. The in-
tractabilities that arise in the inference problem and the different possible approaches
for approximating the posterior have lead to several different research paths, covering
many types of approximation procedures. In the sampling based approaches, the
approximation is set by drawing samples from a Markov chain whose stationary
distribution coincides with the target distribution. On the other hand, optimization-
based methods introduce an approximate distribution q(w) whose parameters are
adjusted to match the exact posterior through the optimization of a certain objective.

Each of these approaches has, in a broad sense, a set of general advantages and
disadvantages: sampling methods can be unbiased only asymptotically, but can
be highly computationally expensive (Duane et al. 1987; Neal 2011; Neal 2012).
Similarly, optimization-based techniques are usually limited by the definition of the
approximating distribution, which is often parametric, and therefore they may lack
expressiveness (Minka 2001b; Jordan et al. 1999; Graves 2011; Beal 2003; Soudry
et al. 2014). The method proposed here alleviates some of the problems of these
two techniques. Specifically, it allows for flexible approximate distributions and it
also scales to large datasets, whereas in some of these cases, large datasets can be a
burden to deal with (Hoffman 2017).

Most modern techniques for approximate inference take advantage of the speed
of optimization-based methods and try to preserve the flexibility of sampling-based
methods with the goal of obtaining the best results possible in terms of computational
cost and accuracy of the approximation. There are, however, many different ways
of combining both approaches, which is showcased by the wide variety of methods
proposed. Most of them, however, rely on optimizing the KL divergence between
q(w) and the target distribution. Our approach is more general and can minimize, in
an approximate way, the α-divergence, which as we pointed out before, includes the
KL divergence as a particular case, as well as other divergences (e.g. the Hellinger
distance). Recent published works suggest that modifying the KL divergence, which
acts as a regularization term in the objective function, may lead to an improvement
in performance, as pointed out in (Wenzel et al. 2020).
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In (Titsias and Ruiz 2019) it is described how to estimate the gradient of the VI
objective when using an implicit model for the approximate distribution q(w). This
gradient can then be used to maximize the objective. The method proposed there
combines Markov chain Monte Carlo methods and VI. While this seems promising,
its implementation is complicated since it relies on running an inner Markov chain
inside the optimization process of the approximate distribution q(w). Moreover, the
parameters of the Markov chain also may need to be adjusted, depending on the
probabilistic model used in practice.

Another approach for flexible approximate distributions q(w) within the context
of VI is normalizing flows (NF) (Rezende and Mohamed 2015). In NF one starts
with a simple parametric approximate distribution q(w) whose samples are modified
using parametric non-linear invertible transformations that are carefully chosen. This
results in a p.d.f. of the resulting distribution that can be evaluated in closed form,
avoiding the problems arising from the use of implicit models for q(w). Nevertheless,
the family of transformations that can be used is limited to invertible transformations,
which may constrain the flexibility of the approximate distribution q(w).

Stein Variational Gradient Descent, proposed in (Liu and Wang 2016), is a
general VI method that consists in transforming a set of particles to match the exact
posterior distribution. The results obtained are shown to be competitive with other
state-of-the-art methods, but the main drawback here is that there is a computational
bottleneck on the number of particles that need to be stored to accurately represent
the posterior distribution. More precisely, this method lacks a way to generate
samples from the approximate distribution q(w). The number of samples is fixed
initially, and these are optimized by the method.

The work by Salimans et al. 2015 combines VI and MCMC methods to obtain
flexible approximate posterior distributions. The key concept is to use a Markov
chain as the approximate distribution q(w) in VI. The parameters of this chain can
then be adjusted to match the target distribution in terms of the KL divergence as
close as possible. This is an interesting idea, but it is also limited by the difficulty of
evaluating the p.d.f. of the approximate distribution. This is solved in (Salimans
et al. 2015) by learning a backward model, that infers the p.d.f. of the initial state
of the Markov chain given the generated samples. Learning this backward model
accurately is a complex task and several simplifications are introduced that may
affect the results.

Another approach used for approximate inference in the context of Bayesian neural
networks is Probabilistic Back-propagation (Hernández-Lobato and Adams 2015).
This method computes a forward propagation of probabilities through the neural
network to then do back-propagation of the gradients. Although it has been proven
to be a fast approach with high performance, it is limited by the expressiveness of
the posterior approximation. In particular, the approximate distribution is restricted
to be Gaussian. This means that this method will suffer from strong approximation
bias, which is something we are actively trying to avoid here. The same applies to a
standard application of VI in the context of Bayesian neural networks (Graves 2011;
Blundell et al. 2015a).
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The minimization of α-divergences in the context of Bayesian neural networks
has also been addressed by Hernández-Lobato and Adams 2015. In that work it
is described Black-box-α, a method for approximate inference that allows for very
complex probabilistic models and that is efficient and allows for big datasets. The
main limitation is, however, that the approximate distribution q(w) must belong to
the exponential family. That is, the approximate distribution has to be Gaussian, and
hence this method will also suffer from approximation bias. Therefore, Black-box-α
is expected to be sub-optimal when compared to the method proposed in this paper,
which allows for implicit models in the approximate distribution q(w).

The minimization of α-divergences has also been explored in the context of
dropout in (Li and Gal 2017). That work considers the same objective as the one
optimized by our approach in Section 4.2.1. The difference is that the approximate
distribution considered by the authors of that work is limited to the approximate
posterior distribution of dropout. This distribution is given by the mixture of two
points of probability mass, i.e., two delta functions, one of which is located at the
origin (Gal and Ghahramani 2016). The flexibility of this approximate distribution
is therefore very limited. By contrast, the method we propose allows for implicit
approximate distributions q(w) and is expected to give superior results.

Finally, a closely related method to ours is the one described in (Mescheder et al.
2017). This method, Adversarial Variational Bayes (AVB), which we already intro-
duced in Section 3.3.3. One of the key ideas present in AVB is using a discriminator
whose output can be used to estimate the KL divergence between the approximate
distribution q(w) and the prior. We have shown that, if the discriminator problem
is constructed properly, the optimal output for the discriminator is equal to that
log-ratio (see Section 3.3.3). This technique has also been considered in other works
(Tran et al. 2017; Huszár 2017; Li and Liu 2016). A limitation of AVB is that the
method is restricted to minimize the KL divergence between the approximate and
the target distribution. Our approach, by contrast, can optimize the more general
α-divergence, which includes the KL divergence as a particular case. Therefore, by
changing the α parameter our method can potentially obtain better results than
AVB. This hypothesis is confirmed by the experiments in the next section.

4.5 Experiments
To analyze and evaluate the performance of the proposed approach, i.e., Adversarial
α-divergence Minimization (AADM), we have carried out extensive experiments, both
in synthetic data and on common UCI datasets (Dua and Graff 2017). Furthermore,
we have compared results with previously existing methods such as VI, using a
factorizing Gaussian as the approximate distribution, and AVB. AADM should give
the similar results as AVB for α→ 0. In these experiments we have also analyzed
performance versus computational cost of each method on larger datasets with up to
2 million data points.

The method AADM employed in our experiments consists in the previously
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described three-network system. In particular, the structure we have considered for
AADM (and also AVB), if not stated otherwise, is the following one: The generator
network takes as an input a 100-dimensional Gaussian noise sample, with adjustable
mean and diagonal covariance parameters, and passes it through 2 layers of 50 non-
linear units each, outputting a sample of the weights w. We generate 10 samples for
the weights when training, and 50 samples to approximate the predictive distribution
when testing. Similarly, the discriminator takes these samples of the weights as well
as samples from the auxiliary distribution from adaptive contrast, which we also
use here (see Section 4.3). and passes them through 2 layers of 50 non-linear units
each to compute Tω(w). Finally, the main network (i.e., the model whose weights
we are inferring) also consists of a 2 layer system with 50 units per layer as well.
This network uses the sampled weights and the original data as input to estimate
the AADM objective Lα(φ). Note that although the network size employed in our
experiments is small, it is similar to the network size considered in recent related
works (Hernández-Lobato and Adams 2015; Li and Gal 2017).

The number of training epochs and the presence (or absence) of a warm-up period
depends on the dataset being used, and therefore is specified in each experiment.
All non-linear units are leaky ReLU units. The code implementing the proposed
approach is publicly available online 1. All methods have been trained using stochastic
optimization via ADAM (Kingma and Ba 2015). The learning rate for updating
the parameters of the discriminator is set to the default value in ADAM, i.e., 10−3.
The learning rate for updating the implicit model for qφ (i.e., the generator) and
the model hyper-parameters (which includes the variance of the output noise and
the prior) is set to 10−4. Apart from this, we use the default parameter values in
ADAM. The mini-batch size used is described in each experiment.

In our experiments we have evaluated 3 different performance metrics. The test
log-likelihood is evaluated, as well as a metric concerning the error of the predictions
(i.e. RMSE, in regression problems, and classification error, in binary and multi-class
classification problems). We have also used a third metric in each case as well, with
the goal of measuring the quality of the predictive distribution, as an alternative to
the test log-likelihood. More precisely, we have used strictly proper scoring rules
defined in (Gneiting and Raftery 2007). For the regression experiments we have
employed the Continuous Ranked Probability Score (CRPS), which has a close-form
expression described in (Grimit et al. 2006). On the other hand, in classification
problems we have used the Brier score, both for binary and multi-class problems.
The CRPS is the squared distance between the c.d.f. of the empirical distribution
of the target variable and the c.d.f. of the predictive distribution. The Brier score
is simply the squared distance between the vector of predictive probabilities for
each class and a vector with a one-hot encoding of the observed class. For further
information about these metrics, please see (Gneiting and Raftery 2007). In general,
the smaller their value, the better, and a metric value equal to zero means a perfect
predictive distribution.

1https://github.com/simonrsantana/AADM

https://github.com/simonrsantana/AADM
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4.5.1 Synthetic Experiments
To illustrate the features of the predictive distribution that the proposed approach
AADM can capture, we evaluate this method on two simple regression problems
extracted from (Depeweg et al. 2017). More precisely, we generate two different toy
datasets. The first one involving a heteroscedastic predictive distribution, and the
second one involving a bimodal predictive distribution.

The structure of the system employed is the one described previously. We train
this system for 3000 epochs, using the first 500 epochs as the warm-up period. We
repeat the experiments for different values of alpha in the (0, 1]. The first dataset is
generated taking x uniformly distributed in the interval [−4, 4] and y is obtained
as y = 7 sin x+ 3| cos(x/2)|ε, where ε is normally-distributed and independent of x,
i.e., ε ∼ N (0, 1). Note that this dataset involves input dependent noise.The second
dataset uses x uniformly distributed in the interval[−2, 2] and y = 10 sin x+ ε with
probability 0.5 and y = 10 cosx + ε otherwise. The distribution of ε is the same
as in the first dataset. Note that this other dataset involves a bimodal predictive
distribution.We use 1000 data instances for training and the mini-batch size is set to
10.

Figure 4.2: Results for the toy problems. The blue points on the left represent the
original training data and the ground truth (red lines). In the middle, normalized
predictions generated with α ≈ 0 (i.e. regular AVB), and in the right side are the
normalized predictions with α = 1.0.

The results obtained in the synthetic problems described are represented in Figure
4.2. The figures on at the top correspond to the problem involving the heteroscedastic
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Table 4.1: Test log-likelihood, RMSE and CRPS for AADM with α = 10−4 and
α = 1.0 in both toy experiments.

Bimodal Heteroscedastic
α L-L RMSE CRPS L-L RMSE CRPS

10−4 -3.05 5.10 3.28 -2.10 1.91 1.07
1.0 -2.23 5.09 2.65 -1.91 1.94 0.97

noise and the bottom ones to the problem with a bimodal predictive distribution.
On the left of the figure we show the original data we used to train AADM. In these
plots, the red lines represent the ground truth for each dataset and the blue points
are the actual samples we used as training data. The middle and right columns show
normalized samples from the predictive distribution of a neural network trained using
AADM, for α = 10−4 and α = 1, respectively. The results obtained for α = 10−4

are expected to be equal to those of AVB. A low value for α is unable to capture
the complex structure of predictive distribution for the target variable, ignoring
features such as the heteroscedastic noise in the first task, and the bimodality of
the predictive distribution in the second task. However, both of these features are
captured with accuracy when α is higher, as illustrated by the results obtained when
α = 1.

As expected, choosing one value of α or another in AADM significantly changes
the results obtained. In particular, when α = 10−4 the predictive distribution focuses
more on minimizing the squared error and less on the log-likelihood of the data.
By contrast, when α = 1.0, the predictive distribution plays a closer attention to
the log-likelihood of the data, and can hence obtain a more accurate predictive
distribution. As shown in Table 4.1, although the squared error obtained when
α = 10−4 and α = 1.0 is very similar, the test log-likelihood obtained when α = 1.0 is
much better, which indicates that this value of α produces more accurate predictive
distributions. Moreover, the CRPS values also improve when α is 1.0 rather than
10−4. Note that the squared error only measures the expected squared deviation
from target value. On the other hand, the test log-likelihood and the CRPS, measure
the overall quality of the predictive distribution, taking into account, for example,
features such as multiple-modes, heavy-tails or skeweness.

Finally, other values of α give similar results (not shown here). In particular, for
α < 0.5 similar results to those of α = 10−4 are obtained. By contrast, when α > 0.5
similar results to those of α = 1.0 are obtained (only if the training procedure is
carried out carefully to avoid bad local optima).

4.5.2 Experiments on UCI Datasets
To analyze in more detail the results of the proposed method, AADM, we have
considered eight UCI datasets (Dua and Graff 2017) that are widely spread for
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Table 4.2: Characteristics of the UCI datasets used in the experiments.

Dataset Instances Attributes Epochs
Boston 506 13 2000
Concrete 1,030 8 2000
Energy Efficiency 768 8 2000
Kin8nm 8,192 8 400
Naval 11,934 16 400
Combined Cycle Power Plant 9,568 4 250
Wine 1,599 11 2000
Yatch 308 6 2000

regression (Hernández-Lobato and Adams 2015). The characteristics of these datasets
are displayed in Table 4.2. Each dataset has a different size, and in order to train the
different methods until convergence we have employed a different number of epochs
in each case. The number of epochs selected is presented finally in Table 4.2. Note
that, even though there are differences in the epochs employed for training, all of the
datasets share the same model structure, which is the general one described at the
beginning of this section. In all these experiments we employ the first 10% of the
total training epochs for warming-up before the KL term is completely turned on as
in (Sønderby et al. 2016). Moreover, the batch size is set to be 10 data points, and
sampling-wise, we perform 10 samples in the training procedure and 100 for testing.
We split the datasets in a 90%-10% for training/testing. The results reported are
averages over 20 different random splits of the datasets into training and testing.

We compare the results of AADM with VI using a factorizing Gaussian as the
posterior approximation and with regular AVB (which should be the same as our
algorithm when α→ 0). For all methods we employ the same two-layered system
with 50 units per layer. To make fair comparisons we also perform the same warm-up
period for both AVB and VI as we use in our method. Therefore only after the
first 10% of the total number of epochs, the KL term is completely activated in the
objective function.

The average performance of each method on each dataset, in terms of the test
log-likelihood, is displayed Figure 4.3. In this case, the higher, the better. The test
log-likelihood measures the overall quality of the predictive distribution, taking into
account, for example, features such as multiple-modes, heavy-tails or skeweness. We
observe that values of α that are different from 0 usually outperform both regular
AVB and VI in terms of this metric (the higher the values the better). From these
figures, it seems that higher values of α often lead to better predictive distributions
it terms of the test log-likelihood, probably as a consequence of being able to better
recover the real posterior distribution. The values obtained are similar and often
better than those of other state of the art methods (Hernández-Lobato and Adams
2015). Each of the values shown represent the mean performance of a certain method
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across the 20 different splits of each dataset, which are averaged afterwards here.
Importantly, we observe that standard VI is almost always outperformed by the
two techniques that allow for implicit models in the posterior approximation q(w).
Namely, AVB and AADM. This points out the benefits of using an implicit model
for the approximate distribution q(w). Moreover, AVG and AADM give almost the
same results when α ≈ 0, which confirms the correctness of our implementation.

The average results obtained for each method on each dataset, in terms of the
root mean squared error (RMSE) are displayed in Figure 4.4. Note that the root
mean squared error only measures the expected deviation from the target value and
it may ignore if the model captures accurately the distribution of the target value.
We can see that the proposed approach, AADM, also obtains better results than VI.
In this case, nonetheless, increasing α values do not actually improve much over the
basic results of AVB, and in general we can see that lower values for α are actually
better for obtaining a good performance in terms of this metric (here, the lower
values the better the performance). This seems to indicate that one should choose a
value for α that is different, depending on the metric they are most interested in.
These results are consistent in the sense that, as pointed out previously, values of α
close to zero actually lead to the objective that is optimized in AVB and VI, which
pays more attention to the training RMSE. By contrast, values closer to 1.0 result in
an objective function that is more closely related to the log-likelihood of the training
data.

We also report the performance of each method in terms of CRPS metric (lower
values are better) in Figure 4.5. The results obtained are similar to those obtained
in terms of the test log-likelihood. This is the expected behavior since the CRPS
metric also evaluates quality of the predictive distribution for the test data and it
should be correlated with the test log-likelihood. In particular, values of α different
from 0 are expected to give more accurate predictive distributions. This is confirmed
by the results. It seems that the CRPS metric improves in general when α increases.
However, there are few exceptions, such as those of the Yatch and Naval datasets.

4.5.2.1 Average Rank Results on the UCI Datasets

To get an overall idea about the performance of AADM, for each value of α, on the
previous experiments we have proceeded as follows: We have ranked the performance
AADM for each α value (i.e., rank 1 means that value of α gives the best result,
rank 2 means that it gives the second best results, etc.). Then, we have computed
the average rank over all the train / test splits of the datasets, and have calculated
the standard deviation in each case. Figure 4.6 shows the results obtained for the
RMSE, test log-likelihood and CRPS.

The results obtained are displayed in Figure 4.6. This figure confirms that the
intermediate values of alpha usually present a better performance than the extremes
(i.e., α ≈ 0 or α = 1), for either the RMSE, the test log-likelihood metrics and
the CRPS). Furthermore, both for the test log-likelihood and the CRPS, higher
values of α provide better results, which means that these values of α provide more
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Figure 4.3: Average results in terms of the test log-likelihood for the different UCI
datasets and methods compared (higher is better). Black represents the performance
for our method, AADM, for different values of α. Red is the performance of AVB.
VI is presented in blue. Best seen in color.
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(CRPS) for the different UCI datasets and methods compared (lower is better).
Again, black here is AADM, red represents AVB and blue, VI. Best seen in color.
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accurate predictive distributions. This is expected to be related to a better posterior
approximation. In spite of this, lower values of α tend to perform better in terms of
the RMSE (although the best results are still obtained when α > 0). Again, this
can be explained by paying attention to the form of the objective function that is
maximized in both extremes, i.e., for α → 0 and for α = 1. Recall that the the
VI objective is recovered when α → 0. This objective gives higher importance to
the squared error since log p(yi|xi,w) is precisely the squared error. By contrast, a
similar objective function to the one used by expectation propagation is obtained
when α = 1. This objective includes terms that involve the log-likelihood of the
training data. That is, logEq[p(yi|xi,w)]. The main conclusion from this analysis
is that the optimal value for α depends on the metric we are considering, and that
intermediate values of α, different from 0 or 1 can lead to better results.
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Figure 4.6: Average rank (the lower the better) for AADM and each value of α in
terms of the RMSE (first row, left), test log-likelihood (first row, right) and CRPS
(second row) across all the UCI datasets and splits.

A question that may arise at this point is how to choose the α value for a given
task. In a broad sense, the optimal choice would strongly depend on the performance
metric we are interested in. More precisely, as we have seen in the results of Figure
4.6, lower values of α tend to produce better predictive distributions in terms of the
squared error, while higher values of α lead to better the predictive distributions
in terms of both the test log-likelihood and the CRPS. Moreover, at the very least,
α > 0 improves the general performance of pre-existing methods, as can be concluded
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from Figures 4.3, 4.4 and 4.5. Our recommendation is to set α close to 0 if one
is interested in low squared error and to choose α close to 1 if one is interested in
capturing more general features of predictive distribution. In practice, however, one
should carry out a model validation procedure (e.g. using cross validation) to test
each value of α.

4.5.3 Binary and Multi-class Classification
We have also evaluated AADM in several binary classification tasks, and on two
multi-class problems. Namely, the MNIST and CIFAR-10 datasets. The results
of these experiments are found in the Appendix A. In those experiments, however,
the differences among all the methods are very small. In spite of this, AADM has
shown to be competitive providing slightly better results than those of VI and similar
results to those of AVB.

4.5.4 Experiments on Big Datasets
To evaluate the performance of the proposed method on large datasets, we have
carried out additional experiments considering two datasets: Airlines Delay, and Year
Prediction MSD. Airlines Delay contains information about all commercial flights
in the USA from January 2008 to April 2008 (Hensman et al. 2013b). The task of
interest is to predict the delay in minutes of a flight based on 8 attributes: age of the
aircraft, distance that needs to be covered, air-time, departure time, arrival time, day
of the week, day of the month and month. This is hence a very noisy dataset. After
removing instances with missing values, 2, 127, 068 instances remain. From these,
10, 000 are used for testing and the rest are used for training. Year Prediction MSD
is publicly accessible on the UCI repository (Dua and Graff 2017). This dataset has
515, 345 data instances and 90 attributes. Again, we use 10, 000 instances for testing
and the rest of the data are used for training. In these experiments the mini-batch
size has been set to 100 and we have not used the warm-up annealing scheme that
deactivates the KL term in the objective of each method during the initial training
iterations. For each method, we measured the performance in the test set, in terms
of the RMSE, the test log-likelihood and the CRPS as a function of the training
time.

The results obtained for each method on the Airlines dataset are displayed in
Figure 4.7. In this figure dashed lines represent other methods, the black being AVB
and the blue VI. Solid lines represent our method, AADM, for different values of
alpha. The figure shows that AADM obtains better results than AVB and VI in
terms of the test log-likelihood and CRPS when α approaches 1. When α is closer
to 0, AADM, gives similar results to those of AVB and VI in the long term. The
performance of our method w.r.t. the computational time is comparable to that of
AVB. In terms of RMSE, however, large values of α seem to exhibit a more unstable
behavior and in general give worse results. This is probably a consequence of this
dataset being very noisy.
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Figure 4.7: Performance as a function of the computational time in the Airlines
dataset for each method. We report both in test log-likelihood (top-left), RMSE
(top-right) and CRPS (bottom). The dashed blue line corresponds to the method VI,
the dashed black line to AVB, and other solid lines represent our method, AADM,
for different values of alpha. Best seen in color.
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Figure 4.8: Performance as a function of the computational time in the Year dataset
for each method. We report both in test log-likelihood (top-left), RMSE (top-right)
and CRPS (bottom). The dashed blue line corresponds to the method VI, the dashed
black line to AVB, and other solid lines represent our method, AADM, for different
values of alpha. Best seen in color.

The results obtained for each method on the Year dataset are displayed in Figure
4.8. Again, in this figure dashed lines represent other methods, the black being AVB
and the blue VI. Solid lines represent our method, AADM, for different values of
alpha. As in the previous dataset, AADM obtains better results than AVB and VI in
terms of both the test log-likelihood and the CRPS when α approaches 1. When α
is closer to 0, AADM, gives similar results to those of AVB and VI. Specially, in the
case of the CRPS we see that the VI performs better than both AVB and AADM,
for α between 0 and 0.5. However, when α increases, AADM outperforms all of the
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previous methods. In terms of RMSE, lower values of α seems to give also the best
results. However, in this case higher values of α do not seem to give significantly
worse results in terms of this metric.

4.6 Conclusions
Here we have described a new general method for approximate Bayesian inference,
Adversarial α-divergence Minimization (AADM), that is capable of tuning an approx-
imate posterior distribution by approximately minimizing the α-divergence between
this distribution and the posterior. AADM also allows to account for implicit models
in the approximate posterior distribution. Implicit models, although very flexible,
are difficult to work with since th p.d.f. of the implicit distribution is not known.
We overcome the issues that this causes by following the approach described in
(Mescheder et al. 2017). More precisely, we employ a discriminator model that
estimates the log-ratio between the p.d.f. of the implicit model and a much simpler
distribution (i.e., a Gaussian distribution).

The proposed method has been evaluated on several experiments and compared
to other methods for approximate inference such as Variational Inference (VI) with
a factorizing Gaussian as the approximate distribution, and Adversarial Variational
Bayes (AVB) (Mescheder et al. 2017). The experiments carried out, involving
approximate inference with Bayesian neural networks, indicate that implicit models
almost always provide better results than a factorizing Gaussian in terms of the
metrics employed. Moreover, in regression tasks, the minimization of α-divergences
seems to provide overall better results than the plain minimization of the KL
divergence, as done by VI and AVB. In particular, values of α that are close, but not
exactly equal to 1 seem to provide better predictive distributions in terms of the test
log-likelihood and the CRPS metric. By contrast, in terms of the root mean squared
error (RMSE) one should choose values of α that are close to, but not exactly equal
to zero.

The approximate minimization of the α-divergence has been shown empirically to
provide better results than the minimization of the KL divergence that is used in VI
and AVB. More precisely, the proposed method, AADM, allows to capture patterns
in the predictive distribution such as heteroscedastic noise or multiple modes. By
contrast, these patterns are ignored when the typical KL divergence is minimized.
This a consequence of using higher values for the α parameter that lead to a more
inclusive behavior of the divergence. Specifically, higher values of α are expected
to avoid that the approximate posterior distribution does not have high probability
density in those regions of the parameter space in which the exact posterior has
high probability density. This also follows recent results about improvements in
performance caused by changing the regularization term in the inference objective
function (Wenzel et al. 2020). Indeed, this increase in performance could be related,
at least in appearance, to a connection between the method proposed and the cold
posterior effect showcased by (Wenzel et al. 2020). This provides an interesting
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extension of this method which will be explored in future work.
Therefore, we conclude that one can obtain better results in terms of the quality

of the predictive distribution (such as the RMSE, the test log-likelihood, or the
CRPS) by employing the proposed method, AADM, and by choosing a value of α
that may depend on the specific performance metric we are interested in. A better
predictive distribution can be obtained, in terms of the RMSE, the test log-likelihood
or the CRPS, by using intermediate values of α. In general, however, there is no
simple way of choosing an adequate value of α for each task. Our recommendation
is that if one is interested in a small prediction error, one should use small values for
α. By contrast, if one is interested in more accurate predictive distributions in terms
of the test log-likelihood or the CRPS, larger values for α are preferred. Ideally, one
should carry out a cross validation procedure to choose the optimal value for α to
choose the best value suited for each task, although these experiments may be useful
as a first approach to the possible best range of values.



Chapter 5
Approximate Inference with Sparse Implicit
Processes

Implicit Processes (IPs) represent a powerful tool that can be used
to generalize the concepts initially introduced by GPs here. Based on
previous works on this topic, we construct a new approach to conduct
inference in the space of functions using IPs to model both the prior and
the posterior components in the model. This is achieved by introducing a
similar approximation to the one employed in sparse GPs coupled with an
implicit model for the latent variables associated to the inducing points,
which will keep the model efficient and scalable. This new approach rep-
resents the first method fully formulated in terms of IPs which is capable
of simultaneously training both its prior and models, unlike previous
approaches discussed in Chapter 3. We refer to this new approach as
Sparse Implicit Process. Several experiments are conducted to showcase
its properties in comparison to previous models. In these experiments,
SIP shows to be capable of fitting both the prior and the posterior models
in a sensible manner according to the presented data. Finally, through
detailed regression experiments, SIP shows to be scalable and efficient
while also achieving state-of-the-art performance.

5.1 Motivation
So far we have seen that approximate inference represents a widely spread research
topic since it provides important features which are not common in the original ML
formulation. However, most of the basic techniques employed have to deal with the
intrinsic difficulties of the Bayesian formulation, such as the choice of a meaningful
prior distribution or the intractability of some of the expressions needed (Bishop
2006). Moreover, for some complex real-world problems, bigger models are needed
to reflect the finer details about the data. The increasing complexity of these models
can result problematic as well, since the space of parameters increases in size rapidly
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and presents many strong correlations and local minima that ultimately complicate
the process of approximate inference. All of these issues make most models covered
thus far harder to fit. To do so it is required more data and solving troubles balancing
different contributions throughout the training process, which can be troublesome
and, in some cases unmanageable.

At first glance, the issues concerning weight space cannot be easily circumvented
unless the formulation of the optimization problem is changed itself. To this end, we
have introduced in Section 3.6 some recent works inside the framework of implicit
stochastic processes (IPs) as a way to express prior distributions on the function space.
Although they require a slightly more complex formulation, conducting optimization
in the function space could potentially simplify the issues that arise with the original
weight-space optimization. As we have seen in Section 3.6 recent methods such
as Variational Implicit Processes (VIPs) (Ma et al. 2019) or functional Bayesian
Neural Networks (FBNNs) (Sun et al. 2019) have only been able to show partial
success in this matter: they are only able to update the prior according to the data
by sacrificing the flexibility of their predictive distributions (VIP), or either can
obtain more complex and flexible approximations to the posterior distribution at
the expense of not training its the prior model (FBNN). Ideally, we would require a
general-purposed IP-based approach to be able to do both things:

1. Update the models’ prior so it comprehends important features of the dataset.

2. Provide flexible and generalized approximations for the posterior distributions.

Our contribution is a new method for approximate inference using IPs called
Sparse Implicit Process (SIP), which fulfills both of these previous objectives. This
makes SIP the first method to accomplish both goals at the same time, therefore
being the first general-purposed IP-based approximate inference algorithm. We have
evaluated SIP in the context of Bayesian NNs and neural samplers (Ma et al. 2019),
as two illustrative examples to showcase the flexibility of our framework. In fact, IPs
include many other types of models that could be used as a prior, e.g. normalizing
flows (Rezende and Mohamed 2015), warped GPs (Snelson et al. 2004) or others.
Here we perform most experiments with two different prior models, a NS and a BNN,
to test both performances, as done in (Ma et al. 2019). Finally, to obtain a scalable
method that can address very large datasets we consider an inducing-point approach
in SIP in which the number of latent variables on which to perform inference is
reduced from N to M � N , with N the training set size (Snelson and Ghahramani
2005). We test our claims evaluating SIP in extensive regression experiments, both in
synthetic and public datasets (Dua and Graff 2017). When compared against other
methods from the literature, we observe that SIP often leads to better generalization
properties and that it can capture complex patterns in the predictive distribution.
In very large datasets, it also remains scalable, reaching good performance levels
with less computational time than other methods.
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5.2 Background
As we have pointed out in Chapter 3, the usage of function-space for optimization in
approximate inference may help with some of the intrinsic issues of the parameter-
space formulation. Recent research (Sun et al. 2019) suggests that, when using
parameter space, the optimization problem difficulty increases with the number
of parameters not only due to the sheer size of the space itself, but also due to
symmetries and strong correlations that may appear. By contrast, conducting this
optimization in function space has proven to be challenging, but also worth the
effort in order to tackle these issues. To formulate our problem, we will start by
highlighting the main concepts of parameter-space approximate inference. After that,
we will explain how to carry out this approximate inference in functional space using
IPs.

5.2.1 Parameter-space Approximate Inference
Let us write again the data as D = {xi, yi}Ni=1, the prior distribution over the model
parameters w as p(w), and the likelihood function p(y|w,X). As we have done
earlier, the goal here is to find a distribution qφ(w) to approximate the exact posterior
p(w|y,X). In variational inference (Jordan et al. 1999), q is found by maximizing
the ELBO (3.3.4) we detailed in Chapter 3:

L(φ) = Eqφ(w)[log p(y|w,X)]−KL(qφ(w)|p(w)) (5.2.1)

where KL(·, ·) is the Kullback-Leibler divergence between distributions. VI is based
on the fact that maximizing (5.2.1) is equivalent to minimizing KL(qφ(w)|p(w|y,X)).
Bayesian NN (BNN) models such as the one we introduced in Section 3.2.1 use a
parametric distribution q that assumes independence among the components of w
(Blundell et al. 2015a; Graves 2011). By contrast, in (Mescheder et al. 2017), or as
we saw for AADM in Chapter 4, q can be made implicit, i.e.

qφ(w) =
∫
qφ(w|ε)p(ε)dε, (5.2.2)

with ε as some random noise. Therefore, if ε is high-dimensional and qφ(w|ε) is
complicated enough, the result is a very flexible approximate distribution qφ(w). Note
that, as we saw earlier, that although the first term in (5.2.1) can be estimated via
Monte Carlo sampling, the KL contribution is intractable since q lacks a closed-form
density. To solve this, we resort again to re-writing the KL term as:

KL(qφ(w)|p(w)) = Eqφ(w) [log qφ(w)− log p(w)]
= Eqφ(w) [T (w)] , (5.2.3)

where T (w) is the log-ratio between qφ(w) and the prior for w, as we described in
Section 3.3.3 for AVB or Section 4.2.1 for AADM. As we saw there, if the discriminator
is flexible enough, its optimal value, Tω? , is exactly the log ratio between qφ(w) and
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p(w), i.e., Tω?(w) = log qφ(w)− log p(w) (Mescheder et al. 2017). Using this, (5.2.1)
becomes

L(φ) =
N∑
i=1
Eqφ [log p(yi|w,xi)]− Eqφ [Tω?(w)] , (5.2.4)

where the KL term is replaced by the discriminator, which is trained simultaneously
to the rest of the system. This enables the use of an implicit model for for qφ(w),
which given that the inner transformations in the system are expressive enough,
it could reproduce arbitrarily flexible distributions. Finally, besides this, instead
of minimizing the regular KL-divergence between q and the posterior, we could
also employ what we have presented earlier for AADM in Chapter 4 to minimize
α-divergences, which includes the KL-divergence as a particular case, as we pointed
out in Section 3.5.

5.2.2 Function-Space Approximate Inference
Finally, let us briefly review the main ideas behind implicit processes (IPs) which we
described earlier in Section 3.6. We defined IPs (Ma et al. 2019) as a collection of
random variables f(·) such that any finite set of evaluations (f(x1), · · · , f(xN ))T has
joint distribution determined by a generative process as the one in (3.6.1). We use the
notation f(·) ∼ IP(gθ(·, ·), pz) to indicate that f is sampled from the corresponding
IP with parameters θ and xi ∈ X . This definition of IPs results in a framework that
is general enough to include many different models. For example, Bayesian NNs can
be described using IPs if the randomness is given by the prior p(w) over the NN
weights w. We would then sample a function parameterized by w ∼ p(w), which
specifies the output of the NN as f(x) = gθ(x,w) for every x ∈ X . θ are here the
parameters of p(w). If p(w) is a factorizing Gaussian, θ will be the corresponding
means and variances. Other important models that can be described as IPs include,
e.g., neural samplers (NS) or warped GPs (Ma et al. 2019; Snelson et al. 2004).
Previous works using IPs for inference are the variational implicit processes (VIP)
and the functional variational Bayesian NN (fBNN) (Ma et al. 2019; Sun et al. 2019).
We have described both methods earlier in Section 3.6. We will summarize here the
main ideas behind both approaches to provide a more complete perspective of our
contributions in the following section.

First, VIPs approximate the marginal likelihood of the prior IP by the marginal
likelihood of a GP. For this, an empirical covariance function is estimated by sampling
from the prior IP. Namely, f θs (·) ∼ IP(gθ(·, ·), pz). As we saw in Section 3.6.1, the
prior mean and covariances of the GP are:

m?(x) = 1
S

S∑
s=1

f θs (x) ,

K?(x1,x2) = 1
S

S∑
s=1

∆θ
s(x1)∆θ

s(x2) , (5.2.5)
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where ∆s(x) = f θs (x) −m?(x). They then approximate p(y|X, θ) by qGP(y|X, θ),
i.e., the marginal likelihood of a GP with the estimated means and covariances, and
maximize the latter, expecting that it will increase p(y|X, θ) as well. To guarantee
scalability and avoid the cubic cost of the GP they further approximate the GP using
a linear model with the same mean and covariances. The linear model is efficiently
tuned by optimizing the α-energy function, performing gradient descent w.r.t. θ
via the method described in (Hernández-Lobato et al. 2016). A limitation of VIP,
however, is that the final predictive distribution is Gaussian (that of a GP) which
may lack flexibility.

By contrast, fBNNs rely on VI and, instead of using a GP, they use another IP to
approximate the posterior of the prior IP (Sun et al. 2019). In the ELBO in (5.2.1),
the first term can be estimated by Monte Carlo sampling when using an IP as the
approximate posterior. However, the KL term becomes the KL-divergence between
stochastic process, which is intractable. To address this, we saw in Section 3.6.2 that
fBNN evaluates the KL-divergence between distributions at a finite set of points X̃
drawn at random from the input space, leaving the ELBO as:

L(q) = Eq[log p(y|fX)]− EX̃[KL(q(f X̃)|p(f X̃))] , (5.2.6)

where fX and f X̃ are the IP values at X and X̃, respectively. This objective function
is then maximized w.r.t the parameters of the posterior approximate IP q. Critically,
X̃ must cover training and testing regions of the input space. Therefore, fBNN may
suffer in large dimensional datasets. Moreover, fBNN is unable to fit the prior IP
model by itself, as a consequence of estimating the gradients of the KL-divergence
term using a spectral estimator (Sun et al. 2019).

5.3 Sparse Implicit Processes for Approximate
Inference

We introduce here Sparse Implicit Processes (SIP), a new method for approximate
inference when using IPs. In SIP we consider another IP to approximate the posterior
of the prior IP, as in fBNN. However, unlike in fBNN we perform inference on finite
sets of variables, as it is usually done with GPs. This avoids the problem of computing
the KL-divergence between stochastic processes. SIP also allows to easily adjust the
parameters of the prior IP. However, we will need to address two issues:

1. Avoid the number of latent variables increasing with the number of training
points N .

2. Deal with the intractability of the computations.

The first of these two problems can be managed by considering an approximation
based on inducing points, as in the sparse GPs models we introduced in Sections
2.3.3 and 3.3.1.2 (Snelson and Ghahramani 2005; Titsias 2009). Instead of making
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inference about f = (f(x1, ), . . . , f(xN))T we perform inference about the process
values at M � N inducing points. We denote the set of inducing points X, and
denote the IP values at these input locations u = (f(x1), . . . , f(xM))T. Next, we
focus on approximating p(f ,u|D), which only depends on finite sets of variables. For
this, we consider the approximate posterior distribution:

q(f ,u) = pθ(f |u)qφ(u) , (5.3.1)

where qφ(u) is an implicit distribution with parameters φ, and θ are the prior IP
parameters. Critically, pθ(f |u) is fixed and qφ(u) is tunable, as in the variational
sparse GP approximation (Titsias 2009). Using this, the obtained VI ELBO is:

L(φ, θ) = Eqφ,θ

[
log p(y|f)����pθ(f |u)pθ(u)

����pθ(f |u)qφ(u)

]
= Eqφ [log p(y|f)]−KL(qφ(u)|pθ(u)) . (5.3.2)

The first term can be estimated by Monte Carlo sampling, as in standard approaches
for VI. However, the second term lacks any closed-form solution, since it is the
KL-divergence between two implicit distributions. To estimate it we rely on the
method described in Section 5.2.1 and 3.3.3, where a classifier is used to estimate the
log-ratio (Mescheder et al. 2017; Rodríguez Santana and Hernández-Lobato 2020).
Namely,

KL(qφ(u)|pθ(u)) = Eq [Tω?(u)] (5.3.3)

where Tω?(u) is approximated by a NN that discriminates between samples from
qφ(u) and pθ(u). Note, however, that Tω?(u) depends on φ and θ. Nevertheless, as
argued in (Mescheder et al. 2017), Eq(∇φ[Tω?(u)]) = 0 if Tω?(u) is optimal.

Regarding ∇θTω?(u), note that it is expected to be small when compared to
∇θEqφ [log p(y|f)]. This is an important matter, since although small, these gradients
play a critical role to adjust the prior distribution to the observed data. To study the
contributions made to the total gradient of the objective function by the different
prior parameters, we study their effects separately. This way, we analyze the gradients
w.r.t. the BNN parameters θ, and the location of the inducing points, X̄. In the case
of θ, since we use a 2-layered BNN with 50 units in each layer as prior, there are a
lot of parameters to choose from. In order to select among them the most relevant
ones, we have chosen the 500 parameters that showed the biggest contribution to
the gradient in the data term. Afterwards we perform the previous finite differences
procedure and compare the gradients obtained in both terms for the same parameters.
On the other hand, for the gradients regarding X̄, we estimate the KL gradient for
every inducing point, since in this case we are only employing 50 inducing points.
Therefore, we will be able to compare the gradients of both terms for every inducing
point employed.

In Figure 5.1 we show the comparisons between the gradients of the data term in
the f-ELBO and the two possible gradient contributions from the prior parameters,
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Figure 5.1: Comparison between the gradients of the data term (x-axis) and the two
sets of prior parameters in the model, i.e. θ (left, in blue) and the inducing points’
locations X̄ (right, in red). The scale of the x-axis is in both cases much bigger than
the y-axis for visualization purposes. Error bars are included in both plots, although
may not be visible when compared against the size of the points. Best seen in color.

i.e. θ (left image, in blue), and the inducing points’ locations (right image, in red).
We have included error bars, although specially in the second plot most of them are
smaller than the size of the points themselves. In both figures, the x-axis represents
the gradient in the data term, and the y-value for each point is the estimated gradient
value for the KL term in the objective function, either for θ or for X̄. As can be seen,
in both cases the x-axis has a wider range than the y-axis by a factor 10. As we
mentioned, when comparing the gradient of the data term against the gradient of the
KL term w.r.t. θ we selected the 500 parameters in θ that had the largest contributions
to the data term, which explains the gap in x = 0. We see here that in every case
|y| < 1, which means that, for the first plot, ∇θKL� ∇θ(Data term). Moreover, in
the second plot, we see the same behavior, meaning that ∇X̄KL� ∇X̄(Data term).
Therefore, we obtain that ∇θTω?(u)� ∇θEqφ [log p(y|f)], as expected.

Although ∇θTω?(u) gradients terms are small, they are of major importance
to fit the prior distribution to the data. When a classifier is used to approximate
the KL-divergence, these gradients will be ignored, which results in not properly
adjusting the prior parameters θ. To partially correct for this we simply approximate
the KL-divergence by the symmetrized KL-divergence:

KL(qφ|pθ) ≈
1
2(KL(qφ|pθ) + KL(pθ|qφ)) , (5.3.4)

where we have omitted the dependence on u of qφ and pθ. The KL-divergence in
VI is just a regularizer enforcing the approximate distribution q to look similar
to the prior. Modifying this regularizer in VI is a common approach that often
gives better results. See, e.g., (Wenzel et al. 2020). Importantly, the reversed KL-
divergence, KL(pθ|qφ), involves also the log-ratio between the prior and the posterior
approximation q. Therefore, it can also be estimated using the same classifier Tω?(u).
Critically, however, it involves an expectation with respect to pθ(u). This introduces
some easy to compute dependencies with respect to the parameters of the prior θ.
As shown in our experiments we have found those dependencies to be enough to
provide some prior adaptation to the observed data. This choice is also supported
by good empirical results obtained and because the prior adaptation is not observed
when only the first KL-divergence term is considered (see the Appendix B.1 for an
example). When changing the KL-divergence term the objective is no longer a lower
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bound on the log-marginal likelihood. However, this is also the case for VIP, which
uses a GP approximation to the log-marginal likelihood (Ma et al. 2019).

An important remark is that the data-dependent term in (5.3.2) only considers
the squared error (in the case of a Gaussian likelihood). We follow what we have done
earlier in AADM in Chapter 4 and resort to the energy function employed in BB-α
and VIP (Hernández-Lobato et al. 2016; Ma et al. 2019; Rodríguez Santana and
Hernández-Lobato 2020). This replaces the data-dependent term in (5.3.2) resulting
in the approximate optimization of α-divergences. With this re-formulation, the
objective depends on α and is:

L?α(φ, θ) = 1
α

N∑
i=1

logEqφ,θ [p(yi|fi)α]

− 1
2 [KL(qφ|pθ) + KL(pθ|qφ)] , (5.3.5)

where the first term can be estimated via Monte Carlo, using a small number of
samples as in (Hernández-Lobato et al. 2016). Moreover, α can be chosen to target
the data log-likelihood, i.e., when α = 1. When α→ 0 the original data-dependent
term in (5.3.2) is obtained. The bias introduced by the log(·) function in (5.3.5)
becomes negligible by using a small number of samples (Hernández-Lobato et al.
2016).

The other critical point of SIP is how to compute pθ(f |u) in (5.3.1). We ap-
proximate this conditional distribution by the conditional of a GP with the same
covariance and mean function as the prior IP, as it is done in VIP (Ma et al. 2019).
More precisely, given samples of f and u, we employ (5.2.5) to estimate the means and
covariances needed via Monte Carlo. We then resort to the GP predictive equations
described in (Rasmussen and Williams 2006). Namely, pθ(f |u) is approximated as
Gaussian with mean and covariance

E[f ] = m(x) + Kf ,u(Ku,u + Iσ2)−1(u−m(X)) ,
Cov(f) = Kf ,f −Kf ,u(Ku,u + Iσ2)−1Ku,f , (5.3.6)

with σ2 a small noise variance (set to 10−5). Moreover, m(·) and each entry in Kf ,u
and Ku,u is estimated empirically using (5.2.5), as in VIP (Ma et al. 2019).

Finally, predictions at a new point x? are estimated via Monte Carlo sampling.
Let us ∼ qφ(u). Then,

p(f(x?)|y,X) ≈ 1
S

S∑
s=1

pθ(f(x?)|us) . (5.3.7)

Thus, the predictive distribution is a mixture of Gaussians, with each Gaussian
determined by one sample extracted from the approximate posterior IP at X. This
means that SIP can produce complicated predictive distributions that need not be
Gaussian, unlike VIP.

To illustrate the SIP method, in Figure 5.2 we include its assumed graphical
model. Here Θ represents the prior and posterior IPs parameters, θ and φ in the
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Figure 5.2: Graph model for the SIP method. Point-like vertices denote deterministic
variables and circles represent random variables, which can either be observed (gray)
or unobserved (white).

main text. The inducing points’ locations are explicitly depicted as X, being their
respective sampled functions values locations u. Using all of the previous, the
function values on the input data are sampled, which are fn for the N training data
points (xn, n = 1, . . . , N), and f ∗ for the test data (x∗). Finally, after sampling
the appropriate noise contribution from N (0, σnoise) (i.e. εn for training and ε∗ for
testing) we estimate the output from the system, which can either correspond to an
observed (yn, in training) or unobserved variable (ỹ∗, in testing).

5.4 Previous Work
As we have seen in Chapter 3, approximate inference is conducted in the parameter
space for the most part. Bayesian Neural Networks (BNNs) are a notable example
of this: they enable predictive distributions accounting for prediction uncertainty
in the context of NN. A widely explored technique for approximate inference in
BNNs is Bayes by backpropagation (BBB) (Blundell et al. 2015a; Graves 2011;
Jordan et al. 1999). BBB performs variational inference (VI) in the space of weights
using a parametric approximate distribution q (MacKay 1992; Graves 2011). Novel
approaches are leading to new interpretations and generalizations based on VI, from
which the resulting methods can have appealing theoretical properties (Knoblauch
et al. 2019). However, constraining the approximate solution to a certain parametric
family which in most cases assumes independence may be too restrictive in practice, as
we have mentioned when reviewing the VI formalism. More precisely, in complex NNs
this approach presents pathological behaviors that may lead to poor generalization
properties: in (Sun et al. 2019) it is shown that bigger NN models tend to forget
important features of the data that simpler architectures were capable of capturing.



116 Chapter 5. Approximate Inference with Sparse Implicit Processes

This is due to an imbalance in the objective function that leads to a lower weight to
the data-related loss, and obtaining a generalized correction for it is not trivial in most
cases. Asides from the other alternatives reviewed for VI, another very successful
approach for BNNs is Probabilistic Back-propagation (PBP) (Hernández-Lobato and
Adams 2015). This method propagates probabilities through the NN to later perform
back-propagation of the gradients. PBP has proven to be efficient and scalable,
although it has limited expressiveness in the posterior approximation, which must
be Gaussian. Therefore, as BBB, PBP introduces a similar approximation bias that
may incur in bad-performing final predictions (Graves 2011; Blundell et al. 2015a).

Recent works have analyzed the properties of simple variational approximation
methods. In (Foong et al. 2020) they are shown to underestimate the prediction
uncertainty. Wide BNNs are also subject of study in (Coker et al. 2021) under
the mean-field assumption. Pathological behaviors arise for deeper BNN models in
the approximate posterior, which strongly differs from the exact one (see Section
3.6.2). Therefore, simple VI approximations based on, e.g., mean-field should be
avoided. More flexible approximations can be obtained using normalizing flows
(NF) (Rezende and Mohamed 2015). NFs perform a series of non-linear invertible
transformations on the variables of a tractable parametric distribution, obtaining a
more complex distribution with closed-form density. For this, the transformations
must be invertible, which may limit the flexibility of the approximate solution.

There has been a growing interest in increasing the flexibility of the approximate
distribution (Liu and Wang 2016; Salimans et al. 2015; Tran et al. 2017). Implicit
models as the ones introduced earlier have shown to be useful for this (Li and Liu
2016; Mescheder et al. 2017; Rodríguez Santana and Hernández-Lobato 2020). There,
the approximate distribution lacks a closed-form density, but one can easily generate
samples from it. Since q lacks a density expression, it becomes difficult to evaluate
the KL-divergence term of the VI objective. AVB deals with these difficulties, as
described in detail in Section 3.3.3. As a brief reminder, AVB proposes an implicit
approximation model, and is capable of solving the intractabilities by introducing
the auxiliary discriminator problem to estimate the log-ratio between the posterior
approximation q and p (Mescheder et al. 2017). In Chapter 4 we have proposed
an extension to AVB in the form of AADM, which combines the BB-α objective
(Hernández-Lobato et al. 2016) with an implicit model for q and a discriminator to
locally minimize α-divergences. In AADM α ∈ (0, 1] is an adjustable parameter which
allows to interpolate between targeting the direct and the reversed KL-divergence.
Furthermore, AADM can model complex predictive distributions, unlike AVB.

Other works include also the concept of inducing points and sparse models in
the context of BNN (Immer et al. 2021; Ritter et al. 2021). However, in contrast to
SIP, the location of the inducing points are fixed, and also, unlike SIP, approximate
inference is carried out in the parameter space. SIP is also more general since it is
not restricted to work with BNNs.

The methods described so far suffer from the problems of working in the space
of parameters, which is high-dimensional and includes strong dependencies. Recent
works have shown better results by performing approximate inference in the space of
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functions (Ma et al. 2019; Sun et al. 2019). Characterizing function-space inference, as
well as constructing effective frameworks for it focuses many research efforts nowadays
(Burt et al. 2020). In some of the most successful approaches, the underlying model
is constructed using an implicit stochastic process (IPs), which we introduced in
Chapter 3. Two successful methods for approximate inference in the context of IPs
are VIP (Ma et al. 2019) and fBNN (Sun et al. 2019), both of which we described
earlier in Section 3.6. VIP is limited to having a Gaussian predictive distribution,
which may lack flexibility. By contrast, in fBNN is difficult to infer the parameters
of the prior IP. Moreover, fBNN also relies on uniformly covering the input space to
guarantee that the posterior IP looks similar to the prior IP in regions with no data.
This is challenging in high-dimensional spaces. Thus, neither of these approaches
successfully meet both of the criteria we established in Section 5.1. SIP does not have
the limitations of VIP and fBNN and can produce flexible predictive distributions
and adjust the prior parameters to the observed data.

Approximate inference in the functional space is not a new concept. Methods
based on GPs have been used extensively (Rasmussen and Williams 2006), and we
have seen extensively their properties and limitations in Chapter 2. In GPs the
calculations can be done analytically. Nevertheless, they are restricted to Gaussian
predictions. Furthermore, GPs have a big cost. Inducing points approximations,
similar to those of SIP, can be combined with stochastic VI for GP scalability on
very large datasets (Titsias 2009; Hensman et al. 2013a). These modifications in
GPs, however, do not enable more flexible predictive distributions, which are fixed
to be Gaussian.

Finally, as we saw in Chapter 3, the golden standard for Bayesian inference is
provided by Markov Chain Monte Carlo (MCMC) sampling methods, since in the
infinite time limit they converge to the true posterior of the model. In particular,
the Hamilton Monte Carlo (HMC) or Hybrid Monte Carlo (Neal 2011) is one of the
most successful approaches, since it avoids the inefficient random-walk behaviour of
other MCMC methods by using the gradient information of the target distribution.
Nonetheless, these methods have a few important drawbacks that prevent them
from being used extensively. Among these, HMC is computationally expensive and
does not scale well to big datasets, requiring also to be run for long time to obtain
a fitting approximation for the posterior distribution. Moreover, it also has some
sensitive paramenters that must be carefully tailored for each problem to obtain a
good performance. If the model or the data being used are complex enough, using
HMC and similar approaches becomes practically unfeasible.

5.5 Experiments

To test our proposal we have employed different NN models for the IPs being used.
These NNs are illustrative examples to serve as IPs, although our framework can
be employed with many other setups. We set two different systems for the prior: a
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NS and a BNN, both of them with 2 layers of 50 units1. In the NS, input noise is
a standard Gaussian with 10 dimensions. Moreover, in all of the experiments, The
posterior implicit model in SIP uses another NS with 100 noise dimensions. In every
experiment we have run each method until it converges using batch training with a
batch size of 10, using 100 samples to estimate (5.3.5) and its gradients, while in
test we resort to 500 samples to approximate (5.3.7). For SIP, the selected number
of inducing points is specified in each experiment. Finally, we use α = 1 in the
synthetic experiments to show the capabilities of the method. For the rest of the
experiments, we employed α = 0.5 since it has been shown to be a compromise point
for different types of performance (Hernández-Lobato et al. 2016; Rodríguez Santana
and Hernández-Lobato 2020). Thus, we must remind that the results could be further
improved by changing this parameter accordingly. In all methods the noise variance
is selected by maximizing the corresponding estimate of the log-marginal likelihood.

5.5.1 Synthetic Experiments
We will first compare the quality of the predictive distribution given by SIP and other
methods of the literature that also make use of IPs (VIP and FBNNs). However, we
train each system using the same prior model so we can make a fair assessment of the
performance of each one of them. Attending to the indications in (Ma et al. 2019),
we have employed the previously mentioned BNN as our common prior. Therefore,
this means that SIP, VIP and FBNNs will employ the same 2-layered BNN with 50
units per layer, using 15 inducing points in our case. We initialize them adversarially
concentrated in one input location and train the model. In this case we do not learn
the parameters of qφ so that the model focuses on the inducing points locations
and the prior for prediction, preventing qφ(u) to compensate for locations with not
enough inducing points nearby. We have also done the experiments for VIP with
the regularization term, and also for FBNN with a GP prior, employing also an
heteroscedastic dataset as well. The results of both experiments are included in
Sections B.3.1 and B.3.2 of the appendix.

We also compare against Hamilton Monte Carlo applied to the same datasets and
models. The prior for HMC is the BNN prior obtained from SIPBNN once trained.
For the different synthetic datasets we set L = 25 integration steps and ε = 5 · 10−5

leapfrog size. In this work we have found that, for all the problems in consideration,
1e4 steps was enough to reach the equilibrium distribution.

The synthetic dataset is generated by sampling 1000 for x from a uniform
distribution U(−4, 4). Then for each x sampled, we randomly generate one of two
possible values for y generated by

y1 = 10 cos(x− 0.5) + ε, y2 = 10 sin(x− 0.5) + ε

with ε ∼ N (0, 1). We select either y1 or y2 randomly with equal probability, producing
bimodally-distributed data. We randomly split the datasets 80% -train 20%-test

1code availabe at https://github.com/simonrsantana

https://github.com/simonrsantana
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and sample both the prior and predictive distribution after training 2000 epochs for
every method to ensure convergence.
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Figure 5.3: Samples from the prior and the predictive distribution of each method.
First row contains the original data (first column, in black) and HMC predictions
(second column, in blue). For the rest of the methods, the first column shows samples
from the learned prior distribution. The second column shows the samples from the
predictive distribution. Best seen in color.
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Figure 5.3 show samples from the learned prior distribution and the predictive
distribution for y of each method. The original training data is shown in the top
left corner. We observe that in the case of VIP and SIP, the prior model captures
the mean value of the training data, while in fBNN there seems to be no learned
pattern at all. However, VIP’s predictive distribution, which is Gaussian, is unable
to represent the bimodality of the data. fBNN’s predictive distribution, although
more flexible than the one of VIP by construction, cannot capture the bimodality
either. The reason behind this is that the data-dependent term of fBNNs focuses on
minimizing the squared error, and hence it simply outputs the average prediction
between the two modes, as illustrated in (Rodríguez Santana and Hernández-Lobato
2020). In summary, SIP is the only method that learns a sensible prior distribution
and whose predictions capture the bimodality of the data. The appendix includes
similar results for other synthetic problems.

An unexpected result in Figure 5.3 is that HMC cannot capture the bimodal
predictive distribution. We believe this is simply because the assumed model (a
Bayesian NN) is wrong. In particular, if one randomly generates functions from
the NN prior to then contaminate them with additive Gaussian noise, the bimodal
predictive distribution is never observed. A uni-modal predictive distribution is
obtained instead. This is the one captured by HMC in Figure 5.3. By contrast, SIP
is more flexible and thanks to the approximate inference mechanism is able to bypass
this wrong model specification and produce a more accurate predictive distribution.
The same behavior is observed for heteroscedastic data (see Appendix B.3.2).

5.5.1.1 Locations of the Inducing Points

The usage of inducing points is crucial to the implementation of SIP, and therefore
it is important that it is capable of locating these pseudo-inputs to its advantage.
To test this we have employed the dataset suggested in (Titsias 2009), using 15
inducing points as well. We initialize them adversarially concentrated in one input
location and train the model. In this case we do not learn the parameters of qφ so
that the model focuses on the inducing points locations and the prior for prediction,
preventing qφ(u) to compensate for locations with not enough inducing points nearby.

In Figure 5.4 we represent the predictive distribution given by SIP, as well as the
changes in positions of the inducing points across epochs (the number of epochs is
scaled by 1e3). We see that the inducing points begin in very concentrated positions
close to x = 2.7, signaled by crosses in top of the first figure or the bottom locations
of the second figure. As training continues, the inducing points locate themselves
covering the whole range of the training data. After epoch 2000 they move very
little except for those points more centered in the dataset, which distribute a bit
more homogeneously as training advances. This shows that the method is able to
successfully locate the inducing points to the most convenient positions to improve
its performance (see the supplementary material for further experiments). Moreover,
the predictive distribution seems to fit nicely the data even though we are preventing
the system from training qφ(u) here, which causes a slight underfitting behavior. For
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the remaining experiments, we will initiate the inducing points covering the whole
range of the training data.

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

y

0
5

10

−2.5 0.0 2.5 5.0 7.5
x

ep
oc

h

Figure 5.4: PPredictive distribution (top) and evolution of the location of the
inducing points (bottom) for the dataset in (Snelson and Ghahramani 2005). The
crosses at the top and bottom represent the starting and finishing positions of the
inducing points, respectively. Training epochs are scaled by 103. Best seen in color.

5.5.2 Regression with UCI Data
We compare each method and SIP with each prior (i.e., a BNN and a NS) on
multivariate regression problems from the public UCI dataset repository (Dua and
Graff 2017). We refer to these methods as SIPBNN and SIPNS, respectively. We select
8 datasets: Boston Housing, Concrete, Energy Efficiency, Kin8nm, Naval, Combined
Cycle Power Plant, Wine and Yatch. We split the data 20 times into train and test
with 80% and 20% of the instances, respectively. The performance metrics employed
are the RMSE, the test log-likelihood (LL) and the Continuous Ranked Probability
Score (CRPS). CRPS is a proper scoring rule that can be used as an alternative
metric of the accuracy of the predictive distribution (Gneiting and Raftery 2007). In
the case of fBNN we report results for a BNN prior since it performs better than a
GP prior. In SIP we use 100 inducing points. In SIPNS we implemented dropout
with a rate of 0.05. SIP, fBNN and AADM use a warm-up period on which the KL
in (5.3.5) is multiplied by a factor β that linearly increases from 0 to 1 for the first
20% of the total number of epochs. Finally, each method is trained until convergence
on each dataset. A regularization term similar to the one implemented in VIP, as
well as adaptive contrast can be used here. However, in our experiments we did not
employ either technique. More details about this and the computational setup are
given in the appendix.

To compare all methods we have ranked each one from first to last for each
data split, and then averaged their rankings in each metric. The final results are
presented in Table 5.1, where each value represents the mean ranking across all
datasets (lower is better). For RMSE, SIPNS is the overall winner, while SIPBNN does
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Table 5.1: Ranking analysis between methods across every multivariate regression
problem (lower is better). The winning method in each metric is written in bold.

Method BBB AVB AADM FBNNBNN VIP SIPNS SIPBNN
RMSE 6.15±0.04 4.14±0.08 3.97±0.09 3.82±0.10 3.29±0.09 3.10±0.09 3.53±0.08
LL 5.39±0.05 3.91±0.06 2.82±0.06 5.61±0.07 3.70±0.12 3.81±0.07 2.76±0.08
CRPS 5.84±0.05 4.47±0.08 4.03±0.08 3.97±0.07 2.57±0.08 4.67±0.08 2.45±0.08

the same for LL and CRPS. As could be expected, VIP performs greatly in RMSE
since its predictive distribution is encouraged to fit the mean of the data distribution.
However, the NS prior for SIP achieves better results, while SIPBNN occupies the
third position, which makes SIPBNN a competitive method in this metric as well. In
LL, SIPBNN wins by large margin, followed by AADM. This is also to be expected,
since AADM is the only other method here able to reproduce similar behavior to
what is shown in Section 5.5.1, which is the same behavior we observed in Chapter 4.
However, AADM requires extra components such as adaptive contrast, which SIP
does not need here (Mescheder et al. 2017; Rodríguez Santana and Hernández-Lobato
2020). Finally, in the CRPS, SIPBNN leads again, followed by VIP. This here speaks
to their respective performance is in RMSE and LL, since CRPS can be seen as a
mixture between both of the previous metrics. However, the extra performance of
SIP gives it the final edge to achieve first place. These results cement SIP as a sound
alternative for approximate inference using IPs in terms of performance, while also
providing extra features that neither VIP, FBNN or other IP-based methods are able
to achieve.

5.5.3 Scalability and Convergence Comparisons
We also compared the convergence time in big datasets for all methods. We use the
same datasets as in AADM: (i) Year Prediction MSD, with 515, 345 data instances
with 90 attributes each, publicly available in the UCI repository (Dua and Graff 2017);
(ii) Airlines Delay (Rodríguez Santana and Hernández-Lobato 2020), consisting on
2, 127, 068 instances with 8 attributes. A random split of 10.000 points is used as
test to measure each metric over time. For SIP employ 100 inducing points, with
dropout rate 0.05 for SIPNS. For VIP and FBNNGP, a pre-training procedure has
to be carried out, and the time for this is also accounted for in the analysis. α is
fixed to 0.5, and as shown by (Rodríguez Santana and Hernández-Lobato 2020) this
means that we could further improve the results for each metric in the methods with
α-divergence optimization by selecting a different value.

In Figure 5.5 we have the training time in seconds in the x-axis for every plot
in log-scale, and each corresponding metric in the y-axis, RMSE, LL, and CRPS
respectively. The first column represents the performance results in the Airplanes
dataset, and the second those of YearPrediction MSD. For every figure we have
removed the first 3000s of training in order to make the final results more clearly
visible. It can be appreciated in every figure that the fastest converging method
is SIPNS, and in the case of LL and CRPS it converges to values very close to the
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Figure 5.5: Performance as a function of training time (in seconds) in a log scale
for each dataset, method and metric. Airplanes (first column) and Year (second
column). The legend of each method is shown at the bottom. Best seen in color.
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maximum performance in those metrics almost immediately. For the LL, SIP is the
clear winner with in Airlines, although in Year AADM finishes close as well. The
same happens in CRPS, where SIP wins with both priors to the rest of the methods.
The faster convergence of SIPNS when compared to SIPBNN can be explained by the
more efficient sampling taking place in the prior in this model. The rest of methods
perform very similarly in general here, with FBNNGP performing in general worse
than the rest, far behind of FBNNBNN. We associate this worse behavior to the
inability of the method to properly train its prior model, leaving all of the learning to
be conducted through the posterior model. Finally, in this case, VIP’s performance
is bad in general. Here, VIP under-estimates the noise variance, conducing to
over-confident predictions that result in low CRPS and LL (much worse than the
ones of the other methods and not shown in the figures for visualization purposes).
Nevertheless, VIP’s RMSE is good in general. SIP and AADM tend to perform
better in terms of LL and CRPS than RMSE, which is targeted for medium values
of α (Rodríguez Santana and Hernández-Lobato 2020) as we saw earlier (smaller α
values target the RMSE more effectively).

In terms of performance vs. training time, SIPNS is shown to be the fastest
method among the ones being compared. However, given enough training time,
SIPBNN can outperform the other methods in terms of LL and CRPS, leaving AADM
as the only other approach with a performance similar to SIP’s. In terms of RMSE,
SIP performs similarly to the other methods in Year, although the noise present in
Airplanes makes it less suitable in this case. These experiments confirm again that
SIP is competitive with other state-of-the-art methods, in some cases improving the
performance by clear margins.

5.6 Conclusions
We have proposed SIP for approximate inference, the first candidate for a completely
general-purposed approach using IPs. SIP can be used in several models (e.g.,
Bayesian NNs and neural samplers). Moreover, it meets both of the criteria we
established in Section 5.1: it can adjust the prior parameters to the data, and
also use a flexible IP to approximate the posterior distribution. Current methods
cannot perform these two tasks simultaneously. Importantly, SIP can generate
flexible predictive distributions that capture complicated patterns in the data such
as bimodality or heteroscedasticity (for an example of the latter, see the appendix).

An important extra feature we have obtained is that SIP seems much more robust
to model selection than many other methods. Indeed, if the selected model for the
data is wrongly chosen, the predictive distribution obtained from a method such
as Hamilton Monte Carlo can be very far from the real data. In our experiment
with bimodal data, this is caused by the fact that the prior distribution (shared
with SIP) is unimodal, which is also the case for the posterior of the model. This
conduces to unimodal predictions for HMC (and the same issue is observed when
using heteroscedastic data, as shown in the Appendix). By contrast, our approximate
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inference method is able to circumvent this issue and produce predictive distributions
much closer to that of the original data, even if the selected model may not be the
most suited for the task at hand.

We have evaluated SIP on several tasks for regression. It gives similar and
often better results, in terms of several performance metrics, than state-of-the-art
methods for approximate inference in the context of Bayesian NNs. SIP is scalable
and can be used in datasets with millions of instances. This is achieved by a
sparse approximation based on inducing points similar to the one often used in GPs.
Our experiments also show that SIP can learn a sensible location for the inducing
points. A limitation of SIP is, however, that it requires the evaluation of complicated
conditional distributions. Nevertheless, they can be approximated using a GPs with
the same covariances as the prior IP. The covariances can be estimated via Monte
Carlo methods.

Overall, SIP is a promising approach to perform inference using the function
space. It has shown competitive performance results, scalability properties, flexibility
in its formulation and robustness to the model selection. Several points remain to be
explored here, such as the behavior of the inducing-point-based approach in higher
dimensionality data, or whether its formulation can be simplified by the usage of
alternative methods. SIP could have an important societal impact, specially when
accurate predictive distributions are critical. For example, when the decisions made
can have an influence on people’s life, such as in autonomous vehicles or automatic
diagnosis tools.
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Chapter 6
Conclusions and Future Work

To finalize, we will briefly outline the main conclusions extracted from
this thesis. We will review the core ideas related to approximate inference
in ML, and then present a short summary of the main contributions
presented to the field. We will close this final chapter outlining new
interesting research paths we expect to explore in future work.

6.1 Conclusions
The supervised machine learning paradigm faces difficult questions in its implemen-
tation. Between all of the complex issues present, one of the first to appear in most
cases is the selection of a learning model to describe the data. A simple model can
successfully avoid issues when faced with outliers and noisy data, while may fail
at capturing complex patterns intrinsic to the data observed. By contrast, more
flexible models can provide better final predictions and capture the patterns that
were missed earlier, although they may also be prone to fit spurious noise present in
the data, therefore generalizing poorly to new data.

Several approaches have been proposed inside supervised ML that try to balance
both settings, and we have introduced neural networks and Gaussian processes
as examples. In general, NN models are considered flexible and versatile, and
moreover their architecture can be tailored to each specific task to extract as much
information from the data as possible. Nonetheless, their flexibility also makes
them subject to overfitting the data. NNs also present intrinsic properties such as
the automated feature detection which, despite of their drawbacks, have lead them
to yield excellent results across many different applications. On the other hand,
models based on Gaussian processes can be seen as simpler and more interpretable
approximate inference techniques than NNs. GPs are also robust to overfitting,
while also provide a simple manner to encode prior knowledge about the data. The
Gaussianity restrictions they impose lead to closed-form expressions for the training
procedure, although they have unscalable computational cost in big datasets and are
only capable of producing normally-distributed predictions. Even if the scalability
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issues are addressed, the restrictive behavior of their predictions is hard to get rid of.
Additionally, another complicated subject inside supervised machine learning has

to deal with making predictions in sensitive problems, specially if decisions must be
made based on them. In such problems, it can be crucial to provide more complete
information, including the certainty of the automated methods about their forecasts.
Ideally, the estimated uncertainties may encompass the doubt on different parts
of the forecasting procedure, ranging from the intrinsic uncertainty present in the
measured data to the more systematic ambiguities introduced by the formulation of
the model. This adds an extra layer of complexity to the choice of model itself, and
one that will also have strong effects on the final results. Bayesian statistics provides
here a natural framework from which we can try to address all of these issues, while
also granting extra features which can result of major importance in a wide arrange
of practical cases. However, although the Bayesian formulation may be promising,
its practical implementation poses serious challenges related to the intractability of
the equations involved in most ML approaches.

The Bayesian language enables the possibility of encoding a priori information
about the system and update our comprehension of it according to observed data
in the inference process. This scheme has proven to be very efficient to extract
more information in cases where few data points are available, while also providing
a simple way for controlling learning systems in cases where the data is noisy or
we may need a more robust manner to interpret it. In particular, when referring
to supervised ML, the Bayesian perspective allows us to encode information in the
formulation of our model, and update its parameters according to data thereafter.
Nevertheless, conducting inference in this context usually requires performing in-
tractable calculations related to obtaining the posterior probability of the model’s
parameters according to the presented data. To avoid this issue, different techniques
have been proposed to obtain good approximations for the posterior, and with that
another trade-off relation appears; indeed, if the approximation models are simple
enough, closed-form expressions can be obtained, although these will most likely incur
on oversimplifying the approximating distribution, compromising the final results
of the inference method. On the other hand, if the models flexible enough, they
may provide approximations that closely resemble the target posterior distribution.
However, this could come at the expense of a higher computational cost, which may
become prohibitive for certain practical issues. This dichotomy is exemplified by two
of the large families of approximate inference techniques, both sampling-based or
optimization-based approaches.

Among the presented approaches to approximate inference, optimization-based
methods that rely on VI or EP show promising results, yet in most cases their
flexibility is restricted by the formulation itself. As we mentioned, these approaches
propose simple distributions to approximate the more complicated exact posterior
distribution that we need to perform inference. In these cases, the calculations are
made tractable thanks to the simple forms of the approximations, although the final
results suffer from this oversimplified treatment. In fact, in most real scenarios, the
final posterior distribution is rarely as well-behaved as these approaches assume, and
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therefore crucial information may be lost.
There are a number of methods proposed to improve the versatility and expres-

siveness of these optimization-based approximations. One of the main paths that lead
to improvements in this matter is the usage of implicit models, where the predictive
distribution’s p.d.f. remains unknown but samples from it can be obtained easily.
This is well exemplified by the AVB approach, although its formulations prevents
it from reproducing complex patterns that may be relevant in real-world problems.
This is clearly shown when data presents more complex features, s.a. bimodality,
heteroscedasticiy and heavy tails. As it is the case for many other optimization-based
approximation approaches, AVB relies on the minimization of a divergence measure
between the proposed distribution and the exact posterior. The KL divergences
used in these cases can be seen as two particular examples of the larger family
of α-divergences (also called Renyi divergences), whose properties remain largely
unexploited in the context of ML performance.

Based on previous advances in the usage of implicit models, and in combination
with the concept of α-divergences, we have proposed a new method with novel
properties, while also showing important properties of α-divergences inside the
context of the performance of ML algorithms. Our new method, named Adversarial
α-divergence minimization, has the ability of capturing complex patterns such as
multimodality and heteroscedasticity, removing the constraints present in previous
formulations. To this end, the usage of α-divergences is crucial to be capable of
capturing patterns in the data that are ignored otherwise (as showcased by the
difference in performance between AVB and AADM). The original setup for the
VI-like objective function can be easily recovered in the lower regimes of α, while
higher values for it provide an objective closer to that of EP. Moreover, we show
that there is a convex behavior depending on α for the proposed metrics. We are
able to deduce that lower values help improve the squared error, while higher values
make the method follow more closely the original distribution of the data, reducing
the log-likelihood results. In general, we show that better results can be obtained
with small changes in the method by introducing this new set of divergences and
selecting α between 0 and 1. The precise value of α that may provide the best results
is greatly dependent on the task, and thus cross-validation techniques could be used
to select the optimal value. However, our contribution here may be of use as a first
approach to the best possible range of values selected initially.

Another important addition to the approximate inference perspective is con-
ducting optimization in the function space rather than in weight space. Works in
the literature have shown that training large systems the space of parameters can
lead to undesirable behaviors that are intrinsically related to the formulation of the
optimization problem. Since the original optimization space is complex, with many
local minima and strong correlations between parameters, a proposed solution here
is optimizing functions rather than individual parameters. For this task, implicit
processes has been an interesting tool that can encompass a wide variety of models,
ranging from the Bayesian NNs and Neural Samplers we described in Chapters 3, 4
and 5 to Normalizing Flows (Rezende and Mohamed 2015), warped GPs (Snelson
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et al. 2004), and others (Ma et al. 2019). However, current approaches to this
problem fail to formulate a complete method that successfully make use of all their
properties. In the most relevant cases, the resulting method is either unable to
train its prior distribution model, or its predictions are approximated by a Gaussian
process, therefore losing much of the expressiveness granted by the usage of IPs.

We have proposed the first general-purposed algorithm based on IPs that is
capable of training both its prior an posterior model, while at the same time
providing flexible predicting distributions. This means that our method, which
we named Sparse Implicit Processes (SIP), is capable of updating all of its parts
simultaneously in a sensible manner according to the data, while also providing
expressive predictive distributions that may include complex features such as bimodal
behavior, heteroscedasticity or heavy tails. Previous methods based on function-
space optimization were unable to do both of these things at once, which is why
we think our contribution here is significant. To achieve this, we formulated an
IP approximation for the prior, as well as an IP-based posterior. The posterior
approximation results from the combination of ideas present in sparse GPs and
implicit models, retaining the initial versatility and expressiveness of the IP approach,
while also staying scalable in cases with large amounts of data thanks to the usage
of inducing points. Through experiments with synthetic data we have shown that
this new method is capable of efficiently locating the inducing points across the
whole range of the training data, and that is also able to reproduce complex features
such as the ones we mentioned above. In addition, in cases where data has higher
dimensionality, SIP is expected to perform well thanks to its scalability properties
and by using the appropriate number of inducing points. In some cases, we show
that even if the model selected is not completely suitable for the data, the final
predictive distribution can be much closer to the original data distribution thanks to
the nature of the approximations made. This makes SIP more robust to the choice
of predictive model, which is not the same case for other approaches such as HMC,
much more sensitive to choosing the wrong model. Moreover, we have conducted
extensive experiments in public datasets, showing that SIP overall improves the
previous achievements by IP-based methods (both in terms of performance and
scalability), while also introducing a series of new properties never before seen in
this context.

6.2 Future Work
Here we will briefly outline some possible future research lines that we find specially
relevant inside the topics of this thesis:

• New methods to estimate the KL divergence: One of the core ideas
behind both of our contributions is related to the usage of an adversarial
problem to estimate the KL divergence. Estimating the KL through the
adversarial system setup is truly convenient since we mostly deal with complex
implicit distributions as out approximate posterior q. Although useful, this can
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also be tricky, since it introduces the extra parameters of the auxiliary problem,
and moreover may be subject to issues in the optimization procedure, as we
saw in Chapter 4. It would be truly helpful here having different methods
to estimate either the objective function overall or the KL divergence when
intractable approximate distributions are employed, which is currently a very
active line of research. This includes works from the past few years regarding
likelihood-free VI (Tran et al. 2017) and unbiased implicit VI (Titsias and Ruiz
2019). These approaches could help simplifying the formulation of the methods
presented here, while also potentially enhancing their performance.

• Test the AADM approach in other contexts: We have conducted ex-
tensive experiments with AADM inside the context of NNs. From these, we
have seen that it provides great results at practically the same cost as previous
methods, while also resulting in much more expressive predictive distributions.
However, since the formulation of AADM allows it to be implemented in other
models, it remains to be seen how would it fend in other contexts, such as
GPs and deep GPs. Although we have not delved into deep GPs, they can
be described as deep belief networks based on GP mappings (Damianou and
Lawrence 2013). AADM could prove to be useful for both of these approaches,
especially in cases where they are combined with implicit models, such as
the work in (Yu et al. 2019). These are only a couple examples among many
others, and it would be useful and interesting to examine how would AADM
impact their performance. Moreover, the behavior we have obtained through
AADM can be related to some recent works that point out that changes in
the regularization term in the objective function can positively impact the
performance of inference methods (Wenzel et al. 2020). This may lead to a
connection, at least in appearance, between AADM and the cold posterior effect
of (Wenzel et al. 2020). This provides another new path to explore further
implications of the α-divergence minimization proposal we have formulated
with AADM.

• Alternative models for inference with IPs: Implicit processes are powerful
tools for approximate inference, since a wide variety of models can be described
using the same language (Ma et al. 2019). However, the formulations derived
from them can be rather complex when using implicit models such as in the
case of SIP. A possible way to take advantage of the flexibility of this formalism
is employing alternative methods to use as IPs in the inference procedure.
One of the most interesting candidates here are Normalizing Flows (NFs),
firstly introduced by Rezende and Mohamed 2015. Here, a series of invertible
transformations are applied to a source of Gaussian noise, obtaining tractable
arbitrarily complex distributions as a result. Due to these properties, NFs have
become the subject of intensive research (Kobyzev et al. 2020). Using NFs could
enable us to obtain tractable distributions in the parts of the models where
an IP is used, maybe avoiding the usage of inducing points altogether and
simplifying the formulation of these functional methods. Additionally, it could
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be interesting trying to combine these IP-based approaches to function-space
optimization with other novel proposals such as functional neural processes
(Louizos et al. 2019).
On the other hand, the inducing-point-based approach employed in SIP can
have its limitations when dealing with high-dimensional data. In these cases,
it is possible that many inducing points may be needed to properly fit the
model, which may entail a higher computational cost than what we have seen.
It would be important to study the performance of SIP in those frameworks,
trying to propose new solutions for these cases.

• Deep IPs: As we mentioned earlier, deep GPs can be seen as a combination
between the concepts of NNs and GPs, where the deep GP is represented by
a deep network where every node corresponds to a GP mapping (Damianou
and Lawrence 2013). Deep GPs constitute an interesting line of work, and
there has been important efforts recently into extending their formulation (Bui
et al. 2016a; Salimbeni and Deisenroth 2017). An interesting contribution here
would be substituting GPs in the deep network by IPs, potentially obtaining a
more general and expressive model that could be useful in practical scenarios
as well. This will come at the expense of a more complex mathematical
formulation, although it could provide important results by removing the
Gaussianity assumption present in GPs.

• Variable selection methods: GP-based variable selection methods rely
on using an automated relevance measure, obtained using the inverse of the
length scale of GP models for each input variable as proxy. Newer methods
propose using alternative measures of relevance, for example employing the KL
divergence between different predictive distributions obtained by producing
small changes in the training points (Paananen et al. 2019). These approaches
could be extended in a number of ways, ranging from the choice and sensitivity
of the divergence measure to the GP model selected for the variable selection
in the first place. Employing IPs could help obtaining better results here, while
also introducing α-divergences may contribute as well.

• Application of flexible approximate inference methods: The additional
versatility and expressiveness achieved in the approximate inference methods
here could potentially be of use for many different real-world problems. In
particular, the usage of IPs could provide more accurate predictive distributions,
which may help in the decision making process. As an example, GPs and regular
DNN models are the normal approaches when it comes to renewable energy
production forecasts (Díaz-Vico et al. 2017; Salcedo-Sanz et al. 2014; Chen
et al. 2013). This can be further refined by employing IPs. Other interesting
example is the usage of similar models in the neuroscience context (Challis et al.
2015; Li et al. 2019; Morabito et al. 2017). This represents another complicated
problem with sensitive consequences where the extra information provided by
approximate inference techniques can help advance further current research.
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Appendix A
Appendix for Chapter 4

A.1 Annealing Factor
The proposed method may suffer from convergence to bad local optima. More
precisely, paying too much attention to the KL term early may result into failing
to explain the observed data. Therefore, it is convenient to bias the training of the
method in such a way that, at least at the beginning, it does not consider relevant the
KL term. If that is the case, it will not try to make the approximate distribution look
like the prior during the first steps of the optimization process, hopefully avoiding
bad local optima.

To solve this, we incorporated the technique described in (Sønderby et al. 2016).
Using this as an example, we define a sufficiently large warm-up period for which we
will train our model turning on progressively the KL term in the objective function.
We do this by changing slightly the original formulation of of the AADM objective
to introduce an extra annealing parameter β. That is,

Lα(φ) ' 1
α

N∑
i=1

logEqφ(w)[p(yi|xi,w)α]− βKL(qφ(w)|p(w)) , (A.1.1)

where β starts being equal to 0 and grows linearly to 1 during a certain number of
epochs. If not stated otherwise, in each experiment the number of warm-up epochs is
selected to be the initial 10% of the total epochs assigned for training the algorithm in
a given dataset (mostly those extracted from the UCI repository). We have observed
that this significantly improves the results. In the case of the synthetic problems,
however, the warm up period is set to 500 epochs from a total number of 3000 epochs.
In the experiments with big data we have not included the annealing factor since it
has not been observed to be beneficial to the final results.

A.2 Classification Experiments
To analyze AADM in a more complete manner we have also carried out experiments
on binary and multi-class classification problems. For the former we employed six
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UCI datasets that are very common in the literature. In the case of multi-class
classification, we have used the MNIST and CIFAR-10 datasets. We will start by
analyzing the results on the binary case first, and finish with the more complex
multi-class problems.

In the experiments carried out in this section we have not used the CRPS metric
since this metric is suited only for regression problems. Instead, we made use of the
Brier score (Gneiting and Raftery 2007). This is a strictly proper scoring rule that
is well defined and broadly used both for binary as well as multi-class classification
tasks. See (Gneiting and Raftery 2007) for more information. The brier score is
simply the average squared difference between the predicted probabilities and a
one-hot encoding of the target class label. Of course, we also report here prediction
error and test log-likelihood, as in the regression setting.

A.2.1 Binary Classification
We consider 6 different datasets that are often used for binary classification bench-
marking (Bui et al. 2017; Dua and Graff 2017). We have performed the same analysis
done in the case of regression problems. More precisely, we have defined 20 splits for
each dataset, trained each method on each split and afterwards we have analyzed
the average results across splits in terms of the test log-likelihood, the classification
error, and the Brier score. In each dataset we have trained the methods for a total of
3000 epochs, ensuring convergence. We have also split them using 90%-10% of data
for training and testing, respectively, as we did for the regression experiments. All
of the datasets share the same model structure, which is the general one described
in the main article. In all these experiments we employ the first 10% of the total
training epochs for warming-up before the KL term is completely turned on as in
(Sønderby et al. 2016) (see the description of the annealing factor above for more
details on this). Moreover, the batch size is set to be 10 data points. The number
of samples from the posterior distribution is set to 10, when training, and to 100,
when testing. For more precise information about the datasets employed see Table
A.1. The likelihood factors in this particular case of binary classification are simply
sigmoid activation functions.

As in the regression case, we compare the results of AADM with VI using a
factorizing Gaussian as the posterior approximation and with regular AVB (whose
results should be similar to the ones obtained with AADM when α→ 0). To make
fair comparisons we also perform the same warm-up period that we use in our method
for both AVB and VI.

The average results for each method on each dataset, in terms of the test log-
likelihood, are displayed in Figure A.1 (the higher the result the better). When
compared to the results of regression, we observe that in this case changing the value
of α does not have a clear impact on the final results. For these binary classification
datasets, the different approximating distributions that are obtained for each value
of α seem to produce similar test log-likelihood results across all splits. If we take
into account previous work such as the one presented in (Bui et al. 2017), we observe
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Dataset N for train/test Attributes Positive/negative instances
Australian 621/69 15 222/468
Breast 614/68 11 239/443
Crabs 180/20 7 100/100
Iono 315/35 35 126/224
Pima 690/77 9 500/267
Sonar 186/21 61 111/96

Table A.1: Characteristics of the UCI datasets used in the experiments.

that the results achieved by AADM here, in terms of the test log-likelihood, are
either similar or better than the ones reported there. In all experiments, VI has
the worse results, even in datasets such as Australian or Breast. The width of the
error-bars relative to the mean result in the latter case appear to be substantially
wider than for the rest of the datasets. In general it is not possible to extract definite
conclusions on whether AVB or AADM perform better overall, although the results
in Sonar and Iono may lead us to think so. Nevertheless, the performance of AADM
for all the α values is similar to that of AVB, being almost the same when α→ 0, as
expected.
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Figure A.1: Average results in terms of the test log-likelihood for the different
UCI datasets for binary classification to compare the methods. Black represents the
performance for our method, AADM, for different values of α. Red is the performance
of AVB. VI is presented in blue. Higher values are better. Best seen in color.
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Figure A.2: Average results in terms of the classification error rate for the different
UCI datasets for comparison of the methods. Black represents the performance for
our method, AADM, for different values of α. Red is the performance of AVB. VI is
presented in blue. Lower values are better. Best seen in color.

The results for the classification error are displayed in Figure A.2. In the case
of this other performance metric we observe the same general trends as for the test
log-likelihood (the lower the result the better). Overall, AADM and AVB perform
better than VI with the exception of Pima, on which VI is able to yield better results
although not by a big difference. VI performs worse across datasets, but yet again
it is difficult to conclude whether AVB or AADM perform better than the other
since their results are very similar (again, in cases such as Australian or Breast, the
width of the error-bars relative to the mean error is similar to the other experiments,
although the scale of the y-axis make them appear a lot wider). Summing up, there
is not one single clear better value for the α parameter. As expected, AADM and
AVB have very similar results when α→ 0 in AADM.

Finally we show the results obtained in terms of the Brier score for all the datasets
in Figure A.3. These plots follow the same legend as for the previous plots (black
for AADM, red for AVB, blue for VI). As in the case of the test log-likelihood
and the prediction error, in general, there are no substantially different results for
different values of alpha, although in some cases it is clear that both AADM and
AVB outperform VI (the lower the values, the better).
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Figure A.3: Average results in terms of the Brier score rate for the different UCI
datasets for comparison of the methods. Black represents the performance for our
method, AADM, for different values of α. Red is the performance of AVB. VI is
presented in blue. Lower values are better. Best seen in color.
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A.2.2 Average Rank Results on Binary Classification Tasks

We have carried out the same average rank analysis that was done in the main
manuscript for regression. More precisely, we rank the performance of AADM for
each value of α from best to worse (e.g. rank 1 represents the best result) and
compare average ranks for each value of α, for each metric. The results for all metrics
are displayed in Figure A.4.

The average rank results obtained here are not as clear as the ones of regression.
There is no trend suggesting that a particular value of α may be better than the
others. In the case of the classification error there is only a slight improvement for
α values lower than 0.5. The same could be said for the Brier score, and for the
test log-likelihood. However, especially for this last metric, the error bars prevent
drawing any solid conclusion. In spite of this, the performance achieved across all
the α values tested here remains comparable to that of AVB. Therefore, in binary
classification tasks AADM gives results that are similar to the ones of other methods
from the literature.
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Figure A.4: Average rank (the lower the better) for AADM and each value of α in
terms of the classification error rate (top-left), test log-likelihood (top-right) and
Brier score (bottom) across all the binary classification datasets and splits.
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A.2.3 Multi-class Classification
We have evaluated AADM on the MNIST (LeCun et al. 2010) and CIFAR-10 datasets
(Krizhevsky, Hinton, et al. 2009). We have used the same architecture for the neural
network as in the previous problems. Namely, a fully-connected (FC) network. The
likelihood factors in this case correspond to a soft-max activation function. In MNIST
we use 60, 000 data instances for training and 10, 000 for testing. In CIFAR-10 we
use 50, 000 data instances for training and 10, 000 for testing.

In these experiments we have considered bigger networks, as described below. To
speed-up the training process we have also considered an alternative implicit model
for the posterior approximation, as described in (Louizos and Welling 2017a). In
particular, we assume that the weights of each layer are obtained from:

wij ∼ N (zjµij, σ2
ij) , zj ∼ q(zj) , (A.2.1)

where wij (for i = 1, to the total number of hidden units, and for j = 1, to the total
number of input dimensions to the layer) is the network weight, zjµij is the mean of
a Gaussian distribution and σ2

ij its variance. Importantly, zj is a random variable
generated from an implicit distribution similar to the one we consider for binary
and regression problems. The actual distribution of the weights is hence an infinity
mixture of Gaussians, obtained by marginalizing zj . Although potentially less flexible,
the main advantage of using this implicit model for the posterior approximation is
that it allows using the local reparametrization trick, which is key in speeding-up
the training process in bigger networks (Kingma et al. 2015).

In both MNIST and CIFAR-10, the generator, discriminator and the main
network have 2 hidden layers with 200 units each. We employed 1000 epochs for
training. Training is done drawing 10 samples for the weights, while 750 samples are
used for testing (the batch size for training is 200). In these experiments we have
disabled adaptive contrast since we observed slightly better results when it was not
used. The code used in these experiments is available at https://github.com/
simonrsantana/AADM.

A.2.3.1 MNIST

The results obtained on the MNIST dataset are displayed in Figure A.5 for each
performance metric considered. We observe that there are not big differences among
the values obtained for AADM, AVB and VI. However, AADM seems to give slightly
better results than AVB and VI in terms of the test log-likelihood and the Brier
score. In both cases there is a preference for higher values of α. This behavior can be
explained as a consequence of the changes that the objective function suffers when
increasing α. As we mentioned in the main part of the article, higher values of α
focus more on the test log-likelihood. Moreover, the Brier score is closely related to
the test log-likelihood since it is concerned with the goodness-of-fit of the predictive
distribution. Therefore, it is to be expected a correlation among the two metrics.

We would like to point out that the results obtained here on MNIST are similar
to those in the literature for the type of networks used in these experiments (fully

https://github.com/simonrsantana/AADM
https://github.com/simonrsantana/AADM
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Figure A.5: Results in the MNIST dataset comparing the three different methods.
Black represents the performance for our method, AADM, for different values of α.
Red is the performance of AVB. VI is presented in blue. Here are represented the
classification error rate (left - the lower the better), the test log-likelihood (center -
the higher the better) and the Brier score (right - the lower the better). Best seen in
color.

connected networks using a Gaussian prior). See (Blundell et al. 2015b) for further
details. It is expected that better results could be obtained by fine tuning the network
architecture, using specific priors, or other networks based on convolutional layers.
The evaluation of AADM on those models is left for future work. The results obtained
by AADM are also similar to or better than those obtained by other models such as
multi-class Gaussian process classifiers (Villacampa-Calvo and Hernández-Lobato
2017).

A.2.3.2 CIFAR-10

The results on the CIFAR-10 dataset are displayed in Figure A.6. In this case, the
experiment results are less clear than those of MNIST. AADM and AVB seem to
outperform VI in most cases, but we cannot extract definitive conclusions about
what value of alpha is better. We believe this is due to the fact that CIFAR-10 is a
complicated dataset with a lot of noise, and the results reflect these difficulties.

As in MNIST, the results obtained in CIFAR-10 are similar to those reported in
the literature for fully connected neural networks (Lin et al. 2015). Classification
error rates of ∼ 50% are common when these neural networks are used, particularly
if they are not optimized specifically for the task at hand. Nevertheless, in (Lin
et al. 2015) it is shown that using specific architectures and more units per hidden
layer (as well as more hidden layers) one could improve the accuracy of the method.
However, in our case, since we are only interested in comparing the results of each
method for approximate inference, we decided to use the same architecture as in
MNIST. Further improvement in the CIFAR-10 dataset is expected by making use
of convolutional layers. Nevertheless, evaluating AADM in these networks is left
as future work. The results obtained by AADM are also similar to or better than
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Figure A.6: Results in the CIFAR-10 dataset comparing the three different methods.
Black represents the performance for our method, AADM, for different values of α.
Red is the performance of AVB. VI is presented in blue. Here are represented the
classification error rate (left - the lower the better), the test log-likelihood (center -
the higher the better) and the Brier score (right - the lower the better). Best seen in
color.

those obtained by other models such as multi-class Gaussian process classifiers using
convolutional kernels (Wilk et al. 2017)
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B.1 Results with the Single-KL Objective Func-
tion

SIP can be trained using this original formulation of the objective function with a
single KL contribution. Although the resulting predictive distribution produces good
results, the negligible contributions to the gradients made by the prior parameters
makes the system unable to train its prior model. The results from this process,
using the SIPBNN model, are shown in Figure B.1. There, the samples from the
prior model can be seen to not follow the behavior of the original data, while the
predictive distribution is capable of reproducing the original bimodal behavior. This
means that the prior is not being properly trained, although the posterior model is
flexible enough to compensate for this fact and accurately follow the data behavior.
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Figure B.1: Results of training SIP with the original f-ELBO formulation with only
one KL contribution for the bimodal data presented in the main text (left). The
predictive distribution (right) reproduces the bimodal behavior correctly. However,
the functions sampled from the final prior model (center) do not follow the same
behavior of the data.

From these results we conclude that the contribution to the gradient of the

145
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original objective function from the prior parameters is much less relevant than the
one coming from the data term. Therefore, we need to introduce the new L?(q)
objective, which allows us to train simultaneously both the prior and posterior
parameters.

B.2 Adaptive Contrast for SIP
Adaptive contrast (AC) is introduced by (Mescheder et al. 2017) as an attempt to
improve the accuracy of the estimation of the log ratio between distributions in
the KL. This estimation will follow from the result of the auxiliary discriminator
problem, whose optima is Tω? . However, since the distributions being compared
are usually very different, the discriminator has no problem telling apart samples
from each of them, which does not encourage for an optimal fit of its parameters.
Therefore, to make this task harder, an extra Gaussian distribution is introduced in
(Mescheder et al. 2017). In our case, since the KL distribution is estimated between
two IPs, we need to reformulate the original AC to accommodate for this fact. This
will imply extending the original AC to use two discriminators instead of one. Let
us define two Gaussian distributions q̄ and p̄ with the same moments as the samples
from both q and p (our IP approximating posterior and IP prior)

q̄ ∼ N (µ(q), σ2(q)), p̄ ∼ N (µ(p), σ2(p)) (B.2.1)

with µ(·) and σ2(·) as the mean and variance across samples from q or p. Using this,
we rewrite the two-KL part of the f-ELBO objective as the following:

KL(q|p) + KL(p|q) = Eq

[
log qq̄p̄

pq̄p̄

]
+ Ep

[
log pp̄q̄

qp̄q̄

]

= Eq

[
log q

q̄

]
+ Eq

[
log p̄

p

]
+ Eq

[
log q̄

p̄

]

+ Ep
[
log p

p̄

]
+ Ep

[
log q̄

q

]
+ Ep

[
log p̄

q̄

]
= Eq[T (q, q̄)− T (p, p̄)] + Ep[T (p, p̄)− T (q, q̄)]

+ Eq
[
log q̄

p̄

]
+ Ep

[
log p̄

q̄

]
. (B.2.2)

Now we will have to employ two discriminators, one for samples from q and q̄
(T (q, q̄)), and for samples from p and p̄ (T (p, p̄)). The two last contributions to this
expression are given by the log-ratio of two Gaussian distributions with given mean
and variances, and are thus tractable and have a closed-form solution.

In practice, both discriminators needed here are estimated once with the expected
value w.r.t. samples from q and from p. To help with this task, one could standardize
the samples from q and p in beforehand, following the description in (Mescheder
et al. 2017; Rodríguez Santana and Hernández-Lobato 2020)

KL(q|p) + KL(p|q) = KL(q0|pq) + KL(p0|qp), (B.2.3)
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where

q0 = q − µ(q)
σ(q) ; p0 = p− µ(p)

σ(p) , qp = q − µ(p)
σ(p) ; pq = p− µ(q)

σ(q) . (B.2.4)

This simplifies the involved calculations for the discriminators involved, since now
several terms employ standardized Gaussian distributions.

We opt to include the description of AC here for the sake of completeness, although
in the experiments conducted in the main text, we found AC produced overfitting in
the training of the prior. This would then require regularization techniques such as
dropout or the l lh regularization term used in VIP (Ma et al. 2019). We have tested
these models as well, and thus far we have seen they also provide good performance.
However, we think the added difficulties of training an extra discriminator and the
need for a regularization term surpasses the benefits for this extra additions to the
original SIP model.

B.3 Extra Synthetic Data Comparisons

B.3.1 Alternative Setups for Bimodal Data
The experiments conducted with synthetic data in the main text were all performed
using the same prior model, a BNN with 2 layers with 50 units per layer. However,
to produce those comparisons we have made changes on both methods that could
affect their final results: the original code for VIP has a regularization term that
was removed for the comparisons there, helping both the prior and the predictive
distribution to represent heteroscedastic behavior (Ma et al. 2019). On the other
hand, fBNN can employ a GP prior (or a sparse GP), which would have to be trained
in beforehand (Sun et al. 2019). For the sake of completeness, we have run these
tests as well with the same bimodal data being used in the main text (Depeweg et al.
2017; Rodríguez Santana and Hernández-Lobato 2020).

In Figure B.2 we can see the comparisons between methods using these alternative
setups, namely VIP with the regularization term (denoted as VIP∗) and fBNN with
the GP prior (fBNNGP). As in the figure in the main text, the first column represents
both the original bimodal data (first row, black) and the predictive distribution
obtained from applying HMC sharing the trained prior parameters of SIP (second
row, blue). The other figures represent both the prior samples (first row) or the
predictive distribution (second row) for VIP∗, fBNNGP and SIPBNN respectively. In
the case of fBNNGP we see that the prior is now being trained (although that needs
to happen separately from the rest of the model), resulting in samples that fit better
the behavior of the data here. The predictive distribution follows the mean of the
data as it did in the case of fBNNBNN, and although the noise is slightly smaller in
this case, it is not able to reproduce the original bimodality. However, an important
detail when comparing these figures against the ones present in the main text is
that the y axis range has been increased here w.r.t. the one used in the original one,
which may make these figures seem more concentrated towards the mean of the data.
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Figure B.2: Comparison between methods using bimodal data and alternative
setups for VIP and fBNN: VIP includes the regularization term as in the other
experiments, and fBNN uses the GP prior. The first column represents the original
data (first row, in black) and the HMC predictive distribution (second row, in blue).
The remaining figures represent the prior samples (first row) and the predictive
distribution (second row) for each method, namely VIP∗ (with regularizer), fBNNGP
and SIPBNN. For the predictive distribution of VIP∗ the black line represents the
predictive mean and the shaded area represents the ±2σ region. For comparison
w.r.t. the original image in the main text, the y-axis range has been increased here
so that every plot could be easily seen. Best seen in color.

On the other hand, for VIP∗ we can clearly see that both figures are now not
showing any of the heteroscedastic behavior they had in the main text. In this case,
the prior, as well as the predictive distribution, fit closely the mean of the data,
and the regions of ±2σ in the latter have a fixed width, unlike in the original figure.
Thus, removing the regularizer has helped the method to fit a more expressive prior
and to obtain better predictive distribution samples, since introducing it hinders
the expressiveness of the model overall. However, since this is the original setup the
authors in (Ma et al. 2019) propose, this is the one we employed in both the UCI
multivariate regression problems as well as in the convergence experiments. Finally,
the good performance of the method regarding the RMSE metric can be explained
by its focus on adjusting the predictions to the mean of the training data.

B.3.2 Heteroscedastic Data

To test the ability of SIP to reproduce other complex features present in the training
data, we have employed as well an heteroscedastic dataset (Depeweg et al. 2017;
Rodríguez Santana and Hernández-Lobato 2020). We constructed this dataset by
uniformly sampling 1000 values for x between [−4, 4] and then obtaining y for each
sample as

y = 7 sin(x) + ε sin(x) + 10, ε ∼ N (0, σ = 2). (B.3.1)
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To perform these experiments we employ the same setup as the one in the main text
for the bimodal problem.
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Figure B.3: Comparison between methods using heteroscedastic data. The first
column represents the data (first row, in black) and the HMC predictive distribution
(second row, in blue). The remaining figures represent the prior samples (first row)
and the predictive distribution (second row) for each method, namely VIP, fBNNBNN
and SIPBNN. For the predictive distribution of VIP the line represents the predictive
mean and the shaded area represents the ±2σ region. Best seen in color.

In Figure B.3 we present the results of training the same models we used in the
main text for the bimodal dataset (HMC, VIP, fBNNBNN and SIPBNN) but with the
new heteroscedastic synthetic data (represented in the first column, second row, in
black). Here, as was the case earlier, HMC (first column, second row, in blue) is
unable to reproduce the heteroscedastic behavior present in the data (first column,
first row, in black). Even though it uses the trained prior from SIP, since the selected
NN model is not originally capable of reproducing this behavior, HMC is unable to
reproduce it either: the prior does not behave in an heteroscedastic manner, and
neither does the likelihood, resulting in a non-heteroscedastic predictive distribution.
For the rest of the methods we have the prior samples (first row) and the predictive
distribution samples (second row) to compare against them. In the case of VIP
(second column), opposite to what is done in Section B.3.1, the regularization term
here is turned off again, thus obtaining heteroscedastic behavior both in the prior
and predictive distributions. If the regularization term is turned on, however, the
heteroscedasticity here is lost, as happened in Section B.3.1. For fBNN (third column)
we see that the BNN prior is not being trained. Its predictive distribution follows the
original data mean closely although without any heteroscedasticity. Finally, in SIP
(last column) we can see that the prior behaves somewhat similarly to the original
data distribution mean, as it did in the bimodal case. In this case, SIP’s predictive
distribution also closely follows that of the original data, with heteroscedastic behavior
as well. In this case, if VIP uses the regularization term, SIP is the only method
able to reproduce this behavior, resulting in a better final predictive distribution
than the one provided by HMC. This implies what is mentioned in the main text: if
the wrong model is chosen, HMC may be unable to reproduce important features
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from the data, ones that SIP captures in its predictive distribution. This makes SIP
much less susceptible to implicit bias errors caused by choosing the incorrect model
for a given problem.

B.3.3 Inducing Points Evolution
To complement the analysis of the evolution of the location of the inducing points in
the main text, we conducted an extra experiment using an alternative dataset. This
dataset is generated by sampling uniformly 1000 values for x between [−4, 5], and
then obtaining y from the following definition:

y =
10 + ε, x < 0

10(1 + sin(x)) + ε, x ≥ 0,
(B.3.2)

with ε ∼ N (0, σ = 2). The piece-wise definition of y is constructed so that y is
continuous but with a non-defined derivative in x = 0. We train SIP with this dataset
until it converges, and register the location of the inducing points for each epoch of
training (2000 here). We employ 50 inducing points here for visualization purposes.
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Figure B.4: Results of the SIP method applied to the piece-wise defined synthetic
dataset: (top plot) samples from the predictive distribution of the method (mean as
the blue line, training points as black dots, with crosses representing initial and final
positions for the inducing points (top and bottom crosses, respectively); (bottom
plot) locations of the inducing points for every training epoch, which are scaled by
100. Best seen in color.

In Figure B.4 we see the results of training SIP with this alternative dataset,
using the same representation we employed in the experiment included in the main
text: the top figure contains the original data (black dots), the predictive distribution
samples (with the mean as a blue line), and the initial and final location of the
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inducing points represented as crosses both in the top and bottom of the figure
respectively. The bottom plot represents the location of each inducing point for each
epoch in the y-axis (scaled by a factor of 100, ranging from 0 to 2000). Moreover,
in this case, we have set the starting positions of the 50 inducing points in random
locations throughout the whole range of the training set. In the figure, we see that
the predictive distribution follows closely that of the original data. The inducing
points that started in the region where the data is constant (x < 0) seem to have
a tendency to concentrate around the region of x = 0, moving to the right to the
matching point between the two pieces of the function of y. Due to the simple
nature of the data before this point, the model focuses the inducing points originally
positioned in this region and places them closer to x = 0, helping it when modeling
the change in behavior between the two parts of y. On the other side, for the x > 0
region, the inducing points are distributed more homogeneously to model the sine
behavior. Furthermore, the right-most points seem to stray away from the region of
the dataset, which is caused by employing far more inducing points than needed in
such a simple dataset. This has been done for illustration purposes only, which also
causes the overlapping of points across the dataset when there are more than what
are needed in the same region. From all of this, we conclude that SIP seems able to
distinguish between simpler and more complex regions of the data, and employs its
resources effectively to model both at the same time.

B.4 Computational Details for the Convergence
Experiments

The convergence experiments have been conducted employing the same computational
resources for each method: Each of them employed on its own 2 CPU Intel(R) Xeon(R)
Gold 5218 CPU at 2.30GHz (16 cores, 22 Mb L3 cache), [32 cores in total], with 192
GB RAM at 2,4 GHz. In the experiments, only the training time is reported. The
same setup is used for both experiments (Airplanes delay and Year Prediction MSD
datasets).

B.5 Regression Results for UCI Datasets
We include here the mean results for the UCI datasets for each method and metric.
Each method is trained on 20 different random train/test splits of the dataset, and
the values reported here represent the mean performance of each method in each
dataset for the given metric in each case. For each dataset, the winning method is
highlighted in bold while the one in second place is marked in red (in LL, the higher
the better; in RMSE and CRPS, the lower the better). This is done as well for the
rankings.
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