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Quiero dedicar unas ĺıneas a expresar mi más profundo y sincero agradecimiento

a todas las personas que con su ayuda y apoyo han colaborado en la realización

de esta tesis. Y es que son muchas las personas que han estado a mi lado en

estos años, ayudándome y dándome su apoyo y confianza. Como se suele decir,

si viajas solo llegarás antes, pero en compañ́ıa llegarás más lejos. Yo siento que
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Preface

This thesis was motivated by the interest in analysing and modelling financial

time series which have specific characteristics, as the so called stylized facts.

The time series models that are more suitable for analysing financial series are

GARCH and COGARCH models. These models have been largely used in the

last years to model assets, indexes or exchange rates, probably due to the special

treatment that they apply to volatility.

It is well known that volatility is essential to understand the nature of financial

series, and in the last years researchers have focused on modelling them. Sub-

sequently, both models GARCH and COGARCH include two equations, one for

the process (considering the returns in the case of GARCH models, and the ob-

served values in the case of COGARCH ones) and other equation for the process

variance or the volatility.

In this thesis I propose several algorithms, based on different Bayesian me-

thods, which can be used to estimate the model parameters for both, GARCH

and COGARCH models, obtaining valuable solutions in simulation studies and

over real time series.

In Chapter 1, I introduce the concepts and models used in this work, including

the definition of ARCH, GARCH and COGARCH models an their properties. In

this chapter, the behaviour of COGARCH models when parameters change is

analysed in order to understand how parameters rule the behaviour of the series,

and how to estimate them properly.

In Chapter 2 several methodologies to estimate COGARCH parameters have

been reviewed, highlighting the approximation to the COGARCH(1,1) model of
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Maller et al. (2008). This approximation is specially relevant in this work, be-

cause it is the base to compute the Bayesian estimators for the COGARCH model

parameters proposed in this thesis. The first approach, based on a MCMC metho-

dology is introduced, addressing two different situations: when we have several

sample paths of the COGARCH process, and when using only one trajectory. I

analyse the good behaviour of the estimates by using simulated and real data

sets. Codes have been developed in R and they are included in an Appendix.

Chapter 3 introduces the estimators for GARCH and COGARCH model pa-

rameters based on a data cloning methodology. This method constitutes a com-

bination of Classical and Bayesian frameworks which provides estimates valid for

both, Classical and Bayesian researchers. It uses a simple Monte Carlo algorithm

to approximate maximum likelihood estimates. I use this technique in GARCH

and COGARCH model parameters, and I analyse their accuracy by using simu-

lated and real data. The obtained results are published in Maŕın et al. (2015).

A Hamiltonian Monte Carlo approach is introduced in Chapter 4 for GARCH

and COGARCH model parameters. The goal of this methodology is to provide a

Bayesian algorithm which obtains, in a more efficient way, the posterior distribu-

tion of the parameters of interest. The estimates obtained by using this method

may be considered equivalent to the obtained by standard MCMC algorithms,

but computational times are significantly smaller, especially when we estimate

parameters in the complex COGARCH models. I deal with the estimation of

GARCH and COGARCH model parameters, with simulated and real data sets

in order to asses their quality. Codes have been developed in R and they are

included in an Appendix.

Finally, in Chapter 5, an Approximated Bayesian Computation (ABC) frame-

2



work has been applied in the same context. ABC background provides a good

solution to estimate parameters in complex models, when the maximum likeli-

hood function is unknown or difficult to approximate, like COGARCH models.

In order to estimate GARCH model parameters I have developed two algorithms:

an ABC and an ABC-MCMC scheme. But the most valuable technique intro-

duced in this chapter is the ABC method for COGARCH model parameters,

which provides efficient estimates without using the likelihood function. The R

codes for all algorithms can be found in the Appendix.
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0.1 Resumen

Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo mod-

elizar el comportamiento estad́ıstico de las series financieras. En este sentido, se

puede afirmar que los modelos que mejor recogen las especiales caracteŕısticas de

estas series son los modelos de heterocedasticidad condicionada en tiempo dis-

creto, si los intervalos de tiempo en los que se recogen los datos lo permiten, y en

tiempo continuo si tenemos datos diarios o datos intrad́ıa.

Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos

para la estimación de los parámetros de los modelos GARCH en tiempo discreto

(Bollerslev (1986)) y COGARCH en tiempo continuo (Klüppelberg et al. (2004)).

En el caṕıtulo 1 se introducen las caracteŕısticas de las series financieras y se

presentan los modelos ARCH, GARCH y COGARCH, aśı como sus principales

propiedades.

Mandelbrot (1963) destacó que las series financieras no presentan estacionarie-

dad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados śı

están correlacionados. Señaló también que la volatilidad que presentan no es cons-

tante y que aparecen clusters de volatilidad. Observó la falta de normalidad de

las series financieras, debida principalmente a su comportamiento leptocúrtico, y

también destacó los efectos estacionales que presentan las series, analizando cómo

se ven afectadas por la época del año o el d́ıa de la semana. Posteriormente Black

(1976) completó la lista de caracteŕısticas especiales incluyendo los denominados

leverage effects relacionados con cómo las fluctuaciones positivas y negativas de

los precios de los activos afectan a la volatilidad de las series de forma distinta.

Engle (1982) definió el modelo ARCH como medio para incluir algunas de

4



las caracteŕısticas presentes en las series financieras, centrándose sobre todo en

la modelización de la volatilidad. Para ello este modelo incluye en su definición

dos expresiones, una que modeliza el proceso conductor del modelo y otra, su

proceso varianza. Pero a pesar de incluir muchas de las particularidades de las

series financieras como la heterocedasticidad, la falta de autocorrelación de los

incrementos o las distribuciones leptocúrticas, existen otras caracteŕısticas como

los leverage effects, que no aparecen en los procesos ARCH. Por otro lado, estos

imponen importantes restricciones sobre los parámetros, de modo que se hace

necesario incluir un gran número de términos para modelizar la volatilidad ade-

cuadamente.

Para solventar estos inconvenientes se establecieron los modelos GARCH

(Bollerslev (1986)), que añaden respecto a los modelos ARCH un término autor-

regresivo en su expresión de la varianza. Estos modelos mejoran la modelización

de la volatilidad sin necesidad de incluir un gran número de términos, pero no

recogen los leverage effects y no son capaces de reproducir las colas altas de las

distribuciones de las series financieras reales. No obstante, en la actualidad son

los más utilizados en modelización financiera porque a pesar de estos inconve-

nientes resultan de gran utilidad en términos de predicción de series financieras.

En esta tesis doctoral, entre otros temas, trataremos el enfoque bayesiano de estos

modelos.

Por su parte, los modelos COGARCH ampĺıan los modelos de heterocedasti-

cidad condicionada en tiempo discreto, permitiendo modelizar situaciones en las

que los procesos no presentan intervalos de tiempo equidistantes, sino que se pro-

ducen en intervalos de tiempo de diferente longitud, como ocurre en las series de

datos diarios o intrad́ıa. De entre los modelos GARCH en tiempo continuo que se

han establecido, se puede destacar el COGARCH de Klüppelberg et al. (2004) por
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presentar buenas caracteŕısticas para la modelización de series financieras, dado

que tanto el proceso conductor como su proceso varianza comparten la misma

fuente de aleatoriedad en términos de un proceso de Lévy. En esta tesis doctoral

se estudia también el enfoque bayesiano de estos modelos.

En el caṕıtulo 2, tras presentar una revisión de los métodos de estimación más

relevantes que se han propuesto para los modelos COGARCH, se introduce un

modelo bayesiano basado en una metodoloǵıa MCMC y en la parametrización de

Maller et al. (2008), donde se estiman sus parámetros a partir de una o varias

trayectorias del proceso.

Primero se presenta la estimación basada en el método de los momentos,

desarrollada por Haug et al. (2005). Este método ofrece buenos resultados en

la práctica, pero presenta dos inconvenientes importantes. El primero es que,

para poderlo utilizar, debemos asumir que los datos se presentan en tiempos

equidistantes, y el segundo es que requiere el uso de varias trayectorias del proceso

para obtener estimaciones de calidad, hecho que en la práctica es poco realista.

Posteriormente se presenta el modelo de Maller et al. (2008) donde se dis-

cretiza el modelo COGARCH en intervalos de tiempo no equidistantes, de modo

que para intervalos de tiempo equidistantes resulta equivalente a un proceso

GARCH. Si se toma el ĺımite sobre el número de intervalos no equidistantes

de una sucesión de particiones sobre el tiempo (llevando aśı el proceso a tiempo

continuo) el modelo converge al COGARCH. En esta tesis doctoral se utiliza

este enfoque como base para los métodos de estimación bayesianos. A partir

de esta discretización Maller et al. (2008) determinan una función de pseudo-

verosimilitud, y se estiman los parámetros del COGARCH mediante su maxi-

mización. Sin embargo, para que las estimaciones sean más precisas, al igual que
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en el estimador basado en el método de los momentos, es conveniente también el

uso de múltiples trayectorias.

Finalmente, se presenta el método de estimación bayesiana de Müller (2010),

que éste compara con el método de pseudo-máxima verosimilitud de Maller et al.

(2008). El algoritmo que plantea genera los tiempos de salto y los parámetros

del modelo, incluyendo el valor inicial de la volatilidad y la intensidad del salto

en cada iteración. El resultado es un algoritmo bastante complejo, en el que es

conveniente partir de valores iniciales que no estén muy alejados de los verdaderos

valores a estimar. En este sentido, el autor propone como valores iniciales para

los parámetros, las estimaciones de pseudo-máxima verosimilitud de Maller et al.

(2008).

La aportación original en este caṕıtulo se centra en un modelo bayesiano

basado en un algoritmo estándar MCMC, para la estimación de los parámetros

del modelo COGARCH. Al estar basado en la misma aproximación al COGARCH

usada por Maller et al. (2008), este algoritmo a diferencia del de Müller (2010),

no estima los intervalos de tiempo en los que aparece el proceso, dado que en

observaciones reales podemos suponer que son valores fijos conocidos previamente.

Para simplificar, se asume, al igual que en la aproximación de Maller et al. (2008),

que la intensidad de los saltos y el valor inicial de la volatilidad son constantes.

Se obtienen buenos resultados en la práctica que sólo requieren el uso de una

trayectoria del proceso. Se estudian, no obstante, los resultados obtenidos con

varias trayectorias del proceso y se comprueba emṕıricamente que los resultados

son similares a los obtenidos partiendo de una única trayectoria.

En el caṕıtulo 3 se describe la metodoloǵıa data cloning y se aplica en el caso

de los modelos GARCH y COGARCH.
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En el procedimiento de estimación utilizando el método data cloning, se apro-

xima el estimador de máxima verosimilitud mediante el uso de algoritmos MCMC

en modelos jerárquicos complejos donde los métodos estándar de máxima verosi-

militud no funcionan adecuadamente.

La idea principal en estos procedimientos es clonar los datos (la serie financiera

en el contexto que nos ocupa) y asumir que son distintas trayectorias simuladas

del mismo modelo, que han dado lugar al mismo resultado. En esta situación, la

función de verosimilitud resulta ser la que tendŕıamos para una trayectoria, pero

elevada al número de trayectorias clonadas (número de clones). Para estimar

los parámetros del modelo se aplica un algoritmo MCMC sobre las trayectorias

clonadas, obteniéndose aśı las distribuciones a posteriori de los parámetros a

estimar.

En el modelo GARCH se presenta un algoritmo en cinco pasos sencillos que,

utilizando un pequeño número de clones, es capaz de estimar los parámetros

del modelo de un modo eficiente, como se comprueba en un estudio de simu-

lación. Los resultados obtenidos pueden compararse con los obtenidos aplicando

el algoritmo Metropolis-Hasting planteado por Nakatsuma (1998). Se puede com-

probar que ambos presentan una eficiencia similar, aunque en el caso de utilizar

la metodoloǵıa data cloning los estimadores se deben interpretar en un contexto

frecuentista, que permite calcular intervalos de confianza estándar.

El algoritmo basado en el data cloning se aplica también en una serie de

datos reales: los rendimientos semanales del Nasdaq 100 desde enero del año

2000 hasta noviembre de 2012. Tras comprobar que el modelo que mejor se ajusta

al comportamiento de la serie es un GARCH(1,1), se estiman sus parámetros y

se comparan las estimaciones con las obtenidas mediante el método MCMC de
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Nakatsuma (1998). Se obtienen valores similares tanto de las estimaciones de los

parámetros como de sus desviaciones estándar.

Por otro lado, se aplica la metodoloǵıa data cloning en el modelo COGARCH.

En este sentido, teniendo en cuenta la complejidad del modelo, el algoritmo resul-

tante es más eficiente que el de Maller et al. (2008), puesto que permite obtener

estimaciones de máxima verosimilitud y sus correspondientes intervalos de confi-

anza, partiendo únicamente de una trayectoria del proceso.

Se comprueba emṕıricamente que las estimaciones obtenidas y sus desvia-

ciones t́ıpicas, son similares a las que mostraba el estimador basado en un método

MCMC presentado en el caṕıtulo 2. En este caso, se obtienen intervalos de con-

fianza que incluyen en todos los casos a los verdaderos valores de los parámetros.

Se aplica también el algoritmo de data cloning a la estimación de los parámetros

del COGARCH(1,1) para modelizar la serie de datos diarios del ı́ndice Nasdaq

100, desde enero de 2008 hasta diciembre de 2012. De nuevo, los resultados

obtenidos son similares a los que muestra el estimador basado el métodos MCMC

presentado en el caṕıtulo 2.

En el caṕıtulo 4 se describe la metodoloǵıa Hamiltonian Monte Carlo (HMC)

y se usa como base para la implementación de dos nuevos métodos de estimación

de los parámetros, en los casos del GARCH y del COGARCH.

Los algoritmos y resultados obtenidos mediante el uso de la metodoloǵıa

data cloning para la estimación de los parámetros de los modelos GARCH y

COGARCH están publicados en Maŕın et al. (2015).

Cuando se trata de aplicar algoritmos MCMC sobre modelos complejos, como

son los modelos GARCH y COGARCH, la convergencia de las cadenas puede

resultar muy lenta. La metodoloǵıa HMC resulta ser una mejora sustancial que
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se basa en la definición de un vector de variables auxiliares denominadas variables

momento.

La metodoloǵıa HMC se puede resumir en 3 pasos: un primer paso en el que

se generan los valores iniciales de los parámetros del modelo y de las variables

momento; un segundo paso en el que se implementa el denominado algoritmo

Leapfrog, que depende de la derivada del logaritmo de la función de densidad a

posteriori y de un factor de escala; y un tercer paso Metropolis-Hasting para la

aceptación o rechazo de los valores obtenidos en el paso anterior.

Los algoritmos implementados en los modelos GARCH y COGARCH son

similares y se obtienen en ambos casos buenos resultados tanto con datos simu-

lados como con datos reales. Para comparar los resultados obtenidos con los

correspondientes a los caṕıtulos 2 y 3, se utilizan los mismos datos. Resulta

de especial interés el algoritmo presentado para la estimación de los parámetros

del COGARCH, en el que la metodoloǵıa HMC resulta más eficiente y permite

reducir los tiempos de estimación.

Finalmente, en el caṕıtulo 5 se presenta una metodoloǵıa relativamente re-

ciente, denominada Approximate Bayesian Computation (ABC), y se utiliza para

la estimación de los parámetros de los modelos GARCH y COGARCH.

La idea básica de los métodos ABC consiste en generar los parámetros a partir

de unas distribuciones a priori, con ellos simular una muestra de datos y tomar los

parámetros como válidos si la muestra obtenida resulta suficientemente parecida

a los datos originales, basándose en unos estad́ısticos de bondad de ajuste.

Este algoritmo ABC se puede complementar incluyendo procedimientos de

aceptación o rechazo mediante pasos Metropolis-Hasting en términos de un algo-

ritmo denominado MCMC-ABC. En ambos casos, la definición de los estad́ısticos
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que miden la aproximación entre las muestras simuladas y la muestra original re-

sulta ser el componente del algoritmo más relevante.

En este caṕıtulo se presentan dos algoritmos para la estimación de los pará-

metros del modelo GARCH: un método ABC y otro MCMC-ABC. En modelos

GARCH, como estad́ısticos de ajuste se proponen la media, la varianza y la

desviación mediana absoluta. Sin embargo, es conveniente acotar los valores

propuestos de las distribuciones a priori para reducir los tiempos de computación.

Con este fin, se acotan las distribuciones a priori en un entorno de los estimadores

de pseudo-máxima verosimilitud.

La metodoloǵıa ABC resulta de especial interés en la estimación de mo-

delos COGARCH, dado que no es necesario utilizar las funciones de pseudo-

verosimilitud para obtener los estimadores. En este caso se propone un algoritmo

ABC para la estimación de los parámetros del modelo, basado en la comparación

de cinco estad́ısticos: la mı́nima volatilidad del proceso, el rango de la volatili-

dad del proceso, la correlación entre los cuadrados de los valores consecutivos del

proceso, la varianza y la desviación mediana absoluta.

De nuevo resulta conveniente acotar los valores propuestos de las distribu-

ciones a priori basándose, en este caso, en un entorno de los estimadores obtenidos

por el método de los momentos. Cuando se aplica el método a datos simulados, se

obtienen errores estándar menores que los obtenidos en el resto de metodoloǵıas

presentadas en los caṕıtulos previos.

Con datos reales se puede comprobar que las estimaciones obtenidas están

en ĺınea con las del resto de metodoloǵıas presentadas en los caṕıtulos anteriores,

aunque de nuevo se puede apreciar cómo los errores estándar son sustancialmente

inferiores en la mayoŕıa de los parámetros.
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Se concluye, por tanto, que las diferentes metodoloǵıas bayesianas presen-

tadas en esta tesis doctoral ofrecen soluciones válidas para la estimación de los

parámetros en modelos de heterocedasticidad condicionada en tiempo discreto,

como los modelos GARCH y en tiempo continuo como los modelos COGARCH.

0.2 Abstract

This thesis has the purpose of understand, analyse and specially modelize the

statistical behaviour of financial series. In this sense, it can be affirmed that the

models which include the financial series stylized facts better are the conditional

heteroskedascity models in discrete or continuous times, depending on the series

nature.

With this objective, this thesis proposes different bayesian estimators to es-

timate the model parameters of discrete time GARCH models (from Bollerslev

(1986)) and continuous time COGARCHmodels (from Klüppelberg et al. (2004)).

In Chapter 1 the special characteristics of financial series are described and

ARCH, GARCH and COGARCH models with their properties are presented.

Mandelbrot (1963) highlighted that financial series do not present stationarity

and their increments do not present autocorrelation, but their squares are corre-

lated. He also pointed out that the volatility they present is not constant and

appear in volatility clusters. Mandelbrot (1963) identified the absence of norma-

lity of financial series, principally due to their leptokurtic shape. He highlighted

the seasonal effects this series present, analyzing how their are affected by the

time of the year or the day of the week. Afterward Black (1976) completed the

list of stylized facts including the called leverage effects related to the different
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way the positive and negative fluctuations of assets prices affect to the volatility

of the series.

Engle (1982) defined the ARCH model to include some the characteristics of

financial series, especially focus on modelizing the volatility. With this purpose

this model includes in its definition two expressions, one to modelize the driving

process and one more to the variance process. But despite of including several

stylized facts as heteroskedasticity, lack of autocorrelation in the increments or

the leptokurtic distributions, some others like the leverage effects are not incorpo-

rated in ARCH processes. On the other hand, these processes impose important

restrictions over parameters that make necessary including a big number of terms

to modelize volatility properly.

To solve these issues GARCH models where established by Bollerslev (1986)

adding to ARCH models an autorregresive term in variance expression. These

models improve the volatility modelization without requiring a large number of

terms, but do not include leverage effects and they are not able to reproduce the

heavy tails real series present. Anyway, nowadays they are the most largely used

to modelize financial series because, despite of their disadvantages they provide

good enough predictions. In this thesis, the bayesian approach to this model will

be discussed among other issues.

COGARCH models extend the conditional heteroskedasticity models in dis-

crete time, to let modelizing processes with non equally spaced times as daily or

intra-day series. Among all continuous times GARCH models can be highlighted

the COGARCH model of Klüppelberg et al. (2004) because it presents good char-

acteristics to modelize financial series, considering that the driving process and

variance share the same random source in terms of a Lévy process. In this thesis
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is also analyzed the bayesian approach to these models.

In Chapter 2, after reviewing the most relevant estimation methods proposed

for COGARCH models, a bayesian estimator based on a MCMC methodology

according to Maller et al. (2008) parametrization is proposed, where model pa-

rameters are estimated from one or several process sample paths.

First the estimation based on power moment method from Haug et al. (2005)

is described. This method provides good results in practice but present two

important shortcomings. The first is that to use it, it is necessary assume that

data has equally spaced times and the second is that it requires using several

sample paths of the process to obtain high quality estimations and this is not

realistic in practice.

Afterward, Maller et al. (2008) model is reviewed. In this approach the

COGARCH model is discretized in unequally spaced times and if equally spaced

times are considered, the resulting process is equivalent to a GARCH process.

Considering the limit over the number of unequally intervals of a succession of

partitions over the times (making the process continuous), the model converges

to COGARCH. In this thesis, this approach is used as the base of the intro-

duced bayesian estimation methods. From this discretization Maller et al. (2008)

obtained a pseudo likelihood function and estimate the COGARCH parameters

with its maximization. But to obtain accurate estimations with this method, as

with the power moments estimator, is advisable to use several sample paths of

the process.

Finally the estimation method from Müller (2010) is analysed and compared

with the pseudo-likelihood method of Maller et al. (2008). This algorithm pro-

poses generate the jump times, the model parameters, the initial volatility value

14



and the jump size in each iteration. The result is a complex enough algorithm

in which is advisable start from initial values for the parameters not far from the

real values to be estimated. In this sense, the author propose as initial values the

pseudo-likelihood estimations from Maller et al. (2008).

The original contribution in this chapter is a bayesian model based on a stan-

dard MCMC algorithm to estimate the COGARCH model parameters. As it is

based on the approach of Maller et al. (2008), this algorithm does not estimate

the time intervals of the process, as Müller (2010) algorithm does, considering

that, in real series the time points could be assumed as previously known. To

simplify, as in Maller et al. (2008) approximation it is also assume that the jumps

size and the initial value of volatility are constant. This algorithm provides good

estimations in practice by using only one sample path of the process. Anyway,

the obtained results by using several sample paths from the same process are also

analysed and it is empirically proved that the results are similar to the obtained

by using just one trajectory.

In Chapter 3 data cloning methodology is described and applied to GARCH

and COGARCH models.

In the estimation process using data cloning, the maximum likelihood estima-

tor is approximated by using MCMC algorithms in complex hierarchical models

where standard maximum likelihood does not work properly.

The main idea of these procedures is cloning data (financial series in our

context) and assume that we have several sample paths simulated from the same

process which have the same result. In this situation, the likelihood function

is the likelihood function which will be obtained with one trajectory but to the

power of the number of cloned sample paths (number of clones). To estimate the
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model parameters, MCMC algorithm is applied over the cloned trajectories to

obtain the posterior distributions of the parameters to be estimated.

In the GARCH model a five steps algorithm is proposed which, using an small

number of clones is able to estimate the model parameters in an efficient way, as it

is proved in an empirical simulation study. The obtained results can be compared

with the obtained applying the Metropolis-Hasting algorithm from Nakatsuma

(1998). It can be proved that both estimators present a similar efficiency, even

though data cloning estimators should be interpreted in a frequentist context

which let calculating standard confidence intervals.

The algorithm base on data cloning method is also applied over a real financial

series: the weekly returns of Nasdaq 100 from January of 2000 to November of

2012. After verifiying that the model that better fit to the behaviour of this series

is a GARCH(1,1), its parameters are estimated and the estimations are compared

with the obtained by using with MCMC method from Nakatsuma (1998). The

obtained parameters values and its standard deviations are quite similar by using

both methods.

On the other hand, data cloning method is applied to COGARCH model. In

this sense, considering the model complexity, the proposed algorithm result to be

more efficient than the obtained by Maller et al. (2008), because it lets obtaining

maximum likelihood estimations and its corresponding confidence intervals from

just one sample path of the process.

It is proved empirically that the obtained estimations and its standard devi-

ations are similar to the showed by the estimator based on the MCMC method

proposed in chapter 2. In this case, confidence intervals are obtained and include

in all cases the true parameter values. This data cloning algorithm is also applied
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to estimate the model parameters of the COGARCH(1,1) model, which modelize

the daily returns of Nasdaq 100 index from January 2008 to December 2012.

Again the obtained results are similar to the estimations by using the MCMC

algorithm introduced in chapter 2.

The algorithms and the obtained results by data cloning method to estimate

model parameters of GARCH and COGARCH models are published in ?.

In chapter 4 Hamiltonian Monte Carlo (HMC) is described and used as base

to develop two new estimation methods for GARCH and COGARCH parameters.

When we apply MCMC algorithms over complex models as GARCH and

COGARCH models, chains convergence use to be slow. HMC methodology prove

to be a substantial improve based on the definition of a vector of auxiliary vari-

ables called momentum variables.

HMC methodology can be summarized in 3 steps: A first step to generate the

initial values for model parameters and for momentum variables ; a second step

to implement the called Leapfrog algorithm, which depends on the derivative

function of the logarithm of the posterior density function and on a scale factor;

and a third step to include the accept-reject Metropolis-Hasting method for the

previously obtained values.

The GARCH and COGARCH algorithms are similar and provide good results

over simulated and real series. To compare the results with the obtained in

chapters 2 and 3, the same series are used. It is specially interesting the proposed

algorithm to estimate COGARCH parameters because HMC method provides a

more efficient algorithm which reduces the estimation time.

Finally, in chapter 5 a rather new methodology called Approximate Bayesian
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Computation (ABC) is described and used to estimate the model parameters of

GARCH and COGARCH models.

The main idea of ABC methods is generate the parameter values from the

prior distributions, simulate with them a sample path and consider the proposed

values as good if the obtained trajectory is similar enough to the original data,

considering several goodness of fit statistics.

This basic ABC algorithm can be completed by including accept-reject pro-

cedures by means of Metropolis-Hasting steps in term of an algorithm called

MCMC-ABC. In both cases, the statistics definition to measure the nearness be-

tween the simulated and original sample paths is the most relevant part of the

algorithm.

In this chapter, two algorithms to estimate GARCH parameters are proposed:

one based on an ABC method and another based on a MCMC-ABC method. In

GARCH models, as goodness of fit statistics, mean, variance and median absolute

deviation are proposed. Nevertheless, it is advisable to bound the proposed values

from prior distributions to reduce the computation time. In order to do it, prior

distributions are bounded by using the pseudo-maximum likelihood estimations.

ABC method is specially interesting to estimate COGARCH models, conside-

ring that it does not required using the pseudo-likelihood function to estimate. In

this case, an ABC algorithm is proposed to estimate de model parameters based

on comparing five statistics: the minimum process volatility, the range of the

process volatility, the correlation between the squared consecutive process values,

the process variance and the process median absolute deviation.

In this case is also advisable to bound the prior proposed values, based now on

a range around the power moment estimations. Applying this method over simu-
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lated data, smaller standard errors than with the rest of methodologies described

in this thesis are obtained.

With real series can be verified that the obtained estimations are similar to the

rest of proposed methods, in spite of, again it could be appreciated that standard

errors are significantly smaller for most of parameters.

With everything it can be concluded that the different bayesian methods pro-

posed in this thesis offer valid solutions to estimate model parameters in condi-

tional heteroskedaticity models in discrete times like GARCH and in continuous

times like COGARCH.
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Chapter 1

Introduction to COGARCH
Models
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1.1 Introduction

The origin of stock market is not clearly established, and it could be said that it is

as old as the commercial sector, which from its origins addressed transactions like

nowadays in the actual stock markets. It may be considered that stock market

was born as an institution in the middle-ages festivals of west Europe, at the end

of the fifteenth century, although earlier, in the 12th century in France, there

were people who managed and standardized debts from farming communities in

representation of banks. They could be called the first brokers.

Despite the interest of this kind of transactions, finance was not considered as

a science until the nineteenth century, when companies began to grow faster and

they merged due to the industrial revolution. In those days, stock market started

working as it does nowadays and researchers started analysing the behaviour of

the markets and their financial series.

From the 50th decade of the twentieth century, financial markets were largely

analysed in economy. At the beginning, researchers based their theories in the

efficient market hypothesis (EMH). This hypothesis basically maintains that new

information is at last known by all investors, almost at the same time, and con-

sequently is immediately incorporated to the market prices. This means that

an efficient market includes prices, whose values incorporate all the relevant in-

formation and are updated immediately and independently. When modelling

financial series, EMH means that prices returns are independent and identically

distributed random variables (iid) which implies that market has no memory,

and past returns are not useful to predict the future ones. This paradigm was

largely used in financial analysis due to the simplicity of the iid returns and the

linear relation among variables. But it was obvious that the forecast capability of
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models based on this hypothesis was no very good. Thus, in the 70th decade, the

most commonly used technique to analyse financial series was the Box-Jenkins

methodology, which was established by Box et al. (1970). In this methodology,

time series were analysed by ARIMA models, which are easy to implement due

to their simplicity, but they show the restriction of assuming marginal and con-

ditional constant variances.

Computation advances at the end of the twentieth century, allowed researchers

in economy and finance to analyse the financial market behaviour under new per-

spectives. The new paradigm was based in a non-linear structure. This new way

of thinking started in the middle 80th decade, when researches from physics ques-

tioned the EMH paradigm. In those days stock markets showed a strong volatility

which made necessary to look for new theories to explain the movements of finan-

cial markets, considering the behavior of market agents. The new framework was

based in non-linear models as fractal models, chaos theory or GARCH models,

and it was quite a revolution in the quantitative finance field.

Fractal mathematics includes models with long term persistence which is a

generalization of short term memory ARIMA models. These models became

specially important with the introduction of the fractional differentiation operator

by Hosking (1981).

Chaos theory can be understood as the randomness generated by deterministic

systems, by means of the sensibility of chaotic systems to their initial conditions.

Chaotic systems may be considered as a mix of randomness and determinism

which provide a new point of view to analyse events, that may be recognized

initially as random but they evolve with time. Chaotic systems are based in

simple rules that, as times goes by, provide complex behaviour, indistinguishable
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with respect to the randomness. Therefore, sometimes it is used the term pseudo-

randomness to talk about this kind of behaviour.

By the other hand, non-linear stochastic modelling addresses about the non-

stationary of increments assuming the presence of heteroskedasticity in the model.

This approach includes ARCH, GARCH and COGARCHmodels and their deriva-

tives. The special importance that volatility has nowadays when analysing finan-

cial series, make these models being specially important, because they let analyse

both, returns and volatilities, at the same time. In this PhD thesis, different

estimators for GARCH and COGARCH models parameters are analysed using

different Bayesian methodologies.
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1.2 Financial series and their stylized facts

Financial series present some particular characteristics which make them quite

difficult to analyse. Mandelbrot (1963) observed and analysed these character-

istics, which he called stylized facts and, in the following years, other authors

continued to analyse the difficulties that financial series present, in terms of pre-

diction tasks.

Figure 1.1: Ibex-35 evolution between 2009 and 2014

As a typical example to illustrate the stylized facts of financial series, in figure

1.1 it is shown the evolution of the Ibex-35 index between 2009 and 2014. It may

be observed that its behaviour could be described as wild, and for this reason it is

expected to be very difficult to undertake predictions. The volatility of this series

is represented in figure 1.2, and it is very clear that it changes in time, making it

necessary to include volatility in the model.
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Figure 1.2: Volatility of Ibex-35 between 2009 and 2014

Despite the fact that most financial series have a common performance de-

pending on the nature of the asset, they may be measured in terms of different

units. For example, stock prices from companies are measured in the monetary

units of the market that they are quoted, but indexes, or interest rates are usually

measured in points. Difference among units could be a problem when we try to

compare among time series. Furthermore, it is generally more relevant to analyse

the profitability of the assets instead of the values they have. In order to do it,

instead of considering the price, it is better to define the increment of the price,

in terms of

xn = log

(
pn
pn−1

)

where pn is the price of the assets in the market in time n, and pn−1 is the price

in the previous time. Using this transformation, the evolution of the Ibex-35

between 2009 and 2014 is shown in figure 1.3.

26



Figure 1.3: Returns of Ibex-35 between 2009 and 2014

These increments show clearly the wild behaviour of random walks, where

values could be positive or negative and the volatility changes along the time.

This fact illustrates the random walk characteristically behaviour of financial

series.

Figure 1.4 shows the volatility of returns, which is slightly different than the

volatility of stock prices, because it does not accumulate the previous jumps and

it just shows the daily volatility.

The stylized facts are statistical irregularities that were put forward by Man-

delbrot (1963), but in the following years other authors found out new character-

istics of financial series to be included as stylized facts. They are quite difficult to

reproduce with standard stochastic models, but stylized facts appear in a large

list of financial series of different nature like interest rates, exchange rates, stocks

and option prices.
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Figure 1.4: Volatility of returns of Ibex-35 between 2009 and 2014

Some of the most important characteristics of financial series or stylized facts

are listed below:

• Non-stationarity

Sample paths of financial series have usually an extremely random be-

haviour (see i.e. figures 1.1 or 1.3) which is quite similar to a random walk.

Nevertheless, in most cases the second order moments of this kind of series

are stationary. This is an useful property which may be used to analyse

and model them.

• Non autocorrelated price variations

Financial series usually present small autocorrelations, which make their

correlogram looks quite similar to that obtained in a white noise series. This

type of behaviour is observed when undertaking daily, weekly or monthly
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series, but in case of smaller time periods (minutes or even seconds) auto-

correlation becomes higher. This is due to the called microstructure effects.

• Squared price returns autocorrelated

In financial series, while returns are uncorrelated, their square values and

their absolute values present significant autocorrelation which decay slowly.

Absolute returns present higher autocorrelation than square returns.

• Volatility clustering

Returns usually present volatility clustering, that is, large changes tend to

be followed by large changes and small changes tend to be followed by small

changes. For example, in Ibex-35 between 2009 and 2014 (Figure 1.4, and

Figure 1.3), there are periods of high volatility and periods of low volatil-

ity. These two different situations do not present any periodic behaviour.

Volatility clustering shows that financial series are heterocedastic and it is

not possible to apply the standard Box-Jenkins methodology (Box et al.

(1970)).

• Heavy-tails distributions

The empirical distribution plot of daily returns shows a non-Gaussian be-

haviour. In general, when applying to daily returns any normality test, the

normality hypothesis is usually rejected. The main reason arises because

financial series are usually leptokurtic and they present fat tails.

Figure 1.5 shows the histogram of the standardized daily returns of Ibex-35

between 2009 and 2014, and the curve of the standard normal distribution.

It may be observed that the distribution of data has higher kurtosis than

the normal distribution.
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Figure 1.5: Density function of Ibex between 2009 and 2014

As data frequency increases, for example in monthly series, the distribution

is closer to the normal distribution.

• Leverage effects

Leverage effects concepts were introduced by Black (1976). They play a

role in the way which positive and negative past values affect to volatility.

Black (1976) observed the relation between the decreasing of assets prices

and high volatilities. Usually, negative returns increase volatility more than

positive ones, namely, volatility has higher correlation with negative returns.

• Calendar effects

It is well known that the time at which returns are observed, as the day of a

week or the season in a year, affects them significantly. For example, at the

end of a week or the previous days before holidays, the stock prices use to

go slightly down. This is mainly due to risk aversion of investors who know
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that, if the market is going to be closed for a large period of time, unexpected

events can change dramatically the behaviour of the stock market.

Seasonality can influence prices, because volatility uses to increase after a

long period of time when markets are closed. This is because information

cumulated during breaks is usually reflected in prices. By the other hand,

events that happen when markets are open have more influence in prices

than those in periods of time when markets are closed.

In this way, in order to assume the previous characteristics, stylized facts must

be included in models to undertake the analysis of financial series.

1.3 ARCH and GARCH Models

In this section, we introduce the ARCH and GARCH models that can include

time-varying volatility and address to analyse time series which present het-

eroskedasticity. They also include most of the stylized facts presented in the

previous section. Furthermore, they show a simple linear structure that supplies

a clear basis to the analysis and estimation of financial time series.

1.3.1 ARCH Models

ARCH models were introduced by Engle (1982) who proposed to model the

volatility as a linear function of the past returns. In this way, ARCH models en-

able to consider uncorrelated time series assuming positive correlation of square

returns. It is assumed that the volatility, σ2
n is a random variable and returns

depend on a sequence of random errors, independent and identically distributed

ϵn. The definitions of ARCH(1) and ARCH(q) processes are
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Definition 1. ARCH(1) process.

Given that the volatilities σ2
n are stationary and independent random variables

and, assuming that ϵn, called innovations, is a sequence of random variables,

independently and identically distributed, the process Yn is an ARCH(1) model if

Yn = σnϵn where σ2
n = β + λY 2

n−1, n ∈ N

where β and λ are parameters satisfying β > 0, λ ≥ 0 to guarantee a positive

marginal variance. �

The model presents conditional autoregressive heteroskedastidity of first or-

der.

Definition 2. ARCH(q) process.

Given that the volatilities σ2
n are stationary and independent random vari-

ables and, assuming that ϵn is a sequence of random variables, independently and

identically distributed, the process Yn is an ARCH(q) model if

Yn = σnϵn where σ2
n = β +

q∑
i=1

λiY
2
n−1, n ∈ N

where β and λi are parameters satisfying β > 0, λi ≥ 0 to guarantee a positive

variance. Now it is also required that
∑q

i=1 λi < 1 to ensure that the process σ2
n

is stationary. �

With this structure, it may be noticed that a high value of past squared

returns, Y 2
n−i, provides a high conditional variance in time n, σ2

n, which involves

obtaining high values of Y 2
n with a higher probability, because Y 2

n = σ2
nϵ

2
n.

Therefore, in ARCH processes large returns are probably followed by big ones.

This implies that the squared returns present correlation and high variance too.
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This characteristic can explain the volatility clustering that real financial series

show in practice.

The process ϵn is defined as a standardized white noise, where E[ϵn] = 0 and

E[ϵ2n] = 1.

Properties of ARCH models

• In ARCH models, the conditional and marginal means of Yn are equal to

zero,

E[Yn] = E[σnϵn] = E[σn]E[ϵn] = 0,

E[Yn|Fn−1] = E[σn|Fn−1]E[ϵn] = 0,

where Fn−1 represents all the information related to the series in n− 1 and

assuming that volatilities and innovations are independent.

• The conditional variance is

E[Y 2
n |Fn−1] = σ2

n = β +

q∑
i=1

λiY
2
n−1.

• The marginal variance is

V ar[Yn] = E[Y 2
n ] = E[E[Y 2

n |Fn−1]] = β +

q∑
i=1

λiE[Y
2
n−i]

If the series Yn is stationary, the variance can be obtained as

V ar[Yn] =
β

1−
∑q

i=1 λi

In this way, the condition for the process to be stationary is
∑q

i=1 λi < 1.

• The distribution of Yn is leptokurtic.
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• Yn does not present autocorrelation, but it can be proved that an ARCH(q)

process presents autoregressive dependence of order q among the squared

returns given that

Y 2
n = β + λ1Y

2
n−1 + · · ·+ λqY

2
n−q + ηn

where ηn is a stationary white noise process with mean zero and constant

variance.

Despite ARCH models include many of the stylized facts of financial series,

they show some limitations from a practical point of view (see Tsay (2005)). Some

of the shortcomings of ARCH models can be resumed by the following ideas:

• ARCHmodels assume that positive returns have the same effect over volatil-

ity than negative returns, as far as volatility depends on the squared past

returns. But as Black (1976) remarked, in real financial series it may be ob-

served that volatility is more affected by negative returns than by positive

ones.

• ARCH models are quite restrictive in terms of its parameters. If we con-

sider i.e. an ARCH(1) model, parameter λ21 must be included in the interval(
1, 1

3

)
in order to be finite the fourth order moment of the series. In case

of higher order ARCH models, restrictions became more complex and esti-

mation more difficult.

• To describe a volatility process properly, ARCH models require to include

a high number of lags.

• ARCH models allow to describe the variance behaviour, but they do not

explain the causes of this behaviour.
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1.3.2 GARCH Models

In order to amend some of the shortcomings of ARCH models when modelling

financial series, Bollerslev (1986) introduced GARCH models as an extension

of them. This extension includes an autoregressive term to define the process

variance.

Regarding GARCH models, the volatility of the series (σ2
n) is assumed to

be a random variable, and ϵn is a sequence of random variables, independent

and identically distributed, with mean equal to 0 and variance equal to 1. The

innovations ϵn are usually assumed to follow a normal or a t-Student distribution.

Definition 3. GARCH(1,1) process.

Assuming that volatilities σ2
n are random variables and ϵn is a sequence of

random variables, independently and identically distributed, then Yn follow a

GARCH(1,1) process model if

Yn = σnϵn

where the volatility process is

σ2
n = β + λY 2

n−1 + δσ2
n−1 (1.1)

for n ∈ N, β > 0, λ ≥ 0, δ ≥ 0 and λ + δ ≤ 1. We consider also that ϵn are

normally distributed N(0, 1). �

If δ = 0 the term σ2
n−1 vanishes and it is obtained an ARCH(1) model.

In GARCH models, the volatility is also stochastic because of the dependence

of σ2
n on Yn−1. If λ = δ = 0, Yn is just a sequence of random variables with

constant variance equal to β. To exclude this case it is necessary to set λ+δ > 0.
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As in ARCH models, a large value in Y 2
n−1 or σ

2
n−1 provides a higher variance

σn. In this way, large squared returns use to be followed by also large squared

returns, which produce the usual volatility clusters.

One of the advantages of GARCH over ARCH models it that GARCH models

do not require a large number of lags to describe the series properly. In fact, a

GARCH(1,1) model is equivalent to an ARCH(∞) model; the proof is obtained

by using a recursive argument on the definition of the conditional variance

σ2
n = β + λY 2

t−1 + δ
(
β + λY 2

t−2 + δσ2
n−2

)
= · · · =

∞∑
i=0

δiβ + λ
∞∑
i=1

δi−1Y 2
n−i

The general GARCH models, that is, GARCH(p, q) models, are defined as follows

Definition 4. Strong GARCH(p, q) process.

Assuming that volatilities σ2
n are random variables and ϵn is a sequence of ran-

dom variables, independently and identically distributed, then Yn follow a general

strong GARCH(p, q) model if

Yn = σnϵn

where the volatility process is

σ2
n = β +

q∑
i=1

λiY
2
n−i +

p∑
j=1

δjσ
2
n−j (1.2)

for n ∈ N, β > 0, λi ≥ 0 (i = 1, . . . , q), δj ≥ 0 (j = 1, . . . , p), and
∑max(p,q)

i=1 (λi + δi) <

1. We consider also that ϵn are normally distributed N(0, 1).�

The last condition is necessary to guarantee the marginal variance to be po-

sitive and the existence of higher order moments. It implies that the marginal

variance of Yn is finite and the conditional variance is modified with time.

If δj = 0 ∀ (j = 1, . . . , p), terms σ2
n−j are null and it is obtained an ARCH(q)

process.
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Drost and Nijman (1993) introduced the semi-strong GARCH process just

substituting Y 2
n by σ2

n−iϵ
2
n−i in (1.2). Therefore, the variance of the semi-strong

GARCH process is then,

σ2
n = β +

q∑
i=1

λiσ
2
n−iϵ

2
n−i +

p∑
j=1

δjσ
2
n−j, (1.3)

which it can also be written as

σ2
n = β +

r∑
i=1

λi(ϵn−i)σ
2
n−i, (1.4)

where n ∈ N, r = max(p, q), λi = 0 if i > q (i = 1, . . . , q), δj = 0 if j > p

(j = 1, . . . , p) and λi(x) = λix
2 + δi for i = 1, . . . , r.

From expression (1.4), it can be proved that the volatility in a GARCH process

is the solution of an autoregressive equation with random coefficients. By the

other hand, if βj = 0 (j = 1, . . . , p) it is obtained an ARCH(q) process.

The main characteristics of GARCH models are included in the simplest

model, GARCH(1,1), which is used in modelling most of financial series in prac-

tice.

Some of the main properties of the GARCH(1,1) model are shown in the next

section.

Properties of the GARCH(1,1) model

• The conditional and marginal means of Yn are equal to zero, as in ARCH

models.

• The conditional variance is

E[Y 2
n |Fn−1] = σ2

n = β + λY 2
n−1 + δσ2

n−1
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• The marginal variance can be calculated as

V ar(Yn) = E(Y 2
n )

= E[E(y2n|Fn−1)]

= E[E(σ2
n|Fn−1)E(ϵ

2
n|Fn−1)]

= E[β + λY 2
n−1 + δσ2

n−1]

= β + λE[Y 2
n−1] + δE[σ2

n−1]

= β + λV ar[Yn−1] + δE[σ2
n−1]

As Yn is a stationary process with constant variance σ2, V ar(Yn) = V ar(Yn−1) =

σ2. Therefore E(σ2
n) = E(σ2

n−1) = σ2.

Substituting this term in the previous equation we obtain

σ2 = β + λσ2 + δσ2 ⇔ σ2 =
β

1− λ− δ

which requires that λ+ δ < 1, in order to obtain a stationary process.

• If ϵn ∼ N(0, 1), the kurtosis coefficient of Yn is

kur(Yn) =
3[1− (λ+ δ)2]

1− (λ+ δ)2 − 2λ2)
> 3

which requires that 1− (λ+ δ)2−2λ2) > 0 so that the moment of order 4 is

positive. Then, the distribution of Yn will be leptokurtic, as the distribution

of real financial series are.

• In a GARCH(1,1) process all moments of odd order of Yn are zero, hence

the distribution is symmetric. Furthermore, the tails of the distribution

are heavier than the normal one, characteristic which is observed in real

financial series.
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• A GARCH(1,1) model presents a similar dependence for squared observa-

tions as ARCH(1,1) models,

Y 2
n = β + (λ+ δ)Y 2

n−1 + ϵn − δϵn−1

where ϵn is a sequence of random variables, independently and identically

distributed with mean 0 and constant marginal variance ϵn = Y 2
n − σ2

n.

By the other hand, λ+δ is called persistence in financial series and it usually

has a value close to 1.

The correlation function, ρ(k), is

ρ(k) = (λ+ δ)(k − 1)ρ(1)

where

ρ(1) =
λ(1− λδ − δ2)
1− 2λδ − δ2

When k increases, the autocorrelation of squared series decreases in a rate

which depends of the persistence. If λ + δ is near to 1 it corresponds to a

high persistence and the coefficients decrease slower.

Similarly as ARCH models, GARCH models also have some shortcomings.

They can be resumed by the following ideas:

• In GARCH models, positive and negative returns present the same influence

in the volatility, but in real financial series positive and negative returns are

not symmetrical.

• Recent empirical studies show that GARCH processes do not achieve as

heavy tails as the distribution of real financial series, even when using t-

Student distributions for ϵn.
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1.4 COGARCH Models

From the former Black and Scholes papers (Black and Scholes (1973)) it has

been widely assumed that financial series may be modelled using continuous time

models. As GARCH models present some of the most important stylized fact of

the financial series, a continuous time version of them could improve the results

obtained by standard GARCH models.

In discrete time models it is necessary to use a source of randomness included

as a set of random variables, usually independent and identically normally dis-

tributed. In continuous time the role of an equivalent source of randomness is

fulfilled by Brownian motions or Lévy processes.

A Brownian motion is a stochastic process originally introduced as an empiri-

cal way to analyse the erratic movement of coloured pollen grains in a liquid (see

Revuz and Yor (1999)).

Definition 5. A Brownian motion is a stochastic process {Bt, t ≥ 0} which sa-

tisfies the following conditions:

(i) It starts at zero B0 = 0 almost surely.

(ii) It has independent increments, which means that Bt+s −Bt is independent

of σ(Bu : 0 ≤ u ≤ t) for all 0 ≤ s, t <∞.

(iii) It has Gaussian increments, that is, Bt+s −Bt ∼ N(0, s) ∀ 0 ≤ t, s <∞

(iv) It has continuous trajectories.
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Properties of a Brownian motion

(i) The random variables Bt −Bs and Bt−s are distributed as a normal distri-

bution N (0, t− s) if s < t. As the variance is the length of the interval, in

Brownian motions larger intervals show larger fluctuations.

(ii) A Brownian motion is a Gaussian process. This means that its finite-

dimensional distributions are multivariate Gaussian distributions.

(iii) As the process has independent increments

Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1

are independent for any collection 0 ≤ t0 < . . . < tn <∞ and any n ≥ 0.

(iv) The covariances are cov(Bt, Bs) = min(s, t) for all 0 ≤ t < s <∞

Lévy processes

Lévy processes take their name form the French mathematician Paul Lévy, and

they are continuous time processes with independent and stationary increments.

A Lévy processes can be defined as follows (see Tankov (2003)):

Definition 6. Lévy processes

A Lévy process is a stochastic process (Lt)t≥0 that satisfies the following prop-

erties:

(i) It starts at zero L0 = 0 almost surely.

(ii) It has independent and stationary increments.

(iii) It is stochastically continuous. This means that ∀ϵ > 0, lims→0P (|Lt+s − Lt| ≥ ϵ) =

0. This condition does not imply that the sample path are continuous.
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A characteristic of the Brownian motion is that it has continuous sample paths

with probability one. This assumption can be relaxed by allowing jumps, but it

is required the process to be a càdlàg process, that is:

• the process is right-continuous, lims↓t Ls = Lt

• the process has limits from the left, Lt− = lims↑t Ls

with probability one.

The process of the jumps of the Lévy process ∆Lt = Lt−Lt− is also a càdlàg

process. It is expected these types of jumps to appear in financial economic time

series.

Definition 7. A random variable X is said to be infinitely divisible if there exists

n ∈ N and a sequence of independent random variables Xn
1 , . . . , X

n
n such that X

has the same distribution as Xn
1 + . . .+Xn

n .

An infinitely divisible random variable can be represented through its charac-

teristic function as

exp{ψ(u)} = E
(
eiuX

)
,

where ψ(u) is the characteristic exponent of the process, for u ∈ R and t > 0. The

process can be then characterized by its characteristic exponent which satisfies

the Lévy-Khintchine formula.

The Lévy process Lt is infinitely divisible for every t ≥ 0, taking

Xn
1 = Lt/n − L0

Xn
2 = L2t/n − Lt/n

· · ·

Xn
n = Lt − L(n−1)t/n
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The Lévy process Lt can be characterized in terms of the characteristic exponent

of L1. If ϕt(u) = E
(
eiuLt

)
, it can be written in terms of the characteristic function

of L1, ϕ(u) = E
(
eiuL1

)
in the following way

ϕt(u) = (ϕ(u))t .

Lévy-Khintchine representation of Lévy processes

The distribution of a Lévy process can be characterized by its characteristic

function ϕL(u) given by

ϕL(u) = E
(
eiuL(t)

)
= exp{tψ(u)}

where ψ(u) is the characteristic exponent of L1 given by

ψ(u) = iau− σ2u2

2
+

∫
R\{0}

(
eiux − 1− iux1{|x|≤1}

)
ν(dx)

where a ∈ R, σ ≥ 0 and ν is the Lévy measure of Lt, satisfying that ν({0}) = 0

and
∫
min{x2, 1}ν(dx) <∞.

The triplet (a, σ2, ν), or the characteristic exponent ψ(u) of L1, are usually

used to characterized the process.

Lévy-Ito representation

Some examples of Lévy processes are:

1. The standard Brownian motion {Bt}.

2. The Brownian motion with drift {µt+ σBt}.

3. The Poisson process {Nt} with rate λ.
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4. The compound Poisson process {
∑Nt

i=1Xi}, where {Nt} is a Poisson process

with rate λ and Xi are independent and identically distributed random

variables independent of each other.

Any linear combination of a Lévy process is again a Lévy process. In partic-

ular, the sum of a Brownian motion with drift and a compound Poisson process

is a Lévy process. Except for the pure linear drift case Lt = µt, the Brownian

motion is the only Lévy process with continuous sample paths. All other Lévy

process have jumps.

If Lt is a Lévy process with triplet (a, σ2, ν) and characteristic exponent ψ(u)

of L1, then the Lévy-Ito representation of the process is

Lt = µt+ σBt + Ld
t ,

where µt+ σBt is a scaled Brownian motion with drift and Ld
t is an independent

pure jump process. In particular, Lt can be decomposed into

Lt = L1
t + L2

t + L3
t ,

where

• L1
t = µt + σBt is a scaled Brownian motion with drift with characteristic

exponent of the form iau− σ2u2

2
.

• L2
t is a compound process on R\(−1, 1) with characteristic exponent∫

R\(−1,1)

(
eiux − 1

)
ν(dx)

• L3
t is a square integrable martingale with an almost surely countable number

of small jumps of magnitude less than unity, in a finite time interval, with

characteristic exponent
∫

(−1,1)\{0}
(eiux − 1− iux) ν(dx)
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If ∆Lt = Lt−Lt− are the jumps of the Lévy process, then the counting process

NB
t = card{s ≤ t : ∆Lt ∈ B} is a Poisson process for any Borel set in R \ {0}

with rate ν(B). Then, ν(dx) is the intensity of jumps of size x, and the Lévy-Ito

representation reduces to

Lt = µt+ σBt +
∑
s≤t

∆Lt

with µ = a −
∫
|x|≤1

xν(dx), for ν(R) < ∞ where the standard Brownian motion

is independent of the jumps of the process. The parameter µ is called the drift

of the Lévy process.

The Lévy process has finite variation if and only if σ = 0, that is, there is no

Brownian part. In this case

Lt = µt+
∑
s≤t

∆Lt.

1.4.1 COGARCH models

One of the first authors who dealt with a continuous version of a GARCH model

was Nelson (1990) who defined a continuous GARCHmodel and derived a limiting

GARCH(1,1) model by adding GARCH innovations up. The resulting model was

driven by two different and independent Brownian motions, one as the driving

process and the other one, present in the variance process. However, Wang (2002)

proved that the diffusion limit of Nelson was not asymptotically equivalent to a

GARCH process, considering the Le Cam’s deficiency distance.

By the other hand Corradi (2000) modified the Nelson approximation to make

it asymptotically equivalent to a GARCH process, in such a way in the resulting

continuous GARCH model, the driving process and the variance process were

driven by the same Brownian motion. But, a drawback of this model is that the
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limiting probability process is not a random process which is a limitation to define

stock prices properly. Duan (1997) obtained a diffusion limit for a more general

GARCH process and Drost and Nijman (1993) proved that common GARCH

models are not closed under temporal aggregation in the same way as semi-

strong ARMA models. But they proved that weak GARCH models are closed

under temporal aggregation.

Based on this research, Drost and Werker (1996) defined a continuous time

process based on the class of weak GARCH models; some of the parameters were

equivalent to other from a weak GARCH process, in such a way that estimation

methods can be similar in both cases. Moreover, fourth moments are finite for

the class of continuous-time weak GARCH nested processes, in the same way as

in other models driven by two independent Lévy processes. Meddahi and Renault

(2004) improved this model introducing the square-root stochastic autoregressive

volatility models for both continuous and discrete times. Its main advantages are

(i) It allows asymmetries.

(ii) It is not necessary the fourth moment to be finite.

(iii) Discrete time square-root stochastic autoregressive volatility models are

closed under temporal aggregation.

(iv) The discretization of continuous time square-root stochastic autoregressive

volatility models, provides discrete time square-root stochastic autoregres-

sive volatility models.

Kallsen and Taqqu (1998) introduced another approach for continuous-time

GARCH models in which the driving process and the variance process were both

driven by the same Brownian motion. When discrete times are taken for this
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process, it is obtained a GARCH model. Kallsen and Taqqu (1998) also proved

that the model is arbitrage free and complete, but the volatility is constant inside

all time intervals [t, t+1] although the model could be applied to determine pricing

formulas for European options.

Kazmerchuk et al. (2005) introduced a continuous time GARCH process

driven also by one Brownian motion, and they defined the process as a combina-

tion of volatility and price processes using a stochastic delay differential equation.

Later, Lorenz (2006) obtained the solutions for the corresponding differential

equation.

As far as this work is concerned, we will focus on the COGARCH model

introduced by Klüppelberg et al. (2004). The advantage of this model is that

it is driven by one single Lévy process which is responsible for the jumps of the

process. As Bollerslev (2008) noticed, this model includes jumps and it exhibits

a source of risk non-diversifiable, which is a remarkable characteristic of financial

series.

The COGARCH (continuous-time GARCH) model is based on a background

driving Lévy process and preserves the essential features of discrete-time GARCH

processes. Recall that the volatility process of a GARCH(1,1) model is

σ2
n = β + λY 2

n−1 + δσ2
n−1

where Yn is of the form

Yn = σnϵn

for n ∈ N.

If the volatility is reorganize and iterate it is obtained

σ2
n = β

n−1∑
i=0

n−1∏
j=i+1

(
δ + λϵ2j

)
+ σ2

0

n−1∏
j=0

(
δ + λϵ2j

)
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Replacing the sum by an integral

σ2
n =

β n∫
0

exp

− ⌊s⌋∑
j=0

log{δ + λϵ2j}

 ds+ σ2
0

 exp

(
n−1∑
j=0

log{δ + λϵ2j}

)

where ⌊s⌋ is the largest integer not exceeding s.

Replacing ϵj by jumps of the Lévy process Lt and taking as parameters β,

η = − log δ and φ = λ
δ
, for a finite random variable σ2

0 the volatility process is

defined by

σ2
t =

β t∫
0

eXsds+ σ2
0

 e−Xt

for t ≥ 0, where Xt is the auxiliary process

Xt = tη −
∑
0<s≤t

log{1 + φ(∆Ls)
2} (1.5)

for t ≥ 0.

Then, the COGARCH(1,1) can be defined as the càdlàg process that satisfies

the following stochastic differential equation

dGt = σtdLt

for t ≥ 0 and G0 = 0.

The process σ2
t satisfies the following stochastic differential equation

dσ2
t = (β − ησ2

t−)dt+ φσ2
t−d[L,L]t

where [L,L]t is the quadratic variation of the Lévy process

[L,L]t = σ2t+
∑
0<s≤t

(∆Ls)
2 = σ2t+ [L,L]dt

where [L,L]dt =
∑

0<s≤t

(∆Ls)
2 is the discrete part of the quadratic variation of Lt.

Regarding all the previous assumptions, we can define the COGARCH(1,1)

process as follows.
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Definition 8. COGARCH(1,1) process

Let L = (L(t))t≥0 be a Lévy process with triplet (a, σ2, ν). Given a finite ran-

dom variable σ0 independent of Lt, the COGARCH process G = (Gt)t≥0 and the

variance process σ2 = (σ2
t )t≥0 are defined by the stochastic differential equations

dGt = σtdLt (1.6)

dσ2
t = (β − ησ2

t−)dt+ φσ2
t−d[L,L]t (1.7)

where t > 0, G0 = 0, β > 0, η > 0, φ ≥ 0 and [L,L]t is the quadratic variation

of the Lévy process. �

1.4.2 Properties of COGARCH model

As Müller (2010) remarks, the COGARCH model captures many of the stylized

facts that financial series present, as heavy tails, volatility jumps and volatility

clusters. By the other hand, it incorporates an unique source of uncertainty, a

Lévy process to drive both processes. The Lévy process can model also jumps of

the process, which are often observed in real financial series.

We highlight the following properties of COGARCH models:

(i) The process G jumps at the same times as L does, and the size of its jumps

is ∆Gt = σt∆Lt for t ≥ 0. In this way, ∆Lt has the role of innovations in

case of GARCH models.

(ii) The auxiliary process Xt is a spectrally negative Lévy process, with drift η,

no Gaussian part and with Lévy measure
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νX([0,∞)) = 0 (1.8)

νX((−∞,−x]) = ν(|y| ≥
√
(ex − 1)φ) (1.9)

for x > 0.

(iii) If
∫
R
log(1 + φx2)ν(dx) < η (if and only if E(X1) > 0), then σ2

t
d−→

n→∞
σ2
∞,

where σ2
∞ is a finite random variable that satisfies

σ2
∞

d
= β

∫ ∞

0

e−Xtdt.

(iv) The squared volatility process (σ2
t )t≥0 is a time-homogeneous Markovian

process. Furthermore, if σ2
∞ exists and σ2

0
d
= σ2

∞ is independent of (Lt)t≥0,

then (σ2
t )t≥0 is strictly stationary (see Klüppelberg et al. (2004)). The

process is stationary if σ2
∞ ≥

β
η
a. s.

(v) The bivariate process (σt, Gt)t≥0 is a Markovian process. Moreover, if

(σ2
t )t≥0 is stationary and σ2

0
d
= σ2

∞, then increments of (Gt)t≥0 are also

stationary (see Klüppelberg et al. (2004)).

1.4.3 Behaviour of sample paths of the COGARCH model

In this section we analyse the behaviour of COGARCH models under parameters

changes. In order to evaluate how the model behaves in relation to the varia-

tion of parameters, we simulate different sample paths considering that only one

parameter change and rest of them keeps constant.

The trajectories have been simulated using the R code included in Appendix

(A.1). We assume that the variance is bounded as Klüppelberg et al. (2006)

proved to guarantee the stationary of the process; in this case, the variance cannot

be smaller than β/η.
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Most researchers agree that COGARCH models are specially sensitive to pa-

rameter φ, which is the parameter responsible of the magnitude of the jumps in

the definition of the variance (1.7).

Figure 1.6: Variance of a sample path from a COGARCH(1,1) with parameters β = 0.5, η = 0.2
and φ = 0.05

For instance, in sample paths with high values of φ, the variance presents

extremely big jumps and consequently the model has a wild behaviour, that it

is not related with real data. As an example, figure 1.6 shows the variance of a

sample path with φ = 0.05.

It may be seen that for φ = 0.05 the variance can present large values as

80. These large values are actually very large to be real. In fact, the variance in

real data depends on the units of assets assuming monetary units (as we did in

simulations), therefore it is rare to find variances higher than 5. This behaviour

of φ allows us to use an upper bound for this parameter around 0.05.
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Figure 1.7: Sample paths from a COGARCH(1,1) with parameters β = 0.5 , η = 0.2 and
φ = 0.01, 0.02, 0.03 and 0.04.

In order to analyse how the COGARCH(1,1) model adapts to different val-

ues of φ, we simulate sample paths for parameters η = 0.2, β = 0.5 and

φ = 0.01, 0.02, 0.03 and 0.04. Figure 1.7 shows the different sample paths

that we obtain.

The black line represents the sample path with φ = 0.01 and the blue one,

the sample path with φ = 0.04. It may be seen that the process presents larger

variations along time when φ is also larger, but it is remarkably high just in the

jumps of the process. We can interpret this fact assuming that φ is the parameter

responsible of these jumps. This fact can be confirmed by the COGARCH vari-

ance expression (1.7), where parameter φ is multiplying the quadratic increment

of the Lévy process. Figure 1.8 shows variances for the different sample paths.

Variances enable to observe better the effects of changing φ in the model. The
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Figure 1.8: Variance of sample paths from a COGARCH(1,1) with parameters β = 0.5,
eta = 0.2 and φ = 0.01, 0.02, 0.03 and 0.04.

black line represents the sample path with φ = 0.01 and the blue, the sample

path with φ = 0.04. An exponential growth of the variance may be observed

when φ grows.

Müller (2010) also said that this parameter is responsible of the magnitude of

the jump in the asset.

Now, we analyse how a COGARCH(1,1) process changes when parameter β

varies. Figure 1.9 shows different sample paths from a COGARCH(1,1) model

of parameters β = 0.5, 1, 1.5 and 2, η = 0.2 and φ = 0.01. Line in black

corresponds to the smaller value of β, and the larger one is in blue.

Note that as β increases, the COGARCH(1,1) model presents higher varia-

tions. But the effect is not the same than when φ increases, as the increment

is not exponential; by contrast there is a linear increasing in the variability as

53



Figure 1.9: Sample path from a COGARCH(1,1) with parameters β=0.5, 1, 1.5 and 2, η = 0.2
and φ = 0.01.

β is larger. In figure 1.10 we can observe the behaviour of the variance when β

changes.

In the plot about variances (1.10), it can be seen that if β is larger, the lowest

bound of the variance is also larger, as expected assuming that the lowest bound

is β/η. In the same way, all values of the variance along time are larger.

As Müller (2010) indicated β can be consider as the parameter which measures

the overall level of the volatility. Considering this, if β is bigger, this overall value

would be higher.

Finally, we show the behaviour of the model in relation with η (see figure 1.11).

Here, the black line corresponds to the smallest η value and blue one, to

the largest. It may be seen that, when η increases, the variation of the model
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Figure 1.10: Variance of sample paths from a COGARCH(1,1) with parameters β = 0.5, 1, 1.5
and 2, η = 0.2 and φ = 0.01.

decreases. The behaviour is opposite with respect to β in terms of a linear

decreasing (see figure 1.12).

Figure 1.12 shows the relationship between η and the lowest bound of the vari-

ance. This was the expected behaviour as the lowest bound expression is (β/η).

Furthermore, the variance decreases linearly for all values when η increases.

As the effect of both parameters β and η is quite similar, different combina-

tions of them can provide similar sample paths, which makes the estimation of

COGARCH model parameters quite cumbersome. Anyway, this is not an incon-

venience when focusing in forecasting tasks.

Müller (2010) interpret this parameter as the responsible of the speed of de-

cline of a volatility burst. According to this, η and φ provide information about

how the new information influence the volatility of the asset, or how fast the new
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Figure 1.11: Sample path from a COGARCH(1,1) with parameters β = 0.5, η =0.2 0.6, 1.2
and 2.4 and φ = 0.01.

information is absorbed by the market.
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Figure 1.12: Variance of sample paths from a COGARCH(1,1) with parameters β = 0.5, η =
0.2, 0.6, 1.2 and 2.4 and φ = 0.01.
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Chapter 2

Estimation of COGARCH models
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2.1 Estimation methods in COGARCH models

After the introduction of the COGARCH(1,1) model by Klüppelberg et al. (2004)

different authors have dealt with the problem of estimating the parameters of this

model. But this is not an easy problem to solve due to the wild behavior of the

sample paths of this process, mainly cause by the introduction of a Lèvy process

in the model. Among all the solutions, it could be outlined the based on the

moments method of Haug et al. (2005), the based on the MCMC framework

from Müller (2010) and the based on a pseudo maximum likelihood estimator

by Maller et al. (2008). The discretization of the process in the last one and the

proposed pseudo likelihood function, will be the base for the solutions we propose

to estimate COGARCH model parameters.

2.1.1 Power moments method

The first estimation method was proposed by Haug et al. (2005) and it is based on

the power moments method. The estimates of parameters (β, η, φ) are obtained

from a sample of equally spaced returns, by matching the empirical autocorrela-

tion function and the power moments to their theoretical equivalents.

In order to obtain the power moments it is necessary to use the Laplace

transformation of the auxiliary process defined in (1.5), E[e−sXt ] = etΨ(s), where

Ψ(s) = −ηs+
∫
R
((1 + φx2)s − 1)ν(dx), (2.1)

for s ≥ 0. The Laplace transformation E[e−sXt ] is finite for one and for all t > 0,

when s ≥ 0 is fixed and the previous integral is finite. This is equivalent to the

condition E[L1]
2s <∞. The stationarity of the volatility process depends on the

existence of a value s > 0 which makes Ψ(s) ≤ 0.
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In this way, the power moments for the increments of a COGARCH process

Gt, are defined as

G
(r)
t := Gt −Gt−r =

∫ t

t−r

σsdLs

for t ≥ r, therefore we can define the equidistant sequence of non-overlapped

returns of length r, by
(
G

(r)
nr

)
n∈N

.

If the Lévy process (Lt)t≥0 with finite variance and zero mean, such that

Ψ(1) < 0, where the process (σ2
t )t≥0 is stationary. Then, (Gt)t≥0 has stationary

increments E[G2
t ] <∞ for all t ≥ 0, 0 < r ≤ h and

E
(
G

(r)
t

)
= 0,

E
(
G

(r)
t

)2
=

βr

|Ψ(1)|
E[L2

1], (2.2)

Cov
(
G

(r)
t , G

(r)
t+h

)
= 0,

Furthermore, if φ > 0, E[L4
1] < ∞, Ψ(2) < 0 for all t ≥ 0, E[G4

t ] < ∞ and the

Lévy measure ν of L is such that
∫
R x

3ν(dx) = 0, then for every t, 0 < r ≤ h

E[G
(r)
t ]4 = 6E[L2

1]
β2

Ψ(1)2
(
2ηφ−1 + 2σ2 − E[L2

1]
)( 2

|Ψ(2)|
− 1

|Ψ(1)|

)
×
(
r − 1− e−r|Ψ(1)|

|Ψ(1)|

)
+

2β2

φ2

(
2

|Ψ(2)|
− 1

|Ψ(1)|

)
r

+3
β2

Ψ(1)2
(E[L2

1])
2r2, (2.3)

where σ2 is the variance of the Brownian motion component of the Lévy process,

and

Cov
(
(G

(r)
t )2, (G

(r)
t+h)

2
)

=
β2

|ψ(1)|3
(
2ηφ−1 + 2σ2 − E[L2

1]
)

×E[L2
1]

(
2

|Ψ(2)|
− 1

|Ψ(1)|

)
×
(
1− e−r|Ψ(1)|) (er|Ψ(1)| − 1

)
e−h|Ψ(1)| > 0. (2.4)

Under all the bellow conditions, for each fixed value r > 0, the process

((
G

(r)
nr

)2)
n∈N

61



has the autocorrelation structure of an ARMA(1,1) process (the proof can be

found in Haug et al. (2005)).

Finally, setting r = 1, E[L1] = 0 and E[L2
1] = 1 in order to simplify the

process, we can obtain the estimators based on the moments method.

Let us consider
{
G

(1)
n

}
n∈N

the stationary increment process of the COGARCH

process with parameters β, η, φ > 0 and we denote expressions (2.2), (2.3) and

(2.4) in terms of the constants m1,m2, k, kp, p such that

E[(G(1)
n )2] = m1,

E[(G(1)
n )4] = m2,

p = |Ψ(1)| ,

k =
β2

|ψ(1)|3
(
2ηφ−1 + 2σ2 − E[L2

1]
)
E[L2

1]

(
2

|Ψ(2)|
− 1

|Ψ(1)|

)
×
(
1− e−r|Ψ(1)|) (er|Ψ(1)| − 1

)
,

kp =
k

m2 −m2
1

,

γ(h) = Cov((G(1)
n )2, (G

(1)
n+h)

2) = ke−hp,

ρ(h) = Corr((G(1)
n )2, (G

(1)
n+h)

2) = kpe
−hp,

for h ∈ N. Now let us define

M1 : = m2 − 3m2
1 − 6

1− p− e−p

(1− ep)(1− e−p)
k

M2 : =
2kp

M1(ep − 1)(1− e−p)

Then, when M1,M2 < 0, the estimates of parameters (β, η, φ) can be obtained

by means of

β = pm1,

φ = p
√

1 +M2 − p,

η = p+ φ
(
1− σ2

)
.
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(proofs can be seen in Haug et al. (2005)). In this case, the consistency of the

power moments implies the consistency of the estimates of (β, η, φ).

In simulation studies it is shown that this methodology yields good estimations

of the COGARCH parameters, but it presents a couple of shortcomings. The first

limitation is that it is necessary to consider equidistant observations, although

it is not often the case when working with real observations, where changes in

prices may be quite different when assuming different periods of time. Actually

Mandelbrot (1963) analysed how prices are affected by the long periods of time of

closed markets, so it affects estimations. Maller et al. (2008) proposed a discrete

time model which may be used with irregularly spaced observations. In this work

we will focus mainly on this approach.

Another shortcoming is related with the requirement of having lots of repli-

cates (or simulated data) for obtaining accurate estimators, which of course be-

comes impossible to achieve in real situations.

2.1.2 Bayesian approach

From a Bayesian point of view, Müller (2010) proposed a methodology for the

COGARCH models based on a Markov Chain Monte Carlo (MCMC) approach,

assuming that the driven Lévy process is a compound Poisson process susch that

E(L1) = 0 and E(L2
1) = 1. They obtained estimations for the main parameters

β, η, φ of the model and for parameters related with the process like the intensity

of the embedded compound Poisson of the Lévy process (c), the initial variance

of the process (σ2
0) and the market point process (ψ).

As the driving Lévy process is a compound Poisson process, the stochastic
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differential equation of the variance process of the model (1.7) can be written as

dσ2
t = (β − ησ2

t−)dt+ φσ2
t−(∆Lt)

2

It is assumed that the second order moment of the jump distribution m2 is finite,

there are no point mass at 0, and we denote the corresponding density function

as z(·). The distribution of the inter arrival times of L is exponential, so it

is difficult that jumps occur at the observation times. Furthermore, L should

also have negative jumps because G is an integrated COGARCH process and its

differences are log returns.

The process G is observed in the interval [0, T ] and the observation times are

0 < t1 < · · · < tn =: T . The interval between two consecutive observations is

denoted by Ij := [tj−1, tj] and the increment in G associated to this interval is

denoted by ∆Gtj := Gtj −Gtj−1
.

The estimated jump times of L and consequently of G in [0, T ] are 0 < τ1 <

· · · < τm < T , where m is the number of jumps, which can vary for each iteration

of the algorithm.

The estimated jump sizes of G are gi := ∆Gτi for i = 1, . . . ,m, and it is

set g0 := 0; in this way, g is the vector of the jump sizes, g := (g1, . . . , gm).

The time between two consecutive estimated jump times is ∆τi := τi − τi−1, and

τ := (τ1, . . . , τm) is the estimated jump times vector. By the other hand, Müller

(2010) consider ψ := {(τi, gi), i = 1, . . . ,m} as a marked point process.

Between two consecutive jumps of the Lévy process, the COGARCH process

and its volatility do not jump. Furthermore, between two consecutive jumps,

the process σ2 follows an ordinary differential equation (ODE) with the following
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exact solution

σ2
τi
=
β

η
+

[
στ2i−1

+ φg2i−1 −
β

η

]
e−η∆τi . (2.5)

As e−η∆τi → 0, lim∆τi σ
2
τi
= β

η
and this lower bound of volatility may be used in

the algorithms.

To find a discrete GARCH equation on the jump times, equation (2.5) can be

written as

σ2
τi
=
β

η
(1− e−η∆τi) + e−η∆τiστ2i−1

+ e−η∆τiφg2i−1.

If θ, g and τ are known or estimated, the volatility σ2
τi
can be deterministically

computed. The MCMC algorithm from Müller (2010) estimates β, η, φ, σ2
0, c

and the market point process ψ, according to the following scheme:

1. Generate the jump times and sizes of G, ψ, from f(ψ|G, θ, c).

2. Generate the COGARCH parameters β, η, φ and σ2
0 from f(θ|G,ψ, θ).

3. Generate c, the intensity of the compound Poisson process L, from f(c|G,ψ, θ).

The exact computation of the full conditional distributions is not possible, so it

is necessary to use a Metropolis-Hasting procedure, assuming this dependence

structure

f(ψ, β, η, φ, σ2
0, c) = f(ψ|β, η, φ, σ2

0, c)f(σ
2
0|β, η, φ, c)f(φ|η, c)f(β)f(η)f(c).

Müller (2010) used a gamma distribution as the prior distribution for c, a Pareto

prior distribution for σ2
0 (with the proper boundaries in order to guarantee the
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stationarity of the process), and uniform distributions for β, η and φ, defined as

c ∼ Γ(a, b)

β ∼ U(0,∞)

η ∼ U(0,∞)

φ ∼ U(0, η/(cm2))

σ2
0 ∼ Pareto(β/η; η/(cφm2)).

In order to define the prior distribution of ψ it should be taken into account that

it depends on θ and c. As the inter arrival times of L (equivalently of G), are

independent of the jump sizes and parameters, then

f(ψ|θ, c) = f(g|τ1, . . . , τm,m, θ)f(τ1, . . . , τm|m, c)f(m|c). (2.6)

Equation (2.6) shows the decomposition of f(ψ|θ, c) into the distribution of the

number of jumps and the distribution of the position of these jumps. The first

factor can be written as

f(g|τ1, . . . , τm,m, θ) =
m∏
i=1

f(gi|gi−1, τ1, . . . , τm,m, θ) (2.7)

But f(gi|gi−1, τ1, . . . , τm,m, θ) is equivalent to the distribution of gi given στi and

the jumps of L have density z(·), so (2.7) can be written as

f(g|τ1, . . . , τm,m, θ) =
m∏
i=1

1

στi
z

(
gi
στi

)
.

For a fixed number of jumps in [0, T ], the position of jumps is uniformly dis-

tributed on 0 < τ1 < · · · < τm < T as we are considering a Poisson process; then

f(τ1, . . . , τm|m, c) can be written as

f(τ1, . . . , τm|m, c) =
m!

Tm
1{0<τ1<···<τm<T}.

The probability of having exactly m jumps being c known, is represented by the

last factor and assuming that we have a compound Poisson process, it follows
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that

f(m|c) = e−cT (cT )
m

m!
.

Therefore, substituting in (2.6),

f(ψ|θ, c) = e−cT cm

[
m∏
i=1

1

στi
z

(
gi
στi

)]
1{0<τ1<···<τm<T}.

Note that it is a mixed distribution as it contains discrete and continuous com-

ponents.

Müller (2010) compared this Bayesian approach with the pseudo-maximum

likelihood procedure of Maller et al. (2008), and he concluded that the first one

obtained better results from a practical point of view. But, in order to reduce the

number of iterations of the MCMC procedure, the starting values of chains in the

MCMC procedure were based on the the pseudo-maximum likelihood estimations

of the parameters.

2.2 Aproximating COGARCH models

In this section we introduce and summarize the main ideas of COGARCH models

for irregularly spaced data proposed by Maller et al. (2008), which will be the

basis of the proposal techniques of this work. It is assumed that the driven process

is a pure jump Lévy process, that is, a process with no Brownian part (σ2 = 0).

It is also assumed that E(L1) = 0, E(L2
1) = 1 and that Ft is the natural filtration

of the Lévy process.

Maller et al. (2008) uses a discrete process Gn = (Gn(t))t≥0, based on a

embedded GARCH processes, and he considers an interval [0, T ] (T > 0) and a

sequence of numbers (Nn)n≥1 such that limn→∞ Nn =∞ and a partition for [0, T ]

depending on n. Then, for each n, the [0, T ] is divided in Nn subintervals with

67



lengths ∆ti(n) = ti(n)− ti−1(n).

We assume that ∆t(n) = maxi=1,...,Nn ∆ti(n) −→ 0 if n → ∞ and we define

for each n a discrete process (Gi,n)i=1,...,Nn

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)ϵi,n,

where

G0,n = G(0) = 0

and

σ2
i,n = β∆ti(n) + (1 + φ∆ti(n)ϵ

2
i,n)e

−η∆ti(n)σ2
i−1,n,

for i = 1, ..., Nn.

The innovations ϵi,n are constructed by using a ”first jump” approximation to

the Lévy process, defined as

ϵi,n =
1τi,n<∞∆Lτi,n − E(1τi,n<∞∆Lτi,n)

V ar(1τi,n<∞∆Lτi,n)

where

τi,n = inf{t ∈ [ti−1(n), ti(n)) : |∆L t| ≥ mn)}

are stopping times for mn a sequence of strictly positive sequence 1 ≥ mn ↓ 0.

On the other hand, we embed the discret time process into a continuous

process defined as

Gn(t) = Gi,n where t ∈ [ti−1(n), ti(n)] with Gn(0) = 0,

σn(t) = σi,n where t ∈ [ti−1(n), ti(n)],

And considering the Skorokhod distance ρ (see e.g. Billingsley (2008)) then,

ρ((Gn, σn), (G, σ))
P−→

n→∞
0
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As the sequence converges in probability, then it also converges in distribution,

that is

ρ((Gn, σn), (G, σ))
d−→

n→∞
0

In this way, the process (Gn(t), σn(t)) may be considered as an approximation

of the COGARCH model (G(t), σ(t)) in the sense of Klüppelberg et al. (2004),

when n is big enough. Therefore, if we consider small enough intervals we can

obtain the approximation of the continuous COGARCH process.

Maller et al. (2008) introduced a pseudo-maximum likelihood estimator of

the COGARCH parameters, assuming that data are observed in discrete and

optionally unequally spaced time points. In this case, Maller et al. (2008) assumed

that these time points were fixed; by contrast Müller (2010) assumed in a Bayesian

framework, that they were taken at random.

From a practical point of view, daily financial time series are observed on

unequally spaced time points, but these are not taken at random because they

depend on weekends and fixed holidays. Furthermore these time points are not

difficult to predict so make sense consider them as known information.

It is assumed that G(ti) are taken from a COGARCH(1,1) model, in time

points 0 = t0 < t1 < · · · < tN = T . Then, the observed returns are Yi =

G(ti)−G(ti−1) with time points increments ∆ti = ti − ti−1.

Yi are conditionally independent given the previous returns, Fti−1
. Further-

more, Yi conditional on Fti−1
follows a normal distribution N(0, ρ2i ) where

ρ2i = V ar(Yi|Fti−1
) = E(Y 2

i |Fti−1
) =

(
σ2
i−1 −

β

η − φ

)(
e(η−φ)∆ti − 1

η − φ

)
+
β∆ti
η − φ
(2.8)
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and

σ2
i = β∆ti + e−η∆tiσ2

i−1 + φe−η∆ti∆tiϵ
2
i,nσ

2
i−1

= β∆ti + e−η∆tiσ2
i−1 + φe−η∆ti(

√
∆tiϵi,nσi−1)

2

= β∆ti + e−η∆tiσ2
i−1 + φe−η∆ti(G(ti)−G(ti−1))

2

= β∆ti + e−η∆tiσ2
i−1 + φe−η∆tiY 2

i .

To assure the variance stationary of the process it is necessary that E[σ2
0] =

β
η−φ

.

Then, as starting value, it is taken σ2
0 = β

η−φ
being η > φ).

Finally, the pseudo-log-likelihood function for the returns Y1, Y2, . . . , YN can

be expressed as

L(β, φ, η) =

(
N∏
i=1

1√
2πρ2i

)
exp

{
−

N∑
i=1

Y 2
i

2ρ2i

}
. (2.9)

Based on the previous expression, Maller et al. (2008) proposed an algorithm

to maximize this pseudo-log-likelihood function and he obtained the estimates

values for (β, η, φ). In comparison with the power moment methods of Haug et al.

(2005), the estimates were more accurate, although they were not consistent.

In the next section we introduce a simple and straightforward MCMC es-

timator for COGARCH(1,1) model parameters, based on Maller et al. (2008)

approach.

2.3 A Bayesian approach to COGARCH models

In this work we propose a simple Bayesian approach to analyse and estimate

the parameters of the COGARCH(1,1) model, based on the parametrization of

Klüppelberg et al. (2004) and Maller et al. (2008). We assume that time points

are not taken at random, then we will determine the posterior distributions of

the parameters, without simulating the time points in the sense of Müller (2010).
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Before defining the Bayesian estimator it is interesting remark the condition to

guarantee the existence of a stationary distribution for the volatility process (see

Klüppelberg et al. (2006)). It will be used the auxiliary process (Xt)t≥0 defined

by (1.5), the Laplace transform E[e−sXt ] = etΨ(s) and the Laplace exponent Ψ(s)

from (2.1).

If it exists some s > 0 such that Ψ(s) ≤ 0 then it will exist a stationary

distribution for the variance process σ2. Furthermore, if Ψ(s) < 0 for some s > 0

then Ψ(t) < 0 for all 0 < t ≤ s. It is difficult to find an explicit condition on

model parameters η, φ and the Lévy process parameters which makes Ψ(s) < 0

for any s > 0. But setting s=1 the Laplace exponent can be write as

Ψ(1) = −η + φ

∫
R
x2ν(dx)

Assuming that L has not Brownian motion component and it is a compound

Poisson process with intensity c and a jump distribution with the second moment

m2 finite, it can be obtained that Ψ(1) = cφm2−η. Considering that the condition

to guarantee the stationarity of the distribution for the volatility process is

cφm2 − η ≤ 0 (2.10)

It is possible to derive an equivalent condition for certain jump distribution and

some s < 1, which could be considered a weaker condition to be used instead of

(2.10). Furthermore, Klüppelberg et al. (2004) proved that E[σ2k], with k ∈ N

exists, if and only if E[L2k
1 ] <∞ and Ψ(k) < 0. In this situation for k = 1, 2 we

can obtain

E[σ2
t ] =

β
|Ψ(1)| and E[σ4

t ] =
2β2

|Ψ(1)Ψ(2)| . (2.11)

Once we are able to guarantee the stationarity of our process we are ready to

introduce our estimator. We consider for parameters (β,η,φ) uniform prior dis-

tributions in order to deal with weakly informative distributions. All parameters
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must be positive, β > 0, η > 0, φ ≥ 0, and we will assume that the corresponding

Lévy process is determined with c = 1 and m2 = 1. Therefore, the previous

stationarity condition (2.10) is simplified as φ < η.

Note that φ is the parameter responsible of the process jumps and it multiplies

the quadratic increment of the Lévy process in the definition of the variance (1.7).

COGARCH models are quite sensible to changes in the values of parameters, and

it can be shown in simulation studies that it is especially sensible to changes in

φ as this parameter is the responsible for the process jumps.

When setting c = 1 and m2 = 1, φ must be less than 0.05 in order to model

the real behaviour of financial series. Larger values of φ make the process to have

unrealistic big jumps. As example of the magnitude of the jumps which may

be observed just in only one day, if φ is set as larger than 0.05, returns could

increase or decrease the stock price about 20000%, which is impossible in real

data. Even if φ = 0.05 jumps may increase or decrease of the stock price around

200% in just one day, with is actually very high form a practical point of view.

But to guarantee the good behaviour of our estimator it is not necessary setting

a smaller valuer of φ.

Consequently we set uninformative uniform prior distributions for the para-

meters of the model

β ∼ U(0, a),

η ∼ U(φ, b),

φ ∼ U(0, c),

where a, b and c are positive real values and b > c.

By using the pseudo-log-maximum distribution introduced by Maller et al.
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(2008) the joint posterior distribution of the parameters can be defined as

π(β, φ, η|Y1, . . . , YN) ∝ L(β, φ, η)π(β)π(φ)π(η)

∝
(∏N

i=1
1√
2πρ2i

)
exp

{
−
∑N

i=1
Y 2
i

2ρ2i

}
∝
(∏N

i=1
1
ρi

)
exp

{
−
∑N

i=1
Y 2
i

2ρ2i

}
.

and the conditional distribution of the parameters as

π(β|φ, η, Y1, . . . , YN) ∝

(
N∏
i=1

1

ρi

)
exp

{
−

N∑
i=1

Y 2
i

2ρ2i

}
,

π(φ|β, η, Y1, . . . , YN) ∝

(
N∏
i=1

1

ρi

)
exp

{
−

N∑
i=1

Y 2
i

2ρ2i

}
,

π(η|β, φ, Y1, . . . , YN) ∝

(
N∏
i=1

1

ρi

)
exp

{
−

N∑
i=1

Y 2
i

2ρ2i

}
.

The algorithm starts with the initial solution β(0), φ(0), η(0) and, in each iteration

(m) generate values for β(m), φ(m), η(m) as follows

Step 1: Set the initial values β(0), φ(0), η(0), and set m = 1.

Step 2: Generate the value of β(m) by

β(m) ∝

(
N∏
i=1

1

ρ
(m−1)
i,β

)
exp

{
−

N∑
i=1

Y 2
i

2(ρ
(m−1)
i,β )2

}

ρ
(m−1)
i,β =

√( (
σ2
i−1,β −

β

η(m−1) − φ(m−1)

)(
exp{(η(m−1) − φ(m−1))∆ti} − 1

η(m−1) − φ(m−1)

)
+

β∆ti
η(m−1) − φ(m−1)

)
σ2
i−1,β = β∆ti−1 + exp{−η(m−1)∆ti−1}σ2

i−2,β + φ(m−1) exp{−η(m−1)∆ti−1}Y 2
i−1

σ2
0,β =

β

η(m−1) − φ(m−1)
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Step 3: Generate the value for φ(m) using β(m) in

φ(m) ∝

(
N∏
i=1

1

ρ
(m−1)
i,φ

)
exp

{
−

N∑
i=1

Y 2
i

2(ρ
(m−1)
i,φ )2

}

ρ
(m−1)
i,φ =

√(
σ2
i−1,φ −

β(m)

η(m−1) − φ

)(
exp{(η(m−1) − φ)∆ti} − 1

η(m−1) − φ

)
+

β(m)∆ti
η(m−1) − φ

σ2
i−1,φ = β(m)∆ti−1 + exp{−η(m−1)∆ti−1}σ2

i−2,β + φ exp{−η(m−1)∆ti−1}Y 2
i−1

σ2
0,φ =

β(m)

η(m−1) − φ

Step 4: Generate the value for η(m) by using β(m) and φ(m) in

η(m) ∝

(
N∏
i=1

1

ρ
(m−1)
i,η

)
exp

{
−

N∑
i=1

Y 2
i

2(ρ
(m−1)
i,η )2

}

ρ
(m−1)
i,η =

√(
σ2
i−1,η −

β(m)

η − φ(m)

)(
exp{(η − φ(m))∆ti} − 1

η − φ(m)

)
+
β(m)∆ti
η − φ(m)

σ2
i−1,η = β(m)∆ti−1 + exp{−η∆ti−1}σ2

i−2,β + φ(m) exp{−η∆ti−1}Y 2
i−1

σ2
0,η =

β(m)

η − φ(m)

Step 5 Accept or reject the proposed values β(m), η(m) and φ(m) according to

the Metropolis Hasting updates. Set m = m+ 1 and go to Step 2.

The MCMC algorithm to estimate the COGARCH model parameters has

been programmed using Jags (Plummer et al. (2003)) software by means of the

package runjags (Denwood (2011)) from the R project (R Core Team (2012)).

Code is available in appendix A.2

This MCMC algorithm is different from the proposed by Müller (2010) in

different ways. On one hand he estimates the model parameters and the jump

times, but, as we base our algorithm in the approximation of Maller et al. (2008),

we consider the observed times and focus in the estimation of model parameters.

On the other hand we estimate the parameters β(m), φ(m), η(m) in each iteration
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and accept or reject them according to Metropolis Hasting algorithm, but he

estimate also σ2
0 and c (the intensity of the Poisson process which drive both,

model and variance). Furthermore, even though Müller (2010) algorithm is based

on the the Metropolis-Hasting accept or reject structure, he applied a special

”Birth moves” and ”Death moves” to increase decrease the number of jumps

which complicate the algorithm.

2.4 Simulation study about the Bayesian

approach to COGARCH models

To assess the quality of the Bayesian approach of section 2.3 we have undertaken

a simulation study for a COGARCH(1,1) model. We have fixed the parameters

as β = 0.25, η = 0.35 and φ = 0.02 (see the corresponding code in R in Appendix

A.2.

Figure 2.1: COGARCH sample path simulation
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Simulated data path is shown in figure 2.1. In this figure it may be observed

that simulated sample path shows a similar behaviour than real financial series.

See, for instance figure 2.1 compared with real data 1.1. Although, we will focus

basically on returns.

Figure 2.2: Returns of COGARCH sample path simulation

Figure 2.2 shows the returns of a simulated COGARCH model sample path.

See the similar shape as real returns from Ibex-35 between 2009 and 2014 (1.3),

although, in this case, the simulated COGARCH returns present a higher varia-

bility. Therefore, if we may estimate the COGARCH parameters from a process

with high variability, hopefully we will obtain better results for real data with

smaller variability.

Figure 2.3 shows the variance of a simulated COGARCH process. This vari-

ance may be also compared with the variance of a real financial series, like the

showed in figure (1.2). Again can be observed that both figures present a similar
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picture.

Figure 2.3: COGARCH Variance

We have applied the Bayesian approach introduced in section 2.3 in the simu-

lated data in order to obtain the estimated values for β, η and φ parameters (see

the corresponding R code in A.2). A resume of estimation is shown in table 2.1.

The real values of β, η and φ parameters, posterior means, standard deviations

and HPD intervals are shown from the second to the fifth columns. The best

estimations are obtained for φ and η parameters, although for β the estimate is

worst. The corresponding standard deviations are not large. Anyway, the real

value of all parameters are included inside the HPD intervals. It can be noted

that accurate results are obtained from a single simulated sample path from a

COGARCH(1,1) model, in contrast with Maller et al. (2008) or Müller (2010)

where they use several sample paths. This is an important advantage, as in real

data, time series just consist in a single path. By the other hand, the initial values
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Parameter Real Value Posterior means S.D. HPD 0.95
β 0.25 0.427 0.158 (0.138 ; 0.747)
η 0.35 0.301 0.132 (0.092 ; 0.600)
φ 0.02 0.029 0.014 (0.002 ; 0.049)

Table 2.1: Estimation for COGARCH parameters using MCMC

for the corresponding chain of the MCMC procedure are taken at random without

needing to take as starting points the pseudo-maximum likelihood estimators as

in Müller (2010).

Anyway, we have also studied the case with more than one trajectory, simu-

lating m = 500 sample paths from a COGARCH(1,1) model (see the R code

included in Appendix A.3).

Figure 2.4: Simulated 50 trajectories of a COGARCH(1,1) model

In figure 2.4 it is shown the increments of 50 simulated sample paths of a

COGARCH(1,1) model. It can be noted a certain wild behaviour of the processes,

although all the trajectories are located inside a similar range of values and they
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present common shapes.

The real values of β, η and φ parameters, posterior means, standard deviations

and HPD intervals are shown from the second to the fifth columns in table 2.2.

When comparing table 2.1 and table 2.2 it can be noticed that there are little

Parameter Real Value Posterior means S.D. HPD Intervals
β 0.25 0.473 0.154 (0.141,0.860)
η 0.35 0.291 0.073 (0.083,0.589)
φ 0.02 0.031 0.003 (0.004, 0.049)

Table 2.2: Estimates of the COGARCH(1,1) parameters using multiple trajectories

improvements in estimates of β and η by using 50 trajectories instead of only one.

As expected, the standard errors in the case of 50 replicates are smaller than in

the case of one trajectory. We can conclude that with one set of data there is

enough information for finding out accurate estimations, in a COGARCH(1,1),

with this Bayesian procedure.

2.5 Real data application of the Bayesian approach

to COGARCH models

Finally, in this section, we apply the Bayesian approach of section 2.3 to real data.

We use daily observations of the exchange rate between the European currency

and the USA Dollar. Data have been obtained from the website

www.infomercados.com which offers the complete information about this ex-

change rate from 1993. We analyse the corresponding series between 2011 and

2012.

Figure 2.5 shows the evolution of the exchange rate EURO-USD from January,

3rd of 2011 until November, 5th of 2012. By the other hand, figure 2.6 shows the
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Figure 2.5: Evolution of Euro Dollar exchange rate in 2011 and 2012

daily returns, calculated as the logarithm one lag returns log
(

Gt

Gt−1

)
(see e.g.

Francq and Zakoian (2010)).

Table 2.3 shows the results of posterior means, standard deviations and HPD

intervals from the second to the forth columns, when using the returns of Euro-

USD evolution data.

Parameter Posterior means S.D. HPD Interval
β 1.7051e-06 1.423001e-06 (4.0555e-07, 6.3176e-06)
η 0.0748 4.472574e-02 (0.0300, 0.2197)
φ 0.0348 9.554494e-03 (0.0150, 0.0492)

Table 2.3: Estimates for the returns of Euro-USD evolution data in 2011-2012

With these values for parameters, COGARCH(1,1) model can be used to

model Euro-USD exchange rate series, arising new information of the relation

between these two currencies. It can also be used to predict future values of this

series.
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Figure 2.6: Euro Dollar returns in 2011 and 2012

Parameters η and φ represent how the value assume the new information of the

markets. η measures how fast the price incorporate the news which affect directly

the assets (in this case the price of the exchange rate). φ measures the magnitude

of the jumps or volatility burst arising after the arrival of new announcements,

which in the model are represented by the jumps of the Lévy. We can notice that

a value of 0,03 for φ lets the exchange rate to have large jumps, so it can be said

that EURO-DOLAR price is able to have large movements up or down.

On the other hand, β represents the level of volatility overall, and in this

example it takes a value of 1.7051e-6, so even though big volatility jumps can be

found for this exchange rate, the usual level of volatility is small.
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Chapter 3

Data cloning Estimation for
GARCH and COGARCH model
parameters
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3.1 Introduction to data cloning theory

In this chapter new estimators for the models we have considered in this thesis

will be introduced, now applying Data Cloning methodology.

In many complex models, as COGARCH model, it is not possible to obtain

estimators from a frequentist point of view, but by means of hierarchical Bayesian

models it turns out possible to deal with this class of models. Nevertheless, it

is necessary to determine the prior distributions for each of the parameters, and

sometimes in many fields this fact turns to be a controversial issue.

The interpretation of credible intervals is sometimes another point of dis-

cussion. According to a frequentist point of view, these kind of intervals are

meaningless as they are not objective because they are strongly based on the

beliefs of the analyst.

In the situation of complex models, as using likelihood-based inference is many

times difficult to implement, the alternative of data cloning provides an elegant

solution. This methodology obtains likelihood-based estimations and frequentist

confidence intervals, by means of a basic bayesian methodology.

Initially, data cloning techniques have been used in hierarchical models related

with Ecology, where these kind of models are common to deal with related data

structures. In this chapter we will use data cloning to estimate the parameters

of GARCH and COGARCH models.

Data cloning theory was introduced by Lele et al. (2007) and it is basically a

computing methodology which calculates maximum likelihood estimations, using

MCMC methods in models whose complexity makes necessary the use of high-

dimensional integration to obtain estimates of parameters. By the other hand, it
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can be easy implemented by using standard Bayesian software such as WinBugs

or Jags.

The basic idea of the data cloning methodology, is supposing that an experi-

ment can be repeated several times and in all of them the same data are obtained.

In our context we can consider that we obtain several sample paths from the same

GARCH and COGARCH models, and they all result to have exactly the same

values in any time. It is not necessary that they are independent between them.

In this situation, the likelihood function is L(θ, y
(k)
t ) = [L (θ, yt)]

(k) for each

replicate k and the maximum of L
(
θ, y

(k)
t

)
is equal to the maximum of L (θ, yt).

Furthermore, the Fisher information matrix of L
(
θ, y

(k)
t

)
is k times the Fisher

information matrix of L (θ, yt).

The MCMC methodology is used to calculate the posterior distributions for

the parameters of the model. And, as usual in Bayesian theory, this distribution

includes the information of data, but now data is not just one sample path but

several ones with the same results, namely k clones. However, the efficiency of

the estimators is not improved by the artificial increase of the sample size, but

the accuracy of estimators as it is remarked in Lele et al. (2010).

By the other hand, proper prior distributions of parameters must be set and,

in order to obtain the posterior distribution, an MCMC algorithm is used in the

standard way but over the k clones. In such a way, the mean of the posterior dis-

tribution approximates the maximum likelihood estimators (see Lele et al. (2007))

and the posterior variance multiplied by the number of clones, approximates the

asymptotic variance of the maximum likelihood estimator.

The process can be fully described as follows. We consider n observations,
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Y = (Y1, Y2, . . . , Yn) which can be obtained from a hierarchical model such as

Y ∼ f(y|X,φ)

X ∼ g(x|θ)

where

– X is a vector of random variables or processes which affect the observations.

– f and g are the joint density functions of both random variables.

– φ = (φ1, φ2, . . . , φn) is a vector which contains the parameters related with

Y , which defines the model.

– θ = (θ1, θ2, . . . , θn) is a vector which contains the parameters related with

X.

For this model, the likelihood function is

L(θ, φ; y) =

∫
f(y|X,φ)g(X|θ)dX,

where y is the observed data from the random variable Y .

In order to obtain the frequentist maximum likelihood estimators for this

model it is necessary to obtain the values of (θ, φ) = (θ1, θ2, . . . , θn, φ1, φ2, . . . , φn)

which jointly maximize the likelihood function, but this is not an easy to solve

problem with complex or hierarchical models. Calculating these estimators in-

volves to use high-dimensional integration, and computation of standard errors

requires to calculate second derivatives of the log-likelihood function. On the

contrary, a Bayesian approach does not require neither finding the maximum of

functions nor computing high-dimensional integrals.
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If the prior distributions of the parameters are denoted by π(θ, φ), then the

joint conditional distribution is

h(θ, φ,X|y) = f(y|X,φ)g(X|θ)π(θ, φ)∫
f(y|X,φ)g(X|θ)π(θ, φ)dXdθdφ

∝ f(y|X,φ)g(X|θ)π(θ, φ)

and the marginal conditional distributions of the parameters, π(θ, φ|y), are easily

obtained by using MCMC methods.

The data cloning algorithm can be summarized in three steps

Step 1: Create a k-cloned data set y(k) = (y,y, . . . ,y), where the observed

data vector y is repeated k times.

Step 2: Using an MCMC algorithm, generate random observations from the

posterior distribution of the parameters that is based on the prior distribu-

tion π(β, φ, η) and the cloned data vector y(k) = (y,y, . . . ,y), where the k

copies of y are assumed to be independent of each other. In practice, any

proper prior distribution can be used.

Step 3: Compute means and variances of the samples values θj (j = 1, . . . , B),

for B iterations of the MCMC run generated from the marginal posterior

distributions. The posterior mean values correspond to the ML estimates

of θj and k times the posterior variances correspond to the approximate

variances of the ML estimates.

It can be noted that this algorithm could be used to estimate GARCH model

parameters, but it could be specially interesting when estimating COGARCH

model parameters, considering that maximum likelihood estimations can be ob-

tained for the first, but not for the second.
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3.2 Data cloning estimator for GARCH model

parameters

As GARCH models are broadly extended models in time series analysis with

no constant variance, in this section we apply the data cloning methodology to

calculate maximum likelihood estimators for them.

After that, the quality of the obtained estimator will be evaluated over simu-

lated and real sample paths.

We refer to section 1.3 for the definition of a GARCH(1,1) model,

Yn = σnϵn,

σ2
n = β + λY 2

n−1 + δσ2
n−1,

for n ≥ 0 where β > 0, λ ≥ 0 and δ ≥ 0, and ϵn are a sequence of random

variables, independently and identically normally distributed.

In this section we apply the data cloning methodology to approximate the

maximum likelihood estimators for β, λ and δ.

In the first step we set the prior distributions of the parameters. In data

cloning methods (see Lele et al. (2007)) estimates do not depend heavily on the

prior distributions, but we must set the restrictions about them.

In GARCH models β > 0, λ ≥ 0 and δ ≥ 0, so prior distributions only

are proposed for positive values. Furthermore, it is necessary to assume more

restrictions, as it is shown in proposition 1.

Proposition 9. If a GARCH(1,1) process satisfies that E [log(λϵ2n + δ)] < 0, then

the process is strictly stationary and λ and δ are bounded between the following
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limits

δ ∈ (0, 1) (3.1)

λ ∈ (0, 2eγ) (3.2)

Proof. As E [log(λϵ2n + δ)] < 0 and λ ≥ 0

E [log(δ)] ≤ E
[
log(λϵ2n + δ)

]
< 0

that is, δ ∈ (0, 1), as in (3.1).

In order to obtain (3.2), as δ ≥ 0

E
[
log(λϵ2n)

]
≤ E

[
log(λϵ2n + δ)

]
< 0 (3.3)

As ϵn ∼ N(0, 1), the characteristic function of Y = log(ϵ2n) is

φY (n) = E
[
einY

]
= E

[
ein log(ϵ2n)

]
= E

[
(ϵ2n)

in
]

=

∫ ∞

0

1√
2π

(
ϵ2n
)in−1/2

e−ϵ2n/2dϵ2n

=
1√
2π

Γ
(
2in+1

2

)
(1/2)

2in+1
2

which gives

E
[
log
(
ϵ2n
)]

=
φ′
Y (0)

i
=

Γ′ (1/2)√
π

+ log(2)

and, as Γ′(n) = Γ(n)ψ(n), where ψ(n) is the digamma function

E
[
log(ϵ2n)

]
= ψ(1/2) + log(2) ≈ −γ − log(2)

where γ is the Euler-Mascheroni constant.

Substituting this value in (3.3), it is obtained that

E
[
log(λϵ2n)

]
= log(λ) + E

[
log(ϵ2n)

]
= log(λ)− γ − log(2) < 0
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and, hence, λ < 2eγ. �

In this case, as estimations in data cloning methods are not quite affected

by prior distributions (see Lele et al. (2007)), we consider vaguely informative

uniform distributions, which include the corresponding restrictions of Proposition

1,

β ∼ U(0, d),

λ ∼ U(0, 2eγ),

δ ∼ U(0, 1), (3.4)

where d is any positive value.

The corresponding joint posterior distribution is the product of the previous

prior distributions and the kth power of the pseudo-likelihood function (see e.g.

Francq and Zakoian (2010))

π(k)(β, λ, δ|y) ∝ [L(β, λ, δ|y)]k π(β)π(λ)π(δ)

∝
N∏
i=1

(√
2πσ2

i

)−k

exp

{
−k ϵ2i

2σ2
i

}
I(0,d)(β)I(0,2eγ)(λ)I(0,1)(δ)

Then, the conditional posterior distribution of the parameters are

π(k)(β|λ, δ,y) ∝

(
N∏
i=1

(√
2πσ2

i

)−k
)
exp

{
−k ϵ2i

2σ2
i

}
I(0,d)(β)

π(k)(λ|β, δ,y) ∝

(
N∏
i=1

(√
2πσ2

i

)−k
)
exp

{
−k ϵ2i

2σ2
i

}
I(0,2eγ)(λ)

π(k)(δ|β, λ,y) ∝

(
N∏
i=1

(√
2πσ2

i

)−k
)
) exp

{
−k ϵ2i

2σ2
i

}
I(0,1)(δ)

The data cloning algorithm starts with an initial solution β(0), λ(0), δ(0), and

generates values for β(m), λ(m), δ(m) from the previous conditional posterior dis-

tributions of the parameters in each iteration m.

The algorithm can be summarized in the next steps
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Step 1: Set initial values β(0), λ(0), δ(0) at m = 0.

Step 2: Generate β(m+1) from

β(m+1) ∼ π(k)(β|λ(m), δ(m),y)

Step 3: Generate λ(m+1) from

λ(m+1) ∼ π(k)(λ|β(m+1), δ(m),y)

Step 4: Generate δ(m+1) from

δ(m+1) ∼ π(k)(δ|β(m+1), λ(m+1),y)

Step 5: Accept or reject the proposed values β(m+1), λ(m+1) and δ(m+1) according

to the Metropolis Hasting updates. Set m = m+ 1 and go to Step 2.

The algorithm has been programmed using Jags (Plummer et al. (2003))

software in all cases by means of the package runjags (Denwood (2011)) from

the R project (R Core Team (2012)). One advantage of using Jags is that it

constructs the full conditional distributions and it carries out the Gibbs sampling

from the model specifications. We have programmed the algorithm of data cloning

by using package dclone (Sólymos (2010)) from the R project (R Core Team

(2012)). All codes are available in appendix A.5.

3.3 Application of data cloning methodology for

GARCH models

In this section, we undertake first a simulation study to check the estimator

obtained by a data cloning methodology in a GARCH(1,1) model. Then, we

compare the results with a MCMC standard methodology and, finally, we consider

a real data application.
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3.3.1 Simulation study of data cloning with simulated
GARCH data

We simulate, as an example, 1000 observations from a GARCH(1,1) model with

parameters β = 3, λ = 0.7 and δ = 0.1, by means of the R library TSA (Chan and

Ripley (2012)). Simulated data are plotted in figure 3.1.

Figure 3.1: Simulated GARCH process

Before applying the data clone method, we check whether the parameters are

estimable and we try to find out what is the optimal number of clones to be

used. We use several diagnosis measures, that are included in the library dclone.

Namely, the function dcdiag calculates some statistics, like the maximum eigen-

value of the posterior variance (Lele et al. (2010)) and the R̂ statistics (Brooks

and Gelman (1998)). Table 3.1 shows the obtained values for these statistics,

when we apply the estimator with different number of clones over the simulated

data.
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number clones λmax MSE R2 R̂
10 0.011140698 0.0018738148 0.0003029090 1.001787
20 0.005360305 0.0047266814 0.0007291688 1.000445
30 0.003573252 0.0019818529 0.0003019833 1.000361
40 0.002787538 0.0010856731 0.0001592909 1.000453
50 0.002212842 0.0044508016 0.0005863694 1.000960
60 0.001813621 0.0038002256 0.0003086169 1.000251
70 0.001544969 0.0044780238 0.0007456815 1.000789
80 0.001351319 0.0166057846 0.0015524794 1.004203
90 0.001224819 0.0028387457 0.0002602986 1.001871
100 0.001072735 0.0009801083 0.0001240946 1.000311

Table 3.1: Diagnosis table for the simulated data

The λmax value is based on the largest eigenvalue of the posterior variance-

covariance matrix. Lele et al. (2010) proved that the maximum eigenvalue gives

a hint of the degeneration of the posterior distribution, and if it is closer to zero,

prior distributions have less influence over the results. This measure can also be

used to check if the parameters of the model are estimable.

By the other hand, if the maximum eigenvalue converges to zero as the number

of clones increases, then the parameters are estimable. In table 3.1 it may be

observed that as the number of clones increases, the maximum eigenvalue of the

posterior variance covariance matrix (λmax) converges to zero. Then, it guarantees

that the parameters of the model are estimable. Furthermore, for 10 clones the

value of this statistic is small enough to assume that results will be accurate.

Moreover, if the number of clones is larger than 20, the improvements in the

estimations are not quite relevant.

Others useful measures related with the selection of the optimal number of

clones, are the mean squared error (MSE ) and the R2 statistic. They are both

based on a χ2 approximation and should converge to zero when the number of

clones increases. In table 3.1 it may be noted that MSE and R2 converge to zero
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as the number of clones increases. As in case of λmax, this fact provides more

evidences about the estimability of the parameters. They also show no relevant

improvements in them, when assuming a number of clones larger than 10.

The last column of table 3.1 includes the R̂ criteria, which was introduced

by Brooks and Gelman (1998). The interpretation of this measure is similar

to the previous ones; it converges to one as the number of clones increases. In

this example, with more than 10 clones there are not significant improvements

regarding the convergence to one.

As we previously mentioned, vaguely informative distributions have been used

as prior distributions for all parameters, assuming that we have no relevant in-

formation about them. The prior distributions are shown in (3.4); here we have

set d = 100.

Consequently, after setting the number of clones to 10 we apply the data

cloning methodology to the simulated GARCH(1,1) data. Table 3.2 shows the

real value of the parameters, the obtained estimations, their standard errors and

the approximate frequentist confidence intervals for β, λ and δ.

Parameter Real Value Estimator S.D. 95% Confidence Interval
β 3 3.229 0.333 (2.589, 3.869)
λ 0.7 0.744 0.075 (0.597, 0.891)
δ 0.1 0.088 0.031 (0.027, 0.148)

Table 3.2: Estimation of the GARCH parameters using the data cloning methodology

Table 3.2 shows that all the parameters are quite close to their real values.

Furthermore, they have small standard errors and the confidence intervals include

the true values of the parameters in all cases. Similar results can be found with

any other set of possible values.
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Now we compare the obtained data cloning estimators for the model

GARCH(1,1), with the MCMC estimator for the same model introduced by

Nakatsuma (1998). Table 3.3 shows the estimations for the same simulated series

using a MCMC approach.

Parameter Real values Posterior means S.D. HPD 0.95
β 3 3.226 0.328 (2.612, 3.898)
λ 0.7 0.743 0.074 (0.606, 0.896)
δ 0.1 0.094 0.031 (0.042, 0.163)

Table 3.3: Estimation of the GARCH parameters using MCMC

Comparing table 3.2 and table 3.3 it may be observed that all estimators

provide estimations which are really close to the real values. Consequently, we

can consider that both methodologies produce accurate estimations, although

standard errors are smaller for the data cloning estimates than for the MCMC

ones.

3.3.2 Data cloning estimations for real data using a
GARCH(1,1) model

In this section, we use a data cloning procedure to estimate the parameters of a

GARCH(1,1) model over a real data set. We try to analyse the behaviour of the

weekly returns of the NASDAQ 100 stock index from January 2000 to November

2012. The series is showed in figure 3.2.

The first step is being sure that this data set can be properly modelized by

using a GARCH(1,1) model, so we start applying different techniques to ensure it.

In this sense, it is necessary observe the autocorrelation function and the partial

autocorrelation function, and they are shown in figures 3.3 and 3.4 respectively.

The autocorrelation function of the returns (3.3) shows that a strong white
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Figure 3.2: Weekly returns of Nasdaq 100 from January 2000 to November 2012

noise assumption cannot be sustained, because some of the sample autocorrela-

tions are outside of the 95% significance bands. But these significance bands are

not valid for the case of weak white noise (see Francq and Zakoian (2010)).

Figure 3.5 shows the autocorrelation function with the corresponding bands

for weak white noise. It may be observed that, assuming these bands, the assump-

tion about weak white noise is sustained for all lags except the first one, fact that

is typical when assuming GARCH effects.

Now we apply the unitary roots test of Dickey and Fuller (1979). This test

is used to detect the presence of unitary roots in time series, and consequently

to ensure the stationarity of the series. It tests the null hypothesis about the
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Figure 3.3: Autocorrelation Function for the weekly return of Nasdaq 100 from January 2000
to November 2012

absence of unitary roots in terms of

H0 : δ = 0

H1 : δ ̸= 0

Where δ = ρ − 1 being ρ the coefficient associated to the first lag in the model.

This test is applied on residuals, and it is not possible use a standard t-distribution

to obtain the critical values. Instead, it is used a constructed Dickey-Fuller table.

If a time series presents unitary roots, then it may be deduced that it does not

present stationarity.

The Dickey fuller statistic for the observed Nasdaq returns series is equal

to -26.7817, therefore we can reject the null hypothesis of non stationarity at a

significance level of 0.01 and we can conclude that the series has no unitary roots,

and consequently it is stationary.
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Figure 3.4: Partial Autocorrelation Function for the weekly return of Nasdaq 100 from January
2000 to November 2012

The next step is looking for autocorrelation evidences in the series. The most

common test for checking if a series is a strong white noise or presents autocor-

relation, is the Ljung and Box (1978) test, which evaluates the null hypothesis

about absence of autocorrelation, using the following statistic

QLB
m := n(n+ 2)

m∑
i=1

ρ̂2

n− i
.

Under the null hypothesis, the asymptotic distribution of QLB
m is a chi-square

distribution χ2
m. This test evaluates the absence of autocorrelation in the model.

Then, if a series is a realization of strong white noise, the asymptotic distribution

of the statistic is a chi-squared χ2
m. Although, in the case of GARCH models the

test has to be modified because it is not robust for conditional heteroscedasticity.

Table 3.4 shows the results of the Ljung-Box test in the Nasdaq returns series.

In this series we have to reject the null hypothesis, although it does not mean
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Figure 3.5: Autocorrelation Function for the weekly return of Nasdaq 100 from January 2000
to November 2012 with weak white noise bands

that the strong white noise assumption should not be rejected because, as we

mention, this test is not robust in presence of conditional heteroscedasticity, and

therefore it is useless in this situation.

We also use the Lagrange Multipliplier (LM ) test introduced by Godfrey

(1978) and Breusch (1978), in order to check the presence of autocorrelation in

the series. Initially, this test was proposed for testing the null hypothesis of

absence of autocorrelation against the alternative about the presence of AR(p)

or MA(q) effects. The hypotheses are usually expressed as

H0 : ρ1 = ρ2 = · · · = ρr = 0

H1 : ∃i, ρi ̸= 0

Engle (1982) recommended to use this test also when the alternative hypothesis

is the presence of ARCH effects. If we are are testing this presence of ARCH
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lags QLB
m df p-value

5 8.848119 5 0.11688312
10 18.864095 10 0.06393606
15 24.010714 15 0.07792208
20 25.798445 20 0.16883117
25 30.359635 25 0.21178821
30 37.570483 30 0.17482517

Table 3.4: Portmanteau test of Nasdaq returns

effects, we can use the same test, but assuming that the alternative hypothesis

points out the presence of ARCH effects in the process.

The statistic of this contrast is n ·R2, where n is the number of observations

in the sample and R2 is the determination coefficient of an auxiliary model which

includes, as dependent variable, the residuals of the model and, as independent

variables, those of the original model and the number of lags of the residuals.

When the the null hypothesis is true the statistic has a χ2
r distribution, where

r is the number of lags included in the auxiliary model.

lags LM df p-value
1 20.2287 1 6.871e-06
5 40.6069 5 1.126e-07
10 82.096 10 1.947e-13
15 179.5892 15 2.2e-16
20 212.5089 20 2.2e-16

Table 3.5: Lagrange Multiplier test for Nasdaq returns

Table 3.5 shows the LM statistic and the corresponding p-values computed

for the Nasdaq returns. With all the selected number of lags, the null hypothesis

of absence of autocorrelation has to be rejected, therefore we can conclude that

this series presents ARCH effects.
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After assuming that series may be modelled using an ARCH or GARCH

models, we use the Akaike Information Criterion (AIC) (see Akaike (1974)) and

the Bayesian Information Criterion (BIC) (see Schwarz (1978)) to select the best

orders for the ARCH or GARCH model.

In order to find the best ARCH or GARCH model to describe the Nas-

daq series, we compare 6 possible parsimonious models: ARCH(1), ARCH(2),

GARCH(1,1), GARCH(1,2), GARCH(2,1) and GARCH(2,2), using the AIC and

BIC criteria. The values for both measures for the different models are shown in

table 3.6.

Model AIC BIC
ARCH(1) 2381.906 -2372.885
ARCH(2) -2538.131 -2524.601

GARCH(1,1) -2623.244 -2609.713
GARCH(1,2) -2614.217 -2596.176
GARCH(2,1) -2606.293 -2588.252
GARCH(2,2) -2611.563 -2589.012

Table 3.6: Akaike information Criterion and Bayesian Information Criterion for several GARCH
models

The minimum values for both AIC and BIC criteria are found for the

GARCH(1,1) model, so we can conclude this is the best model to describe the

considered Nasdaq series.

As a complementary approach we can test a z-statistic, to test the individual

significance of the parameters. The values of z-statistics are computed as the

ratio between the estimated parameters and their standard deviations. Here, the

z-statistics and p-values of parameters β, λ and δ of the GARCH(1,1) model are

shown in table 3.7. It may be noted that all estimates are significantly different

of zero at a 0.01 level. By the other hand, if we consider other GARCH or ARCH

models with a higher number of terms, the corresponding parameters are found
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to be no significant.

Parameter z-statistics p-value
β 2.59 0.004772993
λ 4.64 1.691592e-06
δ 34.08 6.112542e-255

Table 3.7: Individual significance test for GARCH(1,1) parameters

Then, we will use the data cloning approach, as in section 3.3, to estimate

the model parameters, their standard errors and the approximate maximum like-

lihood intervals. As before, we will consider as prior distribution the vaguely

informative uniform distributions shown in (3.4), seting d = 100.

First, we check what is the optimal number of clones (see Sólymos (2010)) and

we obtain that there are not relevant improvements when the number of clones

is larger than 40; therefore we use this number of clones to analyse the series.

Using 40 clones, the results are shown in Table 3.8.

Parameter Estimated Value S.D. Confidence Interval 95%
β 7.82e-05 2.97e-06 (4.13e-05 ; 1.15e-04)
λ 0.196 5.01e-03 (0.134; 0.258)
δ 0.741 4.60e-03 (0.684; 0.798)

Table 3.8: Clone estimations for GARCH(1,1) parameters to model Nasdaq weekly returns

Results obtained with the data cloning approach can be compared with those

obtained by a standard MCMC Bayesian approach (see e.g. Nakatsuma (1998)).

Table 3.9 shows the posterior means, standard errors and the credible intervals

for the GARCH(1,1) parameters under a full Bayesian approach.

Consequently, as with simulated series, both data cloning and Bayesian method-

ologies show similar results (see table 3.8 and table 3.9).
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Parameter Estimated Value S.D. HPD 0.95
β 8.31e-05 1.94e-05 (4.90e-05 ; 1.25e-04)
λ 0.2054 0.0324 (0.147; 0.2748)
δ 0.7324 0.0285 (0.675; 0.7863)

Table 3.9: MCMC estimations for GARCH(1,1) parameters to model Nasdaq weekly returns

In GARCH processes, (λ+ δ) measures the persistence of the volatility of the

process, which is the tendency for moving in the same direction. When this sum

is close to 1, it can be said that the volatility is persistent. The estimated values

for these parameters, by means of data cloning or Bayesian methods, have in

both cases a sum near to 1, so we can conclude that the volatility in the Nasdaq

weekly returns between 2000 and 2012 is persistent.

3.4 Data cloning estimator for COGARCH

Model parameters

In this section we introduce data cloning methodology to estimate the parameters

of the COGARCH model described in section 1.4. In order to do it, we consider

the approach of Maller et al. (2008) described in 2.2.

We set similar vaguely informative prior distributions, as we considered in

section 2.3

β ∼ U(0, a)

φ ∼ U(0, c)

η ∼ U(φ, b) (3.5)

where a, c and b are positive real values and b > c.

The corresponding joint posterior distribution is the product of the previous
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prior distributions and the kth power of the pseudo-likelihood function (see 2.9)

given by

π(k)(β, φ, η|y) ∝ [L(β, φ, η|y)]k π(β)π(φ)π(η)

∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρ2i

}
I(0,a)(β)I(φ,b)(η)I(0,c)(φ).

Then, the conditional posterior distributions of parameters are

π(k)(β|φ, η,y) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρ2i

}
I(0,a)(β)

π(k)(φ|β, η,y) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρ2i

}
I(0,c)(φ)

π(k)(η|β, φ,y) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρ2i

}
I(φ,b)(η)

Data cloning algorithm generates values for β(m), φ(m), η(m) from the previous

conditional posterior distributions of the parameters in each iteration m from

initial values β(0), φ(0), η(0).

The algorithm can be summarized in the next steps

Step 1: Set initial values β(0), φ(0), η(0) at m = 0.

Step 2: Generate β(m+1) from

β(m+1) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρ2i

}
I(0,a)(β)

where

ρ2i =

(
σ2
i−1 −

β(m)

η(m) − φ(m)

)(
exp{(η(m) − φ(m))∆ti} − 1

η(m) − φ(m)

)
+

β(m)∆ti
η(m) − φ(m)

σ2
i−1 = β(m)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2 + φ(m) exp{−η(m)∆ti−1}y2i−1

σ2
0 =

β(m)

η(m) − φ(m)

for i = 1, . . . , N.
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Step 3: Generate φ(m+1) from

φ(m+1) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρi2

}
I(0,c)(φ)

where

ρ2i =

(
σ2
i−1 −

β(m+1)

η(m) − φ(m)

)(
exp{(η(m) − φ(m))∆ti} − 1

η(m) − φ(m)

)
+
β(m+1)∆ti
η(m) − φ(m)

σ2
i−1 = β(m+1)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2

+φ(m) exp{−η(m)∆ti−1}y2i−1

σ2
0 =

β(m+1)

η(m) − φ(m)

for i = 1, . . . , N.

Step 4: Generate η(m+1) from

η(m+1) ∝

(
N∏
i=1

ρ2i

)−k/2

exp

{
−k

N∑
i=1

y2i
2ρi2

}
I(φ(m+1),b)(η)

where

ρ2i =

(
σ2
i−1 −

β(m+1)

η(m) − φ(m+1)

)(
exp{(η(m) − φ(m+1))∆ti} − 1

η(m) − φ(m+1)

)
+

β(m+1)∆ti
η(m) − φ(m+1)

σ2
i−1 = β(m+1)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2

+φ(m+1) exp{−η(m)∆ti−1}y2i−1

σ2
0 =

β(m+1)

η(m) − φ(m+1)

for i = 1, . . . , N.

Step 5: Accept or reject the proposed values β(m+1), η(m+1) and φ(m+1) accor-

ding to the Metropolis Hasting updates. Set m = m + 1 and go to Step

2.
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The algorithm to estimate the COGARCH(1,1) parameters has been pro-

grammed using the Jags (Plummer et al. (2003)) software by means of the pack-

age runjags (Denwood (2011)) from the R project (R Core Team (2012)). Ad-

ditionally, we have also used the package dclone (Sólymos (2010)) from the R

project (R Core Team (2012)) to program the data cloning algorithm. Codes are

available in appendix A.6.

3.5 Applications of the data cloning methodo-

logy for COGARCH models

In this section, we undertake first a simulation study to check the estimators

obtained by using data cloning methodology in a COGARCH(1,1) model. Then,

we compare the results with the MCMC standard methodology introduced in

section (2.3) and, finally, we consider a real data application and compare its

results with the MCMC standard estimates.

3.5.1 Simulation study of data cloning with simulated
COGARCH data

In this section, we undertake a simulation study to check the estimators obtained

by a data cloning methodology in a COGARCH(1,1) model. We are going to

use again the simulated sample path we used with our MCMC estimator in order

to be able to compared the obtained results with the results using Data Cloning

methodology. It is a sample path of COGARCH process with parameters β =

0.25, η = 0.35 and φ = 0.02 simulated by using the code in R in Appendix A.2.

The sample path is showed in figure (2.1). Figures (2.2) and (2.3) showed the

returns and the volatility respectively.
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To apply the Data cloning algorithm to estimate COGARCH paramaters we

used the uninformative prior distributions defined in (3.5). We set a = 100000

and b = 100000 to be large enough. As we remark in Chapters 1 and 2, bigger

values for φ provide sample paths with extremely big jumps to be real data, so

we set c = 0, 05, which lets big enough jumps providing good estimates.

Similarly as in the case of GARCH estimation, before applying the data clone

procedure, we analyse the diagnosis measures to check if parameters are estimable

and to find what is the optimal number of clones to implement the procedure.

Table 3.10 shows a list of these statistics for several possible number of clones.

Namely, the maximum eigenvalue of the posterior variance, the minimum squared

error, the squared error and R̂. As in section 3.3, we check in this way the

convergence of the parameters and we fix the optimal number of clones to use.

number clones λmax MSE R2 R̂
2 0.026820930 0.8502252 0.08165483 1.017508
5 0.013555492 0.9026417 0.06761531 1.010057
10 0.007693267 0.6495554 0.04552857 1.005517
15 0.0044663527 1.0163490 0.06758207 1.005078
20 0.003534333 0.5404925 0.03392750 1.017282
25 0.002880896 0.6100857 0.04106375 1.030992
30 0.002500749 1.9218046 0.11143148 1.039526

Table 3.10: Diagnosis table of the data cloning estimator of a COGARCH(1,1) model

Here, the maximum eigenvalue of the posterior variance covariance matrix

converges to zero when the number of clones increases, then, we can conclude

that the parameters of the model are estimable (see table (3.10)). According to

the mean squared error and the R2 statistic, the optimal number of clones to

be used is 20. Similar conclusion is observed by the R̂ criterion, so we set the

number of clones in the procedure as 20.
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Parameter Real Value Estimated Value S.D. 95% Confidence Interval
β 0.25 0.26795 0.21116 (0, 0.682)
η 0.35 0.18782 0.14597 (0, 0.474)
φ 0.02 0.04481 0.02122 (0.003, 0.086)

Table 3.11: Estimation of the COGARCH(1,1) parameters using the data cloning methodology

After applying the data cloning procedure, in table 3.11 it is shown the ob-

tained estimations, their standard errors and the approximate confidence inter-

vals. All estimations are closed to the real values of the parameters (β = 0.35,

η = 0.25 and ϕ = 0.02) and present small standard errors. Moreover, the confi-

dence intervals include all real values of the parameters.

Parameter Real Value Posterior mean S.D. HPD 0.95
β 0.25 0.427 0.158 (0.138 ; 0.747)
η 0.35 0.301 0.132 (0.092 ; 0.600)
φ 0.02 0.029 0.014 (0.002 ; 0.049)

Table 3.12: Estimation of the COGARCH(1,1) parameters using MCMC

Now, we compare the obtained data cloning estimators for the model

COGARCH(1,1), with the MCMC estimator for the same model described in

section 2.3, by using the Maller et al. (2008) approach. Table 3.12 shows the pos-

terior means, the standard deviations and the HPD intervals of the parameters

obtained with standard MCMC algorithm applied to the same sample path.

When comparing table 3.11 with table 3.12, it may be noted that with both

methodologies, accurate estimations of the parameters of the model are obtained

and both, approximate frequentist confidence intervals and credible intervals,

contain the real values of the parameters. The goal of Data Cloning methodology

in this case is providing maximum likelihood estimations.
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3.5.2 Data cloning estimations for real data using a
COGARCH(1,1) model

In this section, we use a data cloning procedure to estimate the parameters of

COGARCH(1,1) model over a real data. We consider the behaviour of the daily

returns of Nasdaq index from January 2008 to December 2012. Here, data are not

equally spaced because we consider weekends and holiday periods of time, and

the approach of Maller et al. (2008) seams to be a natural procedure to model

daily series. Figure (3.6) shows the evolution of these daily returns.

Figure 3.6: Daily evolution of Nasdaq 100 from January 2008 to November 2012

Then, we use the data cloning approach, as in section 3.5.1, to estimate the

parameters, their standard errors and the approximate maximum likelihood inter-

vals. First, we check what is the optimal number of clones (see (Sólymos (2010))

and we obtain that there are not relevant improvements when the number of

clones is larger than 20 (see table (3.13)); therefore we use this number of clones
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to analyse the series. The maximum eigenvalue showed in table (3.13) converges

to zero with the increase of the number of clones, so it can be conclude that

parameters are estimable.

number clones λmax MSE R2 R̂
5 0.169687 0.293721 0.027368 1.01772
10 0.070733 0.545003 0.051611 1.001016
15 0.036846 0.624237 0.050637 1.014734
20 0.024687 0.332539 0.028714 1.000976
25 0.018297 0.822261 0.059338 1.002529
30 0.012855 0.955443 0.067347 1.007905
35 0.010264 1.127749 0.082668 1.0079

Table 3.13: Diagnosis table of the data cloning estimator of a COGARCH(1,1) model over real
data

Using 20 clones, the results are shown in Table 3.14, it shows the estimated

values for the parameters, the standard deviation of the estimators and the ap-

proximate frequentist confidence intervals. As in the estimation for simulated

data, the prior distributions we used are the weakly-informative uniform distri-

butions defined in (3.5) setting a = 100000, b = 100000 and c = 0, 05.

Parameter Estimated Value S.D. Confidence Interval 95%
β 9.041 0.289 (5.457; 12.626)
η 0.055 0.00042 (0.050; 0.061)
φ 0.05 0.00015 (0.048; 0.052)

Table 3.14: Clone estimations of the COGARCH parameters to model the Nasdaq daily returns

Results obtained with the data cloning approach can be compared with those

obtained by a standard MCMC Bayesian approach. Table 3.15 shows the pos-

terior means, standard errors and the credible intervals for the COGARCH(1,1)

parameters under a full Bayesian approach. Results with respect to Table 3.14

are similar, although standard errors seem to be smaller in the case of the data

cloning approach.
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Parameter Estimated Value S.D. HPD 0.95
β 9.661 2.113 (6.140; 14.414)
η 0.054 0.0043 (0.045; 0.063)
φ 0.047 0.0028 (0.039; 0.050)

Table 3.15: MCMC estimations of COGARCH parameters to model the Nasdaq daily returns

Parameter η measures the speed of the decline of a volatility burst. For this

dataset the η value is not very large, namely, when a volatility burst appears due

to the arrival of new information to markets, its influence in volatility declines

with a moderate speed.

Parameter ϕ measures the magnitude of the volatility jumps and it may be

considered as a measure of how information affects to volatility and how fast

market assumes new events. In Nasdaq-100 series the estimation of ϕ is quite

large in relation to the values that it may reach in order to maintain stationarity.

A possible interpretation is that volatility bursts are quite big and daily index

moves largely up or down, regarding the appearance of relevant information in

market.

Finally, parameter β represents the level of volatility and regarding the Nasdaq-

100 values, the estimated value is not very large.

After using GARCH and COGARCH models to analyse the behaviour of the

Nasdaq-100 index series, by using both data cloning and a MCMC Bayesian

methodologies, we can conclude that the obtained results in this chapter can

be easily interpreted from a practical point of view and they may be used for

forecasting issues of financial series.
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Chapter 4

Hybrid Monte Carlo Estimation
for GARCH and COGARCH
model parameters
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4.1 Introduction to Hybrid Monte Carlo

The Hamiltonian dynamics methodology was introduced by Alder and Wain-

wright (1959) as an approach to molecular simulation which resulted to be asymp-

totically equivalent to MCMC methods. Both methodologies co-existed in the

following decades despite they overlapped in their application areas. Eventually

Duane et al. (1987) joined these two methodologies in what they called Hybrid

Monte Carlo (HMC) methods, because it involves a combination of a MCMC

approach with a deterministic step.

Originally, Hamiltonian dynamics was proposed to model the behaviour of a

system of idealized molecules, then Duane et al. (1987) introduced HMC with the

same purpose, although there were found new applications in Statistics, like Neal

(1995) regarding neural networks, Ishwaran (1999) in generalized linear models

and Schmidt (2009) in non-linear regression.

Due to their random walk behaviour, Gibbs sampler and Metropolis algo-

rithms may be inefficient in some situations, like simulations can take a long

time moving around the target distribution in complex models. HMC methods

try to amend these drawbacks. In this chapter we introduce the inference in

GARCH and COGARCH models based on the Hybrid Monte Carlo algorithm,

which results to have a more efficient behaviour than the MCMC approach.

We first describe in the next section, the Hamiltonian dynamics and the Hy-

brid Monte Carlo algorithms. In the following sections, HMC estimators for

GARCH and COGARCH parameters are introduced and their performance anal-

ysed.
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4.2 Description of Hybrid Monte Carlo

Hamiltonian dynamics was initially applied in the Physics framework in order to

model the behaviour of a puck moving on a surface. In this context two vectors

are required: the position of the puck q and its velocity p. Both, position and

velocity, depend on time. The potential energy function is given by U(q) which is

proportional to the height of the surface at the current position of the puck. The

kinetic energy function is given by K(q) = |p|2 / (2m), being m the mass of the

puck. It is well known that these two energies are related: when kinetic energy

increases (decreases), potential energy decreases (increases). The total energy

of the system is described by means of a function called Hamiltonian function

H(q, p).

Hamilton’s equations are the partial derivatives of Hamiltonian functionH(q, p),

and they describe the change in q and p over time:

dqi(t)

dt
=
∂H

∂pi
dpi(t)

dt
=
∂H

∂qi

where i = 1, . . . , d.

These equations are defined to map the movement of the puck in any time

interval and in general they must be solved by numerical methods like the Euler

procedure (see for a review of the main concepts Neal (2011)).

If these ideas are applied in the context of simulation, the position of the puck

can be seen as the parameter of interest, i.e. θ = (θ1, . . . , θd), and the potential

energy will be the log-posterior probability density function of the variable of

interest. For each component of θj there is an auxiliary momentum variable ϕj,

in such a way that both are jointly updated for j = 1, . . . , d.
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The posterior density of θ is first computed up to a multiplicative constant,

then it is augmented by the distribution of the auxiliary parameter ϕ in order to

obtain the joint posterior distribution P (θ,ϕ|y).

In the procedure, simulations are obtained from the joint posterior distribu-

tion, although the main interest is focused in the simulated values of θ. Values

of ϕ correspond to an auxiliary variable introduced to enable the algorithm to

move faster in the parameter space.

It is required to compute the posterior density and the gradient of the log-

posterior density, which in practice must be computed by means of numerical

differentiation. If θ is a d-dimensional parameter the gradient is defined as,

d logP (θ/y)

dθ
=

(
d log π (θ)L (θ/y)

dθ1
, . . . ,

d log π (θ)L (θ/y)

dθd

)

In general, this vector is easy to be computed in most models and the mo-

mentum distribution can be chosen by the researcher.

The HMC algorithm can be used to simulate from the posterior joint distri-

bution P (θ,ϕ|y), which must be a continuous distributions on Rd and the partial

derivatives of the logarithm of the density function must exist and they can be

computed.

It is usual to take as the prior distribution of ϕ a d-dimensional multivariate

normal distribution where for each component j = 1, . . . , d, ϕj ∼ N (0,Mj) and

the covariance matrix Mj is a diagonal matrix.

The HMC algorithm can be summarised in three steps. The first one addresses

the updating of the momentum variable, in the second one it is updated the

position and momentum variables, and the third one new values are accepted or

rejected according to a Metropolis-Hasting algorithm. These steps do not change
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the joint distribution of (θ,ϕ).

Step 1: New values of the momentum variable ϕ are simulated from the prior

distribution, a d-dimensional normal distribution.

Step 2: In the second step, a pair of values of (θ,ϕ) are simulated by using

the leapfrog method scaled by a factor ϵ. Then, a vector (θ∗,ϕ∗) is pro-

posed and it will be accepted or rejected in the next step according to a

Metropolis-Hasting algorithm. The leapfrog method begins taking a half

step to make a half-update of ϕ, then it alternates with N − 1 full-updates

of parameter θ, and it finishes with a half-update of parameter ϕ. It is

named as leapfrog because it splits the momentum updates into half steps

and it turns to be an approximation to the physical Hamiltonian dynamics,

in which the position and momentum are defined in continuous time. The

leapfrog method involves the following steps:

(a) Half-update ϕ, using the gradient of the log-posterior density

ϕ← ϕ+
1

2
ϵ
d log p (θ|y)

dθ

(b) Full update the position θ given the value of the momentum variable

ϕ

θ ← θ + ϵM−1ϕ

being M the covariance matrix of momentum distribution P (ϕ). In-

stead of avoid the use of ϵ and include it into M, which could be

considered easier, we keep both just to make M constant and alter

only ϵ when using the algorithm.

(c) Half-update of ϕ using again the gradient of the log-posterior density.

ϕ← ϕ+
1

2
ϵ
d log p (θ|y)

dθ
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When ϵ is close to zero, the leapfrog algorithm keeps the joint density

P (θ,ϕ|y) invariant. Assuming that ϵ is finite, the joint density P (θ,ϕ|y)

is not constant during the leapfrog steps, but it changes slightly if ϵ is small

enough.

Step 3: In the third step it is addressed an acception-rejection procedure based

on a Metropolis-Hastings approach. We denote the values of the parameter

and momentum values before a leapfrog step as
(
θm−1,ϕm−1

)
and (θ∗,ϕ∗)

after it. Then, we calculate the ratio

r =
p (θ∗|y) p (ϕ∗)

p
(
θm−1|y

)
p
(
ϕm−1

) ,
in order to accept or reject the new values according to a Metropolis-Hasting

rule

θm =

{
θ∗ with probability min(r, 1)
θm−1 Otherwise

In strict sense, we should also set a new value to ϕm, but as it is an auxiliary

variable it is not necessary.

This algorithm should be repeated until convergence that can be assessed

based on a ANOVA criterion (see e.g. Gelman et al. (2014)).

The Hybrid Monte Carlo method is designed to work with target densities

with positive values. If in any iteration, the algorithm takes a value of zero it is

necessary to stop and start a new iteration considering the previous value of θ.

If it takes negative values, the sign of ϕ must change in order to obtain positive

values, then the algorithm preserves the balance and it is more efficient than if

these values were just rejected. By the other hand, any change and movements

to different values of (θ,ϕ) are possible. The algorithm can be tuned considering

three different measures:
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(i) The probability distribution of the momentum variable ϕ, usually by default

it is assumed a normal distribution with zero mean and a given variance-

covariance matrix.

(ii) The value of the factor ϵ for the leapfrog steps.

(iii) The number N of leapfrog steps per iteration. In order to calibrate the

algorithm to the target distribution, it is necessary to meet the condition

ϵ ·N = 1 (e.g. ϵ = 0.1 and N = 10).

These tuning parameters can be set previously or they may be changed at

random for avoiding the algorithm to get stuck, taking into account information

from the previous iterations. In general, it is convenient to take a previous warm-

up period to tune the parameters, after that values from this period are discarded

for the estimation of parameters. By the other hand, in practice, it is suitable to

obtain an acceptance rate of 65%.

4.3 Hybrid Monte Carlo estimator for GARCH

model parameters

In this section we introduce the Hybrid Monte Carlo methodology applied for the

GARCH(1,1) model as defined in section 1.3.

The parameters of interest are θ = (β, λ, δ), which play the role of variables

of position when describing the HMC algorithm.

The potential energy is the logarithm of the posterior density function

d logP (β, λ, δ|Y )

d (β, λ, δ)
=

(
d logP (β, λ, δ|Y )

dβ
,
d logP (β, λ, δ|Y )

dλ
,

d logP (β, λ, δ|Y )

dδ

)
(4.1)
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We consider vaguely informative prior distributions as in section 3.2 which include

the corresponding restrictions of the parameters, namely,

β ∼ U(0, d),

λ ∼ U(0, 2eγ),

δ ∼ U(0, 1),

where d is any positive value, and γ is the Euler-Mascheroni constant.

Then, the joint posterior distribution is

π(β, λ, δ|Y ) ∝
N∏

n=1

(√
2πσ2

n

)−1

exp

{
− y2n
2σ2

n

}
· I(0,d)(β) · I(0,2eγ)(λ) · I(0,1)(δ)

where σ2
n = β + λY 2

n−1 + δσ2
n−1.

The momentum variables (ϕ1, ϕ2, ϕ3) are auxiliary variables which follow a

standard multivariate normal distribution,

ϕ = (ϕ1, ϕ2, ϕ3) ∼ N (0, I) .

In order to calculate the corresponding potential energy (4.1), we define an in-

termediate function

g (β, λ, δ) =
N∑

n=1

(
1

2
log
(
2πσ2

n

)
− y2n

2σ2
n

)
=
N

2
log(2π) +

1

2

N∑
n=1

(
log
(
σ2
n

)
− y2n

2σ2
n

)
=

N

2
log(2π) +

1

2

N∑
n=1

(
log
(
β + λy2t−1 + δσ2

n−1

)
− 1

2
y2n
(
β + λy2n−1 + δσ2

n−1

)−1
)

The derivatives for t = 1 is

dg (β, λ, δ)

dβ
=

2δσ2
0 + 2λy20 + y2n + 2β

2 (δσ2
0 + λy20 + β)

2

dg (β, λ, δ)

dλ
=

1

2

y20 (2δσ
2
0 + 2λy20 + y2n + 2β)

(δσ2
0 + λy20 + β)

2

dg (β, λ, δ)

dδ
=

1

2

σ2
0 (2δσ

2
0 + 2λy20 + y2n + 2β)

(δσ2
0 + λy20 + β)

2
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For n > 1, the derivatives can be obtained by successive substitutions in σ2
n,

although cumbersome polynomial expressions are obtained which should be better

managed by numerical methods.

Let us denote the corresponding partial derivatives of g (β, λ, δ) with respect

to (β, λ, δ) as

Dβ (β, λ, δ) =
dg (β, λ, δ)

dβ

Dλ (β, λ, δ) =
dg (β, λ, δ)

dλ

Dδ (β, λ, δ) =
dg (β, λ, δ)

dδ

In this way, the HMC algorithm is summarized as:

Step 1: Set initial values (β(0), λ(0), δ(0)) and m = 0.

Generate (ϕ
(m)
1 , ϕ

(m)
2 , ϕ

(m)
3 ) from a N (0, I).

Step 2: Generate proposed values for (β(m+1), λ(m+1), δ(m+1), ϕ
(m+1)
1 , ϕ

(m+1)
2 , ϕ

(m+1)
3 )

according to the leapfrog method, as follows

(a) ϕ
(m+1/2)
1 ← ϕ

(m)
1 + 1

2
ϵDβ

(
β(m), λ(m), δ(m)

)
ϕ
(m+1/2)
2 ← ϕ

(m)
2 + 1

2
ϵDλ

(
β(m), λ(m), δ(m)

)
ϕ
(m+1/2)
3 ← ϕ

(m)
3 + 1

2
ϵDδ

(
β(m), λ(m), δ(m)

)
(b) β(m+1) ← β(m) + ϵM−1ϕ

(m+1/2)
1

λ(m+1) ← λ(m) + ϵM−1ϕ
(m+1/2)
2

δ(m+1) ← δ(m) + ϵM−1ϕ
(m+1/2)
1

(c) ϕ
(m+1)
1 ← ϕ

(m+1/2)
1 + 1

2
ϵDβ

(
β(m+1), λ(m+1), δ(m+1)

)
ϕ
(m+1)
2 ← ϕ

(m+1/2)
2 + 1

2
ϵDλ

(
β(m+1), λ(m+1), δ(m+1)

)
ϕ
(m+1)
3 ← ϕ

(m+1/2)
3 + 1

2
ϵDδ

(
β(m+1), λ(m+1), δ(m+1)

)
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Step 3: Accept or reject (β(m+1), λ(m+1), δ(m+1), ϕ
(m+1)
1 , ϕ

(m+1)
2 , ϕ

(m+1)
3 ) accor-

ding to the Metropolis updates, set m = m+ 1 and go to Step 2.

4.4 Applied study of a HMC methodology for a

GARCH(1,1) model

In this section we apply the HMC methodology proposed in section 4.3. The

HMC algorithms have been programmed in the stan (Stan Development Team

(2014b)) software by means of Rstan package (Stan Development Team (2014a)).

Codes are available in appendix A.7.

We first check the HMC methodology in order to estimate a GARCH model

using simulated data. Then, we compare the obtained estimations with those

obtained by using a MCMC and a data cloning approaches introduced in Section

3.2. Finally we apply the HMC methodology in a real data set and we compare

results with those obtained with MCMC and data cloning approaches.

4.4.1 Simulation study of a HMC methodology with si-
mulated GARCH data

In order to be able to compare the HMC results, with those that we obtained in

Section 3.3, we use the same time series, which was simulated from a GARCH(1,1)

model, with parameters β = 3, λ = 0.7 and δ = 0.1, using R library TSA (Chan

and Ripley (2012)). A plot of the simulated series may be observed in figure 3.1.

After simulating the series we apply the HMC method and we obtain the

results included in Table 4.1. It is shown in columns, the real parameter values,

the posterior means, the standard deviations and the HPD intervals for β, λ and

δ. In order to make a comparison, we also include the estimations obtained with
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Estimations using Hamiltonian Monte Carlo algorithm
Parameter Real Values Estimator S.D. HPD 0.95

β 3 3.241 0.325 (2.715, 3.907)
λ 0.7 0.741 0.068 (0.632, 0.877)
δ 0.1 0.093 0.030 ( 0.047, 0.161)

Estimations using MCMC algorithm
Parameter Real Values Estimator S.D. HPD 0.95

β 3 3.226 0.328 (2.612, 3.898)
λ 0.7 0.743 0.074 (0.606, 0.896)
δ 0.1 0.094 0.031 (0.042, 0.163)

Estimations using Data Cloning algorithm
Parameter Real Values Estimator S.D. 95% Confidence intervals

β 3 3.229 0.333 (2.589, 3.869)
λ 0.7 0.744 0.075 (0.597, 0.891)
δ 0.1 0.088 0.031 ( 0.027, 0.148)

Table 4.1: Estimates for GARCH(1,1) parameters using HMC, MCMC and data cloning

MCMC and data cloning approaches. It may be noticed that for all parameters

the estimations are really close to the real values, and they are included in the

HPD intervals. Furthermore, standard deviations of estimators are quite small in

all cases, although they are a little bit smaller in the case of the HMC method.

The main improvement of the HMC methodology is the improvement of the

computation times in contrast with the Gibbs sampler and Metropolis-Hasting

algorithms, which sometimes take a long time zigging and zagging around the tar-

get distribution. On the contrary, the HMC methodology includes more efficient

steps and it is significantly faster.

4.4.2 HMC methodology applied in real data modeled by
a GARCH(1,1)

In this section we apply the HMC methodology on real data: weekly returns of

the NASDAQ 100 stock index from January 2000 to November 2012. These are
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the same data that we used to analyse the behaviour of the data cloning method

in Section 3.2. In that section we also concluded that it could be modeled by a

GARCH(1,1) model.

Estimations using Hamiltonian Monte Carlo algorithm
Parameter Estimated Value S.D. HPD 0.95

β 8.19e-05 1.82e-05 (5.41e-05 ; 1.21e-04)
λ 0.202 0.030 (0.154; 0.267)
δ 0.734 0.027 (0.689; 0.788)

Estimations using MCMC algorithm
Parameter Estimated Value S.D. HPD 0.95

β 8.31e-05 1.94e-05 (4.90e-05 ; 1.25e-04)
λ 0.2054 0.0324 (0.147; 0.2748)
δ 0.7324 0.0285 (0.675; 0.7863)

Estimations using Data Cloning algorithm
Parameter Estimated Value S.D. 95% Confidence intervals

β 7.82e-05 2.97e-06 (4.13e-05 ; 1.15e-04)
λ 0.196 5.01e-03 (0.134; 0.258)
δ 0.741 4.60e-03 (0.684; 0.798)

Table 4.2: HMC, MCMC and Data Cloning estimations for GARCH(1,1) model for Nasdaq
weekly returns data

In Table 4.2 it is shown in columns the posterior means of the parameters,

the standard deviations and the HPD intervals for β, λ and δ. In order to

make a comparison, we also include the estimations obtained with MCMC and

data cloning approaches obtained in tables 3.9 and 3.8 respectively. It may be

noticed that all values are similar among them and the series presents a persistent

volatility, as we previously commented.

4.5 Hybrid Monte Carlo estimator for

COGARCH model parameters

In this section we propose a HMC approach for a COGARCH(1,1) model assum-

ing the approximation proposed by Maller et al. (2008) and described in section
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2.2. As it was defined in (1.6), the parameters of interest of the model are β, η

and φ which in the context of HMC models take the role of position variables. If

we denote θ = (β, η, φ) , the potential energy is the derivative of the log-posterior

density function

d logP (β, η, φ|y)
d (β, η, φ)

=

(
d logP (β, η, φ|y)

dβ
,
d logP (β, η, φ|y)

dη
,
d logP (β, η, φ|y)

dφ

)
.

We set as prior distributions, the same vaguely-informative uniform distributions

that we set in the cases of the MCMC and data cloning methodologies,

β ∼ U(0, a)

φ ∼ U(0, c)

η|φ ∼ U(φ, b)

where a, c and b are positive real values and b > c.

Then, the posterior distribution is

π(β, φ, η|y1, · · · , yN) ∝ L(β, φ, η)π(β)π(φ)π(η|φ)

∝

(
N∏
i=1

1√
2πρ2i

)
exp

{
−

N∑
i=1

y2i
2ρ2i

}
· I(0,a)(β) · I(0,c)(φ) · I(φ,b)(η|φ)

∝

(
N∏
i=1

1

ρi

)
exp

{
−

N∑
i=1

y2i
2ρ2i

}
· I(0,a)(β) · I(0,c)(φ) · I(φ,b)(η|φ)

where ρi is defined as

ρ2i =

(
σ2
i−1 −

β

η − φ

)(
e(η−φ)∆ti − 1

η − φ

)
+
β∆ti
η − φ

and σ2
i = β∆ti + e−η∆tiσ2

i−1 + φe−η∆tiy2i and σ2
0 = β

η−φ
, with η > φ.

The momentum variables (ϕ1, ϕ2, ϕ3) are auxiliary variables distributed as a

multivariate normal distribution ϕj ∼ N (0, I).
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In order to calculate the corresponding potential energy, we define an inter-

mediate function

g(β, φ, η) = −
N∑
i=1

(
log (ρi) +

y2i
2ρ2i

)
Let us denote the corresponding partial derivatives of g(β, φ, η) with respect to

(β, φ, η) as

Dβ(β, φ, η) =
dg(β, φ, η)

dβ

Dφ(β, φ, η) =
dg(β, φ, η)

dφ

Dη(β, φ, η) =
dg(β, φ, η)

dη

For any t, the derivatives can be obtained by successive substitutions in g(β, φ, η),

although intractable and hugue polynomial expressions are obtained which should

be better managed by numerical methods.

The HMC algorithm can be summarized as:

Step 1: Set initial values (β(0), η(0), φ(0)) and m = 0.

Generate (ϕ
(m)
1 , ϕ

(m)
2 , ϕ

(m)
3 ) from N (0, I).

Step 2: Generate proposed values for (θ(m+1), ϕ(m+1)) acording to leapfrog

method, as follows

(a) ϕ
(m+1/2)
1 ← ϕ

(m)
1 + 1

2
ϵDβ(β

(m), η(m), φ(m))

ϕ
(m+1/2)
2 ← ϕ

(m)
2 + 1

2
ϵDη(β

(m), η(m), φ(m))

ϕ
(m+1/2)
3 ← ϕ

(m)
3 + 1

2
ϵDφ(β

(m), η(m), φ(m))

(b) β(m+1) ← β(m) + ϵM−1ϕ
(m+1/2)
1

η(m+1) ← η(m) + ϵM−1ϕ
(m+1/2)
2

φ(m+1) ← φ(m) + ϵM−1ϕ
(m+1/2)
1
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(c) ϕ
(m+1)
1 ← ϕ

(m+1/2)
1 + 1

2
ϵDβ(β

(m+1), η(m+1), φ(m+1))

ϕ
(m+1)
2 ← ϕ

(m+1/2)
2 + 1

2
ϵDη(β

(m+1), η(m+1), φ(m+1))

ϕ
(m+1)
3 ← ϕ

(m+1/2)
3 + 1

2
ϵDφ(β

(m+1), η(m+1), φ(m+1))

Step 3: Accept or reject (θ(m+1), η(m+1), ϕ(m+1)) according to the Metropolis

updates, set m = m+ 1 and go to Step 2.

4.6 Applied study of a HMC methodology for a

COGARCH(1,1) model

In this section we apply the HMC methodology proposed in section 4.5. The

HMC algorithms have been programmed in the stan (Stan Development Team

(2014b)) software by means of Rstan package (Stan Development Team (2014a)).

Codes are available in appendix A.8.

We first check the HMC methodology in order to estimate a COGARCH

model using simulated data. Then, we compare the obtained estimations with

those obtained by using a MCMC and a data cloning approaches introduced in

Sections 2.3 and 3.4. Finally we apply the HMC methodology in a real data

set and we compare results with those obtained with MCMC and data cloning

approaches.

4.6.1 Simulation study of a HMC methodology with si-
mulated COGARCH data

In order to be able to compare the HMC results, with those that we obtained in

Section 3.5.1, we use the same time series, which was simulated from a

COGARCH(1,1) model, with parameters β = 0.25, η = 0.35 and φ = 0.02,
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using the code from Appendix A.1. A plot of the simulated series may be ob-

served in figure 2.1. By the other hand, codes about estimations of the HMC

method can be found in Appendix A.8.

After simulating the series we apply the HMC method and we obtain the

results included in Table 4.3. It is shown in columns, the real parameter values,

the posterior means, the standard deviations and the HPD intervals for β, η and

φ. In order to make a comparison, we also include the estimations obtained with

MCMC and data cloning approaches in tables 2.1 and 3.11. It may be noticed

that for all parameters the estimations are close to the real values (remarkably

η and φ), and all real values are included in the HPD intervals. Furthermore,

standard deviations of estimators are small in all cases.

Estimations using Hamiltonian Monte Carlo algorithm
Parameter Real Value Estimator S.D. HPD 0.95

β 0.25 0.542 0.202 (0.162, 0.948)
η 0.35 0.323 0.144 (0.088, 0.367)
φ 0.02 0.027 0.014 (0.002, 0.048)

Estimations using MCMC algorithm
β 0.25 0.427 0.158 (0.138 ; 0.747)
η 0.35 0.301 0.132 (0.092 ; 0.600)
φ 0.02 0.029 0.014 (0.002 ; 0.049)

Estimations using Data Cloning algorithm
β 0.25 0.26795 0.21116 (0, 0.682)
η 0.35 0.18782 0.14597 (0, 0.474)
φ 0.02 0.04481 0.02122 (0.003, 0.086)

Table 4.3: Estimation for COGARCH(1,1) parameters using HMC

In general, in COGARCH(1,1) models, because the wild behaviour of its tra-

jectories, the computation time of MCMC methods is quite large. The advantage

of the HMC methodology based on calculating efficient steps allows to improve

quite enough the computation of the posterior distributions of the parameters.

128



4.6.2 HMC methodology applied in real data modeled by
a COGARCH(1,1)

In this section we apply the HMC methodology on real data: daily returns of

the Nasdaq index from January 2008 to December 2012. These are the same

data that we used to analyse the behaviour of the data cloning method of Section

3.5.2.

Table 4.4 shows the estimations for parameters of COGARCH(1,1) model for

the series of daily Nasdaq returns. It also include the obtained results using

MCMC and Data Cloning algorithms from Tables 3.15 and 3.14 respectively. It

could be observed that the estimations are quite similar to the ones obtained

using data cloning or MCMC as expected. The reduction in the computation

times is again the main advantage of this algorithm, which, as we mention is

specially important when estimating COGARCH parameters, because MCMC

takes a specially large amount of time in arising convergence.

In Table 4.4 it is shown in columns the posterior means of the parameters,

the standard deviations and the HPD intervals for β, η and φ. In order to

make a comparison, we also include the estimations obtained with MCMC and

data cloning approaches obtained in tables 3.15 and 3.14 respectively. It may be

noticed that all values are similar among them. Nevertheless, the HMC algorithm

is faster than the other ones.
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Estimations using a Hamiltonian Monte Carlo algorithm
Parameter Estimated Value S.D. HPD 0.95

β 9.637 2.064 (6.155, 14.289)
η 0.053 0.004 (0.045, 0.062)
φ 0.046 0.002 (0.038, 0.049)

Estimations using MCMC algorithm
β 9.661 2.113 (6.140; 14.414)
η 0.054 0.0043 (0.045; 0.063)
φ 0.047 0.0028 (0.039; 0.050)

Estimations using Data Cloning algorithm
β 9.041 0.289 (5.457; 12.626)
η 0.055 0.00042 (0.050; 0.061)
φ 0.05 0.00015 (0.048; 0.052)

Table 4.4: HMC for COGARCH(1,1) model for Nasdaq daily returns data
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Chapter 5

Approximate Bayesian
Computation estimation for
GARCH and COGARCH model
parameters
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5.1 Introduction to Approximate Bayesian Com-

putation Methods

The Approximate Bayesian Computation (ABC) methodology is a relative new

technique, which has arisen to cope with the estimation of parameters in models

where the likelihood function is intractable.

When the likelihood function is not available for mathematical or computa-

tional reasons, frequentist and also Bayesian methodologies may have problems

to estimate the model parameters. Hierarchical models may be examples of these

situations, because they present sometimes partly conjugate prior distributions

and it is not always possible to implement Metropolis-Hasting algorithms. More-

over, when increasing parameter dimensions, the convergence of the algorithms

becomes more difficult and they arise poorer estimations.

In other cases the likelihood function depends on an unknown normalizing

constant. This is a common situation in spatially correlated data and a possible

solution in these situations is to use pseudo-samples as Møller et al. (2006) pro-

posed. But there is dependency on a pseudo-target distribution which makes the

algorithm difficult to calibrate.

ABC methods address a large amount of situations in which the likelihood

function is not completely known and the exact simulation from the posterior

distributions is not possible. In some of these cases they can be approximated by

using Laplace approximations (Tierney and Kadane (1986)), but they require to

know, at least analytically, the posterior distribution. Variational Bayes solutions

(Jaakkola and Jordan (2000)) can be also applied in some situations, but they

consist on replacing the true model by a pseudo-model, usually simpler, hence it

misses information of the original model features.
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In this chapter we introduce estimators for GARCH an COGARCH model

parameters using ABC methods. The proposed algorithms provide good enough

estimations for GARCH model parameters but especially for COGARCH model

parameters, because this model produce sample paths with a specially wild be-

haviour. Furthermore, the existing estimators for parameters are based on a

pseudo-likelihood function. In GARCH models this pseudo-likelihood function

arise good enough estimations, but in COGARCH models pseudo maximum like-

lihood estimators do not work quite accurately until now. In the next section we

describe the Approximate Bayesian Computation framework and then we intro-

duce the ABC estimators and analyse their quality.

5.2 Description of Approximate Bayesian Com-

putation Algorithms

ABC methods can be seen as a solution to find estimates in models where the

likelihood function is not completely known or it is intractable, although it is

possible to simulate from it.

The first ABC Method was pointed out by Rubin (1984) who wrote a seminal

paper which included the first description of an ABC algorithm. After that Tavare

et al. (1997) described the proper ABC algorithm which was an acceptance or

rejection method in which parameters θ were generated from a prior distribution

π(θ). Then it is included an acceptance-rejection condition for the simulated

values to be compared with the original data.

If we denote as y the original sample which takes values in a finite set D, the

original ABC algorithm from Tavare et al. (1997) can be summarised as:

Original ABC Algorithm
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for t = 1 to N do

repeat

Generate θ′ from the prior distribution π(θ)

Generate z from the likelihood function f(·|θ′)

until z = y

set θt=θ
′

end for

The outcome of this algorithm is an iid sample from the posterior distribution

of θ, and

f(θt) ∝
∑
z∈D

π(θt)f(z|θt)Iy(z) = π(θt)f(z|θt) ∝ π(θt|y).

Although Rubin (1984) does not recommend to use this algorithm when the

likelihood function is unknown, he agrees that it allows to understand the poste-

rior distribution in an intuitive way, based on a frequentist framework. We should

remark that Rubin (1984) does not specify the concept of proximity between the

original data and the simulated sample, and he only points out that they have to

match.

Subsequently Pritchard et al. (1999) extended the previous algorithm to be

used in continuous sample spaces. In this way, he proposed the first practical ABC

algorithm which included some instrumental statistics. He defined a summary

statistic η (a function onD but usually not a sufficient statistic); also ρ, a distance

between η applied on the estimated and real data, and a tolerance level ϵ.

Then, the algorithm can be described as:
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ABC algorithm

for i = 1 to N do

repeat

Generate θ′ from the prior distribution π(·)

Generate z from the likelihood f(·|θ′)

until ρ {η(z), η(y)} ≤ ϵ

set θi=θ
′

end for

The algorithm of Pritchard et al. (1999) obtains samples of the joint distri-

bution of θ and z, by means of the marginal distribution of z

πε(θ, z|y) =
π(θ)f(z|θ)IAϵ,y(z)∫

Aϵ,y×θ
π(θ)f(z|θ)dzdθ

, (5.1)

where I(·) is an indicator function and

Aϵ,y = {z ∈ D|ρ {η(z), η(y)} ≤ ϵ} .

The basic idea is, instead of a direct comparison between the real data and the

simulated samples, to use a statistic η and fix a small enough distance between

them, given by ϵ. Then, the algorithm should render good enough approximations

to the posterior distribution

πϵ(θ|y) =
∫
πϵ(θ, z|y)dz ≈ π(θ|y).

Obviously, when the tolerance level becomes smaller, better approximations to

the posterior distribution are found, but with a higher computation cost.
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Nevertheless, simulating directly from the prior distribution may be ineffi-

cient in practice, since there is not a stage which leads to proposed values, so it

makes difficult to obtain values which are located in regions with a low posterior

probability. In order to solve this problem, Marjoram et al. (2003) proposed the

MCMC-ABC algorithm which targets the posterior distribution defined in 5.1.

The algorithm can be described as

MCMC-ABC algorithm

Obtain initial values for (θ(0), z(0)) from the ABC target distribution πϵ(θ, z|y)

by using the ABC algorithm.

for t = 1 to N do

Generate θ′ from a Markov kernel q
(
·|θ(t−1)

)
Generate z′ from the likelihood f(·|θ′)

Generate u from U [0, 1]

if u ≤ π(θ′)q(θ(t−1)|θ′)
π(θ(t−1))q(θ′|θ(t−1))

and ρ {η(z′), η(y)} ≤ ϵ then

set (θ(t), z(t))=(θ′, z′)

else

set (θ(t), z(t))=(θ(t−1), z(t−1))

end if

end for

The ABC requirement about not using the likelihood function is satisfied by
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the MCMC-ABC algorithm, because it does not require the likelihood function

to obtain the acceptance probability. This algorithm is also a MCMC method

which targets the exact stationary distribution πϵ(θ, z|y).

The acceptance probability for this algorithm can be obtained as q
(
θ′|θ(t−1)

)
πϵ(θ

′, z′|y)
πϵ(θ

(t−1), z(t−1)|y)
×
q
(
θ(t−1)|θ′

)
f
(
z(t−1)|θ(t−1)

)
q
(
θ′|θ(t−1)

)
f(z′|θ′)

=

π(θ′)f(z′|θ′)IAϵ,y(z′)

π(θ(t−1))f(z(t−1)|θ(t−1))IAϵ,y(z(t−1))

×
q
(
θ(t−1)|θ′

)
f
(
z(t−1)|θ(t−1)

)
q
(
θ′|θ(t−1)

)
f(z′|θ′)

=

π(θ′)q
(
θ(t−1)|θ′

)
π(θ(t−1))q

(
θ′|θ(t−1)

)IAϵ,y(z′).

As an ergodic Markov chain forgets its initial state, the first step which in-

volves the use of an ABC algorithm can be omitted in order to reduce the compu-

tational cost. Nevertheless it is better to run the MCMC-ABC algorithm so many

iterations as to achieve convergence, so the improvement in the computational

cost will be not very significant in practice.

The MCMC-ABC algorithm also depends on the tuning parameters, as the

summary statistics η, the distance ρ and the tolerance ϵ which have to be set

by the researcher before running the algorithm, and the handy selection of them

improves results in this methodology. The calibration and setting of the tuning

parameters is an open issue.

McKinley et al. (2009) carried out an empirical analysis to test different strate-

gies to select the tolerance level ϵ, the distance ρ and the summary statistics η.

They remarked the following conclusions:

(i) Simulation of several data sets from the same proposal parameters does not
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improve the approximation of the posterior distributing when using ABC

algorithms.

(ii) The tolerance level ϵ does not affect significantly to the results.

(iii) The selection of the summary statistics and their distance is essential for

obtaining accurate approximations to the posterior distribution.

Therefore, the election of η and ρ is the most important step. Joyce and

Marjoram (2008) consider the usual summary statistics available and suggest a

sequential inclusion of these in the ABC algorithm. They propose to include a

new statistic related to η after assessing it, by using a likelihood ratio test, but

they do not take into account the sequential nature of the test.

In order to implement an ABC algorithm to estimate GARCH and COGARCH

model parameters, we have studied the effect of changing the parameters in the

sample paths, and the most appropriated set of summary statistics. We have

tested different summary statistics, and we have concluded that in order to find

good enough results in a reasonable computation time, it is better to limit prior

distributions around the maximum likelihood or the moments estimates of para-

meters. We have also considered different distances ρ and we have concluded that

the euclidean distance is the most appropriate one. In next sections we describe

the proposed algorithm to estimate GARCH and COGARCH model parameters.

5.3 Approximate Bayesian Computation estima-

tion for GARCH model parameters

In this section we deal with estimates of the GARCH model parameters based on

an ABC methodology.
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We refer to section 1.3 for the definition of a GARCH(1,1) model,

Yn = σnϵn,

σ2
n = β + λY 2

n−1 + δσ2
n−1,

for n ≥ 0 where β > 0, λ ≥ 0 and δ ≥ 0, and ϵn are a sequence of random

variables, independently and identically normally distributed.

As usual, the model parameters to estimate are β, λ and δ and it is necessary

assign prior distributions for them. The parameters space is given by

Φ ⊂ R3 × (0,∞)× (0, 2eγ)× (0, 1)

Assuming the restrictions addressed in proposition 9, we use similar weak informa-

tive uniform distributions as in the case of the Data Cloning and the Hamiltonian

Monte Carlo techniques (see sections 3.2 and 4.3)

β ∼ U(0, d)

λ ∼ U(0, 2eγ)

δ ∼ U(0, 1)

where d is any positive value, and γ is the Euler-Mascheroni constant.

Then, the joint posterior distribution is

π(β, λ, δ|Y ) ∝
N∏

n=1

(√
2πσ2

n

)−1

exp

(
− y2n
2σ2

n

)
· I(0,d)(β) · I(0,2eγ)(λ) · I(0,1)(δ)

where σ2
n = β + λY 2

n−1 + δσ2
n−1.

Before describing the algorithm, it is necessary to set the summary statis-

tics η(Y ) that will be used when running the ABC algorithm. In these sense,

we undertook empirical studies to conclude that it is not necessary to use cum-

bersome statistics if the prior distributions of parameters are restricted in some
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way. Accordingly, we use as statistics the sample mean, the sample variance

and the median absolute deviation. And in order to fix the prior distributions

of the parameters, we use uniform distributions whose supports are around the

quasi-maximum likelihood estimates (QMLE ) of the parameters.

The quasi-likelihood function is

LN = LN(β, λ, δ, Y ) =
N∏

n=1

1√
2πσ2

n

exp

(
− Y 2

n

2σ2
n

)
,

and the QMLE of (β, λ, δ) is obtained as

θ̂N = argmax
θ∈Φ

LN(β, λ, δ, Y ).

According to Francq et al. (2004), the maximum of LN(β, λ, δ, Y ) is equivalent

to the minimum of

IN(β, λ, δ, Y ) = N−1

N∑
n=1

Y 2
n

σ2
n

+ log σ2
n.

With respect to an ABC algorithm, the mean, the variance and the median

absolute deviations will be used as summary statistics, defining the function η(Y )

as

η(Y ) = (Ȳ , V ar[Y ],mad[Y ]).

being median absolute deviations described as

mad = mediann (|Yn −mediann(Yn)|)

Then, the algorithm can be described as follows:

for m = 1 to N

Step 1: Generate (β∗, λ∗, δ∗) from the prior distributions.

Step 2: Generate Y ∗ from the quasi-likelihood function, LN
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Step 3: If
√(

Ȳ − Ȳ ∗
)2

+ (V ar [Y ]− V ar [Y ∗])2 + (mad [Y ]−mad [Y ∗])2 < ϵ

then

set (β(m), λ(m), δ(m), Y (m))=(β∗
0 , λ

∗
1, δ

∗, Y ∗) and m = m+ 1

else

go to Step 1

end if

end for

Alternatively, other solution may be using a MCMC-ABC algorithm, which may

be found more appropriated considering that the MCMC methodology works

properly in the GARCH models framework.

The MCMC-ABC algorithm can be described as follows:

Step 1: Set initial values (β(0), λ(0), δ(0)).

for t = 1 to N

Step 2: Generate (β∗, λ∗, δ∗) from aMarkov kernel q(β, λ, δ|β(m−1), λ(m−1), δ(m−1)).

Step 3: Y ∗
n ← σnϵn.

being σ2
n = β∗ + λ∗Y 2

n−1 + δ∗σ2
n−1.

Step 4: Generate u from U [0, 1].

Step 5: If u ≤ π(β∗,λ∗,δ∗|Y )q(β(m−1),λ(m−1),δ(m−1)|β∗,λ∗,δ∗)

π(β(m−1),λ(m−1),δ(m−1)|Y ))q(β∗,λ∗,δ∗|β(m−1),λ(m−1),δ(m−1))
.

and ρ {η(Y ∗), η(Y )} ≤ ϵ then

set (β(m), λ(m), δ(m), Y (m))=(β∗, λ∗, δ∗, Y ∗)

else
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set (β(m), λ(m), δ(m), Y (m))=(β(m−1), λ(m−1), δ(m−1), Y (m−1))

end if

end for

Both algorithms have been programmed in R (R Core Team (2012)) using the

package fGarch (Wuertz et al. (2013)) to obtain the QMLE estimates, and

EasyABC (Jabot et al. (2014)) package to apply the ABC algorithm. Codes are

available in appendix A.9 and A.10.

5.4 Application of the ABC methodology for

GARCH models

In this section, we undertake first a simulation study to check the estimators

obtained by an ABC methodology in a GARCH(1,1) model. Then, the ABC

method is applied over Nasdaq index returns (from January 2008 to December

2012) and we compare the obtained results with those of the former algorithms

proposed in this thesis.

5.4.1 Simulation study of ABC with simulated GARCH
data

As in previous sections, we use the simulation of the 1000 observations from a

GARCH(1,1) model with parameters β = 3, λ = 0.7 and δ = 0.1, by means of

the R library TSA (Chan and Ripley (2012)). Simulated data are plotted in 3.1.

We use uniform prior distributions for the parameters whose supports are

around the quasi-maximum likelihood estimates (QMLE ) as discussed in section

5.3.
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We take 500000 simulations in the ABC algorithm in order to compare the

target statistics (mean, variance and median absolute distances) with the values

of the original series. Using a tolerance level of 0.005, 2507 values for parame-

ters have been accepted in order to determine the posterior distributions for all

parameters.

Estimations using ABC algorithm
Parameter Real Values Estimations S.D. HPD 0.95

β 3 2.894 0.115 (2.707, 3.084)
λ 0.7 0.686 0.115 (0.497, 0.877)
δ 0.1 0.011 0.067 (0.005, 0.222)

Estimations using Hamiltonian Monte Carlo algorithm
Parameter Real Values Estimations S.D. HPD 0.95

β 3 3.241 0.325 (2.715, 3.907)
λ 0.7 0.741 0.068 (0.632, 0.877)
δ 0.1 0.093 0.030 ( 0.047, 0.161)

Estimations using Data Cloning algorithm
Parameter Real Values Estimations S.D. 95% Confidence intervals

β 3 3.229 0.333 (2.589, 3.869)
λ 0.7 0.744 0.075 (0.597, 0.891)
δ 0.1 0.088 0.031 ( 0.027, 0.148)

Estimations using MCMC algorithm
Parameter Real Values Estimations S.D. HPD 0.95

β 3 3.226 0.328 (2.612, 3.898)
λ 0.7 0.743 0.074 (0.606, 0.896)
δ 0.1 0.094 0.031 (0.042, 0.163)

Table 5.1: Estimation for GARCH(1,1) parameters using ABC, HMC, MCMC and Data Cloning

Table 5.1 shows the estimations obtained by using an ABC algorithm over the

simulated GARCH sample path. For comparison tasks, it also contains results

obtained with Hamiltonian Monte Carlo, Data cloning and MCMC algorithms.

For all of them the table shows by columns, the real values used to simulate the

sample path, the estimates, the obtained standard deviations and HPD intervals

(confidence intervals in data cloning framework).
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In case of ABC, it can be noted that the obtained estimates are quite close to

the real values of parameters, like by using the other Bayesian approaches. And

all HPD interval include the real parameter values, so we can conclude that ABC

approach renders accurate results.

Similar results may have been obtained without including restrictions in the

prior distributions, but in order to obtain 2507 accepted values with a small

tolerance level, it would necessary using much more than 500000 simulations,

increasing significantly the computation time.

By the other hand, if we apply an ABC-MCMC algorithm over the same

series, similar results are obtained as it is shown in table 5.2.

The algorithm can be tried with a larger number of simulations, but it is

known that a larger number of iterations it does not improve significantly the

results and constitute an added cost of highly increasing computing times.

Estimations using ABC-MCMC algorithm
Parameter Real Values Estimator S.D. HPD 0.95

β 3 2.886 0.108 (2.711, 3.078)
λ 0.7 0.745 0.033 (0.663, 0.784)
δ 0.1 0.088 0.029 (0.048, 0.127)

Table 5.2: Estimation for GARCH(1,1) parameters using ABC-MCMC

Table 5.2 shows the real value of the parameters, the obtained estimates by

using the ABC-MCMC approach, their standard errors and the HPD intervals

for β, λ and δ. Comparing results with those shown in table 5.1, it can be

observed that the ABC-MCMC method provides estimates with a significantly

smaller standard deviations than in the case of MCMC, data cloning or HMC

algorithms, for all parameters except for β. And these standard deviation can be

reduced by increasing the number of simulations. Even the standard deviations
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for all parameters are smaller than in the case of ABC estimations. Consequently,

HPD intervals are smaller for β and λ and similar for δ. This points out that

the ABC-MCMC estimator is more efficient than the rest of Bayesian estimators.

According to this could be affirm that ABC-MCMC algorithm provides the more

efficient estimators.

5.4.2 ABC estimations for real data modeled by GARCH

In this section we apply the ABC and ABC-MCMC methodologies on real data:

the series of Nasdaq 100 weekly return from January 2000 to November 2012.

As we analysed in section 3.3.2, this series includes GARCH effects and the best

model to apply, according to the Akaike and Schwarz criteria is a GARCH(1,1).

Estimations using ABC algorithm
Parameter Estimations S.D. HPD 0.95

β 0.100 0.057 (0.004, 0.195)
λ 0.152 0.088 (0.007, 0.297)
δ 0.839 0.0839 (0.687, 0.992)
Estimations using Hamiltonian Monte Carlo algorithm

Parameter Estimations S.D. HPD 0.95
β 8.19e-05 1.82e-05 (5.41e-05 ; 1.21e-04)
λ 0.202 0.030 (0.154; 0.267)
δ 0.734 0.027 (0.689; 0.788)

Estimations using Data Cloning algorithm
Parameter Estimations S.D. 95% confidence intervals

β 7.82e-05 2.97e-06 (4.13e-05 ; 1.15e-04)
λ 0.196 5.01e-03 (0.134; 0.258)
δ 0.741 4.60e-03 (0.684; 0.798)

Estimations using MCMC algorithm
Parameter Estimations S.D. HPD 0.95

β 8.31e-05 1.94e-05 (4.90e-05 ; 1.25e-04)
λ 0.2054 0.0324 (0.147; 0.2748)
δ 0.7324 0.0285 (0.675; 0.7863)

Table 5.3: ABC, HMC, MCMC and Data Cloning estimations for GARCH(1,1) model for
Nasdaq weekly returns data
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Table 5.3 shows the estimated values, standard deviations and HPD inter-

vals of the model parameters, by using ABC, HMC, Data Cloning and MCMC

methods.

We consider for the ABC approach 500000 simulations, such that 2494 of them

are accepted, with a tolerance level of 0.005. It can be observed that estimates

are similar to the obtained with the rest of Bayesian methodologies.

Estimations using ABC-MCMC algorithm
Parameter Estimator S.D. HPD 0.95

β 0.038 0.025 (0.002, 0.094)
λ 0.032 0.021 (0.002, 0.084)
δ 0.759 0.059 (0.683, 0.899)

Table 5.4: ABC-MCMC estimations for GARCH(1,1) model for Nasdaq weekly returns data

The results of the ABC-MCMC methodology are shown in table 5.4, which in-

cludes the estimates, the standard deviations and the HPD intervals. We consider

400000 simulations and then, similar estimates as in case of the other Bayesian

techniques are found as comparing with table 5.3.

Anyway, as the frequentist approach and the standard Bayesian techniques

obtain accurate results, the introduction of the ABC approach may be taken into

consideration as a former toy example in order to introduce the methodology in

more complex models as COGARCH ones.

5.5 Approximate Bayesian Computation for

COGARCH model parameters

In this section we propose an ABC approach for a COGARCH(1,1) model assum-

ing the approximation proposed by Maller et al. (2008) and described in Section
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2.2.

Let us recall the definition of a COGARCH (1,1) process from (1.6), in which

we defined Gt to be a COGARCH(1,1) process when

dGt = σtdLt

where t > 0, G0 = 0, β, η and φ are the model parameters with β > 0, η > 0 and

φ ≥ 0 and the variance process is defined as

dσ2
t+ = βdt− ησ2

t dt+ φσ2
t d[L,L]t

where [L,L]t is the quadratic variation of the Lèvy process.

The same prior distributions than in previous chapters are going to be used,

β ∼ U(0, a)

φ ∼ U(0, c)

η|φ ∼ U(φ, b)

where a, c and b are positive real values and b > c.

Before describing the algorithm, it is necessary to set the summary statistics

η(Y ) that will be used when running the ABC algorithm.

In section 1.4.3, when we analysed the behaviour of the COGARCH(1,1)

process in relation with the parameters change, we concluded that the minimum

value of volatility has an important influence on the parameters, especially on η

and β. In this way there is a strong relationship between these parameters and

the volatility lower bound, therefore we introduce this statistic in the statistics

function η(Y ).

It is also known that parameter φ is the responsible of the process jumps, so
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we include the information of their magnitude in terms of the difference between

the maximum and the minimum observed volatility.

Another relevant statistics is the covariance between the squared of the series

values in two time points (which we will consider as consecutive). This covariance

is used when defining the moment estimator (see 2.4) and it constitutes one of the

stylized facts analysed by Mandelbrot (1963) to define the characteristic of finan-

cial series, namely the “Squared price returns autocorrelated”. It is known that

financial series present no autocorrelated returns, but there is a high correlation

between the squared returns. Consequently, we include in η(Y ) the correlation

coefficient of the squared process values. Finally, we include in the set of statistics

η(Y ) the sample variance and median absolute deviations of the sample path.

In the same way as in the GARCH model case, in order to reduce computation

times we restrict the prior distributions of parameters in some way. Accordingly,

we use as a simple approach uniform distributions whose supports are around the

the moment estimator defined by Haug et al. (2005).

The ABC algorithm to estimate the COGARCH model parameters (η, β, φ)

can be described as follows:

m = 1

while m ≤ N

Step 1: Generate (η∗, β∗, φ∗) from the prior distributions.

Step 2: Generate G∗ from the quasi-likelihood function, Ln

Step 3: If
√
( (MinV ol(G)−MinV ol(G∗))2+(Range(V ol(G))−Range(V ol(G∗)))2

+
(
ρ
(
G2

t , G
2
t−1

)
− ρ

(
(G∗)2t , (G

∗)2t−1

))2
+
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+(V ar [G]− V ar [G∗])2 + (mad [G]−mad [G∗])2) < ϵ then

set (η(m), β(m), φ(m), G(m))=(η∗, β∗, φ∗, G∗) and m = m+ 1.

else

go to Step 1

end if

end while

The algorithm has been programmed in R (R Core Team (2012)) using the

package COGARCH (Bibbona et al. (2014)) in order to calculate the moment esti-

mators to restrict the prior distributions, and the package EasyABC (Jabot et al.

(2014)) to apply the ABC algorithm. Codes are available in appendix A.11.

5.6 Simulation study of ABC estimator for

COGARCH(1,1) model parameters

In this section, we undertake first a simulation study to check the estimators

obtained by an ABC methodology in a COGARCH(1,1) model. Then, the ABC

method described in section 5.5 is applied over Nasdaq index returns (from Jan-

uary 2008 to December 2012) and we compare the obtained results with those of

the former algorithms proposed in this thesis in sections 2.3, 3.4 and 4.5.

5.6.1 Simulation study of ABC with simulated
COGARCH(1,1) data

In this simulation study, we have simulated series of 100 data points with para-

meters β = 0.25, η = 0.35 and φ = 0.02 (see the R codes in appendix A.1). Figure
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2.1 shows the obtained sample path used to analyse and discuss the behaviour of

the other Bayesian approaches taken in this thesis.

Estimations using ABC algorithm
Parameter Real Value Estimator S.D. HPD 0.95

β 0.25 0.336 0.121 (0.114, 0.502)
η 0.35 0.305 0.146 (0.096, 0.582)
φ 0.02 0.025 0.014 (0.002, 0.047)

Estimations using Hamiltonian Monte Carlo algorithm
Parameter Real Value Estimator S.D. HPD 0.95

β 0.25 0.542 0.202 (0.162, 0.948)
η 0.35 0.323 0.144 (0.088, 0.367)
φ 0.02 0.027 0.014 (0.002, 0.048)

Estimations using Data Cloning algorithm
Parameter Real Value Estimator S.D. 95% Confidence intervals

β 0.25 0.26795 0.21116 (0, 0.682)
η 0.35 0.18782 0.14597 (0, 0.474)
φ 0.02 0.04481 0.02122 (0.003, 0.086)

Estimations using MCMC algorithm
Parameter Real Value Estimator S.D. HPD 0.95

β 0.25 0.427 0.158 (0.138 ; 0.747)
η 0.35 0.301 0.132 (0.092 ; 0.600)
φ 0.02 0.029 0.014 (0.002 ; 0.049)

Table 5.5: Estimation for COGARCH(1,1) parameters using ABC algorithm

The results obtained by applying ABC algorithm over the simulated data set

are shown in table 5.5. It shows by columns the real values of parameters, the

obtained estimates, the standard deviation and the HPD intervals. We have used

500000 simulations with a tolerance level of 0.01, in such a way that 5000 sets of

parameters have been accepted as an obtained sample from the posterior distri-

bution. We have undertaken parallel computing in codes, by means of Analytics

and Weston (2014) with a significant diminishing computing times in a multicore

machine.

In the case of the ABC approach, it can be noted that the estimations for η, β
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and φ are quite close to real values and all HPD intervals include them. Standard

deviations for parameter β is smaller than those obtained with the rest of Bayesian

approaches proposed in this thesis, whose results are also included in this table.

Consequently the HPD interval is also smaller. Although for parameter η the

ABC approaches obtains the larger standard deviation in relation with the rest

of methods.

The advantage of the ABC approach is that it is a simulation-based method,

where it is not necessary to deal with indirect quasi-maximum likelihood tech-

niques or approximate moment methods. Although the computational burden

may be huge if the support of the prior distributions is not restricted somehow.

5.6.2 ABC estimations for real data using a
COGARCH(1,1)

In this section we apply the ABC methodology to estimate the parameters of a

COGARCH(1,1) model on real data. We use as in previous sections the series of

Nasdaq 100 weekly returns from January 2000 to November 2012 which can be

observed in figure 3.6.

Table 5.6 shows the obtained estimations for parameters, the standard devi-

ations and the HPD intervals, using the ABC, HMC, data cloning and MCMC

methods. In this case, we have used again 500000 simulations with a tolerance

level of 0.01, and a sample of 5000 sets of parameters have been accepted as an

obtained sample from the posterior distribution. We have undertaken parallel

computing in codes, by means of Analytics and Weston (2014) with a significant

diminishing computing times in a multicore machine.

Although all methods provide very similar estimates with small standard devi-
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Estimations using ABC algorithm
Parameter Estimated Value S.D. HPD 0.95

β 9.573 0.406 (8.919, 10.184)
η 0.076 0.027 (0.051, 0.133)
φ 0.032 0.013 (0.005, 0.048)
Estimations using Hamiltonian Monte Carlo algorithm

Parameter Estimated Value S.D. HPD 0.95
β 9.637 2.064 (6.155, 14.289)
η 0.053 0.004 (0.045, 0.062)
φ 0.046 0.002 (0.038, 0.049)

Estimations using Data Cloning algorithm
Parameter Estimated Value S.D. 95% Confidence intervals

β 9.041 2.890 (5.457; 12.626)
η 0.055 0.00042 (0.050; 0.061)
φ 0.05 0.00015 (0.048; 0.052)

Estimations using MCMC algorithm
Parameter Estimated Value S.D. HPD 0.95

β 9.661 2.113 (6.140; 14.414)
η 0.054 0.0043 (0.045; 0.063)
φ 0.047 0.0028 (0.039; 0.050)

Table 5.6: ABC estimations for COGARCH(1,1) model for Nasdaq daily returns data

ations, the ABC approach renders the smaller standard deviations for parameter

β, but the higher for parameter η. Increasing the number of simulations these

standard deviations could be reduced, with the consequent computational cost.
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Conclusiones

En esta tesis se plantea la estimación de los parámetros de los modelos autorre-

gresivos de heteroscedasticidad condicional generalizados, en tiempos discretos y

continuos, mediante varias metodoloǵıas bayesianas y frecuentistas aproximadas.

En concreto, se tratan los modelos GARCH y su extensión a tiempo continuo

(COGARCH), siguiendo el planteamiento original de Klüppelberg et al. (2004).

De este modo, se pueden modelizar series temporales observadas en intervalos

irregulares de tiempo (véase Maller et al. (2008)).

Se presentan los diferentes métodos y se analizan sus propiedades matemáticas.

Posteriormente, se efectúa un estudio de simulación para analizar la precisión de

los estimadores y, finalmente, se muestran los resultados obtenidos en el análisis

de series reales procedentes del ı́ndice bursátil Nasdaq entre enero del año 2000

y noviembre del año 2012.

Se presentan a continuación las siguientes observaciones y conclusiones gene-

rales:

• Se propone la aplicación de una metodoloǵıa estándar MCMC en el modelo

COGARCH(1,1) propuesto por Klüppelberg et al. (2004), considerando que

los tiempos entre observaciones no son equidistantes (véase Maller et al.

(2008)). Tras el estudio de sus propiedades y, a la vista de las pruebas de

simulación, se concluye que el método proporciona estimaciones ajustadas

de los parámetros del modelo, usando una única serie temporal de datos

simulados.

Se estudia también el caso de más de una trayectoria simulada del mismo

modelo, observándose que los resultados son similares a los obtenidos par-
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tiendo de una única trayectoria, por lo que se concluye que el uso de varias

trayectorias de datos no mejora la estimación de los parámetros del modelo.

• Se plantea la estimación de los parámetros de los modelos GARCH y

COGARCH, mediante la metodoloǵıa de Data Cloning basada en el uso

de réplicas de la serie de datos original (clones). Esta metodoloǵıa permite

obtener una aproximación numérica de los estimadores de máxima verosi-

militud, mediante el uso instrumental de un algoritmo MCMC. Tanto en el

caso de datos simulados, como en el caso de datos reales, las estimaciones

de los parámetros son semejantes a las obtenidas mediante la metodoloǵıa

bayesiana estándar. Se puede destacar que el enfoque de Data Cloning

permite usar cualquier distribución a priori, de manera que los resultados

finales no son afectados por dicha elección (ver Lele et al. (2007)).

• Se estudia y presenta también la metodoloǵıa Hamiltonian Monte Carlo

(HMC) en los modelos GARCH y COGARCH. El método HMC es una

variante de los métodos MCMC en donde se complementa el vector de

parámetros a analizar, mediante una serie de variables auxiliares que per-

miten mejorar el rendimiento y la velocidad de convergencia del algoritmo.

En el caso de los modelos GARCH y COGARCH se obtienen estimaciones

análogas a las obtenidas usando un MCMC estándar, pero se reducen con-

siderablemente los tiempos de computación en ambos modelos. Esta ventaja

resulta especialmente relevante en el caso de la estimación de los parámetros

del modelo COGARCH, donde los tiempos de estimación son habitualmente

elevados.

• Finalmente, se aplica la metododoloǵıa Aproximate Bayesian Computation

(ABC) en los modelos GARCH y COGARCH. Los métodos ABC son de

especial interés a la hora de estimar los parámetros del modelo COGARCH,
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ya que no se requiere el uso de la función de verosimilitud. Esta función

se aproxima habitualmente en los modelos GARCH y COGARCH, usando

una pseudo-verosimilitud basada en la asunción de normalidad, y los esti-

madores frecuentistas que se obtienen a menudo son inestables. Se concluye

que el estimador ABC propuesto resulta más eficiente que los obtenidos por

otras metodoloǵıas, especialmente en el caso de la estimación del parámetro

β.

La desventaja, en la práctica, de este algoritmo es el prolongado tiempo

de computación que puede llegar a requerir. No obstante, se observa que

las estimaciones obtenidas haciendo uso de un número razonable de itera-

ciones, no distan sustancialmente de las obtenidas utilizando una cantidad

significativamente superior de las mismas.

Se concluye, en definitiva, que las metodoloǵıas bayesianas aplicadas y la me-

todoloǵıa Data Cloning ofrecen soluciones fiables y eficientes para la estimación

de los parámetros de los modelos GARCH y COGARCH, basadas en el rigor de

sus planteamientos y la eficiencia de los algoritmos.
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A.1 Simulation code for COGARCH(1,1) series

N <- 100

lam <- 1

# Simulation of time increments

library (e1071)

At <- rdiscrete (N, c(396,7,99,6), c(1,2,3,4))

B <- numeric(N) # Brownian component of Levy Process

pois <- numeric(N) # Poisson process

ele <- numeric(N) # Levy process

# Simulation of the Browian process

for (i in 2: N){

B[i] <- B[i-1] + rnorm (1,0,1) * sqrt(At)}

# Simulation of Poisson process

for (i in 1:N){

Nt <- rpois(1,lam)

for (j in 1:Nt){

pois[i] <- pois[i] + rnorm (1 ,0 ,1)}}

# Simulation of Levy process

ele <- pois + B

# COGARCH parameters

bet <- 0.2

eta <- 0.25

fi <- 0.01

#Simulation of COGARCH process

G <- numeric(N) # GARCH increments

S2 <- numeric(N) # Variance of simulated GOGARCH

S2[1] <- bet/(eta -fi) # Volatility of simulated GARCH

G[1] <- 50 # Start value for series

for (i in 2:N) {

G[i] <- G[i-1] + sqrt(S2[i-1])*(ele[i]-ele[i-1])

S2[i] <- max(S2[i-1] + (bet - eta * S2[i-1])*At[i]

+ fi * S2[i-1]*(pow(ele[i]-ele[i-1],2), bet/eta)}

# Calculating increments

ytrue <- numeric(N)

for (i in 2:N){

ytrue[i] <- G[i] - G[i-1]}

# Saving data in a file

write(ytrue , file="DatosSimulados.txt", append=FALSE , ncolumns =1)

write(At , file="tiempos.txt", append=FALSE , ncolumns =1)

write(G, file="COGARCH_simulado.txt", append=FALSE , ncolumns =1)
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A.2 MCMC estimation code for COGARCH (1,1)

parameters

# COGARCH model specification

modelo <- "

var

ro2[N], sigma2[N], P[N];

model {

# Priors

beta ∼ dunif (0 ,100000)

eta ∼ dunif(fi ,100000)

fi ∼ dunif(0,0.05)

# Start values for variables

sigma2 0 <- beta/(eta -fi)

inct0 <- 1

sigma2 [1] <- max((beta*inct0) + (exp(-eta*inct0)

*(sigma2 0 + fi*pow(yb[1],2))) , beta/eta)

ro2 [1] <- (( sigma2 0 - (beta/(eta -fi)))*((exp((eta -fi)

*inct [1]) -1)/(eta -fi))) + ((beta*inct [1])/(eta -fi))

P[1] <- 1/ro2[1]

y[1] ∼ dnorm(0, P[1])

for(i in 2:N){

y[i] ∼ dnorm(0, P[i])

sigma2[i] <- max((beta*inct[i]) + (exp(-eta*inct[i])

*(sigma2[i-1] + (fi*pow(yb[i],2)))), beta/eta)

ro2[i] <- (( sigma2[i-1] - (beta/(eta -fi)))*((exp((eta -fi)

*inct[i])-1)/(eta -fi )))+(( beta*inct[i])/(eta -fi))

P[i] <- 1/ro2[i] }

}"

# Reading series and time intervals

ytrue <- scan(file="DatosSimulados.txt")

inct <- scan(file="tiempos.txt")

N <- length(G)

y <- ytrue

yb <- y

datos <- list("y"=y, "yb"=yb, "N"=N, "inct"=inct)

parametros <- c("fi", "beta", "eta")

library(runjags)
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# Initial values

inibeta1 <- runif (1,0,10)

inifi1 <- runif (1,0,0.05)

inieta1 <- runif(1,inifi1 ,10)

inibeta2 <- runif (1,0,10)

inifi2 <- runif (1,0,0.05)

inieta2 <- runif(1,inifi2 ,10)

inits1 <- dump.format(list(fi=inifi1 ,eta=inieta1 ,beta=inibeta1 ))

inits2 <- dump.format(list(fi=inifi2 ,eta=inieta2 ,beta=inibeta2 ))

rutajags <- Sys.getenv("sistemjags")

# MCMC algorithm

resultados <- run.jags(model=modelo , inits=c(inits1 ,inits2),

monitor=parametros , data=datos ,jags=rutajags ,

n.chains=2, burnin =50000 , sample =100000)
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A.3 Simulation code for multiple trajectories of

COGARCH(1,1)

N <- 100 # Number of time points for process

lam <- 1 # Average for poisson process

repes <- 50 # Number of trajectories

GTo <- NULL

YTo <- matrix(0,repes ,N)

library(e1071)

At = rdiscrete(N, c(396,7,99,6), c(1,2,3,4))

# Model parameters:

bet <- 0.25

fi <- 0.02

eta <- 0.35

for (j in 1:repes ){

ele = numeric(N)

# Levy process

for (i in 1: length(ele )){

Nt = rpois(1,lam)

for (j in 1:Nt){

ele[i] = ele[i] + rnorm (1 ,0,1)}}

G <- numeric(N) # Simulated sample path

S2 <- numeric(N) # Simulated sample path variance

S2[1] <- bet /(eta - fi) # First value for variance

G[1] <- 50 # First process value

for (i in 2:N) {

G[i] <- G[i-1] + sqrt(S2[i-1])*(ele[i]-ele[i-1])

S2[i] <- max(S2[i-1] + (bet - eta*S2[i-1])*At[i] +

fi*S2[i-1]*pow(ele[i]-ele[i-1],2), bet/eta)

GTo <- rbind(GTo ,G)}}

# Calculating the process increments

for (k in 1:repes ){

for (l in 2:N){

YTo[k,l] <- GTo[k,l] - GTo[k,l-1]}}

data <- as.data.frame(YTo)

# Saving values and times

write.table(data , file="DatosSimuladosTO.txt", row.names=FALSE ,

col.names=FALSE , quote=FALSE)

write (At , file="tiemposTO.txt", append=FALSE , ncolumns =1)
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A.4 MCMC estimation code for COGARCH(1,1)

parameters using multiple trajectories

# COGARCH model specification

modelo <- "

var

ro2[m,N], sigma2[m,N], P[m,N];

model {

# Prior distributions and initial values

for (k in 1:m) {

beta[k] ∼ dunif (0 ,10000)

fi[k] ∼ dunif(0,0.05)

eta[k] ∼ dunif(fi[k] ,10000)

sigma2 0[k] <- beta[k]/(eta[k]-fi[k])

inct0[k] <- 1}

for (j in 1:m){

sigma2[j,1] <- (beta[j] * inct0[j]) + (exp(-eta[j]

* inct0[j]) * (sigma2 0[j] + fi[j] * pow(yb[j,1] ,2)))

ro2[j,1] <- (( sigma2 0[j] - (beta[j]/(eta[j]-fi[j])))

*((exp((eta[j]-fi[j])*inct [1]) -1)/(eta[j]-fi[j])))

+ ((beta[j]*inct [1])/(eta[j]-fi[j]))

P[j,1] <- 1/ro2[j,1]

y[j,1] dnorm(0, P[j,1])

for(i in 2:N){

y[j,i] dnorm(0, P[j,i])

sigma2[j,i] <- (beta[j] * inct[i]) + (exp(-eta[j]

* inct[i]) * (sigma2[j,i-1] + (fi[j] * pow(yb[j,i] ,2))))

ro2[j,i] <- (( sigma2[j,i-1] - (beta[j]/(eta[j]-fi[j])))

* ((exp((eta[j]-fi[j])*inct[i])-1)/(eta[j]-fi[j])))

+ ((beta[j] * inct[i])/(eta[j] - fi[j]))

P[j,i] <- 1/ro2[j,i]}}}"

# Reading data

ytrue <- read.table("DatosSimuladosTo.txt", header=FALSE)

inct <- scan(file="tiemposTO.txt")

N <- dim(ytrue )[2]

m <- dim(ytrue )[1]

ytrue <- as.matrix(ytrue)

y <- ytrue

yb <- y

datos <- list("y"=y, "yb"=yb , "N"=N, "m"=m, "inct"=inct)

parametros <- c("fi", "beta", "eta")
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library(runjags)

# Initial values for parameters

inibeta <- runif(m,0 ,100)

inifi <- runif(m,0,0.05)

inieta <- runif(m,0.06 ,100)

iniciales <- dump.format(list(fi=inifi , eta=inieta ,

beta=inibeta ))

#MCMC algorithm

resultados <- run.jags(model=modelo , inits=iniciales ,

monitor=parametros , data=datos ,

jags="C:/JAGS/JAGS -3.2.0/i386/bin/jags -terminal.exe ,"

n.chains=1, burnin =5000 , sample =10000)

# Results

mean(resultados$summary$statistics [1:m,1]) # fi mean

mean(resultados$summary$statistics [(m+1):(2*m),1]) # beta mean

mean(resultados$summary$statistics [((2*m)+1):(3*m),1])# eta mean

mean(resultados$summary$quantiles [1:m,1])# fi 2.5%

mean(resultados$summary$quantiles [1:m,5]) # fi 97.5%

mean(resultados$summary$quantiles [(m+1):(2*m),1]) # beta 2.5%

mean(resultados$summary$quantiles [(m+1):(2*m),5]) # beta 97.5%

mean(resultados$summary$quantiles [((2*m)+1):(3*m),1]) # eta 2.5%

mean(resultados$summary$quantiles [((2*m)+1):(3*m),5]) # eta 97.5%
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A.5 Data cloning estimation code for GARCH(1,1)

parameters

library(dclone)

# Jags code

garch.function <- function () {

# Prior distributions

alpha0 ∼ dunif (0 ,100)

alpha1 ∼ dlnorm (0,3 .562145)

bet ∼ dunif (0,1 - alpha1)

for (j in 1:k){

h[1,j] <- 1

P[1,j] <- 1/h[1,j]

for (i in 2:n) {

y[i,j] dnorm(0, P[i,j])

h[i,j] <- alpha0 + alpha1 * pow(y[i-1,j],2)

+ bet * h[i-1,j]

P[i,j] <- 1/h[i,j]}}

}

# Reading data from the file

ytrue <- scan(file="Grachsimulado.txt")

y <- ytrue

n <- length(ytrue)

# Creating dclone format

bhdat <- list(y=dcdim(data.matrix(y)), n=n, k=1)

dcbhdat <- dclone(bhdat , n.clones =50, multiply="k", unchanged="n")

# Initial values for parameters

inialpha0 <- runif (1 ,0 ,100)

inialpha1 <- runif (1,0,3 .562145)

inibeta <- runif (1,0,1)

iniciales <- list(alpha0=inialpha0 , alpha1=inialpha1 , bet=inibeta)

# function to update initials

ifun <- function(model , n.clones) {

list(alpha0=coef(model )[1],

alpha1=coef(model )[2],

bet=coef(model )[3])}
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# Data cloning algorithm

jmod <- dc.fit(bhdat , c("alpha0", "alpha1", "bet"),

garch.function , inits=iniciales ,n.clones=c(50),

multiply="k", unchanged="n", initsfun=ifun)

# Results summary with DC and SE

summary(jmod)

dct <- dctable(jmod)

confint(jmod)
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A.6 Data cloning estimation code for COGARCH(1,1)

parameters

library(dclone)

cogarch.estimator <- function () {

# Prior distributions and initial values

beta ∼ dunif(priors [1,1], priors [1 ,2])

eta ∼ dunif(priors [2,1], priors [2,2])

fi ∼ dunif(priors [3,1], priors [3,2])

sigma2 0 <- beta /(eta -fi)

inct0 <- 1

# Clones

for (j in 1:k){

sigma2[1,j] <- (beta*inct0) + (exp(-eta*inct0)

*(sigma2 0 + fi * pow(yb[1,j] ,2)))

ro2[1,j] <- (( sigma2 0 - (beta/(eta -fi)))

*((exp((eta -fi)*inct[1,j])-1)/(eta -fi)))

+ ((beta*inct[1,j])/(eta -fi))

P[1,j] <- 1/ro2[1,j]

y[1,j] ∼ dnorm(0, P[1,j])

for(i in 2:n){

y[i,j] ∼ dnorm(0, P[i,j])

sigma2[i,j] <- (beta*inct[i,j])

+ (exp(-eta*inct[i,j]) * (sigma2[i-1,j]

+ (fi*pow(yb[i,j] ,2))))

ro2[i,j] <- (( sigma2[i-1,j] - (beta/(eta -fi)))

*((exp((eta -fi)*inct[i,j])-1)/(eta -fi)))

+ ((beta*inct[i,j])/(eta - fi))

P[i,j] <- 1/ro2[i,j] }}

}

# Reading data from the file

ytrue <- scan(file="DatosSimulados.txt")

inct <- scan(file="tiempos.txt")

y <- ytrue

yb <- y

n <- length(y)

# Initial values for the parameters

inibeta <- runif (1,0,1)

inifi <- runif (1,0,0.1)

inieta <- runif(1,inifi ,1)

iniciales <- list(fi=inifi , eta=inieta , beta=inibeta)
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upfun <- function(x) {

if (missing(x)) {

return(cbind(c(0,0.0501 ,0), c(100000 ,100000 ,0 .05 )))}

else{

par <- coef(x)}}

updat <- list(y=dcdim(data.matrix(y)), yb=dcdim(data.matrix(yb)),

inct=dcdim(data.matrix(inct)), n=n, k=1, priors=upfun ())

# Data cloning algorithm

jjmod <- dc.fit(updat , c("fi", "beta", "eta"), cogarch.estimador ,

inits=iniciales , n.clones = 20, multiply="k", unchanged="n",

update="priors", updatefun=upfun)

# Results summary

summary(jjmod)

confint(jjmod)

vcov(jjmod)
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A.7 Hamiltonian Monte Carlo estimation code

for GARCH(1,1) parameters

library(rstan)

programa <- ’

data {

int <lower=0> T;

real r[T];

real <lower=0> sigma1; }

parameters {

real <lower=0> alpha1;

real <lower=0,upper=1> alpha2;

real <lower=0, upper =(1- alpha2)> bet; }

transformed parameters {

real <lower=0> sigma[T];

sigma [1] <- sigma1;

for (t in 2:T)

sigma[t] <- sqrt(alpha1 + alpha2*pow(r[t-1], 2)

+ bet*pow(sigma[t-1] ,2));}

model {r ∼ normal(0,sigma );}’

# Reading data from the file

datossimulados <- scan(file="Grachsimulado.txt")

n <- length(datossimulados)

datos <- list(T=n, r=datossimulados , sigma1 =1)

#HMC algorithm

resultados <- stan(model code=programa , data=datos , iter =5000 ,

chains =3)

# Summarizing results

d <- as.data.frame(resultados)

parametros <- d[,1:3]

apply(parametros ,2,mean)

apply(parametros ,2,sd)

apply(paras ,2,quantile , probs = c(0.05 , 0.5 , 0.975), na.rm=TRUE)

168



A.8 Hamiltonian Monte Carlo estimation code

for COGARCH(1,1) parameters

library(rstan)

programa <- ’

data {

int <lower=0> N;

real y[N];

real yb[N];

real inct[N];

int <lower=0> inct 0; }

parameters {

real <lower=0> beta;

real <lower=0,upper=0.05 > fi;

real <lower=fi ,upper=10> eta; }

transformed parameters {

real <lower=0> sigma2[N];

real <lower=0> ro2[N];

real <lower=0> sigma2 0;

sigma2 0 <- beta/(eta -fi);

sigma2 [1] <- (beta*inct 0) + (exp(-eta*inct 0)

*(sigma2 0 + fi*pow(yb[1] ,2)));

ro2 [1] <- sqrt ((( sigma2 0 - (beta/(eta -fi)))

*((exp((eta -fi)*inct [1]) -1)/(eta -fi)))

+ ((beta*inct [1])/(eta -fi)));

for(i in 2:N){

sigma2[i] <- (beta*inct[i])

+ (exp(-eta*inct[i])

* (sigma2[i-1] + (fi*pow(yb[i] ,2))));

ro2[i] <- sqrt ((( sigma2[i-1]

- (beta/(eta -fi)))

*((exp((eta -fi)*inct[i])-1)/(eta -fi)))

+ ((beta*inct[i])/(eta - fi )));}}

model {y ∼ normal(0, ro2); }’

# Reading data from the file

ytrue <- scan(file="DatosSimulados.txt")

inct <- scan(file="tiempos.txt")
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y <- ytrue

yb <- y

N <- length(y)

inct <- inct[-1]

datos <- list(y=y, yb=yb , N=N, inct=inct , inct 0=1)

# HMC algorithm

resultados <- stan(model code=programa , data=datos , iter =5000 ,

chains =3)

# summarizing results

print(resultados , pars=c("beta","fi","eta"), digits =5)
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A.9 ABC estimation code for GARCH(1,1) pa-

rameters

library(e1071)

library(fdth)

library(fGarch)

library(EasyABC)

# Function to simulate the GARCH (1,1) process

simuGARCH <- function(alfa1 , alfa2 , bet , calor =50, N=nsamples ){

# Warm up values

cuantos <- (calor+N)

y <- numeric(cuantos) # GARCH increments

S2 <- numeric(cuantos) # Volatility of simulated GARCH

S2[1] <- 1

nu <- rnorm(cuantos ,0,1)

# Condition "alfa2 + beta < 1"

if (( alfa2+bet) > 1){ return(NA)}

for (i in 2: cuantos ){

# Volatility

S2[i] <- alfa1 + (alfa2*(y[i -1]^2)) + (bet*S2[i-1])

# Returns

y[i] <- sqrt(S2[i])*nu[i]

}

sale <- y[( calor +1): cuantos]

return(sale)

}

# Reading values from the file

datos <- scan(file="Grachsimulado.txt")

nsamples <- length(datos)

# Maximum likelihood estimations using fGarch library

estima <- garchFit(∼garch(1,1), data=datos ,

include.mean=FALSE , trace=FALSE)

alfa1hat <- estima@fit$coef [[1]]

alfa2hat <- estima@fit$coef [[2]]

betahat <- estima@fit$coef [[3]]

m <- c(alfa1hat , alfa2hat , betahat)

cat("alpha1= ", m[1], "\n")

cat("alpha2= ", m[2], "\n")

cat("beta= ", m[3], "\n")

# Bounds for prior distributions based on QMLE

171



ini1.1 <- max((m[1]-0.2),1e-10)

ini1.2 <- min((m[1]+0.2) ,100)

ini2.1 <- max((m[2]-0.2),1e-10)

ini2.2 <- min((m[2]+0.2),3.562145)

ini3.1 <- max((m[3]-0.2),1e-10)

ini3.2 <- min((m[3]+0.2),1)

# Number of simulations

itera <- 500000

# Prior definition

alfa1_prior <- runif(itera , ini1.1 , ini1.2)

alfa2_prior <- runif(itera , ini2.1 , ini2.2)

beta_prior <- runif(itera , ini3.1 , ini3.2)

param_prior <- cbind(alfa1_prior , alfa2_prior , beta_prior)

sumstat <- matrix(NA , itera , 3)

for (i in 1:itera ){

y.sim <- simuGARCH(alfa1=param_prior[i,1], alfa2=param_prior[i,2],

bet=param_prior[i,3], N=nsamples)

sumstat[i,] <- c(mean(y.sim , na.rm=TRUE),

var(y.sim , na.rm=TRUE), mad(y.sim , na.rm=TRUE))

}

# Eliminate the NA values obtained with the restrictions

sumstat <- sumstat[complete.cases(sumstat),]

# Statistics to compare in the ABC algorithm

summarydata <- c(mean(datos ,na.rm=TRUE),

var(datos ,na.rm=TRUE), mad(datos , na.rm=TRUE))

colnames(sumstat) <- c("mean", "var", "mad")

# ABC algorithm by using the EasyABC library

rej <- abc(target=summarydata , param=param_prior ,

sumstat , tol=0.005 , method="rejection")

# Showing the results

val.alpha1 <- rej$unadj.values [,1]

val.alpha2 <- rej$unadj.values [,2]

val.beta <- rej$unadj.values [,3]

med.alpha1 <- mean(val.alpha1)

med.alpha2 <- mean(val.alpha2)

med.beta <- mean(val.beta)

cat("Media Parametro alpha1: ", med.alpha1 , "\n")

cat("Media Parametro alpha2: ", med.alpha2 , "\n")

cat("Media Parametro beta: ", med.beta , "\n")
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sd(val.alpha1)

sd(val.alpha2)

sd(val.beta)

cat("Parametro alpha1", "\n")

quantile(val.alpha1 , c(0.025 ,0.5 ,0.975))

cat("Parametro alpha2", "\n")

quantile(val.alpha2 , c(0.025 ,0.5 ,0.975))

cat("Parametro beta", "\n")

quantile(val.beta , c(0.025 ,0.5 ,0.975))
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A.10 ABC-MCMC estimation code for GARCH(1,1)

parameters

library(EasyABC)

library(e1071)

library(fdth)

library(fGarch)

# Function to simulate the GARCH (1,1) process

simuGARCH <- function(alfa1 , alfa2 , bet , calor =50, N=nsamples ){

# Warm up values

cuantos <- (calor+N)

y <- numeric(cuantos) # GARCH increments

S2 <- numeric(cuantos) # Volatility of simulated GARCH

S2[1] <- 1

nu <- rnorm(cuantos ,0,1)

# Condition alfa2 + beta < 1

if ((alfa2+bet) > 1){ bet <- (1-alfa2)}

for (i in 2: cuantos ){

# Volatility

S2[i] <- alfa1 + (alfa2*(y[i -1]^2)) + (bet*S2[i-1])

# Returns

y[i] <- sqrt(S2[i])*nu[i]

}

sale <- y[( calor +1): cuantos]

return(sale)

}

# Reading values from the file

datos <- scan(file="Grachsimulado.txt")

nsamples <- length(datos)

# Maximum likelihood estimations using fGarch library

estima <- garchFit(∼garch (1,1), data=datos ,

include.mean=FALSE , trace=FALSE)

summarydata <- c(mean(datos ,na.rm=TRUE), var(datos ,na.rm=TRUE),

mad(datos , na.rm=TRUE))

modelo <- function(para){

# parameters: alpha1 , alpha2 , beta

samples <- simuGARCH(alfa1=para[1], alfa2=para[2],

bet=para[3], N=nsamples)

estima.simu <- garchFit(∼garch (1,1), data=samples ,

include.mean=FALSE , trace=FALSE)

ay1 <- estima.simu@fit$coef [[1]]

ay2 <- estima.simu@fit$coef [[2]]

ay3 <- estima.simu@fit$coef [[3]]

return(c(ay1 , ay2 , ay3))
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}

# Bounds for prior distributions based on QMLE

ini1.1 <- max(( estima@fit$coef [[1]] -0.2),1e-10)

ini1.2 <- min(( estima@fit$coef [[1]]+0 .2) ,100)

ini2.1 <- max(( estima@fit$coef [[2]] -0.1),1e-10)

ini2.2 <- min(( estima@fit$coef [[2]]+0 .1),3.562145)

ini3.1 <- max(( estima@fit$coef [[3]] -0.1),1e-10)

ini3.2 <- min(( estima@fit$coef [[3]]+0 .1),1)

priordist <- list(c("unif",ini1.1 ,ini1.2),

c("unif",ini2.1 ,ini2.2), c("unif",ini3.1 ,ini3.2 ))

# Number of simulations

n_simu <- 500000

# MCMC -ABC algorithm based on Marjoram method by using the EasyABC

# library

Mar_ori <- ABC_mcmc(method="Marjoram", model=modelo , prior=priordist ,

summary_stat_target=summarydata , n_rec=n_simu , prior_test="X2+X3 <1")

#Showing the results

val.alpha1 <- Mar_ori$param[(n_simu/2):n_simu ,1]

val.alpha2 <- Mar_ori$param[(n_simu/2):n_simu ,2]

val.beta <- Mar_ori$param[(n_simu/2):n_simu ,3]

X11()

hist(val.alpha1 , main=expression(paste("Posterior for ",alpha [1])),

xlab=expression(alpha [1]))

X11()

hist(val.alpha2 , main=expression(paste("Posterior for ",alpha [2])),

xlab=expression(alpha [2]))

X11()

hist(val.beta , main=expression(paste("Posterior for ",beta)),

xlab=expression(beta))

med.alpha1 <- mean(val.alpha1)

med.alpha2 <- mean(val.alpha2)

med.beta <- mean(val.beta)

cat("Media Parametro alpha1: ", med.alpha1 , "\n")

cat("Media Parametro alpha2: ", med.alpha2 , "\n")

cat("Media Parametro beta: ", med.beta , "\n")

sd(val.alpha1)

sd(val.alpha2)

sd(val.beta)

cat("Parametro alpha1", "\n")
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quantile(val.alpha1 , c(0.025 ,0.5 ,0.975))

cat("Parametro alpha2", "\n")

quantile(val.alpha2 , c(0.025 ,0.5 ,0.975))

cat("Parametro beta", "\n")

quantile(val.beta , c(0.025 ,0.5 ,0.975))
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A.11 ABC estimation code for COGARCH(1,1)

parameters

library(COGARCH)

library (e1071)

library(EasyABC)

# Reading values from the file

G <- scan(file="COGARCH_simulado.txt")

inct <- scan(file="tiempos.txt")

nG <- length(G)

y <- diff(G)

cuando <- cumsum(inct)

# Function to calculate the minimum volatility and its range

min_vol <- function (r) {

nr <- length(r)

vol <- numeric(nr)

for (i in (1:nr)){

vol[i] <- (r[i]-mean(r))^2}

return (c(min(vol), max(vol)-min(vol )))

}

# Function to calculate COV(r_t^2,r_{t -1}^2)

cov_corr_sq <- function (r) {

nr <- length(r)

r1 <- numeric(nr -1)

for (i in (2:nr)){

r1[i-1] <-r[i]}

r <- r[1:(nr -1)]

rsqrt=(r^2)

r1sqrt =(r1^2)

return(c(cov(rsqrt ,r1sqrt),cor(rsqrt ,r1sqrt )))

}

# Statistics to compare in the ABC algorithm

summarydata <- c(min_vol(G)[1], min_vol(G)[2], cov_corr_sq(G)[2],

mad(G, na.rm=TRUE),var(G, na.rm=TRUE))

# Power moment method estimations

momento <- MMestimation(y, d=26, explicit=TRUE)

betahat <- momento$theta@beta

etahat <- momento$theta@eta

phihat <- momento$theta@phi

if(betahat < 1e-06) betahat <- 1.5e -06

if(etahat < 1e-02) etahat <- 1.5e -02
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if(phihat < 1e-02) phihat <- 1.5e -02

if((etahat -phihat) < 1e -02){ etahat <- phihat + 0.01 }

m <- c(etahat , betahat , phihat)

# Bounds for the prior distributions based

# on the power moment estimations

ini1.1 <- max((m[1]-0.5), min(m[3]+0 .50001 ,0 .05001 ))

ini1.2 <- min((m[1]+0.5) ,100)

ini2.1 <- max((m[2]-0.5),1e-10)

ini2.2 <- min((m[2]+0.5) ,100)

ini3.1 <- max((m[3]-0.5),1e-10)

ini3.2 <- min((m[3]+0.5),0.05)

# Number of calculated simulations

itera <- 500000

# Prior distributions

eta_prior <- runif(itera , ini1.1 , ini1.2)

beta_prior <- runif(itera , ini2.1 , ini2.2)

phi_prior <- runif(itera , ini3.1 , ini3.2)

param_prior <- cbind(eta_prior , beta_prior , phi_prior)

sumstat <- matrix(NA , itera , 5)

# Estimating the series from the parameters and

# calculating the statistics for the series

for (i in 1:itera ){

prm.sim <- COGprm(eta=param_prior[i,1],

beta=param_prior[i,2], phi=param_prior[i,3])

prv.sim <- rCOGARCH(prm.sim , rnorm ,

obstimes=cuando , sigmaSq0=1, G0=0, lambda =1)

y.sim <- diff(prv.sim@G [,1])

sumstat[i,] <- c(min_vol(prv.sim@G [ ,1])[1] ,

min_vol(prv.sim@G [ ,1])[2] , cov_corr_sq(prv.sim@G [,1])[2],

mad(prv.sim@G [,1], na.rm=TRUE), var(prv.sim@G [,1], na.rm=TRUE))

}

colnames(sumstat) <- c("min_vol","rango_vol","cor","mad","var")

#ABC rejection method

rej <- abc(target=summarydata , param=param_prior ,

sumstat , tol=0.01 , method="rejection")

# Parameters estimations

(eta_posmean_abc <- mean(rej$unadj.values [ ,1]))

(beta_posmean_abc <- mean(rej$unadj.values [ ,2]))

(phi_posmean_abc <- mean(rej$unadj.values [ ,3]))
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#HPD eta

quantile(rej$unadj.values [,1], c(0.05 ,0.5 ,0.95))

#HPD beta

quantile(rej$unadj.values [,2], c(0.05 ,0.5 ,0.95))

#HPD phi

quantile(rej$unadj.values [,3], c(0.05 ,0.5 ,0.95))

# Standard deviations

(eta_sd <- sd(rej$unadj.values [,1]))

(beta_sd <- sd(rej$unadj.values [ ,2]))

(phi_sd <- sd(rej$unadj.values [,3]))
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