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ABBREVIATIONS AND ACRONYMS 

Throughout this thesis, abbreviations and acronyms recommended by the American 

Chemical Society in the Organic Chemistry and Medicinal Chemistry areas have been 

employed (revised in the Journal of Organic Chemistry and Journal of Medicinal 

Chemistry on April 2019; 

http://pubs.acs.org/paragonplus/submission/joceah/joceah_abbreviations.pdf and 

http://pubs.acs.org/paragonplus/submission/jmcmar/jmcmar_abbreviations.pdf). 

Furthermore, those indicated below have also been used. 

AAPH 2,2’-Azobis-(amidinopropane) dihydrochloride 

ACN Acetonitrile 

ARE Antioxidant response element  

BisQ 3,3'-Bis[α-(trimethylammonium)methyl]azobenzene dibromide 

BOP (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium 

hexafluorophosphate 

CDI 1,1′-Carbonyldiimidazole 

Cul3 Cullin-dependent E3 ubiquitin ligase 

DAPI 4′,6-Diamidine-2′-phenylindole dihydrochloride 

DCFDA Dichlorofluorescin diacetate 

DMEM Dulbecco’s Modified Eagle’s Medium 

EDG Electron donate group 

EDC N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide 

FBS Fetal bovine serum 

FL Fluorescein 

GSK-3β Glycogen Synthase-3β 

g.t. Gradient time 

HBSS Hanks’ balanced salt solution  

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HO1 Hemoxygenase-1 

http://pubs.acs.org/paragonplus/submission/joceah/joceah_abbreviations.pdf
http://pubs.acs.org/paragonplus/submission/jmcmar/jmcmar_abbreviations.pdf
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HOBt 1-Hydroxybenzotriazole 

HTRF Homogeneous Time Resolved Fluorescence 

KEAP1 Kelch like ECH associated protein 1 

LED Light emitting diode 

LOX-5 Lipoxygenase-5 

MAO Monoamino oxidase 

MAP-2 Microtubule-associated protein 2 

MT Melatonin  

MTDL Multi-target-directed ligand 

MTR Melatonin receptors 

MTT 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide / Thiazolyl 

Blue Tetrazolium Bromide 

mw Microwave 

nAChR Nicotinic acetylcholine receptors 

ND Neurodegenerative disease 

NDGA Nordihydroguaiaretic acid 

NFTs Neurofibrillary tangles 

NMBA Neuromuscular blocking agent 

NQO1 NAD(P)H quinone oxidoreductase 1 

Nrf2 Nuclear transcriptor factor (erythroid-derived 2)–like 2 

NRH N-ribosyldihydronicotinamide 

NS Neurospheres 

NSC Neuronal stem cells 

OA Okadaic acid 

ORAC Oxygen radical absorbance capacity 

OS Oxidative stress 

Oxone® [(KHSO5)2·KHSO4·K2SO4] 

PBL Porcine brain lipid 

Pd-C Palladium over charcoal 

Pe Permeability 

PI Propidium iodide 



Abbreviations and Acronyms 

3 

 

PTL Photochromic-tethered ligands 

QBr 3-(α-Bromomethyl)-3'-[ α -(trimethylammonium)methyl]azobenzene 

bromide 

QR2/NQO2 Quinone reductase 2 

RNS Reactive Nitrogen Species 

SD Standard deviation 

SEM Standard error of the mean 

SGZ Subgranular zones 

TEA Triethylamine 

TEVC Two-electrode voltage-clamp 

tg Transgenic 

TuJ1 Human β-III-tubulin 
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ABSTRACT 

Chapter I. Melatonin- and resveratrol-based multitarget-directed agents for 

Alzheimer's disease 

Introduction 

Alzheimer´s disease (AD) is a complex multifactorial illness with no effective treatment, 

characterized by irreversible global cognitive impairment. As only symptomatic treatments 

are available with drugs acting at one single target, exploration of molecules active in 

different pathological targets is required. In this chapter, our objective was to develop new 

families of multitarget directed ligands (MTDLs) focused on some pathological pathways 

underlying AD, namely, oxidative stress and neuroinflammation. Thus, we design 

melatonin- and resveratrol-based MTDLs looking for activity in melatonin receptors (MT1-

3Rs), monoaminoxidases (MAO-A/B), lipoxygenase-5 (LOX-5), and nuclear factor 

erythroid 2-related factor 2 (Nrf2). Considering the neuroprotective and neurogenic 

properties found in melatonin and resveratrol, we reasonably expected these activities in 

our MTDLs. 

 

Figure 1. MTDL strategy design for the novel melatonin- and resveratrol-based families 
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Results and discussion 

The main synthetic strategy started by a Knoevenagel-Doebner reaction from aromatic 

aldehydes to afford the corresponding α,β-unsaturated acids, which yielded the saturated 

acid by hydrogenation. Both acids were transformed into hydrazides or amides. Then, 

hydrazides were cycled to yield oxadiazolone derivatives, which in some cases were 

alkylated to give the desired melatonin- and resveratrol-based compounds (Scheme 1). 

 

Scheme 1. Reagents and conditions. (a) Malonic acid, piperidine, pyridine, 70 ºC; (b) 

H2/Pd-C (5%), EtOH, rt; (c) EDC·HCl, HOBt, DMAP, ACN; N2H4·H2O/NH2R’, rt.; (d) 

CDI, DMF, mw, 130 ºC, 25 min; (e) K2CO3, RX/R-OTs, acetone, mw, 120 ºC, 10 min. 

 

The new MTDLs were tested in the above-mentioned targets, ranking their affinity or 

inhibition constants between the nanomolar and micromolar order. Some compounds were 

good radical scavengers and could penetrate into the central nervous system (CNS), 

according to the in vitro PAMPA-BBB assay. A structure-activity relationship (SAR) has 

been stablished in each target, which has guided the optimization of new MTDLs. 

Furthermore, some of them displayed neurogenic properties in phenotypic experiments. 

Moreover, selected MTDLs were evaluated in in vitro AD-models of increasing 

complexity. 
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Conclusions 

From SAR studies, we conclude that the nature of the aromatic ring is the more influential 

feature in the radical scavenging properties, being the indole the most favourable. The 

unsaturated linker was the most important structural characteristic in the potency and 

selectivity towards MT3R and Nrf2. The N-propargyloxadiazolone ring was the most 

favoured polar moiety in the potency and selectivity toward MAO-B and Nrf2. The best 

low-micromolar hLOX-5 inhibitors had a catechol in their structure. The most potent and 

selective hMAO-B inhibitors were resveratrol-derivatives with a propargyl radical in the 

oxadiazolone, being also excellent Nrf2 inducers, and effective neurogenic and 

neuroprotective agents in in vitro models of AD. Derivatives with the better MTD-profile 

were predicted to be CNS-permeable, acting in their cerebral targets.  

5-(4-Methoxystyryl)-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (1.107) emerges as an 

interesting AD-MTDL. In the low-micromolar range, 1.107 is a potent Nrf2 inducer, a 

hMAO-B inhibitor and a MT3R ligand. And in phenotypic assays, it displays 

neuroprotective and neurogenic properties. Consequently, 1.107 can be considered a 

promising prototype in the searching for innovative treatments for AD. 
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Chapter II. Photoswitchable muscular nicotinic receptor ligands 

Introduction 

Neuromuscular blockers acting at the neuromuscular junction generally present severe side-

effects, some of them attributable to a poor selectivity between muscular and neuronal 

nicotinic acetylcholine receptors (nAChRs). Here, we developed a new family of 

photoswitchable neuromuscular ligands, named azocuroniums, with manageable or null 

CNS side-effects. They are based on an azobenzene structure bearing N-methyl-N-

carbocyclic quaternary ammonium groups in meta- or para-positions. Azocuroniums could 

be photoswitched between the (E)-(Z)-isomers by irradiation at blue or UV light, allowing 

the fine spatial and temporal control of their activity. 

 

 
Figure 2. (E)-(Z)-Azocuroniums and their photoisomerization. 
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Results and discussion 

The synthetic route for the symmetric azocuroniums consisted of a reductive coupling 

between the corresponding nitrobenzenes, obtained previously from meta- or para-

nitrobenzyl bromide and the corresponding NH-cycle. Then, the amino groups were 

quaternized to generate the azocuronium. In the asymmetric m-2.14b, azocoupling took 

place by a Mills reaction between aniline m-2.4b and nitrosobenzene (Scheme 2). 

NO2

Br

NO2

N
N

N

N

N

N
N

N

N
a b c

NH2

N

d

N
N

N

e c N
N

N

m-2.14b

m-2.1(a-e)

p-2.1(a,b)
m-2.2(a-e)

p-2.2(a,b)
m-2.3(a-e)

p-2.3(a,b)

m-2.4b m-2.13b  

Scheme 2. Reagents and conditions. (a) K2CO3, amine, acetone, mw, 120 ºC, 10 min; (b) 

LiAlH4, Et2O, -78 ºC to rt; (c) CH3I, DMF, mw, 120 ºC, 12 min; (d) H2/Pd-C (5%), EtOH, 

overnight; (e) nitrosobenzene, AcOH, toluene, 60 ºC, overnight. 

 

In radioligand binding assays at nAChRs, meta-azocuroniums were more potent and 

selective towards muscular receptors than their para-counterparts. Derivatives with smaller 

cationic heads (meta-pyrrolidine m-2.1a and meta-piperidine m-2.1b) emerged as the most 

potent and selective ligands in muscle-type nAChRs (Kis = 42 and 35 nM, respectively). In 

contrast, azocuroniums with increased volume or rigidity in the N-carbocycle (m-azepane 

m-2.1c and m-1,2,3,6-tetrahydropyridine m-2.1d) showed reduced binding constants in 

muscular-type nAChR (Kis = 220 and 100 nM, respectively) with diminished selectivity 

indexes.  

Using the two-electrode voltage-clamp technique, we evaluated the functional activity of 

meta-azocuroniums m-2.1(a-d) and m-2.5b in muscular nAChR expressed in Xenopus 

laevis oocytes. By irradiation with blue or UV LED, in all cases the (E)-isomer was found 
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to be more potent than the (Z)-form. The volume and hydrophobic character of the 

ammonium groups seemed to determine the functional character. All meta-azocuroniums 

behaved as antagonists of muscular nAChR, with the exception of the smallest pyrrolidine 

derivative m-2.1a.  

 

Conclusions 

In this chapter, potent photoswitchable neuromuscular ligands named azocuroniums, has 

been developed. They can be photoswitched between the (E)- and (Z)-isomers by blue or 

UV LED. Meta-azocuroniums were more potent and selective toward muscular nAChRs 

compared to neuronal subtypes, showed good solubility in physiologic media, negligible 

cell toxicity, and would not reach the CNS. 

Electrophysiological studies in muscle-type nAChRs showed that (E)-azocuroniums were 

more potent and two ammonium groups are required for high activity. All meta-

azocuroniums were antagonists, except the pyrrolidine derivative that was an agonist. 

These meta-azocuroniums, which can be modulated ad libitum by light, could be employed 

as photoswitchable tools to better understand the pharmacology of muscle-type nAChRs. 
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RESUMEN 

Capítulo I. Agentes multidiana derivados de melatonina y resveratrol para la 

enfermedad de Alzheimer 

Introducción 

La enfermedad de Alzheimer (EA) es un desorden multifactorial sin cura efectiva, 

caracterizada por un deterioro cognitivo global. Los tratamientos disponibles son sólo 

sintomáticos con fármacos que actúan sobre una sola diana, siendo necesarias moléculas 

activas por diferentes vías. En este capítulo, nuestro objetivo es desarrollar nuevas familias 

de ligandos multidiana (MTDL) enfocados hacia vías patológicas de la EA, concretamente, 

el estrés oxidativo y neuroinflamación. Así, desarrollamos MTDLs basados en melatonina 

y resveratrol buscando actividad en receptores de melatonina (MT1-3Rs), monoamino 

oxidasas (MAO-A/B), lipoxigenasa-5 (LOX-5) y el factor nuclear (erythroid-derived 2)-

like 2 (Nrf2). Considerando las propiedades neuroprotectoras y neurogénicas de la 

melatonina y el resveratrol, esperamos razonablemente estas actividades en nuestros 

MTDLs. 

 

Figura 1. Estrategia de diseño MTDL para las familias basadas en melatonina y resveratrol  
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Resultados y Discusión 

La estrategia sintética seguida en este capítulo comenzó por una reacción de Knoevenagel-

Doebner desde aldehídos aromáticos para obtener ácidos α,β-insaturados, los cuales dieron 

lugar a los ácidos saturados por hidrogenación. Ambos ácidos fueron transformados en 

hidrazidas o amidas. A continuación, se ciclaron las hidrazidas, obteniendo los derivados de 

oxadiazolona, los cuales en algunos casos se alquilaron para dar los derivados deseados de 

melatonina y resveratrol (Esquema 1). 

 

Esquema 1. Reactivos y condiciones. (a) Ácido malónico, piperidina, piridina, 70 ºC; (b) 

H2/Pd-C (5%), EtOH, ta; (c) EDC·HCl, HOBt, DMAP, ACN; N2H4·H2O/NH2R’, ta; (d) 

CDI, DMF, mw, 130 ºC, 25 min; (e) K2CO3, RX /R-OTs, acetona, mw, 120 ºC, 10 min. 

 

Los nuevos MTDLs fueron evaluados en las dianas mencionadas anteriormente, estando 

sus constantes de afinidad o inhibición comprendidos entre los rangos nanomolar y 

micromolar. Algunos compuestos presentaron buenas capacidades antioxidantes y 

penetraron en el sistema nervioso central (SNC) (ensayo in vitro PAMPA-BBB). Se ha 

establecido una relación estructura-actividad (SAR), la cual ha permitido la optimización de 

nuevos MTDLs. Además, algunos mostraron propiedades neurogénicas empleado células 

madre murinas. Los MTDLs seleccionados fueron evaluados en modelos in vitro de EA de 

creciente complejidad. 
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Conclusiones 

A partir de los estudios SAR, concluimos que la naturaleza del anillo aromático es la 

propiedad más influyente en la capacidad antioxidante, siendo el indol el más favorable. La 

cadena insaturada fue la característica estructural más importante en potencia y selectividad 

hacia MT3R y Nrf2. El anillo N-propargiloxadiazolona fue el más favorecido en la potencia 

y selectividad hacia hMAO-B y Nrf2. El mejor inhibidor de LOX-5 en micromolar bajo 

tenía un catecol en su estructura. Los inhibidores más potentes y selectivos de hMAO-B 

fueron los derivados de resveratrol con un radical propargilo en la oxadiazolona, siendo 

también excelentes inductores de Nrf2 y agentes neurogénicos y neuroprotectores en 

modelos in vitro de la EA. Los derivados con mejor perfil multidiana alcanzarían el SNC, 

actuando en las dianas cerebrales. 

5-(4-Metoxiestiril)-3-(prop-2-in-1-il)-1,3,4-oxadiazol-2(3H)-ona (1.107) resulta un 

interesante MTDL para la EA. En el rango micromolar bajo, 1.107 es un potente inductor 

de Nrf2, inhibidor de hMAO-B y ligando de MT3R. En ensayos fenotípicos, muestra 

propiedades neuroprotectoras y neurogénicas. Por lo tanto, 1.107 puede ser considerado un 

prometedor prototipo en la búsqueda de tratamientos innovadores para la EA. 

  



Resumen 

20 

Capítulo II. Ligandos fotomodulables del receptor nicotínico muscular 

Introducción 

Los bloqueantes neuromusculares que actúan en la sinapsis neuromuscular presentan por lo 

general efectos secundarios graves, algunos de ellos atribuibles a una escasa selectividad 

entre los receptores nicotínicos (nAChRs) de tipo muscular y neuronal. En este capítulo, 

hemos desarrollado una nueva familia de ligandos musculares fotoconmutables, llamados 

azocuronios, con efectos secundarios manejables o nulos en el SNC. Están basados en la 

estructura de azobenceno sustituido en meta- o para- por grupos amonio cuaternarios N-

metil-N-carbocíclico. Los azocuronios serían modulables entre los isómeros (E)-(Z) por 

irradiación con luz azul o UV, controlando su actividad espacial y temporalmente. 

 

 
Figura 2. (E)-(Z)-Azocuronios y su fotoisomerización. 
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Resultados y Discusión 

La ruta sintética optimizada para los azocuronios simétricos consistió en un acoplamiento 

reductor entre los correspondientes nitrobencenos, obtenidos previamente desde bromuro 

de meta/para-nitrobenzilo y el correspondiente NH-ciclo. Después, los grupos amino 

fueron cuaternizados para dar los azocuronios. En el asimétrico m-2.14b, el 

azoacoplamiento tuvo lugar por una reacción de Mills entre la anilina m-2.4b y el 

nitrosobenceno (Esquema 2). 

NO2

Br

NO2

N
N

N

N

N

N
N

N

N
a b c

NH2

N

d

N
N

N

e c N
N

N

m-2.14b
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Esquema 2. Reactivos y condiciones. (a) K2CO3, correspondiente amina, acetona, mw, 120 

ºC, 10 min; (b) LiAlH4, Et2O, -78 ºC a ta; (c) CH3I, DMF, mw, 120 ºC, 12 min; (d) H2/Pd-C 

(5%), EtOH, overnight; (e) nitrosobenceno, AcOH, tolueno, 60 ºC. 

 

En nAChRs los meta-azocuronios fueron más potentes y selectivos hacia los receptores 

musculares que sus homólogos para-. Aquellos con grupos catiónicos más pequeños (meta-

pirrolidina m-2.1a y meta-piperidina m-2.1b) resultaron los más potentes y selectivos en 

musculares (Kis = 42 y 35 nM, respectivamente). Por el contrario, los azocuronios con 

mayor volumen o rigidez en el N-carbociclo (m-azepan m-2.1c y m-1,2,3,6-

tetrahidropiridina m-2.1d) mostraron constantes de unión en receptores musculares (Kis = 

220 y 100 nM, respectivamente) con menores índices de selectividad. 

Empleando la técnica voltage-clamp de dos electrodos, evaluamos el carácter funcional de 

los meta-azocuronios m-2.1(a-d) y m-2.14b en nAChR muscular expresados en ovocitos de 

Xenopus laevis. Por irradiación con LED azul o UV, en todos los casos el isómero (E) fue 
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más potente que el (Z). El volumen y el carácter hidrofóbico de los grupos amonio parece 

determinar el carácter funcional. Todos los meta-azocuronios resultaron antagonistas de 

nAChR muscular, excepto el derivado de pirrolidina más pequeño m-2.1a.  

 

Conclusiones 

Se ha desarrollado una nueva serie de potentes ligandos neuromusculares fotoconmutables, 

azocuronios. Pueden isomerizarse reversiblemente [(E)-(Z)]- con luz azul o UV. Los meta-

azocuronios fueron más potentes y selectivos hacia los nAChRs musculares comparado con 

los neuronales. Mostraron buena solubilidad, despreciable toxicidad neuronal y no alcanzan 

el SNC.  

Los estudios de electrofisiología en nAChRs muscular mostraron que los (E)-azocuronios 

fueron más potentes y que dos grupos amonio son necesarios para una alta actividad. Todos 

los meta-azocuronios fueron antagonistas, excepto el derivado de pirrolidina que fue 

agonista. Estos meta-azocuronios, los cuales pueden ser fotomodulados ad libitum, se 

podrían emplear como herramienta para entender mejor la farmacología del nAChR 

muscular. 
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INTRODUCTION 

Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder 

(ND), currently becoming an alarming social, familiar, and economic burden in world-wide 

countries.1 The origin of this disease is not completely understood, although different 

factors that trigger cognitive symptoms and memory loss have been postulated, such as 

abnormal hyper-phosphorylation of tau, oxidative stress (OS), neuro-inflammation, 

mitochondrial dysfunction, etc. The main AD hallmarks are the extracellular deposits of the 

neurotoxic amyloid-β peptide (Aβ), the intracellular accumulation of the 

hyperphosphorylated microtubule-associated tau protein and a massive neuronal loss.2  

Abnormal cleavage of the amyloid precursor protein (APP) by β-secretase and γ-secretase 

causes Aβ. This peptide is prone to aggregation, first in insoluble Aβ fibrils and then in 

bulkier aggregates named senile plaques. Hyperphosphorylated microtubule-associated tau 

protein is the main component of neurofibrillary tangles (NFTs). Moreover, the neuronal 

loss diminishes the levels of the neurotransmitter acetylcholine (ACh), in charge of 

neuronal transmission. There are strong evidences that correlate protein aggregates 

anomalies and neuronal loss with OS and neuroinflammation.3 

Oxidative Stress 

OS is produced by the over accumulation of unpaired electrons of reactive oxygen species 

(ROS) and reactive nitrogen species (RNS), which leads to an increased risk of suffering 

neurodegeneration. In fact, post-mortem studies of AD brains have linked the increased 

levels of peroxided biomolecules with the progression of the disorder.4 Furthermore, 

imbalance of the antioxidant defense system produces OS, causing abnormal protein 

aggregates.5 Although the brain has its own antioxidant defense system, it is limited and 

lost with aging. Thereby, control of transcription factors involved in the regulation of 

oxidative genes and inhibition of the main enzymes that cause overproduction of ROS and 

RNS, such as monoamine oxidases (MAOs) or quinone reductase 2 (QR2), would be a 

valuable strategy to treat AD.6 
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Nuclear transcriptor factor (erythroid-derived 2)–like 2 

The key elements that regulate the expression of cytoprotective antioxidant and anti-

inflammatory enzymes are the DNA promotor region antioxidant response element (ARE) 

and the nuclear transcriptor factor (erythroid-derived 2)–like 2 (Nrf2).7 Under no 

pathological conditions, Nrf2 is mainly located in the cytosol, bound to Kelch like ECH 

associated protein 1 (Keap1), which allows Cul3 (Cullin-dependent E3 ubiquitin ligase) 

ubiquitination of the Neh2 domain of Keap1-bound Nrf2, followed proteasomal 

degradation. In these conditions, Nrf2 levels remain low because of the negatively 

regulation by ubiquitination and degradation.8 However, under OS conditions, Keap1 

changes its conformation, breaking its binding to Nrf2. Thus, the latter is accumulated and 

translocated to the cell nucleus, where it forms a transcription factor complex that binds to 

ARE and induces gene expression of antioxidant enzymes, such as NAD(P)H quinone 

oxidoreductase 1 (NQO1) or hemoxygenase-1 (HO1) (Figure 1.1).9,10 There are two 

pharmacological ways to activate Nrf2, involving either an electrophilic or a non-

electrophilic mechanism. In the electrophilic mechanism, a covalent binding between 

electrophilic activator molecules and the cysteines of Keap1 produces either a subsequent 

Cul3 dissociation or a hinge and latch effect which finally releases Nrf2. These 

electrophilic activator molecules bind unspecifically to different nucleophiles in the cell 

and consequently they trend to produce undesired effects.11,12 A huge amount of 

electrophilic Nrf2 inducers have been described, some representative examples are 

sulforaphane, dimethyl fumarate (approved for multiple sclerosis in 2013)13 or bardoxolone 

methyl (currently under phase 3 clinical trials for the treatment of advanced chronic kidney 

disease in patients with type 2 diabetes mellitus)14 (Figure 1.1).  

In contrast, in the non-electrophilic mechanism, the Keap1-Nrf2 protein-protein interaction 

is disrupted by a peptide or a small-molecule by a non-covalent binding. Since this is a 

more specific mechanism, it is the preferred option in current research and several 

compounds have been designed looking for disrupting this interaction.15-19 
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Figure 1.1. Schematic representation of Nrf2 activation by substrate adaptor protein Keap1. 

Under non-stressed conditions, Nrf2 is bound to Keap1. Nrf2 activation through either a 

non-electrophilic or by an electrophilic mechanism. In both cases, Nrf2 is translocated to 

the nucleus, where it binds with small Maf proteins and leads to transcription of Nrf2 target 

genes. Chemical structures of electrophilic Nrf2 inducers. Reproduced from 16 

 

In addition to its antioxidant role, Nrf2 acts as endogenous defense by inducing autophagy, 

and regulates neurogenic processes. In fact, Nrf2 over-expression promotes proliferation 

and differentiation to neuronal cells in primary cultures of rat stem cells.20,21 Thus, inducers 

of Nrf2-ARE are promising therapeutic agents against OS, and accordingly for treatment of 

AD.22,23 
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Monoamino oxidases  

MAO (E.C. 1.4.3.4) is an outer mitochondrial membrane-bound flavoprotein, which 

catalyzes the oxidative deamination of monoamines, such as neurotransmitters [serotonin 

(5-HT), dopamine (DA), norepinephrine (NE)] or other biogenic amines (tyramine or 

phenethylamine).24 In mammals there are two isoforms differently distributed in the 

organism (brain, gastrointestinal tract, platelets…), distinguished by their structures25 and 

consequently, by the affinity toward the different subtracts. MAO-A mainly metabolizes 5-

HT, NE and DA, and therefore, it is involved in depressive and anxiety disorders. In fact, 

the mechanism of action of some antidepressant drugs such as clorgyline and moclobedine 

(Figure 1.2) is mainly based on the inhibition of MAO-A. In contrast, MAO-B that is 

responsible of 75% of the brain activity, catalyzes essentially the deamination of DA (5-HT 

and NE slowly), reason why its inhibitors, such as rasagiline and selegiline (Figure 1.2), act 

as anti-parkinsonian drugs.26,27 

The oxidative reaction catalyzed by both isoenzymes generates hydrogen peroxide (H2O2) 

and the corresponding imine, which is hydrolyzed to the respective carbonyl group and 

either ammonia (in primary amines) (Figure 1.2) or a substituted amine (in secondary 

amines).28 An excess of H2O2 produces ROS contributing to neurodegeneration. Moreover, 

overexpression of MAO-B intensifies the expression of γ-secretase, producing the 

formation of Aβ from APP.29 In this sense, MAO inhibition could provide neuroprotection 

against AD, regulating the neurotransmitters levels, reducing the amyloid plaques 

formation and OS.30,31 

 



Introduction 

33 

Figure 1.2. (Upper) Oxidative reaction of amines in the presence of H2O and O2 leads to 

the corresponding aldehyde, H2O2 and NH3. (Lower) chemical structures of some MAOs 

inhibitors. 

Melatonin receptors 

Melatonin receptors (MTRs)32 in mammals consist of the well-known MT1R and MT2R, G-

protein coupled receptors (GPCRs),33 and the third MTR (MT3R), which has been 

identified as the flavin adenine dinucleotide (FAD)-dependent enzyme QR2 (EC 

1.10.99.2).34 Melatonin (MT, Figure 1.3) displays sub-nanomolar affinities toward MT1R 

and MT2R (around 10-10 M), whereas its affinity for MT3R is about 100-fold lower, with an 

IC50 of 84 nM.35-38 These receptors are involved in several physiological and 

pharmacological actions, like circadian and seasonal rhythms’ regulation, immune and 

antioxidant systems modulation, and promotion of endogenous brain neurogenesis.39 In 

addition of MT itself, there are three agonists in the market targeting MT1R/MT2R, namely, 

agomelatine (Valdoxan® for major depression),40 ramelteon (Rozerem® for sleeping 

disorders)41 and tasimelteon (Hetlioz® for non-24-h sleep-wake disorder) (Figure 1.3).42,43  

MT3R/QR2 uses N-ribosyldihydronicotinamide (NRH) or different NRH derivatives as 

electron donors to catalyze the two-electron reduction of quinones into unstable 

hydroquinones,44 which are either excreted through conjugations or returned in the presence 

of oxygen to quinones while producing ROS.45 It has been found that levels of QR2 are 

increased in the hippocampus of AD patients.46 Thus, the inhibition of this enzyme would 

reduce OS,47 being a promising target for this dementia.48 

 

Figure 1.3. Chemical structures of MT and other marketed MT agonists 
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Neuroinflammation  

In addition of OS, another possible pathway leading to the progression of 

neurodegeneration is the increase of neuroinflammation in some regions of the brain.49 

Inflammatory processes begin with the activation of microglia and astrocytes that bond to 

amyloid plaques, in an attempt to eliminate them. After this unsuccessful action, 

proinflammatory cytokines and neurotoxins are released, leading to neuronal damage and 

death.50  

 

Lipoxygenase-5 (LOX-5) 

LOX-5 (EC 1.13.11.34) is an iron-containing enzyme that catalyzes the oxidation of the 

arachidonic acid (AA) to 5-HPETE (5-hydroxy-peroxy-eicosatetraenoic acid) and 

subsequently to 5-HETE (5-hydroxy-eicosatetraenoic acid), which can be then metabolized 

into different pro-inflammatory leukotriene eicosanoids, acting as mediators of the 

inflammatory response.51 LOX-5 is present in the CNS particularly in the hippocampus, 

where its levels appear to increase during aging and in AD.52-54 Interestingly, it has been 

seen that blockade of the lipoxygenase-5 (LOX-5) in transgenic mice diminishes 

microgliosis and astrocytosis and consequently, reduces pro-inflammatory cytokines levels, 

as well as decreases both Aβ and tau pathology.55 Indeed, in a model of AD-like 

amyloidosis, the LOX-5 gene disruption reduced the Aβ plaques and γ secretase activity.56 

Moreover, in the AD-triple transgenic mouse model with high density of plaques and 

tangles (3xTg), overexpression of LOX-5 led to a clear exacerbation of memory deficits 

and increased burdens of both tau and amyloid deposits.57 Furthermore, 3xTg mice treated 

with the LOX-5 inhibitor zileuton (Figure 1.4) presented an improvement in memory, 

cognition, synaptic integrity and a reduction in amyloid and tau pathologies.58 These 

findings suggest a functional role of LOX-5 in the AD-pathogenesis, pointing out the 

interest of LOX-5 inhibitors as valuable therapeutic agents, as they could reduce neuro-

inflammation and the main AD-hallmarks, amyloid plaques and NFTs.59, 55 
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Figure 1.4. Chemical structures of some LOX-5 inhibitors, caffeic acid, 

nordihydroguaiaretic acid (NDGA) and zileuton 

 

Neurogenesis 

Apart from Aβ and tau pathologies, AD is also characterized by a massive neuronal loss. 

The neuronal regeneration was thought to be restricted to embryonic development until 

1962, when Altman showed neurogenic processes in the adult brain of rats.60 However, the 

therapeutic potential of neurogenesis gained strength in the late 1990s when Eriksson et al. 

demonstrated neurogenesis in the brain of adult humans, pointing out that the hippocampus 

is able to develop and integrate new neuronal cells during adult life.61 Adult neurogenesis is 

restricted to two brain niches, the subventricular zone (SVZ) lining the lateral ventricles 

and the subgranular zone (SGZ) in the dentate gyrus (DG) of hippocampus.62 This process 

is sequential: activation of quiescent neural stem-cells (NSCs) and proliferation, migration 

to different areas of the CNS, differentiation and maturation to specific cell types, and 

integration in the brain circuitry (Figure 1.5). Neurogenesis modulates learning and 

memory integration processes and is sensitive to physiological, pathological and 

pharmacological stimuli. For instance, ageing, neurodegenerative, and some mental 

diseases are associated with an exponential decrease in hippocampal neurogenesis. 

Therefore, the controlled pharmacological stimulation of adult neurogenesis might 

counteract the age-related loss of memory and cognitive deterioration in pathological 

processes.63,64 In this sense, a neurogenic inducer would induce the differentiation of NSCs 

into mature neurons capable to replace those lost by neurodegeneration, allowing the brain 

to recover its own self-renewal capacity. In this regenerative approach, a hopeful compound 

is the steroid allopregnanolone that has demonstrated to promote neurogenic processes and 
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reverse cognitive deficits in a mouse AD-model and that recently has completed phase-I 

studies.65,66 

 

Figure 1.5. Schematic diagram illustrating the different phases of neurogenesis in the 

dentate gyrus (taken from Ref.67) 

 

In last years, numerous molecular targets and signalling cascades involved in neurogenesis 

have been identified and, as a consequence, different types of drugs have been evaluated in 

neuronal regeneration. For example, neurogenic properties have been found in MTRs’ 

ligands, Nrf2 activators, antioxidants and anti-inflammatory agents.68 

MT plasma levels decline along with age in a similar manner as the endogenous neurogenic 

rate does. Whether the two phenomena are related or not, remains unclear, albeit MT 

positively modulates hippocampal neurogenesis by increasing both precursor cell 

proliferation and survival in the hippocampi of aged mice.69 Given that MT displays 

outstanding neurogenic activity, many research groups (including ours) have devoted many 

efforts aiming to identify new MT ligands and to study their molecular pathways.70-73 

Recently, we studied the effects in vivo of the MT analogue IQM316, developed in our 

group. We found that this compound is capable of inducing hippocampal neurogenesis in 

mice at a healthy and sustainable rate, preserving previous memories.74,75 
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In addition to its pivotal role in the endogenous defense, Nrf2 is an important player in the 

regulation of neurogenesis. Overexpression of Nrf2 and its downstream genes increased 

neuronal cell proliferation and differentiation in the human neuroblastoma cell line SH-

SY5Y and in rat NSC-derived neurospheres.20,21 The above data support the use of 

activators of the Nrf2-ARE signalling pathway as neurogenic agents for the treatment of 

ND. An example is the natural polyphenol resveratrol, which enhances hippocampal 

neurogenesis and the expression of many antioxidant defensive enzymes such as HO1, 

catalase, glutathione peroxidase, and superoxide dismutase.76,77 Such resveratrol benefits 

could be achieved by regulating various protective signalling pathways, including Nrf2.78 

 

Multi-Target-Directed Ligand strategy 

In spite of the great advances in the knowledge of AD, nowadays there is no effective 

therapy to treat this multifactorial disorder. Only palliative drugs are available in the 

market, three inhibitors of acetylcholinesterase (AChE, donepezil, rivastigmine, and 

galantamine) and one antagonist of the N-methyl-D-aspartate receptor (memantine).79 

These drugs are mainly active in a single target and can hardly modify the progression of 

the disease.79 This failure led to two new approaches to fight the multifactorial character of 

AD: multiple-medication therapy that is, the administration of a “cocktail of drugs”, acting 

by diverse action mechanisms; and multiple-compound medication, that consists of joining 

different molecules administrated in the same pill. However, the possible interaction among 

the drugs administrated, has led to the development to multi-target-directed ligands 

paradigm (MTDLs). This approach is based on the design of molecules capable interact 

with several pharmacological targets involved in a given disease, minimizing adverse effect 

and improving pharmacokinetic and ADMET profile.80-82 In the field of AD, the MTDLs 

must hit targets located upstream in the neurotoxic cascades to achieve maximum 

efficiency in stopping or delaying neurodegeneration.83,84 

Nowadays, the MTDL approach is giving good results and in the last decade an increasing 

number of new MTD-drugs have been developed for the treatment of several complex 

diseases. In the field of NDs,85 safinamide was approved in Europe in February 2015 and in 
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the United States in March 2017 for the treatment of Parkinson’s disease (PD), due to its 

MTD-profile that combines dopaminergic (MAO-B and dopamine reuptake inhibition) and 

non-dopaminergic properties (blockade of voltage-dependent Na+ and Ca2+ channels).86  
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OBJECTIVES AND WORK PLAN 

In this chapter, the general objective was the design, synthesis and biological evaluation of 

new families of MTDLs with potential application in the treatment of AD. Our goal was the 

development of new molecules that were active in key targets related to OS and 

neuroinflammation, namely MT1-3Rs, MAOs, LOX-5, and Nrf2. Furthermore, according to 

bibliographic precedents, neuroprotective and neurogenic properties were also expected.  

For designing new prototypes, our inspiration came from natural or synthetic bioactive 

compounds with advantageous pharmacological profiles, namely MT, resveratrol and 

selegiline. As explained, the neurohormone MT is involved in a plethora of physiological 

processes, displaying anti-inflammatory, antioxidant, neurogenic and neuroprotective 

properties against toxic events related to neurodegenerative diseases.87 Resveratrol is a 

potent Nrf2 inducer77 and cinnamic derivatives, such as the well-known antioxidants ferulic 

and caffeic acids, are potent dual inhibitors of MT3R (QR2) and LOX-5.88-90 Selegiline is a 

selective MAO-B inhibitor with neuroprotective properties,91 which is used to reduce 

symptoms in early-stages of PD.  

Thus, the design of new MTD-families was based on the combination of fragments derived 

from the above-mentioned bioactive compounds, using classical medicinal chemistry 

strategies, such as bioisosterism and scaffold hopping.  

In a previous work, we described the bioisosteric replacement of the acetamide group of 

melatonin by a series of reversed amides and azoles.72 Among these azole derivatives, 5-(2-

(5-methoxy-1H-indol-3-yl)ethyl)-1,3,4-oxadiazol-2(3H)-one (1.1) was the most potent 

partial agonist in the human MTRs, displaying the highest affinity for both hMT1R and 

hMT2R (Ki = 35, 4 nM, respectively). Moreover, this compound also showed potent 

neurogenic properties in vitro, better than MT itself, but it was predicted that 1.1 could not 

enter to the CNS according to the in vitro PAMPA-BBB assay. 

Therefore, our first objective was to develop a new melatonin-based family that could 

improve pharmacokinetics of 1.1 and also incorporate additional activities in targets related 

to OS and neuroinflammation. For this purpose, we modified each part of the starting 
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molecule by: (i) adding different substituents in the NH-oxadiazolone, in special the 

propargyl group present in selegiline; (ii) the incorporation of a double bond in the linker; 

and (iii) the replacement of the indole by a dihydronaphthalene or naphthalene ring. The 

replacement of the above-mentioned aromatic scaffolds by benzene could produce the 

resveratrol-based MTDLs, in which we planned to incorporate structural fragments similar 

to those of the previous melatonin-based family. Like resveratrol, we also scheduled the 

introduction of hydroxyl groups into the benzene that could improve antioxidant properties 

(Figure 1.6). 

 

Figure 1.6. MTDL strategy design for the novel neurogenic and neuroprotective agents 

 

The work plan was outlined as follows: (1) synthesis of proposed melatonin- and 

resveratrol-based families; (2) evaluation of new molecules in MT1-3R, MAOs, LOX-5, and 

Nrf2; (3) measurement of their oxygen radical absorbance capacity and their probable 

permeability in the CNS; (4) study of the structure-activity relationship (SAR) in each 

biological target; (5) assessment of neurogenic properties in primary cultures of rat NSC; 

(6) neuroprotection studies in in vitro models of AD of increasing complexity.  
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RESULTS AND DISCUSSION 

Chemistry Results 

Synthesis of 1,3,4-oxadiazole-2-one derivatives 

Previously, we reported the synthesis of 5-(2-(5-methoxy-1H-indol-3-yl)ethyl)-1,3,4-

oxadiazol-2(3H)-one (1.1) according to steps a-c depicted in Scheme 1.1.72 The treatment 

of commercially available 5-methoxyindole with ethyl acrylate, catalyzed by anhydrous 

zirconium (IV) chloride (ZrCl4)
92 at room temperature (rt), gave ethyl 3-(5-methoxy-1H-

indol-3-yl)propanoate (1.2) in 71% yield. This intermediate was then transformed into the 

corresponding hydrazide 1.3 by a microwave (mw)-promoted hydrazinolysis in quantitative 

yield. Finally, the mw-heating of this hydrazide with 1,1'-carbonyldiimidazole (CDI) at 130 

ºC for 25 min afforded the desired 1,3,4-oxadiazol-2-one 1.1 in 86% yield. 

 

Scheme 1.1. Reagents and conditions. (a) Ethyl acrylate, ZrCl4, DCM, rt; (b) N2H4·H2O, 

mw, 150 °C, 45 min; (c) CDI, DMF, mw, 130 ºC, 25 min; (d) Methyl 

(triphenylphosphoranylidene)acetate, toluene, reflux, overnight; (e) H2/Pd-C (5%), EtOH, 
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rt, overnight; (f) malonic acid, piperidine, pyridine, 70 ºC, overnight; (g) CH3I, K2CO3, 

acetone, rt, overnight. 

 

Following route a-c, 1.1 can be obtained in good overall yield (61%). However, in this 

work we explored two alternative ways for the synthesis of the intermediate ester 1.2, to 

avoid the use of the toxic ethyl acrylate in the step a. In both routes, we used the 

commercially available 5-methoxy-1H-indole-3-carbaldehyde as starting material (Scheme 

1.1). 

A first approach consisted on a Wittig reaction, in which the 5-methoxy-1H-indole-3-

carbaldehyde was reacted with methyl (triphenylphosphoranylidene)acetate in refluxing 

toluene overnight, yielding methyl 3-(5-methoxy-1H-indol-3-yl)acrylate 1.4 in quantitative 

yield. In the 1H-NMR spectrum of this compound we observed that the alkene protons 

showed a coupling constant of 16.0 Hz, pointing out that the major species of this α,β-

unsaturated ester was the (E)-isomer. Then, the double bond of derivative 1.4 was reduced 

using catalytic hydrogenation at rt overnight, yielding the saturated ester 1.2 in quantitative 

yield (Scheme 1.1, steps d and e). 

Alternatively, ester 1.2 was obtained from 5-methoxy-1H-indole-3-carbaldehyde that was 

treated with malonic acid in basic media to generate the α,β-unsaturated acid 1.5, by a 

Knoevenagel-Doebner reaction. Then, 1.5 was subjected to an esterification by treatment 

with potassium carbonate (K2CO3) and methyl iodide (CH3I), giving 1.4 in quantitative 

yield. Subsequently, reduction of 1.4 with hydrogen and palladium over charcoal at 5% 

[Pd-C (5%)] provided 1.2 in quantitative yield (Scheme 1.1, steps f-g-e). Otherwise, 1.5 

was hydrogenated to yield the saturated acid 1.6 and finally esterified to the ester 1.2 

(Scheme 1.1, steps e-g).  

Despite these new synthetic alternatives to synthetize the ester 1.2 consisted of 2 or 3 

synthetic steps and the use of the toxic CH3I, the global yield was improved in whatever of 

these pathways. 
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Saturated ester 1.2 was then transformed into the hydrazide 1.3 (quantitative yield) by 

treatment with hydrazine hydrate (N2H4·H2O) under mw irradiation at 150 ºC during 45 

min. Such hydrazide derivative was cyclized in an mw oven at 130 ºC for 25 min in the 

presence of CDI to obtain 1.1 in high yield (86%) (Scheme 1.1). 

 

Structural modifications in the oxadiazolone ring of derivative 1.1 

Alkylation of the NH-group in the oxadiazolone ring of 1.1 was carried out by an mw-

assisted bimolecular nucleophilic substitution (SN2) (120 ºC, 10 min), using the 

corresponding alkyl halide or alkyl tosylate, to afford derivatives 1.7–1.20. Initially, 

dimethylformamide (DMF) was used as solvent, obtaining moderated yields (60-70%). 

However, the replacement of DMF by acetone improved considerably the yields (80–90%) 

because of its easier elimination from the crude of reaction (Scheme 1.2, step a). 

Not available alkyl halides were replaced by alkyl tosylates (1.21 and 1.22), which were 

synthesized from the corresponding commercial alcohol and tosyl chloride (TsCl) under 

basic conditions in high yields (Scheme 1.2, step b). 

 

Scheme 1.2. Reagents and conditions. (a) K2CO3, acetone, RX or R-OTs, mw, 120 ºC, 10 

min; (b) TsCl, DMAP, TEA, DCM, rt, overnight.   
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On the other hand, the carbonyl group of the oxadiazolone ring of 1.1 was replaced by 

methyl or ethyl amine. Treatment of 1.1 with (benzotriazol-1-

yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), triethylamine (TEA) 

and either methyl- or ethylamine in DMF, yielded the corresponding oxadiazol-2-amine 

1.23 and 1.24, respectively. In general, the reaction conversions were satisfactory, although 

we had some difficulties in the isolation and purification of the products that eventually led 

to low yields (18 and 6%) (Scheme 1.3). Due to such synthetic difficulties and to the fact 

that resulting compounds didn’t improve biological activities as explained below, we 

decided to continue with the design and synthesis of other different derivatives. 

 

Scheme 1.3. Reagents and conditions. (a) RNH2, BOP, TEA, DMF, rt, overnight 

 

Linker Modification 

Introduction of the conjugated double bond required a different approach in the synthetic 

strategy, because the treatment of the α,β-unsaturated ester 1.4 with N2H4·H2O in EtOH 

(same conditions as Scheme 1.1, step b) afforded a complex mixture of compounds. In such 

mixture we identified by HPLC-MS the pyrazolidinone 1.25 as the result of a sequential 

hydrazinolysis and an undesired Michael-type cyclization, as previously described by 

Zhang et al.93 (Scheme 1.4, step a). For this reason, we decided to activate first the 

unsaturated acid with hydroxybenzotriazole (HOBt) and N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC·HCl) as coupling agents, and a catalytic amount of 

4-dimethylaminopyridine (DMAP) (rt, 1 - 3 h). Then, the addition of N2H4·H2O yielded the 
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hydrazide 1.26 in quantitative yield. It is worth-mentioning that the order of addition of the 

reagents is crucial for obtaining the desired intermediate 1.26 in high yield.  

Once the hydrazide is formed, cyclization occurred under the same conditions of procedure 

c in Scheme 1.1 to afford compound 1.27 in good yield (85%) (Scheme 1.4) 

 

Scheme 1.4. Reagents and conditions. (a) N2H4·H2O, mw, 150 °C, 45 min; (b) i. EDC·HCl, 

HOBt, DMAP, ACN; ii. N2H4·H2O, rt.; (c) CDI, DMF, mw, 130 ºC, 25 min. 

 

Introduction a methyl group in alpha-position with respect to the ester, was carried out 

from the commercially available 5-methoxy-1H-indole-3-carbaldehyde and 

(carbethoxyethylidene)triphenylphosphorane by a Wittig reaction, giving the corresponding 

α,β-unsaturated ester 1.28 in high yields (95%). Then, 1.28 was reduced by catalytic 

hydrogenation to the saturated ester 1.29, followed by its transformation into the 

corresponding hydrazide and further cyclization to yield compound 1.30 in 48% yield 

(Scheme 1.5). 
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Scheme 1.5. Reagents and conditions. (a) (Carbethoxyethylidene)triphenylphosphorane, 

DCM, reflux, overnight; (b) H2/Pd-C (5%), EtOH, rt, overnight; (c) N2H4·H2O, mw, 150 

°C, 45 min; (d) CDI, DMF, mw, 130 ºC, 25 min. 

 

The synthesis of derivatives with the methyl group in the beta-position was attempted from 

the commercial 5-methoxyindole using different routes, all of them with unsuccessful 

results. Firstly, starting indole was transformed into 1-(5-methoxy-1H-indol-3-yl)ethan-1-

one (1.31) (Scheme 1.6, step a) by the treatment with acetyl chloride in the presence of the 

Lewis acid AlCl3. In order to avoid indole polymerization, nitromethane (CH3NO2), was 

added as cosolvent, moreover, increasing the solubility of the solid indole-Lewis acid 

complex in the reaction media, minimizing the reaction time and improving yields due to 

its strong solvent effect.94  

However, the indole methyl ketone 1.31 did not react either through the Knoevenagel-

Doebner or the Wittig reaction toward the desired intermediates (Scheme 1.6, steps b or c, 

respectively), even using higher temperatures and reaction times. These failures clearly 

contrast with the synthesis of compound with the methyl group in the alpha-position (1.30), 

which was successfully obtained by a Wittig reaction. These differences could be expected 

due to the decrease in the electrophilic character of keto group compared to aldehyde. 

Taking into account the tendency of NH-indoles to polymerize in the presence of a Lewis 

acid,95 we studied the overnight reaction of 5-methoxyindole with ZrCl4 at rt, which gave 

the biindole derivative 1.32 in 53% yield (Scheme 1.6).  
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Scheme 1.6. Reagents and conditions. (a) Acetyl chloride, AlCl3, CH3NO2, DCM; (b) 

Malonic acid, piperidine, pyridine, reflux, 2 days; (c) Methyl 

(triphenylphosphoranylidene)acetate, toluene, reflux, 5 days; (d) ethyl acrylate, ZrCl4, 

DCM, N2, rt. 

 

From 1H and 13C NMR spectra of 1.32 we deduced a dimeric structure in which an indole 

and an indoline were directly linked. However, the binding positions between both rings 

were not completely clear, even after analysing the HSQC and HMBC two-dimensional 

experiments. For this reason, we crystallized 1.32 that was subjected to an X-ray analysis, 

which demonstrated that it was the racemic mixture of 5,5'-dimethoxy-2,3-dihydro-1H,1'H-

2,3'-biindole (Figure 1.7).  

 

Figure 1.7. Structure of 1.32 by X-ray analysis 
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This dimerization behaviour of NH-indole is not surprising, because it has previously been 

described with other Lewis acids (e.g. BiCl3, SnCl4, InCl3)
95,96 or by direct treatment with 

acidic medium (TsOH or HCl).97-99 

 

CORE MODIFICATION 

Naphthalene and dihydronaphthalene derivatives 

Indole scaffold replacement by either a dihydronaphthalene or naphthalene ring was carried 

out from 7-methoxy-1-tetralone by two different synthetic routes. 

Firstly, commercial 7-methoxy-1-tetralone was treated with a solution of methyl 

magnesium iodide (CH3MgI) in ether at rt for 3 h to afford the corresponding alcohol (non-

isolated intermediate), which was treated with HCl to yield the dihydronaphthalene 1.33 in 

quantitative yield.100 Aromatization of 1.33 with 2,3-dichloro-5,6-dicyano-1,4-benzo-

quinone (DDQ) led to 1-methyl-7-methoxy-1-methylnaphthalene 1.34 in high yield 

(95%).101 Oxidation of the methyl group at position 1 of compound 1.34 to aldehyde was 

attempted using bromine (Br2) and DMSO (Scheme 1.7, step c), testing different number of 

equivalents and times of reaction. However, in all cases we isolated a mixture of the desired 

1-naphthaldehyde 1.35 and the corresponding 8-bromo-1-naphthaldehyde 1.36, as much 

with 20% yield each.102  

Given such poor yields, a new strategy was attempted from dihydronaphthalene 1.33, by 

introduction of the aldehyde in allyl position with selenium dioxide (SeO2) to obtain 

aldehyde 1.37.103 However, due to the easy aromatization of dihydronaphthalene, a low 

yield was obtained under these oxidative conditions, giving a mixture of 

dihydronaphthalene 1.37 and naphthalene 1.35 in 25% and 20% yields, respectively 

(Scheme 1.7, step d). 

Then, we planned to transform the dihydronaphthalene derivative 1.37 into the unsaturated 

acid 1.38 by the treatment with malonic acid in Knoevenagel-Doebner conditions, 

obtaining unexpected 1H- and 13C-NMR data for the isolated product. A deeper NMR 
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analysis (COSY, HSQC, and HMBC) demonstrated that this structure corresponded to 

lactone 1.39, formed under basic conditions (piperidine and pyridine treatment, Scheme 

1.7, step e) by an intramolecular cyclization. Carboxylate group attacked the intracyclic 

double bond forming the enol intermediate, which developed to lactone 1.39, as shown in 

Scheme 1.7. Nevertheless, given that in solution this cyclization is an equilibrium, acid 

activation was possible after treatment with coupling reagents (EDC·HCl, HOBt). Further 

treatment with N2H4·H2O and CDI, led to the desired dihydronaphthalene-based 

oxadiazolone 1.40, although in low yield (15%), probably due to the easy aromatization 

that gave also the corresponding naphthalene (non-isolated). 

 

Scheme 1.7. Reagents and conditions. (a) i. CH3MgI, Et2O, 3 h, rt, ii. HCl 2 M; (b) DDQ, 

DCM, rt, 10 min; (c) Br2, DMSO, dioxane; (d) SeO2, EtOH:H2O 10:1; (e) Malonic acid, 

piperidine, pyridine, 70 ºC, overnight; (f) i. EDC·HCl, HOBt, DMAP, ACN, ii. N2H4·H2O, 

rt; (g) CDI, DMF, mw, 130 ºC, 25 min. 
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Aiming to improve the yield of the oxadiazolone derivative with a dihydronaphthalene core 

1.40, another alternative synthetic route was explored. 7-Methoxy-1-tetralone was reacted 

with trifluoromethanesulfonic anhydride (Tf2O) and 2-chloropyridine as base to yield the 

vinyl triflate 1.41  in good yield (78%)104 (Scheme 1.8, step a). 

 

Scheme 1.8. Reagents and conditions. (a) Tf2O, 2-chloropyridine, DCM, 2 h, rt; (b) 

Pd(PPh3)2Cl2, ethyl acrylate, TEA, mw, 105 ºC, 15 min. 

 

The introduction of an α,β-unsaturated ester was carried out by olefination of vinyl triflates 

under palladium-catalyzed conditions (Heck reaction, Scheme 1.8, step b), using ethyl 

acrylate and TEA (3.5 equiv) as base. Since first attempts to obtain 1.42 in good yields 

failed, different conditions (catalyst, ligand, temperature, time…) were evaluated and major 

subproducts were isolated and characterized, as explained in table 1.1. In the presence of 

triphenylphosphine (PPh3), 2-methoxynaphthalene (1.43) was formed as main product, 

whereas only 10% of the desired ester 1.42 was observed by HPLC-MS (Table 1.1, entries 

1-5). When reactions were performed without PPh3 better conversions of 1.42 were 

obtained, although in all cases starting material 1.41 was also detected. Optimized 

conditions for the synthesis of 1.42, resulted from the use of 

bis(triphenylphosphine)palladium (II) dichloride (Pd(PPh3)2Cl2), as catalyst and mw 

irradiation at 105 ºC for 15 min, obtaining the desired ester derivative in 87% isolated yield 

(Table 1.1, entry 10). 
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Table 1.1. Experimental conditions probed in the synthesis of 1.42. 

Entry 
Catalyst 

(equiv) 

Ligand 

(equiv) 

Acrylate 

equiv 

Conditions 

T (ºC), t (min) 

Conversions 

(%) 

1 
aPd(OAc)2 

(5 mol%) 

PPh3 

(3 equiv) 
2.2 mw 140 ºC, 30 min 

1.42: 10% 

1.43: >80% 

2 
aPd(OAc)2 

(5 mol %) 

PPh3 

(0.5 equiv) 
2.2 

1) mw 140 ºC, 15 min 

2) mw 140 ºC, 30 min 

1.42: 10% 

1.43: >80% 

3 
aPd(OAc)2 

(5 mol %) 

PPh3 

(0.5 equiv) 
2.2 mw 120 ºC, 30 min 

1.42: 10% 

1.43: >80% 

4 
aPd(OAc)2 

(5 mol %) 

PPh3 

(3 equiv) 
2.2 mw 120 ºC, 15 min 

1.42: 10% 

1.43: >80% 

5 
Pd(PPh3)2Cl2 

(2.2 mol %) 

PPh3 

(10 mol %) 
2.2 mw 140 ºC, 30 min  

1.42: 10% 

1.43: >80% 

6 
bPd(PPh3)2Cl2 

(5 mol %) 
none 2.2 

1) 80 ºC, overnight 
2) mw 130 ºC, 39 min  

1.42: 38% 
1.41: 31% 

7 
Pd(PPh3)2Cl2 

(2.2 mol %) 
none 2.2 mw 140 ºC, 30 min 1.42:15% 

8 
Pd(PPh3)2Cl2 

(2.2 mol %) 
none 3.0 mw 130 ºC, 15 min 1.42:10% 

9 
Pd(PPh3)2Cl2 

(2.2 mol %) 
none 2.2 mw 100 ºC, 10 min 

1.42: 32% 
1.41: 68% 

10 
Pd(PPh3)2Cl2 

(2.2 mol %) 
none 2.2 mw 105 ºC, 15 min 

1.42: 89% 

1.41: 11% 

aConditions adapted from Ref.105 bConditions adapted from Ref. 106 

 

Then, ester 1.42 was hydrolyzed under basic condition with lithium hydroxide (LiOH) 

followed by acid treatment with HCl to obtain the corresponding acid. This acid was not 

isolated but transformed to the corresponding hydrazide, followed by cyclization with CDI 

to afford the final dihydronaphthalene-based oxadiazolone 1.40 in low yields (21%) due to 

its easy aromatization. In fact, the aromatic analogue was detected by HPLC (Scheme 1.9). 
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Scheme 1.9. Reagents and conditions. (a) i. LiOH, THF:H2O 1:1, rt, overnight; ii. 1 M 

HCl; (b) i. EDC·HCl, HOBt, DMAP, ACN, ii. N2H4·H2O, rt; (c) CDI, DMF, mw, 130 ºC, 

25 min. 

 

Given that the best yields were obtained using the second synthetic route (triflate formation, 

followed by Heck coupling), this strategy was applied for synthesis of naphthalene 

derivatives 1.51 and 1.52 (Scheme 1.10).  

The conditions previously used in the synthesis of the vinyl triflate 1.41 (Scheme 1.8) were 

extended to the dimethoxylated derivative 1.44 (Scheme 1.10, step a). However, this 

derivative was obtained with low yields due to the formation of several by-products, 

probably due to the lesser electrophilic character of the carbonyl group. According to 

bibliographic precedents, this yield could be improve using bulkier bases, such as 2,6-

lutidine107 or 2,6-di-tert-butylpyridine.108 Aromatization of triflates 1.41 and 1.44 with 

DDQ at rt, led to naphthalenes 1.45 and 1.46, respectively (Scheme 1.10, conditions b). 

Then, the ethyl acrylic moiety was introduced by a Heck reaction,109 treating the 

corresponding triflate with ethyl acrylate in the presence of palladium (II) acetate 

(Pd(OAc)2) as catalyst, 1,10-phenanthroline as ligand and TEA as base, to yield the 

corresponding esters 1.47 and 1.48 in high yields (90 and 81%, respectively). 

As mentioned before (Scheme 1.9, step a), methoxy and dimethoxy esters were hydrolyzed 

under basic conditions, obtaining acids 1.49 and 1.50, in quantitative yields. Acids were 

transformed into the corresponding hydrazides, followed by cyclization to afford final 

compounds 1.51 and 1.52 in good yields. (91 and 85%, respectively). 
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Scheme 1.10. Reagents and conditions. (a) Tf2O, 2-chloropyridine, DCM, rt, 2 h; (b) DDQ, 

DCM, rt, 10 min; (c) ethyl acrylate, Pd(OAc)2, 1,10-phenanthroline, DMF, mw, 150 ºC, 1 

h; (d) i. LiOH, THF:H2O 1:1, rt, overnight; ii. 1 M HCl; (e) i. EDC·HCl, HOBt, DMAP, 

ACN; ii. N2H4·H2O, rt; (f) CDI, DMF, mw, 130 ºC, 25 min. 

 

 

Resveratrol-like derivatives 

Next, we performed the replacement of the aromatic scaffold by a phenyl ring, with the aim 

of obtaining resveratrol-like derivatives. The synthesis was carried out from cinnamic 

acids, bearing functional groups (methoxy, hydroxyl, nitrile, nitro and amino) in different 

positions of the cycle. Many of these starting acids were commercially available, whereas 

non-commercial acids (1.53 and 1.54) were synthetized from the corresponding aldehyde 

by a Knoevenagel-Doebner reaction in high yields (Scheme 1.11, step a). Then, acids were 

transformed into the corresponding α,β-unsaturated hydrazides (1.55–1.65) in quantitative 

yields, which were used without further purification. Subsequent cyclocondensation of 

these hydrazides in presence of CDI under mw irradiation gave the corresponding 1,3,4-
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oxadiazole-2-one heterocycle (1.66–1.76) in good yields (54–94%, yields of both steps) 

(Scheme 1.11). 

Otherwise, conversion of cinnamic acids to the corresponding saturated 3-phenylpropanoic 

acids took place by hydrogenation in quantitative yields, using H2 with Pd-C 5% (Scheme 

1.11, step d). Then, same conditions for the hydrazide formation and the final cyclization as 

in the saturated analogues were used to give final saturated 1.86 – 1.90 in good yields 

(Scheme 1.11, steps b, c). 

 

Scheme 1.11. Reagents and conditions. (a) Malonic acid, piperidine, pyridine, 70 ºC, 

overnight; (b) i. EDC·HCl, HOBt, DMAP, ACN, rt; ii. N2H4·H2O, rt; (c) CDI, DMF, mw, 

130 ºC, 25 min; (d) H2/Pd-C (5%).  
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Hydroxylated derivatives 1.91–1.97 were obtained via deprotection of the corresponding 

methoxylated compounds, by treatment with boron tribromide (BBr3) in DCM at rt 

overnight. For achieving good yields in these transformations (63-96%) it was necessary to 

use one BBr3 equivalent for each ether group to be cleavage plus an additional equivalent 

for each heteroatom present in the molecule, due to the well-known complexation ability of 

the boron atom.110,111 But using the same reaction conditions, the deprotection of 

compounds containing a methoxy group at position 2 (namely 1.71 and 1.72) did not lead 

to good results, although different conditions were tested. Desired products were identified 

in the crude of reaction by HPLC-MS but were not isolated from the chromatography 

column, probably due to the facile oxidation to the corresponding quinones. The only 2,5-

dihydroxyl compound that could be isolated was 1.96, although in poor yields (16%) 

(Scheme 1.12).  

 

Scheme 1.12. Reagents and conditions. BBr3, DCM, rt, overnight. 

 

Compound 1.98, containing one amino group at meta position was synthesized in high 

yield (87%) by the reduction of the nitro derivative 1.68, using iron-ammonium chloride in 

neutral medium (Scheme 1.13).112 
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Scheme 1.13. Reagents and conditions. Fe/NH4Cl, EtOH, reflux 1 h. 

 

Substitution of the methoxy by allyloxy group at position meta- was carried out by a 

Williamson alkylation of the 3-hydroxy derivative with allyl bromide under mw irradiation 

and acetone as solvent. Under these conditions, three compounds were obtained: the desired 

product of the O-allylation (1.99, 49% yield); the product of an aldolic condensation 

between the aldehyde and acetone (1.100, 4% yield); and the product of both reactions 

(1.101, 6% yield). Aldolic condensation could be the result of a higher pressure and traces 

of water present in the mw vial. Then, aldehyde 1.99 led to the acid 1.102 by a 

Knoevenagel reaction, which by treatment with hydrazine hydrate followed by cyclization 

in the presence of CDI gave the final compound 1.104 (Scheme 1.14). 

 

Scheme 1.14. Reagents and conditions. (a) Allyl bromide, K2CO3, acetone, mw, 140 ºC, 20 

min; (b) malonic acid, piperidine, pyridine, 70 ºC, overnight; (c) i. EDC·HCl, HOBt, 

DMAP, ACN, rt, 3 h, ii. N2H4·H2O; (d) CDI, DMF, mw, 130 ºC, 25 min.   
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Introduction of the propargyl group in cinnamic derivatives 1.66, 1.69, 1.70, 1.91 and 

indole derivative 1.27 was developed by alkylation of the NH group of the oxadiazole 

under the same conditions as Scheme 1.2 (K2CO3, acetone, mw, 120 ºC, 10 min or rt 

overnight) to afford the final compounds 1.105–1.109, in moderate to good yields. 

Alkylation of hydroxylated derivative 1.91, led to compound 1.108 in 44% of yield. This 

reaction was carried out at rt in order to avoid possible secondary reactions through the 

hydroxyl group (Scheme 1.15). 

It is worthy to note the low yield achieved (17%) for the indole derivative 1.109. In this 

case the (E)-isomer was not as favored as in phenyl derivatives, complicating the isolation 

from its (Z)-isomer, which was identified by HPLC-MS. In fact, the purification was 

attempted by flash chromatography in conventional (hexane:EtOAc) and reverse phase 

(H2O:ACN) with limited success. Only semipreparative HPLC allowed the isolation of the 

(E)-isomer of 1.109 with high purity (Scheme 1.15). 

   

Scheme 1.15. Reagents and conditions. K2CO3, acetone, mw, 120 ºC, 10 min or rt 

overnight. 
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Replacement of oxadiazolone by amide or amine 

Amides 

Bioisosteric replacement of the oxadiazolone ring by an amide group was carried out from 

either acid 1.53 (Scheme 1.11), or commercially available 3- or 4-methoxycinammic acids 

by condensation with propargyl or allyl amine under the same conditions as Scheme 1.4, 

step b (Scheme 1.16, step a). 

5-Methoxyindole derivatives (1.117 and 1.118) were synthesized from acid 1.5 (Scheme 

1.1) using same above-mentioned procedure, although lower yields were obtained. (Scheme 

1.16, conditions a). 

N-Methylation of amide 1.111, using sodium hydride (NaH) and CH3I gave tertiary amide 

1.113 in good yield. At rt and using MeOD as solvent, the 1H-NMR spectrum showed a 

mixture of rotamers in a proportion of 1:0.7. Signal rotamers were solved by a temperature 

gradient, employing DMSO-d6 as solvent. 



Results and Discussion 

63 

 

Scheme 1.16. Reagents and conditions. (a) i. EDC·HCl, HOBt, DMAP, ACN, rt; ii. 

Corresponding amine; (b) i. NaH, THF, -20 ºC to rt; ii. CH3I, rt, overnight. 

 

Deprotection of methoxylated allylamides 1.115 and 1.116 by treatment with BBr3 at rt 

overnight gave the desired hydroxyl compounds 1.119 and 1.120 in good yields (Scheme 

1.17). 

 

Scheme 1.17. Reagents and conditions. BBr3, DCM, rt, overnight.   



Chapter I 

64 

However, demethylation of the alkyne analogues did not afford the desired product in good 

yield and, only a 20% of conversion was detected by HPLC-MS. This could be due to the 

fact that bromoboration of terminal alkynes leads to (Z)-(2-bromo-1-

alkenyl)dibromoboranes via Markovnikov cis-addition of bromo-boron to terminal triple 

bond stereo- and regioselectively by kinetic control, as previously described (Scheme 

1.18).113-115 

 

Scheme 1.18. Bromoboration of terminal alkynes. 

 

Given that demethylation of alkyne derivatives was not possible by treatment with BBr3, 

condensation with propargylamine was carried out directly with the commercially available 

acids with free hydroxyl groups. Although the conversion was not as good as in 

methoxylated derivatives and more subproducts were formed, the desired phenols 1.121 – 

1.124 were isolated in good yields (Scheme 1.19). 

 

Scheme 1.19. Reagents and conditions. (a) i. EDC·HCl, HOBt, DMAP, ACN, rt; ii. 

Propargylamine, rt. 
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Amine 

Reduction of amides to obtain the corresponding amines was attempted under different 

experimental procedures, with limited successful results. Lithium aluminum hydride 

(LiAlH4) was used either as 2 M solution in THF or as solid, at reflux up to 2 days.116,117 In 

both cases, desired amines could not be detected by HPLC-MS. 

Alternatively, a reductive amination was carried out. The treatment of the commercially 

available ferulic aldehyde with 5 equiv of propargylamine gave the intermediate imine, 

which was not isolated but reduced with sodium borohydride (NaBH4) to give the amine 

1.125 in good yields (62%) (Scheme 1.20).118  

 

 

Scheme 1.20. Reagents and conditions. (a) i. Propargylamine, THF, rt, overnight; ii. 

NaBH4, MeOH. 
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Biological Results 

As previously explained, the 5-(2-(5-methoxy-1H-indol-3-yl)ethyl)-1,3,4-oxadiazol-2(3H)-

one 1.1 was found to be a potent partial agonist in human MT1R and MT2R, displaying 

nanomolar affinity values for both receptors (Ki = 35 and 4 nM, respectively) with a slight 

selectivity for MT2R. This compound was also a good radical scavenger (ORAC = 2.7 

trolox equiv) and displayed potent neurogenic properties in vitro, better than melatonin 

itself.72 However, it could not penetrate into the CNS, according to the in vitro parallel 

artificial membrane permeation assay for the blood-brain barrier (PAMPA-BBB).119 

Thus, we began the biological evaluation of the new compounds by measuring their affinity 

for melatonin receptors and their antioxidant properties. 

 

Evaluation in melatonin receptors 

Evaluation of the affinities of new compounds in MTRs was carried out at Eurofins-

CEREP SA (France) using radioligand binding assays. Experiments in human MT1R and 

MT2R were performed in Chinese hamster ovary cells (CHO), where these receptors were 

stably transfected. Assays in MT3R (or QR2) were carried out in membrane homogenates 

of hamster brains. In all cases, displacement of the radioligand 2-[125I]iodomelatonin was 

measured in the absence or presence of the tested compound and nonspecific binding was 

determined in the presence of MT, following described protocols.120-122  

Firstly, radioligand displacements were measured at a fixed concentration of compound (10 

µM or 100 nM) in each receptor subtype. Then, binding constants (Ki) were calculated only 

for compounds with a radioligand displacement above 80%. MT was tested for comparative 

purposes and results are gathered in Table 1.2 for indole and naphthalene derivatives and in 

Table 1.3 for the phenyl series.  
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Table 1.2. Binding constants at MTRs Ki (nM), or percentage of radioligand displacement 

at the specified concentration (in brackets), and antioxidant properties (ORAC assay) of 

indole and naphthalene derivatives 

 

Compd. 
Ki (nM)a 

ORAC 

(Trolox equiv)b 
hMT1R hMT2R MT3R 

1.1 35 ± 1 4.0 ± 0.5 >102 (5%) 2.7 ± 0.3 

1.9 >104 >104 ~104 (68%) 3.0 ± 0.2 

1.12 >104 530 ± 40 n.d. 2.1 ± 0.2 

1.13 >104 300 ± 30 n.d. 2.2 ± 0.1 

1.17 550 ± 40 230 ± 20 n.d. 2.8 ± 0.2 

1.18 >104 390 ± 30 n.d. 2.7 ± 0.2 

1.20 690 ± 60 320 ± 20 n.d. 1.8 ± 0.2 

1.23 550 ± 40 110 ± 20 330 ± 30 2.3 ± 0.1 

1.27 >102 (8%) >102 (17%) 6.6 ± 0.4 2.4 ± 0.1 

1.109 >102 (0%) >102 (0%) 3.2 ± 0.2 1.8 ± 0.1 

1.117 >102 (13%) ~102 (58%) 9.3 ± 0.5 1.3 ± 0.1 

1.118 >102 (34%) ~102 (78%) 110 ± 10 1.8 ± 0.1 

1.30 >102 (37%) 12 ± 0.9 220 ± 20 2.3 ± 0.1 

1.32 ~104 (58%) 620 ± 40 7.5 ± 0.5 2.3 ± 0.1 

1.40 ~104 (46%) 260 ± 20 250 ± 20 0.4 ± 0.04 

1.51 260 ± 20 5.1 ± 0.4 270 ± 20 < 0.1 

1.52 ~104 (63%) 69 ± 6 35 ± 2 < 0.1 

MT 0.27 ± 0.03 0.13 ± 0.02 84 ± 1 2.3 ± 0.1 

aResults are the mean ± SEM (n = 3). bResults are the mean ± SD (n = 3).  

n.d., not determined.   
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The indole–NH-oxadiazolone 1.1 presented high binding values in MT1R and MT2R (Ki = 

35 and 4 nM, respectively).72 In contrast, 1.1 did not show affinity toward MT3R, as at 100 

nM it only displaced a 5% of the radioligand (Table 1.2).  

The introduction of radicals in the NH- group of the oxadiazolone ring to give derivatives 

1.7 – 1.20 caused a great decrease in the affinity for all melatonin receptors, reaching in 

some cases the total loss of activity. Only compounds with longer chains namely, 1.12 [R = 

(CH2)5CH3], 1.13 [R = (CH2)6CH3], 1.17 (R = CH2cyclobutyl), 1.18 (R = CH2cyclopentyl), 

and 1.20 [R = (CH2)3phenyl] showed a slight selectivity to MT2R vs. MT1R, with binding 

constants around 10-7 M in MT2R. This decrease in the activity could be due to a possible 

hydrogen bond between the NH of the oxadiazolone ring of 1.1 and the receptor, which is 

lost when it is substituted. The evaluation of derivative 1.9 in MT3R gave only a 68% 

displacement at 10 µM, so its Ki was not calculated and the rest of the indole-oxadiazolones 

were not evaluated in MT3R.  

The replacement of the oxadiazolone ring by a 1,3,4-oxadiazol-2-amine to give 1.23 

provided binding constants in the hundred-nanomolar range for the three melatonin 

receptors, Ki = 550, 110, 330 nM, MT1, MT2 and MT3R, respectively. Thus, this change 

maintained the binding constants for MT1R and MT2R and improved results in MT3R, 

compared to some N-substituted oxadiazolone derivatives (e.g., 1.17 and 1.20).  

The addition of a methyl group in the aliphatic linker of 1.1 to give the alpha-methyl 

derivative 1.30, resulted in a complete loss of affinity toward MT1R, a similar binding 

constant for MT2R (Ki = 12 nM) and a better union to MT3R (Ki = 230 nM), in comparison 

with 1.1. 

In the indole series, the introduction of a double bond in the linker provided interesting 

effects in the behaviour of these unsaturated oxadiazolones (1.27 and 1.109) and amides 

(1.117 and 1.118). These four derivatives lost their affinity toward MT1R and MT2R (Kis > 

102 nM), while improved drastically their binding in MT3R. Unsaturated indole-

oxadiazolone derivatives, whatever the substitution in the oxadiazolone ring (1.27 R = 

hydrogen or 1.109 R = propargyl group), and the propargyl amide derivative 1.117 showed 

Kis between 3.2 and 9.3 nM in MT3R, better than MT itself (Ki = 84 nM).  



Results and Discussion 

69 

By comparing with 1.1, the affinity of biindole 1.32 was lost for MT1R (58% at 10 µM), 

was reduced to the 10-7 M for MT2R and was clearly improved for MT3R reaching the low-

namolar rage (Ki = 7.5 nM). 

According to previous results described in the bibliography,123 we also found that the NH-

indole fragment was not indispensable for activity in melatonin receptors. In fact, the 7-

methoxy-3,4-dihydronaphthalene 1.40 showed affinities toward MT2R and MT3R in the 10-

7 M range (Ki = 410 and 260 nM, respectively), although resulted inactive in MT1R. Ring 

aromatization to give the naphthalene counterpart greatly modified the profile towards 

MTRs, as 1.51 recovered a moderated affinity for MT1R (Ki = 260 nM), maintained a 

similar affinity for MT3R (Ki = 270 nM), and interestingly, displayed a potent binding to 

MT2R in the low-nanomolar range (Ki = 5.1 nM). The introduction of a second methoxy 

group in position 6 of the naphthalene ring was partially detrimental for affinity, since 1.52 

was inactive in MT1R, not as active as 1.51 in MT2R (Ki = 69 nM), although 1.52 was one 

order of magnitude more active in MT3R (Ki = 35 nM). 

5-(2-(7-Methoxynaphthalen-1-yl)vinyl)-1,3,4-oxadiazol-2(3H)-one (1.51), which displayed 

the most potent affinity for hMT2R, was also functionally characterized by measuring its 

effects on cAMP modulation, in Eurofins-CEREP SA according to a described HTRF-

detection protocol.121,124 Compound 1.51 was found to be a potent full agonist in MT2R 

with a half maximal effective concentration in the low-nanomolar range (EC50 = 1.1 nM) 

and a maximum activity of 85% with respect to melatonin. 

In the phenyl series, we prioritized methoxy-substituted compounds to be tested in 

melatonin receptors, due to their more structural similarity with the endogenous ligand MT. 

Given that a first selection of these derivatives, namely 1.86, 1.89, and 1.111 at 10 µM gave 

radioligand displacement in MT1R below 80%, the rest of the series was not evaluated in 

this receptor subtype (Table 1.3). 

In general, phenyl–oxadiazolone derivatives with an unsaturated linker were selective 

toward MT3R compared to MT2R, strengthening the idea that the presence of a double bond 

in the linker favours MT3R activity.  
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Table 1.3. Binding constants at melatonin receptors Ki (nM), or percentage of radioligand 

displacement at 10 μM (in brackets), and antioxidant properties (ORAC assay) of phenyl 

derivatives 

 

Compd. 
Ki (µM)a 

ORAC 

(Trolox equiv)b 
hMT1R hMT2R MT3R 

1.69 n.d. >10 (15%) >10 (76%) < 0.1 

1.70 n.d. n.d. >10 (68%) < 0.1 

1.75 n.d. >10 (2%) <10 (106%) < 0.1 

1.91 n.d. ~10 (58%) n.d. 3.8 ± 0.1 

1.92 n.d. n.d. n.d. 3.2 ± 0.1 

1.98 n.d. n.d. n.d. 0.9 ± 0.03 

1.104 n.d. >10 (12%) ~10 (66%) < 0.1 

1.86 ~10 (53%) 1.1 ± 0.1 >10 (36%) 0.4 ± 0.07 

1.89 >10 (32%) ~10 (49%) n.d. < 0.1 

1.95 n.d. n.d. n.d. 2.2 ± 0.3 

1.106 n.d. >10 (25%) ~10 (78%) 0.3 ± 0.06 

1.107 n.d. n.d. <10 (91%) < 0.1 

1.108 n.d. n.d. <10 (90%) 2.7 ± 0.2 

1.111 ~10 (65%) 1.4 ± 0.1 ~10 (76%) < 0.1 

1.121 n.d. n.d. n.d. 3.0 ± 0.3 

1.124 n.d. n.d. n.d. 1.9 ± 0.1 

1.119 n.d. n.d. n.d. 2.3 ± 0.2 

1.125 n.d. >10 (32%) 0.19 ± 0.01 2.1 ± 0.1 

MT 0.27 ± 0.03 0.13 ± 0.02 84 ± 1 2.3 ± 0.1 

aResults are the mean ± SEM (n = 3). bResults are the mean ± SD (n = 3).  

n.d., not determined.   



Results and Discussion 

71 

Furthermore, introduction of a propargyl fragment in the oxadiazolone NH (1.106-1.108) 

no produced drastic differences in comparison to their unsubstituted analogues in MTRs. 

All of them resulted selective toward MT3R with radioligand displacement values around 

80 – 90% at 10 µM. 

The 3-methoxyphenyl–oxadiazolone 1.86 bearing a dimethylene linker showed the opposite 

selectivity, with binding constants of 1.7 µM in MT2R and around 10 µM in MT1R, 

whereas it displayed a modest 36% displacement at 10 µM in MT3R. 

In the case of amides, the 3-methoxyphenyl derivative 1.111 considerably enhanced its 

affinity toward MT2R (Ki = 1.4 µM) respect to the oxadiazolone analogues without the 

propargyl group 1.69 (15% displacement at 10 µM) or with this fragment 1.106 (25% 

displacement at 10 µM). However, in MT3R these three compounds showed similar 

radioligand displacement (around 76%). 

Otherwise, amine derivative 1.125 demonstrated to be a potent and selective ligand of 

MT3R with a binding constant in the sub-micromolar range (Ki = 190 nM) (Table 1.3). 

 

Conformational analysis of indole and naphthalene derivatives (1.27 and 1.51) 

As explained, the indole–NH-oxadiazolone derivative 1.27 showed a marked selectivity 

towards MT3R (Ki = 6.6 nM), in comparison with MT1R and MT2R (Ki = 100 nM). In 

contrast, substitution of the indole heterocycle for a naphthalene ring gave 1.51, which was 

a potent and selective agonist in MT2R (EC50 = 1.1 nM), compared to MT1R and MT3R (Ki 

= 260 and 270 nM, respectively).  

With the aim of explaining this different behaviour in NH-oxadiazolone derivatives that 

only differed in the nature of the other heterocycle, we performed a conformational analysis 

of 1.27 and 1.51 using the ab initio Hartree-Fock method. 

The conformational analysis of torsional angle among carbons 1-4 determined that the 

energy barriers for both compounds are different (Figure 1.8). The indole–NH-

oxadiazolone 1.27 showed high energy barriers (around 5 kcal mol-1) and the most stable 
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conformation at 180º torsion angle, denoting a completely flat arrangement between the 

two heterocycles. In contrast, the more stable conformation of the naphthalene derivative 

1.51 showed a dihedral angle of about 40°, which prevented the steric hindrance of the 

hydrogen of naphthalene with the hydrogen chain in carbon 3 (Figure 1.8). Although 

theoretical calculations are required with the 3D-structures of the receptors, these results 

seem to indicate that the flat conformation of 1.27 favoured the interaction with MT3R, 

while the torsional disposition of 1.51 is preferred for its agonist activity in MT2R.  

A 

 

B 

 

  

  

Figure 1.8. Conformational analysis of indole–NH-oxadiazolone 1.27 (A) and 

naphthalene–NH-oxadiazolone 1.51 derivatives (B). Minimum energy structures for 1.27 

and 1.51. Energy scans of dihedral angle between indole or naphthalene scaffold and 

oxadiazolone (bellow). 
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Evaluation of the oxygen radical absorbance capacity (ORAC) 

The oxygen radical absorbance capacity (ORAC) of new compounds was determined as a 

measure of their antioxidant properties, following described protocols.125-128 Trolox [(±)-6-

hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid], the aromatic part of vitamin E 

responsible for its scavenging properties, was used as internal standard with the arbitrary 

value of ORAC = 1.0. Results are expressed as trolox equivalents (trolox mmol / tested 

compd mmol) in a comparative scale that indicates if a compound is a better (ORAC > 1.0) 

or a worse oxygen radical scavenger (ORAC < 1.0) than vitamin E. MT was also evaluated 

for comparative purposes, giving an ORAC value 2.3-fold higher than trolox. This activity 

fully agrees with the ORAC value previously described by Sofic et al. (2.0 trolox equiv),129 

pointing out the reliability of our experiments. 

ORAC values are gathered in Table 1.2 for indole and naphthalene derivatives and in Table 

1.3 for the phenyl series. 

As shown in Table 1.2, all indole derivatives 1.3-1.20, 1.23, 1.27, 1.30, 1.32 1.109, 1.117 

and 1.118 presented ORAC values between 1.3 and 3.0 trolox equiv with independence of 

the nature of the substituent attached to the position 3 of indole heterocycle. Consequently, 

they could be considered as excellent antioxidant agents. It was unexpected that the 

unsaturated derivative 1.27 did not show a significant difference in the ORAC value (2.4 

trolox equiv) compared to its saturated analogue 1.3 (2.7 trolox equiv), in spite of the 

increase of the conjugation between the indole and oxadiazolone rings would suggest an 

increase in antioxidant properties. 

Replacement of indole by a dihydronaphthalene or naphthalene core was detrimental to the 

antioxidant activity in the ORAC assay. Dihydronaphthalene 1.40 displayed a reduced 

ORAC value (0.4 trolox equiv) and naphthalenes 1.51 and 1.52 were inactive at the 

maximum concentration tested (10 µM). 

In summary, it can be inferred that in this first series the radical absorbance capacity was 

mainly due to the presence of the indole ring, rather than other structural motifs.  
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Regarding the phenyl-based family, only derivatives with hydroxyl groups exhibited 

remarkable antioxidant capacity (ORAC = 1.7 – 3.8 trolox equiv), whereas the 3-

aminophenyl oxadiazolone 1.98 showed a similar ORAC value as trolox (0.9 trolox equiv) 

and methoxylated derivatives were not antioxidant at the maximum concentration tested 

(10 μM) (Table 1.3).  

In the hydroxyphenyl-oxadiazolones, the best ORAC values were obtained with derivatives 

bearing a double bond in the linker, such as 1.91 (R = 3-OH) and 1.92 (R = 4-OH) that 

displayed ORAC values of 3.8 and 3.2 trolox equiv, respectively. The replacement of the 

double bond for a saturated linker provoked a decrease in the ORAC value, 1.95 (R = 3-

OH) being an example (ORAC = 2.2 trolox equiv). 

The 3-hydroxyphenyl-propargyl amide 1.121 showed a better ORAC value (3.0 trolox 

equiv) than its allyl counterpart 1.119 (ORAC = 2.3 trolox equiv). It should be noted that 

introduction of a second hydroxyl group in 1.121 to give the catechol derivative 1.124 

reduced the antioxidant capacity (ORAC = 1.9 trolox equiv). Reduction of amide group to 

give the 3-methoxy-4-hydroxyphenyl-propargyl amine 1.125 lowered slightly the 

antioxidant capacity (ORAC = 2.1 trolox equiv) (Table 1.3). 

 

Inhibition of human MAO and LOX-5 

All compounds were evaluated as inhibitors of human MAO-A, MAO-B and LOX-5 and 

the results of the most representative compounds are gathered in Table 1.4 (indole and 

naphthalene derivatives) and in Table 1.5 (phenyl derivatives). For clarifying, data of 

inactive compounds in the three enzymes are omitted. 

The hMAO-A/B inhibition was determined by the production of oxygen peroxide from a 

common substrate for both isoenzymes (p-tyramine) and quantified by the Amplex Red 

MAO assay kit.130 (R)-Deprenyl, iproniazid and moclobemide were also tested for 

comparative purposes.  
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The inhibition of hLOX-5 was performed following the fluorescence-based method 

described by Pufahl et al.,131 using the two well-known inhibitors zileuton and NDGA as 

internal references. 

 

Table 1.4. Inhibition (IC50, µM)a of human monoamine oxidases (hMAO-A and hMAO-B) 

and human lipoxygenase-5 (hLOX-5) of indole and naphthalene derivatives.b 

 

Compd. hMAO-A hMAO-B hLOX-5 

1.16 > 50 > 50 74.2 ± 2.2 

1.18 > 50 > 50 22.5 ± 1.8 

1.23 > 50 37.0 ± 0.7 60.6 ± 2.6 

1.27 53.0 ± 3.5 68.3 ± 4.6 > 100 

1.32 2.54 ± 0.56 3.69 ± 0.33 5.3 ± 0.3 

1.40 40.6 ± 1.1 35.7 ± 3.3 12.5 ± 0.3 

(R)-Deprenyl 68.7 ± 4.2 0.017 ± 0.002 n.d. 

Iproniazid 6.7 ± 0.8 7.5 ± 0.4 n.d. 

Moclobemide 161.4 ± 19.4 > 100 n.d. 

(R,S)-Zileuton n.d. n.d. 0.15 ± 0.03 

NDGA n.d. n.d. 0.097 ± 0.019 

aResults are the mean ± SEM of three independent experiments.  
bData of inactive compounds are not shown 
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In general, saturated indole–oxadiazolone derivatives did not show appreciable inhibition 

of hMAOs or hLOX-5 (IC50 > 50), with the exception of 1.16 and 1.18 that displayed a 

modest inhibition of hLOX-5 (IC50 = 74.2 and 22.5 µM, respectively). The 5-

methoxyindole-oxadiazolamine 1.23 inhibited both hMAO-B and hLOX-5 (IC50 = 37.0 and 

60.6 µM, respectively). Introduction of a double bond in the linker changed this profile, as 

the 5-methoxyindole-oxadiazole 1.27 displayed moderate inhibition of MAO-A and MAO-

B (IC50 = 53.0 and 68.3 µM, respectively) although it was inactive in LOX-5 (IC50 > 100 

µM). This positive effect of the double bond in the linker was not valid for the naphthalene-

oxadiazole and the indole-amide series, because 1.51, 1.52, 1.117 and 1.118 were inactive 

in the three enzymes (data not shown). Surprisingly, the introduction of a propargyl radical 

in the oxadiazolone ring of the MAO-A/B inhibitor 1.27 to give 1.109 caused a total lack of 

activity in these enzymes (data not shown). Unlike, the dihydronaphthalene-oxadiazolone 

1.40 inhibited hMAO-A, hMAO-B and hLOX-5 with IC50 values of 40.6, 35.7 and 12.5 

µM, respectively (Table 1.4). 

The biindole 1.32 deserves a special mention, because it was the best inhibitor in the three 

enzymes with IC50 values in the low-micromolar range: 2.54, 3.69, and 5.3 µM in hMAO-

A, hMAO-B and hLOX-5, respectively. 

In the resveratrol-based series, the nature, number and position of the substituents exerted a 

notorious influence over the inhibition of hMAOs and hLOX-5. Generally, 

methoxybenzene–NH-oxadiazolones did not display a significant inhibition of hMAOs and 

hLOX-5, with the exception of the 3,4-dioxolanphenyl derivative 1.74 with a moderate 

inhibition of MAO-B (IC50 = 27.6 µM). Unlike, the 3-nitrophenyl–NH-oxadiazolone 1.68 

was a potent and selective MAO-B inhibitor with IC50 in the low-micromolar range (IC50 = 

1.1 µM) (Table 1.5). 

  



Results and Discussion 

77 

Table 1.5. Inhibition (IC50, µM)a of human monoamine oxidases (hMAO-A and hMAO-B) 

and human lipoxygenase-5 (hLOX-5) of phenyl derivatives.b 

 

Compd. hMAO-A hMAO-B hLOX-5 

1.68 > 50 1.1 ± 0.1 > 100 

1.74 > 50 27.6 ± 0.9 > 100 

1.91 > 50 > 50 187 ± 13 

1.92 51.5 ± 3.4 45.7 ± 3.0 > 100 

1.93 3.41 ± 0.23 5.84 ± 0.39 1.25 ± 0.12 

1.96 n.d. n.d. 42.8 ± 2.7 

1.97 > 50 > 50 10.2 ± 0.6 

1.105 > 50 9.87 ± 0.9 > 100 

1.106 > 50 0.64 ± 0.06 > 100 

1.107 > 50 8.05 ± 0.8 n.d. 

1.108 > 50 3.53 ± 0.15 > 100 

1.122 > 50 31.1 ± 1.6 28.9 ± 1.5 

1.123 > 50 > 50 31.2 ± 2.0 

1.124 47.0 ± 1.0 > 50 8.72 ± 0.5 

1.125 30.3 ± 2.5 > 50 66.8 ± 3.3 

(R)-Deprenyl 68.7 ± 4.2 0.017 ± 0.002 n.d. 

Iproniazid 6.7 ± 0.8 7.5 ± 0.4 n.d. 

Moclobemide 161.4 ± 19.4 > 100 n.d. 

(R,S)-Zileuton n.d. n.d. 0.15 ± 0.03 

NDGA n.d. n.d. 0.097 ± 0.019 

aResults are the mean ± SEM of three independent experiments. bData of inactive 

compounds are not shown  
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As expected, introduction of hydroxyl groups in positions 3- and 4- of benzene generally 

improved IC50s in the three enzymes and the presence of a double bond in the linker 

connecting both cycles resulted important as well. Whereas the unsaturated 3-

hydroxybenzene–NH-oxadiazolone 1.91 was almost inactive in all enzymes, its 4-hydroxyl 

counterpart 1.92 displayed a moderate inhibition in both hMAO-A and hMAO-B (IC50 = 

51.1 and 45.7 µM, respectively). Remarkably, introduction of two hydroxyl groups in 

positions 3 and 4 of the benzene gave the catechol 1.93, which was among the most potent 

inhibitors in hMAOs and hLOX-5 discovered in this work, with IC50s in the low-

micromolar range, namely 3.41, 5.84 and 1.25 µM, respectively. The saturated analogue of 

1.93 (1.97) was not active in MAOs and its LOX-5 inhibition (IC50 = 10.2 µM) was one of 

magnitude worse than 1.93, confirming the importance of the presence of a double bond in 

the linker for a successful activity in these enzymes. 

In the methoxy- or hydroxyl-phenyl–oxadiazolone derivatives, the incorporation of a 

propargylic radical in the oxadiazolone ring remarkably improved hMAO-B inhibition, 

while completely lost the activity in hMAO-A and hLOX-5. Thus, derivatives 1.105, 

1.107 and 1.108 were potent and selective inhibitors of hMAO-B, with IC50 values in the 

low-micromolar range (IC50 = 9.87, 8.05, and 3.53 µM, respectively), reaching the 

submicromolar magnitude in the case of 1.106 (IC50 = 0.64 µM). Thus, 5-(3-

methoxystyryl)-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (1.106) was emerged as the 

most potent and selective hMAO-B inhibitor here described.  

In the phenyl–propargylamide series, only hydroxyl-substituted derivatives resulted active 

in hLOX-5. In general, they displayed IC50s in the two-digit micromolar range, namely 

1.122, 1.123, and 1.125 (IC50 = 28.9, 31.2 and 66.8 µM, respectively), highlighting the 

catechol 1.124 as the most active (IC50 = 8.7 µM). Moreover, 1.122 displayed also an 

interesting inhibition of hMAO-B (IC50 = 31.1 µM), whereas amide 1.124 and amino 1.125 

were moderated inhibitors of MAO-A (IC50 = 47.0 and 30.3 µM, respectively). 
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Nrf2 induction  

The ability to induce Nrf2 transcription factor was evaluated using a Nrf2-dependent 

luciferase reporter assay in the AREc32 cell line.132,133 Cells were cultured for 24 h and 

then treated with increasing concentrations of the corresponding compound (0.3, 3, 10 and 

30 μM). A selection of new compounds, covering different structural features was tested as 

Nrf2 inducers and results are gathered in Table 1.6. For simplicity, inactive compounds are 

omitted. Sulforaphane was used as reference and data are expressed as the concentration 

needed to duplicate the specific activity of the luciferase reporter (CD).  

 

Table 1.6. Nrf2 induction capability of selected compounds (CD, µM)a,b 

 

Compd. 
Nrf2 induction 

(CD, µM) 

 
Compd. 

Nrf2 induction 

(CD, µM) 

1.27 15.1 ± 0.9  1.105 16.9 ± 0.4 

1.32 0.56 ± 0.05  1.106 7.44 ± 0.34 

1.109 1.76 ± 0.20  1.107 9.83 ± 0.20 

1.117 27.4 ± 1.5  1.108 8.05 ± 0.41 

1.67 13.7 ± 1.1  1.124 19.2 ± 1.4 

1.68 8.42 ± 0.9  1.125 22.3 ± 2.1 

1.92 22.7 ± 1.3  Sulforaphane 0.54 ± 0.07 

1.93 21.3 ± 1.6    

aResults are the mean ± SEM (n > 3). bData of inactive compounds are not shown  



Chapter I 

80 

In general, saturated indole-oxadiazolone derivatives (e.g., 1.9) did not show activity at the 

maximum concentration tested (30 µM). Unlike, the unsaturated indole-oxadiazolone 1.27 

and its N-propargylic counterpart 1.109 were able to increase luciferase activity, with CD 

values of 15.1 and 1.8 µM, respectively. The elimination of the oxadiazolone ring in 1.109 

to give the propargylic amide 1.117 provoked a decrease in one order of magnitude in the 

Nrf2 activation (CD = 27.4 µM) (Table 1.6). When propargyl radical was replaced by an 

allyl fragment (1.118) the activity vs. Nrf2 was lost. Dihydronaphthalene and naphthalene 

analogues resulted inactive (data not shown). 

In the phenyl series, unsaturated compounds showed also higher induction values than the 

saturated analogues. Among the phenyl–NH-oxadiazolone compounds with a double bond 

in the linker, the most active were the 3-cyanophenyl 1.67 (CD = 13.7 µM), 3-nitrophenyl 

1.68 (CD = 8.42 µM), 4-hydroxylphenyl 1.92 (CD = 22.6 µM), and 3,4-dihydroxyphenyl 

1.93 derivatives (CD = 21.3 µM). 

Introduction of a propargyl radical in the NH of the oxadiazolone heterocycle produced 

again an increase in the activity, obtaining values in low micromolar range for the phenyl 

1.105 (CD = 16.9 µM), 3-methoxyphenyl 1.106 (CD = 7.44 µM), 4-methoxyphenyl 1.107 

(CD = 9.83 µM), and 3-hydroxyphenyl 1.108 (CD = 8.05 µM) derivatives.  

Among the phenyl–propargyl amides, catechol 1.124 was the only active compound (CD = 

19.2 µM). Amine 1.125 displayed moderated activity (CD = 22.3 µM), although it was 

enhanced with respect to its amide analogue 1.123 (CD > 60 µM). 

The biindole 1.32 emerges as the most potent Nrf2 inducer of the compounds here tested, 

with a CD value of 0.56 µM, in the same range as sulforaphane.134 It is worth-mentioning 

that 1.32 does not have any electrophilic character, reason why its mode of action may 

involve a disruption of the Nrf2 – Keap1 interaction, instead of an electrophilic mechanism. 

Thus, it could be expected that 1.32 was less promiscuous than electrophilic inducers, as 

explained in the introduction. 
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In vitro blood−brain barrier permeation assay (PAMPA-BBB) 

In order to know the capability of new compounds to cross the blood-brain barrier (BBB) 

and reach their CNS-targets, we evaluated them in the in vitro parallel artificial membrane 

permeability assay for the BBB (PAMPA-BBB) described by Di et al.,135 and modified by 

our group for testing molecules with limited water-solubility.126,127,136-138 The passive CNS-

permeation of new compounds through a lipid extract of porcine brain was measured at 

room temperature. In each experiment, 11 commercial drugs of known brain permeability 

were also tested and their permeability values normalised to the reported PAMPA-BBB 

data (See Experimental Section). As previously established in the literature,135 compounds 

with Pe > 4.0·10-6 cm·s-1 would be able to cross the BBB (cns+), whereas those displaying 

Pe < 2.0·10-6 cm·s-1 would not reach the CNS (cns-). Between these values, the predicted 

CNS permeability was uncertain (cns +/-).  

In the melatonin-based family, the indole–NH-oxadiazolone 1.1 and its alpha-methyl 

analogue 1.30 (both bearing a saturated linker) were predicted as not CNS-permeable (Pe < 

2·10-6 cm·s-1). In contrast, all indole–N-substituted oxadiazolone derivatives (1.7-1.20), 

showed permeability values exceeding 4.0 10-6 cm·s-1 and thus, they were predicted to be 

CNS-permeable. The indole–oxadiazolamine 1.23 displayed negative CNS permeation, 

whereas the indole–oxadiazolone 1.27 that is the unsaturated analogue of 1.1, displayed a 

permeability value in the ambiguous range (Pe = 3.2·10-6 cm·s-1). The introduction of a 

propargylic radical in the NH of the oxadiazolone ring of 1.27 gave 1.109 that as expected, 

was found to be CNS-permeable. Unsaturated amides 1.117 and 1.118 showed negative 

CNS-permeability. 

Interestingly, biindole 1.32 presented a Pe value of 12.9 10-6 cm·s-1, revealing that clearly it 

can cross the BBB by passive diffusion and reach the CNS. 

The exchange of the indole heterocycle by a dihydronaphthalene (1.40) or a naphthalene 

(1.51 and 1.52) generated compounds with good CNS-permeability values (Pe = 9.0, 9.8 

and 4.5 10-6 cm·s-1, respectively), even retaining the NH-unsubstituted oxadiazolone ring.  



Chapter I 

82 

From these experiments, we can conclude that in general the new indole and naphthalene 

derivatives with a single NH-unsubstituted motif were expected to be CNS-penetrating, 

whereas compounds with two NH groups experienced more difficulties to reach the CNS. 

In the case of the phenyl–NH-oxadiazolone family, compounds bearing a methoxy group 

(1.69, 1.70, and 1.86) were found to be CNS-permeable (Pe = 4.6, 6.5 and 7.3 10-6 cm s-1, 

respectively), whereas the introduction of an additional methoxy fragment gave compounds 

that in general displayed an uncertain CNS-permeation (cns+/-). When there was a cyano-, 

nitro-, hydroxyl- or amino-phenyl fragment, the resulting phenyl–NH-oxadiazolones (1.67, 

1.68, 1.91, 1.92, 1.98…), cannot cross the blood-brain barrier (Pe < 2.0 10-6 cm s-1). 

However, all derivatives bearing a propargyl group in the NH-oxadiazolone are predicted to 

enter into the CNS by passive permeation, even bearing a hydroxyl group such as the case 

of 1.108 (Pe = 4.7 10-6 cm s-1). 

Regarding amides derivatives, only those with methoxy groups were able to go through the 

blood-brain barrier. Unfortunately, either the 3-methoxy-4-hydroxylphenyl or the catechol 

propargyl amide (1.124 and 1.123) with remarkable activity in hLOX-5, does not permeate 

into the CNS by passive diffusion (Pe < 2.0 10-6 cm s-1). The same disappointing results 

were found in the indole amides 1.117 and 1.118, which were very potent ligands of 

hMT3R.  

The amine 1.125 showed a better Pe value (8.7 10-6 cm s-1) than its amide analogue 1.123 

(Pe < 2.0 10-6 cm s-1), confirming that the presence of a carbonyl group decreased CNS-

permeability. 
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Neurogenic studies 

A selection of new compounds, covering different structural features, was screened in 

primary cultures of NSCs to study their neurogenic properties. Adult mice NSCs were 

isolated from SGZ of the dentate gyrus of the hippocampus, and grown as free-floating 

neurospheres (NS).139,140 Tested compounds (at 10 µM) were added to NS culture for 7 

days and then, NS were fixed to a substrate and allowed to differentiate in the presence of 

each compound for a 3-days additional period.  

The neurogenic potential of each compound was determined using fluorescence confocal 

microscopy, by direct observation of the expression of two immunostained markers 

namely, human β-III-tubulin (TuJ-1 clone; green) and microtubule-associated protein 2 

(MAP-2), and cell nuclei were identified by staining with 4’,6-diamidino-2-phenylindole 

(DAPI). TuJ-1 is expressed in NSCs in early stages of their differentiation, whereas the 

expression of MAP-2 indicates a consolidated neuronal stage.141 Control (basal) 

experiments (vehicle-treated cultures) only showed a few positive cells for TuJ-1 or MAP-

2, whereas in cultures treated with neurogenic compounds the number of both TuJ-1 and 

MAP-2 marked cells was clearly increased. 

In the melatonin-based family several compounds promoted the expression of TuJ-1 and 

MAP-2, indicating positive neurogenic activities (Figure 1.9). Comparing derivatives with 

a dimethylene liker, the indole –N-propyloxadiazolone 1.9 displayed good neurogenic 

properties, whereas its indole–oxadiazolamine counterpart 1.23 was inactive, pointing out 

the importance of the presence of an oxadiazolone ring for a successful neurogenesis.  

Among indole compounds bearing a double bond in the linker, the indole–N-

propargyloxadiazolone 1.109 was one of the most active compounds, as it greatly increased 

the expression of both TuJ-1 and MAP-2. Conversely, its analogue indole–NH-

oxadiazolone 1.27 was inactive, suggesting that the N-propargyloxadiazolone ring is 

beneficial for activity.  
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The biindole 1.32 turned out to be the most potent compound of the melatonin-based series 

at stimulating neurogenesis in vitro. It induced both early neurogenesis (TuJ-1) and cell 

maturation (MAP-2), showing also the typical neuronal morphology. 

Both naphthalene–NH-oxadiazolone derivatives 1.51 and 1.52 showed positive effects in 

the expression of TuJ-1 and MAP-2. In contrast, the dihydronaphthalene analogue 1.40 was 

inactive suggesting that naphthalene is more useful for neurogenesis. 
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Figure 1.9. Expression of TuJ-1 (green) and MAP-2 (red) in cultured SGZ-derived NS in 

the presence of different melatonin-based compounds at 10 µM. DAPI (blue) was used as a 

nuclear marker (images of inactive compounds are not shown). 
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In the phenyl–oxadiazolone series bearing a dimethylene linker, we found that the 3-

methoxyphenyl–NH-oxadiazolone 1.86 showed good neurogenic properties, in contrast 

with the lack of activity of their 3-hydroxyl- and 3,5-dihydroxyl counterparts 1.95 and 1.97, 

respectively (Figure 1.10). 
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Figure 1.10. Expression of TuJ-1 (green) and MAP-2 (red) in cultured SGZ-derived NS in 

the presence of different resveratrol-based compounds at 10 µM. DAPI (blue) was used as a 

nuclear marker (images of inactive compounds are not shown).   
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Comparing phenyl–oxadiazolone family with a double bond in the linker, we observed that 

compounds with a meta-substituent in the benzene ring either a methoxy (1.69, 1.75 and 

1.106) or a hydroxyl group (1.91) promoted more remarkably the maturation than the early 

neurogenesis. However, the transformation of the 3,5-dimethoxy groups of 1.75 in 3,5-

dihydroxyl group gave a total lack of activity in 1.94.  

Incorporation of a propargyl group in the oxadiazolone ring notably increased the 

expression of both TuJ-1 and MAP-2, compared with their NH-oxadiazolone analogues. 

Specifically, 3- and 4-methoxyphenyl –N-propargyloxadiazolone derivatives (1.106 and 

1.107, respectively) were the most neurogenic agents of this family. In contrast, 1.105 with 

no substitution in the benzene and the 3-hydroxylphenyl analogue 1.108 showed poor 

capacity to differentiate NSCs (Figure 1.10). 

 

 

Neuroprotection studies in models related to Alzheimer’s disease 

Toxicity and neuroprotection properties in the human neuroblastoma SH-SY5Y line 

In order to determine the toxicity of the most representative compounds at 100 µM (one 

hundred times higher concentrations than neuroprotective assays) a study of cell viability 

was carried out by MTT assay in the neuroblastoma cell line SH-SY5Y. The data 

normalized respect to the basal condition (100% viability) showed that none of these 

compounds are toxic at that concentration (Figure 1.11A). 

Then, the neuroprotective properties were evaluated using different in vitro AD models of 

increasing complexity. Firstly, we used okadaic acid (OA) as toxic insult in SY5Y cells. 

This toxin inhibits the phosphatase action, inducing hyperphosphorylation of tau and cell 

death, which are outstanding AD hallmarkrs.142  

Tested compounds (1 µM) were cultured in SH-SY5Y cells for 24 h, followed by co-

treatment with OA (10 nM) and the corresponding compound for an additional 24 h. Cell 

survival was assessed by MTT assay, normalizing data respect to basal condition. MT (10 
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µM) was used as a positive control.143 Whereas, OA produced a cell viability of 63%, five 

compounds were able to remarkably protect the cellular line, increasing the survival respect 

to the toxic (Figure 1.11B). Such neuroprotective compounds were the 3-nitrophenyl–NH-

oxadiazolone 1.68 (cell viability = 73%), the 4-hydroxyphenyl–NH-oxadiazolone 1.92 (cell 

viability = 75%), the 3,4-dihydroxyphenyl–NH-oxadiazolone 1.93 (cell viability = 71%), 

the 4-methoxyphenyl–N-propargyloxadiazolone 1.107 (cell viability = 73%) and 3,4-

dihydroxyphenyl–propargylamide 1.124 (cell viability = 78%). 

 

A 

 

 

 

 

B 

 

Figure 1.11. None compound resulted toxic and 1.93, 1.68, 1.92, 1.107, 1.124 

neuroprotective agents against OA in the SY5Y cell line. Data normalized respect to the 

basal condition and represented as cell viability percentage. (A) Toxicity per se at 100 µM 

(N = 6-13). (B) Protocol scheme and cell viability determined by MTT assay. 1.93, 1.68, 

1.92, 1.107, 1.124 protected against OA at 1 µM (N = 10). Statistical differences are 

represented as * p-value < 0.05 respect to the basal and # p-value <0.05 with respect to OA. 

Results are the mean of triplicates ± SD.   
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Compounds 1.68 and 1.93 had a worse neuroprotective profile, thus they were not further 

studied. We selected 1.92, 1.107, and 1.124 (Figure 1.12) for continuing with their 

biological evaluation.  

 

Figure 1.12. Structures of selected compounds for further phenotypic experiments 

 

 

Studies in rat cortical neurons exposed to okadaic acid 

Compounds 1.92, 1.107, and 1.124 were then evaluated in primary neuron cultures from rat 

embryos cortex obtained from 18-day pregnant rats and exposed to OA. Primarily, the 

preparation of the cells took place extracting the brain cortices, suspending in Dulbecco’s 

Modified Eagle’s Medium (DMEM)/F12, seeding in well plates and culturing for 2 h. 

Then, the medium was replaced by neurobasal medium (NB) and cultured for 7-10 days 

(Figure 1.13A). Once neurons were prepared, the assay was carried out following the above 

explained protocol, in the presence of OA. MT (10 µM) was used as positive control. Cell 

viability was determined by MTT assay and the data was normalized respect to the basal 

(100% viability). 

While OA (10 nM) decreased the cell viability to 50%, 1.107 and 1.124 (both at 1 µM) 

considerably reversed the cell viability to 70% and 89%, respectively. In contrast, 1.92 (1 

µM) was not able to protect significantly against OA at that concentration (Figure 1.13B) 

nevertheless; the around 11% increasing of cell surviving is biologically significant. 
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A      

 

 

B

 

 
 

Figure 1.13. (A) Scheme of preparation of rat cortical neurons. (B) Protocol scheme. 

Compounds 1.107 and 1.124 (1 µM) increased remarkably cell viability in neurons exposed 

to OA (10 nM) in primary cortical neurons cultures. 1.92 did not increase significantly the 

cell viability. Data is represented as cell viability percentage normalized to the basal 

condition. Statistical differences are represented as * p-value <0.05 respect to the basal and 

# p-value <0.05 respect to OA. n.s.: not significant. Results are the mean of triplicates ± SD 

(N = 3-5). 

  



Chapter I 

90 

Studies in mice hippocampal slices exposed to okadaic acid 

The three selected compounds 1.92, 1.107, and 1.124 were assessed in mice hippocampal 

slices, a more complex in vitro AD model to study the tau pathology in the hippocampus 

during this disorder. These slices were extracted and stabilized for 45 min and exposed to 

OA (1 µM) for 6 h, testing the three compounds at 1 µM. Cell viability was measured in 

CA1 region of hippocampus by both MTT and propidium iodide (PI) fluorescence, a red 

marker of cell death, normalizing in both cases respect to basal condition (100% viability) 

(Figure 1.14).  

 

Figure 1.14. Scheme of the procedure for neuroprotection assay in hippocampal slices. 

Firstly, preparation of the slice from 3 – 4 months old mice, then toxicity induction and 

incubation with 1.107, 1.92 and 1.124 compounds and measure by either MTT or 

fluorescence probes (PI or DCFDA).  

 

In the MTT assay, OA (1 µM) induced a decreasing of cell viability to 60%, while 1.92 and 

1.124 reversed this cell death to 81% and 73% of cell viability, respectively. Conversely, 

1.107 was not able to restore significantly the cell survival at 1 µM. MT (10 µM) was again 

employed as a positive reference (Figure 1.15). 
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Figure 1.15. Compounds 1.92 and 1.124 protected against OA in mice hippocampal slices. 

However, 1.107 was not able to reverse notoriously the cell viability because of the OA-

induced toxicity. Protocol scheme. Data represented as cell viability percentage normalized 

respect to basal condition. Statistical differences are represented as * p-value <0.05 respect 

to the basal and # p-value <0.05 respect to OA. n.s.: not significant. Results are the mean of 

triplicates ± SD (N = 3-11). 

 

In contrast, the detection by the fluorescent marker PI (1 µg/µL), which was added after 5 h 

incubation, led to different results. In this case, PI data was normalized respect to Hoechst 

(1 µg/µL), a nuclear marker. While OA (1 µg) produced a 1.5-fold increasing in PI 

fluorescence (150%) in the CA1 region, in the presence of either 1.92, 1.107 or 1.124, the 

fluorescence decreased to 96%, 69% and 74%, respectively (Figure 1.16). 
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Figure 1.16. Compounds 1.92, 1.107 and1.124 give back the cell viability of OA-treated 

hippocampal slices. (A) Scheme of protocol employed. Fluorescence analysis (PI/Hoechst 

ratio). Statistical differences are represented as * p-value <0.05 respect to the basal; # p-

value <0.05 respect to OA. Results are the mean ± SD in triplicates (N = 3 - 6). (B) 

Illustrative hippocampi slice sections (10X objective). While OA increases PI fluorescence 

in CA1 respect to control, 1.92, 1.107 and 1.124 remarkably decrease PI fluorescence in the 

same area (left). Nuclei staining with Hoechst are represented for each slice (right). 

 

The incongruence in the 1.107 case (inactive by MTT and potent by PI fluorescence) may 

be due to the fact that MTT is a less accurate method than PI fluorescence, because MTT 

does not depend on the state of the mitochondrial dehydrogenase. Or it may due to a not 

enough sample size for this compound in MTT assay. 
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Evaluation of antioxidant capacity of compounds in mice hippocampal slices 

As previously explained, OS contributes to the AD progression. Although the antioxidant 

capacity was determined by the ORAC assay, a more precise measure of ROS generated by 

OA treatment in the hippocampi slices was carried out. In this case the fluorescent probe 

used was 2′,7′-dichlorofluorescein diacetate (DCFDA, 10 µg/µL), which dyes ROS in CA1 

region of the hippocampus (Figure 1.17). Thus, normalizing DCFDA data against Hoechst 

was possible determining that OA increased 1.75-fold of DCFDA fluorescence (175%), 

indicating an increasing of ROS production. Nevertheless, the fluorescence decreased in the 

presence of 1.92, 1.107 and 1.124 at 1 µM (84, 63 and 73%, respectively), showing a clear 

capacity to reduce ROS production (Figure 1.17). 

A 
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+1.92 
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+1.107 
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+1.124 

Figure 1.17. Compounds 1.92, 1.107 and 1.124 reduce ROS in OA-treated hippocampal 

slices. (A) Protocol representation. Fluorescence analysis (DCFDA/Hoechst ratio) 

Statistical differences are represented as * p-value <0.05 respect to the basal; # p-value 

<0.05 respect to OA. Results are the mean ± SD in triplicates (N = 3-5). (B) OA increased 
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ROS compared with basal condition in CA1. Nuclei staining with Hoechst are represented 

for each slice. 

From these results we can conclude that the three selected compounds could be interesting 

candidates for continuing for their biological evaluation. However, 1.124 was previously 

described in the bibliography and 1.92 displayed worse multitarget profile than 1.107. 

Thus, we highlighted the 4-methoxyphenyl–N-propargyloxadiazolone 1.107 as a promising 

candidate for advanced pharmacological evaluation. 
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CONCLUSIONS 

We have developed new melatonin- and resveratrol-based families as MTDLs with 

potential application in the treatment of AD. Design was inspired in several natural or 

synthetic bioactive compounds with advantageous pharmacologic profile namely, MT, 

resveratrol and selegiline, from which classical medicinal chemistry strategies have been 

applied, for instance bioisosterism and scaffold hopping. New molecules combined 

structural features of these ligands, which can be summarized as an aromatic ring (indole, 

dihydronaphthalene, naphthalene or benzene) linked to a polar moiety (five-membered 

heterocycle, amide or amine group) through a saturated or unsaturated chain of two 

carbons. We also synthetized a biindole derivative, as the result of the dimerization of 5-

methoxyindole. 

The new melatonin- and resveratrol-based MTDLs were active in several key targets 

involved in OS and neuroinflammation, such as MT1-3Rs, MAOs, LOX-5 and Nrf2. Several 

compounds were good radical scavengers and could penetrate the CNS, according to the in 

vitro PAMPA-BBB assay. In phenotypic experiments, some of these MTDLs displayed 

interesting neuroprotective and neurogenic properties.  

From the SAR studies performed in each target, we can conclude that the nature of the 

aromatic ring is the more influential feature in the radical scavenging properties, being the 

indole scaffold the most favourable. The double bond in the linker resulted to be the most 

important structural characteristic in the potency and selectivity towards MT3R and Nrf2. 

The N-propargyloxadiazolone ring was the most favoured polar moiety in the potency and 

selectivity toward MAO-B and Nrf2. 

Moreover, the best low-micromolar hLOX-5 inhibitors had a catechol in their structure. 

The most potent and selective hMAO-B inhibitors were resveratrol-cinnamic derivatives 

with a propargyl group in the oxadiazolone ring. Such analogues were also excellent Nrf2 

inductors, and effective neurogenic and neuroprotective agents in in vitro models of AD. 

Derivatives with the better multitarget profile were predicted to be CNS-permeable, thus 

they could act in their cerebral targets. 
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In the melatonin-based family, 5,5'-dimethoxy-2,3-dihydro-1H,1'H-2,3'-biindole (1.32) is a 

potent neurogenic agent, displaying also outstanding activities in key targets related to AD. 

It shows nanomolar affinity for MT3R, is a 2.3-fold more potent radical scavenger than 

vitamin E, and inhibits hMAO-A/B and hLOX-5 in the low-micromolar range. Moreover, 

1.32 is the most potent Nrf2 inducer of the compounds here developed, with a CD value in 

the sub-micromolar range close to the marketed sulforaphane. Interestingly, 1.32 is not an 

electrophilic compound, so it could be expected that its mode of action could involve a 

disruption of the Nrf2 – Keap1 interaction. Thus, 1.32 is an interesting MTDL in the search 

of innovative treatments for AD. 

It is worth-mentioning that the 4-methoxyphenyl– N-propargyloxadiazolone 1.107 showed 

an interesting biological profile in in vitro experiments related to AD. Its structure consists 

of a styrene scaffold (based on resveratrol), an oxadiazolone fragment (bioisosteric 

replacement of the melatonin acetamide moiety) and a propargyl radical (from selegiline). 

In the low-micromolar range, 1.107 is a potent Nrf2 inducer, a hMAO-B selective inhibitor 

and a MT3R ligand. Furthermore, in phenotypic assays, it displays neuroprotective 

properties against OA and promotes the differentiation and maturation of NSC. 

Consequently, 5-(4-methoxystyryl)-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (1.107) 

emerges as a promising candidate for continuing its pharmacological study.  
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EXPERIMENTAL SECTION 

Synthesis 

Along this thesis, reagents and solvents were purchased as high-grade products from 

common commercial suppliers, mostly Sigma-Aldrich, and were used without further 

purification. Reactions were controlled by analytical thin-layer chromatography (TLC), ran 

on Merck silica gel 60 F254 plates, with detention by UV-light ( = 254 or 365 nm) and/or 

stained with 10% wt. phosphomolybdic acid solution in EtOH, ninhydrin solution or 

vanillin solution; or by High-Performance Liquid Chromatography – Mass Spectrometry 

(HPLC-MS), performed on a Waters analytical (Alliance Watters 2695) equipped with a 

SunFire C18 (3.5 μm, 4.6 mm x 50 mm) column, a UV-visible photodiode array detector ( 

= 190 - 700 nm) coupled to quadrupole mass spectrometer (Micromass ZQ), spectra were 

acquired in an Electrospray Ionization (ESI) interface working in the positive or negative-

ion mode. Reactions under mw irradiation were performed in a Biotage Initiator 2.5 reactor. 

Unless otherwise stated, products were purified by automatized flash chromatography using 

an IsoleraOne (Biotage) equipment, with different cartridges of silica gel Biotage ZIP KP-

Sil 50 μm. Alternatively, preparative TLC on Merck silica gel 60 F254 plates or by 

semipreparative HPLC on Waters Autopurification system with UV-visible photodiode 

array detector ( = 190 - 700 nm) coupled to a quadrupole mass spectrometer (3100 Mass 

Detector) were used. HPLC analyses were used to confirm the purity of all compounds (≥ 

95%) and were performed on Waters 2690 equipment, at a flow rate of 1.0 mL/min, with a 

UV-visible photodiode array detector ( = 190 - 700 nm), using SunFire C18 (3.5 μm, 4.6 

mm x 50 mm) column. The gradient mobile phase consisted of H2O:ACN with 0.1% 

formic acid as solvent modifiers, and the gradients time (g.t.) are indicated for each 

compound. Melting points (mp) (uncorrected) were determined in a MP70 apparatus 

(Mettler Toledo). Nuclear magnetic resonance (1H NMR and 13C NMR) spectra were 

obtained in MeOD, acetone-d6, D2O, DMSO-d6 or CDCl3 solutions using the following 

NMR spectrometers: Varian INOVA-300 (1H, 300 MHz; 13C, 75 MHz), Varian INOVA-

400, Varian Mercury-400 (1H, 400 MHz; 13C, 100 MHz) or Varian Unity-500 (1H, 500 

MHz; 13C, 125 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relatives 

to internal tetramethylsilane scale, coupling constants (J) values in hertz (Hz). The 
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following abbreviations are used to describe peak patterns when appropriate: s (singlet), d 

(doublet), t (triplet), q (quartet), m (multiplet), app (apparent), and b (broad). 2D NMR 

experiments -homonuclear correlation spectroscopy (H, H-COSY), heteronuclear multiple 

quantum correlation (HMQC) and heteronuclear multiple bond correlation (HMBC) of the 

compounds were acquired to assign protons and carbons of new structures. The High 

Resolution Mass Spectra (HR-MS) analysis was carried out by using an Agilent 1200 

Series LC system (equipped with a binary pump, an autosampler, and a column oven) 

coupled to a 6520 quadrupole-time of flight (QTOF) mass spectrometer. ACN:H2O (75:25, 

v:v) was used as mobile phase at 0.2 mL/min. The ionization source was an ESI interface 

working in the positive-ion mode. The electrospray voltage was set at 4.5 kV, the 

fragmentor voltage at 150 V and the drying gas temperature at 300 °C. Nitrogen (99.5% 

purity) was used as nebulizer (207 kPa) and drying gas (6 L/min). 

General procedures 

I. Wittig reaction144 

The mixture of the corresponding aldehyde (1.0 equiv) and (Carbethoxyethylidene) 

triphenylphosphorane (1.3 equiv) was dissolved in DCM or toluene. The reaction solution 

was refluxed overnight. The solvent was evaporated under reduced pressure. The residue 

was purified by column flash chromatography in the appropriated gradient. 

II. Synthesis of α,β-unsaturated acids by Knoevenagel-Doebner reaction145 

To a solution of the commercial aldehyde (1 equiv) in pyridine (7 mL/mmol), malonic acid 

(2 equiv) and piperidine (13 µL/mmol) were added. The mixture of reaction was stirred at 

70 ºC overnight under N2 atmosphere. The solvent was evaporated under reduced pressure. 

EtOAc was added and the organic layer washed with H2O (x3), 10% citric acid solution, 

dried over Mg2SO4, filtered, and evaporated under reduced pressure. In the case of initial 

amount was over at 500 mg, acid was precipitated from pyridine with H2O, filtered and 

washed several times with H2O. The crude was dried to obtain the corresponding ,-

unsaturated acid. 
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III. Hydrogenation of alkenes to alkanes or nitrobenzenes to anilines 

To a solution of the either commercial ,-unsaturated acid or nitrobenzene in EtOH (10 

mL/mmol), catalytic amount of Pd-C 5% was added under N2 atmosphere. After that, N2 

was displaced by H2 and the flask was sealed up with a septum. A balloon with H2 was 

connected with a needle to stir at 30 ºC overnight. The mixture was filtrated, and the 

solvent was removed under reduced pressure. In most of cases, it was not necessary further 

purification. 

IV. Synthesis of amides and hydrazides from acids146 

To a suspension of the corresponding acid (1 equiv) and activated 4 Å molecular sieves in 

anhydrous ACN (15 mL/mmol) at rt under N2 atmosphere, HOBt (1.2 equiv), EDC·HCl 

(1.2 equiv) and DMAP (0.12 equiv) were added orderly. The reaction was stirred until 

complete activation of the acid (30 min - 3 h) at rt. Either an excess of N2H4·H2O or the 

corresponding amine (1.2 equiv) was added. Once finished the reaction (upon the end of 

addition in most of cases), H2O was added. The mixture was extracted with DCM (x3) and 

washed with saturated NaHCO3 (aq). The organic layers were joined, and the solvent was 

evaporated under reduced pressure to obtain the corresponding N-acylhydrazines. In the 

case of amides, organic layer was dried over Mg2SO4, filtered, and evaporated under 

reduced pressure. Final compounds were purified with the appropriated gradient. 

V. Synthesis of the corresponding 1,3,4-oxadiazol-2(3H)-one 

To a solution of the corresponding hydrazide (1 equiv) in anhydrous DMF (10 mL/mmol), 

CDI (1.2 equiv) was added under N2 atmosphere. The reaction was heated at 120 ºC for 25 

min under mw irradiation. The solvent was removed, EtOAc was added, extracted (x3), 

washed with brine, dried over Mg2SO4, filtered, and evaporated under reduced pressure. 

The compound was purified in the adequate gradient to obtain the corresponding 1,3,4-

oxadiazol-2(3H)-one. 
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VI. SN2 in either N-alkylation of 1,3,4-oxadiazol-2(3H)-one or in benzyl bromide 

A solution of either 1,3,4-oxadiazol-2(3H)-one derivatives or benzyl bromide and K2CO3 

(1.2 equiv) in acetone (7 mL/mmol) (previously dry with K2CO3) was stirred at rt for 10 

min. Corresponding halide or tosyl alkyl (1.2 equiv) was added. The mixture was heating 

under mw irradiation at 120 ºC for 10 min. In hydroxyl derivatives, the mixture of reaction 

was left at rt overnight instead of using mw. The solvent was evaporated under reduced 

pressure. EtOAc was added and the organic layer washed with H2O (x3) and brine, dried 

over Mg2SO4, filtered, and evaporated under reduced pressure. The crude was purified by 

chromatography using the appropriate eluent to afford the corresponding alkyl derivative. 

VII. Demethoxylation to obtain phenols 

To a solution of the corresponding methoxylated compound in the minimum amount of 

anhydrous DCM, a 1 M BBr3 solution in DCM was added dropwise under N2 atmosphere 

(1 equiv of BBr3 per each heteroatom present in the molecule). The mixture was left at rt 

overnight. Reaction was quenched with MeOH (dropwise until end of effervescence) and 

the solvent evaporated under reduced pressure to remove the remaining BBr3, this process 

was repeated several times until no fumes were observed when adding MeOH. In most of 

cases, purification was not necessary to obtain the corresponding phenol. 

VIII. Aromatization of 1,2-dihydronaphathalenes101 

To a solution of the corresponding dihydronaphthalene (1 equiv) in DCM (5 mL/mmol), a 

solution of DDQ (1.2 equiv) in DCM (5 mL/mmol) was added. The reaction was stirred for 

necessary time (from 10 min to overnight) and washed with a saturated solution of 

NaHCO3, brine, dried over MgSO4, filtrated and the solvent was removed under reduced 

pressure. The crude was purified by chromatography using the appropriate eluent to afford 

the corresponding naphthalene. 

IX. Heck reaction from triflate naphthalene 

Adaptation from 109. To a solution of the corresponding triflate (1 equiv), 1,10-

phenanthroline (5.5% mol), (Pd(OAc)2, 5% mol) in anhydrous DMF (5 mL/mmol), TEA 
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(1.2 equiv) and ethyl acrylate (5 equiv) were added successively. The reaction was heated 

under mw irradiation at 150 ºC for 1 h. The solvent was evaporated. The product was 

purified by flash column in the corresponding gradient to yield the corresponding α,β-

unsaturated ester. 

X. Hydrolysis of α,β-unsaturated esters109 

To a solution of the corresponding α,β-unsaturated ester in THF:H2O 1:1 (7.5 mL/mmol), 

LiOH (1.3 equiv) was added and the reaction was stirred at rt overnight. The solution was 

adjusted to pH = 1 by addition of 1 M HCl. The product was precipitated, washed with H2O 

until neutral pH, centrifuging to avoid losing product, and lyophilized to remove water 

traces to obtain the corresponding acid. 

Synthesis of indole derivatives 

5-(2-(5-Methoxy-1H-indol-3-yl)ethyl)-1,3,4-oxadiazol-2(3H)-one (1.1) 

 

Derivative 1.1 was synthesized from hydrazide 1.2 (146 mg, 0.62 mmol), according to the 

procedure V as a white solid (138 mg, 86%). Spectra corresponding with described in 72. 

Ethyl 3-(5-methoxy-1H-indol-3-yl)propanoate (1.2) 

 

To solution of commercial 5-methoxy-1H-indole (5.0 g, 34 mmol) in anhydrous DCM (40 

mL) ethyl acrylate (21.7 mL, 0.2 mol) was added. Finally, anhydrous ZrCl4 (1.0 g, 4.29 

mmol) is added to the solution. The mixture was kept stirring at rt for 18 h, after which the 
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catalyst was filtered off and the solvent and excess of ethyl acrylate were removed under 

vacuum and collected in a cold trap. The resulting crude was purified by flash 

chromatography in DCM to afford 1.1 (6.1 g, 71%) as a white pearly solid. Spectra 

corresponding with described in Ref.72. 

3-(5-Methoxy-1H-indol-3-yl)propanehydrazide (1.3) 

 

A mixture of 1.2 (3.0 g, 12.1 mmol), and excess of N2H4·H2O (5 mL) in EtOH (6 mL) was 

heated to 155 °C for 45 min under mw irradiation. After removing the solvent, the crude 

was suspended in H2O (70 mL) and extracted with EtOAc (x6). The organic layer was dried 

over MgSO4, filtrated and solvent removed to give 1.3 (2.8 g, >99%), without further 

purification, as a white solid. Spectra corresponding with described in Ref.72. 

Methyl (2E)-3-(5-methoxy-1H-indol-3-yl)prop-2-enoate (1.4) 

 

A solution of acid 1.5 (800 mg, 3.68 mmol) and K2CO3 (1.2 equiv) in the minimum amount 

of THF (not completely soluble in acetone) was stirred at rt 10 min. Then, CH3I (1.2 equiv) 

was added. The reaction was left at rt overnight. Solvent was evaporated under reduced 

pressure and the crude was extracted with DCM (x3), dried over MgSO4 and filtrated. The 

product was precipitated with hexane to give ester 1.5 without further purification in 

quantitative yield (850 mg, 3.7 mmol) as a brown-yellow solid. Mp: 177 - 180 ºC (lit. 177 - 

179 ºC)147. 1H NMR (300 MHz, DMSO-d6) δ 7.91 (s, 1H, H2), 7.87 (d, J = 16.2 Hz, 1H, 

Hα), 7.36 (d, J = 8.7 Hz, 1H, H7), 7.27 (d, J = 2.4 Hz, 1H, H4), 6.84 (dd, J = 8.7, 2.5 Hz, 

1H, H6), 6.32 (d, J = 16.0 Hz, 1H, Hβ), 3.82 (s, 3H, C5OCH3), 3.70 (s, 3H, CO2CH3). 
13C 

NMR (75 MHz, DMSO-d6) δ 167.9 (CO), 154.8 (C5), 139.2 (Cα), 132.2 (C7a), 132.0 (C2), 



Experimental section 

111 

125.6 (C3a), 113.1 (C7), 112.4 (C6), 111.5 (Cβ), 110.0 (C3), 101.7 (C4), 55.5 (C5OCH3), 51.0 

(CO2CH3). HPLC-MS (15:95- g.t.5 min) tR 4.22 min, m/z = 232.37 [M+H]+, calcd. for 

[C13H11N3O3+H]+ 232.25. 

(2E)-3-(5-Methoxy-1H-indol-3-yl)prop-2-enoic acid (1.5) 

 

Following the general procedure II by a Knoevenagel-Doebner reaction from commercial 

5-methoxy-1H-indole-3-carbaldehyde (500 mg, 2.8 mmol), the acid 1.5 was afforded as a 

white solid in 97% yield (600 mg, 2.8 mmol). Mp: 208 - 211 ºC. 1H NMR (300 MHz, 

DMSO-d6) δ 11.85 (bs, 1H, OH), 11.60 (s, 1H, NH), 7.86 (d, J = 3.0 Hz, 1H, H2), 7.80 (d, J 

= 16.0 Hz, 1H, Hα), 7.35 (d, J = 8.8 Hz, 1H, H7), 7.26 (d, J = 2.5 Hz, 1H, H4), 6.84 (dd, J = 

8.7, 2.4 Hz, 1H, H6), 6.25 (d, J = 16.0 Hz, 1H, Hβ), 3.82 (s, 3H, CH3). 
13C NMR (75 MHz, 

DMSO-d6) δ 168.6 (CO), 154.7 (C5), 138.5 (Cα), 132.2 (C7a), 131.3 (C2), 125.7 (C3a), 113.0 

(C7), 112.3 (C6), 111.5 (Cβ), 111.5 (C3), 101.6 (C4), 55.4 (CH3). HPLC-MS (15:95- g.t.5 

min) tR 3.40 min, m/z = 218.26 [M+H]+, calcd. for [C12H11NO3+H]+ 218.22. 

3-(5-Methoxy-1H-indol-3-yl)propanoic acid (1.6) 

 

Following the general procedure III of hydrogenation, the saturated acid 1.6 was obtained 

from the unsaturated acid 1.5 (200 mg, 0.92 mmol), without further purification in 

quantitative yield (200 mg, 0.91 mmol). Mp: 126 - 129 ºC (lit. 133 - 135 ºC)148. 1H NMR 

(300 MHz, CDCl3) δ 7.86 (bs, 1H), 7.25 (d, J = 8.8 Hz, 1H, H7), 7.04 (d, J = 2.5 Hz, 1H, 

H4), 7.00 (d, J = 2.4 Hz, 1H, H2), 6.87 (dt, J = 9.0, 2.3 Hz, 1H, H6), 3.87 (s, 3H, CH3), 3.08 

(t, J = 7.5 Hz, 2H, Hα), 2.77 (t, J = 7.5 Hz, 2H, Hβ). 
13C NMR (75 MHz, CDCl3) δ 179.1 

(CO), 154.2 (C5), 131.5 (C7a), 127.6 (C3a), 122.4 (C2), 114.5 (C3), 112.5 (C6), 112.0 (C7), 
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100.6 (C4), 56.1 (CH3), 34.6 (Cβ), 20.5 (Cα). HPLC-MS (15:95- g.t.5 min) tR 3.47 min, m/z 

= 220.28 [M+H]+, calcd. for [C12H13NO3+H]+ 220.24. 

 

N-oxadiazolone substituted derivatives 

All compounds of this series were synthetized following the general procedure VI from 5-

(2-(5-methoxy-1H-indol-3-yl)ethyl)-1,3,4-oxadiazol-2(3H)-one (1.1) and obtained as white 

solids. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-methyl-1,3,4-oxadiazol-2(3H)-one (1.7) 

 

Final compound 1.7 was obtained from 1.1 (150 mg, 0.58 mmol) and CH3I in 66% yield 

(106 mg, 0.39 mmol). Chromatography: DCM to DCM:MeOH 95:5. Mp: 83 - 86 ºC. 1H 

NMR (500 MHz, CDCl3) δ 7.97 (s, 1H, NH), 7.25 (d, J = 8.6 Hz, 1H, H7), 7.00 (d, J = 2.5 

Hz, 1H, H2), 6.99 (d, J = 2.4 Hz, 1H, H4), 6.87 (dd, J = 8.7, 2.4 Hz, 1H, H6), 3.87 (s, 3H, 

OCH3), 3.35 (s, 3H, NCH3), 3.12 (t, J = 7.7 Hz, 2H, Hα), 2.92 (t, J = 7.7 Hz, 2H, Hβ). 
13C 

NMR (126 MHz, CDCl3) δ 155.9 (C5'), 154.4 (C2'), 154.2 (C5), 131.5 (C7a), 127.4 (C3a), 

122.5 (C2), 113.6 (C3), 112.6 (C6), 112.2 (C7), 100.3 (C4), 56.1 (OCH3), 32.5 (NCH3), 27.4 

(Cβ), 21.5 (Cα). HPLC-MS (15:95- g.t.5 min) tR 3.97 min, m/z = 274.20 [M+H]+, calcd. for 

[C14H15N3O3+H]+ 274.29. HRMS [ESI+] m/z = 273.11145 [M]+, calcd. for [C14H15N3O3]
+ 

273.11134. 
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3-Ethyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.8) 

 

Final derivative 1.8 was obtained from oxadiazolone 1.1 (60 mg, 0.23 mmol) and 

iodoethane in 56% yield (37 mg, 0.13 mmol). Chromatography: DCM to DCM:MeOH 

95:5. Mp: 69 - 72 ºC. 1H NMR (500 MHz, CDCl3) δ 7.90 (s, 1H, NH), 7.26 (d, J = 8.8 Hz, 

1H, H7), 7.01 (d, J = 2.5 Hz, 1H, H2), 6.99 (d, J = 2.3 Hz, 1H, H4), 6.87 (dd, J = 8.8, 2.4 

Hz, 1H, H6), 3.87 (s, 3H, OCH3), 3.71 (q, J = 7.2 Hz, 2H, Ha), 3.15 – 3.11 (m, 2H, Hα), 2.95 

– 2.90 (m, 2H, Hβ), 1.28 (t, J = 7.2 Hz, 3H, Hb). 
13C NMR (126 MHz, CDCl3) δ 155.9 (C5’), 

154.3 (C5), 154.0 (C2’), 131.5 (C7a), 127.5 (C3a), 122.5 (C2), 113.8 (C3), 112.7 (C6), 112.1 

(C7), 100.3 (C4), 56.1 (OCH3), 40.8 (Ca), 27.6 (Cβ), 21.6 (Cα), 13.5 (Cb). HPLC-MS (15:95- 

g.t.5 min) tR 4.21 min, m/z = 288.15 [M+H]+, calcd. for [C15H17N3O3+H]+ 288.32. HRMS 

[ESI+] m/z = 287.1275[M]+, calcd. for [C15H17N3O3]
+ 287.12699. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-propyl-1,3,4-oxadiazol-2(3H)-one (1.9) 

 

Final compound 1.9 was obtained from 1.1 (60 mg, 0.23 mmol) and 1-iodopropane in 49% 

yield (34 mg, 0.11 mmol). Chromatography: DCM to DCM:MeOH 95:5. Mp: 95 – 98 ºC. 

1H NMR (500 MHz, DMSO-d6) δ 10.67 (s, 1H, NH), 7.21 (dd, J = 8.7, 0.5 Hz, 1H, H7), 

7.11 (d, J = 2.5 Hz, 1H, H2), 6.97 (d, J = 2.4 Hz, 1H, H4), 6.70 (dd, J = 8.8, 2.4 Hz, 1H, 

H6), 3.75 (s, 3H, OCH3), 3.53 (t, J = 6.8 Hz, 2H, Ha), 3.00 (t, J = 7.4 Hz, 2H, Hα), 2.90 (t, J 

= 7.5 Hz, 2H, Hβ), 1.57 (h, J = 7.2 Hz, 2H, Hb), 0.78 (t, J = 7.4 Hz, 3H, Hc). 
13C NMR (126 

MHz, DMSO-d6) δ 155.6 (C5’), 153.5 (C2’), 153.0 (C5), 131.3 (C7a), 127.1 (C3a), 123.3 (C2), 
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112.1 (C7), 111.9 (C3), 111.2 (C6), 99.7 (C4), 55.3 (OCH3), 46.4 (Ca), 26.9 (Cβ), 21.0 (Cb), 

20.8 (Cα), 10.6 (Cc). HPLC-MS (15:95- g.t.5 min) tR 4.48 min, m/z = 302.28 [M+H]+, 

calcd. for [C16H19N3O3+H]+ 302.35. HRMS [ESI+] m/z = 301.14327 [M]+, calcd. for 

[C16H19N3O3]
+ 301.14264. 

3-butyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.10) 

 

Final compound 1.10 was obtained from 1.1 (80 mg, 0.31 mmol) and 1-chlorobutane in 

92% yield (90 mg, 0.28 mmol). Chromatography: DCM. Mp: 64 - 65 ºC. 1H NMR (500 

MHz, DMSO-d6) δ 10.67 (s, 1H, NH), 7.21 (d, J = 8.7 Hz, 1H, H7), 7.10 (d, J = 2.4 Hz, 1H, 

H2), 6.96 (d, J = 2.5 Hz, 1H, H4), 6.70 (dd, J = 8.7, 2.4 Hz, 1H, H6), 3.75 (s, 3H, OCH3), 

3.55 (t, J = 6.9 Hz, 2H, Ha), 3.00 (t, J = 7.4 Hz, 2H, Hα), 2.91 (t, J = 7.5 Hz, 2H, Hβ), 1.52 

(p, J = 7.0 Hz, 2H, Hb), 1.17 (h, J = 7.4 Hz, 2H, Hc), 0.83 (t, J = 7.4 Hz, 3H, Hd). 
13C NMR 

(126 MHz, DMSO-d6) δ 155.6 (C5’), 153.4 (C2’), 153.0 (C5), 131.3 (C7a), 127.1 (C3a), 123.3 

(C2), 112.1 (C7), 111.9 (C3), 111.2 (C6), 99.7 (C4), 55.3 (OCH3), 44.4 (Ca), 29.5 (Cb), 26.9 

(Cβ), 20.8 (Cα), 18.8 (Cc), 13.3 (Cd). HPLC-MS (15:95- g.t.5 min) tR 4.79 min, m/z = 

316.11 [M+H]+, calcd. for [C17H21N3O3+H]+ 316.37. HRMS [ESI+] m/z = 315.15838 [M]+, 

calcd. for [C17H21N3O3]
+ 315.15829. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-pentyl-1,3,4-oxadiazol-2(3H)-one (1.11) 

 

Final compound 1.11 was obtained from 1.1 (80 mg, 0.31 mmol) and tosylate 1.21 in 90% 

yield (92 mg, 0.28 mmol). Chromatography: DCM. Mp: 48 - 51 ºC. 1H NMR (500 MHz, 
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CDCl3) δ 7.90 (s, 1H, NH), 7.25 (d, J = 8.5 Hz, 1H, H7), 7.01 (d, J = 2.5 Hz, 1H, H2), 6.99 

(d, J = 2.4 Hz, 1H, H4), 6.87 (dd, J = 8.8, 2.5 Hz, 1H, H6), 3.87 (s, 3H, OCH3), 3.63 (t, J = 

7.2 Hz, 2H, Ha), 3.13 (t, J = 7.4 Hz, 2H, Hα), 2.92 (t, J = 7.5 Hz, 2H, Hβ), 1.67 (p, J = 7.3 

Hz, 2H, Hb), 1.36 – 1.30 (m, 2H, Hd), 1.30 – 1.21 (m, 2H, Hc), 0.89 (t, J = 7.2 Hz, 3H, He). 

13C NMR (126 MHz, CDCl3) δ 155.8 (C5’), 154.3 (C5), 154.3 (C2’), 131.5 (C7a), 127.5 

(C3a), 122.5 (C2), 113.7 (C3), 112.7 (C6), 112.1 (C7), 100.3 (C4), 56.1 (OCH3), 45.8 (Ca), 

28.6 (Cc), 27.9 (Cb), 27.6 (Cβ), 22.3 (Cd), 21.6 (Cα), 14.1 (Ce). HPLC-MS (30:95- g.t.5 min) 

tR 4.60 min, (50:95- g.t.5 min) tR 3.17 min, m/z = 330.13 [M+H]+, calcd. for 

[C18H23N3O3+H]+ 330.40. HRMS [ESI+] m/z = 329.17515 [M]+, calcd. for [C18H23N3O3]
+ 

329.17394. 

3-Hexyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.12) 

 

Final compound 1.12 was obtained from 1.1 (80 mg, 0.31 mmol) and tosylate 1.22 in 70% 

yield (74 mg, 0.22 mmol), as a colorless oil. Chromatography: hexane to DCM. 1H NMR 

(500 MHz, MeOD) δ 7.20 (d, J = 8.7 Hz, 1H, H7), 7.03 (bs, 1H, H2), 6.95 (d, J = 2.4 Hz, 

1H, H4), 6.74 (dd, J = 8.8, 2.4 Hz, 1H, H6), 3.82 (s, 3H, OCH3), 3.57 (t, J = 6.9 Hz, 2H, Ha), 

3.11 (t, J = 7.2 Hz, 2H, Hα), 2.92 (t, J = 7.2 Hz, 2H, Hβ), 1.56 (p, J = 7.0 Hz, 2H, Hb), 1.30 

– 1.21 (m, 4H, Hd, He), 1.20 – 1.10 (m, 2H, Hc), 0.88 (t, J = 6.9 Hz, 3H, Hf). 
13C NMR (126 

MHz, MeOD) δ 157.6 (C5’), 156.0 (C2’), 155.1 (C5), 133.3 (C7a), 128.7 (C3a), 124.1 (C2), 

113.6 (C3), 113.0 (C7), 112.8 (C6), 100.7 (C4), 56.2 (OCH3), 46.4 (Ca), 32.3 (Cd), 28.9 (Cb), 

28.7 (Cβ), 26.9 (Cc), 23.5 (Ce), 22.4 (Cα), 14.3 (Cf). HPLC-MS (50:95- g.t.5 min) tR 3.77 

min, m/z = 344.38 [M+H]+, calcd. for [C19H25N3O3+H]+ 344.43. HRMS [ESI+] m/z = 

343.18957 [M]+, calcd. for [C19H25N3O3]
+ 343.18959. 
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3-Heptyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.13) 

 

Final compound 1.13 was obtained from 1.1 (80 mg, 0.31 mmol) and 1-iodoheptane in 85% 

yield (94 mg, 0.26 mmol), as a yellow oil. Chromatography: hexane to DCM. 1H NMR 

(300 MHz, CDCl3) δ 7.95 (s, 1H, NH), 7.25 (d, J = 8.9 Hz, 1H, H7), 7.02 – 6.95 (m, 2H, 

H2, H4), 6.86 (dd, J = 8.8, 2.4 Hz, 1H, H6), 3.87 (s, 3H, OCH3), 3.63 (t, J = 7.2 Hz, 2H, Ha), 

3.13 (dd, J = 8.6, 6.3 Hz, 2H, Hα), 2.92 (dd, J = 8.6, 6.4 Hz, 2H, Hβ), 1.67 (p, J = 7.3 Hz, 

2H, Hb), 1.34 – 1.19 (m, 8H, Hc, Hd, He, Hf), 0.88 (t, J = 6.7 Hz, 3H, Hg). 
13C NMR (75 

MHz, CDCl3) δ 155.9 (C5'), 154.3 (C5), 154.3 (C2'), 131.5 (C7a), 127.5 (C3a), 122.5 (C2), 

113.7 (C3), 112.6 (C6), 112.1 (C7), 100.3 (C4), 56.1 (OCH3), 45.8 (Ca), 31.8 (Ce), 28.9 (Cd), 

28.2 (Cb), 27.6 (Cβ), 26.4 (Cc), 22.7 (Cf), 21.6 (Cα), 14.2 (Cg). HPLC-MS (70:95- g.t.5 min) 

tR 1.56 min, m/z = 358.25 [M+H]+, calcd. for [C20H27N3O3+H]+ 358.45. HRMS [ESI+] m/z 

= 357.2056 [M]+, calcd. for [C20H27N3O3]
+ 357.20524. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-(propan-2-yl)-1,3,4-oxadiazol-2(3H)-one (1.14) 

 

Final compound 1.14 was obtained from 1.1 (80 mg, 0.31 mmol) and 2-bromopropane in 

81% yield (76 mg, 0.25 mmol). Chromatography: DCM. Mp: 130 - 133 ºC. 1H NMR (500 

MHz, CDCl3) δ 7.88 (bs, 1H, NH), 7.25 (d, J = 7.8 Hz, 1H, H7), 7.01 (d, J = 2.4 Hz, 1H, 

H2), 6.99 (d, J = 2.4 Hz, 1H, H4), 6.86 (dd, J = 8.8, 2.4 Hz, 1H, H6), 4.25 – 4.21 (m, 1H, 

Ha), 3.87 (s, 3H, OCH3), 3.13 (dd, J = 7.6 Hz, 2H, Hα), 2.92 (dd, J = 7.7 Hz, 2H, Hβ), 1.30 

(d, J = 6.7 Hz, 6H, Hb). 
13C NMR (126 MHz, CDCl3) δ 155.8 (C5’), 154.3 (C5), 153.6 (C2’), 
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131.5 (C7a), 127.6 (C3a), 122.5 (C2), 113.9 (C3), 112.7 (C6), 112.1 (C7), 100.3 (C4), 56.1 

(OCH3), 47.9 (Ca), 27.7 (Cβ), 21.6 (Cα), 20.8 (Cb). HPLC-MS (15:95- g.t.5 min) tR 4.49 

min, m/z = 302.35 [M+H]+, calcd. for [C16H19N3O3+H]+ 302.35. HRMS [ESI+] m/z = 

301.14244 [M]+, calcd. for [C16H19N3O3]
+ 301.14264. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-(2-methylpropyl)-1,3,4-oxadiazol-2(3H)-one 

(1.15) 

 

Final compound 1.15 was obtained from 1.1 (80 mg, 0.31 mmol) and 1-chloro-2-

methylpropane in 82% yield (80 mg, 0.25 mmol). Chromatography: DCM. Mp: 54 - 56 ºC. 

1H NMR (500 MHz, DMSO-d6) δ 10.67 (s, 1H, NH), 7.21 (d, J = 8.7 Hz, 1H, H7), 7.10 (d, 

J = 2.4 Hz, 1H, H2), 6.97 (d, J = 2.4 Hz, 1H, H4), 6.70 (dd, J = 8.7, 2.4 Hz, 1H, H6), 3.75 (s, 

3H, OCH3), 3.37 (d, J = 7.1 Hz, 2H, Ha), 3.00 (t, J = 7.3 Hz, 2H, Hα), 2.91 (t, J = 7.2 Hz, 

2H, Hβ), 1.90 – 1.87 (m, 1H, Hb), 0.79 (d, J = 6.7 Hz, 6H, Hc).
 13C NMR (126 MHz, 

DMSO-d6) δ 155.6 (C5’), 153.7 (C2’), 153.0 (C5), 131.3 (C7a), 127.1 (C3a), 123.3 (C2), 112.1 

(C7), 111.9 (C3), 111.2 (C6), 99.7 (C4), 55.3 (OCH3), 51.8 (Ca), 27.4 (Cb), 26.9 (Cβ), 20.8 

(Cα), 19.4 (Cc). HPLC-MS (15:95- g.t.5 min) tR 4.77 min, m/z = 316.34 [M+H]+, calcd. for 

[C17H21N3O3+H]+ 316.37. HRMS [ESI+] m/z = 315.15958 [M]+, calcd. for [C17H21N3O3]
+ 

315.15829. 

3-(Cyclopropylmethyl)-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-

one (1.16) 
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Final compound 1.16 was obtained from 1.1 (80 mg, 0.31 mmol) and 

(bromomethyl)cyclopropane in 88% yield (85 mg, 0.27 mmol). Chromatography: DCM. 

Mp: 94 - 97 ºC. 1H NMR (500 MHz, CDCl3) δ 7.89 (s, 1H, NH), 7.26 (d, J = 8.8 Hz, 1H, 

H7), 7.02 (d, J = 2.4 Hz, 1H, H2), 7.00 (d, J = 2.7 Hz, 1H, H4), 6.87 (dd, J = 8.8, 2.4 Hz, 

1H, H6), 3.87 (s, 3H, CH3), 3.52 (d, J = 7.2 Hz, 2H, Ha), 3.13 (q, J = 7.0 Hz, 2H, Hα), 2.96 – 

2.90 (m, 2H, Hβ), 1.19 – 1.09 (m, 1H, Hb), 0.57 – 0.51 (m, 2H, Hc), 0.34 (dt, J = 6.2, 4.8 

Hz, 2H, Hc). 
13C NMR (126 MHz, CDCl3) δ 155.9 (C2’), 155.8 (C5’), 154.3 (C5), 131.5 

(C7a), 127.5 (C3a), 122.5 (C2), 113.8 (C3), 112.7 (C6), 112.1 (C7), 100.3 (C4), 56.1 (CH3), 

50.5 (Ca), 27.5 (Cβ), 21.6 (Cα), 10.0 (Cb), 3.6 (Cc). HPLC-MS (15:95- g.t.5 min) tR 4.57 

min, m/z = 314.03 [M+H]+, calcd. for [C17H19N3O3+H]+ 314.36. HRMS [ESI+] m/z = 

313.14324 [M]+, calcd. for [C17H19N3O3]
+ 313.14264. 

3-(Cyclobutylmethyl)-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one 

(1.17) 

 

Final compound 1.17 was obtained from 1.1 (80 mg, 0.31 mmol) and 

(bromomethyl)cyclobutane in 75% yield (76 mg, 0.23 mmol). Chromatography: hexane to 

DCM. Mp: 74 - 76 ºC. 1H NMR (500 MHz, CDCl3) δ 7.88 (bs, 1H, NH), 7.25 (d, J = 8.0 

Hz, 1H, H7), 7.00 (d, J = 2.4 Hz, 1H, H2), 6.99 (d, J = 2.5 Hz, 1H, H4), 6.87 (dd, J = 8.8, 

2.4 Hz, 1H, H6), 3.87 (s, 3H, CH3), 3.66 (d, J = 7.3 Hz, 2H, Ha), 3.12 (dd, J = 8.6, 6.7 Hz, 

2H, Hα), 2.91 (dd, J = 8.4, 6.9 Hz, 2H, Hβ), 2.68 (p, J = 7.7 Hz, 1H, Hb), 2.06 – 1.96 (m, 

2H, Hc), 1.93 – 1.83 (m, 2H, d), 1.81 – 1.69 (m, 2H, Hc). 
13C NMR (126 MHz, CDCl3) δ 

155.7 (C5’), 154.5 (C2’), 154.3 (C5), 131.5 (C7a), 127.5 (C3a), 122.5 (C2), 100.3 (C4), 56.1 

(CH3), 50.6 (Ca), 34.3 (Cb), 27.6 (Cβ), 25.7 (Cc), 21.5 (Cα), 18.3 (Cd). HPLC-MS (50:95- 

g.t.5 min) tR 2.35 min, m/z = 328.37 [M+H]+, calcd. for [C18H21N3O3+H]+ 328.38. HRMS 

[ESI+] m/z = 327.15892 [M]+, calcd. for [C18H21N3O3]
+ 327.15829. 
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3-(Cyclopentylmethyl)-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-

one (1.18) 

 

Final compound 1.18 was obtained from 1.1 (80 mg, 0.31 mmol) and 

(bromomethyl)cyclopentane in 72% yield (76 mg, 0.22 mmol). Chromatography: hexane to 

DCM. Mp: 81 - 84 ºC. 1H NMR (500 MHz, CDCl3) δ 7.88 (bs, 1H, NH), 7.25 (d, J = 8.8 

Hz, 1H, H7), 7.01 (d, J = 2.5 Hz, 1H, H2), 6.99 (d, J = 2.4 Hz, 1H, H4), 6.86 (dd, J = 8.8, 

2.4 Hz, 1H, H6), 3.87 (s, 3H, CH3), 3.56 (d, J = 7.4 Hz, 2H, Ha), 3.13 (t, J = 7.6 Hz, 2H, 

Hα), 2.92 (t, J = 7.6 Hz, 2H, Hβ), 2.29 (p, J = 7.6 Hz, 1H, Hb), 1.70 – 1.59 (m, 4H, Hd, Hc), 

1.58 – 1.50 (m, 2H, Hd), 1.27 – 1.16 (m, 2H, Hc). 
13C NMR (126 MHz, CDCl3) δ 155.7 

(C5'), 154.5 (C2'), 154.3 (C5), 131.5 (C7a), 127.5 (C3a), 122.5 (C2), 113.7 (C3), 112.7 (C6), 

112.1 (C7), 100.3 (C4), 56.1 (CH3), 50.5 (Ca), 39.0 (Cb), 30.1 (Cc), 27.6 (Cβ), 25.2 (Cd), 21.6 

(Cα). HPLC-MS (50:95- g.t.5 min) tR 3.14 min, m/z = 342.20 [M+H]+, calcd. for 

[C19H23N3O3+H]+ 342.41. HRMS [ESI+] m/z = 341.17482 [M]+, calcd. for [C19H23N3O3]
+ 

341.17394. 

3-Benzyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.19) 

 

Final compound 1.19 was obtained from 1.1 (80 mg, 0.31 mmol) and benzyl bromide in 

57% yield (62 mg, 0.18 mmol). Chromatography: DCM. Mp: 118 - 121 ºC. 1H NMR (500 

MHz, CDCl3) δ 7.85 (s, 1H, NH), 7.38 – 7.33 (m, 2H, Ho), 7.32 – 7.30 (m, 1H, Hp), 7.30 – 

7.21 (m, 3H, Hm, H7), 6.98 (d, J = 2.4 Hz, 1H, H4), 6.94 (s, 1H, H2), 6.87 (dd, J = 8.7, 2.4 
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Hz, 1H, H6), 4.81 (s, 2H, Ha), 3.86 (s, 3H, CH3), 3.11 (t, J = 7.6 Hz, 2H, Hα), 2.90 (t, J = 

7.6 Hz, 2H, Hβ). 
13C NMR (126 MHz, CDCl3) δ 156.1 (C5’), 154.3 (C5), 154.2 (C2’), 135.1 

(Ci), 131.4 (C7a), 129.0 (Co), 128.4 (Cp), 128.3 (Cm), 127.4 (C3a), 122.5 (C2), 113.6 (C3), 

112.7 (C6), 112.1 (C7), 100.2 (C4), 56.0 (CH3), 49.5 (Ca), 27.6 (Cβ), 21.5 (Cα). HPLC-MS 

(30:95- g.t.5 min) tR 4.23 min, m/z = 350.26 [M+H]+, calcd. for [C20H19N3O3+H]+ 350.14. 

HRMS [ESI+] m/z = 349.14257[M]+, calcd. for [C20H19N3O3]
+ 349.14264. 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-3-(3-phenylpropyl)-1,3,4-oxadiazol-2(3H)-one 

(1.20) 

 

Final compound 1.20 was obtained from 1.1 (80 mg, 0.31 mmol) and (3-

bromopropyl)benzene in 92% yield (108 mg, 0.28 mmol), as a brown oil. Chromatography: 

hexane to hexane:DCM 8:2. 1H NMR (500 MHz, CDCl3) δ 7.85 (s, 1H, NH), 7.32 – 7.09 

(m, 6H, H7, Ho, Hm, Hp), 6.98 (bs, 2H, H2, H4), 6.85 (dd, J = 8.8, 2.5 Hz, 1H, H6), 3.86 (s, 

3H, CH3), 3.68 (t, J = 7.0 Hz, 2H, Ha), 3.12 (dd, J = 8.6, 6.4 Hz, 2H, Hα), 2.91 (dd, J = 8.3, 

6.4 Hz, 2H, Hβ), 2.58 (t, J = 7.6 Hz, 2H, Hc), 2.00 (p, J = 7.2 Hz, 2H, Hb). 
13C NMR (125 

MHz, CDCl3) δ 155.9 (C5'), 154.3 (C5), 154.2 (C2'), 140.9 (Ci), 131.5 (C7a), 128.6 (CAr), 

128.5 (CAr), 126.3 (Cp), 122.5 (C2), 113.7 (C3), 112.7 (C6), 112.1 (C7), 100.3 (C4), 56.1 

(CH3), 45.2 (Ca), 32.7 (Cc), 29.7 (Cb), 27.6 (Cβ), 21.5 (Cα). HPLC-MS (50:95- g.t.5 min) tR 

3.42 min, m/z = 378.31[M+H]+, calcd. for [C22H23N3O3+H]+ 378.44. HRMS [ESI+] m/z = 

377.1737[M]+, calcd. for [C22H23N3O3]
+ 377.17394. 
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Synthesis of tosylates: pentyl 4-methylbenzene-1-sulfonate (1.21) and hexyl 4-

methylbenzene-1-sulfonate (1.22) (adapted from Ref.149,150) 

To a solution of the corresponding alcohol (1 equiv) in dry DCM (9.5 mL/mmol) at -20 ºC 

and under N2 atmosphere, TsCl (1.5 equiv) and anhydrous pyridine (0.5 mL/mmol) were 

added. The reaction mixture was allowed to warm to rt overnight. Then, concentrated HCl 

was carefully added and the resulting solution was extracted with EtOAc (x3). The 

combined organic extracts were sequentially washed with H2O and brine, dried over 

MgSO4, filtered, and evaporated under reduced pressure to give the corresponding tosylate, 

without further purification. The spectroscopic data correspond with those previously 

reported. 

Oxadiazolamine derivatives 

5-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-N-methyl-1,3,4-oxadiazol-2-amine (1.23) 

 

(Adapted from Ref.151) To a solution of 1.1 (150 mg, 0.58 mmol) in 5.8 mL (10 mL/mmol) 

of anhydrous DMF, TEA (162 µL, 1.16 mmol, 2 equiv), BOP (282 mg, 0.64 mmol, 1.1 

equiv) and methyl amine (580 µL of a 2M solution in THF) were slowly added. The 

mixture was stirred at rt for 2 h. The solvent was removed under reduced pressure. The 

crude was extracted with EtOAc (x3) and washed with H2O (x2) and brine. The organic 

layers were joined, dried over MgSO4 and the solvent was evaporated. The crude was 

purified by flash chromatography (DCM to DCM:MeOH 9:1) and washed with hexane to 

afford the final compound 1.23 in 18% yield (29 mg, 0.11 mmol). Mp: 145 - 148 ºC. 1H 

NMR (500 MHz, DMSO-d6) δ 10.65 (bs, 1H, NHindole), 7.24 (t, J = 4.9 Hz, 1H, NHCH3), 

7.21 (d, J = 8.9 Hz, 1H, H7), 7.08 (d, J = 2.5 Hz, 1H, H2), 6.93 (d, J = 2.5 Hz, 1H, H4), 6.70 

(dd, J = 8.7, 2.4 Hz, 1H, H6), 3.75 (s, 3H, OCH3), 2.99 (m, 4H, Hα, Hβ), 2.75 (d, J = 4.9 Hz, 

3H, NHCH3). 
13C NMR (126 MHz, DMSO-d6) δ 164.0 (C2'), 159.5 (C5'), 153.0 (C5), 131.3 
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(C7a), 127.1 (C3a), 123.2 (C2), 112.4 (C3), 112.0 (C7), 111.2 (C6), 99.8 (C4), 55.3 (OCH3), 

29.0 (NHCH3), 25.8 (Cβ), 22.0 (Cα). HPLC-MS (15:95- g.t.5 min) tR 3.17 min, m/z = 

273.34 [M+H]+, calcd. for [C14H16N4O2+H]+ 273.31. HRMS [ESI+] m/z = 272.12816 [M]+, 

calcd. for [C14H16N4O2]
+ 272.12733. 

N-Ethyl-5-[2-(5-methoxy-1H-indol-3-yl)ethyl]-1,3,4-oxadiazol-2-amine (1.24) 

 

Ethyl derivate 1.24 (85 mg, 0.33 mmol) was synthesized from 1.1 following the same 

procedure as 1.23. In this case, a flash chromatography (DCM to DCM:MeOH 9:1) and 

semi preparative HPLC (20:80 g.t. 60 min, isocratic gradient) were necessary to purified it, 

obtaining 1.23 in 6% yield (6 mg, 0.02 mmol). 1H NMR (500 MHz, DMSO-d6) δ 10.65 (bs, 

1H, NHindole), 7.32 (t, J = 5.6 Hz, 1H, NHCH2), 7.21 (dd, J = 8.7, 0.5 Hz, 1H, H7), 7.09 (d, J 

= 2.3 Hz, 1H, H2), 6.94 (d, J = 2.4 Hz, 1H, H4), 6.70 (dd, J = 8.7, 2.4 Hz, 1H, H6), 3.75 (s, 

3H, OCH3), 3.15 (qd, J = 7.2, 5.6 Hz, 2H, CH2CH3), 3.04 – 2.95 (m, 4H, 4H, Hα, Hβ), 1.11 

(t, J = 7.2 Hz, 3H, CH2CH3). 
13C NMR (126 MHz, DMSO-d6) δ 163.3 (C2’), 159.3 (C5’), 

153.0 (C5), 131.3 (C7a), 127.2 (C3a), 123.2 (C2), 112.4 (C3), 112.0 (C7), 111.2 (C6), 99.8 

(C4), 55.3 (OCH3), 37.3 (CH2CH3), 25.8 (Cβ), 22.0 (Cα), 14.5 (CH2CH3). HPLC-MS 

(15:95- g.t.5 min) tR 3.53 min, m/z = 287.11 [M+H]+, calcd. for [C19H25N3O3+H]+ 287.34. 

HRMS [ESI+] m/z = 286.14359 [M]+, calcd. for [C15H18N4O2]
+ 286.14298. 
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Linker modification 

5-[(E)-2-(5-Methoxy-1H-indol-3-yl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.27) 

 

Acid 1.5 (500 mg, 2.30 mmol) was transformed into the corresponding hydrazide following 

experimental procedure IV without isolation, identified by HPLC-MS (15:95- g.t.5), tR 

1.99 min, m/z = 232.39 [M+H]+, calcd. for [C12H13N3O2+H]+ 232.26, which was reacted 

with CDI following procedure V to obtain the oxadiazolone 1.27 in 85% yield (502 mg, 

1.95 mmol). Chromatography: hexane to hexane:EtOAc 1:1. Mp: 206 - 209 ºC. 1H NMR 

(500 MHz, DMSO-d6) δ 11.53 (bs, 1H, NHindole), 7.85 (d, J = 2.8 Hz, 1H, H2), 7.49 (d, J = 

16.4 Hz, 1H, Hα), 7.34 (d, J = 2.7 Hz, 1H, H4), 7.34 (d, J = 8.5 Hz, 1H, H7), 6.82 (dd, J = 

8.8, 2.3 Hz, 1H, H6), 6.59 (d, J = 16.4 Hz, 1H, Hβ), 3.82 (s, 3H, CH3). 
13C NMR (126 MHz, 

DMSO-d6) δ 155.4 (C5’), 154.6 (C5), 154.4 (C2’), 132.0 (C7a), 131.1 (Cα), 129.7 (C2), 125.5 

(C3a), 112.9 (C7), 112.3 (C6), 111.9 (C3), 103.9 (Cβ), 101.5 (C4) 55.5 (CH3). HPLC-MS 

(15:95- g.t.10 min) tR 4.95 min, m/z = 258.32 [M+H]+, calcd. for [C13H11N3O3+H]+ 258.25. 

HRMS [ESI+] m/z = 257.08107 [M]+, calcd. for [C13H11N3O3]
+ 257.08004. 

Ethyl (2E)-3-(5-methoxy-1H-indol-3-yl)-2-methylprop-2-enoate (1.28) 

 

Following the general procedure I of Wittig reaction, the ester 1.28 was obtained from the 

commercial 5-methoxy-1H-indole-3-carbaldehyde (1000 mg, 5.7 mmol), in 95% yield 

(1400 mg, 5.40 mmol). Chromatography: hexane to hexane: EtOAc 1:1. Mp: 116 - 117 ºC. 

1H NMR (500 MHz, DMSO-d6) δ 11.65 (s, 1H, NH), 7.92 (s, 1H, Hα), 7.71 (s, 1H, H2), 

7.36 (d, J = 8.7 Hz, 1H, H7), 7.17 (d, J = 2.4 Hz, 1H, H4), 6.84 (dd, J = 8.7, 2.4 Hz, 1H, 
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H6), 4.20 (q, J = 7.1 Hz, 2H, CH2), 3.81 (s, 3H, OCH3), 2.11 (s, 3H, CβCH3), 1.29 (t, J = 7.1 

Hz, 3H, CH2CH3). 
13C NMR (126 MHz, DMSO-d6) δ 168.2 (CO), 154.3 (C5), 130.7 (C7a), 

130.3 (Cα), 128.1 (C2), 127.9 (C3a), 120.3 (Cβ), 112.8 (C7), 112.5 (C6), 111.1 (C3), 99.7 

(C4), 60.0 (CH2), 55.4 (OCH3), 14.9 (CβCH3), 14.4 (CH2CH3). HPLC-MS (15:95- g.t.5 

min) tR 4.79 min, m/z = 266.33 [M+H]+, calcd. for [C15H17NO3+H]+ 260.12. 

Ethyl 3-(5-methoxy-1H-indol-3-yl)-2-methylpropanoate (1.29) 

 

Following the general procedure III of hydrogenation, the saturated ester 1.29 was obtained 

from the ester 1.28 (500 mg, 1.93 mmol), without further purification in quantitative yield. 

1H NMR (400 MHz, CDCl3) δ 7.88 (bs, 1H, NH), 7.23 (d, J = 8.7 Hz, 1H, H7), 7.03 (d, J = 

2.4 Hz, 1H, H2), 6.98 (d, J = 2.3 Hz, 1H, H4), 6.85 (dd, J = 8.8, 2.4 Hz, 1H, H6), 4.10 (q, J 

= 7.2 Hz, 3H, CH2CH3), 3.87 (s, 3H, OCH3), 3.20 – 3.08 (m, 1H, Hα), 2.88 – 2.74 (m, 2H, 

Hα, Hβ), 1.21 (dd, J = 6.7, 2.3 Hz, 3H, CHβCH3), 1.19 (t, J = 7.1 Hz, 3H, CH2CH3). 
13C 

NMR (101 MHz, CDCl3) δ 176.8 (CO), 154.1 (C5), 131.5 (C7a), 128.1 (C3a), 123.2 (C2), 

113.7 (C3), 112.2 (C7), 111.9 (C6), 101.0 (C4), 60.4 (CH2CH3), 56.1 (OCH3), 40.6 (Cβ), 29.4 

(Cα), 17.3 (CHβCH3), 14.3 (CH2CH3). HPLC-MS (15:95- g.t.5 min) tR 4.77 min, m/z = 

262.27 [M+H]+, calcd. for [C15H19NO3+H]+ 262.32. 

5-[1-(5-Methoxy-1H-indol-3-yl)propan-2-yl]-1,3,4-oxadiazol-2(3H)-one (1.30) 

 

Ester 1.29 (360 mg, 1.38 mmol) was transformed into the corresponding hydrazide 

following the procedure IV to synthetize the corresponding hydrazide without isolation, 

identified by HPLC-MS (15:95- g.t.5), tR 2.97 min, m/z = 248.17 [M+H]+, calcd. for 
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[C13H17N3O2+H]+ 248.30, which was reacted with CDI following procedure V to obtain the 

oxadiazolone 1.30 in 48% yield (180 mg, 0.66 mmol). Chromatography: hexane to 

hexane:EtOAc 1:1. Mp: 90 - 93 ºC. 1H NMR (400 MHz, CDCl3) δ 8.40 (bs, 1H, NHCO), 

7.91 (bs, 1H, NHindole), 7.25 (d, J = 9.0 Hz, 1H, H7), 6.98 (d, J = 2.4 Hz, 1H, H2), 6.97 (d, J 

= 2.4 Hz, 1H, H4), 6.86 (dd, J = 8.8, 2.4 Hz, 1H, H6), 3.87 (s, 3H, OCH3), 3.19 (dd, J = 

13.7, 6.7 Hz, 1H, ½Hα), 3.11 (h, J = 6.8 Hz, 1H, Hβ), 2.94 (dd, J = 13.8, 7.0 Hz, 1H, ½Hα), 

1.32 (d, J = 6.8 Hz, 3H, CHβCH3). 
13C NMR (101 MHz, CDCl3) δ 161.4 (C5’), 155.0 (C2’), 

154.3 (C5), 131.4 (C7a), 127.8 (C3a), 123.4 (C2), 112.6 (C6), 112.3 (C3), 112.1 (C7), 100.4 

(C4), 56.1 (OCH3), 33.7 (Cβ), 29.4 (Cα), 16.9 (CHβCH3). HPLC-MS (40:95- g.t.10 min) tR 

1.24 min, m/z = 274.22 [M+H]+, calcd. for [C14H15N3O3+H]+ 274.29. HRMS [ESI+] m/z = 

273.11073 [M]+, calcd. for [C14H15N3O3]
+ 273.11134. 

1-(5-Methoxy-1H-indol-3-yl)ethan-1-one (1.31) 

 

Commercial 5-methoxyindole (350 mg, 2.38 mmol) and AlCl3 (3801 mg, 2.86 mmol, 1.2 

equiv) were solved in 4 mL of DCM at 0 ºC. After remaining the mixture 5 min at this 

temperature, it was stirred at rt for 30 min. Acetyl chloride was added in small portions 

(187 µL, 2.62 mmol, 1.1 equiv) and CH3NO2 (3.57 mL, 15 mL/mmol). The reaction was 

stirred for 2 h. Ice was added, crude was filtered and extracted with EtOAc, dried over 

MgSO4, filtered and solvent was removed under reduced pressure. Product was purified by 

flash chromatography using hexane to hexane:EtOAc 1:1 as gradient, to afford 1.31 in 89% 

yield (400 mg, 2.12 mmol). Mp: 181 - 183 ºC decomposes (lit. 170 ºC decomposes)152.1H 

NMR (500 MHz, CDCl3) δ 8.55 (bs, 1H, NH), 7.90 (d, J = 2.5 Hz, 1H, H4), 7.82 (d, J = 3.1 

Hz, 1H, H2), 7.29 (dd, J = 8.9, 0.6 Hz, 1H, H7), 6.93 (dd, J = 8.9, 2.6 Hz, 1H, H6), 3.90 (s, 

3H, OCH3), 2.53 (s, 3H, COCH3). 
13C NMR (126 MHz, CDCl3) δ 193.7 (CO), 156.6 (C5), 

131.7 (C2), 131.2 (C3a), 126.4 (C7a), 118.6 (C3), 114.5 (C6), 112.2 (C7), 103.7 (C4), 55.9 

(OCH3), 27.6 (COCH3). HPLC-MS (15:95- g.t.5 min) tR 3.20 min, m/z = 190.44 [M+H]+, 

calcd. for [C11H11NO2+H]+ 190.21. 
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5,5'-Dimethoxy-2,3-dihydro-1H,1'H-2,3'-biindole (1.32) 

 

A solution of 5-methoxyindole (30 mg, 0.20 mmol) and ZrCl4 (48 mg, 0.20 mmol) in 

anhydrous DCM (50 mL) was stirred at rt overnight under N2. DCM (50 mL) was added to 

the reaction and extracted with NaHCO3 solution (aq) (x3) and brine (x3). The organic 

layer was dried over MgSO4, filtrated and the solvent was evaporated under vacuum. The 

mixture was purified by flash chromatography in hexane to hexane:EtOAc 7:3 gradient. 

The product was crystallized in EtOH, obtaining 1.32 as colorless crystals (16 mg, 0.05 

mmol, 53%). Mp: 168 – 170 ºC (lit. 169 – 170 ºC).95 1H NMR (500 MHz, Acetone-d6) δ 

9.87 (s, 1H, H1'), 7.27 (dt, J = 8.8, 0.6 Hz, 1H, H7'), 7.24 (d, J = 2.1 Hz, 1H, H2'), 6.98 (d, J 

= 2.4 Hz, 1H, H4'), 6.77 (dd, J = 2.4, 1.0 Hz, 1H, H4), 6.74 (ddd, J = 8.8, 2.4, 0.6 Hz, 1H, 

H6'), 6.59 (dd, J = 8.3, 2.4 Hz, 1H, H6), 6.55 (d, J = 8.3 Hz, 1H, H7), 5.14 (t, J = 8.4 Hz, 1H, 

H2), 4.77 (s, 1H, H1), 3.70 (s, 3H, OCH3), 3.68 (s, 3H, OCH3'), 3.40 (ddd, J = 15.6, 9.0, 0.6 

Hz, 1H, H3), 3.05 (ddt, J = 15.5, 7.8, 1.0 Hz, 1H, H3). 
13C NMR (126 MHz, Acetone-d6) δ 

154.7 (C5'), 154.1 (C5), 147.2 (C7a), 133.5 (C7a'), 131.3 (C3a), 127.4 (C3a'), 123.4 (C2'), 120.1 

(C3'), 113.1 (C6), 113.0 (C7'), 112.6 (C6'), 112.3 (C4), 109.9 (C7), 102.3 (C4'), 58.0 (C2), 56.2 

(OCH3), 55.9 (OCH3'), 39.0 (C3). HPLC-MS (15:95- g.t.5 min) tR 2.39 min, m/z = 295.16 

[M+H]+, calcd. for [C18H18N2O2+H]+ 295.35. HRMS [ESI+] m/z = 294.13753 [M]+, calcd 

for [C18H18N2O2]
+ 294.13683.  
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Core Modification 

Naphthalene and Dihydronaphthalene 

6-Methoxy-4-methyl-1,2-dihydronaphthalene (1.33)  

 

(Adaptation from Ref.100) To a solution of the commercial 7-methoxy-1-tetralone (200 mg, 

1.13 mmol) in 5 mL of Et2O, CH3MgI was added dropwise at rt. The mixture was stirred 

for 3 h (alcohol formation), washed with a saturated solution of NH4Cl and extracted with 

Et2O (x3). Then, a 2 M HCl solution was added dropwise until pH 5. The mixture was 

heated at 40 ºC for 3 h. The layers were separated, and the organic layer was washed with a 

solution of Na2S2O3, and brine; dried over MgSO4, filtrated and the solvent was removed 

under reduced pressure. The crude was purified by flash chromatography in hexane. The 

alkene 1.33 was obtained as a colorless oil in 97% yield (191 mg, 1.10 mmol). 1H NMR 

(400 MHz, CDCl3) δ 7.05 (d, J = 8.1 Hz, 1H, H5), 6.82 (d, J = 2.7 Hz, 1H, H8), 6.70 (dd, J 

= 8.1, 2.7 Hz, 1H, H6), 5.86 - 5.89 (m, 1H, H2), 3.82 (s, 3H, OCH3), 2.70 (t, J = 8.0 Hz, 2H, 

H4), 2.27 – 2.19 (m, 2H, H3), 2.06 – 2.03 (m, 3H, CH3C=). 13C NMR (101 MHz, CDCl3) δ 

158.5 (C7), 137.1 (C8a), 132.2 (C1), 128.7 (C4a), 128.0 (C5), 126.3 (C2), 111.0 (C6), 109.8 

(C8), 55.5 (OCH3), 27.5 (C4), 23.7(C3), 19.5 (CH3C=). HPLC-MS (50:95- g.t.10 min) tR 

6.55 min, it does not ionize. 

7-Methoxy-1-methylnaphthalene (1.34) 

 

Naphthalene 1.34 was synthesized from dihydronaphthalene 1.33 (447 mg, 2.56 mmol) 

following general procedure of aromatization VIII in 95% yield as a waxy solid (418 mg, 

2.42 mmol). Chromatography: hexane. Mp: 46 - 48 ºC (40 - 42 ºC)101. 1H NMR (400 MHz, 

CDCl3) δ 7.78 (d, J = 8.9 Hz, 1H, H5), 7.66 (d, J = 8.0 Hz, 1H, H4), 7.32 (d, J = 7.0 Hz, 1H, 

H2), 7.29 – 7.24 (m, 2H, H8, H3), 7.18 (dd, J = 8.9, 2.6 Hz, 1H, H6), 3.97 (s, 3H, OCH3), 

2.68 (s, 3H, CH3Ar). 13C NMR (101 MHz, CDCl3) δ 157.7 (C7), 133.8 (C8a), 133.0 (C1), 
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130.2 (C5), 129.1 (C4a), 127.2 (C2), 126.2 (C4), 123.4 (C3), 118.0 (C6), 102.9 (C8), 55.4 

(OCH3), 19.7 (CH3Ar). HPLC-MS (50:95- g.t.10 min) tR 5.72 min, it does not ionize. 

7-Methoxynaphthalene-1-carbaldehyde (1.35)102 

 

To methyl naphthalene 1.34 (40 mg, 0.23 mmol) a drop of Br2 (2 µL, 0.023 mmol, 0.1 

equiv) was added. The obtained mixture was stirred for 20 min and heated up to 120 ºC. 

DMSO (500 µL) was added and the heating was continued for 1.5 h, as no reaction was 

observed, same amounts of Br2 and DMSO were added and it was left at 120 ºC overnight. 

The crude was extracted with EtOAc (x3), washed with a saturated solution of NaHCO3 

and brine, dried over MgSO4, filtrated and the solvent was removed under reduced 

pressure. The crude was purified by preparative TLC in hexane to hexane:EtOAc 9:1, to 

obtain 1.35 as a colorless oil in 20% yield (8 mg, 0.05 mmol). 1H NMR (500 MHz, MeOD) 

δ 10.30 (s, 1H, COH), 8.75 (d, J = 2.6 Hz, 1H, H8), 8.11 (d, J = 8.1 Hz, 1H, H4), 8.06 (dd, J 

= 7.1, 1.4 Hz, 1H, H2), 7.89 (d, J = 9.0 Hz, 1H, H5), 7.54 (dd, J = 8.1, 7.1 Hz, 1H, H3), 7.25 

(dd, J = 9.0, 2.6 Hz, 1H, H6), 3.96 (s, 3H, CH3). 
13C NMR (126 MHz, MeOD) δ 195.8 

(COH), 162.1 (C7), 139.5 (C2), 136.3 (C4), 133.3 (C8a), 131.6 (C1), 131.2 (C5), 130.8 (C4a), 

123.8 (C3), 120.5 (C6), 104.4 (C8), 55.9 (CH3). HPLC-MS (50:95- g.t.10 min) tR 2.99 min, 

m/z = 187.39 [M+H]+, calcd. for [C12H10O2+H]+ 187.21. 

7-Methoxy-3,4-dihydronaphthalene-1-carbaldehyde (1.37)103 

 

To a solution of 1.33 (238 mg, 1.37 mmol) in EtOH (5 mL), was added dropwise (35 min 

addition) a solution of SeO2 (758 mg, 6.83 mmol) in EtOH:H2O (15 mL, 10:1). The 

reaction mixture was heated at reflux overnight. The crude was extracted with EtOAc (x3) 

and washed with a saturated solution of NaHCO3 and brine. The combined organic layers 

were dried over MgSO4, filtered and concentrated under reduced pressure. It was purified 
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by chromatography, gradient hexane to hexane:EtOAc 6:4 to afford 1.37 in 25% yield (64 

mg, 0.34 mmol) as a brown oil. 1H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H, COH), 7.87 (d, 

J = 2.7 Hz, 1H, H8), 7.10 (d, J = 8.5 Hz, 1H, H5), 7.04 (t, J = 4.7 Hz, 1H, H2), 6.80 (dd, J = 

8.3, 2.7 Hz, 1H, H6), 3.83 (s, 3H, CH3), 2.76 (t, J = 7.9 Hz, 2H, H4), 2.61 – 2.54 (m, 2H, 

H3). 
13C NMR (101 MHz, CDCl3) δ 192.7 (CO), 158.4 (C7), 153.7 (C2), 138.0 (C1), 130.3 

(C8a), 128.4 (C5), 127.8 (C4a), 114.2 (C6), 111.4 (C8), 55.5 (CH3), 26.3 (C4), 24.8 (C3). 

HPLC-MS (50:95- g.t.10 min) tR 2.46 min, m/z = 189.39 [M+H]+, calcd. for 

[C12H12O2+H]+ 189.23. 

9-Methoxy-2,4a,5,6-tetrahydro-3H-naphtho[2,1-b]pyran-3-one (1.39) 

 

Lactone 1.39 was obtained from aldehyde 1.36 (280 mg, 1.49 mmol) by a Knoevenagel-

Doebner reaction in 23% yield (79 mg, 0.34 mmol). Mp: 96 - 98 ºC. 1H NMR (500 MHz, 

CDCl3) δ 7.10 (d, J = 2.7 Hz, 1H, H10), 7.07 (d, J = 8.4 Hz, 1H, H7), 6.81 (dd, J = 8.4, 2.6 

Hz, 1H, H8), 6.37 (dt, J = 5.6, 2.7 Hz, 1H, H1), 5.15 (dtd, J = 13.7, 4.4, 1.6 Hz, 1H, H4a), 

3.82 (s, 3H, CH3), 3.36 (ddd, J = 20.6, 5.9, 1.5 Hz, 1H, H2), 3.21 (ddd, J = 20.7, 4.4, 2.8 

Hz, 1H, H2), 2.91 – 2.75 (m, 2H, H6), 2.42 (dq, J = 12.4, 4.3 Hz, 1H, H5), 1.99 (tddd, J = 

12.2, 11.4, 5.0, 0.6 Hz, 1H, H5). 
13C NMR (126 MHz, CDCl3) δ 170.2 (C3), 158.5 (C9), 

134.5 (C1b), 131.8 (C10a), 130.0 (C7), 128.7 (C6a), 114.8 (C8), 114.7 (C1), 108.0 (C10), 77.7 

(C4a), 55.5 (CH3), 31.8 (C2), 29.6 (C5), 26.9 (C6). HPLC-MS (50:95- g.t.10 min) tR 1.75 

min, m/z = 231.17 [M+H]+, calcd. for [C14H14O3+H]+ 231.26. 
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5-[(E)-2-(7-Methoxy-3,4-dihydronaphthalen-1-yl)ethenyl]-1,3,4-oxadiazol-2(3H)-one 

(1.40) 

 

Lactone 1.39 (70 mg, 0.30 mmol) was transformed into the corresponding hydrazide 

without isolation following the general procedure IV, identified by HPLC-MS (50:95- 

g.t.10 min and 2:30- g.t.10 min), which appears in the injection point, m/z = 245.11 

[M+H]+, calcd. for [C14H16N2O2 +H]+ 245.29. Hydrazide was reacted with CDI following 

procedure V to obtain the oxadiazolone 1.40 in 15% yields (12 mg, 0.044 mmol). 

Chromatography: hexane to hexane:EtOAc 3:7. Mp: 133 - 136 ºC. 1H NMR (400 MHz, 

MeOD) δ 7.11 (d, J = 8.4 Hz, 1H, H5), 7.09 (dd, J = 16.2, 1.2 Hz, 1H, Hα), 6.91 (d, J = 2.6 

Hz, 1H, H8), 6.75 (dd, J = 8.2, 2.6 Hz, 1H, H6), 6.50 (d, J = 16.2 Hz, 1H, Hβ), 6.45 (t, J = 

4.8 Hz, 1H, H2), 3.78 (s, 3H, CH3), 2.66 (t, J = 7.7 Hz, 2H, H4), 2.35 – 2.27 (m, 2H, H3). 

13C NMR (126 MHz, CDCl3) δ 158.5 (C7), 155.6 (C5’), 153.9 (C2’), 137.5 (Cα), 134.7 (C1), 

133.7 (C8a), 133.1 (C2), 128.9 (C4a), 128.8 (C5), 112.4 (C6), 111.3 (Cβ), 110.7 (C8), 55.6 

(CH3), 27.1 (C4), 24.1 (C3). HPLC-MS (50:95- g.t.10 min) tR 4.72 min, m/z = 271.26 

[M+H]+, calcd. for [C15H14N2O3+H]+ 271.29. HRMS [ESI+] m/z = 270.10827 [M]+, calcd. 

for [C15H14N2O3]
+ 270.10044. 

7-Methoxy-3,4-dihydronaphthalen-1-yl trifluoromethanesulfonate (1.41)104 

 

To a solution of commercial 7-methoxy-1-tetralone (507 mg, 2.88 mmol) in 7 mL of dry 

DCM were added Tf2O (0.6 mL, 3.31 mmol) and 2-chloropyridine (0.3 mL, 3.31 mmol) at 

rt under inert atmosphere. The reaction was complete after 2 h, the solvent was evaporated 

and the crude was purified by flash chromatography on hexane, to obtain the triflate 1.41 as 

a colorless oil in 78% yield (697 mg, 2.26 mmol). 1H NMR (400 MHz, MeOD) δ 7.16 (d, J 
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= 7.9 Hz, 1H, H5), 6.90 – 6.83 (m, 2H, H6, H8), 6.12 (t, J = 4.8 Hz, 1H, H2), 3.80 (s, 3H, 

CH3), 2.80 (t, J = 8.1 Hz, 2H, H4), 2.54 – 2.46 (m, 2H, H3). 
13C NMR (101 MHz, MeOD) δ 

160.1 (C7), 147.6 (C1), 130.7 (C8a), 129.9 (C5), 129.7 (C4a), 120.3 (q, JC-F = 320.1 Hz, CTf), 

120.2 (C2), 115.2 (C6), 108.2 (C8), 55.8 (CH3), 26.8 (C4), 23.7 (C3). HPLC-MS (50:95- 

g.t.10 min) tR 6.08 min, m/z = 309.02 [M+H]+, calcd. for [C12H11F3O4S+H]+ 309.27. 

Ethyl (2E)-3-(7-methoxy-3,4-dihydronaphthalen-1-yl)prop-2-enoate (1.42) 

 

Triflate 1.41 (120 mg, 0.39 mmol) was solved in 1 mL of anhydrous DMF under N2 

atmosphere, a solution of ethyl acrylate (93 µL, 0.86 mmol, 2.2 equiv), TEA (189 µL, 1.36 

mmol, 3.5 equiv) and Pd(PPh3)2Cl2 (6 mg, 2.2 mol %) in 0.5 mL of DMF was added. The 

reaction was heated under mw irradiation at 105 ºC for 15 min. Ether was added and 

mixture was washed with H2O (x3). Organic layer was dried over MgSO4 and filtered. 

Crude was purified by preparative TLC in hexane:EtOAc 8:2 to afford unsaturated ester 

1.42 in 50% yield (46 mg, 0.19 mmol) as white solid. Mp: 72 - 74 ºC. 1H NMR (400 MHz, 

MeOD) δ 7.60 (d, J = 16.0 Hz, 1H, Hα), 7.12 (d, J = 8.3 Hz, 1H, H5), 6.87 (d, J = 2.6 Hz, 

1H, H8), 6.77 (dd, J = 8.2, 2.7 Hz, 1H, H6), 6.56 (t, J = 5.0 Hz, 1H, H2), 6.26 (d, J = 15.9 

Hz, 1H, Hβ), 4.24 (q, J = 7.2 Hz, 2H, OCH2), 3.78 (s, 3H, OCH3), 2.66 (t, J = 7.8 Hz, 2H, 

H4), 2.33 (td, J = 7.6, 4.7 Hz, 2H, H3), 1.32 (t, J = 7.1 Hz, 3H, CH2CH3). 
13C NMR (101 

MHz, MeOD) δ 168.8 (CO), 159.9 (C7), 144.7 (Cα), 135.7 (C1), 135.1 (C2), 134.8 (C8a), 

129.9 (C4a), 129.6 (C5), 120.0 (Cβ), 113.3 (C6), 111.4 (C8), 61.7 (OCH2), 55.8 (OCH3), 27.9 

(C4), 25.0 (C3), 14.6 (CH2CH3). HPLC-MS (50:95- g.t.10 min) tR 5.38 min, m/z = 259.11 

[M+H]+, calcd. for [C16H18O3 +H]+ 259.32. 

  



Chapter I 

132 

2-Methoxynaphthalene (1.43) 

 

Naphthalene 1.43 was isolated as secondary product of previous reaction from 1.41 to 

obtain 1.42 in 35% yield (22 mg, 0.39 mmol) as a bright white flakes. Mp: 72 - 73 ºC (lit. 

73.5 ºC). 1H NMR (400 MHz, MeOD) δ 7.80 – 7.72 (m, 3H, H1, H5, H4), 7.43 (ddd, J = 8.3, 

6.9, 1.3 Hz, 1H, H2), 7.32 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H, H3), 7.23 (d, J = 2.5 Hz, 1H, H8), 

7.14 (dd, J = 8.9, 2.6 Hz, 1H, H6), 3.92 (s, 3H, CH3). 
13C NMR (101 MHz, MeOD) 13C 

NMR (101 MHz, MeOD) δ 159.1 (C7), 136.2 (C8a), 130.5 (C4a), 130.3 (C5), 128.5 (C4), 

127.8 (C1), 127.3 (C3), 124.5 (C2), 119.6 (C6), 106.7 (C8), 55.7 (CH3). HPLC-MS (50:95- 

g.t.10 min) tR 4.22 min, it does not ionize. 

6,7-Dimethoxy-3,4-dihydronaphthalen-1-yl trifluoromethanesulfonate (1.44) 

 

Triflate 1.44 was obtained following the same procedure as 1.41, from commercial 6,7-

dimethoxy-1-tetralone (550 mg, 2.67 mmol) in 33% yield (301 mg, 0.89 mmol) as a 

colorless oil. Chromatography: hexane to hexane:EtOAc 75:25. 1H NMR (500 MHz, 

MeOD) δ 6.88 (s, 1H, H5), 6.87 (s, 1H, H8), 5.95 (t, J = 4.8 Hz, 1H, H2), 3.85 (s, 3H, 

C6OCH3), 3.81 (s, 3H, C7OCH3), 2.80 (t, J = 8.3 Hz, 2H, H4), 2.47 (td, J = 8.3, 4.8 Hz, 2H, 

H3). 
13C NMR (126 MHz, MeOD) δ 151.3 (C6), 149.1 (C7), 147.6 (C1), 131.3 (C4a), 122.4 

(C8a), 120.0 (q, JC-F = 319.2 Hz, CTf), 116.8 (C2), 113.1 (C5), 106.6 (C8), 56.6 (2CH3), 27.4 

(C4), 23.5 (C3). HPLC-MS (50:95- g.t.10 min) tR 4.78 min, m/z = 339.16[M+H]+, calcd. for 

[C13H13F3O5S+H]+ 339.04. 
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7-Methoxynaphthalen-1-yl trifluoromethanesulfonate (1.45) 

 

Naphthalene 1.45 was synthesized from dihydronaphthalene 1.41 (165 mg, 0.53 mmol) 

following general procedure VIII of aromatization in 88% yield (142 mg, 0.46 mmol) as a 

colorless oil. Chromatography: hexane. 1H NMR (500 MHz, MeOD) δ 7.91 (d, J = 8.1 Hz, 

1H, H5), 7.89 (d, J = 7.6 Hz, 1H, H4), 7.50 (d, J = 7.7 Hz, 1H, H2), 7.40 (td, J = 8.4, 1.5 Hz, 

1H, H3), 7.30 (d, J = 3.0 Hz, 1H, H8), 7.28 (dd, J = 8.9, 1.1 Hz, 1H, H6), 3.95 (s, 3H, CH3). 

13C NMR (126 MHz, MeOD) δ 160.7 (C7), 146.2 (C1), 132.0 (C4a), 131.1 (C5), 129.5 (C4), 

128.8 (C8a), 123.9 (C3), 121.5 (C6), 120.2 (q, JC-F = 319.2 Hz, CTf), 119.7 (C2), 99.4 (C8), 

55.9 (CH3). HPLC-MS (50:95- g.t.10 min) tR 6.42 min, m/z = 305.13 [M-H]-, calcd. for 

[C12H9F3O4S-H]- 305.26. 

6,7-Dimethoxynaphthalen-1-yl trifluoromethanesulfonate (1.46) 

 

Naphthalene 1.46 was obtained following the same procedure as 1.45, from 

dihydronaphthalene 1.44 (280 mg, 0.83 mmol) in 86% yield (240 mg, 0.71 mmol) as a 

colorless oil. Chromatography: hexane to hexane:EtOAc 9:1. 1H NMR (500 MHz, MeOD) 

δ 7.82 (ddt, J = 7.8, 1.3, 0.6 Hz, 1H, H4), 7.38 (s, 1H, H5), 7.37 (t, J = 7.8 Hz, 1H, H3), 7.35 

(dd, J = 7.8, 1.5 Hz, 1H, H2), 7.28 (s, 1H, H8), 3.98 (s, 3H, CH3), 3.98 (s, 3H, CH3).
 13C 

NMR (126 MHz, MeOD) δ 152.7 (C7), 152.1 (C6), 146.1 (C1), 132.8 (C4a), 128.1 (C4), 

124.7 (C3), 123.2 (C8a), 120.2 (q, JC-F = 319.2 Hz, CTf), 117.2 (C2), 107.9 (C5), 100.0 (C8), 

56.4 (CH3), 56.3 (CH3). HPLC-MS (50:95- g.t.10 min) tR 4.99 min, m/z = 335.11[M-H]-, 

calcd. for [C13H11F3O5S-H]- 335.28. 
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Ethyl (2E)-3-(7-methoxynaphthalen-1-yl)prop-2-enoate (1.47) 

 

Ester 1.47 was synthesized from triflate 1.41 (520 mg, 1.70 mmol) following the general 

procedure IX in 90% yield (390 mg, 1.52 mmol). Chromatography: hexane to 

hexane:EtOAc 95:5. Mp: 76 - 78 ºC. 1H NMR (500 MHz, MeOD) δ 8.42 (dd, J = 15.8, 3.9 

Hz, 1H, Hα), 7.81 (d, J = 7.6 Hz, 1H, H4), 7.78 – 7.72 (m, 2H, H5, H2), 7.39 (bs, 1H, H8), 

7.31 (t, J = 7.1 Hz, 1H, H3), 7.16 (d, J = 8.9 Hz, 1H, H6), 6.53 (d, J = 15.7 Hz, 1H, Hβ), 

4.28 (q, J = 7.1 Hz, 2H, CH2), 3.93 (s, 3H, OCH3), 1.35 (t, J = 7.1 Hz, 3H, CH2CH3). 
13C 

NMR (126 MHz, MeOD) δ 168.9 (CO), 160.0 (C7), 143.0 (Cα), 134.1 (C8a), 131.6 (C4), 

131.4 (C5), 131.3 (C1), 130.7 (C4a), 120.8 (Cβ), 119.8 (C6), 102.5 (C8), 61.8 (CH2), 55.8 

(OCH3), 14.6 (CH2CH3). HPLC-MS (50:95- g.t.10 min) tR 6.61 min, m/z = 257.07 [M+H]+, 

calcd. for [C16H16O3 +H]+ 257.30. 

Ethyl (2E)-3-(6,7-dimethoxynaphthalen-1-yl)prop-2-enoate (1.48) 

 

Ester 1.48 was synthesized from triflate 1.46 (230 mg, 0.68 mmol) following the general 

procedure IX in 81% yield (182 mg, 0.64 mmol). Chromatography: hexane to 

hexane:EtOAc 85:15. Mp: 89 - 90 ºC. 1H NMR (400 MHz, CDCl3) δ 8.44 (d, J = 15.7 Hz, 

1H, Hα), 7.74 (d, J = 8.1 Hz, 1H, H4), 7.62 (d, J = 7.4 Hz, 1H, H2), 7.39 (s, 1H, H8), 7.34 (t, 

J = 7.7 Hz, 1H, H3), 7.14 (s, 1H, H5), 6.52 (d, J = 15.7 Hz, 1H, Hβ), 4.32 (q, J = 7.1 Hz, 2H, 

CH2), 4.05 (s, 3H, CH3OC7), 4.01 (s, 3H, CH3OC6), 1.37 (t, J = 7.1 Hz, 3H, CH2CH3). 
13C 

NMR (101 MHz, CDCl3) δ 167.3 (CO), 150.4 (C7), 149.7 (C6), 142.1 (Cα), 130.4 (C1), 

129.9 (C4a), 129.0 (C4), 127.6 (C8a), 124.1 (C3), 123.6 (C2), 120.5 (Cβ), 107.1 (C5), 102.4 
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(C8), 60.7 (CH2), 56.2 (CH3OC7), 56.0 (CH3OC6), 14.5 (CH2CH3). HPLC-MS (50:95- 

g.t.10 min) tR 3.50 min, m/z = 287.27 [M+H]+, calcd. for [C17H18O4 +H]+ 287.33. 

(2E)-3-(7-Methoxynaphthalen-1-yl)prop-2-enoic acid (1.49) 

 

Acid 1.49 was obtained from ester 1.47 (100 mg, 0.39 mmol) following the hydrolysis 

procedure X in quantitative yield (89 mg, 0.39 mmol). Mp: 212 - 215 ºC. 1H NMR (400 

MHz, CDCl3) δ 8.53 (d, J = 15.7 Hz, 1H, Hα), 7.84 (d, J = 8.1 Hz, 1H, H4), 7.80 – 7.75 (m, 

2H, H5, H2), 7.42 (d, J = 2.4 Hz, 1H, H8), 7.36 (t, J = 7.8 Hz, 1H, H3), 7.20 (dd, J = 9.0, 2.4 

Hz, 1H, H6), 6.55 (d, J = 15.6 Hz, 1H, Hβ), 3.97 (s, 3H, CH3). 
13C NMR (101 MHz, CDCl3) 

δ 169.2 (CO2H), 158.5 (C7), 143.2 (Cα), 132.8 (C8a), 130.5 (C4), 130.3 (C5, C1), 129.2 (C4a), 

125.9 (C2), 123.2 (C3), 120.0 (Cβ), 118.9 (C6), 101.9 (C8), 55.5 (CH3). HPLC-MS (50:95- 

g.t.10 min) tR 1.47 min, it does not ionize. 

(2E)-3-(6,7-Dimethoxynaphthalen-1-yl)prop-2-enoic acid (1.50) 

 

Acid 1.50 was obtained from ester 1.48 (150 mg, 0.52 mmol) following the hydrolysis 

procedure X in quantitative yield (134 mg, 0.52 mmol). Mp: 220 - 222 ºC. 1H NMR (500 

MHz, MeOD) δ 8.45 (d, J = 15.7 Hz, 1H, Hα), 7.84 (d, J = 8.1 Hz, 1H, H4), 7.75 (d, J = 7.0 

Hz, 1H, H2), 7.53 (s, 1H, H8), 7.38 (t, J = 7.9 Hz, 1H, H3), 7.36 (s, 1H, H5), 6.57 (d, J = 

15.7 Hz, 1H, Hβ), 4.02 (s, 3H, CH3OC7), 3.96 (s, 3H, CH3OC6). 
13C NMR (126 MHz, 

MeOD) δ 167.8 (CO2H), 151.6 (C7), 151.0 (C6), 142.6 (Cα), 131.0 (C1), 130.9 (C4a), 129.8 

(C4), 128.3 (C8a), 124.6 (C3), 124.1 (C2), 121.2 (Cβ), 108.1 (C5), 103.0 (C8), 56.0 

(CH3OC7), 55.9 (CH3OC6). HPLC-MS (50:95- g.t.10 min) tR 1.62 min, it does not ionize. 
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5-[(E)-2-(7-Methoxynaphthalen-1-yl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.51) 

 

Acid 1.49 (230 mg, 1.01 mmol) was transformed into the corresponding hydrazide without 

isolation following the procedure IV, identified by HPLC-MS (50:95- g.t.10 min and 2:30- 

g.t.10 min), hydrazide appears in the injection point, m/z = 243.11 [M+H]+, calcd. for 

[C14H14N2O2 +H]+ 243.28, which was reacted with CDI following procedure V to obtain the 

oxadiazolone 1.51 in 91% yield (245 mg, 0.91 mmol). Chromatography: hexane to 

hexane:EtOAc 6:4. Mp: 207 - 208 ºC. 1H NMR (500 MHz, MeOD) δ 8.10 (d, J = 16.1 Hz, 

1H, Hα), 7.84 (d, J = 8.4 Hz, 1H, H4), 7.82 (d, J = 9.0 Hz, 2H, H5, H2), 7.45 (d, J = 2.5 Hz, 

1H, H8), 7.37 (dd, J = 8.0, 7.4 Hz, 1H, H3), 7.20 (dd, J = 9.0, 2.4 Hz, 1H, H6), 6.83 (d, J = 

16.1 Hz, 1H, Hβ), 3.98 (s, 3H, CH3). 
13C NMR (126 MHz, MeOD) δ 160.0 (C7), 156.6 

(C5’), 135.4 (Cα), 133.9 (C8a), 132.1 (C1), 131.4 (C5), 131.0 (C4), 130.8 (C4a), 126.1 (C2), 

124.3 (C3), 119.9 (C6), 113.5 (Cβ), 102.5 (C8), 55.9 (CH3). HPLC-MS (50:95- g.t.10 min) 

tR 1.83 min, m/z = 269.16 [M+H]+, calcd. for [C15H12N2O3+H]+ 269.27. HRMS [ESI+] m/z 

= 268.08547 [M]+, calcd. for [C15H12N2O3]
+ 268.08479. 

5-[(E)-2-(6,7-Dimethoxynaphthalen-1-yl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.52) 

 

Acid 1.50 (100 mg, 0.39 mmol) was transformed into the corresponding hydrazide 

following procedure IV without isolation, identified by HPLC-MS (2:30- g.t.10 min), 

hydrazide appears in the injection point, m/z = 273.11 [M+H]+, calcd. for [C15H16N2O3+H]+ 

273.30, which was reacted with CDI following procedure V to obtain the oxadiazolone 1.52 
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in 85% yield (99 mg, 0.33 mmol), as a yellow pale solid. Chromatography: hexane to 

hexane:EtOAc 6:4. Mp: 232 – 234 ºC. 1H NMR (400 MHz, DMSO-d6) δ 8.04 (d, J = 16.1 

Hz, 1H, Hα), 7.82 (d, J = 8.1 Hz, 1H, H4), 7.78 (d, J = 7.3 Hz, 1H, H2), 7.46 (s, 1H, H8), 

7.41 – 7.32 (m, 2H, H5, H3), 6.93 (d, J = 16.1 Hz, 1H, Hβ), 3.97 (s, 3H, C7OCH3), 3.90 (s, 

3H, C6OCH3). 
13C NMR (101 MHz, DMSO-d6) δ 154.4 (C5'), 154.2 (C2'), 149.9 (C7), 149.3 

(C6), 133.7 (Cα), 130.1 (C1), 129.4 (C4a), 128.4 (C4), 126.6 (C8a), 123.8 (C3), 122.7 (C2), 

112.6 (Cβ), 107.2 (C5), 102.2 (C8), 55.6 (C7OCH3), 55.4 (C6OCH3). HPLC-MS (50:95- 

g.t.10 min) tR 1.21 min, m/z = 299.18 [M+H]+, calcd. for [C16H14N2O4+H]+ 299.30. HRMS 

[ESI+] m/z = 298.09568 [M]+, calcd. for [C16H14N2O4]
+ 298.09536. 

 

Resveratrol-like derivatives 

(2E)-3-(3-Cyanophenyl)prop-2-enoic acid (1.53) 

 

Following the Knoevenagel-Doebner reaction procedure II, acid 1.53 was obtained from 

the commercial 3-formylbenzonitrile (500 mg, 3.82 mmol), without further purification, in 

99% yield (650 mg, 3.78 mmol). Mp: 234 - 235 ºC.(lit. 236 - 238 ºC)153. 1H NMR (400 

MHz, MeOD) δ 8.00 (t, J = 1.7 Hz, 1H, H5), 7.92 (dt, J = 7.9, 1.4 Hz, 1H, H9), 7.75 (dt, J = 

8.1, 1.3 Hz, 1H, H7), 7.68 (d, J = 16.0 Hz, 1H, H3), 7.59 (t, J = 7.8 Hz, 1H, H8), 6.61 (d, J = 

16.1 Hz, 1H, H2). 
13C NMR (101 MHz, MeOD) δ 169.5 (C1), 143.5 (C3), 137.4 (C4), 134.3 

(C7), 133.3 (C9), 132.7 (C5), 131.1 (C8), 122.3 (C2), 119.2 (CN), 114.3 (C6). HPLC-MS 

(5:95- g.t.10 min) tR 6.58 min, m/z = 172.27 [M-H]-, calcd. for [C10H7NO2-H]- 172.17.154  
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(2E)-3-(2H-1,3-Benzodioxol-5-yl)prop-2-enoic acid (1.54) 

 

Following the general procedure II by a Knoevenagel-Doebner reaction from commercial 

piperonal (500 mg, 3.3 mmol), the corresponding acid was obtained in 92% yield (583.5 

mg, 3.0 mmol). Mp: 222 - 224 ºC (lit. 245 - 246 ºC)155. 1H NMR (400 MHz, MeOD) δ 7.61 

(d, J = 15.9 Hz, 1H, H3), 7.18 (d, J = 1.7 Hz, 1H, H5), 7.10 (dd, J = 8.0, 1.8 Hz, 1H, H9), 

6.88 (d, J = 8.0 Hz, 1H, H8), 6.34 (d, J = 15.9 Hz, 1H, H2), 6.03 (s, 2H, CH2).
 13C NMR 

(101 MHz, MeOD) δ 170.6 (C1), 151.2 (C7), 149.9 (C6), 146.2 (C3), 130.2 (C4), 125.6 (C9), 

117.1 (C2), 109.4 (C8), 107.5 (C5), 103.0 (CH2). HPLC-MS (15:95- g.t.5 min) tR 3.58 min, 

m/z = 193.12 [M+H]+, calcd. for [C10H8O4+H]+ 193.17. 

(2E)-3-Phenylprop-2-enehydrazide (1.55) 

 

Following the general procedure IV, the hydrazide 1.55 was obtained from the commercial 

cinnamic acid (600 mg, 4.05 mmol), without further purification in 99% yield (650 mg, 

4.01 mmol). Mp: 107 - 110 ºC (lit. 116 - 117 ºC)146. 1H NMR (500 MHz, MeOD) δ 7.56 (d, 

J = 15.9 Hz, 1H, H3), 7.54 (dd, J = 7.7, 1.7 Hz, 2H, H5, H9), 7.40 – 7.33 (m, 3H, H6, H7, 

H8), 6.56 (d, J = 15.8 Hz, 1H, H2). 
13C NMR (126 MHz, MeOD) δ 167.9 (C1), 141.6 (C3), 

136.2 (C4), 130.8 (C7), 129.9 (C6, C8), 128.8 (C5, C9), 119.6 (C2). HPLC-MS (15:95- g.t.10 

min) tR 1.37 min, m/z = 163.17 [M+H]+, calcd. for [C9H10N2O+H]+ 163.19. 

(2E)-3-(3-Methoxyphenyl)prop-2-enehydrazide (1.58) 

 

Following the general procedure IV, the hydrazide 1.58 was obtained from the commercial 

3-methoxycinnamic acid (500 mg, 2.8 mmol), without further purification in 98% yield 
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(528 mg, 2.75 mmol). Mp: 131 - 134 ºC (lit. 130 °C)156. 1H NMR (300 MHz, MeOD) δ 

7.52 (d, J = 15.8 Hz, 1H, H3), 7.30 (t, J = 7.9 Hz, 1H, H8), 7.13 (d, J = 8.0 Hz, 1H, H9), 

7.09 (t, J = 2.1 Hz, 1H, H5), 6.94 (dd, J = 7.9, 2.0 Hz, 1H, H7), 6.54 (d, J = 15.8 Hz, 1H, 

H2), 3.82 (s, 3H, CH3). 
13C NMR (75 MHz, MeOD) δ 167.9 (C1), 161.5 (C6), 141.6 (C3), 

137.6 (C4), 130.9 (C8), 121.3 (C9), 119.9 (C2), 116.5 (C7), 113.8 (C5), 55.7 (CH3). HPLC-

MS (15:95- g.t.5 min) tR 2.51 min, m/z = 193.46 [M+H]+, calcd. for [C10H12N2O2 +H]+ 

193.22. 

(2E)-3-(4-Methoxyphenyl)prop-2-enehydrazide (1.59) 

 

Following the general procedure IV, the hydrazide 1.59 was obtained from the commercial 

4-methoxycinnamic acid (500 mg, 2.8 mmol), without further purification as a pale yellow 

solid, in 72% yield (386 mg, 2.00 mmol). Mp: 123 - 126 ºC (lit. 135 - 136 ºC)93. 1H NMR 

(400 MHz, MeOD) δ 7.51 (d, J = 15.8 Hz, 1H, H3), 7.49 (d, J = 8.5 Hz, 2H, H5, H9), 6.93 

(d, J = 8.8 Hz, 2H, H6, H8), 6.41 (d, J = 15.7 Hz, 1H, H2), 3.82 (s, 3H, CH3). 
13C NMR (101 

MHz, MeOD) δ 168.4 (C1), 162.6 (C7), 141.4 (C3), 130.4 (C5, C9), 128.8 (C4), 117.1 (C6, 

C8), 55.8 (CH3). HPLC-MS (15:95- g.t.5 min) tR 2.28 min, m/z = 193.19 [M+H]+, calcd. for 

[C10H12N2O2 +H]+ 193.22. 

(2E)-3-(2,4-Dimethoxyphenyl)prop-2-enehydrazide (1.60) 

 

Following the general procedure IV, the hydrazide 1.60 was obtained from the commercial 

2, 4-dimethoxycinnamic acid (500 mg, 2.40 mmol), without further purification, in 98% 

yield (524 mg, 2.36 mmol). Mp: 135 - 138 ºC (decomposition). 1H NMR (400 MHz, 

MeOD) δ 7.80 (d, J = 15.9 Hz, 1H, H3), 7.48 (d, J = 8.4 Hz, 1H, H9), 6.63 – 6.57 (m, 2H, 

H6, H8), 6.54 (d, J = 15.9 Hz, 1H, H2), 3.92 (s, 3H, C5OCH3), 3.86 (s, 3H, C7OCH3).
13C 

NMR (101 MHz, MeOD) δ 169.2 (C1), 164.1 (C7), 161.1 (C5), 137.1 (C3), 130.9 (C9), 
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117.8 (C4), 117.2 (C2), 106.7 (C6), 99.3 (C8), 56.0 (C9OCH3), 55.9 (C7OCH3). HPLC-MS 

(15:95- g.t.5 min) tR 2.60 min, m/z = 223.23 [M+H]+, calcd. for [C11H14N2O3+H]+ 223.24. 

(2E)-3-(2,5-Dimethoxyphenyl)prop-2-enehydrazide (1.61) 

 

Following the general procedure IV, the hydrazide 1.61 was obtained from the commercial 

2, 5-dimethoxycinnamic acid (500 mg, 2.40 mmol), without further purification, in 89% 

yield (475 mg, 2.14 mmol). Mp: 141 - 143 ºC (lit. 144 - 146 ºC)157.1H NMR (400 MHz, 

MeOD) δ 7.86 (d, J = 15.9 Hz, 1H, H3), 7.11 (d, J = 2.7 Hz, 1H, H9), 6.99 – 6.96 (m, 2H, 

H6, H7), 6.64 (d, J = 15.9 Hz, 1H, H2), 3.87 (s, 3H, C5OCH3), 3.81 (s, 3H, C8OCH3).
 13C 

NMR (101 MHz, MeOD) δ 168.4 (C1), 155.1 (C8), 154.1 (C5), 136.8 (C3), 125.5 (C4), 

120.2 (C2), 117.4 (C7), 114.2 (C9), 113.7 (C6), 56.6 (C5OCH3), 56.2 (C8OCH3). HPLC-MS 

(15:95- g.t.5 min) tR 2.72 min, m/z = 223.15 [M+H]+, calcd. for [C11H14N2O3 +H]+ 223.24. 

(2E)-3-(3,4-Dimethoxyphenyl)prop-2-enehydrazide (1.62) 

 

Following the general procedure IV, the hydrazide 1.62 was obtained from the commercial 

3, 4-dimethoxycinnamic acid (500 mg, 2.40 mmol), without further purification, in 84% 

yield (448 mg, 2.02 mmol). Mp: 199 - 202 ºC (lit. 217 - 217.5 ºC)146. 1H NMR (400 MHz, 

MeOD) δ 7.53 (d, J = 15.7 Hz, 1H, H3), 7.19 (d, J = 2.0 Hz, 1H, H5), 7.16 (dd, J = 8.3, 2.1 

Hz, 1H, H9), 7.00 (d, J = 8.2 Hz, 1H, H8), 6.46 (d, J = 15.7 Hz, 1H, H2), 3.90 (s, 3H, CH3), 

3.89 (s, 3H, CH3).
 13C NMR (101 MHz, MeOD) δ 168.4 (C1), 152.3 (C7), 150.8 (C6), 141.7 

(C3), 129.3 (C4), 123.2 (C9), 117.4 (C2), 112.8 (C8), 111.4 (C5), 56.5 (CH3), 56.4 (CH3). 

HPLC-MS (15:95- g.t.5 min) tR 1.66 min, m/z = 223.23 [M+H]+, calcd. for [C11H14N2O3 

+H]+ 223.24. 
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(2E)-3-(2H-1,3-benzodioxol-5-yl)prop-2-enehydrazide (1.63) 

 

Following the general procedure IV, the hydrazide 1.63 was obtained from the acid 1.54 

(150 mg, 0.78 mmol), without further purification, in 72% yield (116 mg, 0.56 mmol). Mp: 

145 - 148 ºC (lit. 151 - 152 ºC)158. 1H NMR (400 MHz, MeOD) δ 7.49 (d, J = 15.7 Hz, 1H, 

H3), 7.12 (d, J = 1.7 Hz, 1H, H5), 7.05 (dd, J = 8.0, 1.7 Hz, 1H, H9), 6.86 (d, J = 8.0 Hz, 

1H, H8), 6.40 (d, J = 15.7 Hz, 1H, H2), 6.01 (s, 2H, CH2). 
13C NMR (101 MHz, MeOD) δ 

168.2 (C1), 150.7 (C7), 149.9 (C6), 141.5 (C3), 130.6 (C4), 125.0 (C9), 117.5 (C2), 109.4 

(C8), 107.1 (C5), 102.9 (CH2). HPLC-MS (15:95- g.t.5 min) tR 2.07 min, m/z = 207.28 

[M+H]+, calcd. for [C10H10N2O3 +H]+ 207.20. 

(2E)-3-(3,4,5-Trimethoxyphenyl)prop-2-enehydrazide (1.65) 

 

Following the general procedure IV, the hydrazide 1.65 was obtained from the commercial 

3,4,5-trimethoxycinnamic acid (500 mg, 2.1 mmol), without further purification, in 86% 

yield (455 mg, 1.8 mmol). Mp: 153 - 156 ºC (lit. 153 - 154 °C)159. 1H NMR (400 MHz, 

MeOD) δ 7.51 (d, J = 15.8 Hz, 1H, H3), 6.90 (s, 2H, H5, H9), 6.51 (d, J = 15.7 Hz, 1H, H2), 

3.90 (s, 6H, C6OCH3, C8OCH3), 3.82 (s, 3H, C7OCH3). 
13C NMR (101 MHz, MeOD) δ 

168.0 (C1), 154.8 (C6, C8), 141.6 (C3), 140.8 (C7), 132.1 (C4), 119.1 (C2), 106.3 (C5, C9), 

61.2 (C7OCH3), 56.7 (C6OCH3, C8OCH3). HPLC-MS (15:95- g.t.5 min) tR 2.28 min, m/z = 

253.20 [M+H]+, calcd. for [C12H16N2O4 +H]+ 252.27. 

5-[(E)-2-Phenylethenyl]-1,3,4-oxadiazol-2(3H)-one (1.66) 
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Following the general procedure V, the oxadiazolone 1.66 was obtained from hydrazide 

1.55 (656 mg, 4.05 mmol) in 65% yield (495 mg, 2.63 mmol). Chromatography: hexane to 

hexane:EtOAc 80:20. Mp: 191 - 194 ºC (lit 191 - 193 ºC)160. 1H NMR (500 MHz, MeOD) δ 

7.61 – 7.58 (m, 2H, H5, H9), 7.43 – 7.37 (m, 3H, H6, H7, H8), 7.34 (d, J = 16.5 Hz, 1H, H3), 

6.78 (d, J = 16.5 Hz, 1H, H2). 
13C NMR (126 MHz, MeOD) δ 156.5 (CO), 156.5 (C1), 

138.7 (C3), 136.2 (C4), 130.8 (C7), 130.0 (C6, C8), 128.5 (C5, C9), 111.5 (C2). HPLC-MS 

(15:95- g.t.10 min) tR 6.41 min, m/z = 189.30 [M+H]+, calcd. for [C10H8N2O2+H]+ 189.19. 

HRMS [ESI+] m/z = 188.05822 [M]+, calcd. for [C10H8N2O2]
+ 188.05858. 

3-[(E)-2-(5-Oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)ethenyl]benzonitrile (1.67) 

 

Acid 1.53 (50 mg, 0.29 mmol) was transformed into the hydrazide 1.56 without isolation 

following the general procedure IV, identified by HPLC-MS (15:95- g.t.5). Hydrazide 

appears at tR 1.27 min, m/z = 188.14 [M+H]+, calcd. for [C10H9N3O-H]- 188.20, which was 

reacted with CDI following V procedure to obtain the oxadiazolone 1.67 in 62% yield (38 

mg, 0.18 mmol). Chromatography: hexane to hexane:EtOAc 75:25. Mp: 244 – 247 ºC. 1H 

NMR (400 MHz, MeOD) δ 8.01 (s, 1H, H5), 7.92 (d, J = 7.9 Hz, 1H, H7), 7.71 (d, J = 7.7 

Hz, 1H, H9), 7.59 (t, J = 7.8 Hz, 1H, H8), 7.37 (d, J = 16.4 Hz, 1H, H3), 6.94 (d, J = 16.4 

Hz, 1H, H2). HPLC-MS (30:95- g.t.10 min) tR 2.22 min, m/z = 212.16 [M-H]-, calcd. for 

[C11H7N3O2 -H]- 212.20. HRMS [ESI+] m/z = 213.05295 [M]+, calcd for [C11H7N3O2]
+ 

213.05383. 

5-[(E)-2-(3-Nitrophenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.68) 

 

Commercial 3-nitrocinnamic acid (465 mg, 2.41 mmol) was transformed into the hydrazide 

1.57 without isolation, identified by HPLC-MS (15:95- g.t.5), hydrazide appears in the 
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injection point, m/z = 208.05 [M+H]+, calcd. for [C9H9N3O3 +H]+ 208.19, which was 

reacted with CDI following V procedure to obtain the oxadiazolone 1.68 in 92% yield (515 

mg, 2.21 mmol). Chromatography: hexane to hexane:EtOAc 60:40. Mp: 232 - 234 ºC. 1H 

NMR (500 MHz, DMSO-d6) δ 9.38 (t, J = 1.9 Hz, 1H, H5), 9.04 – 8.98 (m, 2H, H7, H9), 

8.51 (t, J = 8.0 Hz, 1H, H8), 8.29 (d, J = 16.5 Hz, 1H, H3), 8.03 (d, J = 16.5 Hz, 1H, H2). 

13C NMR (126 MHz, DMSO-d6) δ 163.5 (CO), 163.3 (C1), 157.9 (C6), 146.1 (C4), 143.9 

(C3), 142.9 (C9), 139.8 (C8), 133.3 (C7), 131.8 (C5), 123.3 (C2). HPLC-MS (15:95- g.t.10 

min) tR 6.46 min, m/z = 232.23[M-H]-, calcd. for [C10H7N3O4 -H]- 232.18. HRMS [ESI+] 

m/z = 233.04337 [M]+, calcd. for [C10H7N3O4]
+ 233.04366. 

5-[(E)-2-(3-Methoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.69) 

 

Following the general procedure V, the oxadiazolone 1.69 was obtained from 1.58 (350 mg, 

1.8 mmol) in 96% yield (382 mg, 1.75 mmol). Chromatography: hexane to hexane:EtOAc 

8:2. Mp: 178 - 180 ºC. 1H NMR (500 MHz, MeOD) δ 7.32 (d, J = 16.5 Hz, 1H, H3), 7.31 (t, 

J = 7.9 Hz, 1H, H8), 7.17 (d, J = 7.6 Hz, 1H, H9), 7.15 (bs, 1H, H5), 6.94 (t, J = 8.1 Hz, 1H, 

H7), 6.78 (d, J = 16.4 Hz, 1H, H2), 3.83 (s, 3H, CH3). 
13C NMR (126 MHz, MeOD) δ 161.6 

(C6), 156.6 (CO), 156.5 (C1), 138.6 (C3), 137.6 (C4), 131.0 (C8), 121.1 (C9), 116.7 (C7), 

113.4 (C5), 111.8 (C2), 55.8 (CH3). HPLC-MS (15:95- g.t.5 min) tR 4.07 min, m/z = 219.18 

[M+H]+, calcd. for [C11H10N2O3 +H]+ 219.21. HRMS [ESI+] m/z = 218.06887 [M]+, calcd. 

for [C11H10N2O3]
+ 218.06914. 

5-[(E)-2-(4-Methoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.70) 

 

Following the general procedure V, the oxadiazolone 1.70 was obtained from hydrazide 

1.59 (305 mg, 1.59 mmol) in 82% yield (284 mg, 1.30 mmol). Chromatography: hexane to 
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hexane:EtOAc 65:35. Mp: 191 - 193 ºC. 1H NMR (400 MHz, MeOD) δ 7.53 (d, J = 8.8 Hz, 

2H, H5, H9), 7.28 (d, J = 16.4 Hz, 1H, H3), 6.94 (d, J = 8.8 Hz, 2H, H6, H8), 6.61 (d, J = 

16.4 Hz, 1H, H2), 3.82 (s, 3H, CH3). 
13C NMR (101 MHz, MeOD) δ 162.6 (C7), 156.8 (C1), 

156.6 (CO), 138.5 (C3), 130.1 (C5, C9), 128.9 (C4), 115.4 (C6, C8), 109.0 (C2), 55.8 (CH3). 

HPLC-MS (15:95- g.t.5 min) tR 3.59 min, m/z = 219.18 [M+H]+, calcd. for [C11H10N2O3 

+H]+ 219.21. HRMS [ESI+] m/z = 218.06832 [M]+, calcd. for [C11H10N2O3]
+ 218.06914. 

5-[(E)-2-(2,4-Dimethoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.71) 

 

Following the general procedure V, the oxadiazolone 1.71 was obtained from hydrazide 

1.60 (293 mg, 1.32 mmol) in 76% yield (248 mg, 1.00 mmol). Chromatography: hexane to 

hexane:EtOAc, 65:35. Mp: 220 - 222 ºC. 1H NMR (500 MHz, MeOD) δ 7.49 (d, J = 16.4 

Hz, 1H, H3), 7.49 (d, J = 8.6 Hz, 1H, H9), 6.69 (d, J = 16.5 Hz, 1H, H2), 6.60 – 6.54 (m, 

2H, H6, H8), 3.91 (s, 3H, C5OCH3), 3.84 (s, 3H, C7OCH3). 
13C NMR (126 MHz, MeOD) δ 

164.1 (C7), 160.8 (C5), 157.4 (C1), 156.8 (CO), 134.1 (C3), 130.7 (C9), 117.7 (C4), 109.1 

(C2), 106.9 (C6), 99.2 (C8), 56.1(C9OCH3), 55.9 (C7OCH3). HPLC-MS (15:95- g.t.5 min) tR 

4.12 min, m/z = 249.15 [M+H]+, calcd. for [C12H12N2O4 +H]+ 249.24. HRMS [ESI+] m/z = 

248.07922 [M]+, calcd. for [C12H12N2O4]
+ 248.07971. 

5-[(E)-2-(2,5-Dimethoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.72) 

 

Following the general procedure V, the oxadiazolone 1.72 was obtained from hydrazide 

1.61 (465 mg, 2.09 mmol) in 79% yield (410 mg, 1.65 mmol). Chromatography: hexane to 

hexane:EtOAc 65:35. Mp: 124 - 126 ºC. 1H NMR (400 MHz, MeOD) δ 7.58 (d, J = 16.6 

Hz, 1H, H3), 7.15 (d, J = 2.9 Hz, 1H, H9), 6.99 (d, J = 9.0 Hz, 1H, H6), 6.95 (dd, J = 9.0, 
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2.9 Hz, 1H, H7), 6.84 (d, J = 16.6 Hz, 1H, H2), 3.88 (s, 3H, C5OCH3), 3.80 (s, 3H, 

C8OCH3). 
13C NMR (101 MHz, MeOD) δ 156.9 (C1), 156.7 (CO), 155.2 (C8), 153.8 (C5), 

133.8 (C3), 125.3 (C4), 117.7 (C7), 113.8 (C9), 113.7 (C6), 112.0 (C2), 56.6 (C5OCH3), 56.2 

(C8OCH3). HPLC-MS (15:95- g.t.5 min) tR 4.11 min, m/z = 249.05 [M+H]+, calcd. for 

[C12H12N2O4 +H]+ 249.24. HRMS [ESI+] m/z = 248.08094 [M]+, calcd. for [C12H12N2O4]
+ 

248.07971. 

5-[(E)-2-(3,4-Dimethoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.73) 

 

Following the general procedure V, the oxadiazolone 1.73 was obtained from hydrazide 

1.62 (330 mg, 1.49 mmol) in 64% yield (165 mg, 0.66 mmol). Chromatography: hexane to 

hexane:EtOAc 65:35. Mp: 248 - 251 ºC. 1H NMR (500 MHz, DMSO-d6) δ 7.36 (d, J = 2.0 

Hz, 1H, H5), 7.23 (d, J = 16.5 Hz, 1H, H3), 7.20 (dd, J = 8.5, 2.0 Hz, 1H, 12), 6.97 (d, J = 

8.3 Hz, 1H, H8), 6.87 (d, J = 16.4 Hz, 1H, H2), 3.81 (s, 3H, C6OCH3), 3.78 (s, 3H, 

C7OCH3). 
13C NMR (126 MHz, DMSO-d6) δ 154.6 (C1), 154.1 (CO), 150.3(C7), 149.0 

(C6), 136.9 (C3), 127.6 (C4), 122.0 (C9), 111.5 (C8), 109.7 (C5), 108.5 (C2), 55.6 (C6OCH3), 

55.5 (C7OCH3). HPLC-MS (15:95- g.t.5 min) tR 3.62 min, m/z = 249.23 [M+H]+, calcd. for 

[C12H12N2O4 +H]+ 249.24. HRMS [ESI+] m/z = 248.08081 [M]+, calcd. for [C12H12N2O4]
+ 

248.07971. 

5-[(E)-2-(2H-1,3-Benzodioxol-5-yl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.74) 

 

Following the general procedure V, the oxadiazolone 1.74 was obtained from hydrazide 

1.63 (100 mg, 0.48 mmol) in 86% (95 mg, 0.46 mmol). Chromatography: hexane to 

hexane:EtOAc 65:35. Mp: 245 - 248 ºC. 1H NMR (400 MHz, MeOD) δ 7.28 (d, J = 16.4 

Hz, 1H, H3), 7.19 (d, J = 1.8 Hz, 1H, H5), 7.08 (dd, J = 8.0, 1.8 Hz, 1H, H9), 6.86 (d, J = 
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8.0 Hz, 1H, H8), 6.63 (d, J = 16.3 Hz, 1H, H2), 6.02 (s, 2H, CH2). 
13C NMR (101 MHz, 

MeOD) δ 156.7 (C1), 156.6 (CO), 150.7 (C7), 150.0 (C6), 138.5 (C3), 130.7 (C4), 124.7 

(C9), 109.5 (C2, C8), 106.9 (C5), 103.0 (CH2). HPLC-MS (15:95- g.t.5 min) tR 3.89 min, 

m/z = 233.12 [M+H]+, calcd. for [C11H8N2O4+H]+ 232.20. HRMS [ESI+] m/z = 232.04873 

[M]+, calcd. for [C11H8N2O4]
+ 232.04841. 

5-[(E)-2-(3,5-Dimethoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.75) 

 

Commercial 3,5-dimethoxycinnamic acid (250 mg, 1.20 mmol) was transformed into the 

hydrazide 1.64 without isolation following the general procedure IV. The hydrazide was 

identified by HPLC-MS (15:95- g.t.5 min), appearing in the injection point and at 2.80 min, 

m/z = 223.14 [M+H]+, calcd. for [C11H14N2O3 +H]+ 223.24, which was reacted with CDI 

following procedure V to obtain the oxadiazolone 1.75 in 74% yield (206 mg, 0.83 mmol). 

Chromatography: hexane to hexane:EtOAc 1:1. Mp: 156 - 159 ºC. 1H NMR (400 MHz, 

MeOD) δ 7.29 (d, J = 16.4 Hz, 1H, H3), 6.79 (d, J = 16.2 Hz, 1H, H2), 6.78 (d, J = 2.3 Hz, 

2H, H5, H9), 6.53 (t, J = 2.2 Hz, 1H, H7), 3.83 (s, 6H, 2CH3).
 13C NMR (101 MHz, MeOD) 

δ 162.7 (C6, C8), 156.6 (CO), 156.4 (C1), 138.8 (C3), 138.1 (C4), 112.0 (C2), 106.4 (C5, C9), 

103.0 (C7), 55.9 (2CH3). HPLC-MS (15:95- g.t.5 min) tR 4.16 min, m/z = 249.23 [M+H]+, 

calcd. for [C12H12N2O4+H]+ 249.24. HRMS [ESI+] m/z = 248.08033 [M]+, calcd. for 

[C12H12N2O4]
+ 248.07971. 

5-[(E)-2-(3,4,5-Trimethoxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.76) 

 

Following the general procedure V, the oxadiazolone 1.76 was obtained from hydrazide 

1.65 (90 mg, 0.36 mmol) in 68% yield (189 mg, 0.68 mmol). Chromatography: hexane to 
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hexane:EtOAc 1:1. Mp: 214 - 217 ºC. 1H NMR (500 MHz, MeOD) δ 7.43 (d, J = 16.3 Hz, 

1H, H3), 7.06 (s, 2H, H5, H9), 6.87 (d, J = 16.3 Hz, 1H, H2), 4.03 (s, 6H, C6OCH3, 

C8OCH3), 3.94 (s, 3H, C7OCH3). 
13C NMR (126 MHz, MeOD) δ 156.7 (CO), 156.6 (C1), 

154.9 (C6, C8), 140.9 (C7), 138.7 (C3), 132.2 (C4), 111.0 (C2), 106.3 (C5, C9), 61.2 

(C7OCH3), 56.8 (C6OCH3, C8OCH3). HPLC-MS (15:95- g.t.5 min) tR 3.77 min, m/z = 

279.12 [M+H]+, calcd. for [C10H8N2O4 +H]+ 279.26. HRMS [ESI+] m/z = 278.09113 [M]+, 

calcd. for [C13H14N2O5]
+ 278.09027. 

3-(3-Methoxyphenyl)propanoic acid (1.77)  

 

Following the general procedure for hydrogenation III, the acid 1.77 was obtained from the 

commercial 3-methoxycinnamic acid (500 mg, 2.8 mmol), without further purification in 

98% yield (498 mg, 2.8 mmol) as an oil which slowly solidified. Mp: 41 - 43 ºC (lit. 40 

ºC)161. 1H NMR (400 MHz, MeOD) δ 7.18 (t, J = 8.1 Hz, 1H, H8), 6.82 – 6.78 (m, 2H, H9, 

H5), 6.77 – 6.73 (m, 1H, H7), 3.78 (s, 3H, CH3), 2.89 (t, J = 7.7 Hz, 2H, H3), 2.60 (t, J = 7.7 

Hz, 2H, H2). 
13C NMR (101 MHz, MeOD) δ 176.7 (C1), 161.3 (C6), 143.7 (C4), 130.4 (C8), 

121.6 (C9), 115.0 (C5), 112.6 (C7), 55.5 (CH3), 36.7 (C2), 32.1 (C3). HPLC-MS (15:95- g.t.5 

min) tR 3.64 min, m/z = 181.14 [M+H]+, calcd. for [C10H12O3 +H]+ 181.20. 

3-(2,4-Dimethoxyphenyl)propanoic acid (1.78) 

 

Following the general procedure for hydrogenation III, the saturated acid 1.78 was obtained 

from the commercial 2,4-dimethoxycinnamic acid (500 mg, 2.4 mmol), without further 

purification in 91% yield (438 mg, 2.1 mmol). Mp: 101 - 102 ºC (lit. 102.5 - 103.5 °C)162. 

1H NMR (300 MHz, MeOD) δ 7.03 (d, J = 8.2, 1H, H9), 6.51 (d, J = 2.3 Hz, 1H, H8), 6.43 

(dd, J = 8.3, 2.4 Hz, 1H, H6), 3.82 (s, 3H, C7OCH3), 3.78 (s, 3H, C5OCH3), 2.82 (t, J = 7.7 

Hz, 2H, H3), 2.58 – 2.44(m, 2H, H2).
 13C NMR (75 MHz, MeOD) δ 177.3 (C1), 161.2 (C7), 
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159.7 (C5), 131.1 (C9), 122.3 (C4), 105.2 (C6), 99.3 (C8), 55.7 (2OCH3), 35.4 (C2), 26.6 

(C3). HPLC-MS (15:95- g.t.5 min) tR 3.79 min, m/z = 211.17 [M+H]+, calcd. for [C11H14O4 

+H]+ 211.23. 

3-(2,5-Dimethoxyphenyl)propanoic acid (1.79) 

 

Following the general procedure of hydrogenation III the saturated acid 1.79 was obtained 

from the commercial 2,5-dimethoxycinnamic acid (500 mg, 2.4 mmol), without further 

purification in quantitative yield (504 mg, 2.4 mmol). Mp: 67 - 69 ºC (lit. 66 ºC)163. 1H 

NMR (300 MHz, MeOD) δ 6.89 – 6.77 (m, 1H, H6), 6.78 – 6.65 (m, 2H, H7, H9), 3.76 (s, 

3H, C5OCH3), 3.70 (s, 3H, C8OCH3), 2.84 (t, J = 7.9 Hz, 2H, H3), 2.52 (t, J = 7.7 Hz, 2H, 

H2). 
13C NMR (75 MHz, MeOD) δ 177.1 (C1), 154.9 (C8), 153.1 (C5), 131.2 (C4), 117.3 

(C9), 112.6 (C6), 112.3 (C7), 56.2 (C5OCH3), 56.0 (C8OCH3), 35.2 (C2), 27.3 (C3). HPLC-

MS (15:95- g.t.5 min) tR 3.73 min, m/z = 211.21 [M+H]+, calcd. for [C11H14O4 +H]+ 

211.23. 

3-(2H-1,3-Benzodioxol-5-yl)propanoic acid (1.80) 

 

Following the general procedure of hydrogenation III, the saturated acid 1.80 was obtained 

from the acid 1.54 (150 mg, 0.78 mmol), without further purification in quantitative yield 

(152 mg, 0.78 mmol). Mp: 78.9 - 79.9 ºC (lit. 82 - 84 ºC)164. 1H NMR (400 MHz, MeOD) δ 

6.63 – 6.51 (m, 3H, H5, H8, H9), 5.76 (s, 2H, OCH2), 2.71 (t, J = 7.6 Hz, 2H, H3), 2.43 (t, J 

= 7.6 Hz, 2H, H2).
 13C NMR (101 MHz, MeOD) δ 176.7 (C1), 149.0 (C7), 147.3 (C6), 136.0 

(C4), 122.2 (C9), 109.7 (C8), 109.0 (C5), 102.0 (OCH2), 37.0 (C2), 31.7 (C3). HPLC-MS 

(15:95- g.t.5 min) tR 3.55 min, m/z = 195.30 [M+H]+, calcd. for [C10H10O4 +H]+ 195.19. 
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3-(3-Methoxyphenyl)propanehydrazide (1.81) 

 

Following the general procedure IV, the hydrazide 1.81 was obtained from the acid 1.77 

(480 mg, 2.7 mmol), without further purification in 79% yield (410 mg, 2.11 mmol). Mp: 

79 - 82 ºC (lit. 88 - 89 ºC)165. 1H NMR (400 MHz, MeOD) δ 7.18 (t, J = 8.1 Hz, 1H, H8), 

6.82 – 6.77 (m, 2H, H5, H9), 6.77 – 6.73 (m, 1H, H7), 3.78 (s, 3H, CH3), 2.89 (t, J = 7.7 Hz, 

2H, H3), 2.45 (dd, J = 7.7 Hz, 2H, H2).13C NMR (101 MHz, MeOD) δ 174.3 (C1), 161.3 (C6), 143.6 

(C4), 130.4 (C8), 121.7 (C9), 114.9 (C5), 112.5 (C7), 55.4 (CH3), 36.8 (C3), 32.7 (C2). HPLC-MS 

(15:95- g.t.5 min) tR 2.03 min, m/z = 195.22 [M+H]+, calcd. for [C10H14N2O2 +H]+ 195.23. 

3-(2,4-Dimethoxyphenyl)propanehydrazide (1.82) 

 

Following the general procedure IV, the hydrazide 1.82 was obtained from the acid 1.78 

(435 mg, 2.07 mmol), without further purification, in quantitative yield (471 mg, 2.07 

mmol). Mp: 110 - 113 ºC. 1H NMR (500 MHz, MeOD) δ 7.00 (d, J = 8.2 Hz, 1H, H9), 6.48 

(d, J = 2.4 Hz, 1H, H6), 6.40 (dd, J = 8.2, 2.4 Hz, 1H, H8), 3.80 (s, 3H, C5OCH3), 3.76 (s, 

3H, C7OCH3), 2.81 (dd, J = 8.5, 6.9 Hz, 2H, H3), 2.36 (dd, J = 8.3, 7.1 Hz, 2H, H2). 
13C 

NMR (126 MHz, MeOD) δ 174.9 (C1), 161.2 (C7), 159.7 (C5), 131.1 (C9), 122.2 (C4), 

105.2 (C8), 99.3 (C6), 55.7 (2OCH3), 35.5 (C2), 27.1 (C3). HPLC-MS (15:95- g.t.5 min) tR 

1.35 min, m/z = 225.18 [M+H]+, calcd. for [C11H16N2O3 +H]+ 225.26. 

3-(2,5-Dimethoxyphenyl)propanehydrazide (1.83) 
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Following the general procedure IV, the hydrazide 1.83 was obtained from acid 1.79 (490 

mg, 2.33 mmol), without further purification, in 82% yield (424 mg, 1.89 mmol). Mp: 90 - 

92 ºC (lit. 94 - 95 ºC)166. 1H NMR (400 MHz, MeOD) δ 6.86 (d, J = 9.3 Hz, 1H, H6), 6.78 – 

6.72 (m, 2H, H7, H9), 3.80 (s, 3H, C5OCH3), 3.75 (s, 3H, C8OCH3), 2.89 (dd, J = 8.1, 7.4 

Hz, 2H, H3), 2.43 (dd, J = 8.4, 7.1 Hz, 1H, H2). 
13C NMR (101 MHz, MeOD) δ 174.7 (C1), 

155.0 (C8), 153.0 (C5), 131.2 (C4), 117.3 (C9), 112.7 (C6), 112.3 (C7), 56.2 (C5OCH3), 56.0 

(C8OCH3), 35.2 (C2), 27.7 (C3). HPLC-MS (15:95- g.t.5 min) tR 3.73 min, m/z = 225.18 

[M+H]+, calcd. for [C11H16N2O3+H]+ 225.26. 

3-(2H-1,3-benzodioxol-5-yl)propanehydrazide (1.85) 

 

Following the general procedure IV, the hydrazide 1.85 was obtained from the 

corresponding acid 1.80 (145 mg, 0.75 mmol), without further purification, in 81% yield 

(126 mg, 0.60 mmol). Mp: 135 - 136 ºC (lit. 146 - 148 ºC)158. 1H NMR (400 MHz, MeOD) 

δ 6.72 (d, J = 7.8 Hz, 1H, H8), 6.72 (d, J = 1.6 Hz, 1H, H5), 6.67 (d, J = 8.0, 1.6 Hz, 1H, 

H9), 5.90 (s, 1H, OCH2), 2.84 (t, J = 7.6 Hz, 1H, H3), 2.41 (dd, J = 8.2, 7.0 Hz, 1H, H2). 
13C 

NMR (101 MHz, MeOD) δ 174.2 (C1), 135.8 (C4), 122.3 (C9), 109.7 (C8), 109.1 (C5), 

102.1 (OCH2), 37.2 (C3), 32.5 (C2). HPLC-MS (15:95- g.t.5 min) tR 1.58 min, m/z = 209.22 

[M+H]+, calcd. for [C10H12N2O3 +H]+ 209.22. 

5-[2-(3-Methoxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.86) 

 

Following the general procedure V, the oxadiazolone 1.86 was obtained from hydrazide 

1.81 (380 mg, 2.0 mmol) in 71% yield (304 mg, 1.39 mmol). Chromatography: hexane to 

hexane:EtOAc 6:4. Mp: 80 - 82 ºC. 1H NMR (400 MHz, MeOD) δ 7.22 (t, J = 8.1 Hz, 1H, 

H8), 6.85 – 6.75 (m, 3H, H5, H7, H9), 3.80 (s, 3H, CH3), 2.99 (t, J = 7.4 Hz, 2H, H3), 2.89 (t, 

J = 7.5 Hz, 2H, H2).
13C NMR (101 MHz, MeOD) δ 161.4 (C6), 158.6 (C1), 157.6 (CO), 



Experimental section 

151 

142.5 (C4), 130.6 (C8), 121.6 (C9), 115.0 (C5), 113.0 (C7), 55.6 (CH3), 32.5 (C3), 29.0 (C2). 

HPLC-MS (15:95- g.t.5 min) tR 3.78 min, m/z = 221.13 [M+H]+, calcd. for 

[C11H12N2O3+H]+ 221.23. HRMS [ESI+] m/z = 220.08389 [M]+, calcd. for [C11H12N2O3]
+ 

220.08479. 

5-[2-(2,4-Dimethoxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.87) 

 

Following the general procedure V, the oxadiazolone 1.87 was obtained from hydrazide 

1.82 (460 mg, 2.05 mmol) in 76% yield (389 mg, 1.55 mmol). Chromatography: hexane to 

hexane:EtOAc 65:35. Mp: 150 - 152 ºC. 1H NMR (500 MHz, MeOD) δ 7.00 (d, J = 8.3 Hz, 

1H, H9), 6.49 (d, J = 2.4 Hz, 1H, H6), 6.42 (dd, J = 8.2, 2.4 Hz, 1H, H8), 3.79 (s, 3H, 

C5OCH3), 3.76 (s, 3H, C7OCH3), 2.88 (t, J = 7.3 Hz, 2H, H3), 2.75 (t, J = 7.6 Hz, 2H, H2). 

13C NMR (126 MHz, MeOD) δ 161.5 (C7), 159.8 (C5), 159.2 (C1), 157.7 (CO), 131.4 (C9), 

121.1 (C4), 105.4 (C8), 99.3 (C6), 55.7 (2OCH3), 27.9 (C2), 27.4 (C3). HPLC-MS (30:95- 

g.t.10 min) tR 3.21 min, m/z = 251.17 [M+H]+, calcd. for [C12H14N2O4 +H]+ 251.25. HRMS 

[ESI+] m/z = 250.09513 [M]+, calcd. for [C12H14N2O4]
+ 250.09536. 

5-[2-(2,5-Dimethoxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.88) 

 

Following the general procedure V, the oxadiazolone 1.88 was obtained from hydrazide 

1.83 (400 mg, 1.78 mmol) in 97% yield (434 mg, 1.73 mmol). Chromatography: hexane to 

hexane:EtOAc 60:40. Mp: 81 - 83 ºC. 1H NMR (400 MHz, MeOD) δ 6.88 (d, J = 8.6 Hz, 

1H, H6), 6.78 (dd, J = 8.7, 3.0 Hz, 1H, H7), 6.76 (d, J = 2.9 Hz, 2H, H9), 3.80 (s, 3H, 

C5OCH3), 3.75 (s, 3H, C8OCH3), 2.97 (t, J = 7.5 Hz, 2H, H3), 2.83 (t, J = 7.3 Hz, 2H, H2). 

13C NMR (101 MHz, MeOD) δ 159.0 (C1), 157.7 (CO), 155.0 (C8), 153.1 (C5), 130.0 (C4), 
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117.4 (C9), 113.2 (C7), 112.4 (C6), 56.2 (C5OCH3), 56.1 (C8OCH3), 28.0 (C3), 27.6 (C2). 

HPLC-MS (15:95- g.t.5 min) tR 3.89 min, m/z = 251.17 [M+H]+, calcd. for [C12H14N2O4 

+H]+ 251.25. HRMS [ESI+] m/z = 250.0953 [M]+, calcd. for [C12H14N2O4]
+ 250.09536. 

5-[2-(3,4-Dimethoxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.89) 

 

Commercial 3-(3,4-dimethoxyphenyl)propanoic acid (500 mg, 2.38 mmol) was 

transformed into the hydrazide 1.84 without isolation, identified by HPLC-MS (15:95- g.t.5 

min), which appears in the injection point and at 1.24 min, m/z = 225.26 [M+H]+, calcd. for 

[C11H16N2O3 +H]+ 225.26, which was reacted with CDI following V procedure to afford the 

oxadiazolone 1.89 in 78% yield (428 mg, 1.71 mmol). Chromatography: hexane to 

hexane:EtOAc 60:40. Mp: 149 - 151 ºC. 1H NMR (300 MHz, MeOD) δ 6.91 – 6.80 (m, 2H, 

H8, H5), 6.82 – 6.70 (m, 4.7, 2.0 Hz, 1H, H9), 3.81 (s, 3H, C6OCH3), 3.79 (s, 3H, C7OCH3), 

3.04 – 2.88 (m, 2H, H3), 2.86 (t, J = 5.9 Hz, 2H, H2). 
13C NMR (75 MHz, MeOD) δ 158.7 

(C1), 157.6 (CO), 150.5 (C6), 149.2 (C7), 133.9 (C4), 121.7 (C9), 113.3 (C5), 113.1 (C8), 

56.5 (CH3), 56.4 (CH3), 32.1 (C3), 29.3 (C2). HPLC-MS (15:95- g.t.5 min) tR 3.35 min, m/z 

= 250.94 [M+H]+, calcd. for [C12H14N2O4 +H]+ 251.25. HRMS [ESI+] m/z = 250.09558 

[M]+, calcd. for [C12H14N2O4]
+ 250.09536. 

5-[2-(2H-1,3-Benzodioxol-5-yl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.90) 

 

Following the general procedure V, the oxadiazolone 1.90 was obtained from hydrazide 

1.85 (100 mg, 0.48 mmol) in 76% yield (85 mg, 0.36 mmol). Chromatography: hexane to 

hexane:EtOAc 9:1. Mp: 148 - 150 ºC. 1H NMR (500 MHz, MeOD) δ 6.74 (d, J = 1.1 Hz, 

1H, H5), 6.73 (d, J = 8.1 Hz, 2H, H8), 6.67 (dd, J = 7.9, 1.7 Hz, 1H, H9), 5.90 (s, 2H, 

OCH2), 2.91 (t, J = 7.6 Hz, 2H, H3), 2.82 (ddd, J = 8.3, 7.1, 1.2 Hz, 2H, H2). 
13C NMR (126 
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MHz, MeOD) δ 158.6 (C1), 157.7 (CO), 149.2 (C6), 147.7 (C7), 134.8 (C4), 122.4 (C9), 

109.7 (C5), 109.2 (C8), 102.2 (OCH2), 32.2 (C3), 29.4 (C2). HPLC-MS (15:95- g.t.5 min) tR 

3.70 min, m/z = 235.14 [M+H]+, calcd. for [C11H10N2O4+H]+ 209.22. HRMS [ESI+] m/z = 

234.06465 [M]+, calcd. for [C11H10N2O4]
+ 234.06406. 

5-[(E)-2-(3-Hydroxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.91) 

 

Following the general procedure VII, 1.91 was obtained from methoxylated 1.69 (132 mg, 

0.60 mmol) in 91% yield (112 mg, 0.55 mmol) Chromatography: hexane to hexane:EtOAc 

1:1. Mp: 230 - 233 ºC. 1H NMR (400 MHz, MeOD) δ 7.29 (d, J = 16.5 Hz, 1H, H3), 7.24 (t, 

J = 8.0 Hz, 1H, H8), 7.08 (d, J = 7.7 Hz, 1H, H9), 7.02 (t, J = 2.0 Hz, 1H, H5), 6.83 (dd, J = 

8.2, 2.5 Hz, 1H, H7), 6.72 (d, J = 16.4 Hz, 1H, H2). 
13C NMR (101 MHz, MeOD) δ 159.1 

(C6), 156.5 (CO), 156.5 (C1), 138.9 (C3), 137.5 (C4), 131.0 (C8), 120.1 (C9), 118.0 (C7), 

114.6 (C5), 111.3 (C2). HPLC-MS (15:95- g.t.5 min) tR 3.21 min, m/z = 205.26 [M+H]+, 

calcd. for [C10H8N2O3+H]+ 205.19. HRMS [ESI+] m/z = 204.05432 [M]+, calcd. for 

[C10H8N2O3]
+ 204.05349. 

5-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.92) 

 

Following the general procedure VII, phenol 1.92 was obtained from 1.70 (75 mg, 0.34 

mmol) in 91% yield (63 mg, 0.31 mmol). The final compound was washed with MeOH. 

Mp: 255 - 258 ºC. 1H NMR (500 MHz, MeOD) δ 7.44 (d, J = 8.4 Hz, 2H, H5, H9), 7.25 (d, 

J = 16.3 Hz, 1H, H3), 6.80 (d, J = 8.6 Hz, 2H, H6, H8), 6.56 (d, J = 16.4 Hz, 1H, H2). 
13C 

NMR (126 MHz, MeOD) δ 160.6 (C7), 157.0 (C1), 156.7 (CO), 138.9 (C3), 130.3 (C5, C9), 

127.7 (C4), 116.8 (C6, C8), 108.1 (C2). HPLC-MS (15:95- g.t.5 min) tR 3.12 min, m/z = 
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205.18 [M+H]+, calcd. for [C10H8N2O3+H]+ 205.19. HRMS [ESI+] m/z = 204.05403 [M]+, 

calcd. for [C10H8N2O3]
+ 204.05349. 

5-[(E)-2-(3,4-Dihydroxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.93) 

 

Following the general procedure VII, 1.93 was obtained from 1.73 (100 mg, 0.40 mmol) in 

89% yield (78 mg, 0.36 mmol). Chromatography: hexane to hexane:EtOAc 1:1. Mp: 253 - 

256 ºC. 1H NMR (500 MHz, MeOD) δ 7.20 (d, J = 16.3 Hz, 1H, H3), 7.03 (d, J = 2.1 Hz, 

1H, H5), 6.93 (dd, J = 8.2, 2.1 Hz, 1H, H9), 6.78 (d, J = 8.1 Hz, 1H, H8), 6.50 (d, J = 16.3 

Hz, 1H, H2).
13C NMR (126 MHz, MeOD) δ 157.0 (C1), 156.7 (CO), 148.9 (C7), 146.8 (C6), 

139.2 (C3), 128.3 (C4), 121.9 (C9), 116.5 (C8), 114.5 (C5), 108.0 (C2). HPLC-MS (15:95- 

g.t.5 min) tR 2.70 min, m/z = 221.13 [M+H]+, calcd. for [C10H8N2O4 +H]+ 221.18. HRMS 

[ESI+] m/z = 220.04861 [M]+, calcd. for [C10H8N2O4]
+ 220.04841. 

5-[(E)-2-(3,5-Dihydroxyphenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.94) 

 

Following the general procedure VII, 1.94 was obtained from dimethoxy 1.75 (75 mg, 0.30 

mmol) in 66% yield (44 mg, 0.20 mmol). Chromatography: hexane to EtOAc. Mp: 264 - 

267 ºC. 1H NMR (400 MHz, MeOD) δ 7.19 (d, J = 16.3 Hz, 1H, H3), 6.64 (d, J = 16.3 Hz, 

1H, H2), 6.52 (d, J = 2.2 Hz, 2H, H5, H9), 6.31 (t, J = 2.2 Hz, 1H, H7). 
13C NMR (101 MHz, 

MeOD) δ 160.1 (C6, C8), 156.7 (CO), 156.5 (C1), 139.1 (C3), 138.0 (C4), 111.2 (C2), 106.9 

(C5, C9). HPLC-MS (15:95- g.t.5 min) tR 2.44 min, m/z = 221.21 [M+H]+, calcd. for 

[C10H8N2O4+H]+ 221.18. HRMS [ESI+] m/z = 220.04837 [M]+, calcd. for [C10H8N2O4]
+ 

220.04841. 
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5-[2-(3-Hydroxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.95) 

 

Following the general procedure VII, 1.95 was obtained from 1.86 (100 mg, 0.45 mmol) in 

96% yield (90 mg, 0.44 mmol). Chromatography: hexane to hexane:EtOAc 35:65. Mp: 160 

- 162 ºC. 1H NMR (400 MHz, MeOD) δ 7.12 (t, J = 7.7 Hz, 1H, H8), 6.71 (d, J = 7.8 Hz, 

1H, H9), 6.69 – 6.63 (m, 2H, H5, H7), 2.98 – 2.91 (m, 2H, H3), 2.89 – 2.83 (m, 2H, H2). 
13C 

NMR (101 MHz, MeOD) δ 158.6 (C1, C6), 157.6 (CO), 142.5 (C4), 130.6 (C8), 120.5 (C9), 

116.2 (C5), 114.5 (C7), 32.4 (C3), 29.0 (C2). HPLC-MS (15:95- g.t.5 min) tR 2.96 min, m/z 

= 207.20 [M+H]+, calcd. for [C10H10N2O3+H]+ 207.20. HRMS [ESI+] m/z = 206.06906 

[M]+, calcd. for [C10H10N2O3]
+ 206.06914. 

5-[2-(2,5-Dihydroxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.96) 

 

Following the general procedure VII, 1.96 was obtained from 1.88 (194 mg, 0.78 mmol) in 

16% yield (27 mg, 0.16 mmol). The final compound was purified by semi-preparative 

HPLC-MS (10:20- g.t.30 min). Mp: 144 - 147 ºC. 1H NMR (500 MHz, MeOD) δ 6.60 (d, J 

= 8.5 Hz, 1H, H6), 6.55 (d, J = 2.9 Hz, 1H, H9), 6.50 (dd, J = 8.5, 3.0 Hz, 1H, H7), 2.91 – 

2.87 (m, 2H, H3), 2.85 – 2.81 (m, 2H, H2). 
13C NMR (126 MHz, MeOD) δ 159.1 (C1), 

157.7 (CO), 151.1 (C8), 149.4 (C5), 128.0 (C4), 117.7 (C9), 116.7 (C6), 115.1 (C7), 28.0 

(C3), 27.5 (C2). HPLC-MS (15:95- g.t.5 min) tR 1.55 min, m/z = 223.15 [M+H]+, calcd. for 

[C10H10N2O4 +H]+ 223.20. HRMS [ESI+] m/z = 222.06457[M]+, calcd. for [C10H10N2O4]
+ 

222.06406. 
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5-[2-(3,4-Dihydroxyphenyl)ethyl]-1,3,4-oxadiazol-2(3H)-one (1.97) 

 

Following the general procedure VII, 1.97 was obtained from 1.89 (250 mg, 1.0 mmol) in 

63% yield (139 mg, 0.63 mmol). Chromatography: hexane to EtOAc. Mp: 170 - 172 ºC. 1H 

NMR (400 MHz, MeOD) δ 6.71 (d, J = 8.0 Hz, 1H, H8), 6.67 (d, J = 2.1 Hz, 1H, H5), 6.55 

(dd, J = 8.1, 2.1 Hz, 1H, H9), 2.90 – 2.76 (m, 4H, H2, H3). 
13C NMR (101 MHz, MeOD) δ 

158.8 (C1), 157.6 (CO), 146.3 (C6), 144.9 (C7), 132.5 (C4), 120.6 (C9), 116.4 (C5, C8), 32.0 

(C3), 29.4 (C2). HPLC-MS (15:95- g.t.5 min) tR 2.29 min, m/z = 223.09 [M+H]+, calcd. for 

[C10H10N2O4 +H]+ 223.20. HRMS [ESI+] m/z = 222.06385 [M]+, calcd. for [C10H10N2O4]
+ 

222.06406. 

5-[(E)-2-(3-Aminophenyl)ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.98)167 

 

To a solution of nitro compound 1.68 (50 mg, 0.21 mmol) in EtOH (1 mL), a saturated 

solution of ammonium chloride (NH4Cl, 0.5 mL) and iron powder (56 mg, 1.0 mmol) were 

added. The mixture was refluxed for 1 h, cooled at rt and filtered through Celite. The crude 

was extracted with EtOAc (x3). The organic layer was concentrated under reduced pressure 

and precipitated in hexane: EtOAc to obtain the aniline 1.98 in 87% yield (37 mg, 0.18 

mmol). Mp: 255 ºC (decomposition). 1H NMR (400 MHz, CDCl3) δ 6.85 (d, J = 16.6 Hz, 

1H, H3), 6.80 (t, J = 7.8 Hz, 1H, H8), 6.52 (d, J = 7.8 Hz, 1H, H9), 6.48 (s, 1H, H5), 6.36 

(dd, J = 7.9, 2.3 Hz, 1H, H7), 6.23 (d, J = 16.4 Hz, 1H, H2). 
13C NMR (101 MHz, CDCl3) δ 

154.3 (CO), 154.3 (C1), 146.9 (C6), 137.3 (C3), 135.1 (C4), 129.3 (C8), 116.9 (C9), 116.2 

(C7), 112.9 (C5), 109.8 (C2). 
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3-[(Prop-2-en-1-yl)oxy]benzaldehyde (1.99) 

 

To a solution of commercial 3-hydroxybenzaldehyde (500 mg, 4.09 mmol) in dry acetone 

(5 mL/mmol), K2CO3 (677 mg, 4.9 mmol) was added at rt and the mixture was stirred for 

10 min. Allyl bromide (425 µL, 4.9 mmol) was then added and the reaction was heated at 

140 ºC for 20 min under mw irradiation. As starting material remained in the reaction, was 

heated 20 min more at 140 °C. The reaction was stopped without total conversion. H2O was 

added and the mixture was extracted with EtOAc (x2), washed with brine, dried over 

MgSO4, filtered, and evaporated under reduced pressure. The crude was purified by 

chromatography (hexane to hexane:EtOAc 7:3) to obtain 1.99 as a colorless oil in 49% 

yield (325 mg, 2.0 mmol). 1H NMR (400 MHz, CDCl3) δ 9.97 (s, 1H, CHO), 7.49 – 7.41 

(m, 2H, H5, H6), 7.40 (d, J = 2.0 Hz, 1H, H2), 7.20 (dt, J = 6.8, 2.5 Hz, 1H, H4), 6.06 (ddt, J 

= 17.1, 10.5, 5.3 Hz, 1H, CH=), 5.43 (dd, J = 17.2, 1.6 Hz, 1H, CH2=), 5.31 (dd, J = 10.5, 

1.5 Hz, 1H, CH2=), 4.60 (dt, J = 5.0, 1.2 Hz, 2H, CH2CH=). 13C NMR (101 MHz, CDCl3) δ 

192.2 (CHO), 159.3 (C3), 138.0 (C1), 132.8 (CH=), 130.2 (C5), 123.7 (C6), 122.2 (C4), 

118.2 (CH2=), 113.3 (C2), 69.1 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 7.57 min, m/z 

= 163.17 [M+H]+, calcd. for [C10H10O2 -H]- 163.19. 

(3E)-4-(3-Hydroxyphenyl)but-3-en-2-one (1.100) 

 

Ketone 1.100 was isolated as undesirable from reaction to prepare 1.99, resulted of aldol 

condensation between 3-hydroxybenzaldehyde and acetone (the solvent) in 4% yield (25 

mg, 0.15 mmol). Mp: 89 - 90 ºC. 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 16.3 Hz, 1H, 

H3), 7.28 (t, J = 7.9 Hz, 1H, H8), 7.1 (d, J = 7.6 Hz, 1H, H9), 7.02 (t, J = 2.0 Hz, 1H, H5), 

6.88 (dd, J = 8.2, 2.4 Hz, 1H, H7), 6.68 (d, J = 16.3 Hz, 1H, H2), 2.38 (s, 3H, CH3). 
13C 

NMR (126 MHz, CDCl3) δ 198.5 (C1), 156.1 (C6), 143.1 (C3), 136.2 (C4), 130.4 (C8), 127.7 
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(C2), 121.4 (C9), 117.8 (C7), 114.6 (C5), 27.7 (CH3). HPLC-MS (15:95- g.t.10 min) tR 4.67 

min, m/z = 163.24 [M+H]+, calcd. for [C10H10O2 +H]+ 163.19. 

(3E)-4-{3-[(Prop-2-en-1-yl)oxy]phenyl}but-3-en-2-one (1.101) 

 

Ketone 1.101 was isolated as undesirable from reaction to prepare 1.99, resulted of aldol 

condensation between 1.99 and acetone (the solvent), as oil in 6% yield (46 mg, 0.23 

mmol). 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 16.3 Hz, 1H, H3), 7.31 (t, J = 7.9 Hz, 

1H, H8), 7.14 (d, J = 7.6 Hz, 1H, H9), 7.08 (t, J = 2.0 Hz, 1H, H5), 6.96 (dd, J = 8.2, 1.8 Hz, 

1H, H7), 6.69 (d, J = 16.3 Hz, 1H, H2), 6.06 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H, CH=), 5.43 

(dd, J = 17.2, 1.6 Hz, 1H, CH2=), 5.31 (dd, J = 10.5, 1.5 Hz, 1H, CH2=), 4.57 (dt, J = 5.3, 

1.5 Hz, 2H, CH2CH=), 2.38 (s, 3H, CH3). 
13C NMR (101 MHz, CDCl3) δ 198.5 (C1), 159.1 

(C6), 143.5 (C3), 136.0 (C4), 133.1 (CH=), 130.1 (C8), 127.6 (C2), 121.3 (C9), 118.0 (CH2=), 

117.3 (C7), 114.1 (C5), 69.0 (CH2CH=), 27.7 (CH3). HPLC-MS (15:95- g.t.10 min) tR 8.18 

min, m/z = 203.23 [M+H]+, calcd. for [C13H14O2+H]+ 203.25. HRMS [ESI+] m/z = 

202.09966 [M]+, calcd. for [C13H14O2]
+ 202.09938. 

(2E)-3-{3-[(Prop-2-en-1-yl)oxy]phenyl}prop-2-enoic acid (1.102) 

 

Following the Knoevenagel-Doebner reaction procedure II, acid 1.102 was obtained from 

the aldehyde 1.99 (320 mg, 1.97 mmol), without further purification, in 96% yield (386 mg, 

1.89 mmol). Mp: 110 - 113 ºC. 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 15.9 Hz, 1H, 

H3), 7.32 (t, J = 7.9 Hz, 1H, H8), 7.15 (d, J = 7.6 Hz, 1H, H9), 7.09 (bs, 1H, H5), 6.98 (dd, J 

= 8.1, 2.1 Hz, 1H, H7), 6.43 (d, J = 15.9 Hz, 1H, H2), 6.06 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H, 

CH=), 5.43 (dd, J = 17.3, 1.6 Hz, 1H, 1/2CH2=), 5.31 (dd, J = 10.5, 1.4 Hz, 1H, 1/2CH2=), 

4.58 (d, J = 5.4 Hz, 2H, CH2CH=). 13C NMR (101 MHz, CDCl3) δ 172.0 (C1), 159.1 (C6), 

147.1 (C3), 135.5 (C4), 133.1 (CH=), 130.1 (C8), 121.4 (C9), 118.1 (CH2=), 117.7 (C2), 
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117.6 (C7), 114.2 (C5), 69.1 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 7.40 min, m/z = 

205.26 [M+H]+, calcd. for [C12H12O3 +H]+ 205.23. 

(2E)-3-{3-[(Prop-2-en-1-yl)oxy]phenyl}prop-2-enehydrazide (1.103) 

 

Following the general procedure IV, the hydrazide 1.104 was obtained from acid 1.102 

(330 mg, 1.62 mmol), without further purification, in 99% yield (350 mg, 1.60 mmol). Mp: 

73 - 76 ºC. 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 15.6 Hz, 1H, H3), 7.29 (t, J = 7.9 Hz, 

1H, H8), 7.11 (d, J = 7.7 Hz, 1H, H9), 7.05 (bs, 1H, H5), 6.93 (dd, J = 8.2, 2.6 Hz, 1H, H7), 

6.87 (bs, 1H, NH), 6.32 (d, J = 15.6 Hz, 1H, H2), 6.06 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H, 

CH=), 5.42 (dd, J = 17.3, 1.5 Hz, 1H, CH2=), 5.30 (dd, J = 10.5, 1.3 Hz, 1H, CH2=), 4.56 

(d, J = 5.3 Hz, 2H, CH2CH=). 13C NMR (101 MHz, CDCl3) δ 167.1 (C1), 159.1 (C6), 142.0 

(C3), 136.1 (C4), 133.1 (CH=), 130.0 (C8), 120.8 (C9), 118.2 (C2), 118.0 (CH2=), 116.6 (C7), 

114.1 (C5), 69.0 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 5.03 min, m/z = 219.18 

[M+H]+, calcd. for [C12H14N2O2 +H]+ 219.26.  

5-[(E)-2-{3-[(prop-2-en-1-yl)oxy]phenyl}ethenyl]-1,3,4-oxadiazol-2(3H)-one (1.104) 

 

Following the general procedure V, the oxadiazolone 1.103 was obtained from the 

hydrazide 1.103 (350 mg, 1.6 mmol) in 78% yield (276 mg, 1.26 mmol). Chromatography: 

hexane to hexane:EtOAc 65:35. Mp: 151 - 154 ºC. 1H NMR (500 MHz, MeOD) δ 7.30 (t, J 

= 7.9 Hz, 1H, H8), 7.28 (d, J = 16.4 Hz, 1H, H3), 7.16 (d, J = 7.7 Hz, 1H, H9), 7.14 (bs, 1H, 

H5), 6.94 (dd, J = 8.3, 2.6 Hz, 1H, H7), 6.74 (d, J = 16.4 Hz, 1H, H2), 6.07 (ddt, J = 17.3, 

10.5, 5.2 Hz, 1H, CH=), 5.41 (dq, J = 17.3, 1.7 Hz, 1H, CH2=), 5.26 (dq, J = 10.6, 1.5 Hz, 

1H, CH2=), 4.58 (dt, J = 5.2, 1.7 Hz, 2H, CH2CH=). 13C NMR (126 MHz, MeOD) δ 160.5 

(C1), 156.5 (CO), 156.4 (C6), 138.6 (C3), 137.6 (C4), 134.8 (CH=), 131.0 (C8), 121.3 (C9), 

117.6 (CH2=), 117.4 (C7), 114.3 (C5), 111.7 (C2), 69.8 (CH2CH=). HPLC-MS (15:95- 
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g.t.10 min) tR 7.87 min, m/z = 245.18 [M+H]+, calcd. for [C13H12N2O3+H]+ 245.25. HRMS 

[ESI+] m/z = 244.08436 [M]+, calcd. for [C13H12N2O3]
+  244.08479. 

SUBSTITUITED  

All following substituted derivatives were obtained from the corresponding oxadiazolone 

derivative and propargyl bromide following the general procedure VI for N-alkylation of 

1,3,4-oxadiazol-2(3H)-one. 

5-[(E)-2-Phenylethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (1.105) 

 

Final compound 1.105 was obtained from the oxadiazolone 1.66 in 87% yield (83 mg, 0.36 

mmol). Chromatography: hexane to hexane:EtOAc 77:23. Mp: 138 - 140 ºC. 1H NMR (500 

MHz, DMSO-d6) δ 7.73 (dd, J = 8.1, 1.4 Hz, 1H, H5, H9), 7.45 – 7.40 (m, 3H, H6, H7, H8), 

7.38 (d, J = 16.5 Hz, 1H, H3), 7.01 (d, J = 16.5 Hz, 1H, H2), 4.61 (d, J = 2.5 Hz, 2H, CH2), 

3.48 (t, J = 2.5 Hz, 1H, CH). 13C NMR (126 MHz, DMSO-d6) δ 153.1 (C1), 151.9 (CO), 

137.8 (C3), 134.5 (C4), 129.9 (C7), 128.9 (C6, C8), 127.8 (C5, C9), 110.2 (C2), 77.1 (≡C), 

76.2 (≡CH), 35.4 (CH2). HPLC-MS (15:95- g.t.10 min) tR 8.01 min, m/z = 227.20 [M+H]+, 

calcd. for [C13H10N2O2 +H]+ 227.24.HRMS [ESI+] m/z = 226.07401 [M]+, calcd. for 

[C13H10N2O2]
+ 226.07423. 

5-[(E)-2-(3-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one 

(1.106) 

 

Final compound 1.106 was obtained from the oxadiazolone 1.69 (100 mg, 0.446 mmol) in 

68% yield (80.2 mg, 0.31 mmol). Chromatography: hexane to hexane:EtOAc 85:15. Mp: 

92 - 94 ºC. 1H NMR (500 MHz, MeOD) δ 7.34 (d, J = 16.5 Hz, 1H, H3), 7.30 (t, J = 8.0 Hz, 
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1H, H8), 7.17 (d, J = 7.7 Hz, 1H, H9), 7.15 (bs, 1H, H5), 6.95 (dd, J = 8.3, 2.5 Hz, 1H, H7), 

6.79 (d, J = 16.4 Hz, 1H, H2), 4.57 (d, J = 2.3 Hz, 2H, CH2), 3.83 (s, 3H, CH3), 2.86 (t, J = 

2.5 Hz, 1H, ≡CH). 13C NMR (126 MHz, MeOD) δ 161.6 (C6), 155.1 (C1), 154.0 (CO), 

139.5 (C3), 137.4 (C4), 131.0 (C8), 121.3 (C9), 116.9 (C7), 113.5 (C5), 111.2 (C2), 77.1 (≡C), 

74.9 (≡CH), 55.8 (CH3), 36.4 (CH2). HPLC-MS (15:95- g.t.10 min) tR 8.37 min, m/z = 

257.26 [M+H]+, calcd. for [C14H12N2O3+H]+ 257.26. HRMS [ESI+] m/z = 256.08539 [M]+, 

calcd. for [C14H12N2O3]
+ 256.08479. 

5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one 

(1.107) 

 

Final compound 1.107 was obtained from 1.70 (50 mg, 0.23 mmol) in 56% yield (33 mg, 

0.13 mmol). Chromatography: hexane to hexane:EtOAc 85:15. Mp: 140 - 142 ºC. 1H NMR 

(500 MHz, DMSO-d6) δ 7.68 (d, J = 8.8 Hz, 2H, H5, H9), 7.32 (d, J = 16.4 Hz, 1H, H3), 

6.98 (d, J = 8.7 Hz, 2H, H6, H8), 6.84 (d, J = 16.4 Hz, 1H, H2), 4.60 (d, J = 2.5 Hz, 1H, 

CH2), 3.80 (s, 3H, CH3), 3.47 (t, J = 2.5 Hz, 1H, ≡CH).13C NMR (126 MHz, DMSO-d6) δ 

160.7 (C7), 153.4 (C1), 151.9 (CO), 137.6 (C3), 129.5 (C5, C9), 127.2 (C4), 114.4 (C6, C8), 

107.6 (C2), 77.1 (≡C), 76.1 (≡CH), 55.3 (CH3), 35.3 (CH2). HPLC-MS (15:95- g.t.10 min) 

tR 8.08 min, m/z = 257.17 [M+H]+, calcd. for [C14H12N2O3 +H]+ 257.26. HRMS [ESI+] m/z 

= 256.08363 [M]+, calcd. for [C14H12N2O3]
+ 256.08479. 

5-[(E)-2-(3-Hydroxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one 

(1.108) 

 

Final phenol 1.108 was obtained from 1.91 (55 mg, 0.27 mmol) in 44% yield (28 mg, 0.12 

mmol). Chromatography: hexane to hexane:EtOAc 75:25. Mp: 166 - 168 ºC. 1H NMR (500 
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MHz, MeOD) δ 7.30 (d, J = 16.4 Hz, 1H, H3), 7.22 (t, J = 7.9 Hz, 1H, H8), 7.06 (dt, J = 7.7, 

1.2 Hz, 1H, H9), 7.00 (t, J = 2.1 Hz, 1H, H5), 6.81 (ddd, J = 8.1, 2.5, 0.9 Hz, 1H, H7), 6.72 

(d, J = 16.4 Hz, 1H, H2), 4.57 (s, 2H, CH2). 
13C NMR (126 MHz, MeOD) δ 159.1 (C6), 

155.1 (C1), 154.0 (CO), 139.7 (C3), 137.3 (C4), 131.0 (C8), 120.2 (C9), 118.2 (C7), 114.8 

(C5), 110.7 (C2), 76.7(≡C), 74.6 (≡CH), 36.4 (CH2). HPLC-MS (15:95- g.t.10 min) tR 6.61 

min, m/z = 241.29 [M-H]-, calcd. for [C13H10N2O3 -H]- 241.23. HRMS [ESI+] m/z = 

242.06867 [M]+, calcd. for [C13H10N2O3]
+ 242.06914. 

5-[(E)-2-(5-Methoxy-1H-indol-3-yl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-

one (1.109) 

 

Final indole 1.109 was obtained from 1.27 (60 mg, 0.23 mmol), the crude was purified by 

semipreparative HPLC (gradient 35:40- g.t.30 min) and lyophilized to give 1.109 in 17% 

yield (12 mg, 0.039 mmol). Mp: 201 - 203 ºC. 1H NMR (400 MHz, DMSO-d6) δ 11.59 (s, 

1H, NH), 7.88 (d, J = 2.5 Hz, 1H, H2), 7.56 (d, J = 16.4 Hz, 1H, Hα), 7.37 (d, J = 2.4 Hz, 

1H, H4), 7.35 (d, J = 8.8 Hz, 1H, H7), 6.83 (dd, J = 8.7, 2.4 Hz, 1H, H6), 6.63 (d, J = 16.4 

Hz, 1H, Hβ), 4.58 (d, J = 2.6 Hz, 2H, CH2), 3.83 (s, 3H, CH3), 3.45 (t, J = 2.5 Hz, 1H, 

≡CH). 13C NMR (101 MHz, DMSO-d6) δ 154.7 (C5), 154.3 (C5’), 152.1 (C2’), 132.3 (Cα), 

132.1 (C7a), 130.4 (C2), 125.4 (C3a), 113.0 (C7), 112.5 (C6), 111.9 (C3), 102.9 (Cβ), 101.6 

(C4), 77.3 (≡C), 76.0 (≡CH), 55.5 (CH3), 35.2 (CH2). HPLC-MS (15:95- g.t.10 min) tR 7.62 

min, m/z = 296.25 [M+H]+, calcd. for [C16H13N3O3+H]+ 296.30. HRMS [ESI+] m/z = 

270.10827 [M]+, calcd. for [C16H13N3O3]
+ 270.10044. 

AMIDES 

All following amides derivatives were obtained from the corresponding acid and either 

propargyl or allyl bromide following the general procedure IV (Synthesis of amides and 

hydrazides from acids). 
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(2E)-3-(3-Cyanophenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.110) 

 

Final compound 1.110 was afforded from acid 1.53 (250 mg, 1.44 mmol) in 57% yield (173 

mg, 0.82 mmol). Chromatography: hexane to hexane:EtOAc 1:1. Mp: 172 - 173 ºC. 1H 

NMR (500 MHz, MeOD) δ 7.96 (t, J = 1.7 Hz, 1H, H5), 7.87 (dt, J = 7.9, 1.4 Hz, 1H, H9), 

7.73 (dt, J = 7.8, 1.4 Hz, 1H, H7), 7.60 (t, J = 7.9 Hz, 1H, H8), 7.57 (d, J = 15.9 Hz, 1H, 

H3), 6.69 (d, J = 15.8 Hz, 1H, H2), 4.09 (d, J = 2.5 Hz, 2H, CH2), 2.64 (t, J = 2.6 Hz, 1H, 

≡CH). 13C NMR (126 MHz, MeOD) δ 167.3 (C1), 139.8 (C3), 137.7 (C4), 134.0 (C7), 133.2 

(C9), 132.2 (C5), 131.1 (C8), 124.0 (C2), 119.2 (CN), 114.3 (C6), 80.3 (≡C), 72.5 (≡CH), 

29.7 (CH2). HPLC-MS (15:95- g.t.10 min) tR 5.38 min, m/z = 211.25 [M+H]+, calcd. for 

[C13H10N2O +H]+ 211.24. HRMS [ESI+] m/z = 210.07991 [M]+, calcd. for [C13H10N2O]+ 

210.07931. 

(2E)-3-(3-Methoxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.111) 

 

Final compound 1.111 was obtained from commercial 3-methoxycinnamic acid (500 mg, 

2.81 mmol) in 83% yield (503 mg, 2.34 mmol). Chromatography: hexane to hexane:EtOAc 

6:4. Mp: 105 - 106 ºC. 1H NMR (500 MHz, MeOD) δ 7.52 (d, J = 15.8 Hz, 1H, H3), 7.29 (t, 

J = 7.9 Hz, 1H, H8), 7.13 (d, J = 7.6 Hz, 1H, H9), 7.09 (dd, J = 2.6, 1.6 Hz, 1H, H5), 6.94 

(ddd, J = 8.3, 2.6, 1.0 Hz, 1H, H7), 6.58 (d, J = 15.8 Hz, 1H, H2), 4.08 (d, J = 2.6 Hz, 2H, 

CH2), 3.81 (s, 3H, CH3), 2.62 (t, J = 2.6 Hz, 1H, ≡CH). 13C NMR (126 MHz, MeOD) δ 

168.1 (C1), 161.5 (C6), 142.3 (C3), 137.5 (C4), 130.9 (C8), 121.5 (C2), 121.4 (C9), 116.6 

(C7), 113.9 (C5), 80.4 (≡C), 72.4 (≡CH), 55.7 (CH3), 29.6 (CH2). HPLC-MS (15:95- g.t.10 

min) tR 6.10 min, m/z = 216.23 [M+H]+, calcd. for [C13H13NO2 +H]+ 216.25. HRMS [ESI+] 

m/z = 215.09483 [M]+, calcd. for [C13H13NO2]
+ 215.09463. 
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(2E)-3-(4-Methoxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.112) 

 

Propargyl amide 1.112 was afforded from commercial 4-methoxycinnamic acid (500 mg, 

2.81 mmol) in 79% yield (418 mg, 1.94 mmol). Chromatography: hexane to hexane:EtOAc 

6:4. Mp: 123 - 125 (lit. 122.6 - 123.5 °C)168. 1H NMR (500 MHz, MeOD) δ 7.53 – 7.49 (m, 

3H, H3, H9, H5), 6.94 (d, J = 8.8 Hz, 2H, H6, H8), 6.45 (d, J = 15.8 Hz, 1H, H2), 4.07 (d, J = 

2.6 Hz, 2H, CH2), 3.82 (s, 3H, CH3), 2.61 (t, J = 2.6 Hz, 1H, ≡CH). 13C NMR (126 MHz, 

MeOD) δ 168.6 (C1), 162.7 (C7), 142.1 (C3), 130.5 (C9, C5), 128.7 (C4), 118.6 (C2), 115.3 

(C6, C8), 80.6 (≡C), 72.3 (≡CH), 55.8 (CH3), 29.6 (CH2). HPLC-MS (15:95- g.t.10 min) tR 

5.91 min, m/z = 216.23 [M+H]+, calcd. for [C13H13NO2 +H]+ 216.25. HRMS [ESI+] m/z = 

215.0946 [M]+, calcd. for [C13H13NO2]
+ 215.09463. 

(2E)-3-(3-Methoxyphenyl)-N-methyl-N-(prop-2-yn-1-yl)prop-2-enamide (1.113)168 

 

To a cooled (0 °C) suspension of NaH (60 mg, 60% in oil, 1.48 mmol) in THF (2 mL), a 

solution of amide 1.111 (250 mg, 1.16 mmol) in of dry THF (2 mL) was slowly added. The 

reaction mixture was stirred at rt for 1 h. Then, CH3I (180 µL, 2.88 mmol) was added at 0 

°C and the mixture was stirred at rt overnight and quenched with H2O. The organic layer 

was washed with H2O (x3) and brine. The aqueous layer was extracted with Et2O (x3), and 

the combined organic layers were dried over MgSO4, filtered, and concentrated in vacuum. 

The residue was purified by flash chromatography (hexane to hexane:EtOAc 55:45) to 

yield 1.113 as a yellow oil (162 mg, mmol, 61%). 1H NMR (500 MHz, MeOD) mixture of 

rotamers [1(M):0.70 (m)] δ 7.55 (d, J = 15.4 Hz, 1H, H3), 7.30 (t, J = 7.9 Hz, 1H, H8), 7.19 

(d, J = 7.8 Hz, 1H, H9), 7.16 (bs, 1H, H5), 7.10 (d, J = 15.6 Hz, 1H, H2m) 7.07 (d, J = 15.3 

Hz, 1H, H2M), 6.94 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H, H7), 4.37 (s, 2H, CH2m), 4.30 (s, 2H, 

CH2M), 3.82 (s, 3H, OCH3), 3.27 (s, 3H, NCH3M), 3.08 (s, 3H, NCH3m). 13C NMR (126 

MHz, MeOD) mixture of rotamers (1:0.70) δ 169.0 (C1m), 168.5 (C1M), 161.5 (C6), 144.6 
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(C3M), 144.4 (C3m), 137.7 (C4), 130.9 (C8), 121.7 (C9M), 121.6 (C9m), 118.4 (C2Mm), 

116.8 (C7), 114.1 (C5M), 114.1 (C5m), 78.9 (≡CM), 78.9 (≡Cm), 74.2 (≡CHm), 73.0 

(≡CHM), 55.8 (OCH3), 40.3 (CH2m), 37.5 (CH2M), 35.2 (NCH3M), 34.3 (NCH3m). 

HPLC-MS (15:95- g.t.10 min) tR 7.04 min, m/z = 230.16 [M+H]+, calcd. for [C14H15NO2 

+H]+ 230.28. HRMS [ESI+] m/z = 229.11024 [M]+, calcd. for [C14H15NO2]
+ 229.11028. 

(2E)-3-(3-Cyanophenyl)-N-(prop-2-en-1-yl)prop-2-enamide (1.114) 

 

Allyl amide 1.114 was afforded from acid 1.53 (250 mg, 1.44 mmol) in 65% yield (200 mg, 

0.94 mmol). Chromatography: hexane to hexane:EtOAc 1:1. Mp: 105 - 106 ºC. 1H NMR 

(400 MHz, MeOD) δ 7.95 (dd, J = 1.7, 1.1 Hz, 1H, H5), 7.86 (dt, J = 7.9, 1.2 Hz, 1H, H9), 

7.72 (dt, J = 7.7, 1.4 Hz, 1H, H7), 7.58 (t, J = 7.9 Hz, 1H, H8), 7.55 (d, J = 15.8 Hz, 1H, 

H3), 6.72 (d, J = 15.8 Hz, 1H, H2), 5.90 (ddt, J = 17.2, 10.3, 5.5 Hz, 1H, CH=), 5.23 (dq, J 

= 17.2, 1.7 Hz, 1H, CH2=), 5.15 (dq, J = 10.3, 1.5 Hz, 1H, CH2=), 3.93 (dt, J = 5.5, 1.6 Hz, 

2H, CH2CH=). 13C NMR (101 MHz, MeOD) δ 167.6 (C1), 139.4 (C3), 137.8 (C4), 135.2 

(CH=), 133.9 (C7), 133.2 (C9), 132.2 (C5), 131.1 (C8), 124.5 (C2), 119.3 (CN), 116.5 

(CH2=), 114.3 (C6), 43.0 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 5.76 min, m/z = 

213.19 [M+H]+, calcd. for [C13H12N2O2 +H]+ 213.25. HRMS [ESI+] m/z = 212.0951 [M]+, 

calcd. for [C13H12N2O]+ 212.09496. 

(2E)-3-(3-Methoxyphenyl)-N-(prop-2-en-1-yl)prop-2-enamide (1.115) 

 

Final compound 1.15 was obtained from commercial 3-methoxycinnamic acid (500 mg, 

2.81 mmol) in 81% yield (495 mg, 2.28 mmol). Chromatography: hexane to hexane:EtOAc 

1:1. Mp: 86 - 87 ºC. 1H NMR (500 MHz, MeOD) δ 7.51 (d, J = 15.7 Hz, 1H, H3), 7.29 (t, J 

= 7.9 Hz, 1H, H8), 7.13 (d, J = 7.6 Hz, 1H, H9), 7.09 (bs, 1H, H5), 6.94 (dd, J = 8.1, 2.4 Hz, 

1H, H7), 6.62 (d, J = 15.7 Hz, 1H, H2), 5.90 (ddt, J = 17.1, 10.2, 5.5 Hz, 1H, CH=), 5.23 

(dd, J = 17.2, 1.6 Hz, 1H, 1/2CH2), 5.14 (dd, J = 10.3, 1.5 Hz, 1H, 1/2CH2), 3.92 (d, J = 5.5 
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Hz, 1H, CH2CH=), 3.81 (s, 3H, CH3). 
13C NMR (126 MHz, MeOD) δ 168.4 (C1), 161.5 

(C6), 141.8 (C3), 137.6 (C4), 135.4 (CH=), 130.9 (C8), 121.9 (C2), 121.4 (C9), 116.5 (C7), 

116.4 (CH2=), 113.9 (C5), 55.7 (CH3), 42.9 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 

6.40 min, m/z = 218.25 [M+H]+, calcd. for [C13H15NO2 +H]+ 218.27. HRMS [ESI+] m/z = 

217.11117 [M]+, calcd. for [C13H15NO2]
+ 217.11028. 

(2E)-3-(4-Methoxyphenyl)-N-(prop-2-en-1-yl)prop-2-enamide (1.116) 

 

Allyl amide 1.116 was given from commercial 4-methoxycinnamic acid (500 mg, 2.81 

mmol) in 88% yield (534 mg, 2.46 mmol). Chromatography: hexane to hexane:EtOAc 1:1. 

Mp: 121 - 123 ºC. 1H NMR (500 MHz, MeOD) δ 7.50 (d, J = 8.7 Hz, 2H, H5, H9), 7.50 (d, 

J = 15.9 Hz, 1H, H3), 6.94 (d, J = 8.7 Hz, 2H, H6, H8), 6.49 (d, J = 15.7 Hz, 1H, H2), 5.98 

(ddt, J = 17.2, 10.3, 5.5 Hz, 1H, CH=), 5.22 (dd, J = 17.2, 1.7 Hz, 1H, 1/2CH2=), 5.13 (dd, 

J = 10.3, 1.6 Hz, 1H, 1/2CH2=), 3.92 (d, J = 5.5 Hz, 1H, CH2CH=), 3.82 (s, 3H, CH3). 
13C 

NMR (126 MHz, MeOD) δ 168.9 (C1), 162.6 (C7), 141.7 (C3), 135.5 (CH=), 130.4 (C5, C9), 

128.8 (C4), 119.1 (C2), 116.3 (CH2=), 115.3 (C6, C8), 55.8 (CH3), 42.9 (CH2CH=). HPLC-

MS (15:95- g.t.10 min) tR 6.12 min, m/z = 218.25 [M+H]+, calcd. for [C13H15NO2 +H]+ 

218.27. HRMS [ESI+] m/z = 217.11104 [M]+, calcd. for [C13H15NO2]
+  217.11028. 

(2E)-3-(5-Methoxy-1H-indol-3-yl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.117) 

 

Amide 1.117 was obtained from acid 1.5 (100 mg, 0.46 mmol) in 51% yield (60 mg, 0.23 

mmol). Chromatography: hexane to hexane:EtOAc 1:1. 1H NMR (500 MHz, DMSO-d6) δ 

11.44 (s, 1H, NHindole), 8.29 (t, J = 5.5 Hz, 1H, NHamide), 7.72 (d, J = 2.9 Hz, 1H, H2), 7.62 

(d, J = 15.8 Hz, 1H, Hα), 7.34 (d, J = 8.8 Hz, 1H, H7), 7.34 (d, J = 1.9 Hz, 1H, H4), 6.85 

(dd, J = 8.7, 2.5 Hz, 1H, H6), 6.53 (d, J = 15.8 Hz, 1H, Hβ), 4.01 (dd, J = 5.5, 2.5 Hz, 2H, 

CH2), 3.84 (s, 3H, CH3), 3.16 (t, J = 2.6 Hz, 1H, ≡CH). 13C NMR (126 MHz, DMSO-d6) δ 
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166.1 (CO), 154.5 (C5), 133.9 (Cα), 132.3 (C7a), 131.0 (C2), 125.3 (C3a), 114.7 (Cβ), 112.8 

(C7), 111.8 (C6), 109.5 (C3), 102.5 (C4), 81.5 (≡C), 73.1 (≡CH), 55.5 (CH3), 27.8 (CH2). 

HPLC-MS (15:95- g.t.10 min) tR 5.80 min, m/z = 255.07 [M+H]+, calcd. for 

[C15H14N2O2+H]+ 255.29. HRMS [ESI+] m/z = 254.10667 [M]+, calcd. for [C15H14N2O2]
+ 

254.10553. 

(2E)-3-(5-Methoxy-1H-indol-3-yl)-N-(prop-2-en-1-yl)prop-2-enamide (1.118) 

 

Amide 1.118 was obtained from acid 1.5 (100 mg, 0.46 mmol) in 72% yield (84 mg, 0.33 

mmol). Chromatography: hexane to hexane:EtOAc 3:7. Mp: 124 - 126 ºC. 1H NMR (500 

MHz, CDCl3) δ 8.77 (s, 1H, NHindole), 7.87 (d, J = 15.5 Hz, 1H, Hα), 7.40 (d, J = 2.8 Hz, 

1H, H2), 7.30 (d, J = 2.6 Hz, 1H, H4), 7.30 (d, J = 8.7 Hz, 1H, H7), 6.90 (dd, J = 8.9, 2.3 

Hz, 1H, H6), 6.35 (d, J = 15.6 Hz, 1H, Hβ), 5.92 (ddt, J = 17.1, 10.1, 5.6 Hz, 1H, CH=), 

5.72 (t, J = 6.4 Hz, 1H, CONH), 5.25 (dd, J = 17.2, 1.5 Hz, 1H, CH2trans=), 5.17 (dd, J = 

10.3, 1.5 Hz, 1H, CH2cis=), 4.05 (tt, J = 5.8, 1.6 Hz, 2H, CH2), 3.87 (s, 3H, CH3). 
13C NMR 

(126 MHz, CDCl3) δ 167.3 (CO), 155.3 (C5), 135.1 (Cα), 134.6 (CH=), 132.2 (C7a), 128.7 

(C2), 126.2 (C3a), 116.6 (=CH2), 115.2 (Cβ), 113.3 (C3), 112.9 (C6), 112.6 (C7), 102.8 (C4), 

56.2 (CH3), 42.3 (CH2). HPLC-MS (15:95- g.t.10 min) tR 6.12 min, m/z = 257.23 [M+H]+, 

calcd. for [C15H16N2O2+H]+ 257.31. HRMS [ESI+] m/z = 256.12237 [M]+, calcd. for 

[C15H16N2O2]
+ 256.12118. 

(2E)-3-(3-Hydroxyphenyl)-N-(prop-2-en-1-yl)prop-2-enamide (1.119) 

 

Phenol 1.119 was obtained from methoxylated compound 1.115 (150 mg, 0.69 mmol) 

following procedure VII, in 66% yield (92 mg, 0.45 mmol). Chromatography: hexane to 

hexane:EtOAc 1:1. Mp: 115 - 118 ºC. 1H NMR (400 MHz, MeOD) δ 7.47 (d, J = 15.8 Hz, 
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1H, H3), 7.20 (t, J = 7.9 Hz, 1H, H8), 7.02 (dd, J = 7.8, 1.4 Hz, 1H, H9), 6.97 (bs, 1H, H5), 

6.80 (dd, J = 8.1, 2.5 Hz, 1H, H7), 6.57 (d, J = 15.7 Hz, 1H, H2), 5.90 (ddt, J = 17.2, 10.2, 

5.5 Hz, 1H, CH=), 5.22 (dd, J = 17.2, 1.7 Hz, 1H, 1/2CH2), 5.14 (dq, J = 10.3, 1.5 Hz, 1H, 

1/2CH2), 3.92 (d, J = 5.5 Hz, 1H, CH2CH=). 13C NMR (101 MHz, MeOD) δ 168.5 (C1), 

159.0 (C6), 142.1 (C3), 137.6 (C4), 135.4 (CH=), 130.9 (C8), 121.5 (C2), 120.3 (C9), 117.9 

(C7), 116.4 (CH2=), 115.1 (C5), 42.9 (CH2CH=). HPLC-MS (15:95- g.t.10 min) tR 4.11 

min, m/z = 204.24[M+H]+, calcd. for [C12H13NO2 +H]+ 204.24. HRMS [ESI+] m/z = 

203.09457 [M]+, calcd. for [C12H13NO2]
+ 203.09463. 

(2E)-3-(4-Hydroxyphenyl)-N-(prop-2-en-1-yl)prop-2-enamide(1.120) 

 

Phenol 1.120 was obtained from methoxylated compound 1.116 (150 mg, 0.69 mmol) 

following procedure VII, in 72% yield (101 mg, 0.50 mmol). Chromatography: hexane to 

hexane:EtOAc 1:1. Mp: 118.1 - 120 ºC. 
1H NMR (400 MHz, MeOD) δ 7.47 (d, J = 15.7 

Hz, 1H, H3), 7.41 (d, J = 8.6 Hz, 2H, H5, H9), 6.79 (d, J = 8.6 Hz, 2H, H6, H8), 6.44 (d, J = 

15.7 Hz, 1H, H2), 5.89 (ddt, J = 17.2, 10.7, 5.5 Hz, 1H, CH=), 5.21 (dd, J = 17.2, 1.7 Hz, 

1H, 1/2CH2=), 5.12 (dd, J = 10.3, 1.6 Hz, 1H, 1/2CH2=), 3.91 (d, J = 5.5 Hz, 1H, 

CH2CH=). 13C NMR (101 MHz, MeOD) δ 169.1 (C1), 160.5 (C7), 142.0 (C3), 135.5 (CH=), 

130.6 (C5, C9), 127.7 (C4), 118.2 (C2), 116.7 (C6, C8), 116.3 (CH2=), 42.9 (CH2CH=). 

HPLC-MS (15:95- g.t.10 min) tR 3.45 min, m/z = 204.24 [M+H]+, calcd. for [C12H13NO2 

+H]+ 204.24. HRMS [ESI+] m/z = 203.09463 [M]+, calcd. for [C12H13NO2]
+ 203.09463. 

(2E)-3-(3-Hydroxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.121) 

 

Propargyl amide 1.121 was afforded from commercial 3-hydroxycinnamic acid (400 mg, 

2.43 mmol) following procedure IV, in 80% yield (392 mg, 1.95 mmol). Chromatography: 

hexane to hexane:EtOAc 1:1. Mp: 158 - 160 ºC. 1H NMR (500 MHz, DMSO-d6) δ 9.58 (s, 

1H, OH), 8.53 (t, J = 5.5 Hz, 1H, NH), 7.36 (d, J = 15.8 Hz, 1H, H3), 7.20 (t, J = 7.8 Hz, 
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1H, H8), 6.98 (d, J = 7.7 Hz, 1H, H9), 6.93 (t, J = 2.0 Hz, 1H, H5), 6.78 (dd, J = 8.1, 1.7 Hz, 

1H, H7), 6.53 (d, J = 15.8 Hz, 1H, H2), 3.98 (dd, J = 5.5, 2.6 Hz, 2H, CH2), 3.15 (t, J = 2.5 

Hz, 1H, ≡CH). 13C NMR (126 MHz, DMSO-d6) δ 164.7 (C1), 157.7 (C6), 139.5 (C3), 136.0 

(C4), 129.9 (C8), 121.2 (C2), 118.8 (C9), 116.8 (C7), 113.7 (C5), 81.0 (≡C), 73.2 (≡CH), 28.0 

(CH2). HPLC-MS (15:95- g.t.10 min) tR 3.55 min, m/z = 202.22 [M+H]+, calcd. for 

[C12H11NO2+H]+ 202.23. HRMS [ESI+] m/z = 201.07982 [M]+, calcd. for [C12H11NO2]
+ 

201.07898. 

(2E)-3-(4-Hydroxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.122) 

 

Phenol 1.122 was afforded from commercial 3-hydroxycinnamic acid (100 mg, 0.61 mmol) 

following procedure IV, in 76% yield (93 mg, 0.46 mmol). Chromatography: hexane to 

hexane:EtOAc 7:3. Mp: 125 - 128 ºC. 1H NMR (500 MHz, MeOD) δ 7.48 (d, J = 15.7 Hz, 

1H, H3), 7.42 (d, J = 8.7 Hz, 2H, H5, H9), 6.79 (d, J = 8.6 Hz, 2H, H6, H8), 6.40 (d, J = 15.7 

Hz, 1H, H2), 4.07 (d, J = 2.6 Hz, 2H, CH2), 2.61 (t, J = 2.6 Hz, 1H, ≡CH). 13C NMR (126 

MHz, MeOD) δ 168.8 (C1), 160.7 (C7), 142.5 (C3), 130.7 (C5, C9), 127.6 (C4), 117.7 (C2), 

116.7 (C6, C8), 80.6 (≡C), 72.2 (≡CH), 29.5 (CH2). HPLC-MS (15:95- g.t.10 min) tR 2.38 

min, m/z = 202.22 [M+H]+, calcd. for [C12H11NO2+H]+ 202.23. HRMS [ESI+] m/z = 

201.07891 [M]+, calcd. for [C12H11NO2]
+ 201.07898. 

(2E)-3-(4-Hydroxy-3-methoxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.123) 

 

Propargyl amide 1.123 was obtained from commercial 4-hydroxy-3-methoxycinnamic acid 

(ferulic acid) (300 mg, 1.54 mmol) following procedure IV, in 86% yield (308 mg, 1.33 

mmol). Chromatography: hexane to hexane:EtOAc 1:1. Mp: 131 - 132 ºC (lit 128 - 129 

ºC)33. 1H NMR (500 MHz, DMSO-d6) δ 9.47 (bs, 1H, OH), 8.38 (bs, 1H, NH), 7.35 (d, J = 

15.7 Hz, 1H, H3), 7.12 (s, 1H, H5), 7.00 (d, J = 8.2 Hz, 1H, H9), 6.79 (d, J = 8.1 Hz, 1H, 

H8), 6.44 (d, J = 15.7 Hz, 1H, H2), 3.97 (bs, 2H, CH2), 3.80 (s, 3H, CH3), 3.12 (bs, 1H, 
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≡CH). 13C NMR (126 MHz, DMSO-d6) δ 165.2 (C1), 148.4 (C7), 147.8 (C6), 139.8 (C3), 

126.2 (C4), 121.6 (C9), 118.1 (C2), 115.7 (C8), 111.0 (C5), 81.2 (≡C), 73.0 (≡CH), 55.6 

(CH3), 28.0 (CH2). HPLC-MS (15:95- g.t.10 min) tR 3.00 min, m/z = 232.10 [M+H]+, 

calcd. for [C13H13NO3+H]+ 232.25. HRMS [ESI+] m/z = 231.08981 [M]+, calcd. for 

[C13H13NO2]
+ 231.08954. 

 (2E)-3-(3,4-dihydroxyphenyl)-N-(prop-2-yn-1-yl)prop-2-enamide (1.124) 

 

Catechol 1.124 was afforded from commercial 3,4-dihydroxycinnamic acid (caffeic acid) 

(400 mg, 2.22 mmol) following procedure IV, in 56% yield (269 mg, 0.91 mmol). 

Chromatography: hexane to hexane:EtOAc 55:45. Mp: 169 - 171 ºC (lit. 169 - 170 ºC)34. 

1H NMR (500 MHz, MeOD) δ 7.42 (d, J = 15.7 Hz, 1H, H3), 7.01 (d, J = 2.1 Hz, 1H, H5), 

6.91 (dd, J = 8.2, 2.1 Hz, 1H, H9), 6.77 (d, J = 8.2 Hz, 1H, H8), 6.36 (d, J = 15.7 Hz, 1H, 

H2), 4.06 (d, J = 2.6 Hz, 2H, CH2), 2.59 (t, J = 2.6 Hz, 1H, ≡CH). 13C NMR (126 MHz, 

MeOD) δ 168.8 (C1), 148.8 (C7), 146.7 (C6), 142.9 (C3), 128.1 (C4), 122.2 (C9), 117.7 (C2), 

116.4 (C8), 115.1 (C5), 80.6 (≡C), 72.2 (≡CH), 29.5 (CH2). HPLC-MS (5:95- g.t.10 min) tR 

4.93 min, m/z = 218.17 [M+H]+, calcd. for [C12H11NO3 +H]+ 218.22. HRMS [ESI+] m/z = 

217.07318 [M]+, calcd. for [C12H11NO3]
+ 217.07389. 

AMINE 

2-methoxy-4-{(1E)-3-[(prop-2-yn-1-yl)amino]prop-1-en-1-yl}phenol (1.125) 

 

To a solution of commercial ferulic aldehyde (100 mg, 0.56 mmol) and molecular sieves 4 

Å in 3 mL (6 mL/mmol) of dry THF, propargylamine (179 µL, 2.81 mmol, 5 equiv) was 

added. The reaction was stirred at rt overnight. The mixture was filtered, washed with THF 

several times and evaporated (imine formation). The crude was resolved in 3.5 mL of 

MeOH and NaBH4 was added (23 mg, 0.62, 1.1 equiv) at 0 ºC. The reaction was stirred at 
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rt for 30 min. The solvent was removed and residue was solved in EtOAc, extracted, 

washed with H2O and brine, dried over MgSO4, filtered and evaporated.118 The crude was 

purified by flash chromatography in EtOAc:TEA 95:5 to obtained 1.125 as a yellow pale 

solid in 62% yield (76 mg, 0.35 mmol). Mp: 76 - 78 ºC. 1H NMR (500 MHz, DMSO-d6) δ 

8.98 (bs, 1H), 7.63 (bs, 1H), 6.99 (d, J = 2.0 Hz, 1H, H5), 6.78 (dd, J = 8.1, 2.0 Hz, 1H, H9), 

6.70 (d, J = 8.1 Hz, 1H, H8), 6.39 (d, J = 16.0 Hz, 1H, H3), 6.08 (dt, J = 15.9, 6.3 Hz, 1H, 

H2), 3.77 (s, 3H, CH3), 3.32 – 3.29 (m, 4H, H1, CH2C≡), 3.06 (t, J = 2.4 Hz, 1H, ≡CH). 13C 

NMR (126 MHz, DMSO-d6) δ 147.7 (C6), 146.1 (C7), 130.7 (C3), 128.5 (C4), 125.3 (C2), 

119.3 (C9), 115.4 (C8), 109.6 (C5), 83.0 (≡C), 73.6 (≡CH), 55.5 (CH3), 49.6 (C1), 36.6 

(CH2C≡). HPLC-MS (2:30- g.t.10 min) tR 1.57 min, m/z = 218.10 [M+H]+, calcd. for 

[C13H15NO2+H]+ 218.27. HRMS [ESI+] m/z = 217.11067 [M]+, calcd. for [C13H15NO2]
+ 

217.11028. 

 

 

Conformational studies  

Conformational studies were carried out by Dr. Federico Gago from University of Alcalá 

de Henares (Madrid, Spain) in order to know the optimal dihedral angles between either 

indole or naphthalene and the corresponding oxadiazolone ring, which is defined by 

carbons 1-2-3-4 (Figure 1.8). This dihedral parametrization was done using Gaussian 

following the protocol described in Ref.169  

Thus, the dihedral angle was rotated from 0 to 360 degrees (72 steps with a step size of 5 

degrees) and the rest of the structure was minimized, obtaining energy values expressed in 

Hartrees, which were converted to kcal/mol by multiplying by 627.51 (1Hartree = 627.51 

kcal/mol). Finally, the minimum value was calculated and subtracted to the rest to obtain 

relative energies. The resulting energies were plotted to visualize the energy profile (energy 

(kcal/mol) vs dihedral angle degrees). 
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Biological Studies 

Human melatonin receptors MT1R and MT2R and hamster MT3R 

Radioligand displacement and functional studies were performed at Eurofins-Cerep SA. 

The results are expressed as a percent inhibition of the control radioligand specific binding. 

The standard reference compound (MT) was tested in each experiment at several 

concentrations to obtain a competition curve from which its IC50 is calculated. 

MT1R 

The affinity of compounds for hMT1R in transfected CHO cells was determined in a 

radioligand binding assay. Cell membrane homogenates (about 80 µg protein) were 

incubated at 22 °C for 240 min with 0.01 nM [125I]iodomelatonin in the absence or 

presence of the test compound in a buffer containing 50 mM Tris-HCl (pH 7.4), 5 mM 

MgCl2 and 0.1% BSA. Nonspecific binding was determined in the presence of 1 µM MT.  

Following incubation, the samples were filtered rapidly under vacuum through glass fiber 

filters (GF/B, Packard) presoaked with 0.3% PEI and rinsed several times with ice-cold 50 

mM Tris-HCl using a 96-sample cell harvester (Unifilter, Packard). The filters were dried 

then counted for radioactivity in a scintillation counter (Topcount, Packard) using a 

scintillation cocktail (Microscint 0, Packard).120-122 

MT2R 

The affinity of compounds for hMT2R in transfected CHO cells was determined in a 

radioligand binding assay. Cell membrane homogenates (6 µg protein) were incubated for 

120 min at 37°C with 0.05 nM [125I]iodomelatonin in the absence or presence of the test 

compound in a buffer containing 50 mM Tris-HCl (pH 7.4) and 5 mM MgCl2. Nonspecific 

binding was determined in the presence of 1 µM MT. Following incubation, the samples 

were filtered rapidly under vacuum through glass fiber filters (GF/B, Packard) presoaked 

with 0.3% PEI and rinsed several times with ice-cold 50 mM Tris-HCl using a 96-sample 

cell harvester (Unifilter, Packard). The filters were dried then counted for radioactivity in a 
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scintillation counter (Topcount, Packard) using a scintillation cocktail (Microscint 0, 

Packard).120-122 

Functional characterization in MT2R 

Functional characterization of 1.51 at hMT2R was determined by measuring its effects on 

cyclic adenosine monophosphate (cAMP) modulation using the homogeneous time 

resolved fluorescence (HTRF) detection method. CHO cells expressing hMT2R were 

suspended in Hanks’ balanced salt solution (HBSS) buffer (Invitrogen) complemented with 

20 mM HEPES (pH 7.4) and 500 µM IBMX, then distributed in microplates at a density of 

7.103 cells/well in the presence of either of the following: HBSS (basal control), the 

reference agonist at 10 nM (stimulated control) or various concentrations (EC50 

determination), or the test compounds. 

Thereafter, the adenylyl cyclase activator NKH 477 was added at a final concentration of 5 

µM. Following 10 min incubation at 37°C, the cells are lysed and the fluorescence acceptor 

(D2-labeled cAMP) and fluorescence donor (anti-cAMP antibody labeled with europium 

cryptate) were added. After 60 min at rt, the fluorescence transfer was measured at λex = 

337 nm and λem = 620 and 665 nm using a microplate reader (Envison, Perkin Elmer). The 

cAMP concentration was determined by dividing the signal measured at 665 nm by that 

measured at 620 nm (ratio).121  

The results are expressed as a percent of the control response to MT (10 nM). The standard 

reference (MT) was tested in each experiment at several concentrations to generate a 

concentration-response curve from which its EC50 value is calculated. 

Hamster MT3R 

Affinity of compounds toward MT3R in the hamster brain was determined by radioligand 

binding assay. Membrane homogenates of brain (750 µg protein) were incubated for 60 

min at 4 °C with 0.1 nM [125I]iodomelatonin in the absence or presence of the test 

compound in a buffer containing 50 mM Tris-HCl (pH 7.4) and 4 mM CaCl2. Nonspecific 

binding was determined in the presence of MT (30 µM). Following incubation, the samples 

were filtered rapidly under vacuum through glass fiber filters (Filtermat B, Wallac) 
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presoaked with 0.5% PEI (pH 7.4) and rinsed several times with an ice-cold buffer 

containing 50 mM Tris-HCl and 2 M NaCl using a 48-sample cell harvester (Mach II, 

Tomtec). The filters were dried then counted for radioactivity in a scintillation counter 

(Betaplate 1204, Wallac) using a solid scintillator (Meltilex B/HS, Wallac).122 

 

Oxygen radical absorbance capacity assay (ORAC)  

The ORAC method was followed, using a Polarstar Galaxy plate reader (BMG 

Labtechnologies GmbH, Offenburg, Germany) with 485-P excitation and 520-P emission 

filters.125,170 The equipment was controlled by the Fluorostar Galaxy software (version 

4.11-0) for fluorescence measurement. 2,2’-Azobis-(amidinopropane) dihydrochloride 

(AAPH), trolox and fluorescein (FL) were purchased from Sigma-Aldrich. The reaction 

was carried out in 75 mM phosphate buffer (pH 7.4) and the final reaction mixture was 200 

L. Antioxidant (20 L) and FL (120 L; 70 mM, final concentration) solutions were 

placed in a black 96-well microplate (96F untreated, Nunc). The mixture was pre-incubated 

for 15 min at 37 ºC and then, AAPH solution (60 L, 12 mM, final concentration) was 

added rapidly using a multichannel pipette. The microplate was immediately placed in the 

reader and the fluorescence recorded every min for 80 min. The microplate was 

automatically shaken prior each reading. Samples were measured at eight different 

concentrations (0.1-1M). A blank (FL + AAPH in phosphate buffer) instead of the sample 

solution and eight calibration solutions using trolox (1-8 M) were also carried out in each 

assay. All the reaction mixtures were prepared in duplicate, and at least three independent 

assays were performed for each sample. Raw data were exported from the Fluostar Galaxy 

Software to an Excel sheet for further calculations. Antioxidant curves (fluorescence vs. 

time) were first normalized to the curve of the blank corresponding to the same assay, and 

the area under the fluorescence decay curve (AUC) was calculated. The net AUC 

corresponding to a sample was calculated by subtracting the AUC corresponding to the 

blank. Regression equations between net AUC and antioxidant concentration were 

calculated for all the samples. ORAC-FL values were expressed as trolox equivalents by 
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using the standard curve calculated for each assay, where the ORAC-FL value of trolox 

was taken as 1.0. 

Inhibition of human monoamine oxidases (hMAO-A and hMAO-B)  

MAO inhibition measurements were carried out following the general procedure previously 

described.171 Briefly, test drugs and adequate amounts of recombinant hMAO-A or hMAO-

B (Sigma-Aldrich Chemistry S.A., Alcobendas, Spain) required and adjusted to oxidize 165 

pmol of p-tyramine/min in the control group, were incubated at 37 ºC for 15 min in a flat-

black-bottom 96-well microtest plate (BD Biosciences, Franklin Lakes, NJ) placed in the 

dark fluorimeter chamber. The reaction was started by adding 200 mM Amplex Red 

reagent (Molecular Probes, Inc., Eugene, OR), 1 U/mL horseradish peroxidase, and 1 mM 

p-tyramine and the production of resorufin, was quantified at 37 ºC in a multidetection 

microplate fluorescence reader (FLX800, Bio-Tek Instruments, Inc., Winooski, VT) based 

on the fluorescence generated (excitation, 545 nm; emission, 590 nm). The specific 

fluorescence emission was calculated after subtraction of the background activity, which 

was determined from wells containing all components except the hMAO isoforms, which 

were replaced by PBS. 

 

Inhibition of human lipoxygenase-5 (hLOX-5) 

The fluorescence-based enzyme method previously described by Pufahl et al. was 

followed, in 96-well microtiter plates.172 The assay solution consists of Tris buffer (50 mM, 

pH 7.5), ethylenediaminetetraacetic acid (EDTA, 2 mM), CaCl2 (2 mM), AA (3 μM), ATP 

(10 μM), 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA, 10 μM), hLOX-5 (100 

mU/well), bovine glutathione peroxidase (GPx, 25 mU/well) and reduced glutathione (1 

mM). Compounds were added to the test solution prior to AA and ATP, and preincubated 

for 10 min at rt. Then, the AA and ATP substrates were added; the enzymatic reaction 

allowed to progress for 20 min and followed by the addition of 40 L of ACN. The 

fluorescence measurements (excitation: 485 nm; emission: 520 nm) were performed on a 

FLUOstar OPTIMA (BMG LABTECH, Offenburg, Germany). IC50 is defined as the 
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concentration of compound that inhibits enzymatic activity by 50% over the control of 

untreated enzyme. 

 

Luciferase activity: Nrf2 induction 

These experiments were performed in the Intituto Teófilo Hernando (Madrid). Thus, 

AREc32 cells were plated in 96-well white plates (2 × 104
 cells/well). After 24 h, cells were 

incubated with increasing concentrations of each compound in duplicate for 24 h. AREc32 

cells express constitutively the plasmid pGL-8xARE that implements 8 copies of the EpRE 

sequences followed by luciferase reporter gen. Therefore, Nrf2 induction is related to the 

activation of EpRE sequences, expressing luciferase at the same extent as EpRE sequences 

are activated. The Luciferase Assay System (Promega E1500) was used according to 

provider protocol and luminescence was quantified in an Orion II microplate luminometer 

(Berthold, Germany). Fold induction of luciferase activity was normalized to basal 

conditions. Data are expressed as CD values, expressing the concentration required to 

double the luciferase activity. CD values were calculated from dose-response curves 

generated from fold induction of control conditions vs. inducer concentration and fitted by 

non-linear regression and data interpolated to 2-fold induction concentration.133 

 

In vitro blood–brain barrier permeation assay (PAMPA-BBB) 

Prediction of the brain penetration was evaluated using the PAMPA-BBB assay, in a 

similar manner as previously described.111,135,173,174 Pipetting was performed with a semi-

automatic robot (CyBi®-SELMA) and UV reading with a microplate spectrophotometer 

(Multiskan Spectrum, Thermo Electron Co.). Commercial drugs, phosphate buffered saline 

solution at pH 7.4 (PBS), and dodecane were purchased from Sigma, Aldrich, Acros, and 

Fluka. Millex filter units (PVDF membrane, diameter 25 mm, pore size 0.45 μm) were 

acquired from Millipore. The porcine brain lipid (PBL) was obtained from Avanti Polar 

Lipids. The donor microplate was a 96-well filter plate (PVDF membrane, pore size 0.45 

μm) and the acceptor microplate was an indented 96-well plate, both from Millipore. The 



Experimental section 

177 

acceptor 96-well microplate was filled with 200 μL of PBS: EtOH (70:30) and the filter 

surface of the donor microplate was impregnated with 4 μL of PBL in dodecane (20 mg 

mL-1). Compounds were dissolved in PBS: EtOH (70:30) at 100 μg mL-1, filtered through a 

Millex filter, and then added to the donor wells (200 μL). The donor filter plate was 

carefully put on the acceptor plate to form a sandwich, which was left undisturbed for 240 

min at 25 ºC. After incubation, the donor plate is carefully removed and the concentration 

of compounds in the acceptor wells was determined by UV-Vis spectroscopy. Every 

sample is analyzed at five wavelengths, in four wells and at least in three independent runs, 

and the results are given as the mean ± SD. In each experiment, 11 quality control standards 

of known BBB permeability were included to validate the analysis set. 

Neurogenic assays 

These studies were performed by Drs. José A Morales-García and Ana Pérez Castillo at the 

Instituto de Investigaciones Biomédicas “Alberto Sols”. Thus, adult male C57BL/6 mice (3 

months old) were used in order to determine neurogenesis activity. All animal experimental 

procedures were previously approved by the Ethics Committee for Animal Experimentation 

of CSIC following national normative (1201/2005) and international recommendations 

(Directive 2010/63 from the European Communities Council). Special care was taken to 

minimize animal suffering. NSC were isolated from the SGZ of the dentate gyrus of the 

hippocampus of adult mice and cultured as NS as previously described.140,175 After 

treatment of NS with the corresponding compounds at 10 µM, the expression of neuronal 

markers was analyzed by immunocytochemistry according to published protocols,140 using 

two well-known neurogenesis-associated markers: Tuj1 to early stages of neurogenesis and 

MAP-2 to late neuronal maturation. A rabbit anti-β-III-tubulin (TuJ clone; Abcam) 

polyclonal antibody coupled to an Alexa-488-fluor-labeled secondary antibody (Molecular 

Probes) and a mouse anti-MAP-2 (Sigma) monoclonal antibody coupled to an Alexa-546-

fluor-labeled secondary antibody (Molecular Probes) were used. DAPI staining was used as 

a nuclear marker. Fluorescent representative images were acquired with a Nikon 

fluorescence microscope 90i coupled to a digital camera Qi. The microscope configuration 

was adjusted to produce the optimum signal-to-noise ratio. 
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Neuroprotection studies 

These assays were performed in the Instituto Teófilo Hernando. Substances used were 

purchased from Sigma-Aldrich (OA) and Invitrogen (DCFDA, PI, Hoechst 33342). 

C57BL/6 (WT) mice from the laboratory’s colony were used between 3 - 4 months old for 

acute OA protocol. The embryos for pregnant Sprague Dawley rats were used for the 

primary cultures of cortical neurons. The European Directives that controls the scientific 

use and care of animals were strictly followed. Animals were housed in standard cages with 

a 12 /12 h light/dark cycle and fed ad libitum. 

 

Human neuroblastoma SH-SY5Y cell line culture 

SH-SY5Y cells were maintained in flasks with supplemented medium in incubators with 

standard conditions (37 oC, 5% CO2, 95% H2O). The culture medium was MEM-F12 (9.53 

g MEM, 2.5% non-essential amino acids, 4 g NaHCO3, 0.05% sodium pyruvate, penicillin 

100 U/mL, streptomycin 100 U/mL) supplemented with 10% Fetal Bovine Serum (FBS). 

Subcultures were performed once or twice a week when confluent. They were seeded in 96-

well plates at a density of 60000 cells/well for posterior pharmacological evaluation. 

 

Enriched primary neuron cultures 

Cortical neurons were cultured from rat embryos obtained from an 18-day pregnant rat. For 

this purpose, a cesarean section was made to take out the embryos. Immediately after, they 

were beheaded and submerged in saline phosphate buffer containing (in mM): 137 NaCl, 3 

KCl, 10 Na2HPO4, 2 KH2PO4, 4 BSA, 1.5 glucose; pH 7.4. Next, their brain cortices were 

extracted, unbundled mechanically and centrifuged at 800 rpm (Kubota 5100, PACISA) for 

10 min. Finally, they were suspended in DMEM/F-12 (Gibco) supplemented with 20% 

FBS and 0.005% penicillin/streptomycin. Their seeding process required well plates with 

poly-d-lysine (PDL; Sigma-Aldrich) pretreatment for a minimum of 2 h under UV light. 

Once the PDL was dry and washed twice with sterile H2O, primary cortical neurons were 

seeded at a density of 60.000 cells/well in 96-well plates. After 2 h of incubation, a medium 
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replacement was performed with NB (Gibco) supplemented with 10% FBS, 0.005% 

penicillin/streptomycin and B-27 (Invitrogen). Cells were cultured for 7 - 10 days (37 oC, 

5% CO2, 95% H2O) before pharmacological assays took place, which were performed 

using NB medium supplemented with B-27 minus antioxidants (Invitrogen). 

 

Pharmacological evaluation of cell cultures 

SH-SY5Y and neurons were seeded in 96-well plates and pre-treated with the selected 

compounds (1 µM). After 24 h, the cells were co-treated with the compounds (1 µM) and 

OA (10 nM) in their respective culture mediums (1% FBS). Lastly, cell viability was 

measured 24 h after the co-treatment by MTT assay.  

 

Acute OA protocol in hippocampal slices  

Hippocampal slices were obtained in the same way as before from 3 - 4 months old mice. 

However, after slice individualization, they were transferred to a small cup and stabilized 

for 45 min in pre-incubation solution containing (in mM): 120 NaCl, 2 KCl, 26 NaHCO3, 2 

CaCl2, 1.18 KH2PO4, 1.19 MgSO4 and 11 glucose, using a water bath set at 34 oC in 

constant bubbling conditions (5% CO2, 95% O2). Next, 3 - 5 slices were introduced in each 

well of a 48-well plate containing a 1:1 mixture of DMEM medium and control solution 

containing (in mM): 120 NaCl, 2 KCl, 26 NaHCO3, 2 CaCl2, 1.18 KH2PO4, 1.19 MgSO4 

and 11 glucose. Each well was treated differently, using OA (1 µM) as toxic and the 

corresponding compounds (1 µM), and the plate was maintained under culture conditions 

(37 oC, 5% CO2, 95% O2) for 6 h. The cell viability was measured by MTT, cell death by 

PI, oxidative stress by DCFDA. 
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MTT assay 

MTT reduction rate is an indicator of the functional integrity of the mitochondria and, 

hence, of cellular viability.176,177 This test consists of the internalization of thiazolyl blue 

tetrazolium bromide (Sigma-Aldrich) inside the cell. This soluble yellow molecule is 

metabolized by the mitochondrial dehydrogenase of living cells into formazan, an insoluble 

purple salt. Then, DMSO (VWR Chemicals) was used for solved these purple deposits. In 

cell cultures, tetrazolium (0.5 mg/mL in culture medium) was added for 2 h, after which 

DMSO was added and absorbance measured. In hippocampal slices, after the 6 h-

incubation period, each slice was transferred to an individual well containing 100 µL of 

MTT (0.5 mg/mL in control solution) and incubated under culture conditions (37 oC, 5% 

CO2, 95% O2) for 45 min. Later, MTT solution was removed and DMSO was added for 45 

min shaking. Finally, cell viability was measured in microplate reader in the presence and 

absence of the hippocampal slices. The absorbance was measured at 540 nm using a 

microplate reader (Labsystems iEMS). Data were normalized against the basal condition. 

 

Fluorescence measurements in hippocampal slices 

Propidium iodide (PI)a fluorescent intercalating agent, measures cell death. DCFDA, a 

fluorogenic compound used to measure ROS activity, spreads into the cell, where esterases 

transform it into a non-fluorescent substance. ROS oxidize this probe into 2’,7’-

dichlorofluorescein (DCF), an intensive fluorescent molecule. The probes PI (1 µL/mL; 

λEx/Em = 535/617 nm) and DCFDA (10 µl/mL; λEx/Em = 495/529 nm) were added 1 h before 

the 6 h-incubation period for the slices of the OA-acute protocol. Hoechst dye (2 µL/mL; 

λEx/Em = 350/461 nm) identifies and quantifies cell nuclei. Fluorescence was then measured 

in the CA1 region of the hippocampal slices using a fluorescence microscope Eclipse 

TE300 (Nikon) attached to an EM-CCD digital camera C9100 (Hamamatsu). The data 

obtained for PI and DCFDA were normalized against Hoechst. 
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Statistical analysis 

Data was analyzed with GraphPad Prism 5.0 software. Each compound has been analyzed 

independently from the others, although they have been represented in the same graph. The 

results are represented as mean ± SD from the mean, employing one-way ANOVA test and 

the Newman-Keuls post-test correction. The threshold of statistical significance was 

stablished at α < 0.05. 
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INTRODUCTION 

Nicotinic acetylcholine receptors 

ACh (Figure 2.1A) is a neurotransmitter produced, stored and released by cholinergic 

neurons at neuromuscular junctions, at synapses in the ganglia of the visceral and motor 

system, and at a variety of sites within the CNS. ACh is involved in many neuronal 

functions, acting through the ACh receptors (AChRs).178 These receptors have been sorted 

according to their affinities for different molecules into two main classes, muscarinic and 

nicotinic subtypes, with different pharmacological properties. The metabotropic muscarinic 

receptors are membrane bound GPCRs activated by muscarine, whereas the ionotropic 

nicotinic receptors (nAChRs) are stimulated by nicotine (Figure 2.1A). 

nAChRs are widely distributed in both CNS and peripheral nervous system (PNS) and 

belong to the ligand-gated ion-channel superfamily. They are crucially involved in 

electrical signaling in brain and skeletal muscles. They are composed by the assembly of 

five transmembrane subunits organized around a central pore, resulting by combinations of 

alpha (α1-10, ligand-binding site), beta (β1-4), gamma (), delta (δ), and epsilon (ε) 

subunits, which define different tissue-specific nAChR subtypes.179 They can be broadly 

classified into two classes, neuronal and muscular receptors. Neuronal nAChRs consist of α 

and β combinations (α2-α10 and β2-β4) with variable stoichiometry or as alpha homo-

pentamers (α7-α9), mainly found in CNS, PNS, and non-neuronal tissues.180 In the 

mammalian brain, the most common neuronal subtypes are α7 and α4β2 nAChRs and, as a 

result, they are considered remarkable therapeutic targets for the treatment of 

neurodegenerative diseases.181  

Muscular nAChRs are found in the electrical organs of fish and in the post-junctional folds 

of the motor endplate of the neuromuscular junction in vertebrates, and mediate all fast 

synaptic excitation on voluntary muscle contraction.182 There are five classes of muscular-

type AChR subunits (α1, β1, γ, ε and δ) that form a circle around the central channel.183,184 

In embryonic muscle nAChRs consist of (α1)2β1γδ, whereas in adult muscle, the γ subunit 

is replaced by an ε subunit, being its composition (α1)2β1εδ.185,186 Muscle-type nAChR 

channels have two ligand-binding sites for ACh, a common location in the α-δ protein 
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interface, and another place in either α-γ (in fetal status) or α-ε (in adults) interfaces (Figure 

2.1B).187 In these binding-sites there are several aromatic amino acids (tryptophan and 

tyrosine), which provide a negative electrostatic environment for stabilizing the quaternary 

ammonium group [-N+(CH3)3] of ACh by cation-π interactions188-190 (Figure 2.1B). 

 

A B 

 

 

 

Figure 2.1. (A) Chemical structures of muscarine and nicotine; (B) Embryonic muscular 

nAChR in resting and active state, being activated by ACh; cation-π interaction between a 

tryptophan residue (Trp-149) and the neurotransmitter ACh (reproduced from Ref.188). 

 

When ACh binds to the two binding sites of the muscle-type nAChR, it causes a 

conformational change of the ion channel, producing its opening (Figure 2.1B). In the open 

state, Na+ influxes across the plasma membrane of post-junctional endplate, which has low 

permeability for these ions, causing electrical impulse and consequently, depolarization of 

the motor endplate membrane. Immediately K+ exits, producing the repolarization and the 

return to the negative membrane potential. The electrical impulse is propagated through 

diverse receptor channels triggering muscle contraction.191 
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Neuromuscular blocking drugs 

Neuromuscular blocking agents (NMBAs) inhibit muscle contraction by blocking nAChRs 

at the neuromuscular junction.192,193 Natural extracts containing NMBAs have been used for 

centuries for a variety of applications, ranging from hunting to surgical procedures. South 

American indigenous tribes used to coat the tip of arrows or blow-pipe darts with curare 

alkaloids from different plants, in which tubocurarine is the main active ingredient (Figure 

2.2). Since the early 1940s, NMBAs are used as muscle relaxants to facilitate endotracheal 

intubation. Due to several adverse effects observed in these drugs, in the last years several 

synthetic or semi-synthetic NMBAs have been developed.194,195 As a common feature, 

NMBAs have at least one positively charged quaternary ammonium group or a tertiary 

ammonium group protonated at physiological pH, through which they bind to muscle-type 

nAChRs in a similar way as ACh does (Figure 2.1B).179 

According to their mechanism of action, NMBAs can be classified into two groups: 

depolarizing and non-depolarizing drugs. Depolarizing NMBAs act as agonists, causing a 

prolonged depolarization of the plasma membrane of the muscle fiber, because they are 

more resistant to degradation by AChE than the neurotransmitter itself. As a result, they 

stay longer in the receptor, desensitizing the ion channel and triggering paralysis. This 

behavior can be differentiated in two phases: in phase I the opening of the channel allows 

the entry of Na+ and the output of K+ and consequently, the beginning of depolarization; in 

phase II, the desensitization of the nicotinic receptor takes place and therefore, muscular 

relaxation occurs. Examples of depolarizing agents that mimic two molecules of ACh are 

decamethonium (prolonged action) and suxamethonium, the latter (also known as 

succinylcholine) in current clinical use (shorter action time because is easily hydrolyzed by 

esterases) (Figure 2.2). 

The non-depolarizing agents are competitive antagonists that challenge ACh for nicotinic 

binding sites, preventing the effect of the neurotransmitter on the receptor. Therefore, they 

do not induce the channel opening, avoiding depolarization of the muscle cell membrane, 

and consequently, producing direct paralysis. Their effects can be reversed by increasing 

ACh levels or by the action of an AChE inhibitor. Non-depolarizing NMBAs in clinic use 

can be categorized into two main groups according to their structure, 
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benzylisoquinoliniums and aminosteroids. Structurally derived from tubocurarine, the first 

family has quaternary ammonium groups linked by a long and flexible hydrocarbon chain, 

facilitating enzymatic degradation. Examples of the benzylisoquinoliniums’ group are 

atracurium and mivacurium (Figure 2.2), with a short duration of action (30 and 18 min, 

respectively). The aminosteroid family is composed of molecules with bulkier structures, 

where the quaternary ammonium groups are anchored to a steroid nucleus that makes 

enzymatic degradation more difficult. Some examples are vecuronium, rocuronium, and 

pancuronium, with increasing duration of action (40, 70 and >180 min, respectively) 

(Figure 2.2). 

 

 

Figure 2.2. Examples of depolarizing and non-depolarizing NMBAs 
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Azobenzenes 

Azobenzenes are compounds that contain an azo group (-N=N-) linking two benzenes, 

which in turn can carry several substituents. They exist in two isomeric forms, (E) and (Z), 

which can be reversibly exchanged thermally or by light irradiation at characteristic 

wavelengths, which depend on the nature of the aromatic substituents (Figure 2.3). In 1937, 

Hartley identified both isomers from a solution of azobenzene exposed to light.196 In 

general, the (E)-isomer is the thermodynamically favored form that can be changed to the 

(Z)-isomer by irradiation with UV light (320-350 nm). The metastable (Z)-isomer can be 

also isomerized to the more stable (E)-isomer with light of higher wavelength (400-450 

nm) or by thermal relaxation in the darkness (Figure 2.3). In addition to the fact that both 

isomers adopt different three-dimensional dispositions, the isomerization of the (E) to the 

(Z)-form shortens the molecule about 0.6 nm, affecting the physical, chemical and 

biological properties, as explained along this work. 

A B 

 

 

Figure 2.3. (A) Photo- and thermal isomerization of the (E, Z)-isomers of azobenzene. (B) 

Energetic profile for the switching process of azobenzene isomers (reproduced from 

Ref.197) 

 

For a long time, azobenzenes have been developed for many applications in the chemical 

industry of dyes and pigments,198 radical reaction initiators,199 supramolecular devices,200 

ionic liquids,201 etc. More recently, and due to their light-dependent properties, other 

attractive uses are disclosed in relation to this PhD thesis, such as their application in 

biological systems.  
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Photopharmacology and photoswitchable drugs 

Photopharmacology has grown impressively in the last decade and recent findings in areas 

as diverse as chemistry, biology and pharmacy continue to provide new evidence of their 

therapeutic potential. This area is based on the use of drugs that can be selectively activated 

and deactivated with light irradiation at different wavelengths (Figure 2.4A). The use of 

light provides a fine adjustment in the control of the administration of these drugs, with 

high spatial and temporal resolution,202 being able to avoid the systemic side effects of 

conventional drugs. Photo-activation/deactivation can be achieved inside the organism by 

activated fluorescent compounds, or from the outside using minimally invasive optical 

fibers for the delivery of photon excitation in specific tissues.203,204  

Photoswitchable drugs are compounds that consist of at least one biological active fragment 

(e.g. agonist, antagonist or ion channel blocker) and a photoisomerizable group 

(azobenzene in this work). In recent years, photoswitches have been applied to a wide range 

of biological targets, such as enzymes,205 transmembrane proteins (ionic channels,206-208 

GPCRs,209 etc.), nucleic acids,204 etc. Therapeutic efficacy of these drugs has been 

demonstrated at the cellular level and some studies have progressed to live animals, with 

the restoration of vision in degenerative retinal diseases at the vanguard of these efforts 

(Figure 2.4B).210,211 
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A B 

  
  

Figure 2.4. (A) Applications of photopharmacology to biological targets (taken from 

Ref.204). (B) Chemical photoswitches for restoring vision of the blind (taken from Ref.210). 

 

From the pioneer studies of the application of photoswitchable drugs on the cholinergic 

system described around the 1970’s,212,213 several photoisomerizable ligands have been 

developed seeking the modulation of nAChRs with light.214-216 Firstly, the Erlanger’s group 

published two photochromic modulators of nAChRs, with meta-substitutions in both 

benzene rings: 3-(α-bromomethyl)-3'-[α-(trimethylammonium)methyl]azobenzene bromide 

(m-QBr, Figure 2.5A), which binds covalently to nAChR by reduction of the disulfide (S-

S) bonds of the membrane with dithiothreitol;217 and 3,3'-bis[α-

(trimethylammonium)methyl]azobenzene dibromide (m-bisQ, Figure 2.5A), bearing two 

quaternary ammonium groups (Q) on the side of azobenzene, which binds reversibly to 

nAChRs. In the (E)-conformation both compounds are potent activators of nAChR, but (Z)-

isomers result practically inactive in the electrogenic membrane of the electroplax of 

Electrophorus electricus.218-220 Later, Lester characterized m-bisQ as a light-dependent 

nicotinic agonist in the electric eel,221,222 and in an additional study on rat myoballs this 

group determined a Hill coefficient of approximately 2, concluding that more than one m-

bisQ molecule binds to receptor in a cooperative process.223 

A study about the preferred interactions of m-bisQ and its ortho- and para-analogues with 

muscular nAChRs revealed that m-bisQ displayed the optimized arrangement to interact 
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with the two binding sites of the receptor.224,225 Hydrophobic areas (benzene) of m-bisQ 

mimics the methylene groups of ACh, in the planar hydrophobic area of the receptor, where 

also exits a site that interact with the carbonyl oxygen of ACh. There is also an anionic site 

located out of this plane that interacts with quaternary methyl groups (Figure 2.5B).224  

 

A B 

 

 

Figure 2.5. (A) Chemical structures of QBr and m-bisQ. (B) Diagram of two ACh 

molecules (open circles) and (E)-m-bisQ (solid circles) showing overlapping of critical 

functional groups (reproduced from Ref.224). 

 

In 2015 Trauner´s group reviewed the light-dependent properties of m-bisQ using modern 

methods of channel electrophysiology.214 In HEK293T cells, they found that the (E)-isomer 

is an agonist, which preferably acts on muscle-type nAChRs compared to the neuronal 

subtypes.  
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OBJECTIVES AND WORK PLAN 

Taking into account all of the above mentioned, in this chapter, we propose to design, 

synthesize and evaluate novel ligands for the muscular nAChR, with lower affinity toward 

neuronal receptors and with the ability to be activated/deactivated with light.  

As mentioned earlier, the most commonly used NMBAs have two positively charged amino 

groups linked in order to stablish cation-π interactions in the aromatic binding sites. 

Focusing now our attention on these quaternary ammonium groups of ligands of muscular 

nAChRs, we noticed that compounds with less sterically hindered amino groups tend to be 

agonists, such as m-bisQ, suxamethonium and carbachol. In contrast, compounds with 

larger substitutions in the amino group, including N-carbocycles are likely to be 

antagonists, such as the case of benzylisoquinoliniums (e.g., atracurium, mivacurium and 

cisatracurium) or aminosteroids (e.g., pancuronium, rocuronium and vecuronium).192,193 

Following this notion, we rationalized that we could generate photoswitchable antagonists 

for muscular nAChR by an N-cycle replacement of two methyl groups of each quaternary 

amine group of m-bisQ. As proof of principle, here we have designed, synthesized and 

tested a first generation of novel muscular nAChR ligands, named azocuroniums (2.1), 

which can be modulated ad libitum by light and consequently allow the finely tuned study 

of nAChR (Figure 2.6).  

 

Figure 2.6. General structure of target (E)-(Z)-azocuroniums 2.1 and their putative 

photoisomerization  
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To achieve this general goal, we proposed the following work plan: (1) Synthesis of new 

photoswitchable compounds named as meta-azocuroniums (m-2.1) by replacement of the 

dimethylamino moiety of m-bisQ by different N-heterocycles (i.e. pyrrolidine, piperidine, 

azepane, and 1,2,3,6-tetrahydropyridine), which are present in non-depolarizing 

aminosteroids, such as pancuronium. For comparative purposes, we also plan the synthesis 

of the corresponding para-azocuroniums (p-2.1), as well as m- and p-bisQ (Figure 2.6). (2) 

Study of their photoisomerizable behavior by spectrometry UV-Vis and NMR, for 

stablishing the optimal wavelength for the (E)-(Z) interconversion. (3) Evaluation of 

physical-chemical properties, such as water solubility, pKas, and passive permeation into 

the CNS. (4) Assessment of their biological activities through the determination of binding 

constants in muscle and neuronal nAChRs by radioligand displacement. (5) Finally, 

evaluation of the functional character of the most active compounds by electrophysiology 

in muscular nAChRs expressed in Xenopus laevis oocytes. 

The synthesis of target azocuroniums of general formula 2.1 was planned by quaternization 

of tertiary amines 2.2 bearing the azo group, which can be obtained from the corresponding 

nitrobenzenes 2.3 or anilines 2.4 (Scheme 2.1). In this strategy, the critical step is the 

formation of the corresponding azo derivative of general formula 2.2, which could be 

achieved using different methodologies according to the bibliographic precedents, as 

explained below. 

  

Scheme 2.1. General retrosynthetic plan of desired azocuroniums 
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The most used synthetic strategies for obtaining azobenzenes can be grouped in the 

following classical methods:226,227 

1. Azo coupling reaction (diazonium salts with activated aromatic compounds). Many 

azobenzenes are formed by this electrophilic reaction, which starts with the diazotization 

reaction of the corresponding aniline at low temperature. Given that diazonium salts are 

weak electrophiles, they must react with an electron rich aromatic nucleophile (containing 

electron donating groups (EDG), such as amine, hydroxyl, or alkoxy groups) to obtain the 

corresponding azobenzene.228-230 Since activating groups direct to para- and ortho- 

positions, the resulting azobenzenes will be mainly para-substituted, because the steric 

hindrance hampers the formation of ortho-derivatives (Scheme 2.2). Taking into account 

these limitations, this methodology cannot be employed to obtain the desired meta-

azobenzenes bearing not activated substituents, as planned in this work. 

 

Scheme 2.2. Synthesis of azo compounds by coupling of diazonium salts  

with activated aromatic derivatives 

 

The following methods use nitrobenzene or aniline derivatives as starting material, 

involving all the oxidation-reduction states showed in scheme 2.3 in the generation of the 

azo functionality. Azobenzenes 2.2 can be obtained by direct reduction of azoxybenzenes 

2.5, which could be obtained from the reaction of nitroso compounds 2.6 and 

hydroxylamines 2.7.231 However, an over reduction of azoxybenzenes 2.5 may lead to 

hydrazine derivatives 2.8, instead of the desired azobenzenes 2.2.232 An alternative pathway 

is the reaction of nitro compounds 2.3 with hydroxylamines 2.7. Finally, reaction of amines 

2.4 with nitroso derivatives 2.6 may also produce the desired azobenzenes 2.2 (Mills 

reaction), although and as depicted in scheme 2.3, the involvement of different species in 

equilibrium may complicate the synthetic procedures. Thus, driving the reaction towards a 
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unique product is a complex task, because undesired products 2.5-2.8 are generally 

obtained, depending on the experimental conditions. 

 

Scheme 2.3. Main species involved in the synthesis of azobenzene derivatives 

 

2. Mills reaction (coupling of nitrosobenzenes and anilines). This methodology takes place 

between anilines and nitroso compounds in acidic media, making possible the synthesis of 

asymmetric azobenzene derivatives with substitution in all possible benzene positions and 

in the presence of deactivated rings (with electron-withdrawing groups). However, the 

isolation of nitroso derivative is a difficult task due to its high reactivity and its great 

tendency to oxidation, dimerizing rapidly to azodioxides (Scheme 2.4).233,234 Furthermore, 

different side-products might be obtained because of the easy overoxidation of nitroso 

group. 

Nitrosobenzenes can be obtained by the oxidation of anilines using several reagents and 

methodologies, such as the Caro’s acid (H2SO5), peracetic acid, 3-chloroperoxybenzoic 

acid,235 hydrogen peroxide in the presence of rhenium,236 etc. However, biphasic 
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heterogeneous system with Oxone® [(KHSO5)2·KHSO4·K2SO4] in H2O:DCM has become 

one of the most employed, since it is inexpensive and environmentally friendly.237-239 

 

Scheme 2.4. Synthesis of azodioxide derivative from nitrosobenzene. 

 

3. Oxidation of anilines. This methodology leads to symmetric azo compounds. Partial 

oxidation of anilines has been described by electrolytic oxidation,240 chemical oxidants 

(sodium perborate/acetic acid (AcOH), potassium permanganate,241 copper,242 etc.) or by 

solvent-free oxidation.243 

4. Reductive coupling of nitro compounds. This method is used to prepare symmetric 

azobenzenes, by the reaction of nitro derivatives with different reducing reagents 

(NaBH4,
244 LiAlH4,

245 SnCl2/NaOH,246,247 etc.) or by using H2/Pd nanoclusters under basic 

conditions.248 The disadvantage of the reductive coupling is that an excess of reducing 

agents have to be employed, giving environmentally unfriendly by-products.
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RESULTS AND DISCUSSION 

Chemistry results 

According to the bibliographic precedents, in this work the synthesis of azobenzenes 2.2 

was explored using five methodologies, either from nitrobenzenes 2.3 or anilines 2.4, which 

were obtained as described below. 

Synthesis of nitro- and amino- intermediates (2.3 and 2.4). The treatment of commercially 

available meta- or para-nitrobenzyl bromide with the corresponding amine (pyrrolidine, 

piperidine, azepane, 1,2,3,6-tetrahydropyridine, or dimethylamine) under basic conditions 

and mw irradiation at 120 ºC for 10 min, gave the corresponding nitro derivatives 2.3 in 

excellent yields. Some of these nitro derivatives were subjected to a subsequent Pd-C 

catalyzed hydrogenation to afford anilines 2.4 in high yields (Scheme 2.5). 

 

Scheme 2.5. Reagents and conditions. (a) K2CO3, corresponding amine, acetone, mw, 120 

ºC, 10 min, (b) H2, Pd/C (5%), EtOH, overnight. 
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Generation of the azo group. This critical step was explored using different methodologies 

along this chapter, according to the literature precedents described above. We tried to use 

similar synthetic strategies for both meta- and para- symmetric derivatives to facilitate the 

synthesis. Thus, coupling of diazonium salts could not be carried out because, as previously 

mentioned, this methodology is just used for activated rings leading to azobenzenes with 

para- or orto- substituents. The methodologies applied in this work have been classified 

according to the starting material, to facilitate the understanding of the results. 

Symmetric azobenzenes 

1. From anilines 2.4 

1.1. Mills reaction catalyzed by Oxone®237 

1.2. Aerobic oxidation of anilines catalyzed by copper242 

2. From nitrobenzenes 2.3 

2.1. Hydrogenation catalyzed by Pd over charcoal 5% (Pd/C) at low pressure 

2.2. Hydrogenation catalyzed by Pd nanoclusters under basic conditions248 

2.3. Reduction with LiAlH4rea
245 

Asymmetric azobenzene m-2.13: Mills reaction 

 

Methodology 1.1. Mills reaction by oxidation of anilines catalyzed by Oxone®  

The classical Mills reaction for obtaining azobenzenes involves the attack of anilines to 

aromatic nitroso derivatives in acidic media. In turn, nitroso compounds can be obtained by 

amine oxidation. Thus, our first attempt to obtain azobenzenes was the oxidation of the 

aniline p-2.4b with Oxone® at rt, following the method described by Priewisch and Rück-

Braun.237 Under these conditions, the aniline oxidation affords the corresponding nitroso 

derivative, which reacts with another molecule of aniline leading to the corresponding azo 

derivative. However, the treatment of the aniline p-2.4b with Oxone® produced a complex 

mixture (Scheme 2.6), depending on the reaction conditions listed in Table 2.1.  
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Scheme 2.6. Reagents and conditions. Oxone®. 

 

According to the experimental conditions previously described for these transformations,237 

aniline p-2.4b was oxidized with 1.5 equiv of Oxone® in a mixture of H2O:DCM in 

proportion 2:3 at rt (Table 2.1, first row). By HPLC-MS it was observed that the 

intermediate nitrosarene p-2.6b was immediately formed at the very beginning of the 

reaction, giving the desired azobenzene p-2.2b, together with the azoxy- and nitro- 

derivatives (p-2.5b and p-2.3b), as the result of the oxidation of azobenzene p-2.2b and 

aniline p-2.4b, respectively. After 30 min, we observed that the major product formed was 

the azoxy derivative p-2.5b and not the required azobenzene p-2.2b. Variations in the speed 

of addition led to similar results. 
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Table 2.1. Different conditions used for the oxidation of p-2.4b catalyzed by Oxone® 

 

Conditions  Products (%) 

Oxone® 

(equiv) 
Solvent  

Azo derivative 

(p-2.2b) 

Nitro derivative 

(p-2.3b) 

Azoxybenzene 

(p-2.5b) 

N-hydroxylamine 

(p-2.7b) 

1.5 H2O:DCM 
(2:3) 

 40a 8a 52a n.d. 

0.6 H2O:MeOH 

(1:1) 
 n.d. n.d. n.d. 100a 

1.2 H2O  30b n.d. 12b n.d. 

a Conversion by HPLC-MS; b Yield of isolated product; n.d.: not detected 

 

As previously reported, the biphasic system assures the separation of the generally less 

water-soluble nitroso compound p-2.6b from the N-arylhydroxylamine intermediate (p-

2.7b) and aniline precursor (p-2.4b), avoiding undesirable condensation reactions. 

However, in our case the basic character of the piperidine fragment made difficult this 

separation and all oxidative products coexisted in both phases and thus, products were not 

isolated. 

Since the desired azobenzene p-2.2b was obtained in lower proportion (40% conv.) than its 

overoxidized product (p-2.5b, 52% conv.), the reaction was repeated with less equivalents 

of Oxone® (0.6 equiv), using a homogeneous solvent system composed by H2O and MeOH 

in proportion 1:1 (Table 2.1, second row). Nevertheless, the reaction proceeded very slowly 

and only hydroxylamine p-2.7b was detected. 

In the light of these results, we decided to use 1.2 equiv of Oxone® and H2O as solvent. In 

these conditions, the oxidation of aniline p-2.4b afforded the corresponding azo- and 

azoxy-benzenes p-2.2b and p-2.5b, which were isolated in low yields (30% and 12%, 
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respectively). These low yields in both products were due to the fact they have a very 

similar Rf. 

 

Methodology 1.2. Copper catalyzed oxidation of anilines 

Another synthetic route was tried in order to avoid the formation of azoxy derivatives. It 

was based on a dehydrogenative coupling of anilines using a copper salt (CuBr) and 

pyridine at 60 ºC during 24 h (Scheme 2.7).242 However, from aniline p-2.4e the expected 

azo derivative p-2.2e was not obtained and we only detected by HPLC-MS two azo 

compounds as the result of the loss of one or two dimethylamine moieties (p-2.9e and p-

2.10, respectively). From these results we can conclude that the azobenzene was formed but 

the conditions were too drastic and consequently, the dimethylamine moiety tends to be 

lost. With the intention of avoiding the loss of the dimethylamino groups the reaction was 

repeated at rt, but it did not take place in these conditions. 

 

Scheme 2.7. Reagents and conditions. CuBr (0.1 equiv), pyridine (0.3 equiv),  

toluene, 60 ºC, 24 h. 

 

To overcome the loss of amino moieties that occurs in the precedent reactions, we proposed 

another synthetic route based on the previously reported by Zhang and Jiao.242 It consisted 

of the formation of azo compound from p-toluidine, followed by the bromination of 

benzylic positions with N-bromosuccinimide (NBS) and finally, a bimolecular nucleophilic 

substitution (SN2) with the appropriate amine.249 
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Thus, dehydrogenative coupling of the commercially available p-toluidine using CuBr and 

pyridine afforded azo compound p-2.10 with moderate yield (63%) (Scheme 2.8). 

However, the subsequent radical bromination in benzylic positions was not completed after 

refluxing for 10 days. In the HPLC-MS chromatogram of the reaction mixture, a 

combination of mono- and dibromide compounds with similar retention time was detected 

(p-2.11 and p-2.12, respectively). Thus, this route was abandoned. 

 

Scheme 2.8. Reagents and conditions. (a) CuBr (0.1 equiv), pyridine (0.3 equiv), toluene, 

60 ºC, 24 h.; (b) NBS (3 equiv), benzoyl peroxide (0.06 equiv), CHCl3, reflux, 10 days. 

 

Methodology 2.1. Hydrogenation catalyzed by Pd/C 5% at low pressure 

Starting from 1-(4-nitrobenzyl)piperidine p-2.3b, low pressure hydrogenation catalyzed by 

Pd/C in dry EtOH was attempted. However, after 48 hours at rt, aniline p-2.4b was the 

main isolated product (53%) along with the undesired azoxy compound p-2.5b in low yield 

(17%) (Scheme 2.9). 

 

Scheme 2.9. Reagents and conditions. H2 (low pressure), Pd/C (5%), dry EtOH, rt, 48 h. 

 

When this reaction was repeated with the meta-nitro derivative m-2.3b as starting material 

and by increasing the reaction time until 7 days, the desired azo compound m-2.2b was 

obtained in a very low yield (9%). Moreover, were also isolated aniline m-2.4b and 
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undesired products m-2.9b and m-2.10, resulting from the loss of one or two piperidine 

fragments (Scheme 2.10). 

 
 

Scheme 2.10. Reagents and conditions. H2 (low pressure), Pd/C (5%), dry EtOH, rt, 7 days. 

 

Methodology 2.2. Hydrogenation catalyzed by Pd nanoclusters under basic conditions 

The next attempt to get the desired azocompound consisted of the hydrogenation of the 

corresponding nitroaromatic compound catalyzed by Pd nanoclusters, generated in situ 

from palladium (II) acetylacetonate [Pd(acac)2] under mild reaction conditions. According 

to the mechanism proposed by Wang et al., Pd(acac)2 is reduced in situ to Pd nanoclusters 

of an average diameter of 1 nm. These nanoparticles take part in the reaction yielding 

azoderivatives.248 However, when we applied these reaction conditions to p-piperidine- and 

p-dimethylamine- nitrobenzenes (p-2.3b and p-2.3e) the expected azo compounds p-2.2b 

and p-2.2e were not obtained and only anilines p-2.4b and p-2.4e were identified in the 

HPLC-MS chromatograms. 
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Scheme 2.11. Reagents and conditions. H2, Pd(acac)2 (5%), KOH, dry EtOH, 70 ºC. 

 

Methodology 2.3. Reduction with LiAlH4 

Finally, we found the most appropriate synthetic route for obtaining the desired symmetric 

azobenzenes of general formula 2.2. It was based on the reduction of nitro compounds 2.3 

with LiAlH4 in one step, as described by Di Gioia et al.169 Thus the treatment of nitro 

derivatives m-2.3(a-e) and p-2.3(a,b,e) with LiAlH4 in diethyl ether afforded the required 

azobenzenes m-2.2(a-e) and p-2.2(a,b,e) in moderate to excellent yields (49-95%) (Scheme 

2.12). 

 

Scheme 2.12. Reagents and conditions. LiAlH4, Et2O, N2, -78 ºC to rt.   
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The reaction probably proceeds through an electron transfer from hydride to the nitro group 

with the formation of a radical intermediate that dimerizes providing the desired 

azobenzene (Scheme 2.13).169  

 

Scheme 2.13. Probable mechanism of formation of azo compounds from reduction of nitro 

derivatives with LiAlH4 (adapted from Di Gioia et al.169) 

 

 

Otherwise, asymmetric azocompound m-2.13b was synthesized from 3-(piperidin-1-

ylmethyl)aniline m-2.4b and commercial nitrosobenzene in high yield (93%) by a Mills 

reaction250 (Scheme 2.14). 

 

Scheme 2.14. Reagents and conditions. AcOH, toluene, 60 ºC, overnight.  
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It is worth to mention that a very high purity of azoderivatives is crucial, because minimum 

impurities with similar nature will suffer equal reaction in the next step of amine 

quaternization, making purification much more difficult or even impossible. Given that, 

azobenzenes m-2.2(a-e), p-2.2(a,b,e), and m-2.13b were subjected to a preparative TLC 

followed by a recrystallization, to assure maximum purity of each azoderivative.  

 

Synthesis of azocuronium salts. Finally, the azobenzenes with a tertiary amino group were 

methylated with methyl iodide (CH3I) at 120 ºC for 12 min in mw, obtaining the desired 

azocuroniums (Scheme 2.15). Symmetric azocuroniums m-2.1(a-e) and p-2.1(a,b,e) were 

obtained in good to excellent yields (78-99%), whereas the yield of the asymmetric 

derivative m-2.14b was lower (58%). This yield could be due to the low melting point of 

this compound that made difficult its purification by precipitation. 

 

Scheme 2.15. Reagents and conditions. CH3I, DMF, mw, 120 ºC, 12 min. 
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Thermodynamic solubility studies 

The thermodynamic solubility of azocuronium m-2.1(a-d), p-2.1(a,b) and m-2.14b was 

determined by UV spectroscopy, using a Sirius T3 equipment in phosphate buffer (45 mM) 

at pH 7.4, following described protocols.251 Results are gathered in Table 2.2. As expected, 

all azocuronium showed high solubility values in aqueous solution at physiologic pH (5.5 – 

38.4 mM). All meta- derivatives were found to be more soluble than their para- 

counterparts, probably due to the higher polarity of the first. Salts bearing meta-pyrrolidine 

(m-2.1a) and meta-piperidine fragments (m-2.1b) showed similar values (36 and 38 mM, 

respectively), whereas the meta-azepane derivative (m-2.1c) displayed a lower solubility 

according to its higher lipophilicity. Nevertheless, not so drastic decrease was observed 

when a double bond was introduced in the piperidine fragment (m-2.1d). Otherwise, the 

loss of one ammonium group in derivative m-2.14b remarkably decreased the solubility in 

water with respect to the analogue m-2.1b with two piperidines.  

 

Table 2.2. Thermodynamic solubility (mM) in water at pH 7.4 of azocuroniums m-2.1(a-

d), p-2.1(a,b) and m-2.14b, measured at the indicated wavelengths. 

 Solubility at pH 7.4 (mM)a λ (nm) 

m-2.1a 36.3 ± 3.1 340 

p-2.1a 14.8 ± 1.2 340 

m-2.1b 38.4 ± 3.5 320 

p-2.1b 34.9 ± 3.2 320 

m-2.1c 5.9 ± 0.5 290 

m-2.1d 16.3 ± 0.1 290 

m-2.14b 5.5 ± 0.1 290 

aResults are the mean ± SD of three independent experiments. 
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Therefore, new azocuronium m-2.1(a-d) and p-2.1(a,b) show good solubility in physiologic 

media. 

 

Calculation of pKa values 

Aiming to know if tertiary amines are charged at physiologic pH (7.4), pKa values were 

calculated in a Sirius equipment, using the Yasuda-Shedlovsky extrapolation252 for the 

azobenzene p-2.2b and azoxybenzene p-2.5b, both bearing two protonatable para-

piperidine fragments. Despite the symmetry of the molecule, in the azobenzene p-2.2b one 

piperidine is protonated before the other, although the pKas are very close: pKa(1) = 7.11 ± 

0.07 and pKa(2) = 7.67 ± 0.03. From these data we can conclude that at physiologic pH the 

azobenzene p-2.2b shows one protonated piperidine fragment.  

Otherwise in azoxybenzene p-2.5b, a higher difference between pKas was observed, 

obtaining 7.03 ± 0.01 and 8.92 ± 0.06 values. As expected, the higher value was assigned to 

the piperidine conjugated with oxygen of azoxy group, due to the oxygen is giving charge 

to the benzene for resonant effect; while benzene closer to nitrogen is affected by inductive 

effect, making that this pKa decreases. This means that at physiologic pH more than 50% 

of one of piperidine can be found as a quaternary amine in the azoxybenzene p-2.5b. 

Given that at physiological pH only one piperidine is protonated, and cationic charge is 

necessary for the cation-π interaction with the receptor, amine quaternization is required to 

improve the affinity toward muscle nAChRs. 

 

Figure 2.7. pKa values for azocuroniums p-2.2b and p-2.5b   
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In vitro evaluation of the CNS-penetration (PAMPA-BBB assay) 

To check if new azocuroniums m-2.1(a-d), p-2.1(a,b) and m-2.14b could be able to reach 

the CNS, we used the in vitro parallel artificial membrane permeability assay for the blood-

brain barrier (PAMPA-BBB) described by Di et al.,135 and partially modified and validated 

by us.70,111,128,173 The passive CNS-permeation of m- and p-azocuroniums through a lipid 

extract of porcine brain was measured at rt. In each experiment, 11 commercial drugs of 

known brain permeability were also tested and their permeability values normalized to the 

reported PAMPA-BBB data. According to Pe values previously described by Di et al.,135 

compounds with Pe values exceeding 4·10-6 cm s-1 would be able to cross the BBB (cns+), 

whereas those displaying Pe less than 2·10-6 cm s-1 would not reach the CNS (cns-). 

Between these two values the prediction is uncertain (cns +/-).  

 

Table 2.3. In vitro CNS permeability data of azocuroniums m-2.1(a-d), p-2.1(a,b) and m-

2.14b, and their predictive CNS penetration.a 

 PAMPA-BBB (Pe, 10-6 cm s-1) CNS-Penetration Prediction 

m-2.1a < 1.0 cns - 

p-2.1a < 1.0 cns - 

m-2.1b < 1.0 cns - 

p-2.1b < 1.0 cns - 

m-2.1c < 1.0 cns - 

m-2.1d < 1.0 cns - 

m-2.14b 2.0 ± 0.2 cns +/- 

aResults are the mean ± SD of three independent experiments. bPredictive CNS penetration: 

cns- denotes compounds that could not be able to penetrate into the CNS; cns +/- denotes 

uncertainty in CNS penetration prediction.  
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Whereas the asymmetric derivative m-2.14b with only one positive charge displayed an 

uncertainty in CNS penetration, the rest of azocuronium with two positive charges, m-

2.1(a-d) and p-2.1(a,b), were predicted would not cross the BBB (Table 2.3).  

From these data we can conclude that, as expected, new m- and p-azocuroniums m-2.1(a-d) 

and p-2.1(a,b) will not penetrate the CNS and will not interact with CNS-receptors. 

 

Photochemical characterization  

UV-vis spectra under irradiation 

As discussed in the introduction, the (E)-isomer of azocuronium is the most abundant 

species in the darkness because it is the most thermodynamically stable geometry. This (E)-

isomer can be reversibly photoisomerized under irradiation to the (Z)-form. Both isomers 

have three possible excited singlet states, resulting three absorption bands in UV-vis. The 

molecular orbital diagram for azobenzene consists of three highest unoccupied and three 

lowest occupied orbitals and the non-bonding atomic orbitals of the azo-nitrogen atoms (na 

and nb) (Figure 2.8).253 The lowest transition, S0 → S1, occurs in the visible region (around 

440 nm and 430 nm, (E) and (Z), respectively), due to the forbidden process of excitation of 

an electron from the non-bonding n orbital of an N atom of azo group to an antibonding π* 

orbital (n→π*). The second transition, in UV region, S0 → S2 (around 314 nm and 280 nm, 

(E) and (Z), respectively) is associated with a symmetry-allowed π-π* transition. This 

notable difference is due to the non-planar configuration of (Z)-isomer.253,254 The highest 

transition is due to ϕ → ϕ* process (230 – 240 nm for both isomers), due to close 

association of ϕ orbital with benzene ring. 
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Figure 2.8. Molecular orbital diagram for azobenzene system.253 

 

UV/vis spectra of m- and p-azocuroniums m-2.1(a-d), p-2.1(a,b) and m-2.14b were 

recorded in aqueous solutions (50 µM) at rt, as a qualitative measure of their isomerization. 

All of them had a similar spectrum, thus photochemical characterizations of m-2.1(a-d) are 

given as examples (Figure 2.9). As typical azobenzene derivatives, the thermally 

equilibrated spectrum of both compounds (black line Figure 2.9B) showed two absorption 

bands, corresponding to the (E)-isomer. The most intense one was centered on 315 nm, 

attributed to the π-π *electronic transition of the (E)-azobenzene moiety, and the other 

around 425 nm is due to the forbidden n-π*. After irradiation with 335 nm light using a 

LED-based source, the amplitude of the 315 nm band decreased while increasing 

irradiation time, whereas the amplitude of the 425 nm peak increased (red line). As known, 

this spectral change is due to the (E)-to-(Z) isomerization of azobenzene molecules.255 This 

effect was reverted by irradiating with light of 400 nm (blue line). The recovery of the 

initial spectra indicated that both compounds are found in the (E)-isomer, most likely due to 

thermal relaxation. The insets show details of the spectra between 375 nm and 525 nm. 

 

 

 



Chapter II 

218 

 

  

  

Figure 2.9. (E)-(Z)-isomerization of azobenzene scaffold (Upper); UV absorption spectra 

of m-2.1(a-d) (Lower). 

 

NMR spectra under irradiation 

The (E)-(Z) conversion can be also quantified by conventional 1H-NMR technique.256,257 

When azobenzenes are irradiated with UV light (around 335 nm), the intensities of signals 

of (E)-isomer decrease and the signals belonging to (Z)-isomer grow simultaneously. This 

effect is usually reverted irradiating at 400 nm [(E)-isomer formation], demonstrating 

reversible isomerization. 
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In situ laser irradiation by an optical fiber has been reported in several works to study 

photoisomerization.258,259 Because we do not have access to this apparatus, an array of light 

emitting diodes (LEDs) was used. Thus, azocuroniums m-2.1b and m-2.1d were dissolved 

in deuterium oxide (D2O) and their NMR spectra were recorded. Solutions were irradiated 

with LED-light (335 or 400 nm) in a round-bottom flask for different exposure times and 

then transferred to a NMR tube for registering the spectrum. The ratio between isomers was 

calculated from the integration values of some characteristic common protons. 

Firstly, the NMR spectrum of the freshly synthesized m-2.1b (not-irradiated sample) 

showed two groups of aromatic signals, integrating for 8 protons and which were assigned 

to (E)-azobenzene isomer (upper spectrum Figure 2.10). After 15 min of LED irradiation 

under 335 nm, the (Z)-isomer was formed in an approximate percentage of 71% [(Z):(E) 

ratio 1.0:0.4] that was increased to 83% [(Z):(E) ratio 1.0:0.2] when irradiation was 

continued until 30 min. Aiming to explore the maximum conversion of the (Z)-isomer of m-

2.1b, sample was irradiated under 335 nm for 1 and 4 h, obtaining a percentage of (Z)-

isomer of 84 and 87%, respectively. In order to recover the (E)-isomer, the solution was 

irradiated at 400 nm for 1 h, obtaining a percentage of (E)-m-2.1b of 77% [(Z):(E) ratio 

0.3:1.0]. After leaving the solution in the darkness at rt overnight, no changes were 

observed, pointing out that the complete thermally relaxation at rt needs a longer time. 
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Figure 2.10. 1H-NMR spectra of azocuronium m-2.1b irradiated with a UV LED (335-340 

nm) or blue LED (400-450 nm) during the indicated times. 

 

On the other hand, azocuronium m-2.1d has a double bond that gives characteristic signals 

between 5.5 and 6 ppm, which make the differences between the (Z)- and (E)- spectra more 

appreciable. Thus, 1H-NMR of m-2.1d was recorded in D2O at daylight and rt (Figure 2.11, 

upper spectrum), observing an (E):(Z) ratio of 1:0.2. Then, the solution was irradiated with 

UV LED (335-340 nm) for 2.5 h, to maximize the conversion (Figure 2.11, lower 

spectrum). Although total conversion to the (Z)-isomer was not achieved, the ratio (E):(Z) 

was almost reverted as it can be seen in the graphic. When the solution containing mainly 

the (Z)-isomer was irradiated with the blue LED (400-450 nm) for 1 h the (E)-isomer was 

recovered almost totally (spectrum not shown). 
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Figure 2.11. Expansion of 1H-NMR spectra of m-2.1d. Upper spectrum was recorded 

without irradiation and lower spectrum was registered after UV LED irradiation (335-400 

nm) for 2.5h. 

 

As expected, signals of the (E)-isomer are more deshielded than those of the (Z)-form.260 

This can be explained by the change in the geometry of the minimum energy structures of 

both isomers (Figure 2.12). In (E)-isomers, the two benzenes are far away from each other 

and consequently protons are deshielded by their ‘own’ aromatic ring. Otherwise, in the 

(Z)-isomer aromatic rings are nearer and perpendicular between them and thus, their 

protons are more shielded by the π -clouds.  

 

UV LED irradiation 

(2.5h): 

(E):(Z) 0.1:1.0 

Thermally relaxed:  

(E):(Z) 1:0.2 
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Figure 2.12. The calculated minimum energy structures of (A) (E)-azobenzene and (B) (Z)-

azobenzene. Two views of the (Z)-isomer are shown, to illustrate the relative orientation of 

the phenyl rings. Reproduced from Ref.33 

 

 

Biological results 

Radioligand binding assays at nAChRs 

In order to characterize the action of our compounds at nicotinic receptors, a selection of 

azoderivatives [m-2.2(a,b) and p-2.2(a,b)] and all azocuronium [m-2.1(a-d), p-2.1(a,b) and 

m-2.14b] were tested in radioligand-displacement experiments, using muscular nAChRs 

and two neuronal-type nAChRs (α7 and α4β2) (Eurofins Cerep SA, France). BisQ 

(compound m-2.1e) was also assayed for comparative purposes. 

Firstly, the percentage of radioligand displacement of compounds at a single concentration 

(10 µM) was calculated for each receptor type, using the appropriate radioligand ([125I]-α-

bungarotoxine for muscle-type and α7 nAChRs, and [3H]-cytisine for α4β2 nAChR). As 

shown in Table 2.4, the majority of azoderivatives [m-2.2(a,b) and p-2.2(a,b)] and 

azocuroniums [m-2.1(a-d), p-2.1(a,b) and m-2.14b] showed selectivity towards muscular 

nAChRs compared with neuronal ones. In all cases, azocuronium m-2.1(a,b) and p-2.1(a,b) 

exhibited higher radioligand displacement values at 10 µM than their respective 

azoderivatives m-2.2(a,b) and p-2.2(a,b).  
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Table 2.4. Radioligand displacement (%) of azoderivatives and azocuronium salts at 10 

µM. 

 

Compd. 
Radioligand displacement at 10 µM (%) 

Muscle-type Neuronal α7 Neuronal α4β2 

m-2.2a 88 57 9 

p-2.2a 66 14 0 

m-2.2b 79 75 6 

p-2.2b 49 5 0 

m-2.1a 87 64 31 

p-2.1a 89 95 51 

m-2.1b 98 77 7 

p-2.1b 85 16 71 

m-2.1c 87 78 29 

m-2.1d 92 88 32 

m-2.1e 93 12 26 

m-2.14b 45 48 39 

 

Then, binding constants (Ki) were calculated for azocuroniums that had a displacement 

percentage above 60% (Table 2.5). Standard reference compounds were α-bungarotoxin 

(muscle-type nAChR), epibatidine (α7 nAChR) and nicotine bitartrate (α4β2 nAChR), 

which were tested in each experiment at several concentrations to obtain competition 

curves from which Kis were calculated. 
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Table 2.5. Affinity constants of azocuroniums m-2.1(a-d), p-2.1(a,b) and m-14b in human 

nAChRs of muscular and neuronal-type (α7 and α4β2).a 

 

Compd. 
Ki (nM) 

Muscle-type Neuronal α7 Neuronal α4β2 

m-2.1a 42 ± 4 2500 ± 210 >10,000 

p-2.1a 200 ± 20 930 ± 80 >10,000 

m-2.1b 35 ± 3 910 ± 90 >10,000 

p-2.1b 1,100 ± 100 >10,000 1,500 ± 130 

m-2.1c 220 ± 20 1,900 ± 180 >10,000 

m-2.1d 100 ± 9 730 ± 70 >10,000 

m-2.14b >10,000 >10,000 >10,000 

α-bungarotoxin 1.0 ± 0.1 n.d. n.d. 

epibatidine n.d. 120 ± 10 n.d. 

nicotine n.d. n.d. 1.5 ± 0.1 

aResults are the mean ± SEM of three independent experiments. N.d.: not determined. 
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In general, meta-substitution in azocuroniums favors the interactions with muscle-type 

nicotinic receptors (Ki = 10-8 M) compared to subtypes α7 (Ki = 10-6 – 10-7 M) and α4β2 (Ki 

> 10-5 M). Azocuroniums bearing para-substitutions were less active in all nAChRs and 

showed no selectivity towards the muscular type. For instance, the pyrrolidine derivative p-

2.1a that was the most active para-azocuronium compound in muscular nAChR (Ki = 200 

nM) showed α7-nAChR affinity in the same order of magnitude (Ki = 930 nM). Moreover, 

para-piperidine azocuronium p-2.1b was not selective either, this time between muscle-

type and neuronal α4β2, as its binding constants were in the same range (Ki = 1,100 and 

1,400 nM, respectively). 

In muscle-type nAChRs, the most potent ligands were the meta-pyrrolidine m-2.1a and the 

meta-piperidine m-2.1b azocuroniums, with binding affinities in the nanomolar range (Kis = 

42 nM and 35 nM, respectively), whereas they presented worse affinities for α7 (Kis = 

2,500 and 910 nM, respectively) and were almost inactive in α4β2 (Kis >10,000 nM). Thus, 

m-2.1a and m-2.1b displayed interesting selectivity ratios towards muscle-type nAChRs 

compared to the neuronal subtypes α7 (60- and 26-fold) and α4β2 (>240- and >290-fold). 

From m-2.1b, both the enlargement of the piperidine fragment to give the meta-azepane 

derivative m-2.1c or the introduction of a double bond to provide the meta-1,2,3,6-

tetrahydropyridine derivative m-2.1d, clearly decreased the binding constants in muscle-

type nAChR (Kis= 220 and 100 nM, respectively) and also diminished selectivity indexes 

between muscular and neuronal nAChRs. Finally, asymmetric derivative m-2.14b resulted 

poorly active in all nicotinic receptors assayed (Table 2.5), pointing out the importance of 

the presence of two cationic heads for a successful nAChRs binding. 
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Functional characterization in muscular nAChRs 

To evaluate the effect of meta-azocuroniums m-2.1(a-d), we expressed embryonic mouse 

muscular nAChR in Xenopus laevis oocytes, which were previously extracted from frogs 

and transfected with the corresponding messenger RNA (mRNA). The two-electrode 

voltage-clamp (TEVC) technique was used to measure the nAChR-mediated ionic currents 

through the plasma membrane. To activate nAChR receptors, the neurotransmitter ACh 

(2.3-18.4 nL, 50 μM) was delivered on the surface of the oocytes using a nano-injector 

(Figure 2.13). This small volume of ACh (“puff”) was washed from the oocyte vicinity by 

recirculation of the solution used in the experiment (recording solution) propelled by a 

pump attached to the chamber (perfusion). Above the oocyte, two LEDs were placed to 

irradiate the oocyte membrane and to drive the photo-isomerization. These LEDs hereafter 

referred to as “UV LED” and “blue LED”, had their emission spectra adjusted at 335-340 

nm and 400-450 nm, respectively. For current recordings, the membrane potential was held 

at -60 mV. Thus, nAChR opening will result in a downward deflection of the current trace 

as result of the net inward current mediated by the activation of nAChR.  

Under voltage-clamp, oocytes have a basal conductance, yielding a relatively small current 

in the order of 0.2 μA or lesser. Oocytes displaying higher currents were discarded. An 

ACh puff was applied after the recirculation pump was turned off. This allowed ACh to 

reach the membrane, activating the nAChR and resulting in an increase of the membrane 

conductance. Then, the pump was turned on, washing ACh from the oocyte’s vicinity, 

deactivating nAChR. This was made apparent by the decrease of the inward current 

amplitude (Figure 2.13). Using this approach, we proceeded to evaluate the functional 

effect of meta-azocuroniums m-2.1(a-d) and m-2.14b in muscle-type nAChRs.  
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Figure 2.13. Schematic experimental procedure for functional characterization: Xenopus 

oocytes extraction, mRNA injection, measuring ionic currents from oocytes expressing 

embryonic mouse muscular nAChR using the TEVC technique. 

 

Pyrrolidine-based azocuronium m-2.1a acts as a muscular nAChR agonist. Firstly, the 

functional character of pyrrolidine derivative m-2.1a was evaluated. We observed that 

exposing the oocytes to thermally relaxed m-2.1a [(E)-isomer] produced the activation of 

the nAChR current (without ACh). Voltage-clamped oocytes were exposed to m-2.1a under 

constant UV irradiation to keep the compound as (Z)-isomer (purple area in Figure 2.14A). 

To test the effect of the (E)-isomer, a 5-second pulse of blue radiation was applied while 

turning off the UV LED (blue area). After 5 seconds, the UV LED was turned back on [(Z)-

isomer] (purple area). Turning on the blue LED activated nAChRs as a robust inwards 

current was detected (Figure 2.14A). This was observed at different concentrations of m-

2.1a, ranging from 0.5 to 10 μM. Activation of the current concentration-dependent with an 

apparent half-maximum binding constant of 4.2 ± 0.4 μM (n = 4) (Figure 2.14B). From 
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these results we can conclude that (E)-m-2.1a acts as an agonist, in the same way as m-

bisQ, whereas the (Z)-isomer resulted completely inactive, even at high concentration. 

 

Figure 2.14. Azocuronium m-2.1a is a light-dependent agonist of the nAChR. (A) 

Current recordings in the presence of m-2.1a (0.5-10 µM). Constant irradiation with the UV 

LED made m-2.1a inactive as agonist [(Z)-isomer]. Inducing the isomerization to the (E)-

isomer with the blue LED resulted in a robust increase of the nAChR current. This 

activation was readily reverted by turning back to irradiation with the UV LED. (B) 

Average normalized current measure following 5 seconds of activation showed a clear 

concentration-dependence for activation. 

 

 

Piperidine-derived azocuronium m-2.1b inhibits muscular nAChR. Compound m-2.1b 

containing a quaternary piperidine instead of the pyrrolidine present in m-2.1a, was 

evaluated subsequently. Initially the same conditions for compound m-2.1a were used. 

Unlike the case of m-2.1a, irradiating the oocytes (both UV and blue light) in the presence 

of increasing concentrations of only m-2.1b, did not exert any effect on the receptor; thus, 

we concluded that m-2.1b does not act as an agonist. 
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Afterwards, azocuronium m-2.1b was evaluated in presence of ACh. Under voltage-clamp, 

inward currents were observed in oocytes expressing muscle-type nAChR upon application 

of an ACh puff (control recording, Figure 2.15A, green trace). ACh was immediately 

washed away by perfusion. Then, adding the meta-piperidine azocuronium m-2.1b (5 μM) 

(thermally relaxed, (E)-isomer) to the recording solution inhibited such response as shown 

by a decrease in the maximum amplitude of the currents (Figure 2.15A, black trace). This 

effect of m-2.1b on current amplitude was partially reverted when oocytes and the 

surrounding solution were irradiated with the UV LED for 5 min [(Z)-isomer, Figure 

2.15A, red trace]. This inhibitory effect of (E)-m-2.1b was recovered by irradiating with the 

blue LED. These observations suggested that m-2.1b acted on the deactivated (closed) 

receptors. 

To understand whether azocuronium m-2.1b could also act on the activated (open) 

receptors, nAChR currents were recorded in the presence of m-2.1b (0.5 μM). We 

performed this assay with no perfusion to prolong the activating effect of ACh on the 

receptor. Firstly, m-2.1b was held in its (Z)-isomer by constant irradiation with the UV 

LED, then a puff of ACh was applied to open the channel and finally blue LED was 

changed by UV light [isomerization (Z) to (E)] (Figure 2.15, red trace). When UV light was 

kept on, the current reached a peak and slowly decayed for several seconds, this was likely 

due to receptor desensitization (Figure 2.15, black trace). 

Thus, swapping the UV LED for the blue LED radiation [(E)-isomer] caused a faster 

decrease in the current amplitude (Figure 2.15, red trace), indicating m-2.1b was like 

affecting receptors in any conformation. 
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Figure 2.15. Inhibitory effect of azocuronium m-2.1b. (A) An ACh puff (50 µM, 9.2 nL, 

46 nL/s, green trace) evoked currents in oocytes. Adding (E)-m-2.1b (5 µM) decreased the 

current, resulting from inhibition of the receptors (black trace). Excitation under UV LED 

partially reverted the effect of m-2.1b [(Z)-isomer, red trace]. (B) Normalized recording of 

m-2.1b (0.5 µM), applying a puff of ACh. In the first register (black trace) in the presence 

of (Z)-isomer (under UV light), an ACh puff (50 µM, 9.2 nL) evoked a current. The slow 

deactivation was presumably due to the ACh diffusion and nAChR desensitization (black 

trace). A second recording was made switching to blue LED 5 s from activation with Ach 

(red trace). Irradiation with blue LED, decrease the current amplitude at a higher rate. 

Insert: non-normalized currents. 

 

 

To further characterize the action of m-2.1b on nAChR, we evaluate the relationship 

between drug concentration and receptor inhibition. Thus, the response to ACh in the 

presence of thermally relaxed m-2.1b [(E)-isomer] was recorded. As the concentration of 

m-2.1b increased, the response to ACh puff decreased (Figure 2.16A, left). This inhibitory 
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effect was partially reverted upon irradiation with UV LED for 5 min [(Z)-isomer] (Figure 

2.16A, right). To assess the inhibitory effect of m-2.1b in detail, the recordings were 

performed in the presence of a range of concentrations of m-2.1b (0.05-20 μM) thermally 

relaxed [(E)-isomer] (Figure 2.16B, black trace) and under UV radiation [(Z)-isomer] 

(Figure 2.16B, red trace) and the average of current amplitude normalized was plotted with 

respect to recording in the absence of the drug. The current-vs-dose plots were fitted to a 

simple one-site binding model, yielding apparent half-maximum inhibitory constant (Ki) of 

0.46 ± 0.06 μM (n = 24) for the thermally relaxed m-2.1b (Figure 2.16B, black trace) and 

2.6 ± 0.5 μM (n = 24) for the UV-irradiated m-1b (Figure 2.16B, red trace). 

 

Figure 2.16. Compound m-2.1b is a light-dependent antagonist. (A) nAChR currents 

recorded upon application of an ACh puff (50 μM, 9.2 nL) in the absence (green trace) and 

presence of m-2.1b (0.1-5 μM) thermally relaxed (left) or while irradiating with the UV 

LED. (B) The maximum amplitude of the currents was normalized with respect to the 

maximal amplitude observed in the absence of m-2.1b when it was thermally relaxed (black 

symbols) or after irradiation under UV LED (red symbols).  

 

 

We noticed that the variability in current amplitude for the UV-irradiated drugs was slightly 

higher than for their thermally relaxed counterparts. Although we consider this issue to be 
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beyond the scope of the present study, we argue that such increase in variability could be 

attributed to variations in the effective intensities of the UV radiation that reached oocytes. 

We did not evaluate this issue systematically, yet we notice that it depended on the angle of 

the incidence of the LED beam and the recording chamber. For this reason, we opted to 

skip to further analyzing the (E)-to-(Z) isomerization time course for this study. 

Per our initial hypothesis, the hydrophobic character of the molecule’s quaternary amine 

seems to determine the character agonist or antagonist of the molecule. To this point, the 

pyrrolidine-based m-2.1a functions as an agonist of nAChR, while the piperidine–based m-

2.1b, behaves as an antagonist. From here, we proceeded to evaluate m-2.1c which is an 

azepane-based compound.  

 

Azepane-derived azocuronium m-2.1c behaves as a muscle-type nAChR inhibitor. 

Consistent with our initial hypothesis, m-2.1c which has a larger hydrophobic moiety 

(azepane fragment) associated to the quaternary amine was able to inhibit ACh-induced 

current in oocytes expressing nAChR. Fitting the normalized current-vs-dose plots to a one-

site binding model for the thermally relaxed m-2.1c [(E)-isomer] yielded a Ki of 0.33 ± 0.04 

μM (n = 26) (not shown). However, the plot for the UV-irradiated drug [(Z)-isomer] was 

not properly fitted to the model. Therefore, given that nAChR have two distinct binding 

sites for ACh which are coupled, we chose to fit the plot to a Hill equation. Fitting both 

curves to this equation yielded a Ki of 0.30 ± 0.02 μM and 2.6 ± 0.5 μM for the (E) and (Z)-

isomer, respectively (Figure 2.17). As expected, the Hill coefficient for the thermally 

relaxed m-2.1c was near one, particularly, 0.97 ± 0.05. This suggested that the inhibition by 

(E)-m-2.1c was not cooperative. In contrast the Hill coefficient for the UV-irradiated m-

2.1c [(Z)-isomer] was 0.56 ± 0.07. Accordingly, this strongly suggests that there was 

negative cooperativity in the binding of the drug. This proposed that there were at least two 

m-2.1c molecules bind the nAChR, with the first molecule decreasing the affinity of the 

receptor for the second one. ACh binding and activation of the muscular nAChR is highly 

cooperative, where the binding of one ACh leads to an increase in affinity for the second 

ACh molecule.187,261 Accordingly, the (E)-m-2.1c (and m-2.1b) seems to occupy one of the 

ACh binding sites, blocking further steps in the activation of the receptor. Whereas, the (Z)-
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m-2.1c seems to be competed out by ACh in such a way that the binding of ACh 

allosterically decreases the affinity of the receptor for m-2.1c. 

 

Figure 2.17. Light dependent inhibition of azocuronium m-2.1c. Inhibition of nAChR 

current by m-2.1c when thermally relaxed (black) and under irradiation with UV LED 

(red). The current-vs-[m-2.1c] plots were fitted to a Hill equation, yielding a Ki of 0.30 ± 

0.02 μM and 2.6 ± 0.5 μM, respectively. The corresponding Hill coefficients were 0.97 ± 

0.05 and 0.56 ± 0.07 (n = 26).  

 

 

The rigidity of the N-cycle is important for activity. Next, we explored the effect of the 

rigidity of the N-cycle on the action of the drug. For this, we used m-2.1b as reference and 

compared it with m-2.1d. This latter compound has 1,2,3,6-tetrahydropyridine instead of a 

piperidine associated to the quaternary ammonium. This N-cycle has a lesser flexible, more 

planar geometry than the one of m-2.1b. Like this compound, m-2.1d behaved as an 

inhibitor of nAChR. Both, the thermally relaxed and UV-irradiated m-2.1d showed very 

similar Ki values of 0.84 ± 0.09 μM and 0.88 ± 0.11 μM (n = 15) (Figure 2.18), 

respectively. In spite of the similarity in the receptor’s affinity for both isomers, the 

efficacy for drug action was isomer-dependent. Per the fitting analysis, the fractions of 

active receptors at saturating concentration of m-2.1d were 0.11 ± 0.04 and 0.35 ± 0.03 for 
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the thermally relaxed and UV-irradiated m-2.1d, respectively (Figure 2.18). This indicated 

that this drug was likely operated with a distinct mechanism that the ones described above. 

Furthermore, it is noteworthy, that Hill coefficients fitted for both isomers were similar, 3.5 

± 1.3 and 2.9 ± 1.1, and higher than those of the drugs tested here. These values indicated 

the inhibition by m-2.1d was underlying by a highly cooperative process. Understanding 

the nature of this process was beyond the scope of this study. 

 

Figure 2.18. Inhibition of nAChR current by thermally relaxed m-2.1d (black squares) and 

under irradiation with UV LED (red square). Fitting to a Hill equation, yielded a Ki of 0.84 

± 0.09 μM and 0.88 ± 0.11 μM, respectively. The current fraction at maximum inhibition 

was 0.11 ± 0.04 and 0.35 ± 0.03 for the thermally relaxed and UV-irradiated m-2.1d, 

respectively. The corresponding Hill coefficients were 3.5 ± 1.3 and 2.9 ± 1.1 (n = 15). 
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The two ammonium groups are required for photo-switchable activity. Thus far, we have 

established that m-2.1a, m-2.1b, and m-2.1c have different photo-switchable activity in 

muscular nAChRs. Given that one of the differences between the (E)- and (Z)-isomers is 

their geometry, we argue that the photo-switchable character of these compounds emerges 

from the proximity of the ammonium groups from one another in the (Z)-isomer hindering 

the binding to the receptor. If so, removing one of the ammonium groups should make the 

molecule able to inhibit the nAChR independently of the geometry. To test this hypothesis, 

we evaluated the effect of the piperidine-based compound m-2.14b on the activity of 

nAChR. Derivative m-2.14b is like m-2.1b but lacking one of the N-cycle groups. As 

predicted, the thermally-relaxed m-2.14b [(E)-isomer] was able to inhibit the activation of 

nAChR by ACh with a Ki of 5.0 ± 0.2 μM, while the UV-irradiated m-2.14b [(Z)-isomer] 

displayed a Ki of 6.4 ± 0.4 μM (n = 5) (Figure 2.19). Noteworthy, the Hill coefficients were 

1.6 ± 0.1 and 1.2 ± 0.1, suggesting a weak positive allosteric interaction for binding. From 

these observations, we conclude that steric hindrance is a critical factor conferring photo-

switchable activity to these azocuroniums. 

 

Figure 2.19. Inhibition of nAChR current by thermally relaxed m-2.14b (black) and under 

irradiation with UV LED (red). Fitting to a Hill equation, yielded a Ki of 5.0 ± 0.2 μM and 

6.4 ± 0.4 μM, respectively. The corresponding Hill coefficients were 1.6 ± 0.1 and 1.2 ± 0.1 

(n = 5).  
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Cell viability assay 

Finally, cytotoxicity of azocuroniums salts m-2.1(a-d), p-2.1(a,b) and m-2.14b was 

determined in Raw 264.7 macrophages, using the quantitative colorimetric assay 

MTT.262,263 Compounds at a concentration of 10 μM were incubated with the cell line at 37 

ºC during 24 h and then, the mitochondrial activity of living cells was measured by the 

absorbance change at 540 nm. All tested compounds showed cell viabilities in the same 

range than the basal experiment, pointing out that none of them showed any significant 

cytotoxic effect
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CONCLUSIONS 

In this chapter, the design, synthesis and characterization of selective ligands toward 

muscle nAChRs, azocuroniums, has been accomplished. These compounds are based on the 

structure of steroid non-depolarizing drugs and bisQ (meta substituted azobenzene). They 

present an azobenzene scaffold bearing diverse N-methyl-N-carbocyclic quaternary 

ammonium group, allowing the reversible (E)-(Z) isomerization by irradiation at 400-450 

nm (blue LED) and 335-340 nm (UV LED), respectively. As expected, these azocuroniums 

showed good solubility in physiological media, negligible toxicity and they would not 

penetrate into the CNS. 

The optimized azo group formation was based on reductive coupling of nitrobenzenes with 

LiAlH4, in symmetric azobenzenes (2.2) and a Mills reaction in the asymmetric derivative 

m-2.13b. Quaternization of these compounds gave the azocuroniums salts m-2.1(a-e), p-

2.1(a,b,e) and m-2.14b in good yields. 

The ability of (E)-azocuroniums to bind muscular and neuronal nAChRs (α7 and α4β2) 

were determined by radioligand displacement assays. Meta-azocuroniums were more potent 

and selective towards neuromuscular receptors than their para-substituted counterparts. 

Derivatives with smaller cationic heads, namely the m-pyrrolidine m-2.1a and the m-

piperidine m-2.1b emerged as the most potent and selective ligands in muscle-type 

nAChRs, with binding affinities in the nanomolar range (Kis = 42 and 35 nM, respectively). 

Moreover, they presented worse affinities for α7 (Kis = 2,500 and 910 nM, respectively) 

and were almost inactive in α4β2 (Kis >10,000 nM), showing thus interesting selectivity. In 

contrast, azocuroniums with increased volume or rigidity in the N-carbocycle (m-2.1c and 

m-2.1d), showed worse binding constants in muscle-type nAChR (Kis = 220 and 100 nM, 

respectively) with diminished selectivity indexes between muscular and neuronal nAChRs. 

The asymmetric derivative m-2.14b with only one cationic head displayed poor radioligand 

displacement in muscular and neuronal nAChRs, pointed out the importance of the 

presence of two cationic heads for a successful nAChRs binding. 

Meta azocuroniums (m-2.1(a-d) and m-2.14b) were functionally characterized by TEVC 

technique in Xenopus oocytes expressing embryonic muscle nAChR. By irradiation with 
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either blue LED or UV LED while recording electrical currents, in all cases the (E)-isomer 

was found to be more potent than the corresponding (Z)-isomer. The volume and 

hydrophobic character of the ammonium groups seemed to determine whether these 

azocuroniums would block or activate the receptor. All meta-azocuroniums behaved as 

antagonists of muscular nAChR, with the exception of the smallest pyrrolidine derivative 

m-2.1a, which resulted to be a potent agonist in (E)-isomer (apparent half-maximum 

binding constant of 4.2 ± 0.4 μM, thermally stable or under blue light), whereas it was 

completely inactive in (Z)-form (under UV light), as it was proposed in the initial 

hypothesis. In contrast, the character changed toward antagonist when the N-cycle 

increased its size by one carbon member (piperidine). Thus, m-2.1b acted as an antagonist 

in (E)-isomer, while in (Z)-form resulted less active. The same functional character was 

observed when either piperidine is increased one carbon (azepane, m-2.1c) or a double 

bond was introduced in the ring (1,2,3,6-tetrahydropyridine, m-2.1d). 

m-2.1a-b curves were fitted to one binging site plot. In contrast, azocuronium m-2.1c plot 

fitted to a Hill equation, where (E)-m-2.1c resulted more active than (Z)-m-2.1c. Moreover, 

(E)-isomer acts by a no cooperative inhibition (Hill coefficient around 1), while (Z)-isomer 

inhibition was a negative process (Hill coefficient <1). Otherwise, m-2.1d plot fitted to a 

Hill equation as well, but in this case, both isomers had similar affinity constants and a 

highly cooperative inhibition. However, the efficacy for (Z)-isomer was minor.  

It is expected that the different behavior observed in these new azocuroniums, depending 

on the nature of the N-methyl-N-carbocyclic quaternary ammonium group and the 

wavelength of the irradiated light, could greatly contribute to the biological and 

electrophysiological study of muscle-type nAChRs. 
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EXPERIMENTAL SECTION 

Synthesis 

General procedures 

I. Symmetric azo group formation 

A LiAlH4 solution in Et2O (1 or 2 M, 5 equiv) was added dropwise to the stirred mixture of 

nitrobenzene (1 equiv) in dry Et2O at -78 ºC. After 15 min, the mixture was allowed to 

warm to rt and stirred overnight. The excess of hydride was carefully destroyed with H2O. 

The crude of reaction was filtered and washed with cold H2O several times. The mixture 

was acidified with a solution of citric acid (10%) and the organic layer was separated and 

evaporated under reduced pressure. The residue was purified by preparative TLC in the 

corresponding gradient. 

II. Methylation of amino moiety. 

A solution of the corresponding amino derivative (1 equiv) and CH3I (1.25 equiv per 

amine) in anhydrous DMF (1.5 mL/mmol) was heated under mw irradiation at 120 ºC for 

12 min. The mixture was evaporated under reduced pressure, dissolved in H2O and washed 

with EtOAc. The aqueous layer was lyophilized to give the desired compound. In some 

cases, it was necessary recrystallizing in MeOH. 

Given amines can form salts in the HPLC-MS column, most of them appears in the 

injection point and in different peaks along the spectrum.  

Nitro compounds. Obtained following the general procedure VI of Chapter II without 

further purification. 
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1-[(3-Nitrophenyl)methyl]pyrrolidine (m-2.3a)264 

 

Nitrobenzene m-2.3a was prepared from 1-(bromomethyl)-3-nitrobenzene (250 mg, 1.16 

mmol) and pyrrolidine (105 µL, 1.27 mmol) as brown oil in 96% yield (230 mg, 1.11 

mmol). 1H NMR (300 MHz, CDCl3) δ 8.24 – 8.16 (m, 1H, Ho), 8.10 (dt, J = 8.2, 1.6 Hz, 

1H, Hp), 7.68 (dt, J = 7.8, 1.4 Hz, 1H, Ho’), 7.47 (t, J = 7.9 Hz, 1H, Hm’), 3.70 (s, 2H, Hα), 

2.52 (ddd, J = 6.7, 4.2, 1.5 Hz, 4H, H2), 1.84 – 1.75 (m, 4H, H3).
 13C NMR (75 MHz, 

CDCl3) δ 148.5 (Cm), 142.0 (Ci), 134.9 (Co’), 129.2 (Cm’), 123.7 (Cp), 122.1 (Co), 59.9 (Cα), 

54.3 (C2), 23.7 (C3). HPLC-MS (2:30- g.t.5 min) tR 0.68 min, m/z = 207.22 [M+H]+, calcd. 

for [C11H14N2O2+H]+ 207.25.  

1-[(4-Nitrophenyl)methyl]pyrrolidine (p-2.3a)265 

 

Nitrobenzene p-2.3a was obtained from 1-(bromomethyl)-4-nitrobenzene (250 mg, 1.16 

mmol) and pyrrolidine (105 µL, 1.27 mmol) as a brown oil in 98% yield (234 mg, 1.13 

mmol). 1H NMR (300 MHz, CDCl3) δ 8.09 (dd, J = 8.8, 2.2 Hz, 2H, Hm), 7.44 (d, J = 8.6 

Hz, 2H, Ho), 3.63 (s, 2H Hα), 2.44 (dt, J = 4.1, 2.2 Hz, 4H, H2), 1.72 (q, J = 3.4 Hz, 4H, 

H3).
 13C NMR (75 MHz, CDCl3) δ 147.6 (Cp), 147.1 (Ci), 129.4 (Co), 123.6 (Cm), 60.0 (Cα), 

54.3 (C2), 23.7 (C3). HPLC-MS (2:30- g.t.5 min) tR 0.74 min, m/z = 207.30 [M+H]+, calcd. 

for [C11H14N2O2+H]+ 207.25. 

1-[(3-Nitrophenyl)methyl]piperidine (m-2.3b)266 

 

Nitrobenzene m-2.3b was prepared from 1-(bromomethyl)-3-nitrobenzene (3080 mg, 13.61 

mmol) and piperidine (1.4 mL, 14.10 mmol) as an orange oil in 93% (2780 mg, 12.58 

mmol). 1H NMR (300 MHz, CDCl3) δ 8.19 (s, 1H, Ho), 8.09 (d, J = 7.7 Hz, 1H, Hp), 7.67 
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(d, J = 7.6 Hz, 1H, Ho’), 7.46 (t, J = 7.9 Hz, 1H, Hm’), 3.54 (s, 2H, Hα), 2.42 (m, 4H, H2), 

1.59 (p, J = 5.5 Hz, 4H, H3), 1.49-1.38 (m, 2H, H4). 
13C NMR (75 MHz, CDCl3) δ 148.5 

(Cm), 141.6 (Ci), 135.1 (Co’), 129.1 (Cm’), 123.9 (Co), 122.1 (Cp), 63.0 (Cα), 54.7 (C2), 26.1 

(C3), 24.4 (C4). HPLC-MS (2:30- g.t.5 min) tR injection point and 2.30 min, m/z = 221.15 

[M+H]+, calcd. for [C12H16N2O2+H]+ 221.17.  

1-[(4-Nitrophenyl)methyl]piperidine (p-2.3b)267 

 

Compound p-2.3b was prepared from 1-(bromomethyl)-4-nitrobenzene (3000 mg, 13.61 

mmol) and piperidine (1.4 mL, 14.09 mmol) as an orange oil in 91% yield (2780 mg, 12.58 

mmol). 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.7 Hz, 2H, Hm), 7.50 (d, J = 8.8 Hz, 

2H, Ho), 3.54 (s, 2H, Hα), 2.37 (t, J = 5.2 Hz, 4H, H2), 1.58 (p, J = 5.6 Hz, 4H, H3), 1.44 (p, 

J = 6.1 Hz, 2H, H4). 
13C NMR (75 MHz, CDCl3): δ 147.2 (Ci, Cp), 129.6 (Co), 123.6 (Cm), 

63.1 (Cα), 54.8 (C2), 26.1 (C3), 24.3 (C4). HPLC-MS (2:30- g.t.5 min) tR injection point and 

2.82 min, m/z = 221.05 [M+H]+, calcd. for [C12H16N2O2+H]+ 221.17.  

1-[(3-Nitrophenyl)methyl]azepane (m-2.3c)268 

 

Nitro compound m-2.3c was prepared from 1-(bromomethyl)-4-nitrobenzene (500 mg, 2.31 

mmol) and azepane (286 µL, 2.54 mmol) as a yellow-brown oil in quantitative yield (541 

mg, 2.31 mmol). 1H NMR (400 MHz, CDCl3) δ 8.16 (s, 1H, Ho), 8.01 (dd, J = 8.3, 2.3 Hz, 

1H, Hp), 7.62 (d, J = 7.6 Hz, 1H, Ho'), 7.39 (t, J = 7.9 Hz, 1H, Hm'), 3.65 (s, 2H, Hα), 2.56 (t, 

J = 4.6 Hz, 4H, H2), 1.56 (s, 8H, H3, H4). 
13C NMR (101 MHz, CDCl3) δ 148.4 (Cm), 142.7 

(Ci), 134.7 (Co'), 129.0 (Cm'), 123.4 (Cp), 121.9 (Co), 61.9 (Cα), 55.7 (C2), 28.3 (C3), 27.0 

(C4). HPLC-MS (2:30- g.t.5 min) tR 4.34 min, m/z = 235.20 [M+H]+, calcd. for 

[C13H18N2O2+H]+ 235.30.  
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1-[(3-Nitrophenyl)methyl]-1,2,3,6-tetrahydropyridine (m-2.3d) 

 

Nitrobenzene m-2.3d was obtained from 1-(bromomethyl)-4-nitrobenzene (500 mg, 2.31 

mmol) and 1,2,3,6-tetrahydropyridine (253 µL, 2.77 mmol) as a yellow-brown solid (504 

mg, quantitative yield). Mp: 90 - 93 ºC. 1H NMR (400 MHz, CDCl3) δ 8.22 (bs, 1H, Ho), 

8.11 (d, J = 8.2 Hz, 1H, Hp), 7.71 (d, J = 7.6 Hz, 1H, Ho'), 7.48 (t, J = 7.9 Hz, 1H, Hm'), 5.80 

– 5.74 (m, 1H, H4), 5.69 – 5.63 (m, 1H, H3), 3.66 (s, 2H, H ), 3.02 – 2.96 (m, 2H, H2), 2.57 

(t, J = 5.7 Hz, 2H, H6), 2.20 – 2.15 (m, 1H, H5). 
13C NMR (101 MHz, CDCl3) δ 148.5 (Cm), 

141.2 (Ci), 135.1 (Co'), 129.3 (Cm'), 125.4 (C4), 125.2 (C3), 123.9 (Co), 122.3 (Cp), 62.1 

(Cα), 52.9 (C2), 49.9 (C6), 26.2 (C5). HPLC-MS (2:30- g.t.5 min) tR 1.47 min, m/z = 219.28 

[M+H]+, calcd. for [C12H14N2O2+H]+ 219.26. 

N,N-dimethyl-1-(3-nitrophenyl)methanamine (m-2.3e)269,270 

 

Nitro m-2.3e was synthetized from 1-(bromomethyl)-3-nitrobenzene (500 mg, 2.31 mmol) 

and 2 M solution of dimethylamine (1.15 mL, 2.31 mmol) as an orange oil in 93% yield 

(387 mg, 2.14 mmol). 1H NMR (500 MHz, MeOD) δ 8.19 (t, J = 2.0 Hz, 1H, Ho), 8.12 (dt, 

J = 8.0, 1.8 Hz, 1H, Hp), 7.66 (d, J = 7.6 Hz, 1H, Ho’), 7.48 (t, J = 7.8 Hz, 1H, Hm’), 3.51 (s, 

2H, Hα), 2.25 (s, 6H, Hβ). 
13C NMR (75 MHz, CDCl3) δ 1 48.5 (Cm), 141.5(Ci), 135.1 (Co’), 

129.3 (Cm’), 123.9 (Cp), 122.3 (Co), 63.6 (Cα), 45.5 (Cβ). HPLC-MS (2:30- g.t.5 min) tR 

0.73 – 0.80 min, m/z = 181.01 [M+H]+, calcd. for [C9H12N2O2+H]+ 181.21. 

N,N-dimethyl-1-(4-nitrophenyl)methanamine (p-2.3e)269,271 
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Nitro p-2.3e was prepared from 1-(bromomethyl)-4-nitrobenzene (2000 mg, 9.25 mmol) 

and 2 M solution of dimethylamine (4.63 mL, 9.25 mmol) as a brown oil in 80% yield 

(1320 mg, 7.29 mmol). 1H NMR (300 MHz, CDCl3) δ 8.19 (d, J = 8.7 Hz, 2H, Hm), 7.56 (d, 

J = 8.7 Hz, 2H, Hm), 3.59 (s, 2H, Hα), 2.27 (s, 9H, Hβ).
13C NMR (75 MHz, CDCl3) δ 148.7 

(Cp), 146.9 (Ci), 131.4 (Co), 124.4 (Cm), 64.0 (Cα), 45.4 (Cβ). HPLC-MS (2:30- g.t.5 min) tR 

0.73 – 0.80 min and 1.05 min, m/z = 181.11 [M+H]+, calcd. for [C9H12N2O2+H]+ 181.21. 

Amines. Obtained following the general procedure III of hydrogenation of Chapter I 

without further purification. 

3-(Piperidin-1-ylmethyl)aniline (m-2.4b)264 

 

Aniline m-2.4b was obtained from the nitro m-2.3b (500 mg, 2.26 mmol) as pale brown 

crystals in 96% yield (441 mg, 2.18 mmol), mp: 104 - 106 ºC (lit. 96.7 - 97.8 ºC).264 1H 

NMR (300 MHz, MeOD) δ 7.04 (t, J = 7.8 Hz, 1H, Hm’), 6.69 (s, 1H, Ho), 6.67 – 6.53 (m, 

2H, Ho’, Hp), 3.38 (s, 1H, Hα), 2.40 (t, J = 5.4 Hz, 4H, H2), 1.58 (p, J = 5.5 Hz, 4H, H3), 

1.45 (q, J = 6.0 Hz, 2H, H4). 
13C NMR (75 MHz, MeOD) δ 148.6 (Cm), 138.9 (Ci), 129.9 

(Cm’), 120.8 (Co’), 118.0 (Co), 115.6 (Cp), 65.0 (Cα), 55.3 (C2), 26.4 (C3), 25.2 (C4). HPLC-

MS (2:30- g.t.5 min) tR in the injection point, m/z = 191.25 [M+H]+, calcd. for 

[C12H18N2+H]+ 191.29. 

4-(Piperidin-1-ylmethyl)aniline (p-2.4b)272 

 

Compound p-2.4b was prepared from nitro p-2.3b (1.55 g, 7.04 mmol) as pale yellow 

crystals (1.34 g, 94%), mp: 80 - 83 ºC (lit. 87 - 88 ºC).272 1H NMR (400 MHz, CDCl3) δ 

7.09 (d, J = 8.3 Hz, 2H, Ho), 6.63 (d, J = 8.4 Hz, 2H, Hm), 3.61 (bs, 2H, NH2), 3.38 (s, 2H, 

Hα), 2.36 (t, J = 5.5 Hz, 4H, H2), 1.57 (p, J = 5.6 Hz, 4H, H3), 1.42 (p, J=5.6 Hz, 2H, H4). 

13C NMR (75 MHz, CDCl3) δ 145.7 (Cp), 130.9 (Co), 128.5 (Ci), 115.2 (Cm), 63.8 (Cα), 54.6 
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(C2), 26.3 (C3), 24.8 (C4). HPLC-MS (2:30- g.t.5 min) tR 0.60 min, m/z = 191.02 [M+H]+, 

calcd. for [C12H18N2+H]+ 191.29. 

4-((Dimethylamino)methyl)aniline (p-2.4e)273 

 

Aniline p-2.4e was obtained from nitro p-2.3e (1.30 g, 7.21 mmol) as an orange oil (1.85 g, 

12.3 mmol, 93%). 1H NMR (300 MHz, CDCl3) δ 7.04 (d, J = 8.3 Hz, 2H, Ho), 6.92 (d, J = 

8.1 Hz, 2H, Hm), 3.31 (s, 2H, Hα), 2.18 (s, 6H, Hβ). 
13C NMR (75 MHz, CDCl3) δ 148.2 

(Cp), 131.6 (Co), 127.3 (Ci), 116.1 (Cm), 64.3 (Cα), 44.8 (Cβ). HPLC-MS (2:30- g.t.5 min) tR 

in the injection point, m/z = 151.11 [M+H]+, calcd. for [C9H14N2+H]+ 151.23.  

 

Intermediate products 

(Z)-1,2-Bis(4-(piperidin-1-ylmethyl)phenyl)diazene 1-oxide (p-2.5b) 

 

Azoxy p-2.5b was synthesized from nitro p-2.3b (2.15 g, 9.76 mmol) following the general 

procedure of hydrogenation of chapter I. The reaction mixture was stirred for 48 h. After 

filtration, the crude was purified by a flash chromatography (hexane to EtOAc) to p-2.5b 

obtain as brown oil (450 mg, 17%). 1H NMR (500 MHz, MeOD) δ 9.82 (d, J = 8.6 Hz, 2H, 

Ho), 9.71 (d, J = 8.6 Hz, 2H, Ho’), 9.10 (d, J = 8.6 Hz, 2H, Hm), 9.04 (d, J = 8.6 Hz, 2H, 

Hm’), 5.16 (s, 2H, Hα), 5.12 (s, 2H, Hα’), 2.64 – 2.38 (m, 8H, H2, H2’), 3.18 (p, J = 5.5 Hz, 

8H, H3, H3’), 3.10 – 2.91 (m, 4H, H4, H4’). 
13C NMR (75 MHz, MeOD) δ 148.8 (Ci), 144.6 

(Ci’), 143.3 (Cp), 140.7 (Cp’), 131.1 (Cm), 131.1 (Cm’), 126.5 (Co’), 123.1 (Co), 64.3 (Cα’), 

63.9 (Cα), 55.5 (C2), 55.4 (C2’), 26.6 (C3), 26.6 (C3’), 25.2 (C4, C4’). HPLC-MS (2:30- g.t.5 

min) tR in the injection point and 4.23 min, m/z = 393.42 [M+H]+, calcd. for 

[C24H32N4O+H]+ 393.55.  
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(E,Z)-Bis(4-methylphenyl)diazene (p-2.10)243 

 

To a stirred solution of aniline p-2.4e (1.00 g, 9.33 mmol) and pyridine (0.23 mL, 2.80 

mmol) in toluene, a solution of CuBr (0.14 g, 0.93 mmol) in toluene was added. The 

reaction was stirred at 60 ºC overnight. The mixture was evaporated under reduced pressure 

and the residue was purified by column chromatography (hexane) to afford azo compound 

p-2.10 as orange crystals (620 mg, 63%), mp: 142 - 145 ºC (lit. 144 - 145 ºC).274 1H NMR 

(500 MHz, MeOD): mixture of isomers (Z):(E) (0.7:0.3), δ 7.82 (d, J = 8.2 Hz, 4H, Ho E), 

7.38 (d, J = 8.1 Hz, 4H, Hm E), 7.13 (d, J = 8.0 Hz, 4H, Ho Z), 6.79 (d, J = 8.2 Hz, 4H, Hm 

Z), 2.46 (s, 6H, Hα E), 2.32 (s, 6H, Hα Z). 13C NMR (101 MHz, MeOD) δ 152.2 (Ci), 142.8 

(Cp), 130.8 (Cm E), 130.4 (Cm Z), 123.7 (Co E), 121.7 (Co Z), 21.4 (Cα E), 21.1 (Cα Z).22 

HPLC-MS (30:95- g.t.10 min) tR 6.70 min (Z) and 9.66 min (E), m/z = 211.41 [M+H]+, 

calcd. for [C14H14N2+H]+ 211.28. 

1-({3-[(E,Z)-(3-methylphenyl)diazenyl]phenyl}methyl)piperidine (m-2.9b) 

 

This azo derivative was obtained as a subproduct of the reaction to obtain azo m-2.2b by 

hydrogenation with Pd-C as catalysis, as an orange oil (55 mg, %m/m 5). 1H NMR (400 

MHz, CDCl3): mixture of isomers (Z):(E) (0.2:0.8), (only (E) has been characterized) δ 

7.88 (s, 1H, Ho), 7.82 (dt, J = 6.9, 2.1 Hz, 1H, Hp), 7.73 (s, 1H, H6’), 7.69 (m, 1H, H2’), 7.56 

– 7.47 (m, 2H, Hm’, Ho’), 7.42 (t, J = 7.6 Hz, 1H, H3’), 7.34 (d, J = 7.4 Hz, 1H, H4’), 3.61 (s, 

2H, Hα), 2.56 – 2.38 (m, 7H, Hβ, H2), 1.61 (p, J = 5.6 Hz, 4H, H3), 1.53 – 1.41 (m, 2H, H4). 

13C NMR (75 MHz, CDCl3) δ 154.1 (Cm, C1’), 140.4 (C5’), 140.0 (Ci), 133.5 (Co’), 133.0 

(C4’), 130.1 (C3’, Cm’), 124.8 (Co), 124.1 (C6’), 123.0 (Cp), 121.2 (C2’), 64.4 (Cα), 55.4 (C2), 

26.5 (C3), 25.2 (C4), 21.4(Cβ). HPLC-MS (15:95- g.t.10 min) tR 6.02 min, m/z = 294.38 

[M+H]+, calcd. for [C19H23N3+H]+ 294.41. 
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(E,Z)-bis(3-methylphenyl)diazene (m-2.10)243 

 

Azobenzene m-2.10 was also obtained as subproduct of the previous reaction as yellow 

crystals (457 mg, 63%), mp: 53 - 55 ºC (lit. 55 ºC)275. 1H NMR (500 MHz, MeOD, δ): 

mixture of isomers (Z):(E) (0.1:0.9), 7.72 – 7.64 (m, 4H, Ho, Ho’ E), 7.38 (t, J = 7.8 Hz, 2H, 

Hm’ E), 7.29 (d, J = 7.5 Hz, 2H, Hp E), 7.09 (t, J = 7.7 Hz, 2H, Hm’ Z), 6.96 (d, J = 7.5 Hz, 

2H, Ho’ Z), 6.71 (s, 2H, Ho Z), 6.54 (d, J = 7.8 Hz, 2H, Hp Z), 2.41 (s, 6H, Hα E), 2.21 (s, 

6H, Hα Z).22 HPLC-MS (30:95- g.t.10 min) tR 6.81 min (Z) and 9.74 min (E), m/z = 211.33 

[M+H]+, calcd. for [C14H14N2+H]+ 211.28. 

 

Diazene derivatives m-2.2 (a-e), p-2.2(a,b) and m-2.13b 

(E,Z)-1,2-bis(3-(pyrrolidin-1-ylmethyl)phenyl)diazene (m-2.2a) 

 

Compound m-2.2a was prepared from nitro m-2.3a (159 mg, 0.77 mmol) and a LiAlH4 

solution in Et2O (1.93 mL, 3.85 mmol) following the general procedure I. After a 

purification by TLC (EtOAc:MeOH, 90:10), a mixture of (E):(Z)-isomers (80:20) of m-2.3a 

was obtained as orange crystals (121 mg, 90%), mp: 62 – 64 ºC. Each isomer is reported 

separately. 1H NMR (500 MHz, MeOD) δ (E) 7.92 (s, 2H, Ho), 7.86 – 7.83 (m, 2H, Ho’), 

7.55 – 7.50 (m, 4H, Hm’, Hp), 3.76 (s, 4H, Hα), 2.62 – 2.57 (m, 8H, H2), 1.84 (tt, J = 3.8, 1.9 

Hz, 8H, H3). (Z) 7.29 (t, J = 7.8 Hz, 2H, Hm’), 7.14 (dt, J = 6.6, 1.0 Hz, 2H, Hp), 6.88 (d, J = 

7.9 Hz, 2H, Ho’), 6.72 (s, 2H, Ho), 3.49 (s, 4H, Hα), 2.32 – 2.30 (m, 8H, H2), 1.74 – 1.71 (m, 

8H, H3). 
13C NMR (126 MHz, MeOD) δ (E) 154.1 (Ci), 140.9 (Cm), 133.2 (Cp), 130.3 (Cm’), 

124.4 (Co), 123.10 (Co’), 61.15 (Cα), 54.98 (C2), 24.15 (C3). (Z) 155.3 (Ci), 140.3 (Cm), 

130.0 (Cp), 129.3 (Cm’),121.60 (Co), 121.03 (Co’), 60.70 (Cα), 54.62 (C2), 24.04 (C3). 

HPLC-MS (2:30 - g.t.10 min) tR in the injection and 5.96 min, m/z = 349.47 [M+H]+, 
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calcd. for [C22H28N4+H]+ 349.49. HRMS [ESI+] m/z = 348.23092 [M], calcd for 

[C22H28N4] 348.2314.  

(E,Z)-1,2-bis(4-(pyrrolidin-1-ylmethyl)phenyl)diazene (p-2.2a) 

 

Azobenzene p-2.2a was prepared from nitro p-2.3a (138 mg, 0.67 mmol) and a LiAlH4 

solution (1.67 mL, 3.34 mmol) following the general procedure I of this chapter. After a 

preparative TLC using EtOAc:MeOH (95:5) as eluent, compound p-3a was obtained as 

brown oil (108 mg, 93%). NMR spectra was recorded in (E):(Z) 9:1 proportion. Each 

isomer is reported separately.1H NMR (500 MHz, MeOD) δ (E) 8.27 (d, J = 8.4 Hz, 4H, 

Ho), 7.92 (d, J = 8.4 Hz, 4H, Hm), , 4.12 (s, 4H, Hα), 2.99 (m, 8H, H2), 2.25 – 2.20 (m, 8H, 

H3). (Z) 7.65 (d, J = 8.3 Hz, 4H, Ho), 7.21 (d, J = 8.3 Hz, 4H, Hm) 3.57 (s, 4H, Hα), 2.51 – 

2.47 (m, 8H, H2), 1.80 – 1.77 (m, 8H, H3).
13C NMR (126 MHz, MeOD) δ (E) 153.3 (Ci), 

143.0 (Cp), 131.2 (Cm), 123.8 (Co), 61.06 (Cα), 55.0 (C2), 24.2 (C3). HPLC-MS (2:30 - 

g.t.10 min) tR in the injection and 6.22 min, m/z = 349.21 [M+H]+, calcd. for 

[C22H28N4+H]+ 349.49. HRMS [ESI+] m/z = 348.23157 [M], calcd for [C22H28N4] 

348.2314.  

(E,Z)-1,2-bis(3-(piperidin-1-ylmethyl)phenyl)diazene (m-2.2b) 

 

Diazene m-2.2b was obtained from hydrogenation of nitro m-2.3b (1.50 g, 6.81 mmol) 

catalyzed by Pd/C (5%) under H2 atmosphere for 7 days following the general procedure. 

After purification by preparative TLC (EtOAc:MeOH 90:10), m-2.2b was isolated as 

orange crystals (110 mg, 15%), mp: 89 - 92 ºC. 1H NMR (500 MHz, MeOD): mixture of 

isomers (Z):(E) (0.24:0.76), δ 7.91(bs, 2H, Ho E), 7.85 (dt, J = 7.3, 1.9 Hz, 2H, Ho’ E), 7.52 

(t, J = 5 Hz, 2H, Hm’ E), 7.50 (dt, J = 10, 2 Hz, 2H, Hp E), 7.30 (t, J = 7.7 Hz, 2H, Hm’ Z), 

7.13 (ddd, J = 7.6, 1.7, 1.1 Hz, 2H, Ho’ Z), 6.94 (ddd, J = 7.9, 2.1, 1.1 Hz, 2H, Hp Z), 6.64 
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(m, 2H, Ho Z), 3.63 (s, 4H, Hα E), 3.35 (s, 4H, Hα Z), 2.49 (s, 8H, H2), 1.63 (p, J = 5.7 Hz, 

8H, H3), 1.50 (m, 4 H, H4).
 13C NMR (126 MHz, MeOD, δ) [(E)-isomer]: 154.0 (Ci), 133.7 

(Cm), 130.2 (Cm’), 124.9 (Cp), 123.1 (Co), 121.8 (Co’), 64.4 (Cα), 55.4 (C2), 26.5 (C3), 25.2 

(C4). HPLC-MS (2:30 - g.t.10 min) tR in the injection and 6.22 min, m/z = 377.47 [M+H]+, 

calcd. for [C24H32N4+H]+ 377.26.  

(E,Z)-1,2-Bis(4-(piperidin-1-ylmethyl)phenyl)diazene (p-2.2b) 

 

Oxone® (1.94 g, 6.30 mmol) was solved in H2O and was added to a solution of amino p-

2.4b (1.00 g, 5.26 mmol) in H2O. The mixture was stirred for 15 min. Then, more amino 

compound was added (1.00 g, 3.25 mmol), previously solved in H2O with few drops of 

AcOH and the reaction was stirred overnight at rt. Then, it was evaporated under reduced 

pressure, solved in EtOAc, washed with NaHCO3 and brine, dried over MgSO4, filtered, 

and evaporated under reduced pressure. The residue was purified by column 

chromatography (hexane) and a preparative TLC (EtOAc:MeOH, 95:5) to afford azo p-

2.2b. Orange crystals (150 mg, 30%), mp: 141 - 142 ºC. 1H NMR (300 MHz, MeOD, δ): 

mixture of isomers Z:E (0.1:0.9), only (E)-isomer has been characterized, 7.88 (d, J = 8.3 

Hz, 4H, Ho), 7.52 (d, J = 8.2 Hz, 4H, Hm), 3.58 (s, 4H, Hα), 2.47 (s, 8H, H2), 1.62 (s, 8H, 

H3), 1.48 (s, 4H, H4).
13C NMR (75 MHz, MeOD, δ): 53.3 (Ci), 139.9 (Cp), 131.6 (Cm), 

123.6 (Co), 64.3 (Cα), 55.5 (C2), 26.6 (C3), 25.2 (C4). HPLC-MS (2:30 - g.t.10 min) tR in 

the injection and 6.15 min, m/z = 377.18 [M+H]+, calcd. for [C24H32N4+H]+ 377.26. 

(E,Z)-1,2-bis(3-(azepan-1-ylmethyl)phenyl)diazene (m-2.2c) 

 

Diazene m-2.2c was prepared from nitro m-2.3c (540 mg, 2.31 mmol) and a LiAlH4 

solution (11.55 mL, 11.55 mmol) following the general procedure I of this chapter to yield 

m-2.2c as an orange oil (283 mg, 61%), after purification by preparative TLC 
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(EtOAc:MeOH 70:30). 1H NMR (500 MHz, DMSO, δ) 7.84 (s, 2H, Ho), 7.76 (dt, J = 7.1, 

2.0 Hz, 2H, Ho'), 7.55 (t, J = 7.5 Hz, 2H, Hm'), 7.53 – 7.50 (m, 2H, Hp), 3.73 (s, 4H, Hα), 

2.63 – 2.59 (m, 8H, H2, H7), 1.65 – 1.54 (m, 16H, H3, H4, H5, H6). 
13C NMR (126 MHz, 

DMSO) δ 152.0 (Ci), 141.5 (Cm), 131.5 (Cp), 129.2 (Cm'), 122.1 (Co), 121.3 (Co'), 61.4 (Cα), 

55.0 (C2, C7), 27.9 (CH2), 26.5 (CH2). HPLC-MS (2:30- g.t.10 min) tR 9.66 min, m/z = 

405.38 [M+H]+, calcd. for [C26H36N4+H]+ 405.60. λmax = 320 nm [(E)-isomer]. HRMS 

[ESI+] m/z = 404.29324 [M]+, calcd for [C26H36N4]
+ 404.2940. 

(E,Z)-1,2-bis(3-((3,6-dihydropyridin-1(2H)-yl)methyl)phenyl)diazene (m-2.2d) 

 

Azobenzene m-2.2d was prepared from nitro m-2.3d (300 mg, 1.37 mmol) and a LiAlH4 

solution (6.87 mL, 6.87 mmol) following the general procedure I of this chapter. After a 

preparative TLC (EtOAc:MeOH 95:5) a mixture of (E):(Z)-isomers (9:1) of diazene m-3d 

was obtained as orange crystals (126 mg, 49%), mp: 90 - 93 ºC. Each isomer is reported 

separately. 1H NMR (500 MHz, CDCl3, δ) (E) 7.89 (t, J = 1.9 Hz, 2H, Ho), 7.81 (dt, J = 7.5, 

1.7 Hz, 2H, Ho'), 7.50 (dt, J = 7.6, 1.6 Hz, 2H, Hp), 7.46 (t, J = 7.6 Hz, 2H, Hm'), 5.77 (dtt, J 

= 9.4, 3.7, 2.1 Hz, 2H, H4), 5.68 (dtt, J = 10.1, 3.3, 1.8 Hz, 2H, H3), 3.68 (s, 4H, Hα), 3.02 

(p, J = 2.8 Hz, 4H, H2), 2.61 (t, J = 5.7 Hz, 4H, H6), 2.19 (tp, J = 5.7, 2.8 Hz, 4H, H5). (Z) δ 

7.21 (t, J = 7.7 Hz, 2H, Hm'), 7.12 (d, J = 7.7 Hz, 2H, Hp), 6.83 (dt, J = 7.9, 1.5 Hz, 2H, 

Ho'), 6.72 (s, 2H, Ho), 5.73 – 5.70 (m, 2H, =CH) 5.58 (dtd, J = 10.0, 3.4, 1.7 Hz, 2H, =CH), 

3.42 (s, 4H, Hα), 2.75 (dt, J = 5.3, 2.6 Hz, 4H, H2), 2.35 (t, J = 5.7 Hz, 4H, H6), 2.06 (dt, J = 

5.7, 2.8 Hz, 4H, H5). 
13C NMR (126 MHz, CDCl3, δ) (E) 152.9 (Ci), 139.8 (Cm), 131.8 (Cp), 

129.1 (Cm'), 125.5 (C4), 125.4 (C3), 123.6 (Co), 121.8 (Co'), 62.8 (Cα), 53.0 (C2), 49.9 (C6), 

26.3 (C5). (Z) 154.7 (Ci), 139.3 (Cm), 128.7 (Cm'), 128.0 (Cp), 125.3 (2 =CH), 120.7 (Co), 

119.8 (Co'), 62.5 (Cα), 52.6 (C2), 49.6 (C6), 26.2 (C5). HPLC-MS (2:30- g.t.10 min) tR 7.63 

min, m/z = 373.28 [M+H]+, calcd. for [C24H28N4+H]+ 373.52. λmax = 319 nm [(E)-isomer]. 

HRMS [ESI+] m/z = 372.23053 [M]+, calcd for [C24H28N4]
+ 372.2314. 
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(E,Z)-1,1'-(Diazene-1,2-diylbis(3,1-phenylene))bis(N,N-dimethylmethanamine) 

(m-2.2e)276 

 

Azo derivative m-2.2e was synthetized from nitro m-2.3e (340 mg, 1.89 mmol) in dry Et2O 

and LiAlH4 (9.43 mL, 9.43 mmol) following the general procedure, orange oil (257 mg, 

92%). 1H NMR (300 MHz, MeOD, δ): mixture of isomers (Z):(E) (0.2:0.8), 7.90 (s, 2H, Ho 

E), 7.86 (d, J = 7.4 Hz, 2H, Ho’ E), 7.54 (t, J = 7.5 Hz, 2H, Hm’ E), 7.49 (d, J = 7.5 Hz, 2H, 

Hp E), 7.09 (t, J = 7.8 Hz, 2H, Hm’ Z), 6.78 (s, 2H, Ho Z), 6.75 (dd, J = 2.4, 1.0 Hz, 2H, Ho’ 

Z), 6.66 (d, J = 7.4 Hz, 2H, Hp Z), 3.36 (s, 4H, Hβ), 2.19 (s, 12H, Hα).
 13C NMR (126 MHz, 

MeOD, δ): 154.1 (Ci), 140.2 (Cm), 133.5 (Cm’), 130.3 (Cp), 124.7 (Co), 123.3 (Co’), 64.5 

(Cα), 45.2 (Cβ). HPLC-MS (2:30 - g.t.10 min) tR in the injection both isomers, m/z = 

297.39 [M+H]+, calcd. for [C18H24N4+H]+ 297.42. 

N,N'-{(E,Z)-Diazenediylbis[(4,1-phenylene)methylene]}bis(N-methylmethanamine) 

(p-2.2e) 

 

Azo derivative p-2.2e was synthetized from nitro p-2.3e (400 mg, 2.22 mmol) and LiAlH4 

(11.09 mL, 2.77 mmol) following the general procedure I of this chapter. Orange crystals 

(211 mg, 64%), mp: decomposes before melting. NMR spectra was recorded in (E):(Z) 8:2 

proportion. Each isomer is reported separately. 1H NMR (500 MHz, MeOD, δ): (E) 7.90 (d, 

J = 8.4 Hz, 4H, Ho), 7.51 (d, J = 8.7 Hz, 4H, Hm), 3.57 (s, 4H, Hα), 2.29 (s, 12H, Hβ). (Z) 

7.24 (d, J = 8.6 Hz, 4H, Ho), 6.83 (d, J = 8.4 Hz, 4H, Hm), 3.40 (s, 4H, Hα), 2.18 (s, 12H, 

Hβ). 
13C NMR (126 MHz, MeOD, δ): (E) 153.4 (Ci), 142.4 (Cp), 131.5 (Cm), 123.8 (Co), 

64.5 (Cα), 45.3 (Cβ). (Z) 153.4 (Ci), 142.4 (Cp), 131.1 (Cm), 121.6 (Co), 64.2 (Cα), 45.1 (Cβ). 

HPLC-MS (2:30- g.t.10 min) tR in the injection both isomers, m/z = 297.38 [M+H]+, calcd. 

for [C18H24N4+H]+ 297.42. HRMS [ESI+] m/z = 296.20084 [M] calcs for [C18H24N4] 

296.2001. 
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(E)-1-(3-(Phenyldiazenyl)benzyl)piperidine (m-2.13b)250 

 

Commercial nitrosobenzene (100 mg, 0.93 mmol) was solved in anhydrous toluene (5 mL), 

amine m-2.4b (178 mg, 0.93 mmol) and AcOH (21 µL, 3.75 mmol) were added orderly 

under N2. The reaction was stirred at 60 ºC overnight. The mixture was extracted with 

EtOAc, washed with water and brine, dried with MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by reverse phase flash chromatography (H2O to 

ACN). After lyophilization of the appropriate fractions diazene m-4b was obtained as 

orange oil in 93% yield (241 mg, 0.86 mmol). 1H NMR (500 MHz, DMSO, δ): 7.90 (dd, J 

= 6.6, 1.5 Hz, 2H, Hm''), 7.80 (t, J = 1.5 Hz, 1H, Ho), 7.78 (dt, J = 7.7, 1.8 Hz, 1H, Ho'), 7.63 

– 7.57 (m, 3H, Ho'', Hp'), 7.54 (t, J = 7.6 Hz, 1H, Hm'), 7.49 (dt, J = 7.6, 1.4 Hz, 1H, Hp), 

3.53 (s, 2H, Hα), 2.39 – 2.31 (m, 4H, H2, H6), 1.50 (p, J = 5.6 Hz, 4H, H3, H5), 1.40 (q, J = 

6.0 Hz, 2H, H4).
13C NMR (126 MHz, DMSO, δ) 152.0 (Ci'), 151.9 (Ci), 140.4 (Cm), 131.9 

(Cp), 131.5 (Cp'), 129.5 (Co''), 129.3 (Cm'), 122.5 (Cm''), 122.4 (Co), 121.5 (Co'), 62.4 (Cα), 

53.9 (C2), 25.6 (C3), 24.0 (C4). HPLC-MS (15:95- g.t.10 min) tR 1.44 min, m/z = 280.28 

[M+H]+ (Z)-isomer; 4.97 min, m/z = 280.21 [M+H]+ (E)-isomer, calcd. for [C18H21N3+H]+ 

280.39. λmax = 285, 425 nm [(Z)-isomer]; 319 nm [(E)-isomer]. HRMS [ESI+] m/z = 

279.17353 [M]+, calcd for [C18H21N3]
+ 279.17355. 
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Azocuronium salts m-2.1(a-e), p-2.1(a,b) and m-2.14b 

Salts with two positive charges were analyzed by HPLC-MS, however all of them appeared 

in the injection point, although different gradients were tried. Thus, the mass was verified 

and the characteristic UV spectrum of azobenzene. As expected, iodide ion ionized in 

negative mode. All of them were obtained following the general procedure II of this 

chapter. 

(E,Z)-1,1'-((Diazene-1,2-diylbis(3,1-phenylene))bis(methylene))bis(1-methylpyrrolidin-

1-ium) iodide (m-2.1a) 

 

Azocuronium m-2.1a was obtained from azobenzene m-2.2a (50 mg, 0.14 mmol) and CH3I 

(26 μL, 0.40 mmol) as orange solid (52 mg, 99%), mp: 53 - 55 ºC. 1H NMR (500 MHz, 

MeOD, δ): mixture of isomers (Z):(E) (0.15:0.85), only (E)-isomer was characterized. 8.24 

(d, J = 1.6 Hz, 2H, Ho), 8.13 (dd, J = 7.9, 1.6 Hz, 2H, Ho'), 7.81 (dd, J = 7.6, 1.5 Hz, 2H, 

Hp), 7.75 (t, J = 7.7 Hz, 2H, Hm'), 4.77 (s, 4H, Hα), 3.79 (dt, J = 12.5, 7.0 Hz, 4H, H2eq), 

3.60 – 3.52 (m, 4H, H2ax), 3.09 (s, 6H, Hβ), 2.39 – 2.24 (m, 8H, H3). 
13C NMR (126 MHz, 

MeOD, δ) 154.2 (Ci), 136.5 (Cp), 131.5 (Cm'), 131.3 (Cm), 128.2 (Co), 125.8 (Co'), 67.4 (Cα), 

65.0 (C2), 48.8 (Cβ), 22.3 (C3). λmax = 319 nm [(E)-isomer]. HRMS [ESI+] m/z = 

378.27912 [M]+2, calcd for [C24H34N4]
+2 378.27835. 

(E,Z)-1,1'-((Diazene-1,2-diylbis(4,1-phenylene))bis(methylene))bis(1-methylpyrrolidin-

1-ium) iodide (p-2.1a) 
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Azocuronium p-2.1a was synthetized from azobenzene p-2.2a (50 mg, 0.14 mmol) and 

CH3I (26 μL, 0.40 mmol) as an orange solid (50 mg, 95%), mp: 153 – 156 ºC. 1H NMR 

(400 MHz, MeOD, δ) (E) 8.08 (d, J = 8.4 Hz, 4H, Ho), 7.85 (d, J = 8.4 Hz, 4H, Hm), 4.74 

(s, 4H, Hα), 3.81 – 3.70 (m, 4H, H2eq), 3.60 – 3.51 (m, 4H, H2ax), 3.07 (s, 6H, Hβ), 2.38 – 

2.24 (m, 8H, H3). 
13C NMR (101 MHz, MeOD, δ) 154.8 (Ci), 134.9 (Cm), 133.1 (Cp), 124.6 

(Co), 67.1 (Cα), 64.9 (C2), 48.6 (Cβ), 22.3 (C3). λmax = 322 nm [(E)-isomer]. HRMS [ESI+] 

m/z = 378.27817 [M]+2, calcd for [C24H34N4]
+2 378.27835. 

(E,Z)-1,1'-((Diazene-1,2-diylbis(3,1-phenylene))bis(methylene))bis(1-methylpiperidin-

1-ium) iodide (m-2.1b) 

 

Salt m-2.1b was synthetized from m-2.2b (45 mg, 0.12 mmol) and CH3I (17.9 μL, 0.49 

mmol) as an orange solid (77 mg, 97%), mp: 174 - 176 ºC. NMR spectra was recorded in 

(E):(Z) 85:15 proportion. Each isomer is reported separately. 1H NMR (500 MHz, MeOD, 

δ): (E) 8.24 (bs, 2H, Ho), 8.14 (dt, J = 7.6, 1.7 Hz, 2H, Ho’), 7.79 (dt, J = 7.7, 1.6 Hz, 2H, 

Hp), 7.75 (t, J = 7.6 Hz, 2H, Hm’), 4.78 (s, 4H, Hα), 3.55 (m, 4H, H2eq), 3.50 – 3.42 (m, 4H, 

H2ax), 3.10 (s, 6H, Hβ), 2.08 – 1.93 (m, 8H, H3), 1.87 – 1.76 (m, 2H, H4eq), 1.76 – 1.61 (m, 

2H, H4ax). (Z) 7.57 (d, J = 7.8 Hz, 2H, Hm'), 7.45 – 7.43 (d, J = 7.8 Hz, 2H, Hp), 7.36 (d, J = 

8.1 Hz, 2H, Ho'), 6.93 (s, 2H, Ho), 4.39 (s, 4H, Hα), 3.14 (t, J = 5.8 Hz, 8H, H2), 2.78 (s, 6H, 

Hβ), 1.89 – 1.82 (m, 8H, H3), 1.77 – 1.69 (m, 2H, H4eq), 1.57 – 1.46 (m, 2H, H4ax). 
13C 

NMR (126 MHz, MeOD, δ): (E) 154.0 (Ci), 137.1 (Cp), 131.4 (Cm’), 130.0 (Cm), 129.0 (Co), 

125.8 (Co’), 68.6 (Cα), 62.1 (C2), 47.2 (Cβ), 22.2 (C4), 21.1 (C3). (Z) 152.5 (Ci), 132.6 (Cp), 

130.1 (Cm'), 127.8 (Cm), 123.8 (Co), 123.7 (Co'), 67.0 (Cα), 60.6 (C2), 46.1 (Cβ), 30.1, 20.4 

(C4), 19.4 (C3). λmax = 320 nm (E-isomer). HRMS [ESI+] m/z = 406.31014 [M]+2, calcd for 

[C26H38N4]
+2 406.30965. 
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(E,Z)-1,1'-((Diazene-1,2-diylbis(4,1-phenylene))bis(methylene))bis(1-methylpiperidin-

1-ium) iodide (p-2.1b) 

 

Azocuronium p-2.1b was prepared from p-2.2b (31 mg, 0.08 mmol) and CH3I (14.35 μL, 

0.23 mmol) in DMF as an orange solid (50 mg, 95%), mp: 291 - 231 ºC. 1H NMR (300 

MHz, MeOD, δ): mixture of isomers Z-E (0.1:0.9), only (E)-isomer was characterized. 8.09 

(d, J = 8.4 Hz, 4H, Ho), 7.82 (d, J = 8.4 Hz, 4H, Hm), 4.72 (s, 4H, Hα), 3.58 – 3.47 (m, 4H, 

H2 eq), 3.46 – 3.36 (m, 4H, H2ax), 3.08 (s, 6H, Hβ), 2.08 – 1.94 (m, 8H, H3), 1.87 – 1.75 (m, 

2H, H4 eq), 1.75 – 1.64 (m, 2H, H4 ax). 
13C NMR (75 MHz, MeOD, δ): 54.8 (Ci), 135.5 (Co), 

131.8 (Cp), 124.5 (Cm), 68.4 (Cα), 62.2 (C2), 55.9 (Cβ), 22.2 (C4), 21.1 (C3). λmax = 321 nm 

[(E)-isomer]. HRMS [ESI+] m/z = 406.30984 [M]+2, calcd for [C26H38N4]
+2 406.30965. 

(E,Z)-1,1'-((Diazene-1,2-diylbis(3,1-phenylene))bis(methylene))bis(1-methylazepan-1-

ium) iodide (m-2.1c) 

 

Azocuronium m-2.1c was obtained from m-2.2c (80 mg, 0.20 mmol) as yellow-orange 

crystals (115 mg, 0.17 mmol). Mp: 145 ºC (decompose) NMR spectra was recorded in 

(E):(Z) 8:2 proportion. Each isomer is reported separately. 1H NMR (500 MHz, D2O, δ) (E) 

8.09 – 8.06 (m, 2H, Ho'), 8.06 (bs, 2H, Ho), 7.76 – 7.73 (m, 4H, Hm', Hp), 4.63 (s, 4H, Hα), 

3.62 (dt, J = 14.2, 5.0 Hz, 4H, H2eq, H7eq), 3.39 (dt, J = 14.0, 4.8 Hz, 4H, H2ax, H7ax), 3.03 

(s, 6H, CH3), 1.99 – 1.90 (m, 8H, H3, H6), 1.75 – 1.68 (m, 8H, H4, H5). ( Z) δ 7.55 (t, J = 

7.9 Hz, 2H, Hm'), 7.43 (d, J = 7.7 Hz, 2H, Hp), 7.30 (d, J = 8.0, 1.9 Hz, 2H, Ho'), 6.97 (s, 

2H, Ho), 4.36 (s, 4H, Hα), 3.30 (dt, J = 14.0, 5.0 Hz, 4H, H2eq, H7eq), 3.16 (dt, J = 14.0, 4.8 

Hz, 4H, H2ax, H7ax), 2.76 (s, 6H, CH3), 1.85 – 1.78 (m, 8H, H3, H6), 1.67 – 1.61 (m, 8H, H4, 
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H5). 
13C NMR (126 MHz, D2O, δ) (E) 152.9 (Ci), 136.7 (Cp), 131.0 (Cm'), 129.5 (Cm), 127.6 

(Co), 125.1 (Co'), 68.5 (Cα), 64.7 (C2, C7), 50.6 (CH3), 28.0 (C4, C5), 21.8 (C3, C6). (Z) δ 

153.3 (Ci), 133.3 (Cp), 130.8 (Cm'), 129.5 (Cm), 124.7 (Co), 124.2 (Co'), 64.6 (C2, C7), 50.3 

(CH3), 27.9 (C4, C5), 21.7 (C3, C6). λmax = 319 nm [(E)-isomer]. HRMS [ESI+] m/z = 

434.34076 [M]+, calcd for [C28H42N4]
2+ 434.34095. 

(E,Z)-1,1'-((Diazene-1,2-diylbis(3,1-phenylene))bis(methylene))bis(1-methyl-1,2,3,6-

tetrahydropyridin-1-ium) iodide (m-2.1d) 

 

Azocuronium m-2.1d was obtained from azo m-2.2c (60 mg, 0.16 mmol) as yellow-orange 

solid (82 mg, 78%). Mp: 200 ºC (decompose). NMR spectra was recorded in (E):(Z) 8:2 

proportion. Each isomer is reported separately. 1H NMR (500 MHz, D2O, δ) 8.12 – 8.09 

(m, 2H, Ho), 8.08 (bs, 2H, Ho'), 7.79 – 7.76 (m, 4H, Hp, Hm'), 6.10 (d, J = 10.2 Hz, 2H, H4), 

5.78 (d, J = 10.0 Hz, 2H, H3), 4.75 (d, J = 13.2 Hz, 4H, 1Hα), 4.63 (d, J = 13.2 Hz, 2H, 

1Hα), 4.10 (d, J = 16.5 Hz, 2H, H2eq), 3.78 (d, J = 16.4 Hz, 2H, H2ax), 3.67 – 3.56 (m, 4H, 

H6), 3.09 (s, 6H, Hβ), 2.65 – 2.56 (m, 4H, H5). ( Z) 7.60 (t, J = 7.9 Hz, 2H, Hm'), 7.46 (d, J = 

7.8 Hz, 2H, Hp), 7.39 (d, J = 8.2 Hz, 2H, Ho'), 6.94 (s, 2H, Ho), 6.03 (d, J = 10.4 Hz, 2H, 

H4), 5.66 (d, J = 10.6 Hz, 2H, H3), 4.47 (d, J = 13.2 Hz, 2H, 1Hα), 4.37 (d, J = 13.1 Hz, 2H, 

1Hα), 3.71 (d, J = 16.5 Hz, 2H, H2eq), 3.53 (d, J = 16.5 Hz, 2H, H2ax), 3.39 – 3.32 (m, 2H, 

H6), 3.22 (dt, J = 12.9, 6.2 Hz, 2H, H6), 2.83 (s, 6H, Hβ), 2.48 (s, 4H, H5) 
13C NMR (126 

MHz, D2O, δ) (E) 153.0 (Ci), 136.7 (Cp), 131.0 (Cm'), 128.8 (Cm), 127.6 (Co), 125.6 (C4), 

125.3 (Co'), 118.9 (C3), 67.5 (Cα), 58.7 (C2), 57.8 (C6), 47.4 (Cβ), 21.6 (C5). (Z) 153.3 (Ci), 

133.3 (Cp), 130.9 (Cm'), 128.3 (Cm), 125.5 (C4), 124.6 (Co'), 124.5 (Co), 118.6 (C3), 67.2 

(Cα), 58.4 (C2), 57.4 (C6), 47.2 (Cβ), 21.5 (C5). λmax = 321 nm [(E)isomer]. HRMS [ESI+] 

m/z = 402.27886 [M]2+, calcd for [C26H34N4]
2+ 402.27835. 
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(E,Z)-1,1'-(Diazene-1,2-diylbis(3,1-phenylene))bis(N,N,N-trimethylmethanaminium) 

iodide (bisQ, m-2.1e)218 

 

m-2.1e was obtained from m-2.2e (50 mg, 0.17 mmol) and CH3I (30.5 μL, 0.49 mmol) as 

orange crystals (84 mg, 85%), mp: 191 ºC (decompose). NMR spectra was recorded in 

(E):(Z) 0.1:0.9 proportion. Each isomer is reported separately 1H NMR (500 MHz, MeOD, 

δ): (E) 8.25 (s, 2H, Ho), 8.16 (dt, J = 7.6, 1.7 Hz, 2H, Ho’), 7.80 (tt, J = 10 Hz, 1.8 Hz, 2H, 

Hp), 7.76 (t, J = 7.6 Hz, 2H, Hm’), 4.75 (s, 4H, Hα), 3.22 (s, 18H, Hβ). (Z) 7.30 (td, J = 7.7, 

0.7 Hz, 2H, Hm’), 7.02 – 6.99 (m, 2H, Ho), 7.00 – 6.97 (m, 2H, Ho’), 6.89 (d, J = 7.6 Hz, 2H, 

Hp), 4.46 (s, 4H, Hα), 3.09 (s, 18H, Hβ). 
13C NMR (126 MHz, MeOD, δ): (E) 154.1 (Ci), 

151.6 (Cm), 136.9 (Cp), 131.5 (Cm’), 128.6 (Co), 126.0 (Co’), 70.8 (Cα), 53.3 (Cβ). (Z) 154.1 

(Ci), 151.6 (Cm), 131.0 (Cm’), 123.9 (Cp), 117.1 (Co), 115.7 (Co’), 69.8 (Cα), 53.3 (Cβ). 

HRMS [ESI+] m/z = 326.24705 [M]+2, calcd for [C20H30N4]
+2 326.2472. 

(E,Z)-1,1'-(Diazene-1,2-diylbis(4,1-phenylene))bis(N,N,N-trimethylmethanaminium) 

iodide (p-2.1e) 

 

Azocuronium p-2.1e was obtained from azo derivative p-2.2e (46.2 mg, 0.16 mmol) and 

CH3I (23.3 μL, 0.37 mmol) as orange crystals (74 mg, 80%), mp: decompose before 

melting. NMR spectra was recorded in (E):(Z) 0.1:0.9 proportion. 1H of each isomer is 

reported separately.1H NMR (500 MHz, MeOD, δ): (E) 8.10 (d, J = 8.4 Hz, 4H, Ho), 7.82 

(d, J = 8.4 Hz, 4H, Hm), 4.68 (s, 4H, Hα), 3.19 (s, 18H, Hβ). (Z) 7.53 (d, J = 8.7 Hz, 4H, Ho), 

7.03 (d, J = 8.4 Hz, 4H, Hm), 4.50 (s, 4H, Hα), 3.09 (s, 18H, Hβ). 
13C NMR (126 MHz, 

MeOD, δ) (E): 154.9 (Ci), 135.3 (Cm), 132.4 (Cp), 124.6 (Co), 69.8 (Cα), 53.4 (Cβ). HRMS 

[ESI+] m/z = 326.24743 [M]+2, calcd for [C20H30N4]
+2 326.24705. 
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(E,Z)-1-Methyl-1-(3-(phenyldiazenyl)benzyl)piperidin-1-ium iodide (m-2.14b) 

 

Azocuronium m-2.14b was obtained from m-2.13b (125 mg, 0.45 mmol) as a brown oil 

(110 mg, 58%). (E)-isomer was characterized. 1H NMR (500 MHz, MeOD, δ): 8.09 (t, J = 

1.8 Hz, 1H, Ho), 8.07 (d, J = 7.8 Hz, 2H, Ho'), 7.97 – 7.93 (m, 2H, Ho''), 7.71 (t, J = 7.6 Hz, 

1H, Hm'), 7.70 – 7.64 (m, 1H, Hp), 7.59 – 7.54 (m, 3H, Hm', Hp'), 4.44 (s, 2H, Hα), 3.54 – 

3.49 (m, 2H, H2eq), 3.03 (dd, J = 12.0, 2.6 Hz, 2H, H2eq), 2.70 (s, 3H, CH3), 1.97 (dt, J = 

15.4, 2.6 Hz, 2H, H3eq), 1.85 (dt, J = 13.1, 3.8 Hz, 1H, H4eq), 1.79 – 1.73 (m, 2H, H3ax), 1.54 

(dt, J = 12.7, 3.8 Hz, 1H, H4ax). 
13C NMR (126 MHz, MeOD, δ): 154.4 (Ci), 153.8 (Ci'), 

134.8 (Cp), 132.9 (Cp'), 131.7 (Cm), 131.4 (Cm'), 130.4 (Cm''), 126.0 (Co), 125.8 (Co'), 123.9 

(Co''), 61.4 (Cα), 54.2 (C2), 35.4 (CH3), 24.1 (C3). HPLC-MS (15:95- g.t.10 min) tR 4.79 

min, m/z = 294.07 [M+H]+, calcd. for [C19H24N3]
+ 294.42; tR 0.92 min, m/z = 127 [I]-. λmax 

= 318 nm [(E)-isomer]. HRMS [ESI+] m/z = 294.19714 [M]+, calcd for [C19H24N3]
+ 

294.19702. 

 

Photochemical properties by UV and NMR 

A solution of the corresponding azocuronium in H2O (100 μM) was placed in a 1 mL 

quartz cuvette (10 mm diameter) and absorption spectrum was recorded in a diode-array 

UV-vis spectrophotometer (DH2000) under thermal relaxed conditions. Then, the solution 

was irradiated under either UV or blue light with a LED and the UV-vis spectrum was 

registered again.  

A Varian Unity-500 NMR spectrometer operating at 500 MHz was employed to quantified 

the (E)-(Z) isomerization of azobenzenes, using D2O as solvent. Samples were irradiating 

with a LED light (either 335 or 400 nm) between records during different periods of time. 
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Thermodynamic solubility determination 

The solubility experiments were performed at IQM-CSIC facilities by its analytical service 

following described protocols.277,278 UV maximums were extracted from recorded UV-

spectra of the compounds in the 270 - 400 nm range. A 10 mM stock solution of the 

corresponding compound in DMSO was prepared. A calibration line was built by 

measuring the absorbance at the corresponding maximum wavelength of sequential 

dilutions of the stock solution in buffer:ACN (80:20) mixture in a 96-well plate containing 

200 µL per point. The buffers employed were: pH 1.2 KCl 45 mM buffer, pH 7.4 

phosphate 45 mM buffer and pH 9.4 NH4Cl buffer. In order to validate the calibration line, 

and exclude interferences due to the presence of 5% DMSO, a quality control standard of 

known concentrations was employed. The calibration line was accepted if R2>0.990, the 

residual value of each point <15% and the relative error of the quality control standard 

<15%. The solubility determination was made as follows: 200 µL of buffer solution were 

added over 1 mg accurately weighted of the corresponding compound in order to achieve a 

saturated solution. The mixture was kept at rt in an orbital stirrer at 320 rpm for 24h and 

then centrifuged at 135 rpm for 15 min. 160 µL of the supernatant were transferred to a 96-

well plate and diluted with 40 µL of a buffer:ACN (80:20) solution. The solubility was 

determined by extrapolation to the calibration line within the linearity range and expressed 

in mol/L. The experiments were run in triplicates. 

Potentiometric pKa determination  

The solubility experiments were performed at IQM-CSIC by its analytical service. Thus, 

titrations were carried out at 25 ºC in 0.15 M KCl solution (aq) in a SiriusT3 equipment 

(Sirius Analytical Instruments Ltd, East Sussex, Britain) equipped with an Ag/AgCl double 

junction reference pH electrode, a Peltier temperature system and a turbidity sensor. 

Standardized 0.5 M KOH and 0.5 M HCl were used as titration reagents. KOH solution 

was standardized by potassium phthalate. The pKa values are the mean of 3 titrations ± SD. 

279 
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Biological Studies 

Radioligand binding assays at muscle-type nAChRs expressed in TE671 cells  

All radioligand binding assays were performed in Eurofins Cerep SA (France). Cell 

membrane homogenates (60 µg protein) were incubated for 120 min at 22 °C with 0.5 nM 

[125I]α-bungarotoxin in the absence or presence of the tested compound in a buffer solution 

containing 20 mM HEPES/NaOH (pH 7.3), 118 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 

1.2 mM MgSO4 and 0.1% BSA. Nonspecific binding was determined in the presence of 5 

µM α-bungarotoxin. Following incubation, the samples were filtered rapidly under vacuum 

through glass fiber filters (GF/B, Packard) presoaked with 0.3% PEI and rinsed several 

times with an ice-cold buffer containing 50 mM Tris-HCl, 500 mM NaCl and 0.1% BSA 

using a 96-sample cell harvester (Unifilter, Packard). The filters were dried then counted 

for radioactivity in a scintillation counter (Topcount, Packard) using a scintillation cocktail 

(Microscint 0, Packard). The results are expressed as a percent inhibition of the control 

radioligand specific binding. The standard reference compound is α-bungarotoxin, which is 

tested in each experiment at several concentrations to obtain a competition curve from 

which its IC50 is calculated.280 

 

Radioligand binding assays at α7 neuronal nAChRs expressed in transfected SH-SY5Y cells  

Cell membrane homogenates (20 µg protein) were incubated for 120 min at 37 °C with 

0.05 nM [125I]±-bungarotoxin in the absence or presence of the tested compound in a buffer 

solution containing 50 mM K2HPO4/KH2PO4 (pH 7.4), 10 mM MgCl2 and 0.1% BSA. 

Nonspecific binding was determined in the presence of 1 µM α-bungarotoxin. After 

incubation, the samples are filtered rapidly under vacuum through glass fiber filters (GF/B, 

Packard) presoaked with 0.3% PEI and rinsed several times with ice-cold 50 mM Tris-HCl 

and 150 mM NaCl using a 96-sample cell harvester (Unifilter, Packard). The filters were 

dried then counted for radioactivity in a scintillation counter (Topcount, Packard) using a 

scintillation cocktail (Microscint 0, Packard). The results are expressed as a percent 

inhibition of the control radioligand specific binding. The standard reference compound is 
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(+/-)-epibatidine, which is tested in each experiment at several concentrations to obtain a 

competition curve from which its IC50 is calculated.281 

 

Radioligand binding assays at α4β2 neuronal nAChRs expressed in transfected SH-SY5Y 

cells 

Cell membrane homogenates (60 µg protein) were incubated for 120 min at 22 °C with 0.5 

nM [125I]α-bungarotoxin in the absence or presence of the tested compound in a buffer 

solution containing (in mM): 20 HEPES/NaOH (pH 7.3), 118 NaCl, 4.8 KCl, 2.5 CaCl2, 

1.2 MgSO4 and 0.1% BSA. Nonspecific binding was determined in the presence of 5 µM α-

bungarotoxin. Following incubation, the samples are filtered rapidly under vacuum through 

glass fiber filters (GF/B, Packard) presoaked with 0.3% PEI and rinsed several times with 

an ice-cold buffer containing 50 mM Tris-HCl, 500 mM NaCl and 0.1% BSA using a 96-

sample cell harvester (Unifilter, Packard). The filters were dried then counted for 

radioactivity in a scintillation counter (Topcount, Packard) using a scintillation cocktail 

(Microscint 0, Packard). The results are expressed as a percent inhibition of the control 

radioligand specific binding. The standard reference compound is α-bungarotoxin, which is 

tested in each experiment at several concentrations to obtain a competition curve from 

which its IC50 is calculated.282 

 

Preparation of oocytes and RNA injections.  

Electrophysiology experiments were performed in the laboratory of Dr. Carlos A. Villalba-

Galea (University of the Pacific, Stockton, California, USA). Xenopus laevis oocyte 

isolation, preparation and injection were performed using methods published from the lab 

and elsewhere.283,284 Animal protocols were approved by Institutional Animal Care and Use 

Committees at University of the Pacific and conform to the requirements in the Guide for 

the Care and Use of Laboratory Animals from the U.S. National Academy of Sciences. 

Frogs were purchased from Xenopus 1 (Dexter, MI). Oocytes were maintained at 16-17 oC 

in an incubation solution of (in mM): 99 NaCl, 1 KCl, 2 CaCl2, 1 MgCl2 or MgSO3, 10 
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HEPES, 2 pyruvic acid, and 20-50 mg/L of gentamycin. The incubation solution was 

titrated to pH 7.5 with NaOH. Results from many batches of oocytes were combined. 

For expression, plasmids encoding for the α1, β1, δ1, and γ1 subunits of the embryonic 

nAChR from rat were prepared in the laboratory from original samples kindly gifted by Dr. 

Roger Papke. The plasmids were transcribed into cRNA using a SP6 RNA polymerase kit 

(mMessage mMachine, Ambion). Oocytes were injected with a mix containing 2.5 ng of 

each in vitro-transcribed cRNA. Injected oocytes were kept in incubation solution at 16-17 

oC for 2-4 days before recordings. 

 

Electrophysiology 

Ionic currents were recorded using the TEVC technique employing a GeneClamp amplifier 

(Axon Instruments). For these recordings, the membrane potential was held at -60 mV with 

constant perfusion by recirculation. Two LEDs with emission centered at 335-340 nm (UV 

light) and 400-450 nm (blue light) were used to induce photo-isomerization of the 

compounds. All LED emission spectra had a 20 - 35 nm full width at half maximum per 

manufacturer specifications. The LEDs were powered using an in house-built circuit 

controlled by the acquisition system to synchronize LED irradiation with the 

electrophysiological recordings. 

Receptor activation was driven by external application of ACh using a nano-injector 

(Nanoject II, Drummond Scientific) with a sharpen glass capillary. Briefly, 2.3 to 18.4 nL 

of 50 μM of ACh were applied on the surface of the oocytes at a rate of 46 nL/s. These 

“puffs” of ACh were allowed to freely diffuse for 100-1000 ms and subsequently washed 

out by recording solution recirculation. An in house-made micro-recirculation system was 

built using a piezoelectric-based peristaltic pump (Bartels Mikrotechnik, Germany). The 

powering system for the pump was controlled by the acquisition system. The chamber 

volume was 100-150 μL and the total “dead” volume of the tubing and pump was 100 μL. 

For TEVC recordings, oocytes were bathed in a recording solution containing (in mM): 99 

NaCl, 1 KCl, 2 CaCl2, 1 MgCl2 or MgSO3, and 10 HEPES titrated to pH 7.4 with NaOH. 
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Glass sharp electrodes (resistance = 0.2-2.0 MΩ) were filled with a solution containing (in 

mM) 1000 KCl, 10 HEPES and 10 EGTA, at pH 7.4 (KOH). Voltage control and current 

acquisition was performed using a USB-6251 multi-function acquisition board (National 

Instruments) controlled by an in house-made program coded in LabVIEW (National 

Instruments) (C.A. Villalba-Galea, details available upon request). In addition, the nano-

injector delivering the “ACh puffs”, the LEDs and the micro-recirculation system were 

controlled with the multi-function board to synchronize their actions. Current signals were 

filtered at 100 kHz, oversampled at 1-2 MHz, and stored at 5-25 kHz for offline analysis. 

Data were analyzed using a custom Java-based software (C.A. Villalba-Galea, details 

available upon request) and Origin 2018 (OriginLab). 

Measurement of cell viability with MTT 

Cell viability, virtually the mitochondrial activity of living cells, was measured in Raw 

264.7 macrophages by quantitative colorimetric assay with MTT (Sigma Aldrich, Madrid, 

Spain), based on the ability of viable cells to reduce yellow MTT to blue formazan as was 

described previously.262  

Briefly, cells were plated in wells of 96-well plates and incubated for 24 h at 37 °C. The 

cells were treated with or without the compounds. At the end of the treatment, the medium 

was removed, and the cells were incubated with 100 µL of MTT (5 mg/mL in phosphate 

buffered saline; PBS) in a fresh medium for 4 h at 37 °C. After 4 h, formazan crystals, 

formed by mitochondrial reduction of MTT, were solubilized in DMSO (150 µL per well). 

After mixing, the absorbance of the cells was measured at 540 nm.
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