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Resumen

Las técnicas utilizadas y desarrolladas en el área del aprendizaje por refuerzo han ido evolucionando
desde sus inicios, a finales del siglo XX. Gracias a los distintos avances en este sector, se han podido
resolver problemas cada vez más complicados. La influencia de otras áreas del aprendizaje automático
y de la inteligencia artificial han permitido aplicaciones del aprendizaje por refuerzo que inicialmente
suponían grandes desafíos por sus requerimientos computacionales. Uno de esos problemas es el que
trataremos en este trabajo, que se caracteriza por un gran espacio de estados y un único estado final.

En un primer lugar, se dará una introducción teórica al área del aprendizaje por refuerzo, centrándonos
en aquellos aspectos más relevantes en la resolución de nuestro problema. Después, se expondrá una
descripción teórica del algoritmo DeepCubeA que fue diseñado especialmente para resolver el cubo de
Rubik 3x3x3, caracterizado precisamente por un gran espacio de estados y un único estado final. Por
último, diseñaremos e implementaremos una versión del algoritmo DeepCubeA, añadiendo algunos
aspectos relevantes de su version anterior (DeepCube), y estudiaremos su comportamiento con los
cubos de Rubik 2x2x2 y 3x3x3, y las Torres de Hanói.
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Abstract

The techniques employed and developed in the area of reinforcement learning have been evolving since
their origins at the end of the 20th century. Thanks to the various advances in this field, it has been
possible to solve increasingly complicated problems. The influence of other areas of machine learning
and artificial intelligence has enabled applications of reinforcement learning that initially posed great
challenges due to their computational requirements. One such problem is the one we will discuss in
this work, which is characterized by a large state space and a single final state.

First, a theoretical introduction to the area of reinforcement learning will be given, focusing on
those aspects most relevant to the solution of our problem. Then, a theoretical description of the
DeepCubeA algorithm will be presented, that was designed to solve the Rubik’s 3x3x3 Cube, which
has a large state space and only one final state. Finally, we will design and implement a version of
the DeepCubeA algorithm, adding some relevant aspects of its previous version (DeepCube), and we
will study its behavior with the Rubik’s 2x2x2 and 3x3x3 Cubes, and the Hanoi Towers.
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1 Introducción
1.1 Antecedentes y Motivación
Desde su invención en 1974 múltiples han sido las técnicas ideadas para resolver el Cubo de Rubik.
Inicialmente, estos métodos han ido enfocados a la resolución manual del mismo en el menor tiempo
posible. En la década de los 80 surgió un método popularmente conocido como método de Fridrich,
que se usa a día de hoy en las competiciones de speedcubing. Sin embargo, estas técnicas manuales
están pensadas para poder ser memorizadas y ejecutadas por un humano, y por tanto suelen ejecutar
más movimientos de los realmente requeridos para su resolución.

Diversos métodos para resolver el Cubo de Rubik en el menor número de movimentos han ido
surgiendo. Muchos de ellos aprovechan su estructura matemática de grupo algebraico para así poder
aplicar resultados de teoría de grupos [15]. Sin embargo, debido al enorme tamaño del espacio de
estados, muchas de estas técnicas requieren de unos elevados costes computacionales o de métodos
novedosos que permitan ahorrar recursos. Uno de los primeros algoritmos que surgió para resolverlo
en el menor número de movimientos fue el de Korf [16], que hace uso de pattern databases, heurísticas
almacenadas en forma de tablas de búsqueda, para poder ejecutar una búsqueda IDA*. Sin embargo,
las heurísticas empleadas utilizan características muy particulares de este problema y no son fácil-
mente generalizables a otros problemas similares, es decir, con un único estado final y elevado número
de estados.

Con la motivación de resolver eficientemente el problema del Cubo de Rubik, de tal forma que sea
generalizable a otros problemas del mismo tipo, han surgido varias soluciones dentro del ámbito del
aprendizaje por refuerzo. El principal inconveniente de aplicar las técnicas estándar de aprendizaje por
refuerzo en este tipo de problemas es que el refuerzo que permite aprender al agente no se encuentra
hasta llegar al estado final. Por ello es necesario aplicar metodologías de aprendizaje con currículo [29],
en las que se aprende primero de las instancias más sencillas del problema, para ir progresivamente
aumentando el nivel de dificultad, imitando por tanto el orden de aprendizaje humano. En nuestro
problema, esto se traduce en una versión simplificada de prioritized sweeping [19], en el que el agente
aprende primero de cubos muy cercanos al estado resuelto, para progresivamente ir propagando la
información aprendida a otros estados más lejanos. Esta idea es expuesta en los artículos de los
algoritmos DeepCube [1] y DeepCubeA [2], en los que nos basaremos.

1.2 Objetivos y Plan de Trabajo
Los objetivos de este trabajo son varios. En primer lugar, queremos estudiar una introducción teórica
al área del aprendizaje por refuerzo, que se detallará en la Sección 2, centrándonos en aquellos aspectos
más relevantes en la resolución de nuestro problema. Después, en la Sección 3 se expondrá una
descripción teórica del algoritmo DeepCubeA. Otro de los objetivos es obtener una implementación del
algoritmo DeepCubeA, extrayendo algunas características de su predecesor, el algoritmo DeepCube,
por motivos comparativos. Esta implementación se detalla en la Sección 4. Como último objetivo
tenemos el de observar el comportamiento de la implementación obtenida con los Cubos de Rubik
2x2x2 y 3x3x3, y las Torres de Hanói, cuyos resultados se exponen en la Sección 5. Todo el código de
este trabajo se encuentra en el repositorio de github 1. Los pesos de los modelos ya entrenados están
en la página de releases de ese mismo repositorio 2.

1https://github.com/CarlosTard/TFG-deepcube
2https://github.com/CarlosTard/TFG-deepcube/releases/tag/models
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Introduction

Motivation

Since its invention in 1974, many techniques have been conceived to solve the Rubik’s Cube. Initially,
these methods were focused on solving it manually in the shortest possible time. In the 1980s,
a method popularly known as Fridrich’s method emerged, which is still used today in speedcubing
competitions. However, these manual techniques are intended to be memorized and executed by a
human, and therefore tend to apply more moves than are actually required to solve them.

Various methods for solving the Rubik’s Cube in the fewest number of moves have been emerging.
Many of them take advantage of its mathematical structure as an algebraic group, in order to be able
to apply group theory results [15]. However, due to the enormous size of the state space, many of
these techniques require high computational costs, or novel resource-saving methods. One of the first
algorithms that emerged to solve it in the fewest number of moves was Korf’s algorithm [16], which
makes use of pattern databases, heuristics stored in the form of lookup tables, in order to execute
an IDA* search. However, the heuristics employed make use of very particular characteristics of this
problem, and are not easily generalizable to other similar problems, i.e., with a single final state and
a large number of states.

With the motivation of solving the Rubik’s Cube problem efficiently, in such a way that it is gen-
eralizable to other problems of the same type, several solutions have emerged within the field of
reinforcement learning. The main drawback of applying standard reinforcement learning techniques
to this type of problem is that the reinforcement that allows the agent to learn is not found until
the final state is reached. It is therefore necessary to apply curriculum learning methodologies [29],
in which the simplest instances of the problem are learned first, and then the level of difficulty is
progressively increased, thus imitating the human learning order. In our problem, this translates into
a simplified version of prioritized sweeping [19], in which the agent first learns from cubes very close
to the solved state, and then progressively propagates the learned information to other, more distant
states. This idea is developed in the papers of the DeepCube [1] and DeepCubeA [2] algorithms, on
which we will build.

Objectives and work plan

The objectives of this work are several. First of all, we want to study a theoretical introduction to
the area of reinforcement learning, which will be detailed in Section 2, focusing on those aspects most
relevant to the resolution of our problem. Then, in Section 3, we will present a theoretical description
of the DeepCubeA algorithm. Another objective is to obtain an implementation of the DeepCubeA
algorithm, extracting some features from its predecessor, the DeepCube algorithm, for comparative
reasons. This implementation is detailed in Section 4. The last objective is to observe the behavior
of the implementation obtained with the 2x2x2 and 3x3x3 Rubik’s Cubes, and the Hanoi Towers, the
results of which are presented in Section 5. All the code for this work is on the github repository 3.
The weights of the trained models are on the releases page of the same repository 4.

3https://github.com/CarlosTard/TFG-deepcube
4https://github.com/CarlosTard/TFG-deepcube/releases/tag/models
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2 Reinforcement Learning: Theoretical Foundations
In this section, I describe the central ideas of reinforcement learning. The concepts presented here are
drawn from two main sources: Reinforcement Learning, An Introduction by Richard S. Sutton and
Andrew G. Barto [25] (chapters 1-6 and 8.4), and Foundations of Machine Learning, by M. Mohri,
A. Rostamizadeh, and A. Talwalkar [18] (chapters 1 and 17).

2.1 Machine Learning
Machine learning is a branch of Artificial Intelligence that focuses on the study, design and im-
plementation of computer algorithms that use past data to automatically solve a broad variety of
problems. Normally, those data consist of a number of examples, that is, individual instances of
experience that we use to feed our machine learning algorithm. Each example has a set of attributes
which we call features, and that are the measurable properties of the problem we are trying to solve.
In addition, given an example, we could assign a label to it, that is, the true solution of our problem,
which is the output we expect from our algorithm. In that case, it is a labeled example. Otherwise,
if we can’t assign a label (for example, we may not know the true solution of the problem), we call it
an unlabeled example.

In this context, a training set is a set of examples used to train the algorithm. In addition, a vali-
dation set is a set of examples, different from the training set, used to tune the hyperparameters
of the algorithm, that is, the parameters that control the learning process (for example, the learning
rate, or the number of neurons in a neural network). Finally, the test set, separate from the training
and validation sets, is used to evaluate the performance of the trained algorithm, after training it
with the selected hyperparameters.

The types of problems that can be solved using machine learning techniques are numerous. Here, I
present some examples:

• Classification: the problem is to classify an example, assigning a category to it, from a finite
set of values. An example of this type of problem is to read facial expressions, that is, to learn
whether a face displays happiness, sadness, fear, etc. If there are only two classes, it is called
binary classification, while we use the term multiclass classification when there are more than
two categories.

• Regression. In regression, we are interested in assigning a real value to each example. A
problem that fits in the category of regression is to predict the global average temperature,
based on carbon dioxide emissions (when studying global warming).

• Clustering: given a set of unlabeled examples, the task is to group examples into clusters that
contain similar characteristics. For example, a job-posting website might want to use clustering
to group job positions that are similar to each other, in order to ease the process of hiring and
applying to jobs.

• Recommendation is the problem of showing relevant results to the user based on some cri-
terion, like the expected rating the user would give to it, the expected revenue the user would
generate, etc. Following the job-posting website example, a recommendation system would give
the most relevant job positions to the user (or even, the relevant clusters from the clustering
example), in order to maximize both the satisfaction of the soon-to-be employed and the number
of filled positions.

• Natural language processing (NLP). This is not a unique problem type, but a wide variety
of problems. NLP tasks can include [11]: classifying a text into sentiment categories (identifying
opinions embedded in the text), summarizing a text document, sequence to sequence translation,
generating text to describe an image, etc. For example, if we are given a molecule image, we
could be interested in generating the chemical formula of that particular molecule. In this case,
we would have to use image techniques (such as Convolutional Neural Networks) to extract
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useful information from the image, and then NLP techniques to generate the text sequence of
the chemical formula.

• Dimensionality reduction is the transformation of data, from the initial representation into
a new representation with fewer dimensions, trying to preserve the information of the original
data. It is used in data visualization, noise reduction and data preprocessing. For example,
if the images of the molecules in the previous example have noise (or redundant information)
produced by the microscope, we can apply dimensionality reduction techniques, previous to the
convolutional model, in order to ease the training of the algorithm.

• Object Detection is a problem that arises in the field of image processing. The task is to
find and identify objects of a certain class in an image. For example, we could be interested
in detecting faces with a security camera, and then identifying the name of each person to
catch the perpetrators of a crime. If we are interested in recognizing rare items, for example,
anomalies in a lung radiography, this problem is also denominated anomaly detection. Not
all classification algorithms are well suited for the anomaly detection task because of the class
imbalance that is inherent to this problem.

For each of the previous types of problems, we could find different learning scenarios. These scenarios
differ in the types of the training sets, and in the method to process the training, testing and validation
data. Some of the most important learning scenarios are:

Supervised learning. In supervised learning, a labeled training set is given and a model is trained
to output the true label for each of the training examples. Classification and regression are typical
supervised learning tasks. In fact, for classification tasks, where the number of categories is finite, the
algorithm can be trained to output an estimation of the probability that an example belongs to each
class, which gives us more information than simply returning a prediction of the label. If we wanted
to yield the label of a given example, we could return the class that maximizes the probability that
the example belongs to that class.

Unsupervised learning. In this learning scenario the objective is to learn patterns from unlabeled
data. Clustering and dimensionality reduction are two examples of unsupervised learning. The
advantage of unsupervised learning methods is that they do not require previously generated labels,
a process that is expensive and often requires manual intervention. The main disadvantage is that
evaluating the performance of an algorithm is more difficult because the labels are not available. In
fact, in some unsupervised learning tasks true labels do not even exist.

Semi-supervised learning is an scenario that combines supervised with unsupervised learning. It
arises in situations where we have a small amount of labeled data (for instance, when it is very
expensive to label examples), and also unlabeled data, and the goal is to make predictions about the
unlabeled data. The key is to improve the information given by the labeled data with the distribution
of examples in the unlabeled data. For example, a supervised model can be trained with the supervised
data. Then, we can use that trained model to make predictions about the labels of the unlabeled set.
The obtained labels are called pseudo-labels. Then, that model can be retrained with both the labeled
set and the unlabeled set (using the pseudo-labels) to improve the efficiency of the previous model.
Various supervised learning tasks can be framed as semi-supervised problems, such as regression or
classification.

Transductive learning. Given a labeled and an unlabeled set, the objective is to predict the labels
only for the unlabeled examples. This scenario makes it possible to use transduction, which is to
derive the labels for the unlabeled examples from the labeled ones, without building any general
rules. That is, transduction does not build a model, it only makes predictions based on the training
set. An example of algorithm that can be applied in this scenario is the k-nearest neighbors algorithm.

In the following sections, the Reinforcement learning scenario is explained.
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2.2 Reinforcement Learning
In reinforcement learning we are interested in maximizing a reward that an agent receives when inter-
acting with an environment. This learning scenario is connected to the study of operant conditioning
in biology and psychology, where a human or an animal learns or modifies a behavior when a positive
(reinforcement) or negative (punishment) reward is received. Our agent interacts with the environ-
ment by executing actions that change its state in the environment. The agent has to determine
the best sequence of actions to maximize the reward received, that is, it has to design a strategy, or
policy. With that objective in mind, the agent has to favor actions that produce the most reward.
But, in order to discover which are the best actions, it also has to select actions that it has not chosen
before. Because of that, there is a trade-off between exploration (to discover the best actions), and
exploitation (to select the actions that were effective in producing reward in the past), called the
exploration-exploitation trade-off (also known as exploration-exploitation dilemma).

Two sub-scenarios may arise in relation to the knowledge we have about the environment. If a perfect
model of the environment is known, the maximization of the reward turns out to be a planning
problem. That is, if the agent has a model, it can build a policy by considering potential upcoming
scenarios before interacting with the real world. Conversely, if the agent does not have a model of
the environment, we have to learn from the environment state and reward information (received when
taking actions) to both gain information about the environment and improve the action policy. In
that case, we face a learning problem. This learning problem can be solved by a model-based approach,
in which the agent first learns a model of the environment and then uses it to improve its policy, or
by a model-free approach, in which the information gathered is directly employed to learn a policy.

2.3 The learning framework and MDP
In this section the previously mentioned reinforcement learning concepts are formalized. For this, a
Markov decision process, or MDP, will be used, which is a theoretical framework that models the
environment and the interactions with this environment.

The agent interacts with the environment at discrete time steps t ∈ N. The initial state of the
environment is S0 ∈ S, where S is the set of all the different states the environment can be in. At
each time step t, the agent selects and action At ∈ A(St), where A(s) are all the valid actions from
state s, and A is the union of all of those sets, i.e. all possible actions. The next time step, the agent
receives a reward Rt+1 ∈ R, and it reaches state St+1 ∈ S. Because of that, a sequence of state,
action, reward, state, action, reward, . . . is created S0, A0, R1, S1, A1, . . . , which is called a trajectory.
If the action, reward and state sets A, R, S are all finite, it is said to be a finite MDP.

As previously said, we are going to model the interactions with the environment as a Markovian
process, that is, the probabilities of the transition and reward random variables St and Rt will depend
only on the current state and the action taken from that state, but not on previous states or actions.
Because of that, the state has to include all the information about the past interaction that affects the
future. Starting from state s and taking action a, the probability of receiving a reward r and reaching
state s′ will be modelled as the conditional probability p(s′, r|s, a) : S × R × S × A → [0, 1]. The
transition p(s′|s, a) and reward p(r|s, a) probabilities of a finite MDP are defined using the previous
conditional probability function:

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a) p(r|s, a) =
∑
s′∈S

p(s′, r|s, a)

Finally, there are environments with a finite horizon where the agent always finds a terminal state
and then stops. They are called episodic tasks because all the interactions between the environment
and the agent can be divided into episodes, finite trajectories that end at time T in the terminal state,
where T is also a random variable. If a problem does not have a finite horizon and the agent runs
indefinitely, it is said to be a continuing task, or a task with an infinite horizon.
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2.3.1 Returns

The objective of reinforcement learning is to maximize the expected return, that is, the expected
value of the cumulative rewards that the agent receives. In the case of episodic tasks, this return
can be defined as the sum of the rewards that the agent gets over the course of an episode, that is,
Gt := Rt+1 +Rt+2 + · · ·+RT , where Gt is the sum of the rewards received after instant t. However,
this approach is not valid for infinite horizon tasks, since the sum could be infinite. Assuming the
sequence of rewards is bounded, we can introduce a discount rate γ ∈ [0, 1), so that the return is
bounded

Gt :=

∞∑
k=1

γk−1Rt+k = Rt+1 + γRt+2 + γ2Rt+3 + · · · = Rt+1 + γ(Rt+2 + γRt+3 + · · · ) = Rt+1 + γGt+1

The previous return is the discounted return. The effect of the discount rate is to exponentially
decrease the effect of future rewards, so values of γ close to 0 give more importance to present rewards
than a value of γ close to 1. If γ = 0, we would only maximize the immediate reward. In fact, if we
let γ = 1, the discounted return becomes the episodic task return. To adopt a notation that is valid
both for finite and infinite horizons, we will use the discounted return definition. For continuing tasks,
γ ∈ [0, 1), while for episodic tasks we will choose γ = 1 and all the returns past the termination time
T are defined to be zero, RT+k := 0 for k = 1, 2, 3, . . .

2.3.2 Policies

The policy is the strategy our agent is going to follow to select the actions to apply depending on
the state of the environment. Formally, a policy π is a probability distribution over the actions A(s),
conditioned on the state of the environment being s. That is, π(a|s) is the probability that the agent
chooses action a when the state of the environment is s.

If for any state s, there exists an action a such that π(a|s) = 1, that means the agent is totally certain
about the action it is going to choose, because whenever it encounters state s, it will choose action a.
This is called a deterministic policy, and induces a mapping from states to actions. In that case, with
an abuse of notation, we will denote π(s) = a (where π(a|s) = 1). If the policy is not deterministic,
it is said to be a stochastic policy.

2.3.3 Value Functions

Our objective is to find a policy that for all states s, it maximizes the expected return when starting in
s and following the policy. To formalize this idea, we will first define the value function for a policy π
that, for each state s, returns the expected return when starting from state s and following the policy.
This function is called state-value function, policy value function or simply value function under a
policy π. That is:

vπ(s) := EAk∼π [Gt|St = s]

where EAk∼π represents the expectancy when taking the actions of the trajectory by sampling the
probability distribution given by π (that is, Ak ∼ π), and t is any time step. It will also be very
convenient to consider an action-value function for a policy π that, for each state s, returns the
expected return when starting from state s, applying action a, and following the policy thereafter:

qπ(s, a) := EAk∼π [Gt|St = s,At = a]

The similarity between the value function and the action-value function is remarkable. Let’s write vπ
in terms of qπ and the policy π.

vπ(s) = EAk∼π [Gt|St = s] =
∑

a∈A(s)

π(a|s)EAk∼π [Gt|St = s,At = a] =
∑

a∈A(s)

π(a|s)qπ(s, a)
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which can be interpreted as considering the value of all possible actions from state s, taking into
account how likely it is to take each action under policy π. This equation has the particularity of
not depending on the function p, so if we already have the action-value function qπ, we don’t need a
model of the environment to compute the value function vπ. Also, we have that

vπ(s) =
∑

a∈A(s)

π(a|s)qπ(s, a) = Ea∼π [qπ(s, a)|St = s] (2.1)

Now, let’s write qπ in terms of vπ and the environment model p.

qπ(s, a) = EAk∼π [Gt|St = s,At = a] = EAk∼π [Rt+1 + γGt+1|St = s,At = a] (2.2)

=
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γEAk∼π

[
Gt+1|St+1 = s′

]]
(2.3)

=
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γvπ(s

′)
]

(2.4)

This formula does explicitly involve the environment model, but not the policy followed (it is implicit
through the value function). This is because after taking action a, we need to know what state are
we going to be in and the reward associated with that transition before being able to utilize the
information that the value function provides. Following the same methodology, vπ(s) can be written
in terms of the value of the successors of state s, satisfying the following recursive relationship:

vπ(s) = EAk∼π [Gt|St = s] = EAk∼π [Rt+1 + γGt+1|St = s] (2.5)

=
∑

a∈A(s)

π(a|s)
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γEAk∼π

[
Gt+1|St+1 = s′

]]
(2.6)

=
∑

a∈A(s)

π(a|s)
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γvπ(s

′)
]

(2.7)

Similarly, qπ(s, a) can be written in terms of the action-value of the possible successors of state s when
applying action a. Therefore, it satisfies the following recursive relationship, that can be obtained by
using the relationships between vπ and qπ:

qπ(s, a) =
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γvπ(s

′)
]

(2.8)

=
∑

r∈R,s′∈S
p(s′, r|s, a)

r + γ
∑

a′∈A(s′)

π(a′|s′)qπ(s′, a′)

 (2.9)

Equations 2.7 and 2.9 are the Bellman equations of a policy π for vπ and qπ respectively. They
represent the value of a state in terms of the value of its successors, which can be interpreted as a
one-step lookahead from state s. In fact, the Bellman equation 2.7 of a policy π is the relationship a
function has to satisfy in order to be the value function under that policy. Respectively, the Bellman
equation 2.9 of a policy π is the relationship a function has to satisfy in order to be the action-value
function of that policy. These equations will be used later as an update rule to solve the policy
evaluation problem.

2.3.4 Optimality

As stated at the beginning of the last section, our objective is to find a policy that for all states s
maximizes the expected return when starting in s and following the policy. Now, we can formalize
this goal defining the condition that we are looking for in a policy.

Definition 2.1. A policy π∗ is an optimal policy iff, for each state s ∈ S, vπ∗(s) ≥ vπ(s) for any policy
π.
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We will also say that policy π1 is better than or equal to a policy π2 if its expected return is greater than
or equal to the expected return of policy π2 for all states. That is, for each state s ∈ S, vπ1(s) ≥ vπ2(s).
Therefore, an optimal policy is better than or equal to all the other possible policies.

Example: imagine a one dimensional world made out of 7 cells. We start in a particular cell, and
the objective is to move to a goal cell, the central one, in the minimum number of steps. The rules
are that, if we are in cell i, we can move to cells (i + 1)%7 (right move) or (i − 1)%7 (left move).
That is, we can move left or right, but the actions that take us off the world result in a teleportation
to the other side of it. When you are in the goal cell, the episode finishes. Any left or right action
results in a punishment of −1, and the agent dies after time step 30. As we are in a finite-horizon
environment, we will take γ = 1. There are 7 states, one for each cell. A non-optimal policy π would
be, for example, the deterministic policy that always takes a right move, and therefore assigns a zero
probability of taking the left action. The value function for each state is very simple to compute, since
it is the sum of rewards received until reaching the goal state. On the other hand, the optimal policy
π∗ is the one that minimizes the number of moves taken by the agent. For cells 0–2 , it always chooses
right, and for cells 4–6, it chooses left. The state-value functions of these two policies are shown in
Figure 1.

Figure 1: state-value pairs for policies π and π∗ in the one dimensional world.

Notice that, if an optimal policy exists, there could be multiple optimal policies, but all optimal
policies share the same value function. This is due to the fact that, if π1 and π2 are two optimal
policies, vπ1(s) ≥ vπ2(s) and vπ2(s) ≥ vπ1(s) for all states, so vπ1(s) = vπ2(s). This fact can be
also stated as vπ∗(s) = max

π
vπ(s). Therefore, from the relationship 2.4 between value functions

and action-value functions, all optimal policies also share the same action-value function, which is
qπ∗(s, a) = max

π
qπ(s, a). The following theorem is going to give us an important property about

policies, from which an important equation for optimal policies emerges.

Theorem 2.2. (Policy improvement theorem) Let π1 and π2 be two policies. Assume that vπ1 is
bounded (which is trivial for a finite S). Suppose that Ea∼π2 [qπ1(s, a)|St = s] ≥ Ea∼π1 [qπ1(s, a)|st = s]
holds for all s ∈ S. Then, vπ2(s) ≥ vπ1(s) for all s ∈ S. Moreover, if there is a state s1 ∈ S in which
Ea∼π2 [qπ1(s1, a)|St = s1] > Ea∼π1 [qπ1(s1, a)|st = s1], then the result holds with a strict inequality for
at least one state s2, that is vπ2(s2) > vπ1(s2).

Proof: There are two trajectories involved in this proof. In order not to confuse them, we denote the
trajectory created by policy π1 in lowercase, that is, ak, sk and rk, and the trajectory created by policy
π2 in uppercase letters, that is, Ak, Sk and Rk. For any s ∈ S, we have

vπ1(s)
2.1
= Eat∼π1 [qπ1(s, at)|st = s] ≤ EAt∼π2 [qπ1(s,At)|St = s]

def
= EAt∼π2 [Eak∼π1 [Gt|st = s, at = At] |St = s]

(1)
= EAt∼π2 [Rt+1 + γEak∼π1 [Gt+1|st+1 = St+1] |St = s]

def
= EAt∼π2 [Rt+1 + γvπ1(St+1)|St = s]

(2)

≤ EAt∼π2

[
Rt+1 + γEAt+1∼π2 [Rt+2 + γvπ1(St+2)|st+1 = St+1] |St = s

]
(3)
= EAt∼π2,At+1∼π2

[
Rt+1 + γRt+2 + γ2vπ1(St+2)|St = s

]
where in (1) the fact that Gt = Rt+1 + γGt+1 is used in combination with the fact that Rt+1 does
not depend on the distribution π1 since the action at time t, at, has been sampled from π2. In (2),
the same process that has been applied to vπ1(s) is now applied to vπ1(St+1). Finally, in (3), the two
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expectations have been merged since they take At and At+1 from the same distribution. Therefore,
iterating this process for any N ≥ 1:

vπ1(s) ≤ EAk∼π2

[
N∑
k=1

γk−1Rt+k + γN+1vπ1(SN+1)|St = s

]

Because vπ1 is bounded, the limit when N → ∞ gives us:

vπ1(s) ≤ EAk∼π2

[ ∞∑
k=1

γk−1Rt+k|St = s

]
= vπ2(s)

which gives us the desired result. Moreover, any strict inequality of the theorem hypothesis in a state
s1 produces a chain of inequalities, so we can take s2 = s1, which produces vπ2(s2) > vπ1(s2), as we
wanted.

Lemma 2.3. Let π be a policy. If for any state, action pair (s, a) with π(a|s) > 0, a ∈ argmax
a′∈A

qπ(s, a
′)

holds, then the policy π is optimal. That is, if π only chooses action a from state s if a maximizes
the action-value function qπ(s, ·), then π is optimal.

Proof: [18, Theorem 17.7]

We might ask ourselves under what conditions does an optimal policy exist, if there are any. For a
finite MDP we have the following result. It is very promising since we are only going to work with
finite problems.

Theorem 2.4. Any finite MDP admits an optimal deterministic policy.

Proof: In a finite MDP setting, there is only a finite number of deterministic policies since only a finite
number of actions can be chosen from any state, and the environment has a finite number of states.
Because of this, we can choose a deterministic policy π that, compared to all the other deterministic
policies, maximizes the quantity

∑
s∈S vπ(s). Then, π is optimal. If it were not optimal, lemma 2.3

tells us that there is a state s′ where we do not choose an action that maximizes qπ(s′, ·). If we take
a′ ∈ argmax

a∈A(s′)
qπ(s

′, a) and define π′ as

π′(a|s) =


π(a|s) if s ̸= s′

1 if s = s′ and a = a′

0 if s = s′ and a ̸= a′

then Ea∼π′ [qπ(s
′, a)|St = s′] = max

a∈A(s′)
qπ(s

′, a) > Ea∼π [qπ(s
′, a)|St = s′], and Ea∼π′ [qπ(s, a)|St = s] =

Ea∼π [qπ(s, a)|St = s′] if s ̸= s′, which, by Theorem 2.2, implies that vπ′(s) ≥ vπ(s) for all states s,
and that there is a state s2 where vπ′(s2) > vπ(s2). Because π′ is also deterministic, this contradicts
the fact that π maximizes

∑
s∈S vπ(s).

Now, let π∗ be an optimal policy. From 2.1 we have that vπ∗(s) = Ea∼π∗ [qπ∗(s, a)|St = s] ≤
max
a∈A(s)

qπ∗(s, a). Also, from the policy improvement theorem, vπ∗(s) = Ea∼π∗ [qπ∗(s, a)|St = s] ≥

max
a∈A(s)

qπ∗(s, a). This is because, if we had that Ea∼π∗ [qπ∗(s
′, a)|St = s′] < max

a∈A(s′)
qπ∗(s

′, a) for some

state s′, then there would exist a policy π′
∗ that would be better than the optimal. That is, following

the same reasoning as in Theorem 2.4, if we take a′ ∈ argmax
a∈A(s′)

qπ∗(s
′, a) and define π′

∗ as

π′
∗(a|s) =


π∗(a|s) if s ̸= s′

1, if s = s′ and a = a’.
0, if s = s′ and a ̸= a’.
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then Ea∼π′
∗ [qπ∗(s

′, a)|St = s′] = max
a∈A(s′)

qπ∗(s
′, a) > Ea∼π∗ [qπ∗(s

′, a)|St = s′] and Ea∼π′ [qπ(s, a)|St = s] =

Ea∼π [qπ(s, a)|St = s′] if s ̸= s′, contradicting the optimality of π∗. Therefore, from these inequalities,
we have that vπ∗(s) = max

a∈A(s)
qπ∗(s, a) for all states s.

From this result, we can derive the Bellman optimality equation:

vπ∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a∈A(s)

EAk∼π∗ [Rt+1 + γGt+1|St = s,At = a]

2.4
= max

a∈A(s)

∑
r∈R,s′∈S

p(s′, r|s, a)
[
r + γvπ∗(s

′)
]

= max
a∈A(s)

E [Rt+1 + γvπ∗(St+1)|St = s,At = a]

An analogous form of the Bellman optimality equation for q∗ can be obtained from the fact that
vπ∗(s) = max

a∈A(s)
qπ∗(s, a) and from 2.4:

qπ∗(s, a) =
∑

r∈R,s′∈S
p(s′, r|s, a)

[
r + γ max

a′∈A(s′)
qπ∗(s

′, a′)

]

= E
[
Rt+1 + γ max

a′∈A(s′)
qπ∗(St+1, a

′)|St = s,At = a

]

2.3.5 Value Iteration

The existence of an optimal deterministic policy for finite Markov decision processes demonstrated
in theorem 2.4 brings us closer to obtaining an optimal policy. The optimal policy may not be
unique, but all optimal policies share the same value function. The idea is to obtain the optimal
value function. Value Iteration is an iterative algorithm that aims to approximate this optimal
value function given a perfect model of the environment. It starts with a random initialization for
the approximation of the value function, v0 (except for the terminal states, where this value has to
be defined as 0). At each iteration k+1, the algorithm updates the value from the previous iteration
k by using the Bellman optimality equation as an update rule:

vk+1(s) = max
a∈A(s)

E[Rt+1 + γvk(St+1)|St = s,At = a] = max
a∈A(s)

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]

(2.10)

In practice, this process is not guaranteed to converge in finite steps, so normally it is stopped when
the left and right sides meet some condition (for example, when they are closer than a threshold).
For finite states, this process is implemented as any other dynamic programming algorithm, for ex-
ample by keeping vk in a table that at each possition s stores vk(s). Assuming that vN ≈ v∗ being
N the final iteration, we can obtain a (close to) optimal deterministic policy by choosing π(s) =
argmax
a∈A(s′)

∑
r∈R,s′∈S p(s′, r|s, a) [r + γvπ(s

′)].
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3 DeepCubeA: Theoretical Foundations
The following sections cover the study, design, implementation and analysis of a reinforcement learning
algorithm that, in combination with a modified variant of A∗ search, learns how to solve problems
with large state spaces and only one goal state. This work is based on a paper from 2019 titled
Solving the Rubik’s Cube with deep reinforcement learning and search [2], where the authors introduce
an algorithm called DeepCubeA. It makes use of a deep neural network (Sections 3.2 and 4.6) that,
by employing a reinforcement learning technique called DAVI (Sections 3.3 and 4.7), is trained to
predict how far is a state from the goal state. Then, this network is used as a heuristic to search
for the optimal path to the goal. The search algorithm is named BWAS (Sections 3.4 and 4.8), a
variant of A∗ that weights the contribution of the path cost to the total cost of each node, and that
expands a batch of nodes in parallel instead of only one. I am also going to study some details about
the previous paper by the same authors called Solving the Rubik’s Cube with Approximate Policy
Iteration [1], mainly some aspects of state generation.

3.1 Description of the problem we want to solve
As mentioned in the introduction, we are interested in problems with a large state space and only
one goal state (also called final state or solved state). Complete knowledge of the environment is
assumed, and we will be focused mainly on deterministic problems that can be modelled as a finite
MDP. Starting from any state, the objective is to reach the goal state applying as few actions as
possible, that is, to find the optimal path from an initial state to the goal state. There are many
examples of this type of problem, mainly puzzles such as all the Rubik’s Cube versions (2x2x2, 3x3x3
[8], 4x4x4, etc), sliding puzzles (the 15 [13], 24, 35, ..., n2 − 1 puzzles), Lights Out [17], Sokoban [6]
and the Towers of Hanoi [24].

3.1.1 Rubik’s Cube

The Rubik’s Cube is one of the problems we are going to solve, and we will focus on the 3x3x3 and
2x2x2 ones.

The 3x3x3 Rubik’s Cube [8] is a 3-dimensional cube-shaped puzzle, that consists of 26 smaller
cubes called cubelets (or cubies). There are 6 center cubelets (with one sticker each), 12 edge cubelets
(2 stickers) and 8 corner cubelets (3 stickers). Each sticker is painted in blue, yellow, orange, red,
white or green. In the solved state, all the nine stickers of each face are the same color: the yellow
face opposes the white one, the red face is opposed to the orange one, and the blue one opposes the
green face. We will use the orientation in figure 2, with the yellow face up, the blue face in front, the
white face at the bottom, the red one at the right. As a naming convention, we will call the upper
face U, the down face D, the right, R, the left L, the front face F, and B will be the back one. With
an abuse of notation, the clockwise 90o degrees turns of each face will be also called U, D, R, L, F and
B, while the counter-clockwise 90o degrees turns will be called U', D', R', L', F'and B', as explained
in figure 3. Notice that the center cubelets remain fixed after appling each of the 12 actions; this will
be important in the implementation section.

The notation explained before is called quarter-turn metric because all the actions are 90o turns, so
if we want to perform a 180o rotation we will need to apply two 90o actions. There is also a half-turn
metric that adds six actions to the quarter-turn metric set that correspond to the 180o turn of a face,
and are represented as U2, D2, R2, L2, F2 and B2. Notice that an optimal path in the half-turn
metric (one that uses the minimum possible actions) between a state and the solved state is never
worse than an optimal path in the quarter-turn metric. That is, the quarter-turn metric one has to
perform at least the same number of actions, or even more. God’s Number is the maximum number
of actions we need in order to optimally solve any state of the cube. That is, an optimal path between
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Figure 2: Solved 3x3x3 Cube.
Figure 3: Rubik’s Cube Move Notation. [7]

any state and the solved state has a length less than or equal to the God’s Number, but never worse.
God’s Number for the 3x3x3 Rubik’s Cube in half-turn metric is 20 [26], while for the quarter-turn
metric it’s 26 [27]. We will use the quarter-turn metric.

There are 43,252,003,274,489,856,000 [23] different possible states of the 3x3x3 Rubik’s Cube. Let’s
consider the 2x2x2 Rubik’s Cube, a similar problem with far fewer states.

The 2x2x2 Rubik’s Cube is a 3-dimensional cube shaped puzzle,
very similar to the 3x3x3 one. It has no centers and no edges,
just 8 corners with 3 stickers each. We will use the same notation as
in the 3x3x3 version both in the quarter-turn and the half-turn metrics.

The God’s Numbers for this cube are 14 using the quarter-turn metric
and 11 using the half-turn metric, and it has 3,674,160 possible states
(these results are easily obtained from the optimal solver in Section
4.4).

If we wanted to build an optimal solver we could implement a simple breadth-first search for the
2x2x2 cube, as we will see in Section 4.4. However, building an optimal solver with a simple BFS
for the 3x3x3 cube is impossible due to the high number of states. Because of that, a better solution
is needed. In 1997, Korf [16] introduced a strategy based on Iterative Deepening A∗ (IDA∗). His
algorithm uses pattern databases, lookup tables that store multiple heuristics (in this case, one table
for the corners, and two tables of six edge cubelets each), and by combining them (by using a max
operator), Korf obtains an admissible heuristic. However, according to the DeepCubeA authors, this
solver is very slow. Although better alternatives have been found (for example the one used to find
the God’s Number of the 3x3x3 cube [22]), our purpose is to implement a near-optimal algorithm
using reinforcement learning techniques.

3.1.2 Towers of Hanoi

The Towers of Hanoi[24] is a mathematical puzzle that consists of m posts and n disks of different
sizes, with m ≥ 3, and we will refer to it as H(n,m). In the initial state, all disks are stacked on the
first post, in increasing order in size from top to bottom. The goal is to move all disks from the first
post to the last one. The rules are simple: only one disk may be moved at a time, taking the upper
disk from one of the towers and placing it on an empty rod, or on top of another stack. A disk can
only be placed on top of a bigger disk, maintaining the increasing order in sizes.

It can be easily proven that the state space has a size of mn. The typical choice for m is to have 3
posts. With 3 posts, the problem has only one optimal solution of length 2n−1 [5]. This solution can
be described recursively as follows. The objective is to move n disks from the first post, the source,
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Figure 4: Initial state of a Tower of Hanoi consisting of 3 posts and 6 disks. © Wikimedia Commons User:Trixx /

CC-BY-SA-3.0

to the rightmost one, the target, using the central post as an auxiliary tower. The base case is to
move 0 disks, which is trivially solved and does not produce any move. The recursive case consists of
three steps. First, the smaller n− 1 disks are moved from the target post to the auxiliary one, which
is a sub-problem of the Towers of Hanoi. Thus, it can be solved by recursively calling this procedure,
but swapping the roles of the target and the auxiliary posts. The second step is to move the bigger
disk from the source to the target post. The last step is to recursively move the n − 1 disks on the
auxiliary post to the target one, using the source post as auxiliary. After the last step, all disks are
placed on the last tower in ascending order, so the problem is solved.

The optimal solution length of 2n − 1 is going to present a challenge for the algorithm introduced
in the following sections, hence improving our understanding of it. For example, with 3 towers and
10 disks, the optimal solution has a length of 1023 moves, and the problem has only 59,049 states.
Compared to the 2x2x2 Rubik’s cube with a God Number of 14 and 3,674,160 states, the Towers of
Hanoi has 1.6% of the states that the 2x2x2 cube has, but with an optimal solution 73 times longer.

3.2 Neural Networks
We are going to use a neural network as a heuristic, so it is essential to fully understand how a neural
network works, the purpose of the neural network in the DeepCubeA algorithm, and its architecture.
Let’s begin with the simplest type of neural network.

A feedforward neural network [20] is a sequence of layers of neurons. Each neuron performs an
affine transformation of its inputs, and then applies an activation function. Therefore, it is a function
f(x) = ϕ(b+

∑
wi ·xi), where ϕ is the activation function, xi the inputs of the neuron, and wi ∈ R and

b ∈ R are called weights, coefficients or parameters. The activation function is normally chosen to be
nonlinear, to make it possible to learn complex tasks. An example of activation function, and the one
we are going to use, is ReLU [9] (Rectified Linear Unit), which is the function ϕ(x) = max(x, 0). In
a feedforward neural network, the first layer of neurons take its inputs from the input of the network,
the second layer uses the output of the first layer as inputs, and so on. Finally, the output of the
network is the last layer’s output. A layer of a feedforward neural network is called fully-connected
or densely-connected layer, because it is connected to all the neurons of the previous layer in order to
perform the affine transformation of its outputs.

Not every layer of a neural network is a fully-connected layer. Another type of layer we are going to
use is the batch normalization [12] layer (or batch norm). It applies a transformation that normal-
izes the input, maintaining the mean close to 0 and the standard deviation close to 1. Ideally, this
normalization would be performed over the entire training set, but usually this is impractical with
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Figure 5: ReLU activation function.

large datasets, so the training set is divided in batches, and the normalization is applied over each
batch. This normalization process is conducted to make the neural network fast and more stable, and
to improve the generalization ability of the network. The batch normalization layer we are going to
use [3] works differently during training and during inference. During training, it normalizes the input
taking into account only the current training batch, but not the previous batch of inputs. During
inference, it normalizes the input using a moving average of the mean and standard deviation of the
batches it has seen during training. Because of this, batch normalization performs well when the
training and inference data have similar means and standard deviations.

Residual block, 2 fully-
connected layers and
batch normalization.

Another technique we are going to use is skip connections, also called
shortcuts. They are connections that skip one or more layers. The
arrow in the left figure is an example of a skip connection, where the
input is added to the output of the last batch normalization layer. It
skips two fully-connected (fc) layers with 1000 neurons each, and two
batch normalization layers. The skip connection together with the lay-
ers it skips is called a residual block. This structure allows training of
deep neural networks, neural networks that have many layers, because
it reduces the degradation problem [10]. The degradation problem is
the decrease of the accuracy of the model when adding more layers
to a neural network. This is counter-intuitive, since, in theory, we
could approximate the identity function with the added layers. Adding
a shortcut in a residual block ensures that we propagate the identity
function, thus reducing the degradation problem.

Training and inference, mentioned before, are two of the main operations performed over a neural
network. Inference, or evaluation means to compute the output of the network given a particular
input. During a supervised training, we are given a training set with input samples and their
expected outputs (called labels). The objective is to update the parameters of a neural network to
minimize the distance between the expected output and the output produced by the neural network
when given the training set as input. This distance is measured by a loss function, such as the mean
squared error, the one that the DeepCubeA paper uses. The mean squared error computes the
mean of the squared distances between the labels and the output of the network: 1

n

n∑
i=1

(yi − ŷi)
2,

where yi are the labels and ŷi the neural network predictions. The update of the parameters to
minimize the loss function is as follows. First, the gradient of the loss function with respect to the
parameters is computed using an algorithm called backpropagation. Then, an optimization algorithm
is applied. For example, stochastic gradient descent updates the parameters in the opposite direction
of the gradient computed by backpropagation. The intuition is that the gradient is the direction of
steepest ascent, so the opposite of this gradient points in the direction of steepest descent. In fact,
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if the gradient is very small, the weights are not updated, and the network is unable to learn more.
Batch normalization reduces this problem, called vanishing gradient problem. A hyperparameter
called learning rate controls how much to move in the direction of the gradient. A high learning
rate produces a faster movement towards the minimum but more instability, whereas a small learning
rate produces a slow but stable convergence. There are methods with adaptative learning rates to
improve convergence. One of them is Adam [14], the one we are going to use. Adam computes
bias-corrected estimations of the first and second moments of the gradients. It does so by maintaining
moving averages of the uncentered estimates of the mean and the variance, and then applying a bias
correction transformation. These estimations are then employed to compute the direction and step
size used to update the parameters. These updates are applied by dividing the input array in batches,
and for each batch, the updates are applied only when all the gradients and estimations for all the
samples in the batch have been computed.

Our neural network is going to act as a heuristic. It takes a state of a particular problem as an
input (for example, in the 2x2x2 cube a state is an array of size 144) and it returns a real value that
approximates the number of actions to reach the goal state. This number is called value, cost-to-go
or distance to goal state, and the value of the goal state is set to 0.

The architecture of the neural network introduced in the DeepCubeA paper is shown in Figure 6,
and it works as follows. First, a fully-connected layer is applied. It is very important to have a high
number of neurons in this layer (5000 for the 3x3x3 cube), since it is responsible for extracting all the
features from the raw state. Then, after every fully-connected layer, a batch normalization is applied
to improve generalization and stability of convergence, and a ReLU activation funtion afterwards (this
order is suggested in the batch normalization’s paper [12]). After this, another fully connected layer of
neurons is applied, with its corresponding batch normalization and ReLU layers. Then, the objective
is to add more layers to obtain a deep neural network that is capable of learning complex tasks (like
the problem we are trying to solve). But, because of the degradation problem, the best way of doing
this is to use residual blocks. Figure 6 is the architecture of the original DeepCubeA model, in which
there are 4 residual blocks. Each block has two fully connected layers of 1000 neurons each, with their
respective batch normalization layers and ReLU activation functions. Because of the skip connection,
the last ReLU is applied after adding the output of the batch normalization and the input of the
residual block.

Finally, after the residual blocks, there is a fully connected layer of one neuron without activation
function, that performs a linear combination of the output of the last residual block. Its purpose is
to aggregate all the information found by the previous layers, and produce the final output of the
network, that is, the distance to the goal state.

3.3 DAVI
Our purpose now is to design an algorithm to train the neural network so that, for each state it returns
the cost-to-go. However, a supervised learning approach is impracticable since we don’t know the real
distances to the goal state beforehand. A reinforcement learning solution based on value iteration
would be to adapt equation 2.10 to our problem. First, we need an MDP.

The MDP of our problem: As mentioned in Section 3.1, we are solving deterministic problems
of which we have a complete knowledge of their environment. That is, the probability function p is
known, and the problem is deterministic, so the probability function is degenerate, i.e. from state
s ∈ S, taking action a ∈ A(s) always results in the same reward r and the agent always reaches the
same next state s′. Namely, p(s′, r|s, a) = 1 and it is p(s′′, r′|s, a) = 0 for (s′′, r′) ̸= (s′, r). In this
case, we define S(s, a) := s′ and R(s, a) := r.

Example: 3x3x3 Rubik’s Cube. In this cube, the set S contains all 43,252,003,274,489,856,000
states. The set of actions that can be taken from any state is always the same, i.e. A = A(s) = {U,
D, R, L, F, B, U’, D’, R’, L’, F’, B’}, except for the goal state, where no action can be chosen A(s)
= {}. The transition function is given in Figure 3.
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Figure 6: DNN architecture, where fc is a fully connected layer.
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Let Jk(s) := −vk(s) which is the learned cost-to-go at iteration k. By utilizing properties of min and
max functions, the value iteration update is as follows:

Jk+1(s) = −vk+1(s) = − max
a∈A(s)

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]
= min

a∈A(s)

∑
s′,r

p(s′, r|s, a)
[
−r − γvk(s

′)
]

= min
a∈A(s)

∑
s′,r

p(s′, r|s, a)
[
−r + γJk(s

′)
] (∗)
= min

a∈A(s)
[−R(s, a) + Jk(S(s, a))]

where in (∗) it has been taken into account that our main focus is on deterministic problems, so
selecting action a from state s takes us to state S(s, a) with a reward of R(s, a). Our objective is
to reach the goal state applying as few actions as possible, so one option would be to give the agent
constant negative rewards (punishments) until it finds the goal state, as we did in the one-dimensional
world example 2.3.4. However, in practice we will operate with positive constant rewards, redefining
R(s, a) := −R(s, a) to cancel out the negative sign in the above equation. The value iteration update
formula is as follows:

Jk+1(s) = min
a∈A(s)

[R(s, a) + Jk(S(s, a))] (3.1)

In fact, because we wish to minimize the number of actions taken to reach the goal state, R(s, a) is
going to be a constant number, generally chosen to be 1. Also, the discount rate is γ = 1 because we
want to give exactly the same importance to all the actions of a path. In addition, if s is the goal
state, we have to set Jk(s) to 0, since every path ends there. Also, from the goal state the set of
actions that can be chosen is empty, and the min function is undefined over the empty set. In that
case, the formula is changed to Jk+1(s) = 0.

Nonetheless, there is still a complication about the value iteration approach. The state space of the
problem we are solving is very large, so a table based dynamic programming solution to store the
learned cost-to-go is not viable. Thus, we have to adopt a neural network approach to reduce the
information stored. What we want is to approximate the value iteration update formula 3.1 with the
deep neural network described in the previous section. The resulting algorithm is called DAVI, Deep
Approximate Value Iteration, and it works as follows. We start with model and model_e, two copies of
the same neural network model. model_e approximates Jk, and it is used to compute the right side of
the value iteration update formula 3.1, while model is trained to approximate Jk+1. First, a random
set of states is generated, and the right side of equation 3.1 is computed (employing model_e to
evaluate Jk(S(s, a))). This is a neural network evaluation, so it takes a lot of computational time, but
it can be parallelizable across multiple CPUs (in DeepCubeA’s original paper, they use GPUs). Then,
the right side of the value iteration formula is used to train the model neural network to approximate
Jk+1. This process of generating states, evaluating and training is repeated until the mean squared
error between the right and left hand sides of the formula is beyond a certain threshold ε (we check
this condition every C iterations to make the algorithm more stable). When this occurs, it means the
approximation of Jk+1 given by model is good enough, and model_e parameters are updated with
the learned parameters from model. This is called a convergence point. After it, we continue the
previous process, but the effect of updating the model_e parameters is that we are now using the
approximation of Jk+1 to evaluate the right hand side, so it means we are now learning Jk+2. This
algorithm finishes when reaching a maximum number of iterations M , but we will test the model at
different convergence points to choose the best.

The first thing we notice is that information is propagated from the goal state to all the other
states. Before the first convergence point, the only information we have is that, if s is the goal state,
Jk(s) = 0 and Jk+1(s) = 0, so the update formula 3.1 makes model approximate the true cost-to-go for
states that are only one action away from the goal state. After the first convergence point, model_e
parameters are updated with the learned parameters from model, so we are effectively using that
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learned knowledge to train model, and it begins to learn the cost-to-go of states that are two actions
away from the goal state. In general, after convergence point k, we are learning the cost-to-go of
states at distance k+1 from the goal, and we are improving the approximation of states at distances
less than k + 1 (since the information in model_e is just an approximation). Because of this, it is
very important to generate states from a state distribution that allows the reward signal of the goal
state to propagate. It has to assign more probability to states that are close to the goal state. I will
explore some alternatives for this state distribution in Section 4.5.

The consequence of learning the true cost of states at distance k+1 only after convergence point k is
that, in problems with longer optimal solutions, we will possibly have to run the algorithm for a longer
period of time if we want to learn the true cost of all states. That is why, as stated in Section 3.1.2,
the Towers of Hanoi presents a challenge for the algorithm because optimal solutions are very long
compared to the space-state size.

The DAVI algorithm uses two models. There are mainly two reasons why the same model is not used
for training and evaluation. The first motive is the same as the reason why there is a parameter C
that controls the frequency with which the convergence is checked. If we used only one model, the
algorithm would be more unstable because the errors in the approximation of Jk+1 would be directly
converted into errors in the evaluation of the right hand side of the formula, without leaving time
for the network to rectify those errors. The second reason is that we want our cost-to-go function to
correctly order the states according to their distances from the goal state, even if the real cost-to-go
function is not correctly predicted. With only one model, the approximation errors would spread
more rapidly to some states than to others, thus ruining the order of the cost-to-go function.

3.4 BWAS
Now, our purpose is to search for a path between an initial state and the goal state. As previously
mentioned in the Rubik’s Cube Section 3.1.1, a simple way of achieving this would be to implement a
breadth-first search (that only considers the information gathered during the search). This guar-
antees the path obtained is optimal, but it is only feasible in problems with a small number of states
(like the 2x2x2 cube). This is because of the high memory usage due to the need for storing open but
not yet expanded nodes.

As we have a neural network trained to predict the distance to the goal state, we could use the neural
network as a search heuristic. Therefore, a solution that possibly requires low memory capacity is to
start from the initial state and, at each step, only expand the node with the lowest heuristic value
from the opened nodes set. This is called greedy search, and it runs until we reach the goal state.
However, greedy search is not guaranteed to return an optimal path. Thus, we need a way of taking
into account both the information gathered during the search and the information stored by the neural
network. One way of achieving this is to execute an A∗ search [28]. It starts from the initial state,
and expands the state with the lowest f(n) = g(n) + h(n) score (called f-score), where h(n) is the
heuristic value of state n, and g(n) is the g-score, the exact cost of the path (generated by A∗) from
the starting state to state n. If the heuristic h is admissible, that is, if it never overestimates the
true cost of reaching the goal, A∗ returns an optimal path. If it is consistent, that is, if the heuristic
value of node N is no greater than the step cost of getting to a neighbor of N plus the heuristic of
that neighbor, and the heuristic of the goal state is 0, then the heuristic is admissible, and A∗ does
not revisit any node. Nonetheless, our heuristic is not guaranteed to be admissible, so it will return
non-optimal paths in some cases. In addition, A∗ may expand a significant number of states. Because
of that, we could insert a weighting factor λ ∈ [0, 1], and expand the state with the lowest weighted
f-score, that is, f(n) = λg(n) + h(n). This is called WAS (Weighted A∗ Search), and the weighting
factor λ balances the advantages of greedy search and A∗ search. A value of λ close to 0 makes WAS
behave almost like a greedy search, achieving potentially longer solutions. A value of λ close to 1
makes WAS behave like A∗ Search, with optimal or close to optimal solutions, but probably with
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higher memory usage.

Now, another problem arises. Expanding a node involves computing the weighted f-score of all of its
children. While the number of possible actions is bounded (12 in the case of a 3x3x3 Rubik’s Cube),
this process has to be done for every state that we expand until we find the goal state. Our heuristic is
the output of a neural network, so computing it is very expensive. However, it is highly parallelizable
across multiple computing devices. Because of this, the N states with the lowest weighted f-scores
can be expanded, and the heuristic of their children can be computed in parallel. This new algorithm
is BWAS (Batch Weighted A∗ Search), and it is the final method we are going to use to find optimal
or near to optimal paths.

22



4 Implementation Decisions
Now, I will proceed to implement, test and refine my own version of the DeepCubeA algorithm. I will
start with the Rubik’s Cube representation, in order to have a puzzle to test our algorithm with.

4.1 Rubik’s 3x3x3 Cube Representation
The papers of DeepCube [1] and DeepCubeA [2] suggest two different ways of representing the Rubik’s
3x3x3 Cube:

• In DeepCube they try to take advantage of specific characteristics of the 3x3x3 cube, so the
representation obtained is less generalizable to other problems. Each cubelet is univocally
determined by the stickers it contains, and the position of one of those stickers determines the
position of the remaining stickers of that cubelet. Moreover, centers are always fixed, so we can
focus on the eight corners and the twelve edges, that is, 20 cubelets. For each cubelet, we need
to one-hot encode5 each of the 24 different positions (in the case of edges, 12 locations and 2
possible orientations, while the corners have 8 possible locations and 3 orientations). Therefore,
the state has a dimension of 20 ∗ 24 = 480.

• In DeepCubeA the color of each sticker is represented with a one-hot encoding. For example,
the 3x3x3 cube has 6 colors and 6∗9 stickers so the representation has a size of (6∗9)∗6 = 324.
This representation is easily generalizable to other problems because, for example in the H(4, 3)
puzzle, for each disk we can represent the tower in which it is located as a one-hot encoding.
As there are 4 disks, and 3 towers, the state has a dimension of 4 ∗ 3 = 12.

In this work we will use a one-hot encoding for
each sticker, as proposed in the DeepCubeA paper,
due to the smaller size of the state representation
and the ease of generalization to other problems.

Our front (F) face is going to be the one with the
blue center and the upper (U) face the one with
the yellow center (with a standard color layout, the
remaining faces have their color univocally identi-
fied), as showed in the right figure.

The input of the DeepCube’s and DeepCubeA’s neural networks is a flat array, so we are going to
need to flatten the cube in order to represent the state. The process is as follows. The order is Left,
Up, Front, Down, Right and Back; we will first represent the Left face, then the Upper face, etc. For
each face, we start with the top-left sticker and we move to the bottom-right sticker, going from top
to bottom, and from left to right (the order is showed in the figure). As previously mentioned, the
color of each sticker is represented in one-hot, for the 3x3x3 cube. There are 6 colors, and in the
goal state each color is univocally assigned to a face, so we can use the same order of the faces (L,
U, F, D, R, B) to numerate the colors. This numeration is the one we are going to use to create the
one-hot representation, so for example blue is in the front face, the third face, so its representation is
[0, 0, 1, 0, 0, 0]. Because the 3x3x3 cube has its centers fixed, the first center is always going to be
represented as [1, 0, 0, 0, 0, 0, 0] (orange), the second is [0, 1, 0, 0, 0, 0, 0] (yellow), etc. The final
representation of the state is the concatenation of all the one-hot sticker representations, in the order

5If we have an integer i, 0 ≤ i < T for some T , the one-hot encoding of i is a group of T bits, where the i-th bit is 1
and the rest bits are 0
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specified before. In fact, in the general case, a NxNxN Rubik’s Cube has 6 colors and 6 faces with
N ∗N stickers on each face, so it can be represented in the same way, with a state size of 62 ∗N2.

To run the DAVI algorithm, it will be essential to generate a large number of states as in the paper it
is fed with 10,000 million cubes. Because of that, the implementation of the operations for creating
a cube in the goal state and the application of an action over a state must be efficient in terms of
computational time and memory.

Generating the goal state: As will be seen in Section 4.5, the states fed to the DAVI algorithm
are generated from the final state (that is, the state in which all stickers on each face are the same
color). It is therefore necessary to have a way to generate the state that represents the goal state in an
efficient way. I have studied three alternatives: generate it with Python’s list comprehensions, with
NumPy’s matrix operations, or from a copy of a NumPy array that contains the (already generated)
final state.
def _solved1():

return [1 if i==j else 0 for (j, k, i) in it.product(range(6), range(9), range(6))]

def _solved_one_hot():
identities = np.tile(np.eye(6,dtype=int),9)
return identities.reshape((6*9*6))

_state_copy = _solved_one_hot()
def _solved_copy(cube_rep=_state_copy):

return cube_rep.copy()

The execution time of the three functions was measured with a million calls. _solved1() took 20.7979
seconds, _solved_one_hot() 8.8266 seconds, and _solved_copy() 0.3389 seconds. Thus, the gener-
ation of a new solved state will be implemented as a copy of an array containing the representation
of the final state, since an improvement by a factor of x26 over the second fastest way is achieved.

4.2 Rubik’s 2x2x2 Cube
In order to test and refine our algorithm, we need a manageable problem. As we have seen in
Section 3.1.1, the Rubik’s 3x3x3 Cube has a number of states of the order of 4.3 × 1019. This
huge number of states makes it hard for DAVI to converge because the network has to be able to
distinguish many different states from each other. Moreover, if we want to build an optimal solver
to test our algorithm, any simple solution (such as BFS) is unfeasible. Thus, we will first implement
the DeepCube algorithm for the Rubik’s 2x2x2 Cube. The 2x2x2 cube can be optimally solved with
a simple breadth-first search in a laptop. In fact, we can store a dictionary that maps each state
with its distance to the goal-state, and that is precisely how we are going to build an efficient optimal
solver. This cube is not mentioned in the original papers (DeepCube [1], DeepCubeA [2]), so we will
face some issues for which I will propose some solutions.

For the state representation we will use the same technique as in the 3x3x3 case. The color of each
sticker in a face is represented in a one-hot encoding. There are 6 faces, and thus, 6 different colors.
In each face there are 2x2 stickers, so this results in a state representation of size 6 ∗ 4 ∗ 6 = 144.

As in the 3x3x3 cube, there are 12 possible actions in the 2x2x2 one: six clockwise 90o turns: F (front
face clockwise turn), B (back face turn), L (left face turn), R (right face turn), U (upper face turn),
D (down face turn), and the counter-clockwise turns: F’, B’, L’, R’, U’, D’. But, if we tried to follow
exactly the same approach as in the 3x3x3 cube we would run into a problem. In the 3x3x3 cube,
centers are fixed, that is, actions don’t change the position of the six centers. This guarantees us that,
after applying a list of actions, we don’t end up with a rotated version of the goal state because the
centers are always in the same position. That is very important because we need to check whether
or not two states are equal in an efficient way, so we don’t want to have to rotate the cube multiple
times for each comparison. In the 2x2x2 cube, things are different because there are no fixed centers
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so if, for example, we apply the actions R, L’ to the solved cube, we get again the solved cube, but
rotated. This issue does not only complicate things when comparing states, but also when training

Figure 7: Actions R L'. We get the solved cube, but rotated.

the algorithm. If the goal state (left cube in figure 7) and the rotated goal state (right cube in figure
7) do not have exactly the same representation, the neural network will think they are different states
and it will have to distinguish a larger number of states than necessary. There are multiple ways of
solving this problem:

• We do not solve it, that is, we consider that a rotation of a state is a different state. This is the
simplest option, but we will not consider this solution because of the reasons above.

• Design a state representation that is independent of rotations.

• To fix a corner when applying actions. If a corner is fixed, for example the white-blue-orange
corner, no action can rotate the cube.

We will study and implement the third option, because of its simplicity an efficacy. But, how do we
fix a corner? We will fix the white-blue-orange corner, the bottom left corner in the front face of the
left cube in figure 7 (the procedure is analogous for other corners). There are six actions that affect
that corner: L, L', D, D', F, F', and the other six actions preserve the position of the corner: R, R',
U, U', B, B'. The trick here is that, for every action that changes the position of the corner, there is
an equivalent action that does preserve the position. For example, if we apply L to the solved cube,
we end up in the same state as if we would have applied R (except for a rotation). Actually, for
every clockwise (counter-clockwise) action over a face, if we turn the opposite face clockwise (counter-
clockwise), we get the same state. The complete list of equivalent pairs of actions is: (F, B), (F', B'),
(L, R), (L', R'), (D, U) and (D', U'). With this in mind, solving the issue in figure 7 is very easy: we
will only work with the six actions that do not affect the white-blue-orange corner: R, R', U, U', B,
B', because the other six actions are actually equivalent to the selected ones. In fact, this solution
has the advantage that we have reduced the number of actions to apply, so training the algorithm
and predicting the sequence of moves to solve the cube are both going to be more efficient.

To efficiently implement BWAS, we will need a hash function to use states as keys of dictionaries.
Because numpy arrays are easily represented as strings using the Python’s built-in function str, we
could take advantage of the fact that Python strings are hashable to build a simple way of hashing
states. But because Python’s dictionaries store a list of the keys and our states are one-hot encoded,
we can actually achieve a better solution in terms of memory usage. First, the one-hot encoding of the
color of each sticker is transformed to an integer representation using an argmax operator, to lower
the memory usage. Second, the resulting array is transformed to a bytes representation that allows
us to easily recover the state we are representing. The resulting operation is valid for both the 3x3x3
and 2x2x2 cubes, and it is:
np.argmax(state.reshape(-1,6), axis=1).tobytes()
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Figure 8: Action R produces the same state as L, except for a rotation of the entire cube.

For example, the 3x3x3 cube converted directly to an string with the Python’s built-in function str
would have a size of 706 bytes, but applying the above operation results in only 465 bytes. This allows
the optimal solver in Section 4.4 to run in a computer with less than 16GB of RAM for the 2x2x2
Rubik’s Cube. The operation can be inverted to retrieve the state as a numpy array as follows:
tf.one_hot(np.frombuffer(bytes_hash, 'int64'), 6,dtype='int64').numpy().reshape(-1)

4.3 Towers of Hanoi
To represent a state of a Towers of Hanoi H(n,m), for each disk we are going to represent the tower
in which it is located as a one-hot encoding. There are n disks, and for each disk we need m integers
to represent their respective towers, so the size of the state representation is n ∗m. In the vector that
represents the state, the order of disks is always the same: we begin with the one-hot encoding of
the smallest disk, and we end with the biggest one. In fact, if n′ < n, this representation allows us
to easily map states of H(n′,m) disks into states of H(n,m) by setting the tower of the last n − n′

disks to the one-hot representation of the target tower. If we have an algorithm to solve every state
of Hanoi(n,m) (not just the initial one), this mapping allows us to solve Hanoi(n′,m) by reutilizing
the same algorithm.

Initial state for H(3, 3).
H(3, 3) initial state mapped to aH(4, 3) state.

The action to move disk d from the top of the tower i and placing it on tower j is represented as the
tuple (d, i, j). In fact, one could argue that only i and j are necessary to represent the action, since

26



we always move the top disk of a post and place it on top of another one. But, because of the way
that we represent states, if we carry the information of which disk we are moving, executing an action
means only changing positions d ∗ m + i and d ∗ m + j of the array. For example, assume that we
have Hanoi(2, 3), 2 disks and 3 towers. The smaller disk is on tower 1, so it is represented as [0, 1,
0] and the bigger disk on tower 0, so it is [1, 0, 0], thus the state representation is [0, 1, 0, 1, 0, 0]. If
we wanted to move the smaller disk, d = 0, to the third tower, j = 2, that would be action (0, 1, 2),
we would only have to change positions d ∗m+ i = 1 (to put a 0, which means the disk has left tower
1), and d ∗m+ j = 2 (to put a 1, meaning that disk 0 is now on tower 2).

The way of hashing the Towers of Hanoi states is analogous to the Rubik’s Cube method.

4.4 Optimal Distances
For problems that have few states, like the 2x2x2 cube or Hanoi with a small number of disks, we
can build an optimal solver just by calculating the true distances to the goal for every state of the
problem. Without taking into account any of the particular characteristics of the problem, it can
be done by performing the following breadth-first search. The optimal distances are stored in the
dictionary optimal, hence the need for having a way of hashing states. Starting from the goal, thanks
to the use of a FIFO queue, states are explored ordered by their distances to the goal state. For each
state s that we expand, with a distance of cost to the goal state, if any of its neighbors s′ (the states
that can be reached by applying a single action from s) has not been previously visited, it is added
to the queue to expand it later. Because it has not been previously visited, an optimal path from s′

to the goal state is to optimally go from the goal to s, and then from s to s′ with an extra action, so
we can update the dictionary optimal with its optimal distance, which is cost+ 1.
def optimal(puzz, file_name):

s = puzz.goal_state()
optimal = {puzz.hash_state(s):0}
q = deque()
q.append((s,0))
while len(q) > 0:

s, cost = q.popleft()
for a in puzz.valid_actions(s):

next_s = puzz.action(s, a)
hash_s = puzz.hash_state(next_s)
if hash_s not in optimal:

optimal[hash_s] = cost + 1
q.append((next_s, cost+1))

save_optimal(file_name, optimal)
return optimal

After calculating the optimal costs for all the states, the dict is saved in a file, to trade memory usage
for future constant time lookups of the calculated distances.

After computing the optimal values for the 2x2x2 cube, we can extract some useful information.
For example, the number of states at each distance from the goal state:

Distance to goal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# States 1 6 27 120 534 2256 8969 33058 114149 360508 930588 1350852 782536 90280 276

As we can see, the number of states at distances 10, 11 and 12 is very large. Because of that, the
training of the models will probably present some difficulties when reaching convergence point 9 or
above. Also, there are only 276 states at a maximum distance to the goal state, so, for example, the
probability of sampling one of those states from a uniform distribution will be very low.

The results for Hanoi(3, 3) are a little bit different. The classes are better balanced, with the states
at the maximum distance being the most numerous:
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Distance to goal 0 1 2 3 4 5 6 7
# States 1 2 2 4 2 4 4 8

For Hanoi(4, 3), the first 8 classes have the same number of states as in Hanoi(3, 3). Also, the biggest
class, with 16 states, is the one with states at a distance 15, the maximum distance for this problem.
This fact, in combination with the long distance from the initial to the goal state, is going to present
a challenge for the DAVI algorithm when running it to learn a Hanoi problem with a high number of
disks.

Distance to goal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# States 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16

4.5 Getting Scrambled States
To feed the DAVI algorithm, we need to get a set of states to train the neural network. The papers
DeepCube [1] and DeepCubeA [2] suggest two different ways of obtaining those states.

• In DeepCube, they generate the states starting with the solved cube and, by applying K random
actions to it, a sequence of K states is obtained. This procedure is applied l times to generate
a training sample with N = K ∗ l cubes.
def get_scrambled_deepcube(l, K, puzzle):

res = []
for i in range(l):

s = puzzle.goal_state()
for j in range(K):

s = puzzle.action(s, random.choice(puzzle.valid_actions(s)))
res.append(s)

return res

• In DeepCubeA, each training state xi is obtained by applying ki random actions to the solved
cube (keeping the last obtained state), where ki is obtained from a discrete uniform distribution
over the interval [1, ...,K], where K is fixed (the original authors chose K = 30 for the 3x3x3
cube).
def get_scrambled_deepcubea(B, K, puzzle):

res = []
for i in range(B):

ki = random.randint(1,K)
s = puzzle.goal_state()
for j in range(ki):

s = puzzle.action(s, random.choice(puzzle.valid_actions(s)))
res.append(s)

return res

The distributions of states generated by these two functions change depending on the choice of the
parameterK. With the objective of learning the simplest instances of the problem first, this parameter
will be chosen accordingly. For further explanations of this distribution, see Section 5.2.

4.6 Neural Network Implementation: Original and Modifications
To implement the neural network, we are going to use the Keras framework because it provides a
default implementation for all the types of layers we are going to use: Dense (fully connected) layers
of a given size, a BatchNormalization layer that performs the batch normalization operation, and an
Add layer that adds the output of two different layers. The dense layer also provides an argument
to specify the activation function, but we are interested in applying the activation function after the
batch normalization, so we have to use a ReLU layer, which is a non-trainable layer.
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def residual_block(x_input, layers_resblock, resblock_layer_size, batch_norm):
x = x_input
for i in range(layers_resblock - 1):

x = layers.Dense(resblock_layer_size)(x)
if batch_norm:

x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)

x = layers.Dense(resblock_layer_size)(x)
if batch_norm:

x = layers.BatchNormalization()(x)
x = layers.Add()([x_input, x])
x = layers.ReLU()(x)
return x Residual block of 2 fully

connected layers with
batch normalization.

Notice that one of the hyperparameters controls the number of fully connected layers the residual
block (also called resblock) has, and another, called batch_norm, is a boolean that manages whether
or not the batch normalization layer is included. This is going to be very useful when creating different
versions of the model.

The function that creates the entire model uses the function above to create residual blocks, and in
addition to the hyperparameters of the residual_block function, it has input_shape (that specifies
the size of the state representation of the puzzle we are solving), first_layers_neurons, which
controls the number of neurons of the first layers (the fully connected layers that are previous to the
residual blocks), and n_resblocks, the number of residual blocks of the network. Notice that the
fully connected layers of the residual blocks are going to have the same number of neurons as the last
of the fully connected layers (the layer before the residual blocks in Figure 6), because we need to
perform the add operation, so the residual connection has to be the same size as the output of the
layer inside the residual block.
def _nn_model(name, input_shape=324, first_layers_neurons=(5000,1000),

n_resblocks=4, layers_resblock=2, batch_norm=True):
inputs = keras.Input(shape=input_shape)
x = inputs
for n in first_layers_neurons:

x = layers.Dense(n)(x)
if batch_norm:

x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)

for i in range(n_resblocks):
x = residual_block(x, layers_resblock, first_layers_neurons[-1], batch_norm)

output = layers.Dense(1)(x)

model = keras.Model(inputs, output, name=name)
return model

Now, I am not only going to build the DeepCubeA model (figure 6), but also three other models.
We are going to call the original DeepCubeA model DNN_0 (13,763,001 trainable parameters for the
2x2x2 cube), and it is the model obtained when calling the above function with default parameters.
The second model is DNN_noBatchNorm (13,735,001 trainable parameters), and it is exactly the same
model as DNN_0, but without batch normalization. The objective with this model is testing how
well the batch normalization performs, or if we are going to have to remove it. The third model is
a reduced version called DNN_reduced_0 (6,698,601 trainable parameters), with only 3000 and 800
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neurons in the first two fully-connected layers (the fully connected layers that are previous to the
residual blocks), and 3 residual blocks instead of 4, with 800 neurons in each of the dense layers of
the residual blocks. The purpose of this model is to test how the simplified version of the original
model performs in terms of generalization capacity, lightness of the model (less time to perform a
prediction, and lower memory usage), and ability to converge to an usable solution when training the
DAVI algorithm. I also propose a fourth model, DNN_reduced_0_noBatchNorm (6,681,401 trainable
parameters), that is exactly like the reduced model but without batch normalization.

4.7 DAVI
Now, we are going to implement the DAVI algorithm described in Section 3.3. The first thing we
need is a way of generating batches of data from an array of input states. Because the outputs of the
network and the gradients can be computed in different threads for all the states in a batch, dividing
the input array in batches effectively improves the performance of training and evaluating our neural
networks. Usually, this batch generation is automatically performed by Tensorflow and Keras, the
frameworks we are going to use to implement it. But, according to the official documentation, if we
implement our own way of generating batches of data subclassing tf.keras.utils.Sequence, the
utilities of the Keras framework allow us to tune the number of processes that Keras spawns, and to
use multiprocessing instead of multiple threads. This is exactly the parallelization we want, explained
in Section 3.3.

To divide the array data into batches of size batch_size, we need to implement two methods:
__len__() and __getitem__(i). The former has to return the number of batches in our array and
the latter returns the i-th batch. The first thing we have to notice is that the number of elements
in data might not be divisible by batch_size. In that case, the last batch would have less than
batch_size elements. Returning the i-th batch is very straightforward because a batch is a slice of
the data array of batch_size elements, so the i-th batch starts at position i ∗ batch_size and ends
at position (i + 1) ∗ batch_size − 1 (or lower if it is the last batch and the length of data is not
divisible by batch_size). To implement __len__(), if the length of data is divisible by batch_size,
the number of batches is the exact division of the length of data by batch_size, but we have to
apply the ceil operator to treat the general case.
class Dataset(tf.keras.utils.Sequence):

def __init__(self, data, batch_size):
self.data = data
self.batch_size = batch_size

def __getitem__(self, i):
batch = self.data[i*self.batch_size:(i+1)*self.batch_size]
return batch

def __len__(self):
return math.ceil(len(self.data) / self.batch_size)

From Section 3.3, our objective is to approximate the value iteration update formula:

Jk+1(s) = min
a

[R(s, a) + Jk(S(s, a))]

The function next_cost computes the right hand side of the update formula for an array of states
X, using the neural network model_e to approximate Jk. The intuition here is that, for every state
in X, we have to compute its neighbors, evaluate Jk by calling the predict function of model_e, and
apply a min operator. But, because the prediction of a neural network is time consuming, this process
can be more efficient if we compute all the Jk values in parallel for all the neighbors of every state
in X. Thus, the first for loop stores all the neighbors of every state in an array, then a Dataset is
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created to divide that array in batches, and the predict function of model_e is used to compute Jk
in parallel across different processes. Finally, the last for loop applies the min operator over all the
predicted values of the neighbors. The first if inside the for loop checks if state is the goal state,
in which case we have to impose that the min operator returns 0. The second if checks if any of
the neighbors s′ is the goal state, in which case we directly know that Jk(s

′) = 0, and because in
practice we are using constant rewards cost := R(s, a), the value iteration update formula tells us
that Jk+1(s) = mina [R(s, a) + Jk(S(s, a))] = cost.
def next_cost(model_e, X, goal_state, puzzle, batch_size=32, workers=4):

y = []
next_states = []
for state in X:

next_states.extend([puzzle.action(state,a) for a in puzzle.valid_actions(state)])
d = Dataset(np.array(next_states), batch_size) # used for multiprocess predicting
preds = model_e.predict(d, workers=workers, use_multiprocessing=True) + puzzle.cost()
i = 0
for state in X:

num_possible_actions = puzzle.number_actions(state)
state_next_states = next_states[i:i+num_possible_actions]
state_preds = preds[i:i+num_possible_actions]
i += num_possible_actions
if np.array_equal(state, goal_state):

y.append(0)
continue

if list(filter(lambda s: np.array_equal(s, goal_state), state_next_states)):
y.append(puzzle.cost())
continue

y.append(min(state_preds)[0])
return y

Now, we have all the ingredients to implement the DAVI algorithm. We start by initializing Adam,
the adaptive learning rate method we are using, by setting the learning rate. In this case, we are going
to use 0.0002 since a higher value would worsen the stability of convergence. Then, the mean squared
error is set up. We are using two neural networks, model and model_e with the same architecture:
we are going to train model and we will use model_e for predicting and computing the right hand
side of the value iteration formula. At the start, model is already initialized (either with the default
initialization that the framework provides, or with the weights of a past training). Also model_e is
cloned from model to have the same architecture. If model was default initialized, that would be
sufficient, but it might have the parameters of a past training, so we also have to copy the weights
into model_e, to take advantage of that information.

optimizer = keras.optimizers.Adam(learning_rate=lr)
loss_fn = keras.losses.MeanSquaredError()
model_e = keras.models.clone_model(model) # model_e with parameters theta_e, used to predict
model_e.set_weights(model.get_weights()) # clone_model does not copy weights
model.compile(

optimizer=optimizer, loss=loss_fn, metrics=[], weighted_metrics=None,
run_eagerly=False)

Now, we arrive at the main loop of DAVI. A maximum of M iterations are run, counting from
initial_it (which is a parameter needed if we want to continue a past training). This loop can be
divided in two steps: generating the training and validation data and training the neural network,
and extracting the loss from the training history and checking for convergence.
for iteration in range(initial_it, initial_it + M):

# generate data and train the neural network
# get validation loss to check for convergence, and store model weights

To generate the data, first we have to generate scrambled states using one of the methods described
in Section 4.5. The parameter K controls the maximum number of random actions applied to the
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goal state, and B and B_val control the number of times that operation is repeated for generating the
training and validation data respectively. Then, the function next_cost is applied to compute the
approximations of the right hand side of the value iteration update formula, both for the training and
validation states, using model_e. Next, the model neural network is trained to approximate Jk+1.
This is done by calling its function fit, that performs supervised training using the approximations as
labels.

# generate data and train the neural network
X = puzzle.get_scrambled(B, K)
X_val = puzzle.get_scrambled(B_val, K)
y = next_cost(model_e, X, goal_state, puzzle)
y_val = next_cost(model_e, X_val, goal_state, puzzle)

history = model.fit(
x=np.array(X), y=np.array(y),
batch_size=None, epochs=1,
verbose=2, callbacks=None,
initial_epoch=0, steps_per_epoch=None,
validation_data=(np.array(X_val), np.array(y_val)),
)

Finally, the loss information is retrieved from the history returned by the fit method. Every C
iterations, that loss information is stored, and the convergence of the model is tested, which consists
in checking if the validation loss has fallen below the threshold ε. If that is the case, we have a new
convergence point, and the weights of model_e are updated with the recently learned parameters from
model. To continue the training if something fails, the weights are also stored on disk, but only every
CC convergence points. CC is a new parameter, not present in the DeepCube or DeepCubeA papers,
that is very useful to save disk space when solving problems that generate a lot of convergence points
like the Towers of Hanoi. Therefore, this constant CC is set to 1 for the Rubik’s Cube puzzles, and
to 10 for the Towers of Hanoi.

# get validation loss to check for convergence, and store model weights
loss = history.history['loss'][0]
val_loss = history.history['val_loss'][0]
losses["loss"].append(loss)
losses["val_loss"].append(val_loss)
if iteration % C == 0:

nn.save_losses(model.name, str(puzzle), iteration, save_path, losses)
if val_loss < eps:

model_e.set_weights(model.get_weights())
if (conv_point-1) % CC == 0:

nn.save_weights(model, str(puzzle), iteration, save_path)
conv_point += 1

On a final note about the data generation step, the validation set is randomly selected at each it-
eration to avoid a difficulty related to the convergence of the algorithm that a fixed set may cause.
This is not supervised learning, we don’t have the true values that the final neural network needs
to learn, so the validation data checks how close we are to approximate the value iteration update
formula. If we used a fixed set, we might choose a very poor one (and we wouldn’t have a way to
detect that it is not a good validation set). For example, if we are learning cubes at a distance of
12 from the goal state (and we have already learned the ones at lower distances), a validation set
with only cubes at a distance of 7 from the goal state would mean that, depending on how well our
model approximates the true cost-to-go, we would probably detect a false convergence (if we had
already learned those states, the loss would be lower than ε). And, because the validation set is
fixed, if we have learned a decent approximation of the cost-to-go for those states, once we detect a
false convergence we will re-detect a false convergence next time it is checked. In the original paper,
the authors don’t mention if they use a fixed or a dynamic validation set. They also do not state
how they solve the false convergence problem. To try to solve it, I decided to choose a different
validation set at each iteration. The downside is that there might be overlap between the validation
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and training sets, but the validation is only checked every C iterations, so this minimizes the prob-
ability of a false convergence. The overlap is due to the fact that both the training and validation
sets have to be randomly selected from their distributions (in this case, the two distributions are the
same, since training and validation sets are generated as in Section 4.5) that assign non-zero prob-
ability to each state, because we want states at all possible distances from the goal state (and we
don’t know in advance the distribution of distances over the state space). Also, to accomplish this,
we have to choose a value of K higher than the maximum number of actions we need to reach all states.

We randomly select the training set at every iteration, so if we didn’t want to have overlap, we would
have to store every generated state (not only the ones generated at this iteration, but also all the
previous ones) and generate a validation set that does not contain any of the training states. We can
compare states in O(state_size) (for example, by using a Python set), but we would quickly run out
of memory if we used this technique. In fact, the overlap between validation and training sets is not
a big problem in this particular implementation. We are only using the validation set to compute
the loss that is compared against ε. This loss measures how well the model has learned the values
of states taken from the distribution of states generated in Section 4.5 (for further explanations of
this distribution, see Section 5.2). If there is overlap, it only means the loss for the states in the
intersection is probably low, depending on how well our model has learned the cost-to-go for those
states. Although the probability of a false convergence is not zero, it is unlikely to concatenate
multiple false convergences in a row because we are continuously sampling our validation set. In the
case of a false convergence the model we use to make predictions (model_e) is updated faster, but the
rate of convergence can be changed by adjusting ε.

4.8 BWAS
To implement BWAS, a priority queue open_states is used to store the open states, that is, the ones
seen but not yet expanded. This priority queue stores tuples of three elements, sorting those tuples
lexicographically in ascending order. We are interested in retrieving the state with the lowest f-score
and also, the tuple has to carry the state, so the tuples are of the form (f-score, counter, state), where
counter is an increasing integer that breaks any f-score ties, to prevent comparison between states.
Also, I store the best g-score found for the open states in a dict. To build the path from the initial
state state_0 to the goal state, we need a way to remember what actions we have to take, so the
g-score dict also stores the last action taken to reach any state with the current best g-score.

open_states = PriorityQueue()
found = False
# state -> (cost, action) (the action from parent_state to state)
g_score = {puzzle.hash_state(state_0): (0, "")}
# f(x) = lamda*g(x) + h.predict(x) where g(x) is the cost of the path to x and
# h(x) is the heuristic
open_states.put((0 + h.predict(np.array([state_0])), 0, state_0))
# PriorityQueue sorts lexicographically
count = 1 # To break any possible ties.
if np.array_equal(state_0, puzzle.goal_state()):

found = True

After all the initializations we arrive at the main loop, which runs until the goal state is reached. At
each iteration, N states are expanded, the heuristics of their children and the new g-score and f-score
are used to determine if those children have to be added to open_states.

while not found and not open_states.empty():
# Expand states and compute heuristic
# Add new states to open_states queue

First, N states are removed from the priority queue, and if any of them is the final state, the algorithm
finishes. Then, as we did in the DAVI algorithm, all of the N states are expanded and the heuristics
of the neighbors of those N states are computed in parallel at the same time.
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# Expand states and compute heuristic
states_to_expand = []
i = 0
while i < N and not found and not open_states.empty(): # BWAS: expand N states instead of 1

f_score, _, state = open_states.get()
if np.array_equal(state, puzzle.goal_state()):

found = True
break

states_to_expand.append(state)
i += 1

if found:
break

child_states = []
for state in states_to_expand:

child_states.extend([puzzle.action(state,a) for a in puzzle.valid_actions(state)])
# Heuristics are computed in parallel for all the children of the N nodes
d = Dataset(np.array(child_states), batch_size) # used for multiprocess predicting
heuristics = h.predict(np.array(child_states), workers=n_processes, use_multiprocessing=True)

Then, for each of the neighbors of each of the expanded states, the new g-score and f-scores are
computed from the g-score of the parent and the previously calculated heuristic value. A child is
inserted into the open_states if it was not previously visited or if the g-score just computed improves
the previous g-score. That guarantees that the f-score is also better than the previous one, since the
heuristic value of a state does not change during the BWAS execution.

# Add new states to open_states queue
i = 0
for state in states_to_expand:

actions = puzzle.valid_actions(state)
num_possible_actions = len(actions)
new_g_score = g_score[puzzle.hash_state(state)][0] + 1
for j, a in enumerate(actions): # Each of the N states has len(action) childs

child = child_states[i + j]
child_h = heuristics[i + j]
key = puzzle.hash_state(child)
if not key in g_score or g_score[key][0] > new_g_score:

g_score[key] = (new_g_score, a)
open_states.put((lamda*new_g_score + child_h, count, child))
count += 1

i += num_possible_actions

Finally, when the loop ends we have to rebuild the solution, that is, the path from the initial state
to the goal state. It is built backwards, from the goal to the initial state. The g-score dict stores the
action needed to move from the second to last state in the path to the goal state, so taking the inverse
action leaves us in that second to last state. Repeating this procedure, we reach the initial state, and
the path is just the sequence of actions we have seen but in reverse order.

# Build solution
state = puzzle.goal_state()
length, a = g_score[puzzle.hash_state(state)]

actions = []
while a != "":

actions.append(a)
state = puzzle.inv_action(state, a)
_, a = g_score[puzzle.hash_state(state)]

print(f" Expanded {num_expanded} states")
return length, actions[::-1]
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5 Results
5.1 Training Models and First Results for the 2x2x2 Rubik’s Cube
I have executed the DAVI algorithm to train the four models for the 2x2x2 cube, and the goal now
is to test them in order to decide whether or not to continue training. The same parameters of the
DAVI algorithm have been used for all the models: ε = 0.05 (controls the error threshold to update
the evaluation model), C = 10 (how often to check for convergence), M = 10000 (max. number of
iterations). To generate states, get_scrambled_deepcubea is used with K = 20 (max. scrambles per
state), B = 1000 (number of states the algorithm sees per iteration), and finally, B_val = 200 (the
number of states for validation, used to calculate the loss to check for convergence). The next table
shows a summary of the training process, where # model updates is the number of convergence points.

Model Total Iterations. # model updates Model updates iterations
DNN_0 2950 10 40, 70, 90, 130, 160, 240, 400, 740, 1200, 2080

DNN_noBatchNorm 2850 11 10, 20, 30, 40, 50, 70, 130, 250, 650, 1080, 1790
DNN_reduced_0 2830 10 50, 60, 80, 100, 140, 290, 550, 1010, 1610, 2440

DNN_reduced_0_noBatchNorm 3910 10 10, 20, 30, 40, 50, 70, 130, 370, 830, 2030

The approximate training times are: 17 hours for DNN_0, 16 hours for DNN_noBatchNorm, 10 hours
for DNN_reduced_0 and 13 hours for DNN_reduced_0_noBatchNorm. The first thing that is worth
mentioning is that the models without batch normalization update their evaluation models faster.
For example, the tenth update of the DNN_0 model happens in the iteration 2080, while the eleventh
update of DNN_noBatchNorm is in the iteration 1790. This means that, with less cubes fed into the
algorithm, it is probable that the noBatchNorm version is able to distinguish cubes at distance 10 from
cubes at distance 11. Remember from the DAVI explanation that each update of the evaluation model
means the model is learning to classify states that are one step further from the goal state. Because of
that, at the last convergence point, the DNN_noBatchNorm algorithm was learning to predict the cost-
to-go of states that are 11 moves from the solved cube, while the other three models were learning to
distinguish cubes at distance 9 from cubes at distance 10. In the quarter-turn metric, there are states
that are 14 moves from the solved cube, so if we wanted to predict them correctly, we would have to
continue training the models. However, running the algorithms for longer has its own issue. Whereas
the first updates happen in the first iterations (for example, the original model DNN_0 updates 8 times
before iteration 1000), the later updates are more expensive to achieve (DNN_0 only updates two more
times between iterations 1000 and 2950). In fact, the model DNN_reduced_0_noBatchNorm has been
trained for 3910 iterations (a thousand more than the rest, because it is the cheapest one, with less
trainable parameters), and the last update is the tenth one in the iteration 2030, which is a symptom
that it is finding it more difficult to converge.

Let’s examine the training and validation losses. In all the loss figures, the horizontal dotted line
represents ε = 0.05, the black circles show when the evaluation model updates happened, the cyan
color is the validation loss, and the magenta color the training loss. Notice that figure 9 shows that
the validation loss spikes up very frequently. In fact, there is a spike between iterations 200 and 250
that raises the validation loss to a mean squared error of over 2. It is due to the fact that, in order
to check for convergence, the validation loss changes at each iteration (for further explanations, see
section 4.7), so this was expected.

Also, notice the black circles over the horizontal dotted line. Those are the convergence points,
where the evaluation model is updated with the parameters of the model being trained. Because
of this update, the train and validation losses spike just after the convergence point, as the network
now has to learn to assign the correct cost-to-go of states that are one step further from the goal state.
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Figure 9: Training (magenta) and validation (blue) losses of DNN_0 model until the iteration 2950.

Another fact that figure 9 reveals, and that we already knew, is that the model updates take more
time as the training progresses. Let’s examine the last two convergence points of our four models, to
see whether they are near their maximum capacity, or if they can still learn.

As we can see in figure 10, models with batch normalization (left) have longer spikes, which indi-
cates that they perform worse over the validation sets than the ones without batch normalization.
Moreover, the loss of models without batch normalization (right) falls faster, while the ones with it
take more iterations to converge (notice that the loss of DNN_0 after the last convergence point holds
above the red line (epsilon), almost without decreasing). However, any difficulty in converging at this
point of the training does not mean they are reaching their maximum learning capacity since they
have already updated 10 times (11 in the case of DNN_noBatchNorm), so they are learning states at
a distance of 11 (12) from the goal state and, according to table 4.4, these distances have 1350852
(782536) states, which is a big percentage of the total number of states.

Finally, I have also measured the performance at the last convergence point of these four models
against the optimal solver, taking all states into account. The aim is to discover how these models
perform in the task of predicting the correct cost-to-go without yet computing the actual path with
BWAS. Thus, the optimal solver is only used to compute the length of the optimal paths. The
procedure is to compute the optimal cost-to-go and the model output (predicted cost-to-go) for each
state, and compute the mean absolute error between the optimal and the predicted values. The
mean absolute error of DNN_0 at iteration 2080 is 3.4841, that of DNN_noBatchNorm at iteration 1790
is 2.5468, that of DNN_reduced_0 at 2440 is 3.0558, and that of DNN_reduced_0_noBatchNorm at
2030, 2.5733. It is clear (at least for now) that models without batch normalization perform better.
Nevertheless, we are also going to continue training models with batch normalization, to test how
they perform as a heuristic for the BWAS search. In Figure 11, the mean absolute error per distance
of the predicted cost-to-go is shown. From this figure, it is evident that, for the four models, the error
increases the farther away we are from the solved cube. As the distances 10, 11 and 12 are the ones
with more states, they are the ones which contribute more to the above losses. Also the losses are
very high for the distances 12, 13 and 14, but this was expected since we are in the update number 10
(11 in the case of DNN_noBatchNorm). In fact, for the distances 12, 13 and 14, the network is learning

36



they are at a distance 11 (12), so a mean absolute error of more than 1 was expected. But, as DAVI
employs the model after the last convergence point to make predictions, the error is accumulated at
each convergence point, thus the increasing error in figure 11.

Figure 10: Last two convergence points of the four models (models without batch normalization have
been zoomed in).

5.2 State generation distributions
Now, we are going to study the distributions of states taken from the functions in Section 4.5. The
goal is to examine the effect of the parameter K in both distributions (which controls the number of
random actions applied to the goal state), and compare the DeepCube and DeepCubeA methods to
choose one of them for future trainings. Because we have an optimal solver, all the tests in this section
have been performed over the 2x2x2 cube. The objective of these functions is to generate states to
train the neural network models with the DAVI algorithm, so the states generated by these functions
have to allow the reward signal to propagate from the goal state to to the other states. Thus, it has
to assign more probability to states that are close to the goal state, in order to learn the simplest
instances of the problem first. This is the first obstacle, since in Section 4.4 we already discovered
that the real state distributions for the 2x2x2 cube and the Towers of Hanoi for 3 and 4 disks are
very unbalanced. In particular, for the 2x2x2 cube the majority of states are at distances 8-13, so a
uniform distribution would not be very useful to execute the DAVI algorithm since it would assign a
very low probability to states at distances less than 8. On the other hand, the DeepCubeA way of
generating states gives us the following distributions for K= 17, 20 and 23.
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Figure 11: Mean absolute errors per distance from goal state.

Figure 12: State distribution for get_scrambled_deepcube for different values of K.

These figures measure the probability of generating a state at a particular distance. They have been
created by generating random states (68,000 states forK=17, 80,000 states forK=20 and 92,000 states
for K=23) with the get_scrambled_deepcubea function, and then computing the true distances to
the goal state by using the optimal solver. The first thing to notice is that, for K= 17, 20 and 23, it
assigns relatively high probability to states at distances 1-7, at least compared to the small number
these states represent in the real distributions. The effect of K is also shown. While K = 17 assigns
less than a 9% probability for states at distances 8 and 9, and less than a 6% for states at distances
10 and 11, raising K decreases the probability of getting states at lower distances, and increases the
likelihood of reaching states at greater distances. For K = 23, there is more than a 10% probability
of getting a state at a distance of 9 and more than a 10% probability for states at distances 10, while
for each class of states below distance 5, the probability of getting a state is lower than a 7% (for
each class). This effect has to be taken into account when selecting the optimal K for a particular
problem. Because we have already trained models with 10 convergence points or more for the 2x2x2
cube, and after convergence point d the reward signal has already propagated to states at distances
d or lower, it is in our best interest to choose a K value that allows us to learn states at distances 10
or higher while also having medium-high probabilities for states less than 10 in order to improve the
approximation of the cost-to-go for those states. Because of that, we will use K = 20 for completing
the training of the models of the previous section. Now, let’s compare these distributions with the
ones created by the get_scrambled_deepcube function, which generates states in the way described
in the DeepCube paper.
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Figure 13: State distribution for get_scrambled_deepcube for different values of K.

As can be seen, these distributions look identical to the previous ones. In fact, it’s hard to see the
differences. To compare them in more detail, we can count the total number of states at each distance
generated by the DeepCubeA and DeepCube methods respectively. Then, for each distance d to the
goal we subtract the number of states generated by DeepCubeA that are at distance d minus the
number of states generated by DeepCube that are at that distance. This process is performed over
the same number of states than the previous figures (between 68,000 and 92,000 states). The results
are shown in Figure 14 where a height of n for a distance d means that DeepCubeA has retrieved n
states more than DeepCube for that particular distance. With this in mind, the difference between
these two methods seems very small. For K=17, there is an outlier at distance 6 with a difference of
approximately −150 cubes, which only represents the 0.22% of the total number of generated cubes,
while the other differences are bounded between −100 and 100. For K=20, all the errors are between
−150 and 150, and for K=23 there is an outlier at distance 8 of more than 200 cubes, but it only
represents a 0.25% of the total cubes generated for this value of K. Overall, for any of these values
of K, the total of absolute differences, taking into account all distances, is below 3%. Although there
may be some statistical differences between these two ways of generating states, I have not found any
clear pattern.

Figure 14: Comparison between the two ways of generating states

With all this in mind, in the next sections we are going to generate states with the
get_scrambled_deepcube function, which is the one used in the DeepCube algorithm. Although
there is a slight statistical difference and the DeepCubeA paper is more recent, there is a benefit
in using this function in terms of time complexity. While the two functions run in approximately
the same time (O(B ∗ K) when calling both functions with l = B, where l is the parameter of
get_scrambled_deepcube and B the one of get_scrambled_deepcubea), the DeepCube one returns
l∗K states while the DeepCubeA function returns only B. The impact of this fact in the performance
of the training algorithm is magnified when using larger values of K, so we will also choose the
get_scrambled_deepcube function when training for the 3x3x3 Cube and the Hanoi puzzles, since
they need higher values of K.
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5.3 Completing the training for the 2x2x2 cube
I have trained the four models of Section 5.1 for longer. In total, DNN_0 has been trained for 60 hours,
and the others for approximately 43 hours each. The DNN_noBatchNorm model has been trained until
convergence point 14. In theory, because the maximum optimal distance of state is 14 in the 2x2x2
cube, this means that the reward signal has propagated to all possible states. The three other models
have been trained until convergence point 13, because, as seen in Section 5.1 the most promising
one was DNN_noBatchNorm in terms of the convergence speed and the mean absolute errors. Also, to
execute an A∗ search, it is enough to distinguish states at a distance of 13 or less. This is because
there are very few states at distance 14, and at convergence point number 13, states at distances 13
and 14 are not distinguished by the model, which does not ruin the possibility that the model, used as
a heuristic for the search, is admissible. All models have been trained with the same hyperparameters
as in the previous training, but using get_scrambled_deepcube for generating states, because of
the reasons discussed in the previous section. After the last convergence point, all models have been
trained for longer (until the iteration shown in the column named Total Iterations), with the intention
to achieve more convergence points, and to study the behaviour of the loss.

Model Total Iterations # model updates Model updates iterations (convergence points)
DNN_0 10200 13 40, 70, 90, 130, 160, 240, 400, 740, 1200 , 2080, 3140, 4050, 7550

DNN_noBatchNorm 7590 14 10, 20, 30, 40, 50, 70, 130, 250, 650, 1080, 1790, 2540, 3290, 6950
DNN_reduced_0 12440 13 50, 60, 80, 100, 140, 290, 550, 1010, 1610, 2440, 3850, 5880, 9900

DNN_reduced_0_noBatchNorm 13660 13 10, 20, 30, 40, 50, 70, 130, 370, 830, 2030, 3660, 6140, 11080

In Figure 15, the last convergence points of the four models are shown. As in Figure 10, the spiking
up continues. Also, the loss here seems to be more horizontal, taking more time to converge than
in Figure 10. This is due to multiple facts, one of the main ones being that now the models are in
later convergence points, so they are required to distinguish more distances. It also contributes to
this fact that errors are accumulated, so being at convergence point 13-14 means not only learning
more distances than when we were at convergence points 10-11, but also correcting those errors from
past iterations. Finally, in Figure 15, it is shown that after the last convergence point (the second
black circle over the red dotted line), the loss of the four models continues decreasing, meaning that is
very possible that it would generate more convergence points if trained for longer. However, it is not
necessary to achieve more convergence points because, as will be seen in Section 5.7, more convergence
points does not always mean that we are going to achieve better results when using these models as
a heuristic function for the BWAS search.

I have measured the mean absolute error of the output of the last convergence point of these models
compared to the true distances, taking all states into account, as previously done in Section 5.1.
DNN_0 has a mean absolute error of 2.1626 at iteration 7550, DNN_noBatchNorm has 1.7688 at itera-
tion 6950, DNN_reduced_0 has 1.9219 at 9900, and DNN_reduced_0_noBatchNorm at 11080, 1.6683.
All algorithms have reduced their errors compared to the previous measurements. Furthermore,
DNN_noBatchNorm converges in fewer iterations than the others, while DNN_reduced_0_noBatchNorm
is the one with the smallest errors. In fact, the two reduced models have outperformed their full
counterparts, but they have also been trained for more iterations. This is because, except DNN_0, all
the models have been trained for approximately the same period of time, but reduced versions are
faster when it comes to predicting and training, which means they iterate faster. Additionaly, the
mean absolute error per distance in Figure 23 has also been reduced with respect to the one in Section
5.1 for all models.

However, there is an inconvenience with these models. Although they are going to perform well as a
heuristic for the BWAS algorithm (see Section 5.7), they are trained by feeding them with 1000 states
per iteration. That means DNN_noBatchNorm at convergence point number 13 has seen 3,290,000
states, while the other models have seen more than 7.5 million states at that same convergence point.
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Figure 15: Last two convergence points of the four models.

Compared to the number of states of the 2x2x2 cube, 3,674,160, this means that DNN_noBatchNorm
has almost visited all possible states, while the other models have re-visited multiple states to achieve
13 convergence points. For the 2x2x2 cube this is not a problem, but we aim to solve more difficult
puzzles with more states like the 3x3x3 cube, so visiting all states is not feasible. Two solutions are
going to be studied: to increase ε in order to produce more convergence points in less iterations, or
to invent a new way of generating states with which the reward signal is propagated more efficiently.
I will study both options.

5.4 A new way of getting scrambled states: adaptative-K
From the knowledge acquired from training our first models, and the theory behind the DAVI algo-
rithm, a new and improved way of generating states can be created. The true reward signal reaches
states at a distance of d only after convergence point d−1. Assuming that J0 is initialized to 0, and the
rewards are constant and set to 1, the value iteration update J1(s) = mina∈A(s) [1 + J0(S(s, a))] = 1
tells us that model should learn that all states are at a distance of 1, which is only true for few states.
Then, after the first convergence point, J1 is a function that approximates the constant value of 1,
so the value iteration formula tells us that J2 should learn that all states at a distance of 2 or higher
are at a distance of 2. In this way, after convergence point c, the network is learning that all states
at distances c + 1 or higher are at a distance of c + 1 (plus or minus all the approximation errors).
Thus, we are re-feeding the network with different (and incorrect) values for the same state, which
possibly leads to the slowing of training. The idea for our new way of generating states is to use the
function get_scrambled_deepcube as before, but having a different value of K at each convergence
point, called effective_k, and now the hyperparameter K acts as an upper bound for effective_k.
The parameter effective_k has to take advantage of the fact that the true reward signal reaches
states at a distance of d only after convergence point d− 1, so it can be set to the convergence point
number + 1. However, this can lead to some instability, which can be mitigated by adding a sec-
ond hyperparameter, conv_point_offs (it gives better results when set to 1 or 2, depending on the
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problem). The final formula for effective_k is:

effective_k = min(K, conv_point + 1 + conv_point_offs)

Thus, by taking the minimum, K acts as an upper bound for effective_k, which is useful if we know
in advance the maximum distance to the goal state. For example, for the 2x2x2 cube, the maximum
distance is 14, so probably there is no point in increasing effective_k above K = 20 (values less than
20 would assign a very low probability to states at a distance of 14). The effect of conv_point_offs
is to retrain some states, but not all. For example, a value of 1 means that after convergence point
d− 1 we will be training states at distances of up to d with the correct reward signal, but also states
at a distance of d + 1 with an incorrect cost-to-go of d. The correct reward signal would arrive one
convergence point later. This hyperparameter helps to bring the cost of those states closer to their
true values.

Figure 16: State probability distributions for different values of effective_k.

The state probability distributions for different values of effective_k are shown in Figure 16. As
intended, lower values give all the probability to states closer to the goal state, while increasing this
value means giving gradually more importance to far states. This technique is closer to a curriculum
learning approach than the previous ways of generating random states. At the initial convergence
points, the value of effective_k is small, thus learning simple states, the ones closer to the goal
state. As the training progresses, more and more convergence points happen, thus increasing the
effective_k, which leads to learning more difficult states.

5.5 Final 2x2x2 trained models
To test our two solutions for the inconvenience presented in Section 5.3 (the need to feed the algorithm
with all the states if we want to achieve convergence), I have trained three other models. They are all
based on the DNN_reduced_0 architecture. This is done mainly for two reasons. First of all, the 2x2x2
Rubik’s Cube is not a big puzzle, so a reduced version of the original architecture should suffice, taking
into account that the reduced versions have achieved smaller errors. Also, the model DNN_reduced_0
is chosen, and not the version without batch normalization (DNN_reduced_0_noBatchNorm) because
it performs better when using it as a heuristic for BWAS (see Section 5.7). The model named
DNN_final_2x2x2 has exactly the same architecture as DNN_reduced_0 and has been trained with
the same hyperparameters, but a value of ε = 0.07 is chosen instead of ε = 0.05 to achieve more con-
vergence points. On the other hand, DNN_final_2x2x2_nr and DNN_final_2x2x2_nrr are trained

42



using adaptative-K, the new way of getting scrambled states. A value of conv_point_offs = 1 has
been chosen for this problem. As this new way causes the loss to decrease more quickly, we can exploit
this fact by checking for convergence more frequently. Thus, DNN_final_2x2x2_nr has been trained
with C = 5, so convergence is checked every 5 iterations. To double check that the change of C is
effective, a model DNN_final_2x2x2_nrr has been trained with adaptative-K and exactly the same
hyperparameters as DNN_final_2x2x2_nr, but choosing C = 10, which is exactly the value used for
training the models in Section 5.1.

Model Total Iterations # updates Model updates iterations (convergence points)
DNN_final_2x2x2 7460 16 40, 70, 90, 100, 120, 150, 230, 510, 980, 1380, 1990, 2350, 2680, 3330 5460 7460

DNN_final_2x2x2_nr 2850 13 40, 45, 55, 65, 80 115, 265, 315, 470, 680, 795, 1315, 1490
DNN_final_2x2x2_nrr 2920 13 40, 60, 100, 110, 160, 230, 400, 440, 450, 580, 840, 1250, 1640

Notice that DNN_final_2x2x2 has achieved 16 convergence points, and the 13th and 14th ones hap-
pen at iterations 2680 and 3330, which is already an improvement compared to the version trained
in Section 5.3. Also, DNN_final_2x2x2_nr and DNN_final_2x2x2_nrr achieve 13 convergence points
with only 1490 and 1640 iterations, clearly showing the benefits of the adaptative-K method be-
cause they have only been fed with less than half of the states the 2x2x2 cube has. Furthermore,
DNN_final_2x2x2_nr has converged faster than DNN_final_2x2x2_nrr, which shows the effect of
checking for convergence more frequently.

5.6 Admissibility and Consistency of the heuristics for the 2x2x2 cube
We are going to use the previous models as the heuristic for BWAS, so a natural question that arises
is if they are admissible or consistent. If so, an A∗ algorithm (which is a BWAS search with λ = 1 and
N = 1) always returns the optimal solution, and if it is consistent, it also finds it without revisiting any
nodes. I have measured the degree in which any of the models trained is admissible or consistent, for
the last four of their convergence points. I have done so by generating 40,000 random states (by calling
get_scrambled_deepcube with l = 2000 and K = 20). Then, with the help of the optimal solver, the
percentage of the states that are admissible is computed, that is, the ones in which the heuristic does
not overestimate the true cost-to-go. Also, for the non-admissible states I have computed the average
absolute overestimation, which is always 0.304 or lower. Finally, the percentage of states that are
consistent is computed. That is, the percentage of states in which the heuristic value is not greater
than the step cost of getting to a neighbor of that state plus the heuristic of that neighbor.

Model Iteration % Admissible States Avg. Overestimation % Consistent states
DNN_0 2080 81.885 0.116 70.79

- 3140 87.407 0.174 66.957
- 4050 81.572 0.235 66.255
- 7550 79.022 0.296 67.63

DNN_noBatchNorm 1790 71.375 0.222 59.842
- 2540 71.827 0.298 63.632
- 3290 53.58 0.216 57.36
- 6950 58.7 0.26 54.5

DNN_reduced_0 2440 75.417 0.169 69.56
- 3850 65.17 0.208 63.805
- 5880 69.48 0.246 60.025
- 9900 76.535 0.289 49.225

DNN_reduced_0_noBatchNorm 2030 70.792 0.304 61.607
- 3660 70.765 0.342 61.367
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- 6140 62.785 0.266 57.685
- 11080 49.705 0.195 59.79

DNN_final_2x2x2 1990 86.47 0.251 57.63
- 2350 79.177 0.213 67.615
- 2680 80.812 0.29 61.007
- 3330 76.87 0.255 66.712

DNN_final_2x2x2_nr 680 74.412 0.213 65.645
- 795 66.46 0.208 70.187
- 1315 71.315 0.244 58.772
- 1490 73.172 0.243 66.21

DNN_final_2x2x2_nrr 580 83.147 0.257 69.82
- 840 80.565 0.272 68.25
- 1250 71.19 0.221 65.11
- 1640 64.005 0.225 57.292

As can be seen, training the algorithms for longer does not always mean they are going to be closer to
constitute a consistent or admissible heuristic. In fact, the opposite happens with DNN_reduced_0_noBatchNorm
and DNN_final_2x2x2_nrr. Also, the results for the final algorithms are remarkable. For example,
more than 80% of states are admissible for the DNN_final_2x2x2 at iteration 2680, and more than
61% of states are consistent. The most admissible model is DNN_0 at iteration 3140, with 87.407% of
the states being consistent and an average overestimation of 0.174, while the most consistent one is
also DNN_0 at iteration 2080. Finally, the models with batch normalization seem to outperform the
ones without it, so now it is clear why the original authors of the DeepCubeA paper chose to include
batch normalization layers into their models.

5.7 Final 2x2x2 BWAS results
Up to this section, we have only considered the results of the neural network models. Let’s use these
models as heuristics for the BWAS search. BWAS is adjusted by two hyperparameters. N controls
how many states are expanded at the same time to compute their heuristics in parallel, and λ is in
charge of regulating the weight of the g-score. If λ is close to 0, the value of the heuristic is given more
importance, so BWAS acts like a greedy search (depending on the choice of N). If it is 1, it is closer
to an A∗ search (also depending on the choice of N). The first objective is to test all models to study
which one of them to select as a final model. But our resources are limited, we can not yet afford to
perform a grid search to choose the best N and λ hyperparameters for all the models. Instead, we
will have to choose only one value for them. In the DeepCubeA paper, they mention that the best
hyperparameters for the 3x3x3 cube are λ = 0.6 and N = 10000. We will choose λ = 0.7 to test all
the models of the 2x2x2 cube, and we have to choose a lower N , N = 5 because of computational
resources restrictions (having a higher value would expand more states, and would mean computing
the heuristic value of many more states in parallel).

Each of the tests has been performed by generating 10,000 states by calling get_scrambled_deepcube.
For each of the four last convergence points of all the previous models, BWAS has been executed by
using the model as a heuristic for the search. The percentage of optimal paths found by each of the
algorithms is shown in the next table.
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Model Iteration % Optimal solutions found
BWAS + DNN_0 2080 99.409

- 3140 99.089
- 4050 98.018
- 7550 97.857

BWAS + DNN_noBatchNorm 1790 98.128
- 2540 97.697
- 3290 96.7867
- 6950 96.4364

BWAS + DNN_reduced_0 2440 99.069
- 3850 98.978
- 5880 98.408
- 9900 97.037

BWAS + DNN_reduced_0_noBatchNorm 2030 98.1781
- 3660 97.757
- 6140 97.2472
- 11080 97.557

BWAS + DNN_final_2x2x2 1990 98.55
- 2350 99.089
- 2680 98.958
- 3330 96.8768

BWAS + DNN_final_2x2x2_nr 680 98.99
- 795 99.04
- 1315 98.768
- 1490 98.178

BWAS + DNN_final_2x2x2_nrr 580 98.595
- 840 97.2972
- 1250 96.506
- 1640 97.017

First, notice that every model finds the optimal solution for more than 96.4% of the states. This is a
successful result; in the original paper they managed to find the optimal path 60.3% of the time for
the 3x3x3 cube. Second, the model that performs better is DNN_0 at iteration 2080, which is precisely
the model with the highest percentage of consistent states. It finds the optimal solution 99.4% of the
time, which is very close to being perfect. Also, the models with batch normalization seem to perform
better, just as with admissibility and consistency. In addition, the final models achieve good results.
The choice of training a model with the adaptative-K and a reduced value of C gives a good quality
result, since DNN_final_2x2x2_nr at iteration 795 has achieved a 99.04% success rate having been
fed only with 795,000 cubes in total. Now, we will choose the four best performing models, DNN_0,
DNN_reduced_0, DNN_final_2x2x2 and DNN_final_2x2x2_nr at their best iterations: 2080, 2440,
2350 and 795. The objective is to compare their performance at every distance. Each of the 10,000
cubes generated before were classified by their distance to the goal state, and then, the percentage of
optimal solutions found is computed per distance. All of the four models achieve a 100% success for
states at distances 0-6. Also, they have all found the optimal path for a randomly generated cube at
the maximum distance, 14. The percentages of optimal solutions found for cubes at distances between
7 and 13 are shown in the table below.
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Model Iteration 7 8 9 10 11 12 13
BWAS + DNN_0 2080 100 99.774 98.302 98.007 99.274 100 100
BWAS + DNN_reduced_0 2440 100 100 99.151 96.279 98.298 100 100
BWAS + DNN_final_2x2x2 2350 100 99.771 98.555 97.130 98.074 100 100
BWAS + DNN_final_2x2x2_nr 795 99.622 99.083 98.590 96.928 98.215 100 100

First of all, none of these models fall below 96.279% for any distance. In addition, the majority of the
errors occurs in states at distances between 8 and 11, having a 100% success rate for states at higher
distances. This could be because distances between 8 and 11 amount for the majority of states. Also,
remember that DNN_reduced_0, DNN_final_2x2x2 and DNN_final_2x2x2_nr have the same architec-
ture, but have been trained differently. A higher value of ε produced a slightly faster convergence rate
for DNN_final_2x2x2, which achieves almost the same results as DNN_reduced_0. But the biggest
change is when training it with the new way of generating states, adaptative-K. DNN_final_2x2x2_nr
does not underperform DNN_reduced_0 by more than 0.6% for any of the distances, while having been
trained only with a third (795,000 states) of the states that DNN_reduced_0 saw during its training
(2,440,000 states).

Taking all this information into account, it is clear that DNN_0 (the original model in the DeepCubeA
paper), and DNN_reduced_0 (the reduced version of this model) are the ones that achieve better re-
sults in absolute terms. However, because it has been trained with a novel way of generating states,
and because in Hanoi we are going to be interested in generating convergence points at a fast rate,
we are going to study DNN_final_2x2x2_nr in more detail. Because it is only one model, we can
perform a grid search to discover how N and λ impact the percentage of optimal solutions found, the
number of nodes expanded, and the average running time for each input. A grid search works by gen-
erating all the possible combinations of N and λ values (from a list of possible values for one of those
parameters), and computing the performance of the BWAS algorithm for any of those combinations.
As possible values of N , I chose 3, 5, 7, and for λ, 0.2, 0.5, 0.7 and 1. To compute the performance,
we use 506 states. 500 states have been randomly chosen by calling get_scrambled_deepcube with
K = 20, and 6 states have been manually chosen at distances 9, 10, 11, 12, 13, 14. For each N ,
λ pair, the percentage of optimal solutions, the average number of expanded nodes and the average
execution time is computed.

λ N 3 5 7
0.2 66.996 72.529 75.296
0.5 92.094 92.292 92.292
0.7 99.407 99.407 99.407
1.0 100 100 100

% of optimal solutions found by BWAS + DNN_final_2x2x2_nr at iteration 795.

All tests with λ = 1 result in an optimal path, which is a better result than the one we already had.
In fact, the percentage of optimal solutions found is inversely proportional to λ, which was expected
since a greater value of λ allots more importance to the true information discovered while executing
the search, that is, the g-score. Also, higher values of N retrieve more optimal solutions, especially
with λ = 0.2. With this value of λ, a BWAS search with N = 1 would behave almost like a greedy
search. Higher values of N make the algorithm expand more states per iteration, thus increasing the
likelihood of finding the goal state sooner. In fact, in the limit, if we used a value N ≈ ∞, all the
states in the priority queue would be expanded at each iteration of the BWAS algorithm. In that case,
it would behave almost like a breadth-first search. First, the goal state would be expanded. Then,
all the states in the priority queue would be expanded, which are exactly the states at a distance of
1. Then, all states at a distance of 2, and so on. In that case, all the states would be visited by
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increasing distances, and the value of λ would only control the order in which the states at the same
distance would be visited.

λ
N 3 5 7

0.2 233.0177 214.3458 218.5849
0.5 155.01778 161.2628 168.4782
0.7 158.54 165.936 173.0454
1.0 358.16996 363.7964 369.223

Average number of expanded nodes per state by BWAS + DNN_final_2x2x2_nr at iteration 795.

While a value of λ = 1 allows us to find all optimal paths, it does so by expanding a large number of
states. As can be seen in the previous table, it expands more than the double of the states expanded
by λ = 0.7 and λ = 0.5. Also, on average, λ = 0.2 expands more than 214 nodes per input state,
which can be due to the lengthy solutions it finds which result in expanding more nodes in total. The
effect of N can be noticed: for larger N , more states are expanded on average, but the effect is not
as influential as the effect produced by λ.

λ
N 3 5 7

0.2 5.6917 3.4137 2.9184
0.5 3.8875 2.5969 2.4892
0.7 4.0779 2.7218 2.488
1.0 8.7950 6.5999 5.10435

Average execution time in seconds per input state by BWAS + DNN_final_2x2x2_nr at iteration 795.

With respect to the execution time, N is very influential, which is exactly the effect we were looking
for when designing the BWAS algorithm. Raising it from 3 to 7 divides the execution time by 1.5–
1.9, depending on the value of λ. While λ = 1 achieves the best results, it does so by doubling the
execution time of the other values of λ. Also, λ = 0.2 is very time consuming due to the additional
expanded nodes.

In conclusion for the 2x2x2 Rubik’s Cube, the DAVI algorithm to train a heuristic for the BWAS
search works effectively. The new way of getting scrambled states, adaptative-K, in combination with
the reduced version of the neural network architecture and BWAS with λ = 0.7 and N = 7 allow us
to find the optimal solution for more than 99% of states in less than 2.5 seconds per state, having
been trained only with 795,000 states. Actually, by compromising the execution time, we can raise
the percentage of optimality by taking λ = 1.0.

5.8 Towers of Hanoi
I have trained the DAVI algorithm for Hanoi with 3 towers and 4, 7 and 10 disks. Since the optimal
solution from the initial state has a length of 2n−1, it is in our best interest to try to generate con-
vergence points more frequently. Thus, we are going to use the adaptative-K method of generating
states for training all the models from now on. Also, the parameter CC is important in order not to
run out of memory. The effect is that it saves only one model out of every CC convergence points.
For H(4, 3) it is set to 1, while for H(7, 3) and H(10, 7) it is set to 10.

For H(4, 3), I have trained the reduced model with the adaptative-K method, B = 200, B_val = 20,
K = 25, C = 2, ε = 0.05, conv_point_offs= 2. The value of B = 200, the number of states the
neural network is fed per iteration, may seem low, but this problem has only 81 different states, so it is
actually very high. The optimal path has a size of 15, thus, we want to achieve at least 15 convergence
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points. This is realized at iteration 346, when the network has been fed with 69,200 states, which
means it has seen every state 800 times or more. This iteration is achieved after 15 minutes of train-
ing. To study this problem, we are going to choose the last three convergence points, 298, 334 and 346.

For H(7, 3), I have trained DNN_0 with the adaptative-K method, B = 400, B_val = 40, K = 27,
C = 2, CC = 10, ε = 0.05 and conv_point_offs=2. It has achieved 142 convergence points, requir-
ing 1542 iterations and 145 minutes of training. To study it, convergence points at iterations 1320,
1354 and 1424 are chosen. This time, I do not select the last iterations because we need to explore
some of the other convergence points. This is due to the large number of convergence points that the
DAVI algorithm generates for H(7, 3).

Finally, for Hanoi with 3 towers and 10 disks, I have tried to train it with both the complete model
DNN_0 and the reduced one DNN_reduced_0. The initial attempt for training DNN_0 with B = 500,
B_val = 50, K = 210, C = 2, CC = 10, ε = 0.05, conv_point_offs=2 resulted in 582 convergence
points at iteration 10,000. This problem only has 59,049 states, so it should be possible to generate
more convergence points in less iterations. I tried changing the model to DNN_reduced_0, and changing
B = 200, B_val = 50, C = 1, to check more often for convergence and to feed less states to the model
per iteration. I also set ε = 0.07 to increase the number of convergence points. This only achieved
342 convergence points in 10,000 iterations (which is not a bad result because of the change in the
parameter B). With the exact same setting but raising the value of ε to 0.1, 842 convergence points
are achieved at iteration 12084. This is a much better result, but the network has re-visited multiple
times the same states. Finally, with ε = 0.5, after 3 hours, 1011 convergence points are achieved at
the end of iteration 3572. We are going to study convergence points at iterations 3477, 3542 and 3572.
The final results for all the Hanoi puzzles are shown in the following table.

Problem Model # updates Model updates iterations (convergence points)
H(4, 3) DNN_reduced_0 15 74 88 92 102 118 136 188 214 222 236 258 264 298 334 346

H(7, 3) DNN_0 142 72-1542

H(10, 3) DNN_reduced_0 1011 2-3572

In the following table, the convergence and admissibility results are shown.

Problem/Model Iteration % Admissible States Avg. Overestimation % Consistent states
H(4, 3) DNN_reduced_0 298 78.443 0.294 46.678

- 334 53.306 0.296 44.243
- 346 69.490 0.443 51.475

H(7, 3) DNN_0 1320 93.0519 0.084 64.762
- 1354 94.1703 0.014 59.973
- 1424 90.6109 0.101 68.083

H(10, 3) DNN_reduced_0 3477 91.76977 0.817 73.4321
- 3542 97.367 0.02 75.8105
- 3572 92.175 0.428 81.922

The model for H(4, 3) seems to achieve worse results in terms of admissibility and consistency, while
the ones for H(7, 3) and H(10, 3) reach admissibility levels above 90%. Also, the average overes-
timation of DNN_0 at iteration 1354 is very low, 0.014. In combination with an admissibility rate
over 94%, this model performs very well in terms of admissibility, but the consistency is 59.973%,
below other iterations for the same problem. Lastly, the model for H(10, 3) achieves great consistency
percentages, above 73.4%, which is a result that outperforms those of the 2x2x2 Rubik’s Cube.

Finally, we will study if these algorithms can find the optimal path for their respective Hanoi problems.
For the BWAS search, we will use N = 7, and values of λ ∈ [0.3, 0.5, 0.7, 1.0]. As explained in
Section 3.1.2, Hanoi not only has a goal state, but also an initial one. We are mainly interested in
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analysing if these models can find the optimal path from the initial state, which is also one of the
states that are at a maximum distance from the goal state. The results are affirmative. All iterations
of the model trained as a heuristic for solving H(4, 3) using a BWAS search with N = 7 find the
optimal path of length 15 described recursively in Section 3.1.2. It does so by expanding between 73
and 76 states for values of λ between 0.3 and 1, finding the goal state in 0.6 to 0.7 seconds. For H(7, 3),
the BWAS search finds the optimal solution of length 127, for values of λ > 0.3, in an execution time
between 15 and 20 seconds, and expanding between 1676 and 2028 states depending on the value of
λ. A sub-optimal solution of length 131 is found by iteration 1354 of DNN_0 with λ = 0.3, which can
be found at Appendix 7.4. After 104 successful actions, it spends more actions than it should when
trying to move disks 0, 1 and 2 to the auxiliary (central) tower. Those disks were on top of the target
tower, and they had to be moved to the auxiliary one in order to place the 4th disk on top of the
target tower. Instead of moving the uppermost disk, disk 0, to the auxiliary tower, the search decides
to back off and place it on the initial one. Maybe at this point it tries to solve the puzzle as best as
it could, but because disk 0 is blocking the initial tower, rather than undoing this mistake, it decides
to pull out the disk number 1 from the target tower, placing it on the auxiliary tower instead of the
initial one where it should have been put. Finally, it undoes these two mistakes by spending two more
actions, which leaves a total length of 127 + 4 = 131 steps.

For H(10, 3), a BWAS search using iterations 3477, 3542 and 3572 of DNN_reduced_0 as a heuristic
also finds the optimal solution. It does so in 404 seconds, expanding 56010 states when using λ = 0.7.
This is sub-optimal, since this problem has a total of 59049 different states, so it has almost expanded
the entire space state. However, from this solver we can extract useful information about the Hanoi
problems H(n, 3) with n ≤ 10. Remember from Section 4.3 that we can map states of H(n, 3) into
states of H(10, 3), and then solve these states with the model trained for H(10, 3), which is a very
simplified version of transfer learning [4]. All instances of H(n, 3) with n = 1, 2, 3, 4, 5, 6, 7, 8, 9 have
been optimally solved by all of the three selected iterations (3477, 3542 and 3572) of the model trained
for H(10, 3), with λ values 0.5, 0.7 and 1.0. Furthermore, iteration 3572 with λ = 0.7 optimally solves
H(4, 3) in 0.695 seconds, expanding only 64 states, which is a better result than the one achieved with
the model specifically trained for this problem. Also, it solves H(7, 3) in 13.075 seconds, expanding
only 1505 states, which also improves the solution by the DNN_0 model trained for H(7, 3).

5.9 3x3x3 Rubik’s Cube
Finally, I have trained the original model of the papers, DNN_0, for the 3x3x3 Rubik’s Cube but using
adaptative-K as the way to generate random states. To execute the DAVI algorithm for the 3x3x3
Rubik’s Cube, the authors of the DeepCubeA paper [2] use two NVIDIA Titan V GPUs to train the
neural network, with six other GPUs used in parallel for data generation. They completed the neural
network training in 36 h. I will only use the laptop described in Appendix 7.1. The hyperparameters
I will use are K = 30, CC = 1, B = 10020, B_val = 1020, C = 50, conv_point_offs= 2 and
ε = 0.05. In the original paper they use C=5,000, but my resources are more limited (see Section
7.1), so I have to check for convergence more often to generate more convergence points.

Problem Model # updates Model updates iterations (convergence points)
3x3x3 Cube DNN_0 10 50 100 150 200 250 300 350 500 700 1400

As can be seen, the results in terms of the number of convergence points are below the ones achieved
for the other puzzles. The God number for the 3x3x3 Rubik’s Cube is 26 in the quarter turn metric,
so we would need at least 26 convergence points to propagate the reward signal to all the possible
states. Nevertheless, according to the authors that discovered the God number for this cube, [21], at
distance 10 or less from the goal state there are 6,701,836,858 states, which is a significant amount of
states compared to the 2x2x2 cube and the Towers of Hanoi for 10 disks or less. To get to iteration
1400, 56 hours of training were needed, and the model was fed with 14 million cubes. That is, on
average, each iteration takes 2.4 minutes, so if we wanted to feed the algorithm with 1010 states, as
they did in the DeepCubeA paper [2], we would have to train it for 998,004 iterations in total, which
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would take approximately 2,495,000 minutes, that is, more than 1700 days. Although we are using
a different method for generating states, which could improve the number of iterations needed, we
would have to use better hardware if we wanted to train it completely.

As we have not built an optimal solver for this cube, we can not check if this model is admissi-
ble or the percentage of states for which it finds an optimal solution. But the consistency can be
easily checked by the same method as before. With a test of 30,000 states generated by calling
get_scrambled_deepcube with K = 30, the results are shown in the following table:

Model Iteration % Consistent states
DNN_0 350 93.9566
DNN_0 500 93.6433
DNN_0 700 90.836
DNN_0 1400 86.77

These results seem promising, although a good part of the consistent states may be consistent because
the network has not yet seen them during its training, since these models have only seen less than a
3.24x10−11% of the total number of possible states for the 3x3x3 cube. These results may worsen if
we continued the training. In fact, iteration 350 achieves a 93.9566% while iteration 1400 only gets a
86.77%, which possibly indicates a downtrend.

Finally, to test how well the algorithm solves the cube, we will use DNN_0 at iteration 1400, since it
is the last convergence point, with the intention of being able to solve cubes at a distance of at least
10. Also, the hyperparameters are set to N = 7 and λ = 0.6. The value of N is selected because
of the hardware limitations I have, while the value for λ is the one that produces better results in
the original DeepCubeA paper. In [27], a cube at a maximum distance, 26, and the list of actions to
reach that state, which they call Superflip, are provided. These actions are D’, D’, L, R, D’, L, R’,
D, U’, R’, U’, U’, L’, R’, B, F, U’, F’, F’, L’, R, U’, U’, F’, U’, U’, and the resulting cube is shown in
Figure 17.

Figure 17: State at a distance of 26 from the goal state. Generated by twizzle.

To test the performance of BWAS with our trained heuristic, we apply the following process. We
generate a test cube by applying the first action, D’, to obtain a cube at a distance of 1. Then, we
apply the first two actions to obtain a cube at a distance of 2, etc. In general, after applying q of these
actions, we get a state at a distance of q from the goal state, since the list of actions forms an optimal
path; the objective is to check if BWAS can find this optimal path. The behavior of the algorithm
is very good: it finds the optimal path for the cubes at distances between 1 and 15. For the ones at
distances lower or equal to 11, it finds an optimal path in less than 1.11 seconds, expanding 101 states
or less. After that, the time spent and the number of nodes expanded increase exponentially. For the
cube at 12 moves from the goal, it takes 5.65 seconds and it expands 472 nodes. For the one at 13
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moves, 29.444 seconds and 2341 nodes expanded. For the cube at 14 moves from the goal, it takes
153.349 seconds and it expands 10895 nodes. Finally, the one at 15 moves takes 1157.79 seconds and
69793 nodes are expanded. This performance drop can be due to the exponential ramification of the
number of states of the 3x3x3 cube, combined with the inexperience of the neural network model with
those states. It has only converged 10 times, so the reward signal has not reached states at distances
higher than 10. Moreover, conv_point_offs is set to 2, which means it has never seen states at
distances higher than 12, thus it is probably not a good heuristic when trying to build a path from
those states. For comparison, in the DeepCubeA original paper they use GPUs with 64GB of RAM
to parallelize the BWAS search. By choosing λ = 0.6 and N = 1000, they obtain a solution for a
randomly generated cube (at any distance from the goal) in an average time of 214.03 seconds. Their
solutions have an average length of 21.36 moves, and the BWAS search expands 4,516,478 nodes on
average.

Figure 18: State at a distance of 15 from the goal state. Generated by twizzle by applying actions D’,
D’, L, R, D’, L, R’, D, U’, R’, U’, U’, L’, R’, B to the solved cube.

Now, let’s focus on one of those states. The cube at distance 15 is reached by applying D’, D’, L, R,
D’, L, R’, D, U’, R’, U’, U’, L’, R’, B to the goal state. The solution found for this cube is B’, R,
L, U’, U’, R, U, D’, R, L’, D, R’, L’, D’, D’. There is a clear pattern here. First, notice that U’, U’
is equivalent to U, U, since they both perform a 180o turn of the upper face. The same holds with
D’, D’ and D, D, etc. Having this in mind, the solution found by the solver arises from group theory.
We have built the cube by applying actions abc · · · z. A way of returning to the original cube is to
compute the inverse element of abc · · · z, which is obtained from the inverses of these actions, but in
reverse order, that is z−1y−1 · · · a−1. This is what our algorithm has done (having in mind that D’ is
the inverse of D, U’ is the inverse of U, etc), but combining the fact that the element D’D’, and the
element U’U’, are its own inverse, that is, the orders of these elements are both 2.
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6 Conclusión
Incluso habiendo técnicas previas para resolver un problema concreto, siempre es positivo intentar
aplicar metodologías nuevas para así comprender mejor el problema y construir soluciones eficaces y
aplicables a otras situaciones. Ejemplo de ello es el algoritmo implementado en este trabajo, el cual
hemos aplicado a problemas con solución conocida, como es el caso de los cubos de Rubik, que suponen
un reto todavía por la dificultad para obtener soluciones óptimas. El haber estudiado el problema de
las torres de Hanói, con solución óptima conocida para el caso de 3 torres, nos ha permitido compren-
der en mayor profundidad el algoritmo. Esto en esencia posibilita su posterior aplicación en problemas
de mayor complejidad, no tratados en este trabajo por sus altos requerimientos computacionales.

Hemos visto como una idea perteneciente al paradigma del aprendizaje por refuerzo, como es el
value iteration, puede combinarse con otras técnicas del aprendizaje automático, como son las redes
neuronales, y con algoritmos de búsqueda en grafos. Esto nos ha permitido construir un algoritmo
compuesto que resuelve un problema inabarcable con cualquiera de estas técnicas por separado.

Conclusion
Even if there are previous techniques to solve a particular problem, it is always positive to try to apply
new methodologies in order to better understand the problem and build effective solutions applicable
to other situations. An example of this is the algorithm implemented in this work, which we have
applied to problems with known solutions, such as Rubik’s Cubes, which still pose a challenge due to
the difficulty of obtaining optimal solutions. The study of the Hanoi Towers problem, with a known
optimal solution for the case of 3 towers, has allowed us to understand the algorithm in greater depth.
This in essence makes possible its later application in problems of greater complexity, not treated in
this work due to its high computational requirements.

We have seen how an idea belonging to the reinforcement learning paradigm, such as value iteration,
can be combined with other machine learning techniques, such as neural networks, and with graph
search algorithms. This has allowed us to build a composite algorithm that solves a problem that
would be unmanageable with any of these techniques separately.
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7 Appendix
7.1 Computer Specifications
All tests and results have been computed on a laptop with the following specifications:

• OS: Ubuntu 18.04.5 LTS, Linux: 4.15.0-176-generic

• Processor: Intel Core i7-8550U CPU 8 cores @ 1.80GHz cache size: 8192 KB

• RAM: 16GB

• SSD

7.2 Model statistics, first training
In all the following figures, the horizontal dotted line represents ε = 0.05, the black circles show when
the evaluation model updates happened, the cyan color is the validation loss, and the magenta color
the training loss.

Figure 19: Losses of DNN_0 model until the iteration 2950.
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Figure 20: Losses of DNN_noBatchNorm model until the iteration 2850.

7.3 Model statistics, four trained models

Figure 21: Losses of DNN_reduced_0 model until the iteration 2830.
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Figure 22: Losses of DNN_reduced_0_noBatchNorm model until the iteration 3910.

Figure 23: Mean absolute error for the last convergence of DNN_0 (iteration 7550).
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Figure 24: Mean absolute error for the last convergence of DNN_noBatchNorm (iteration
6950).

Figure 25: Mean absolute error for the last convergence of DNN_reduced_0 (iteration 9900).
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Figure 26: Mean absolute error for the last convergence of DNN_reduced_noBatchNorm (it-
eration 11080).

7.4 Hanoi: solutions found
The next one is the solution to H(7, 3) found by a BWAS search N = 7, λ = 0.7 using DNN_0 at
iteration 1354 as a heuristic. It is a list of 127 actions, which applied to the initial state give us the
final state. Each action is represented as (d, i, j), where we move disk d from tower i to tower j. The
tower where all disk are initially placed is tower 2, while the final tower, the one where we want to
place all disks, is tower 0.

[(0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 1), (1, 0, 2),
(0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (4, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2),
(0, 0, 1), (1, 0, 2), (0, 1, 2), (3, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0),
(0, 2, 0), (5, 2, 1), (0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (3, 0, 2),
(0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2), (0, 1, 2), (4, 0, 1), (0, 2, 0), (1, 2, 1),
(0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1),
(0, 2, 0), (1, 2, 1), (0, 0, 1), (6, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2),
(0, 1, 2), (3, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (4, 1, 2),
(0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (3, 0, 2), (0, 1, 2), (1, 1, 0),
(0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2), (0, 1, 2), (5, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0),
(0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1),
(0, 0, 1), (4, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2), (0, 1, 2), (3, 1, 0),
(0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0)]

The following list is the sub-optimal solution to H(7, 3) found by a BWAS search N = 7, λ = 0.3
using DNN_0 at iteration 1354 as a heuristic.

[(0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 1), (1, 0, 2),
(0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (4, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2),
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(0, 0, 1), (1, 0, 2), (0, 1, 2), (3, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0),
(0, 2, 0), (5, 2, 1), (0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (3, 0, 2),
(0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2), (0, 1, 2), (4, 0, 1), (0, 2, 0), (1, 2, 1),
(0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1),
(0, 2, 0), (1, 2, 1), (0, 0, 1), (6, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2),
(0, 1, 2), (3, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (4, 1, 2),
(0, 0, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (0, 2, 0), (1, 2, 1), (0, 0, 1), (3, 0, 2), (0, 1, 2), (1, 1, 0),
(0, 2, 0), (2, 1, 2), (0, 0, 1), (1, 0, 2), (0, 1, 2), (5, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0),
(0, 1, 2), (1, 1, 0), (0, 2, 0), (3, 2, 1), (0, 0, 2), (1, 0, 1), (0, 2, 1), (2, 0, 2), (0, 1, 2), (1, 1, 0),
(0, 2, 0), (2, 2, 1), (0, 0, 2), (1, 0, 1), (0, 2, 1), (4, 2, 0), (0, 1, 2), (1, 1, 0), (0, 2, 0), (2, 1, 2),
(0, 0, 1), (1, 0, 2), (0, 1, 2), (3, 1, 0), (0, 2, 0), (1, 2, 1), (0, 0, 1), (2, 2, 0), (0, 1, 2), (1, 1, 0),
(0, 2, 0)]
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