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I. INTRODUCTION 

 

1. General characteristics of the Antarctic Environment 

The Antarctic environment is the most isolated on Earth, possessing unique 

geographical and climatological characteristics (Kerry and Riddle, 2009). It comprises 

the south area of 60ºS, inclusive of the ice covered continent, isolated islands and a 

large part of the Southern Ocean. The continent is separated from South America by 

1,000 km, Australia by 2,500 km and Africa by 4,000 km; along with three distinct 

morphological zones: East Antarctica, West Antarctica and the Antarctic Peninsula 

(Figure 1) (King and Turner, 1997; Shirihai, 2002). East Antarctica has the largest 

surface and is dominated by the high Antarctic plateau, which rises quickly inland of the 

coast with huge flat ice mass, with over 2 to 4 km in elevation. West Antarctica is more 

mountainous than East Antarctica, with an average elevation of 850 m and some areas 

reaching more than 2 km, with exposed peaks of buried mountains above 4 km. The 

Transantarctic Mountains separate East and West Antarctica and rise to a maximum 

elevation of 4,528 m (King and Turner, 1997). 

 
 

Source: Landsat Image Mosaic of Antarctica (LIMA) 

Figure 1: Map of the Antarctic Region 

 

The third noticeable area is the Antarctic Peninsula (Figure 2), which extends 

northwards from the main mass of the Antarctic continent. It is a narrow mountainous 

barrier of 70 km width and between 1,500 to over 3,000 m mean height, with 
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surrounding islands and archipelagos, mostly of volcanic origin. Within the 

archipelagos there are the South Shetland Islands, a chain of eleven major islands, 

several minor ones with islets, rocks; and volcanic matter. These are located 120 km 

north of the Antarctic Peninsula, in the Southern Ocean. The major islands are Elephant, 

Clarence, King George, Nelson, Robert, Greenwich, Livingston, Snow, Deception, 

Smith and Low (King and Turner, 1997). King George and Livingston are the largest 

islands of the group. The Peninsula with the Islands constitutes the warmest and 

certainly most accessible part of the Antarctic continent, yet it boasts a harsh climate 

(Shirihai, 2002). 

 

Source: World Wildlife Fund 

Figure 2: Map of Antarctic Peninsula 

 

The Antarctic continent is ringed by a belt of sea ice, unlike the Arctic which is an 

ocean surrounded by continents. Most of the sea ice melts by late summer (February 

and March), and the edge retreats back, close to the shoreline of East Antarctica. In the 

depths of the continent´s winter (September), sea ice can reach almost 1,000 km 

offshore to north of the 60
th

 parallel in open water (King and Turner, 1997; Shirihai, 

2002). 
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The Southern Ocean surrounds the Antarctic continent and adds up to be a 

conglomeration of large parts of the South Pacific, South Atlantic and South Indian 

Oceans, covering about 9.6% of the surface area of the World Ocean (Shirihai, 2002; 

Aronson et al., 2011). Compared to the Arctic Ocean which has a considerable input of 

fresh water from continental runoff, the Southern Ocean has virtually no fresh water 

running off from the Antarctic continent (Aronson et al., 2011). It also has unique 

characteristics, like the physical barrier to water exchange created by the Antarctic 

Circumpolar Current and the related physiological barrier created by cold sea 

temperatures and salinity at high Southern latitudes. The Antarctic Circumpolar Current 

is one of the most powerful ocean currents on Earth. It has physically isolated the 

Southern Ocean from adjacent seas and protects it physiologically from some life 

thriving in warmer Sub Antarctic waters (Shirihai, 2002; Aronson et al., 2011). 

Climate and weather are the defining characteristics of the Antarctic environment 

and to an extent the primary factors that set it apart from other regions of the world 

(Kerry and Riddle, 2009). The climate is strongly influenced by geography, the Earth´s 

orbital characteristics and the topography itself. The Earth´s rotation imposes limitations 

on the exposure to direct solar radiation ensuring one period of virtually continuous 

sunlight during summer, and subsequent polar night during the winter months. The 

summer in the Southern hemisphere occurs during the period when the distance 

between the Sun and Earth is at a minimum while the austral winter occurs when the 

Sun-Earth distance is at a maximum. For this reason, this region receives a greater share 

of solar emissions than the Arctic region during summer (Pook, 2009). The average air 

temperatures during summer range from near 0ºC around the coastal margin to about     

-40ºC on the plateau. In winter, mean coastal temperatures are generally within the 

range of -18 to -29ºC and mean temperatures on the plateau are around -68ºC. In 

contrast, monthly mean temperatures for the northern section of the Antarctic Peninsula 

exceed 0ºC in summer. In general, the combination of elevation and extreme cold in the 

Antarctic region results in one of the driest atmospheric conditions known on Earth 

(Pook, 2009). 

All these characteristics provide isolation to the Antarctic environment, exerting an 

influence on Antarctic wildlife at different levels. Conditions such as temperature, 

humidity and solar radiation can influence the survival of hosts vectors and pathogens in 

the environment. It also affects every aspect of the living organisms that inhabit the 
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Antarctic region and defines the habitat in which the native species live, the range of 

conditions they must survive and the conditions that exotic wildlife, introduced 

pathogens and their vectors must withstand, if they are to establish and reproduce in this 

region (Pook, 2009). 

 

2. Antarctic Human Activity 

The earliest documented human history in the Antarctic region goes back to the 

seventeenth and eighteenth century when sailors gradually discovered the existence of 

the Terra Australis. Later, in the beginning of 1780´s, the exploitative industry 

characterised by sealing, whaling and fishing with a total lack of regulations were the 

major activity in the zone. The period after World War II (1945), may be considered the 

era of scientific activity in the Antarctic region, not only for the increment of research 

programmes, but also for the establishment of permanent stations. 

The Antarctic tourism is a recent phenomenon, developed as an industry mainly 

from the 1950´s and 60´s. Today, several thousand tourists visit Antarctica annually. It 

is guided and controlled by the International Association of Antarctic Tour Operators 

(IAATO), created in 1991. This Association is a volunteer member organization that 

makes guidelines, procedures and regulations of touristic activities conducted in the 

Antarctic region, especially those related to environmental issues (Basberg, 2008). The 

tourism season runs from November to March, and is mainly shipbased. Passengers are 

taken ashore using small inflatable boats, generally for periods of 1-3 hours and they are 

generally focused on the Antarctic Peninsula, and in particular on a number of sites with 

wildlife, historical and scenic values (Mortimer and Prior, 2009). Until the early 1990´s 

some 60,000 people visited the Antarctic region as tourists. During the 1990´s and the 

following decades, touristic activities grew steadily. In the 2006/2007 season around 

30,000 visitors made registered visits in tourist ships, from large cruise ships to small 

sailing yachts. However, some reduction has been observed the following years, 

probably due to saturation in market or reflecting the worldwide economic slow-down 

during these years (Figure 3) (Basberg, 2008; Mortimer and Prior, 2009). Still, the 

presence of tourists in the Antarctic region is quite marked. 

In the present, scientific activity and tourism are the two main human activities 

allowed in Antarctica (Basberg, 2008). These frequent visits together with scientific 

activities in the region could potencially create a cumulative impact on the environment, 
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although there are policies and procedures established to minimize and mitigate 

environmental impacts (Mortimer and Prior, 2009). 

 

3. Antarctic Treaty System 

The Antarctic region is undoubtedly one of the least impacted sites of the planet. 

However, it may suffer from the human activities occurring both locally and elsewhere 

in the world. Since its discovery, natural resources have been exploited for commercial 

reasons, like fishing, sealing and whaling, including the introduction of alien species, 

and the long-term survival of a number of alien flora and fauna to the Sub Antarctic 

islands. Later, expeditions to and within the Antarctic region were driven for scientific 

endeavour (Jabour, 2009). Only recently, it has been formally recognised as a place 

worthy of very high standards of environmental protection (Riddle, 2009). The 

International Geophysical Year of 1957-58 (IGY) gave rise to the formulation of the 

Antarctic Treaty in 1959. The Treaty encouraged investigation in the Antarctic region 

and cooperation between nations to guarantee freedom to scientific research and 

exchange of data between members (Turner and Pendlebury, 2004). Initially, the 

Signatories of the Treaty included twelve countries: seven Antarctic territorial claimants 

(Argentina, Australia, Chile, France, New Zealand, Norway, United States and United 

Kingdom) and other countries, active during the IGY in the Antarctic region (Belgium, 

Japan, South Africa, and the former Union of Soviet Socialist Republics). They 

participated in the diplomatic conference in Washington (1959), where the Treaty was 

negotiated. There were twelve original parties who had the right to participate in the 

Consultative Meetings and are accordingly known as Consultative Parties. The Treaty 

provides for accession to any state which is a member of the United Nations, and any 

other state by invitation of all Consultative Parties. Nowadays the Antarctic Treaty has 

increased from 12 to 49 members (Austria, Belarus, Brazil, Bulgaria, Canada, China, 

Colombia, Cuba, Czech Republic, Denmark, Ecuador, Estonia, Finland, Germany, 

Greece, Guatemala, Hungary, India, Italy, Malaysia, Monaco, Netherlands, North 

Korea, Papua New Guinea, Peru, Poland, Portugal, Romania, Slovakia, South Korea, 

Spain, Sweden, Switzerland, Turkey, Ukraine, Uruguay, Venezuela, as well as the 12 

initial parties), although only 26 countries are Consultative Parties (Jabour, 2009; 

Rothwell, 2009). The Antarctic Treaty is a very straight forward document comprising 

of only 14 articles. It combines some very basic measures dealing with the conduct of 
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science, with some very sophisticated provisions with sovereignty and Treaty review 

(Rothwell, 2009). 

The Antarctic Treaty System (ATS) is a whole complex of arrangements made for 

the purpose of coordinating relations among states with respect to the Antarctic region. 

Included are the Antarctic Treaty itself, Recommendations adopted at meetings of the 

Antarctic Treaty Parties, the protocol on Environmental Protection to the Antarctic 

Treaty (also referred to as the Madrid Protocol, 1991), and two separate Conventions for 

the Conservation of Antarctic Seals (CCAS, London 1972), and the Conservation of 

Antarctic Marine Living Resources (CCAMLR, Canberra 1980). It also includes the 

results of Meetings of Experts, the decisions of Special Consultative Meetings 

(ATCM´s) and, at a non-governmental level, reflects the work of the Scientific 

Committee on Antarctic Research (SCAR), established in 1958 on all aspects of the 

system. The ATS applies to the area south of 60º South Latitude, including all ice 

shelves and has drawn its attention to the protection of the Antarctic environment with 

relevance to the health of Antarctic wildlife (Rothwell, 2009). 

As mentioned above, the Antarctic environment is considered the most pristine of 

the planet and one of the main focuses of the ATS has been to protect the Antarctic 

biota from the impact of increasing human activity. This is reflected in the XXIII 

Antarctic Treaty Consultative Meeting (1998), where the significant risk of the 

introduction of diseases into Antarctic wildlife species because of the increase in the 

numbers of people travelling to and within the Antarctic region was recognised. With 

regard to this topic, marine mammals such as pinnipeds have been described as prime 

sentinels of aquatic ecosystems because many species have long life spans, are long-

term coastal residents and feed at a high trophic level. They provide an approach to 

evaluate the ecosystem health because they can be use as barometers for current or 

potential impacts on individuals and populations (Bossart, 2011). 

 

4. Antarctic Pinnipeds 

Pinnipeds have always been understood to represent a distinct group of aquatic 

mammals and the most conspicuous marine mammals in the Antarctic region (Shirihai, 

2002; Berta, 2009). 
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According to the taxonomic classification, they are divided in three families: 

Otariidae (eared seals), Phocidae (true seals) and Odobenidae (walruses). Currently, 

there are thirty-three living species distributed throughout the world; eighteen phocids 

(Table 1), fourteen otariids (Table 2) and one odobenid, represented by the walrus 

(Odobenus rosmarus), which is restricted to the Northern circumpolar waters (Riedman, 

1990; Berta, 2009). They are marine mammals with unique anatomical and 

physiological adaptations to dive underwater, even though they spend considerable time 

on land and ice platforms. 

 

Table 1: List of Pinnipeds of the Phocidae Family 

Common Name Scientific Name Sub-species 

Sub-family Monachinae 

Lineage Monachini   

Hawaiian monk seal Monachus schauinslandi  

Mediterranean monk seal Monachus monachus  

Lineage Miroungini   

Northern elephant seal Mirounga angustirostris  

Southern elephant seal Mirounga leonina  

Lineage Lobodontini   

Weddell seal Leptonychotes weddellii  

Ross seal Ommatophoca rossii  

Crabeater seal Lobodon carcinophagus  

Leopard seal Hydrurga leptonyx  

Sub-family Phocinae 

Hooded seal Cystophora cristata  

Bearded seal Erignathus barbatus  

Grey seal Halichoerus grypus  

Harp seal 
Phoca groenlandica 

(Pagophylus groenlandicus) 
 

Ribbon seal Phoca fasciata  

Largha (Spotted) seal Phoca largha  

Caspian seal Phoca caspica  

Baikal seal Phoca sibirica  

Ringed seal 
Phoca hispida 

(Pusa hispida) 

P.h. hispida (Arctic Basin) 

P.h. ocholensis (Northern Japan) 

P. h. botnica (Baltic Sea) 

P. h. ladogensis (Lake Ladoga) 

P. h. saimensis (Lake Saimaa) 

Harbour seal Phoca vitulina 

P. v. vitulina (eastern Atlantic) 

P. v. richardsi (eastern Pacific) 

P. v. stejmegeri (Kuril harbour seal) 

P. v. concolor (western Atlantic) 

P. v. mellonae (Seal Lake) 

Source: Riedman, 1990 
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Table 2: List of Pinnipeds of the Otariidae Family 

Common Name Scientific Name Sub-species 

Sub-family Otariinae (Sea lions) 

Sea lion Zalophus californianus 

Z. c. californianus (California sea lion) 

Z. c. wollerbaeki (Galapagos sea lion) 

Z. c. japonicus (Japanese sea lion) 

Northern or Steller sea lion Eumetopias jubatus  

Southern sea lion 

(South American sea lion) 

Otaria byronia  

(O. flavescens) 
 

Australian sea lion Neophoca cinerea  

New Zealand sea lion Phocartos hookeri  

Sub-family Arctocephalinae (Fur seals) 

Northern fur seal Callorhinus ursinus  

Guadalupe fur seal Arctocephalus townsendi  

Juan Fernandez fur seal Arctocephalus philippii  

Galapagos fur seal Arctocephalus galapagoensis  

South American fur seal 
Arctocephalus australis 

(A. gracilis) 
 

New Zealand fur seal Arctocephalus forsteri  

Antarctic fur seal Arctocephalus gazella  

Sub Antarctic fur seal  Arctocephalus tropicalis  

 Arctocephalus pusillus 
A.p. pusillus (South African /Brown fur seal) 

A.p. doriferus (Australian fur seal) 

Source: Riedman, 1990 

 

Phocids are characterised by their lack of visible ear pinnae and inability to turn the 

hindlimbs forward to support the body, resulting in a peculiar crawling locomotion on 

land but extremely efficiency on water. They inhabit both the Northern and Southern 

hemispheres, although they are largely restricted to polar and sub-polar regions (Berta, 

2009). Comparing both polar populations, the Antarctic phocids generally have larger 

bodies, a characteristic that provides them with insulation against the cold above or 

under the frigid polar ice, and could be associated to the more plentiful food supply in 

the Southern Ocean (Riedman, 1990). Other phocids can survive in estuarine and 

freshwater habitats, like Caspian and Baikal seals. Molecular studies further support the 

division into two major sub-groups Monachinae and Phocinae. The Monachinae has 

three lineages: Monachini, Miroungini and Lobodontini. In contrast, the Phocinae 

includes differentiated species with extensive geographic distribution (Berta, 2009). 

Otariids are characterised by the presence of external ear flaps or pinnae and ability 

to turn the hindflippers forward to walk on land. They are divided into two sub-families: 

Otariinae (sea lions) and Arctocephalinae (fur seals), although molecular studies have 

revealed that some species and sub-species of these two groups do not share 
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monophyletic lineage, but further taxonomic research are needed to elucidate this 

controversial subject (Berta and Churchill, 2011). They are called fur seals for the thick, 

dense fur, and except for the Northern and Guadalupe fur seals, they are located in the 

Southern hemisphere (Berta, 2009). 

The global distribution patterns of pinnipeds reveal that certain species tend to be 

restricted to a particular region of the world, like those who live in the extreme Polar 

regions (Riedman, 1990). However, most of the Antarctic pinnipeds have been reported 

as vagrants from the Southern continents with certain predilection for the Antarctic 

region (McFarlane et al., 2009). In addition, fewer species inhabit the Antarctic than the 

Arctic, but the Antarctic populations are considerably larger (Riedman, 1990). 

Antarctic phocids include the Crabeater seal (Figure 4), Ross seal (Figure 5), 

Leopard seal (Figure 6), Weddell seal (Figure 7) and the Southern elephant seal (Figure 

8). The Crabeater seals are exclusively located on Antarctic pack ice south to 79ºS. 

They presumably migrate but movement patterns are still unknown. Occasionally, a 

select few reach the Sub Antarctic islands, New Zealand, Australia, South Africa, the 

Falklands and South America north to the Southeastern Brazilian coast. They feed 

mainly on krill, although they also forage opportunistically on mysids and fish (Shirihai, 

2002; Kendall et al., 2003). The Ross seals are the least-known Antarctic pinniped. The 

distribution is circumscribed to ice packs in the Antarctic Ocean south to 78ºS, but they 

have also been recorded north to South Australia, Kerguelen and Heard Island. 

Evidence suggests Ross seals prefer heavy ice packs, providing substantiation of why so 

little is known about them. However, it is known they feed on krill, migrating squid and 

mid-water fishes (Shirihai, 2002). The Leopard seals are generally confined to the 

Antarctic pack, although they could be found widespread, yet uncommonly, in Antarctic 

and Sub Antarctic zones south to 78ºS, with some vagrancy occurring far north. Their 

broad diet includes krill, fish and seabirds especially penguins (Shirihai, 2002). The 

Weddell seals have a circumpolar distribution, breeding on both coastal pack and fast 

ice south to 78ºS, while making foraging trips up north with expanding ice pack during 

the winter. They can also reach South Orkney, South Shetland, South Georgia and 

South Sandwich, occasionally Sub Antarctic islands, with some wandering as far as 

New Zealand, South Australia and South America. Their diet is quite varied, mainly 

fish, cephalopods, krill and crustaceans. They feed occasionally in association with 

Crabeater seals, and there are records of penguins in their feeding habits (Shirihai, 
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2002). The Southern elephant seals are widely distributed in Southern hemisphere. They 

breed predominantly on Sub Antarctic islands but they are also found is the Antarctic 

Peninsula and Southern Argentina. Some bachelor males haul out to moult in 

summertime on the Antarctic continent. They have a varied diet, but mainly feed on fish 

and cephalopods (Shirihai, 2002). 

 

 

Source: Saluvet Group 

Figure 4: Crabeater seal (Lobodon carcinophagus) 

 

Source: British Antarctic Survey 

Figure 5: Ross seal (Ommatophoca rossii) 

 

Source: Saluvet Group 

Figure 6: Leopard seal (Hydrurga leptonyx) 
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Source: Saluvet Group 

Figure 7: Weddell seal (Leptonychotes weddellii) 

 

 

Source: Saluvet Group 

Figure 8: Southern elephant seal (Mirounga leonina) 

 

Antarctic otariids include the Antarctic fur seals (Figure 9), who breed from 61ºS to 

the Antarctic Convergence, forming colonies in Antarctic islands like South Georgia, 

South Orkney, South Shetland, South Sandwich, Bouvetoya, Marion, Kerguelen, Heard, 

McDonald and Macquarie; wandering in non-breeding season to Weddell Sea, 

Argentina coasts, and recorded recently in the south Pacific site of Chile (Acevedo et 

al., 2011). Females may migrate north of Antarctic Convergence. They feed on krill and 

fish, principally (Shirihai, 2002). 
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Source: Saluvet Group 

Figure 9: Antarctic fur seal (Arctocephalus gazella) 

 

The Antarctic Peninsula and the South Shetlands Islands have the most exciting 

wildlife on Earth and the most widespread are pinnipeds (Shirihai, 2002). Few time-

series studies have been made in phocid and otariid populations from the Antarctic 

Peninsula. Some of them have gathered distribution and abundance data for Antarctic 

fur seals, Weddell seals and Crabeater seals throughout the South Shetland Islands and 

Antarctic Peninsula and some have focused on Deception Island in their surveys 

(Kendall et al., 2003). Antarctic fur seals and Southern elephant seals are both relatively 

ubiquitous in this area. Weddell seals are also frequently seen in many beaches and 

there are several areas where Crabeater seals can be encountered. Leopard seals are one 

of the least frequent phocid found in the Antarctic Peninsula and South Shetland 

Islands, but still they have several known sites. Ross seals are rare in dense pack ice in 

the Southern Peninsula region (Shirihai, 2002). In other studies, fur seals abundances 

and distributions have been documented at South Georgia Island, where the largest 

breeding population has been found (Kendall et al., 2003). In summary, Antarctic fur 

seals, Southern elephant seals, Weddell seals and Crabeater seals are all reasonably 

common in the South Shetland Islands (Shirihai, 2002).  

 

5. Health status of Worldwide and Antarctic Pinnipeds 

Research focused on marine mammals has resulted in a compilation of data, 

providing important information related to their health. In general, data have been 

collected from many sources including stranded animals, wild populations and animals 

in collection (Dailey, 2001). As a consequence of this fact, a large number of emerging 
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and remerging viral, bacterial, protozoal and fungal diseases have been reported. 

Additionally, complex diseases involving emerging infectious and neoplastic 

components have been reported, providing valuable data on aquatic ecosystem and 

public health (Bossart, 2011). They have also been widely used for neurotoxins and 

contaminant studies, especially anthropogenic and chemical pollutants in coastal areas 

that bio-accumulate in marine ecosystems, resulting in high tissue contaminant 

concentrations and decline of health in marine mammals, increasing the susceptibility to 

infectious diseases (Dailey, 2001; Bossart, 2011). 

Toxins, neoplasia and viral, bacterial and parasitic diseases have been identified 

causing, or being associated with, significant morbidity and mortality in pinnipeds, 

especially in free-ranging populations. Additionally, mass mortality events have 

increasingly been observed and ascribed to infectious agents. In the Northern 

hemisphere, a mass mortality event was reported in harbour seals from the North Sea in 

1988 (de Bruyn et al., 2008). Several vulnerable populations undergo high mortality, 

such as Caspian seals in the summer of 2000 (Kuiken et al., 2006) and Northern fur 

seals populations in St. Paul Island (Alaska, United States) from 1986 to 2006 (Spraker 

and Lander, 2010). In the Sub Antarctic region, mass mortality events affected New 

Zealand sea lions populations in 1998 (de Bruyn et al., 2008) and Sub Antarctic fur 

seals from Marion Island in 2007 (de Bruyn et al., 2008). 

Within the infectious agents causing diseases, parasites have been known to cause 

health problems. They are also integral components of marine ecosystems, representing 

a valuable tool to explore the origins, distribution and maintenance of biodiversity 

(Dailey, 2001; Hoberg and Klassen, 2002). However, whereas the information on 

diseases caused by parasites in worldwide pinnipeds is substantial, in the Antarctic and 

the Sub Antarctic regions is sparse and limited. 

 

6. Presence of Parasites in Worldwide and Antarctic Pinnipeds 

Parasites are organisms found in and on all animals of interest in Veterinary 

Medicine. They may or may not produce clinical disease, depending on a variety of 

environmental, ecological, immnunological and physiological factors that influence the 

host-parasite relationship. However, this relationship is constantly changing and 

different manifestations of disease are observed. For some hosts the presence of a 

parasite can cause illness and probably be lethal, while others are well adapted to the 
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parasite and no clinical signs are present (Foreyt, 2001). Large groups of parasites have 

been identified in captive and free ranging pinnipeds (Dailey, 2001). They have been 

found in incidental findings during necropsies, routine physical examination or causing 

major health problems and death in affected hosts. 

 

6.1. Protozoan Parasites 

Protozoa is a large group of primitive, unicellular, eukaryotic organisms with 

complex structures contained in a single cell. The classification is extremely complex 

but is intended to give an outline of the basic differences in the structure and life cycles 

of the main groups (Taylor et al., 2007). The most important genera recorded in 

pinnipeds are included in two Phyla, Apicomplexa and Sarcomastigophora (Figure 10) 

(McFarlane et al., 2009). 

Source: Taylor et al., 2007 

Figure 10: Taxonomic classification of Protozoans of relevance in pinniped populations 

 

6.1.1. Apicomplexa 

Apicomplexa is a group of parasites occurring intracellularly in host cells, having 

an apical complex at some stage of their development. Reproduction involves both 

asexual and sexual phases (Taylor et al., 2007). Some genera have complex life cycles 

requiring two different hosts for their development, like Neospora, Toxoplasma and 
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Sarcocystis. Others require only a single host to complete the life cycle, such as 

Cryptosporidium, Eimeria and Isospora (Yaeger, 1996). Some of these parasites, like 

Cryptosporidium and Toxoplasma are considered zoonotic agents with worldwide 

distribution, affecting a wide range of animals, including domestic and wild species and 

humans. They are also associated with outbreaks of infection resulting from drinking 

contaminated surface water or food (Fayer et al., 2004). In recent years, increasing 

interest has been carried out on marine mammals since they may act as indicator species 

for environmental contamination with these parasites (Appelbee et al., 2005). 

 

6.1.1.1. Enteric Apicomplexan Parasites 

6.1.1.1.1. Cryptosporidium 

Cryptosporidium is a ubiquitous gastrointestinal parasite reported in a wide variety 

of hosts, including humans and vertebrate animals (Appelbee et al., 2005; Fayer, 2010). 

Currently, this genus contains up to 22 species and over 40 genotypes (Fayer, 2010; 

Fayer et al., 2010; Robinson et al., 2010; Ren et al., 2012). More than 150 mammalian 

hosts have been reported to be infected with this parasite (Fayer, 2004a). Most species 

appear to have some host specificity and surveys conducted in several groups of animals 

have shown that most hosts have been infected with only a few host-adapted 

Cryptosporidium species or genotypes, indicating that cross transmission is usually 

limited (Fayer, 2004a; Xiao and Fayer, 2008). However, cross-species transmission is 

possible when animals share a similar habitat and/or the parasite is biologically capable 

of infecting multiple hosts (Xiao and Fayer, 2008). Cryptosporidium completes its life 

cycle in the gastrointestinal tract of a single host and is generally associated with severe 

diarrheal disease (Deng et al., 2000; Fayer, 2004a). Oocysts (Figure 11) are transmitted 

by the faecal-oral route and remain infectious in cool wet conditions for 6 months or 

longer (Fayer et al., 2004; Xiao and Fayer, 2008). They can also survive in seawater for 

a long period of time (Fayer et al., 2004). After ingestion, sporozoites are released in the 

small intestine and invade epithelial cells. All subsequent endogenous stages are 

intracellular but extracytoplasmic, appearing to rest on the surface of villar epithelial 

cells. Two asexual cycles occur, each producing four to eight merozoites. Second stage 

merozoites develop into macrogametocyte and microgametocyte and fertilization results 

in oocyst formation. Sporulation takes place within the host, becoming immediately 

infective and might auto-infect but most oocysts are excreted in the faeces (Xiao and 
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Fayer, 2008). As mentioned above, watery diarrhea is the typical clinical sign of 

infection observed in affected individuals. However, asymptomatic infections have been 

also reported in animals and humans. Rarely, other clinical signs are present and severe 

cases can result in mortality. No specific virulence factors have been observed to cause 

direct or indirect damage to host tissue like the loss of absorptive epithelium including 

apoptosis and villus atrophy resulting in malabsorption; and the release of inflammatory 

cell mediators stimulating electrolyte secretion and diarrhea (Fayer, 2004a). 

 

Source: Saluvet Group 

Figure 11: Immunofluorescence staining of Cryptosporidium oocysts (100X) 

 

Cryptosporidium sp. has been described in worldwide pinnipeds, yet little is known 

about the prevalence or the role in the transmission in these hosts (Deng et al., 2000). It 

has been detected in California sea lions from Arctic Canada and ringed seals from both 

Arctic Canada and North Alaska, United States (Fayer et al., 2004; Hughes-Hanks et al., 

2005). In ringed seals, prevalence observed were 20% (n=15) in Arctic Canada and 

22.6% (n=31) in North Alaska (Hughes-Hanks et al., 2005). In California sea lions from 

Arctic Canada, prevalence observed was 50% (n=6) (Deng et al., 2000). It has been also 

described in 18.2% (n=55) of ringed seals from Canada (Appelbee et al., 2005; Santin et 

al., 2005; Dixon et al., 2008), 6.25% (n=176) of harbour seals and 100% (n=1) of 

hooded seals from the United States. Likewise, it has been found in 4.2% (n=24) of harp 

seals from the United States (Bass et al., 2012). 

 

6.1.1.1.2. Eimeria and Isospora 

Eimeria and Isospora are two gastrointestinal parasites, comprising a large number 

of species (1000 and 200, respectively), some of them capable of significant morbidity 

and mortality in infected hosts, like domestic mammals and birds. The life cycle is also 
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completed in a single host. The genera are differentiated on the basis of the number of 

sporocysts in each oocyst and the number of sporozoites in each sporocyst. Eimeria 

oocysts (Figure 12) contain four sporocysts, each with two sporozoites while Isospora 

oocysts contain two sporocysts each with four sporozoites. Host-specificity varies 

according to the species. The asexual stage starts when sporozoites are released from 

oocysts and sporocysts, invading the intestine cells and replicates, affecting the lamina 

propria of the small and large intestine by destruction of epithelial cells. The process 

repeats one to four times, depending upon the species involved. Eventually, the 

sporozoites become schizonts and later merozoites. Finally, merozoites develop into 

macrogametocyte and microgametocyte and the sexual stage begins when zygotes 

became oocysts. Oocysts are unsporulated when passed in the faeces and require a 

period of development in the environment to become infective (Taylor et al., 2007). 

 

Source: Saluvet Group 

Figure 12: Eimeria-like oocysts (40X) 

 

Coccidiosis is the typical disease in animals and particularly affects 

immunologically naïve young animals exposed to a high level of infection. The clinical 

signs are mainly characterised by diarrhea, accompanied with mucus and blood. Some 

pathological changes are fibrohaemorrhagic enterocolitis, with large numbers of 

coccidial organisms affecting the superficial mucosa. Central nervous system signs have 

been associated with infections of Eimeria species in domestic cattle. In wild mammals, 

oocysts can be present in the faeces without showing obvious signs of illness, although 

some cases of morbidity and mortality from coccidial infection have been reported (Van 

Bolhuis et al., 2007). 

Pathologies in marine mammals have been reported, such as fatal and self-limiting 

enterocolitis associated with E. phocae infection in captive harbour seals from the 

Netherlands, showing neurological signs and both sexual and asexual stages in affected 

intestines (Van Bolhuis et al., 2007; Colegrove et al., 2011). As well, E. phocae have 
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been described due to morphologic features in captive clinical ill western Atlantic 

harbour seals from the United States (Hsu et al., 1974a; Hsu et al., 1974b; Fowler and 

Miller, 2003). Coccidian oocysts not fully described have also been found in captured 

harbour seal pups with fatal diarrhea from Scotland and the United States (Dailey, 

2001). 

Molecular studies revealed three new enteric cyst-forming parasites named 

coccidian parasites A, B and C in California sea lions from the United States (Colegrove 

et al., 2011). Coccidian parasite C has also been described affecting a harbour seal 

(Colegrove et al., 2011; Gibson et al., 2011). Coccidians identified as Coccidia A and B 

have been detected in asymptomatic California sea lions stranded in the United States 

coasts (Carlson-Bremer et al., 2012). Both pinnipeds have been considered definitive 

hosts due to the observation of sexual and asexual stages in the gastrointestinal tract, 

causing enteritis (Colegrove et al., 2011; Gibson et al., 2011). In Antarctic pinnipeds, 

coccidian schizonts have been described in Antarctic fur seals (McFarlane et al., 2009). 

Also, in King George Island six morphologically different oocysts have been found with 

marked difference compared to E. phocae (Drozdz, 1987). Oocysts found in Southern 

elephant seals have been described as the new species Isospora miroungae. In Weddell 

seals, the new species Eimeria weddelli and Eimeria arctowski have been also 

described. As well, three species of Eimeria occurred rarely and have been described as 

Eimeria sp. 1, in Crabeater seals, Eimeria sp. 2 and Eimeria sp. 3 in Weddell seals 

(Drozdz, 1987; McFarlane et al., 2009). It was suggested that these parasites do not 

affect the pinniped´s health, unless the animal is stressed or immunocompromised 

(Dailey, 2001). 

 

6.1.1.2. Systemic Apicomplexan Parasites 

Toxoplasma, Neospora and Sarcocystis are three apicomplexa protozoans whose 

life cycle involves two hosts. The asexual stage occurs in an intermediate host and the 

sexual stage in the gastrointestinal tract of the final host. The significance is due to the 

asexual stage in intermediate hosts, affecting them systemically (Taylor et al., 2007). 

6.1.1.2.1. Toxoplasma 

The genus Toxoplasma has a single species, Toxoplasma gondii. Definitive hosts 

are domestic and wild felids and show a complete lack of species-specificity in the 
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intermediate host, being capable to infect any warm-blooded animal including humans 

and therefore are considered an important zoonosis (Jones and Dubey, 2010). In most 

intermediate hosts, infection is usually acquired via the digestive tract and disseminated 

by the lymphatic and portal systems with subsequent invasion of various organs and 

tissues. There are three stages of T. gondii infective to all hosts: tachyzoites, bradyzoites 

and sporozoites (Dubey, 1998). Tachyzoites enter the host cell of the intermediate and 

definitive hosts and multiply asexually until the host cell ruptures. Tachyzoites give 

then rise to tissue cyst (Figure 13) containing bradyzoites. Upon ingestion by definitive 

hosts, bradyzoites are released and multiply as tachyzoites, invading intestinal cells. 

Asexual and sexual stages occur in the lamina propria of the intestines. The sexual stage 

starts two days after ingestion of tissue cysts and finally oocysts form and mature (Jones 

and Dubey, 2010). Unsporulated oocysts are then passed in the faeces of the definitive 

host to the environment where sporulation occurs upon certain optimal conditions. 

(Taylor et al., 2007). Oocysts are very resistant in the environment, and the findings of 

T. gondii in marine mammals suggest the possibility of contamination with oocysts shed 

by felids and widespread by rainfall and wastewater outfalls to the marine environment 

(Jones and Dubey, 2010). Toxoplasma is also recognised as an important pathogen of 

marine mammals, causing morbidity and mortality (Lindsay and Dubey, 2009). 

Pathogenic effects are always related to the extra-intestinal phase of development in the 

central nervous system, although it may also affect other organs as well and in some 

cases can remain asymptomatic. T. gondii can also be transmitted transplacentally and 

by carnivorism (Jones and Dubey, 2010). 

 

Source: Saluvet Group 

Figure 13: Toxoplasma gondii cyst in brain tissue (100X) 

 

T. gondii has been described in eastern Pacific harbour seals, associated to 

encephalitis in Northern fur seals and Northern elephant seals, and to disseminated 
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organ infection in California sea lions (Dailey, 2001; Dubey et al., 2004). Van Pelt and 

Dietrich (1973) reported how a hand-fed newborn harbour seal was affected with 

toxoplasmosis (Fayer et al., 2004). In this case report in particular, one of the probable 

routes of infection for this newborn seal was the transplacental transmission from the 

infected dam, exacerbated by the debilitating effect of other concurrent infections (Van 

Pelt and Dietrich, 1973). 

Necropsy and histological findings have revealed pathological lesions in affected 

pinnipeds. Tachyzoites have been observed in a Hawaiian monk seal with visceral and 

cerebral lesions (Honnold et al., 2005). Colegrove et al. (2011) considered pinnipeds 

like Hawaiian monk seals, Northern elephant seals, Northern fur seals, harbour seals 

and California sea lions, intermediate hosts but still little is known about this subject. 

Experimentally, grey seals fed with T. gondii oocysts developed infection (Figure 11), 

but how marine mammals become infected in nature has not been well described (Fayer 

et al., 2004; Gajadhar et al., 2004). 

T. gondii antibodies have been detected in several groups of marine mammals. In 

general terms, the presence of antibodies in a host does not necessarily mean that 

clinical signs will develop, but it does indicate that it may have been exposed to the 

agent in the recent past (Kerry and Riddle, 2009; McFarlane et al., 2009). Pinnipeds 

from the east coast of Canada, including hooded seals, grey seals and harbour seals have 

been tested, showing prevalence of 9% (n=122) in grey seals and harbour seals (n=34) 

and 1.7% (n=60) in hooded seals (Measures et al., 2004). In Hawaiian monk seals, 

prevalence has been 0.006% (n=332) in populations from Northwestern Hawaiian 

Islands (Aguirre et al., 2007). Several pinniped populations along the Pacific and 

Atlantic coasts of the United States have been also tested and prevalence observed was 

16% (n=311) in harbour seals, 42% (n=45) in California sea lions, 16% (n=32) in ringed 

seals, 50% (n=8) in bearded seals and 11.1% (n=9) in spotted seals (Dubey et al., 2003). 

In the Northwest Pacific site of the United States, prevalence in harbour seals was 7.6% 

(n=380) (Lambourn et al., 2001). European pinnipeds have also been evaluated, 

showing prevalence of 23.4% (n=47) in grey seals and 5.4% (n=56) in eastern Atlantic 

harbour seals from the Atlantic coasts of United Kingdom and France (Cabezon et al., 

2011). In Japan, prevalence observed was 4% (n=322) in Kuril harbour seals from 

different populations around Hokkaido (Fujii et al., 2007). All these descriptions reveal 

a worldwide distribution and natural exposure of the parasite in marine ecosystems. 
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6.1.1.2.2. Sarcocystis 

Sarcocystis sp. is one of the most prevalent livestock parasite, infecting mammals, 

birds, lower vertebrates and humans (Taylor et al., 2007). It generally has a two-host 

predator-prey life cycle with an asexual cycle in herbivores and omnivores and a sexual 

cycle in carnivores (Rohde, 2005). Sarcocystis derives the name from the intramuscular 

cyst stage (sarcocyst) present in the intermediate host and about 130 species have been 

described. Sporozoites excyst from sporocysts and invade the intestinal mucosa to reach 

endothelial cells in small arteries throughout the body. The asexual cycle begins with 

the initial reproduction form of schizonts. Schizonts with merozoites are released and go 

to muscle tissues, forming sarcocysts. They continue to divide until numerous mature 

infective bradyzoites are formed inside sarcocysts. When tissues containing sarcocysts 

with infective bradyzoites are consumed by the definitve host, bradyzoites are released 

and penetrate the cells of the intestinal lamina propria transforming into macrogametes 

and microgametocytes in the cell. The microgametocytes produce flagellated 

microgametes, which penetrate the macrogametes, forming oocysts containing 

sporocysts (Fayer, 2004b). When the newly created oocysts sporulate, often rupture 

releasing infective sporocysts. The definitive host sheds both sporocysts and sporulated 

oocysts in faeces. Sarcocystis infection in the intermediate host is usually asymptomatic 

and generally specific (Taylor et al., 2007). Sarcocysts have been found located in all 

strained muscles and, to a lesser extent, smooth muscle, neural tissue and spinal cord 

causing neurological disorders (Yantis et al., 2003; Fayer, 2004b). 

Marine mammals are considered to be aberrant hosts because only schizonts have 

been described (Yantis et al., 2003). They have been reported to infect pinnipeds; yet no 

sexual stages have been described in these animals. Mense et al. (1992) reported the 

identification of Sarcocystis sp. in the liver and skeletal muscle of California sea lions. 

Sarcocystis spp. infections have also been reported in Pacific harbour seals, California 

sea lions, bearded seals, ringed seals, Northern fur seals and Leopard seals (Dailey, 

2001; Colegrove et al., 2011). Sarcocystis neurona and S. canis-like are two related 

species reported in a captive Hawaiian monk seal (Yantis et al., 2003). S. neurona was 

found confined to the central nervous system and liver, producing fatal hepatitis, 

including random hepatic necrosis and cholestasis (Yantis et al., 2003). Similarly, 

encephalitis caused by S. neurona in captive and stranded Pacific harbour seals have 

been documented (Miller et al., 2001; Dubey et al., 2003; Mylniczenko et al., 2008). 
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Sarcocystis richardi have been reported encysted in a harbour seal diaphragm (Dailey, 

2001). In Antarctic pinnipeds, Sarcocystis richardi and S. hydrurgae have been reported 

in Antarctic fur seals and Leopard seals, respectively (Dailey, 2001; McFarlane et al., 

2009). 

 

6.1.1.2.3. Neospora 

Neospora caninum is a protozoan parasite morphologically similar to T. gondii 

although biologically different. Neosporosis is primarily a disease of cattle and dogs and 

is not considered zoonotic like Toxoplasmosis. Canids are considered the definitive host 

and include the domestic dog (Canis domesticus), coyotes (Canis latrans), Australian 

dingo (Canis lupus dingo), and recently described gray wolf (Canis lupus); and 

ruminants are intermediate hosts (Dubey et al., 2007; Dubey et al., 2011). In general, 

the life cycle is very similar to T. gondii. It is typified by the three known infectious 

stages: tachyzoites (Figure 14), bradyzoites in tissue cysts, and sporozoites into the 

oocyst. Tachyzoites and tissue cysts occur intracellularly and are found primarily in the 

central nervous system. The environmentally resistant stage of the parasite, the oocyst, 

is excreted in the faeces of definitive hosts, sporulating in the environment. Nothing is 

known about the survival of N. caninum oocysts, but its close relationship with T. 

gondii, opens the opportunity to assume that environmental resistance can be similar 

(Dubey et al., 2007). Lesions have only been observed in the intermediate and definitive 

hosts, and these have been neuromuscular disease in canids and high rates of abortion in 

cattle (Gondim, 2006). 

 

Source: Saluvet Group 

Figure 14: Immunofluorescence staining of Neospora caninum taquizoites (100X) 
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Surveys indicate that a wide range of domestic and wild animals have been exposed 

to N. caninum (Dubey and Schares, 2011). However, the isolation of the parasite has not 

been described in marine mammals, although antibodies against N. caninum have been 

detected, indicating the exposure to this parasite. Dubey et al. (2003) detected 

antibodies in marine mammals along the coast of the United States. Prevalence 

observed in pinnipeds have been 3.5% (n=311) in harbour seals, 3.7% (n=27) in 

California sea lions, 12.5% (n=32) in ringed seals and 12.5% (n=8) in bearded seals. 

Also, serological detection have been reported in Kuril harbour seals and spotted seals 

from Japan with prevalence of 4.03% (n=322) and 4.34% (n=46), respectively (Fujii et 

al., 2007). These findings suggest that pinnipeds can be intermediate hosts for N. 

caninum. However, further studies are needed to confirm the role of marine mammals in 

the biology of the parasite. If marine mammals are confirmed to be intermediate hosts, 

many fundamental questions will have to be addressed regarding the transmission 

through the oceans (Gondim, 2006). 

Polyparasitism commonly occur in human and wildlife populations and has been 

found to influence in the severity of diseases. Concurrent detection of T. gondii, S. 

neurona and N. caninum has been reported in 91% (n=161) of pinnipeds with clinical 

signs including Northern elephant seals, California sea lion, harbour seals, Guadalupe 

fur seals and Steller sea lions from California and Pacific Northwest sites of the United 

States and Canada. These three parasites share routes of transmission, like the faecal-

oral and transplacental routes, and probably the transmission dynamics have been the 

same in these cases (Gibson et al., 2011).  

 

6.1.2. Sarcomastigophora 

6.1.2.1. Giardia 

Within the phylum Sarcomastigophora, Giardia is the most relevant enteric 

protozoan in marine mammals. This parasite is unique in possessing a large adhesive 

disc on the flat ventral surface of the body, facilitating the attachment to the epithelial 

cells in the intestinal mucosa (Taylor et al., 2007). The life cycle starts with the 

infection by ingestion of cysts, followed by excystation and colonization of the small 

intestine by the trophozoite forms, which multiplies by vegetative growth in the 

intestine. Trophozoites undergo dramatic biological changes to differentiate into a 

resistant cyst, in a process called encystation. The cyst (Figure 15) is the resistant stage, 
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capable to survive outside the intestines (Bernander et al., 2001). Six species of Giardia 

are currently recognised and some have been found to infect several groups of animals 

but not humans (Xiao and Fayer, 2008). Of these species, G. duodenalis is the 

worldwide distributed parasite associated with outbreaks of infection resulting from 

drinking contaminated surface water or food (Fayer et al., 2004). It comprises a 

complex of genotypes or assemblages, based on host specificity and the analysis of 

conserved genetic loci. Currently, there are seven well defined assemblages, designated 

A through G (Feng and Xiao, 2011). In addition, an assemblage H has been recently 

described in pinnipeds (Lasek-Nesselquist et al., 2010). Assemblages A and B have the 

broadest host specificity and are considered zoonotics transmited by the faecal-oral 

route, causing cronic diarrhea in humans and other livestock and wildlife mammals 

(Xiao and Fayer, 2008). 

 

Source: Saluvet Group 

Figure 15: Immunofluorescence staining of Giardia cysts (100X) 

 

Giardia cysts have been detected in ringed seals from western Arctic Canada, 20% 

(n=15), and North Alaska, 64% (n=31) (Olson et al., 1997; Fayer et al., 2004; Hughes-

Hanks et al., 2005). In California sea lions from the United States, cysts were found in 

the faeces of 17% (n=6) of the pinnipeds sampled, (Deng et al., 2000). It has also been 

reported in 27% (n=74) of phocids, including grey, harp and harbour seals from Canada 

(Measures and Olson, 1999). Similarly, prevalence in grey seals, eastern Pacific harbour 

seals and eastern Atlantic harbour seals from the East and West coasts of the United 

States were 63% (n=27), 37.5% (n=8) and 4.5%, (n=112), respectively (Lasek-

Nesselquist et al., 2010). 

Molecular techniques have been used to describe Assamblage A of G. duodenalis 

in harp and hooded seals from Canada (Appelbee et al., 2005; Appelbee et al., 2010), as 

well as in eastern Atlantic harbour seals and grey seals from the East and West coast of 
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the United States (Lasek-Nesselquist et al., 2010). Similarly, Assemblage B has been 

described in ringed seals from Canada, eastern Pacific harbour seals, eastern Atlantic 

harbour seals and grey seals from the East and West coasts of the United States (Dixon 

et al., 2008). A novel G. duodenalis sequence (HS-1), and G. duodenalis canine 

genotype C and D have been identified in eastern Pacific harbour seals from 

Washington coast (Gaydos et al., 2008). This novel HS-1 genotype shared similarity 

with Assemblage H haplotype of grey seals from the East coast of the United States 

suggesting more genetic diversity, and perhaps a larger host range than previously 

believed (Lasek-Nesselquist et al., 2010). 

 

6.2. Helminth Parasites 

Helminths are multicellular eukaryotic organisms capable of causing a wide variety 

of infectious diseases in terrestrial and aquatic hosts. Taxonomically, the phylum has 

several groups of parasitic significance, including nematodes or roundworms, 

trematodes or flatworms and cestodes or tapeworms (Taylor et al., 2007). They are 

endoparasites and most of them use intermediate and paratenic hosts in immature and 

larval forms to complete the complex life cycle and ensure infection in the marine 

environment, involving several marine invertebrates, fishes and marine mammals 

(Mattiucci et al., 2005; McFarlane et al., 2009). Research in helminth taxonomy has 

illustrated the complexities of host specificity and revealed cryptic species infecting 

marine mammals (McFarlane et al., 2009). 

 

6.2.1. Nematodes 

Nematodes (Figure 16) are commonly called roundworms due to the appearance in 

cross-section (Taylor et al., 2007). The roundworms make up the largest number of 

parasites in marine mammals, serving as definitive hosts together with fish eating birds 

in the marine environment. In addition, crustaceans usually serve as first intermediate 

hosts and fish, squids and other invertebrates as intermediate or paratenic hosts. (Rohde, 

2005; Mattiucci et al., 2008). 
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Source: Saluvet Group 

Figure 16: Nematodes found in a faecal sample  

 

6.2.1.1. Anisakids 

Anisakids are parasites of the alimentary tract with cosmopolitan distribution and 

commonly found in marine mammals causing illness but rarely death (Mattiucci et al., 

2008). Sometimes, despite the high intensity in the gastrointestinal tract, no apparent ill 

effects have been described (Rohde, 2005). In humans, clinical signs have been 

observed, becoming accidental hosts and therefore considered zoonotic agents (Hwang 

et al., 2012). They display an indirect life cycle in aquatic ecosystems and involve 

several hosts at different levels in food webs (Mattiucci et al., 2008). In general, the life 

cycle begins when eggs from female worms are released from the marine mammal host 

and passed out with the faeces into the seawater. Like all nematodes, Anisakids exist in 

four different larval stages before reaching maturity. The L1 larval form develops inside 

the egg. The L2 hatches from the egg in the ocean and becomes free swimming. The L2 

molts and is then ingested by crustaceans (first intermediate host) where they mature to 

a L3 stage, tipically infective to hosts. Subsequently, the infected crustaceans are eaten 

by fishes and squids, becoming the paratenic hosts, and larvae migrate to the muscle 

tissues. After consumption by the definitive host, it matures to an adult (Klimpel et al., 

2004; Rohde, 2005). These parasites are found free within the stomach or attached to 

the gastric mucosa, leading to ulcers, perforation into the abdominal cavity, and gastritis 

which may have an allergic component (Geraci and St Aubin, 1987). During necropsies, 
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mixed infections of Anisakids species have been found and findings include melena 

stool associated with anaemia (Banish and Gilmartin, 1992; Siebert et al., 2007; Byard 

et al., 2010; Papadopoulos et al., 2010). Findings also reveal that the intensity of 

Anisakids infections in the Antarctic and Sub Antarctic populations tend to be higher 

than the Arctic and Sub Arctic, presumably as the result of the lower degree of habitat 

disturbance in less stressed areas (Mattiucci and Nascetti, 2007). 

 

6.2.1.1.1. Anisakis 

Anisakis spp. have a worldwide distribution and infections are very common in 

marine mammals, although do not seem to affect their lifespan (Klimpel et al., 2004). 

They have been described in 0.3% (n=257) of ringed seals in Norway and New Zealand 

fur seals from South Australia. Eggs have been found in Hawaiian monk seals from 

Northwestern Hawaiian Islands (Byard et al., 2010). Larvae and adults stages have been 

identified in sub-adults and adults Northern fur seals and Steller sea lions from Alaska, 

and Northern elephant seals from California (Nadler et al., 2005; Spraker and Lander, 

2010). Anisakis pegreffii (also named as Stomachus similis) has been identified in 

Mediterranean monk seals and Leopard seals (Dailey, 2001; Papadopoulos et al., 2010). 

In the Caspian sea, Anisakis schupakovi has been identified in Caspian seals (Kuiken et 

al., 2006). In Antarctic and Sub Antarctic pinnipeds, Anisakis infections have also been 

recorded in Weddell seals, where high gastrointestinal burdens have been considered 

normal (McFarlane et al., 2009). In addition, Anisakis simplex C has been described in 

Southern elephant seals (Mattiucci and Nascetti, 2007) and larval and adult stages of 

Anisakis simplex in Antarctic otariids (McFarlane et al., 2009). 

 

6.2.1.1.2. Contracaecum 

Contracaecum spp. are anisakids with mild morphological differences compared to 

Anisakis spp. They also have worldwide distribution and infections are very common in 

marine mammals and fish eating birds (Mattiucci et al., 2008). Adult stages have been 

described in California sea lions from the United States, Mediterranian monk seals from 

Greece and Southern elephant seals from the Argentinian coast (Mattiucci et al., 2003; 

Nadler et al., 2005; Papadopoulos et al., 2010). Within the Contracaecum species, C. 

turgidum has been identified in Hawaiian monk seals, showing a prevalence of 29.1% 

(n=282) in populations from Hawaiian Islands (Banish and Gilmartin, 1992; Reif et al., 
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2006); and C. margolisi in California sea lions from Canada and Northeast Pacific 

Ocean (Nadler et al., 2005; Mattiucci and Nascetti, 2007). Other species described in 

Antarctic and Sub Antarctic pinnipeds include C. mirounga in Southern elephant seals 

from the Weddell sea, King George island and the Argentinian coast; and C. radiatum 

in Leopard seals and Weddell seals from the Weddell and the Ross seas (Mattiucci et 

al., 2003; Nadler et al., 2005; Mattiucci and Nascetti, 2007; McFarlane et al., 2009). 

Contracaecum ogmorhini complex is a further group of Contracaecum species 

identified in otariids from Northern and Southern hemispheres, such as California sea 

lions from Canada and different otariid species from New Zealand, South Africa and 

Argentina (Mattiucci et al., 2003). Species found within this complex have been 

summarised in Table 3. In addition, a Southern elephant seal from the coast of 

Argentina hosted C. ogmorhini sensu stricto in mixed infection with C. mirounga, and a 

species not yet described, genetically related to C. osculatum B (Nadler et al., 2000b; 

Mattiucci et al., 2003; Nadler et al., 2005). 

 

Table 3: List of Contracaecum ogmorhini complex in Northern and Southern Pinnipeds 

Species Host Location 

C. ogmorhini s. s.  Brown fur seal 

Brown fur seal 

New Zealand 

South Africa 

 South American fur seal Argentina 

C. ogmorhini s. l. South American fur seal 

South American fur seal 

Canada 

Argentina 

 Australian fur seal New Zealand 

 South African fur seal South Africa 

 Leopard seal 

Antarctic fur seal 

Antarctic region 

Antarctic region 

Source: Mattiucci et al., 2003; Nadler et al., 2005; Mattiucci and Nascetti, 2007 

 

Contracaecum osculatum complex is another group of parasites which has 

undergone a subsequent redescription (Nascetti et al., 1993; Orecchia et al., 1994). It 

has been described in harbour seals from Germany and California sea lions from 

Mexico (Mawson, 1953; Claussen et al., 1991; Fauquier et al., 2004). In Antarctic and 

Sub Antarctic pinnipeds, larval and adult stages of C. osculatum have been reported in 

populations from Macquarie and Heard Islands (Mawson, 1953; McFarlane et al., 

2009). A list of the different species included in the C. osculatum complex found in 

pinnipeds is provided below (Table 4). 
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Table 4: List of Contracaecum osculatum complex in Northern and Southern Pinnipeds 

Species Host Location 

C. osculatum s. s. Grey seal Baltic sea 

 Northern fur seal United States 

C. osculatum A Bearded seal Canada 

C. osculatum B Harp seal Barentsz sea 

 Harbour seal Canada 

  Norway 

C. osculatum D Weddell seal Antarctic region 

C. osculatum E Weddell seal Antarctic region 

C. osculatum baicalensis Baikal seal Russia 

Source: Mawson, 1953; Orecchia et al., 1994; Fauquier et al., 2004; Nadler et al., 2005; Mattiucci and 

Nascetti, 2007; Mattiucci et al., 2008; Spraker and Lander, 2010 

 

6.2.1.1.3. Phocascaris 

Phocascaris spp. are anisakids occurring only in phocids, which have been reported 

as the only final host (Abollo and Pascual, 2002; Mattiucci et al., 2008). Molecularly, 

Phocascaris is closely related to the C. osculatum complex and some authors have even 

proposed that the Contracaecum species which have phocids as definitive hosts should 

be included in the genus Phocascaris although further data are necessary to confirm this 

fact (Mattiucci et al., 2008). Three different species have been described in the genus 

Phocascaris: P. phocae in harp seals from Canada and Norway and ringed seals from 

the High Arctic Archipelago of Norway, P. netsiki in ringed seals and P. cystophorae in 

hooded seals from Canada (Abollo and Pascual, 2002; Nadler et al., 2005; Mattiucci et 

al., 2008; Johansen et al., 2010). 

 

6.2.1.2. Pseudoterranova 

The genus Pseudoterranova is a parasite of the Anisakidae family with a wide 

distribution and pinnipeds are considered the definitive host (Paggi et al., 1991). The 

larvae have been called sealworms or codworms and the life cycle is similar to the rest 

of Anisakids with the important difference that larvae cannot be free in seawater and 

must be in an intermediate host for transmission (Palm, 1999). In the life cycle, partially 

embrionated eggs are released in the faeces of the pinniped and descend to the ocean 

floor before hatching. Water temperature must be between 0ºC and 25ºC for hatching 

and differentiation. The newly hatched larvae are most active at temperatures above 

10ºC. They infect benthic crustaceans (copepods), exsheathe, penetrate to the 
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haemocoele and begin to grow. Later, they pass to fish and secondary fish where larval 

worm grows enough to become infective to the definitive host. Finally, the definitive 

host ingests the final fish host and after two moults, they mature and reproduce 

(McClelland, 2002; Rohde, 2005). 

Pseudoterranova spp. have been described in the gastrointestinal tract of ringed 

seals from Norway (Johansen et al., 2010), California sea lions, Northern elephant seals, 

harbour seals and Steller sea lions from the United States (Nadler et al., 2005). P. 

decipiens (refered by some authors as Terranova piscium) has been identified in 

harbour seals from Germany and Leopard seals from the Antarctic region (Claussen et 

al., 1991; Dailey, 2001). Likewise, P. decipiens s.s. (also designated as P. decipiens B) 

has been described in harbour seals from Canada, Northeast and Northwest Atlantic 

Iceland, Norway and Sweeden; hooded seals from Canada; and grey seals from Norway 

and Iceland (Paggi et al., 1991; Nadler et al., 2005; Mattiucci and Nascetti, 2007). P. 

krabbei (also designated as P. decipiens A) has been reported in harbour seals from 

Norway; and grey seals from Northeast Atlantic Norway, Iceland and Canada (Paggi et 

al., 1991; Nadler et al., 2005; Mattiucci and Nascetti, 2007). P. azarasi (also designated 

as P. decipiens D) has been described in Steller sea lions from Northwest Pacific Ocean 

and Japan (Nadler et al., 2005; Mattiucci and Nascetti, 2007). P. bulbosa (also 

designated as P. decipiens C) has been identified in bearded seals from Northeast and 

Northwest Atlantic Oceans and Canada (Nadler et al., 2005; Mattiucci and Nascetti, 

2007); and P. cattani in South American sea lions from Chile (Nadler et al., 2005). 

Finally in the Southern Ocean, Pseudoterranova decipiens E has been identified in 

Weddell seals (Mattiucci and Nascetti, 2007). 

 

6.2.1.3. Ancylostomatids 

Hookworms are haematophagus ancylostomatid nematodes, affecting a wide range 

of mammals, including humans and wild species, causing intestinal haemorrhage, 

severe anaemia and protein malnutrition (Acevedo-Whitehouse et al., 2009). They also 

have been described to infect the gastrointestinal tract of pinnipeds. The genus 

Uncinaria has been the cause of high mortality in young pinnipeds through 

haemorrhagic enteritis and anaemia (McFarlane et al., 2009). The life cycle has been 

modified to fit the seasonal at-sea habits of pinnipeds, demonstrating the adaptation that 

has been made in the transition from the terrestrial to the marine habitat. In terrestrial 
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hosts, infective third-stage larvae penetrate the skin of the host and grow to adults in the 

intestine. In pinnipeds, hookworm larvae penetrate the skin of pregnant cows and wait 

until the birth of the pup, being consumed with the milk during nursing (Rohde, 2005). 

Infective third stage larvae, possibly influenced by hormones in the pregnant cow, 

migrate from the belly blubber to the mammary glands. Newborn pups can consume as 

many as 1,500 larvae with the first meal of milk, and two weeks later develop 

potencially fatal hemorrhagic diarrhea and anaemia. The reproducing adult worms are 

found only in the pups where they feed on blood causing the clinical signs and 

subsequently the possible death of the animal (Rohde, 2005). The infection and 

associated intestinal lesions can be observed for the first time about three weeks after 

the majority of pups have been born, when parasites develop into mature adults, feeding 

on the intestinal mucosa, and are eliminated spontaneously three months post-infection 

(Nadler et al., 2000a; Castinel et al., 2006; Castinel et al., 2007). Eggs (Figure 17) shed 

in the soil through faeces can survive to free-living third-stage larvae (Geraci and St 

Aubin, 1987). The parasite in the neonatal host causes debilitation leading to trauma, 

malnutrition and hypothermia (Castinel et al., 2007). 

 

 

Source: Saluvet Group 

Figure 17: Ancylostomatid egg (40X) 

 

Uncinaria spp. have been found in Juan Fernandez fur seal pups, Northern fur seal 

pups, California sea lions pups and Hawaiian monk seal neonates from the United 

States. Similarly, they have been found in adults and neonates of New Zealand sea lions 

from Auckland Islands, Australian fur seals and New Zealand fur seals, Australian sea 

lions and South American sea lions from the Southern region (Nadler et al., 2000a; 

Lyons et al., 2001; Castinel et al., 2007; McFarlane et al., 2009; Byard et al., 2010). The 
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presence of U. lucasi have been described in 6.25% (n=64) of Northern fur seals from 

the United States (Lyons et al., 2001; Ionita et al., 2008; Spraker and Lander, 2010); and 

U. hamiltoni in California sea lion pups from the United States and South American sea 

lions from the coast of Argentina (Nadler et al., 2000a; Beron-Vera et al., 2004). In 

Antarctic pinnipeds, Uncinaria sp. and Uncinaria hamiltoni have also been described in 

high numbers in Southern elephant seals adults and pups, although it is thought that they 

are not an important cause of mortality in the Southern hemisphere, based on the 

absence of lesions in the small intestines of affected animals (Beron-Vera et al., 2004; 

McFarlane et al., 2009). 

 

6.2.1.4. Filarids 

Filarids are nematode parasites transmitted by arthropod vectors to humans and 

other vertebrates, causing a disease called Filariosis. The disease can cause a serious 

and potentially fatal condition in hosts (Taylor et al., 2007). In general, the life cycle of 

Filarids is indirect and starts when the adult female release microfilariae into the 

definitive host bloodstream. The intermediate host (vector) becomes infected with 

microfilariae while taking blood meal from the infected animal. The microfilariae 

mature to the infective larval stage within the vector. The vector then bites another 

susceptible host, and the infective larvae enter through the bite wound. Inside the host, 

infective larvae extend to blood or tissue fluids, and mature into adult worms in deep 

connective tissue, membranes or visceral surfaces. Microfilariae cannot mature into 

adult worms without first passing through the intermediate host. Therefore the mode of 

transmission in marine mammals has yet to be proven. It is expected that pulmonary and 

cardiovascular complications associated with Filarids would seriously reduce the ability 

to dive and feed in infected animals (Geraci and St Aubin, 1987). 

Filarids have been reported in harbor seals, ringed seals and hooded seals¸ but the 

precise identification has been uncertain (McFarlane et al., 2009). Dipetalonema and 

Dirofilaria are two genera of veterinary interest described in phocids and otariids 

worldwide (McFarlane et al., 2009). Some authors report the Acanthocheilonema sp. as 

a filarial worm. However, now is part of the genus Dipetalonema and the previous name 

is no longer in use (Fowler and Miller, 2003). Microfilariae have also been found in red 

pulp of spleen during histological examination in Northern fur seals and California sea 

lions from the United States, assuming they are Dipetalonema odendhali (Davis et al., 
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1971; Perry and Forrester, 1971). Dipetalonema spirocauda has been reported in several 

harbour seals populations from North America (Puget Sound, Southern California, New 

England and Atlantic Canada), western Atlantic harbour seals from the United States 

(MacDonald and Gilchrist, 1969; Dunn and Wolke, 1976; McDonald et al., 2006), 

harbour seals and Pacific harbour seals from Germany (Siebert et al., 2007) and 

Mediterranean monk seals from the Aagean and Ionian Islands along the coastline of 

Southern Greece (Papadopoulos et al., 2010). In all the reports, macroscopic and 

hystopathological lesions in heart atrium and ventricles, pulmonary arteries and lungs 

have been described (MacDonald and Gilchrist, 1969; Dunn and Wolke, 1976; Claussen 

et al., 1991). It has also been reported that D. spirocauda infection causes mortality 

mainly among juvenile seals, whereas adult seals generally tolerate the parasite burden 

although they can be adversely affected in the presence of secondary infections or 

immunocompromised conditions (Papadopoulos et al., 2010). 

Antibodies against Dirofilaria immitis, the heartworm of canids have been detected 

in Hawaiian monk seals from Northwestern Hawaiian Islands, with a prevalence of 

0.153% (n=332) (Aguirre et al., 2007). Geraci and St Aubin, (1987) also reported 

infection with Dirofilaria immitis in a captive harbour seal and sea lions. In the 

Antarctic region, filarial tissue and blood parasite have been reported in a Southern 

elephant seal from Heard Island. The description confirmed the presence of a fragment 

of a filarial nematode from a blood vessel, referred as Filaria (sensu lato) sp. (Mawson, 

1953; McFarlane et al., 2009). Even if filarial nematodes can be occurring in Southern 

pinnipeds, their prevalence and significance remain uncertain (McFarlane et al., 2009). 

 

6.2.1.5. Metastrongyloids 

Metastrongyloids (Figure 18) are also cosmopolitan parasites that inhabit the 

respiratory parenchyma of mammals (Taylor et al., 2007). In terrestrial hosts, the life 

cycle is indirect and the intermediate hosts are usually molluscs and earthworms 

(Rohde, 2005). However, the route of infection in aquatic mammals is unknown, though 

it is likely that infective larvae developed in the intermediate host switches to a fish 

infecting pinnipeds through the oral route, demonstrating one of the interesting 

transitions that the parasite has made in order to survive in the ocean environment 

(Geraci and St Aubin, 1987; Rohde, 2005; Rijks et al., 2008). Parafilaroides decorus is 

a parasite commonly found in California sea lions of which a life cycle is proposed, 
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using a vertebrate (a small tidal-pool fish, Girella nigricans) as a single intermediate 

host (Geraci and St Aubin, 1987). This fish lives at breeding rookeries where feeds on 

the pinniped excrement containing eggs with the first-stage larvae followed by the 

development into the infective L3 in the intestinal wall. Later, the California sea lion 

eats the fish containing the infective L3, which then matures and reproduces (Rohde, 

2005). Metastrongyloids are poorly described in pinnipeds, and descriptions reported 

have been based on only a few specimens (Kennedy, 1986). Pathological findings 

associated include respiratory and cardiovascular system affections (Siebert et al., 

2007). Sometimes the larvae form small, firm nodules in the lung parenchyma due to 

granuloma formation associated with degenerating parasites (Onderka, 1989). 

 

 

Source: Saluvet Group 

Figure 18: Metastrongyloid larva (40X) 

 

Two species of Parafilaroides, P. gymnurus and P. hispidus have been reported in 

ringed seals, harp seals, harbour seals from Germany; grey seals, spotted seals, Steller 

sea lions and Baikal seals; primarily from eastern Canada and Europe. Filaroides 

(Parafilaroides) hispidus has been described in ringed seals from Canada (Kennedy, 

1986). Parafilaroides decorus has also been reported in Steller sea lions from the 

eastern Central Pacific. P. measuresae has been redescribed in Northern elephant seals, 

while P. gullandae in eastern Pacific harbour seals from the United States. The 

structural identification indicates that prevalence gradient goes from common to 

uncommon in P. decorus for sea lions, P. gullandae for harbour seals and P. 

measuresae for Northern elephant seals (Carreno and Nadler, 2003; Dailey, 2006; 



Chapter I 

38  Doctoral Thesis 
 

Siebert et al., 2007). Parafilaroides spp. have been reported in Australian sea lions and 

Parafilaroides normani in brown fur seals, Sub Antarctic fur seals and New Zealand fur 

seals from Southern waters (Dailey, 2009; McFarlane et al., 2009). In the Southern 

Ocean, Parafilaroides hydrurgae has been reported in Leopard seals (Mawson, 1953; 

Dailey, 2006; McFarlane et al., 2009). As mentioned above, it is well-known that 

lungworms are a common underlying cause of respiratory disease (verminous 

pneumonia), but the prevalence or significance in health of Sub Antarctic and Antarctic 

pinnipeds remain unclear (McFarlane et al., 2009). In addition, hypersensitivity 

reactions have been associated to Parafilaroides decorus infection in California sea 

lions, inducing acute bronchitis, bronchopneumonia, and stimulate mucous secretion, 

which in turn lead to asphyxiation (Geraci and St Aubin, 1987). 

Otostrongylus circumlitus is a further Metastrongyloid considered the large 

crenosomatid nematode (Geraci and St Aubin, 1987). It is thought to interfere with the 

respiratory health and diving ability of pinnipeds and thus alter their ability to feed, 

grow and survive. It has been identified in Northern elephant seals and California sea 

lions from the United States; ringed seals from western Arctic Canada; harbour seals 

and eastern Pacific harbour seals from Germany and the United States (Geraci and St 

Aubin, 1987; Onderka, 1989; Elson-Riggins et al., 2001; Carreno and Nadler, 2003; 

Colegrove et al., 2005; Kelly et al., 2005). 

 

6.2.1.6. Trichinella 

Trichinella spp. are monoxenous parasites that mature in the intestine of 

carnivorous mammals, producing first stage (L1) larvae which migrate to the 

musculature. Marine mammals become infected by ingesting flesh with encapsulated 

L1. Direct transmission transplacentally and in breast milk has been proposed for 

cetaceans, but there is the speculation that small crustaceans may also be involved in the 

transmission. In addition, experimental evidence suggests that Trichinella may be 

transmitted by sarcophagous crustaceans and fish acting as paratenic hosts (Rohde, 

2005). In terrestrial mammalian hosts, clinical signs are variable, non specific and 

depend on the host and the level of infection, including inappetance, weakness, diarrhea, 

fever, muscular pain, dyspnoea and peripheral eosinophilia (Taylor et al., 2007). In 

pinnipeds, the most relevant symptoms observed have been lethargy and anorexia 

(Kapel et al., 2003). 
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Freeze resistant Trichinella nativa, commonly found in Arctic wildlife, has been 

found in hooded seals and ringed seals from Greenland (Moller, 2007). In Finland, 

findings in grey seals, bearded seals, ringed seals and hooded seals have been also 

reported (Isomursu and Kunnasranta, 2011). In Greenland, the prevalence was 0.2% in 

ringed seals and 2.3% in hooded seals. In Finland, the prevalence in wild grey seals was 

0.6% (n=171). In addition, grey seals have been successfully infected in laboratory 

conditions (Isomursu and Kunnasranta, 2011). Trichinella-specific IgG antibodies have 

been detected in 1.5% of ringed seals, 2.1% of harp seals and 0.3% of hooded seals 

(Moller, 2007). In the Southern hemisphere, incidental findings have been reported in 

Antarctic fur seals and Leopard seals (Dailey, 2001). 

 

6.2.1.7. Dioctophyme renale 

Dioctophyme renale, the giant kidney worm is the largest known nematode parasite 

infecting the kidneys of domestic and wild fish-eating carnivores, with occasional 

descriptions in humans and marine mammals (Hoffman et al., 2004; Duim-Ribeiro et 

al., 2007). The mink (Mustela vison) has been considered the principal definitive host, 

while humans and dogs are terminal or accidental hosts (Duim-Ribeiro et al., 2007). 

The life cycle is very complex and includes intermediate, paratenic and terminal hosts. 

Eggs are passed in the urine and must be ingested by the intermediate hosts (aquatic 

worms) where the parasite develops into the third larval stage. The process is 

temperature dependent. These aquatic worms can be then eaten by paratenic hosts 

(fishes). In the paratenic host, the infective larvae are encysted in tissues without further 

development. Definitive hosts are infected by ingestion of contaminated aquatic worms 

or paratenic hosts. In the definitive host the larva penetrates the duodenal wall, enters 

the abdominal cavity and migrates to the kidneys, where it remains until reaching the 

adult stage. Both sexes are necessary to parasitise, otherwise there is discontinuation of 

the life cycle in the definitive host (Duim-Ribeiro et al., 2007). Necropsy findings 

include alteration of the urinary bladder, with lesions and disfunctions like watery red 

fluid and a strong ammonia odor in abdominal cavity (Hoffman et al., 2004). In 

pinnipeds, Dioctophyme renale has only been reported in a stranded harbour seal from 

the United States and phocids from the Caspian Sea (Hoffman et al., 2004). 

  



Chapter I 

40  Doctoral Thesis 
 

6.2.2. Cestoda 

Cestodes are parasites with segmented and tape-like body. Each segment contains 

one or two sets of male and female reproductive organs (Taylor et al., 2007). In general, 

marine mammals harbour a rich tapeworm fauna, including several stages. The infection 

tends to be seasonal, reaching enormous intensities. Eggs are continuously discharged 

from the genital pores of the attached gravid segments of the strobila and pass to the 

environment in the faeces. The egg (Figure 19) must develop in water and finally 

hatches to liberate a motile ciliated coracidium, which if ingested by a copepod, 

develops into a first parasitic larval stage, a procercoid. When the copepod is ingested 

by a fish, the procercoid migrates to the muscles or viscera to form the second larval 

stage, the plerocercoid which possesses the characteristic scolex. The life cycle is 

completed when the infected fish is eaten by the final host. However, if the infected fish 

is eaten by a larger fish, the plerocercoid has the ability to establish itself in its new host 

(Taylor et al., 2007). Pathogenic effects in captive pinnipeds have been reported, 

although are varied and the effects may occur only when large numbers obstruct the 

intestinal lumen (Dailey, 2001). Infections with mature pseudophyllideans have been 

considered innocuous, but in extreme circumstances have been resulted in debilitation 

and death of the host. Parasites can encyst in the colonic wall or as a parasite mass 

obstructing the lumen of the gut (Geraci and St Aubin, 1987). Minimal inflammation 

has been found in the lamina propria throughout tissue sections with heavy tapeworm 

burden. High, moderate, and low burdens have also been found in the ileocecocolic 

junction of the intestinal tract (Spraker and Lander, 2010). 

 

 

Source: Saluvet Group 

Figure 19: Cestode eggs (40X) 
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Diphyllobothrium spp. are important parasites affecting humans and fish-eating 

mammals (Taylor et al., 2007). Diphyllobothrium lanceolatum and D. terapterus have 

been described in the gastrointestinal tract of captive pinnipeds (Dailey, 2001; Fowler 

and Miller, 2003). In the wild, Diphyllobothrium sp. has been identified in Northern fur 

seals, Hawaiian monk seals and ringed seals from the United States; and Mediterranean 

monk seals from Greek coasts (Fowler and Miller, 2003; Reif et al., 2006; Ionita et al., 

2008; Papadopoulos et al., 2010). Diphyllobothrium hians, D. elegans and D. cameroni 

have also been described in Hawaiian monk seals from the United States (Banish and 

Gilmartin, 1992) and Diphyllobothrium pacificum in Northern fur seal pups from the 

United States (Spraker and Lander, 2010). Rausch et al. (2010) reported a redescription, 

according to morphological features, differentiating two different species: 

Diphyllobothrium pacificum and D. arctocephalinum. D. pacificum has been considered 

to be hosted by Juan Fernandez fur seals from the West coast of Chile and D. 

arctocephalinum in Australian fur seals from South Australia. In Antarctic and Sub 

Antarctic seals, the adult cestodes reported belong to several genera of the family 

Diphyllobothriidae (Order Pseudophylliidea). Diphyllobothrium spp. have been 

described in Sub Antarctic fur seals. In Weddell seals, two types of cestodes have been 

described, Diphyllobothrium lashleyi and D. mobile (McFarlane et al., 2009). The new 

species, Diphyllobothrium lobodoni, has also been described in the intestines of 

Crabeater seals (Iurkhano and Mal'tsev, 1994). Glandicephalus antarticus (also known 

as Diphyllobothrium antarcticum or Dibothriocephalus antarticus) has been reported in 

the stomach and intestines of the Ross seals, and G. perfoliatus in the bile-pancreatic 

duct of Weddell seals (Iurkhano and Mal'tsev, 1995; McFarlane et al., 2009). Heavy 

burden with adult forms have also been found in Leopard seals, whereas in Southern 

elephant seals and Antarctic fur seals only plerocercoids have been observed. These two 

species have been moved out of the family Diphyllobothriidae and are considered as the 

new family Glandocephalidae (superfamily Diphyllobothrioidea) (Iurkhano and 

Mal'tsev, 1995). The Southern elephant seal has been reported as definitive host of two 

species, Baylisiella tecta and Flexobothrium microovatum (Wojciechowska and 

Zdzitowiecki, 1995). In addition, Baylisia baylisiis has also been described in Crabeater 

seals (McFarlane et al., 2009). Necropsy findings associated with Baylisiella tecta and 

Baylisia baylisiis were nodular reaction at the site of scolex attachment in the wall of 

the rectum (McFarlane et al., 2009). 
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The rarer Schistocephalus solidus has been known to occur in ringed seals from the 

Northern Gulf of Bothnia (Nickol et al., 2002), and Bothriocephalus sp. in Hawaiian 

monk seals from the United States (Banish and Gilmartin, 1992). Similarly, the 

cysticerci larval stage of Taenia solium has been recorded in Cape fur seals, South 

African fur seals from United States and Mediterranian monk seals; named as 

Cysticercus cellulosae (De Graaf et al., 1980; McFarlane et al., 2009). The finding of 

Taenia solium is considered a clear exposure to human faecal material, perhaps 

indirectly by consumption of fish fed on gravid proglottids or infected by feeding with 

contaminated invertebrates or carrion (Geraci and St Aubin, 1987). Phyllobothrium 

delphini has been found in connective tissue of Arctic pinnipeds, although this finding 

has been incidental (Dailey, 2001). In the Antarctic region, larval cestodes have been 

often recovered from the blubber of pinnipeds. Cysticerci of Phyllobothrium spp. have 

been found in Weddell seals (McFarlane et al., 2009). Also, P. delphini has also been 

reported in Southern elephant seals, Antarctic fur seals and Leopard seals (Dailey, 2001; 

McFarlane et al., 2009). 

Monorygma grimaldi, a parasite commonly found encysted in the mesentery of 

dolphins and thought to mature in sharks has been described encysted in the mesentery 

of a phocid and encysted in the testis of an Antarctic fur seal (McFarlane et al., 2009). 

The life cycle of Monorygma grimaldi suggests a crustacean (possibly a planktonic 

copepod) as the initial intermediate host with fishes and squids acting as the source of 

infection for sharks. The postulated life cycle in marine mammals is that they may be 

accidental accumulators of this metacestode due to the similar diet with sharks 

(MacColl and Obendof, 1982). In addition, the larval stage Scolex pleuronectis has been 

identified in the large intestine of Northern fur seals from Komandor Islands (Skrjabin 

and Yurakhno, 1987). The larval stage has also been identified in other marine 

mammals, primarily cetaceans, marine invertebrates and fishes but they have rarely 

been described in detail, and the ecological significance of infection is unclear (Agusti 

et al., 2005). 

 

6.2.3. Trematodes 

Trematodes are parasites with worldwide distribution and include species within the 

sub-class Digenea (Taylor et al., 2007). Digenea trematodes or flukes are considered of 

veterinary importance affecting bile ducts, alimentary tract and vascular system of 
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vertebrates. They are also found in marine mammals, specifically in the gastrointestinal 

tracts of pinnipeds (Rohde, 2005). Their life cycle is still not known completely, but it is 

considered complex, involving two or three hosts and several larval stages for their 

development. The first intermediate hosts of most digenetic flukes are gastropods, and 

the final host is almost always a vertebrate (Jousson et al., 1998; Taylor et al., 2007). 

 

6.2.3.1. Gastrointestinal Trematodes 

Within the genus Galactosomum, G. stelleri has been found in the small intestine of 

Northern sea lions from the United States, differing in morphology but closely related to 

G. ubelakeri and G. humbargari, both found in California sea lions and aquatic birds, 

respectively (Pearson, 1973; Dailey et al., 2002). Similarly, there are reports of G. 

angeliae in Australian sea lions (McFarlane et al., 2009). Trematode eggs described 

recently as Heterophyopsis hawaiiensis have been reported in Hawaiian monk seals 

from Northwestern and main Hawaiian Islands (Banish and Gilmartin, 1992; Reif et al., 

2006). Other trematodes found in pinnipeds include the genera Cryptocotyle, 

Rossicotrema and Phagicola, (Dailey et al., 2002). Cryptocotyle lingua and Mesorchis 

advena have been described in Caspian seals (Kuiken et al., 2006). Within the genus 

Strictodera, S. diplacantha has been described in the intestines of Australian sea lions. 

The genus Phocitrema has been reported in all these pinnipeds as well (Dailey et al., 

2002; McFarlane et al., 2009). Further trematodes found in pinnipeds include 

Microphallus sp., Maritrema sp. and Ogmogaster sp¸ described in the intestines of 

Australian sea lions (Dailey, 2001), and O. antarticus in Weddell seals (McFarlane et 

al., 2009). In addition, Mesostephanus neophocae has been described in the intestines of 

Australian sea lions (Dailey et al., 2002) and in a captive Southern elephant seal from 

South Australia (McFarlane et al., 2009). Hadwenius sp. has been observed in 

Australian sea lions guts; and Orthosplanchnus sp. in Weddell seals from Antarctic 

populations (McFarlane et al., 2009). 

 

6.2.3.2. Hepatic Trematodes 

Pricetrema spp. are the most common trematode occurring in massive numbers in 

pinnipeds (Dailey, 2001). They are not considered pathogenic, although colitis has been 

occasionally observed histologically in infected animals including thickened biliary 

ducts, probably as a consequence of infection (Dailey, 2001). Other liver trematodes 



Chapter I 

44  Doctoral Thesis 
 

include the genera Orthosplanchnus and Zalophotrema. Zalophotrema hepaticum has 

been found in the biliary system of California sea lions, harbour seals and Northern 

elephant seals (Fowler and Miller, 2003). They normally inhabit the liver, gallbladder, 

and pancreas, causing portal fibrosis with bile duct proliferation and dilatation. Aberrant 

liver migration has also been described, causing meningoencephalitis, seizure activity, 

lethargy and ataxia. Histopathology has revealed the presence of eggs and larvae in 

organs of the central nervous system, although the cause and route of the aberrant 

migration into the brain is unknown (Fauquier et al., 2004). In addition, 

Pseudamphistromum sp., Opistorchis sp. and Metorchis sp. have also been found to 

affect the liver of pinnipeds (Fowler and Miller, 2003), such as Pseudamphistomum 

truncatun in Caspian seals (Kuiken et al., 2006). 

 

6.2.3.3. Conjunctival Trematodes 

Philophthalmus sp. is a cosmopolitan trematode, occurring only in various 

microhabitats in the orbits of birds. However, the eye fluke Philophthalmus zalophi, has 

been found in the conjunctiva lens of eye from Galapagos sea lions and Galapagos fur 

seals. This is considered the first description of eye flukes in naturally infected marine-

mammal species (Dailey et al., 2005). 

 

6.3. Acantocephalans 

Acantocephalans or thorny-headed worms (Figure 20) are widespread in marine 

mammals and have worldwide distribution, but little is known about their effects on 

health in affected hosts (McFarlane et al., 2009). They appear as small, white-domed or 

coma shaped nodules 5-10 mm in diameter scattered over the surface of the mucosa of 

the infected intestines. Their life cycle is indirect, involving arthropods, usually 

amphipods of marine environment and fishes as the intermediate hosts. After ingestion 

by the intermediate host, eggs hatch and parasites migrate to the haemocoel or 

mesenteries of fish where they develop to become cystacanths. Infected tissues with 

encysted cystacanths are then ingested by pinnipeds where adult worms attach to the 

mucosa of the stomach or intestine with a retractable spinous proboscis. This provokes a 

localised inflammatory response, usually limited to the mucosa (Taylor et al., 2007; 

McFarlane et al., 2009). Occasional ulceration at the site of the attachment can be 

observed, even though they have little pathological significance despite the having been 
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found in high numbers in some hosts (Geraci and St Aubin, 1987). Morphometric and 

allozyme electrophoretic analyses have demonstrated very high levels of genetic 

diversity among acanthocephalans in marine mammals (Sardella et al., 2005). In 

Northern pinnipeds, there are descriptions of mortality and morbidity due to these 

parasites. However, in Southern pinnipeds there is lack of information and in view of 

the possibility of changes in the Antarctic and Sub Antarctic regions, systematic 

prospective studies in marine mammal species are urgently required (McFarlane et al., 

2009). 

 

Source: Saluvet Group 

Figure 20: Acanthocephalan found in a faecal sample 

 

Bolbosoma spp. and Corynosoma spp. are located in the gastrointestinal tract of 

pinnipeds (Fowler and Miller, 2003). Corynosoma strumosum has been described in 

grey seals, spotted seals, ringed seals, harbour seals from the United States and Baltic 

sea; in 21.7% (n=115) of Sub-Adults Northern fur seals from the United States (Garcia-

Varela et al., 2005; Aznar et al., 2006; Siebert et al., 2007; Garcia-Varela and Perez-

Ponce de Leon, 2008; Ionita et al., 2008; Byard et al., 2010), and in 100% (n=7) of 

Caspian seals (Kuiken et al., 2006). In Sub-Adult Northern fur seals, the presence of 

two species of Corynosoma, C. obtuscens, and C. validum have also been found (Aznar 

et al., 2006; Ionita et al., 2008). In addition, C. villosum has been described in Steller 

sea lions and C. wegeneri in ringed seals. These latter two parasites have also been 

commonly encountered in captive pinnipeds (Dailey, 2001; Garcia-Varela et al., 2005). 

C. rauschi has been described in Hawaiian monk seals from North Western Hawaiian 

Islands (Reif et al., 2006). Likewise, C. capsicum has been found in Caspian seals, C. 

falcatum in grey seals, C. magdaleni in ringed seals and grey seals from the Western 
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Baltic sea, and C. reductum in ringed seals from the United States (Nickol et al., 2002; 

Garcia-Varela et al., 2005; Aznar et al., 2006). 

Some acanthocephalans have been identified in Antarctic and Sub Antarctic 

pinnipeds, with no evidence of any clear degree of host specificity. Thus, C. 

arctocephali has been reported in Crabeater seals, Leopard seals and Antarctic fur seal; 

C. bullosum in Crabeater seals, Weddell seals and Southern elephant seals; C. hamanni 

(syn. C. antarticum) in Crabeater seals, Leopard seals, Ross seals and Weddell seals; 

and C. pseudohamanni in Crabeater seals, Leopard seals, Ross seals, Weddell seals, 

Southern elephant seals and Antarctic fur seals (Garcia-Varela et al., 2005; McFarlane 

et al., 2009). C. semerne has been described in New Zealand sea lions, Southern 

elephant seals and South American fur seals (McFarlane et al., 2009). This parasite has 

also been associated with mild focal eosinophilic and granulomatous inflammation in 

13.8% (n=355) of harbour seals from the coast of Germany (Siebert et al., 2007). C. 

australe has been identified in South American sea lions, South American fur seals and 

Southern elephant seals from different locations of the Argentinian and Uruguayan 

coasts; and New Zealand sea lions (Garcia-Varela et al., 2005; Sardella et al., 2005; 

McFarlane et al., 2009). Likewise, C. evae has been described in South American fur 

seals and Leopard seals (Nickol et al., 2002; Garcia-Varela et al., 2005; Aznar et al., 

2006). Even though C. cetaceum (syn. Polymorphus arctocephali) has been generally 

found in cetaceans, it has been described in brown fur seals and South American fur 

seals (Garcia-Varela et al., 2005; Sardella et al., 2005). 

Bolbosoma sp. has been recorded in spotted seals and Northern fur seals. Two 

species of Bolbosoma, B. borbrovi and B. nipponicum, have also been identified in 

Northern fur seals (Ionita et al., 2008). In this study, differences in density, maturity and 

reproductive stages at different levels of the intestines were observed, revealing there is 

still much to learn about the biology of these widespread and unusual parasites, and the 

potential effects on the health of the definitive hosts (McFarlane et al., 2009) 

 

6.4. Arthropods 

Arthropods are organisms generally associated with ectoparasitism in vertebrates 

(Taylor et al., 2007). However, some of these parasites are the cause of endoparasitic 

infestation in marine mammals. They parasitise the nasal passages, trachea, bronchi and 

occasionally in bronchioles and lungs of pinnipeds and cannot survive outside the moist 
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environment of their host (Geraci and St Aubin, 1987). Within the group of 

endoparasite arthropods, the lung mite Halarachne sp. has been described in Caspian 

seals (Kuiken et al., 2006) and Halarachne laysanae in Hawaiian monk seals (Banish 

and Gilmartin, 1992; Fowler and Miller, 2003). Similarly, the mites Orthohalarachne 

attenuate and O. diminuata have been found in the nasal turbinates, trachea and bronchi 

of Northern fur seal pups (Fowler and Miller, 2003; Kelly et al., 2005; Spraker and 

Lander, 2010). Histologic lesions associated with these parasites are mild 

hymphoplasmocytic rhinitis although they can cause enough damage to mucous 

membranes to affect the animal´s health adversely (Geraci and St Aubin, 1987). In the 

Southern region, Halarachne spp. have been reported in Weddell seals, O. diminuata in 

Sub Antarctic fur seals and O. magellanica in Southern sea lion (McFarlane et al., 

2009). 

In summary, although the current available information on the presence and 

distribution of parasites in Antarctic pinnipeds, as opposed to their worldwide 

counterparts, is limited, as mentioned above, several parasites have been described in 

Antarctic populations and they are summarised in tables 5 and 6. 

 

Table 5: Parasites described in Antarctic fur seals (Arctocephalus gazella) 

Parasite Agent References 

Apicomplexa  

Sarcocystis richardi Dailey, 2001; McFarlane et al., 2009 

Nematodes  

Contracaecum ogmorhini Mattiucci et al., 2003; Nadler et al., 2005; Mattiucci and Nascetti, 

2007 

Trichinella nativa Dailey, 2001 

Cestodes  

Phyllobothrium delphini Dailey, 2001; McFarlane et al., 2009 

Monorygma grimaldi McFarlane et al., 2009 

Acanthocephala 

Corynosoma arctocephali Garcia-Varela et al., 2005; McFarlane et al., 2009 

Corynosoma pseudohamanni Garcia-Varela et al., 2005; McFarlane et al., 2009 
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Table 6: Parasites described in Antarctic phocids 

Parasite Agent Hosts References 

Apicomplexa   

Isospora miroungae Southern elephant seals Drozdz, 1987 

Eimeria weddellii 

Eimeria arctowkii 

Eimeria sp. 2 

Eimeria sp. 3 

Weddell seals McFarlane et al., 2009 

McFarlane et al., 2009 

Drozdz, 1987 

Drozdz, 1987 

Eimeria sp. 1 Crabeater seals Drozdz, 1987 

Sarcocystis hydrurgae Leopard seals Dailey, 2001; McFarlane et al., 2009 

Nematodes   

Anisakis pegreffii Leopard seals Dailey, 2001 

Anisakis simplex C Southern elephant seals Mattiucci and Nascetti, 2007 

Contracaecum mirounga 

Contracaecum oghmorhini 

Southern elephant seals Mattiucci et al., 2003; Nadler et al., 2005; 

Mattiucci and Nascetti, 2007; McFarlane et al., 

2009 

Contracaecum radiatum Leopard seals 

Weddell seals 

Mattiucci et al., 2003; Nadler et al., 2005; 

Mattiucci and Nascetti, 2007; McFarlane et al., 

2009 

Contracaecum osculatum  Southern elephant seals 

Leopard seals 

Nadler et al., 2000b; Mattiucci et al., 2003; 

Nadler et al., 2005 

Contracecum osculatum D 

Contracecum osculatum E 

Weddell seals Mawson, 1953; Orecchia et al., 1994; Fauquier et 

al., 2004; Nadler et al., 2005; Mattiucci and 

Nascetti, 2007; Mattiucci et al., 2008; Spraker and 

Lander, 2010 

Pseudoterranova decipiens Leopard seals Dailey, 2001 

Pseudoterranova decipiens E Weddell seals Mattiucci and Nascetti, 2007 

Uncinaria sp. 

Uncinaria hamiltoni 

Southern elephant seals Beron-Vera et al., 2004; McFarlane et al., 2009 

 

Filaria sp. Southern elephant seals Mawson, 1953; McFarlane et al., 2009 

Parafilaroides hydrurgae Leopard seals Mawson, 1953, Dailey, 2006; McFarlane et al., 

2009 

Trichinella nativa Leopard seals Dailey, 2001 

Cestodes   

Diphyllobothrium lashleyi 

Diphyllobothrium mobile 

Weddell seals McFarlane et al., 2009 

Diphyllobothrium lobodoni Crabeater seals Iurakhno and Mal´tsev, 1994 

Glandicephalus antarticus Ross seals Iurkhano and Mal'tsev, 1995; McFarlane et al., 

2009 

Glandicephalus perfoliatus Weddell seals Iurkhano and Mal'tsev, 1995; McFarlane et al., 

2009 

Baylisiella tecta 

Flexoborhrium microovatum 

Southern elephant seals Wojciechowska and Zdzitowiecki, 1995 

Baylisia baylisiis Crabeater seals McFarlane et al., 2009 

Phyllobothrium spp. Weddell seals McFarlane et al., 2009 

Phyllobothrium delphini Southern elephant seals 

Leopard seals 

Dailey, 2001; McFarlane et al., 2009 

Trematodes   

Ogmogaster antarticus Weddell seals McFarlane et al., 2009 

Orthosplanchnus sp. Weddell seals McFarlane et al., 2009 
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continue Table 6   

Parasite Agent Hosts References 

Acanthocephala   

Corynosoma arctocephali Crabeater seals 

Leopard seals 

Garcia-Varela et al., 2005; McFarlane et al., 2009 

Corynosoma bullosum Crabeater seals 

Weddell seals 

Southern elephant seals 

Garcia-Varela et al., 2005; McFarlane et al., 2009 

Corynosoma hamanni Crabeater seals 

Leopard seals 

Ross seals 

Weddell seals 

Garcia-Varela et al., 2005; McFarlane et al., 2009 

Corynosoma pseudohamanni Crabeater seals 

Leopard seals 

Ross seals 

Weddell seals 

Southern elephant seals 

Garcia-Varela et al., 2005; McFarlane et al., 2009 

Corynosoma semerne Southern elephant seals McFarlane et al., 2009 

Corynosoma australe Southern elephant seals Garcia-Varela et al., 2005; Sardella et al., 2005; 

McFarlane et al., 2009 

Corynosoma evae Leopard seals Nickol et al., 2002; Garcia-Varela et al., 2005; 

Aznar et al., 2006 

Arthropods   

Halarachne spp. Weddell seals McFarlane et al., 2009 
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II. OBJECTIVES 

 

The Antarctic region is considered an isolated environment. Geographically, the 

Southern Ocean constitutes a closed ecosystem delimited by the Antarctic Convergence, 

acting as a biological barrier that hampered the crossing of birds and mammals. 

However, the risk of introduction and spread of diseases by wildlife and humans have 

been recognised as a concern by some specialists for decades (Shirihai, 2002). Disease-

causing agents are present in Antarctic wildlife, some of which might be restricted to 

this region, while others may have a worldwide distribution. Until recent, no diseases 

have been demonstrated to be introduced or spread by human activities to Antarctic 

wildlife, although no systematic studies have been undertaken. In addition of mortality 

events in which diseases have been suspected and reported in Antarctic wildlife, only a 

few have been investigated and the causes of others are still not known, indicating a 

lack of information related to diseases affecting Antarctic populations (Kerry and 

Riddle, 2009). 

In this aspect, the Antarctic Treaty indicates that science is to be conducted to 

“preservation and conservation of the living resources” (Article IX) (Rothwell, 2009). 

More recently, the report of the Committee for Environmental Protection (CEP IV) 

celebrated in Madrid, Spain (June 9-13, 2003) during the XXVI Antarctic Treaty 

Consultative Meeting indicate that “…Parties should continue to conduct research 

relevant to cumulative impacts, and in particular to study disturbed versus undisturbed 

areas…”. It also indicates that “…marine species may be given special protection… 

Marine mammals are considered good sentinels of aquatic ecosystems. However, 

information about diseases in Antarctic marine mammals is scarce and fragmented, 

therefore it is important to monitor their health in order to identify potential sources of 

infection, routes of transmission of disease causing agents and dissemination of 

diseases. 

To contribute increasing the information related to diseases affecting Antarctic 

pinnipeds and in response to the demands of the Antarctic Treaty System through the 

Consultative Parties, the main objective of this Doctoral Thesis has been to evaluate the 

presence and distribution of relevant parasites in Antarctic pinnipeds. In addition, to 

determine whether the presence of some of the parasites in the Antarctic fauna are 

endemic or could be influenced by the human impact in the region, some of the 
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parasites investigated are zoonotic agents closely related to antropogenic impact and 

environmental contamination worldwide. For these purposes, faecal and blood samples 

of pinnipeds have been analysed. Samples of the phocids Weddell seals (Leptonychotes 

weddellii), Crabeater seals (Lobodon carcinophagus), Leopard seals (Hydrurga 

leptonyx), Southern elephant seals (Mirounga leonina) and the otariid Antarctic fur 

seals (Arctocephalus gazella) were obtained in the years of 2006, 2007, 2010 and 2011 

from different locations along the West coast of Antarctic Peninsula in a latitudinal 

gradient covering 5 degrees of latitude (ranging from 62º15’S; 58º37’W-67º46’S; 

68º43’W), distances greater than 600 km, differences in mean annual temperatures of up 

to 2ºC and marked difference in human activity. This study was addressed by the 

following specific objectives. 

 

Objective 1 (Chapter 2) 

Detection of the systemic parasite Toxoplasma gondii in Antarctic pinnipeds 

To fulfil the first objective aiming at the detection of systemic parasites commonly 

linked to environmental contamination possibly due to antropogenic activities in 

Antarctic pinnipeds, we investigated the presence of the zoonotic protozoan 

Toxoplasma gondii. The determination was based on the detection of specific antigen 

IgG against T. gondii in sera of samples collected from different pinniped species 

distributed along the South Shetland Islands and vicinities of the Antarctic Peninsula. 

 

Objective 2 (Chapter 3, 4, 5 and 6) 

Detection and characterisation of gastrointestinal parasites in Antarctic pinnipeds 

To fulfil the second objective the following sub objectives were proposed: 

 

Sub Objective 2.1 (Chapter 3 and 4) 

Detection and characterisation of the zoonotic parasites Cryptosporidium and 

Giardia in faeces 

The detection of the two zoonotic protozoans Crypstosporidium sp. and Giardia sp. 

in faecal samples of Antarctic pinnipeds was performed using two different diagnostic 

techniques, immnunofluorescence staining and PCR. In addition, to identify the 
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genotypes involved in infection and evaluate if could be related to environmental 

contamination in the Antarctic region, molecular characterisation was also performed. 

 

Sub Objective 2.2 (Chapter 5 and 6) 

Detection of helminth parasites in faecal samples 

To complete the second objective, a survey was conducted to obtain information 

related to gastrointestinal parasites found in Antarctic pinnipeds. For this purpose, 

coprological techniques were used for detection of helminth parasites present in faecal 

samples. In addition, molecular techniques were also used in order to obtain more 

information and complete the identification of some of the parasites, previously 

identified morphologically. 
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ABSTRACT 

The presence of Toxoplasma gondii antibodies was investigated in Antarctic marine 

mammals. Two hundred and eleven sera from different species of pinnipeds collected in 

years 2007, 2010 and 2011 from different locations in the South Shetland Islands and 

Antarctic Peninsula were analysed using a commercially available agglutination test kit. 

The presence of antibodies (titres ≥ 1:25) against T. gondii was detected in a total of 28 

animals (13.3%). Amongst animal species, percentages of detection were higher in 

Southern elephant seals (Mirounga leonina) (76.9%; 10/13) followed by Weddell seals 

(Leptonychotes weddellii) (41.9%; 13/31). Antibodies were also found in 4 of 165 

(2.4%) Antarctic fur seals (Arctocephalus gazella) and 1 of 2 Crabeater seals (Lobodon 

carcinophaga). Highest titres (1:100–1:800) were also observed in Southern elephant 

seals and Weddell seals. To the best of our knowledge this is the first report on the 

detection of antibodies against T. gondii in Antarctic marine mammals. 
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1. Introduction 

Toxoplasma gondii is an apicomplexan parasite with a worldwide distribution 

which affects a wide range of animals, including domestic and wild species and 

humans. In marine mammals, infections with T. gondii cause morbidity and mortality 

(Dubey, 2010). 

In pinnipeds, clinical toxoplasmosis has been reported in a Northern elephant seal 

(Mirounga angustirostris) (Dubey et al., 2004), a Northern fur seal (Callorhinus 

ursinus) (Holshuh et al., 1985), a Pacific harbor seal (Phoca vitulina richardsi) (Van 

Pelt and Dietrich, 1973), a Hawaiian monk seal (Monachus schauinslandi) (Honnold et 

al., 2005) and California sea lions (Zalophus californianus) (Ratcliffe and Worth, 1951; 

Dubey et al., 2003). In addition, numerous serological studies have shown the presence 

of antibodies against T. gondii in true seals (Fam. Phocidae), eared seals (Fam. 

Otariidae) and walruses (Fam. Odobenidae) from different geographical areas which 

include USA, North-western Hawaiian islands, Japan, Svalvard, the Canadian Arctic, 

Mexico and the North-eastern Atlantic Ocean (Dubey, 2010; Jensen et al., 2010; 

Cabezon et al., 2011; Simon et al., 2011; Alvarado-Esquivel et al., 2012). The range of 

pinniped species in which T. gondii antibodies have been found include the Pacific 

harbor seal (Phoca vitulina richardsi) (Lambourn et al., 2001; Dubey et al., 2003), 

western Atlantic harbor seal (Phoca vitulina concolor) (Measures et al., 2004), Kuril 

harbour seal (Phoca vitulina stejnegeri) (Fujii et al., 2007), ringed seal (Pusa hispida), 

bearded seal (Erignathus barbatus), spotted seal (Phoca largha) (Dubey et al., 2003), 

grey seal (Halichoerus grypus) (Measures et al., 2004; Cabezon et al., 2011), hooded 

seal (Cystophora cristata) (Measures et al., 2004), Hawaiian monk seal (M. 

schauinslandi) (Aguirre et al., 2007), eastern-Atlantic harbor seal (Phoca vitulina 

vitulina) (Cabezon et al., 2011), California sea lion (Z. californianus), and the walrus 

(Odobenus rosmarus) (Dubey et al., 2003). 

To the best of our knowledge, no investigations have been carried out in Antarctic 

pinnipeds. Marine mammals are regarded as good bio-indicators of environmental 

changes. However, the information available about the health status of the Antarctic 

marine mammals is very scarce and fragmented (Kerry et al., 2000). In addition, human 

derived activities in this pristine environment could be compromising these populations. 

In this sense recommendations have been made regarding the importance of health 

monitoring the Antarctic fauna (Anon, 2003). The purpose of this study was to 
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investigate the presence of T. gondii antibodies in pinnipeds from different regions in 

the Antarctic Peninsula. 

 

2. Materials and Methods 

2.1. Pinniped samples 

Blood samples were collected during the month of February of years 2007, 2010 

and 2011 from a total of 211 animals (Table 7): 31 Weddell seals (L. weddellii), 13 

Southern elephant seals (M. leonina), 2 Crabeater seals (L. carcinophagus) and 165 

Antarctic fur seals (A. gazella) from different locations along the west coast of the 

Antarctic Peninsula in a latitudinal gradient covering 5º of latitude (ranging from 

62º15´S; 58º37´W-67º46´S; 68º43´W), distances greater than 600 km and differences in 

mean annual temperatures of up to 2ºC. 

For the collection of samples, animals were randomly selected, captured and 

physically restrained. All captured animals were tagged with a coloured and numbered 

plastic tag for tracking purposes, ensuring that no animal was sampled more than once. 

Permissions for these activities were granted by the Spanish Polar Committee 

complying with the Antarctic Treaty System. Blood samples were centrifuged (700 × g 

for 10 min) and the sera stored at −20ºC until analysed. 

 

2.2. Serological examination 

Detection of antibodies against T. gondii was performed using a commercial kit 

based on detection of specific IgG from sera by direct agglutination (Toxo-Screen DA, 

BioMerieux®, France) according to the manufacturer’s instructions. For initial 

screening, 1:25 and 1:100 final dilutions of sera were tested. Samples that showed 

agglutination at 1:25 were considered positive (see Section 4) and further tested for titre 

determination at two-fold serial dilutions from 1:25 to 1:6,400. All positive samples 

were retested to confirm the reliability of the results. 
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Table 7: Distribution of samples and Toxoplasma gondii antibody detection results in 

Antarctic pinnipeds 

*Geographical coordinates: Deception Island 63º00´S; 60º40´W; Ronge Island 64º40’S; 62º40’W; Avian 

Island 67º46’S; 68°43’W; King George Island 62°15’S; 58°37’W; Anvers Island 64°48'S, 63°46'W; 

Barrientos Island 62˚24’S, 59˚44’W. 

 

2.3. Statistical analysis 

Seropositivity data with respect to animal species and year were analysed by pairs 

using the Chi-square or Fisher’s exact test using the Statgraphic Centurion XVI version 

16.1.11, statistical software (©StatPoint Technologies, Inc., 1922–2010, Warrenton, 

VA, USA). Differences were considered significant at a probability level of P < 0.05. 

 

3. Results 

Antibodies against T. gondii were detected in 28 (13.3%) of the 211 Antarctic 

pinniped samples collected (Table 7). Percentages of detection, with titres ≥1:25, were 

significantly higher in Southern elephant seals (76.9%, 13/10), than in Weddell seals 

Animal species Location* Year No. Samples Positive % Positive

Weddell seal (Leptonychotes weddellii)

Deception Island, South Shetland Islands 2007 8 0 0

2010 14 9 64.3

2011 6 2 33.3

Ronge Island, Errera Channel 2010 1 0 0

Avian Island, Marguerite Bay, Antarctic Peninsula 2010 2 2 100

Total 31 13 41.9

Southern elephant seal (Mirounga leonina)

King George Island, South Shetland Islands 2007 6 5 83.3

Deception Island, South Shetland Islands 2010 1 1 100

2011 1 1 100

Avian Island, Marguerite Bay, Antarctic Peninsula 2010 4 2 50.0

Anvers Island, Palmer Archipelago, Antarctic Peninsula 2011 1 1 100

Total 13 10 76.9

Crabeater seal (Lobodon carcinophaga)

Deception Island, South Shetland Islands 2007 1 0 0

2011 1 1 100

Total 2 1 50.0

Antarctic fur seal(Arctocephalus gazella)

Deception Island, South Shetland Islands 2007 40 0 0

2010 44 1 22.7

2011 48 2 41.7

Avian Island, Marguerite Bay, Antarctic Peninsula 2010 14 0 0

2011 15 1 66.7

Barrientos Island, Aitcho Islands, South Shetland Islands 2011 4 0 0

Total 165 4 2.4

Total 211 28 13.3
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(41.9%, 13/31) (P < 0.05), and than in Antarctic fur seals (2.4%, 4/165) (P < 0.001). In 

Crabeater seals antibodies were found in 1 of the 2 animals tested. Titres ranged from 

1:25 to 1:800, most animals showing titres of 1:25 (10/28) and 1:50 (8/28). End-point 

titres of 1:100 (n=2) and 1:400 (n=1) were found in Southern elephant seals; and of 

1:100 (n=5), 1:200 (n=1) and 1:800 (n=1) in Weddell seals. 

Seropositive animals were recorded each year of the study, not finding any 

statistical differences, and in four of the six locations from which samples were 

screened: Avian Island (5/35), Deception Island (17/165), King George Island (5/6), and 

Biscoe Point (1/1). 

 

4. Discussion 

To the best of knowledge, the study presented here constitutes the first report on the 

presence of T. gondii antibodies in Antarctic pinnipeds. Our serological data using 

agglutination suggest an unexpected high level of exposure in these populations, 

especially in Southern elephant seals and in Weddell seals where T. gondii antibodies 

were found in 76.9% and 41.9% of the samples analysed, respectively. In Crabeater 

seals, one of the two animals (50%) analysed also showed antibodies against T. gondii. 

Direct agglutination has been widely used to detect T. gondii antibodies in a variety of 

marine mammals (Mikaelian et al., 2000; Dubey et al., 2003; Thoisy et al., 2003; 

Measures et al., 2004; Dubey et al., 2005; Aguirre et al., 2007; Dubey et al., 2008). It 

has been reported that amongst different serological tests available, the agglutination 

test is most useful because it is species independent (does not require species specific 

conjugates), sensitive, and specific (Desmonts and Remington, 1980; Dubey, 2002). In 

particular, the commercial kit used in the present study has proven its usefulness at 

detecting T. gondii antibodies in experimentally infected seals (Gajadhar et al., 2004) 

and in Arctic seals (Jensen et al., 2010; Simon et al., 2011). Most authors have 

considered titres of 1:25 as positive, although as low as 1:2 or 1:5 have also been 

reported in other hosts (Dubey and Jones, 2008). In addition, an agglutination titre of 

1:25 was found in a beluga whale (Delphinapterus leucas) with confirmed 

toxoplasmosis, which led Mikaelian et al. (2000) to suggest that a low titre might be 

indicative of infection. Therefore in this study evidence of exposure was considered at 

titres ≥1:25. We found that most titres were low (1:25, 1:50 and 1:100). This is 

consistent with previous studies using the direct agglutination test in which low titres 
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have been reported in pinnipeds (Dubey, 2010; Jensen et al., 2010; Cabezon et al., 2011; 

Simon et al., 2011; Alvarado-Esquivel et al., 2012). 

Seropositive animals were recorded in most of the locations included in the study. 

However, Palacios et al. (2010) did not find antibodies against T. gondii in penguins in 

these locations. The Antarctic pinnipeds analysed here, particularly Weddell seals and 

Southern elephant seals, have a widespread and circumpolar distribution around 

Antarctica, as well as occurring on Sub Antarctic islands. Occasional wandering 

individuals have also been recorded as far as Australia, New Zealand, Africa, and South 

America but seasonal movements are poorly known (Shirihai, 2002). 

The route of T. gondii infection for marine mammals is not known. Felids are the 

only known definitive host for this parasite, playing a crucial role contaminating the 

environment with oocysts excreted in their faeces (Dubey, 2010). It has been suggested 

that contamination of sea water by freshwater run-off and sewer discharge carrying T. 

gondii oocysts from the terrestrial environment may result in infection in marine 

mammals (Miller et al., 2002; Conrad et al., 2005; Dabritz et al., 2007). Furthermore it 

has been experimentally demonstrated that T. gondii oocysts can sporulate in sea water 

and remain infectious for mice for up to 24 months (Lindsay and Dubey, 2009). There is 

no wild felid fauna in Antarctica and in 1991 the Madrid Protocol on Environmental 

Protection to the Antarctic banned all introduced species from the Antarctic to protect 

the native wildlife from introduced diseases, including cats. However, felids are present 

in the Sub Antarctic regions, areas within the normal distribution range of the animal 

species analysed here. Recently, Afonso et al. (2007) reported high seroprevalence 

values (51.09%) in feral cats in the Kerguelen archipelago in the Sub Antarctic region. 

Therefore exposure to Toxoplasma might have occurred outside Antarctica and is in 

agreement with the higher detection rates in Southern elephant seals and Weddell seals 

found here, which show wider distribution and migratory ranges. In addition, the 

differences observed here between the animal species analysed could be due to their 

different feeding habits. While Antarctic fur seals and Crabeater seals feed primarily on 

krill taking occasionally fish and cephalopods, the diet of the Weddell seal consists 

mainly on fish, eating also cephalopods and crustaceans and Southern elephant seals eat 

mainly cephalopods and fish consuming occasionally shellfish (Shirihai, 2002). It has 

been shown that T. gondii oocysts may be concentrated by marine filter-feeding 

invertebrates, bivalve molluscs, both under laboratory conditions (Lindsay et al., 2001; 
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Arkush et al., 2003; Lindsay et al., 2004) and in the wild (Miller et al., 2008) which may 

act as a source of infection for marine wildlife. In our study, only Southern elephant 

seals might sporadically consume shellfish, not representing therefore a likely route of 

transmission for Antarctic pinnipeds. However, recent studies performing experimental 

exposure of filter feeder fish to T. gondii oocysts have indicated that migratory fish may 

play a role in the transmission of T. gondii in the marine environment (Massie et al., 

2010). 

Further investigations are needed to elucidate the likely transmission pathways of 

T. gondii in marine mammals as well as the presence of T. gondii in the Antarctic 

marine ecosystem. 
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ABSTRACT 

The presence of Cryptosporidium and Giardia in 221 faecal samples from different 

species of Antarctic pinnipeds was investigated by immunofluorescence microscopy 

and PCR. Cryptosporidium, a skunk-like genotype, was detected only in a Southern 

elephant seal. Giardia was not detected. This is the first report of a Cryptosporidium sp. 

in Antarctic marine mammals. 
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Cryptosporidium and Giardia are ubiquitous protozoan parasites which infect a 

wide variety of hosts, including humans and domesticated and wild animals (Xiao and 

Fayer, 2008). In recent years, increasing research has been carried out in marine 

mammals since they may act as indicator species for environmental contamination with 

these waterborne parasites (Appelbee et al., 2005). Cryptosporidium oocysts and/or 

Giardia cysts have been identified in faeces or intestinal contents of various animal 

species, including an Australian dugong (Dugong dugon), California sea lions 

(Zalophus californianus), ringed seals (Phoca hispida), harp seals (Phoca 

groenlandica), grey seals (Halichoerus grypus), hooded seals (Cystophora cristata), 

bearded seals (Erignathus barbatus), and harbor seals (Phoca vitulina), as well as right 

whales (Eubalaena glacialis) and bowhead whales (Balaena mysticetus) from different 

locations worldwide (reviewed in references Appelbee et al., 2005; Hughes-Hanks et 

al., 2005; Dixon et al., 2008). However, no studies have been conducted on Antarctic 

marine mammals. Regarding the species or genotypes involved, the presence of 

zoonotic assemblages A and B of Giardia duodenalis has been commonly reported 

(Appelbee et al., 2005; Bogomolni et al., 2008, Dixon et al., 2008; Lasek-Nesselquist et 

al., 2008), as have assemblages F (Bogomolni et al., 2008) and D and novel genotypes 

related to the canine assemblages C and D (Gaydos et al., 2008). Cryptosporidium 

hominis, a species thought to be infective exclusively for humans, nonhuman primates, 

and gnotobiotic pigs (Morgan et al., 2000), has been identified only in a dugong (Hill et 

al., 1997). Other species reported include Cryptosporidium muris and two novel 

genotypes, designated Cryptosporidium sp. seal 1 and 2 (Santin et al., 2005; Bogomolni 

et al., 2008; Dixon et al., 2008). These studies indicate that marine mammals could 

represent potential zoonotic reservoirs for Cryptosporidium and Giardia, but they also 

reflect that human activities may have an impact on the health of marine mammals and 

the environment. It is therefore important to monitor the health status of wildlife in 

general and identify potential sources of infection and routes of transmission or 

dissemination, particularly in unspoiled areas. 

In the present study, we investigated the presence of the zoonotic parasites 

Cryptosporidium and Giardia in Antarctic pinnipeds in order to determine the 

occurrence of these parasites, to identify the species or genotypes involved in infection, 

and to evaluate whether they might be linked to anthropogenic activities. 
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A total of 221 fresh faecal samples from different pinnipeds populations from 

different locations along the west coast of the Antarctic Peninsula (ranging from 

62°15´S to 58°37´W-67°46´S and 68°43´W) (Fig. 21) were collected from the ground 

during the month of February in 2006 and 2007. These included samples from 31 

Weddell seals (Leptonychotes weddellii), 2 Crabeater seals (Lobodon carcinophagus), 4 

leopard seals (Hydrurga leptonyx), 53 Southern elephant seals (Mirounga leonina), and 

131 Antarctic fur seals (Arctocephalus gazella). 

 

Figure 21: Locations of sampling areas and animal distribution (adapted from Wikimedia 

Commons [Giovanni Fattori]). 1, Deception Island, South Shetland Islands; 2, King George Island, 

South Shetland Islands; 3, Hannah Point, Livingston Island, South Shetland Islands; 4, Byers Peninsula, 

Livingston Island, South Shetland Islands; 5, Cape Primavera, Antarctic Peninsula; 6, Ronge Island, 

Errera Channel; 7, Paradise Bay, Antarctic Peninsula; 8, Galindez Island, Argentine Islands; 9, Avian 

Island, Marguerite Bay, Antarctic Peninsula.  Weddell seal (Leptonychotes weddellii);  Crabeater 

seal (Lobodon carcinophagus);  Leopard seal (Hydrurga leptonyx);  Southern elephant seal 

(Mirounga leonina);  Antarctic fur seal (Arctocephalus gazella). 

 

Faecal slides were prepared on the same day of sample collection by spreading in 

triplicate approximately 40 µl of homogenized sample onto a microscope glass slide and 

fixing in methanol and were stored at -20°C. Faecal samples were kept at -4°C without 

preservatives for periods of up to 2 months until they were analysed. 
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1. Detection of Cryptosporidium and Giardia 

Immunofluorescence staining was performed using the Crypto/Giardia Cel IF test 

(Cellabs Pty. Ltd., Brookvale, Australia) on faecal slides. The numbers of oocysts/cysts 

on slides were determined at magnification x400, and the means for 20 fields were 

calculated. If no oocysts/cysts were seen in 20 fields, the entire slide was examined. To 

approximately calculate the number of oocysts, the following categories were 

established: no oocysts; <1 oocyst per field; 1 to 10 oocysts per field; 11 to 100 oocysts 

per field; and >100 oocysts per field, which corresponded to approximately 0, <10
3
, 10

3
 

to 10
4
, 10

4
 to 10

5
, and >10

5
 oocysts per g (or per ml) of faeces, respectively, performing 

spiking trials with control C. parvum oocysts in negative seal faecal samples. Faecal 

slides were prepared as described above. 

DNA purification was performed using 200 to 300 µl of homogenized faeces and 

comprised oocyst/cyst disruption with zirconia beads in the presence of guanidinium 

thiocyanate, followed by purification with activated silica as previously described 

(McLauchlin et al., 1999). Positive (both positive faecal samples, bovine and canine, 

and control oocysts/cysts of C. parvum and G. duodenalis assemblage D) and negative 

controls were included in each batch. 

For Cryptosporidium, a nested PCR procedure was performed for amplification of 

an 827 to 840 bp polymorphic fragment of the 18S ribosomal DNA (rDNA) (Xiao et al., 

1999). In addition, a 446 bp fragment of the HSP70 gene was amplified using the 

primers HSPF4 and HSPR4 (Morgan et al., 2001). For Giardia, a nested procedure was 

performed to amplify a 511 bp fragment of the beta-giardin gene (Lalle et al., 2005). 

Positive and negative controls were included for all PCRs. 

The presence of Cryptosporidium oocysts was detected by immunofluorescence 

and PCR only in one sample (0.45%) from a Southern elephant seal collected in the 

southernmost sampling area, Avian Island, in 2006. The presence of Giardia was not 

detected by either method in any of the samples analysed. These results suggest that the 

presence of these parasites in these regions is rare. The detection methods used in this 

study are widely applied and have proven very sensitive. However, we did not perform 

concentration of the faecal material or purification of oocysts/cysts, and therefore 

samples with very low numbers of oocysts/cysts might not have been detected. 

Nevertheless, we consider the application of both immunofluorescence microscopy and 

PCR to enhance the detection power. To our knowledge, our study constitutes the first 
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report of the presence of Cryptosporidium in Antarctic marine mammals. Few studies 

have been conducted in this respect; Fayer (2008) has indicated that Antarctica was the 

only continent in which the presence of Cryptosporidium had not been reported. 

However, recently the presence of Cryptosporidium oocysts in Antarctic adelie 

(Pygoscelis adeliae) and gentoo penguins (Pygoscelis papua) from Ardley Island, South 

Shetlands (62°13´S, 58°54´W) has been described (Fredes et al., 2007b; Fredes et al., 

2008), although other studies in different locations have reported the absence of 

Cryptosporidium and/or Giardia in gentoo and adelie penguins and in chinstrap 

penguins (Pygoscelis antarctica) (Fredes et al., 2007a; Palacios et al., 2010). In contrast 

to the results presented here, prevalence rates of Cryptosporidium in pinnipeds from 

other less-preserved areas range from 16 to 24% (Hill et al., 1997; Deng et al., 2000; 

Hughes-Hanks et al., 2005; Santin et al., 2005; Bogomolni et al., 2008), whereas for 

Giardia, they range from 12 to 64.5% (Olson et al., 1997; Measures and Olson, 1999; 

Hughes-Hanks et al., 2005; Bogomolni et al., 2008). This indicates that the Antarctic 

fauna has suffered from a lower level of exposure to these agents, which is in agreement 

with the relative geographical and biological isolation of the Antarctic continent. 

However, further studies are needed to investigate their potential sources of infection 

and to monitor their possible introduction and dissemination in this singular 

environment.  

The number of oocysts observed per field was 5, which approximately 

corresponded to 10
3
 to 10

4
 oocysts per g of faeces, suggesting infection in this animal 

rather than passive transfer. In contrast to other animal species analysed in this study, 

whose migratory and foraging ranges seem to be confined to the Antarctic region, the 

Southern elephant seal is widely distributed in the Southern hemisphere. Therefore, 

infection in this animal might have been acquired outside Antarctica and introduced into 

the area. Nevertheless, this might have important implications for the Antarctic fauna, 

since these animals can act as reservoirs of the disease to those in close vicinity and also 

disseminate these pathogens to different geographic locations in the marine and 

terrestrial environments. 

 

2. Molecular characterisation of the Cryptosporidium isolate 

18S rDNA and HSP70 positive amplicons were directly sequenced in both 

directions at the Unidad Genómica del Parque Científico de Madrid. Sequences were 
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analysed using the BioEdit Sequence Alignment Editor software program, v.7.0.1 

(Fredes et al., 2008; Hall, 1999). Multiple alignments were performed using the 

ClustalW software program, and neighbor-joining trees were constructed from the 

aligned sequences using the MEGA software program, version 4 (Tamura et al., 2007). 

Analysis of the 828 bp 18S rDNA fragment revealed a 99.5% to 99.6% similarity to the 

sequences of the Cryptosporidium skunk genotype published in GenBank, isolated from 

a skunk (accession no. AY120903), from environmental samples (AY737559 and 

EU825736), and from a human patient (EU437415). The sequence obtained for this 

isolate showed the deletion of a T base at position 285 with respect to the sequence 

under accession no. AY120903 and the insertion of a T base at positions 456, 457, and 

508 with respect to all four sequences. The neighbor-joining analysis of the multiple 

alignment performed with Cryptosporidium sequences retrieved from the GenBank 

database (Fig. 22) showed that this genotype clusters closely with other intestinal 

Cryptosporidium species, such as C. parvum, C. hominis, C. wrairi, C. meleagridis, and 

C. suis, but constitutes a separate, distinct group. 

Sequence and phylogenetic analysis of the HSP70 gene confirmed these results. 

The highest similarities, 99.8%, were observed with the Cryptosporidium skunk 

genotype isolated from a skunk (accession no. AY120917) and from a human patient 

(EU437414). The sequence obtained in this study varied by a T/C substitution at 

position 75 and an A/G substitution at position 240 with respect to the sequence under 

accession no. AY120917 and EU437414, respectively. Previously, the Cryptosporidium 

skunk genotype had been isolated from skunk, raccoon, eastern squirrel, opossum, river 

otter (Xiao and Fayer, 2008), environmental samples (Perz and Le Blancq, 2001; 

Jellison et al., 2009), and, also recently, from humans (Robinson et al., 2008; Davies et 

al., 2009). It was initially suggested that this genotype might be a fur-bearing wild 

mammal host-adapted type with no significance for public health (Xiao and Fayer, 

2008). However, the identification of this genotype in a human patient who had suffered 

from diarrhea (Robinson et al., 2008) demonstrates that it is capable of causing infection 

in other hosts and could disseminate through different routes of transmission. More 

molecular data identifying the species and genotypes present in marine mammals are 

needed to compare with new and existing data from humans and other terrestrial 

animals in order to evaluate the potential impact of human activities on these 

populations. 
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Figure 22: Phylogenetic relationships between the Southern elephant seal isolate ANT 80 

(in box) and published Cryptosporidium species or genotypes, inferred by neighbor-joining 

analysis of the 18S rDNA fragment. Evolutionary distances were calculated by the 

Kimura-2 parameter model using Eimeria tenella as an outgroup. 

 

3. Nucleotide sequence accession numbers 

The nucleotide sequences generated in this study have been deposited in the 

GenBank database under accession numbers GQ421425 and GQ421426. 
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ABSTRACT 

A study was conducted to investigate the presence of Cryptosporidium and Giardia in 

Antarctic marine mammals. A total of 270 faecal samples from different species of 

pinnipeds from different locations in the South Shetland Islands and Antarctic Peninsula 

were analysed by immunofluorescence microscopy and PCR. Cryptosporidium was 

detected by PCR in three samples from Southern elephant seals (Mirounga leonina) and 2 

Weddell seals (Leptonychotes weddellii). However, no oocysts were observed in any of the 

samples by immunofluorescence microscopy. Molecular characterisation of the isolates, 

using the 18S rDNA, the HSP70 and the COWP loci, revealed the presence of a 

Cryptosporidium sp., previously reported from an Antarctic Southern elephant seal, in the 

elephant seals and a novel genotype in Weddell seals. Giardia could not be detected in any 

of the samples analysed. 
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1. Introduction 

Cryptosporidium spp. and Giardia duodenalis (syn. G. intestinalis, G. lamblia) are 

protozoan parasites which infect a wide variety of hosts including humans and 

domesticated and wild animals worldwide (Xiao and Fayer, 2008). Currently, the genus 

Cryptosporidium contains up to 22 species and over 40 genotypes, while Giardia 

duodenalis includes 7 assemblages or genotypes, designated A through G (Fayer, 2010; 

Fayer et al., 2010; Robinson et al., 2010; Feng and Xiao, 2011; Ren et al., 2012). In 

addition, an assemblage H has been recently described in seals (Lasek-Nesselquist et al., 

2010). Proper identification and characterisation of the species and genotypes involved in 

infection are needed to elucidate the routes of transmission. Traditionally, species were 

primarily differentiated according to host specificity, oocyst or cyst morphology and site of 

infection (Fayer, 2010). However, taxonomy based on these criteria has proven inadequate. 

Furthermore, genetic analysis has shown that these genera are complex. The advent of 

molecular characterisation tools has greatly contributed to establishing a correct taxonomy 

for both parasites setting the basis for a better understanding of the diseases they cause and 

their epidemiology. 

In the last years increasing research has been carried out on marine mammals since 

they may act as indicator species for environmental contamination with these waterborne 

parasites (Appelbee et al., 2005). Cryptosporidium spp. oocysts and Giardia spp. cysts 

have been identified in different pinniped species which include California sea lions 

(Zalophus californianus), bearded seals (Erignathus barbatus), ringed seals (Phoca hispida 

syn. Pusa hispida), harp seals (Pagophilus groenlandica), grey seals (Halichoerus grypus), 

hooded seals (Cystophora cristata), harbour seals (Phoca vitulina), mainly from different 

locations in North America and an Antarctic Southern elephant seal (Mirounga leonina) 

(reviewed in Chapter III). Molecular analyses identified Cryptosporidium muris and two 

Cryptosporidium seal genotypes, seal genotypes 1 and 2, in ringed seals in Canada (Santin 

et al., 2005). Recently, two additional novel Cryptosporidium genotypes have been 

described in an Antarctic Southern elephant seal (M. leonina) and in a harp seal (P. 

groenlandicus) from the Gulf of Maine (Chapter III; Bass et al., 2012). Giardia duodenalis 

Assemblage A was identified in harp and hooded seals from Canada (Appelbee et al., 

2005), Assemblage B in a harbour seal in the USA as well as in ringed seals in Canada, 

both Assemblages A and B in a harp seal and Assemblage F-like in mixed grey/harbour 

seal populations from beaches in the USA (Bogomolni et al., 2008; Dixon et al., 2008; 
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Lasek-Nesselquist et al., 2008). A further study has identified the canine genotype D and a 

novel genotype related to Assemblages C and D in faeces of harbour seals from 

Washington State´s marine waters (Gaydos et al., 2008). These studies highlight the need 

for more research that can provide additional information on the diversity and host range of 

these groups of parasites. 

The purpose of this study was to further investigate the presence of Cryptosporidium 

and Giardia in pinnipeds from different regions in the Antarctic Peninsula. 

 

2. Materials and Methods 

2.1. Faecal samples 

A total of 270 faecal samples from different pinniped populations from Deception 

Island, and other areas in the South Shetland Islands and Antarctic Peninsula were 

collected during the month of February in both 2010 and 2011 (Table 8). These included 

samples from Weddell seals (Leptonychotes weddellii), Southern elephant seals (M. 

leonina), and Antarctic fur seals (Arctocephalus gazella). Fresh samples were collected 

from the ground. 

After sample collection, faecal slides were prepared, fixed in methanol, and stored at 

−20 ºC until analysed. Faecal samples were kept at +4 ◦C without preservatives for periods 

up to 2 months when they were received and analysed in the laboratory. 

 

2.2. Cryptosporidium and Giardia detection and characterisation 

Immunofluorescence staining was performed using the Crypto/Giardia Cel IF Test 

(Cellabs Pty Ltd., Brookvale, Australia) according to the manufacturer’s instructions. 

Oocyst/cyst disruption and DNA purification from faecal samples were performed as 

described previously (McLauchlin et al., 1999). 

For Cryptosporidium detection and characterisation, a nested PCR procedure was 

performed for amplification of an 827–840 bp polymorphic fragment of the 18 rDNA 

(Xiao et al., 1999; Xiao et al., 2000). For further characterisation, a 446 bp fragment of the 

HSP70 and a 550 bp fragment of the COWP genes were amplified according to the 

protocols described by Morgan et al. (2001) and Pedraza-Díaz et al. (2001), respectively. 
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For Giardia, a nested procedure was performed to amplify a 511 bp fragment of the 

beta-giardin gene (Lalle et al., 2005). 

Positive (C. parvum and G. duodenalis assemblage D) and negative controls were 

included for all PCRs. A 5 µl aliquot of the PCR products was examined following 

electrophoresis in 1% agarose/ethidium bromide gels. 

Positive amplicons were purified using the GENECLEAN Turbo kit (QBiogene, CA, 

USA) according the manufacturer’s instructions and then directly sequenced in both 

directions using the Big Dye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, 

CA, USA) and a 3730 DNA analyser (Applied Biosystems, CA, USA) at the Unidad 

Genómica del Parque Científico de Madrid. Sequences were analysed using BioEdit 

Sequence Alignment Editor v.7.0.1 (7) (Hall, 1999). Multiple alignments were performed 

using the ClustalW program and neighbour-joining trees were constructed from the aligned 

sequences using the MEGA5 software (Tamura et al., 2011). Accession numbers of 

Genbank Cryptosporidium 18S rDNA sequences used in the analysis: C. andersoni 

(AF093496), C. baileyi (L19068), C. bovis (AY120911), C. canis (AB210854), C. 

cuniculus (EU437413), C. fayeri (AF112570), C. felis (AF108862), C. fragile 

(EU162751), C. galli (HM116388), C. hominis (AB369994), C. macropodum (AF513227), 

C. meleagridis (AF112574), C. molnari (HM243548), C. muris (AB089284), C. parvum 

(L16996), C. ryanae (AY587166), C. serpentis (AF151376), C. suis (AF115377), C. 

ubiquitum (AF442484), C. varanii (AF112573), C. wrairi (AF115378), C. xiaoi 

(FJ896050), Cryptosporidium sp. 80ANT (GQ421425), Cryptosporidium sp. Cc444 

(JN858905), Cryptosporidium sp. ferret genotype (GQ121022), Cryptosporidium sp. mink 

genotype (EF641015), Cryptosporidium sp. Pg453 (JN858909), Cryptosporidium sp. 

Pv140 (JN858906), Cryptosporidium sp. Pv245 (JN858907), Cryptosporidium sp. Pv270 

(JN858908), Cryptosporidium sp. seal genotype 1 (AY731234), Cryptosporidium sp. seal 

genotype 2 (AY731235), Cryptosporidium sp. skunk genotype (AY120903). 

Accession numbers of Genbank Cryptosporidium HSP70 sequences used in the 

analysis: C. andersoni (AJ567390), C. baileyi (AF221539), C. bovis (AY741306), C. canis 

(AY120920), C. cuniculus (GU967462), C. fayeri (AF221531), C. felis (AF221538), C. 

galli (AY168849), C. hominis (EF591788), C. meleagridis (AF221537), C. muris 

(AF221543), C. parvum (EF576953), C. ryanae (EU410346), C. serpentis (AF221541), C. 

suis (DQ833281), C. ubiquitum (EF362483), C. varanii (FJ429602), C. wrairi 

(AF221536), C. xiaoi (FJ896041), Cryptosporidium Pg453 (JN860884), Cryptosporidium 
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Pv140 (JN860883), Cryptosporidium Pv270 (JN860882), Cryptosporidium sp. ferret 

(AF221532), Cryptosporidium sp. hedgehog (GQ259143), Cryptosporidium sp. mink 

(EF428201), Cryptosporidium sp. seal 1 (AY731236), Cryptosporidium sp. seal 2 

(AY731237), Cryptosporidium sp. seal 2 (AY731238), Cryptosporidium sp. skunk 

(AY120917), Cryptosporidium sp. 80ANT (GQ421426). 

Accession numbers of Genbank Cryptosporidium COWP sequences used in the 

analysis: C. andersoni (DQ989570, AY282693), C. baileyi (AY282698, AF266276), C. 

canis (AF266274), C. cuniculus (EU437411), C. fayeri (AY237633), C. felis (AY282700), 

C. hominis (AF148741, AF481960), C. meleagridis (AF248742, AY282694, DQ116568), 

C. muris (AF161579, AY643491), C. parvum (AY282696, AY282687, AY282686, 

AY282695, AF248743), C. serpentis (AF266275), C. ubiquitum (HM209389), C. wrairi 

(U35027), Cryptosporidium sp. ferret (AB469366), Cryptosporidium sp. mink 

(EU197215). 

 

2.3. Nucleotide sequence accession numbers 

The nucleotide sequences generated in this study have been deposited in the GenBank 

database under accession numbers JQ740100–JQ740108. 

 

3. Results 

3.1. Detection of Cryptosporidium and Giardia 

Cryptosporidium was detected in samples collected from three Southern elephant seals 

(M. leonina) and two Weddell seals (L. weddellii) of the 111 and 14 faecal samples 

analysed, respectively, by PCR (Table 8). Cryptosporidial DNA was not detected in any of 

the 145 samples from Antarctic fur seals (A. gazella) analysed. No Cryptosporidium 

oocysts were observed in any of the samples by immunofluorescence microscopy. 

The presence of Giardia could not be detected either by immunofluorescence or by 

PCR in any of the samples analysed.  

 

3.2. Molecular characterisation of the Cryptosporidium isolates 

Sequence analysis of the 840 bp 18S rDNA fragment amplified showed that the three 

isolates present in the Southern elephant seals were an exact match (100% similarity) to the 

Cryptosporidium isolate previously obtained from an Antarctic Southern elephant seal 
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(GQ421425) and closely related to the Cryptosporidium skunk genotype (AY120903) (Fig. 

23A). The two sequences obtained from Weddell seals were identical to each other and 

showed the highest similarity (98.6%) with the Cryptosporidium ferret genotype 

(GQ121022), being also closely related to Cryptosporidium mink genotype (EF641015) 

and Cryptosporidium wrairi (AF115378) (similarities of 98.5% and 98.4%, respectively). 

 

Figure 23: Phylogenetic relationships of the Southern elephant seal and Weddell seal 

genotypes and published Cryptosporidium species or genotypes inferred by neighbour-joining 

analysis of the 18S rDNA (A), the HSP70 (B), and the COWP (C) gene fragments. 

Evolutionary distances were computed using the Kimura-2 parameter method. Bootstrap 

values greater than 50% from 1000 replicates are shown.  
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For further characterisation, fragments of the HSP70 and COWP genes were amplified 

and sequenced from one sample of each of the 18S rDNA genotypes found (Table 8). 

Sequence and phylogenetic analysis of these markers confirmed these results. The 

neighbour-joining analyses of the multiple alignments performed with Cryptosporidium 

sequences retrieved from the GenBank database showed the genetic uniqueness of these 

genotypes, which cluster closely with other intestinal Cryptosporidium species (Fig. 23 A–

C). 

 

4. Discussion 

Marine mammals are regarded as prime sentinel species for environmental changes 

(Bossart, 2011). However, the information available about the health status of the Antarctic 

marine mammals is very scarce and fragmented (Kerry et al., 2000). In addition, human 

derived activities in this pristine environment such as tourism and other causes like global 

warming could be compromising these populations. In this sense recommendations have 

been made regarding the importance of monitoring the health of the Antarctic fauna (Anon, 

2003). 

Recently, the detection of a Cryptosporidium genotype in an Antarctic Southern 

elephant seal was reported (Chapter III). In the present study further monitoring of the 

presence of the potentially zoonotic parasites Cryptosporidium and Giardia in Antarctic 

pinnipeds was carried out. Samples from 8 different locations along the west coast of 

Antarctic Peninsula in a latitudinal gradient covering 5 degrees of latitude (ranging from 

62º15´S; 58º37´W–67º46´S; 68º43´W), distances greater than 600 km and differences in 

mean annual temperatures of up to 2º C were analysed. The results presented here confirm 

previous findings in that the presence of these parasites in the Antarctic region is not 

widespread (Chapter III): Cryptosporidium was only detected in 5 of the 270 animals 

sampled (1.8%) from 4 of the sampling areas included in the study, and Giardia was not 

detected in any of the animals analysed. However, the presence of Cryptosporidium seems 

to be constant in this region, since it has been detected it in three different years (2006, 

2010 and 2011) (Chapter III; this study). The low percentages of detection found in these 

studies contrast with the results reported in pinnipeds from other areas in which prevalence 

rates of Cryptosporidium range from 6.5 to 24% (Hill et al., 1997; Deng et al., 2000; 

Hughes-Hanks et al., 2005; Santin et al., 2005; Bogomolni et al., 2008; Bass et al., 2012) 

whereas for Giardia, they range from 12 to 80% (Olson et al., 1997; Measures and Olson, 
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1999; Hughes-Hanks et al., 2005; Bogomolni et al., 2008; Dixon et al., 2008; Appelbee et 

al., 2010). It has been previously suggested that this indicates that the Antarctic fauna 

might experience a lower level of exposure to these agents, which is in agreement with the 

relative geographical and biological isolation of the Antarctic continent (Chapter III). 

Detection of Cryptosporidium could be achieved by PCR but no oocysts were detected 

by immunofluorescence microscopy. Low numbers of Cryptosporidium oocysts in faecal 

samples could account for these results. The DNA extraction method used here utilises 

whole faeces, hence it is possible that target DNA is derived not only from oocysts, but 

also from other stages in the life cycle of this parasite as well as ‘free’ in the faeces 

(Pedraza-Díaz et al., 2001). The usefulness of PCR as diagnostic tool in the detection of 

Cryptosporidium and Giardia infections with intermittent shedding or low numbers of 

oocysts or cysts in faecal samples of different origin have been shown in previous studies 

(McGlade et al., 2003; Amar et al., 2004; Appelbee et al., 2010). In addition, the use of 

molecular methods allows the identification of the species or genotypes involved in 

infection and may contribute to understanding the routes of transmission. This has led to 

the description or redescription in the past few years of several novel Cryptosporidium 

species or genotypes, such as C. ubiquitum (Fayer et al., 2010), C. ducismarci (Traversa, 

2010), C. cuniculus (Robinson et al., 2010), C. tyzzeri (Ren et al., 2012), or C. viatorum 

(Elwin et al., 2012) amongst others, or the Giardia duodenalis assemblage H (Lasek-

Nesselquist et al., 2010). 

Although the knowledge regarding the presence of Cryptosporidium and Giardia in 

marine mammals is increasing, few studies have identified the species and genotypes 

involved in infection. Cryptosporidium hominis, a species thought to be infective 

exclusively to humans, non-human primates and gnotobiotic pigs (Morgan et al., 2000) has 

only been identified in a dugong (Hill et al., 1997). Other species reported include C. 

muris, two seal genotypes, designated Cryptosporidium sp. seal 1 and 2 in ringed seals 

(Santin et al., 2005; Dixon et al., 2008); and a novel genotype from a harp seal (Bogomolni 

et al., 2008; Bass et al., 2012). Our studies have led to the description of a further two 

novel Cryptosporidium genotypes in Antarctic pinnipeds. The multilocus analysis 

performed, which included three of the most commonly used markers, 18S rDNA, HSP70 

and COWP genes, has shown that these genotypes are more closely related to previously 

described Cryptosporidium genotypes in ferrets and mink and other intestinal 

Cryptosporidium species than to those reported from seals. Therefore the findings reported 
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here further widen the range of both Cryptosporidium host species and the parasite’s 

species or genotypes and highlight the need for further studies to contribute to the 

understanding of the taxonomy and epidemiology of cryptosporidiosis. 

The Antarctic pinnipeds analysed in this study, particularly Weddell seals and 

Southern elephant seals, have a widespread and circumpolar distribution around 

Antarctica, as well as occurring on Sub Antarctic islands. Occasional wandering 

individuals have also been recorded as far north as Australia, New Zealand, Africa, and 

South America but seasonal movements are poorly known (Shirihai, 2002). Therefore 

exposure to Cryptosporidium might have occurred outside Antarctica. This is in agreement 

with the higher detection rates in Southern elephant seals and Weddell seals found here, 

which show wider distribution and migratory ranges than Antarctic fur seals. In addition, 

the differences observed here between the animal species analysed could be due to their 

different feeding habits. While Antarctic fur seals feed primarily on krill taking 

occasionally fish and cephalopods, the diet of Weddell seal consists mainly of fish, 

although they also consume cephalopods and crustaceans. Southern elephant seals eat 

mainly cephalopods and fish, and occasionally shellfish (Shirihai, 2002). It has been shown 

that Cryptosporidium oocysts (and Giardia cysts) may be concentrated by marine bivalve 

shellfish (reviewed in Robertson, 2007) which may act as a source of infection for marine 

wildlife. In the present study, only Southern elephant seals might sporadically consume 

shellfish, not representing therefore a frequent route of transmission for Antarctic 

pinnipeds. Furthermore, the presence of Cryptosporidium oocysts in Antarctic adelie 

(Pygoscelis adeliae) and gentoo penguins (Pygoscelis papua) from Ardley Island, South 

Shetlands (62º13´S 58º54´W) has been recently described (Fredes et al., 2007b; Fredes et 

al., 2008) although there is no information available on the Cryptosporidium species or 

genotypes involved. In contrast, other studies in different locations have reported the 

absence of Cryptosporidium and/or Giardia in gentoo and adelie penguins as well as in 

chinstrap penguins (Pygoscelis antarctica) (Fredes et al., 2007a; Palacios et al., 2010). 

Nevertheless these findings might have important implications for the Antarctic fauna 

since these animals can act as vectors not just spreading the disease to those in close 

vicinity but also disseminating these pathogens to different geographic locations in the 

marine and terrestrial environments. Therefore, further studies are needed to expand our 

current knowledge of Giardia and Cryptosporidium in the marine environment. 
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ABSTRACT 

Information on helminth parasites in Antarctic phocids is scarce and fragmented. 

Anisakidae nematodes and Diphyllobothriidae cestodes have been reported in Antarctic 

and Sub Antarctic phocids, although the prevalence and health significance remain 

unclear. In the present study the presence of helminth parasites in faeces of 

Leptonychotes weddellii, Hydrurga leptonyx and Mirounga leonina have been 

investigated. Faecal samples were collected from different locations of the Antarctic 

Peninsula. Macroscopical inspection and standard flotation and migration techniques 

have been used for faecal examination. Eggs, larvae and adult parasites were found in 

76.9% of samples analysed. Positive samples were from all locations surveyed and 

species investigated. The prevalence rate was 71.3% for Mirounga leonina, 95.4% for 

Leptonychotes weddellii, and 100% for Hydrurga leptonyx. Anisakidae (eggs and 

worms), Metastrongyloidea (larvae) and Diphyllobothriidae (eggs) were identified in 

Mirounga leonina and Leptonychotes weddellii. Metastrongyloidea (larvae) and 

Diphyllobothriidae (eggs) were found in Hydrurga leptonyx. Molecular characterisation 

of adult parasites found were Contracaecum mirounga, Anisakis simplex C and 

Pseudoterranova sp. in Mirounga leonina; and Contracaecum sp., Contracaecum 

osculatum and Pseudoterranova sp. in Leptonychotes weddellii. This study provides 

basic information related to the health status of phocids from the Antarctic Peninsula. 
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1. Introduction 

The phocid population in the Antarctic environment is large, but with low variety of 

species including Lobodon carcinophagus, Ommatophoca rossii, Hydrurga leptonyx, 

Leptonychotes weddellii and Mirounga leonina (Riedman, 1990). Currently, 

information of helminth parasites in Antarctic phocids is scarce and fragmented, 

although some reports from Antarctic and Sub Antarctic regions are available and 

summarised in Table 9. Other reports using molecular tools identified mixed infections 

with sibling species of Contracaecum. In addition, a new taxon, genetically related to 

Contracaecum osculatum B has also been described in M. leonina from the Argentinian 

coast (Mattiucci et al., 2003). Likewise, Diphyllobothriidae cestodes have been 

frequently identified in phocid populations. In general terms, pathologies related to 

gastrointestinal nematodes and cestodes have been reported in Antarctic phocids. 

Moreover, it has been also indicated that heavy infections with gastrointestinal 

helminths are very common in Southern pinnipeds. Similarly, lungworms like 

Parafilaroides (Metastrongyloidea) have been described as a common underlying cause 

of respiratory disease in phocids. However, the prevalence and health significance in 

Antarctic and Sub Antarctic populations remain unclear (McFarlane et al., 2009). The 

aim of the present study was to investigate the presence of helminth parasites in faeces 

of phocids from different locations along the west coast of the Antarctic Peninsula. 

 

2. Materials and Methods 

2.1. Sample collection 

A total of 212 faecal samples of L. weddellii, H. leptonyx and M. leonina were 

collected during the month of February of years 2006, 2007, 2010 and 2011 in seven 

different locations along the west coast of the Antarctic Peninsula. Sampled areas 

ranged from 62°15’S, 58°37’W to 67°46’S, 68°43’W, in a latitudinal gradient covering 

5 degrees, distances greater than 600 km and differences in mean annual temperature of 

up to 2ºC. Sampling sites were located in some of the South Shetland Islands 

(Deception Island, King George Island, Barrientos Island and Livingston Island), 

Anvers Island, Ronge Island and Avian Island (Figure 24). In Livingston Island, two 

main locations were sampled, Hannah Point and Byers Peninsula. 
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Table 9: Helminth parasites identified in phocids from Antarctic and Sub Antarctic regions 

Parasite Species Host Location References 

Cestoda    

Diphyllobothrium lashleyi L. weddellii N/D Beverley-Burton, 1971  

Diphyllobothrium mobile L. weddellii N/D Beverley-Burton, 1971  

Diphyllobothrium lobodoni L. carcinophagus Antarctic Pacific region 
Iurkhano and Mal'tsev, 

1994  

Nematoda    

Anisakis. pegreffii 

(syn. Stomachus similis) 

M. leonina  

H. leptonyx 
Heard and Macquarie islands Davey, 1971  

Anisakis simplex C M. leonina Antarctic Ocean 
Mattiucci and Nascetti, 

2007  

Contracaecum spp. M. leonina Península Valdes, Argentina Dailey, 2001  

Contracaecum ogmorhini 
H. leptonyx 

M. leonina 

South Australia 

Argentinian coast 

Johnston and Mawson, 

1945; Mattiucci et al., 

2003  

Contracaecum mirounga M. leonina 

Balleny island, 

King George islands, Weddell sea 

and Argentinian coast 

Nadler et al., 2000b; 

Mattiucci et al., 2003; 

Mattiucci and Nascetti, 

2007  

Contracaecum radiatum 

L. weddellii 

H. leptonyx 

M. leonina 

Weddell sea and Ross seas 

 

Nadler et al., 2000b; 

Mattiucci and Nascetti, 

2007  

Contracaecum osculatum 
H. leptonyx 

 

N/D 

 
Dailey, 2001  

Contracaecum osculatum D L. weddellii 
Weddell sea 

Ross sea 

Orecchia et al., 1994; 

Mattiucci and Nascetti, 

2007  

Contracaecum osculatum E L. weddellii 
Weddell sea 

Ross sea 

Orecchia et al., 1994; 

Mattiucci and Nascetti, 

2007 

Pseudoterranova decipiens E L. weddellii Antarctic Ocean 
Mattiucci and Nascetti, 

2007 

Parafilaroides hydrurgae H. leptonyx South Australia and Heard Island Mawson, 1953  

 

Two hundred and seven faecal samples were obtained directly from the ground very 

close to animals. Only the top of droppings were recovered to avoid any contamination 

with free-living non-parasitic helminths. Thirty-nine samples were from L. weddellii, 

164 from M. leonina and 4 from H. leptonyx. In addition, five faecal samples were 

collected directly from the rectum of L. weddellii, which were randomly selected, 

captured and physically restrained (permissions were granted by the Spanish Polar 

Committee CPE-EIA-2006-2 and CPE-EIA-2008-9, complying with the Antarctic 

Treaty System). The number of faecal samples per phocid species and sampling location 

are summarised in Table 10. All samples were fresh and animals showed no signs of 
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illness at the time of collection. Assessment of health status was based on body 

condition and normal behaviour. 

 

 

Figure 24: Locations of sampled areas and animal distribution. Image adapted from the 

SCAR Antarctic Digital Database (ADD). 1: Deception Island, South Shetland Islands, 2: King 

George Island, South Shetland Islands; 3: Barrientos Island, Aitcho Islands, South Shetland Islands; 4: 

Livingston Island, South Shetland Islands; 5: Ronge Island, Errera Channel; 6: Anvers Island, Palmer 

Archipelago, Antarctic Peninsula; 7: Avian Island, Marguerite Bay, Antarctic Peninsula. ● Weddell seal 

(Leptonychotes weddellii),  Southern elephant seal (Mirounga leonina), ▲ Leopard seal (Hydrurga 

leptonyx). 

 

After collection, faecal samples were kept at 4°C without preservatives for further 

faecal analysis including macroscopic and microscopic examination. Faecal analysis 

was performed in the Gabriel de Castilla Military Station (Deception Island, South 

Shetland Islands). Afterwards, refrigerated and frozen samples were forwarded to the 

SALUVET Group laboratories in the Veterinary Faculty of the Complutense University 

of Madrid (Spain) for further morphological and molecular characterisation of parasites 

collected. Some parasites found in faeces collected in 2006 and 2010 were used for 

molecular characterisation. 

 

2.2. Macroscopic examination 

Faecal samples were examined macroscopically with a spatula. Visible parasites in 

stools were separated and repeatedly washed in a Petri dish containing physiological 

saline (pH 7.3) and stored individually in Ethanol 70% for morphological and molecular 

characterisation. 
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Table 10: Number of faecal samples collected per phocid species, date and location 

Host Species  No. Samples Year Location 

Weddell seal 

(L. weddellii) 

  17 2006 Deception Island, South Shetland Islands 

 3  
Avian Island, Marguerite Bay, Antarctic 

Peninsula 

 10 2007 Deception Island, South Shetland Islands 

 1 2010 Ronge Island, Antarctic Peninsula 

 9  Deception Island, South Shetland Islands 

 2 2011 
Hannah Point, Livingston Island, South Shetland 

Islands 

 1  
Byers Peninsula, Livingston Island, South 

Shetland Islands 

 1  Deception Island, South Shetland Islands 

Leopard seal 

(H. leptonyx) 

 2 2006 Deception Island, South Shetland Islands 

 2 2007 Deception Island, South Shetland Islands 

Southern elephant seal 

(M. leonina) 

  24 2006 King George Island, South Shetland Islands 

 3  
Hannah Point, Livingston Island, South Shetland 

Islands 

 7  
Avian Island, Marguerite Bay, Antarctic 

Peninsula 

 8 2007 
Hannah Point, Livingston Island, South Shetland 

Islands 

 11  
Byers Peninsula, Livingston Island, South 

Shetland Islands 

 16 2010 
Hannah Point, Livingston Island, South Shetland 

Islands 

 18  
Byers Peninsula, Livingston Island, South 

Shetland Islands 

 18  
Avian Island, Marguerite Bay, Antarctic 

Peninsula 

 16  King George Island, South Shetland Islands 

 15 2011 
Avian Island, Marguerite Bay, Antarctic 

Peninsula 

 7  
Anvers Island, Palmer Archipelago, Antarctic 

Peninsula 

 3  
Hannah Point, Livingston Island, South Shetland 

Islands 

 13  
Byers Peninsula, Livingston Island, South 

Shetland Islands 

 2  Barrientos Island, Antarctic Peninsula 

 3  King George Island, South Shetland Islands 
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2.3. Microscopic examination 

For detection of parasite eggs in faecal samples, a flotation technique was 

performed using a commercial kit (Ovatec®Plus, Synbiotics Corporation, USA) 

according to the manufacturer´s instructions. In addition, approximately ten grams of 

faeces were examined by means of larvae migration technique using a Baermann 

apparatus (Kaufmann, 1996). Positive samples were preserved in Ethanol 70% for 

subsequent molecular characterisation. 

 

2.4. Morphological characterisation 

Of each worm, the anterior and posterior tips were preserved and cleared in lactic 

acid-phenol (1:1) for morphological identification. The remaining part was preserved in 

Ethanol 70% for molecular characterisation. 

Parasites were identified according to Foreyt (2001) for eggs; Fagerholm (1988), 

Kloser and Plotz (1992), Paggi et al. (2000) and Mattiucci et al. (2005) for adult worms; 

and Dailey (2009) for larvae. 

 

2.5. Molecular characterisation 

DNA was extracted from excised midbody (approximately 0.5 cm) of individual 

adult worms or complete larvae suspensions obtained after being washed twice by 

centrifugation at 1,500 g for 5 min. DNA extraction was performed using a commercial 

kit (Durviz, Valencia, Spain) according to the manufacturer´s instructions. The large 

subunit of the ribosomal RNA gene (LSU rDNA) of larvae and adult parasites were 

amplified as described by Nadler et al. (2000b and 2005). PCR products were purified 

using the GENECLEAN Turbo kit (Qbiogene, CA, USA) according to the 

manufacturer´s instructions and directly sequenced in both directions using the Big Dye 

Terminator v.3.1 Cycle Sequencing kit (Applied Biosystems) and a 3730 DNA analyser 

(Applied Biosystems) at the Unidad Genómica del Parque Científico de Madrid. 

Sequences were analysed using BioEdit Sequence Alignment Editor v.7.0.1 (7) (Hall, 

1999) (Copyright
© 

1997-2004 Tom Hall, Ibis Therapeutics, Carlsbad, CA 92008, USA). 

Basic Local Alignment Search (BLAST) from the National Center for Biotechnology 

Information (NCBI) was performed and relevant sequences were retrieved from 

GenBank. 

 



Helminth parasites in Phocids 

 

Doctoral Thesis 95 
 

2.6. Nucleotide sequence accession numbers 

The nucleotide sequences generated in this study have been deposited in the 

GenBank database under accession numbers KC013593 - KC013600. 

 

3. Results 

3.1. Morphological characterisation 

A total of 163 (76.9%) faecal samples showed the presence of eggs, larvae and/or 

adult worms. A 71.3% of M. leonina samples were positive showing Anisakidae eggs 

and adults (53.7%), Metastrongyloidea larvae (23.8%) and Diphyllobothriidae eggs 

(3%). In L. weddellii samples examined, 95.4% were positive for Anisakidae eggs and 

adults (90.9%), Metastrongyloidea larvae (9.1%) and Diphyllobothriidae eggs (63.6%). 

The presence and distribution of M. leonina and L. weddellii parasites along the 

different locations sampled are summarised in Tables 11 and 12, respectively. Faecal 

samples of H. leptonyx (n=4) from Deception Island were positive for 

Metastrongyloidea larvae (25%) and Diphyllobothriidae eggs (100%). Adult worms 

were identified morphologically as Anisakis sp., Pseudoterranova sp., and 

Contracaecum sp. 

 

Table 11: Helminths present in faeces of M. leonina sampled in different Antarctic 

Peninsula sites. Parasite groups are expressed as % (number of positives) 

Sites Examined 

(positives) 

Anisakidae Metastrongyloidea Diphyllobothriidae 

Avian Island  40 (33)   62.5 (25) 15 (6)   5 (2) 

Biscoe Point, Anvers Island    7 (4)   57.1 (4)   0 (0) 14.3 (1) 

Byers Peninsula, Livingston Island  42 (30)   57.1 (24) 19 (8)   4.8 (2) 

Hannah Point, Livingston Island  30 (19)   43.3 (13) 20 (6)   0 (0) 

Barrientos Island     2 (2) 100 (2) 50 (1)   0 (0) 

Potter Cove, King George Island   43 (29)   46.5 (20) 41.9 (18)   0 (0) 

Total 164 (117)   53.7 (88) 23.8 (39)   3.0 (5) 

 

3.2. Molecular characterisation 

In the molecular characterisation of adults and larvae, the sequences obtained 

confirmed the presence of Contracaecum mirounga, Anisakis simplex C and 

Pseudoterranova sp. in M. leonina from Livingston Island. In Avian Island and King 

George Island, nematodes characterised were A. simplex C and C. mirounga. In L. 
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weddellii from Deception Island, nematodes characterised were Contracaecum sp., 

Contracaecum osculatum and Pseudoterranova sp. In Ronge Island, adult nematodes 

were identified as Pseudoterranova sp. Metastrongyloidea larvae collected from a 

faecal sample of M. leonina during 2006 were characterised as Parafilaroides sp. 

 

Table 12: Helminths present in faeces of L. weddellii sampled in different Antarctic 

Peninsula sites. Parasite groups are expressed as % (number of positives) 

Sites Examined 

(positives) 

Anisakidae Metastrongyloidea Diphyllobothriidae 

Avian Island 3 (2) 66.7 (2) 0 (0) 66.7 (2) 

Ronge Island 1 (1) 100 (1) 0 (0) 100 (1) 

Byers Peninsula, Livingston Island 1 (1) 100 (1) 0 (0) 0 (0) 

Hannah Point, Livingston Island 2 (2) 50 (1) 0 (0) 100 (2) 

Deception Island 37 (36) 94.6 (35) 10.8 (4) 62.2 (23) 

Total 44 (42) 90.9 (40) 9.1 (4) 63.6 (28) 

 

Sequences analysis of the LSU rDNA fragments amplified showed for Anisakis, an 

exact match (100% similarity) to the A. simplex C sequence of the GenBank database 

AY821755, obtained from a Mirounga angustirostris from California, United States. 

Likewise, the sequence of Pseudoterranova from L. weddellii and M. leonina were 

identical to each other and showed 99% of similarity to the P. decipiens sequence of the 

GenBank database AY821760, obtained from a M. angustirostris from California, 

United States. For Contracaecum two different sequences were obtained in L. weddellii 

samples, one showed a 100% similarity to C. osculatum baicalensis sequence of the 

GenBank database AF226589, obtained from a Phoca sibirica from Lake Baikal, 

Russia. The other sequence showed 99% similarity to C. osculatum strain A sequence of 

the GenBank database AF226583, obtained from a Erignatus barbatus from 

Newfoundland, Canada. Finally, two more sequences were obtained for Contracaecum. 

The sequence from M. leonina was an exact match to C. mirounga sequence of the 

GenBank database AF226581, obtained from a M. leonina from Southern hemisphere 

(King George Island, Antarctica), while the one from L. weddellii showed the 99% 

similarity with the same sequence. Metastrongyloidea larvae sequence of M. leonina 

showed the highest similarity (94%) with the Parafilaroides decorus sequence 

AY292802, obtained from a Zalophus californianus from California, United States, and 

93% to the sequence AM039757, obtained from an Arctocephalus pusillus doriferus. In 

addition, the sequence obtained has also been closely related to other parasites within 
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Metastrongyloidea, Filaroides martis (AY292795) and Pseudalius inflexus 

(AY292804), obtained from a Mustela vison from Canada (93% similarity) and a 

Phocoena phocoena from United States (92% similarity). 

 

4. Discussion 

The information available related to the health status of the Antarctic marine 

mammals is very limited (Kerry et al., 2000), particularly regarding the presence and 

effects of parasites. In this sense, there is a reduced understanding of the role of parasite 

diseases in wildlife population in this region (McFarlane et al., 2009). However, the rate 

of epidemics and disease in marine species in oceans are increasing and the Antarctic 

region is unlikely to be isolated from this event despite its apparently protected status 

(Harvell et al., 1999; McFarlane et al., 2009). The understanding of the continuum 

extending between ecological associations of Antarctic phocids and the normal 

commensal and/or parasitic fauna is pivotal in designing surveillance and investigative 

programmes (McFarlane et al., 2009). In this sense, recommendations have been made 

regarding the importance of health monitoring in the Antarctic fauna (Anon, 2003). The 

study presented here constitutes a report of the presence of gastrointestinal parasites in 

phocids from the Antarctic region, providing baseline data which is currently lacking 

for most of these species. 

The analysis of faecal samples collected from phocids along the west coast of the 

Antarctic Peninsula showed a high number of positive samples (76.9%). Previous 

studies have indicated a high prevalence and intensity of nematodes and cestodes 

parasites in some Antarctic seals, like H. leptonyx and L. weddellii (McFarlane et al., 

2009). In the study, M. leonina, L. weddellii and H. leptonyx have been infected in 

71.3%, 95.4% and 100%, respectively. The parasites found in M. leonina and L. 

weddellii during macroscopic and microscopic examination were Anisakidae eggs and 

worms, Metastrongyloidea larvae and Diphyllobothriidae eggs; whereas in H. leptonyx 

the parasites found were Diphyllobothriidae eggs and Metastrongyloidea larvae. None 

of H. leptonyx samples had Anisakidae eggs or worms, differing from previous reports 

from the Antarctic and Sub Antarctic regions, where larval and adult stages of 

Anisakidae species like Anisakis pegreffii, Contracaecum ogmorhini, Contracaecum 

radiatum and C. osculatum have been identified (Johnston and Mawson, 1945; 

Mawson, 1953; Nadler et al., 2000b; Dailey, 2001). In M. leonina, L. weddellii and H. 
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leptonyx, Diphyllobothriidae eggs were found in low to high percentages (3%, 63.6% 

and 100% respectively). Mass infestations of cestodes in the gastrointestinal tract have 

been commonly described in Antarctic seals. It has also been described in M. leonina, 

although in lower percentage despite their more gregarious natures compared to the rest 

of Antarctic phocids. Probably both, diet and behavioural ecology can be relevant and 

presumably some Antarctic pinnipeds share parasite species (McFarlane et al., 2009), 

although further investigations related to this subject need to be performed.  

Furthermore, with regard to locations where samples have been obtained, 

Livingston Island was the site with the highest number of collected samples (n=75), 

originating from two main areas within the Island, Hannah Point and Byers Peninsula. 

The percentage of positive samples was slightly higher in Byers Peninsula (72.1%) than 

in Hannah Point (65.6%), although there were no differences related to the presence of 

the different groups of parasites in the faeces. Deception Island and Avian Island were 

two other locations where a high number of positive samples have been observed 

(97.6% and 81.4%, respectively). Finally, King George Island and Anvers Island were 

the locations with the lowest number of positive samples (67.4% and 57.1%, 

respectively), although it might be considered equally high or moderate with respect to 

the rest of locations. In view to the currently available information, the results obtained 

in the study can be considered the first report on helminth parasites in phocids from 

these particular locations of the Antarctic Peninsula. 

The presence of parasites in phocid populations does not necessarily mean that 

clinical signs will develop succumbing to disease (Kerry and Riddle, 2009). Dearborn 

(1965) reported that severe nematodes and cestodes burdens are common for L. 

weddellii in the Antarctic environment. In addition, pathologies related to these 

infections, especially on L. weddellii, have been also reported (McFarlane et al., 2009). 

In the present study, there was no evidence of illness or pathologies related to the 

presence of these parasites in any of the sampled animals, although parasite burden was 

not determined. 

Some helminth species reported in the literature have undergone subsequent 

taxonomic revision, and research using molecular techniques has turned into a valuable 

tool illustrating the complexities of host specificity and revealed cryptic species among 

parasites infecting marine mammals (McFarlane et al., 2009). In the study the presence 

of A. simplex C and C. mirounga in M. leonina from Livingston Island, Avian Island 
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and King George Island was confirmed. Beside these two Anisakidae nematodes, 

Pseudoterranova sp. was also found in samples collected from Livingston Island. In L. 

weddellii, Pseudoterranova sp. was found in two sites, Deception and Ronge Islands. 

However, in Deception Island, additional nematodes identified were Contracaecum sp. 

and C. osculatum. Some of these parasites have been found in the same host, and these 

findings confirmed that mixed infections are common in Antarctic phocids, not only in 

M. leonina (Mattiucci et al., 2003), but also in L. weddellii. 

Previous reports from Antarctic phocids indicated the presence of Anisakis simplex 

C and C. mirounga in M. leonina (Nadler et al., 2000b; Mattiucci and Nascetti, 2007); 

and Pseudoterranova sp. in L. weddellii (Mattiucci and Nascetti, 2007). In the study, the 

first description of two more Anisakidae nematodes has been completed in L. weddellii, 

Contracaecum sp. and C. osculatum. In addition, Pseudoterranova sp. has also been 

reported for the first time in M. leonina. 

Some of the sequences obtained were an exact match to sequences previously 

reported to the GenBank database while others showed the highest similarity of 99% 

compared to published sequences of P. decipiens (AY821760), C. osculatum strain A 

genotype (AF226583) and C. mirounga (AF226581). The first two published sequences 

were from North America, while the last one was from the Antarctic region. Although 

molecular methods have proven to be more accurate for identification of sibling species 

than the morphological approach, there is an evident lack of genetic information for 

these parasites in the Antarctic environment. Therefore, more studies are needed to 

generate accurate data related to different group of parasites affecting Antarctic fauna.  

Parafilaroides (Metastrongyloidea) are parasites found in the respiratory tract of 

pinnipeds from Antarctic environment, such as Parafilaroides hydrurgae in H. leptonyx 

(Mawson, 1953). In this study, one sample of M. leonina collected in 2006 from 

Deception Island was used for molecular characterisation, and Parafilaroides sp. was 

identified by sequence BLAST with similarity of 94% to P. decorus. The analysis 

retrieved other closely related parasites within Metastrongyloidea, Filaroides martis and 

Pseudalius inflexus. Parafilaroides decorus has been previously reported in Z. 

californianus from the Northern hemisphere (Dailey, 2009) and further data need to be 

collected to confirm the description of P. decorus in phocids from the Antarctic region. 

The study presented here provides basic information related to the health status of 

Antarctic phocids and a key to identify and evaluate future changes in this pristine 
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environment. Furthermore, this information may also be useful to improve prevention 

and response measures related to wildlife conservation and environmental protection in 

the Antarctic region. 
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ABSTRACT 

 

In the present study the presence of helminth parasites in faecal samples of Antarctic fur 

seals (Arctocephalus gazella) from different locations along the west coast of the 

Antarctic Peninsula was investigated. Faecal samples were collected during the month 

of February of years 2006, 2007, 2010 and 2011. Standard flotation and migration 

techniques were used for faecal examination. Positive samples were found in all the 

locations sampled: Avian Island, Barrientos Island, Penguin Island, Ronge Island, 

Deception Island, Livingston Island and King George Island. Eggs, larvae and adults 

were found in 31.2% of samples collected (12% Anisakidae, 23.6% Metastrongyloidea 

and 1.1% Diphyllobothriidae). Helminth eggs identified belonged to the Anisakidae and 

Diphyllobothriidae families. Adult worms were identified morphologically as Anisakis 

sp., Pseudoterranova sp., and Contracaecum sp. Molecular characterisation of a subset 

of adult worms collected in Avian Island and Deception Island in 2010 confirmed the 

presence of Contracaecum sp. in Avian Island; and Anisakis simplex C and 

Pseudoterranova sp. in Deception Island. Metastrongyloidea larvae collected from 

Deception Island were characterised as Parafilaroides sp. This study provides basic 

information related to the presence and distribution of helminth parasites in Antarctic 

fur seals, which is currently lacking. 
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1. Introduction 

 

The Arctocephalus gazella Peters, 1875 is an otariid species breeding from 61°S to 

the Antarctic Convergence, forming colonies in the Antarctic islands of South Georgia, 

South Orkney, South Shetlands, South Sandwich, Bouvetoya, Marion, Kerguelen, 

Heard, McDonald and Macquarie (Shirihai, 2002). They usually wander in the non-

breeding season to the Weddell Sea, the Argentinian coast and some groups have been 

reported in Juan Fernandez Island and Southern Chile (Acevedo et al., 2011). Some 

Antarctic fur seals may also migrate northern than the Antarctic Convergence (Shirihai, 

2002; Acevedo et al., 2011). The information on parasites in Antarctic fur seals is very 

scarce. Adult stage of gastrointestinal nematodes of the genera Anisakis Dujardin, 1845, 

Contracaecum Railliet & Henry, 1912 and Pseudoterranova Mozgovoy, 1953 have 

been found parasitising Antarctic marine mammals (Rocka, 2004). Larval and adult 

stages of Anisakis simplex Rudolphi, 1809 and species of the Contracaecum ogmorhini 

complex Johnston and Mawson, 1941 have been reported in otariid populations from 

Antarctic coast (Mattiucci et al., 2003). Several Contracaecum species, Contracaecum 

osculatum Rudolphi, 1802, Contracaecum radiatum Linstow, 1907 and Conctracaecum 

mirounga Nikolskij, 1974 have also been described in pinnipeds from various locations 

of the Antarctic and Sub Antarctic regions. In addition, the species Anisakis similis 

Caylis, 1920, Anisakis physeteris Baylis, 1923 and a species of the Pseudoterranova 

decipiens complex Krabble, 1878, P. decipiens E have also been found in the 

gastrointestinal tract of Antarctic pinnipeds (McFarlane et al., 2009). The aim of the 

present study was to investigate the presence of helminth parasites in faecal samples of 

Antarctic fur seals from different locations along the west coast of the Antarctic 

Peninsula by means of morphological and molecular techniques. 

 

2. Materials and Methods 

2.1. Sample collection 

A total of 276 faecal samples of Antarctic fur seals were collected in different 

locations during the month of February of years 2006, 2007, 2010 and 2011. The 

colonies sampled were located along the west coast of the Antarctic Peninsula ranging 

from 62°15’S; 58°37’W to 67°46’S, 68°43’W (Figure 25). These locations were mainly 

in South Shetland Islands; including Deception Island, Penguin Island, King George 
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Island, Barrientos Island and Livingston Island. In addition, other locations such as 

Ronge Island and Avian Island were included in the study. In Livingston Island, two 

locations were sampled, Hannah Point and Byers Peninsula. These locations are 

distributed in a latitudinal gradient covering five degrees, distances greater than 600 km 

and differences in mean annual temperatures of up to 2°C. The numbers of faecal 

samples collected in each location are summarised in Table 13. 

 

 

Figure 25: Sampling locations and distribution of A. gazella populations. Image adapted 

from the Antarctic Digital Database (ADD). 1: Deception Island, South Shetland Islands, 2. 

Penguin Island, Eastern King George Island, South Shetland islands 3: King George Island, South 

Shetland Islands; 4: Barrientos Island, Aitcho Islands, South Shetland Islands; 5: Livingston Island, South 

Shetland Islands; 6. Rongé Island, Errera Channel; 7. Avian Island, Marguerite Bay, Antarctic Peninsula.  

 

Of the total of faecal samples, 259 were freshly obtained directly from the ground 

very close to animals. Only the top of drops were recovered to avoid any contamination 

with free-living non-parasitic helminths. In addition, 17 animals were randomly 

selected, captured, physically restrained and faecal samples were collected directly from 

the rectum. Permissions were granted by the Spanish Polar Committee CPE-EIA-2006-

2 and CPE-EIA-2008-9, complying with the Antarctic Treaty System. Animals sampled 

showed no signs of illness at the moment of collection. Assessment of health status was 

based on body condition and normal behaviour. 
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Table 13: Distribution of faecal samples collected in the study 

Year Total Location Sub-location Nº of samples collected 

2006 51 

Avian Island  15 

Ronge Island  5 

Livingston Island Hannah Point 1 

Deception Island  30 

2007 80 
Deception Island 

(80) 

Whalers Bay 1 

Collins Point 5 

Fumarole Bay 5 

Penfold Point 2 

Lobera Beach 67 

2010 65 

Avian Island  8 

Ronge Island  1 

King George Island Potter Cove 3 

Deception Island 

(53) 

Fumarole Bay 12 

Penfold Point 4 

Lobera Beach 37 

2011 80 

Avian Island  4 

Livingston Island 

(5) 

Byers Peninsula 2 

Hannah Point 3 

King George Island Potter Cove 16 

Barrientos Island  3 

Penguin Island  13 

Deception Island Lobera Beach 39 

 

After collection, faecal samples were kept at 4°C without preservatives for further 

diagnostic procedures, including macroscopic and microscopic examination. Faecal 

analysis was performed in the Gabriel de Castilla Military facilities in Deception Island, 

South Shetland Islands. Afterwards, refrigerated and frozen samples were forwarded to 

the SALUVET Group laboratories in the Veterinary Faculty of the Complutense 

University of Madrid (Spain) for further morphological and molecular characterisation 

of parasites collected. Only samples from Avian Island and Deception Island collected 

in 2010 were used for molecular characterisation. 
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2.2. Macroscopic examination 

Faecal samples were examined macroscopically with a spatula. Visible parasites 

present in stools were separated and repeatedly washed in a Petri dish containing 

physiological saline (pH 7.3) and stored individually in Ethanol 70% for morphological 

and molecular characterisation. 

 

2.3. Microscopic examination 

For detection of parasite eggs in faecal samples, a flotation technique was 

performed using a commercial kit (Ovatec®Plus, Synbiotics Corporation, USA) 

according to the manufacturer´s instructions. In addition, approximately ten grams of 

faeces were examined by means of larvae migration technique using a Baermann 

apparatus (Kaufmann, 1996). Positive samples were preserved in Ethanol 70% for 

subsequent molecular characterisation. 

 

2.4. Morphological characterisation 

Of each worm, the anterior and posterior tips were preserved and cleared in lactic 

acid-phenol (1:1) for morphological identification. The remaining part was preserved in 

Ethanol 70% and used for molecular characterisation. 

Parasites were identified according to Foreyt (2001) for eggs; Fagerholm (1988), 

Kloser and Plotz (1992), Paggi et al. (2000) and Mattiucci et al. (2005) for adult worms; 

and Dailey (2009) for larvae. 

 

2.5. Molecular characterisation 

DNA was extracted from excised midbody (approximately 0.5 cm) of individual 

adult nematodes or complete larvae suspensions obtained after being washed twice by 

centrifugation at 1,500 g for 5 min. DNA extraction was performed using a commercial 

kit (Durviz, Valencia, Spain) according to the manufacturer´s instructions. The large 

subunit of the ribosomal RNA gene (LSU rDNA) of larvae and adults were amplified as 

described by Nadler et al. (2000a and 2005). PCR products were purified using the 

GENECLEAN Turbo kit (Qbiogene, CA, USA) according to the manufacturer´s 

instructions and directly sequenced in both directions using the Big Dye Terminator 

v.3.1 Cycle Sequencing kit (Applied Biosystems) and a 3730 DNA analyser (Applied 
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Biosystems) at the Unidad Genómica del Parque Científico de Madrid. Sequences were 

analysed using BioEdit Sequence Alignment Editor v.7.0.1 (7) (Hall, 1999) (Copyright
© 

1997-2004 Tom Hall, Ibis Therapeutics, Carlsbad, CA 92008, USA). Standard 

Nucleotide Basic Local Alignment Search (BLAST) from the National Center for 

Biotechnology Information (NCBI) was performed and relevant sequences were 

retrieved from GenBank. 

 

2.6. Nucleotide sequence accession numbers 

The nucleotide sequences generated in this study have been deposited in the 

GenBank database under accession numbers KC013601 - KC013604. 

 

3. Results 

3.1. Morphological characterisation 

A total of 86 (31.2%) faecal samples were positive for eggs, larvae and/or adult 

worms. Helminths identified were Anisakidae (12%), Metastrongyloidea (23.6%) and 

Diphyllobothriidae (1.1%). The presence and distribution are shown in Table 14. 

Helminth eggs identified were mainly Anisakidae nematodes and Diphyllobothridae 

cestodes and different types were identified in morphometric-basis in both parasite 

groups. On the other hand, Metastrongyloidea larvae collected presented the same 

morphology in all samples. Adult worms were identified morphologically as Anisakis 

sp., Contracaecum sp. and Pseudoterranova sp.  

 

Table 14: Presence of helminth parasites in faeces of Antarctic fur seals from seven 

Antarctic Peninsula sites. Results expressed as % (number of positives) 

Sites Examined 

(positives) 

Anisakidae Metastrongyloidea Diphyllobothriidae 

Avian Island    27 (10) 25.9 (7) 22.2 (6) 3.7 (1) 

Barrientos Island        3 (1)    0 (0) 33.3 (1) 0 (0) 

Penguin Island       13 (5)    7.7 (1) 38.5 (5) 0 (0) 

Ronge Island        6 (2)  16.7 (1) 16.7 (1) 0 (0) 

Deception Island  202 (57)    9.4 (19) 22.3 (45) 0.5 (1) 

Hannah Point (Livingston Island)        4 (1)    0 (0) 25 (1) 0 (0) 

Byers Peninsula (Livingston Island)      2 (1) 50 (1)   0 (0) 0 (0) 

King George Island    19 (9) 21.1 (4) 31.6 (6) 5.3 (1) 

Total 276 (86) 12 (33) 23.6 (65) 1.1 (3) 
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3.2. Molecular characterisation 

In the molecular characterisation of adults and larvae, the sequences obtained 

confirmed the presence of Contracaecum sp. in Avian Island. In populations from 

Deception Island, nematodes characterised were Anisakis simplex C and 

Pseudoterranova sp. Metastrongyloidea larvae were characterised as Parafilaroides sp. 

Sequence analysis of the LSU rDNA fragment amplified showed for Contracaecum 

sp., a 99% similarity to the C. osculatum strain A sequence of the GenBank database 

AF226583, obtained from Erignatus barbatus Erxleben, 1777 from Newfoundland, 

Canada. For Pseudoterranova sp., the fragment amplified showed a 99% similarity to 

the P. decipiens sequence of the GenBank database AY821760, obtained from 

Mirounga angustirostris Gill, 1866 from California, United States. For Anisakis, the 

fragment amplified was an exact match (100% similarity) to the A. simplex C sequence 

of the GenBank database AY821755, obtained from M. angustirostris from California, 

United States. Metastrongyloidea larvae obtained in a sample from Deception Island, 

showed a 99% similarity to Parafilaroides decorus sequence of the GenBank database 

AM039757, obtained from Arctocephalus pusillus doriferus Wood Jones, 1925, which 

are generally confined to Southeast Australian region. 

 

4. Discussion 

Current information available regarding the health status of Antarctic fur seals is 

very fragmented (Kerry et al., 2000). However, some descriptions regarding the 

presence of Anisakis sp. and Pseudoterranova sp. in Antarctic fur seals populations 

from Cape Shirreff (Livingston Island) have been reported due to morphometric-basis 

(Diedrichs-Alvarez, 2007). To the best of our knowledge, the present study is the first 

report of parasitological findings performed systematically using morphological and 

molecular approaches in apparently healthy Antarctic fur seals from several locations 

along the west coast of the Antarctic Peninsula. 

In the study, faecal examination revealed a moderate (31.2%) prevalence rate in 

populations examined over several years, providing important baseline data so far 

unknown. Parasitised animals were recorded in all locations included in the study with 

differences in parasite diversity. Helminth parasites found belonged to Anisakidae, 

Metastrongyloidea and Diphyllobothriidae. The King George Island´s population 

presented the highest level of prevalence rate (47.4%) and diversity (21.1% Anisakidae, 
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31.6% Metastrongyloidea and 5.3% Diphyllobothriidae). In the rest of the Antarctic 

locations, parasites found were Anisakidae and Metastrongyloidea, except for Avian 

and Deception Islands where Diphyllobothriidae cestodes were also recorded although 

in lower rate (3.7% and 0.5%, respectively) than the populations from King George 

Island. 

Diedrichs-Alvarez (2007) indicated that Anisakidae were the only group of 

parasites found in Antarctic fur seals from Cape Shirreff. In addition, they were the 

most prevalent group of parasites identified in Antarctic pinnipeds (McFarlane et al., 

2009). In the present study, Anisakidae nematodes where also a prevalent parasite group 

found in most of the examined populations, except for Barrientos Island, although 

prevalence rates were low to moderate (7.7% up to 50%), only representing 12% of the 

total of infected animals.  

Currently, there are no reports on the presence of Metastrongyloidea and 

Diphyllobothriidae in Antarctic fur seals. These results represent the first description of 

Metastrongyloidea and Diphyllobothriidae parasites in the west coast of the Antarctic 

Peninsula, based on larvae and eggs morphology, respectively. Metastrongyloidea 

larvae were found in all seven locations (Avian Island, Barrientos Island, Penguin 

Island, Ronge Island, Deception Island, Livingston Island and King George Island), 

with a 23.6% of the total of infected animals. The highest prevalence rate was found in 

Penguin Island (38.5%) and the lowest in Ronge Island (16.7%). Parafilaroides 

infection is considered the most common underlying cause of respiratory disease in 

pinnipeds (Measures, 2001). Several species, except Parafilaroides decorus, have been 

described in other otariids from the Southern hemisphere, such as Neophoca cinerea 

Peron, 1816. In addition, Parafilaroides normani Dailey, 2009 has been described in 

Arctocephalus pusillus Schreber, 1775, Arctocephalus australis Zimmermann, 1783 and 

Arctocephalus forsteri Lesson, 1828 (McFarlane et al., 2009). The identification of 

Parafilaroides sp. closely related to P. decorus (99% similarity), in a sample from 

Deception Island confirmed the presence of Parafilaroides in Antarctic otariids. 

However, further studies are needed to elucidate the presence and distribution of 

lungworms species affecting Antarctic fur seals. 

Diphyllobothriidae eggs were identified in samples from three locations (Avian 

Island, Deception Island and King George Island) with low prevalence rate (ranging 

from 0.5% to 5.3%). Several genera of Diphyllobothriidae cestodes have been described 
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in other Southern fur seals, like Adenocephalus pacificus Nybelin, 1931 in A. australis 

and Diphyllobothrium arctocephalinum Johnston, 1937 in A. pusillus (Bray et al., 1994, 

McFarlane et al., 2009, Rausch et al., 2010). Likewise, descriptions related to host-

parasite associations and infection rates have been reported in Antarctic phocids. 

However, the information in Antarctic fur seal populations is still devoid (McFarlane et 

al., 2009). In Livingston Island, sample collection was distributed in two locations, 

Hannah Point and Byers Peninsula. No Diphyllobothriidae parasites have been detected 

in any of these two locations. However, Anisakidae have been identified only in 

samples collected in Byers Peninsula coinciding with previous reports from Cape 

Shirreff´s populations (Diedrichs-Alvarez, 2007). In constrast, only Metastrongyloidea 

larvae were identified in Hannah Point (25%) suggesting that there are influential 

elements differing in these two locations. Probably, diet and behavioural ecology can be 

relevant on this subject (McFarlane et al., 2009). However, as mentioned above, further 

studies are needed to expand our current knowledge related to the ecology of the 

populations inhabit these two locations within Livingston Island. 

Currently classical approaches based on morphological characteristics of eggs, 

larvae and adult parasites are considered insufficient for differentiating parasites to a 

species level. In this sense, molecular techniques have proven to be a valuable tool for 

answering questions related to parasite systematics (Andrews and Chilton, 1999). The 

application of simple standard molecular methods for identification of parasites have 

demonstrated to be successful for single parasites and homogeneous samples (Logan et 

al., 2004; Brabec et al., 2006; Aznar et al., 2007; Nakao et al., 2007; Trachsel et al., 

2007; Wicht et al., 2010). However for heterogeneous infections the use of modified 

molecular techniques is recommended (Trachsel et al., 2007). Therefore in the present 

study, only nematodes were used for molecular characterisation. Contracaecum sp. and 

Pseudoterranova sp. were identified, however no exact match was found in the 

Genbank sequence database. In both cases the highest similarity found was 99% with 

previously published sequences of C. osculatum (AF226583) and P. decipiens 

(AY821760), respectively, from the Northern hemisphere. Likewise, Parafilaroides sp. 

showed 99% similarity with P. decorus (AM039757) from the Sub Antarctic zone. 

Although molecular methods have been proven to be more accurate for identification of 

sibling species than the morphological approach, there is an evident lack of genetic data 

of parasites from the Antarctic region. More molecular data are therefore needed in 
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order to generate accurate information related to the groups of parasites present in the 

Southern hemisphere. 

Mixed infections with sibling species of Anisakidae nematodes, such as A. simplex 

and C. ogmorhini have been reported in pinnipeds (Mawson, 1953; Mattiucci et al., 

2003; McFarlane et al., 2009). In the present study, no evidence of mixed infections was 

found. The presence of two Anisakidae species, A. simplex C and Pseudoterranova sp., 

was confirmed in Deception Island, although in different hosts. 

Previous observations have indicated that heavy parasitic infections are not 

necessarily related to ill-effects in hosts (Dearborn, 1965; McFarlane et al., 2009). 

However, reports dealing with mortality due to some of these parasites in marine 

mammals have been described causing debilitation, anaemia, obstruction in 

gastrointestinal tract, inflammation and ulcers of the stomach wall, leading to peritonitis 

and death (Geraci and St Aubin, 1987; McFarlane et al., 2009). In the study, Antarctic 

fur seals showed low to moderate prevalence rate of infection with no apparent effect on 

health, although parasite burden was not determined and no necropsies were performed 

and therefore, no pathological lesions were studied. However, the animal condition may 

be altered under stress situations and immunocompromised conditions which might be 

influenced by a variety of environmental, ecological, immnunological and physiological 

factors, causing manifestations of disease and could become lethal (Foreyt, 2001). 

Recommendations have been made regarding the importance of health monitoring 

in the Antarctic fauna (Anon, 2003) and the present study is a contribution providing 

baseline data. The information collected may be used as a key to identify or even 

evaluate future changes in the Antarctic environment. Likewise, it also may contribute 

to improve prevention and response measures related to wildlife conservation and 

environment protection. 
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Since the adoption of the Antarctic Treaty in 1959 a direct attention to the 

protection of the Antarctic environment began, and nowadays is still remaining 

(Rothwell, 2009). The Antarctic region is the most pristine environment with unique 

and extreme conditions that set it apart from other regions of the world, and therefore is 

considered isolated and one of the least impacted ecosystems (King and Turner, 1997; 

Kerry and Riddle, 2009). However, the Antarctic isolation is relative due to the 

migration of marine mammals and birds, which travel to and from the Antarctic region 

and could be carrying potential pathogen agents. Also, the constant intromission of 

humans, currently represented by scientific and touristic activities, has been widely 

recognised to constitute a serious risk for the introduction and spread of diseases, 

exerting an influence on the health of the Antarctic wildlife (ATCM III, 1964; Anon, 

2003; Frenot et al., 2005; Pook, 2009; Riddle, 2009). In this sense, the first SCAR 

Biology Symposium emphasized “There is an urgent need to find out what pathogenic 

organisms occur naturally in Antarctic populations before man introduce new ones” 

(SCAR VIII, 1964). On the other hand, the effects of climate change and worldwide 

environmental degradation is another important issue that draws the world´s attention. 

The polar climates such as the Antarctic region have been changing faster than others as 

a consequence of global atmospheric changes, characterised by the increase of mean 

annual temperatures especially in the Antarctic Peninsula, with a subsequent direct 

impact on the Antarctic fauna (Clarke et al., 2007).  

In all ecosystems, health and disease have been part of a continuum (Kerry and 

Riddle, 2009). Disease is understood as any impairment of normal functions of 

organisms, interfering, modifying and meaning deleterious effects in hosts caused by 

pathological agents (Delahay et al., 2009; Kerry and Riddle, 2009). There is an 

enormous variety of pathological agents currently known such as parasites, capable of 

cause infectious diseases in hosts. They also have an important role in the ecosystems, 

sometimes with downstream effects in wild populations by reducing growth rates and 

fecundity, increasing metabolic requirements, changing patterns of behavior and 

ultimately causing the death of individuals (Delahay et al., 2009; Davidson et al., 2011). 

Parasites are therefore natural members of ecosystems and integral components of 

marine ecosystems, representing a useful tool to explore the origins, distribution and 

maintenance of biodiversity (Hoberg and Klassen, 2002; Delahay et al., 2009). 
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Marine mammals have been regarded as prime sentinels for environmental changes, 

and pinnipeds are the most conspicuous group in the Antarctic region. They spend 

considerable time on land and ice platforms although they range widely in the Southern 

Ocean and frequently travel beyond their normal range with some vagrancy occurring 

far north where human activity and the consequent environmental contamination are 

patent. This might cause the introduction of diseases into their own populations and 

increase the potential of interspecies diseases transmission into the Antarctic fauna 

(Shirihai, 2002; Geraci and Lounsbury, 2009). In this sense, animal health has been in 

the list of priorities of the SCAR, acknowledging that “A survey of diseases already 

present in Antarctica´s isolated or semi-isolated fauna is required…” (SCAR III, 1959) 

and marine mammals are of particular value as sensitive barometers, serving as key 

species under the premise that their protection will safeguard the ecosystem´s health 

(Delahay et al., 2009). 

The Antarctic pinnipeds surely have experienced a variety of disease-causing 

agents, some of which may be restricted to Antarctic species while others may be more 

widespread worldwide although the environmental and biological conditions are 

believed to be different (Kerry et al., 2000). As mentioned above, parasitic diseases can 

influence the health and sustainability of wildlife populations, with downstream effects 

in individuals and therefore on populations and ecosystems (Davidson et al., 2011). 

Many parasites have a worldwide distribution and some of them are closely related to 

environmental contamination due to human activities. Similarly, some parasites have 

also been related to health affection in humans and are regarded as zoonotic agents such 

as the protozoans Toxoplasma gondii, Cryptosporidium sp. and Giardia sp. (Dierauf 

and Gulland, 2001; Appelbee et al., 2010). These three protozoans have been described 

in worldwide pinnipeds, and there are several reports on pathologies related to their 

presence (Van Pelt and Dietrich, 1973; Olson et al., 1997; Measures and Olson, 1999; 

Deng et al., 2000; Dailey, 2001; Lambourn et al., 2001; Dubey et al., 2003; Dubey et 

al., 2004; Fayer, 2004a; Measures et al., 2004; Appelbee et al., 2005; Honnold et al., 

2005; Hughes-Hanks et al., 2005; Santin et al., 2005; Aguirre et al., 2007; Fujii et al., 

2007; Dixon et al., 2008; Gaydos et al., 2008; Appelbee et al., 2010; Lasek-Nesselquist 

et al., 2010; Cabezon et al., 2011; Bass et al., 2012). Therefore two of the objectives of 

our study were the detection of Toxoplasma, and of Cryptosporidium and Giardia in 

Antarctic pinnipeds, respectively. There was no evidence of Giardia in any of the 
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studied populations. However, for Cryptosporidium and Toxoplasma gondii, our study 

constitutes the first report of their presence in Antarctic pinnipeds from the South 

Shetland Islands and the Antarctic Peninsula. The presence of these parasites in the 

Antarctic fauna has been confirmed by recent studies in which Cryptosporidium was 

detected in Antarctic penguin species from Ardley Island (South Shetlands) (Fredes et 

al., 2007a; Fredes et al., 2007b; Fredes et al., 2008), and antibodies against Toxoplasma 

gondii were detected in Antarctic pinnipeds from Bird Island, Hutton Cliffs (East 

Antarctica), Macquarie Island and South Georgia (South Atlantic) (Jensen et al., 2012). 

Other studies however did not detect the presence of Toxoplasma in Antarctic pinnipeds 

from Bouvetoya and Queen Maud Land (Tryland et al., 2012), nor the presence of 

Toxoplasma, Cryptosporidium and Giardia in penguins from the same locations along 

the Antarctic Peninsula and the South Shetland islands included in our study (Palacios 

et al., 2010), suggesting these parasites are not widespread in the Antarctic populations. 

In addition, we have identified and described two novel Cryptosporidium genotypes in 

two phocid species, Southern elephant seals and Weddell seals, highlighting the 

contributions of our work to the general study of the taxonomy and the molecular 

epidemiology of Cryptosporidium. All these findings warrant further investigations in 

order to elucidate whether there might be wild strains endemic in the Antarctic fauna or 

they have been introduced in these populations by vagrant individuals.  

The intimate relationships between hosts and parasites have evolved over time into 

subtle and potentially complex interactions (Delahay et al., 2009). The presence of 

disease agents in hosts does not necessarily mean that clinical signs will develop (Kerry 

and Riddle, 2009). Some parasites have little or no detrimental effect on hosts, only 

causing pathological damage if the delicate balance of the organism is corrupted, when 

the parasites become too numerous or the immunological capability of the host is 

impaired, probably influenced by factors including nutrition, concomitant infections or 

the presence of a variety of physiological stressors (Delahay et al., 2009). Therefore, the 

description of a pathogen in wildlife does not necessarily mean that it is the underlying 

cause of disease. In the case of Toxoplasma gondii, we investigated the presence of 

antibodies against this parasite in Antarctic pinnipeds. Serological approaches reveal the 

exposure to a specific pathological agent in the past (Kerry and Riddle, 2009), but do 

not provide information related to the effects on health condition in hosts although 

mortality and morbidity events with severe pathology lesions have been observed in 
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marine mammals elsewhere (Dubey et al., 2003; Dubey et al., 2004; Fayer, et al., 

2004a; Dubey and Jones, 2008). However, no outbreaks or clinical toxoplasmosis have 

been reported and the parasite has not been isolated in Antarctic wildlife. In the case of 

Cryptosporidium, the patent period of the disease can range from several days to 

months or years, demonstrating the potential of this infection to persist in hosts 

(Ramirez et al., 2004). During the acute phase of infection, high numbers of oocysts are 

shed in the faeces, although intermittent shedding with low numbers or no oocysts and 

no clinical signs can also be observed becoming asymptomatic individuals, which can 

act as reservoirs for the disease (Ramirez et al., 2004; Appelbee et al., 2010). In our 

studies, only one sample was positive with the two diagnostic methods employed and 

the rest of samples were positive only by PCR, suggesting that at the time of sampling 

animals may have been shedding low numbers of oocysts. These works are prospective 

studies focused on the detection of Cryptosporidium in Antarctic populations and is not 

possible to determine if infected animals developed clinical signs in the past or will 

develop them in the future. To be able to gain a deeper knowledge on this subject, 

further studies are required. However, the detection of Toxoplasma gondii antibodies 

(our study; Jensen et al., 2012) and the description of Cryptosporidium in faecal 

samples (our study) provide very important information on the occurrence of potentially 

harmful organisms in apparent healthy animals from the Antarctic environment. 

In general, the introduction of exotic agents in communities may spread and impact 

native species (Rohde, 2005). However, to be able to identify new pathogens in any 

population, it is necessary to have a historic evidence of native organisms to infer the 

origin of emerging diseases and cryptogenic species. As part of our work, surveys of 

gastrointestinal helminths in Antarctic pinnipeds have also been performed, indicating a 

high prevalence of parasites in phocids (76.9%) and moderate in otariids (31.2%). These 

results agree with previous reports where high prevalence and intensity of nematodes 

and cestodes parasites have been described in some phocids like Leopard seals and 

Weddell seals and moderate in sibling otariid species (McFarlane et al., 2009). 

Helminth parasites described were Anisakidae, Metastrongyloidea and 

Diphyllobothriidae. Anisakidae parasites are the most prevalent group of helminth in 

Antarctic populations and were found in most of pinniped species, except in Leopard 

seals, differing from previous reports where several stages of Anisakidae species were 

identified (Johnston and Mawson, 1945; Mawson, 1953; Nadler et al., 2000b; Dailey, 
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2001). Regarding the percentages of parasitation, phocids were the group of pinnipeds 

with the highest parasitation (90.9% in Weddell seals and 53.7% in Southern elephant 

seals), contrary to the otariid Antarctic fur seals which only a 12% of parasitation was 

described. Diphyllobothriidae parasites have been described in high intensity in some 

pinnipeds such as Leopard seals and Weddell seals. Southern elephant seals have also 

been described but in lower percentage (McFarlane et al., 2009). In our study, similar 

findings have been observed, with highest percentages in Leopard seals (100%), 

followed by the Weddell seals (63.6%) and finally Southern elephant seals (3%). In 

Antarctic fur seals, our study constitutes the first description of Diphyllobothriidae eggs 

with a prevalence of 1.1%, differing from other otariid species from the Antarctic and 

Sub Antarctic regions, where prevalences observed were higher (up to 16%) (McFarlane 

et al., 2009). Metastrongyloidea larvae were found in phocids and otariids with 

differences in the percentages observed, 25% in Leopard seals followed by a 23.8% in 

Southern elephant seals and 23.6% in Antarctic fur seals, and finally a 9.1% in Weddell 

seals. These are parasites also found in the respiratory tract of pinniped species from the 

Antarctic and Sub Antarctic region (Mawson, 1953; McFarlane et al., 2009). However, 

for Antarctic fur seals, this is the first description of the presence of Metastrongyloidea 

parasites, which were found in all the locations sampled. In addition, we have described, 

for the first time, the presence of various species of nematodes in Antarctic pinnipeds, 

such as the Anisakids Contracaecum sp. and C. osculatum in Weddell seals, 

Pseudoterranova sp. in Southern elephant seals and the Metastrongyloid Parafilaroides 

sp., in Antarctic fur seals. Other parasites described in our study have also been reported 

by other authors in the same hosts, like Anisakis simplex C and Contracaecum 

mirounga in Southern elephant seals (Nadler et al., 2000b; Mattiucci and Nascetti, 

2007), Pseudoterranova species in Weddell seals (Mattiucci and Nascetti, 2007) and 

Anisakis simplex, Pseudoterranova and Contracaecum species in fur seal species from 

the Antarctic and Sub Antarctic regions (Diedrichs-Alvarez, 2007; McFarlane et al., 

2009). The differences observed in the studied populations suggest that there might be 

influential elements affecting the distribution of parasites, presumably diet and 

behavioural ecology, among others still unidentified (McFarlane et al., 2009). 

Very little is known about the role of these parasites in the health and dynamics of 

pinnipeds although some of them have been reported causing severe affections in 

worldwide phocids and otariids, especially gastrointestinal pathologies associated with 
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mechanical damage and lesions in gastrointestinal tissues (Geraci and St Aubin, 1987; 

Banish and Gilmartin, 1992; Nadler et al., 2000a; Dailey, 2001; Spraker et al., 2004; 

McFarlane et al., 2009; Byard et al., 2010; Papadopoulos et al., 2010; Spraker and 

Lander, 2010), and lesions in the cardiac and respiratory systems (MacDonald and 

Gilchrist, 1969; Geraci and St Aubin, 1987; Onderka, 1989; Claussen et al., 1991; 

Elson-Riggins et al., 2001; Fowler and Miller, 2003; Kelly et al., 2005; Siebert et al., 

2007; McFarlane et al., 2009). These affections may have repercussions in pinnipeds 

health (Geraci and St Aubin, 1987), but how helminth parasites affect the health status 

of Antarctic wildlife is still unknown. It has been reported that heavy infections with 

nematodes and cestodes are normal for some Antarctic and Sub Antarctic pinniped 

species, appearing to cause little pathology and in some cases no direct evidence of ill-

effects were observed (McFarlane et al., 2009). However, the presence and impact of 

parasites on their hosts can be influenced by environmental stressors, such as pollution 

and habitat alteration (Papadopoulos et al., 2010). Both empirical and theoretical 

evidence suggest that parasites can reduce density and potentially control populations. 

They also have the most linkages to life-history parameters either directly or through 

indirect routes via other biotic interactions such as predation or competition or both. 

This feature contributes to their role in the stabilization of population dynamics, a role 

that is increasingly recognised (Torchin et al., 2002). 

It is known that parasites can also be used as bio-indicators of environmental 

changes, with positive or negative effects: either increasing parasitism or be fatal for 

certain parasite species, leading to a decrease in parasitism (Rohde, 2005). The general 

tendency observed in affected environments has been a decrease of parasitism with 

increasing levels of contamination (Rohde, 2005; Siebert et al., 2007). On this subject, 

environmental pollutants are very closely related to human activities and although 

improved environmental controls in the Antarctic ecosystem have stopped many 

pollutant practices particularly arising from the Madrid Protocol on Environmental 

Protection; activities developed in the past as well as in the present may have a legacy in 

Antarctic and Sub Antarctic regions (Byard et al., 2010). In this sense, the Antarctic 

Treaty System (ATS) has indicated that “Parties involved should conduct research 

relevant to cumulative impacts, and in particular to study disturbed versus undisturbed 

areas” (Clarke et al., 2007). Furthermore, it is a fact that the Antarctic Peninsula is also 

experiencing one of the fastest rates of regional warming on Earth, probably having an 
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influence on wildlife and the ecosystem (Clarke et al., 2007). However, no significant 

differences were observed amongst the studied populations suggesting that the 

ecological balance and the host-parasite relationship might not have been affected yet in 

these populations, although there is an evident lack of baseline data in this sense for the 

Antarctic fauna. Our study is an approach to collect information related to the presence 

and distribution of relevant gastrointestinal and systemic parasites in Antarctic 

pinnipeds, contributing to provide further information on the health status of Antarctic 

marine mammals. This also creates useful baseline data that can be used to monitoring 

and evaluate any changes occurring at any level, affecting these populations, since 

alterations resulting from climate variation and human activities have been recognised 

to affect marine mammals in other ecosystems (Davidson et al., 2011). Furthermore, 

information on the health of the Antarctic fauna will also contribute to the improvement 

of environmental policies and animal management programs in ways to protect and 

sustain viable populations in the Antarctic environment (Geraci and Lounsbury, 2009; 

Kerry and Riddle, 2009). Our contributions are just the beginning and further research is 

required, not only related to these parasites and others, but also to other pathological 

agents affecting the Antarctic fauna. 
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Objective 1: Detection of the systemic parasite Toxoplasma gondii in Antarctic 

pinnipeds 

First: The detection of Toxoplasma gondii antibodies in all Antarctic pinniped 

species surveyed constitutes the first documented report on the presence of this parasite 

in Antarctic marine mammals. 

Second: The differences observed in the percentages of antibody detection and 

titres among pinniped species, which were significantly higher in Weddell seals and 

Southern elephant seals may have a direct correlation with the distribution patterns, 

migratory ranges and feeding habits of each species. However, further investigations are 

needed to elucidate the likely transmission pathways of T. gondii in marine mammals as 

well as the presence of T. gondii in the Antarctic marine ecosystem. 

 

Objective 2: Detection and characterisation of gastrointestinal parasites in 

Antarctic pinnipeds 

 

Sub Objective 2.1: Detection and characterisation of the zoonotic parasites 

Cryptosporidium and Giardia in faeces 

First: The detection of Cryptosporidium in Southern elephant seals and Weddell 

seals represents the first description on the presence of this parasite in Antarctic marine 

mammals.  

Second: The low percentages of detection, although constant throughout the study, 

of Cryptosporidium and the absence of Giardia, in contrast with the results reported in 

pinnipeds from other less preserved areas, indicate that the Antarctic fauna might 

experience a lower level of exposure to these agents, which is in agreement with the 

relative geographical and biological isolation of the Antarctic continent. 

Third: Two novel Cryptosporidium genotypes, designated Cryptosporidium sp. 

Weddell seal genotype and Cryptosporidium sp. Southern elephant seal genotype have 

been described and characterised in Antarctic pinnipeds. These genotypes have shown 

to be more closely related to previously described Cryptosporidium genotypes in fur-

bearing animals and other intestinal Cryptosporidium species than to those reported 

from seals. Therefore the findings reported here further widen the range of both 

Cryptosporidium host species and the parasite’s species or genotypes. 
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Sub Objective 2.2: Detection of helminth parasites in faecal samples 

First: The Antarctic phocids Southern elephant seals and Weddell seals have 

shown a high level of infection with different stages of nematodes belonging to the 

family Anisakidae and superfamily Metastrongyloidea, as well as cestodes of the family 

Diphyllobothriidae, while Leopard seals were only infected with Metastrongyloidea 

nematodes and Diphyllobothriidae cestodes, although the levels of parasitation were 

similarly high. 

Second: The Antarctic fur seals have shown a moderate level of infection with the 

same stages of helminth parasites found in Antarctic phocids, which contrast with 

previous reports where only Anisakidae nematodes have been described. Therefore, this 

is the first report on the presence of Metastrongyloidea nematodes and 

Diphyllobothriidae cestodes in Antarctic otariids. 

Third: The presence of the different helminth parasites in both phocids and otariid 

populations, provides further evidence on their extensive distribution in Antarctic 

pinniped species, although there are differences in the level of parasitation between host 

species and locations surveyed, probably influenced by diet and behavioural ecology, 

among other as yet unknown factors. 

Fourth: Molecular methods have proven a useful tool, more accurate than 

morphology, for the identification of cryptic species of parasites infecting marine 

mammals, which has enabled the report on the presence of new genotypes closely 

related to previously described nematodes, along with others identified in these 

pinniped hosts, contributing to widen the genetic information for these parasites in the 

Antarctic environment, which is currently lacking. 
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The Antarctic region is the most isolated on earth. Recently, it has been recognised 

as a place worthy of very high standards of environmental protection. However, the 

constant human intromission and the worldwide environmental degradation have been 

identified as serious risks in the introduction and spread of diseases, exerting an 

influence on health of Antarctic wildlife. With regard to this topic, marine mammals 

have been described as prime sentinels of aquatic ecosystems. Pinnipeds are the most 

conspicuous marine mammal group in the Antarctic region and they might therefore 

provide an approach to evaluate the health of this singular ecosystem. Research in 

pinnipeds has resulted in a compilation of data of emerging and reemerging diseases, 

some of them caused by parasites. However, whereas the information is substantial in 

worldwide populations, in the Antarctic and the Sub Antarctic regions is currently 

limited. 

To contribute with further information and in response to the demands of the 

Antarctic Treaty System, the main objective of this Doctoral Thesis has been to evaluate 

health status of Antarctic pinnipeds through the investigation of the presence of relevant 

parasites in marine mammal populations. For this purpose, faecal and blood samples of 

the phocids Weddell seals, Crabeater seals, Leopard seals, Southern elephant seals and 

the otariid Antarctic fur seals from different locations along the Antarctic Peninsula and 

South Shetland Islands have been analysed. In the first part of the study, the presence of 

the systemic zoonotic protozoan parasite Toxoplasma gondii was investigated (Chapter 

2). In marine mammals, infections with T. gondii cause morbidity and mortality and 

although the route of infection for these animals is not known, environmental 

contamination plays a crucial role. Exposure to T. gondii in different Antarctic 

pinnipeds was evaluated by means of a serological test. Antibodies were detected in all 

populations analysed although higher percentages and highest titres were found in 

Southern elephant seals and Weddell seals (76.9%, 1:400; and 41.9%, 1:800, 

respectively). The differences observed between animal species could be due to their 

different distribution and migratory ranges as well as their feeding habits. This is the 

first report on the detection of T. gondii in Antarctic marine mammals. 

Other zoonotic parasites surveyed were the gastrointestinal protozoan parasites 

Giardia and Cryptosporidium (Chapters 3 and 4). These parasites are closely related to 

environmental contamination and anthropogenic impact, therefore they have been 

widely used to evaluate ecosystems health. Cryptosporidium spp. oocysts and Giardia 
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spp. cysts have been detected in different pinniped species worldwide, and potential 

host specific genotypes of these parasites involved in infection in seals have been 

identified. In Antarctic pinnipeds, the presence of these two protozoans was evaluated 

using immunofluorescence microscopy and PCR. Overall the presence of 

Cryptosporidium was detected in 2.4% of Southern elephant seals (4/164) and 4.4% of 

Weddell seals (2/45), representing a 1.2% of the pinniped populations analysed, 

whereas Giardia was not detected. These findings suggest that these two potentially 

zoonotic parasites are not widespread in the Antarctic region although the presence of 

Cryptosporidium may have important implications in the Antarctic fauna since infected 

animals can act as vector not just spreading the disease to those in close vicinity but also 

disseminating these pathogens to different geographic locations in the marine and 

terrestrial environment. In addition, the molecular characterisation performed, using 

three different molecular markers, led to the description of two novel genotypes of 

Cryptosporidium, which were designated Cryptosporidium sp. Southern elephant seal 

genotype and Cryptosporidium sp. Weddell seal genotype,. These results constitute the 

first report on the presence of Cryptosporidium spp. in Antarctic marine mammals and 

further widen the range of both Cryptosporidium host species and genotypes. 

Helminths are the largest group of parasites present in marine mammals. The 

few studies carried out in Antarctic pinnipeds have indicated that heavy infections with 

helminths are very common in these populations, although their prevalence and health 

significance remain unclear. Therefore, in order to provide further information, a survey 

was performed to investigate the presence and distribution of helminth parasites in 

Antarctic phocids (Chapter 5) and otariids (Chapter 6) using coprological examination 

and molecular characterisation of selected specimens. In total, eggs, larvae and adult 

forms of helminth parasites were found in 71.3% of Southern elephant seals, 95.4% of 

Weddell seals and 100% in leopard seals, whereas otariid populations presented a lower 

prevalence (31.2%). Helminth parasites found were nematodes belonging to the family 

Anisakidae and the superfamily Metastrongyloidea and cestodes within the family 

Diphyllobothriidae. Anisakidae parasites were the most prevalent group of helminth in 

Antarctic populations and were found in most pinniped species, except in Leopard seals, 

with percentages of parasitation ranging from 12% in Antarctic fur seals to 90.9% in 

Weddell seals. Metastrongyloidea larvae were found in phocids and otariids with 

differences in the percentages observed, 25% in leopard seals followed by a 23.8% in 



Summary 

 

Doctoral Thesis 133 
 

Southern elephant seals and 23.6% in Antarctic fur seals, and finally a 9.1% in Weddell 

seals. Diphyllobothriidae eggs were detected in all pinniped species analysed. The 

highest percentages of parasitation were observed in Leopard seals (100%), and 

Weddell seals (63.6%). However, in Southern elephant seals and Antarctic fur seals 

eggs were only observed in 3% and 1.1% of the samples, respectively. These findings 

constitute the first report on the presence of Diphyllobothriidae eggs and 

Metastrongyloidea larvae in Antarctic fur seals. In addition, the use of molecular 

techniques led to the identification, for the first time, of various species of nematodes in 

Antarctic pinnipeds. These include Contracaecum sp. and Contracaecum osculatum in 

Weddell seals, Pseudoterranova sp. in Southern elephant seals and Parafilaroides sp. in 

Antarctic fur seals. Other parasites identified in this study include Anisakis simplex C 

and Contracaecum mirounga in Southern elephant seals, Pseudoterranova sp. in 

Weddell and Anisakis simplex and Contracaecum sp. in Antarctic fur seal species, 

which have been previously reported in the same hosts. The differences observed in the 

studied populations and sites surveyed suggest that there might be influential elements 

affecting the presence and distribution of helminth parasites, presumably diet and 

behavioural ecology, among others still unidentified.  

The results obtained in this Doctoral Thesis provide further information on the 

presence and distribution of parasites in Antarctic pinnipeds, highlighting the need for 

further surveys to elucidate the taxonomy and epidemiology of different pathogens and 

diseases. This information also provides useful background to evaluate and monitor any 

future changes that may occur in these Antarctic populations. These aspects will also 

contribute to create better measures to improve environmental policies and animal 

management programs to protect and sustain viable populations in the Antarctic 

environment. 

 





 

 

 

 

 

 

 

 

 

 

 

 

RESUMEN 





Resumen 

 

Doctoral Thesis 137 
 

INTRODUCCIÓN 

La Antártida está considerada actualmente como el entorno más aislado que 

existe, con características geográficas y climatológicas únicas que la diferencian del 

resto del mundo. Sin embargo, este aislamiento es relativo, observándose una migración 

constante de mamíferos y aves marinas, los cuales viajan hacia y desde la Antártida, 

pudiendo transportar agentes potencialmente patógenos. Igualmente, a través de la 

historia, se ha producido un incremento de la actividad humana en la Antártida, que hoy 

en día se debe fundamentalmente a actividades científicas y turísticas. Por otro lado, se 

considera que los cambios medioambientales que se están produciendo globalmente, 

pueden constituir también un riesgo inminente de introducción y diseminación de 

enfermedades, lo que puede ejercer una gran influencia sobre la fauna autóctona.  

Recientemente, el ecosistema Antártico ha sido formalmente reconocido a nivel 

mundial como un lugar digno de un nivel muy alto de protección medioambiental. Por 

este motivo, a raíz del año Geofísico Internacional de 1957-58, se inició la formulación 

de lo que se denominó el Tratado Antártico, creado en 1959. Este tratado es un 

documento muy sencillo, en el que se establecen unas medidas básicas para la 

realización de actividades científicas en la Antártida con especial atención a la 

protección del medio ambiente Antártico y la salud de la fauna antártica.  

El Tratado Antártico, a través del Comité Científico de Investigaciones 

Antárticas (SCAR) ha indicado que “es escasa la información que se tiene sobre las 

enfermedades propias de los animales antárticos”. Además, “...hay una gran necesidad 

de realizar estudios que permitan conocer la situación sanitaria de las diferentes especies 

y poblaciones de animales que habitan el ecosistema antártico, con la finalidad de 

contribuir al conocimiento científico y orientar la creación de medidas de 

administración de los recursos vivos marinos de la Antártida”, insistiendo además en 

que “...es fundamental destinar esfuerzos para estimar la situación sanitaria de las 

poblaciones naturales de vertebrados superiores de la Antártida, mediante su 

seguimiento periódico, como también, dimensionar su efecto sobre la dinámica 

poblacional de las especies afectadas y realizar estudios epidemiológicos de las 

enfermedades que los afectan. Tales estudios podrán servir como un indicador de la 

acción humana en ese ecosistema y mejorar las medidas de prevención de la potencial 

contaminación biológica, desde o hacia la Antártida, que surgen a partir de las 

actividades domésticas del hombre en la Antártida...”. 
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En este sentido, los mamíferos marinos son considerados buenos centinelas de 

los ecosistemas marinos por encontrarse en la cúspide de la cadena trófica, por lo que 

muchas investigaciones se han centrado en estas especies como bio-indicadores de 

contaminación medioambiental en diferentes ecosistemas. Dentro de los mamíferos 

marinos, los pinnípedos son el grupo más numeroso y sobresaliente de la fauna 

Antártica, por lo que podrían ser de utilidad para evaluar este ecosistema en particular. 

Estos animales poseen características anatómicas y fisiológicas adaptadas a la vida 

marina, aunque pasan mucho tiempo en tierras costeras y plataformas de hielo. 

Las investigaciones realizadas en mamíferos marinos a nivel mundial han 

generado valiosa información sobre el estado sanitario de estas especies en el mundo, 

habiéndose descrito un gran número de enfermedades, muchas de ellas causadas por 

parásitos. Se considera que los parásitos son elementos naturales con un papel 

importante en los ecosistemas, teniendo distintos efectos en las poblaciones silvestres, 

como la reducción de las tasas de crecimiento y fecundidad, el aumento de la exigencia 

metabólica, el cambio de los patrones de comportamiento y en última instancia, 

causando la muerte de los individuos. Por este motivo, los parásitos son también 

componentes integrales de los ecosistemas marinos, representando una herramienta muy 

útil para explorar los orígenes, distribución y mantenimiento de la biodiversidad.  

 

OBJETIVOS 

Se han identificado distintos parásitos en pinnípedos Antárticos y Sub-

Antárticos. Sin embargo, el conocimiento sobre la presencia y distribución de parásitos 

en estas especies es escaso y fragmentado. Por lo tanto, la realización de estudios en 

pinnípedos Antárticos servirá para proporcionar un mayor conocimiento sobre la salud 

de estas especies y su entorno. Con el fin de contribuir a la información relacionada 

sobre agentes patógenos y enfermedades que afectan a la fauna antártica, y en respuesta 

a las demandas del Sistema del Tratado Antártico, el objetivo principal de la presente 

Tesis Doctoral ha sido el de evaluar la presencia y distribución de parásitos 

sistémicos y gastrointestinales relevantes en las poblaciones de pinnípedos. De igual 

manera, algunos de estos parásitos son también organismos estrechamente asociados al 

impacto humano en diferentes regiones, además de ser elementos que permiten la 

evaluación de la calidad medioambiental afectada por la contaminación a nivel mundial. 
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Por lo tanto, para realizar este estudio, se abordaron los siguientes objetivos 

específicos: 

Objetivo 1: Detección del parásito sistémico Toxoplasma gondii en pinnípedos 

antárticos 

En primer lugar se investigó la presencia del parásito protozoo sistémico 

Toxoplasma gondii. Este parásito, considerado de carácter zoonósico, ha sido reportado 

como causante de graves infecciones en diversas especies de mamíferos marinos y, 

aunque su epidemiología no es totalmente conocida en los ecosistemas marinos, está 

estrechamente vinculado a la contaminación ambiental.  

 

Objetivo 2: Detección y caracterización de parásitos gastrointestinales en 

pinnípedos antárticos 

Para la consecución de este objetivo, se propusieron los dos siguientes sub 

objectivos: 

Sub Objetivo 2.1: Detección y caracterización de los parásitos zoonósicos 

Cryptosporidium y Giardia en muestras fecales 

La determinación de la presencia de los protozoos gastrointestinales 

Cryptosporidium y Giardia resulta de especial interés debido a su carácter zoonósico, 

además de ser considerados buenos bio-indicadores de contaminación medioambiental e 

impacto antropogénico, por lo que han sido ampliamente utilizados en estudios de 

evaluación de calidad ambiental. Se han detectado ooquistes de Cryptosporidium y 

quistes de Giardia en varias especies de pinnípedos a nivel mundial, habiéndose 

descrito también en estos animales genotipos de estos parásitos que podrían presentar 

cierta especificidad de hospedador. 

Sub Objetivo 2.2: Detección de parásitos helmintos en muestras fecales 

Los helmintos son el grupo más amplio de parásitos presentes en los mamíferos 

marinos. Estudios realizados en pinnípedos antárticos indican que un alto grado de 

parasitación por helmintos es normal en estas poblaciones, aunque su prevalencia y 

significado en la salud de estos animales no está definido.  
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METODOLOGÍA 

Para la consecución de los objetivos planteados en esta Tesis Doctoral, se 

tomaron muestras de heces y sangre de pinnípedos de las familias Phocidae y Otariidae. 

Las especies de la familia Phocidae muestreadas fueron foca de Weddell (Leptonychotes 

weddellii), foca leopardo (Hydrurga leptonyx), foca cangrejera (Lobodon 

carcinophagus) y elefante marino (Mirounga leonina). La especie de la familia 

Otariidae muestreada fue el lobo fino Antártico (Arctocephalus gazella).  

Las muestras fueron recogidas durante los años 2006, 2007, 2010 y 2011, en 

diferentes localizaciones a lo largo de la costa oeste de la Península Antártica, cubriendo 

un gradiente latitudinal desde el archipiélago de Shetland del Sur (islas Rey Jorge, 

Livingston, Barrientos, Pingüino y Decepción) hasta las islas Anvers, Rongé y Avian, 

abarcando un total de 5 grados de latitud hacia el sur de la Península Antártica. Este 

gradiente latitudinal se corresponde asimismo con distancias de más de 600 km entre los 

puntos más alejados y diferencias de temperatura medias anuales de hasta 2 ºC entre el 

norte y el sur. Estas zonas se caracterizan por concentrar la mayor variedad y número de 

especies de pinnípedos, además de presentar distintos niveles de actividad humana.  

Las muestras de sangre se obtuvieron de animales capturados, mientras que las 

de heces se obtuvieron tanto de animales capturados como de muestras recogidas 

directamente del suelo. Los animales capturados fueron escogidos al azar e 

inmovilizados físicamente el tiempo mínimo necesario, de acuerdo con los 

procedimientos estándar C1 y C2 de la Comisión para la Conservación de los Recursos 

Vivos Marinos Antárticos (CCAMLR). Todos los animales capturados fueron 

identificados con crotales numerados, garantizando que ningún animal fuera muestreado 

más de una vez. Las heces se recogieron directamente del suelo, cerca del animal, 

tomando solamente la parte superior del excremento para evitar contaminación con 

parásitos de vida libre. Las heces recogidas fueron de 45 focas de Weddell, 164 

elefantes marinos, 4 focas leopardo y 276 lobos finos Antárticos. Las muestras de 

sangre obtenidas fueron de 31 focas de Weddell, 13 elefantes marinos, 2 focas 

cangrejeras y 165 lobos finos Antárticos. 
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Objetivo 1: Detección del parásito sistémico Toxoplasma gondii en pinnípedos 

antárticos 

La exposición a este parásito en pinnípedos antárticos fue analizada mediante la 

utilización de un kit de aglutinación directa comercial (Toxo-Screen DA, BioMerieux®, 

Francia), capaz de detectar antígenos específicos IgG contra T. gondii en suero. 

 

Objetivo 2: Detección y caracterización de parásitos gastrointestinales en 

pinnípedos antárticos 

Sub Objetivo 2.1: Detección y caracterización de los parásitos zoonósicos 

Cryptosporidium y Giardia en muestras fecales 

La detección de Cryptosporidium y Giardia se realizó mediante 

inmunofluorescencia directa (Crypto/Giardia Cel IF test, Cellabs Pty. Ltd., Australia) y 

PCR utilizando como marcadores las regiones del 18S rDNA, en el caso de 

Cryptosporidium, y del gen de la beta-giardina para Giardia. La caracterización 

molecular de los aislados de Cryptosporidium se realizó mediante secuenciación de los 

fragmentos amplificados de las regiones del 18S rDNA, COWP y HSP70.  

Sub Objetivo 2.2: Detección de parásitos helmintos en muestras fecales 

Se utilizaron técnicas coprológicas para la detección de los helmintos presentes en 

muestras fecales, que incluyeron un examen macroscópico y microscópico de las 

muestras. En el examen macroscópico, las muestras se examinaron separando los 

parásitos visibles y lavándolos repetidamente en placas de Petri con solución salina 

fisiológica  (pH 7.3), para finalmente almacenarlos individualmente en etanol al 70%. 

En el examen microscópico, se realizó una técnica de flotación (Ovatec®Plus, 

Synbiotics Corporation, USA), para la detección de huevos. Igualmente, 

aproximadamente 10 gramos de heces fueron examinados mediante la técnica de 

migración larvaria utilizando el aparato de Baermann. Adicionalmente, se utilizaron 

técnicas moleculares, amplificando los fragmentos de la region LSU rDNA con el fin de 

completar la identificación de los parásitos encontrados.   
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RESULTADOS 

Objetivo 1: Detección del parásito sistémico Toxoplasma gondii en pinnípedos 

antárticos 

La presencia de anticuerpos frente a Toxoplasma gondii en mamíferos marinos 

antárticos fue detectada (títulos ≥1:25) en 28 de los 211 animales analizados, 

representando un 13.3% de la población muestreada. Este estudio constituye la primera 

descripción de la presencia de anticuerpos frente a T. gondii en mamíferos marinos 

antárticos. Dentro de las especies analizadas el más alto porcentaje de detección se 

observó en elefantes marinos (76.9%) seguido de focas de Weddell (41.9%). Igualmente 

se detectaron anticuerpos en el 2.4% de los lobos finos Antárticos muestreados y el 50% 

de las focas cangrejeras. Los títulos más altos fueron detectados en elefantes marinos 

(1:400) y en focas de Weddell (1:800). Las diferencias observadas entre las especies 

estudiadas podrían deberse a su distinta distribución y características migratorias, ya que 

las especies con títulos de anticuerpos y porcentajes más altos se encuentran 

ampliamente distribuidas por toda la Antártida, trasladándose incluso fuera del 

ecosistema antártico, atravesando la corriente Circumpolar para llegar a zonas Sub 

Antárticas y otras aún más alejadas. De igual manera, las diferencias observadas entre 

las especies analizadas podrían deberse a los diferentes hábitos alimentarios, ya que 

estas especies también presentan un rango más amplio de especies marinas de las cuales 

se alimentan, siendo alguna de ellas capaces de concentrar el parásito en condiciones 

experimentales, en concreto, los moluscos filtradores. 

 

Objetivo 2: Detección y caracterización de parásitos gastrointestinales en 

pinnípedos antárticos 

Sub Objetivo 2.1: Detección y caracterización de los parásitos zoonósicos 

Cryptosporidium y Giardia en muestras fecales 

No se observó la presencia de Giardia duodenalis en ninguna de las muestras 

analizadas en este estudio. Sin embargo, se detectó la presencia de  Cryptosporidium, en 

elefantes marinos (2.4%, 4/164) y en focas de Weddell (4.4%, 2/45), lo que representa 

un 1.2% del total de las poblaciones analizadas (491 muestras). Estos resultados indican 

que la presencia de Cryptosporidium es constante, ya que se encontraron muestras 

positivas a lo largo de los 4 años, aunque en bajos porcentajes. Sin embargo, estos 

hallazgos tienen grandes implicaciones para la fauna antártica, ya que estos 
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hospedadores pueden actuar como vectores, esparciendo el parásito a zonas cercanas, 

además de diseminarlo en diferentes localizaciones geográficas dentro de los entornos 

terrestres y marinos. 

La caracterización molecular realizada, utilizando tres de los marcadores 

moleculares más comúnmente utilizados, permitió la descripción de dos nuevos 

genotipos de Cryptosporidium, el genotipo encontrado en elefante marino se denominó 

Cryptosporidium sp. Southern elephant seal genotype y el genotipo encontrado en foca 

de Weddell se denominó Cryptosporidium sp. Weddell seal genotype. El análisis 

molecular realizado permitió comprobar que estos genotipos se encuentran más 

próximos genéticamente a especies o genotipos intestinales de Cryptosporidium 

hallados en animales mustélidos, como la mofeta, el hurón o el visón, que a aquellos 

hallados en pinnípedos. Este trabajo constituye, por tanto, la primera descripción sobre 

la presencia de Cryptosporidium en mamíferos marinos antárticos, ampliando además, 

tanto el espectro de hospedadores como de genotipos de este parásito. 

Sub Objetivo 2.2: Detección de parásitos helmintos en muestras fecales 

Se observaron distintas formas parasitarias de helmintos (huevos, larvas y 

adultos) en un 76,9% de las muestras de fócidos (163/212), encontrándose porcentajes 

de detección del 71.3% en elefantes marinos (117/164), 95.4% en focas de Weddell 

(42/44) y del 100% en las focas leopardo (4/4), mientras que en las poblaciones de lobo 

fino antártico, las prevalencias halladas fueron más bajas (31.2%, 86/276). Los parásitos 

encontrados fueron nematodos pertenecientes a la familia Anisakidae y a la superfamilia 

Metastrongyloidea, y cestodos de la familia Diphyllobothriidae. Los parásitos 

pertenecientes a la familia Anisakidae fueron el grupo de helmintos más prevalente en 

todas las poblaciones antárticas y fueron encontrados en la mayoría de las especies 

estudiadas (90.9% en focas de Weddell, 53.7% en elefantes marinos y 12% en lobos 

finos antárticos), excepto en foca leopardo. Se observaron larvas de Metastrongyloidea 

en fócidos y otáridos con diferencias en los porcentajes observados, 25% en focas 

leopardo, seguido de un 23.8% en elefantes marinos, 23.6% en lobos finos antárticos, y 

finalmente un 9.1% en focas de Weddell. Se detectaron huevos de Diphyllobothriidae 

en todas las especies analizadas. Los mayores porcentajes de parasitación fueron 

observados en focas leopardo (100%) y focas de Weddell (63.6%). Sin embargo, en 

elefantes marinos y lobos finos antárticos, solo se observaron en un 3% y 1.1% de las 

muestras analizadas, respectivamente. La presencia de huevos pertenecientes a la 
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familia Diphyllobothriidae y larvas de la superfamilia Metastrongyloidea constituye la 

primera descripción de estos dos grupos de parásitos en lobos finos antárticos. La 

utilización de técnicas moleculares ha contribuido a la identificación, por primera vez, 

de algunas especies de nematodos en pinnípedos antárticos. Estas especies fueron 

Contracaecum sp. y Contracaecum osculatum en focas de Weddell, Pseudoterranova 

sp. en elefantes marinos y Parafilaroides sp. en lobos finos antárticos. Otros parásitos 

identificados en este estudio, han sido previamente identificados en las especies 

animales de estudio, como Anisakis simplex C y Contracaecum mirounga en elefantes 

marinos, Pseudoterranova sp. en focas de Weddell, y finalmente Anisakis simplex y 

Contracaecum sp. en lobos marinos. Las diferencias observadas en estas poblaciones 

estudiadas sugieren que podrían existir elementos que influyen en la presencia y 

distribución de estos parásitos, presumiblemente la dieta y el comportamiento, aunque 

no se descarta la presencia de otros elementos aún desconocidos. 

 

CONCLUSIONES 

Objetivo 1: Detección del parásito sistémico Toxoplasma gondii en pinnípedos 

antárticos 

 Primera: La detección de anticuerpos frente a Toxoplasma gondii en todas las 

especies de pinnípedos antárticos estudiados constituye la primera descripción de la 

presencia de este parásito en mamíferos marinos Antárticos. 

 Segunda: Las diferencias observadas en los porcentajes de detección y los 

títulos de anticuerpos obtenidos entre las especies de pinnípedos estudiados, 

significativamente más altos en focas de Weddell y elefantes marinos, podrían estar 

correlacionados directamente con la distribución, características migratorias y diferentes 

hábitos alimentarios de las distintas especies de pinnípedos antárticos. Sin embargo, son 

necesarios más estudios que eluciden la presencia de T. gondii en el ecosistema 

Antártico, así como las posibles rutas de transmisión en los mamíferos marinos. 
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Objetivo 2: Detección y caracterización de parásitos gastrointestinales en 

pinnípedos antárticos 

Sub Objetivo 2.1: Detección y caracterización de los parásitos zoonósicos 

Cryptosporidium y Giardia en muestras fecales 

Primera: La detección de Cryptosporidium en elefantes marinos y focas de 

Weddell constituye la primera descripción de este parásito en mamíferos marinos 

Antárticos. 

Segunda: Los bajos porcentajes de detección de Cryptosprodium, aunque 

constantes a lo largo del estudio, y la ausencia de Giardia, en contraste con los 

resultados referidos en pinnípedos procedentes de zonas menos protegidas 

ambientalmente, indican que la fauna Antártica puede experimentar un bajo nivel de 

exposición a estos agentes, lo que concuerda con el relativo aislamiento geográfico y 

biológico del entorno Antártico. 

Tercera: Se han descrito y caracterizado dos nuevos genotipos de Cryptosprodium, 

denominados Cryptosporidium sp. Weddell seal genotype y Cryptosporidium sp. 

Southern elephant seal genotype en pinnípedos Antárticos. Estos genotipos están más 

próximos genéticamente a genotipos descritos en mustélidos, así como a otras especies 

intestinales de Cryptosporidium que a aquellos encontrados en pinnípedos de otras 

latitudes. Por lo tanto, estos hallazgos amplían el espectro de especies hospedadoras 

para Cryptosporidium, así como sus especies y genotipos. 

Sub Objetivo 2.2: Detección de parásitos helmintos en muestras fecales 

 Primera: Los fócidos antárticos, elefantes marinos y focas de Weddell, 

mostraron un alto nivel de infección con diferentes estadios de nematodos 

pertenecientes a la familia Anisakidae y superfamilia Metastrongyloidea, así como 

cestodos de la familia Diphyllobothriidae, mientras que las focas leopardo solamente 

estuvieron parasitadas por nematodos de la superfamilia Metastrongyloidea y cestodos 

de la familia Diphyllobothriidae, aunque los niveles de parasitación fueron igualmente 

elevados. 

 Segunda: Los lobos finos Antárticos mostraron un moderado nivel de infección 

con los mismos grupos de helmintos encontrados en los fócidos antárticos, contrastando 

este hallazgo con estudios previos donde solo se había descrito la presencia de 

nematodos de la familia Anisakidae. Por lo tanto, esta es la primera descripción de la 
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presencia de parásitos de la superfamilia Metastrongyloidea y familia 

Diphyllobothriidae en otáridos Antárticos. 

 Tercera: La presencia de los diferentes grupos de helmintos, tanto en 

poblaciones de fócidos como en otáridos, es una prueba de su extensa distribución en 

pinnípedos Antárticos, aunque existen diferencias en los porcentajes de parasitación 

entre las especies hospedadoras y las zonas estudiadas, probablemente influenciadas por 

la dieta y el comportamiento, entre otros factores aún desconocidos. 

 Cuarta: Los métodos moleculares han demostrado ser una herramienta muy útil 

y más precisa que la caracterización morfológica para la identificación de especies 

desconocidas de parásitos que infectan a los mamíferos marinos, lo que ha permitido 

describir la presencia de nuevos genotipos de nematodos en pinnípedos antárticos, junto 

con otros identificados con anterioridad en estos hospedadores, incrementando la 

información disponible de estos parásitos en el entorno Antártico, la cual es actualmente 

escasa. 

 

APORTACIONES FUNDAMENTALES DE LA PRESENTE TESIS DOCTORAL 

Las contribuciones de esta Tesis Doctoral incrementan la información existente 

sobre la presencia y distribución de parásitos en pinnípedos antárticos, habiéndose 

publicado los resultados obtenidos en los objetivos 1 (Capítulo 2) y 2.1 (Capítulos 3 y 

4) y habiendo sido los resultados obtenidos en el objetivo 2.2 (Capítulo 5 y 6) enviados 

para su publicación en las siguientes revistas recogidas en el SCI (Science Citation 

Index): 

 Capítulo 2: Detección de anticuerpos frente a Toxoplasma gondii en pinnípedos 

Antárticos:  

Rengifo-Herrera, C., Ortega-Mora, L.M., Alvarez-García, G., Gómez-Bautista, 

M., García-Párraga, D., García-Peña, F.J., Pedraza-Díaz, S. Detection of 

Toxoplasma gondii antibodies in Antarctic pinnipeds. Vet. Parasitol. 190 (2012): 

259-262. 

 Capítulo 3: Detección y caracterización de un aislado de Cryptosporidium 

procedente de un elefante marino (Mirounga leonina) de la Península Antártica: 

Rengifo-Herrera, C., Ortega-Mora, L.M., Gómez-Bautista, M., García-Moreno, 

F.T., García-Párraga, D., Castro-Urda, J., Pedraza-Díaz, S. Detection and 
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characterisation of a Cryptosporidium isolate from a Southern Elephant Seal 

(Mirounga leonina) from the Antarctic Peninsula. Appl. Environ. Microbiol. 77 

(2011): 1524-1527. 

 Capítulo 4: Detección de un nuevo genotipo de Cryptosporidium en pinnípedos 

Antárticos.  

Rengifo-Herrera, C., Ortega-Mora, L.M., Gómez-Bautista, M., García-Peña, F.J., 

García-Párraga, D., Pedraza-Díaz, S. Detection of a novel genotype of 

Cryptosporidium in Antarctic pinnipeds. Vet. Parasitol. 191 (2013): 112-118. 

 Capítulo 5: Presencia de helmintos encontrados en heces de fócidos de la 

Península Antártica.  

Rengifo-Herrera, C., Ferre, I., Ortega-Mora, L.M., García-Moreno, F.T., García-

Párraga, D., García-Peña, F.J., Pereira-Bueno, J., Pedraza-Díaz, S. Helminth 

parasites found in faecal samples of phocids from the Antarctic Peninsula. Polar 

Biol. 

 Capítulo 6: Presencia de parásitos helmintos en lobos finos antárticos 

(Arctocephalus gazella Peters, 1875) de la Península Antártica.  

Rengifo-Herrera, C., Ferre, I., Ortega-Mora, L.M., García-Moreno, F.T., García-

Párraga, D., García-Peña, F.J., Pereira-Bueno, J., Pedraza-Díaz, S. Presence of 

helminth parasites in Antarctic fur seals (Arctocephalus gazella Peters, 1875) 

from the Antarctic Peninsula. Antarct. Sci. 

Al mismo tiempo, estos estudios han puesto de manifiesto la necesidad de 

continuar realizando investigaciones encaminadas a generar mayor información sobre la 

epidemiología de los diferentes agentes patógenos y las enfermedades que estos causan 

en la fauna antártica. Además, estos estudios proporcionan datos base muy útiles para 

poder evaluar y monitorizar los posibles cambios futuros que puedan ocurrir dentro del 

entorno Antártico y pueden contribuir a desarrollar medidas más eficientes para 

optimizar las políticas medioambientales vigentes, así como también los programas de 

gestión existentes, creados para proteger y mantener viables las diferentes especies 

antárticas. 
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a  b  s  t  r  a  c  t

The  presence  of  Toxoplasma  gondii  antibodies  was  investigated  in  Antarctic  marine  mam-
mals. Two  hundred  and  eleven  sera  from  different  species  of pinnipeds  collected  in  years
2007, 2010  and  2011  from  different  locations  in  the  South  Shetland  Islands  and  Antarctic
Peninsula  were  analysed  using  a commercially  available  agglutination  test  kit. The  pres-
ence of  antibodies  (titres  ≥ 1:25)  against  T.  gondii  was  detected  in  a total  of  28 animals
(13.3%).  Amongst  animal  species,  percentages  of  detection  were  higher  in  Southern  ele-
phant  seals  (Mirounga  leonina)  (76.9%;  10/13)  followed  by  Weddell  seals  (Leptonychotes
ntarctica weddellii)  (41.9%;  13/31).  Antibodies  were  also  found  in  4 of  165  (2.4%)  Antarctic  fur  seals
(Arctocephalus  gazella)  and  1  of  2 Crabeater  seals  (Lobodon  carcinophaga).  Highest  titres
(1:100–1:800)  were  also  observed  in  Southern  elephant  seals  and Weddell  seals.  To  the
best of our  knowledge  this  is  the  first  report  on  the  detection  of antibodies  against  T. gondii

 mamm
in Antarctic  marine

. Introduction

Toxoplasma gondii is an apicomplexan parasite with a
orldwide distribution which affects a wide range of ani-
als, including domestic and wild species and humans. In
arine mammals, infections with T. gondii cause morbidity

nd mortality (Dubey, 2010).
In pinnipeds, clinical toxoplasmosis has been reported

n a Northern Elephant seal (Mirounga angustirostris)
Dubey et al., 2004), a Northern fur seal (Callorhinus ursinus)
Holshuh et al., 1985), a Pacific harbor seal (Phoca vitulina
ichardsi) (Van Pelt and Dietrich, 1973), a Hawaiian monk

eal (Monachus schauinslandi) (Honnold et al., 2005) and
alifornia Sea lions (Zalophus californianus) (Ratcliffe and
orth, 1951; Dubey et al., 2003). In addition, numerous

∗ Corresponding author. Tel.: +34 913944095; fax: +34 913944098.
E-mail address: spedraza@vet.ucm.es (S. Pedraza-Díaz).

304-4017/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.vetpar.2012.05.020
als.
© 2012 Elsevier B.V. All rights reserved.

serological studies have shown the presence of antibod-
ies against T. gondii in true seals (Fam. Phocidae), eared
seals (Fam. Otariidae) and walruses (Fam. Odobenidae)
from different geographical areas which include USA,
North-western Hawaiian islands, Japan, Svalvard, the Cana-
dian Arctic, Mexico and the North-eastern Atlantic Ocean
(Dubey, 2010; Jensen et al., 2010; Alvarado-Esquivel et al.,
2012; Cabezon et al., 2011; Simon et al., 2011). The range
of pinniped species in which T. gondii antibodies have
been found include the Pacific harbor seal (Phoca vitulina
richardsi) (Lambourn et al., 2001; Dubey et al., 2003), west-
ern Atlantic harbor seal (Phoca vitulina concolor) (Measures
et al., 2004), kuril harbor seal (Phoca vitulina stejnegeri)
(Fujii et al., 2007), ringed seal (Pusa hispida), bearded seal
(Erignathus barbatus), spotted seal (Phoca largha)  (Dubey

et al., 2003), grey seal (Halichoerus grypus)  (Measures
et al., 2004; Cabezon et al., 2011), hooded seal (Cystophora
cristata) (Measures et al., 2004), Hawaiian monk seal
(M. schauinslandi)  (Aguirre et al., 2007), eastern-Atlantic

dx.doi.org/10.1016/j.vetpar.2012.05.020
http://www.sciencedirect.com/science/journal/03044017
http://www.elsevier.com/locate/vetpar
mailto:spedraza@vet.ucm.es
dx.doi.org/10.1016/j.vetpar.2012.05.020
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harbor seal (Phoca vitulina vitulina) (Cabezon et al., 2011),
California sea lion (Z. californianus), and the walrus (Odobe-
nus rosmarus) (Dubey et al., 2003).

To the best of our knowledge, no investigations have
been carried out in Antarctic pinnipeds. Marine mam-
mals are regarded as good bio-indicators of environmental
changes. However, the information available about the
health status of the Antarctic marine mammals is very
scarce and fragmented (Kerry et al., 2000). In addition,
human derived activities in this pristine environment could
be compromising these populations. In this sense recom-
mendations have been made regarding the importance of
health monitoring the Antarctic fauna (Annon, 2003). The
purpose of this study was to investigate the presence of T.
gondii antibodies in pinnipeds from different regions in the
Antarctic Peninsula.

2. Materials and methods

2.1. Pinniped samples

Blood samples were collected during the month of
February of years 2007, 2010 and 2011 from a total of
211 animals (Table 1): 31 Weddell seals (L. weddellii), 13
Southern elephant seals (M.  leonina), 2 Crabeater seals (L.
carcinophaga) and 165 Antarctic fur seals (A. gazella)  from
different locations along the west coast of the Antarctic

Peninsula in a latitudinal gradient covering 5◦ of latitude
(ranging from 62◦15′S; 58◦37′W-67◦46′S; 68◦43′W),  dis-
tances greater than 600 km and differences in mean annual
temperatures of up to 2 ◦C.

Table 1
Distribution of samples and Toxoplasma gondii antibody detection results in Anta

Animal species Locationa

Weddell seal (Leptonychotes
weddellii)

Deception Island, South Shetland Islands 

Rongé Island, Errera Channel 

Avian Island, Marguerite Bay, Antarctic Pen
Total 

Southern elephant seal
(Mirounga leonina)

King George Island, South Shetland Islands
Deception Island, South Shetland Islands 

Avian Island, Marguerite Bay, Antarctic Pen
Anvers Island, Palmer Archipelago, Antarct
Total 

Crabeater seal (Lobodon
carcinophaga)

Deception Island, South Shetland Islands 

Total 

Antarctic fur seal
(Arctocephalus gazella)

Deception Island, South Shetland Islands 

Avian Island, Marguerite Bay, Antarctic Pen

Barrientos Island, Aitcho Islands, South She
Total 

Total

a Geographical coordinates: Deception Island 63◦00′S; 60◦40′W;  Rongé Island
62◦15′S; 58◦37′W;  Anvers Island 64◦48′S, 63◦46′W;  Barrientos Island 62◦24′S, 59
rasitology 190 (2012) 259– 262

For the collection of samples, animals were randomly
selected, captured and physically restrained. All captured
animals were tagged with a coloured and numbered plas-
tic tag for tracking purposes, ensuring that no animal was
sampled more than once. Permissions for these activities
were granted by the Spanish Polar Committee complying
with the Antarctic Treaty System. Blood samples were cen-
trifuged (700 × g for 10 min) and the sera stored at −20 ◦C
until analysed.

2.2. Serological examination

Detection of antibodies against T. gondii was  performed
using a commercial kit based on detection of specific
IgG from sera by direct agglutination (Toxo-Screen DA,
BioMerieux®, France) according to the manufacturer’s
instructions. For initial screening, 1:25 and 1:100 final
dilutions of sera were tested. Samples that showed agglu-
tination at 1:25 were considered positive (see Section 4)
and further tested for titre determination at two-fold serial
dilutions from 1:25 to 1:6400. All positive samples were
retested to confirm the reliability of the results.

2.3. Statistical analysis

Seropositivity data with respect to animal species and
year were analysed by pairs using the Chi-square or Fisher’s

exact test using the Statgraphic Centurion XVI version
16.1.11, statistical software (©StatPoint Technologies, Inc.,
1922–2010, Warrenton, VA, USA). Differences were consid-
ered significant at a probability level of P < 0.05.

rctic pinnipeds.

Year No. Samples Positive % Positive

2007 8 0 0
2010 14 9 64.3
2011 6 2 33.3
2010 1 0 0

insula 2010 2 2 100
31 13 41.9

 2007 6 5 83.3
2010 1 1 100
2011 1 1 100

insula 2010 4 2 50.0
ic Peninsula 2011 1 1 100

13 10 76.9

2007 1 0 0
2011 1 1 100

2 1 50.0

2007 40 0 0
2010 44 1 22.7
2011 48 2 41.7

insula 2010 14 0 0
2011 15 1 66.7

tland Islands 2011 4 0 0
165 4 2.4

211 28 13.3

 64◦40′S; 62◦40′W;  Avian Island 67◦46′S; 68◦43′W;  King George Island
◦44′W.
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. Results

Antibodies against T. gondii were detected in 28 (13.3%)
f the 211 Antarctic pinniped samples collected (Table 1).
ercentages of detection, with titres ≥1:25, were signif-
cantly higher in Southern elephant seals (76.9%, 13/10),
han in Weddell seals (41.9%, 13/31) (P < 0.05), and than
n Antarctic fur seals (2.4%, 4/165) (P < 0.001). In Crabeater
eals antibodies were found in 1 of the 2 animals tested.
itres ranged from 1:25 to 1:800, most animals showing
itres of 1:25 (10/28) and 1:50 (8/28). End-point titres of
:100 (n = 2) and 1:400 (n = 1) were found in Southern ele-
hant seals; and of 1:100 (n = 5), 1:200 (n = 1) and 1:800
n = 1) in Weddell seals.

Seropositive animals were recorded each year of the
tudy, not finding any statistical differences, and in four of
he six locations from which samples were screened: Avian
sland (5/35), Deception Island (17/165), King George Island
5/6), and Biscoe Point (1/1).

. Discussion

To the best of knowledge, the study presented here
onstitutes the first report on the presence of T. gondii anti-
odies in Antarctic pinnipeds. Our serological data using
gglutination suggest an unexpected high level of exposure
n these populations, especially in Southern elephant seals
nd in Weddell seals where T. gondii antibodies were found
n 76.9% and 41.9% of the samples analysed, respectively. In
rabeater seals, one of the two animals (50%) analysed also
howed antibodies against T. gondii.  Direct agglutination
as been widely used to detect T. gondii antibodies in a vari-
ty of marine mammals (Mikaelian et al., 2000; Dubey et al.,
003, 2005, 2008; Thoisy et al., 2003; Measures et al., 2004;
guirre et al., 2007). It has been reported that amongst dif-

erent serological tests available, the agglutination test is
ost useful because it is species independent (does not

equire species specific conjugates), sensitive, and specific
Desmonts and Remington, 1980; Dubey, 2002). In par-
icular, the commercial kit used in the present study has
roven its usefulness at detecting T. gondii antibodies in
xperimentally infected seals (Gajadhar et al., 2004) and in
rctic seals (Jensen et al., 2010; Simon et al., 2011). Most
uthors have considered titres of 1:25 as positive, although
s low as 1:2 or 1:5 have also been reported in other hosts
Dubey and Jones, 2008). In addition, an agglutination titre
f 1:25 was found in a beluga whale (Delphinapterus leucas)
ith confirmed toxoplasmosis, which led Mikaelian et al.

2000) to suggest that a low titre might be indicative of
nfection. Therefore in this study evidence of exposure was
onsidered at titres ≥1:25. We  found that most titres were
ow (1:25, 1:50 and 1:100). This is consistent with pre-
ious studies using the direct agglutination test in which
ow titres have been reported in pinnipeds (Dubey, 2010;
ensen et al., 2010; Cabezon et al., 2011; Alvarado-Esquivel
t al., 2012; Simon et al., 2011).

Seropositive animals were recorded in most of the loca-

ions included in the study. However, Palacios et al. (2010)
id not find antibodies against T. gondii in penguins in
hese locations. The Antarctic pinnipeds analysed here,
articularly Weddell seals and Southern elephant seals,
rasitology 190 (2012) 259– 262 261

have a widespread and circumpolar distribution around
Antarctica, as well as occurring on sub-Antarctic islands.
Occasional wandering individuals have also been recorded
as far as Australia, New Zealand, Africa, and South Amer-
ica but seasonal movements are poorly known (Shirihai,
2002).

The route of T. gondii infection for marine mammals
is not known. Felids are the only known definitive host
for this parasite, playing a crucial role contaminating the
environment with oocysts excreted in their faeces (Dubey,
2010). It has been suggested that contamination of sea
water by freshwater run-off and sewer discharge carry-
ing T. gondii oocysts from the terrestrial environment may
result in infection in marine mammals (Miller et al., 2002;
Conrad et al., 2005; Dabritz et al., 2007). Furthermore
it has been experimentally demonstrated that T. gondii
oocysts can sporulate in sea water and remain infectious
for mice for up to 24 months (Lindsay and Dubey, 2009).
There is no wild felid fauna in Antarctica and in 1991
the Madrid Protocol on Environmental Protection to the
Antarctic banned all introduced species from the Antarc-
tic to protect the native wildlife from introduced diseases,
including cats. However, felids are present in the sub-
Antarctic regions, areas within the normal distribution
range of the animal species analysed here. Recently, Afonso
et al. (2007) reported high seroprevalence values (51.09%)
in feral cats in the Kerguelen archipelago in the Sub-
Antarctic region. Therefore exposure to Toxoplasma might
have occurred outside Antarctica and is in agreement with
the higher detection rates in Southern elephant seals and
Weddell seals found here, which show wider distribution
and migratory ranges. In addition, the differences observed
here between the animal species analysed could be due to
their different feeding habits. While Antarctic fur seals and
crabeater seals feed primarily on krill taking occasionally
fish and cephalopods, the diet of the Weddell seal consists
mainly on fish, eating also cephalopods and crustaceans
and Southern elephant seals eat mainly cephalopods and
fish consuming occasionally shellfish (Shirihai, 2002). It has
been shown that T. gondii oocysts may  be concentrated by
marine filter-feeding invertebrates, bivalve molluscs, both
under laboratory conditions (Lindsay et al., 2001, 2004;
Arkush et al., 2003) and in the wild (Miller et al., 2008)
which may  act as a source of infection for marine wildlife. In
our study, only Southern elephant seals might sporadically
consume shellfish, not representing therefore a likely route
of transmission for Antarctic pinnipeds. However, recent
studies performing experimental exposure of filter feeder
fish to T. gondii oocysts have indicated that migratory fish
may  play a role in the transmission of T. gondii in the marine
environment (Massie et al., 2010).

Further investigations are needed to elucidate the likely
transmission pathways of T. gondii in marine mammals as
well as the presence of T. gondii in the Antarctic marine
ecosystem.
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D. García-Párraga,3 J. Castro-Urda,4 and S. Pedraza-Díaz1*
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n,

28040 Madrid, Spain1; Jefatura de Apoyo Veterinario, Inspección General de Sanidad de la Defensa, Glorieta del Ejército s/n,
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The presence of Cryptosporidium and Giardia in 221 fecal samples from different species of Antarctic
pinnipeds was investigated by immunofluorescence microscopy and PCR. Cryptosporidium, a skunk-like geno-
type, was detected only in a southern elephant seal. Giardia was not detected. This is the first report of a
Cryptosporidium sp. in Antarctic marine mammals.

Cryptosporidium and Giardia are ubiquitous protozoan par-
asites which infect a wide variety of hosts, including humans
and domesticated and wild animals (27). In recent years, in-
creasing research has been carried out in marine mammals
since they may act as indicator species for environmental con-
tamination with these waterborne parasites (1). Cryptospo-
ridium oocysts and/or Giardia cysts have been identified in
feces or intestinal contents of various animal species, including
an Australian dugong (Dugong dugon), California sea lions
(Zalophus californianus), ringed seals (Phoca hispida), harp
seals (Phoca groenlandica), gray seals (Halichoerus grypus),
hooded seals (Cyptophora cristatai), bearded seals (Erignathus
barbatus), and harbor seals (Phoca vitulina), as well as right
whales (Eubalaena glacialis) and bowhead whales (Balaena
mysticetus) from different locations worldwide (reviewed in
references 1, 5, and 13). However, no studies have been con-
ducted on Antarctic marine mammals. Regarding the species
or genotypes involved, the presence of zoonotic assemblages A
and B of Giardia duodenalis has been commonly reported (1, 2,
5, 16), as have assemblages F (2) and D and novel genotypes
related to the canine assemblages C and D (10). Cryptospo-
ridium hominis, a species thought to be infective exclusively for
humans, nonhuman primates, and gnotobiotic pigs (19), has
been identified only in a dugong (12). Other species reported
include Cryptosporidium muris and two novel genotypes, des-
ignated Cryptosporidium sp. seal 1 and 2 (2, 5, 25). These
studies indicate that marine mammals could represent poten-
tial zoonotic reservoirs for Cryptosporidium and Giardia, but
they also reflect that human activities may have an impact on
the health of marine mammals and the environment. It is
therefore important to monitor the health status of wildlife in

general and identify potential sources of infection and routes
of transmission or dissemination, particularly in unspoiled
areas.

In the present study, we investigated the presence of the
zoonotic parasites Cryptosporidium and Giardia in Antarctic
pinnipeds in order to determine the occurrence of these par-
asites, to identify the species or genotypes involved in infec-
tion, and to evaluate whether they might be linked to anthro-
pogenic activities.

A total of 221 fresh fecal samples from different pinniped
populations from different locations along the west coast of the
Antarctic Peninsula (ranging from 62°15�S to 58°37�W-67°46�S
and 68°43�W) (Fig. 1) were collected from the ground during
the month of February in 2006 and 2007. These included sam-
ples from 31 Weddell seals (Leptonychotes weddelli), 2 crab-
eater seals (Lobodon carcinophagus), 4 leopard seals (Hydrurga
leptonyx), 53 southern elephant seals (Mirounga leonina), and
131 Antarctic fur seals (Arctocephalus gazella).

Fecal slides were prepared on the same day of sample col-
lection by spreading in triplicate approximately 40 �l of ho-
mogenized sample onto a microscope glass slide and fixing in
methanol and were stored at �20°C. Fecal samples were kept
at �4°C without preservatives for periods of up to 2 months
until they were analyzed.

Detection of Cryptosporidium and Giardia. Immunofluores-
cence staining was performed using the Crypto/Giardia Cel IF
test (Cellabs Pty. Ltd., Brookvale, Australia) on fecal slides.
The numbers of oocysts/cysts on slides were determined at
magnification �400, and the means for 20 fields were calcu-
lated. If no oocysts/cysts were seen in 20 fields, the entire slide
was examined. To approximately calculate the number of oo-
cysts, the following categories were established: no oocysts; �1
oocyst per field; 1 to 10 oocysts per field; 11 to 100 oocysts per
field; and �100 oocysts per field, which corresponded to ap-
proximately 0, �103, 103 to 104, 104 to 105, and �105 oocysts
per g (or per ml) of feces, respectively, performing spiking
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trials with control C. parvum oocysts in negative seal fecal
samples. Fecal slides were prepared as described above.

DNA purification was performed using 200 to 300 �l of ho-
mogenized feces and comprised oocyst/cyst disruption with zirco-
nia beads in the presence of guanidinium thiocyanate, followed by
purification with activated silica as previously described (17). Pos-
itive (both positive fecal samples, bovine and canine, and control
oocysts/cysts of C. parvum and G. duodenalis assemblage D) and
negative controls were included in each batch.

For Cryptosporidium, a nested PCR procedure was per-
formed for amplification of an 827- to 840-bp polymorphic
fragment of the 18S ribosomal DNA (rDNA) (28). In addition,
a 446-bp fragment of the HSP70 gene was amplified using the
primers HSPF4 and HSPR4 (20). For Giardia, a nested pro-
cedure was performed to amplify a 511-bp fragment of the
beta-giardin gene (15). Positive and negative controls were
included for all PCRs.

The presence of Cryptosporidium oocysts was detected by
immunofluorescence and PCR only in one sample (0.45%)
from a Southern elephant seal collected in the southernmost
sampling area, Avian Island, in 2006. The presence of Giardia

was not detected by either method in any of the samples
analyzed. These results suggest that the presence of these par-
asites in these regions is rare. The detection methods used in
this study are widely applied and have proven very sensitive.
However, we did not perform concentration of the fecal ma-
terial or purification of oocysts/cysts, and therefore samples
with very low numbers of oocysts/cysts might not have been
detected. Nevertheless, we consider the application of both
immunofluorescence microscopy and PCR to enhance the de-
tection power. To our knowledge, our study constitutes the first
report of the presence of Cryptosporidium in Antarctic marine
mammals. Few studies have been conducted in this respect;
Fayer (6) has indicated that Antarctica was the only continent
in which the presence of Cryptosporidium had not been re-
ported. However, recently the presence of Cryptosporidium
oocysts in Antarctic adelie (Pygoscelis adeliae) and gentoo pen-
guins (Pygoscelis papua) from Ardley Island, South Shetlands
(62°13�S, 58°54�W) has been described (7, 9), although other
studies in different locations have reported the absence of
Cryptosporidium and/or Giardia in gentoo and adelie penguins
and in chinstrap penguins (Pygoscelis antarctica) (8, 22). In

FIG. 1. Locations of sampling areas and animal distribution (adapted from Wikimedia Commons [Giovanni Fattori]). 1, Deception Island,
South Shetland Islands; 2, King George Island, South Shetland Islands; 3, Hannah Point, Livingston Island, South Shetland Islands; 4, Byers
Peninsula, Livingston Island, South Shetland Islands; 5, Cape Primavera, Antarctic Peninsula; 6, Rongé Island, Errera Channel; 7, Paradise Bay,
Antarctic Peninsula; 8, Galindez Island, Argentine Islands; 9, Avian Island, Marguerite Bay, Antarctic Peninsula. F, Weddell seal (Leptonychotes
weddelli); ¼, crabeater seal (Lobodon carcinophagus); }, leopard seal (Hydrurga leptonyx); f, southern elephant seal (Mirounga leonina); Œ,
Antarctic fur seal (Arctocephalus gazella).
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contrast to the results presented here, prevalence rates of
Cryptosporidium in pinnipeds from other less-preserved areas
range from 16 to 24% (2, 4, 12, 13, 25), whereas for Giardia,
they range from 12 to 64.5% (2, 13, 18, 21). This indicates that
the Antarctic fauna has suffered from a lower level of exposure
to these agents, which is in agreement with the relative geo-
graphical and biological isolation of the Antarctic continent.
However, further studies are needed to investigate their po-
tential sources of infection and to monitor their possible in-
troduction and dissemination in this singular environment.

The number of oocysts observed per field was 5, which ap-
proximately corresponded to 103 to 104 oocysts per g of feces,
suggesting infection in this animal rather than passive transfer.
In contrast to other animal species analyzed in this study,
whose migratory and foraging ranges seem to be confined to
the Antarctic region, the southern elephant seal is widely dis-
tributed in the Southern hemisphere. Therefore, infection in
this animal might have been acquired outside Antarctica and
introduced into the area. Nevertheless, this might have impor-
tant implications for the Antarctic fauna, since these animals
can act as reservoirs of the disease to those in close vicinity and
also disseminate these pathogens to different geographic loca-
tions in the marine and terrestrial environments.

Molecular characterization of the Cryptosporidium isolate.
18S rDNA and HSP70-positive amplicons were directly se-
quenced in both directions at the Unidad Genómica del
Parque Científico de Madrid. Sequences were analyzed using
the BioEdit Sequence Alignment Editor software program,
v.7.0.1 (7, 11). Multiple alignments were performed using the
ClustalW software program, and neighbor-joining trees were
constructed from the aligned sequences using the MEGA soft-
ware program, version 4 (26). Analysis of the 828-bp 18S
rDNA fragment revealed a 99.5% to 99.6% similarity to the
sequences of the Cryptosporidium skunk genotype published in
GenBank, isolated from a skunk (accession no. AY120903),
from environmental samples (AY737559 and EU825736), and
from a human patient (EU437415). The sequence obtained for
this isolate showed the deletion of a T base at position 285 with
respect to the sequence under accession no. AY120903 and the
insertion of a T base at positions 456, 457, and 508 with respect
to all four sequences. The neighbor-joining analysis of the
multiple alignment performed with Cryptosporidium sequences
retrieved from the GenBank database (Fig. 2) showed that this
genotype clusters closely with other intestinal Cryptosporidium
species, such as C. parvum, C. hominis, C. wrairi, C. meleagridis,
and C. suis, but constitutes a separate, distinct group.

Sequence and phylogenetic analysis of the HSP70 gene con-
firmed these results. The highest similarities, 99.8%, were ob-
served with the Cryptosporidium skunk genotype isolated from
a skunk (accession no. AY120917) and from a human patient
(EU437414). The sequence obtained in this study varied by a
T/C substitution at position 75 and an A/G substitution at
position 240 with respect to the sequence under accession no.
AY120917 and EU437414, respectively. Previously, the Cryp-
tosporidium skunk genotype had been isolated from skunk,
raccoon, eastern squirrel, opossum, river otter (27), environ-
mental samples (14, 23), and, also recently, from humans (3,
24). It was initially suggested that this genotype might be a
fur-bearing wild mammal host-adapted type with no signifi-
cance for public health (27). However, the identification of this

genotype in a human patient who had suffered from diarrhea
(24) demonstrates that it is capable of causing infection in
other hosts and could disseminate through different routes of
transmission. More molecular data identifying the species and
genotypes present in marine mammals are needed to compare
with new and existing data from humans and other terrestrial
animals in order to evaluate the potential impact of human
activities on these populations.

Nucleotide sequence accession numbers. The nucleotide se-
quences generated in this study have been deposited in the
GenBank database under accession numbers GQ421425 and
GQ421426.

This work was funded by the Spanish Ministry of Education and
Science (CGL-2004-22025-E/ANT, CGL-2005-25073-E/ANT, and
CTM2008-00570).

FIG. 2. Phylogenetic relationships between the southern elephant
seal isolate ANT 80 (in box) and published Cryptosporidium species or
genotypes, inferred by neighbor-joining analysis of the 18S rDNA
fragment. Evolutionary distances were calculated by the Kimura-2
parameter model using Eimeria tenella as an outgroup.
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9. Fredes, F., E. Raffo, and P. Muñoz. 2007. First report of Cryptosporidium spp.
oocysts in stool of Adelie penguin from the Antarctic using acid-fast stain.
Antarct. Sci. 19:437–438.

10. Gaydos, J. K., et al. 2008. Novel and canine genotypes of Giardia duodenalis
in harbor seals (Phoca vitulina richardsi). J. Parasitol. 94:1264–1268.

11. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment
editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp.
Ser. 41:95–98.

12. Hill, B. D., I. R. Fraser, and H. C. Prior. 1997. Cryptosporidium infection in
a dugong (Dugong dugon). Aust. Vet. J. 75:670–671.

13. Hughes-Hanks, J. M., et al. 2005. Prevalence of Cryptosporidium spp. and
Giardia spp. in five marine mammal species. J. Parasitol. 91:1225–1228.

14. Jellison, K. L., A. E. Lynch, and J. M. Ziemann. 2009. Source tracking
identifies deer and geese as vectors of human-infectious Cryptosporidium
genotypes in an urban/suburban watershed. Environ. Sci. Technol. 43:4267–
4272.

15. Lalle, M., et al. 2005. Genetic heterogeneity at the beta-giardin locus among
human and animal isolates of Giardia duodenalis and identification of po-
tentially zoonotic subgenotypes. Int. J. Parasitol. 35:207–213.

16. Lasek-Nesselquist, E., et al. 2008. Molecular characterization of Giardia
intestinalis haplotypes in marine animals: variation and zoonotic potential.
Dis. Aquat. Organ. 81:39–51.

17. McLauchlin, J., S. Pedraza-Díaz, C. Amar-Hoetzeneder, and G. L. Nichols.
1999. Genetic characterization of Cryptosporidium strains from 218 patients
with diarrhea diagnosed as having sporadic cryptosporidiosis. J. Clin. Micro-
biol. 37:3153–3158.

18. Measures, L. N., and M. E. Olson. 1999. Giardiasis in pinnipeds from eastern
Canada. J. Wildl. Dis. 35:779–782.

19. Morgan, U. M., et al. 2000. Detection of the Cryptosporidium parvum “hu-
man” genotype in a dugong (Dugong dugon). J. Parasitol. 86:1352–1354.

20. Morgan, U. M., et al. 2001. Molecular and phylogenetic characterisation of
Cryptosporidium from birds. Int. J. Parasitol. 31:289–296.

21. Olson, M. E., P. D. Roach, M. Stabler, and W. Chan. 1997. Giardiasis in
ringed seals from the western Arctic. J. Wildl. Dis. 33:646–648.

22. Palacios, M. J., et al. 2010. Absence of Cryptosporidium, Giardia and Toxo-
plasma gondii in three species of penguins along Antarctic Peninsula. Ant-
arct. Sci. 22:265–270.

23. Perz, J. F., and S. M. Le Blancq. 2001. Cryptosporidium parvum infection
involving novel genotypes in wildlife from lower New York State. Appl.
Environ. Microbiol. 67:1154–1162.

24. Robinson, G., K. Elwin, and R. M. Chalmers. 2008. Unusual Cryptosporidium
genotypes in human cases of diarrhea. Emerg. Infect. Dis. 14:1800–1802.

25. Santín, M., B. R. Dixon, and R. Fayer. 2005. Genetic characterization of
Cryptosporidium isolates from ringed seals (Phoca hispida) in Northern Que-
bec, Canada. J. Parasitol. 91:712–716.

26. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular
Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol.
Evol. 24:1596–1599.

27. Xiao, L., and R. Fayer. 2008. Molecular characterisation of species and
genotypes of Cryptosporidium and Giardia and assessment of zoonotic trans-
mission. Int. J. Parasitol. 38:1239–1255.

28. Xiao, L., et al. 1999. Phylogenetic analysis of Cryptosporidium parasites based
on the small-subunit rRNA gene locus. Appl. Environ. Microbiol. 65:1578–
1583.

VOL. 77, 2011 CRYPTOSPORIDIUM AND GIARDIA IN ANTARCTIC PINNIPEDS 1527



S

D
p

C
F
a

b

c

a

A
R
R
A

K
C
G
P
A

1

i
a
a
r
a
a
2
X
H
e
o
n
a
s

0
h

Veterinary Parasitology 191 (2013) 112– 118

Contents lists available at SciVerse ScienceDirect

Veterinary  Parasitology

jou rn al h om epa ge: www.elsev ier .com/ locate /vetpar

hort  communication

etection  of  a  novel  genotype  of  Cryptosporidium  in  Antarctic
innipeds

laudia  Rengifo-Herreraa,  Luis  Miguel  Ortega-Moraa, Mercedes  Gómez-Bautistaa,
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A  study  was  conducted  to investigate  the  presence  of  Cryptosporidium  and  Giardia  in Antarc-
tic marine  mammals.  A  total  of  270  faecal  samples  from  different  species  of  pinnipeds
from  different  locations  in  the South  Shetland  Islands  and  Antarctic  Peninsula  were  ana-
lysed by  immunofluorescence  microscopy  and  PCR.  Cryptosporidium  was  detected  by PCR
in three  samples  from  Southern  elephant  seals  (Mirounga  leonina)  and  2 Weddell  seals
eywords:
ryptosporidium
iardia
innipeds
ntarctica

(Leptonychotes  weddellii).  However,  no  oocysts  were  observed  in  any  of the  samples  by
immunofluorescence  microscopy.  Molecular  characterisation  of  the  isolates,  using  the  18S
rDNA,  the  HSP70  and  the  COWP  loci,  revealed  the  presence  of a  Cryptosporidium  sp.,  previ-
ously  reported  from  an  Antarctic  Southern  elephant  seal,  in  the  elephant  seals  and  a  novel
genotype  in  Weddell  seals.  Giardia  could  not  be  detected  in any  of  the  samples  analysed.
. Introduction

Cryptosporidium spp. and Giardia duodenalis (syn. G.
ntestinalis, G. lamblia) are protozoan parasites which infect

 wide variety of hosts including humans and domesticated
nd wild animals worldwide (Xiao and Fayer, 2008). Cur-
ently, the genus Cryptosporidium contains up to 22 species
nd over 40 genotypes, while Giardia duodenalis includes 7
ssemblages or genotypes, designated A through G (Fayer,
010; Fayer et al., 2010; Robinson et al., 2010; Feng and
iao, 2011; Ren et al., 2012). In addition, an assemblage

 has been recently described in seals (Lasek-Nesselquist
t al., 2010). Proper identification and characterisation
f the species and genotypes involved in infection are

eeded to elucidate the routes of transmission. Tradition-
lly, species were primarily differentiated according to host
pecificity, oocyst or cyst morphology and site of infection

∗ Corresponding author. Tel.: +34 913944095; fax: +34 913944098.
E-mail address: spedraza@vet.ucm.es (S. Pedraza-Díaz).
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© 2012 Elsevier B.V. All rights reserved.

(Fayer, 2010). However, taxonomy based on these crite-
ria has proven inadequate. Furthermore, genetic analysis
has shown that these genera are complex. The advent of
molecular characterisation tools has greatly contributed to
establishing a correct taxonomy for both parasites setting
the basis for a better understanding of the diseases they
cause and their epidemiology.

In the last years increasing research has been carried
out on marine mammals since they may  act as indica-
tor species for environmental contamination with these
waterborne parasites (Appelbee et al., 2005). Cryptosporid-
ium spp. oocysts and Giardia spp. cysts have been identified
in different pinniped species which include California sea
lions (Zalophus californianus), bearded seals (Erignathus
barbatus), ringed seals (Phoca hispida syn. Pusa hispida),
harp seals (Pagophilus groenlandica), grey seals (Halichoerus
grypus), hooded seals (Cyptophora cristatai), harbour seals

(Phoca vitulina), mainly from different locations in North
America and an Antarctic Southern elephant seal (Mirounga
leonina) (reviewed in Rengifo-Herrera et al., 2011). Molec-
ular analyses identified Cryptosporidium muris and two

dx.doi.org/10.1016/j.vetpar.2012.08.021
http://www.sciencedirect.com/science/journal/03044017
http://www.elsevier.com/locate/vetpar
mailto:spedraza@vet.ucm.es
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Cryptosporidium seal genotypes, seal genotypes 1 and 2,
in ringed seals in Canada (Santin et al., 2005). Recently,
two additional novel Cryptosporidium genotypes have been
described in an Antarctic Southern elephant seal (M. leon-
ina) and in a harp seal (P. groenlandicus)  from the Gulf of
Maine (Rengifo-Herrera et al., 2011; Bass et al., 2012). Giar-
dia duodenalis Assemblage A was identified in harp and
hooded seals from Canada (Appelbee et al., 2005), Assem-
blage B in a harbour seal in the USA as well as in ringed seals
in Canada, both Assemblages A and B in a harp seal and
Assemblage F-like in mixed grey/harbour seal populations
from beaches in the USA (Bogomolni et al., 2008; Dixon
et al., 2008; Lasek-Nesselquist et al., 2008). A further study
has identified the canine genotype D and a novel geno-
type related to Assemblages C and D in faeces of harbour
seals from Washington Stateı̌s marine waters (Gaydos et al.,
2008). These studies highlight the need for more research
that can provide additional information on the diversity
and host range of these groups of parasites.

The purpose of this study was to further investigate the
presence of Cryptosporidium and Giardia in pinnipeds from
different regions in the Antarctic Peninsula.

2. Materials and methods

2.1. Faecal samples

A total of 270 faecal samples from different pinniped
populations from Deception Island, and other areas in the
South Shetland Islands and Antarctic Peninsula were col-
lected during the month of February in both 2010 and 2011
(Table 1). These included samples from Weddell seals (Lep-
tonychotes weddellii), Southern elephant seals (M. leonina),
and Antarctic fur seals (Arctocephalus gazella). Fresh sam-
ples were collected from the ground.

After sample collection, faecal slides were prepared,
fixed in methanol, and stored at −20 ◦C until analysed. Fae-
cal samples were kept at +4 ◦C without preservatives for
periods up to 2 months when they were received and ana-
lysed in the laboratory.

2.2. Cryptosporidium and Giardia detection and
characterisation

Immunofluorescence staining was performed using the
Crypto/Giardia Cel IF Test (Cellabs Pty Ltd., Brookvale,
Australia) according to the manufacturer’s instructions.

Oocyst/cyst disruption and DNA purification from fae-
cal samples were performed as described previously
(McLauchlin et al., 1999).

For Cryptosporidium detection and characterisation, a
nested PCR procedure was performed for amplification of
an 827–840 bp polymorphic fragment of the 18 rDNA (Xiao
et al., 1999, 2000). For further characterisation, a 446 bp
fragment of the HSP70 and a 550 bp fragment of the COWP
genes were amplified according to the protocols described
by Morgan et al. (2001) and Pedraza-Díaz et al. (2001),

respectively.

For Giardia,  a nested procedure was performed to
amplify a 511 bp fragment of the beta-giardin gene (Lalle
et al., 2005).
rasitology 191 (2013) 112– 118 113

Positive (C. parvum and G. duodenalis assemblage D) and
negative controls were included for all PCRs. A 5 �l aliquot
of the PCR products was  examined following electrophore-
sis in 1% agarose/ethidium bromide gels.

Positive amplicons were purified using the GENECLEAN
Turbo kit (QBiogene, CA, USA) according the manu-
facturer’s instructions and then directly sequenced in
both directions using the Big Dye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, CA, USA) and a 3730
DNA analyser (Applied Biosystems, CA, USA) at the Unidad
Genómica del Parque Científico de Madrid. Sequences
were analysed using BioEdit Sequence Alignment Editor
v.7.0.1 (7) (Hall, 1999). Multiple alignments were per-
formed using the ClustalW program and neighbour-joining
trees were constructed from the aligned sequences using
the MEGA5 software (Tamura et al., 2011). Accession num-
bers of Genbank Cryptosporidium 18S rDNA sequences used
in the analysis: C. andersoni (AF093496), C. baileyi (L19068),
C. bovis (AY120911), C. canis (AB210854), C. cuniculus
(EU437413), C. fayeri (AF112570), C. felis (AF108862),
C. fragile (EU162751), C. galli (HM116388), C. hominis
(AB369994), C. macropodum (AF513227), C. meleagridis
(AF112574), C. molnari (HM243548), C. muris (AB089284),
C. parvum (L16996), C. ryanae (AY587166), C. serpentis
(AF151376), C. suis (AF115377), C. ubiquitum (AF442484),
C. varanii (AF112573), C. wrairi (AF115378), C. xiaoi
(FJ896050), Cryptosporidium sp. 80ANT (GQ421425), Cryp-
tosporidium sp. Cc444 (JN858905), Cryptosporidium sp. fer-
ret genotype (GQ121022), Cryptosporidium sp. mink geno-
type (EF641015), Cryptosporidium sp. Pg453 (JN858909),
Cryptosporidium sp. Pv140 (JN858906), Cryptosporidium sp.
Pv245 (JN858907), Cryptosporidium sp. Pv270 (JN858908),
Cryptosporidium sp. seal genotype 1 (AY731234), Cryp-
tosporidium sp. seal genotype 2 (AY731235), Cryptosporid-
ium sp. skunk genotype (AY120903).

Accession numbers of Genbank Cryptosporidium
HSP70 sequences used in the analysis: C. andersoni
(AJ567390), C. baileyi (AF221539), C. bovis (AY741306),
C. canis (AY120920), C. cuniculus (GU967462), C. fayeri
(AF221531), C. felis (AF221538), C. galli (AY168849), C.
hominis (EF591788), C. meleagridis (AF221537), C. muris
(AF221543), C. parvum (EF576953), C. ryanae (EU410346),
C. serpentis (AF221541), C. suis (DQ833281), C. ubiquitum
(EF362483), C. varanii (FJ429602), C. wrairi (AF221536),
C. xiaoi (FJ896041), Cryptosporidium Pg453 (JN860884),
Cryptosporidium Pv140 (JN860883), Cryptosporidium Pv270
(JN860882), Cryptosporidium sp. ferret (AF221532), Cryp-
tosporidium sp. hedgehog (GQ259143), Cryptosporidium sp.
mink (EF428201), Cryptosporidium sp. seal 1 (AY731236),
Cryptosporidium sp. seal 2 (AY731237), Cryptosporidium sp.
seal 2 (AY731238), Cryptosporidium sp. skunk (AY120917),
Cryptosporidium sp. 80ANT (GQ421426).

Accession numbers of Genbank Cryptosporidium COWP
sequences used in the analysis: C. andersoni (DQ989570,
AY282693), C. baileyi (AY282698, AF266276), C. canis
(AF266274), C. cuniculus (EU437411), C. fayeri (AY237633),
C. felis (AY282700), C. hominis (AF148741, AF481960),

C. meleagridis  (AF248742, AY282694, DQ116568), C.
muris (AF161579, AY643491), C. parvum (AY282696,
AY282687, AY282686, AY282695, AF248743), C. serpentis
(AF266275), C. ubiquitum (HM209389), C. wrairi (U35027),
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Table 1
Distribution of samples and results obtained.

Host species No. samples Year Location Positive Cryptosporidium species/genotype

18S rDNA HSP70 COWP

Weddell seal
(Leptonychotes
weddelli)

9 2010 Deception Island, South Shetland Islands 1 Cryptosporidium sp.
Weddell seal
genotype

Cryptosporidium
sp. Weddell seal
genotype

Cryptosporidium sp.
Weddell seal
genotype

1 Rongé  Island, Errera Channel
3  2011 Deception Island, South Shetland Islands 1 Cryptosporidium sp.

Weddell seal
genotype

nd nd

1 Byers  Peninsula, Livingston Island, South
Shetland Islands

Total 14 2

Southern elephant seal
(Mirounga leonina)

16 2010 King George Island, South Shetland Islands
16 Hannah Point, Livingston Island, South Shetland

Islands
18 Byers Peninsula, Livingston Island, South

Shetland Islands
18 Avian Island, Marguerite Bay, Antarctic Peninsula

3 2011 King George Island, South Shetland Islands
3 Hannah Point, Livingston Island, South Shetland

Islands
15 Byers Peninsula, Livingston Island, South

Shetland Islands
1 Cryptosporidium sp.

Southern elephant
seal genotype

nd nd

13  Avian Island, Marguerite Bay, Antarctic Peninsula 1 Cryptosporidium sp.
Southern elephant
seal genotype

Cryptosporidium
sp. Southern
elephant seal
genotype

Cryptosporidium sp.
Southern elephant
seal genotype

7 Biscoe Point 1 Cryptosporidium sp.
Southern elephant
seal genotype

nd nd

2 Barrientos Island
Total 111 3

Antarctic fur seal
(Arctocephalus gazella)

53 2010 Deception Island, South Shetland Islands
8  Avian Island, Marguerite Bay, Antarctic Peninsula
1 Rongé Island, Errera Channel
3  King George Island, South Shetland Islands

39 2011 Deception Island, South Shetland Islands
4 Avian Island, Marguerite Bay, Antarctic Peninsula

16 King George Island, South Shetland Islands
2 Byers Peninsula, Livingston Island, South

Shetland Islands
3 Hannah Point, Livingston Island, South Shetland

Islands
3 Barrientos Island

13 Penguin Island
Total 145 0

nd: not done.
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Cryptosporidium sp. ferret (AB469366), Cryptosporidium sp.
mink (EU197215).

2.3. Nucleotide sequence accession numbers

The nucleotide sequences generated in this study have
been deposited in the GenBank database under accession
numbers JQ740100–JQ740108.

3. Results

3.1. Detection of Cryptosporidium and Giardia

Cryptosporidium was detected in samples collected from
three Southern elephant seals (M.  leonina) and two  Weddell
seals (L. weddellii) of the 111 and 14 faecal samples ana-
lysed, respectively, by PCR (Table 1). Cryptosporidial DNA
was not detected in any of the 145 samples from Antarctic
fur seals (A. gazella)  analysed. No Cryptosporidium oocysts
were observed in any of the samples by immunofluores-
cence microscopy.

The presence of Giardia could not be detected either
by immunofluorescence or by PCR in any of the samples
analysed.

3.2. Molecular characterisation of the Cryptosporidium
isolates

Sequence analysis of the 840 bp 18S rDNA fragment
amplified showed that the three isolates present in the
Southern elephant seals were an exact match (100% sim-
ilarity) to the Cryptosporidium isolate previously obtained
from an Antarctic Southern elephant seal (GQ421425) and
closely related to the Cryptosporidium skunk genotype
(AY120903) (Fig. 1A). The two sequences obtained from
Weddell seals were identical to each other and showed
the highest similarity (98.6%) with the Cryptosporidium
ferret genotype (GQ121022), being also closely related
to Cryptosporidium mink genotype (EF641015) and Cryp-
tosporidium wrairi (AF115378) (similarities of 98.5% and
98.4%, respectively).

For further characterisation, fragments of the HSP70 and
COWP genes were amplified and sequenced from one sam-
ple of each of the 18S rDNA genotypes found (Table 1).
Sequence and phylogenetic analysis of these markers con-
firmed these results. The neighbour-joining analyses of
the multiple alignments performed with Cryptosporidium
sequences retrieved from the GenBank database showed
the genetic uniqueness of these genotypes, which clus-
ter closely with other intestinal Cryptosporidium species
(Fig. 1A–C).

4. Discussion

Marine mammals are regarded as prime sentinel species
for environmental changes (Bossart, 2011). However, the
information available about the health status of the Antarc-

tic marine mammals is very scarce and fragmented (Kerry
et al., 2000). In addition, human derived activities in this
pristine environment such as tourism and other causes like
global warming could be compromising these populations.
rasitology 191 (2013) 112– 118 115

In this sense recommendations have been made regarding
the importance of monitoring the health of the Antarctic
fauna (Anon, 2003).

Recently, the detection of a Cryptosporidium geno-
type in an Antarctic Southern elephant seal was reported
(Rengifo-Herrera et al., 2011). In the present study fur-
ther monitoring of the presence of the potentially zoonotic
parasites Cryptosporidium and Giardia in Antarctic pin-
nipeds was carried out. Samples from 8 different locations
along the west coast of Antarctic Peninsula in a latitudi-
nal gradient covering 5 degrees of latitude (ranging from
62◦15′S; 58◦37′W–67◦46′S; 68◦43′W),  distances greater
than 600 km and differences in mean annual tempera-
tures of up to 2 ◦C were analysed. The results presented
here confirm previous findings in that the presence of
these parasites in the Antarctic region is not widespread
(Rengifo-Herrera et al., 2011): Cryptosporidium was only
detected in 5 of the 270 animals sampled (1.8%) from 4
of the sampling areas included in the study, and Giardia
was not detected in any of the animals analysed. However,
the presence of Cryptosporidium seems to be constant in
this region, since it has been detected it in three different
years (2006, 2010 and 2011) (Rengifo-Herrera et al., 2011;
this study). The low percentages of detection found in these
studies contrast with the results reported in pinnipeds from
other areas in which prevalence rates of Cryptosporidium
range from 6.5 to 24% (Hill et al., 1997; Deng et al., 2000;
Hughes-Hanks et al., 2005; Santin et al., 2005; Bogomolni
et al., 2008; Bass et al., 2012) whereas for Giardia, they
range from 12 to 80% (Olson et al., 1997; Measures and
Olson, 1999; Hughes-Hanks et al., 2005; Bogomolni et al.,
2008; Dixon et al., 2008; Appelbee et al., 2010). It has been
previously suggested that this indicates that the Antarc-
tic fauna might experience a lower level of exposure to
these agents, which is in agreement with the relative geo-
graphical and biological isolation of the Antarctic continent
(Rengifo-Herrera et al., 2011).

Detection of Cryptosporidium could be achieved by PCR
but no oocysts were detected by immunofluorescence
microscopy. Low numbers of Cryptosporidium oocysts in
faecal samples could account for these results. The DNA
extraction method used here utilises whole faeces, hence it
is possible that target DNA is derived not only from oocysts,
but also from other stages in the life cycle of this parasite
as well as ‘free’ in the faeces (Pedraza-Díaz et al., 2001).
The usefulness of PCR as diagnostic tool in the detection
of Cryptosporidium and Giardia infections with intermit-
tent shedding or low numbers of oocysts or cysts in faecal
samples of different origin have been shown in previous
studies (McGlade et al., 2003; Amar et al., 2004; Appelbee
et al., 2010). In addition, the use of molecular meth-
ods allows the identification of the species or genotypes
involved in infection and may  contribute to understanding
the routes of transmission. This has led to the description
or re-description in the past few years of several novel
Cryptosporidium species or genotypes, such as C. ubiqui-
tum (Fayer et al., 2010), C. ducismarci (Traversa, 2010), C.

cuniculus (Robinson et al., 2010), C. tyzzeri (Ren et al., 2012),
or C. viatorum (Elwin et al., 2012) amongst others, or the
Giardia duodenalis assemblage H (Lasek-Nesselquist et al.,
2010).
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Although the knowledge regarding the presence of
ryptosporidium and Giardia in marine mammals is increas-

ng, few studies have identified the species and genotypes
nvolved in infection. Cryptosporidium hominis, a species
hought to be infective exclusively to humans, non-human
rimates and gnotobiotic pigs (Morgan et al., 2000) has only
een identified in a dugong (Hill et al., 1997). Other species

eported include C. muris, two seal genotypes, designated
ryptosporidium sp. seal 1 and 2 in ringed seals (Santin
t al., 2005; Dixon et al., 2008); and a novel genotype
rom a harp seal (Bogomolni et al., 2008; Bass et al., 2012).
 genotypes and published Cryptosporidium species or genotypes inferred
P (C) gene fragments. Evolutionary distances were computed using the
ates are shown.

Our studies have led to the description of a further two
novel Cryptosporidium genotypes in Antarctic pinnipeds.
The multilocus analysis performed, which included three
of the most commonly used markers, 18S rDNA, HSP70
and COWP genes, has shown that these genotypes are
more closely related to previously described Cryptosporid-
ium genotypes in ferrets and mink and other intestinal

Cryptosporidium species than to those reported from seals.
Therefore the findings reported here further widen the
range of both Cryptosporidium host species and the par-
asite’s species or genotypes and highlight the need for
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further studies to contribute to the understanding of the
taxonomy and epidemiology of cryptosporidiosis.

The Antarctic pinnipeds analysed in this study, par-
ticularly Weddell seals and Southern elephant seals,
have a widespread and circumpolar distribution around
Antarctica, as well as occurring on sub-Antarctic islands.
Occasional wandering individuals have also been recorded
as far north as Australia, New Zealand, Africa, and South
America but seasonal movements are poorly known
(Shirihai, 2002). Therefore exposure to Cryptosporidium
might have occurred outside Antarctica. This is in agree-
ment with the higher detection rates in Southern elephant
seals and Weddell seals found here, which show wider dis-
tribution and migratory ranges than Antarctic fur seals.
In addition, the differences observed here between the
animal species analysed could be due to their different
feeding habits. While Antarctic fur seals feed primar-
ily on krill taking occasionally fish and cephalopods, the
diet of Weddell seal consists mainly of fish, although
they also consume cephalopods and crustaceans. South-
ern elephant seals eat mainly cephalopods and fish, and
occasionally shellfish (Shirihai, 2002). It has been shown
that Cryptosporidium oocysts (and Giardia cysts) may  be
concentrated by marine bivalve shellfish (reviewed in
Robertson, 2007) which may  act as a source of infection
for marine wildlife. In the present study, only Southern
elephant seals might sporadically consume shellfish, not
representing therefore a frequent route of transmission for
Antarctic pinnipeds. Furthermore, the presence of Cryp-
tosporidium oocysts in Antarctic adelie (Pygoscelis adeliae)
and gentoo penguins (Pygoscelis papua)  from Ardley Island,
South Shetlands (62◦13′S 58◦54′W)  has been recently
described (Fredes et al., 2007b, 2008) although there is
no information available on the Cryptosporidium species
or genotypes involved. In contrast, other studies in differ-
ent locations have reported the absence of Cryptosporidium
and/or Giardia in gentoo and adelie penguins as well as
in chinstrap penguins (Pygoscelis antarctica)  (Fredes et al.,
2007a; Palacios et al., 2010). Nevertheless these findings
might have important implications for the Antarctic fauna
since these animals can act as vectors not just spreading
the disease to those in close vicinity but also disseminat-
ing these pathogens to different geographic locations in
the marine and terrestrial environments. Therefore, fur-
ther studies are needed to expand our current knowledge
of Giardia and Cryptosporidium in the marine environment.
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