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Summary of the thesis 
Introduction 
 

Stochastic processes are a central issue in Statistical Physics (Gardiner 2009). In most real 

models, the deterministic prediction is only an estimate of the system's actual behavior since 

random factors affect it. Specifically, problems with significant historical relevance, such as 

Brownian motion (Brown 1828; Einstein 1905), could not be correctly studied until the 

development of the stochastic processes theory. 

In this thesis, we study the effect of stochastic factors on populations within an ecosystem, 

classically modeled with deterministic growth equations (Cotgreave and Gotelli 2006). There 

are random fluctuations in natural ecosystems, which can change the model's behavior, even 

causing the extinction of an otherwise stable population in the deterministic case. The 

variability affecting a population can be modeled as a stochastic process with spatial and/or 

temporal correlation.  

We begin by introducing the state of the art in ecology and stochastic processes. In Chapter 1, 

we introduce well-known deterministic dynamic equations for a single species, emphasizing on 

the Allee effect dynamic equation (Allee and Rosenthal 1949), for which the population has 

negative growth when its size is below a certain minimum threshold. Besides, we include 

metapopulation models to represent dispersal. 

Chapter 2 introduces basic concepts about stochastic processes, random variables, and white 

noise. We also explain in this chapter the algorithm used for the numerical implementation of 

stochastic differential equations.  

In Chapter 3, we apply the concepts of the previous chapter to growth equations describing 

population dynamics, including fluctuations present in real populations. In general, we can 

distinguish two types of fluctuations (Engen, Bakke, and Islam 1998): Environmental 

fluctuations are usually due to climate variability and affect the whole population, while 

demographic fluctuations represent individual variations in birth and death. Demographic 

fluctuations can be neglected for sufficiently large populations compared to environmental 

fluctuations (Lande, Engen, and Saether 2003). 

Based on the models for metapopulations and environmental fluctuations, in Chapter 4, we 

define the spatial scale of population synchrony (Lande, Engen, and Sæther 1999). The spatial 

scale of population synchrony gives the characteristic distance at which two metapopulations 

remain correlated. This scale increases with the population dispersal distance and the spatial 

scale of synchrony of the environmental fluctuations. 

Using the concepts introduced before, we study a model for a population affected by the Allee 

effect (Chapter 5). This model presents dispersal, which can alleviate the adverse effects of the 

localized Allee effect and sustain the species against environmental fluctuations (Dennis et al. 

2016). In our study, we are interested in determining how the fluctuations affect population 

stability by using simulations and studying probability distributions. 

Subsequently, we study the effect of habitat reduction on a population with Allee effect 

(Chapter 6). The partial destruction of a habitat can endanger a population's survival. It is 

especially harmful in populations that require more dispersal to be stable. This study consists 
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in modeling how habitat destruction affects the capacity of dispersal.  For this aim, we will 

simulate the evolution of the species at long times for different dispersal distances and habitat 

sizes. 

In Chapter 7, we study the predictability of population fluctuations under the influence of 

temporally autocorrelated environmental fluctuations. We found that the environmental-

population correlation time is the largest, followed by the population autocorrelation time. 

They are greater than the environmental autocorrelation time. We also obtain the 

corresponding correlation functions, which provide additional information on the predictability 

of population fluctuations. 

  

Objectives: 

This thesis mainly studies the effect of environmental fluctuations on a population. The main 

questions to answer are: 

Spatially extended stochastic population dynamics with Allee effect:  

1. What are the main factors that affect the resilience of a population to environmental 

fluctuations? 

2. How does the minimum viable population threshold affect the resilience of the 

population? 

3. How and how much does dispersal affect the resilience of a population? 

4. How does habitat size reduction affect the resilience of a population? 

Predictability of population fluctuations: 

1. Which are cross-correlation, autocorrelation functions, and correlation times for 

environmental and population fluctuations? 

2. Which are the larger correlation times? 

3. What do correlation functions and times tell us about the predictability of population 

fluctuations? 
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Results and conclusions: 

The model we have developed for Allee effect and dispersal predicts how intense the 

environmental fluctuations must be to cause global population extinction. The resilience of a 

population depends on its threshold of minimum viable population and its dispersal. We show 

that more frequent and far-reaching dispersal is more effective in reducing the extinction risk, 

increasing population resilience of the species proportionally to the root of the dispersal rate. 

Conversely, the extinction risk increases for higher minimum viable population thresholds.  

Once we have characterized the case for habitats much larger than the typical dispersal 

distances of the species, we next study the effect of the habitat size on a population with Allee 

effect. We show that a reduction of the habitat size affects the survival capacity of the 

population since it reduces the rescue mechanisms that prevent extinction (reducing the 

effective dispersal distance).  Thus, we have studied how the size of the habitat, the dispersal 

rate, and the average distance of dispersal affect the extinction risk of a species. We obtain 

that increased dispersal ceases to be useful as a mechanism against extinction if the habitat 

size truncates its range. Thus, the resilience of the species increases with the size of the habitat 

in which this population is enclosed.  

Finally, computing the correlations between the environment and populations allows us to 

study the predictability of population fluctuations. We obtained that the maximum influence 

of environmental fluctuations on the population is delayed. Furthermore, we have seen that 

the predictability of population fluctuations is greater than that of environmental fluctuations. 

These studies provide a deeper understanding of population dynamics affected by stochastic 

factors. This knowledge can be used to develop more efficient conservation strategies for 

vulnerable populations and to exploit species with economic interest.  
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Resumen de la tesis 
Introducción 
 

Los procesos estocásticos son un tema central en Física Estadística (Gardiner 2009). En muchos 

modelos reales, la predicción determinista solo es una estimación del comportamiento del 

sistema; al existir factores aleatorios. En concreto, problemas de relevancia histórica como el 

movimiento browniano (Brown 1828; Einstein 1905) no pudieron estudiarse correctamente 

hasta el desarrollo de la teoría de procesos estocásticos. 

En esta tesis estudiamos el efecto de factores estocásticos sobre poblaciones en un 

ecosistema, clásicamente modeladas con ecuaciones de crecimiento deterministas (Cotgreave 

y Gotelli 2006). En ecosistemas reales existen fluctuaciones que cambian el comportamiento 

del modelo, llegando incluso a causar la extinción de poblaciones estables en el caso 

determinista. Esta variabilidad se modeliza como un proceso estocástico correlacionado 

espacial y/o temporalmente.  

Comenzamos introduciendo los fundamentos necesarios de ecología y procesos estocásticos. 

En el Capítulo 1 presentamos las ecuaciones dinámicas deterministas para una especie, 

destacando la ecuación dinámica con Efecto Allee (Allee y Rosenthal 1949) que muestra 

decrecimiento cuando el tamaño de la población es menor que cierto umbral. Además, 

introducimos modelos de metapoblaciones para representar dispersión. 

En el Capítulo 2 introducimos conceptos sobre procesos estocásticos, variables aleatorias y 

ruido blanco. También explicamos el algoritmo usado para la implementación numérica de 

ecuaciones diferenciales estocásticas.  

En el Capítulo 3 aplicamos conceptos del capítulo anterior a ecuaciones de crecimiento que 

describen la dinámica de la población, incluyendo fluctuaciones presentes en poblaciones 

reales. En general distinguiremos dos tipos de fluctuaciones (Engen, Bakke y Islam 1998): Las 

fluctuaciones ambientales suelen deberse a variabilidad climática y afectan a toda la 

población, mientras que las demográficas representan variaciones individuales en natalidad y 

mortalidad. Para poblaciones suficientemente grandes, las fluctuaciones demográficas pueden 

despreciarse comparadas con las ambientales ( Lande, Engen y Saether 2003). 

Partiendo de modelos de metapoblaciones y fluctuaciones ambientales, en el Capítulo 4 

definimos la escala espacial de sincronía de la población (Lande, Engen y Sæther 1999), que da 

la distancia característica a la que dos metapoblaciones permanecen correlacionadas. Esta 

escala aumenta con la distancia de dispersión de la población y la escala espacial de sincronía 

de las fluctuaciones ambientales. 

Utilizando conceptos introducidos anteriormente, estudiamos un modelo para una población 

afectada por Efecto Allee (Capítulo 5). Este modelo presenta dispersión, que puede paliar los 

efectos negativos del Efecto Allee, y sostener la especie frente a fluctuaciones ambientales 

(Dennis et al. 2016). En este estudio buscamos determinar cómo estas fluctuaciones afectan a 

la estabilidad de la población, usando simulaciones y estudiando distribuciones de 

probabilidad.  

Posteriormente abordamos la reducción del hábitat en una población con Efecto Allee 

(Capítulo 6). La destrucción parcial del hábitat puede hacer peligrar la supervivencia de una 
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población, siendo especialmente dañina en poblaciones que requieren mayor dispersión para 

ser estables. Este estudio consiste en modelar cómo la destrucción del hábitat afecta a la 

dispersión y estabilidad de la especie frente a fluctuaciones ambientales. Para ello, 

simularemos la evolución de la especie a tiempos largos para distintas distancias de dispersión 

y tamaños de hábitat. 

En el Capítulo 7 estudiamos la predictibilidad de fluctuaciones poblacionales bajo la influencia 

de fluctuaciones ambientales temporalmente autocorrelacionadas. Hemos encontrado que el 

tiempo de correlación ambiente-población es el más largo, seguido por el tiempo de 

autocorrelación de la población. Ambos son mayores que el tiempo de autocorrelación 

ambiental. También obtenemos las funciones de correlación correspondientes, que dan 

información adicional de la predictibilidad de las fluctuaciones poblacionales. 

Objetivos: 

En esta tesis estudiamos el efecto de fluctuaciones ambientales sobre poblaciones. Las 

preguntas principales por resolver son: 

Dinámica estocástica de poblaciones espacialmente extendidas con Efecto Allee: 

1. ¿Cuáles son los factores principales que afectan a la resiliencia frente a fluctuaciones 

ambientales de una población? 

2. ¿Cómo afecta el umbral de minima población viable a la resiliencia de la población? 

3. ¿Cómo y en qué medida afecta la dispersión a la resiliencia de la población? 

4. ¿Cómo afecta la reducción del habitat a la resiliencia de una población? 

Predictibilidad de fluctuaciones poblacionales: 

1. ¿Cuáles son las funciones de autocorrelación y correlación cruzada y tiempos de 

correlación de las fluctuaciones ambientales y poblacionales? 

2. ¿Cuáles son los tiempos de correlación más largos? 

3. ¿Qué nos dicen las funciones y tiempos de correlación sobre la predictibilidad de las 

fluctuaciones poblacionales? 
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Resultados y conclusiones: 

El modelo para Efecto Allee y dispersión predice cuán intensas han de ser las fluctuaciones 

ambientales para causar la extinción de una población. La resiliencia de la población depende 

del umbral de mínima población viable y su dispersión. Demostramos que dispersiones más 

frecuentes y con mayor alcance son más eficaces reduciendo el riesgo de extinción, 

aumentando la resiliencia proporcionalmente a la raíz del ratio de dispersión. El riesgo de 

extinción, por otra parte, aumenta para umbrales de mínima población viable más altos.  

Ya caracterizado el caso de hábitats mucho mayores que las distancias de dispersión de la 

especie, estudiamos el efecto de reducción del hábitat en poblaciones con efecto Allee. 

Mostramos que el tamaño del hábitat afecta a la capacidad de supervivencia de la población, 

reduciendo los mecanismos de rescate (capacidad efectiva de dispersión) que previenen la 

extinción. Así, estudiamos cómo el tamaño del hábitat, y el ratio y distancia media de 

dispersión afectan al riesgo de extinción de una especie. Obtenemos que el aumento de 

dispersión deja de ser efectivo si su alcance es truncado por el tamaño del hábitat. La 

intensidad mínima de las fluctuaciones ambientales que aseguran extinción aumenta cuanto 

mayor es el hábitat en el que se encuentra esta población.  

Por último, obtener correlaciones entre ambiente y población nos permite estudiar la 

predictibilidad de las fluctuaciones poblacionales. Obtenemos que la influencia máxima de las 

fluctuaciones ambientales sobre la población está retardada. Además, hemos visto que la 

predictibilidad de las fluctuaciones poblacionales es mayor que la de las fluctuaciones 

ambientales. Estos estudios proporcionan un mayor entendimiento sobre las dinámicas de 

poblaciones sometidas a factores estocásticos. Este conocimiento puede ser empleado en el 

desarrollo de mejores estrategias de conservación para poblaciones vulnerables y de 

explotación de especies con interés económico 

  



22 
 

  



23 
 

List of publications 
Included in this thesis: 

1. R. Crespo-Miguel, J.Jarillo, and F.J. Cao-García. 2022. “Dispersal-induced resilience to 
stochastic environmental fluctuations in populations with Allee effect.” Physical 
Review E 105 (1): 014413. https://doi.org/10.1103/PhysRevE.105.014413. Included in 
Chapter 5. 

2. R. Crespo-Miguel, J.Jarillo, and F.J. Cao-García. 2022. “Scaling of population resilience 
with dispersal length and habitat size.” Journal of Statistical Mechanics: Theory and 
Experiment 2022 (2): 023501. https://doi.org/10.1088/1742-5468/ac4982. Included in 
Chapter 6. 

3. R. Crespo-Miguel and F.J. Cao-García. 2022. “Predictability of Population Fluctuations.” 
Mathematics 10 (17):3176. https://doi.org/10.3390/math10173176. Included in 
Chapter 7. 

Other publications related with this thesis: 
4. R. Crespo-Miguel, I. Polo, C.R. Mechoso, Mª.B. Rodriguez-Fonseca, and F.J. Cao-García. 

2022. “ENSO coupling to Tropical Atlantic: Analysis with an improved recharge 
oscillator model.” Submitted for publication. 

5. R. Crespo-Miguel and F.J. Cao-García. 2022. “Temporal correlations in a predator-prey 
ecosystem in the pressence of autocorrelated environmental fluctuations.” Manuscript 
in preparation. 

6. R. Crespo-Miguel and F.J. Cao-García. 2022. “Temporal correlations in two species 
ecosystems.” Manuscript in preparation. 

7. I.Plaza, K. M. Lemishko, R. Crespo-Miguel, T.Q Truong, L.S. Kaguni, F.J. Cao-García, G.L. 

Cielsieski, and B. Ibarra, 2022. “Mechanism of strand displacement DNA synthesis by 

the coordinated activities of human mitochondrial DNA polymerase and SSB.” Preprint 

in https://doi.org/10.1101/2022.07.19.500644. Submitted for publication.  

 

 

 

 
 
 

https://doi.org/10.1103/PhysRevE.105.014413
https://doi.org/10.1088/1742-5468/ac4982.%20Included%20in%20Chapter%206
https://doi.org/10.3390/math10173176.%20Included%20in%20Chapter%207
https://doi.org/10.1101/2022.07.19.500644


24 
 

  



25 
 

PART I: 
Introduction and state 

of the art 



26 
 

  



27 
 

Chapter 1: Growth equations for a single species. 
 

The first and simplest population growth model was proposed by Malthus (Malthus 1798) with 
the exponential-growth equation  

 
𝑑𝑁

𝑑𝑡
= (𝑏 − 𝑑)𝑁 = 𝑟𝑁   (1.1) 

 

Where constants 𝑏 and 𝑑 are the birth and death rate (individuals/time), and 𝑟 = 𝑏 − 𝑑 is the 
resulting growth rate of the species. This growth equation yields the deterministic population 
evolution (blue line in Fig. 1.1) 

 𝑁(𝑡) = 𝑁0 · 𝑒
𝑟𝑡 (1.2) 

 

Deterministic exponential evolution implies that a population stays constant if 𝑟 = 0; it 
declines to extinction if 𝑟 < 0, and it grows exponentially if the growth rate 𝑟 is positive. This 
simple model does not explain the behavior of real populations accurately (except for small 
population size 𝑁) because some of its assumptions are poor. The assumption with the 
greatest impact on the unreal behavior is that birth and death rates are constant, which is 
impossible in the absence of infinite space and resources. In real cases, resources are limited, 
implying that birth and death rates cannot remain constant respect to the population 
densities, even when a population can temporally grow exponentially until the lack of 
resources begins. 

 

Figure 1.1: Deterministic population evolution for different growth models: Exponential 
(Malthus) equation in blue, logistic equation in green, 𝜃-logistic equations in black (𝜃 = 0.5), 
and purple (𝜃 = 2), and Allee equation in red. We have chosen units such as 𝐾 = 1 (cyan 
dashed line), and for the Allee equation, we have considered 𝐴 = 0.1 (orange dashed line). 
Solid lines are for an initial population density of 𝑁0 = 0.11, whereas dotted lines are for an 
initial population 𝑁0 = 2. The red dashed line is for an initial population 𝑁0 = 0.09.  
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To solve this problem, Verhulst suggested that limited resources could modify the birth and 
death rates depending on the population size (Verhulst 1838). In his logistic model, there is a 
linear increase with the population size 𝑁 in the death rate 𝑑. On the other hand, the birth 
rate 𝑏 linearly decreases with 𝑁 as  

 𝑏 = 𝑏0 − 𝑏1𝑁  (1.3) 
 𝑑 = 𝑑0 + 𝑑1𝑁  (1.4) 
 

Substituting Equations (1.3) and (1.4) in the growth equation, Eq. (1.1), we get 

 
𝑑𝑁

𝑑𝑡
= (𝑏0 − 𝑏1𝑁 − 𝑑0 − 𝑑1𝑁)𝑁 = (𝑏0 − 𝑑0)𝑁 (1 −

(𝑏1 + 𝑑1)

(𝑏0 − 𝑑0)
𝑁) = 𝑟𝑁 (1 −

𝑁

𝐾
) (1.5) 

 

Where 𝐾 =
(𝑏0−𝑑0)

(𝑏1+𝑑1)
 is the carrying capacity, which is the stable population size, i.e., the 

number of individuals that the system has at equilibrium. The logistic growth equation, i.e., Eq. 
(1.5), gives the following deterministic population evolution 

 𝑁(𝑡) =
𝐾

1 + (
𝐾
𝑁0
− 1) 𝑒−𝑟𝑡

 
(1.6) 

 

Equation (1.6) has an exponential-like behavior for a small population size 𝑁. However, the 
growth becomes slower for greater populations. Provided that the growth rate 𝑟 is positive, 
the population asymptotically reaches the carrying capacity 𝐾 at long times (see green line in 
Fig. 1).  

The assumption of linear dependence on the population size 𝑁 of birth and death rates can be 
generalized by the  theta-logistic model (Gilpin and Ayala 1973; Clark et al. 2010) 

 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 − (

𝑁

𝐾
)
𝜃

)  (1.7) 

 

And its solution is a generalization of Equation (1.6) (black and purple lines in Fig.1)  

 
𝑁(𝑡) =

𝐾

(1 + ((
𝐾
𝑁0
)
𝜃

− 1)𝑒−𝜃𝑟𝑡)

1
𝜃

  
(1.8) 

 

All the models described above assume that the effective growth rate 
𝑑𝑁

𝑑𝑡
·
1

𝑁
 decreases (or 

remains constant) when the population size 𝑁 grows (see Fig.1.2). Nonetheless, there are 
many species whose effective growth rate decays at small population densities. The tendency 
of some species to extinction al low population densities, caused by this decay of the effective 
growth rate, is named Allee Effect (Allee and Rosenthal 1949). Allee Effect has been observed 
in field research in ecology and conservation biology. It can have many different causes, such 
as difficulties in finding a breeding partner or the need for cooperation in a herd to overcome 
difficulties. For example, an isolated individual is easier to be hunted by a predator than 
another that is defended by its mates. Another possible cause of Allee Effect is the higher 
efficiency in searching for resources by groups compared to isolated individuals. Any of these 
causes (at small population densities) may imply an increasing birth rate or decreasing death 
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rate with 𝑁. 

This low (or more likely negative) growth rate for small populations can be modeled by adding 
quadratic terms on the population density in the birth and death rates, Eqs. (1.3) and (1.4), to 
get the Allee growth equation 

 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) (
𝑁

𝐴
− 1)  (1.9) 

 

Equation (1.9) tells us that the deterministic behavior of a population affected by the Allee 
effect is such that it will evolve to reach the carrying capacity if the initial population size is 
greater than the Allee threshold (𝑁0 > 𝐴). In contrast, if the initial population 𝑁0 is smaller 
than the threshold Allee 𝐴, it will eventually become extinct. In contrast, if the initial 
population is equal to 𝐴, it will remain constant in an unstable equilibrium. 

We can notice in Fig. 1.1 and 1.2 that for a deterministic Allee effect, the population growth is 
slower than the one given by other growth equations when the population size is slightly 
bigger than the Allee Threshold A. Such behavior is a consequence of difficulties of recovery 
when the population decreases to sizes close to this threshold.  

 

 

Figure 1.2: Effective growth rate 
𝑑𝑁

𝑑𝑡
·
1

𝑁
 divided by the growth rate 𝑟 (constant) as a function of 

the population size 𝑁. Here, we have chosen units such as the carrying capacity 𝐾 is equal to 1, 
representing the Allee growth equation with  𝐴 = 0.1 as an example. The color code is the 
same as in Figure 1.1. We can see that the effective growth rate is constant for the exponential 
model and decreases with the population size 𝑁 in logistic and theta-logistic models. In 
contrast, the only model that has an increasing effective growth rate (at low 𝑁) is the one 
proposed by Allee. 
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1.1. Spatial models 
The above models study the evolution of the population in a single point, ignoring the effects 

of individuals in its neighborhood. However, ignoring the populations that inhabit the 

surrounding zones is simplistic and, in most cases, an inaccurate approach. In some 

ecosystems, a population spread along a vast area can be viable and stable even if 

subpopulations in some smaller areas of the habitat disappear, meaning that the local risk of 

extinction is always higher than the global risk. Metapopulation models (Lande, Engen, and 

Saether 2003; Cotgreave and Gotelli 2006) are usually the simplest way to approach this 

problem. These models study populations as several local populations, that stay in zones 

usually called patches, linked by dispersal. The simplest metapopulation models only predict 

whether the local populations inside a patch exist or are extinct, with no concern about the 

population size in each patch. 

Levins (Levins 1970) studied the evolution of the fraction of occupied patches by defining the 

following continuous-time equation  

 
𝑑𝑝

𝑑𝑡
= 𝑐 · 𝑝(1 − 𝑝) − 𝑒 · 𝑝   (1.10) 

 

Here 𝑝 is the fraction of occupied patches, 𝑐 is the colonization rate, and 𝑒 the extinction rate. 

The dependence of the first term in this equation in (1 − 𝑝) is explained by the fact that we 

cannot colonize an occupied patch, and the dependence in 𝑝 means that the colonizers must 

come from an occupied patch. However, 𝑐 and 𝑒 are not always constant and may depend on 

the number of occupied patches (Gotelli and Kelley 1993; Hanski and Gyllenberg 1993), so 

Equation (1.10) becomes 

 
𝑑𝑝

𝑑𝑡
= 𝑐(𝑝) · 𝑝(1 − 𝑝) − 𝑒(𝑝) · 𝑝 (1.11) 

 

The most important implication of this equation is that individuals disperse from occupied 

patches and can move to others, colonizing them(if they were unoccupied)with a certain 

effectivity. Equation (1.11) does not tell us how many individuals live in every patch, but only if 

there are individuals or not. In any case, starting from the same principle of dispersal, we can 

think of a general model of dispersal for continuous-time and space that yields the size of the 

population in each patch 

 
𝑑𝑁(𝑥, 𝑡)

𝑑𝑡
=
𝑑𝑁(𝑥, 𝑡)

𝑑𝑡
|
𝑙𝑜𝑐𝑎𝑙

+
𝑑𝑁(𝑥, 𝑡)

𝑑𝑡
|
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙

 (1.12) 

 
𝑑𝑁(𝑥, 𝑡)

𝑑𝑡
|
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙

= −𝑚𝑁(𝑥, 𝑡) + 𝑚∫𝑁(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 (1.13) 

 

Where 𝑚 is the dispersal rate, and 𝑓 is a (normalized) function that describes how individuals 

disperse along space (usually a gaussian, and almost always a symmetrical function with a 

global maximum in zero and decreases with the absolute value of 𝑦). Besides, 
𝑑𝑁

𝑑𝑡
|
𝑙𝑜𝑐𝑎𝑙

 is the 

local growth equation, which can be any growth equation presented in the previous 

subsection (depending on the model). See that in Equation (1.13), individuals leave from a 

certain point and disperse to other points in space (which can lead to colonization of local-

extinct areas). This dispersal usually means that areas that had suffered from a local extinction 
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can recover by repopulation from nearby patches (this recovery is commonly named rescue 

effect in metapopulation models). Nonetheless, dispersal can also drag a whole system to 

extinction if the harmed area is large enough, especially in populations with Allee effect, which 

need a minimum population density to persist.   
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Chapter 2: Stochastic Processes. 
 

The deterministic models mentioned in the previous chapters are ideal simplifications of the 

real behavior of ecological systems in Nature. Natural populations are often affected by non-

deterministic circumstances such as temporal and variable climate changes (environmental 

fluctuations) or variability in individual reproduction or mortality (demographic fluctuations). 

Such fluctuations can cause the extinction of a population that would be stable in its absence. 

Thus, we need to implement those events in our mathematical models. They are represented 

by stochastic processes included in the deterministic growth equation, which becomes a 

stochastic differential equation. To understand this kind of model, we will have to introduce 

some basic concepts about stochastic processes and Gaussian white noise in this chapter. 

2.1. Random variables 
Fluctuations, unpredictability, or both can cause random events, so they represent functions 

instead of quantities because we must interpret them as the probability that certain possibility 

happens. Because of that, a random variable 𝑋 is characterized by a range 𝛺 containing all the 

possible values of the variable, and a probability distribution 𝑃𝑋(𝑥) that assigns a probability to 

each element 𝑥𝜖𝛺. If 𝑋 is a continuous variable, 𝑃𝑋(𝑥) is called the probability density function 

(pdf).  The probability distribution (both for discrete and continuous variables) must satisfy the 

following two conditions: 

-Positivity: 𝑃𝑋(𝑥)  ≥ 0  ∀ 𝑥 ∈ 𝛺  

-Normalization:  ∑ 𝑃𝑋(𝑥)Ω = 1 if 𝑋 is discrete, and ∫ 𝑃𝑋(𝑥)Ω
= 1 if 𝑋 is continuous. 

For some experiments, named deterministic, we always get the same result (or output) if we 

repeat the same input. Nonetheless, not all experiments are deterministic, and the same input 

can produce different outputs. Then, the experiment is said to be random, and each 

measurement of the outputs of a random experiment is a random variable. The collection of 

all these measurements of a random experiment is what we call a stochastic process. 

Let us introduce three principal probability distributions: 

-Normal distribution: 

 𝑃𝑋(𝑥) =
1

√2𝜋𝜎2
𝑒
−(𝑥−𝜇)2

2𝜎2  (2.1) 

 

Where 𝜇 is the mean value of the random variable 𝑋 (i.e., < 𝑋 >) and σ2 =< 𝑋2 > −< 𝑋 >2 is 

its variance. 

-Exponential distribution: 

 𝑃𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥 (2.2) 

 

if the random variable is definite positive or 

 𝑃𝑋(𝑥) =
𝜆

2
𝑒−𝜆|𝑥| (2.3) 
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if it can take negative values 

-Dirac Delta: 

 𝑃𝑋(𝑥) = 𝛿(𝑥 − 𝑥0) (2.4) 
 

Which is equal to zero in all 𝑥 except 𝑥0, where it diverges. The Dirac Delta satisfies the 

following property 

 ∫𝑓(𝑥)𝛿(𝑥 − 𝑥0)
Ω

𝑑𝑥 = {
𝑓(𝑥0)  𝑖𝑓 𝑥0 ∈ Ω

0  𝑖𝑓 𝑥0 ∉ Ω
 (2.5) 

 

2.2. Fluctuations 
The non-deterministic parts of an evolving system are usually called fluctuations (or noise). 

Fluctuations are a set of random variables, one for each point of space and time 𝑋 =

{𝑋(𝑆), 𝑆 ∈ 𝛺𝑆} (𝛺𝑆 is the range of space and time considered). This set of random variables is 

defined by its pdf and its autocorrelation. For example, when we speak about Gaussian white 

noise, these fluctuations have a Gaussian (normal distribution) stationary probability 

distribution (spd) and are uncorrelated on time 

The autocorrelation function measures the dependence of the noise on itself in another point 

of space or time. It is usually defined for temporal autocorrelations 

 𝑐𝑋𝑋(𝑡
′) =< 𝑋(𝑥, 𝑡)𝑋(𝑥, 𝑡 + 𝑡′) >, (2.6) 

 

and for spatial autocorrelations 

 𝑐𝑋𝑋(𝑦) =< 𝑋(𝑥, 𝑡)𝑋(𝑥 + 𝑦, 𝑡) >. (2.7) 
 

In general, correlations are defined as 

 𝑐𝑋𝑌(𝑦, 𝑡′) =< 𝑋(𝑥, 𝑡)𝑌(𝑥 + 𝑦, 𝑡 + 𝑡′) >. (2.8) 

 

For example, the kind of environmental fluctuations that appear when we are studying Allee 

effect are Gaussian with mean zero, uncorrelated in time (white noise), and exponentially 

correlated in space: 

 𝑐𝜉𝜉(𝑡′, 𝑦) = 𝜎
2𝛿(𝑡′)𝑒−√2|𝑦|/𝑙𝑒 (2.9) 

 

Here, 𝜎 is the amplitude of the fluctuations (which is the square root of the variance), and 𝑙𝑒 

the characteristic distance at which the environmental fluctuations remain correlated, named 

spatial scale of synchrony of the fluctuations (see Chapter 4 for more details). 

Note that when the variable 𝑋 has mean zero (such as for fluctuations around equilibrium 

presented in Chapter 7 (Crespo-Miguel and Cao-García 2022) ), its autocorrelation at time and 

space equal to zero is equal to its variance, i.e., 𝑉𝑎𝑟(𝑋) =< 𝑋(𝑡)2 >= 𝑐𝑋𝑋(0,0) 
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2.3. Wiener Process 
A Wiener process 𝑊(𝑡) is a stochastic process depending on a real variable 𝑡 ≥ 0, whose 

increments for 𝑡𝑖 , 𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖), follow a Gaussian distribution with mean 0 and variance 

𝜎2∆𝑡 and are independent of any other combination of times. These properties mean that the 

Wiener Process is the sum of independent Gaussian increments. A Wiener process also verifies 

𝑊(0) = 0. Thus, Wiener Processes have the following properties: 

- < 𝑊(𝑡) >= 0, < 𝑊(𝑡𝑖)𝑊(𝑡𝑗) >= 𝜎
2min (𝑡𝑖, 𝑡𝑗), particularly < 𝑊(𝑡)2 >= 𝜎2𝑡 

- 𝑊(𝑡 + ∆𝑡) −𝑊(𝑡) is independent of 𝑊(𝑡) for ∆𝑡 > 0 

White noises are usually introduced as the derivative of the Wiener Process (Méndez, Campos, 

and Bartumeus 2014) 

 
𝑑𝑊(𝑡)

𝑑𝑡
= 𝜉(𝑡)  (2.10) 

 

Equation (2.10) can be shown by defining 𝑌(𝑡) = ∫ 𝜉(𝑠)𝑑𝑠
𝑡

0
 and calculating its autocorrelation 

 

< 𝑌(𝑡2)𝑌(𝑡1) >= ∫ 𝑑𝑠2

𝑡2

0

∫ 𝑑𝑠1 < 𝜉(𝑠2)𝜉(𝑠1) >
𝑡1

0

= 𝜎2∫ 𝑑𝑠2

𝑡2

0

∫ 𝑑𝑠1𝛿(𝑠2 − 𝑠1)
𝑡1

0

= 𝜎2min(𝑡2, 𝑡1)  

(2.11) 

 

Then, the autocorrelation of 𝑌(𝑡) is the autocorrelation of a Wiener Process. Moreover, by 

definition, 𝑌(0) = 0, so 𝑌(𝑡) is a Wiener Process because it satisfies its defining properties. 

2.4 Stochastic Differential Equations 
Deterministic systems are often modeled by differential equations, which have the general 

form 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑡) (2.12) 

 

For example, growth equations in Chapter 1 (Eqs. (1.1), (1.5), (1.7), (1.9) or (1.12)). 

Nonetheless, in many natural situations, external events affect the system, which can be 

described as stochastic processes (such as climate changes affecting a population, described as 

environmental noise). In that case, the differential equation becomes a stochastic differential 

equation, with the general form 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑡, 𝜉(𝑡)) (2.13) 

 

Where 𝜉(𝑡) is a (usually, but not always white) noise or stochastic process. A notable 

stochastic equation is the Langevin Equation, in which the stochastic process appears as a 

linear term (i.e., the equation has a linear dependence on 𝜉(𝑡)), 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝐺(𝑥(𝑡), 𝑡)𝜉(𝑡) (2.14) 
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The function 𝐺 can be independent of 𝑥(𝑡) and 𝑡 (i.e., it is a constant), then we say that the 

noise is additive; otherwise, the noise is multiplicative. Provided that 𝜉(𝑡) can be white noise, 

it can be uncorrelated, driving us to a formal problem: If the right hand of the equation is non-

differentiable, then the left side should not be differentiable either so that this equation can 

be incoherent. That problem is solved by transforming Eq. (2.14) to a more rigorous form 

 𝑑𝑥 = 𝐹(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝐺(𝑥(𝑡), 𝑡)𝑑𝑊(𝑡) (2.15) 

 

This equation has an integral form, which is much more useful for simulation purposes 

 𝑥(𝑡) = 𝑥(𝑡0) + ∫ 𝐹(𝑥(𝑡′), 𝑡′) 𝑑𝑡′
𝑡

𝑡0

+∫ 𝐺(𝑥(𝑡′), 𝑡′)𝑑𝑊(𝑡′)
𝑡

𝑡0

 (2.16) 

 

The main problem with this expression is that, due to the stochasticity of the Wiener Process 

𝑊(𝑡), the interpretation is not unique. There are two main descriptions used for stochastic 

integration: Itô and Stratonovich. 

2.5. Itô and Stratonovich integrals. 
For the integration of a stochastic process, we must begin by dividing the time interval into 𝑛 

subintervals [𝑡0, 𝑡1), [𝑡1, 𝑡2), … , [𝑡𝑛−1, 𝑡]. When 𝑛 is big enough, we can interpret the integral 

as the following summation, where we evaluate the functions at the initial point of each 

subinterval  

 ∫ 𝐺(𝑥(𝑡), 𝑡)𝑑𝑊(𝑡)
𝑡

𝑡0

=∑𝐺(𝑥(𝑡𝑖−1), 𝑡𝑖−1) · (𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1))

𝑛

𝑖=1

 (2.17) 

 

This is the Itô integral, while we get the Stratonovich integral by evaluating the function 𝐺 at 

the mean of the positions in 𝑡𝑖 and 𝑡𝑖−1 instead of at the initial point 

 ∫ 𝐺(𝑥(𝑡), 𝑡) ∘ 𝑑𝑊(𝑡)
𝑡

𝑡0

=∑𝐺(
𝑥(𝑡𝑖) + 𝑥(𝑡𝑖−1)

2
, 𝑡𝑖−1) · (𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1))

𝑛

𝑖=1

 (2.18) 

 

The small circle is just a notation telling us that the integration is done in the Stratonovich 

prescription. In the case of additive noise, both interpretations are the same, but generally, the 

solution of the stochastic differential equation depends on the prescription we are using 

(Gardiner 2009). Then, we have two different kinds of stochastic differential (or integral) 

equations, using Itô prescription (Eq. (2.15) and (2.16)) or Stratonovich prescription 

 𝑑�̃� = Φ(�̃�(𝑡), 𝑡)𝑑𝑡 + Γ(�̃�(𝑡), 𝑡) ∘ 𝑑𝑊(𝑡) (2.19) 

 �̃�(𝑡) = �̃�(𝑡0) + ∫ Φ(�̃�(𝑡), 𝑡) 𝑑𝑡
𝑡

𝑡0

+∫ Γ(�̃�(𝑡), 𝑡) ∘ 𝑑𝑊(𝑡)
𝑡

𝑡0

 (2.20) 

 

Nonetheless, a solution of a stochastic equation in the sense of Itô integration is also a solution 

to a different equation in the Stratonovich prescription. To prove that, we introduce the Itô 

chain rule; this is, if 𝑞(𝑠) is an arbitrary function and 𝑥(𝑡) satisfies the Itô equation, then 

𝑞[𝑥(𝑡)] satisfies the Itô equation as well, and 
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 𝑑𝑞[𝑥(𝑡)] = [𝐹(𝑥(𝑡), 𝑡)
𝑑𝑞

𝑑𝑠
|
𝑥(𝑡)

+
1

2
𝐺(𝑥(𝑡), 𝑡)2

𝑑2𝑞

𝑑𝑠2
|
𝑥(𝑡)

] 𝑑𝑡 + 𝐺(𝑥(𝑡), 𝑡)
𝑑𝑞

𝑑𝑠
|
𝑥(𝑡)

𝑑𝑊(𝑡), (2.21) 

 

while Stratonovich prescription follows the standard chain rule. 

Then, if 𝑥(𝑡) verifies Itô stochastic differential equation, Eq. (2.15), it also verifies the following 

Stratonovich equation 

 𝑑𝑥 = (𝐹 −
𝜎2

2
𝐺
𝑑𝐺

𝑑𝑥
)𝑑𝑡 + 𝐺 ∘ 𝑑𝑊   (2.22) 

 

Or conversely, if �̃�(𝑡) satisfies Stratonovich stochastic differential equation, Eq.(2.19), it also 

satisfies the following Itô SDE 

 𝑑�̃� = (Φ +
𝜎2

2
Γ
𝑑Γ

𝑑�̃�
) 𝑑𝑡 + Γ𝑑𝑊 (2.23) 

 

Because after applying some calculations and the Itô chain rule, we get 

 

∫ Γ(𝑥(𝑡′), 𝑡′) ∘ 𝑑𝑊(𝑡′)
𝑡

𝑡0

= ∫ Γ(𝑥(𝑡′), 𝑡′)𝑑𝑊(𝑡′)
𝑡

𝑡0

+
𝜎2

2
∫ Γ(𝑥(𝑡′), 𝑡′)

𝑑Γ(𝑥(𝑡′), 𝑡′)

𝑑𝑥

𝑡

𝑡0

𝑑𝑡′ 

(2.24) 

 

Even if we can transform the equations, there is still a dilemma: we must choose a prescription 

to solve our stochastic problems because the interpretation can lead to different solutions. For 

continuous systems (that is the case of real physical systems), Stratonovich prescription is 

more suitable. In contrast, Itô prescription has better results for discontinuous ones, like the 

evolution of the economy or the dynamics of biological populations (Mannella and McClintock 

2012).  Nonetheless, the two prescriptions seem to yield the same results for growth 

equations with environmental noise if we take care of the conditions in the growth equation, 

i.e., the deterministic part of the equation is well defined (Braumann 2007). 

2.6. Numerical implementation of stochastic differential equations: The Euler 

Algorithm. 
Consider that we have a Langevin equation that we want to integrate with the expression of 

Equation (2.15) where 𝑑𝑊(𝑡) is the differential of a Wiener Process 𝑊(𝑡). Then, we can divide 

the whole simulation time into 𝑛 intervals of length Δt, where 𝑛 tends to infinity, and then 

Δt→0. 

By integrating Equation (2.15) between some time 𝑡𝑖  and the previous time step, we obtain 

 𝑥(𝑡𝑖) = 𝑥(𝑡𝑖−1) + ∫ 𝐹(𝑥, 𝑡′) 𝑑𝑡′
𝑡𝑖

𝑡𝑖−1

+∫ 𝐺(𝑥, 𝑡′)𝑑𝑊(𝑡′)
𝑡𝑖

𝑡𝑖−1

. (2.25) 

 

In the limit 𝛥𝑡 → 0 and the Itô prescription, Equation (2.25), expanding to the lowest order, 

equals 
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 𝑥(𝑡𝑖) = 𝑥(𝑡𝑖−1) + 𝐹(𝑥, 𝑡𝑖−1) ∆𝑡 + 𝐺(𝑥, 𝑡𝑖−1) · (𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1)). (2.26) 

 

Nonetheless, by definition, successive increments of a Wiener Process are gaussian random 

variables with mean zero and < (𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1))
2
>= 𝜎2∆𝑡. Then, we can express this 

increment by  

 𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1) = 𝜎√∆𝑡 휁(𝑡𝑖−1) (2.27) 

 

Where 휁 is a time uncorrelated random variable following a gaussian distribution of zero mean 

and variance one. 

Then, we can get the value of 𝑥 at a particular time 𝑡𝑖 from its value at the previous time step 

by using the equation 

 𝑥(𝑡𝑖) = 𝑥(𝑡𝑖−1) + 𝐹(𝑥, 𝑡𝑖−1) ∆𝑡 + 𝐺(𝑥, 𝑡𝑖−1)𝜎√∆𝑡 휁(𝑡𝑖−1) (2.28) 

 

Note that this expression was obtained for Itô prescription. However, we can also simulate an 

evolution given by the Stratonovich prescription. To do that, we should transform the 

Stratonovich SDE by applying Eq. (2.23) and then applying Eq. (2.28) to the resulting Itô SDE. 

We follow Itô numerical integration to get results in parts II and III of this thesis. In part II 

(which studies a spatially extended population), we implement spatially autocorrelated white 

noise affecting the population dynamics. This means that a set of normally distributed random 

numbers (a number for each spatial point) is generated for each time step. That set of 

numbers presents an autocorrelation function decreasing (exponentially) with the distance, 

and each set is uncorrelated with the set generated at the previous time step.  
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Chapter 3: Noise in population dynamics. Environmental and 

demographic fluctuations. 
 

Once we have understood the fundaments of stochastic processes, we are interested in 

implementing them in the growth equation that describes population dynamics. In Chapter 1, 

we studied deterministic growth equations for populations of living beings, which do not 

include the effects of environmental variability (environmental stochasticity). Other important 

possibilities are also ignored: For example, some individuals may not have the same offspring 

as others, or they can die sooner or later than another individual (demographic stochasticity).  

This kind of event is random, and because of that, stochastic processes are great tools to 

describe them. In ecology, there are two essential sources of stochasticity: environmental and 

demographic fluctuations (Engen, Bakke, and Islam 1998; Lande, Engen, and Saether 2003). 

These events are crucial in the conservation of species because these fluctuations can cause 

the extinction of an otherwise stable population.  

Some of these fluctuations are cyclic (such as seasonal environmental changes or breeding 

seasons) and somehow correlated along space and time. In any case, we can include 

fluctuations just as white noise when we are studying evolution during long times with long 

time steps (about the duration of these cycles). Approximating environmental fluctuations as 

white noise can be done because temporal correlation (typically of the scale of days) is 

measured to be very short in relation to the time scales: For example, the inverse of the 

growth rate (that has a typical duration of years or even greater) is usually a much longer time 

than the typical correlation times of the fluctuations. 

3.1. Environmental fluctuations. 
These fluctuations are usually caused by environmental variability and affect the probability of 

death and reproduction of all the individuals in a particular location. Nonetheless, individuals 

far from the zone where the fluctuation happened can be unaffected (unless there is intense 

long-range dispersal). Weather is one of the most important forms of that variability, but other 

causes such as diseases are sources of environmental fluctuations.  On the one hand, if at a 

given time, there is some adverse condition, such as a cold snap or a drought, we can expect 

that more individuals will die. On the other hand, individuals tend to have more offspring 

when the climate is more favorable. These fluctuations affect the population's evolution 

proportionally to the population size.  

Even when climatic catastrophes (tornados, earthquakes, and fires, among others) are usually 

studied as a different kind of stochasticity, they can be appropriately approximated as extreme 

cases of environmental fluctuations (this is, environmental fluctuations with very large 

amplitudes) (Shaffer 1987). This approximation can be made because the mean extinction time 

of a population suffering from a catastrophe scales with the carrying capacity in a similar way 

that it does with environmental fluctuations. In both cases, the extinction time scales 

proportionally to the carrying capacity 𝐾 raised to the power of a function that depends on the 

intensity of the fluctuations or the catastrophe. Thus, for both environmental fluctuation and 

catastrophes, the mean extinction time decreases for more intense events (Lande 1993). This 

also means that a population does not become extinct by the effect of a single, short-termed 

catastrophe because extinction times are usually longer than the duration of these events. 
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3.2. Demographic fluctuations 
Demographic fluctuations are caused by individual variations in natality and mortality that are 

generally unrelated to variations in other individuals. For every unit of time, an individual can 

die with a certain probability. Also, there is a probability of mating or not, and the size of the 

offspring follows a certain probability distribution. Those probabilities depend on factors such 

as sex or age structure. Since it works on every individual separately, it can be averaged (and 

neglected compared to environmental fluctuations, as we will explain in the next subsection) 

in large populations, having a more profound impact on smaller ones. 

3.3. Mathematical formulation of environmental and demographic fluctuations. 
To obtain a formulation of the effects of the fluctuations on the growth equations, we begin 

defining the population dynamics as a diffusion process (Dennis 2002; Dennis et al. 2016; 

Karlin and Taylor 1967) that has the form 

 𝑑𝑁 = 𝐹(𝑁)𝑑𝑡 + √𝑉𝑎𝑟(𝑁)𝑑𝐵, (3.1) 

 

where 𝐵 is a Wiener Process, 𝐹(𝑁) is a deterministic growth term (Chapter 1), and 𝑉𝑎𝑟(𝑁) is 

the variance of the population size 𝑁. 

Then, we consider a population, focusing only on the female individuals (it is an excellent 

approximation provided that in most cases, males are non-limiting), for which we measure its 

size after every time step (typically a year, usually after the breeding season). Then we define 

individual fitness as the individual viability for the next breeding season plus the number of 

female offspring surviving the first time step, and we can represent it by the following 

equation  

 𝑤𝑖 = 𝜇𝑤 + 𝛿𝑖  (3.2) 

 

Where 𝜇𝑤 is the expected individual fitness and  𝛿𝑖  is the deviation from that expected 

individual fitness for the individual i. Both 𝜇𝑤  and 𝛿𝑖  are independent random variables (they 

vary from some time step to another), and the expected value of 𝛿𝑖  is zero. Given that the 

expected fitness is independent of the population density, its variation is related to 

environmental fluctuations, while the variation of individual fitness is related to demographical 

fluctuations. 

Then, we define the multiplicative growth rate 𝜆 (this means 𝑁(𝑡 + ∆𝑡) = 𝜆(𝑡)𝑁(𝑡)) as the 

mean individual fitness (Lande, Engen, and Saether 2003) 

 𝜆 =
1

𝑁
∑𝑤𝑖

𝑁

𝑖=1

= 𝜇𝑤 +
1

𝑁
∑𝛿𝑖

𝑁

𝑖=1

 (3.3) 

 

Then, defining 𝜎𝑒
2 = 𝑉𝑎𝑟(𝜇𝑤), 𝜎𝑑

2 =
1

𝑁
∑ 𝑉𝑎𝑟(𝛿𝑖)
𝑁
𝑖=1  the variance 𝜎𝜆

2 that has the form (May 

1973; Lande, Engen, and Saether 2003) 

 𝜎𝜆
2 = 𝑉𝑎𝑟(𝜇𝑤) +

1

𝑁2
∑𝑉𝑎𝑟(𝛿𝑖)

𝑁

𝑖=1

= 𝜎𝑒
2 +

𝜎𝑑
2

𝑁
 (3.4) 
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From this equation, we can see that, for large sizes of the population (𝑁 ≫ 𝜎𝑑
2/𝜎𝑒

2), 

demographical fluctuations can be neglected with respect to environmental fluctuations. 

Typical critical population size above which demographical fluctuations are negligible is 𝑁𝑐 =

10𝜎𝑑
2/𝜎𝑒

2. Depending on the species, this critical population size may vary from 10 to 1000, 

and it is often around 100. 

Then the variance of the population size 𝑁 is 𝑉𝑎𝑟(𝑁) = 𝑁2𝜎𝜆
2 = 𝑁2 (𝜎𝑒

2 +
𝜎𝑑
2

𝑁
), and replacing 

this variance in Eq. (3.1), the stochastic growth equation becomes 

 𝑑𝑁 = 𝐹(𝑁)𝑑𝑡 + 𝑁√𝜎𝑒
2 +

𝜎𝑑
2

𝑁
𝑑𝐵 (3.5) 

 

In the Growth Equation (3.5), we see that the effect of environmental fluctuations scales with 

the population size 𝑁. In contrast, the effect of the demographical fluctuations scale with the 

square root of the population, so if the population is large enough,1 the demographical 

fluctuations can be neglected, and the growth equation has the form 

 𝑑𝑁 = 𝐹(𝑁)𝑑𝑡 + 𝑁𝜎𝑒𝑑𝐵 (3.6) 

 

Equation (3.6) is the general dynamical population growth equation. Considering Allee Effect 

dynamics, 

 𝐹(𝑁) = 𝑟𝑁 (1 −
𝑁

𝐾
) (
𝑁

𝐴
− 1) −𝑚𝑁 +𝑚∫𝑁(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 (3.7) 

 

In Figure 3.1, we have represented two relevant cases introduced in Chapter 1, Allee equations 

without dispersal starting both above and under the Allee Threshold 𝐴, including 

environmental fluctuations as a noise term. It is essential to notice that fluctuations, if they are 

large enough, cause a very different behavior with respect to the deterministic case. For 

example, on the one hand, there is a simulation in which we started above the Allee threshold 

𝐴, and the population finally decreases to zero. On the other hand, we can see that it is 

possible to start below the Allee Threshold and recover to finally fluctuate around equilibrium 

 
1 Given that in our works about Allee effect (Chapters 5 and 6) we assume 𝐾 = 1 it may seem like the 
population is not large enough to neglect demographic fluctuations, even when we are close to the 
equilibrium. This confussion is only about the system of units we are using. Regular stochastic Allee 
growth equation (without neglecting demographic fluctuations) has the form  

𝑑𝑁 = (𝑟𝑁 (1 −
𝑁

𝐾
) (
𝑁

𝐴
− 1) −𝑚𝑁 +𝑚∫𝑁(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦) 𝑑𝑡 + 𝑁√𝜎𝑒

2 +
𝜎𝑑
2

𝑁
𝑑𝐵 

If we perform the change that yields the units for which 𝐾 = 1, i.e.  𝑁 = 𝑁/𝐾, �̃� = 𝐴/𝐾, 𝐾 = 𝐾/𝐾 = 1, 
then the equation becomes: 
 

𝑑𝑁 = (𝑟𝑁 (1 −
𝑁

𝐾
)(
𝑁

�̃�
− 1) − 𝑚𝑁 +𝑚∫𝑁(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦) 𝑑𝑡 + 𝑁√𝜎𝑒

2 +
𝜎𝑑
2

𝐾𝑁
𝑑𝐵 

Where, if the “real” 𝑁 = 𝐾𝑁 is big enough we can neglect demographic fluctuations and then we get 

the growth equation used in our work and valid for 𝐾 = 1. In our work (chapters 5 and 6) we eliminated 
the tilde notation. 
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at the carrying capacity 𝐾, even when populations with these initial conditions end up in 

extinction in the deterministic dynamics.  

 

 

 

Figure 3.1: Population evolution for Allee growth models with different initial conditions. We 
have chosen a vast carrying capacity (𝐾 = 106, blue dashed line), so demographic fluctuations 
can be neglected. We have considered an amplitude of the environmental fluctuations 𝜎𝑒=0.2, 
and for the Allee equation, the Allee Threshold has a value 𝐴 = 0.1 𝐾(orange dashed line). 
Green lines indicate an initial population 𝑁0 = 0.11𝐾, while the red lines start at 𝑁0 = 0.09𝐾. 
Dashed lines indicate different realizations of the stochastic dynamics, while the solid ones 
show the deterministic dynamics for comparing purposes.  
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Chapter 4: Population synchrony. 
 

In Chapter 1, we have introduced the main concepts of metapopulations and dispersal (Lande, 

Engen, and Saether 2003; Cotgreave and Gotelli 2006). The fluctuations affecting two distant 

metapopulations can be correlated. The spatial correlation between metapopulations is called 

population synchrony, which has a crucial role in population dynamics, for example, by 

affecting the probability of regional extinction. Some causes of population synchrony are 

weather, predation, and individual dispersal between the synchronized populations (Moran 

1953; Jarillo et al. 2020; Ranta et al. 1995).  

The first of those three references was one of the first and most important studies about 

population synchrony (Moran 1953), where Moran studied two closed Canadian Lynx 

populations without individual dispersal. In that paper, he established that in a simple linear 

model with small fluctuations around the equilibrium, the correlation between the two 

populations is proportional to the environmental correlation. Moran effect has been studied 

by many authors, and the assumption of a linear structure can be relaxed in many cases to 

non-linear functions as well (Ranta et al. 1997; Hansen et al. 2020). 

4.1. Population synchrony with individual dispersal. 
Let us assume a population dynamics model with dispersal that has a population dynamics 

equation such as  

 𝑑𝑁(𝑥, 𝑡) = 𝑑𝑁(𝑥, 𝑡)|𝑙𝑜𝑐𝑎𝑙 + 𝑑𝑁(𝑥, 𝑡)|𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 +𝑁𝜎𝑒𝑑𝐵(𝑥, 𝑡) (4.1) 

 

Where the local term 𝑑𝑁(𝑥, 𝑡)|𝑙𝑜𝑐𝑎𝑙 has the form of an effective per-capita growth rate 𝛽 

multiplying the number of individuals 𝑁 (and can be one of the deterministic, not dispersing 

growth equations in chapter one, such as logistic or Allee), i.e., 

 𝑑𝑁(𝑥, 𝑡)|𝑙𝑜𝑐𝑎𝑙 = 𝛽(𝑁, 𝑥, 𝑡)𝑁(𝑥, 𝑡)𝑑𝑡 (4.2) 

 

The dispersal term describes that individuals tend to move along the habitat. In the 

simplification in which there is no external migration, this term is 

 𝑑𝑁(𝑥, 𝑡)|𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 = (−𝑚𝑁(𝑥, 𝑡) + 𝑚∫𝑁(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦)𝑑𝑡 (4.3) 

 

Where individual dispersal 𝑓(𝑦) is symmetric with mean 0 (it is usually a gaussian distribution), 

which means 𝑓(𝑦) = 𝑓(−𝑦). To study population synchrony, it is useful to linearize equation 

4.1 around equilibrium provided small fluctuations. We define the proportional deviation from 

deterministic equilibrium as 휀 = 𝑁 𝐾⁄ − 1, which has an expected value of 0 on each location, 

then equation 4.1 becomes 

 𝑑휀(𝑥, 𝑡) = −(𝛾 +𝑚)휀(𝑥, 𝑡)𝑑𝑡 +  𝑚 𝑑𝑡 ∫휀(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 + 𝜎𝑒𝑑𝐵(𝑥, 𝑡) (4.4) 

 

Where 𝛾 is the linearized rate of return to equilibrium in the absence of dispersal (equal to 𝑟 in 

logistic growth), and the gaussian white noise 𝑑𝐵 is exponentially autocorrelated in space with 
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correlation longitude or spatial scale of environmental synchrony 𝑙𝑒(the typical distance at 

which the fluctuations remain correlated). Note that the same linearization around equilibrium 

(for a local population without dispersal, i.e., 𝑚 = 0) is used for our model in Chapter 7. 

Then, the spatial autocorrelation of population fluctuations is defined by  

 𝑐(𝑧) =< 휀(𝑥, 𝑡)휀(𝑥 + 𝑧, 𝑡) > (4.5) 

 

And the spatial autocorrelation of the environmental fluctuations is 

 𝜌𝑒(𝑧)𝑑𝑡 =< 𝑑𝐵(𝑥, 𝑡)𝑑𝐵(𝑥 + 𝑧, 𝑡) > (4.6) 

 

Then, let us assume that 휀(𝑥, 𝑡 + 𝑑𝑡) = 휀(𝑥, 𝑡) + 𝑑휀(𝑥, 𝑡). Then, for the stationary 

distribution, we have < 휀(𝑥, 𝑡)휀(𝑥 + 𝑧, 𝑡) >=< 휀(𝑥, 𝑡 + 𝑑𝑡)휀(𝑥 + 𝑧, 𝑡 + 𝑑𝑡) >, so applying 

these assumptions and Eq. (4.4) to the definition of 𝑐(𝑧) (Eq. (4.5)) and neglecting terms of 

second order in 𝑑𝑡 we obtain the following expression: 

 2(𝛾 +𝑚)𝑐(𝑧) = 2𝑚∫𝑐(𝑧 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 + 𝜎𝑒
2𝜌𝑒(𝑧) (4.7) 

 

In the absence of dispersal, the equation verifies Moran Effect, which is 

 𝑐(𝑧) =
𝜎𝑒
2𝜌𝑒(𝑧)

2𝛾
 (4.8) 

 

Because 𝜌(𝑧) =
𝑐(𝑧)

𝑐(0)
= 𝜌𝑒(𝑧). Also, from (Lande, Engen, and Sæther 1999), we have the 

following bound for the autocorrelation of the population in 𝑧 = 0: 

 
𝜎𝑒
2

2(𝛾 +𝑚)
< 𝑐(0) <

𝜎𝑒
2

2𝛾
 (4.9) 

 

So dispersal significantly decreases the lower bound if it is big enough. Furthermore, Lande et 

al. defined the spatial scale of population synchrony for a single dispersed species, which has 

been extended recently to study population synchrony in systems of two species (Jarillo et al. 

2018; 2020).  

The standard deviation of individual dispersal distance 𝑙𝑚, which is the characteristical spatial 

scale traveled by an individual, is defined as 𝑙𝑚
2 = ∫𝑧2𝑓(𝑧)𝑑𝑧 / ∫ 𝑓(𝑧)𝑑𝑧. Conversely, 𝑙𝑒  is the 

spatial scale of environmental synchrony, which can be calculated by 𝑙𝑒
2 = ∫ 𝑧2𝜌𝑒(𝑧)𝑑𝑧 /

∫𝜌𝑒(𝑧)𝑑𝑧. 

Then, an analogous definition is used for the spatial scale of population synchrony 𝑙 

 𝑙2 =
∫𝑧2𝑐(𝑧)𝑑𝑧

∫ 𝑐(𝑧)𝑑𝑧
 (4.10) 

 

Population synchrony can be computed using Fourier transforms to integrate Equation (4.7), 

getting the result 
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 𝑙 = √𝑙𝑒
2 +

𝑚𝑙𝑚
2

𝛾
 (4.11) 

 

Meaning that both higher dispersal or weaker regulation (lower rate of return to equilibrium) 

on a species imply a greater spatial scale of population synchrony, which is also the typical size 

of an area affected by regional extinction (Lande, Engen, and Saether 2003). Thus, populations 

with larger spatial scales of synchrony have a higher risk of regional extinction (Heino et al. 

1997; Heino 1998; Heino, Ripa, and Kaitala 2000), which depends on the intensity of 

population fluctuations as well. However, dispersal can also act by increasing the effective rate 

of return of local fluctuations to the mean population size. Dispersal also increases this local 

mean population size (Engen, Lande, and Sæther 2002), which decreases the extinction risk. 

However, the overall effect of dispersal is to decrease local extinction risk. As we show in 

Chapters 5 and 6, dispersal is even more useful as a tool to avoid regional extinction if the total 

area inhabited by the population is substantially larger than the scale of population synchrony 

(Engen, Lande, and Sæther 2002).  
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PART II: 
Spatially extended 

stochastic population 
dynamics with Allee 

Effect  
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Chapter 5: Dispersal-induced resilience to stochastic 

environmental fluctuations in populations with Allee effect 
 

Many species are unsustainable at small population densities (Allee effect); i.e., below the so-

called Allee threshold, the population decreases instead of growing. In a closed local 

population, environmental fluctuations always lead to extinction. Here, we show how, in 

spatially extended habitats, dispersal can lead to a sustainable population in a region, provided 

the amplitude of environmental fluctuations is below an extinction threshold. We have 

identified two types of sustainable populations: high-density and low-density populations 

(through a mean-field approximation, valid in the limit of large dispersal length). Our results 

show that patches, where population is high, low, or extinct, coexist when the population is 

close to global extinction (even for homogeneous habitats). The extinction threshold is 

maximum for characteristic dispersal distances much larger than the spatial scale of synchrony 

of environmental fluctuations. The extinction threshold increases proportionally to the square 

root of the dispersal rate and decreases with the Allee threshold. The low-density-population 

solution can allow understanding of difficulties in non-recovery events after harvesting. This 

theoretical framework provides a unique approach to address other factors, such as habitat 

fragmentation or harvesting, impacting population resilience to environmental fluctuations. 

5.1. Introduction 
Many species need a minimum population density to be viable, for example, the island fox 

(Angulo et al. 2007), the polar bear (Molnár et al. 2008), American ginseng (Hackney and 

McGraw 2001) and the Atlantic codfish (Kuparinen and Hutchings 2014) among others. This 

minimum viable population density is named the Allee threshold (Allee 1931), and below it, 

the population declines toward extinction, a phenomenon called the (strong) Allee effect. 

Field research has characterized the impact for plants and animals of reaching population 

densities below the Allee threshold. The strength of the impact depends on the strength of the 

Allee effect (Kumar and Dubey 2020), the presence of harvest (Liz and Ruiz-Herrera 2015), and 

the absence of positive human intervention (Crates et al. 2017; McDermott and Finnoff 2016). 

Many of these depleted populations never recover and become extinct in some years. Some 

depleted populations take many years (much more than the average lifetime of the species) to 

get out of this situation and eventually recover. In animals, monogamous species with long 

lifetimes are more likely to show the Allee effect (Sæther, Ringsby, and Røskaft 1996; Angulo 

et al. 2007), in addition to solitary species with difficulties for finding a breeding mate or an 

unbalanced male-female ratio (Molnár et al. 2008). Another causes that explain Allee effect in 

animals are nonefficient feeding (Way and Banks 1967), difficulties surviving in an environment 

with predators, competitors or human harvest (Moynihan and Kruuk 2010; Kenward 2006); or 

inbreeding depression (Ralls, Frankham, and Ballou 2013; Frankham and Ralls 1998). In plants, 

less efficient pollination or fruit production (decreasing at small populations) (Hackney and 

McGraw 2001)  seem to be the principal causes providing the Allee effect. Most of the articles 

cited above qualitatively describe how a certain species in a low-population-density situation 

has difficulties surviving due to the Allee effect.  

Theoretical papers have addressed the general question of the eradication of alien species  

(Liebhold and Bascompte 2003), and of spatial patterns’ influence on the spread of invading 

species (Lewis and Kareiva 1993), observed in the gypsy moth (Vercken et al. 2011). These 

papers show that both the Allee effect and environmental variability can contribute to the 
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extinction of a population. Other works have studied the effects of stochasticity in species 

vulnerable to the Allee effect (Dennis 2002; Engen, Lande, and Sæther 2003; Lee, Sæther, and 

Engen 2011; Méndez et al. 2019) describing mean time to extinction, or probability of 

extinction after a given time, for a single location. Migration between locations increases the 

mean time to extinction, as it has been shown in a metapopulation model with a 3x3 grid 

(Brassil 2001). Studies of a locally endangered butterfly sustain the important role of 

immigration in the regional dynamics to counterbalance the Allee effects (Bonsall et al. 2014).  

Recently, Dennis et al. (Dennis et al. 2016) showed that an external constant migration term 

can sustain the population in the presence of stochastic environmental fluctuations. Here, we 

go a step further and show that a spatially extended population with dispersal between the 

locations can be sustainable. We compute the stationary population probability distributions in 

the mean-field limit (large dispersal distance), which elucidates the spatially extended 

population dynamics for finite dispersal distance. This results clarify the conditions for 

sustainability in spatially extended habitats, quantifying the effects of dispersal in the 

resilience to stochastic environmental fluctuations.  

We have studied a one-dimensional model, which is a good approach for some ecological 

systems such as rivers or oceanic water columns (Villa Martín et al. 2015). One-dimensional 

models also allow a more straightforward yet accurate study of many characteristics of 

interaction-based population dynamics (Ribeiro and Ribeiro 2015). 

The results we present here provide insight on how natural or human-induced changes in the 

species’ dynamical parameters would influence its extinction risk due to environmental 

fluctuations. In particular, they provide information on how an increase in the amplitude of 

environmental fluctuations can affect the sustainability of a population. This problem is of 

particular present relevance as several regions of the Earth are increasing its climate variability 

(IPCC 2012). 

5.2. Spatially extended population model  
We introduce here a spatially extended, one-dimensional population model, including Allee 

effects, environmental fluctuations, and dispersal. This model allows us to assess the resilience 

of populations to environmental fluctuations and the role played by dispersal in this resilience.  

The deterministic Allee model (Allee and Rosenthal 1949; Odum and Allee 2006), introduced in 

the first chapter of this thesis, gives the local deterministic dynamics of the population density 

𝑁(𝑥, 𝑡) at location 𝑥 and time 𝑡. This dynamics is determined by a characteristic extinction rate 

𝑟, a carrying capacity 𝐾 (stable viable population density), and an Allee threshold 𝐴 (minimum 

viable population density). Note that the population density 𝑁(𝑥, 𝑡) is defined as the local 

number of individuals per unit of length at a given time. Additionally, environmental 

stochasticity is introduced through an additional stochastic contribution 𝜎 𝑁 𝑑𝐵, proportional 

to the population density, as explained in Chapter 3. The amplitude of these environmental 

fluctuations is given by 𝜎, and 𝑑𝐵(𝑥, 𝑡) is a normalized Gaussian random field (Chapter 2) with 

a spatial scale of synchrony 𝑙𝑒, giving the spatial scale of synchrony of the environmental 

fluctuations (Chapter 4), which is the characteristic distance at which environmental 

fluctuations remain correlated (Jarillo et al. 2018). Therefore, the local dynamics of a 

population density 𝑁(𝑥, 𝑡) in the stochastic Allee model is given by  

 𝑑𝑁(𝑥, 𝑡)|𝑙𝑜𝑐𝑎𝑙  =  𝑟 𝑁(𝑥, 𝑡) (
𝑁(𝑥, 𝑡)

𝐴
− 1) (1 −

𝑁(𝑥, 𝑡)

𝐾
)  𝑑𝑡 +  𝜎 𝑁(𝑥, 𝑡) 𝑑𝐵(𝑥, 𝑡). (5.1) 
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The first term corresponds to the deterministic Allee model (Allee and Rosenthal 1949; Odum 

and Allee 2006; Lewis and Kareiva 1993). This equation implies a rate of return to extinction 

for populations close to extinction of 𝛾0  =  𝑟 and a rate of return to the carrying capacity for 

populations close to the carrying capacity of 𝛾𝐾  =  𝑟 (𝐾/𝐴 − 1). The second term in Eq. (5.1) 

gives the contribution of stochastic environmental fluctuations to the changes in the local 

population, with an amplitude of the environmental fluctuations 𝜎. The random field 𝑑𝐵(𝑥, 𝑡) 

is given by increments of standard Brownian motions in each position with zero mean and 

variance 𝑑𝑡, and it is spatially correlated with an exponential autocorrelation of length 𝑙𝑒, 

which is the spatial scale of synchrony of environmental fluctuations (Jarillo et al. 2018).  

The dispersal couples the dynamics in the different locations. We consider a dispersal model 

(as done in Chapter 1) for which individuals disperse away with a rate 𝑚 to a characteristic 

distance 𝑙𝑚. Thus, dispersal gives an additional contribution to the dynamics of  

 𝑑𝑁(𝑥, 𝑡)|𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙  =  − 𝑚 𝑁(𝑥, 𝑡) 𝑑𝑡 +  𝑚 𝑑𝑡 ∫ 𝑁(𝑥 − 𝑦, 𝑡) 𝑓(𝑦) 𝑑𝑦 , (5.2) 

 

which makes the dynamics nonlocal. The first term represents the population decrease at 

position 𝑥 due to individuals that disperse away with probability 𝑚 𝑑𝑡. The second term gives 

the population increase due to individuals that disperse to position 𝑥 from a position displaced 

a distance 𝑦 where the population is 𝑁(𝑥 − 𝑦, 𝑡). Therefore, 𝑚 is the rate of random dispersal 

to a position at a distance 𝑦 with probability 𝑓(𝑦), where 𝑓(𝑦) has been taken as a Gaussian 

with variance 𝑙𝑚
2  and zero mean. Dispersal rate 𝑚 is the same in both terms in Eq. 5.2 because 

our model assumes no external migration: Every individual leaving a patch moves to another 

within the ecosystem, whereas every individual arriving at a patch must have come from the 

same ecosystem. Furthermore, we consider a homogeneous habitat, so neither the dispersal 

rate 𝑚 nor the dispersal profile 𝑓(𝑦) (nor any other parameter of the model) depends on 

position 𝑥.  Hence, individuals disperse at a rate 𝑚 to typical distances of the order of 𝑙𝑚. As 

the dispersal term in Eq. 5.2 is proportional to the population density 𝑁(𝑥, 𝑡), depleted regions 

will receive a net population flux from nearby nondepleted regions. 

The combination of local and dispersal contributions to the change in population density gives 

the complete spatially extended dynamics, 

 𝑑𝑁 =  𝑑𝑁|𝑙𝑜𝑐𝑎𝑙  +  𝑑𝑁|𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙  . (5.3) 

 

Typical late time population distributions given by this dynamical equation can be seen in Fig. 

5.1 (panels A, C, and E). Table 5.1 gives a summary of the variables and parameters used and 

their units. 
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Variables Description 

𝑁(𝑥, 𝑡) Population density at a given position x and a time t. Units of length-1. 

𝐴 
Allee threshold of the species, below it, the species has negative growth. Units 
of length-1. 

𝐾 
Carrying capacity of the species, meaning stable, viable population density. Units 
of length-1. 

𝑟 Extinction rate (at very low population densities). Units of time-1. 

𝛾0 Rate of return to extinction.  Units of time-1. 

𝛾𝐾 Rate of return to carrying capacity.  Units of time-1. 

𝑚 Dispersal rate of the species. Units of time-1. 

𝑙𝑒  Spatial scale of synchrony of environmental fluctuations. Units of length. 

𝑙𝑚 
Mean distance traveled by the dispersed individuals (characteristic width of the 
Gaussian dispersion function). Units of length. 

𝜎 
Amplitude of the environmental fluctuations, giving the standard deviation of 
the environmental fluctuations. Units of time-1/2. 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛  
Extinction threshold for the amplitude of environmental fluctuations (Minimum 
amplitude of the fluctuations that ensures global extinction). Units of time-1/2. 

Table 5.1: Variables used in this chapter (definitions and units). 

 

Figure 5.1: Spatial profiles of population density, and their associated averaged population 

density histograms compared with mean-field population probability distributions. Panels A, C 

and E: spatial profile of the population density for simulation at long time, 𝑡 = 1000, with 

extinction rate 𝑟 = 0.1, Allee threshold 𝐴 = 0.1, carrying capacity 𝐾 = 1, dispersal rate 𝑚 = 1, 

and dispersal distance equal to the spatial scale of synchrony of environmental fluctuations 

𝑙𝑚 = 𝑙𝑒 = 1. Panels B, D, and F: population density histograms for the spatial profiles of 
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population densities shown in Panels A, C, and E, respectively. The curves in Panels A, C, and E 

show the patches in extinction (black) high-population (green), and low-population states (red), 

according to the histograms in Panels B, D, and F.  Panels B, D, and F also show the fit to a 

linear combination of the mean-field population probability distributions. The results for these 

fits are 𝑝(𝑁) = 𝑝ℎ𝑖𝑔ℎ(𝑁) in Panel B, 𝑝(𝑁) = 0.08𝑝𝑙𝑜𝑤(𝑁) + 0.92𝑝ℎ𝑖𝑔ℎ(𝑁) in Panel D and 

𝑝(𝑁) = 0.06𝑝0(𝑁) + 0.22𝑝𝑙𝑜𝑤(𝑁) + 0.72𝑝ℎ𝑖𝑔ℎ(𝑁) in Panel F. Each contribution is 

represented with its fitted weight. 𝑝𝑙𝑜𝑤(𝑁) (red line) and 𝑝ℎ𝑖𝑔ℎ(𝑁) (green line) correspond, 

respectively, to the low- and high-density mean-field population probability distribution 

solutions. They are given by the two non-zero branches of solutions of the mean-field equations 

for values of 𝜎 below the extinction threshold (see also Fig. 5.2). 𝑝0(𝑁)(black point) is the zero 

population density solution (i.e., extinction). Red dashed lines indicate Allee threshold value 

𝐴 = 0.1, green dashed lines indicate carrying capacity 𝐾 = 1, and black dashed lines indicate 

𝑁 = 0. Note the similarities between the population density histograms obtained from direct 

numerical simulation and the fit to the linear combination of the population probability 

distributions obtained with the mean-field limit approximation (i.e., the large migration 

distance limit, 𝑙𝑚/𝑙𝑒 → ∞). However, the real histograms are displaced to the left due to the 

border effects, which are effects beyond the mean-field approximation (i.e., due to finite 

migration distance, in this case 𝑙𝑚/𝑙𝑒 = 1). Note also that increasing the environmental 

fluctuations 𝜎 increases the presence of regions where the population is depleted or extinct, as 

𝜎 approaches the extinction threshold (𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 = 0.80 for the parameter values in this 

figure).  

5.3. Numerical simulations 
The numerical simulations of the previously described dynamical equation are performed 

taking the scale of synchrony of environmental fluctuations, 𝑙𝑒, as reference length, i.e., 𝑙𝑒 =

1, and 20 lattice nodes per unit length. The total length of the simulation box was 140 times 

the maximum of 𝑙𝑒 and 𝑙𝑚 , and we consider periodic boundary conditions (aiming to obtain 

results for infinite habitat). The time resolution was 50 times smaller than the minimum of the 

characteristic times of the dynamics (i.e., the minimum of the inverses of the rates 𝑟 and 𝑚). 

These resolutions, simulations boxes, and boundary conditions guarantee that the dynamics is 

well-resolved (in time and space) and mimics an infinite habitat for better comparison with the 

results found with the mean-field approximation (Law, Dieckmann, and Metz 2000; Morozov 

and Poggiale 2012) described below. In this way, we performed numerical simulations of 

spatially extended populations, starting from a population density equal to the carrying 

capacity in each node of the simulation box. We ran several simulations for each set of 

parameters with different amplitudes of the environmental fluctuations. See Appendix 5.C for 

further details on the simulation algorithm.   

We define the extinction threshold, 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛, as the characteristic amplitude of 

environmental fluctuations above which the environmental fluctuations leads to the global 

extinction of the population. The environmental fluctuation extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛  is 

obtained from long time simulation (𝑡 = 1000 = 100 𝑟−1) as the center of the transition 

interval from the never extinct to the always global extinct final case. 

Besides, relevant information of a spatially extended population is how probable it is to find a 

given population density in a given location, i.e., to determine the population probability 

distribution. We have assumed homogeneous habitat conditions, which is represented by 

location-independent population dynamics parameters (extinction rate 𝑟, carrying capacity 𝐾, 

Allee threshold 𝐴, and amplitude of environmental fluctuations 𝜎). Thus, the population 
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probability distribution 𝑝(𝑁) does not depend on location and gives the probability to find the 

population density 𝑁 in any site. The population probability distribution 𝑝(𝑁) is computed 

from numerical simulations doing population density histograms, like those shown in Fig. 5.1 

Panels B, D, and F.  

5.4. Analytical population probability distribution 
Additionally, we can get further insight into the population dynamics through a more analytical 

approach for the computation of the population probability. The stochastic differential 

equations for the stochastic Allee model with and without dispersal, Eqs. (5.1) and (5.3), have 

the form 𝑑𝑁 = 𝐹(𝑁) 𝑑𝑡 + √𝑣(𝑁) 𝑑𝐵 . For equations of this form, if a stationary population 

probability distribution exists it is given by (Karlin and Taylor 1967) 

 𝑝(𝑁) =
𝑛

𝑣(𝑁)
· exp(2∫

𝐹(𝑁)

𝑣(𝑁)
𝑑𝑁)  , (5.4) 

 

where 𝑛 is a normalization factor. 

Therefore, for the stochastic Allee model without dispersal, Eq. (5.1), the stationary population 

probability distribution is 

 
𝑝(𝑁) =

𝑛 · exp(
1
𝜎2
(
2𝑟𝑁
𝐾 +

2𝑟𝑁
𝐴 −

𝑟𝑁2

𝐴𝐾
)) 

𝜎2𝑁
2+2𝑟

𝜎2⁄
  , 

(5.5) 

 

This population distribution has a divergence in 𝑁 = 0 and is not normalizable, which means 

that a population with an Allee-type growth will always become extinct in the absence of 

dispersal (𝑚 = 0).  (The extinction is faster for larger environmental fluctuations. See 

Appendix 5.B.)  

Only populations with dispersal may be stable in the long term. For the stochastic Allee model 

with dispersal, Eq. (5.3), the stationary population probability distribution with dispersal is 

 
𝑝(𝑁) =

𝑛 · exp(
1
𝜎2
(
2𝑟𝑁
𝐾 +

2𝑟𝑁
𝐴 −

𝑟𝑁2

𝐴𝐾 −
2𝑚𝐼
𝑁
)) 

𝜎2𝑁
2+
2(𝑟+𝑚)

𝜎2
⁄

  , 
(5.6) 

 

where the coupling term 𝐼(𝑥)  =  ∫ 𝑁(𝑥 − 𝑦) 𝑓(𝑦) 𝑑𝑦 makes the population probability in one 

location depending on the values of the population density in the surrounding region. This 

additional dispersal term makes the population distribution normalizable and with no-zero 

mean for certain ranges of values of 𝑚 and 𝜎. 

5.5. Mean-field approximation 
We propose here to combine the analytic expression in Eq. (5.6) with the mean-field 

approximation to deal with the coupling term 𝐼(𝑥). When the dispersal length is much larger 

than the spatial scale of synchrony of environmental fluctuations, 𝑙𝑚 ≫ 𝑙𝑒 (for example, the 

case of long-distance migrant birds), the mean-field approximation is a good approximation. 

The mean-field approximation assumes the stationary population density is approximately 
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equal in all points of space. (Long-distance dispersal, 𝑙𝑚 ≫ 𝑙𝑒, makes the population density 

more homogeneous, recolonizing low-populated points from those that are “overpopulated”). 

The mean-field approximation implies that the coupling term 𝐼 in Eq. (5.6) can be treated as 

position independent, 𝐼(𝑥) = 𝐼, and we can approximate it by the mean value of the 

population density 

  𝐼 = ∫ 𝑁 𝑝(𝑁) 𝑑𝑁
∞

0
 . (5.7) 

 

This approximation mimics the dynamics of long-distance dispersal (see Fig. 5.A2 in Appendix 

5.A). The extinction threshold, 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛, was defined here as the amplitude of environmental 

fluctuations above which the environmental fluctuations lead to the global extinction of 

population. In the mean-field approximation, the extinction threshold can be computed 

directly obtaining the value of the environmental amplitude where there is no longer a 

solution of the system of equations formed by Eqs. (5.6) and (5.7) (i.e., the point where the 

green and the red curves merge in Fig. 5.2A), except the extinction in the all space solution, 

(non-normalizable divergence in N=0). Thus, when the amplitude of environmental 

fluctuations exceeds the extinction threshold, the only possible solution implies global 

extinction (we find population at 𝑁 = 0 for long times with probability 1, 𝑝(𝑁 = 0) = 1), and 

it is not normalizable.  Therefore, the mean-field approximation allows us to compute the 

stationary probability distribution and to estimate the extinction threshold for a particular set 

of parameters (which is a close upper limit of the real extinction threshold when the dispersal 

distance of the species is large enough). We get two branches of solutions, which represent 

two different equilibria: the high mean population density solution, 𝑝ℎ𝑖𝑔ℎ, and low mean 

population density solution, 𝑝𝑙𝑜𝑤.  See Figs. 5.1 and 5.2.  

The diagram of the mean population densities 𝐼 for the two branches of solutions depends on 

the parameters of the model (Fig. 5.2). Lower Allee thresholds 𝐴 displace the diagram toward 

higher amplitudes of environmental fluctuations 𝜎, but lower the mean population 𝐼 and make 

more prominent the minimum of the lower branch. Higher dispersal rates m displace the 

diagram to higher amplitudes of environmental fluctuations 𝜎 and slightly to higher mean 

population densities 𝐼, marking the role of dispersal as a stabilizing factor of the population. 

(See Fig. 5.2 and Fig. 5.A1 in Appendix 5.A.) 
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Figure 5.2: Solutions in the mean-field approximation. (Panel A) Mean population density 𝐼 as a 

function of environmental noise amplitude σ for the two nonzero branches of solutions at the 

mean-field approximation (𝑙𝑚 ≫ 𝑙𝑒): high-density (green) and low-density (red) branches 

(shown in logarithmic scale). Extinction rate 𝑟 = 0.1, carrying capacity 𝐾 = 1, Allee threshold 

𝐴 = 0.1, and dispersal rate 𝑚 = 0.5 (solid line), 𝑚 = 1 (dashed line), and 𝑚 = 2 (dash-dotted 

line). (Panel B) High-density (green) and low-density (red, divided by 10 to make the figure 

more visible) population probability distributions, phigh and plow, respectively. They are 

calculated at the mean-field approximation for the same parameters of Panel A and 𝑚 = 1, for 

values of the environmental fluctuations amplitude 𝜎 = 0.3 (solid line), 𝜎 = 0.7 (dashed line) 

and 𝜎 = 0.75 (dash-dotted line). Vertical lines show 𝑁 = 0 (black), 𝑁 = 𝐴 = 0.1 (red) and 𝑁 =

𝐾 = 1(green). (Panel C) Position of the maximum of mean-field distributions 𝑁𝑚𝑎𝑥 as a 

function of environmental noise amplitude σ, for the two nonzero branches of solutions at the 

mean-field approximation (shown in logarithmic scale) with the same parameters as in Panel A. 

(Panel D) Fitted contribution of each mean-field distribution in stationary distributions 

simulated by population dynamics assuming mean-field limit (see appendix 5.C) such as 

𝑝(𝑁)𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑎𝑙𝑜𝑤  𝑝𝑙𝑜𝑤  (𝑁) + 𝑎ℎ𝑖𝑔ℎ   𝑝ℎ𝑖𝑔ℎ (𝑁) + 𝑎0 𝑝0 (𝑁), where  𝑝0(𝑁) is the zero 

population density solution (i.e., extinction) and 𝑎𝑙𝑜𝑤 + 𝑎ℎ𝑖𝑔ℎ + 𝑎0 = 1 , for extinction rate 𝑟 =

0.1, carrying capacity 𝐾 = 1, Allee threshold 𝐴 = 0.1, and dispersal rate 𝑚 = 1. Vertical red 

dashed line shows the amplitude of environmental fluctuations which gives the position of the 

minimum in the lower branch of 𝑁𝑚𝑎𝑥 (panel C), and vertical black dashed line shows the 

extinction threshold σextinction calculated in the mean field limit. The vertical axis is shown in 

logarithmic scale and values below 0.01 are not represented. The figure shows that 

contributions of 𝑝𝑙𝑜𝑤  (𝑁) start to appear for sigmas equal or greater than the position of the 

minimum in the lower branch of 𝑁𝑚𝑎𝑥. Additionally extinction appears for amplitudes of 

environmental fluctuations greater than 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛. 
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5.6. Maximum approximation 
The maximum approximation assumes the extinction threshold is the value of the amplitude of 

environmental fluctuations 𝜎 that locates the maximum of 𝑝𝐼(𝑁) [where 𝑝𝐼(𝑁) is is the 

population probability for a given 𝐼] at the Allee threshold 𝐴. This estimation gives for the 

extinction threshold, 

 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 = √𝑚(
𝐼

𝐴
− 1) . (5.8) 

 

This expression points out that the extinction threshold approximately increases with the 

square root of the migration rate and decreases with the Allee threshold 𝐴 (Fig. 5.3). In order 

to obtain the value of 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 estimated with the mean-field and maximum 

approximations, we must simultaneously solve numerically Eqs. (5.6), (5.7), and (5.8). It should 

be noted that the maximum approximation is only an additional approximation, which can be 

added to the method introduced in the previous section [𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 is the value of the 

environmental amplitude where there is no longer a solution for the set of equations Eqs. (5.6) 

and (5.7)]. The maximum approximation allows a faster estimation of the extinction threshold 

and shows that the  extinction threshold approximately grows with the root of the dispersal 

rate 𝑚. However, the method described in the previous section is more accurate and is 

preferred to compute the extinction threshold in the mean-field limit. 
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Figure 5.3:  Extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 versus different parameters. (Panel A) Extinction 

threshold versus Allee threshold for the mean-field approximation (black dots) (i.e., large 

dispersal length, 𝑙𝑚 ≫ 𝑙𝑒), for the mean-field and maximum approximations (red dots), and for 

a simulation with 𝑙𝑚 = 𝑙𝑒  (i.e., dispersal length 𝑙𝑚 equal to the spatial scale of synchrony of 

environmental fluctuations 𝑙𝑒), all with dispersal rate 𝑚 = 1. (Panel B) Extinction threshold 

versus dispersal rate using the same color code as the previous panel, all with Allee threshold 

𝐴 = 0.1. The dispersal rates considered, 𝑚 =0.3 to 5.3, are similar or higher than the 

characteristic extinction rate considered in this simulations 𝑟 = 0.1, providing a significant 

contribution to population recoveries. (Panel C) Extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 as a function of 

the ratio between the characteristic dispersal distance and the spatial scale of synchrony of 

environmental fluctuations 𝑙𝑚/𝑙𝑒, using the same color codes as the previous panels, all with 

𝑚 = 1 and 𝐴 = 0.1. (Panel D) Scaling of the extinction threshold at large dispersal rate verified 

plotting the ratio 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛/√𝑚  versus the dispersal rate 𝑚 (in the same interval as in Panel 

B) for Allee thresholds 𝐴 = 0.1 (black), 𝐴 = 0.35(green), and 𝐴 = 0.6(purple) obtained for the 
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mean-field approximation. For all panels, the extinction rate is 𝑟 = 0.1 and the carrying 

capacity 𝐾 = 1. 

5.7. Dispersal makes the population resilient to environmental fluctuations 
In a closed local population, environmental fluctuations lead to extinction in the presence of 

environmental fluctuation, because environmental fluctuations eventually lead the population 

density below the Allee threshold 𝐴, and to extinction. Our results show that dispersal allows 

the recovery of a region with a depleted population thanks to population arriving from nearby 

nondepleted regions. This dispersal-induced population recovery makes the species resilient to 

population depletion caused by environmental fluctuations. Resilience to environmental 

fluctuations is enhanced increasing dispersal (either by increasing dispersal rate or by 

increasing dispersal length), stressing the relevance of the rescue effect of dispersal. See Fig. 

5.3, where the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 is represented. When environmental 

fluctuations are larger than the extinction threshold, the population becomes globally extinct.  

From the mean-field approximation, we obtain that in the absence of dispersal, 𝑚 = 0, the 

population probability, Eq. 5.5, diverges in 𝑁 = 0 as 𝑁
−2(1+

𝑟

𝜎2
)
, indicating that the population 

always goes extinct (after a certain transition time). However, when dispersal is present, the 

dispersal term with 𝐼 suppress the divergence at zero population density, and the species can 

be sustained. Then, dispersal (or migration) is necessary to sustain a population at long times. 

This result is consistent with previous results found with a constant migration term in (Dennis 

et al. 2016). They considered a constant external migration in the growth equation, instead of 

spatial extended dispersal within the habitat that we considered. In the case with dispersal, 

the system of equations formed by Eqs. (5.6) and (5.7) is numerically found to have either two 

roots or no root (different from the zero root). (See Panel A of Fig. 5.2.) The two regimes are 

separated by a critical value of the amplitude of environmental fluctuations, 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛. (The 

results obtained with the mean-field approximation are shown with black dots in Fig. 5.3). For 

values above this extinction threshold, 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛, populations become extinct in all the 

locations. In contrast, for values below the extinction threshold, there is an equilibrium 

between extinction and recovery from extinction due to dispersal from other regions. The two 

branches of solutions represent two different equilibria. The high mean population density 

solution, 𝑝ℎ𝑖𝑔ℎ  (green curves in Panels B, D, and F of Fig. 5.1) has most regions of space with 

population densities above the Allee threshold, and local extinction is rare. The regions above 

the Allee threshold have population densities below the carrying capacity due to the cost of 

recovering areas with local extinction. The low mean value solution 𝑝𝑙𝑜𝑤 (red curves in Panels 

B, D, and F of Fig. 5.1) has most of the regions below the Allee threshold, and they are just 

prevented from extinction due to the dispersal contributions from the regions with population 

densities above the Allee threshold. These two ideal solutions have been obtained in the 

mean-field approximation, which assumes large dispersal lengths (𝑙𝑚 ≫ 𝑙𝑒). Nonetheless, this 

approximation is a limit case that can be useful to understand populations with shorter 

dispersal lengths, because their extinction thresholds have similar parameter dependences 

(Panels A and B of Fig. 5.3).  

For finite dispersal length (Fig. 5.1), a much more common situation, simulations may present 

low and high-density solutions at different regions of the same habitat, together with regions 

of extinction (regions of zero population density in Panel E of Fig. 5.1, reflected as peaks at 

zero in the histogram of Panel F of Fig. 5.1).  
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The additional maximum approximation explained in section 5.6 works well for low values of 

𝐴, reproducing the results of the mean-field approximation (𝑙𝑚 ≫ 𝑙𝑒), as shown in  

Fig. 5.3.  

On the one hand, the extinction threshold is found to decrease as the Allee threshold increases 

(Panel A of Fig. 5.3), as both simulations and mean-field approximation show. On the other 

hand, increasing the dispersal rate increases the extinction threshold, which at large values of 

the dispersal rate grows as 

 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 ∼ √𝑚 , (5.9) 

 

as we expected from Eq. (5.8), obtained by the mean-field and maximum approximations (See 

Panels B and D of Fig. 5.3.). This dependence of the extinction threshold with the square root 

of the dispersal rate is related to the stochastic nature of the environmental fluctuations 

(which is here modeled with a Wiener process). Finally, maximum values of the extinction 

threshold are found in the mean-field limit, where characteristic dispersal distance is much 

larger than the spatial scale of environmental synchrony, 𝑙𝑚 ≫ 𝑙𝑒 (right-hand side of Panel C of 

Fig. 5.3). For values of the dispersal distance of the order of the spatial scale of environmental 

synchrony, the extinction threshold is reduced (for example, to half the value given by the 

mean-field approximation in the simulation shown in the blue dots of Panel C of Fig. 5.3). 

Therefore, resilience to environmental noise is reduced when dispersal is less frequent (lower 

𝑚) or more local (lower 𝑙𝑚). 

5.8. Discussion 
We have shown that dispersal can make a population with an Allee threshold more resilient to 

environmental noise-induced extinction. This resilience can be characterized by the extinction 

threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 for the amplitude of environmental fluctuations, above which the species 

becomes extinct. This extinction threshold increases if the dispersal rate 𝑚 increases, or if the 

relative dispersal length 𝑙𝑚/𝑙𝑒 increases. This result is consistent with the relevance of the 

rescue effect of dispersal, which is proven to be an effective mechanism reducing local and 

global extinction risk in spatially extended populations (Brown and Kodric-Brown 1977; Gotelli 

1991) and has been studied in Allee effect dynamics (Kanarek et al. 2015; Kent, Patrick 

Doncaster, and Sluckin 2003). The rescue effect entails that dispersal or migration can help 

repopulate extinct patches, reduce extinction risk, and improve the long-term sustainability of 

a species (Eriksson et al. 2014). 

Mean-field approximation leads us to identify two branches of sustainable population 

distributions. For one of the branches, the high-density-population state, the population 

distribution has most regions above the Allee threshold and some regions below it. (See green 

curve in panel F of Fig. 5.1.) For the other branch, the low-density-population state, the 

population distribution has most regions with a population below the Allee threshold but is 

sustained by dispersal from the regions above the Allee threshold. (See red curve in Panel F of  

Fig. 5.1.) Dennis et al. (Dennis et al. 2016) already identified the two branches, of low- and 

high- population density states, but for one location with external migration. Here, this 

analysis has been done for a spatially extended population with only internal dispersal, 

allowing recolonization of regions with local extinction by neighboring populations. We also 

show that the path to global extinction is a path through the emergence of local depletions 

and extinctions, which spatially coexist with nondepleted regions (even for homogeneous 

habitats). In this path to global extinction, low-density and extinct regions cover a more 
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significant fraction of the area as the amplitude of environmental fluctuations increases 

toward the extinction threshold. Different spatial domains are close to different mean-field 

steady state solutions, as shown in Fig. 5.1 (Panels A, C, and E). Finite dispersal length 

decouples distant regions allowing for the coexistence of different solutions in different 

regions. However, the migrations between regions through the borders modifies the 

distribution in each region from the ideal mean field distributions.  A linear combination of 

both mean-field distributions appears in finite dispersal simulations and in mean-field 

simulations (with theoretically infinitely large spatial scales of population synchrony, see 

Appendix 5.A), suggesting that low- and high-density metapopulations may coexist in 

neighboring regions. In the mean-field limit, the zero population density solution (i.e., 

extinction) does not coexist with low- and high-density solutions, while for finite dispersal 

length, extinct regions coexist (with low- and high-density solutions) for amplitudes of 

environmental fluctuations close to global extinction. 

The typical size of the population depleted zones is given by the spatial scale of population 

synchrony (Moran 1953; Russell Lande, Engen, and Saether 2003). The spatial scale of 

population synchrony arises by environmental fluctuation synchrony and can be modulated by 

dispersion and trophic interactions (Liebhold, Koenig, and Bjørnstad 2004; Lande, Engen, and 

Sæther 1999; Jarillo et al. 2020; 2018). The characteristics of the spatial and temporal 

environmental correlations can modulate the characteristics of the transition to extinction 

(Barghathi, Tackkett, and Vojta 2017). Identifying the causes of population synchrony in 

natural populations is a challenge for ecologists due to the complexity and amount of data,  

which are sometimes incomplete and inaccurate, and thus, it is difficult to identify all the 

factors involved (Liebhold, Koenig, and Bjørnstad 2004). Additionally, spatial scales of 

population synchrony give the typical size of the areas affected by local extinction, and seem 

to be related to transitions to extinction in population dynamics (Heino et al. 1997; Engen, 

Lande, and Sæther 2002; Engen 2007). In the case of infinitely long dispersal distances (i.e., 

mean-field approximation) we would have also infinitely large spatial scales of population 

synchrony, and thus, infinitely large areas with local extinction (i.e., the whole habitat). This 

infinite typical size of areas affected by extinction is coherent with our results in the mean-field 

limit, where either the population becomes globally extinct or no regions present local 

extinction after long times. 

The low-density-population state may be related to the absence of recovery seen in some 

ecosystems after halting harvesting (Lotze et al. 2011). In those ecosystems, the species seems 

to be trapped in a low population state, where they have been led by harvesting. They do not 

recover to the previous high-density population state unless harvesting is stopped during long 

periods, usually taking tens of generations. Our additional simulations with an initial 

population in the low-population distribution show that the low-population-density state 

alone is unstable in our model. After enough time, it evolves toward a high-density population 

state, a coexistence of regions with low- and high-population states, or global extinction, 

depending on the parameter values. The transitory dynamics presents moving fronts between 

the low and the high-population density state, which could provide clues on recovery dynamics 

(Kessler, Ner, and Sander 1998; Panja 2004; Hagberg and Meron 1994). The low-population-

density state might be a separatrix between extinction and nonzero population state, because 

initial conditions close to the low-density state seem to be particularly sensible to stochasticity. 

However, the low-population-density state seems to be locally stable when it is close to a high-

population density state. Dennis et al. (Dennis et al. 2016) also showed that external migration 

can stabilize the low-population-density state, and lead to basin hopping between low- and 
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high-population density states. Similar behavior can be present in our model due to dispersal 

from a neighboring high-population region. Simulations with amplitudes of environmental 

fluctuations close to the extinction threshold show the stochastic emergence of extinction 

regions inside low-population-density regions, even if initially the population density was at 

the carrying capacity in all points in space. (See Fig. 5.A4 in Appendix 5.A.) Studies concerning 

similar growth equations and demographic (instead of environmental) fluctuations 

(Weissmann and Shnerb 2014; Villa Martín et al. 2015) show a catastrophic transition between 

a high-density state and extinction. However, they did not find contributions of a low-density 

state in the stationary distribution of the population. This difference in the presence (or 

absence) of this contribution can be due to environmental fluctuations or the different 

dispersal terms, which are the main differences with our models. In addition, Villa Martín et al. 

(Villa Martín et al. 2015) suggest that smoother transitions appear in smaller spatial 

dimensions, and catastrophic shifts are prevented, which could explain the contribution of a 

low-population-density state in one-dimensional models, as the one studied here. 

Further studies of transitions between low- and high-density-population states have to be 

done to deeply understand the implications of the two states presented here for these 

ecosystems. Our current results already suggest that the repopulation of an area can lead to a 

change from the low- to the high-density-population state, if it is intense enough to lead to a 

change in the regime of the dynamics in this area. Further studies could provide clues to 

optimize repopulation strategies.  

It would be also interesting to address also the problem from the particular case where the 

Allee effect arises due to a population-density-dependent mating rate, as in the studies with 

lattice models done in Refs. (Windus and Jensen 2007; Pires and Duarte Queirós 2019). Our 

results have similarities (and differences) with the results obtained in these studies with lattice 

Monte Carlo simulations in an agent-based approach. They studied the mortality resilience and 

found three equilibrium values for the mean site population in the mean-field limit: high, low 

and extinct. Their low-population state was characterized as an unstable separatrix between 

the high and the extinct state in the mean-field limit. Here we have gone a step beyond and 

shown this low population state can be locally stable in the presence of a nearby high-

population state (as was done in Ref. (Dennis et al. 2016) by external migration). These results 

stimulate further research beyond the mean-field limit to get a deeper understanding of the 

spatially extended population dynamics in the presence of environmental fluctuations. 

Additionally, the individual-based model in Ref.(Surendran, Plank, and Simpson 2020) supports 

the crucial role of dispersal to sustain a population. This model shows that local competition or 

cooperation among neighbor individuals lowers the effective Allee threshold compared to 

global competition or cooperation. Analogously our study considers local density regulation 

showing that coupling through dispersal can lead to recovery of patches close to or below the 

Allee threshold. (Note we only consider mean-field dynamics in dispersal and only for 

comparison with limited-range dispersal.) All these results stress the relevance of population 

spatial structure.  

Our results compute the extinction threshold, providing an approach for assessing extinction 

risk under an increase of the amplitude of environmental fluctuations. (An increase in climate 

variability was reported for several Earth regions  (IPCC 2012).)  The numerical analysis we 

performed here indicates toward the low-density state being an unstable state appearing only 

at high amplitudes of the environmental fluctuations, close to the transition to extinction. This 

low-density state is locally and transitorily stabilized, probably by dispersal, and it might play a 
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relevant role in (or be a good indicator of) the dynamics of populations close to the Allee 

threshold. These results seem in accordance with the three types of patches observed in a 

locally endangered butterfly(Bonsall et al. 2014), where this effect is probably enhanced and 

fixed in space due to habitat heterogeneities. The solutions identified, high- and low-density-

population states, require a future, more detailed analysis of stability and transitions between 

them and to extinction, and factors that influence these transitions, such as harvesting and 

habitat suitability (which in nature are generally heterogeneous and stochastic in space and 

time). 

This theoretical framework also allows studying the impact of fragmentation (i.e., the effects 

of finite-sized habitats), which introduces an effective limit in dispersal. Therefore, 

fragmentation decrease the potential of dispersion to recover populations and reduce the 

resilience to environmental fluctuations, with further details in Chapter 6 (Crespo-Miguel, 

Jarillo, and Cao-García 2022b). This analysis in the theoretical framework proposed here will 

provide information on the resilience of low- and high-population states in finite-size habitats, 

assessing the impact of these states and transitions for the species sustainability on a scenario 

of increasing climate variability (IPCC 2012). 

The model presented here could shed new light on source-sink dynamics by including external 

migration and variations in habitat quality (e.g., adding position dependence of the 

parameters) in this model (Pulliam 1988; Dias 1996). In source-sink dynamics, some patches 

(sources) are more suitable and allow populations to increase, while others (sinks) have low 

quality and cannot sustain populations independently. However, populations in sinks can be 

sustained by excess individuals coming from sources. The source-sink effect has been observed 

in endangered populations, which present the Allee effect (in some patches) mitigated by 

inmigration (from other patches) (Bonsall et al. 2014). Heterogeneous patches coupled 

through dispersal can give a nonmonotonic dependence of the extinction probability with the 

dispersal rate (Agranov and Bunin 2021). 

  



68 
 

5.A. Appendix: Supplementary figures 

 

Figure 5.A1: Solutions in the mean-field approximation: Mean population density 𝐼 as a 

function of environmental noise amplitude σ for the two nonzero branches of solutions at the 

mean-field approximation, with extinction rate 𝑟 = 0.1, carrying capacity 𝐾 = 1, dispersal rate 

𝑚 = 0.5 (solid line), 𝑚 = 1 (dashed line), and 𝑚 = 2 (dash-dotted line), for Allee threshold 

𝐴 = 0.25 (Panel A) and 𝐴 = 0.4 (Panel B).  Position of the maximum of mean-field distributions 

𝑁𝑚𝑎𝑥 as a function of environmental noise amplitude σ for the two nonzero branches of 

solutions at the mean-field approximation, with the same parameters as Panels A and B, and 

for Allee threshold 𝐴 = 0.25 (Panel C) and 𝐴 = 0.4 (Panel D). 
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Figure 5.A2: Simulated population density histograms compared with mean-field population 

probability distributions. Panels A, C, and E show the histograms obtained for the spatial profile 

of the population density for simulation at a long time, 𝑡 = 1000, with dispersal distance equal 

to 100 times the spatial scale of synchrony of environmental fluctuations, 𝑙𝑚 = 100𝑙𝑒, and 

periodic boundary conditions. Panels B, D, and F show the histograms obtained for the spatial 

profile of the population density for simulation at a long time, 𝑡 = 1000, and mean-field 

approximation.  For every panel we considered extinction rate 𝑟 = 0.1, Allee threshold 𝐴 = 0.1, 

carrying capacity 𝐾 = 1, dispersal rate 𝑚 = 1, spatial scale of synchrony of environmental 

fluctuations 𝑙𝑒 = 1, and a total length of the simulation box 𝐿 = 4000. Panels also show the fit 

(purple dashed line) to a linear combination of the mean-field population probability 

distributions. The results for these fits are 𝑝(𝑁) = 𝑝ℎ𝑖𝑔ℎ(𝑁) in Panels A to D, 𝑝(𝑁) =

0.20𝑝𝑙𝑜𝑤(𝑁) + 0.80𝑝ℎ𝑖𝑔ℎ(𝑁) in Panel E and 𝑝(𝑁) =  0.23𝑝𝑙𝑜𝑤(𝑁) + 0.77𝑝ℎ𝑖𝑔ℎ(𝑁) in Panel F. 

Each contribution is represented with its fitted weight. 𝑝𝑙𝑜𝑤(𝑁) (red line) and 𝑝ℎ𝑖𝑔ℎ(𝑁) (green 

line) correspond, respectively, to the low and high-density mean-field population probability 

distribution solutions. They are given by the two nonzero branches of solutions of the mean-

field equations for values of σ below the extinction threshold (𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 = 1.33, close to 𝜎 =

1.3 in Panels E and F; see also Fig. 5.2). Red dashed vertical lines indicate Allee threshold value 

𝐴 = 0.1, green dashed lines indicate carrying capacity 𝐾 = 1, and black dashed lines indicate 

𝑁 = 0. Note the similarities between the population density histograms obtained from direct 

numerical simulation and the fit to the linear combination of the population probability 

distributions obtained with the mean-field limit approximation. 
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Figure 5.A3: Simulated population densities compared with mean-field population probability 

distributions, for different amplitudes of environmental fluctuations 𝜎. Panels A, C, and E show 

the spatial profile of the population density at late time, 𝑡 = 1000 = 100𝑟−1, with dispersal 

distance 𝑙𝑚 = 100𝑙𝑒 , and spatial scale of synchrony of environmental fluctuations 𝑙𝑒  = 1, and 

periodic boundary conditions. Panels B, D, and F show the spatial profile of the population 

density for simulation at late time, 𝑡 = 1000 = 100𝑟−1, and mean field approximation. Every 

panel gives the associated histogram in the same panel in Figure 5.A2.  For every panel we 

considered extinction rate 𝑟 = 0.1, Allee threshold 𝐴 = 0.1, carrying capacity 𝐾 = 1, dispersal 

rate 𝑚 = 1, spatial scale of synchrony of environmental fluctuations 𝑙𝑒 = 1, and a total length 

of the simulation box 𝐿 = 4000 (we only represent from 𝑥 = −100 to 𝑥 = 100 to improve 

visualization of spatial structure). The curves represented show the patches in high-population 

(green), and low-population (red) states according to which distribution dominates in the 

respective panel of figure 5.A2. Here, 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 = 1.33, close to 𝜎 = 1.3 in Panels E and F; see 

also Fig. 5.2. Red dashed vertical lines indicate Allee threshold value 𝐴 = 0.1, green dashed 

lines indicate carrying capacity 𝐾 = 1, and black dashed lines indicate 𝑁 = 0. 
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Figure 5.A4: Evolution of the spatial profile of population density from 𝑡 = 0 to 𝑡 = 1000 =

100𝑟−1 (left), and zoom on the late evolution from 𝑡 = 800 = 80𝑟−1 to 𝑡 = 1000 = 100𝑟−1 

(right). Extinction rate 𝑟 = 0.1; Allee threshold 𝐴 = 0.1; carrying capacity 𝐾 = 1; dispersal rate 

𝑚 = 1; dispersal distance equal to the spatial scale of synchrony of environmental fluctuations, 

𝑙𝑚 = 𝑙𝑒 = 1; and amplitude of the environmental fluctuations 𝜎 = 0.75 (while the extinction 

threshold is 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 = 0.80).  The colors in the figure correspond to patches in high-

population (green, 𝑁 > 0.1), low-population (red, 0.01 < 𝑁 ≤ 0.1), and extinction states 

(black, 𝑁 ≤ 0.01), the criterion used in Fig. 1E. These states correspond to high-density, low-

density, and extinction distribution in Fig. 1F. 

5.B. Appendix: Time to extinction in the absence of dispersal 
The stationary population density distribution, 𝑝(𝑁), without dispersal is given by Eq. 5.5. This 

equation shows that the population distribution in the absence of dispersal is not 

normalizable, because it diverges at zero population density with 𝑁
−2(1+𝑟

𝜎2⁄ )
. Therefore, the 

population will die out at long times. However, Eq. 5.5 does not indicate when this extinction 

will occur. Divergence at zero being greater for smaller environmental fluctuations may 

suggest that extinction happens faster for lesser environmental variability, but this is not the 

case as we show below. 

Mean first passing time (Gardiner 2009; Dennis et al. 2016) can be used to study the expected 

time to extinction of the population. Hence, the expected time taken for a population starting 

at a specific initial population density 𝑁0 to reach a smaller population density 𝑁𝑓  is described 

by 

 𝜏𝑁0→𝑁𝑓 = 2∫
∫ 𝑝(𝑧)𝑑𝑧
∞

𝑁

𝑣(𝑁)𝑝(𝑁)
𝑑𝑁

𝑁0

𝑁𝑓

, (5. 𝐵1) 

 

where 𝑝(𝑁) is described by Eq.5.5, 𝑣(𝑁) = 𝜎2𝑁2, and 𝑁0 is the initial population density. 

Replacing 𝑝(𝑁) and 𝑣(𝑁) we obtain 
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2𝑟𝑧
𝐴 −
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 ∞

𝑁

exp(
1
𝜎2
(
2𝑟𝑁
𝐾 +
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Exact time to extinction is reached when the chosen extinction threshold reference 𝑁𝑓  tends 

to zero. However, the numerical computation becomes very slow in this case, and we chose 

instead a small nonzero value of 𝑁𝑓, for example, the Allee threshold 𝐴, or populations 10 or 

100 times smaller, which in many cases is equivalent to extinction (because it is of the order of 

one or a few individuals, unable to survive). Fig. 5.B shows that the time needed to reach such 

a small population (starting from the carrying capacity K) decreases with the amplitude of 

environmental fluctuations σ. Smaller final population sizes 𝑁𝑓  imply slightly longer first 

passing times. However, considering for 𝑁𝑓  the Allee threshold 𝐴, or 100 times fewer 

individuals, yields almost no difference in the extinction time. 

 

 

Figure 5.B: Approximation of the extinction time in the absence of dispersal. Decimal logarithm 

of the expected time taken for a population starting from the carrying capacity 𝐾 to reach a 

final population 𝑁𝑓  , divided by the inverse extinction rate 𝑟−1. We have considered a carrying 

capacity 𝐾 = 1, Allee threshold 𝐴 = 0.1, and an extinction rate 𝑟 = 0.1. We can see in the 

figure that choosing the Allee threshold 𝐴 as final population density yields a very similar 

extinction time compared to choosing a final population density 100 times smaller. 

5.C. Appendix: Simulation algorithm 
We begin by setting the parameters for the simulation: Allee threshold 𝐴, carrying capacity 𝐾, 

extinction rate 𝑟, migration rate 𝑚, mean dispersal distance 𝑙𝑚, the amplitude of 

environmental fluctuations 𝜎, and spatial scale of environmental synchrony 𝑙𝑒. 

Space and time are discretized. The spatial grid is an array of length 𝑛 (a natural, odd number) 

from 𝑥 = −𝐿𝑒𝑛𝑑  to 𝑥 = 𝐿𝑒𝑛𝑑 (representing a box of size 2𝐿𝑒𝑛𝑑). The characteristic spatial 

scales are the dispersal distance 𝑙𝑚, and the spatial scale of synchrony of the environmental 

fluctuations 𝑙𝑒. We chose 𝐿𝑒𝑛𝑑 (at least) 20 times the larger characteristic timescale (for 

example, 20 times 𝑙𝑚 in Figs. 5.A2 and 5.A3, where 𝑙𝑚 = 100𝑙𝑒, while for most of the other 

simulations, 70 times the maximum spatial scale). The spatial vector length 𝑛 is chosen such as 

the distance between neighbor nodes 𝛥𝐿 = 2𝐿𝑒𝑛𝑑/(𝑛 − 1) and is (at least) 20 times smaller 

than the minimum spatial scale. This spatial resolution and box size have been shown to 

provide an accurate description of the population dynamics in an infinite habitat (results are 

independent of 𝐿𝑒𝑛𝑑 and Δ𝐿).  
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The temporal grid is an array from 𝑡 = 0 to 𝑡 = 𝑡𝑒𝑛𝑑, with a distance between nodes of 𝛥𝑡, 

which is taken as 50 times the minimum temporal scale, and 𝑡𝑒𝑛𝑑 is 100 times the maximum 

temporal scale. The characteristic temporal scales are 1/𝑟 and 1/𝑚. 

The initial conditions at 𝑡 = 0 are all spatial nodes with a population density equal to the 

carrying capacity, 𝑁(𝑥𝑖 , 𝑡 = 0) = 𝐾, unless stated otherwise. 

Once the grid has been defined, and the initial conditions set, we begin the simulation. The 

differential equation that governs the model is defined by Eq. (5.3). To implement it 

numerically, we can calculate the population density at a specific point in time and space, by 

using the Euler algorithm such as 

 𝑁(𝑥𝑖, 𝑡𝑗+1) = 𝑁(𝑥𝑖, 𝑡𝑗) + ∆𝑁(𝑥𝑖, 𝑡𝑗)Δ𝑡 + 𝜎𝑁(𝑥𝑖, 𝑡𝑗)휁(𝑡𝑗)√Δ𝑡 . (5. 𝐶1) 

 

Where 휁(𝑡𝑗) is an exponentially autocorrelated Gaussian field with zero mean, variance equal 

to 1, and correlation distance equal to 𝑙𝑒, and ∆𝑁(𝑥𝑖, 𝑡𝑗), the deterministic contribution, is 

 

∆𝑁(𝑥𝑖 , 𝑡𝑗) = 𝑟 · 𝑁(𝑥𝑖 , 𝑡𝑗) (
𝑁(𝑥𝑖 , 𝑡𝑗)

𝐴
− 1)(1 −

𝑁(𝑥𝑖 , 𝑡𝑗)

𝐾
) · Δ𝑡 − 𝑚 · 𝑁(𝑥𝑖 , 𝑡𝑗) · Δ𝑡 

                         +𝑚 · Δ𝑡 · ∑ 𝑁(𝑥𝑖−𝑘, 𝑡𝑗)

𝑛−1
2

𝑘=−
𝑛−1
2

·
1

√2𝜋𝑙𝑚
2
𝑒
−(𝑘·Δ𝐿)2

2𝑙𝑚
2

· Δ𝐿 . 

(5. 𝐶2) 

 

Note that in the sum 𝑥𝑖−𝑘 can have values outside of the spatial grid. We can solve that by 

setting periodic boundary conditions, which means that the first and the last point of the grid 

behave as neighboring nodes, implying that an individual which disperses beyond the last 

patch appears at the beginning of the grid (and vice versa), i.e.: 

 𝑁(𝑥𝑖−𝑘 , 𝑡𝑗) = {

𝑁(𝑥𝑖−𝑘+𝑛, 𝑡𝑗) 𝑖𝑓 1 > 𝑖 − 𝑘

𝑁(𝑥𝑖−𝑘, 𝑡𝑗) 𝑖𝑓 1 ≤ 𝑖 − 𝑘 ≤ 𝑛

𝑁(𝑥𝑖−𝑘−𝑛, 𝑡𝑗) 𝑖𝑓 𝑖 − 𝑘 > 𝑛

 (5. 𝐶3) 

 

In case we want to simulate the dispersal dynamics in the mean-field limit (as done in the 

simulations for Figures 5.2, 5.A2 and 5.A3), we change the last term of Eq. (5.C2), the dispersal 

term, and we use instead  

 
∆𝑁(𝑥𝑖 , 𝑡𝑗) = 𝑟 · 𝑁(𝑥𝑖 , 𝑡𝑗) (

𝑁(𝑥𝑖 , 𝑡𝑗)

𝐴
− 1)(1 −

𝑁(𝑥𝑖 , 𝑡𝑗)

𝐾
) · Δ𝑡 − 𝑚 · 𝑁(𝑥𝑖 , 𝑡𝑗) · Δ𝑡 

+𝑚 · Δ𝑡 ·
∑ 𝑁(𝑥𝑘 , 𝑡𝑗)
𝑛
𝑘=1

𝑛
. 

(5. 𝐶4) 

 

(For mean-field simulations we have set 𝐿𝑒𝑛𝑑 = 2000 𝑙𝑒.) 

We have verified the results for these algorithms with different spatial and temporal 

resolutions and we found the results are accurate, stable, and consistent. 
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Chapter 6: Scaling of population resilience with dispersal length 

and habitat size 
 

Environmental fluctuations can create population-depleted areas and even extinct areas for 

the population. This effect is more severe in the presence of the Allee effect (decreasing 

growth rate at low population densities). Dispersal inside the habitat provides a rescue effect 

on population-depleted areas, enhancing the population resilience to environmental 

fluctuations. Habitat reduction decreases the effectiveness of the dispersal rescue mechanism. 

We report here how the population resilience to environmental fluctuations decreases when 

the dispersal length or the habitat size are reduced. The resilience reduction is characterized 

by a decrease of the extinction threshold for environmental fluctuations. The extinction 

threshold is shown to scale with the ratio between the dispersal length and the scale of 

environmental synchrony, i.e., it is the dispersal connection between non-environmentally-

correlated regions that provides resilience to environmental fluctuations. Habitat reduction 

also decreases the resilience to environmental fluctuations, when the habitat size is similar to 

or smaller than the characteristic dispersal distances. The power laws of these scaling 

behaviors are characterized here. Alternative scaling functions with spatial scales of population 

synchrony are found to fit the simulations worse. These results support the dispersal length as 

the critical scale for extinction induced by habitat reduction. 

6.1. Introduction 
Habitat reduction is one of the main causes of danger for population stability (Fahrig 1997). 

The extinction risk is higher for species that experience (strong) Allee Effect (decreasing growth 

rate at low population densities) (Allee and Schuett 1927; Allee 1931) because habitat 

reduction emphasizes the harmful phenomena for small population densities. Genetic 

variability is reduced due to the increasing inbreeding in small habitats (Wagenius, Lonsdorf, 

and Neuhauser 2007; Bruggeman, Wiegand, and Fernández 2010). The weakest individuals of 

strongly territorial or intra-competing species can be displaced and die because they cannot 

find a place to settle down without being attacked by their congeners (Jager, Carr, and 

Efroymson 2006). Other possible consequences of habitat reduction include species that suffer 

from lack of food and are forced to change their diet (Araújo et al. 2014). Several studies also 

prove the detrimental effect of fragmentation on populations. For example, stochastic 

simulations in a bidimensional space in which each individual moves, dies, or procreates 

randomly every time step (Fahrig 1997) show that fragmentation and even more habitat loss 

imply a greater extinction risk. Stochastic logistic growth models have also proven that 

fragmentation reduces population abundance (Herbener, Tavener, and Hobbs 2010), i.e., the 

sum of the population size in two separate patches is always lower than the population when 

the patches are together. Here, we will mainly explore the impact of habitat size reduction by 

decreasing the effective dispersal length.  

Environmental fluctuations represent stochastic external factors (as weather fluctuations) 

influencing the population dynamics. Environmental fluctuations typically have spatial 

synchrony and lead to spatial synchrony on the population fluctuations. These spatially 

synchronized population fluctuations imply simultaneous population depletions or even local 

or global extinctions (Heino et al. 1997; Engen, Lande, and Sæther 2002; Engen 2007). The 

spatial scale of population synchrony is equal (Moran 1953) or larger, due to dispersal (Lande, 

Engen, and Sæther 1999), than the spatial scale of synchrony of environmental fluctuations. 
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Interspecies interactions can further increase the spatial scale of population synchrony 

(Bjørnstad, Ims, and Lambin 1999; Blasius, Huppert, and Stone 1999; Cazelles and Boudjema 

2001; Jörgen Ripa and Ranta 2007; Jarillo et al. 2018; 2020; Fernández-Grande and Cao-Garcia 

2020). Here, we describe the risk of extinction in terms of population resilience to 

environmental fluctuations. In the previous chapter we defined the extinction threshold (for 

the environmental fluctuations) as the value of the amplitude of environmental fluctuations 

above which environmental fluctuations cause a global extinction of the population (Crespo-

Miguel, Jarillo, and Cao-García 2022a). The extinction threshold provides a measure of the 

resilience to extinction. 

In spatially extended populations (also known as metapopulations), dispersal provides a rescue 

mechanism to prevent local extinction from becoming global. Dispersal allows repopulating 

depleted regions with individuals from the non-depleted areas. Theoretical studies have 

shown that dispersal is much more effective as a mechanism to enhance resilience to 

environmental fluctuation if the area occupied by the population is much larger than the scale 

of population synchrony (Engen, Lande, and Sæther 2002). In addition, habitat fragmentation 

or habitat reduction effectively decreases dispersal as it has been observed in field studies for 

animals such as squirrels (Antolin et al. 2001) and in simulations that mimic the natural growth 

of populations of different species of plants (Collingham and Huntley 2000; Dullinger et al. 

2015). 

Here, we study the impact on resilience to environmental fluctuations due to reducing the 

dispersal length. We also investigate the harmful consequences of habitat reduction as an 

effective limiter of dispersal length. See Section 6.3. The study is performed with the spatially 

extended population model (with Allee effect, dispersal, and stochastic environmental 

fluctuations) introduced in Section 6.2.  

6.2. Methods: Spatially extended population model for finite and infinite habitats  
To study the effects of fragmentation in populations we introduce here a spatially extended 

population model with Allee effect, dispersal and environmental stochasticity. Dispersal 

provides the population with resilience to environmental stochasticity, as show for example in 

the previous chapter of this thesis for infinite habitats.  Here, we check how this resilience is 

limited when the population is confined to a finite habitat, which is implemented through a 

finite simulation box with reflecting boundary conditions. 

6.2.1. Infinite habitat 
The evolution equation has both a deterministic and a stochastic part (caused by 

environmental stochasticity) giving the dynamics of the population density 𝑁(𝑥, 𝑡) as a 

function of the spatial point 𝑥 for future times 𝑡. The local deterministic dynamics is described 

by an Allee growth equation (Allee and Rosenthal 1949), described in Chapter 1. Additionally, 

environmental stochasticity is added as a multiplicative noise, so the local dynamics of the 

population is described by  

 𝑑𝑁|𝑙𝑜𝑐𝑎𝑙 = 𝑟𝑁 (
𝑁

𝐴
− 1) (1 −

𝑁

𝐾
)  𝑑𝑡 + 𝜎𝑁𝑑𝐵 . (6.1) 

 

Here, 𝑟 is the population's characteristic extinction rate (at low populations), and 𝐾 is the 

population’s carrying capacity (the stable, viable population density). 𝐴 is the population’s 

Allee threshold, the minimum viable population density (i.e., the minimum local population 

density that gives a deterministic positive growth). The environmental stochastic term 𝜎𝑁𝑑𝐵 is 
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proportional to the population density 𝑁, as we are considering only environmental 

fluctuations (Chapter 3). The amplitude of environmental fluctuations is given by 𝜎, and 𝑑𝐵 is a 

normalized Gaussian random field (further details in Chapter 2) with zero mean 〈𝑑𝐵(𝑥, 𝑡)〉 =

0, and with spatial scale of synchrony of the fluctuations equal to 𝑙𝑒, which means that the 

environmental fluctuations are correlated within a length 𝑙𝑒 (Lande, Engen, and Saether 2003). 

This Gaussian field is uncorrelated in time and has an exponentially decreasing spatial 

correlation function 

 𝑐𝑑𝐵𝑑𝐵(𝑦) = 𝑒−√2|𝑦|/𝑙𝑒 . (6.2) 

 

This means 〈𝑑𝐵(𝑥, 𝑡)𝑑𝐵(𝑥 + 𝑦, 𝑡 + 𝜏)〉 = {
𝑐𝑑𝐵𝑑𝐵(𝑦)𝑑𝑡  𝑖𝑓 𝜏 = 0
0                     𝑖𝑓 𝜏 ≠ 0

 .  

Dispersal is also considered as it plays a crucial role in the long-term stability of a spatially 

extended population(Chapter 5). If we consider individuals dispersing at a mean characteristic 

distance equal to 𝑙𝑚 with a migration rate 𝑚, then the dispersal term, as introduced in Chapter 

1, can be described by 

 𝑑𝑁|𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 = − 𝑚 𝑁 𝑑𝑡 + 𝑚 𝑑𝑡 ∫𝑁(𝑦, 𝑡)𝑓(𝑥 − 𝑦)𝑑𝑦 , (6.3) 

 

where the function 𝑓(𝑥 − 𝑦) is a Gaussian function with mean zero and variance equal to 𝑙𝑚
2 . 

This equation describes that individuals leave from a particular point 𝑦 with probability 𝑚 𝑑𝑡, 

and they disperse with probability 𝑓(𝑥 − 𝑦) to a distance 𝑥 − 𝑦, usually of the order of 𝑙𝑚, 

coupling the population densities along space. 

Combining Eqs. (6.1) and (6.3), we get the dynamical equation of a spatially extended, non-

confined population, 

 𝑑𝑁 = 𝑟𝑁 (
𝑁

𝐴
− 1) (1 −

𝑁

𝐾
)  𝑑𝑡 −  𝑚 𝑁 𝑑𝑡 + 𝑚 𝑑𝑡 ∫𝑁(𝑦, 𝑡)𝑓(𝑥 − 𝑦)𝑑𝑦 + 𝜎𝑁𝑑𝐵 . (6.4) 

 

This non-confined population equations are used to simulate a population on an infinite 

habitat, corresponding to an infinite confinement size, 𝐿 = ∞. In practice, this corresponds to 

cases where the size of the habitat is much larger than the characteristic scales of the systems 

(in particular, larger than the population synchrony scales). Numerically, we considered large 

confinement size 𝐿, and periodic boundary conditions to reduce the border effects. (Our 

results revealed that border effects are negligible for values of 𝐿 ≫ 𝑙𝑚 as we discuss later in 

detail in the results section.) 

The deterministic local term, the first term in Eq. (6.4), has two stable population densities 

𝑁 = 0 (extinction) and 𝑁 = 𝐾 (carrying capacity). We see that the rates of return to extinction 

or to the carrying capacity for small population fluctuations are given by  𝛾0 = 𝑟 and 𝛾𝑘 =

𝑟 (
𝐾

𝐴
− 1), respectively (Chapter 5). For populations close to a stable equilibrium point, small 

environmental fluctuations lead to a spatial scale of population synchrony 𝑙 (as introduced in 

Chapter 4) greater than the spatial scale of synchrony of environmental fluctuations 𝑙𝑒, with 

𝑙 = √𝑙𝑒
2 +𝑚𝑙𝑚

2 /𝛾 and 𝛾 the rate of return to the stable equilibrium (Lande, Engen, and Sæther 
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1999). Therefore, in the present case, we can define two characteristic scales of population 

synchrony around extinction and around carrying capacity, 𝑙0 and 𝑙𝐾, respectively, defined as 

 𝑙0 = √𝑙𝑒
2 +

𝑚 · 𝑙𝑚
2

𝛾0
 , (6.5) 

 𝑙𝐾 = √𝑙𝑒
2 +

𝑚 · 𝑙𝑚
2

𝛾𝐾
 , (6.6) 

 

due to the different rates of return to extinction and to carrying capacity, γ0 and γK respectively 

(Chapter 5). 

6.2.2. Finite habitat 
Here we aim to address the effects of habitat size on the ecosystem resilience to 

environmental fluctuations. This provides very relevant information on the impact of habitat 

fragmentation in ecosystems.  

We consider a population confined between the frontier positions 𝑥 = 𝑎 and 𝑥 = 𝑏, i.e., in the 

interval 𝑥 ∈ [𝑎, 𝑏], which means a confinement length of 𝐿 = 𝑏 − 𝑎. We consider reflecting 

boundary conditions in these two frontier positions. One of the possible ways to introduce 

these reflecting boundary conditions is to generalize the convolution ∫𝑁(𝑦, 𝑡)𝑓(𝑥 − 𝑦)𝑑𝑦 in 

Eq. (6.4) to a convolution 𝐹∞
[𝑎,𝑏](𝑥) defined by the following iterative process. We start 

computing 

 𝐹0
[𝑎,𝑏](𝑥) = ∫ 𝑁(𝑦, 𝑡)𝑓(𝑥 − 𝑦)𝑑𝑦

𝑏

𝑎

 (6.7) 

 

in an interval wider than [𝑎, 𝑏] by several 𝑙𝑚, for example [𝑎 − 3𝑙𝑚, 𝑏 + 3𝑙𝑚]. Then, we 

alternatively reflect the dispersal tails outside each of the sides of the interval to the interior. 

Alternatively applying the right frontier reflection transformation  

 𝐹2𝑛+1
[𝑎,𝑏](𝑥) = {

𝐹2𝑛
[𝑎,𝑏](𝑥) + 𝐹2𝑛

[𝑎,𝑏](2𝑏 − 𝑥) 𝑖𝑓 𝑥 ≤ 𝑏

0                                𝑖𝑓 𝑥 > 𝑏
 , (6.8) 

 

and the left frontier reflection transformation 

 𝐹2𝑛+2
[𝑎,𝑏](𝑥) = {

𝐹2𝑛+1
[𝑎,𝑏](𝑥) + 𝐹2𝑛+1

[𝑎,𝑏](2𝑎 − 𝑥) 𝑖𝑓 𝑥 ≥ 𝑎

0                                𝑖𝑓 𝑥 < 𝑎
 . (6.9) 

 

The process finally converges to a convolution 𝐹∞
[𝑎,𝑏](𝑥), which gives the dispersal of the 

population confined in the interval [𝑎, 𝑏] with reflecting boundary conditions. The dynamical 
equations for the population confined in this interval is given by  

 𝑑𝑁 = 𝑟𝑁 (
𝑁

𝐴
− 1) (1 −

𝑁

𝐾
)  𝑑𝑡 −  𝑚 𝑁 𝑑𝑡 + 𝑚 𝐹∞

[𝑎,𝑏] 𝑑𝑡 + 𝜎𝑁𝑑𝐵 . (6.10) 
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Numerical simulations have been performed for finite habitat (finite 𝐿) using Eq. (6.10) with 

reflecting boundary conditions, and for infinite habitat (𝐿 = ∞) using Eq. (6.4), with periodic 

boundary conditions. Spatial and temporal resolutions are implemented in the same way for 

both cases. We consider the environmental synchrony scale, 𝑙𝑒, as the reference length, and 

set the spatial resolutions to have at least 20 lattice nodes per minimum parameter length 

(i.e., the smallest parameter among 𝑙𝑒, 𝑙𝑚, and 𝐿). The time resolution has been set as 50 

times smaller than the minimum of 𝑟−1 and 𝑚−1 (the inverses of the extinction rate 𝑟 and of 

the migration rate 𝑚 respectively). (The extinction threshold mildly depends on the logarithm 

of the maximum simulation time as discussed in Appendix 6.C. Increasing the maximum 

simulation time one order of magnitude, from 𝑡 = 100𝑟−1 to 𝑡 = 1000𝑟−1, only implies a 

change of the order of 10% in the extinction threshold.) Table 6.1 summarizes the variables 

used in this article, their definitions and units.  

Variables Description 

𝑁(𝑥, 𝑡) 
Population density at a given position x and time t. Units of space-1  

𝐴 Allee threshold of the species. Species with a population density lower than 𝐴 
has negative growth in a deterministic system. Units of space-1  

𝐾 
Carrying capacity of the species. Units of space-1  

𝑟 
Extinction rate of the species (at low population). Units of time-1 

𝛾0 
Rate of return to extinction, 𝛾0 = 𝑟.  Units of time-1 

𝛾𝐾 
Rate of return to carrying capacity, 𝛾𝐾 = 𝑟 (𝐾/𝐴 − 1).  Units of time-1 

𝑚 
Dispersal rate of the species. Units of time-1 

𝑙𝑒  Spatial scale of synchrony of environmental fluctuations. Units of length  

𝑙𝑚 
Characteristic dispersal distances of the population. Units of length 

𝐿 
Confinement size. Units of length 

𝜎 Amplitude of the environmental fluctuations. It is equal to the standard 
deviation of the environmental fluctuations. Units of time-1/2 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛  
Extinction threshold for the amplitude of environmental fluctuations 
(Minimum amplitude of the environmental fluctuations that ensures global 
extinction). Units of time-1/2 

Table 6.1: Variables used in this chapter, definitions, and units. 

6.3. Resilience to environmental fluctuations 
Environmental fluctuations can lead an otherwise stable population to global extinction. Here, 

we address how large are the environmental fluctuations that a population can endure 

without going extinct. We define the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 as the minimum 

amplitude of environmental fluctuations that ensures global extinction (See Appendix 6.D). 

The extinction threshold provides a measure of the resilience of the population to 

environmental fluctuations. 
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As described in Chapter 5, dispersal plays an important role in making the populations more 

resilient to environmental fluctuations, recovering depleted or extinct populations in one 

location through the dispersal of the individuals from nearby non-depleted locations  (Crespo-

Miguel, Jarillo, and Cao-García 2022a; Hanski and Gyllenberg 1993; Gotelli 1991).  Habitat 

reduction (or habitat fragmentation) confines the population to a smaller region, where 

therefore the population fluctuations are more correlated. This higher population correlation 

reduces the effectiveness of this dispersal recovery mechanism. As a result, habitat reduction 

decreases the resilience of the population to environmental fluctuations. See Figs. 6.1 and 6.2. 

Reductions in the dispersal length 𝑙𝑚 also lead to reductions in the resilience of the population 

to environmental fluctuations, as we see in Fig. 6.2, and we study below in more detail in 

Section 6.3.1, where we show the scaling of the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 with the 

dispersal length 𝑙𝑚. In Section 6.3.2, we characterize the scaling of the extinction threshold 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 with habitat size 𝐿. Finally, in Section 6.3.3, we show how we can define an 

effective dispersal length 𝑙𝑚,𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝐿) to describe how the dispersal length 𝑙𝑚 is effectively 

reduced as the habitat size 𝐿 decreases. This effective reduction in 𝑙𝑚 leads to earlier 

saturation of the extinction threshold as a function of 𝑙𝑚 for smaller confinement sizes 𝐿, as 

Fig. 6.2. shows 

 

 

Figure 6.1: Habitat reduction can lead to extinction, as it reduces the resilience to 

environmental fluctuations. Population density 𝑁(𝑥) at long times (𝑡 = 100 𝑟−1) for a huge 

confinement size, 𝐿 = 142 (blue solid line) and for a medium confinement size, 𝐿 = 20 (red 

solid line), and for two amplitudes of the environmental noise 𝜎 = 0.65 (upper panel) and 𝜎 =

0.70 (bottom panel). The figure shows an example of how the reduction of confinement size 

reduces the resilience to environmental fluctuations, leading to extinction of the more confined 
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population when environmental noise is increased (red solid line of the bottom panel). 

Horizontal dotted lines represent extinction 𝑁 = 0 (black), Allee threshold 𝑁 = 𝐴 = 0.1 (red) 

and carrying capacity 𝑁 = 𝐾 = 1 (green) population density values. These parameter values 

are common to all the cases represented in this figure, and also the extinction rate 𝑟 = 0.1, the 

dispersal rate 𝑚 = 1, and the dispersal length 𝑙𝑚 = 𝑙𝑒 (with the spatial scale of environmental 

synchrony 𝑙𝑒 chosen as unit of length 𝑙𝑒 = 1). Huge confinement size 𝐿 = 142 (blue solid line) 

was simulated with Eq. (6.4) and periodic boundary conditions, while medium confinement size 

𝐿 = 20 (red solid line) was simulated with Eq. (6.10) and reflecting boundary conditions.  

 

Figure 6.2: Extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 as a function of the ratio 𝑙𝑚/𝑙𝑒 for different 

confinement sizes 𝐿.  X-shaped points indicate simulations with a huge confinement size 𝐿 =

100√𝑙𝑒
2 + 𝑙𝑚

2  and periodic boundary conditions, whereas diamond-shaped points indicate 

simulations with a finite confinement size and reflecting boundary conditions. Vertical bars 

indicate uncertainty in the simulation result (see Appendix 6.D). All simulations are for Allee 

threshold 𝐴 = 0.1, carrying capacity 𝐾 = 1, extinction rate 𝑟 = 0.1, migration rate 𝑚 = 1, and 

spatial scale of synchrony of environmental fluctuations 𝑙𝑒 = 1. The blue solid line represents 

the result in the limit of infinite habitat size and characteristic dispersal length, 𝐿 = ∞,
𝑙𝑚

𝑙𝑒
= ∞ 

and it has been obtained using the mean field approximation as described in the previous 

chapter. 

6.3.1. Greater dispersal lengths increase the resilience to environmental fluctuations  
Increasing the dispersal length increases the dispersal rescue effect in the population. This 

enhanced rescue effect increases the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 (see Fig. 6.2), until it 

saturates to the mean field value (𝑙𝑚 → ∞). Fig. 6.2 also shows that the extinction threshold 

depends additionally on the habitat size 𝐿, i.e., 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑙𝑚, 𝐿). However, we will 

concentrate here on the dependence on the dispersal length 𝑙𝑚 for infinite habitats (𝐿 = ∞). 

Therefore, we will study 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞(𝑙𝑚) = 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑙𝑚, 𝐿 → ∞), and denote by 𝜎∞
∞ =

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑙𝑚 → ∞, 𝐿 → ∞) the mean field value for an infinite habitat. The mean field value 

for an infinite habitat can be obtained, and it is calculated here, by the mean-field 

approximation explained in Chapter 5. The ration of extinction threshold for infinite habitat 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ and its respective mean-field value 𝜎∞
∞ for each dispersal rate 𝑚 is plotted as a 

function of the ratio of the dispersal length and the environmental correlation length, 𝑙𝑚/𝑙𝑒, in 

Fig. 6.3. This two ratios show an approximate scaling of the form 
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𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (𝑚,

𝑙𝑚
𝑙𝑒
)

𝜎∞
∞(𝑚)

= 𝑀 (
𝑙𝑚
𝑙𝑒
) =  (

1

1 + (
𝑏𝑀 𝑙𝑒
𝑙𝑚

)
𝑛𝑀
)

1/𝑑𝑀

 . (6.11) 

 

A maximum likelihood fit (see Appendix 6.A) of this scaling form to the simulation results leads 

the values of the fitting parameters: 𝑑𝑀, 𝑛𝑀, and 𝑏𝑀 indicated in Table 6.2. Plots of 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞/𝜎∞
∞ as a function of the ratios 𝑙𝑚/𝑙0 or 𝑙𝑚/𝑙𝐾 do not present this approximate 

scaling behavior. See Fig. 6.B in Appendix 6.B.  

 

nM dM bM SE − lnℒ AICC 

1.9±1.4 8.0±6.8 10.1±3.2 0.105 146 298 

Table 6.2: Parameters giving the maximum likelihood fit for the 42 points in Fig. 6.3 to Eq. 

(6.11). Uncertainties have been calculated with a confidence Interval of 68%, i.e. at one-sigma 

level. Squared error SE, logarithm of the likelihood (-𝑙𝑛 ℒ) and Akaike Information Criterion AICC 

are also included (See Appendix 6.A for their definitions). 

 

 

Figure 6.3: Extinction thresholds for infinite habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ as a function of the dispersal 

length 𝑙𝑚, for various values of the migration rate 𝑚. The figure shows that the extinction 

threshold for infinite habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞  (divided by the respective mean-field value 𝜎∞
∞ for 

each migration rate 𝑚) is fitted by the scaling function in Eq. (6.11) with the parameter values 

in Table 6.2 (solid black line). The dispersal length is expressed in units of the spatial scale of 

environmental fluctuations 𝑙𝑒 . Vertical bars indicate uncertainty in the simulation results (see 

Appendix 6.D). All simulations are for Allee threshold 𝐴 = 0.1, carrying capacity 𝐾 = 1, 

extinction rate 𝑟 = 0.1, and spatial scale of synchrony of environmental fluctuations 𝑙𝑒 = 1. 

The data in Fig. 6.3 have a slight dependence in the migration rate m, showing that points with 

smaller migration rates are higher than those with larger dispersal rate for the same ratio 

𝑙𝑚/𝑙𝑒. Thus, the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 divided by its respective mean-field value 𝜎∞
∞, 

has a better scaling as a function of (
𝑚

𝑟
)
𝑠𝑀
(
𝑙𝑚

𝑙𝑒
), where 𝑠𝑀 is an additional fitting parameter, 
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𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (𝑚,

𝑙𝑚
𝑙𝑒
)

𝜎∞
∞(𝑚)

= 𝑀 (
𝑚

𝑟
,
𝑙𝑚
𝑙𝑒
) =  (

1

1 + (
𝑏𝑀 𝑙𝑒
𝑙𝑚

(
𝑟
𝑚
)
𝑠𝑀
)
𝑛𝑀
)

1/𝑑𝑀

 . (6.12) 

 

The fit to the numerical results of this scaling law, Eq. (6.12), is better than for the previous 

one, Eq. (6.11), even taking into account the AIC penalty for the additional parameter (𝑠𝑀). See 

Fig. 6.4 and Table 6.3. The significant difference in AICC yielded by fitting Eqs. (6.11) and (6.12), 

∆𝐴𝐼𝐶𝐶 = 481 ≫ 10, implies that the model with higher AICC, given by Eq. (6.11), can be 

discarded entirely (Appendix 6.A). The best-fitting model (the model with the lowest AICC), Eq. 

(6.12), indicates that the mean-field value is reached for long dispersal distances 𝑙𝑚, but more 

slowly for higher dispersal rates 𝑚. 

nM dM bM sM SE − lnℒ AICC 

1.26±0.21 5.0±1.1 1.57±0.36 -0.667±0.049 0.0120 -96.0 -183 

Table 6.3: Parameters giving the maximum likelihood fit for the 42 points in Fig. 6.4 to Eq. 

(6.12). Uncertainties have been calculated with a confidence Interval of 68%, i.e. at one-sigma 

level. Squared error SE, logarithm of the likelihood (-𝑙𝑛 ℒ) and Akaike Information Criterion AICC 

are also included (See Appendix 6.A for their definitions). 

 

 

Figure 6.4: Extinction thresholds for infinite habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ as a function of the ratio 

(
𝑚

𝑟
)
𝑠𝑀
(
𝑙𝑚

𝑙𝑒
), with 𝑠𝑀 = −0.667, as shown in table. The figure shows that the extinction 

threshold for infinite habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞  (divided by the respective mean-field value 𝜎∞
∞ for 

each migration rate 𝑚) is fitted by an approximate scaling described by Eq. (6.12) with the 

parameter values in Table 6.3 (solid black line). Vertical bars indicate uncertainty in the 

simulation results (see Appendix 6.D). All simulations are for Allee threshold 𝐴 = 0.1, carrying 

capacity 𝐾 = 1, extinction rate 𝑟 = 0.1, and spatial scale of synchrony of environmental 

fluctuations 𝑙𝑒 = 1. 

6.3.2. Habitat fragmentation reduces resilience to environmental fluctuations 
As we explained above, the resilience to environmental fluctuations can be characterized by 

the minimum amplitude of environmental fluctuations that leads to global extinction, the 

extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚, 𝐿). The extinction threshold decreases as the habitat 

size decreases (for example due to habitat fragmentation). We characterized in the previous 
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section the dependence of the extinction threshold with the dispersal length 𝑙𝑚 for infinite 

habitats. Using these previous results and an analogous approach we will find the scaling 

behavior with the habitat size 𝐿. We consider the ratio of the extinction threshold for finite 

and infinite habitat size (see Fig. 6.5) and compare fits of the type 

 
𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚, 𝐿)

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (𝑚,
𝑙𝑚
𝑙𝑒
)
= 𝐹 (

𝐿

𝑙𝑖
) =  (

1

1 + (
𝑏𝐹 𝑙𝑖
𝐿
)
𝑛𝐹
)

1/𝑑𝐹

 , (6.13) 

 

where 𝑙𝑖 can represent the spatial scale of environmental synchrony 𝑙𝑒, the dispersal length 

𝑙𝑚, the spatial scale of population synchrony close to extinction 𝑙0 = √𝑙𝑒
2 +𝑚𝑙𝑚

2 /𝛾0, or the 

spatial scale of population synchrony close to the carrying capacity 𝑙𝐾 = √𝑙𝑒
2 +𝑚𝑙𝑚

2 /𝛾𝐾 [as 

introduced in Eqs. (6.5) and (6.6) above]. The maximum likelihood fitting of Eq. (6.13) to the 

simulation results (Fig 6.5) gives the parameter values indicated in Table 6.4, where the AICC 

results indicate that the best fitting model is that with 𝑙𝑖 = 𝑙𝑚, closely followed by 𝑙𝑖 = 𝑙0. The 

other models can be discarded as its difference in AICC is greater than 10 (Burnham and 

Anderson 2002). In particular, the model with 𝑙𝑖 = 𝑙𝑒 is completely discarded due to the large 

value of AICc, the large uncertainty and instability in the parameter value determination, 

which is consistent with the dispersal of the values observed in Fig. 6.5 for this case. 

 nF dF bF SE − ln ℒ AICC 

L/lm 1.93±0.83 8.5±4.0 28.7±6.4 0.158 -69.4 -132 

L/l0 1.84±0.73 8.0±3.5 6.4±1.5 0.193 -68.9 -131 

L/lK 2.3±1.6 10.1±7.6 16.5±4.6 0.382 -21.6 -36.8 

L/le 3.0±4.0 14±19 58±26 1.033 209 424 

 

Table 6.4: Parameters giving the maximum likelihood fit for the 60 points in Fig. 6.5 to Eq. 

(6.13). Uncertainties have been calculated with a confidence Interval of 68%, i.e. at one-sigma 

level. Squared error SE, logarithm of the likelihood (-𝑙𝑛 ℒ) and Akaike Information Criterion AICC 

are also included (See Appendix 6.A for their definitions). 
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Figure 6.5: Extinction thresholds for fragmented habitats 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 as functions of the size of 

the habitat 𝐿 divided by the dispersal length of the population 𝑙𝑚 (Panel A), the spatial scale of 

population synchrony around extinction 𝑙0  (Panel B), the spatial scale of population synchrony 

around carrying capacity 𝑙𝐾  (Panel C), and the spatial scale of synchrony of environmental 

fluctuations 𝑙𝑒 (Panel D). The figure shows that the extinction threshold for a fragmented 

habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛  divided by the respective infinite habitat value 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (for the same 

dispersal rate 𝑚 and dispersal length 𝑙𝑚) is fitted by the scaling function in Eq. (6.13) with the 

parameter values in Table 6.4 (solid black line). Vertical bars indicate uncertainty in the 

numerical results (see Appendix 6.D). All simulations are for Allee threshold 𝐴 =0.1, carrying 

capacity 𝐾 =1, extinction rate 𝑟 =0.1, and spatial scale of synchrony of environmental 

fluctuations 𝑙𝑒 =1. 

Additionally, the improved fit found in the previous subsection for the 𝑙𝑚/𝑙𝑒 scaling 

introducing a dependence on the ratio between the dispersal rate 𝑚 and the extinction rate 𝑟 

motivates us to perform a similar check for the scaling of the habitat size 𝐿. We found that the 

data in Fig. 6.5 scale better as a function of (
𝑚

𝑟
)
𝑠𝐹
(
𝐿

𝑙𝑖
), 
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𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚, 𝐿)

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (𝑚,
𝑙𝑚
𝑙𝑒
)
= 𝐹 (

𝑚

𝑟
,
𝐿

𝑙𝑖
) =  (

1

1 + (
𝑏𝐹 𝑙𝑖
𝐿

(
𝑟
𝑚
)
𝑠𝐹
)
𝑛𝐹
)

1/𝑑𝐹

 , (6.14) 

 

which fits the numerical results with the parameters of Table 6.5 (Fig. 6.6). We see, comparing 

Table 6.4 and 6.5, that the AICC is much lower for a maximum likelihood fit to Eq. (6.14) than to 

Eq.(6.13) (∆𝐴𝐼𝐶𝐶 > 10), therefore the model with more empirical support is that which 

follows Eq. (6.14) with 𝑙𝑖 = 𝑙𝑚. The scaling given by Eq. (6.14) indicates that the infinite habitat 

value is reached for long ratios 𝐿/𝑙𝑖, and that limit is reached slower for higher dispersal rates 

𝑚.   

 nF dF bF sF SE − lnℒ AICC 

L/lm 1.91±0.70 8.5±3.4 2.5±1.4 -0.93±0.21 0.132 -89.6 -170 

L/l0 1.87±0.72 8.2±3.5 1.6 ±1.0 -0.53±0.24 0.188 -75.5 -142 

L/lK 2.2±1.4 9.7±6.6 3.1±2.6 -0.62±0.29 0.367 -31.1 -53.5 

L/le 2.5±2.5 11±12 2.7±3.7 -1.09±0.48 0.963 179 367 

Table 6.5: Parameters giving the maximum likelihood fit (uncertainties have been calculated 

with a confidence Interval of 68%, i.e. at one-sigma level) for the 60 points in Fig. 6.6 to a form 

of Eq. (6.13). Squared error, logarithm of the likelihood and Akaike Information Criterion are 

also included. 
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Figure 6.6: Extinction thresholds for fragmented habitats 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 as functions of the size of 

the habitat 𝐿 multiplied by the ratio (
𝑚

𝑟
)
𝑠𝐹

 (value of 𝑠𝐹 is given in table 6.5) and divided by the 

dispersal length of the population 𝑙𝑚 (Panel A), the spatial scale of population synchrony 

around extinction 𝑙0  (Panel B), the spatial scale of population synchrony around carrying 

capacity 𝑙𝐾  (Panel C), and the spatial scale of synchrony of environmental fluctuations 𝑙𝑒 

(Panel D). The figure shows that the extinction threshold for a fragmented habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛  

(divided by the respective infinite habitat value 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ for the same migration rate 𝑚 and 

dispersal length 𝑙𝑚) is fitted by an approximate scaling described by Eq. (6.14) with the 

parameter values in Table 6.5 (solid black line). Vertical bars indicate uncertainty in the 

simulation result (see Appendix 6.D). All simulations are for Allee threshold 𝐴 =0.1, carrying 

capacity 𝐾 =1, extinction rate 𝑟 =0.1, and spatial scale of synchrony of environmental 

fluctuations 𝑙𝑒 =1.  

Putting together the results of this subsection and of the previous one provides the complete 

scaling behavior of the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 
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𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚, 𝐿) = 𝜎∞
∞(𝑚) 𝑀 (

𝑚

𝑟
,
𝑙𝑚
𝑙𝑒
)𝐹 (

𝑚

𝑟
,
𝐿

𝑙𝑚
)

= 𝜎∞
∞(𝑚)  (

1

1 + (
𝑏𝑀 𝑙𝑒
𝑙𝑚

(
𝑟
𝑚)

𝑠𝑀
 )
𝑛𝑀
)

1/𝑑𝑀

 (
1

1 + (
𝑏𝐹 𝑙𝑚
𝐿 (

𝑟
𝑚)

𝑠𝐹
)
𝑛𝐹
)

1/𝑑𝐹

 , 

(6.15) 

 

with the values of the parameters given in the first row of Tables 6.3 and 6.5. 

6.3.3. Habitat fragmentation reduces the effective dispersal length 
From the results in previous subsections, we got that habitat reduction effectively decreases 

the dispersal length, leading to a detriment in a population’s resilience to environmental 

fluctuations. Thus, we can define an effective dispersal length 𝑙𝑚,𝑒𝑓𝑓(𝑚, 𝑙𝑚, 𝐿), which is the 

dispersal length of a non-fragmented population in an infinite habitat (𝐿 = ∞)  that has the 

same extinction threshold as a population with dispersal length 𝑙𝑚 confined in a fragmented 

habitat of size 𝐿, if the other parameters affecting both populations are equal. This definition is 

equivalent to the following equation [expanded using Eq. (6.15)]: 

 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚,𝑒𝑓𝑓, 𝐿 → ∞) = 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝑚, 𝑙𝑚, 𝐿) 

⇒ 𝑀(
𝑚

𝑟
,
𝑙𝑚,𝑒𝑓𝑓

𝑙𝑒
)𝐹 (

𝐿

𝑙𝑚
→ ∞) = 𝑀(

𝑚

𝑟
,
𝑙𝑚
𝑙𝑒
)𝐹 (

𝑚

𝑟
,
𝐿

𝑙𝑚
) 

⇒ 𝑀(
𝑚

𝑟
,
𝑙𝑚,𝑒𝑓𝑓

𝑙𝑒
) = 𝑀 (

𝑚

𝑟
,
𝑙𝑚
𝑙𝑒
)𝐹 (

𝑚

𝑟
,
𝐿

𝑙𝑚
)  . 

(6.16) 

 

Thus, we got the following expression for the effective dispersal length 𝑙𝑚,𝑒𝑓𝑓(𝑚, 𝑙𝑚, 𝐿), 

 

𝑙𝑚,𝑒𝑓𝑓(𝑚, 𝑙𝑚, 𝐿) = 

𝑏𝑀𝑙𝑒 (
𝑟

𝑚
)
𝑠𝑀

(

 
 
(1 + (

𝑏𝑀 𝑙𝑒
𝑙𝑚

(
𝑟

𝑚
)
𝑠𝑀
)
𝑛𝑀

) · (1 + (
𝑏𝐹 𝑙𝑚
𝐿

(
𝑟

𝑚
)
𝑠𝐹
)

𝑛𝐹

)

𝑑𝑀
𝑑𝐹
− 1

)

 
 

−
1
𝑛𝑀

 , 
(6.17) 

 

with the parameters given in the first row of Tables 6.3 and 6.5. The effective dispersal length, 

as shown in Fig. 6.7, is a monotonously increasing function with the habitat size 𝐿, and it tends 

to the real dispersal length 𝑙𝑚 when the habitat size becomes sufficiently large. Thus, habitat 

size reduction implies a decrease in the effective dispersal length. 
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Figure 6.7: Effective dispersal length 𝑙𝑚,𝑒𝑓𝑓 as a function of the size of the habitat 𝐿 for 

different dispersal distances 𝑙𝑚 = 0.5 𝑙𝑒 (blue), 𝑙𝑚 = 𝑙𝑒  (red) and 𝑙𝑚 = 2 𝑙𝑒  (orange). All curves 

are for Allee threshold 𝐴 =0.1, carrying capacity 𝐾 =1, extinction rate 𝑟 =0.1, migration rate 𝑚 

=1,  and spatial scale of synchrony of environmental fluctuations 𝑙𝑒 =1.  

6.4. Discussion 
We have shown that both habitat reduction and dispersal reduction decrease a population's 

resilience against environmental fluctuations. We have measured the extinction threshold 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 , defined as the minimum amplitude of environmental fluctuations that ensures 

population's extinction at long times (Appendix 6.D). On the one hand, we have obtained that 

populations with dispersal distances larger than the scale of synchrony of environmental 

fluctuations are more resilient to fluctuations, and reach the largest extinction threshold for 

every confinement size. On the other hand, habitat reduction is found to decrease the 

resilience to environmental fluctuations, leading to a huge drop in the extinction threshold 

when the habitat size becomes of the order of the typical dispersal distances of the 

population. 

These results imply that habitat reduction (or habitat fragmentation) causes an effective 

reduction in dispersal length, thus minimizing dispersal-induced resilience caused by the 

rescue effect. As studied in Chapter 5, dispersal is proved as an essential mechanism against 

extinction in populations with Allee Effect (Palmqvist and Lundberg 1998; Dennis et al. 2016; 

Crespo-Miguel, Jarillo, and Cao-García 2022a). However, dispersal is not so effective when a 

smaller habitat size truncates its range. These results further clarify that habitat reduction (or 

habitat fragmentation) is a problem for endangered populations. Its impact can be much more 

significant for species that depend on dispersal when the habitat size is reduced close to its 

typical dispersal length. We can apply this knowledge by making a special effort to develop 

conservation strategies that include active prevention of habitat destruction, so environmental 

fluctuations are less likely to destroy endangered species populations. Deeper knowledge of 

populations’ dynamics helps to optimize species conservation and sustainable exploitation 

policies.  

Synchrony plays an essential role in the regional extinction risk (Heino et al. 1997; Engen 2007; 

Engen, Lande, and Sæther 2002). However, we found that the decrease of the extinction 

threshold with habitat size scales better with the ratio of the habitat size to the dispersal 

length than with the ratio of the habitat size to the spatial scale of synchrony. Thus, we think 

that the transition to regional extinction needs further study to achieve a complete 

understanding of the interplays among the spatial scale of population synchrony, the dispersal 

length, the habitat size, and the transitions to extinction.     
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Here, we have studied the one-dimensional case. The extension of this study to two 

dimensions would be interesting because many natural ecosystems are two-dimensional. It is 

known that the shapes of the fragmented patches can affect the survival of many species 

(Diamond 1975), favoring connectivity to support recovery by internal migration. Patch shapes 

can also determine colonized area expansion or contraction (Lewis and Kareiva 1993; Keitt, 

Lewis, and Holt 2001). Additionally, habitat reduction and fragmentation per se have slightly 

different effects on population resilience (Fahrig 2003; 1997). Studying the one- and two-

dimensional patch structure and its connectivity can also provide insight into the transitions to 

extinction.  

These results have been obtained for one-species systems, for which dispersal is beneficial, 

increasing the rescue effect. However, dispersal does not always benefit the dynamics for 

multiple-species systems since it can homogenize the habitats, removing some local species 

(Mouquet and Loreau 2003). Furthermore, the diversity is expected to peak at intermediate 

diffusion (Gravel, Massol, and Leibold 2016). Additionally, recent work has shown that 

coupling between heterogeneous patches can lead to a non-monotonic behavior of the 

extinction probability with the dispersal (Agranov and Bunin 2021). This work also stresses that 

dispersal from other patches might act as a non-gaussian noise in the receiving patch, 

extending the noise-induced phenomena found in ecosystems (Spagnolo, Valenti, and 

Fiasconaro 2004).  
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6.A. Appendix: Maximum likelihood fit and Akaike Information Criterion (AICC) 
The fits used in the main text have been done by maximizing likelihood (Burnham and 

Anderson 2002). Likelihood is defined by Equation (6.A1) for a set of 𝑛 independent measures 

with equal standard deviation 𝑆, 

 − ln ℒ =
𝑛

2
ln(2𝜋) +

𝑛

2
ln 𝑆2 +

1

2𝑆2
𝑆𝐸  , (6. 𝐴1) 

 

where 𝑆𝐸 = ∑ (𝑓(𝑥𝑖) − 𝑦𝑖)
2𝑛

𝑖  is the total squared error, 𝑓(𝑥𝑖) is the value of the fit function 

for a parameter 𝑥𝑖, and 𝑦𝑖  its measured value. 

This definition can be generalized for a set of measures with different uncertainties 𝑆𝑖 (Hogg, 

Bovy, and Lang 2010), so that the logarithm of the likelihood in this case becomes 

 − ln ℒ =
𝑛

2
ln(2𝜋) +

1

2
∑ln𝑆𝑖

2

𝑛

𝑖

+
1

2
∑

(𝑓(𝑥𝑖) − 𝑦𝑖)
2

𝑆𝑖
2

𝑛

𝑖

   . (6. 𝐴2) 

 

Thus, maximizing the likelihood is equal to minimizing the right-hand side of Eq. (A2). Given 

that 
𝑛

2
ln(2𝜋) +

1

2
∑ ln 𝑆𝑖

2𝑛
𝑖  is a constant that only depends on the data, not on the model (as a 

consequence, it is usually omitted when comparing models that depend on the same data, as 

it cancels out). Then, maximizing the likelihood is equivalent to minimizing ∑
(𝑓(𝑥𝑖)−𝑦𝑖)

2

𝑆𝑖
2

𝑛
𝑖 . 

Comparing maximum likelihood of two models is useful if both models have the same number 

of free parameters. In the other case, we must compare them by the Akaike Information 

Criterion (Akaike 1974) defined by 

 𝐴𝐼𝐶 = 2𝑘 − 2 ln ℒ  , (6. 𝐴3) 

 

where 𝑘 is the number of free parameters of the model. The definition of Eq. (A3) supposes a 

infinitely large number of points to fit by the model, so there is a correction for small size of 

the sample defined by 

 𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘2 + 2𝑘

𝑛 − 𝑘 − 1
= 2𝑘 − 2 lnℒ +

2𝑘2 + 2𝑘

𝑛 − 𝑘 − 1
   . (6. 𝐴4) 

 

Thus, given two models fitting the same set of points, the model with lower 𝐴𝐼𝐶𝐶 is the best. 

Nonetheless, models with higher 𝐴𝐼𝐶𝐶  should not always be discarded. If we define the 

difference between the 𝐴𝐼𝐶𝐶 of the two models, this is  

 ∆𝑖= 𝐴𝐼𝐶𝐶,𝑖 − 𝐴𝐼𝐶𝐶,𝑚𝑖𝑛   , (6. 𝐴5) 

 

then, a difference ∆𝑖 between 0 and 2 indicates that the i-th model has a substantial empirical 

support (Burnham and Anderson 2002), a difference between 4 and 7 indicates a considerably 

lesser support of the model, and a difference greater that 10 means that the i-th model has 

essentially no empirical support and should be completely discarded. 
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6.B. Appendix: Figures of extinction threshold depending on the dispersal 

distance shown as functions of other parameters 

 

Figure 6.B: Extinction thresholds for infinite habitat 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,∞ (divided by the respective 

mean-field value 𝜎∞
∞ for each migration rate 𝑚) as a function of the dispersal length 𝑙𝑚 divided 

by the spatial scale of population synchrony around extinction 𝑙0  (Panel A), and the spatial 

scale of population synchrony around carrying capacity 𝑙𝐾  (Panel B), for different values of the 

migration rate 𝑚. Vertical bars indicate uncertainty in the simulation results. All simulations 

are for Allee threshold 𝐴 = 0.1, carrying capacity 𝐾 = 1, extinction rate 𝑟 = 0.1, and spatial 

scale of synchrony of environmental fluctuations 𝑙𝑒 = 1. This figure does not present an 

approximate scaling behavior, in contrast with the scaling found for the ratio of the dispersal 

length 𝑙𝑚 over the spatial scale of synchrony of environmental fluctuations 𝑙𝑒 (see Fig. 6.3). 

6.C. Appendix: Extinction threshold and extinction time 
In all the paper we have estimated the extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 for a maximum 

simulation time, or final time for the simulation, of 𝑡 = 100𝑟−1. At this time we considered the 

population is extinct if all the positions are below the Allee Threshold. To determine the 

extinction threshold we plotted the fraction of the positions with a population density above 

the Allee Threshold 𝑓𝐴 as function of the amplitude of environmental fluctuations 𝜎. The 

extinction threshold 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 and its uncertainty was estimated as the center and the width 

of the range of values where 𝑓𝐴 makes the transition between extinct and non-extinct 

population. (See Panels A and B of Fig. 6.C and Appendix 6.D for further details)  

Here, we show that extinction threshold mildly decreases as we increase the maximum 

simulation time, because the extinction time increases as the amplitude of environmental 

fluctuations decreases. Panel C and D show that the extinction threshold has a relative 

decrease of the order of 10% when the maximum simulation time is increased by a factor 10.  

In the computations of this article, we have considered 10 different realizations for each value 

of the amplitude of environmental fluctuations 𝜎. (See, for example, Fig. 6.C.) This number of 

realizations is enough for the required precision. For 5 and 10 realizations, the difference in 

the results for the mean of log10 𝑡𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 for 5 and 10 realizations is small enough (4.8% for 

small habitat size and 2.9% for large habitat), and even smaller for 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 (1% difference). 

In both cases, the differences are smaller than the uncertainties (See Appendix 6.D). Thus, a 

greater number of realizations would mean only a small difference in the final results. 
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Figure 6.C: Extinction threshold for the amplitude of environmental fluctuations 𝜎 and 

extinction times 𝑡𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛. Upper panels show the fraction of the positions with a population 

density above the Allee Threshold 𝑓𝐴 for a small habitat size L=𝑙𝑒 (Panel A) and a large habitat 

size (𝐿 = 187𝑙𝑒) (Panel B) as a function of the amplitude of the environmental fluctuations 𝜎. 

Bottom panels show the extinction time (in units of the inverse of the extinction rate 𝑟−1) for a 

small habitat size (Panel C) and a large habitat size (Panel D) as a function of the amplitude of 

the environmental fluctuations 𝜎. (Triangles indicate the mean and error bars the 1-standard 

deviation interval in log10 𝑡𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛.) (10 simulations for each value of 𝜎.) For all panels Allee 

Threshold A=0.1, carrying capacity K=1, extinction rate 𝑟 = 0.1, dispersal rate 𝑚 = 1, and 

dispersal length 𝑙𝑚 = 0.5 𝑙𝑒 (with the spatial scale of environmental synchrony 𝑙𝑒 chosen as the 

unit of length). 

6.D. Appendix: Calculation of extinction thresholds 
In order to obtain the extinction threshold and its uncertainty for given fixed values of the rest 

of parameters (i.e., for each point in Figs. 6.2-6.6), we have implemented the following 

procedure. We chose a set of amplitudes of the environmental fluctuations {𝜎1, 𝜎2, … , 𝜎𝑠}, 

with 𝜎𝑖+1 = 𝜎𝑖 + Δ𝜎, using Δ𝜎 = 0.01, and covering a sufficiently large range (such as 

realizations with the smaller 𝜎 never end in global extinction and those with the larger 𝜎 

always do). Then, we perform 𝑅 realizations for each 𝜎𝑖 , and we store the fraction of 

realizations 𝑘𝑖 which finish in global extinction at the end of the simulation (i.e., those 

realizations with a fraction of the positions with a population density above the Allee 

Threshold 𝑓𝐴 = 0  at 𝑡 = 100𝑟−1). Next, we define the discrete distribution 
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 𝑝(𝜎𝑖) =
min(𝑘𝑖, 1 − 𝑘𝑖) 

∑ min(𝑘𝑗, 1 − 𝑘𝑗)
𝑠
1

  , (6. 𝐷1) 

   

which satisfies ∑ 𝑝(𝜎𝑖)
𝑠
1 = 1. This distribution can be used to calculate the mean extinction 

threshold  

 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 =∑𝑝(𝜎𝑖) · 𝜎𝑖

𝑠

1

  , (6. 𝐷2) 

   

and its standard deviation 

 𝑠𝑑𝑏𝑖𝑎𝑠𝑒𝑑 = √∑𝑝(𝜎𝑖) · (𝜎𝑖 − 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛)
2

𝑠

1

  . (6. 𝐷3) 

   

The distribution is discrete and obtained by a finite sample, so the standard deviation is biased. 

Only ℎ ⋅ 𝑅 simulations contribute to sampling the distribution 𝑝(𝜎), where ℎ is the number of 

𝜎𝑖 with non-zero 𝑝(𝜎𝑖) (i.e., with 𝑘𝑖 different to 0 or 1). The unbiased standard deviation is 

then given by 

 𝑠𝑑𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑
2 =

ℎ · 𝑅

ℎ · 𝑅 − 1
𝑠𝑑𝑏𝑖𝑎𝑠𝑒𝑑

2 . (6. 𝐷4) 

   

Furthermore, the discretization of the 𝜎 interval in intervals of Δ𝜎 = 0.01 can contribute to an 

underestimation of the standard deviation. To correct this understimation, we computed the 

uncertainty 𝑆 of the extinction threshold as 

 𝑆 = √𝑠𝑑𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑
2 + Δ𝜎2. (6. 𝐷5) 

   

We verified that the interval value of Δ𝜎 = 0.01 did not contribute significantly to the 

uncertainty of the extinction threshold. Thus, the uncertainty 𝑆 accurately represented the 

uncertainty in 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 due to the stochastic nature of the dynamics.   

We first considered five realizations, 𝑅 = 5, for each amplitude 𝜎𝑖, then we compared the 

results with those obtained with ten realizations, 𝑅 = 10. The average difference between 

𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,𝑅=5 and 𝜎𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛,𝑅=10 was less than 1% and always smaller than the uncertainty 

𝑆. This result indicates that ten realizations for each environmental fluctuations amplitude 𝜎𝑖 

(for each fixed group of value of the other parameters) are enough to accurately calculate the 

extinction threshold and its uncertainty in the range of parameters that we studied. 
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Chapter 7: Predictability of population fluctuations 
 

Population dynamics is affected by environmental fluctuations (such as climate variations), 

which have a characteristic correlation time. Strikingly, the time scale of predictability can be 

larger for the population dynamics than for the underlying environmental fluctuations. Here, 

we present a general mechanism leading to this increase in predictability. We considered 

colored environmental fluctuations acting on a population close to equilibrium. In this 

framework, we derived the temporal auto and cross-correlation functions for the 

environmental and population fluctuations. We found a general correlation time hierarchy led 

by the environmental-population correlation time, closely followed by the population 

autocorrelation time. The increased predictability of the population fluctuations arises as an 

increase in its autocorrelation and cross-correlation times. These increases are enhanced by 

the slow damping of the population fluctuations, which has an integrative effect on the impact 

of correlated environmental fluctuations. Therefore, population fluctuations predictability is 

enhanced when the damping time of the population fluctuation is larger than the correlation 

time of the environmental fluctuations. This general mechanism can be quite frequent in 

nature, and it largely increases the perspectives of making reliable predictions of population 

fluctuations.  

7.1. Introduction 
Population dynamics is frequently affected by the randomness of the environmental 

fluctuations requiring the use of stochastic dynamics equations (Gotelli 2008; Lande, Engen, 

and Saether 2003). Environmental fluctuations have different sources including variability in 

resources needed by a population (e.g., food) (Fujiwara and Takada 2017); unpredictability in 

weather or climate (Nowicki et al. 2009; Saltz, Rubenstein, and White 2006); and natural 

disasters (Mangel and Tier 1993), which are usually considered extreme cases of 

environmental fluctuations (Shaffer 1987). Environmental fluctuations can alter the dynamics 

of a population, significantly impacting population fluctuations and their predictability (Luis et 

al. 2015), and even causing the extinction of otherwise stable populations (Schreiber 2010; 

Crespo-Miguel, Jarillo, and Cao-García 2022a; Mangel and Tier 1993). Random environmental 

fluctuations can have an appreciable time correlation, requiring models with colored 

(temporally correlated) noise instead of white noise. Accurate prediction of the population 

dynamics requires using appropriate colored noise (i.e., with the correct correlation time 

function) to simulate the environmental fluctuations (Petchey 2000; Halley 1996). The color (or 

temporal correlation) of the environmental fluctuations has been shown to have relevant 

consequences for population dynamics and the population extinction risk (J. Ripa and 

Lundberg 1996; Heino, Ripa, and Kaitala 2000; Greenman and Benton 2003; Kamenev, 

Meerson, and Shklovskii 2008; Spanio, Hidalgo, and Muñoz 2017). The impact of colored noise 

on the dynamics has also been experimentally observed (Laakso, Löytynoja, and Kaitala 2003; 

Reuman et al. 2008; Petchey 2000). 

The environmental variability is especially critical in some species. For example, ectotherms 

are particularly sensitive to changes in temperature (Zuo et al. 2012; Paaijmans et al. 2013). 

Ectotherms suffer important changes in growth (Atkinson 1994) and development (de Jong 

and van der Have 2009) depending on the circumstances given by the environment, and a 

study of the underlying mechanism describing the general effect of environmental variability 

can help to understand ectotherms’ dynamics. 
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Here we are interested in using stochastic population dynamics models to get further insight 

into the predictability of the population fluctuations. It has been reported that the 

predictability of the population fluctuations can be larger than the underlying environmental 

fluctuations (Pimm and Redfearn 1988; Petchey 2000). In particular, primary production 

fluctuations have been found to be predictable at larger time scales than the underlying sea 

surface temperature anomalies (environmental fluctuations) (Seferian et al. 2014). In the 

context of the study of the impact of El Niño teleconnections on the European climate 

variability, it was found that the predictability of the crop yield was higher than that of the 

underlying atmospheric variables affecting crop yield (Capa-Morocho, Rodríguez-Fonseca, and 

Ruiz-Ramos 2014). Analogous results have been found for the predictability of Malaria in Africa 

(Diouf et al. 2021). Similarly, higher predictability has been found for the Pacific fisheries 

anomalies than for the underlying Pacific sea surface temperatures (SSTs) when exploiting the 

Atlantic-Pacific teleconnection (Gómara et al. 2021). 

Here, we aim to apply stochastic population dynamics with colored environmental noise to 

understand population fluctuations predictability and its relations with environmental 

fluctuations predictability. In terms of temporal correlations, we aim to understand how the 

dynamics transform the temporal correlations of the environmental fluctuations into temporal 

correlations of the population fluctuations.  

In Section 7.2, we present the population dynamics model (for small fluctuations around 

equilibrium) driven by colored environmental noise. In Section 7.3, we compute and compare 

the auto and cross-correlation functions between the environmental fluctuations and the 

population fluctuations. We compute their maxima and characteristic times, establishing their 

hierarchies, which provide insight into the propagation of the amplitude and temporal 

correlation of the fluctuations. Finally, the results are discussed in Section 7.4. 

7.2. The model: One species with temporally correlated noise 
To study how temporal autocorrelated noise affects a single species, we begin by defining the 

differential equation that rules the evolution of fluctuations of a species around the 

equilibrium. For a population with size 𝑁(𝑡) (dimensionless) at a certain time 𝑡, evolving close 

to the equilibrium value 𝑁𝑒𝑞 of the population dynamics, we define the population fluctuations 

as 휀(𝑡) =
𝑁(𝑡)−𝑁𝑒𝑞

𝑁𝑒𝑞
, which are dimensionless (Chapter 4). (When we assume small fluctuations, 

the effective equilibrium population size can be estimated with the average of the population 

size measured in a long enough time series.) Close to equilibrium, this leads to the linear 

evolution equation 

 𝑑휀 = −
휀

𝑇
𝑑𝑡 + 𝜆 𝐴𝑑𝑡, (7.1) 

 

where 𝑇 is the characteristic time of return to equilibrium (units of time), and 𝛾 = 1/𝑇 is the 

rate of return to equilibrium (units of time-1). 𝜆 is a coupling constant with units of ([𝐴]·time)-1. 

The population is affected by environmental fluctuations 𝐴. Environmental fluctuations are 

random variations or anomalies in an environmental variable (such as temperature, humidity, 

or a resource needed by the population, and the units of 𝐴 depend on the kind of 

environmental fluctuations considered) which influence the evolution of the evolution of the 

population (Chapter 3). Here, we consider environmental fluctuations 𝐴 described by a 

positively-autocorrelated (red) noise defined as an Ornstein-Uhlenbeck process (García-Ojalvo, 

Sancho, and Ramírez-Piscina 1992) such as  
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 𝑑𝐴 = −
𝐴

𝜏
𝑑𝑡 +

𝜎

𝜏
𝑑𝑊, (7.2) 

 

where 𝜏 is the characteristic correlation time of the noise (units of time), 𝜎 its amplitude (Units 

of [𝐴]·time1/2), and 𝑑𝑊 the differential increment of a normalized Wiener process (i.e., 𝜉 =

𝑑𝑊/𝑑𝑡 is a normalized Gaussian white noise, see Chapter 2). < 𝑑𝑊(𝑡)𝑑𝑊(𝑡 + 𝑡′) >=

𝑐𝑑𝑊𝑑𝑊(𝑡
′) = 0 for 𝑡′ ≠0 and 𝑐𝑑𝑊𝑑𝑊(𝑡

′) = 𝑑𝑡 for 𝑡′ = 0, with <> the expectation value. All 

the variables used in this model are described in Table 7.1, as well as their units. 

Variables Description 

𝑁(𝑡) 
Population size at a given time t. 

Dimensionless. 

 휀(𝑡) 
Population density fluctuations around 

equilibrium 휀(𝑡) =
𝑁(𝑡)

𝑁(𝑒𝑞)
− 1. Dimensionless. 

𝐴(𝑡) 

Temporally autocorrelated environmental 
fluctuations at a given time t. Units [𝐴] 
depend on the kind of environmental 

fluctuations considered (e.g., temperature 
or humidity) 

𝜏 
Characteristic correlation time of the 

environmental fluctuations. Units of time. 

𝑇 
Characteristic time of return to equilibrium 

of the population. Units of time. 

𝛾 = 1/𝑇 
Rate of return to equilibrium. For the 

logistic equation and small fluctuations, it is 
equal to the growth rate 𝑟. Units of time-1. 

𝛼 = 𝑇/𝜏 = 1/(𝛾𝜏) 

Ratio between the characteristic damping 
time of the population fluctuations 𝑇 and 
the correlation time of the environmental 

fluctuations 𝜏. Dimensionless. 

𝜎 Amplitude of the noise. Units of [𝐴]·time1/2. 

𝜆 

The coupling constant giving the impact of 
the environmental fluctuations 𝐴 on the 

population dynamics 휀.  
Units of ([𝐴]·time)-1. 

Table 7.1: Variables used in this chapter, with its description and units. 

Fig. 7.1 shows a typical evolution for the environmental noise 𝐴 and for the population 

fluctuation 휀. Population fluctuations are compared for a lower (red) and a higher (green) 

damped population dynamics. The plot illustrates that higher damped population fluctuations 

present a smaller amplitude of population fluctuations. It also shows that peaks in 

environmental fluctuations 𝐴 appear delayed and smoothed in the population fluctuations. 

This pattern anticipates the relevant and delayed temporal cross-correlations between the 

environmental and population fluctuations that we find in the next section. 
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Figure 7.1: Evolution for the environmental fluctuations 𝐴 (solid black line); and the population 

fluctuations for 𝑇 = 2𝜏 (⇒ 𝛾 = 0.5/𝜏) (red dashed line), and 𝑇 = 0.5𝜏 (⇒ 𝛾 = 2/𝜏) (green 

pointed line) for 𝜎 = 0.1, 𝜆 = 1 and 𝜏 = 1. Population fluctuations peak a short time after 

environmental fluctuations peak, indicating a delayed correlation between environmental and 

population fluctuations. 

7.3. Temporal autocorrelations and cross-correlations 
Once we have seen the behavior of the evolution before, our target is to calculate temporal 

correlations for a single species in the presence of temporally autocorrelated noise. We want 

to calculate environmental (noise) autocorrelation, species autocorrelation, and 

environmental-species correlation, as well as a correlation time. 

The correlation between two magnitudes 𝑋 and 𝑌 in two instants separated by a delay 𝑡′ is 

given by the correlation function (see Chapter 2) 

 𝑐𝑋𝑌(𝑡
′) =< 𝑋(𝑡)𝑌(𝑡 + 𝑡′) >, (7.3) 

 

where <> means expected value. This correlation indicates how good is 𝑋(𝑡) as a predictor of 

𝑌(𝑡 + 𝑡′). Therefore, to understand the predictability of the population fluctuations, we have 

computed the correlations functions of the environmental fluctuations 𝐴 and of the 

population fluctuations 휀. See Appendix 7.A for the detail of the computations. The correlation 

functions are 

 𝑐𝐴𝐴(𝑡
′) =

𝜎2

2𝜏
𝑒−|𝑡

′|/𝜏 (7.4) 

 𝑐𝜀𝜀(𝑡
′) =

{
 

 
𝜆2𝜎2𝜏

2

𝛼2

1 − 𝛼2
(𝑒− |𝑡

′|/𝜏 − 𝛼 𝑒−|𝑡
′|/𝑇), 𝑇 ≠ 𝜏

𝜆2𝜎2𝜏

4
(1 + |𝑡′|/𝜏)𝑒− |𝑡

′|/𝜏, 𝑇 = 𝜏

 (7.5) 

 𝑐𝐴𝜀(𝑡
′) =

{
  
 

  
 

𝜆𝜎2

2

𝛼

1 + 𝛼
𝑒𝑡

′/𝜏, 𝑡′ ≤ 0

𝜆𝜎2

2

𝛼

1 − 𝛼2
((1 + 𝛼)𝑒−𝑡

′/𝜏 − 2𝛼 𝑒−𝑡
′/𝑇) , 𝑡′ > 0 𝑎𝑛𝑑 𝑇 ≠ 𝜏 

𝜆𝜎2

4
(1 + 2𝑡′/𝜏)𝑒−𝑡

′/𝜏, 𝑡′ > 0 𝑎𝑛𝑑 𝑇 = 𝜏

 (7.6) 

 𝑐𝜀𝐴(𝑡
′) = 𝑐𝐴𝜀(−𝑡

′) (7.7) 
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where 𝛼 = 𝑇/𝜏 = 1/(𝛾𝜏) is the dimensionless ratio between the characteristic damping time 

of the population fluctuations 𝑇 and the correlation time of the environmental fluctuations 𝜏. 

We have represented these correlation functions in Fig. 7.2A. 

 

 

Figure 7.2: Correlation functions with their maximums and their values at t’=0 and correlation 

times. (A) represents the adimensionalized correlation functions 𝑐𝜀𝜀(𝑡’) (green), 𝑐𝐴𝐴(𝑡’) (red) 

and  𝑐𝐴𝜀(𝑡’) (blue) adimensionalized for the case 𝛼 = 𝑇/𝜏 = 1. (B) compares the 

adimensionalized maxima of the autocorrelations function 𝑀𝐴𝐴 and 𝑀𝜀𝜀 (which coincide with 

the value at 𝑡′ = 0 of the respective autocorrelation) with the maxima of the adimensionalized 

crosscorrelation function 𝑀𝐴𝜀 and its value at zero delay 𝑐𝐴𝜀(0). Their normalized values, 

𝑀𝐴𝜀
𝑁 = 𝑀𝐴𝜀/√𝑐𝐴𝐴(0)𝑐𝜀𝜀(0) and 𝑐𝐴𝜀

𝑁 (0) = 𝑐𝐴𝜀(0)/√𝑐𝐴𝐴(0)𝑐𝜀𝜀(0) are shown in (C), with the 

delay of the cross-correlation maximum 𝑙𝐴𝜀. (D) compares the correlations times 𝑇𝐴𝜀, 𝑇𝜀𝜀 and 

𝑇𝐴𝐴. These plots illustrate the hierarchies for temporal correlations and for the maxima of the 

correlations discussed in the main text. In particular, it shows that for low damping (large 𝛼 =

𝑇/𝜏) the crosscorrelation time 𝑇𝐴𝜀 increases, allowing longer-term predictions, despite the 

decrease in accuracy that can be seen from the decay of the normalized maximum of the cross-

correlation 𝑀𝐴𝜀
𝑁 . 
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7.3.1. Maxima of the correlation functions 
The autocorrelation function of the environmental fluctuations 𝑐𝐴𝐴(𝑡

′) and the 

autocorrelation function of the species 𝑐𝜀𝜀(𝑡
′), which are symmetric, have their maximum at 

the origin, 𝑡′ = 0, 

 𝑀𝐴𝐴 = 𝑐𝐴𝐴(0) =
𝜎2

2𝜏
 (7.8) 

 𝑀𝜀𝜀 = 𝑐𝜀𝜀(0) =
𝜆2𝜎2𝜏

2

𝛼2

1 + 𝛼
 (7.9) 

 

The cross-correlation 𝑐𝐴𝜀(𝑡
′), has a value at the origin of  

 𝑐𝐴𝜀(0) =
𝜆 𝜎2

2

𝛼

1 + 𝛼
. (7.10) 

 

But the cross-correlation 𝑐𝐴𝜀(𝑡
′) has a lagged maximum (a minimum for negative coupling 𝜆), 

see Fig. 7.2A, situated at a time displacement (𝑡′ = 𝑙𝐴𝜀)  

 𝑙𝐴𝜀 = {
𝜏

𝛼

1 − 𝛼
ln (

2

1 + 𝛼
) , 𝑇 ≠ 𝜏

𝜏

2
, 𝑇 = 𝜏

 (7.11) 

 

This lag means that the population is more affected by the environmental fluctuations after a 

certain time instead of instantly. Because of the basic property of correlations 𝑐𝑋𝑌(𝑡
′) =

𝑐𝑌𝑋(−𝑡
′), the correlation function 𝑐𝐴𝜀(𝑡

′) has the maximum in 𝑡′ = −𝑙𝐴𝜀. This maximum, 𝑙𝐴𝜀, 

is at 𝑡’ > 0 for any 𝛼 = 𝑇/𝜏 > 0, and approaches the origin (smaller lag) as 𝑇/𝜏 decreases. 

This dependence on 𝑇/𝜏 causes the lag to tend to zero if the characteristic time of return to 

equilibrium of the population 𝑇 is very short.  

The cross-correlation 𝑐𝐴𝜀(𝑡
′) at this maximum located at 𝑡′ = 𝑙𝐴𝜀 has a value 

 𝑀𝐴𝜀 =

{
 
 

 
 1

2
𝜆 σ2𝛼 (

2

1 + 𝛼
)

𝛼
𝛼−1

, 𝑇 ≠ 𝜏

1

2
𝜆 𝜎2𝑒−1/2, 𝑇 = 𝜏

  (7.12) 

 

It can be shown that the maximum correlation 𝑀𝐴𝜀 at most doubles the correlation at the 

origin 𝑐𝐴𝜀(0), i.e., 1 ≤
𝑀𝐴𝜀

𝑐𝐴𝜀(0)
≤ 2. 

The maxima values can be adimensionalized and compared as in Fig. 7.2B. This shows the 

following hierarchy 

 

𝑀𝜀𝜀
𝜎2𝜏

<
𝑀𝐴𝜀
𝜆 𝜎2

<
𝑀𝐴𝐴𝜏

𝜆2𝜎2
       for   𝑇 < 𝜏 

𝑀𝜀𝜀
𝜎2𝜏

≳
𝑀𝐴𝜀
𝜆 𝜎2

≳
𝑀𝐴𝐴𝜏

𝜆2𝜎2
       for   𝑇 ≳ 𝜏  

(7.13) 
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This hierarchy means that when the characteristic time scale of population fluctuations 

damping 𝑇 is greater than the environmental fluctuations correlation time 𝜏, the magnitude of 

the adimensionalized maxima increases as the fluctuation propagates (from the environment 

to the population). Conversely, when the population fluctuations dampen faster than the 

environmental fluctuations correlations time (𝑇 < 𝜏), the maxima decrease as the fluctuation 

propagates. Only in this later regime and when 𝑇 ≪ 𝜏 (i.e., on the constant environmental 

fluctuation limit) the normalized environment-population cross-correlation maximum reaches 

full correlation 𝑀𝐴𝜀
𝑁 = 1 (but at zero delay, 𝑙𝐴𝜀 = 0). See Fig. 7.2C. The normalized 

environment-population cross-correlation maximum and value at the origin are given by 

 𝑀𝐴𝜀
𝑁 =

𝑀𝐴𝜀

√𝑐𝐴𝐴(0)𝑐𝜀𝜀(0)
= {sign(𝜆) √2 (

2

1 + 𝛼
)

1+𝛼
2 (𝛼−1)

, 𝑇 ≠ 𝜏

sign(𝜆) √2 𝑒−1/2, 𝑇 = 𝜏

 (7.14) 

 𝑐𝐴𝜀
𝑁 (0) =

𝑐𝐴𝜀(0)

√𝑐𝐴𝐴(0)𝑐𝜀𝜀(0)
=
sign(𝜆)

√1 + 𝛼
. (7.15) 

 

7.3.2. Temporal correlations 
The characteristic time of temporal correlations gives the time extension of the predictability. 

For simple exponential decays of the correlation, the correlation time is just given by the 

characteristic decay factor in the exponential. For more general cases, we define the 

correlation time as 

 𝑇𝑋𝑌 =
∫ 𝑡′|𝑐𝑋𝑌(𝑡

′)|𝑑𝑡′
∞

0

∫ |𝑐𝑋𝑌(𝑡
′)|𝑑𝑡′

∞

0

. (7.16) 

 

The absolute value allows incorporating the effects of negative correlations as predictors. For 

the autocorrelations and cross-correlations, we get 

 𝑇𝐴𝐴 = 𝑇𝜀𝐴 = 𝜏 (7.17) 

 𝑇𝜀𝜀 = 𝜏 [1 +
𝛼2

1 + 𝛼
] = 𝜏 + 𝑇

1

1 + 1/𝛼
 (7.18) 

 𝑇𝐴𝜀 = 𝜏 [1 +
2𝛼2

1 + 2𝛼
] = 𝜏 + 𝑇

1

1 + 1/(2𝛼)
 (7.19) 

 

In Fig. 7.2D, these correlation times are plotted as functions of 𝛼 = 𝑇/𝜏, the ratio between the 

damping time of the population fluctuations 𝑇 and the correlation time of the environmental 

fluctuations 𝜏. Fig. 7.2D suggests a hierarchy of correlation times that can be proven from the 

previous expressions [Eqs. (7.17)-(7.19)] 

 𝑇𝐴𝐴 = 𝑇𝜀𝐴 = 𝜏 < 𝑇𝜀𝜀 < 𝑇𝐴𝜀 < 𝜏 + 𝑇 (7.20) 

The difference between the last two is bounded by 0 < (𝑇𝐴𝜀 − 𝑇𝜀𝜀) <
𝜏

2
. 
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This hierarchy of correlation times implies a longer correlation time, and therefore a larger 

scale of predictability, for population fluctuations than for environmental fluctuations.  

7.4. Discussion 
We aimed to understand the predictability of population fluctuations compared to 

environmental fluctuations predictability. To get insight into the question, we computed the 

correlation functions of a population close to an equilibrium state in the presence of 

environmental colored noise. This computation allowed us to compute the correlation times 

and the maxima of the correlation functions, finding hierarchies for them, which gives general 

relations.  

We found that the predictability of the population fluctuations is always higher than for the 

environmental fluctuations. Because of that, we have determined that the correlation time of 

the population fluctuations is always greater than the correlation time of the environmental 

fluctuations. The difference in correlation time increases with increased characteristic damping 

time of population fluctuations 𝑇. For example, for 𝑇 = 10 𝜏 we have 𝑇𝜀𝜀 = 10.1 𝜏 and  𝑇𝐴𝜀 =

10.5 𝜏; we also have that the maximum of the population-environment cross-correlation is at 

𝑙𝐴𝜀 = 1.9 𝜏 with a normalized correlation 𝑀𝐴𝜀
𝑁 = 0.5, showing a clear increase with respect to 

the correlation time for the environmental fluctuations 𝑇𝐴𝐴. The underlying mechanism is 

analogous to the one described by Hasselmann for the integration of the fast weather 

components leading to the slow climate dynamics (Hasselmann 1976). Our model stresses that 

the mechanism is general and time-scale independent. In practical cases times scales can 

range from days (for pest populations in agriculture) to years (for large species or ecosystems). 

This study was inspired by our previous results on spatial population synchrony (Jarillo et al. 

2018; 2020; Lee et al. 2022; Fernández-Grande and Cao-Garcia 2020) and motivated by the 

findings that population fluctuations showed larger predictability than the underlying 

environmental variables. This was shown to happen for a wide range of systems: primary 

production in oceans (Seferian et al. 2014), crop yield (Capa-Morocho, Rodríguez-Fonseca, and 

Ruiz-Ramos 2014), malaria (Diouf et al. 2021) and fisheries (Gómara et al. 2021). This higher 

predictability increases the prospects of predicting climatic variability effects on populations 

(Iizumi et al. 2014; Watters et al. 2003; Christensen et al. 2015; Capa-Morocho, Rodríguez-

Fonseca, and Ruiz-Ramos 2014; Diouf et al. 2021; Gómara et al. 2021).  

The determination of the effective equilibrium can be challenging in practical cases (Pimm and 

Redfearn 1988). In general, the effective equilibrium is obtained from the time-average of the 

data in long-enough time series. However, sometimes the equilibrium can have seasonal 

oscillations or long-term trends. In these cases, these variations in the equilibrium have to be 

taken into account substracting them to obtain the correct fluctuations around equilibrium. 

Several model extensions are possible to get insight on the scope of the results. The results 

have been obtained for a single-environmental variable acting on a single-species in the small 

fluctuation regime, which allows the linearization of the dynamical equations around the 

equilibrium. This model can be extended including several interacting species and several 

environmental variables (which may also interact as wind stress and sea surface temperature). 

Other extension is including  the division of species populations into distinct life stages, with 

some of them particularly affected by environmental fluctuations (Lowe et al. 2021). Our 

model considers small enough environmental fluctuations (which implies the population is 

close to equilibrium). This can be extended studying larger environmental fluctuations in 
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particularly relevant ecological models, which would clarify how the results in the present 

work are affected by the presence of nonlinearities. 

The present study raises the question of how the propagation of fluctuations through the food 

webs impacts the predictability of the different species’ population fluctuations. This more 

profound understanding of the population predictability will help to design improved 

conservation policies, particularly useful for species especially sensitive to environmental 

variability (represented in our model with great couplings 𝜆), such as ectotherms. 
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7.A. Appendix: Computation of temporal correlation functions and times. 
As the dynamics are time invariant, the asymptotic time correlations are stationary. The 

stationarity condition is 

< 𝑋(𝑡)𝑌(𝑡 + 𝑡′) >=< 𝑋(𝑡 + 𝑑𝑡)𝑌(𝑡 + 𝑡′ + 𝑑𝑡) > 

where 𝑋(𝑡 + 𝑑𝑡) = 𝑋(𝑡) + 𝑑𝑋(𝑡) and 𝑌(𝑡 + 𝑡′ + 𝑑𝑡) = 𝑌(𝑡 + 𝑡′) + 𝑑𝑌(𝑡 + 𝑡′). The 

application of this stationary condition provides relationships between time correlation, which 

allow computing them. 

7.A.1. Wiener process temporal autocorrelation 
The temporal autocorrelation of the Wiener process (whose derivative gives the white noise) is 

known to be 

 𝑐𝑑𝑊𝑑𝑊(𝑡
′) = {

𝑑𝑡, for   𝑡′ = 0,
0, for   𝑡′ ≠ 0.

  (7. 𝐴1) 

 

7.A.2. Wiener – colored-noise temporal cross-correlation 
We know that 𝑐𝑑𝑊𝐴(𝑡

′) =< 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑡′) > is zero for 𝑡′ ≤ 0, as there is no fluctuation 

propagation to the past. Therefore, we just have to make the computation for positive time 

displacement.  

We compute 𝑐𝑑𝑊𝐴(𝑡
′) =< 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑡′) > for 𝑡′ = 𝑑𝑡, 𝑡′ = 2𝑑𝑡, 𝑡′ = 3𝑑𝑡, … 

< 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑑𝑡) > = < 𝑑𝑊(𝑡) (𝐴(𝑡) −
𝐴(𝑡)

𝜏
𝑑𝑡 +

𝜎

𝜏
𝑑𝑊(𝑡)) > =

𝜎

𝜏
 𝑑𝑡 

< 𝑑𝑊(𝑡)𝐴(𝑡 + 2𝑑𝑡) > = < 𝑑𝑊(𝑡) (𝐴(𝑡 + 𝑑𝑡) −
𝐴(𝑡 + 𝑑𝑡)

𝜏
𝑑𝑡 +

𝜎

𝜏
𝑑𝑊(𝑡 + 𝑑𝑡)) > 

=
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
)   𝑑𝑡 

< 𝑑𝑊(𝑡)𝐴(𝑡 + 3𝑑𝑡) > = < 𝑑𝑊(𝑡) (𝐴(𝑡 + 2𝑑𝑡) −
𝐴(𝑡 + 2𝑑𝑡)

𝜏
𝑑𝑡 +

𝜎

𝜏
𝑑𝑊(𝑡 + 2𝑑𝑡)) > 

=
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
)
2

 𝑑𝑡 

These results allow us to get the general expression 

𝑐𝑑𝑊𝐴(𝑛𝑑𝑡) =< 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑛𝑑𝑡) > =
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
)
𝑛−1

 𝑑𝑡 

In the large 𝑛 limit, we get the exponential expression 

𝑐𝑑𝑊𝐴(𝑡
′) =

𝜎

𝜏
𝑒−𝑡

′/𝜏𝑑𝑡  if  𝑡′ > 0 

Therefore, we have  

 𝑐𝑑𝑊𝐴(𝑡
′) = {

  0                   if 𝑡′ ≤ 0
𝜎

𝜏
𝑒−𝑡

′/𝜏 𝑑𝑡   if 𝑡′ > 0
  (7. 𝐴2) 
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7.A.3. Wiener – population temporal cross-correlation 
There is no propagation of the fluctuations to the past. Thus, 𝑐𝑑𝑊𝜀(𝑡

′) =< 𝑑𝑊(𝑡)휀(𝑡 + 𝑡′) > 

is zero for 𝑡′ ≤ 0, and we only have to compute the correlation for positive time displacement. 

The same procedure used for 𝑐𝑑𝑊𝐴(𝑡
′) allows obtaining 𝑐𝑑𝑊𝜀(𝑡

′) 

< 𝑑𝑊(𝑡)휀(𝑡 + 𝑑𝑡) > = < 𝑑𝑊(𝑡) · (휀(𝑡) − 𝛾휀(𝑡)𝑑𝑡 + 𝜆𝐴(𝑡)𝑑𝑡) > = 0 

< 𝑑𝑊(𝑡)휀(𝑡 + 2𝑑𝑡) > = < 𝑑𝑊(𝑡) · (휀(𝑡 + 𝑑𝑡) − 𝛾휀(𝑡 + 𝑑𝑡)𝑑𝑡 + 𝜆𝐴(𝑡 + 𝑑𝑡)𝑑𝑡) > =
𝜆𝜎

𝜏
𝑑𝑡2 

< 𝑑𝑊(𝑡)휀(𝑡 + 3𝑑𝑡) > = < 𝑑𝑊(𝑡) · (휀(𝑡 + 2𝑑𝑡) − 𝛾휀(𝑡 + 2𝑑𝑡)𝑑𝑡 + 𝜆𝐴(𝑡 + 2𝑑𝑡)𝑑𝑡) > 

=
𝜆𝜎

𝜏
(1 − 𝛾𝑑𝑡)𝑑𝑡2 +

𝜆𝜎

𝜏
(1 −

𝑑𝑡

𝜏
) 𝑑𝑡2 

< 𝑑𝑊(𝑡)휀(𝑡 + 4𝑑𝑡) > = < 𝑑𝑊(𝑡) · (휀(𝑡 + 3𝑑𝑡) − 𝛾휀(𝑡 + 3𝑑𝑡)𝑑𝑡 + 𝜆𝐴(𝑡 + 3𝑑𝑡)𝑑𝑡) > 

=
𝜆𝜎

𝜏
(1 − 𝛾𝑑𝑡)2𝑑𝑡2 +

𝜆𝜎

𝜏
(1 − 𝛾𝑑𝑡) (1 −

𝑑𝑡

𝜏
)𝑑𝑡2 +

𝜆𝜎

𝜏
(1 −

𝑑𝑡

𝜏
)
2

𝑑𝑡2 

< 𝑑𝑊(𝑡)휀(𝑡 + 𝑛𝑑𝑡) > =
𝑑𝑡2

𝜏
𝜆𝜎∑(1 − 𝛾𝑑𝑡)𝑛−2−𝑖

𝑛−2

𝑖=0

(1 −
𝑑𝑡

𝜏
)
𝑖

=
𝜆𝜎

𝜏
𝑑𝑡2(1 − 𝛾𝑑𝑡)𝑛−2∑(

1−
𝑑𝑡
𝜏

1 − 𝛾𝑑𝑡
)

𝑛−1

𝑖=1

𝑖−1

 

The later expression gives, when 𝛾𝜏 = 1 

𝜆𝜎

𝜏
𝑑𝑡2(1 − 𝛾𝑑𝑡)𝑛−2∑1

𝑛−1

𝑖=1

=
𝜆𝜎

𝜏
𝑑𝑡2(1 − 𝛾𝑑𝑡)𝑛−2 · (𝑛 − 1) ≈

𝜆𝜎

𝜏
𝑡′𝑒−𝛾𝑡

′
𝑑𝑡 =

𝜆𝜎

𝜏
𝑡′𝑒−𝑡

′/𝜏𝑑𝑡, 

while for 𝛾𝜏 ≠ 1 

𝜆𝜎

𝜏
𝑑𝑡2(1 − 𝛾𝑑𝑡)𝑛−2∑(

1−
𝑑𝑡
𝜏

1 − 𝛾𝑑𝑡
)

𝑛−1

𝑖=1

𝑖−1

=
𝜆𝜎

𝜏
𝑑𝑡2(1 − 𝛾𝑑𝑡)𝑛−2 ·

1 − (
1 −

𝑑𝑡
𝜏

1 − 𝛾𝑑𝑡
)

𝑛−1

1 −
1 −

𝑑𝑡
𝜏

1 − 𝛾𝑑𝑡

=
𝜆𝜎𝑑𝑡

1 − 𝛾𝜏
((1 − 𝛾𝑑𝑡)𝑛−1 − (1 −

𝑑𝑡

𝜏
)
𝑛−1

) ≈
𝜆𝜎

1 − 𝛾𝜏
(𝑒−𝛾𝑡

′
− 𝑒−𝑡

′/𝜏)𝑑𝑡. 

(Note that in the limit 𝛾𝜏 → 1, the results for 𝛾𝜏 = 1 are recovered, indicating the continuity of 

the solution on 𝛾𝜏.) 

Therefore, we have the temporal correlation 

 𝑐𝑑𝑊𝜀(𝑡
′) =

{
 
 

 
 

0                            if 𝑡′ < 0
𝜆𝜎

1 − 𝛾𝜏
(𝑒−𝛾𝑡

′
− 𝑒−𝑡

′/𝜏)𝑑𝑡     if 𝑡′ > 0 and 𝛾𝜏 ≠ 1

𝜆𝜎

𝜏
𝑡′𝑒−𝑡

′/𝜏𝑑𝑡                               if 𝑡′ > 0 and 𝛾𝜏 = 1

  (7. 𝐴3) 
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7.A.4. Colored-noise autocorrelations 
The computation of this (and the following) temporal correlations relies on the time invariance 

of the dynamics, which leads to the stationarity of the asymptotic temporal correlations. 

We begin calculating the temporal autocorrelation for the environmental autocorrelations, 

𝑐𝐴𝐴(𝑡
′) =< 𝐴(𝑡)𝐴(𝑡 + 𝑡′) >, whose stationary condition implies  

< 𝐴(𝑡)𝐴(𝑡 + 𝑡′) > = < (𝐴(𝑡) + 𝑑𝐴(𝑡)) · (𝐴(𝑡 + 𝑡′) + 𝑑𝐴(𝑡 + 𝑡′)) > =  

< (𝐴(𝑡) − 𝐴(𝑡)/𝜏 𝑑𝑡 + 𝜎/𝜏 𝑑𝑊(𝑡)) · (𝐴(𝑡 + 𝑡′) − 𝐴(𝑡 + 𝑡′)/𝜏 𝑑𝑡 + 𝜎/𝜏 𝑑𝑊(𝑡 + 𝑡′)) > 

Expanding up to the first order in 𝑑𝑡 we get 

< 𝐴(𝑡)𝐴(𝑡 + 𝑡′) > = < 𝐴(𝑡)𝐴(𝑡 + 𝑡′) > −
2

𝜏
< 𝐴(𝑡)𝐴(𝑡 + 𝑡′) > 𝑑𝑡 

+
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
) < 𝐴(𝑡)𝑑𝑊(𝑡 + 𝑡′) > +

𝜎

𝜏
(1 −

𝑑𝑡

𝜏
) < 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑡′) > 

+
𝜎2

𝜏2
< 𝑑𝑊(𝑡)𝑑𝑊(𝑡 + 𝑡′) >, 

which gives the equation 

2

𝜏
𝑐𝐴𝐴(𝑡

′)𝑑𝑡 =
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
) 𝑐𝐴𝑑𝑊(𝑡

′) +
𝜎

𝜏
(1 −

𝑑𝑡

𝜏
) 𝑐𝑑𝑊𝐴(𝑡

′) +
𝜎2

𝜏2
𝑐𝑑𝑊𝑑𝑊(𝑡

′). 

As we have shown that 𝑐𝑑𝑊𝐴 ∼ 𝑑𝑡 and 𝑐𝑑𝑊𝜖 ∼ 𝑑𝑡  [Eqs. (7.A2) and (7.A3)], which indicates 

that there are still terms of second order in the previous equation. Keeping only the first order 

terms in 𝑑𝑡 and using 𝑐𝐴𝑑𝑊(𝑡
′) = 𝑐𝑑𝑊𝐴(−𝑡

′), the equation becomes  

𝑐𝐴𝐴(𝑡
′) =

𝜎

2 𝑑𝑡
 (𝑐𝑑𝑊𝐴(𝑡

′) + 𝑐𝑑𝑊𝐴(−𝑡
′)) +

𝜎2

2𝜏

𝑐𝑑𝑊𝑑𝑊(𝑡
′)

𝑑𝑡
 

This later equation gives 𝑐𝐴𝐴(𝑡
′), in terms of the cross-correlations of the white noise with the 

colored noise and with the population fluctuations.  

Substituting Eq. (7.A2), we get environmental autocorrelation 

 𝑐𝐴𝐴(𝑡
′) =

𝜎2

2𝜏
𝑒−|𝑡

′|/𝜏 (7. 𝐴4) 

 

7.A.5. Colored-noise – population cross-correlation  
We continue with the environment-species temporal cross-correlation 𝑐𝐴𝜀(𝑡

′) = 

< 𝐴(𝑡)휀(𝑡 + 𝑡′) >, whose stationary condition gives 

< 𝐴(𝑡)휀(𝑡 + 𝑡′) > = < (𝐴(𝑡) + 𝑑𝐴(𝑡)) · (휀(𝑡 + 𝑡′) + 𝑑휀(𝑡 + 𝑡′)) > =  

< (𝐴(𝑡) − 𝐴(𝑡)/𝜏 𝑑𝑡 + 𝜎/𝜏 𝑑𝑊(𝑡)) · (휀(𝑡 + 𝑡′) − 𝛾휀(𝑡 + 𝑡′)𝑑𝑡 + 𝜆𝐴(𝑡 + 𝑡′) 𝑑𝑡) > 

Again, up to the first order in 𝑑𝑡, we get 

< 𝐴(𝑡)휀(𝑡 + 𝑡′) > = < 𝐴(𝑡)휀(𝑡 + 𝑡′) > −(𝛾 +
1

𝜏
) < 𝐴(𝑡)휀(𝑡 + 𝑡′) > 𝑑𝑡 

+
𝜎

𝜏
(1 − 𝛾𝑑𝑡) < 𝑑𝑊(𝑡)휀(𝑡 + 𝑡′) > +𝜆 < 𝐴(𝑡)𝐴(𝑡 + 𝑡′) > 𝑑𝑡 +

𝜆𝜎

𝜏
< 𝑑𝑊(𝑡)𝐴(𝑡 + 𝑡′) > 𝑑𝑡, 
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resulting in the second relation,  

−(𝛾 +
1

𝜏
) 𝑐𝐴𝜀(𝑡

′)𝑑𝑡 +
𝜎

𝜏
(1 − 𝛾𝑑𝑡)𝑐𝑑𝑊𝜀(𝑡

′) + 𝜆𝑐𝐴𝐴(𝑡
′)𝑑𝑡 +

𝜆𝜎

𝜏
𝑐𝑑𝑊𝐴(𝑡

′)𝑑𝑡 = 0. 

Recalling again that 𝑐𝑑𝑊𝐴 ∼ 𝑑𝑡 and 𝑐𝑑𝑊𝜀 ∼ 𝑑𝑡, fewer terms are of the first order in 𝑑𝑡, leading 

to 

𝑐𝐴𝜀(𝑡
′) =

1

𝛾 + 1/𝜏 
 (
𝜎

𝜏
 
𝑐𝑑𝑊𝜀(𝑡

′)

𝑑𝑡
+ 𝜆𝑐𝐴𝐴(𝑡

′)) 

Substituting Eqs. (7.A3) and (7.A4), we can calculate the environmental-population fluctuations 

cross-correlation 

 𝑐𝐴𝜀(𝑡
′) =

{
  
 

  
 

𝜆𝜎2

2(1 + 𝛾𝜏)
𝑒𝑡

′/𝜏, 𝑡′ ≤ 0

𝜆𝜎2

2((𝛾𝜏)2 − 1)
((1 + 𝛾𝜏)𝑒−𝑡

′/𝜏 − 2𝑒−𝛾𝑡
′
) , 𝑡′ > 0 and 𝛾𝜏 ≠ 1 

𝜆𝜎2

4𝜏
(𝜏 + 2𝑡′)𝑒−𝑡

′/𝜏, 𝑡′ > 0 and 𝛾𝜏 = 1

 (7. 𝐴5) 

 

while 𝑐𝜀𝐴(𝑡
′) = 𝑐𝐴𝜀(−𝑡

′). 

7.A.6. Autocorrelations of the population fluctuations 
We finally compute the temporal autocorrelation for the population fluctuations of the species 

𝑐𝜀𝜀(𝑡
′) =< 휀(𝑡)휀(𝑡 + 𝑡′) >, whose stationary condition implies 

< 휀(𝑡)휀(𝑡 + 𝑡′) > = < (휀(𝑡) + 𝑑휀(𝑡)) · (휀(𝑡 + 𝑡′) + 𝑑휀(𝑡 + 𝑡′)) > =  

< (휀(𝑡) − 𝛾휀(𝑡)𝑑𝑡 + 𝜆𝐴(𝑡) 𝑑𝑡) · (휀(𝑡 + 𝑡′) − 𝛾휀(𝑡 + 𝑡′)𝑑𝑡 + 𝜆𝐴(𝑡 + 𝑡′) 𝑑𝑡) >. 

Keeping terms up to first order in 𝑑𝑡, we obtain the following expression: 

< 휀(𝑡)휀(𝑡 + 𝑡′) > = < 휀(𝑡)휀(𝑡 + 𝑡′) > −2𝛾 < 휀(𝑡)휀(𝑡 + 𝑡′) > 𝑑𝑡 

+𝜆 < 휀(𝑡)𝐴(𝑡 + 𝑡′) > 𝑑𝑡 + 𝜆 < 𝐴(𝑡)휀(𝑡 + 𝑡′) > 𝑑𝑡 

In terms of correlations and using the relation 𝑐𝑋𝑌(𝑡
′) = 𝑐𝑌𝑋(−𝑡

′), we have 

𝑐𝜀𝜀(𝑡
′) =

𝜆

2𝛾
 (𝑐𝐴𝜀(𝑡

′) + 𝑐𝐴𝜀(−𝑡
′)). 

Substituting Eq. (7.A5), we get for the population fluctuations autocorrelation 

 𝑐𝜀𝜀(𝑡
′) =

{
 
 

 
 𝜆2𝜎2𝜏

2𝛾𝜏((𝛾𝜏)2 − 1)
(𝛾𝜏𝑒−

|𝑡′|
𝜏 − 𝑒−𝛾|𝑡

′|) , 𝛾𝜏 ≠ 1

𝜆2𝜎2

4
(𝜏 + |𝑡′|)𝑒− |𝑡

′|/𝜏, 𝛾𝜏 = 1

     (7. 𝐴6) 
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7.A.7. Maxima 
The environmental noise autocorrelation 𝑐𝐴𝐴(𝑡

′) and of the population fluctuations 

autocorrelation 𝑐𝜀𝜀(𝑡
′) have their maximum at the origin 𝑡′ = 0. The environment-population 

cross-correlation has a lagged maximum at a time 𝑡′ = 𝑙𝐴𝜀 with  

 𝑙𝐴𝜀 =

{
 
 

 
 ln (

2𝛾𝜏
𝛾𝜏 + 1)

𝛾𝜏 − 1
𝜏, 𝛾𝜏 ≠ 1

𝜏

2
, 𝛾𝜏 = 1

     (7. 𝐴7) 

 

with a magnitude 𝑀𝐴𝜀 = 𝑐𝐴𝜀(𝑙𝐴𝜀) given by 

 𝑀𝐴𝜀 =

{
 
 

 
 𝜆σ2 (

2𝛾τ
1 + 𝛾τ

)

1
1−𝛾τ

2𝛾τ
, 𝛾𝜏 ≠ 1

𝜆 𝜎2𝑒−
1
2/2, 𝛾𝜏 = 1.

     (7. 𝐴8) 

 

These expressions are also given in the main text in terms of 𝛼 =
𝑇

𝜏
=

1

𝛾𝜏
, the ratio of the 

population relaxation time 𝑇 and the correlation time of environmental fluctuations 𝜏. 

7.A.8. Correlation times 
The previous explicit expression for the time correlation function allows computing their 

respective correlation times 

 𝑇𝐴𝐴 =
∫ 𝑡′𝑐𝐴𝐴(𝑡

′)𝑑𝑡′
∞

0

∫ 𝑐𝐴𝐴(𝑡
′)𝑑𝑡′

∞

0

=
∫ 𝑡′

𝜎2

2𝜏
𝑒−𝑡

′/𝜏𝑑𝑡′
∞

0

∫
𝜎2

2𝜏
𝑒−𝑡

′/𝜏𝑑𝑡′
∞

0

=
∫ 𝑡′𝑒−𝑡

′/𝜏𝑑𝑡′
∞

0

∫ 𝑒−𝑡
′/𝜏𝑑𝑡′

∞

0

= 𝜏, (7. 𝐴9) 

 𝑇𝜀𝐴 = 𝜏, (7. 𝐴10) 

 𝑇𝜀𝜀 = 𝜏 
(𝛾𝜏)2 + 𝛾𝜏 + 1

𝛾𝜏(𝛾𝜏 + 1)
= 𝜏 [1 +

1

𝛾𝜏(𝛾𝜏 + 1)
] = 𝜏 [1 +

𝛼2

1 + 𝛼
] = 𝜏 + 𝑇

𝛼

1 + 𝛼
, (7. 𝐴11) 

 𝑇𝐴𝜀 = 𝜏 
(𝛾𝜏)2 + 2𝛾𝜏 + 2

𝛾𝜏(𝛾𝜏 + 2)
= 𝜏 [1 +

2

𝛾𝜏(𝛾𝜏 + 2)
] = 𝜏 [1 +

2𝛼2

1 + 2𝛼
] = 𝜏 + 𝑇

2𝛼

1 + 2𝛼
, (7. 𝐴12) 

 

where 𝛼 =
𝑇

𝜏
=

1

𝛾𝜏
 is the ratio of the population relaxation time 𝑇 and the correlation time of 

environmental fluctuations 𝜏. 
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Conclusions and discussion 
 

Deterministic models are just approximations of reality. Random events are present in many 

real systems. Then, stochastic models become necessary to describe these systems 

consistently (Gardiner 2009). In this way, fluctuations or noise are included in the model to 

represent variability. In particular, when we study populations of living beings, the inclusion in 

the model of a stochastic term becomes essential to accurately study natural ecosystems 

(Lande, Engen, and Saether 2003). 

Stochastic analysis is necessary because each individual differs from other population 

members and may have a different behavior over time. For example, even under similar 

circumstances, there may be individual variability from the average age of death of the species 

or in the number of offspring given in every breeding season. While important, individual (non-

environmental) variability can be averaged out for sufficiently large populations.  

Besides, environmental conditions, such as weather, affect an entire population and vary 

randomly in time. In these cases, simply taking the average of the random variations so that 

they deterministically affect the population evolution causes a loss of information. This 

approximation may be completely wrong if the variability is large enough (Engen, Bakke, and 

Islam 1998; Lande, Engen, and Saether 2003; Cabrerizo and Marañón 2021). 

Specifically, the deterministic part of the evolution of many populations has been classically 

modeled as logistic growth, i.e., exponential growth at low populations with a density 

regulation term (Verhulst 1838; Cotgreave and Gotelli 2006). The regulation term implies that 

the population saturates near an equilibrium population that we call carrying capacity. 

Besides, we have focused on a variation of this model, which describes the difficulty of 

recovery (or tendency to extinction) of low-density populations, known as the Allee effect 

(Allee and Rosenthal 1949). The model is obtained by adding a term so that the effective 

growth rate is negative for populations below a certain threshold. This negative growth rate 

implies that, in general, populations suffering from the Allee effect are less resilient to adverse 

effects. 

Moreover, to study a system with greater precision, it is necessary to consider that individuals 

are not in a single point of space. Movements between different habitat areas can rescue the 

population in areas affected by local extinction or depletion. Dispersal of individuals within the 

ecosystem has been studied as a mechanism that significantly increases the population's 

resilience (Engen, Lande, and Sæther 2002). This thesis shows how this is done in systems with 

Allee Effect: A species' tendency to disperse and repopulate areas with low population 

densities is one of the main factors affecting species' resilience. Dispersals with greater range 

and intensity are more effective in increasing the population's resilience.  

As we have just mentioned, the deterministic treatment is incorrect in most cases since the 

parameters that describe it can vary randomly over time. Therefore, population density must 

be treated as a stochastic process whose dynamics are affected by environmental fluctuations. 

These fluctuations are represented as white (temporally uncorrelated) or colored (temporally 

autocorrelated) noise. Environmental fluctuations are spatially correlated, which means that 

weather events extend across space, and this correlation, as well as dispersal, synchronizes the 

population across space (Moran 1953; Lande, Engen, and Sæther 1999). The typical correlation 

distances (spatial scale of synchrony of the population) increase with the spatial scale of 
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environmental synchrony, the typical dispersal distance, and its intensity (the dispersal rate). 

Spatial scales of population synchrony are approximately the size of the areas where the 

species is found in abundance, or on the contrary, of the local extinction areas. 

In our work about Allee effect and dispersal, we want to know which are the main factors that 

affect a spatially extended population's resilience, given Allee effect dynamics. We have 

simulated the evolution of populations and studied their distribution at long times (chapter 5) 

to obtain which are the parameters that influence resilience: The dispersal distances, the scale 

of synchrony of environmental fluctuations, the Allee threshold of the minimum viable 

population compared to the carrying capacity, and the dispersal rate compared to the growth 

rate.  

More precisely, we are interested in determining how the environmental and population 

characteristics affect the extinction risk. The results about variations in the minimum viable 

population threshold (Allee threshold) show that populations with more significant difficulties 

of recovery at low population densities (greater Allee threshold compared to the carrying 

capacity) are much more vulnerable to climatic variability.  

We also study the extinction risk's dependence on the dispersal intensity and scope. The study 

shows the great importance of dispersal in preventing the extinction of a population: 

Specifically, we get that the population's resilience grows proportionally to the root of the 

dispersal rate and that populations always get extinct in the absence of dispersal. Moreover, 

longer dispersal distances compared to the scale of synchrony of environmental fluctuations 

allow populations to recolonize farther locations. Thus, the rescue effect is enhanced, 

providing more resilience against environmental variability.  

In our work about habitat size and dispersal, we wanted to understand how the reduction of 

habitat size affects the population's resilience. In chapter 6, we have got the extinction risk’s 

dependence on the confinement size by simulating a population that disperses inside a finite 

space. In so doing, we have obtained that a reduction in habitat size implies a drastic increase 

in extinction risk since the dispersal-induced rescue effect's effectiveness is minimized. 

Consequently, individuals will be unable to re-colonize distant areas if their mobility capability 

is truncated (Collingham and Huntley 2000; Dullinger et al. 2015). Extinction risk is even higher 

if the habitat becomes much smaller compared to the dispersal distance.  

Nonetheless, it is important to clarify how much dispersal can increase population resilience. 

As said before, longer dispersal implies enhanced population resilience, but this increase is not 

unlimited. Each habitat size determines a maximum resilience reached at a certain dispersal 

distance, again supporting that habitat fragmentation reduces the effectiveness of the rescue 

effect. This change in the extinction risk with the habitat size indicates that habitat 

preservation is a crucial point in population conservation and tells us the cases for which we 

need a special effort to protect a certain population's habitat. 

Next, in Chapter 7, we have studied a population close to equilibrium. This population is 

influenced by temporally autocorrelated environmental fluctuations (colored noise). From the 

equations that describe population dynamics, we obtained expressions for the autocorrelation 

and cross-correlation functions of the population and the environment. Those correlation 

functions depend on the amplitude of the environmental noise, the coupling between 

environment and population, and the characteristic time of environmental and population 

fluctuations. 
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Correlation functions allow us to obtain valuable properties of the population dynamics. The 

value of the autocorrelation function for the population fluctuations at time zero measures the 

population variability. Moreover, the correlation time of the studied variables is a measure of 

the time extension of their predictability. For any set of dynamic parameters, the 

autocorrelation time of the population is longer than that of the environmental fluctuations.  

Lastly, the delayed maximum of the cross-correlation function indicates when and how 

intensely the environmental variable has the greatest influence on population fluctuations. 

The results presented in this thesis are helpful in adequately understanding the resilience of a 

population to adverse environmental conditions. Our results also allow us to predict an 

ecosystem's proximate evolution with a certain degree of accuracy. Besides, given that human 

action can be studied as an agent that affects the ecosystem's dynamic parameters, these 

results allow us to assess how to exploit a population without causing irreversible damage to 

the ecosystem. Thereby, this deeper understanding allows to develop more optimal 

repopulation strategies or harmless ways to exploit natural resources.  
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Future work 
 

The results presented for the spatially extended population model with Allee effect (Part II) 

open the door to investigating other relevant effects, such as external migration, harvesting, 

repopulation, and habitat shape. This model can be also extended to study interspecific 

interactions or how other external factors affect the ecosystem, to obtain new results and 

applications.  

External migration has already been studied (Dennis et al. 2016), showing that it reduces the 

extinction risk. However, a study of a population with Allee effect considering both external 

migration and dispersal within the ecosystem is still to be made. This model may be especially 

relevant as it allows us to describe human action in the ecosystem. Specifically, we can add the 

possibility of harvesting, which clearly affects extinction risk (Jarillo et al. 2018). Understanding 

this dependence on populations with Allee effect can help advance effective species 

conservation strategies or enhance sustainable exploitation methods. Similarly, repopulation 

can also be added so that the human factor's effect on the species' resilience can be 

quantified.  

Moreover, our works on spatially extended population dynamics (Part II) have taken a one-

dimensional space as a first approximation. Nonetheless, previous studies such as (Diamond 

1975) show that the habitats' shape is determinant in the species' evolution. In two 

dimensions, besides the size of the habitat, other factors must be taken into account. For 

example, circular-like habitats easily allow dispersal throughout due to the propagation front 

of individuals. Then, habitats with more circular forms are more optimal for the survival of a 

species than those with elongated forms or penínsulas. Therefore, seeking a generalization for 

two dimensions seems necessary to study other natural systems with enough precision. 

Our study on the predictability of a population affected by temporally autocorrelated 

environmental fluctuations (Part III) considers a uniform population near equilibrium. This 

study can be extended by considering larger fluctuations, which may invalidate the linear 

approximation around equilibrium. This extension would allow us to study systems under 

more extreme conditions.   

To conclude, species are not isolated but are part of an ecosystem. In the studies included in 

this thesis (Chapters 5-7), we have not explicitly considered the effects of other species. Those 

effects can be relevant in the dynamics of other populations interacting with them. Then, 

these studies should be extended to include several interacting species. Specifically, we are 

working on an extension of our models to understand food chains under the influence of 

temperature variations in several fishing areas in the Atlantic Ocean (TRIATLAS Project). 

Understanding those ecosystems would contribute to a better managing of fisheries. 

The extensions presented in this section to previously included models in this thesis allow a 

more accurate description of a wider variety of ecosystems. Thus, we would get a deeper 

understanding of how species interact with the other components of the ecosystem, both the 

physical ones (such as climate) and the other species present in the same habitat. 

Consequently, present and future results in this line can potentially provide better tools to 

protect locally endangered populations. Additionally, these results allow planning more 

efficient and less damaging strategies for exploiting natural resources (including harvested 

species) in the future.   
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Conclusiones y discusión 
 

Los modelos deterministas son solo aproximaciones de la realidad en la mayoría de las 

situaciones. En muchos sistemas reales aparecen eventos aleatorios, por lo que los procesos 

estocásticos se vuelven una herramienta necesaria para describir consistentemente estos 

sistemas (Gardiner 2009). De esta manera, se introducen fluctuaciones (o ruido) en el modelo 

para representar variabilidad. En concreto, cuando estudiamos poblaciones de seres vivos, la 

inclusión en el modelo de un término estocástico se vuelve imprescindible si queremos hacer 

un estudio preciso de los ecosistemas (Lande, Engen y Saether 2003).  

El tratamiento estocástico es necesario ya que cada individuo es diferente de sus congéneres y 

puede tener un comportamiento distinto con el paso del tiempo: Por ejemplo, incluso en 

circunstancias similares, puede existir variaciones individuales respecto a la edad de muerte 

promedio de la población, o en el número de crías en cada época de cría. Esta variabilidad 

individual (no ambiental), aunque importante, puede ser promediada para poblaciones 

suficientemente grandes.  

Además, las condiciones ambientales, como el tiempo atmosférico, que afectan a toda una 

población, también varían aleatoriamente a lo largo del tiempo. En estos casos, simplemente 

tomar el promedio de las variaciones aleatorias de tal manera que afecten de forma 

determinista a la evolución de la población hace que se pierda información. Si dicha 

variabilidad es suficientemente grande, esta aproximación puede ser completamente errónea 

(Engen, Bakke e Islam 1998; Lande, Engen y Saether 2003; Cabrerizo y Marañón 2021). 

En concreto, la parte determinista de la evolución de una población para muchas especies ha 

sido clásicamente modelada como un crecimiento logístico, esto es, crecimiento exponencial a 

poblaciones bajas con un término de regulación de densidad (Verhulst 1838; Cotgreave y 

Gotelli 2006). Este término de regulación implica que la población sature cerca de una 

población de equilibrio que llamamos capacidad de carga. Además, nosotros nos hemos 

centrado en una variación de este modelo que sirve para describir la dificultad de recuperación 

(o tendencia a la extinción) de poblaciones con baja densidad, lo que se conoce como efecto 

Allee (Allee y Rosenthal 1949). El modelo se consigue añadiendo un término adicional de 

manera que el ratio de crecimiento  efectivo es negativo para poblaciones debajo de un cierto 

umbral, lo que implica que en general las poblaciones que sufren de efecto Allee son menos 

resilientes a efectos adversos.  

Por otro lado, para estudiar un sistema con mayor precisión, es necesario tener en cuenta que 

los individuos no se encuentran en un único punto del espacio y los movimientos entre 

distintas zonas del habitat pueden rescatar a la población de zonas afectadas por una extinción 

local o deterioro del tamaño de la población. Así, la dispersión de individuos dentro del 

ecosistema ha sido estudiada como un mecanismo que aumenta en gran manera la resiliencia 

de la población (Engen, Lande y Sæther 2002). En esta tesis hemos demostrado de qué manera 

lo hace en sistemas con Efecto Allee: La tendencia de una especie a dispersarse y repoblar 

zonas con densidades de población bajas es una de las principales circunstancias que afectan a 

la resiliencia de la especie. Esta dispersión es más efectiva aumentando la resiliencia de la 

población cuanto mayor alcance e intensidad tiene.  

Como acabamos de comentar, el tratamiento determinista no es correcto en la mayor parte de 

los casos, ya que los parámetros que lo describen pueden variar aleatoriamente con el tiempo. 
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Por tanto, la densidad de población ha de ser tratada como un proceso estocástico cuya 

dinámica es afectada por fluctuaciones ambientales, que son representadas en forma de ruido 

blanco (temporalmente no autocorrelacionado) o de color (temporalmente 

autocorrelacionado). Las fluctuaciones ambientales están espacialmente correlacionadas, lo 

que significa que algunos eventos climáticos se extienden a lo largo del espacio, y esta 

correlación, así como la dispersión, sincroniza la población a lo largo del espacio (Moran 1953; 

Lande, Engen y Sæther 1999). Las distancias de correlación típicas (escala espacial de 

sincronía) de la población aumentan con la escala espacial de sincronía ambiental, la distancia 

típica de dispersión y la intensidad de esta (el ratio de dispersión), y estas distancias son 

aproximadamente el tamaño de las zonas donde la especie se halla en abundancia o, por el 

contrario, de las zonas que presentan extinción local. 

En nuestro trabajo sobre efecto Allee y dispersión queremos saber cuáles son los factores 

principales que afectan a la resiliencia de una población extendida espacialmente con dinámica 

dada por efecto Allee. Hemos simulado la evolución de poblaciones y estudiado su distribución 

a tiempos largos (capítulo 5) para obtener cuáles son aquellos parámetros que influyen sobre 

la resiliencia: La distancia de dispersión, la escala espacial de sincronía de las fluctuaciones 

ambientales, el umbral Allee de mínima población viable comparado con la capacidad de 

carga, y el ratio de dispersión comparado con el ratio de crecimiento. 

En concreto, estamos interesados en determinar como el riesgo de extinción es afectado por 

estas características de la población y del ambiente. Los resultados sobre variaciones en el 

umbral de mínima población viable (umbral Allee) muestran que las poblaciones con mayores 

dificultades de recuperación a densidades de poblaciones bajas (mayor umbral Allee respecto 

a la capacidad de carga) son mucho más vulnerables a la variabilidad climática.  

Adicionalmente hemos estudiado la dependencia del riesgo de extinción según la intensidad y 

alcance de la dispersión. El estudio muestra la gran importancia de la dispersión previniendo la 

extinción de una población. Específicamente, tenemos que la resiliencia de la población crece 

de forma proporcional a la raíz del ratio de dispersión, y que las poblaciones siempre acaban 

extinguiéndose en la ausencia de dispersión. Además, distancias de dispersión más largas 

comparadas con la escala de sincronía de las fluctuaciones ambientales permiten a las 

poblaciones recolonizar localizaciones más lejanas. Así se mejora el efecto rescate, propiciando 

mayor resiliencia frente a la variabilidad ambiental. 

En nuestro trabajo acerca de tamaño del hábitat y dispersión buscamos entender cómo la 

resiliencia de la población se ve afectada por reducciones en el tamaño de su hábitat. En el 

Capítulo 6 hemos encontrado una dependencia del riesgo de extinción con el tamaño del 

confinamiento a partir de simulaciones en las cuales una pobración se dispersa en un espacio 

finito. Haciendo esto, hemos obtenido que una reducción del tamaño del hábitat implica un 

incremento drástico en el riesgo de extinción, ya que el efecto rescate inducido por dispersión 

pierde efectividad. Esto significa que los individuos no son capaces de recolonizar áreas muy 

distantes si su capacidad de movilización se ve truncada (Collingham y Huntley 2000; Dullinger 

et al. 2015). El riesgo de extinción es aún más alto si el tamaño del hábitat disminuye respecto 

a la distancia de dispersión.  

Sin embargo, es importante dejar claro hasta qué punto puede la dispersión aumentar la 

resiliencia de la población. Como dijimos antes, dispersiones más largas implican un 

incremento en la resiliencia de la población, pero ese aumento no es ilimitado. Cada tamaño 

del hábitat determina una resiliencia máxima que se da a partir de cierta distancia de 



125 
 

dispersión, lo que de nuevo apoya que la fragmentación del hábitat reduce la efectividad del 

efecto rescate. Este cambio del riesgo de extinción con el tamaño del hábitat nos indica que la 

preservación del hábitat es un punto clave en la conservación de poblaciones y nos dice los 

casos para los cuales necesitamos dedicar un mayor esfuerzo en proteger los hábitats de una 

determinada población. 

A continuación, en el Capítulo 7 hemos estudiado una población cercana al equilibrio. La 

población se encuentra influenciada fluctuaciones ambientales autocorrelacionadas 

temporalmente (ruido de color). A partir de las ecuaciones que describen la dinámica de la 

población, hemos obtenido expresiones para las funciones de autocorrelación y correlación 

cruzada de la población y el ambiente. Estas funciones de correlación dependen de la amplitud 

del ruido, el acoplo entre ambiente y población, y los tiempos característicos de las 

fluctuaciones (ambientales y de población). 

Las funciones de correlación permiten obtener propiedades útiles de la dinámica de la 

población. El valor de la función de autocorrelación de las fluctuaciones poblacionales a 

tiempo cero indica la variabilidad de la población. Por otro lado, el tiempo de correlación de las 

variables estudiadas es una medida del alcance temporal de su predictibilidad. Para cualquier 

grupo de parámetros, el tiempo de autocorrelación de la población es mayor que el de las 

fluctuaciones ambientales.  Por último, el máximo retardado de la función de correlación 

cruzada nos indica cuándo, y con cuánta intensidad, se da la mayor influencia de la variable 

ambiental sobre las fluctuaciones de la población.  

Los resultados presentados en esta tesis nos permiten conocer de forma eficaz la resiliencia de 

una población frente a condiciones ambientales adversas, así como predecir la evolución 

próxima de un ecosistema con cierto grado de precisión. Además, dado que la acción humana 

puede ser estudiada como un agente que afecta los parámetros dinámicos del ecosistema, 

estos resultados nos permiten evaluar cómo explotar una población sin causar daños 

irreversibles al ecosistema. Así, este conocimiento más profundo permitirá desarrollar 

estrategias de repoblación más óptima o formas menos dañinas de explotar los recursos 

naturales.  
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Trabajo futuro 
 

Los resultados presentados para modelos de poblaciones espacialemente extendida con efecto 

Allee (Parte II) dan pie a investigar otros efectos relevantes, como migración externa, 

explotación, repoblación y forma del hábitat. Nuestro modelo también puede extenderse para 

estudiar interacciones interespecíficas o como otros factores externos afectan a la población, 

para así obtener nuevos resultados y aplicaciones.  

La migración externa ya ha sido estudiada (Dennis et al. 2016), mostrando que reduce el riesgo 

de extinción. No obstante, aún está pendiente un estudio de una población con Efecto Allee 

que considere tanto migración externa como dispersion dentro del ecosistema. Este modelo 

puede ser especialmente relevante al permitirnos describir la acción humana sobre el 

ecosistema. En concreto puede añadirse la posibilidad de explotación, que tiene un claro 

efecto en el riesgo de extinción (Jarillo et al. 2018). Entender claramente cuál es esta 

dependencia en poblaciones con efecto Allee puede servir para avanzar en estrategias eficaces 

de conservación de especies, o desarrollar mejores métodos de explotación sostenible. De 

igual manera, también puede añadirse la repoblación, de modo que podrá cuantificarse 

claramente el efecto del factor humano en la resiliencia de la especie.  

Por otro lado, nuestros trabajos sobre dinámica de poblaciones espacialmente extendidas 

(Parte II) han tomado un espacio unidimensional como primera aproximación.  No obstante, 

estudios anteriores como (Diamond 1975) muestran que la forma de los hábitats es 

determinante en la evolución de la especie. En dos dimensiones, además del tamaño del 

hábitat, hay que tener en cuenta otros factores. Por ejemplo, debido al frente de propagación 

de individuos, hábitats circulares permiten fácilmente la dispersion a lo largo del mismo. Por 

tanto, hábitats con formas más circulares son más óptimos para la supervivencia de una 

especie que aquellos con formas alargadas o con peninsulas. Entonces, buscar una 

generalización para dos dimensiones parece una necesidad para estudiar sistemas reales con 

mayor precisión.   

Nuestro estudio sobre predictibilidad de una población afectada por fluctuaciones ambientales 

temporalmente autocorrelacionadas (Parte III) tiene en cuenta una población uniforme cerca 

del equilibrio. Este estudio puede ser ampliado considerando fluctuaciones mayores, que 

invaliden la aproximación lineal en torno al equilibrio. Con esta ampliación se podrá estudiar 

sistemas en condiciones más extremas. 

Para concluir, las especies no están aisladas, sino que forman parte de un ecosistema. En los 

estudios incluidos en esta tesis (Capítulos 5-7) no hemos tenido en cuenta explícitamente los 

efectos de otras especies. Estos efectos pueden ser relevantes en la dinámica de otras 

poblaciones con las que interactúan. Por tanto, estos estudios pueden ampliarse incluyendo 

varias especies en interacción. En concreto, estamos trabajando en una ampliación de 

nuestros modelos para entender las dinámicas de cadenas tróficas bajo la influencia de 

variaciones de temperatura en varias zonas pesqueras del Océano Atlántico (Proyecto 

TRIATLAS). Entender estos ecosistemas contribuirá a una mejor gestión de pesquerías. 

Las ampliaciones presentadas en esta sección a los modelos incluidos en esta tesis permiten 

describir una variedad más amplia de ecosistemas con mayor precisión. Así, se podrá entender 

mejor cómo interactúan dichas poblaciones con los demás componentes del ecosistema, tanto 

las físicas (como el clima) como las otras especies presentes en el mismo. Por tanto, los 
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presentes y futuros resultados en esta dirección podrán proporcionar herramientas para 

proteger mejor poblaciones con mayor riesgo de extinción regional. Adicionalmente, estos 

resultados permiten desarrollar estrategias de explotación de recursos naturales (entre ellos 

especies capturadas o cosechadas) más eficientes y menos dañinas para los ecosistemas.  
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