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1 Introduction

In this paper we consider the following model problem
ut −∆u = f(x, u) in Ω

Bu = 0 on ∂Ω
u(0) = u0

(1.1)

where Ω ⊂ RN is a bounded domain, f : Ω×R → R is continuous in (x, u) and locally Lipschitz
in u, uniformly in x (we may also consider more general cases for f including singular terms,
see (2.7), (2.8) below). We denote by B the boundary conditions operator which is either of the
form

Bu = u (Dirichlet boundary conditions)

or,

Bu =
∂u

∂~n
+ b(x)u (Robin boundary conditions)

with a suitable smooth function b with no sign condition which includes the case b(x) ≡ 0, i.e.,
Neumann boundary conditions. We will also consider nonlinear boundary conditions of the form

Bu ≡ ∂u

∂~n
+ b(x)u = g(x, u)

with g : Γ× R → R a continuous function in (x, u) and locally Lipschitz uniformly in x ∈ Γ. In
the special case in which g(x, u) = g(x) we have inhomogeneous boundary conditions.

We pose the problem in a Banach space X of functions on Ω. Namely, either

u0 ∈ X = C(Ω) or u0 ∈ X = H2α,q
B (Ω)

where we denote by H2α,q
B (Ω) the Bessel potential spaces associated to the Laplacian with the

boundary conditions given by B, see [3].

We denote by u(t, x;u0) the solutions of problem (1.1). Under certain conditions those
solutions are smooth enough and globally defined. Thus, we can define a nonlinear semigroup

S(t) : X → X

∗Partially suported by Project BFM2003–03810, DGES, Spain
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given by
S(t)u0 = u(t, x;u0).

Our aim is to prove that for a wide class of dissipative equations of the type (1.1) there
exist two extremal equilibria (one maximal, one minimal). Also, the asymptotic dynamics of
the solutions enters between these extremal equilibria, uniformly in space, for bounded sets of
initial data. As a consequence, we will obtain a bound for the global attractor of problem (1.1).
Namely, for a wide class of nonlinearities we will prove the following result (see Theorem 3.2 for
a more precise statement)

Theorem 1.1 There exist ordered extremal equilibria for problem (1.1), ϕm and ϕM , minimal
and maximal, respectively, in the sense of any other equilibrium, ψ, satisfies ϕm ≤ ψ ≤ ϕM .
Furthermore, the ordered set {v ∈ X : ϕm ≤ v ≤ ϕM} uniformly attracts the dynamics of the
systems, i.e,

ϕm(x) ≤ lim inf
t→∞

u(t, x;u0) ≤ lim sup
t→∞

u(t, x;u0) ≤ ϕM (x) (1.2)

uniformly in x ∈ Ω and for bounded sets of initial data u0 ∈ X. Moreover, the minimal
equilibrium is asymptotically stable from below and maximal one is asymptotically stable from
above.

Finally, there exists a global attractor A for problem (1.1) which satisfies

ϕm ≤ A ≤ ϕM

and ϕm, ϕM ∈ A.

For this, the main property we will ask f to satisfy is the following structure condition

sf(x, s) ≤ C(x)s2 +D(x)|s| for all x ∈ Ω, s ∈ R

with C and D in suitable spaces of functions in Ω together with the exponential decay of the
semigroup generated by ∆ + C with the boundary conditions given by B.

In the applications, it is important to consider non–negative solutions when f(x, 0) ≥ 0. In
this framework, under suitable instability conditions of the state u = 0 for (1.1) we will prove
the existence of a minimal positive equilibrium. Namely (see Theorem 4.2 for a more precise
statement),

Theorem 1.2 Suppose f(x, 0) ≥ 0. For non–negative solutions of problem (1.1) we have

i) If there exists a bounded nontrivial nonnegative solution then there exists a minimal non–
negative equilibrium ϕ+

m. Furthermore, either ϕ+
m ≡ 0 (if f(x, 0) = 0 for all x ∈ Ω), or

ϕ+
m(x) > 0 for all x ∈ Ω (if f(x0, 0) > 0 for some x0 ∈ Ω).

ii) Furthermore, if f(x, 0) ≡ 0 and 0 is unstable in certain sense, then 0 is an isolated equi-
librium. In such case, if there exists a bounded nontrivial nonnegative solution then there
exists a minimal positive equilibrium.

In all the cases above, if there exists the minimal positive equilibrium, it is asymptotically stable
from below.

A straightforward corollary from the results above is the following: if there exist a unique
equilibrium for (1.1), that is, ϕm ≡ ϕM , then it is globally asymptotically stable. In Section 4.2
we give conditions for the uniqueness of positive equilibria. Namely, if

f(x, s)
s

is decreasing and strictly decreasing in a set of positive measure
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then there exists at most one positive equilibrium. In particular, we extend a known result by
Brézis and Oswald (see [9]).

These arguments, based on dynamical arguments associated to the evolution equation (1.1),
allow to recover, as a particular case and in relatively straightforward way, some well-known
results about existence of positive solutions for elliptic problems by Amann [1], Berestycki [7],
Lions [7, 18], Figueiredo [13], Hernández [17]. These results were obtained in the references
above by specific elliptic techniques. Therefore, our arguments give dynamical information (e.g,
stability, existence and properties of a global attractor) to these classical results. We will review
these results in Section 5.

As a particular example of equations where our techniques can be applied, we will consider
logistic equations, where the nonlinear term is of the form

f(x, s) = m(x)s− n(x)|s|ρ−1s

with m ∈ Lp(Ω), for p > N/2, n ≥ 0 is a continuous function and ρ > 1. For these problems we
obtain conditions on the coefficients for the existence of (a necessarily unique) positive equilibria.
For this we will need to distinguish between the case in which n vanishes slowly in a small subset
of Ω or n vanishes fast. In the former case no further requirements are needed on m, while in
the latter m must help to the dissipation near the set where n vanishes, since there the reaction
is linear; see Section 6.

The paper is organized as follows. In Section 2 we review some results about existence
of solutions of problems like (1.1) that we will use in the following. Then, in Section 3, we
prove an abstract result about existence of extremal equilibria. As a consequence we obtain
the existence of extremal equilibria for problems with Dirichlet, Neumann, Robin and nonlinear
boundary conditions, i.e., we prove Theorem 1.1. The case of nonnegative solution is considered
in Section 4. There we prove Theorem 1.2 and we also give conditions for the uniqueness of
positive equilibria. In Section 5 we recover some known results about existence of positive
solutions of elliptic problems mentioned above, by using the dynamical techniques developed
before. Finally, in Section 6, we apply the results in the previous sections to the particular case
of logistic equations.

2 Preliminaries

We start summarizing some existence and uniqueness result for nonlinear reaction–diffusion
problems including (1.1). We consider the problem

ut +Au = f(x, u) in Ω
Bu = 0 on ∂Ω
u(0) = u0

(2.1)

with a suitable nonlinear term f : Ω× R → R.
We will consider either operators in divergence form of the type

Au ≡ −div(a(x)∇u) + c(x)u (2.2)

with a, c ∈ C1(Ω) such that a(x) ≥ a0 > 0 for x ∈ Ω or operators of the form

Au ≡ −
N∑

i,j=1

aij(x)∂i∂ju+
N∑

i=1

ai(x)∂iu+ a(x)u, (2.3)
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with suitable smooth coefficients.
The boundary operator B is either

Bu = u (Dirichlet boundary conditions)

or,

Bu =
∂u

∂~n
+ b(x)u (Robin boundary conditions)

with no restriction on the sign of b ∈ C1(∂Ω).
In addition, for differential operators (2.2) we can consider nonlinear boundary conditions

Bu ≡ a(x)
∂u

∂n
+ b(x)u = g(x, u)

for certain nonlinear function g(x, u) on the boundary. Notice that in particular, if g(x, u) = g(x)
the problem has non-homogeneous Robin boundary conditions.

The nonlinear term f(x, u) (and g(x, u) in the case of nonlinear boundary conditions) will
satisfy certain regularity properties guaranteeing the existence of solutions for (2.1). We remark
that regularity conditions on the coefficients and nonlinear terms are close related to the class
of initial data considered.

From the results in Mora [21], Daners and Koch–Medina [11], Lunardi [20], Amann [4], we
can consider the problem (2.1) with initial data in X = L∞(Ω) or X = C(Ω).

For that, we will assume that coefficients in (2.3) are uniformly continuous and bounded in Ω.
In the case of Robin boundary conditions, we will also assume that b(x) is uniformly continuous
and bounded, together with its derivative, Lunardi [20], p. 75. In order to apply the results
in Daners and Koch–Medina [11], we will assume that aij , ai, a ∈ Cµ(Ω) and b ∈ C1,µ(Γ), for
some 0 < µ ≤ 1; see Daners and Koch–Medina [11], p. 24. Notice that the case of operators in
divergence form (2.2), with bounded uniformly continuous coefficients can be found in Lunardi
[20], p. 119 and references therein. The case of C1 coefficients in the framework of Lq(Ω),
1 < q < ∞, is widely developed in Amann [3]. A work with a large amount of particular
examples is Henry [16].

Under these conditions, references above show that this type of operators are sectorial in
X. Therefore, they define analytic semigroups in X = Lq(Ω) with 1 < q ≤ ∞, X = C(Ω), or
X = CD(Ω). The latter space denote the subspace of continuous bounded functions vanishing
on the boundary, in the case of Dirichlet boundary conditions. To unify notations, we denote
by

CB(Ω) =

{
CD(Ω) if B(u) = u

C(Ω) in any other case.

Notice that the case f ≡ 0 in (2.1) can be written in an abstract form as{
ut +Au = 0

u(0) = u0 ∈ X

for different spaces of initial data X as above.
Denoting by S(t) the semigroup generated by −A, we have that if u0 ∈ D(A)

X
then S(t)u0

is continuous for t ≥ 0. In particular, if D(A) is not dense in X and u0 ∈ X \D(A)
X

then there
exists a unique solution of the problem which is not continuous in t = 0 but it is so for t > 0.

Thus, on the one hand, the semigroup in CB(Ω) or in Lq(Ω), 1 < q < ∞, is continuous at
t = 0. On the other hand, it is not continuous at t = 0 in L∞(Ω), nor in C(Ω), in the case of
Dirichlet boundary conditions.
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In addition, in all the references above it is proved the existence of certain intermediate
spaces between X and the domain of the operator D(A). We denote these intermediate spaces
by Xα, 0 ≤ α ≤ 1. Their main properties are that the embedings

Xα ⊂ Xβ

are compact if α > β, and the semigroup has an smoothing effect in the sense that if α > β,

‖e−tAu0‖Xα ≤M
eδt

tα−β
‖e−tAu0‖Xβ , for t > 0, (2.4)

for certain M > 0, δ ∈ R. In particular, the semigroup S(t) = e−tA is compact Xβ for all
0 ≤ β ≤ 1.

These kind of inequalities combined with Sobolev embedings lead to estimates of the type

||e−tAu0||Lr(Ω) ≤M
eδt

t
N
2

“
1
q
− 1

r

” ||u0||Lq(Ω), t > 0 (2.5)

or certain M > 0, δ ∈ R, and 1 ≤ q ≤ r ≤ ∞.
Finally, the maximum principle holds for these semigroups, e.g. Daners and Koch–Medina

[11], p. 120.
As a consequence, we have one of the main tools for our work: the monotonicity meth-

ods. Namely, for problems like (2.1), once local existence of solutions is proved, see below, the
following monotonicity properties with respect to the initial data and the nonlinear term hold:

(1) Given two ordered initial data, the corresponding solutions remain ordered as long as they
exist.

(2) Given two functions, f y g, we denote by uf and ug the solutions of problem (1.1) with right
hand side f and g, respectively. If f(t, x, s) ≤ g(t, x, s) for all t ≥ 0, s ∈ R a.e. x ∈ Ω then
uf (t, x;u0) ≤ ug(t, x;u0) a.e. x ∈ Ω as long as they exist. (the same applies to nonlinear
boundary conditions with obvious modifications).

(3) Solutions of the parabolic problem starting at a subsolution (resp. supersolution) of the
associated elliptic problem are monotonically increasing (resp. decreasing) (see Lemma
2.9).

We can now summarize the existence results for the nonlinear problem (2.1). First, assume
u0 ∈ CB(Ω). Then, if f : Ω×R → R is continuous in (x, u) and locally Lipschitz in u uniformly
in x then it can be proved the existence and uniqueness of local solutions for (2.1). This can be
done using a fixed point argument, see Theorems 7.3.1 and 7.3.2 in Lunardi [20], p. 276-277, or
Mora [21].

Theorem 2.1 Let Ω be a bounded domain. Suppose that f is a continuous function in (x, u)
and locally Lipschitz in u. Then, for any u0 ∈ X = CB(Ω) there exists a local solution of the
problem (2.1) which satisfies u ∈ C([0, T );X)∩C((0, T );D(A)), for certain T > 0. This solution
is given by the variation of constant formula

u(t, x;u0) = eAtu0 +
∫ t

0
eA(t−s)f(x, u(s, x))ds, 0 < t ≤ T. (2.6)
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On the other hand, for applications it is very useful to find a similar result with certain
variations. Namely, it is very convenient to be able to solve (2.1) for initial data in C(Ω)\CB(Ω)
or even in L∞(Ω) \CB(Ω). In addition it will be useful to be able to include some singular term
in the equations.

Following this idea, we will assume that f has a decomposition of the from

f(x, s) = g(x) +m(x)s+ f0(x, s) (2.7)

with f0 : Ω× R → R a locally Lipschitz function in s ∈ R uniformly respect to x ∈ Ω and

f0(x, 0) = 0,
∂

∂s
f0(x, 0) = 0; (2.8)

g is a suitable regular function (say bounded, in order to simplify the arguments); andm ∈ Lp(Ω)
for certain p > N/2.

Under these assumptions the following result holds.

Theorem 2.2 Let Ω be a bounded domain of RN . Suppose that f satisfies (2.7) and (2.8).
Then, for any u0 ∈ L∞(Ω) there exists a local solution of the problem u ∈ C((0, T );CB(Ω)), for
certain T > 0. This solution is given by the variation of constants formula (2.6).

To prove the result, the idea is the following: given any bounded initial data u0, we truncate
f0 in a proper way such that it is bounded and globally Lipschitz. Now, from the existence and
uniqueness results in Lq(Ω) above, we get the existence of a solution in a weaker sense. Finally,
it can be shown that the solution constructed above is bounded in a certain time interval. This
last property follows from (2.5) with q = r = ∞ and q = p and r = ∞ since, in that case, from
(2.6)

‖u(t;u0)‖L∞(Ω) ≤Meδt‖u0‖L∞(Ω) +
∫ t

0
Meδ(t−s)

(
‖g‖L∞(Ω) +K

)
ds+

+
∫ t

0
M

eδ(t−s)

(t− s)
N
2p

‖m‖Lp(Ω)‖u(s;u0)‖L∞(Ω)ds

where K represents the bound for the truncation of f0.
Now, since p > N/2, by the singular Gronwall Lemma, see Henry [16] we obtain that

‖u(t;u0)‖L∞(Ω) is bounded for bounded time intervals. Thus, in the estimate above we have
that for T small and 0 ≤ t ≤ T , the right hand side term is as close as we want to M‖u0‖L∞(Ω).
Therefore, the f0 truncation can be chosen such that u(t;u0) is a real solution of the original
problem (without truncation) in this interval.

Finally notice that in any of the cases of the theorems above, bootstrap techniques allow to
conclude that the solution is actually more regular. In fact, if m ∈ Lp(Ω) with p > N it can be
proved that u(t) ∈W 2,p(Ω) and then u(t) ∈ C1,θ(Ω) for certain 0 < θ < 1. If N/2 < p < N , we
can conclude that u(t) ∈ Cθ(Ω) for certain 0 < θ < 1.

Besides the class of bounded initial data, it is usual to consider other spaces of initial data for
problem (2.1). As we mentioned before, differential operators together with boundary conditions
we consider, define analytic semigroups in Lq(Ω), 1 < q < ∞. Hence, it is possible to use the
intermediate spaces and the semigroup properties (2.4) and (2.5) to solve the problem in this
framework. This is an standard approach, even more common than the one presented above for
bounded data; see Henry [16], Pazy [22].

In particular, it is well-known that for Lq(Ω), 1 < q < ∞ a suitable family of intermediate
spaces are the Bessel potential spaces, that we denote by X = H2α,q

B (Ω), see Henry [16], Amann
[3]. Using the properties of these spaces and of the Nemitsky operator associated to the nonlinear
term between spaces of that family we have the following results (see Arrieta et al. [6]).
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Theorem 2.3 Suppose that f satisfies (2.7) y (2.8). In addition, assume that f0 satisfies

|f0(x, s)− f0(x, r)| ≤ c(1 + |s|ρ−1 + |r|ρ−1)|s− r| (2.9)

for all x ∈ Ω, s, r ∈ R, with ρ ≥ 1 such that

1. if 2α− N
q < 0 then

1 ≤ ρ ≤ ρC = 1 +
2q

N − 2αq
;

2. if 2α− N
q = 0 then

1 ≤ ρ < ρC = ∞;

3. if 2α− N
q > 0 then no growth restriction on f0 is assumed.

Then, for all u0 ∈ X = H2α,q
B (Ω) there exists a unique local solution u(t, x;u0) ∈ C([0, τ), X),

τ > 0, of the problem with initial data u0 in the sense of it satisfies the variations of constant
formula (2.6). This solution is a classical solution for t > 0.

We now consider the problem (1.1) with nonlinear boundary conditions as considered in
Arrieta et al. [5]. Let Ω ⊂ RN be a regular bounded domain. We denote the boundary by
Γ = ∂Ω. Suppose that Γ = Γ0 ∪ Γ1 is a regular partition of the boundary, i.e, Γ0 ∩ Γ1 = ∅.

ut − div(a(x)∇u) + c(x)u = f(x, u) in Ω
u = 0 on Γ0

a(x)∂u
∂~n + b(x)u = g(x, u) on Γ1

u(0) = u0

(2.10)

with a, b, c ∈ C1(Ω) such that a(x) ≥ a0 > 0 for x ∈ Ω, f(x, ·), g(x, ·) : R → R are continuous
functions (x, u) and locally Lipschitz in u uniformly in x ∈ Ω and x ∈ Γ respectively.

We pose the problem in some space in the class

E = {Lq(Ω),W 1,q
Γ0

(Ω), 1 < q <∞}

where we denote by W 1,q
Γ0

(Ω) the subspace of functions in W 1,q(Ω) vanishing on Γ0.
Suppose that f and g satisfies the following growth condition

(GX) : f(x, ·), g(x, ·) : R → R are locally Lipschitz uniformly in x ∈ Ω and x ∈ Γ respectively.
In addition,

1. If X = Lq(Ω), we assume that f and g satisfy a relation of the form

|j(x, u)− j(x, v)| ≤ c|u− v|(|u|ρ−1 + |v|ρ−1 + 1) (2.11)

with ρf and ρg exponents, respectively, such that, for N ≥ 2 (resp. N = 1)

ρf ≤ ρΩ := 1 +
2q
N
, ρg ≤ ρΓ := 1 +

q

N
(resp. ρg < ρΓ := 1 + q)

2. If X = W 1,q
Γ0

(Ω), we assume that any of the following assumptions holds

(a) q > N
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(b) q = N and f, g satisfy that for any η > 0 there exists cη > 0 such that

|j(x, u)− j(x, v)| ≤ cη(e
η|u| N

N−1 + eη|v|
N

N−1 )|u− v| (2.12)

(c) 1 < q < N and f, g satisfies (2.11) with exponents

ρf ≤ ρΩ := 1 +
2q

N − q
ρg ≤ ρΓ := 1 +

q

N − q
.

The local existence and uniqueness of solutions now follows from the next result (see Theorem
2.1 in Arrieta et al. [5]).

Theorem 2.4 Let X an space in the class E. Assume that f and g satisfy the growth condition
(GX). Then, for any u0 ∈ X there exists a unique local solution u(t, x;u0) ∈ C([0, τ), X),
τ > 0, of the problem with initial data u0 in the sense of the variations of constants formula.
This solution is classical for t > 0.

Moreover, if u0 ∈ X then u(t, x;u0) ∈ Y for all Y ∈ E and 0 < t < τ .

We remark that the main difficult in the problem with nonlinear boundary conditions comes
from the presence of two different nonlinear terms and the need of using scales of dual spaces.
On the reason that for these kind of problems we restrict to operator in divergence form.

2.1 Global existence.

In this section we will prove the global existence of solutions of problem (2.1) provided certain
structure condition for the nonlinear term holds (see (2.13) below). Then, we can define a
nonlinear semigroup S(t) : X → X by S(t)u0 = u(t, x;u0) and t ≥ 0.

We now prove a result giving a sufficient condition for the global existence of problem (2.1).

Theorem 2.5 Suppose that problem (2.1) has a local solution for a given initial data u0 ∈ X
with X be either CB(Ω), L∞(Ω) or H2α,q

B (Ω) (see Theorems 2.1, 2.2 and 2.3). Assume in
addition that there exist C ∈ Lp(Ω), p > N/2 and 0 ≤ D ∈ Lr(Ω), r > N/2 such that

f(x, s)s ≤ C(x)s2 +D(x)|s| for all x ∈ Ω, s ∈ R. (2.13)

Then, the solution of the problem (2.1) is globally defined for all t > 0. Furthermore, given
any bounded set B ⊂ X we have that for all 0 < ε ≤ T , ∪t∈[ε,T ]S(t)B ⊂ CB(Ω) is a compact set
in X ∩ CB(Ω).

Proof. Since the local solution exists, it is enough to show that u is bounded for t in compact
sets bounded away from t = 0. Let v be the solution of problem

vt +Av = C(x)v +D(x) in Ω
Bv = 0 on ∂Ω
v(0) = u0.

Hypothesis (2.13) plus D(x) ≥ 0 imply, by the comparison principle, that the solution of the
nonlinear problem, that we denote by u, satisfies

|u(t, x;u0)| ≤ v(t, x; |u0|)

as long as both solutions exists.
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We denote by T (t) the linear semigroup generated by −A+C(x) with boundary conditions
given by B. Then, v is given by the variation of constant formula

v(t;u0) = T (t)u0 +
∫ t

0
T (t− s)Dds

Taking now L∞(Ω) norms we have that, using (2.5), for all 0 < ε ≤ t ≤ T ,

||v(t;u0)||L∞(Ω) ≤Meδtt−α||u0||X +
∫ t

0
Meδ(t−s)(t− s)−

N
2

1
r ||D||Lr(Ω) ds

for certain α.
Now, the right hand side term is bounded for t in compact intervals bounded away from 0

(the integral term is convergent since r > N/2). From here, the L∞(Ω) bound in [ε, T ] follows.
Finally, we use the variation of constant formula (2.6) and the fact that f(·, u(·)) is bounded

in Lp(Ω) with p > N/2. Then, from the classical results on parabolic regularity we get the
compactness of ∪t∈[ε,T ]S(t)B in CB(Ω) since it is bounded in Cθ(Ω) for 0 < θ ≤ 1. Now, (2.6)
and (2.4) implies the compactness in X.

Notice that in the proof above, if m ∈ Lp(Ω), with p > N , in (2.7) then ∪t∈[ε,T ]S(t)B is
bounded in C1,θ(Ω).

In the case of operators in divergence from with nonlinear boundary conditions we have the
following result about existence of global solutions (see Theorem 2.5 in Arrieta et al. [5]).

Theorem 2.6 Suppose that there exists a local solution of problem (2.10) with initial data
u0 ∈ X ∈ E. Assume in addition that there exist C0 ∈ Lp(Ω), p > N/2, 0 ≤ C1 ∈ Lr(Ω),
r > N/2, B0 ∈ Lσ(Γ1), σ > N − 1 y 0 ≤ B1 ∈ Lρ(Γ1), ρ > N − 1 such that

f(x, s)s ≤ −C0(x)s2 + C1(x)|s| for all x ∈ Ω, s ∈ R; (2.14)
g(x, s)s ≤ −B0(x)s2 +B1(x)|s| for all x ∈ Γ1, s ∈ R. (2.15)

Then, the solution of problem (2.10) is globally defined for all t > 0. Moreover, for any
bounded set B ⊂ X, we have that for all 0 < ε ≤ T , the set ∪t∈[ε,T ]S(t)B ⊂ CB(Ω) is a compact
set in X ∩ CB(Ω).

Remark 2.7 Notice that from Theorems 2.5 and 2.6 solutions enters in a bounded set of CB(Ω).
In particular, we can always work in X = L∞(Ω), X = C(Ω) or X = CB(Ω).

2.2 A monotonicity lemma

As we said before we will use monotonicity of problem (1.1). In particular, we have that if
u0 ≤ v0 are two initial data, the corresponding solutions of (1.1) starting at them are ordered as
long as they exist, that is, u(t, x;u0) ≤ u(t, x; v0). Also, if f ≤ g are two non-linear terms then
uf (t, x;u0) ≤ ug(t, x;u0) as long as both solutions exists.

We prove now a lemma that will be useful in the following. For this we need the following
results from Arrieta et al. [5] (see Theorem A.12 in [5])

Definition 2.8 i) We say that v ∈ C([0, δ), X) is a subsolution for (1.1) if

v(t) ≤ S(t)v(s) +
∫ t

s
S(t− r)f(·, v(r)) dr for all 0 ≤ s < t < δ
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where S(t) is the linear semigroup generated by ∆. We say that v is a supersolution if the
reversed inequality holds.
ii) We say that v ∈ X is a subsolution for the elliptic problem associated to (1.1) if

v ≤
∫ ∞

0
S(t− r)f(·, v) dr

where S(t) is the linear semigroup generated by ∆. We say that v is a supersolution if the
reversed inequality holds.

Then we have

Lemma 2.9 Let f : Ω× R → R locally Lipschitz. Let v(t) a subsolution of (1.1). Then,

v(t) ≤ u(t; v(0))

while both solutions exist. The result for supersolutions is analogous with reverse inequality.
In particular, if u ∈ X a subsolution of the elliptic problem{

−∆u = f(x, u) in Ω
Bu = 0 on ∂Ω

(2.16)

then the solution starting at u is monotonically increasing.
If u is a supersolution of the elliptic problem, then the solution of the parabolic problem

starting at u is monotonically decreasing.

Proof. We prove the result for subsolutions. The one for supersolutions is analogous.
The first part was proved in Theorem A.12 in [5].
Now, since u is a subsolution of the elliptic problem (2.16) we have that it is also so for the

associated parabolic problem. Now, from the first part of the theorem we have

u ≤ u(s, x;u)

while solution u exists. Using now monotonicity we have

u(t, x;u) ≤ u(t+ s, x;u)

for all t, s ≥ 0, while both solutions exists. In particular, s is as small as we want.
So, u(t, x;u) is decreasing in time.

Remark 2.10 This result is an extension of Theorem 3.3 (for C2,α(Ω) solutions) and Theorem
3.4 (for L2(Ω) solutions) in Sattinger [23] (p. 986) where the author proves the result in the
classical framework which also assumes regularity of sub-supersolutions.

3 Extremal equilibria

In this section we obtain the Theorem 1.1 for problem (1.1). First, we prove a general theorem
for semigroups and then we apply it to the particular cases of the problems above.
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3.1 An abstract result based on monotonicity and compactness.

We now show an abstract theorem giving sufficient conditions for the existence of extrema
equilibria. The result will also give information about the dynamics of the problem. Fist, we
prove a lemma that will be useful.

Lemma 3.1 Let S(t) : X → X be a continuous semigroup for all t > 0. Assume that u0, v ∈ X
are such that S(t)u0 → v in X as t→∞. Then v is an equilibrium point for S(t).

Proof. From the assumptions v = limt→∞ S(t)u0. Then, letting the system evolve and using
the continuity of S(t) for t > 0,

S(s)v = S(s) lim
t→∞

S(t)u0 = lim
t→∞

S(s+ t)u0 = v.

That is, S(s)v = v for all s > 0. Thus, v is an equilibrium point for the system.

We now prove the main result.

Theorem 3.2 Let S(t) be an order-preserving continuous semigroup for t > 0 defined in a
ordered complete metric space X. Assume that the order intervals in X are bounded in the
norm of X. Suppose that either

1. any decreasing sequence order-bounded from below (resp. increasing order-bounded from
above) is convergent in the norm of X;

2. or the semigroup S(t) is asymptotically compact (see Hale [15]).

Assume in addition that there exists an absorbing order interval, i.e, there exists two ordered
elements ηm, ηM ∈ X such that for all bounded set B ⊂ X there exists 0 < T = T (B) such that
for all u0 ∈ B

ηm ≤ S(t)u0 ≤ ηM

for all t ≥ T (B).
Then, there exist two ordered extremal equilibria ϕm ≤ ϕM such that any other equilibria ψ

satisfies ϕm ≤ ψ ≤ ϕM . Furthermore, the set {v ∈ X : ϕm ≤ v ≤ ϕM} uniformly attracts the
dynamics of the system, i.e,

ϕm ≤ lim inf
t→∞

S(t)u0 ≤ lim sup
t→∞

S(t)u0 ≤ ϕM (3.1)

uniformly for bounded sets in X.
If, in addition, S(t) is asymptotically compact then there exists the global attractor A for

S(t) which satisfies
ϕm ≤ A ≤ ϕM .

Moreover, ϕm, ϕM ∈ A.

Remark 3.3 Requiring that order interval are bounded is equivalent to requiring that the positive
cone is normal (see Theorem 1.5 in Amann [1], p. 627). We recall that a positive cone is normal
if there exists a constant δ > 0 such that if 0 ≤ x ≤ y then ||x|| ≤ δ||y|| for all x, y ≥ 0 (i.e, the
norm is semimonotone).

For example, Lp(Ω) spaces, 1 ≤ p ≤ ∞, have normal positive cone (with δ = 1) and satisfies
condition i) from the Theorem since due to Lebesgue’s Theorem any decreasing sequence order-
bounded from below (resp. increasing order-bounded from above) is convergent in the norm of
X.

11



The space C(Ω) also has normal positive cone. However, not any decreasing sequence order–
bounded from below is convergent. In that case, the asymptotic compactness of the semigroup is
needed in order to apply the result.

Proof. Let I = [ηm, ηM ]. Since I is an absorbing set there exists a time T ≥ 0 such that

ηm ≤ S(t+ T )ηM ≤ ηM (3.2)

for all t ≥ 0. In particular S(t)ηM in bounded from below for all time from T on. Using now
the order-preserving property of the semigroup and (3.2) we have

ηm ≤ S(2T )ηM ≤ S(T )ηM ≤ ηM .

And by iterating the process

ηm ≤ S(nT )ηM ≤ S((n− 1)T )ηM ≤ · · · ≤ S(T )ηM ≤ ηM (3.3)

for all n ∈ N. Thus, {S(nT )ηM}n is a monotonically decreasing sequence bounded from below
(by ηm).

Thus, in any of the cases i) or ii) of the theorem there exists an increasing sequence {nk}
going to ∞ such that S(nkT )ηM → ϕM for certain element ϕM .

We show now that {S(nT )ηM}n actually converges to some element ϕM since the sequence
is decreasing. Namely, suppose that there exists another subsequence {ñk} ↑ ∞ such that
S(ñkT )ηM → ψ for certain element ψ ∈ X. We can assume, without lack of generality ñk ≤
nk ≤ ñk+1. By (3.3) we have

S(ñkT )ηM ≤ S(nkT )ηM ≤ S(ñk+1T )ηM .

Then, taking limits as k to ∞ we have ψ ≤ ϕM ≤ ψ. Thus ψ = ϕM . Hence, we have proved
that S(nT )ηM converges to a unique element ϕM ∈ X.

Now we prove that, if fact, the whole solution S(t)ηM converges to ϕM as t→∞. By (3.2)
we have that, in particular,

S(T + t)ηM ≤ ηM (3.4)

for all 0 ≤ t < T . Let {tn} a time sequence tending to infinity. We can write tn = knT + τn
with kn ∈ N and 0 ≤ τn < T . We can assume that {kn} is a strictly increasing sequence. Then,
on the one hand, taking t = τn in (3.4) we have

S(T + τn)ηM ≤ ηM .

And applying the semigroup at time (kn − 1)T on both sides we have,

S(tn)ηM ≤ S((kn − 1)T )ηM . (3.5)

On the other hand, given any 0 ≤ s < T we can take t = T − s in (3.4) and let the semigroup
act at time s to obtain

S(2T )ηM ≤ S(s)ηM for all 0 ≤ s ≤ T.

Now, letting the semigroup act at time knT and taking s = τn we have,

S((kn + 2)T )ηM ≤ S(tn)ηM (3.6)

12



Then, taking limits as n goes to infinity inequalities (3.5) and (3.6) we get

lim
n→+∞

S(tn)ηM = ϕM .

Since the previous argument is valid for any time sequence {tn} we actually have

lim
t→+∞

S(t)ηM = ϕM .

From Lemma 3.1 we have than ϕM is an equilibrium point.
Moreover, we know that given any bounded set of initial data in X all the solutions starting

at this set enter in finite time below ηM . We also know that the solution starting at ηM converges
to ϕM . Then, property (3.1) holds uniformly for bounded sets in X.

Finally, let ψ another equilibrium. By (3.1), with u0 = ψ we get ψ ≤ ϕM . Thus, ϕM is
maximal in the set of equilibrium points, i.e, for any equilibrium, ψ, we have ψ ≤ ϕM .

The results for ϕm can be obtained in an analogous way.
In the case that S(t) is asymptotically compact, the existence of the attractor is obtained

from Theorem 3.4.6 in Hale [15].

Remark 3.4 If we assume the existence of an absorbing order interval for points instead of
bounded sets the results remain valid except the uniformity in bounded sets of X.

Remark 3.5 Once the result is established we can apply the results in Smith [24] to obtain that,
under certain hypothesis, the generic convergence of solutions starting at any point in [ηm, ηM ]
to a unique equilibrium point.

3.2 Linear homogeneous boundary conditions

We now consider the problem (1.1) with linear homogeneous boundary conditions (Dirichlet,
Neumann or Robin) under assumptions of Theorem 2.1, 2.2 or 2.3 so that the local existence
for (1.1) holds.

We start with an uniform estimate on the asymptotic behaviour of the solutions of the
nonlinear problem (1.1) in terms of the unique solution of a linear problem coming from (2.13).
Notice that hypotheses in the next theorem are stronger than those in Theorem 2.5.

Theorem 3.6 Suppose that f satisfies (2.7) and (2.8) with f0 a continuous function in (x, u),
locally Lipschitz in u. Assume that there exist C ∈ Lp(Ω), p > N/2, and 0 < D ∈ Lr(Ω),
r > N/2, such that

sf(x, s) ≤ C(x)s2 +D(x)|s| (3.7)

for all s ∈ R and x ∈ Ω.
Let X denote either C(Ω), L∞(Ω) or H2α,q

B (Ω) and assume that the semigroup S(t) generated
by ∆ + C(x) (with boundary conditions given by B) in X has exponential decay.

Then, there exists a unique solution of the following problem{
−∆φ = C(x)φ+D(x) in Ω
Bφ = 0 on ∂Ω

(3.8)

Furthermore, this solution is positive, belongs to CB(Ω) and solutions of the nonlinear prob-
lem (1.1) satisfies

lim sup
t→∞

|u(t, x;u0)| ≤ φ(x) (3.9)

uniformly in x ∈ Ω for u0 in bounded sets of X.
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Proof. The proof follows the arguments of Theorem 5.1 in Arrieta et al. [6].

In the case that f satisfies the growth condition (2.9), the hypothesis on D can be weakened
in order to obtain the existence of the global solution. Following the argumentation of Theorem
5.2 in Arrieta et al. [6] can be obtained the following result

Notice that in Arrieta et al. [6] the setting was on unbounded domains. However, all the
arguments carry out, with certain simplifications, for the case of bounded ones.

Theorem 3.7 Suppose that f satisfies (2.7) and (2.8) with f0 a continuous function in (x, u),
locally Lipschitz in u and satisfies (2.9). Also assume that f satisfies (3.7) with C ∈ Lp(Ω),
p > N/2 and

D ∈ Lr(Ω) with r >

(
1− 1

ρ

)
N

2
.

Let X denote either C(Ω), L∞(Ω) or H2α,q
B (Ω) and assume that the semigroup S(t) generated

by ∆ + C(x) (with boundary conditions given by B) in X has exponential decay.
Then, there exists a unique solution 0 ≤ φ(x) ∈ L∞(Ω)∩CB(Ω) of (3.8). Moreover, solutions

of (1.1) satisfy
lim sup
t→+∞

|u(t, x;u0)| ≤ φ(x) (3.10)

uniformly in x for u0 in bounded sets of initial data X.

Remark 3.8 The exponential decay of the semigroup S(t) is equivalent to the positivity for the
first eigenvalue of −∆− C with the corresponding boundary conditions given by B.

Remark 3.9 Properties (3.9) and (3.10) give, in particular, an L∞(Ω) bound for solutions at
large time. Namely, given a bounded set B ⊂ X and any ε > 0 there exists a time T = T (B) > 0
such that for all t ≥ T ,

−φ(x)− ε ≤ u(t, x;u0) ≤ φ(x) + ε

for all x ∈ Ω and u0 ∈ B. Therefore, we have the existence of a bounded absorbing set for the
supremum norm.

As a consequence of Theorems 3.6 and 3.2 we have

Corollary 3.10 Under the assumptions of Theorem 3.6 or 3.7, problem (1.1) has two extremal
equilibria and the conclusions of Theorem 1.1 hold.

Proof. Just notice that the semigroup is asymptotically compact (see Hale [15]) and from The-
orem 3.6, taking [ηm, ηM ] = [−φ− δ, φ+ δ] the assumptions in Theorem 3.2 hold.

Another straightforward consequence of Theorem 3.2 is the following.

Corollary 3.11 Suppose that there exists a bounded absorbing set in L∞(Ω) for problem (1.1).
Then, there exists two extremal equilibria and conclusions of Theorem 1.1 hold.

Proof. Let R > 0 such that the absorbing set in the statement is contained in the ball of radius
R centered at 0. Then, just taking ηm = −R, ηM = R we are in the hypothesis of Theorem 3.2
with X = CB(Ω) or X = L∞(Ω).
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Remark 3.12 Notice that extremal equilibria can be sign-changing. As an example, we consider
the problem (1.1) with Dirichlet boundary conditions.

Assume that f satisfies (3.7) so that, from Theorem 3.6 and Corollary 3.10, there exist a
maximal equilibrium ϕM and a minimal one ϕm.

If f(x, 0) ≥ 0 then the maximal equilibrium is non-negative. If f(x, 0) ≤ 0 then ϕm ≤ 0.
Thus, for the extremal equilibria to be sign-changing f(x, 0), must be sign-changing in Ω.

So, suppose f(x, 0) = 0 and that ϕM is a positive equilibrium. Now, by a simple translation
of the solutions of the former problem we can construct a sign-changing maximal equilibrium
point. Namely, we take h ∈ C∞0 (Ω) such that ϕM +h is sign-changing. Then, v = u−h satisfies
(1.1) with Dirichlet boundary conditions and nonlinear term g(x, v) = f(x, v + h(x)) + ∆h(x)

Moreover, for this problem, the equilibria are of the form ϕ − h where ϕ is an equilibrium
of the original problem. Therefore, ϕM − h is the maximal equilibrium for the new problem and
it is sign-changing by construction. An analogous argument leads to the result for the minimal
equilibrium.

It is easy to check that the new reaction term also satisfies (3.7).
Finally, notice that if both extremal equilibria are sign-changing any equilibria is so.

3.3 Convergence in more regular spaces

In the previous results we have obtained the uniform convergence from above to the maximal
equilibria, i.e, in C(Ω). By the variation of constant formula and the smoothing effect of the
semigroup convergence in more regular spaces can be obtained.

For this, we pose the problem in Lq(Ω). So, we have a scale of fractional power spaces Xα

associated to −∆ with the corresponding boundary conditions given by B (see Henry [16] and
Lunardi [20]). This scale satisfies Xα ⊂ W 2α,q(Ω), α < 1, with continuous embedding. Thus,
convergence in Xα implies convergence in W 2α,q(Ω). But, by the Sobolev embedings we know
that W 2α,q(Ω) ⊂ Ck,θ(Ω), k ∈ N, 0 ≤ θ ≤ 1, for k + θ < 2α−N/q.

So, if q is large enough we have 1 + θ < 2 − ε − N/q for ε small enough and θ close to 1.
Thus, Xα is continuously embedded in C1,θ(Ω) with θ as close to 1 as we want (taking ε smaller
if needed). Therefore, convergence in Xα implies convergence in C1,θ(Ω). From the uniform
convergence we will obtain, by mean of the variation of constants formula, the convergence in
Xα and then in C1,θ(Ω).

To carry out the argument we will assume that f(x, u) in a continuous function in (x, u),
locally Lipschitz in the second argument. However, the same argument can be carried out for
nonlinearities satisfying (2.7) and (2.8) with m ∈ Lp(Ω) for certain p > N . If N/2 < p < N we
can only conclude the Cθ(Ω) convergence for certain 0 < θ < 1.

Theorem 3.13 The maximal equilibrium point ϕM from Corollary 3.10 is globally asymptoti-
cally stable from above in C1,θ(Ω) norm for all 0 < θ < 1. An analogous result holds for the
minimal equilibrium.

Proof. It is clear that we just have to prove the convergence of the derivatives. For this, we
can assume that u0 ≥ ϕM is a regular initial data and that we have truncated f so that it is
globally Lipschitz. Also, we can assume that we replace A and f by A+ λI and f + λI with λ
large enough so that δ < 0 in (2.4).

Since ϕM is an equilibrium we have, from the variation of constants formula,

ϕM = eA(t−τ)ϕM +
∫ t

r
eA(t−s)f(ϕM )ds
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for all t ≥ r. Thus,

u(t)− ϕM = eA(t−τ)(u(τ)− ϕM ) +
∫ t

τ
eA(t−s)(f(u(s))− f(ϕM ))ds.

Taking Xα ⊂ Lq(Ω) norms,

||u(t)− ϕM ||α ≤M
eδ(t−τ)

(t− r)α
||u(τ)− ϕM ||α +M

∫ t

τ

eδ(t−s)

(t− s)α
||f(u(s))− f(ϕM )||0ds.

Now, since f is Lipschitz and u(t), ϕM ∈ L∞(Ω),

||u(t)− ϕM ||α ≤M
eδ(t−τ)

(t− r)α
||u(τ)− ϕM ||Lq(Ω) +ML

∫ t

τ

eδ(t−s)

(t− s)α
||u(s)− ϕM ||Lq(Ω)ds.

So,

||u(t)− ϕM ||α ≤
M

(t− τ)α
||u(r)− ϕM ||0 +ML

∫ t

τ

eδ(t−r)

(t− s)α
||u(s)− ϕM ||Lq(Ω)ds.

Now, given ε > 0 there exists a time τ > 0 such that for all s ≥ τ

||u(s)− ϕM ||Lq(Ω) < ε.

Hence, if t ≥ τ + 1 we have, since δ < 0,

||u(t;u0)− ϕM ||α ≤ C sup
s≥τ

||u(τ ;u0)− ϕM ||Lq(Ω) < Cε.

Therefore, we obtain Xα convergence, α < 1. Since for q large enough, Xα ⊂ C1+θ(Ω) the
convergence of the derivatives holds.

3.4 Inhomogeneous and nonlinear boundary conditions.

We now consider the problem (2.10) with nonlinear boundary conditions posed in either X =
Lq(Ω) or X = W 1,q

Γ0
(Ω) as in Section 2.1.

Suppose that the assumptions in Theorem 2.6 hold. Also assume that the following dissipa-
tivity condition holds

(D) : The first eigenvalue, λ1, of the next problem is positive
−div(a(x)∇u) + (c(x) + C0(x))u = λu in Ω

u = 0 on Γ0

a(x)∂u
∂~n + (b(x) +B0(x))u = 0 on Γ1

(3.1)

Remark 3.14 Property (D) is nothing else but the exponential decay of the linear semigroup
generated by ∆ + C with the corresponding boundary conditions.

Notice that require exponential decay for the linear semigroup impose conditions not only C0

but also on B0.

We have the following result for (2.10), analogous to Theorem 3.6 for linear boundary con-
ditions (see Proposition 2.5 in Arrieta et al. [5]).
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Theorem 3.15 Under the assumptions above, there exists a unique solution φ of problem
−div(a(x)∇φ) + (c(x) + C0(x))φ = C1(x) in Ω

φ = 0 on Γ0

a(x)∂φ
∂~n + (b(x) +B0(x))φ = B1(x) on Γ1

(3.2)

Furthermore, 0 ≤ φ ∈ L∞(Ω) ∩ C(Ω) and, if we denote by u(t, x;u0) the solution of (2.10),

lim sup
t→∞

|u(t, x;u0)| ≤ φ(x) uniformly in x ∈ Ω (3.3)

where the limit above is uniform for bounded sets of initial data u0 ∈ X.

In particular, if g(x, u) ≡ g(x) we have inhomogeneous Robin boundary conditions. Then,
we can take B0(x) ≡ 0 and B1(x) = |g(x)|.

Once we have the estimate (3.3) since φ ∈ C(Ω) we can truncate f and g and assume that f
and g in (2.10) are globally Lipschitz. Also, we can assume that X = Lq(Ω) and (3.3) remains
valid. So, even if Γ0 6= ∅ we can assume that φ+ δ ∈ X and the order interval [−φ− δ, φ+ δ]∩X
is an absorbing set.

Because of the smoothing property of the semigroup, orbits of bounded sets are relatively
compact in X (see Hale [15]). Then, we can apply Theorem 3.2 to get that conclusions in
Theorem 1.1 are valid in this case. Thus, we have

Theorem 3.16 Under the assumptions above the results of Theorem 1.1 hold for problem (2.10)
in X ∈ E.

Then, similar to Theorem 3.13, convergence in W 1,q
Γ0

(Ω) is obtained.

4 Non-negative solutions

In this section we consider only non-negative solutions of (1.1). We begin with some direct
consequence of the results in the previous sections. For this, we consider problem (1.1) with
homogeneous linear boundary conditions.

We assume that f satisfies (2.7) and (2.8). We also assume that f(x, 0) ≥ 0 so that the
nonlinear semigroup generated by the solutions of (1.1) preserves the positivity, i.e, for any
u0 ≥ 0, u(t, x;u0) ≥ 0 for all t ≥ 0.

An interesting question is when problem (1.1) has a positive equilibrium even in the case
f(x, 0) = 0. The next result gives a sufficient condition for the existence of positive equilibrium
in that case. Essentially, we need the global boundness of solutions starting near of 0 as well as
the instability of 0 to avoid the case in which the maximal equilibrium was 0.

Proposition 4.1 Suppose f as in Theorem 3.6 or 3.7. Also assume that f(·, 0) ≡ 0.
Assume in addition that 0 is unstable for problem (1.1) and the semigroup generated by ∆+C

has exponential decay.
Then there exists a maximal equilibrium for (1.1) which is positive. In that case, the minimal

non-negative equilibrium is 0.

Proof. From Corollary 3.10 we know that there exists a maximal equilibrium ϕM which is
asymptotically stable from above. We recall that we obtain the existence of ϕM as the limit
of u(t, x;φ) (see (3.8)). Since f(·, 0) ≡ 0 wee have that ϕM is non-negative, by the comparison
principle. Now, using that 0 is unstable we have that ϕM is positive since otherwise ϕM ≡ 0
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(by the maximum principle ϕM is either 0, or positive). Then, 0 would be stable which is a
contradiction.

In the case of nonlinear boundary condition the result is also valid provided f(·, 0) ≡ g(·, 0) ≡
0.

4.1 Existence of a minimal positive equilibrium.

In this section, we study the existence of minimal positive equilibrium. In particular, we will
prove Theorem 1.2. We will prove that in case u = 0 is an equilibrium for (1.1), i.e, f(x, 0) ≡ 0,
the existence of a bounded solution plus certain instability property of 0 (see (4.1) in Theorem
4.2 below) implies the existence of a minimal positive equilibrium.

Note that part ii) improves somehow the conclusions of Proposition 4.1.

Theorem 4.2 Consider problem (1.1) with homogeneous linear boundary conditions. Suppose
that f satisfies (2.7) and (2.8), with f0 a continuous function in (x, u), locally Lipschitz in u
and f(x, 0) ≥ 0. Then,

i) If there exists a bounded nontrivial nonnegative solution then there exists a minimal non-
negative equilibria ϕ+

m. Even more, ϕ+
m ≡ 0 (if f(x, 0) = 0 a.e. x ∈ Ω), or ϕ+

m(x) > 0 for
all x ∈ Ω (if f(x0, 0) > 0 for some x0 ∈ Ω).

ii) Furthermore, assume f(x, 0) ≡ 0 and there exists M ∈ Lp(Ω) with p > N/2 such that

f(x, s) ≥M(x)s a.e. x ∈ Ω, 0 ≤ s ≤ s0. (4.1)

Also assume that M(x) is such that 0 is unstable for problem{
vt −∆v = M(x)v in Ω

Bv = 0 on ∂Ω
(4.2)

which is equivalent to λ1(−∆ −M(x)) < 0 where we denote by λ1(−∆ −M(x)) the first
eigenvalue of −∆ +M(x) with the corresponding boundary conditions given by B.

Then, 0 is an isolated equilibrium point. If there exists a bounded nontrivial nonnegative
solution then there exists a minimal positive equilibrium ϕ+

m.

In any of the previous cases, if there exists the minimal positive equilibrium, it is asymptotically
stable from below.

As a consequence of Proposition 4.1 and the theorem above we have

Corollary 4.3 Suppose the assumptions of point i) with f(x, 0) 6≡ 0 or point ii) in the previous
theorem hold. Also assume that f satisfies the assumption in Theorem 3.6 or 3.7 In addition,
assume that the semigroup generated by ∆ + C(x) has exponential decay.

Then, there exists two ordered extremal positive equilibria 0 < ϕ+
m ≤ ϕM (which may coin-

cide). Moreover, ϕ+
m is asymptotically stable from below and ϕM it is so from above.

Furthermore, there exists an attractor for positive solutions A+ which satisfies

A+ ⊂ [ϕ+
m, ϕM ]

and ϕ+
m, ϕM ∈ A+.
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For nonlinear boundary conditions, the result in the case of point i) is valid for operators in
divergence form provided that the nonlinearity on the boundary satisfies g(·, 0) ≥ 0 with either
f(x, 0) or g(x, 0) not identically zero and condition (D) from Section 3.4 holds.

Notice that if 0 is an equilibrium, i.e, f(·, 0) ≡ 0, then 0 is the minimal non-negative one.
In the case of non-linear boundary conditions 0 is the minimal equilibrium provided f(·, 0) ≡
g(·, 0) ≡ 0.

Proof of Theorem 4.2. i) If f(x, 0) ≡ 0 then 0 is an equilibrium and that is the minimal
non-negative solution. Thus, suppose that f(x, 0) 6≡ 0. Then, u(t, x; 0), is increasing since 0 is
an strict subsolution of the associated elliptic problem (see Lemma 2.9).

Since u(t, x; 0) is increasing and bounded, there exists the pointwise limit

lim
t→∞

u(t, x; 0) = ϕ+
m(x).

Now, from Ascoli–Arzelá Theorem the convergence is uniform in x. Thus, 0 ≤ ϕ+
m is a positive

equilibrium for (1.1). Moreover, this equilibrium is minimal since any other equilibria for (1.1),
ψ, satisfies 0 < ψ, and by the comparison principle, we must have u(t, x; 0) ≤ ψ(x). So, taking
limits as t→∞ we have ϕ+

m ≤ ψ.
The asymptotic stability from below of ϕ+

m follows from the fact that given any initial data
u0 ∈ X such that 0 ≤ u0 ≤ ϕ+

m we have, by comparison, u(t, x; 0) ≤ u(t, x;u0) ≤ ϕ+
m and

u(t, x; 0) → ϕ+
m as t→∞.

ii) Suppose that f(x, 0) ≡ 0 and satisfies

f(x, s) ≥M(x)s for all x ∈ Ω, 0 ≤ s ≤ s0. (4.3)

Also assume that there exists bounded global solution apart from the trivial one starting at the
non-negative initial data v0 ∈ C1

0 (Ω).
In the following it is enough to consider positive initial data with negative normal derivative

at the boundary. Otherwise, we let the system evolve and the solution at a small time t satisfies
these conditions by the maximum principle. Then, we take as initial data this solution at time
t.

Let φ the first eigenfunction (which we assume positive) for the problem{
−∆v −M(x)v = λv in Ω

Bv = 0 on ∂Ω
(4.4)

with norm ||φ||L∞(Ω) = 1.
We prove the result in three steps.

Step A: Convergence of the solutions u(t, x; γφ), with 0 < γ < γ0 to equilibria. Given s0 > γ > 0
, γφ is a subsolution for the elliptic problem associated to (1.1) since

−∆(γφ) = M(x)γφ+ λ1γφ ≤M(x)γφ ≤ f(x, γφ)

where λ1 = λ1(−∆−M) < 0. Therefore, u(t, x; γφ) is monotonic increasing in time (see Lemma
2.9). Since we are assuming that there exists a bounded solution (starting at v0 ∈ C1

0 (Ω))
we have that there exists γ0 small enough such that γφ ≤ v0 for all 0 < γ ≤ γ0 ≤ s0. Hence,
u(t, x; γφ) → ϕγ uniformly in x ∈ Ω as t→∞ to certain function ϕγ (by Ascoli-Arzelá Theorem).
Furthermore, from Lemma 3.1, ϕγ is an equilibrium.

Thus, given γ < γ̃ ≤ γ0 we have that u(t, x; γφ) → ϕγ and u(t, x; γ̃φ) → ϕγ̃ . But γφ ≤ γ̃φ.
So, by comparison, u(t, x; γφ) ≤ u(t, x; γ̃φ) and then ϕγ ≤ ϕγ̃ . Thus, {ϕγ}0<γ≤γ0 is an ordered
set.
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Step B: Equilibria are uniformly bounded away from zero. More precisely, we prove that given
u0 ∈ C(Ω), u0 ≥ 0, there exists a time t0 = t0(u0) such that for all t ≥ t0

uf (t;u0) ≥ s0φ,

where we denote by uf the solution of problem (1.1). We define g by

g(x, s) =
{
m(x)s, 0 ≤ s ≤ s0
g̃(x, s), s0 < s

such that g(x, s) ≤ f(x, s) for all x ∈ Ω, s ≥ 0. We denote by ug the solution of problem (1.1)
with nonlinear term g. Then, by the comparison principle, for all 0 ≤ u0 ∈ C(Ω),

ug(t, x;u0) ≤ uf (t, x;u0), for all t ≥ 0.

Again, by comparison, for u0 = γφ with 0 < γ < γ0,

eεtγφ = ug(t, x; γφ) ≤ uf (t, x; γφ)

as long as ug(t, x; γφ) is below s0. This happens for all t ≥ 0 such that eεtγ ≤ s0, i.e, for all
0 ≤ t ≤ t0 with t0 = ε−1ln(s0/γ).

Moreover, notice that for all t ≥ 0, solution ug(t; γφ) is increasing since it is so for 0 ≤ t ≤ t0.
Now, fixed 0 ≤ u0 ∈ C1(Ω) with negative normal derivative at the boundary, there exists

0 < γ < γ0 such that 0 < γφ < u0. Thus, if t > t0,

uf (t;u0) ≥ ug(t;u0) ≥ ug(t; γφ) ≥ ug(t0; γφ) = s0φ.

Step C: Equilibria of the form ϕγ converge to a positive equilibrium as γ → 0. Since ϕγ is an
equilibrium, it satisfies {

−∆ϕγ = f(x, ϕγ) in Ω
ϕγ = 0 on ∂Ω

(4.5)

Now ||ϕγ ||L∞(Ω) ≤ C for certain constant C independent of γ. So, for another constant that we
still denote C,

||f(·, ϕγ)||Lp(Ω) ≤ C

with p > N/2. Thus, by elliptic regularity

||ϕγ ||Cθ(Ω) ≤ C, 0 < θ < 1.

In particular, the set {ϕγ}0<γ<γ0 is equicontinuous. Furthermore, it is an ordered set. So, we
have ϕγ → ϕ∗ ∈ C(Ω) as γ → 0 for some ϕ∗. Moreover, we can pass to the limit in (4.5) to
obtain that ϕ∗ is an equilibrium. We also have that

ϕ∗ ≥ s0φ.

since, from Step B, for all 0 < γ < γ0, ϕγ > s0φ. So ϕ∗ is positive.
Finally, it is clear that given any equilibrium ψ there exists a positive constant γ > 0 such

that γφ ≤ ψ. Thus, by comparison, ϕγ ≤ ψ. Now, ϕ∗ ≤ ϕγ . And then ϕ∗ ≤ ψ. Therefore, ϕ∗

is minimal.
So, we have that ϕ∗ is the minimal positive equilibrium. To obtain the asymptotic stability

from below of ϕ∗ just take into account that if 0 < γ < γ0 then u(t; γφ) → ϕ∗ as t → ∞.
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Then, taking a regular initial data 0 ≤ u0 ≤ ϕ∗ we have that there exists 0 < γ < γ0 such that
0 < γφ ≤ u0 ≤ ϕ∗. By comparison

0 ≤ u(t; γφ) ≤ u(t;u0) ≤ ϕ∗.

So, taking limits as t→∞ we obtain the asymptotic stability from below of ϕ∗.

Remark 4.4 In the case ii) of the theorem, we proved indeed that the order interval (0, ϕ+
m) is

contained in W s(ϕ+
m), the stable manifold of ϕ+

m.

Notice that only the linear instability of 0 is not enough to obtain the previous result. It is
necessary that 0 is an isolated equilibrium to avoid ϕ∗ ≡ 0 (see Step B in the Proof). In our
case, this property is implied by condition (4.1). However, if

lim
s→0

f(x, s)
s

= m(x)

uniformly in x, with m ∈ Lp(Ω), p > N/2, then given any ε > 0 there exists s0 > 0 such that
for all 0 ≤ s ≤ s0

f(x, s) ≥ (m(x)− ε)s a.e. x ∈ Ω.

If 0 is a linearly unstable equilibrium for (1.1) then λ1(−∆ −m) < 0 since m(x) = ∂sf(x, 0).
Taking now ε small enough we have λ1(−∆−(m−ε)) < 0 by the continuity of the first eigenvalue
respect to the potential. Thus, there exists a potential M(x) = m(x) − ε in the hypotheses of
the theorem.

Notice that the uniformity of the limit above is nothing but a condition on way the derivative
of f at u = 0 is approached. For example, for logistic nonlinear terms (see Section 6) we will
consider f(x, s) = m(x)s− n(x)sρ, with ρ > 1, n ≥ 0 bounded and m ∈ Lp(Ω), p > N/2. Thus,
the limit above is satisfied.

Analogously, for problems with nonlinear boundary conditions we have

Theorem 4.5 Suppose that f and g are continuous functions in (x, u), locally Lipschitz in u
and f(x, 0), g(x, 0) ≥ 0. Then,

i) If there exists a bounded nontrivial nonnegative solution then there exists a non-negative
minimal equilibrium ϕ+

m. Even more, ϕ+
m ≡ 0 (if f(x, 0) = g(x, 0) = 0 for all x ∈ Ω), or

ϕ+
m(x) > 0 for all x ∈ Ω (if f(x0, 0) > 0 or g(x0, 0) > 0 at some x0 ∈ Ω or x0 ∈ Γ resp.).

ii) Suppose f(x, 0) ≡ g(x, 0) ≡ 0. Assume that there exist s0 > 0, M(x) ∈ Lp(Ω), p > N/2, y
N(x) ∈ Lq(Γ1), q > N − 1, such that for all 0 ≤ s ≤ s0,

f(x, s) ≥M(x)s for all x ∈ Ω, g(x, s) ≥ N(x)s for all x ∈ Γ1

and 0 is unstable for the following problem
ut − div(a(x)∇u) + c(x)u = M(x)u in Ω

u = 0 on Γ0

a(x)∂u
∂~n + b(x)u = N(x)u on Γ1

u(0) = u0

Then, 0 is an isolated equilibrium point. If there exists a bounded nontrivial nonnegative
solution then there exists a minimal positive equilibrium ϕ+

m.
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In any of the previous cases, if there exists the minimal positive equilibrium, it is asymptotically
stable from below.

Proof. We just point out the differences with the proof of Theorem 4.2. The proof of part i) is
analogous to that of Theorem 4.2 except that now 0 is subsolution if f(x, 0) or g(x, 0) are not
identically zero. Otherwise, zero is an equilibrium.

Part ii) is also analogous to that of Theorem 4.2. Now, for Step A, we take φ the first
eigenfunction (which we assume positive and normalized as ||φ||L∞(Ω) = 1) of problem

−div(a(x)∇v) + (c(x)−M(x))v = λv in Ω
v = 0 on Γ0

∂v
∂~n + (b(x)−N(x))v = 0 on Γ1

(4.6)

Now, for all 0 < γ < s0, γφ is subsolution of (2.10) since

−div(a(x)γφ) + c(x)γφ = M(x)γφ+ λ1γφ ≤M(x)γφ ≤ f(x, γφ)

where λ1 < 0 is the first eigenvalue of (4.6) and

∂γφ

∂~n
+ b(x)γφ = N(x)γφ ≤ g(x, γφ).

Again, for 0 < γ < γ0, u(t, x; γφ) is increasing has to converge to an equilibrium.
For Step B, we consider the auxiliary functions

F (x, s) =
{
M(x)s, 0 ≤ s ≤ s0
g̃(x, s), s0 < s

and G(x, s) =
{
N(x)s, 0 ≤ s ≤ s0
g̃(x, s), s0 < s

such that f(x, s) ≥ F (x, s) and g(x, s) ≥ G(x, s) for all s ≥ 0 and x ∈ Ω or x ∈ Γ1 respectively.
Following the argument in the proof of Step B of Theorem 4.2 we have that 0 is an isolated
equilibrium.

Step C follows as above.

Following the idea of Theorem II.1 in Berestycki [7] (see Section 5.2.2) we now state an inter-
esting consequence of the two previous results for problems with Dirichlet boundary conditions.

Corollary 4.6 Let Ω1 be a connected subdomain of Ω. Suppose f(x, 0) ≡ 0. Also assume that
f satisfies

f(x, s) ≥M(x)s in Ω1 0 ≤ s ≤ s0 (4.7)

for some M ∈ Lr(Ω), r > N/2 such that 0 is unstable for{
vt −∆v = M(x)v in Ω1

v = 0 on ∂Ω1.

Finally assume that there exists a bounded nontrivial nonnegative solution of (1.1) in Ω.
Then there exists a minimal positive equilibrium of (1.1) in Ω with Dirichlet boundary con-

ditions. Moreover, the minimal equilibrium is asymptotically stable from below.

Proof. We denote by uΩ1 the solution of (1.1) in Ω1 with Dirichlet boundary conditions and
by uΩ the solution of the problem in Ω.
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Notice that, by hypothesis, there exists a bounded nontrivial nonnegative solution uΩ(t, x; v0)
of the problem in Ω (for certain initial data v0 which we can assume in C1

0 (Ω)) . Then, given
w0 ∈ C1

0 (Ω1) such that 0 ≤ w0 ≤ v0 we have, by comparison

0 ≤ uΩ1(t, x;w0) ≤ uΩ(t, x; v0) for x ∈ Ω1. (4.8)

Thus, there exists a bounded solution for the problem in Ω1. Therefore, Theorem 4.2 applies
to the problem in Ω1. So, there exists a minimal positive equilibrium, which is asymptotically
stable from below, ϕΩ1

m for the Dirichlet problem in Ω1. Then, given an initial data u0 in Ω1

with 0 ≤ u0 ≤ ϕΩ1
m in Ω1 we have uΩ1(t, x;u0) → ϕΩ1

m as t→∞.
Now, we extend ϕΩ1

m by zero to Ω (which we denote the same). Then it becomes a subsolution
(in a weak sense) of the elliptic problem in Ω{

−∆w = f(x, u) in Ω
w = 0 on ∂Ω

since {
−∆ϕΩ1

m = f(x, ϕΩ1
m ) in Ω1

ϕΩ1
m = 0 on ∂Ω1.

Then, taking 0 ≤ ξ ∈ D(Ω),∫
Ω
∇ϕΩ1

m ∇ξ =
∫

Ω1

∇ϕΩ1
m ∇ξ =

∫
Ω1

−∆ϕΩ1
m ξ +

∫
∂Ω1

∂ϕΩ1
m

∂n
ξ ≤

∫
Ω1

f(x, ϕΩ1
m )ξ =

∫
Ω
f(x, ϕΩ1

m )ξ

where we have used that ∂ϕ
Ω1
m

∂n ≤ 0 in ∂Ω1, ξ ≥ 0 in ∂Ω1, f(x, 0) = 0 and ϕΩ1
m = 0 out of Ω1. So,

ϕΩ1
m is a subsolution of the problem in Ω.

Hence, from Lemma 2.9 we have that uΩ(t, x;ϕΩ1
m ) is monotonically increasing. Moreover,

we now show it is bounded. Indeed, from (4.8), we get that ϕΩ1
m ≤ v1, in Ω, where v1 belongs to

the omega limit set of v0, which is nonempty. Thus, uΩ(t, x;ϕΩ1
m ) ≤ uΩ(t, x; v1) and is bounded.

Thus, uΩ(t, x;ϕΩ1
m ) must converge to certain equilibrium that we denote by ϕΩ

m. Let us see
that ϕΩ

m is the minimal positive equilibrium for the problem in Ω. Let 0 ≤ u0 ∈ C(Ω) (which
we can assume is positive with negative normal derivative at the boundary). Let w0 ∈ C0(Ω1)
such that u0 ≥ w0 in Ω1. Then, by comparison, we have, in Ω1,

uΩ(t, x;u0) ≥ uΩ(t, x;w0) ≥ uΩ1(t, x;w0), x ∈ Ω1.

In particular, taking w0 small enough so that w0 ≤ ϕΩ1
m and taking limits as t→∞,

lim inf
t→∞

uΩ(t, x;u0) ≥ ϕΩ1
m (x), for x ∈ Ω1.

Now, since uΩ(t, x;u0) ≥ 0 for all t > 0, x ∈ Ω and extending ϕΩ1
m by zero to Ω, we have

lim inf
t→∞

uΩ(t, x;u0) ≥ ϕΩ1
m (x), x ∈ Ω.

In particular, taking u0 = ψ a positive equilibrium in Ω, we have

ψ(x) = lim inf
t→∞

uΩ(t, x;ψ) ≥ ϕΩ1
m (x), x ∈ Ω.

Letting the semigroup of solutions in Ω act in both sides of the inequality, we have

ψ(x) = u(t, x;ψ) ≥ u(t, x;ϕΩ1
m ) x ∈ Ω.
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Taking limits as t→∞
ψ(x) ≥ ϕΩ

m(x), x ∈ Ω.

Thus, ϕΩ
m is the minimal equilibrium of the problem in Ω.

For the asymptotic stability from below for the minimal equilibrium, let φ the first eigen-
function of −∆−M in Ω1 (which we assume positive with ||φ||L∞(Ω) = 1). Notice that γφ, for
0 < γ small enough, is a subsolution of the stationary problem in Ω1. Its extension by zero to Ω
is a subsolution of the stationary problem in Ω. Thus, by Lemma 2.9, uΩ(t, x; γφ) is increasing
in time. Moreover, following the arguments in Step A of the proof of Theorem 4.2, converges to
an equilibrium ψ.

Now, given u0 ≤ ϕΩ
m, there exists 1 > γ > 0 small enough such that γφ ≤ u0 in Ω. By

monotonicity,
ϕΩ

m(x) ≥ uΩ(t, x;u0) ≥ uΩ(t, x; γφ), x ∈ Ω.

Taking limit as t goes to ∞ we have

ϕΩ
m(x) ≥ lim sup

t→∞
uΩ(t, x;u0) ≥ lim inf

t→∞
uΩ(t, x;u0) ≥ ψ(x), x ∈ Ω

for certain equilibrium ψ of the problem in Ω. But, since ϕΩ
m is minimal, we must have ψ = ϕΩ

m.
So,

lim
t→∞

uΩ(t, x;u0) = ϕΩ
m(x), x ∈ Ω.

Thus, ϕΩ
m is asymptotically stable from below.

4.2 On the stability and uniqueness of positive equilibria

In Theorem 4.2, we proved that if there is a bounded nontrivial nonnegative solution then there
exists a minimal positive equilibrium, ϕ+

m, which is asymptotically stable from below. However,
we can obtain more information about the stability of the minimal equilibrium.

Let consider the linearization around ϕ+
m of the elliptic problem associated to (1.1){

−∆u− ∂sf(x, ϕ+
m)u = 0 in Ω
u = 0 on ∂Ω.

This problem has a first eigenvalue λ1 and a first eigenfunction φ1(x) which we may assume
is positive and with L∞-norm equal to 1. Moreover, we must have λ1 ≥ 0. Otherwise, if λ1 < 0,
the equilibrium ϕ+

m is unstable in the direction of φ1. Thus, the solution of evolution problem
(1.1) starting at ϕ+

m − εφ1 for ε > 0 small enough must go away from ϕ+
m. On the other hand,

we know that given any initial data 0 < u0 ≤ ϕ+
m, we have u(t, x;u0) → ϕ+

m(x) as t→∞. Now,
taking 0 < u0 = ϕ+

m − εφ1 ≤ ϕm (u0 is positive for ε small enough since the normal derivative
of ϕ+

m at the boundary is negative) and using comparison we have

u(t, x;ϕ+
m − εφ1) ≤ ϕ+

m(x).

Thus, taking limits as t→∞,

ϕ+
m(x) = lim

t→∞
u(t, x;ϕ+

m − εφ1) = ϕ+
m(x),

that is,
u(t, x;ϕ+

m − εφ1) → ϕ+
m(x) as t→∞
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which get in contradiction with the instability of ϕ+
m. So, we must have λ1 ≥ 0.

Now, if λ1 > 0 then ϕ+
m is linearly asymptotically stable and hence locally asymptotically

stable. Otherwise, if λ1 = 0 we cannot ensure, in general, the stability of ϕ+
m (we have a one-

dimensional center manifold). However, under certain convexity hypothesis on f the stability
can be obtained. We have the following result

Proposition 4.7 Let ϕ be a positive equilibrium which is asymptotically stable from below (resp.
from above) of problem (1.1). Then, the first eigenvalue λ1 of the linearized problem around ϕ{

−∆v = ∂sf(x, ϕ)v + λ1v in Ω
v = 0 on ∂Ω

(4.9)

is non-negative. Moreover, if λ1 is positive then ϕ is also locally asymptotically stable from above
(resp. from below) and thus locally asymptotically stable. Furthermore, assume that f satisfies

f(x, s) ≤ ∂sf(x, s)s or f(x, s) ≥ ∂sf(x, s)s (4.10)

in Ω for 0 < s ≤ ||ϕ||L∞(Ω) with strict inequality in a set of positive measure, for any fixed s.
Then, λ1 > 0 and therefore ϕ is stable.

Proof. Arguing as above, we must have λ1 ≥ 0. Suppose λ1 = 0. Then, there exists a unique
positive solution (up to multiples) of problem (4.9) which we denote by φ(x).

From the equation for ϕ we have

−∆ϕ = f(x, ϕ),

and by (4.10) (we assume the first case for definiteness; the other one is analogous)

−∆ϕ ≤ ∂sf(x, ϕ)ϕ.

Multiplying this inequality by φ(x) > 0 we get

−φ∆ϕ ≤ ∂sf(x, ϕ)ϕφ = −ϕ∆φ

where we have used the equation for φ in the last equality. Integrating in Ω and using the fact
that (4.10) is strict in a set of positive measure we have∫

Ω
∇ϕ∇φ−

∫
∂Ω

∂ϕ

∂n
φ =

∫
Ω
−φ∆ϕ <

∫
Ω
−ϕ∆φ =

∫
Ω
∇φ∇ϕ−

∫
∂Ω

∂φ

∂n
ϕ

which is a contradiction since the integrals on ∂Ω are zero because of the boundary conditions
of ϕ and φ. Thus, λ1 > 0.

In the following it will be useful to use the concept of µ-increasing function we define below.

Definition 4.8 We say that h(x, s) is µ-increasing (resp. µ-decreasing) if given s1 < s2 we
have h(x, s1) ≤ h(x, s2) (resp. h(x, s1) ≥ h(x, s2)) with strict inequality in a set of positive
measure.

Remark 4.9 Under regularity assumptions on f , property (4.10) is equivalent to

f(x, s)
s

µ-increasing or
f(x.s)
s

µ-decreasing

respectively.
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Proposition 4.7 can be also obtained as a consequence of a more general argument that we
now estate

Proposition 4.10 Suppose that there exists a positive equilibrium for (1.1). Then,
i) If f(x, s) ≤ ∂sf(x, s)s for 0 ≤ s ≤ ||ϕ||L∞(Ω) then ϕ is asymptotically stable.
ii) If f(x, s) ≥ ∂sf(x, s)s for 0 ≤ s ≤ ||ϕ||L∞(Ω) then ϕ is linearly unstable.

Proof. Let
m0(x) = f(x, ϕ(x))/ϕ(x) and m1(x) = ∂sf(x, ϕ(x)).

Notice that ϕ is a positive eigenfunction of the problem −∆w =
f(x, ϕ)
ϕ

w = m0(x)w in Ω

Bw = 0 on ∂Ω

Thus, zero is the first eigenvalue of −∆−m0(x) with boundary conditions given by B. Moreover,

−∆−m1(x) = −∆−m0(x) + (m0(x)−m1(x)).

Now, by the assumptions in i) or ii), either m0(x) ≤ m1(x), or m0(x) ≥ m1(x) respectively, with
strict inequalities in a set of positive measure. Thus, zero cannot be the first eigenvalue of the
problem with potential m1, that is, the linearisation in ϕ. So, ϕ is either asymptotically stable
in case i) or linearly unstable in case ii).

Remark 4.11 Notice that Proposition 4.10 is also true for general second order elliptic oper-
ators, not necessarily in divergence form, see (2.3). In such case we need to use the result on
monotonicity of the first eigenvalue respect to the potential m in Berestycki et al. [8].

Under certain hypothesis on the nonlinear term closely related with (4.10) (see Remark 4.13
below) the uniqueness of positive solution for the elliptic problem associated to (1.1) can be
obtained. This together with the instability of 0 will imply, in particular, the existence of a
unique positive equilibrium which is globally asymptotically stable for positive solutions.

As an example, we state a result for problem with Dirichlet boundary conditions. Uniqueness
is a direct consequence of the following results. The proof is and adaptation to the space-
dependent nonlinear terms of Lemma 10.3.3, p. 160, in Cazenave and Haraux [10] and therefore,
we omit it.

Proposition 4.12 Suppose that f(x, 0) ≡ 0 and f(x, ·) is concave in [0,∞). Let ϕ > 0 a
solution of {

−∆ϕ = f(x, ϕ) in Ω
ϕ = 0 on ∂Ω

(4.11)

and ψ ≥ 0 solving {
−∆ψ ≥ f(x, ψ) in Ω

ψ = 0 on ∂Ω
(4.12)

that is, ψ is a supersolution of (4.11).
Then, either ψ ≡ 0 or ψ ≥ ϕ. In particular, there exists at most one positive solution of

(4.11).
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Remark 4.13 Suppose that f is concave, smooth and f(x, 0) ≡ 0. By the mean value theorem,
for certain 0 < ξx < s

f(x, s)
s

=
f(x, s)− f(x, 0)

s
= ∂sf(x, ξx) ≥ ∂sf(x, s)

where we have used the concavity of f for the last inequality. Thus, f satisfies the second property
in (4.10) and it is clear that this is equivalent to the fact that f(x, s)/s is decreasing in s.

A related results can be found in Brézis and Oswald [9]. There, the following results about
existence and uniqueness of positive solution for (4.11) are proved.

Theorem 4.14 (Brézis y Oswald) Suppose that f is a continuous function in the second
argument and satisfies the following property

f(x, s)
s

is decreasing in s. (4.13)

Then, there exists at most one positive solution of (4.11).

Also in that work it is proved the following existence result.

Theorem 4.15 (Brézis y Oswald) Suppose that f(x, s) is a continuous function in the sec-
ond argument. Assume that for all δ > 0 there exists a constant Cδ ≥ 0 such that f(x, s) ≥ −Cδs
for all 0 ≤ s ≤ δ, a.e. x ∈ Ω. Also assume that for any u ≥ 0, f(·, s) ∈ L∞(Ω) and there exists
a constant C > 0 such that f(x, s) ≤ C(s+ 1). Let

a0(x) = lim
s→0+

f(x, s)
s

and a∞(x) = lim
s→+∞

f(x, s)
s

.

Assume
λ1(−∆− a0) < 0 < λ1(−∆− a∞).

Then, there exists at least a positive solution of (4.11).

We now prove a related result showing uniqueness for (4.11) when f(x, s)/s is µ-increasing
or µ-decreasing without assuming f(·, u) ∈ L∞(Ω). Namely, we have

Theorem 4.16 Suppose that there exists the maximal positive solution for (4.11). Assume in
addition that, either

f(x, s)
s

is µ-decreasing in s;

or
f(x, s)
s

is µ-increasing in s.

Then, there exists a unique positive solution of (4.11).

Proof. Let ϕ be the maximal positive solution of (4.11) and ψ ≤ ϕ any other solution. Then,

−∆ϕ = f(x, ϕ) −∆ψ = f(x, ψ).

Multiplying the first equation by ψ, the second one by ϕ, subtracting and integrating in Ω, we
have

0 =
∫

Ω

f(x, ϕ)
ϕ

ϕψ −
∫

Ω

f(x, ψ)
ψ

ϕψ =
∫

Ω

(
f(x, ϕ)
ϕ

− f(x, ψ)
ψ

)
ϕψ.
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Now, since ψ ≤ ϕ using the condition for f(x, s)/s we have

f(x, ϕ)
ϕ

− f(x, ψ)
ψ

6= 0

in a set of positive measure, and it does not change its sign. So, we must have ψ ≡ 0.

Notice that Brézis and Oswald results (see Theorems 4.14 and 4.15 above) require f to be
bounded. However, under our assumptions, we only require f to satisfy (2.7) and (2.8). See
Section 6 for examples in which these conditions are satisfied and f is not bounded.

Remark 4.17 We now show another proof of Theorem 4.16 which is valid for more general
operators and boundary conditions. In particular it is valid for (1.1). With the notations in
Theorem 4.16, let

m0(x) =
f(x, ϕ(x))
ϕ(x)

and m1(x) =
f(x, ψ(x))
ψ(x)

.

Then, ϕ is a positive solution for{
−∆ϕ = m0(x)ϕ in Ω
Bϕ = 0 on ∂Ω.

Thus, the first eigenvalue of −∆ − m0(x) with the boundary conditions given by B is zero.
Analogously, the first eigenvalue of −∆−m1(x) with the boundary conditions given by B is also
zero. Now,

−∆−m1(x) = −∆−m0(x) + (m1(x)−m0(x)).

So, the first eigenvalue of −∆ − m1(x) is non-zero since either m0(x) ≤ m1(x), or m0(x) ≥
m1(x), with strict inequality in a non-zero measure set. This is a contradiction, so ϕ = ψ.

From the previous theorem we have the following Corollary.

Corollary 4.18 If f(x, s)/s is µ-increasing or µ-decreasing and there exist two positive equilib-
ria for (1.1) then they are not ordered.

Concerning stability, we have

Corollary 4.19 Is f(x, s)/s is µ-decreasing and there exists the maximal positive equilibrium
ϕM of (1.1) then ϕM is the unique positive equilibrium for (1.1). Furthermore, it is globally
asymptotically stable for positive solutions.

Corollary 4.20 Suppose f as in Theorems 3.6 or 3.7. Also assume that the linear semigroup
generated by ∆ +C, S∆+C , has exponential decay. Finally, assume that f is such that f(x, s)/s
is µ-decreasing and 0 is an unstable equilibrium.

Then, there exist a unique positive equilibrium which is globally asymptotically stable.

Proof. Since f satisfies (3.7) we know that there exists a maximal non-negative equilibrium
which is stable from above (see Corollary 3.10). Now, such equilibrium is either 0 or positive
(by the maximum principle). But it cannot be 0 since we are assuming that 0 is unstable (in
particular, it is unstable from above). Thus, the maximal equilibrium must be positive. The
uniqueness follows from Theorem 4.16. Stability from below (and therefore the global asymp-
totic stability of the unique positive equilibrium) follows from the instability of 0.
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5 Some known elliptic results revisited.

In this section we review some other results concerning the existence of positive equilibria
that were obtained using elliptic methods as they are the topological degree and (elliptic) sub-
supersolutions. Here, these results are recovered by mean of the dynamical techniques developed
above.

5.1 The principal eigenvalue

We begin with a brief summary about principal eigenvalue and its relation with the first eigen-
value of second order elliptic operators. This notion appears quite often in the literature for the
study of the existence of equilibria and its stability.

Let Ω ⊂ RN bounded domain and m ∈ Lp(Ω) with p > N/2.

Definition 5.1 We say that λ ∈ R is a principal eigenvalue for m(x), and we denote it by
λ0(m), if there exists a positive solution of{

−∆u = λm(x)u in Ω
u = 0 on ∂Ω.

(5.1)

We now consider the eigenvalue problem{
−∆u−m(x)u = µu in Ω

u = 0 on ∂Ω
(5.2)

and denote by µ1(m) the first eigenvalue which always has an associated positive eigenfunction.
First, notice that −λ0(m) is a principal eigenvalue for −m. Moreover, taking m(x) ≡ 1 we

have that λ0(1) is the first eigenvalue of{
−∆u = λu in Ω

u = 0 on ∂Ω
(5.3)

that is, λ0(1) = µ1(0).
Moreover, given m ∈ Lp(Ω), p > N/2, λ0(m) = 1 if and only if µ1(m) = 0. If m(x) ≥ 0 for

a.e. x ∈ Ω then sign(λ0(m)− 1) = sign(µ1(m)). Thus, the semigroup generated by ∆ + λm(x)
has exponential decay if and only if λ < λ0(m). Ifm(x) ≤ 0 for a.e. x ∈ Ω then sign(λ0(m)−1) 6=
sign(µ1(m)) and the semigroup generated by ∆ + λm(x) has exponential decay if and only if
λ > λ0(m).

It is known that is m(x) does not change its sign in Ω then the principal eigenvalue is unique
(see Figueiredo [13] or López–Gómez [19]).

In the following we will consider potential functions m(x) that might be sign-changing in Ω.
Let consider operators of the form

Lu = −
N∑
i1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ a0(x)u

strongly elliptic, with aij ∈ L∞(Ω), aij = aji and a0 ∈ LN/2(Ω), a0(x) ≥ 0 in Ω. For these
operators we have that for potentials m ∈ Lr(Ω), r > N/2, the principal eigenvalue λ0(m) is
strictly increasing in m and continuous respect to m in LN/2(Ω) norm (see Proposition 1.12A
and 1.12B in Figueiredo [13]).
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We now define the function µ(λ) mapping λ ∈ R to the first eigenvalue of{
−∆u− λmu = µ(λ)u in Ω

u = 0 on ∂Ω

Then, λ is a principal eigenvalue for (5.1) if and only if µ(λ) = 0. By studying the zeros of µ(λ)
we can determine the number of principal eigenvalues of problem (5.1). In this direction, the
next lemma estates an interesting property of µ(λ).

Lemma 5.2 (Lemma 6.1 in López–Gómez [19], p. 283) The function µ(λ) is analytic in
λ and concave. Moreover, if m ∈ C(Ω) is positive in some point of Ω then

lim
λ→∞

µ(λ) = −∞;

if m(x) is negative in some point of Ω then

lim
λ→−∞

µ(λ) = −∞.

Moreover, we have

Lemma 5.3 Suppose that m ∈ C(Ω) is sign-changing in Ω. Also assume that there exists λ∗

such that µ(λ∗) > 0. Then, there exists two principal eigenvalues, λm < λ∗ < λM . Moreover,
the trivial solution of {

−∆u− λmu = 0 in Ω
u = 0 on ∂Ω

(5.4)

is stable for all λm < λ < λM and unstable for all λ > λm and λ > λM .

5.2 Existence of positive equilibria

We now review some known results concerning existence of positive equilibria.
Note that we not only recover several classical results below, but our result gives the existence

of a maximal, ϕM , and minimal, ϕ+
m, positive equilibria, Theorems 4.2 or 4.5. Moreover they

are stable from above and from below, respectively, and and the order interval [ϕ+
m, ϕM ] attracts

bounded sets of non-negative initial data uniformly.

5.2.1 Amann [1] results revisited

In Amann [1] the author prove some results about existence of postive solutions of ellipitic
problems by mean topological techniques: fixed points theorems, Leray-Schauder degree, index,
, etc. Most of these elliptic results can be obtained by means of the asymptotic behaviour of the
associated parabolic problems as we now show. This proof, in particular, provides dynamical
information.

The problem considered in [1] is{
Lu = f(x, u) in Ω
Bu = g(x) on ∂Ω

(5.5)

where Ω is a regular bounded domain in RN and L is a strongly elliptic operator of the form

Lu = −
N∑

i,j=1

aij(x)DiDku+
N∑

i=1

ai(x)Diu+ a(x)u
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with aij , ai, a ∈ Cµ(Ω), (aij) symmetric and a ≥ 0.
Boundary conditions are of the form

Bu = b(x)u+ δ
∂u

∂ν

where b ∈ C1+µ(∂Ω) and either,

1. δ = 0 y b = 1;

2. or, δ = 1 y b ≥ 0 (if b ≡ 0 then a > 0 is required).

Let µ̂ = µ if N ≥ 2 and µ̂ = 0 if N = 1.
In addition, it is assumed that g ∈ C2−δ+µ̂(∂Ω), f ∈ C µ̂(Ω × I) with 0 < µ̂ < 1 and there

exists ω ≥ 0 such that
f(x, ξ)− f(x, η) > −ω(ξ − η)

for all x ∈ Ω, ξ, η ∈ I, ξ > η, where I is a closed interval of R. This property holds in particular
if f ∈ C1 and ∂sf(x, s) > −ω.

Solutions are looked for in

DI = {v ∈ C(Ω) : v(x) ∈ I for all x ∈ Ω}.

If I = R+ this is equivalent to work with non-negative solutions.

Theorem 5.4 (Theorem 9.6 in Amann [1], p. 649) Suppose g ≥ 0 and f(·, 0) ≥ 0. Let
f̂ ∈ C(Ω). Assume m ∈ C µ̂(Ω) with m(x) > 0 for almost every x ∈ Ω. Also assume that
(x, ξ) ∈ Ω× R+

f(x, ξ) ≤ f̂(x) + λm(x)ξ (5.6)

Then, problem (5.5) has a minimal non-negative solution provided λ < λ0(m), where λ0(m)
is the principal eigenvalue associated to m.

In our context, this result in the case of Dirichlet, Neumann or Robin homogeneous boundary
conditions is a straightforward consequence of Corollary 4.3 and remarks below. Indeed, notice
that (5.6) implies property (3.7) holds with C(x) = λm(x) and D(x) = f̂(x), and λ < λ0(m)
implies that the semigroup generated by ∆ + C(x) has exponential decay.

For the case of an operator in divergence form with either Neumann or Robin inhomogeneous,
or non-linear boundary conditions, the result follows from Proposition 4.5.

In fact, our results in Sections 3 and 4 applies to more general problems since we do not
require 0 ≤ m ∈ C µ̂(Ω) but m ∈ Lp(Ω) with p > N/2 and no restrictions on the sign of
m(x). Notice that in the case of Robin or non-linear boundary conditions we do not impose any
restriction on the sign of b(x).

The following result is proved in [1] by mean of fixed point techniques studying the spectral
radius of the right derivative of the integral operator whose fixed points are solutions of (5.5).

Theorem 5.5 (Theorem 9.8 in [1], p. 650) Let I = R+, g = 0 and f(·, 0) = 0. Suppose
that there exists ∂uf(·, 0) ∈ C µ̂(Ω) and is continuous in a neighborhood of 0, and ∂uf(x, 0) > 0
for almost every x ∈ Ω.

If there exists a supersolution of the problem (5.5), ψ > 0, then there exists a maximal
positive solution of (5.5) in the order interval [0, ψ] provided λ0(∂uf(·, 0)) < 1.
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As before, in our context, this result is a straightforward consequence of the results in Sections
3 and 4. Namely, since λ0(∂uf(x, 0)) < 1, then u ≡ 0 is an unstable equilibrium. Moreover,
since f is sufficiently smooth, we are under assumptions of Theorem 4.2 (see comments after
Remark 4.4).

Notice that to obtain the result in our setting we do not need as much regularity in the
coefficients. We do not need positivity of ∂uf(·, 0) either.

The next result, state conditions ensuring the existence of a positive supersolution which
make possible to apply the previous theorem. The proof in Amann [1] is obtained combining
Theorems 5.4 and 5.5 and a fixed point theorem for compact increasing maps whose right
derivative at 0 and the spectral radius of certain majorant at infinity satisfy certain hypothesis.

Theorem 5.6 (Theorem 9.9 in [1], p. 650) Under the assumption of Theorem 5.4 assume
that there exist f̂ ∈ C(Ω) and m ∈ C µ̂(Ω), with m(x) > 0 for almost every x ∈ Ω, such that, for
some λ ≥ 0,

f(x, ξ) ≤ f̂(x) + λm(x)ξ

for all (x, ξ) ∈ Ω× R+.
Then, there exists at least a positive solution of problem (5.5) provided λ0(∂uf(·, 0)) < 1 and

λ < λ0(m).

With our arguments, this theorem is a straightforward consequence of Proposition 4.1.
Also, notice that we are under the assumptions of Theorem 4.2 or 4.5 depending on the

boundary conditions. In particular, the regularity of f together with the assumption on the
linearized problem at 0, i.e., λ0(∂uf(·, 0)) < 1, give the existence and stability from below of a
minimal positive equilibrium (see Theorem 4.2 or 4.5). On the other hand, the condition λ <
λ0(m) gives the existence and asymptotic stability from above of a maximal positive equilibrium
(see Theorem 1.1). Notice that f satisfies property (3.7) with C(x) = λm(x) y D(x) = f̂(x)
and the semigroup generated by ∆ + C has exponential decay (see Section 5.1).

Notice that we do not require m to satisfy m(x) ≥ 0 nor the above regularity of f̂(x) or
m(x).

In Amann [1] the author prove the following consequence of the previous theorem giving
conditions on m and ∂uf(x, 0) to be under the assumptions of the theorem above.

Corollary 5.7 (Corollary 9.10 in [1], p. 651) Under the assumptions of the previous theo-
rem, if

min
x∈Ω

∂uf(x, 0) > λ0(1) and max
x∈Ω

m(x) < λ0(1)

then there exists at least a positive solution of problem (5.5).

Again, our arguments prove the result. Namely, the hypothesis on ∂uf(x, 0) implies that
0 is an unstable equilibrium for the parabolic problem associated to the elliptic problem (5.5).
On the other hand, the hypothesis on m(x) allow us to apply Proposition 4.1 with C = β =
maxx∈Ωm(x). Notice that the semigroup generated by −L − β has exponential decay since
β < λ0(1) (see Section 5.1).

Furthermore, our result gives the existence of a maximal equilibrium and from Theorems
4.2 or 4.5 we have the existence of a minimal positive equilibrium. In particular, there exists a
positive solution of (5.5). Indeed, we obtain the existence of a minimal and a maximal positive
solution. Moreover, the minimal solution is asymptotically stable from below and the maximal
one is so from above, and the order interval [ϕ+

m, ϕM ] attracts bounded sets of non-negative
initial data uniformly.
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5.2.2 H. Berestycki and P. L. Lions [7] revisited

In Berestycki and Lions [7] the authors prove the next result for a problem of the form{
−∆u = f(x, u) in Ω

u = 0 on ∂Ω
(5.7)

Theorem 5.8 (Theorem II.1, p. 18 in Berestycki and Lions [7]) Let Ω1 be a connected
subdomain of Ω. Suppose f(x, 0) ≡ 0 and

lim inf
s→0+

f(x, s)
s

> µ1 uniformly in x ∈ Ω1 (5.8)

where µ1 is the first eigenvalue of −∆ in Ω1 with Dirichlet boundary conditions; and

lim sup
s→+∞

f(x, s)
s

< λ1 uniformly in x ∈ Ω (5.9)

where λ1 is the first eigenvalue of −∆ in Ω with Dirichlet boundary conditions.
Then, there exists a positive solution of problem (5.7) in W 2,p(Ω) (for all p <∞).

In Remark II.1 in Berestycki and Lions [7] the authors notice that the theorem remains valid
for more general operators. Namely, strongly elliptic operators of the form

L = −
∑
i,j

Dj(aij(x)Di) +
∑

i

bi(x)Di + c(x)

with aij = aji ∈ C(Ω), bi ∈ L∞(Ω) and 0 ≤ c ∈ L∞(Ω).
As a consequence of the results, taking Ω1 = Ω, they obtain

Corollary 5.9 (Corollary II.1, p. 19 in Berestycki and Lions [7]) Suppose that f(x, 0) ≡
0 and

lim inf
s→0+

f(x, s)
s

> λ1 uniformly in x ∈ Ω (5.10)

lim sup
s→+∞

f(x, s)
s

< λ1 uniformly in x ∈ Ω (5.11)

where λ1 is the first eigenvalue of −∆ in Ω with Dirichlet boundary conditions.
Then, there exists a positive solution of problem (5.7) in W 2,p(Ω) (for all p <∞).

These results are proved in Berestycki and Lions [7] using the sub-supersolutions method for
elliptic problems: first, they build a subsolution from the first eigenfunction for the problem in
Ω1; then, they build a sequence of elliptic problems approaching (5.7) such that the non-linear
term in these problems is bounded; from here, any solution of the original problem is bounded;
finally, they build an iterative algorithm which gives a sequence converging to the solution of
(5.7).

In our context, Theorem 5.8 can be obtained as a consequence of Proposition 4.1 and Corol-
lary 4.6: on the one hand, property (5.9) implies the existence of two constants C < λ1 and
D > 0 such that, for all s ≥ 0

f(x, s) ≤ Cs+D, x ∈ Ω,

i.e., (3.7); on the other hand, property (5.8) implies the linear instability of the zero solution.
Notice that from Proposition 4.1 we have the existence of a maximal positive equilibrium

which is globally asymptotically stable from above. Moreover, we are under assumption of
Corollary 4.6. Thus, there exists a minimal equilibrium which is globally asymptotically stable
from below.

In the case of Corollary 5.9, Proposition 4.1 and Theorem 4.2 give the results.
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5.2.3 P. L. Lions [18] revisited

In Lions [18] the author study problem{
−∆u = f(u) in Ω

u = 0 on ∂Ω
(5.12)

with Ω a bounded domain in RN and f a locally Lipschitz function which satisfies

lim sup
s→+∞

f(s)
s

< λ1 (5.13)

where λ1 is the first eigenvalue of −∆.
First, the following results is stated, which gives sufficient conditions for the existence of a

maximal positive solution.

Theorem 5.10 (Theorem 1.3 in [18], p. 447) Assume f satisfies (5.13), f(0) = 0 and

lim inf
s→0

f(s)
s

> λ1. (5.14)

Then, there exists a maximal positive solution of (5.12). If f vanishes at some β > 0, the
maximal positive solution is so among those below β.

To prove the theorem, the author refers to Amann [1], Amann [2] and Berestycki and Lions
[7] (see Sections 5.2.1 and 5.2.2 above).

In our context, the result is a consequence of Proposition 4.1 and Theorem 4.2. If f vanishes
at β > 0 the result follows from the proof of Proposition 4.1 and Theorem 4.2 considering now
the supersolution β instead of φ.

As before, from Proposition 4.1 we have the existence of a maximal positive equilibrium
which is globally asymptotically stable from above. Moreover, we are under assumption of
Theorem 4.2. Thus, there exists a minimal equilibrium which is globally asymptotically stable
from below.

Also in Lions [18] the author proves, by mean of sub-supersolutions techniques, the following
result

Theorem 5.11 (Theorem 2.3 in [18], p. 453) Suppose f is a locally Lipschitz function such
that f(0) > 0. Also assume that f satisfies that either there exists β > 0 such that f(β) = 0, or
f(s) > 0 for all s > 0 and

lim
s→∞

f(s)
s

= K

with K < λ1. Then, for all 0 < λ < λ1/K, there exists the minimal positive solution of{
−∆u = λf(u) in Ω

u = 0 on ∂Ω
(5.15)

Remark 5.12 If K = 0 in the theorem above then the results is valid for all λ > 0.

With our techniques, the result is a consequence of Corollary 4.3. But, we also obtain the
asymptotic stability from below of the minimal positive equilibrium.

Namely, first assume that λ = 1. Since 0 is a subsolution of the elliptic problem (5.15),
the solution of the parabolic problem starting at 0 is monotonically increasing. If we could find
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a supersolution of the elliptic problem, then we will have the existence of a bounded solution
(the one starting at that supersolution) and then we will have that u(t, x; 0) converges to a
minimal equilibrium which is positive from the maximum principle (see Theorem 4.2 i)). The
convergence is uniform by the Ascoli-Arzelá Theorem.

Now, the hypotheses above implies the existence of a supersolution. Indeed, if there exists
β > 0 such that f(β) = 0 then β is a supersolution of the elliptic problem. On the other hand,
if f(s) > 0 for all s ≥ 0 and

lim
s→∞

f(s)
s

= K (5.16)

with K < λ1, then f satisfies
f(s)s ≤ Cs2 +D|s|

for some C < λ1 and D > 0 (see (3.7)). Thus, from Corollary 4.3 we obtain the existence of
a maximal equilibrium and so a supersolution of the elliptic problem. In fact, it is enough to
notice that φ (the solution of (3.8)) is a supersolution of (5.12).

Asymptotic stability from below of the minimal equilibrium follows from Corollary 4.3 or
Theorem 4.2.

The result for all 0 < λ < λ1/K is a straightforward consequence of the following remark: if
we denote by g(u) = λf(u) then the problem with g is under assumption of the theorem with
λ = 1 since

lim
s→∞

g(s)
s

= lim
s→∞

λf(s)
s

< λK < λ1.

In the last case, we also obtain the existence of a maximal equilibrium. With this, we have
a bound for the asymptotic dynamics of the non-negative solutions. Furthermore, the region
between the two extremal equilibria attracts the asymptotic dynamics of non-negative solutions
uniformly.

5.2.4 Figueiredo [13] revisited

In Figueiredo [13] the author considers a problem similar to the one studied in Amann [1]
(see Section 5.2.1) with Dirichlet boundary conditions and L is an strongly elliptic operator in
divergence form

Lu = −
N∑
i1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ a0(x)u

with aij ∈ L∞(Ω), aij = aji and a0 ∈ LN/2(Ω), a0(x) ≥ 0 in Ω. Moreover, f ∈ Cα(Ω×R+) and
satisfies:

(c0) There exists a continuous function, f0(x) ≥ 0, and s0 > 0 such that

f(x, s) ≥ f0(x)s for all 0 < s < s0, x ∈ Ω.

(c∞) There exist two continuous functions f∞(x), c(x) with c(x) ≥ 0 such that

f(x, s) ≤ f∞(x)s+ c(x) for all s ≥ 0, x ∈ Ω.

(nd) For all M > 0 there exists k ≥ 0 such that s→ f(x, s) + ks is not increasing for |s| ≤M .

Then it is proved
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Theorem 5.13 (Theorem 2.2 in [13], p. 53) Assume f satisfies (c0), (c∞) and (nd). Also
assume that

λ0(f0) < 1 (5.17)

λ0(f∞) > 1 (5.18)

(the last condition on f∞ is needed if f∞(x0) > 0 for some x0 ∈ Ω). Then, there exists a positive
solution of the Dirichlet problem{

−∆u = f(x, u) in Ω
u = 0 on ∂Ω

(5.19)

Also in Figueiredo [13] the author proves

Lemma 5.14 (Lemma 2.3 in [13], p. 56) Under the assumptions of the theorem above, prob-
lem (5.19) has a maximal positive solution.

The author obtains these results by mean of the sub-supersolution method: hypothesis (c∞)
and (5.18) imply the existence of a positive supersolution of the elliptic problem and hypothesis
(c0) and (5.17) imply the existence of a subsolution below the supersolution. From here a
solution is constructed as in Amann [1].

With our techniques we can recover these results and obtain stronger conclusions (also notice
that our assumptions are weaker). Namely, we obtained the existence of two extremal positive
solutions (which may coincide) and asymptotic stability properties. Indeed, property (5.17)
implies the instability of u ≡ 0 while property (5.18) implies the exponential decay of the
semigroup generated by −L+ f∞. Now, by (c∞) we have the dissipativity property (3.7). The
result follows from Corollary 4.3 and Theorem 4.2.

5.2.5 A result about logistic equations

In Hernández [17] the existence of positive solution for elliptic logistic equations with unbounded
potential. Namely, the author studies the equation{

−∆u = λm(x)u− uρ in Ω
u = 0 on ∂Ω

(5.20)

with ρ > 1, λ ∈ R y m ∈ Lp(Ω), p > N/2, with m(x) ≥ m0 > 0 in Ω, for certain positive
constant m0. The author proves the following theorem

Theorem 5.15 Let m as above. Suppose ρ > 1 and

ρN

2(ρ− 1)
< p. (5.21)

Then, for all λ > λ1, the principal eigenvalue of m, there exists a unique positive solution u > 0
of (5.20) with u ∈W 2,q(Ω) ∩W 1,q

0 (Ω) for some q > N/2. Therefore, u ∈ C(Ω). If, in addition,

ρN

ρ− 1
< p (5.22)

then u ∈ C1,β(Ω) for some 0 < β < 1.
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The proof in Hernández [17] is based again in the sub-supersolutions method to prove the
existence of a positive solution. Namely, the supersolution is obtained by computing the max-
imum in u of the nonlinear term f . The subsolution is built as a small multiple of the first
eigenfunction of the principal eigenvalue for m. The uniqueness follows from a similar argument
of our Theorem 4.16. Finally, the regularity is obtained by elliptic regularity.

Equations like (5.20) are considered in the next section (see Proposition 6.1 below). The
existence result is a consequence of Proposition 4.1. Uniqueness follows from Theorem 4.16.
Moreover, results from Section 4.2 implies the global asymptotic stability for positive solutions
of the unique equilibrium for problem (5.20). Regularity is a consequence of elliptic regularity.

Finally, notice that our results are valid for more general operators than Laplacian (including
non-variational ones). Moreover, we do not require m(x) to be positive in Ω. Also, we do not
require any relation between the growth of the non-linearity, ρ, and the regularity of m, i.e. p,
as in (5.21) and (5.22). In fact, we get u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω). Thus, u ∈ C(Ω) just requiring
p > N/2. If p > N we have u ∈ C1,β(Ω) for some 0 < β < 1 (see comment below the proof of
Theorem 2.2 and the last part of Theorem 2.5).

6 A model example: logistic equations

Our aim in this section is to apply the previous results to a model equation: a logistic autonomous
equation 

ut −∆u = f(x, u), in Ω
u = 0, on ∂Ω

u(0) = u0

(6.1)

where
f(x, s) = m(x)s− n(x)|s|ρ−1s, ρ > 1,

with
m ∈ Lp(Ω) for some p > N/2

and
n(x) ≥ 0 in Ω is a continuous function not identically zero.

Therefore, f is in the hypotheses of Theorem 2.2 and so there exists a local solution for initial
data in X = L∞(Ω).

First, notice that
f(x, s)s = m(x)s2 − n(x)|s|ρ+1. (6.2)

Thus, if λ1(∆ +m) > 0 then

f(x, s)s = m(x)s2 − n(x)|s|ρ+1 ≤ m(x)s2.

Thus, we can take C = m and D = 0 and get the existence of a unique equilibrium ϕm = ϕM = 0
which is globally asymptotically stable.

On the contrary, if λ1(∆ +m) < 0 then suppose that we decompose m in the form m(x) =
m1(x) +m2(x), x ∈ Ω, with m2 ≥ 0. Then, at least formally, by Young inequality

f(x, s)s ≤ m1(x)s2 + β

[
m2(x)
n1/ρ(x)

]ρ′

|s| (6.3)
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for certain positive constant β > 0. Thus, f satisfies the structure condition (3.7) with

C(x) = m1(x) y D(x) = β

[
m2(x)
n1/ρ(x)

]ρ′

.

Notice that f satisfies the growth restriction (2.9) with growth rate ρ. Thus, the existence
of two extremal equilibria which are globally stable from above and from below respectively will
follow from the results in Section 3. More precisely, to apply Theorem 3.7 and Corollary 3.10
we need to choose m1 ∈ Lp(Ω), for some p > N/2, such that the linear semigroup generated by
∆+m1 has exponential decay and m2 such that D(x) belongs to some Lr(Ω) with r > N

2 (1− 1
ρ).

In such a case, from Theorem 4.2 we obtain that the maximal equilibrium is positive. Anal-
ogously, the minimal one is negative since f(·, 0) ≡ 0 and 0 is unstable.

Moreover, the uniqueness of positive equilibria will follow from Theorem 4.16 since

f(x, s)
s

= m(x)− n(x)|s|ρ−1

is µ-decreasing (we recall that n(x) ≥ 0 is not identically null). Analogously, we obtain unique-
ness of negative solutions. Therefore, the minimal and maximal solutions are, respectively,
globally asymptotically stable for nonnegative or non-positive solutions of (6.1). Notice that
since m ∈ Lp(Ω) then f do not satisfies the hypotheses of Brézis and Oswald Theorem (see
Theorem 4.15).

As we will see below, to construct m1 and m2 as above we will distinguish the case in which
n > 0 in Ω or vanishes slowly in a small region, from the case in which it vanishes very fast or
in a large set. In the first case, we will show that we can always choose m1 and m2 such that C
and D satisfy conditions above.

In the second case, we will see that, to apply the results of the previous sections, we need
that m contributes to the dissipation near of the set where n vanishes, since there the reaction
is linear. More precisely we have, in the former case,

Proposition 6.1 Suppose that either n(x) ≥ γ > 0 in Ω or 1/n ∈ Ls(Ω), s > N/2ρ. Then, for
all m ∈ Lp(Ω) with p > N/2 there exist C and D satisfying (3.7) and such that the semigroup
generated by ∆ + C has exponential decay and D ∈ Lr(Ω) for some r > N

2

(
1− 1

ρ

)
.

Proof. Suppose that there exists γ > 0 such that n(x) ≥ γ in Ω or 1/n ∈ Ls(Ω), s > N/2ρ.
Then, we take

C(x) = m1(x) = m(x)− λ y m2(x) = λ

with λ large enough such that the semigroup generated by ∆ + m1 has exponential decay. In
such case, in (6.3) we have

0 ≤ D(x) = β

[
m2(x)
n1/ρ(x)

]ρ′

≤ β
λρ′

nρ′/ρ(x)
∈ Lr(Ω) with r >

N

2

(
1− 1

ρ

)
.

We now consider the case in which n(x) vanishes fast or in a large subset of Ω. In this case,
we have

Proposition 6.2 Let Ω0 = {x ∈ Ω : n(x) = 0} and Ωδ be a neighborhood of Ω0 such that
n(x) ≥ δ > 0 for all x ∈ Ω \ Ωδ. Suppose that the first eigenvalue of −∆ −m with Dirichlet
boundary conditions in Ωδ, λ

Ωδ
1 (−∆−m), is positive.

Then, there exist C and D satisfying (3.7). Also they are such that the semigroup generated
by ∆ + C has exponential decay and D ∈ Lr(Ω) for some r > N

2 (1− 1
ρ).
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Proof. By (6.2), if x ∈ Ωδ then
f(x, s) ≤ m(x)s2

and we take C(x) = m(x) and D(x) = 0 if x ∈ Ωδ.
On the other hand, if x ∈ Ω \ Ωδ then, for A large enough, we write

m1(x) =
(
−m−(x)−A

)
, m2(x) =

(
m+(x) +A

)
≥ 0, x ∈ Ω \ Ωδ.

Then, we set C(x) = m1(x) = −m−(x)−A for x ∈ Ω \ Ωδ.
From Lemma 6.3 below and the sign of −m−(x) in Ω \Ωδ we have that the linear semigroup

generated by ∆ + C(x) with Dirichlet boundary conditions in Ω has exponential decay.
Arguing as in (6.3) we have, for x ∈ Ω \ Ωδ,

D(x) = β

[
m2(x)
n1/ρ(x)

]ρ′

≤ βδ−ρ′/ρmρ′

2 (x) ∈ Lr(Ω \ Ωδ), r >
N

2
(1− 1

ρ
)

where we have used that m+ ∈ Lp, p > N/2. Therefore, D ∈ Lr(Ω), with r > N
2 (1− 1

ρ) and we
can apply Theorem 3.7 and Corollary 3.10.

A similar result, assuming C3+α regularity on the set Ω0 can be found in Fraile et al. [14].
Notice that if Ω0 is a regular set and λΩ0

1 (−∆−m) > 0 then for some neighborhood Ωδ close
enough to Ω0 we have

λΩδ
1 (−∆−m) > 0

and n(x) ≥ δ > 0 for all x ∈ Ω \ Ωδ.
We now prove the lemma used in the proof Proposition 6.2.

Lemma 6.3 With the previous notation, suppose λΩδ
1 (−∆−m) > 0.

Then, for A large enough, taking

C0(x) =


m(x) if x ∈ Ωδ

−A if x ∈ Ω \ Ωδ

we have that the first eigenvalue of −∆−C0 with Dirichlet boundary condition in Ω is positive.

Proof. Notice that
λ1(−∆− C0) = inf

ϕ∈H1
0 (Ω)

J(ϕ)∫
Ω ϕ

2

where
J(ϕ) =

∫
Ω
|∇ϕ|2 −

∫
Ω
C0ϕ

2.

Now, given ϕ ∈ H1
0 (Ω) we set P (ϕ) = ξ ∈ H1

0 (Ωδ) where ξ solves{
−∆ξ −mξ = 0 in Ωδ

ξ = ϕ on ∂Ωδ.
(6.4)

Notice that ϕ|∂Ωδ
∈ H1/2(∂Ωδ) and λΩδ

1 (−∆−m) > 0. Thus, (6.4) is well-posed.
Now, let η = ϕ− ξ ∈ H1

0 (Ωδ) which solves{
−∆η −mη = −∆ϕ−mϕ in Ωδ

η = 0 on ∂Ωδ.
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Then, we extend η to Ω by zero and we still denote it by η. Thus, on the one hand ϕ = η+(ϕ−η)
and ∫

Ω
C0ϕ

2 =
∫

Ω
C0[η2 + (ϕ− η)2 + 2η(ϕ− η)].

But, since η = 0 out of Ωδ we have∫
Ω
C0ϕ

2 =
∫

Ωδ

mη2 + 2
∫

Ωδ

mηξ +
∫

Ωδ

mξ2 −
∫

Ω\Ωδ

Aϕ2

where we have used that ϕ− η = ξ in Ωδ.
On the other hand, since ϕ = η + (ϕ− η) we have∫

Ω
|∇ϕ|2 =

∫
Ω
|∇η|2 + 2

∫
Ω
∇η∇(ϕ− η) +

∫
Ω
|∇(ϕ− η)|2.

But, η vanishes out of Ωδ. So,∫
Ω
|∇ϕ|2 =

∫
Ωδ

|∇η|2 + 2
∫

Ωδ

∇η∇ξ +
∫

Ωδ

|∇ξ|2 +
∫

Ω\Ωδ

|∇ϕ|2

where we have used that ϕ− η = ξ in Ωδ.
Thus,

J(ϕ) =
∫

Ω
|∇ϕ|2 −

∫
Ω
C0ϕ

2 =
∫

Ωδ

[
|∇η|2 −mη2

]
+

∫
Ω\Ωδ

[
|∇ϕ|2 +Aϕ2

]
+2

∫
Ωδ

[∇η∇ξ −mηξ] +
∫

Ωδ

[
|∇ξ|2 −mξ2

]
. (6.5)

But, since η ∈ H1
0 (Ωδ), ∫

Ωδ

[
|∇η|2 −mη2

]
≥ λΩδ

1 (−∆−m)
∫

Ω
η2.

Now, multiplying (6.4) by ξ and integrating by parts∫
Ωδ

[
|∇ξ|2 −mξ2

]
=

∫
∂Ωδ

∂ξ

∂n
ϕ.

Using the relation between ϕ and ξ we have∣∣∣∣∫
∂Ωδ

∂ξ

∂n
ϕ

∣∣∣∣ ≤ C||ϕ||2
H1/2(∂Ωδ)

. (6.6)

Thus, given ε > 0 ∫
∂Ωδ

∂ξ

∂n
ϕ ≥ −ε

∫
Ω\Ωδ

|∇ϕ|2 − Cε

∫
Ω\Ωδ

|ϕ|2.

Then,∫
Ω\Ωδ

[
|∇ϕ|2 +Aϕ2

]
+

∫
∂Ωδ

∂ξ

∂n
ϕ ≥ (1− ε)

∫
Ω\Ωδ

|∇ϕ|2 + (A− Cε)
∫

Ω\Ωδ

ϕ2.

Taking ε = 1/2 we have, for A large enough,∫
Ω\Ωδ

[
|∇ϕ|2 +Aϕ2

]
+

∫
Ωδ

[
|∇ξ|2 −mξ2

]
≥ γ||ϕ||2

H1(Ω\Ωδ)
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for certain positive constant γ > 0.
Finally, since η ∈ H1

0 (Ωδ) and ξ solves (6.4) we have∫
Ωδ

[∇η∇ξ −mηξ] = 0.

Thus, in (6.5) we get

J(ϕ) ≥ λΩδ
1

∫
Ωδ

η2 + γ||ϕ||2
H1(Ω\Ωδ)

≥ 0

Notice that from (6.6),

||ϕ||2
H1(Ω\Ωδ)

≥ a(
∫

Ω\Ωδ

|ϕ|2 + ||ξ||2H1(Ωδ))

for certain positive constant a. Thus,

J(ϕ) ≥ β

∫
Ω
|ϕ|2

for some β > 0, and then λ1(−∆− C0) > β > 0.
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[9] H. Brézis and L. Oswald. Remarks on sublinear elliptic equations. Nonlinear Anal., Theory
Methods Appl., 10:55–64, 1986.

[10] T. Cazenave and A. Haraux. Introduction aux problèmes d’évolution semi-linéaires. Ellipses,
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[14] J. M. Fraile, P. Koch Medina, J. López-Gómez, and S. Merino. Elliptic eigenvalue problems
and unbounded continua of positive solutions of a semilinear elliptic equation. J. Differential
Equations, 127(1):295–319, 1996.

[15] J. K. Hale. Asymptotic Behavior of Dissipative Systems. Number 25 in Mathematical
Surveys and Monographs. American Mathematical Society, Providence, Rhode Island, 1988.

[16] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Number 840 in Lecture
Notes in Mathematics. Springer-Verlag, 1981.

[17] J. Hernández. Positive solutions for the logistic equation with unbounded weights. In
Reaction diffusion systems (Trieste, 1995), volume 194 of Lecture Notes in Pure and Appl.
Math., pages 183–197. Dekker, New York, 1998.

[18] P. L. Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM
Review, 24(4):441–467, 1982.
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