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Abstract

The era of information and Big Data is an environment where multiple devices,
always connected, generate huge volumes of information (paradigm of the
Internet of Things). This paradigm is present in different areas: the Smart
Cities, sport tracking, lifestyle, or health. The goal of this thesis is the
development and implementation of a Robust predictive modeling methodology
using low cost wearable devices in biophysical and critical scenarios. In this
manuscript we present a multilevel architecture that covers from the on-node
data processing, up to the data management in Data Centers. The methodology
applies energy aware optimization techniques at each level of the network. And
the decision system makes use of data from different sources leading to expert
decision system.

The architecture and methodology developed have been implemented in a
real environment for the prediction of neurological diseases, specifically in the
prediction of symptomatic migraine attacks. Migraine is one of the most
disabling neurological diseases; it affects 12-15% population worldwide, and its
most remarkable symptom is an intense headache. Migraine is a social illness
that affects the daily life of people who the suffer from it. It leads to costs of
e 1200 per patient and year for public and private health systems, due to direct
and indirect costs, such as visits to the emergencies and absenteeism. The
prediction of the onset of pain suppose a before and after in the life of these
people, being able to act in advance to avoid it.

In this thesis, it has been shown for the first time in the literature that it is
possible to model and predict a symptomatic crisis of migraine. The proof of
concept has been carried out with real patients in a clinical study. Preliminary
results have shown that, by monitoring biomedical variables (such as skin
temperature, heart rate or sweating), it is possible to predict the beginning of a
crisis—within the medication action window current—with up to 47 minutes in
advance with high precision, and 76% hit rate on average. For the generation of
these models, it has been used state spaces and grammatical evolutionary
algorithms. The methodology is robust against sensor failures—very common in
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ambulatory monitoring wearable devices—and it is able of temporarily
regenerating a signal when a failure of data occurs. Otherwise, it is automatically
able to adapt the prediction models to use others that do not make necessitate of
the damaged sensor, thus maintaining certain prediction horizon.

In this research, a real time simulator of a migraine crisis predictor has been
developed, and it is reactive to sensor failures. The methodology presented
contemplates the use of environmental variables, and symptomatic information of
the patient for improvement and prediction system. In the economic plane, it has
been glimpsed that, before a possible energy-efficient scenario in which 2% of the
European migraineurs make use of the prediction system, leads savings of e 288
million in the electricity bill, and up to e 1272 million for the health entities.
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Resumen

La era de la información y el Big Data, se sustenta en un entorno en el que
múltiples dispositivos, siempre conectados, generan ingentes volúmenes de
información (paradigma del Internet de las Cosas). Este paradigma ha llegado
diversos entornos: las denominadas ciudades inteligentes, monitorización
deportiva, estilo de vida, o salud. El objetivo de esta tesis es el desarrollo e
implementación de una metodología de modelado predictivo robusto mediante
dispositivos wearable de bajo coste en entornos biofísicos y críticos. A lo largo de
este manuscrito se presenta una arquitectura multinivel que abarca desde el
tratamiento de los datos en los dispositivos sensores hasta el manejo de éstos en
centros de datos. La metodología cubre la optimización energética a todos los
niveles con consciencia del estado de la red. Y el sistema de decisión hace uso de
datos de distintas fuentes para conformar un sistema experto de decisión.

La arquitectura y metodología desarrolladas se han implementado en un
entorno real de predicción de enfermedades neurológicas, en concreto en la
predicción de crisis sintomáticas de migraña. La migraña es una de las
enfermedades neurológicas más discapacitantes; afecta a entre un 12 y un 15% de
la población mundial, y se caracteriza principalmente por intensos dolores de
cabeza. La migraña es una enfermedad social que afecta a la vida diaria de
quiénes la sufren. Asimismo, supone unos costes de unos 1200 euros por paciente
y año a las arcas de salud públicas y privadas debido a costes directos e
indirectos, como las visitas a urgencias y el absentismo laboral. La predicción de
la llegada del dolor suponer un antes y un después en la vida de estas personas,
pudiendo actuar con antelación para evitarlo.

En esta tesis se ha demostrado por primera vez en la literatura que es
posible el modelado y predicción de una crisis sintomática de migraña. La
prueba de concepto se ha realizado con pacientes reales en un estudio clínico. Los
resultados preliminares han demostrado que, mediante la monitorización de
variables biomédicas (como temperatura, ritmo cardiaco o sudoración), es posible
predecir la llegada de una crisis—dentro de la ventana de actuación de los
medicamentos actuales—con hasta 47 minutos de antelación con alta precisión, y
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un promedio de acierto del 76%. Para la generación de estos modelos se han
usado algoritmos de espacios de estado y evolución gramatical. La metodología
es robusta ante fallos de sensor—muy comunes en dispositivos wearable de
monitorización ambulatoria—y es capaz de regenerar temporalmente una señal
ante pérdida o fallo de datos. En caso contrario, de manera automática es capaz
de adaptar lo modelos de predicción a otros que no hagan uso del sensor dañado,
manteniendo así cierto horizonte de predicción.

En el transcurso de esta investigación, se ha desarrollado además un simulador
de predicción de crisis de migrañas en tiempo real, reactivo ante fallos de sensor. La
metodología presnetada contempla el uso de variables atmosféricas y sintomáticas
del paciente para mejora y ayuda al sistema de predicción. En el ámbito económico,
se ha vislumbrado que, ante un posible escenario energéticamente eficiente en el
que un 2% de la población migrañosa europea hace uso del sistema de predicción,
se generar ahorros energéticos de 288 millones de euros y hasta 1272 millones de
euros para las entidades sanitarias.

xxviii



“main” — 2018/7/20 — 0:23 — page xxix — #30



“main” — 2018/7/20 — 0:23 — page xxx — #31



“main” — 2018/7/20 — 0:23 — page 1 — #32

Chapter 1

Introduction

Over the last two decades there have emerged hundred of problems derivated of
the new era of the Information and Communications Technologies (ICT).
Zettabytes of data are generated by billions of heterogeneous devices that acquire
all kind of information from innumerable sources, leading to a new industrial era
revolutionizing everything: education, food and agriculture, health,
transportation etc. This abundance of data can lead to an exponential increase of
unprecedentedly knowledge generation. To achieve this knowledge, humanity
requires of big data analytic solutions. The Internet of Things (IoT) embraces in
a vertical way the architectures, methodologies and elements of many different
scenarios which encompass always-connected devices that can acquire, process
and transmit data.

This thesis presents a robust methodology for predictive modeling and
optimization applied to critical scenarios presenting symptomatic crises. The
objectives of the present manuscript (see Figure 1.1) depict a framework to
generate knowledge from multi-source data to predict and actuate in biophysical
and critical scenarios. This is made through and application-independent
data-fusion [91] predictive modeling technique and it is applied to a real study
case. This study case focuses on the prediction of critical events in the migraine
diseases, which is called to become a hot-topic research in near future of
neurology.

The methodology presented is not constrained by data, and the reader can
easily extrapolate the framework to many other specific study cases that
distributed and collaborative data acquisition networks from heterogeneous data
sources that may be correlated or uncorrelated. These networks, in IoT, conceive
Wireless Sensor Networks (WSNs). People are currently used to use these
networks in their daily life, such as smart watches. These device lack of the
precision and reliability of traditional laboratory instrumentation, however they

1
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Figure 1.1: Research objectives. Robust methodology for predictive modeling and
optimization applied to critical scenarios. This scheme summarizes the different issues
surrounding the research objectives.

are inexhaustible sources of data. It is proposed a robust system to deal with
these unreliable data, so that this problem affects minimally the decision making
over the prediction of critical events.

This thesis goes through many aspects, such as (i) Model-Based Systems
Engineering (MBSE), (ii) predictive modeling, (iii) simulation, (iv) energy
efficiency, and (v) optimization, in different abstraction levels, from
(i) personalized and ubiquitous monitoring, to (ii) local area networks, and
(iii) big centralized infrastructures. These different aspects and abstraction levels
are depicted in Figure 1.2. In this Figure it can be seen how there is an
optimization layout underlining and giving support to each aspect of the thesis:
from energy to predictive modeling. At the same time, the energetic face is also
present over each level: data processing and transmission in small monitoring
devices and intelligent devices, or workload balancing in an IoT scenario
including federated Cloud data centers. Simulation is a key tool to better
understand and smooth development of complex systems. In this research it has
been used as check-point of the methodology of the robust predictive system
prior to a final physical implementation. Predictive modeling covers every facet
of this thesis, making use of information extraction from heterogeneous data
sources with different semantic representation: analog continuous/ discrete data,
partial subjective information, dichotomic information from log forms etc..

This Chapter serves as introduction to the problem to be solved in further
Chapters, and as background support of the state of the art and current techniques

2
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Figure 1.2: Different aspects and abstraction levels treated in the thesis: ubiquitous
WBSN, intermediate local area networks, and big centralized infrastructures. There
is an optimization layout underlining and giving support to each aspect: from energy
to predictive modeling. The energetic optimization is present over each level: data
processing and transmission in small monitoring devices and intelligent devices, and
workload balancing in an IoT scenario.

existing to deal with problems of each aspect described in thesis.

1.1 Mobile Cloud Computing and health

1 Introduction
1.1 Mobile Cloud Computing and health

1.1.1 Ambulatory monitoring, MCC and WBSN
1.2 The migraine disease
1.3 Energy efficiency in Wireless Body Sensor Networks
1.4 Publications

IoT devices are always connected and generate a very large mass of data that
must be processed. This thesis is framed in a Mobile Cloud Computing (MCC)
environment [92]. MCC is the combination of Cloud computing, mobile computing
and wireless networks to transport abundant computational resources to mobile
users, network operators, as well as Cloud computing providers. The resources are
sent to computer units with higher capacities (Data Centers) which are powered
with high levels of energy for their operation.

Large scale population monitoring systems in MCC scenarios are starting to
become a reality, specially under the paradigm of Smart Cities. Many different
and vague definitions of Smart Cities are described in the literature. According to
the authors of the ranking of middle-sized smart European Cities reported for the
Austrian Centre of Regional Science [81], a Smart City is understood as a certain
ability of a city and not focusing on single aspects and certain characteristics are

3



“main” — 2018/7/20 — 0:23 — page 4 — #35

1.1. MOBILE CLOUD COMPUTING AND HEALTH CHAPTER 1. INTRODUCTION

required for an evaluation. The authors of this study also indicate that the term is
not used in a holistic way describing a city with certain attributes, but is used for
various aspects, that Deakin et al. [37] describe in another study. It may said that
Smart Cities are based on the application of ICT through IoT, and they merge a set
of services and resources in the urban environment to make citizen’s life better. The
services applied over the health care lead to the eHealth scenario that targets this
research work. Training sport systems or healthcare ambulatory monitorization
systems foresee a future where data and communication management—between
the monitoring systems and the data bases and computing centers—will be crucial
to reduce the energetic impact that these already cause in our days.

Among proposed Smart Cities services devoted to monitorization of daily
activity and healthcare (eHealth systems), there are several research areas that
exhibit a high interest for future applications. As an example, tracking
prediction to optimize tactics in team sports [65], or mobile applications for sport
training [96]. Further, we can find dozens of applications focused on the medical
environment, such as: remote diagnosis, disease alarms generation [3], prediction
of atrial fibrillation [119], or arrhythmia detection using mobile devices [104].

Health care in unobtrusive monitoring scenarios has become one of the most
challenging areas of the Internet of Things. Health care applications are being
exploited in both commercial [69] and research environments [131]. The
distribution and specificity of clinical use of these devices remains in the category
Wellness & Life Style category, trying to serve mass market. These Wellness &
Life Style devices are not designed around a specific customer’s need or medical
condition, thus, are solely used for customer’s self-tracking of variables like
calories burned, exercise and sleep time, heart rate, among others. Recent
proliferation of wireless monitoring devices has brought big opportunities to the
industry of healthcare and personal well-being. This has become a major concern
in the paradigm of proactive personal eHealth [191] in the era of the IoT.

Self-tracking device creates an opportunity among individuals who are able
and willing to participate in the management of their disease. In the general
context, 9% of the population use wearable to monitor health conditions and
36% of doctors think that monitor pain would help patients and their practice1.
On the healthcare side, a growing number of hospitals are using (or piloting the
use of) self-tracking technologies to monitor conditions, which have to be
instrumented (real time monitor), interconnected (smart phone, hubs), intelligent
(provide recommendations). Reuters predicted that 70% of healthcare

1Fashioningtech: http://fashioningtech.com/profiles/blogs/fashioning-health-wellness-an-interview-with-
misfit-wearables (accessed March 2018)
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organizations globally will invest in wearables, apps and related technologies2 in
the next three years. The global market for wearable medical devices is projected
to reach 30 billion by 2020, with a compounded annual growth rate of 42.9%
between 2014 and 20193. Wearable device shipments worldwide will growth from
23 million in 2015 to 175 million units in 2020, and pass from 9% usage to 38%
by 20204.

In the market, during the last years, dozens of companies have developed a
large number of monitoring devices. Most of them are not oriented to the science
but mostly to the personal well-being. They usually incorporate movement sensors
and rarely others such as oxygen saturation, electrodermal activity or skin surface
temperature. The accuracy of these devices—generally presented as wristbands—
is not enough for medical purposes in a continuous ambulatory study.

Different medical bio-monitors can be found in the state-of-the-art, such as
the IMEC’s devices Smart ECG necklace for ambulatory cardiac monitoring, or
the Health Patch5 developed in collaboration between the Holst Centre and
SHINKO6. Another example are the medical devices for rehabilitation and
muscle strain diagnosis developed by TMG7. Wristband Empatica E48 is a
commercial device that, unlike Surge (FitBit9), also commercial, is thought for
scientific usage. Empatica E4 integrates several sensors, but suffer from accuracy
problems due to plastic belt of the wristband format makes it move. This
company has recently released the Embrace10, a commercial device for seizure
detection. For this massive consuming device, they have improved the movement
problems with an adjustable textile belt. There are also others less portable
devices, such as the well known Shimmer device11. This device allows wireless
communication and control of the whole acquisition system to enlarge the
battery life. Shimmer nodes are thought for non-invasive biomedical
research [24].

2Reuters’ press note: https://www.reuters.com/article/us-apple-hospitals-exclusive/exclusive-apples-
health-tech-takes-early-lead-among-top-hospitals-idUSKBN0L90G920150205 (accessed March 2018)

3RockHeal+h: https://rockhealth.com/reports/the-future-of-biosensing-wearables/ (accessed March
2018)

4eMarketer:http://www.emarketer.com/article.aspx?R=1012756&RewroteTitle=1 (accessed March
2018)

5IMEC devices: https://www.holstcentre.com/news---press/2016/health-patch/ (accessed March
2018)

6SHINKO: http://www.shinko.co.jp/english/index.html (accessed March 2018)
7TMG: http://www.tmg-bodyevolution.com/medical (accessed March 2018)
8Empatica: https://www.empatica.com (accessed March 2018)
9FitBit: https://www.fitbit.com (accessed March 2018)

10Embrace: https://www.empatica.com/embrace/ (accessed March 2018)
11Shimmer: http://www.shimmersensing.com (accessed March 2018)
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1.1.1 Ambulatory monitoring, MCC and WBSN
The continuous development of high-performance microprocessors and novel
communication protocols has stimulated great interest in the research of wireless
sensor nodes for wireless body sensor network (WBSN) applications [151]. They
allow physiological signals to be easily monitored.

The most common WBSN application areas are, as aforementioned,
healthcare in the elderly population, remote medical diagnosis or sport training
mobile applications. But there are also others such as disease alarm notifications
as Alemda et al. relate in [3] or rehabilitation [133]. There are other regarding
monitoring of illnesses related to functional impairment [161] or Parkinson
disease [93], and it also plays a crucial role in Ambient Assisted Living tools
designed for elders [137]. Among all these applications, the core functionality is
detection and classification of activities or events such as heart failure.

The importance of promoting the use of these networks is shown in the
amount of inversions made in projects like the “HealthService24 Project”, most
of them in countries with elderly populations with chronic diseases [118].
Predictive models in the eHealth scenario using wearable monitoring devices have
increased rapidly—from activity recognition [45] to event detection in
neurological diseases [74]. One of the biggest areas of interest, because of its
major impact on the user’s satisfaction, is the use of data collected by WBSNs
for prediction in chronic diseases. Some studies, for instance, have tackled the
predictive functionality for epileptic seizures [102] or anomalies in blood glucose
levels. Another example of prediction system is the work of Hidalgo et al. in [78]
for modeling of glycemia in humans.

Many different modeling techniques have been applied in these researches:
time series algorithms, state-space, or Grammatical Evolutionary (GE) algorithms
among others. Time series models are polynomial functions based on past data of
the series. Time series models can be used to predict data by recursive iteration
over past data. On the other hand, state-space models represent the behavior
of a signal through the relation with system’s states and other. Alternatively
to these classic techniques, GE algorithms are a heuristic approach to the model
discovery problem. GE reduce the model complexity and help on the automatic
feature selection automatically by means of symbolic regressions, as opposed to
the time costly manual feature selection of classic modeling methods [7]. As an
example, Cescon [28] presents in her thesis different modeling techniques using
both state-space models and time series algorithms for prediction in diabetes. GE
and Genetic Programming, thanks to the improvement of computational resources
have faced to many real world applications in different areas, such as prediction
of economic events in financial applications, ecological simulation [4] or modeling

6
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of dynamic power consumption of servers [149] in data centers. Related to health
problems, GE has been used for classification purposes such as fetal heart rate
in [60] or to model glycemia in humans [78].

However, most of the aforementioned studies have not dealt with the issues
of real-time data acquisition by WBSNs, but from off-line processed databases.
These scenarios present big challenges in data acquisition and processing in
ambulatory environments. Unfortunately, event detection in neurological diseases
and diagnosis are still in their early stages of research and with limited
commercial examples. In chronic diseases with symptomatic events the
prediction of incoming events is crucial. Per-patient modeling of the behavior of
chronic diseases has proved that the implementation of such kind of
methodologies is applicable in a real ubiquitous health care system. Despite this
thesis describes a framework and an architecture, this has been entirely
implemented in a real study case of a chronic disease with symptomatic crises,
the migraine, where it has been considered the real-time issue.

Remote health monitoring systems are divided into two main layers: the
front-end and the back-end, to acquire, store and analyze patient data [131].
Despite there have been discussed different topology for healthcare monitoring
systems [54], and there are many possible diagnostic systems and methodologies
for several chronic diseases (such as diabetes [49] or asthma [55]) at the
architectural level there are few real implementations working in such a fashion.
There are a lot of business and research opportunities hanging on big data
analytics and WBSNs, but there are still few companies that use the information
both facets: predictive purposes an ambulatory monitoring,i.e. 24 hours a day.
However, in the private plane recently there have appeared companies combining
ambulatory monitoring and prediction. MedicSen12 that predicts future glucose
values, or Diagnoptics13 for cardiovascular risks. Cardiovascular diseases have
been studied from decades; from a patent in 1985 [139] up to research works [36]
like WANDA [99, 164]—an end-to-end remote health monitoring and analytics
system designed and implemented for heart failure in a real-time and automated
way.

One of the reasons why there has not been an explosion of ambulatory
predictive systems in healthcare are two of the major problems with WBSNs:
(i) data loss due to disconnections, sensor problems or sensor losses and (ii) the
energy constrains of these networks due to the battery life; very common
problems in ambulatory studies for ambient assisted living (AAL) [6]. Data
losses pose strong demands on the real-time analysis of data, but the prediction

12MedicSen: https://www.medicsen.com (accessed March 2018)
13Diagnoptics: https://www.diagnoptics.com/cardiovascular-risk/ (accessed March 2018)
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capability should not be affected. Different alternatives have been proposed in
the literature to tackle the energetic problem as shown further (see Section 1.3).
However, there have not be found automatic intelligent monitoring alternatives
to solve the problem of data losses. During the research it has not be found
either implementations that combine both intelligent energy efficient
implementations and autonomous decisions systems to manage damaged data. In
this thesis it has been considered these situations and it has been tackled in an
optimized way.

Prediction of critical events in chronic diseases

Three are the main challenges of the intelligent algorithms in health data
mining systems [14]: prediction, anomaly detection and diagnosis. For instance,
support vector machines (SVM) have been used in arrhythmia and seizure
detection [102]; hidden Markov models (HMM) have been applied for detecting
anomalies in blood glucose levels [192]; decision trees and Bayes nets have been
used in stress studies [165]; and artificial neural networks (ANN) in diabetes
works [29]. Using Artificial Neural Networks (ANNs), Babušiak et al. [12] predict
the ECG signal for arrhythmia detection. With the same purpose,
Grandl et al. use these algorithms in WBSNs in [64]. Other work tries to predict
epileptic seizures through EEG [121] using damaged data, but these have not
been gathered from a WBSN.

This thesis focuses on the algorithms of prediction and correlation among
signals. Both kinds of algorithms are frequently applied in the literature to static
datasets, either clinical or online databases of sensor data [84, 97], where there is
no data loss and signals are less noisy. Therefore, the first difficulty in this study
is to deal with a noisy real scenario from which the gathered data come. Thus,
the robustness will be a very important requirement of the developed data
processing. Mobile health (m-Health) enables monitoring the type, quantity and
quality of everyday activities improving daily care and the design of more
clinically meaningful interventions to establish evidence-based practices [44].
Within m-Health, WBSNs are one of the most promising tools for unobtrusive
healthcare monitoring. Wearable sensors placed on the body surface enable
registering physiological and environmental human conditions, such as
electroencephalogram [41], blood pressure [47] and accelerometry [31], among
others.

The majority of health case studies with WBSNs in the literature are
performed under a controlled setting [1, 5, 155, 165]. On the contrary, the data
collected for this paper were acquired from an ambulatory monitoring scenario,

8
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where real migraineurs wore the sensors almost 24 hours per day. Thus, this
study captures the full complexity and multi-dimensionality of a real health
scenario. Healthcare data volumes are massive, and as a consequence, the focus
of health monitoring systems is progressively shifting from the mere sensor
reading to the treatment and processing of the data [14] and the development of
intelligent algorithms.

Simulation frameworks for healthcare systems

As stated before, there are not many implementations of systems for
decision support in ambulatory predictive systems, to generate recommendations
for patients and clinicians. There are solutions to tackle the problem of
prediction in healthcare as Djitong et al. present in [43], however they are not
oriented to personalized, and thus, ambulatory medicine but on health problems
related to infections. In addition, the magnitude of these problems and the
diversity of possible scenarios—such as different outbreaks distributed in time
and space—lead to first developments in simulated frameworks.

Development of devices for diagnosis and detection is a time consuming
process. Simulation experiments may help speed up the engineering process,
especially in the initial phase of exploration. This is the main goal of the paper:
to specify an advanced simulation framework that helps to validate the behavior
of a migraine attack predictive system. Simulation means savings in terms of
implementation costs, time, or human and material resources. Simulation is the
natural step in a MBSE design prior to a physical implementation because it
accelerates error debugging phase and it allows the verification of the
methodology.

Concerning simulation frameworks for simulations of Cyber Physical Systems
(CPSs) it can be found Ptolemy II [23], a discrete-event modeling environment
focused on application to cyber-physical and embedded systems; or Simulink from
MATLAB 14, that is more oriented towards engineers and has hard semantics.
Barhak et al. [16] present a software tool for chronic diseases. Despite of the
software is presented as a tool for many different chronic diseases, models must be
defined as states and transition probabilities of Markov transition models—which is
a hard constraint. Another example is Archimedes [46], a commercial simulator for
diabetes using an object-oriented approach. Both of them implement a Graphical
User Interface (GUI) and are distributed as open source.

As stated before, this thesis pursues the simulation of a CPS to raise alarms
14MATLAB 2015. version 8.5.0.197613 (R2015a). Natick, Massachusetts, The MathWorks

Inc.
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for predictive modeling of symptomatic crises in chronic diseases, specifically, the
migraine. As it will be shown, in this thesis it has been used a co-designed
prototype for data collection and real time experimentation, however, this system
does not incorporate an alarm interface. Before an actual device is implemented
in hardware to do so, a hardware/software (HW/SW) co-simulation that includes
hardware-in-the-loop (HIL) will be used. This will ensure that the system works
in presence of actual hardware sensor failures and physical actuators, and triggers
alarms accurately, as predicted by the simulation system. The specification of
such a HW/SW co-simulation system is specified using the Discrete EVent
Systems (DEVS) formalism [189] that specifies unambiguous structure and
behavior of any hybrid complex system. This is an incremental design with easy
component substitution and rapid HW/SW swapping mechanism as previously
shown through a DEVS-based transparent HW/SW modeling and simulation
framework in [144]. A formal method for temporal predictive models for
healthcare is proposed for depression by Breda et al. in [176]. In this thesis it has
been implemented a DEVS-based model that will be the basis for the
aforementioned HIL system. With this, we will be able to start clinical
experiments to inform patients when to take medications in advance followed by
a study of the benefits of prediction in terms of complete or partial pain relief.

To the best of our knowledge, this study is the first attempt to simulate
a real device for the prediction of symptomatic crises. The advanced simulator
presented in this manuscript simulates a robust system against sensor failures that
performs error signal detection and signal recovery. In case that the sensors are
not available, it executes a hierarchical methodology of predictive models selection
if signal recovery is not possible.

1.2 The migraine disease

1 Introduction
1.1 Mobile Cloud Computing and health
1.2 The migraine disease

1.2.1 Migraine Prediction
1.3 Energy efficiency in Wireless Body Sensor Networks
1.4 Publications

This thesis focuses on the concrete use case of migraine prediction in a large-
scale eHealth scenario. It will be used real data to develop predictive to warn
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patients of the onset of pain.
Migraine is a chronic recurrent headache, lasting several hours, and affects

around 10% worldwide. Migraine is considered one of the most disabling diseases
with a great socioeconomic impact. In this scenario, migraine patients would
benefit from a crisis prediction application based on WBSNs, and
pharmacological prophylaxis would reveal effective, increasing the quality of life
and decreasing recurring costs. However, scientific studies so far have not
established the hemodynamic changes that occur before a migraine attack.
Moreover, as far as the authors are concerned, the work presented here is an
innovative approach in several areas of pervasive health monitoring for migraine
patients, and for the first time: (i) it has been performed a continuous
ambulatory monitoring of hemodynamic variables of migraineurs (ii) this
research makes a multivariable study of hemodynamic changes before, during
and after a migraine attack (iii) a study on the predictability of migraine attacks
is presented.

In a real scenario of ambulatory monitoring of migraineurs, in this research
we pose and answer the following questions: is it possible to predict a migraine?
Can this prediction be launched in a specific time before the pain arrives? Does a
migraine model exist? Is this model only per patient? How do these models
respond under unreliable data acquisition? This research proposes to find
multivariable patient-based models for the prediction of migraine attacks. These
models should be robust and accurate in an ambulatory scenario, where the
reliability of data acquisition cannot be ensured. This real scenario brings data
collected from a WBSN with all of the real problems of noisy data, data loss and
sensor disconnections.

Migraine is a primary chronic headache, with a significant hereditary
component. It is characterized by recurrent headaches, unilateral or bilateral,
throbbing, moderate to severe intensity and typically worsens with exercise. It
may be accompanied by sensitivity to noise, light and/or odors. Sometimes,
migraines are preceded or accompanied by transient neurological symptoms
(visual, sensory or speech), and they are called migraines with aura. Migraine’s
current management and treatment is normally pharmacological and depends on
the chronification level of the disease [40,67,77,108,154]. When the patients take
their medication affects the efficacy of the treatment. This is usually too late to
avoid the start of the headache, and the patient suffers the migraine disturbances
equally.

Stovner et al. in [163] show that the prevalence of the migraine in European
population is around the 15%. Others, such us Lipton et al. in [106], or the
WHO [184], limit this value to the 10% worldwide. The economic consequences
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of the migraine represent e1,222 per patient per year [105] in Europe, that means
almost e125,000mill in the whole old continent. Most of the direct costs are due
to absences from work or low job performance. The migraine is a social and
economical problem.

A cascade of neurological processes precede a migraine followed by the pain
for the next few hours or days. Some migraine sufferers experience symptoms that
may occur from three days to hours before the pain starts [62]. These symptoms
are called premonitory symptoms and they are subjective and unspecific: nausea,
yawns, tearing, etc. Some patients also suffer from auras. Auras are objective and
specific perceptual disturbances such as losing vision that occurs commonly within
30-15 minutes before the onset of pain. The most efficient way to stop this process
and avoid the pain is to advance the intake of specific drugs. Therefore, the action
mechanism of the medicine is able to block the symptoms before they appear.
Thus, a prediction system becomes necessary.

1.2.1 Migraine Prediction

The Autonomous Nervous System (ANS) regulates body conditions through
blood circulation (blood flow) at adequate rate. This lead to changes in the
hemodynamic variables. The ANS regulates the heart and respiratory rate,
sweating and vasomotor activity, among others. When a migraine occurs,
changes appear in these variables. However, there are still many unknowns about
how the dysautonomia is affected in a migraine patient and whether it is the
cause or a consequence. In patients with aura or premonitory symptoms, the
arrival of future pain can be mostly assured, but the prediction latency is
unknown and pretty variable, as the symptoms can appear at any time from 48
to 6 h before the onset of the migraine. This prediction is almost useless for
treatment purposes. As the current research shows a different dysautonomia in
every patient, the study of this research will search primary a per-patient-based
modeling technique.

There are no studies of sweating and oximetry that show any change between
the baseline and symptomatic periods. With respect to the body temperature,
there are contradictions between patients in the literature [123,136]. These findings
support our search for per-patient models. Moreover, none of the previous studies
included a systematic multivariable analysis of continuously acquired ambulatory
variables. Finally, no studies have been found about the possibility to predict a
migraine crisis using hemodynamic variables. The ANS in migraines regulates the
aforementioned hemodynamic variables. For this reason, this study presents a way
to predict migraines through these variables. No studies have been found about the
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possibility to predict a migraine crisis; only Houle et al. in [80] have attempted to
find some trigger (or absence thereof) to predict the cessation of a migraine attack
to ultimately help with the prediction of the attack itself using only a dichotomized
stress scale. Luciani et al.in [111] or Waelkens in [182] use premonitory symptoms,
such as changes in character, appetite or sleep rhythm as predictors of migraines.
However, these predictors are non-specific and are subjective markers that can
appear in patients’ daily lives for other reasons.

Pharmacokinetics defines the mechanisms of absorption and distribution of
substances in an organism. Because of the pharmacokinetics of current drugs for
treatment of migraine in the acute phase, premonitory symptoms and auras—some
times—are not helpful to stop the pain—as it is difficult to estimate the onset of
pain. Most migraine sufferers wait for the interval between period pain episodes
to take the specific medication. The delayed intake reduces the effectiveness of the
treatment. There are also some studies about the early intake of medication to
abort the crisis. Goadsby et al. in [63] demonstrate that the earlier the intake, the
more effective. In addition, Hu et al. in [83] demonstrate that specific migraine
treatments, such as rizatriptan, can abort the migraine in 30 minutes. Other
specific treatments, such as sumatriptan, reduce this time to as little as 10 minutes
before the crisis starts.

The study we present in this paper focuses on four hemodynamic signals:
heart rate (HR), electrodermal activity (EDA), skin temperature (TEMP) and
peripheral capillary oxygen saturation (SpO2). A multivariable analysis of these
signals was used in an attempt to predict a migraine crisis.

Activity-related information is collected and used to distinguish between a
migraine and other kinds of headaches. A robust patient model was developed in
order to reduce the loss and the noise of data associated with ambulatory scenarios.
According to Hu et al.in [83], this work is going to tackle the predictivity up to 30
minutes. Thus, prediction of the onset of a migraine attack will help the patient
to stop the pain.

As stated at the beginning of this Chapter, the predictive modeling
framework further presented, may need of data from external sources to improve
prediction or extract relevant information. So, this has been considered in this
thesis for the purpose of the migraine prediction. It has been used information
from local and global environmental data and subjective symptoms such as
premonitory symptoms. Some studies have indicated that anywhere from 7% to
61% of people suffering from migraines are susceptible to weather
changes [79, 181]. With respect to the specific components, atmospheric pressure,
humidity, wind and temperature have been implicated as potential factors for the
appearance of headaches, but the relationship with them has not yet been
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demonstrated. However, many of the patients often associate certain atmospheric
conditions with headaches, in addition they describe changes in environmental
factors that are triggering them, such as variations in pressure, luminosity,
flashing lights, air quality, odors and noise [56]. In this thesis, these kind of
variables are not going to be used to create fine-grained predictive models of the
migraine, but they are going to be considered for an Expert Decision
System [158] to improve the quality and robustness of the system.

As a chronic disease presenting symptomatic crisis, the migraine and the
migraineurs are suitable for an ambulatory study. According to our estimations,
the prediction of migraines for a target of 2% of population of European
migraineurs would save more than e 1200 million. To achieve this, we propose
the deployment of an unobtrusive ambulatory monitorization scheme of this
population through the use of a Wireless Body Sensor Network (WBSN).

Using a WBSN monitoring the aforementioned hemodynamic variables, we
pursue to create predictive models based on different techniques such as state-space
models [177], or Grammatical Evolutionary algorithms, which presents several
characteristics that makes it suitable for our purpose of predicting migraine crisis,
such as automatic feature selection and creation of energy efficient models easily
programmable in wireless monitoring devices.

1.3 Energy efficiency in Wireless Body Sensor
Networks

1 Introduction
1.1 Mobile Cloud Computing and health
1.2 The migraine disease
1.3 Energy efficiency in Wireless Body Sensor Networks

1.3.1 Energy efficiency through computation in the node
1.3.2 Energy efficiency in the radio link
1.3.3 Holistic energy optimization

1.4 Publications

In the Internet of Things, dozens of commercial low power wireless
monitoring devices allow making ambulatory monitoring easier. These WBSNs
monitor biometric variables in a non intrusive way. The devices composing the
WBSN are battery supplied and the capacity of their batteries is sufficient for
short time operation. When an ambulatory monitorization is required, for
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example in medical alarms, despite the usage of low power microcontroller
architectures or more efficient wireless communication interfaces, improving the
availability of the monitoring devices becomes a challenge.

The energy efficiency in WBANs has been studied in the literature to reduce
the battery consumption and enlarge the availability of the monitoring devices.
We can distinguish different levels to achieve energy efficiency in WBANs:

• Hardware: low power consumption electronic components

• Coding: efficient codes, bare metal programming, compiler optimization, etc.

• Wireless communication: efficient technologies, optimized spectrum
utilization

• System: modular on/off control of electronic components

• Signal processing: computation on the device such as pre-processing, feature
extraction, data removal, etc.

• Workload: high level decisions that can include some of the previous levels

The form factor of the battery limits the size of the monitoring device such
that high density integration is still a challenge to deal with. Current commercial
approaches use low power microcontroller architectures and high performance
microcontrollers15, as well as more efficient wireless communication interfaces.
Longer battery operation means also less disruptions in the monitored data. This
is critical in the context of ambulatory monitorization for medical alarms. In this
way, several research groups work to reduce the consumption to enlarge the
battery life. Complete low power monitoring systems have appeared such as the
one of the SmartCardia company [166]. Others, for example, study the
consumption in medical monitoring devices at the system level, such as
Tobola et al. do in [171] or Ghasemzadeh in [61]. Tobola et al. also study the
dependence of the battery life with the sampling rate of the biomedical signals
in [172] by reducing the sampling rate as much as possible, and studying how it
affects to state-of-art signal processing algorithms in WBSN. Works like
Braojos et al. [22] analyze the technique of compressive sensing in biosignals to
reduce the energy consumption of such monitoring devices. One mechanism to
reduce the energy consumption of the monitoring devices and increase the
operation time of the battery is to reduce the complexity of the processing in the
embedded microprocessor, and hence the number of clock cycles required to
execute the code.

15Snapdragon: https://www.qualcomm.com/products/snapdragon/ (accessed March 2018)

15
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This research work targets three main energetic goals that interact and build
a complex scenario. Based on a real application of monitorization for migraine
prediction, this manuscripts studies the energetic impact of every element in a
Mobile Cloud Computing scenario: (i) signal processing and data acquisition in
the WBSN, proposing optimized modeling and prediction techniques with lower
complexity than classical mechanisms, aiming a higher energy efficiency (ii) the
radio link of the WBSN, and (iii) a holistic energy optimization considering
workload balancing between all elements of the network (the WBSN, the
coordinator node, and the Data Center).

1.3.1 Energy efficiency through computation in the node
Several works apply some data processing techniques in the node to achieve
energy efficiency applied in the WBSN level. As an example,
Mamaganian et al. [112] apply compress sensing techniques for low-complexity
energy-efficient ECG compression, to reduce the amount of data to transmit and
save energy. A low-power biosignal acquisition and classification system for ECG
signal is proposed by Lee et al. [103].

In this research work there are developed and used energetically optimized
predictive algorithms to run on monitoring nodes. We target the goal of
increasing the operation time of the battery by the reduction of the energy
consumption. This is achieved through optimization of two sources of energy
consumption: (i) reducing the complexity of the processing in the embedded
microprocessor of a monitoring device, that leads to reduce the number of clock
cycles required to execute the code and, (ii) reducing the consumption of
peripherals using the minimum number of sensors. To do this, we will focus on
low performance microcontrollers to deal with the migraine prediction problem.

1.3.2 Energy efficiency in the radio link
Regarding the energy efficiency in the radio link there are two major concerns:
(i) on body area communications between monitoring nodes, and
(ii) communications from monitoring nodes to external devices (coordinator
nodes or higher infrastructures acting as a back-end).

When there is more than one monitoring node, the wireless communication
between them in a WBAN—typically with a star topology—is called an on-body
channel communication. The blocking of the direct line of sight between the
sensing nodes and the receiver due to the movement of users dramatically affects
the link quality [39, 187]. Given the dynamic and complex nature of the on-body
channels, the challenge is to maintain a good quality of the link between sensor
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nodes while extending the network lifetime. This leads to the development of
power transmission control policies to avoid data loss.

In the context of non-invasive WBSNs both, the human body and the node
placement, affect the signal propagation, so that the radio network coverage can
be reduced up to 1 meter. In the literature, different authors like Augustine [10],
or Smith et al. [157] have shown that the quality of the on-body links in a non-
invasive WBSN are highly dependent on the body posture, movement, the physical
characteristics of the human body and the local environment. The movements of
the user causes changes in the quality of the links, affecting their reliability [145,
168]. In this sense, some studies try to detect the body position to select the power
transmission, such as in the work by Aulery et al. [11].

For this purpose, in this thesis it has been also considered this issue, and there
are used the techniques developed by members of the research group in previous
works [174] to minimize the radio link power without quality loss. These techniques
are reactive policies for power level control based on algorithms using body posture
detection. These techniques are trained with information of the Received Signal
Strength Indicator (RSSI) level of the communication between the nodes and the
coordinator, and the body posture. This allows to change automatically the power
transmission to save battery.

In this work, we apply strategies to minimize the number of transmissions,
managing the trade-offs between reducing the radio link power and increasing the
processor power—due to the increase of signal processing.

Once data must be sent out of the body area network to the coordinator
node—or the Data Center. Studies such as the presented by Casino [26] show the
importance of the estimation of the wireless system operation in the radio link to
reduce the energy consumption. There are several studies in the state-of-the-art
that applies compression techniques and transformations to the raw data before
wireless transmission. These can be compression methods—or
transformations—with or without loose of information. As an example, the
Fourier Transform and the Wavelet transformation are lossless transformations.
In the transformed domain original data can be represented with less samples,
and the original information can be retrieved in the back-end through inverse
transformation, as done with ECG and Wavelet in [142].

There are other interesting techniques, such as Compressed Sensing (CS) to
reduce the amount of data being transmitted. Compressed sensing allows us to
create a representation of the original data in a transformed domain reducing
the amount of data to transmit with an acceptable minimal information loss.
Therefore, compressed sensing is more applicable when having a periodic signal
such as ECG [30,112], EEG [107], PPG [13] or motion data.
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However, sometimes it is not necessary to keep all the information from
biometric data, and just some features of them are relevant. These features may
be extracted from a low-quality version of the monitored signal, such as Heart
Rate (HR) from ECG. In this research work, it is going to be analyzed and
optimized different compression techniques and transformations to substitute raw
data transmission maintaining the accuracy of the predictive system and
reducing the energetic consumption of the monitoring nodes. Furthermore, it is
also going to be analyzed the energetic impact between the extremes of the radio
link, i.e., from the Wireless Body Area Network (WBAN) to the Data Center, as
the decisions in one extreme affect to the other.

1.3.3 Holistic energy optimization

From a holistic point of view, the aim of this work is to reduce the overall energy
consumption in the eHealth application. To this end, in this thesis we will focus
simultaneously on: (i) minimizing the energy of the monitoring nodes via reducing
the radio link power, (ii) developing strategies to minimize the impact of signal
processing ever the whole system, (iii) developing workload off-loading techniques
to minimize energy consumption at the Data Center, and (iv) developing specific
strategies to minimize energy consumption in the Data Center. We have already
mentioned the problems of the two first in Section 1.3.1 and Section 1.3.2. This
Section makes a review of the remaining elements—the Data Center—integrated
in the network.

There are few contributions in the state-of-the-art considering a complete
realistic scenario from a holistic approach. With respect to the work proposed by
Rincon et al., they provide a mechanism for the characterization and optimization
of power consumption at the node level. However, they do not consider the relation
of the node with the Cloud and the impact of their policies in the global energy
consumption. In this research it has been incorporated their methodology at the
node level but, on the contrary, this work targets the complete and realistic scenario
of Mobile Cloud Computing, and performs a global optimization where the node,
the servers and the network interact and trade off the savings.

Members of the research our group already tackled the problem of holistic
optimization in an initial contribution by Zapater et al. in [188]. The work
proposed by Zapateret al. targets a scenario similar to the proposed in this
thesis, where all the agents of the Mobile Cloud Computing are considered.
Their work can be considered as one of the initial contributions in this field. In
this manuscript we will follow a similar methodology (development of orthogonal
approaches at every abstraction level); however, this research upgrades their
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previous work (i) as it has been considered a real workload in the monitoring
nodes and servers (what requires the development of realistic policies, signal
processing techniques and modeling approaches), (ii) the proposed approach is
evaluated in the context of a clinical study with real patients and users, and
(iii) there have evaluated the potential economic savings in a potential
international market.

Data processing in the Cloud

Data obtained using the WBSN is communicated to an embedded processing
element, i.e. a coordinator (usually a smartphone), that forwards the data to the
Cloud. In order to detect, predict, create models etc., huge data sets must be
analyzed. To deal efficiently with such computationally intensive tasks, part of
the processing and storage can be local to the coordinator, while another part can
be communicated and processed in the Cloud, i.e. in Data Centers—the extreme
end of the network. MCC problems targets problems that affect big populations,
and the key challenge in MCC scenario is the definition of strategies to off-load and
distribute efficiently the workload between the different elements of the system.

In this regard, one of the goals of this thesis is to balance efficiently the
workload, reducing the computational burden in the Data Center and minimizing
its energy consumption. Data Centers infrastructures consume a huge amount of
power and generate a tremendous amount of heat. In year 2010, these facilities
represented 1.3% of electricity use in the world [95]. In year 2012 alone, global
Data Center power consumption increased to 38GW, and further rise of 17% to
43GW was estimated in 2013 [178]. A report for the US government estimated the
country’s data centers could need around 73GW of electricity a year by 2020 [153].

Data Center power budget is mainly devoted to the energy drawn by servers
and the cooling needed to keep IT equipment under safe environmental
conditions. In the last years, industry has devoted significant effort to decrease
the cooling power, thus decreasing the Data Center Power Usage Effectiveness
(PUE)—defined as the ratio between total facility power and IT power.
According to a report by the Uptime Institute, average PUE improved from 2.5
in 2007 to 1.89 in 2012, reaching 1.65 in 2013 [116]. PUE values close to 1 are
preferred. Moreover, academia has also focused on the development of Data
Center optimization strategies to minimize energy from the computational and
cooling perspective. However, in a MCC scenario, efficient computation
off-loading, combined with tailored strategies to minimize the energy
consumption at the Data Center, still represents an important challenge. This
thesis devises new strategies to combine these two aspects: (i) workload
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off-loading and (ii) local area networks, and (iii) data center energy efficiency
techniques, to further reduce the energy consumption of eHealth applications.
Further in the manuscript there will be presented and implemented a realistic
case study for applied to the migraine prediction and it will be shown the overall
impact of this strategies over the architecture of the MCC system.

1.4 Publications

1 Introduction
1.1 Mobile Cloud Computing and health
1.2 The migraine disease
1.3 Energy efficiency in Wireless Body Sensor Networks
1.4 Publications

1.4.1 Journal papers
1.4.2 Conference papers
1.4.3 Other publications
1.4.4 Intellectual property

The results of this thesis have lead to research publications in international
conferences and journals, patents, grants and prizes as well. In the following lines
these publications are shown with the detailed scores of each one. The contents of
all the publications are distributed mostly in all the Chapters of this thesis.

1.4.1 Journal papers
This thesis has generated the following articles in international journals:

• Pagán, J., Zapater, M., and Ayala, J. L. Power transmission and
workload balancing policies in ehealth mobile cloud computing scenarios.
Future Generation Computer Systems 78 (2018), 587–601
[JCR 2016=Q1, IF=3.997]

• Pagán, J., Risco-Martín, J. L., Moya, J. M., and Ayala, J. L.
Modeling methodology for the accurate and prompt prediction of
symptomatic events in chronic diseases. Journal of biomedical informatics
62 (2016), 136–147
[JCR 2016=Q1, IF=2.753]

• Pagán, J., Orbe, D., Irene, M., Gago, A., Sobrado, M., Risco-
Martín, J. L., Mora, J. V., Moya, J. M., and Ayala, J. L. Robust
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and accurate modeling approaches for migraine per-patient prediction from
ambulatory data. Sensors 15, 7 (2015), 15419–15442
[JCR 2015=Q1, IF=2.033]

1.4.2 Conference papers
This thesis has generated the following articles in international conferences:

• Pagán, J., Moya, J. M., Risco-Martín, J. L., and Ayala, J. L.
Advanced migraine prediction simulation system. In Proceedings of the
Summer Simulation Multi-Conference (San Diego, CA, USA, 2017),
SummerSim ’17, Society for Computer Simulation International,
pp. 24:1–24:12
[CORE: B, MA: C]
Nominated for the best paper award

• Pagán, J., Fallahzadeh, R., Ghasemzadeh, H., Moya, J. M.,
Risco-Martín, J. L., and Ayala, J. L. An optimal approach for
low-power migraine prediction models in the state-of-the-art wireless
monitoring devices. In Proceedings of the Conference on Design,
Automation & Test in Europe (2017), European Design and Automation
Association, pp. 1297–1302
[CORE: B, LiveSHINE: A++, MA: A, GGS Class: 2]

• Pagán, J., Risco-Martín, J. L., Moya, J. M., and Ayala, J. L. A
real-time framework for a devs-based migraine prediction simulator system.
MAEB 2016 (2016)

• Pagán, J., Risco-Martín, J. L., Moya, J. M., and Ayala, J. L.
Grammatical evolutionary techniques for prompt migraine prediction. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016
(2016), ACM, pp. 973–980
[CORE: A, LiveSHINE: A+, MA: A, GGS Class: 2]

• Santambrogio, M. D., Ayala, J. L., Campanoni, S., Cattaneo, R.,
Durelli, G. C., Ferroni, M., Nacci, A., Pagán, J., Zapater, M.,
and Vallejo, M. Power-awareness and smart-resource management in
embedded computing systems. In Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2015 International Conference on (2015), IEEE,
pp. 94–103
[CORE: C, LiveSHINE: A, MAS: A, GGS Class: 3]
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1.4.3 Other publications
The author has also contributed in the following articles in international and
national conferences not specifically related to the contents of this thesis:

• Fallahzadeh, R., Ortiz, J. P., and Ghasemzadeh, H. Adaptive
compressed sensing at the fingertip of internet-of-things sensors: An
ultra-low power activity recognition. In 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE) (2017), IEEE, pp. 996–1001
[CORE: B, LiveSHINE: A++, MA: A, GGS Class: 2]
Nominated for the best paper award

• Gago-Veiga, A. B., De Orbe-Izquierdo, M. I., Sobrado, M.,
Pagán, J., Carreras, M., Ayala, J. L., and Vivancos, J.
Monitorización ambulatoria no invasiva de variable biométricas en
pacientes con migraña. ¿es posible predecir una crisis? In XLVI Reunión
Anual de la Sociedad Española de Neurología (2014), Sociedad Española de
Neurología, pp. 94–103
Stellar communication award

1.4.4 Intellectual property
The mothodology presented in this thesis has led to the development of intellectual
property:

• Gago, A., Sobrado, M., Mora, J. V., Pagán, J., Orbe, D., Irene,
M., and Ayala, J. L. Method for determining the degree of activation of
the trigeminovascular system, 01 2017
PCT. Number: WO/2017/149174. Status: Application. Currently studying
the entrance to national phases

• Gago, A., Sobrado, M., Mora, J. V., Pagán, J., Orbe, D., Irene,
M., and Ayala, J. L. Método para determinar el nivel de activación del
sistema trigémino-vascular, 02 2016
Spanish National Patent. Number: ES201600158A. Status: Granted.
Currently studying a patent license contract with the entities.
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Chapter 2

Architecture of the robust
predictive system of symptomatic
crises

An eventual crisis is something that happens at the end of a period of time or a
process. The objective of this thesis is the prediction of events in critical scenarios.
In the case at hand, these events occur always after a process of changes in different
variables that can be measured and correlated with the events. When the eventual
crisis occurs in a biomedical scenario we refer them as symptomatic crisis.

As stated in previous sections, the framework that encompasses this thesis
is framed into an IoT scenario. In these scenarios there might be multiple data
sources, and they can be distributed and uncorrelated. In most of the cases,
data come from low performance monitoring devices with limited resources such
as low autonomy (short battery life), low data acquisition rate, low computation
capabilities, low power transmission (in wireless connections), limited baud rate
when sharing data,etc. All this leads mainly to unreliable data due to disruptions
over acquisition time, which requires of a robust architecture against failures in
data in order to ensure/ maintain predictability of critical events.

The architecture of the system and the prediction methodology proposed are
orthogonal to the problem. Problems where this methodology can be applied must
have temporal character in order to be able to correlate changes in variables with
a critical event. This thesis has been developed in an IoT framework, in the field
of eHealth. In the following sections firstly the architecture of the system is briefly
presented as case study in three different paradigms of the IoT in Section 2.1.
Then a top-down view of the architecture is shown Section 2.2, and finally, an
overview of the energy problem of its implementation is shown in Section 2.3.
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2.1 Robust predictive paradigms in the IoT

2 Architecture of the system
2.1 Robust predictive scenarios
2.2 Model of the system
2.3 The energy efficiency problem

There are different elements that compose the IoT. Atzori et al. divide the
IoT into three elements in [9]: (i) things oriented (data acquisition
systems—sensors—and actuators), (ii) internet-oriented (middleware able to
storage, transmit and perform some data analysis), and (iii) semantic-oriented
(knowledge able to perform computationally expensive data analysis). In [66],
many different healthcare uses—eHealth applications—are described in the IoT:
triage, patient monitoring, or disease spread modeling and containment for
real-time health status, or predictive information in pandemic scenarios. In this
thesis we focus on robust predictive systems for detection of critical events using
Wireless Sensor Networks (WSNs) in an IoT scenario.

Data acquisition systems are data sources that are generally distributed—
like WSNs—and they can be separated from the corresponding prediction system
that processes these data. Prediction systems represent the knowledge of the
network, and they can be centralized in a high performance infrastructure as a Data
Center (or servers in the Cloud). They can be distributed as well, linking sensors
and actuators, which they provide the prediction support. A prediction system
can be an hybrid solution as well, which is even better: processing distributed
between the sensors and the data centers. It depends on how the whole system
is implemented. There are multiple combinations and the solution is not unique,
leading to different layouts. Some of the best-known system’s layouts are: (i) the
distributed computing (DIST), (ii) the locally centralized Fog computing (FOG),
and (iii) the centralized Mobile Cloud Computing (MCC).

Figure 2.1a shows an example of a data acquisition system that belongs to
a DIST network. Each one of the acquisition systems gathers and processes the
data to perform predictions. Once in a while, the acquisition system sends status
information to the Cloud. In this example the Cloud is used for the purpose
of visualization and calculation of statistical parameters such as the number of
critical events detected or and the characteristics of these events. These acquisition
systems have the enough computation capabilities to process data and perform
predictions, but limited wireless communication thus, raw data are never sent
to the Cloud. Contrary to FOG, predictions and decisions in DIST are taken
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(a) Distributed computing (DIST): the knowledge is distributed on each monitoring node, which
performs predictions by their own. Communication with the Cloud is sporadic.

(b) Fog-computing (FOG): the knowledge runs on a coordinator. The communication is
bidirectional through the nodes. Communication with the Cloud is sporadic.

(c) Mobile cloud computing (MCC): the knowledge runs either in a coordinator or in the Cloud.
The communication is bidirectional point-to-point.

Figure 2.1: Three different perspectives a robust predictive systems for detection of
critical events in the IoT.
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autonomously without knowledge from other data sources.
In order to improve predictions, the FOG network in Figure 2.1b gathers

data from several locally distributed data acquisition systems. Data is locally
centralized in a coordinator—mobile devices—at the network edge that has the
knowledge to run predictions from all data sources. Devices might also have light
computing capabilities such as filtering and data preprocessing, in order to
provide only useful data to the coordinator. This coordinator can manage the
monitoring nodes, which are only connected to the coordinator. Same as DIST,
the system only sends status data to the Cloud, but this data have more
information thus this comes from several monitoring nodes. Depending on the
amount of computation to be performed, FOG might be energetically inefficient,
due to the low-medium performance of coordinator—typically a smartphone
running many other applications. In order to mitigate this effect, the MCC
shown in Figure 2.1c can balance workload computing through the network.

In the MCC network, mobile devices and cloud computing combine each other
to create a new infrastructure where data processing and predictions can take
place either the coordinator or the Cloud, or it can vary along the time. MCC can
provide more computing power, storage and networking services (as visualization
and statistical analysis) than FOG, but it leads to new energy efficiency problems
in the whole system to deal with.

2.2 Model of the system architecture

2 Architecture of the system
2.1 Robust predictive scenarios
2.2 Model of the system

2.2.1 Data Acquisition System
2.2.2 Robust Prediction System

2.2.2.1 Data Driver
2.2.2.2 Sensor Status Detector
2.2.2.3 Prediction System

2.2.3 Decider
2.2.4 Expert Decision System

2.3 The energy efficiency problem

Figure 2.2 shows the overview of the architecture of the system proposed.
This has been named as Critical-Events Robust Prediction System (CERPS)
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Figure 2.2: Model of the system architecture. This scheme represents a specific case
study. The CERPS is scalable and there might be as many DAS and RPS as needed.

and it is composed of three type of subsystems to compute predictions: (i) Data
Acquisition Systems (DASs), (ii) Robust Prediction Systems (RPSs), and
(iii) Expert Decision System (EDS). The CERPS performs predictions of critical
events though the extraction of information of heterogeneous data sources and
based in a expert decision system, the EDS. There might be as many data sources
(DASs) and prediction systems (RPSs) as needed, but only one EDS is required.

Depending on the nature of data provided by a DAS, these might be an RPS
or not; furthermore, raw data can directly be driven to the EDS as shown in
Figure 2.2. The CERPS is easily scalable, and the addition or the removal of
acquisition systems and prediction systems only leads to retrain the expert
decision system. In Figure 2.2 five DAS are required, nevertheless this is an
example. The architecture shown can be seen as an abstraction layer, a
methodology, orthogonal to the actual implementation of the network.

2.2.1 Data Acquisition System

The DASs are data sources that are generally distributed, and they can be separated
from the corresponding RPSs. The prediction systems can be centralized—in a high
performance infrastructure as a Data Center (or servers in the Cloud), or they can
be linked to the DAS to which they provide the prediction support. It depends on
how the CERPS is implemented; there are multiple combinations and the solution
is not unique, and some of the best-known system’s layouts are the DIST, FOG
and MCC described in Section 2.1.

The data acquisition systems can be, for example, actual physical monitoring
nodes—in most of the cases—or remote web services. Distributed DAS might lead to
limitations with data correlation, and it constraints the system design; fortunately
this problem is tackled by the Data Drivers. Some of them can even be hosted
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Figure 2.3: Robust Prediction System architecture. This is the most important
subsystem and it can be can independent entity by itself out of the system.

in the same physical device, as an smartphone. What defines a DAS is the way its
data need to be processed or used. Each DAS provides information to a different
RPS, or none. DASs may provide information of different sensors/ services at the
same time.

2.2.2 Robust Prediction System
The Robust Prediction Systems are the most important subsystems of the
architecture (see Figure 2.3). Data are received from the DASs, and alarms are
notified to the decision support system. This alarm is only generated from the
knowledge extracted of one single data acquisition system, and it is not the final
alarm that warns of the onset of a crisis.

Four subsystems shape the RPSs proposed. In the order in which the data is
handled: (i) one Data Driver (DD) to pre-process the data (Section 2.2.2.1),
(ii) one Sensor Status Detector (SSD) to repair signal errors (Section 2.2.2.2),
(iii) one Prediction System (PS) where predictions are computed
(Section 2.2.2.3), and (iv) finally one alarm (Decider) (Section 2.2.3). Among
them all, the Prediction System (PS) represents the core of the whole
architecture (the CERPS).

2.2.2.1 Data Driver

Data Drivers (DDs) are divided into modules (Figure 2.4); these modules are
different depending on the data type: qualitative or quantitative data. Each one
of the sensors/ services of a DAS may have different time sources, so different
timestamps. The Data Driver can be (i) before the Sensor Status Detectors
as the most common layout (shown in Figure 2.4), or (ii) after the Sensor Status
Detectors.

If (i) the DD is before the SSD, the input of a DD is a matrix of data and
timestamps from different sensors/ services of the same DAS; and the output is a
new array of synchronized features or parsed data—that may have errors—labeled
as feature. If (ii) the DD is after the SSD, the input is a matrix of error-free data
and timestamps as gathered from the DASs; and the output is a new array of
synchronized and features or parsed data.
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Figure 2.4: Data Driver. It is shown how one measured variable can lead to one or
several features to be used in the subsequent modules.

Data coming from the Data Acquisition Systems are split into V different
variables with their timestamps. For quantitative variables the sampling
frequency must be known by the system in order to synchronize the data—using
a common timestamp. Buffers are FIFO and size limited (size varies for each
variable). When data are synchronized they are temporally buffered and after a
while parsed to compute N features, if needed (the time that data is buffered
depends on the features to compute). Qualitative data are also synchronized but
they are not parsed, and features are not extracted either; in most of the cases
they are considered features themselves.

Notice that the number of features and the number of variables is not the same
and, N can be lower, equal or higher that V . Several features can be obtained
through the information of different variables, and more than one feature can be
obtained from one variable.

Data coming from the same DAS belong to the same data type. The type of
the variables depends on the application of the system but commonly
quantitative variables represent physical magnitudes varying along time and
sampled at a certain rate. Besides, qualitative variables represent mostly non
time-dependent information as events or actions happening once in a while.

2.2.2.2 Sensor Status Detector

The Sensor Status Detector SSD is the first block that gives the robustness
quality to the Robust Prediction System and thus to the title of this thesis. The
SSD (see Figure 2.5) monitors the status of sensors, generate alarms if something
is wrong with them and repairs signals temporally.

Measurements in real scenarios are prone to data loss due to distributed
data sources, with varying and unreliable channels and using sensors in
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Figure 2.5: Sensor Status Detector. This module gives the robustness to this part of
the system. It detects data errors and warns other modules to maintain the accuracy of
the prediction.

non-static devices/ machines in noisy environments. The first step that the SSD
performs is the detection of the problem. According to Kong et al.in [94], data
loss in WSNs does not follows a random distribution and they divide data loss
patterns into four different classes:

1. Element Random Loss (ERL): the simplest problem due mainly to noise.

2. Block Random Loss (BRL): adjacent time slots are dropped together. Data
collision and noise are the main factors.

3. Element Frequent Loss in Row (EFLR): mainly due to interruption in
transmission or bad sensor connections.

4. Successive Elements Loss in Row (SELR): time slots without data. This may
occur when nodes are damaged or batteries run out.

In real biophysical scenarios using WSN, data loss is a combination of the
aforementioned loss patterns. To detect them, three blocks have been included
in the SSD to detect the cause of error. Causes of error have been classified into
three: noise, fall (disconnection), and saturation (due to battery problems mainly).
The blocks implemented are (see Figure 2.5): the Noise Detector, the Fall
Detector, and the Saturation Detector. Each one of these blocks generates an
alarm. The decision to raise an alarm can be as simple as a threshold or something
more sophisticated as a fuzzy logic algorithm (see Section 3.2.1).
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Whenever the data processing takes place, in a server of a distributed network,
or in the same device that makes measurements in a MCC scenario, this is a
problem that must be tackled before predictions can be done, otherwise, data loss
might lead low reliability erroneous solutions and alarm failures. The solution is
the substitution of the sensor if it is damaged, or warn to avoid the situation that
causes data loss: noisy environment, movements, etc.

The SSD performs data recovery for a while if none of these solutions is taken.
Data recovery takes place in the Signal Repair module shown in Figure 2.6. This
module is enabled when the Anomaly detector activates it. This happens when
one or more errors are detected. When an error occurs, the Anomaly detector
warns that the sensor has problems, and immediately the Signal Repair module is
activated. If the anomaly takes too much time to be removed, the Core algorithm
would not have enough recent data to estimate new values. In this case, when a
predefined time is exceeded, the Anomaly detector activates an alarm signal, and
the data from the damaged sensor is not used for prediction until the problem is
solved. An external indication might indicate that the sensor has been restored
before the error detection modules realizes. Then all alarms signals are disabled
and SSD relays the data from the sensor without errors.

Signal Repair

During normal operation, the enable signal equals 0, and multiplexers drive
the data value feature_i to output.

In these modules, it is supposed that we work with temporal data and there
exists a time relation between samples of data1, so that when this module is
activated, data are recovered or repaired based on recent past samples of the
damaged sensor. The amount of past data to be used to recover the current
value must be optimized for each feature and the Core algorithm implemented.
Different algorithms can be implemented to calculate the current missing value
(some times named as prediction in the literature). If the algorithm runs on a
monitoring device with constrained computing capabilities, time-series algorithms
can be suitable to perform the recovery, on the contrary, if the algorithm runs on
a platform with high computing resources, more complex methods can be applied,
such as Gaussian Process Machine Learning [138] which infers statistical outputs
with a confidence interval instead of a single value. For a better comprehension
see Section 3.2.2.1.

1Spacial relation between data monitoring devices is not taken into account in the study cases
of this thesis, but it might be useful in other IoT scenarios such as traffic monitoring in smart
cities.
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Figure 2.6: Signal Repair. Based on a core algorithm, this module repairs data loss
temporally. After a while, if the error persists, other robust techniques further in the
system must be applied.

One feature can depend on its own past data, but also it might depend on
the history and current values of other signals. As an example, in a biomedical
application, temperature and electrodermal activity can be correlated, such that
data from one signal can help to recover the other if its damaged or lost. To do
this, the Signal Repair module stores data into a buffer for exogenous (external)
inputs. Both buffers (Buffer_feature_i and Buffer_exogenous_inputs) are
FIFO and size limited. The Core algorithm should be trained to support both
data inputs and eventually it provides a estimated calculation (featureReapired)
of the damaged signal data.

2.2.2.3 Prediction System

When data from all SSDs are available, they are merged into a Loader of the
Robust Prediction System, prior to perform the prediction. This loader buffers
all data into a synchronized data array.

There are three major blocks in the Prediction System (PS): (i) the
Sensor Dependent Model Selection System (SDMS2), (ii) fc different types of
Predictors—each one depending on a different set of features—and, (iii) the
Linear Combiner. The behavior of each one of these modules are described in
the following lines.
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Figure 2.7: Prediction system. The SDMS2 is the core of this module that allows the
adaptation of predictive models when data errors last in time.

Sensor Dependent Model Selection System

At this point of the thesis it must be clear that in real scenarios, sensor failures
are a big problem to deal with, so that, the lack of information from one of the
multiple data sources might not be condition to stop running the system up to
the solution of the problem in real system for the prediction of critical events.
In the proposed modeling methodology the robustness against sensor failures is
always considered and it affects the design of all modules. Previously, it was
described the Signal Repair module to provide error-free data to the predictors
as a temporal solution; in this case, the SDMS2 is in charge of the selection of the
adequate predictors when data from an affected sensor is not useful anymore.

For a better comprehension of the SDMS2, we must understand it as a
methodology that chooses the best set of predictive models based on the statuses
of sensors in real time. This methodology is the second point that gives the
robustness quality to the Robust Prediction System—as the SSD was the first
one. Despite this system is shown in Figure 2.7 as a switch that enables or
disables the Predictors modules, the SDMS2 is a methodology sorts predictive
models hierarchically depending on the availability of sensors, and it enables the
predictive module that does not use damaged sensor information. With this the
system does not stop and tries to keep accuracy in the prediction. In
Section 3.2.3.1 it is explained how the SDMS2 is built.
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Predictors

To be adapted to the worst case, when all V variables but one are damaged,
there would be V C = ∑V

i=1

(
V
i

)
possible variable combinations to create predictive

models. In the practice—but depending on the application—predictive models
based on couples or single features do not provide accurate predictions and a
subset vc ⊂ V C is used only, thus vc types of Predictor modules.

Predictors execute predictive algorithms to calculate the desired output h
steps ahead (seconds, minutes. . . ). h represents the prediction horizon, i.e. the
time between declaration of an hypothetical event and the event itself.
Algorithms create models to express mathematically a function that represents
the system’s output—in our case a critical event—according to information from
inputs. Each Predictor module executes one or more of these models to provide
one or more predictions respectively. It has been proved that a linear
combination of predictions—from different models—provide more accurate
results and larger prediction horizons.

Many different predictive algorithms are suitable to run over time series data
to predict events, such as state-space algorithms, time series analysis, artificial
neural networks, or Grammatical Evolutionary (GE) algorithms among others.
These models use past data to calculate a single future value, so they have internal
buffers from past input data. Autoregressive models are those that use information
from past known system’s outputs and predictions too. Predictors that run
autoregressive models buffer predictions too (as done in Figure 2.6). Eventually,
when all modules have computed predictions these are available as an array in
signal allPredictions (Figure 2.7). According to the relevance of each model of
the Predictor module, the Linear Combiner weights predictions and gets as a
result a sole prediction that feeds the Decider.

2.2.3 Decider

As shown in the system’s architecture Figure 2.2, a Robust Prediction System
provides predictions to the corresponding Decider to raise individual alarms.
Deciders can take decisions based on the current prediction value, or based on
past predictions too—where past data are temporary stored in a local buffer.
Deciders evaluate a core function to raise alarms. As shown in Figure 2.8, this is
not the final alarm of the Critical-Events Robust Prediction System but a
local_alarm.

The core function (in Figure 2.8) that raises alarms can be simple or
complicated mathematical decision functions. Three different examples of
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Figure 2.8: Decider. Based on a core function, this module generates a local alarm for
the Expert Decision System.

(a) Binary function. (b) Sigmoid
function.

(c) Fuzzy logic.

Figure 2.9: Three examples of core functions for the Decider module.

possible core functions are drawn in Figure 2.9: (i) a binary threshold decider
(Figure 2.9a) where the local alarm al ∈ B raises when the current prediction or
a weighted averaged value of buffered predictions pa exceeds a threshold th, (ii) a
general case of sigmoid function (Figure 2.9b) where the alarm al ∈ R is a softer
version of the binary one, and (iii) a fuzzy logic function that represents the
alarm al ∈ R as a result of the fuzzyfication of the current prediction or
individual past predictions.

In a predictive system with only one DAS and RPS, the final alarm over the
critical event would be the local alarm generated by the Decider module, and the
Expert Decision System is not necessary. Otherwise, these local alarms fed the
DAS, the last module that provides the final decision.

2.2.4 Expert Decision System: triggering alarms

The Expert Decision System module is a computer-based system to aid
triggering the alarms of the Critical-Events Robust Prediction System. In
a real scenario with multiple data sources that can suffer from temporal data
loss, the automatic generation of decision algorithms is not suitable. To deal
with unlabeled data, or data missing values, this module has been constructed
using Active Learning (AL) algorithms. Despite it requires of human interaction
during the training process, unlike pure Decision Support Systems (DSS), the
EDS works in autonomous way. The EDS receives all the information from the
Deciders and other modules as shown in Figure 2.2 and based on a definitive
prediction model, seeks to improve the result of individual alarms of the deciders.
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Figure 2.10: Energy consumption and workload distribution. Tasks distribution for
the three network elements. ted lines represent that the tasks under the network element
might be carried out by any of them. Solid lines force the task execution in the element
above.

Active Learning bases on machine learning techniques to create a decision
model or classifier. AL is a semi-supervised machine learning that communicates
with the user to ask for the output for unlabeled input data. This basis function
can be performed using Support Vector Machine (SVM) algorithms, decision-tree
based algorithms, Adaptive Neuro-Fuzzy Inference System (ANFIS), or any other.
In our case, the decision model determines the occurrence, or not, of a critical
event.

2.3 The energy efficiency problem

2 Architecture of the system
2.1 Robust predictive scenarios
2.2 Model of the system
2.3 The energy efficiency problem

Independently of the actual implementation of system’s architecture, the
energy efficiency is a problem to deal with in IoT scenarios. These scenarios,
characterized by its geographical distribution and the wide range of computation
systems that imply, require an intelligent use of resources to optimize the energy
consumption of the whole system.

Large scale population monitoring systems in MCC scenarios are starting to
become a reality. In a general way, but with the eHealth field in mind, it has
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been depicted the tasks assignment in Figure 2.10. In this figure, each element of
the network (monitoring devices, coordinator nodes and cloud servers in a data
center) encompasses loosely a set of task of the defined architecture that may or
may not perform. Solid lines beneath the monitoring node and the Cloud elements
represent that the extreme tasks Data Acquisition and Expert Decision must
be performed by the extreme elements respectively. On the other hand, dotted
lines represent that the tasks under the network element might be carried out
by any of them. As an example, we will refer to the distributed architecture
in Figure 2.1a when the coordinator does not perform any action but the Data
Acquisition.

In this thesis it is shown that it is possible to optimize energy consumption
with economical constraints and taking into account the computing capabilities of
each element of the network in an eHealth application. So, in addition to be robust
and data independent, the aim of the proposed methodology is also to reduce the
overall energy consumption in a real world application, from a holistic perspective.
To this end, in Chapter 3 focus on: i) minimizing the energy of the monitoring
nodes via reducing the radio link power, ii) developing strategies to minimize the
impact of signal processing ever the whole system, iii) developing workload off-
loading techniques to minimize energy consumption at the Data Center, and iv)
developing specific strategies to minimize energy consumption in the Data Center.

As aforementioned, all the different perspectives presented can be applied in
many different fields. It is only a matter on the how the optimization and tasks
distribution are made what differ from one application problem to another. The
implementation of the methodology, the architecture, predictive model
algorithms, data processing and other techniques, such as optimization
techniques implemented are shown in Chapter 3. And the results obtained are
presented in Chapter 4 to satisfy the methodology framework drawn as research
objective in Chapter 1.
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Chapter 3

Implementation of the system

This thesis has had a marked practical character from the early beginning of its
conception. The architecture shown in Chapter 2 would not have sense in a purely
theoretical framework and the implementation of the system become reality from
the first steps. Because the architecture was developed by the specification of a
Model-Based Systems Engineering (MBSE) system [48] following the principles
and best practices of the Model-Based Engineering paradigm [18] (MBE)—also
known as Model-Driven Engineering (MDE)—leading, as a consequence, to the
simulation (Modeling and Simulation-based Systems Engineering, M&SBSE) and
implementation of the system described in this Chapter.

The implemented system follows the architectural structure of the
Critical-Events Robust Prediction System, CERPS, shown in Figure 2.2. The
implementation of the methodological framework stated in this thesis has
focused, as aforementioned, on the prediction of symptomatic crises of the
migraine disease, due to its relevance and novelty in and for the state of the art.
To serve as a guide, Figure 3.1 represents a mind-map. This is an equivalence
graph between the formal architecture elements described in the previous
Section, and the actual implementation of each module. At the date of writing of
this volume, the CERPS has been divided and implemented as shown
in Figure 3.2.
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Architecture

Data Acquisition
System

Section 2.2.1

Hemodynamic
Section 3.2.1

Environmental
Section 3.4.1

Qualitative
Variables

Section 3.5.1

Prediciton System
Section 2.2.2.3

Fine-grained
(hemodynamic)
Section 3.2.2

SDMS2

Section 3.2.3.1

Coarse-
grained

(environmental)
Section 3.4.2

Classification
(qualitative)
Section 3.5.2

Expert Decision
System

Section 2.2.4

CERPS
Section 3.6

Architecture element
Actual implementation

Figure 3.1: Equivalence graph between the architecture described and its actual
implementation.

On a conceptual level, there are three well differentiated parts in this
Chapter: (i) fine-grained prediction (Section 3.5 and Section 3.3),
(ii) coarse-grained prediction (Section 3.4, Section 3.5, and Section 3.6), and
(iii) energy efficiency frameworks for different MCC implementations.

The CERPS depicted in Figure 3.2 represents the actual online implementation
of the system. It can be shown that there are three major predictive sub-systems
(each one divided, at the same time, into smaller subsystems):

1. Sub-system I. It is the main and most important subsystem and it is the one
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Figure 3.2: Overview of the implementation of the whole system architecture. There
are three types of data sources: two of them perform fine and coarse predictions, while
the third one serves as prediction support to the Expert Decision System.

that has more relevance and interest. This provides a fine-grained migraine
prediction based on the measurement of hemodynamic signals. It has been
the first time in the literature that this issue has been tackled, and it has
attracted the interest of media, health insurance companies and the pharma
sector, giving rise to national and international prizes. This sub-system has
been fully studied and, despite there is still a lot of research to do on it, it
has been modeled, simulated and implemented. Due to this, the research in
this thesis has focused in Sub-system I, so this constitute the bulk of this
Chapter.

2. Sub-system II. A coarse-grained migraine prediction based on environmental
data is provided by the second subsystem. This system has a lower relevance,
and helps the Expert Decision System, EDS, in the decision making process.

3. Sub-system III. A classifier based on qualitative data—occurrences or
events that surround the prediction problem—is the third subsystem.
Events are classified into categories; the probability of belonging to one or
another category acts as information that helps the Expert Decision
System as well.

At the time of writing this manuscript, the implementations of Sub-systems
II and III have a marginal contribution and they have been merely conceived as
functionally tests by the moment; nevertheless they are carefully described and
commented further below.

Along this Chapter, the implementation is going to be distinguished into
offline and online implementation. The offline implementation encompasses the
training of predictive models and the search of parameters of other modules of the
system. This training phase requires of some steps that the online implementation
do not. This leads to the final models and parameters implemented in the online
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phase. Section 3.5 and Section 3.6 go deeper each subsystem, describing both
offline and subsequent online implementations. The framework underlying the
energy efficiency aspects of the implementation of Sub-system I is finally shown in
Section 4.4.

Implementation, and research studies collaborations

This thesis has been developed within a research framework which involves
several research groups. This is an on going research and this manuscript settles
the technical foundations for further studies. In parallel to this thesis it has been
developed a clinical study which has lead to clinical conclusions, and has
established new criteria for further clinical researches as well.

The clinical study associated to this research started in August 2014
(see Appendix E), led by the Head of the Neurology Service of the Hospital
Universitario de La Princesa of Madrid, MD PhD José Vivancos. The clinicians
developed a clinical protocol including ethical, technical and clinical aspects of
the study. They conducted the clinical part of the study whose main aspects are
(i) recruitment of patients according to inclusion criteria previously stated,
(ii) explanation and training of patients participating in the experiments,
(iii) follow up and feedback of clinical mishaps taken during the experiments,
such as urticaria due to the continuous contact to the skin sensors.. The
inclusion criteria are:

1. The diagnosis of migraine must have been made by a headache specialist
neurologist.

2. Patients between 15 and 69 years old, who have at least one crisis per week.

3. Patients with a basic knowledge of the use of a smartphone and sign a
commitment to collaborate during the collaboration period.

4. Patients with migraine with and without aura may participate.

5. The patient may continue taking their usual medication, although patients
who do not take any medication prescribed daily for pain are preferred.

6. They should not have serious cardiac or pulmonary pathologies, Sjórgren’s
syndrome or poorly controlled thyroid changes. Not being pregnant or
breastfeeding.

7. The study takes between 4 and 6 months.
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During the first year, there were recruited thirteen patients. Most of them
reported few migraines or events with low signal quality during monitoring. To
develop the technical methodology proposed in this thesis, there were used two
patients. To conclude with statistical clinical results, this sample size is not
enough and, at the time of writing of this manuscript, the study continues
incorporating more patients. These will be analyzed in a near future to lead to
clinical conclusions.

On the other hand, the author of this manuscript as well as his advisors are
members of the Research Center for Computational Simulation-CCS. This center
hosts many researchers of different groups belonging to four public universities in
Madrid. This has lead to collaborations with students of the GreenLSI group in
the Technical University of Madrid, and the GreenDISC group in the Universidad
Complutense de Madrid. The author as also collaborated with the GDAF group
of the Universidad Carlos III de Madrid.

The content of this thesis is completely novel. From the acquisition, up to
the data processing and modeling, everything presented in this volume are
original contributions. In parallel, and thanks to the research collaborations,
there have been developed tools mainly focused on (i) environmental data
acquisition experimental set-up, (ii) energy consumption and measurement in
wearable devices (radio and processing), (iii) prototyping of new sensors (not
shown in this thesis), and (iv) testing of data integration and modeling
techniques. As a result, these have led to dissertations of several bachelor and
master theses, and papers which are referenced further in following chapters.

3.1 Overview

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system

Along the sections in this Chapter, it is used a wide spectrum of algorithms
and techniques for predictive modeling, classification, signal repair, or simulation
among others. The use and the experimental set up—the actual implementation—
are explained here, but the theoretical background is provided in Appendix A.
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The objective of this Appendix is to explain the fundamentals of modeling
and simulation techniques used in this thesis to predict symptomatic crises of a
migraine sufferer using an MCC layout in an eHealth scenario for a better
comprehension of modeling and simulation aspects. These techniques are
implemented offline, before the system works autonomously. Predictive models
are trained and then validated, both with real data. Models represent the
behavior of the symptomatic crises based on input data: hemodynamic variables,
environmental information, or events related to the disease. Different models are
obtained in the training and validation steps. The bests of these models are
tested (test step) and then used in the final stage (real time simulation and
implementation).

Prior to modeling, it must be defined (i) what is going to be modeled, i.e. the
output of the system which is, in our case, the objectification of the subjective
pain of the migraine, and (ii) the metric or reference to select the best models.
The output to be modeled is going to be presented in detail in Section 3.2.1.3; and
we use the fit as quality criterion (defined in Section 3.2.2.1).

The theoretical background in Appendix A explains briefly the algorithms and
maths behind the implemented models and simulations: (i) Three different family
of algorithms have been implemented to create fine- and coarse-grained models of
migraine crises: state-space algorithms, time series algorithms, and Grammatical
Evolutionary algorithms (as an example of a heuristic approach). These models are
mainly used in the RPSs. (ii) The most important subsystem (migraine prediction
based on hemodynamic signals) is simulated using the Discrete Event Systems
(DEVS) formalism. (iii) Fundamentals of decision making algorithms based on
fuzzy logic are shown too. These algorithms are used in the Deciders as well as in
the EDS. (iv) Due to the use of real data with data loss problems, active learning
has been used to train the EDS too. (v) Finally, the machine learning classification
algorithms used for prediction support based on qualitative data are described.

Before moving forward, to serve as a reminder, it worth to clarify briefly two
concepts that will appear constantly in this and the next chapters. (i) First. A
model is a representation that describes the behavior of a system—in our case,
mathematical representations that describe a symptomatic crisis as an output of
the system with respect to changes in some input variables. When it is said
predictive model, it means that the model represents the system behavior time in
advance, i.e. by the knowledge of current inputs, the systems explains future
outputs. This lapse of time it is known as the prediction horizon, as stated
in Section 2.2.2.3. (ii) Second. Model training is the search of the parameters of
the models. This search can be supervised, unsupervised or semi-supervised. On
the one hand, it is said that model training is supervised when parameters are
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obtained iterative based on known examples and improving the results according
to a metric with respect to the known (correct) solution. Eventually, it can be
obtained the learning curve of the algorithm. On the other hand, an
unsupervised model does not compute parameters based on iteration over a
metric, but based on data structure or data distribution. The correct solution is
unknown, and at the end, only one metric value is obtained. Semi-supervised
learning is a kind of supervised learning that allows missing labels (values of the
correct solution), modeling the way humans learn.

In the following sections the three subsystems in the CERPS are explained
following the data flow starting from the data acquisition. For the specific case
study of the migraine prediction system, there have been used three quantitative
data types: biometric, atmospheric, and ambient variables (DAS 1, DAS 2 and
DAS 3. Quantitative variables—as activity information or subjective symptoms—
are represented by DAS 4.
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3.2 Sub-system I. Fine-grained predictive
modeling from hemodynamic variables

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling

3.2.1 Hemodynamic data acquisition
3.2.1.1 Overview of the monitoring experiments
3.2.1.2 Conditioning circuits of hemodynamic signals
3.2.1.3 Pain objectification

3.2.2 Migraine predictive modeling
3.2.2.1 The training and validation blocks
3.2.2.2 Set of models

3.2.3 Improvement of the prediction and decider
3.2.3.1 Sensor-Dependent Model Selection System

3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system

Of the three sub-systems represented in Figure 3.2, this is the most important
one. This sub-system (Figure 3.3) provides the most accurate prediction of a
migraine event based on the information of hemodynamic data. In this Section,
the different modules of the architecture described in Chapter 2 are implemented.
This sub-system has been modeled, simulated and implemented. In addition, an
energy efficiency study has been carried out. First, the Data Acquisition System
(DAS) used for the acquisition of hemodynamic data is shown in Section 3.2.1.
In Section 3.2.1.3 it is defined the objectification of the migraine pain, prior to
its predictive modeling, which leads to the Robust Predictive System and is
explained carefully in Section 3.2.2. Finally, in Section 3.2.3 it shown the Decider
and methodologies to improve the system’s accuracy.

3.2.1 Hemodynamic data acquisition

The relation between changes in hemodynamic variables regulated by autonomous
nervous system and the migraine has been already discussed in the clinic literature.
For instance, Hassinger et al. relate the cardiovascular response to the migraine [73]
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Figure 3.3: Architecture of the implementation of the Sub-system I for fine-grained
predictive modeling based on hemodynamic variables. The decider can receive and use
information from the expert system to improve its result, however this has not been
implemented yet and that is why it appears dotted.

and Vollono et al. do the same with the heart rate variability during the sleep [180].
Kewman et al., for example link changes in the skin temperature with migraines,
as other authors do [90]. Passchier shows also changes in the electrodermal activity
in migraine sufferers in [132]. Regarding the SpO2, Lovati shows in [109] how blood
oxygenation during sleep was significantly higher among headache patients with
respect to controls. In this thesis it has been demonstrated that the hemodynamic
variables are good predictors of the migraine, clearing out some doubts about the
timing of changes in hemodynamic variables—migraine pain prediction observing
the dynamics of these variables demonstrates that changes occur before the pain
starts.

The aforementioned hemodynamic variables have been monitored in
migraineurs during, ideally, 24 hours per day: heart rate (HR), electrodermal
activity (EDA), skin temperature (TEMP) and peripheral capillary oxygen
saturation (SpO2). In addition to the hemodynamic variables, the subjective
pain has been manually registered by patients to correlate the real pain with the
biometric signals and to train the predictive models.

Along the development of this thesis, due to the non-availability in the market
of devices with the required sensors, they have been used different devices to
acquire the data. There were used three commercial devices and a prototype
developed for ourselves; they are shown in Figure 3.4.

The Shimmer2r1 monitoring platform was the first used. These platforms
allows programming based on the operative system for embedded devices
TinyOS2 whose codes are written in nesC (a variation of the C programming
language). Figure 3.4a shows the assembly for the monitoring of ECG. Shimmer
devices provide an external input to add sensors; the skin temperature and the
electrodermal activity where gathered in this way. To monitor the oxygen
saturation it was used the OnyxII3 wireless device (Figure 3.4c): a finger pulse

1Shimmer: http://shimmersensing.com (accessed January 2018)
2TinyOS: https://web.archive.org/web/20050613075906/http://www.tinyos.net/ (accessed January

2018)
3Onyx II: http://www.nonin.com/Onyx9560 (accessed January 2018)
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(a) Shimmer 2r platform. (b) BioPlux platform.

(c) OnyxII wireless device. (d) Own prototype platform.

Figure 3.4: Different monitoring devices used along the implementation of the
methodology to gather hemodynamic data and run fine-grained predictions.

oxymeter that transmits data via Bluetooth. This device bases on the OEM-III4
platform, both belonging to NONIN ®. Its small battery (around 400mA) and
the complex assembly of different sensors made it not suitable for ambulatory
monitoring. It was then when the PLUX-Wireless Biosignals5 was used. This
device was used for a long time; it was not developed for continuous ambulatory
monitoring lasting several weeks, and they suffered permanently from cable
breaks. The first decision to tackle this problem was to use the OnyxII to
monitor SpO2 instead of the wired finger pulse oxymeter they provided. It is a
closed platform and it cannot be programmed.

Both, Shimmer and Plux, devices transmit data via Bluetooth to a
smartphone, and this was one of the major concerns of these platforms.
Bluetooth suffers from continuous disconnections and has a short transmission

4OEM-III: http://www.nonin.com/OEM-III-Module (accessed January 2018)
5Plux: http://www.biosignalsplux.com/index.php/en/ (accessed in January 2018)
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Figure 3.5: Patient wearing the monitoring system.

field, so that, communication breakdowns also occurred when patients separated
momentarily of the smartphone during their daily activities. This was why
eventually it was decided to design our own prototype (called BrainGuard, as the
clinical project was called). The multi-variable monitoring prototype in
Figure 3.4d was developed jointly with the company M2C6. This device sends
data via 3G to a Cloud server. It holds the OEM-III for backward compatibility.
It is fully programmable and has a long battery life that allows long lasting
monitoring sessions. As can be seen its sizeis a problem to highlight—compared
to a 2 euro coin—; despite it is suitable for ambulatory monitoring, patients
complain of its ergonomics.

3.2.1.1 Overview of the monitoring experiments

The migraine prediction study starts in the hospital with the patient, the
doctors, and the engineers of the research group. Once patients sign the informed
consent (the protocol for the clinical study that was approved by the Local
Ethics Committee of the hospital), the monitoring phase begins. The medical
staff of the hospital selects the body locations where the sensors are placed. The
study comprises two phases: (i) data acquisition and training (modeling), also
known as offline phase, and (ii) the real-time prediction, or online phase
(see Figure 3.6).

6M2C: http://m2c-solutions.es/ (accessed January 2018)
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Figure 3.6: Scheme of the monitoring study. First, at the beginning of the study data
are acquired, later the migraine prediction models are calculated. Data are gathered by
the monitoring node and they might be transmitted from the node to the coordinator
and then to the Data Center, or directly to latter.

The offline phase of the study lasts from 4 to 6 weeks. During this time
the patient’s migraines are recorded and the prediction models are developed. The
patients try to avoid any drug ingestion that can alter the monitored signals during
the monitoring process. This is crucial in order to register the real body response
before and during a migraine crisis. The patient will be allowed to take some
medication if a strong migraine occurs. In these cases, the hemodynamic variables
and the pain evolution are also collected; nevertheless, how the real pain would end
without the effect of medication will be unknown, due to the effect that medications
will accelerate the end of pain.

In spite of the different monitoring devices used, the data acquisition
parameters remained the same for all of them. Skin temperature, EDA and ECG
signals were all analog signals acquired as it. The SpO2 was digitally retrieved
from the NONIN Onyx II and the OEM-III modules. Table 3.1 summarizes the
placement of sensors, their data acquisition rate, accuracy, and the amount of
data gathered during 24 hours of monitoring. Despite the HR is used for
modeling, this is calculated offline from the ECG signal; this fact reduces the
amount of data to process from 31.4 MB to 0.51 MB per day.

Patients indicate through an electronic form in an Android smartphone app
developed in the research group the evolution of their pain and many other events
related to the migraine crisis, such as premonitory symptoms, auras, triggers,
concomitant symptoms and postdromic symptoms. All these data are used later for
the implementation of the Expert Decision System. Figure 3.7 shows a snapshot
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Table 3.1: Data acquisition parameters.

Placement Sampling (Hz) Precision Data-24h (kB)
TEMP Armpit 1 0.0223 ◦C 126.6
EDA Arm 1 0.0062 µS 126.6

ECG (HR) Breast 250 (0.1) 4 ms (1 bpm) 31640.6 (12.7)
SpO2 Finger 3 1 % 253.1

Total (MB) 31.4 (0.51)

of the app of a migraine example to monitor the evolution of pain.

3.2.1.2 Conditioning circuits of hemodynamic signals

In this subsection it is going to be explained the algorithm developed for the
extraction of heart rate from ECG data.

Data from analog sensors is provided as the tension measured in its terminals
Vmeas. Temperature and EDA sensors can be mounted in a Wheatstone bridge
configuration. The temperature, in our case, is parsed using the standard equation
of an NTC thermistor (Eq. 3.1). Making an abstraction of the actual electronic
implementation, it can be said that:

1
TEMP

= 273.15− (a+ b ∗ ln(Rtemp) + c ∗ (ln(Rtemp))3)
[ 1
◦C

]
Rtemp = R25◦C ∗

Vmeas,temp
Vref − Vmeas,temp

(3.1)

For our WBSN, the NTC used is the model SA2F-TH-44031-40 from Omega7.
Rtemp is the impedance of the NTC thermistor measured at temperature temp. The
constants for this sensor are:

a = 0.00102916, b = 0.00023913, c = 1.566 ∗ 10−7, R25◦C = 10kΩ, Vref = 3.3V

The EDA represents the conductivity measured in Siemens. What it is
measured is the voltage difference among two close measurement points of our
skin, among which there exists an impedance Reda:

7Omega: https://www.omega.com/ (accessed January 2018)
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Figure 3.7: Evolution of the pain marked in the smartphone app. Notice that the
ordinate indicates the subjective pain evolution, and the scale has no limits. The abscissa
indicates the number of points marked, and in the sake of simplicity, they are not equally
spaced.

EDA = 1
Reda

[S]

Reda = Rrefbridge
∗ Vmeas,eda
Vref − Vmeas,eda

(3.2)

For our WBSN, they have been used two disposable medical electrodes and
medical leads following the standard DIN 42-802. The constants for the EDA
circuit are:

Rrefbridge
= 1.5MΩ;Vref = 3.3V

The electrocardiogram signal is measured using a single-lead local
differential bipolar sensor, placed in the chest as shown in Figure 3.5. Prior to
the HR calculation, the ECG is band-pass filtered with a 4th order Butterworth
filter with fc1 = 3Hz, and fc2 = 20Hz. This, according to the power spectra of
the ECG signal shown in Figure 3.8b [169], allows us to remove the DC
component and retrieve a big amount of energy of the QRS complex—the signal
of interest to calculate the heart rate—removing a lot of electromagnetic noise
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(a) QRS complex. (b) ECG power spectra.

(c) PPG signal. (d) PPG power spectra.

Figure 3.8: (a) QRS complex, the signal of interest to calculate the heart rate; (b) ECG
power spectra. Notice the bandwidth of the QRS complex; (c) Systolic and diastolic
points, and inter-beat-interval; (d) PPG power spectra. Notice the bandwidth of the
QRS complex.
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Pain period
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Figure 3.9: Hemodynamic variables after synchronization and preprocessing during a
migraine episode (red curve between vertical bars).

coupled to the signal.
The HR is calculated counting beats per minute in the ECG signal. Beats are

the R peaks in the QRS complex. The HR for one minute is the average value
of the peaks counted in five windows of 20-second length each with 10 seconds
overlap. The HR is smoothed to remove spurious samples according to the age of
the patient using the regression Eq. 3.3 proposed by Tanaka et al. in [167]:

HRmax = 208− (0.7 ∗ age) (3.3)

Peak miss-detection as well as over-detection can be corrected by mean of the
Inter-Pulse-Interval (IPI) measurement as proposed in [152]. This improvement
should be taken into account in further implementations.

The SpO2 signal is digitally acquired from the OEM-III. It can provide
different time and level resolutions. This module provides data once a second
through a serial communication. Photoplethysmography (PPG) is provided too if
needed (Figures 3.8c and 3.8d). It is acquired at a sampling rate of 75 Hz.
Synchronization of PPG and ECG can lead to the extraction of blood pressure
information, but signal has not been used yet in the implementation proposed.

All variables have been calibrated using commercial medical devices. An
example of a 6 hours monitoring is shown in Figure 3.9. Data are sub-sampled to
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Figure 3.10: Migraine as a cascade of neurological phenomena. The red curve, the
headache, is the pain to be modeled. Credits: Copyright © 2010 National University
Hospital of Singapore.

1 minute period to work with them in the following steps. The figure marks in
red, between the vertical bars, the pain period of a migraine episode. Before the
pain period, it can be intuited differential changes in some of the hemodynamic
signals such as heart rate and skin temperature. However—looking at different
migraine recordings—,it is not evident to say whether these changes happening
prior to the onset of the pain must be increases or decreases of the variables. It
is not evident neither when compared with the patient’s basal status. That is
why there were contradictions in the clinical literature [123, 136], and thus, the
proposed methodology contemplates the use of powerful techniques (such as state-
space algorithms or metaheuristics), in contrast to static thresholding methods
applied over absolute values of the signals.

3.2.1.3 Pain objectification

In this subsection it is going to be explained the objectification of the migraine
subjective pain. In health, a symptomatic crisis means pain. Pain is subjective
and, in order to objectify the patients’ pain it has been designed an objective
function.

A migraine is a cascade of neurological phenomena [25]: (i) premonitory
symptoms, (ii) aura phase, (iii) pain, (iv) finally a postdromic stage. The pain is
just one of the latest ones, but the most noticeable, as it is shown in Figure 3.10.
Evaluate a pain event after it occurs with a single-number is not useful if it is
desired to relate changes with time-varying signals—such as hemodynamic
signals. It makes necessary to continuously evaluate the pain of the patient to
model the migraine with changes in hemodynamic variables. Regarding to this,
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Figure 3.11: Modeling of subjective pain evolution curve using real data. The pain
has been described as two semi-Gaussian curves.

in the experimental design of this problem, it was asked to patients for the
preferred way to evaluate their pain during a migraine crisis. It was concluded
that: (i) each patient has its own scale, and graphical and traditional numerical
scales are not always useful for them. (ii) Single values are not practical and, to
predict migraines, it is necessary to create a continuous pain curve. (iii) Upper
bounds limit the option to indicate higher values once the highest has been
reached. This happens because the maximum it is never known till the end of
the event.

Each patient evaluates his or her pain in two ways: a global index of pain for
the total migraine period, and punctual pain levels continuously marked during the
migraine attack. For modeling we are going to focus on the latest. The punctual
pain levels along the migraine attack have been chosen in an unlimited numbered
scale where 0 is no pain, and in the evolution, the marked points grow and fall
according to the perception of the patient. If the pain increases, the patient marks
a positive number, negative if it decreases and 0 if it remains equal. Thus, a curve of
subjective symptom evolution can be drawn. The maximum represents the highest
pain, and it will be different for each migraine. The unlimited range responds to
the ignorance of the patient who does not know if the maximum pain has been
reached or not. With a limited scale, there could be several saturated points to
the maximum of the scale along a period of time. With this method, consequently,
the curve of its evolution must be normalized in amplitude. The intensity varies
along a migraine episode, usually starting with low levels, but depending on the
patient, it can reach its maximum intensity in a variable way; the same occurs
with its disappearance. Therefore, the pain curves must be individualized for each
patient.
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To predict the symptomatic crisis, the first step is to generate a model of
the migraine pain. To do this, an adjustment process of the registered subjective
pain curve was carried out during the experiments. The main thoughts about
how the curve could be pointed out to the Central Limit Theorem (CLT), where
the addition of several random independent variables tends towards a Gaussian
distribution. The migraine pain, seen as a combination of independent (pseudo-)
random factors—most of them unknown—could be described as a Gaussian curve.
It is known that the pain raises faster than it recesses, so, the symptomatic curve
has been modeled as two semi-Gaussian curves, as they fit the patient’s subjective
response. In addition to the punctual point of the pain evolution, patients also
indicate two timestamps during the migraine attack. The first timestamp indicates
the onset of the pain when detected, and the second one indicates the end of pain.
With these two points and the punctual points of the pain evolution, two semi-
Gaussian curves can be generated, as can be shown in the example in Figure 3.11.
{(µ1, σ1), (µ2, σ2)} are the two semi-Gaussian’s parameters necessary to define a
symptomatic curve. The symptomatic curve includes the pain period, as it reflects
some changes in the migraine process. An example of the resulting function is
shown in Figure 3.11 using real data.

3.2.2 Migraine predictive modeling

Now that it has been described how the system’s objective function is, it is
necessary to train the system to identify relations between the inputs signals and
the output. This is called modeling, and because our system tries to anticipate
future statuses based on current and past information, it is going to be referred
as predictive modeling.

In this Section lets describe the creation of the Prediction System (PS).
The results of the following discussions will lead to the architecture seen
in Figure 2.7, and included in the block Hemo-PS of Figure 3.2. This section
implements the Predictors and the Sensor Dependent Model Selection
System in the Prediction System (PS) of Figure 2.7, hold in the
Hemodynamic-RPS module of Figure 3.2. The Predictors that were seen as a
black box that makes predictions, are going to be described based on some of the
algorithms explained in Appendix A.

The objective of this section is to explain the modeling system created to
predict the symptomatic crisis of a migraine sufferer. It is shown the offline
implementation that leads to models and applications to be implemented online.
Different blocks compose the modeling system in the training and validation
stage. This stage provides a set of models to work with. The test stage will be
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Figure 3.12: Training and validation diagram. As a result, a set of personalized
migraine predictive models based on hemodynamic data are obtained.

presented in Chapter 4, as well as the results from the implementation of the
final stage (real time simulation)—explained later in this Chapter.

The training and validation stage, shown in Figure 3.12, is the first step to
find the model or models that describe the symptomatic pain curve of a migraine
sufferer better. This stage runs offline and has as inputs the data recorded in the
monitoring: hemodynamic variables and subjective pain marks for every migraine
attack. The most important modules in this stage are: the preprocessing, the
training and validation dataset, the training and validation modules and the batch
of models achieved.

The preprocessing block parses data dorm sensors, detects errors and repair
them, and synchronizes data prior modeling. The preprocessing block
in Figure 3.12 hosts different modules of the architecture. In this block, it can be
found the Data Driver of the hemodynamic variables monitoring device, and
the Data Driver of the smartphone app that collects, among other variables, the
punctual points of the pain evolution (see Figure 3.13). As the WBSN can suffer
failure of sensors or data can be lost due to Bluetooth disconnection or battery
discharge, this block also hosts an adaptation of the Sensor Status Detector
that detects and repairs broken data as stated in Section 2.2.2.2.

Data Drivers

Following the architecture shown in Figure 3.2, after the acquisition of the
hemodynamic data, the feature extraction is made by the Data Driver (DD).
The WBSNs used provide data packets that encapsulate several variables with
common timestamps, so the feature extraction is made first (on the contrary that
the example shown in the architecture diagram in Figure 2.4).

Due the prediction of migraines is a novel field that has not been tackled
before, it has been used the raw information without performing an exhaustive
study of features—just the HR extracted from ECG—and it has been covered
briefly using GE models. This problem will be addressed in a near future in
this research. There have been used four variables: skin temperature (TEMP),
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Figure 3.13: Data Driver implementation for the monitoring of hemodynamic variables
and symptomatic pain. Notice that dotted arrows from the Data Driver Mobile app
towards Data Driver Monitoring device implies that this connection takes place only
during the training phase (offline); it will never be possible during the real time because
the system is the one which provides the prediction of the pain.

electrodermal activity (EDA), heart rate (HR) and oxygen saturation in blood
(SPO2). Data are parsed following the equations and algorithms aforementioned
in Section 3.2.1.

During the experiment, when a migraine starts, patients are required to
indicate it, and they are asked to to indicate the punctual subjective pain till the
pain ends. The subjective pain is gathered using a smartphone app developed in
the research group. The value and the timestamps are saved and the
symptomatic pain Gaussian adjustment is made leading to curves as the one
presented in Figure 3.11.

It is now, once features are parsed and computed, and the pain curve—the
objective function to be modeled—defined, when these are synchronized. This sub-
process sets a common time interval between samples using a high-order FIR filter
decimator. The time between samples is 1 minute for all signals and prediction
horizons.This curve is then synchronized with the hemodynamic data.

Signal Repair

After the synchronization, data from hemodynamic signals are repaired. The
system is identical to the one presented in the architecture for the Sensor Status
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Detector (Section 2.2.2.2), however, this offline implementation does not raise
alarms.

Each one of the three detectors represented in Figure 2.5 generates an alarm
ai ∈ A when a condition occurs. A = {anoise, afall, asat} ∈ B represents the
set of possible triggered alarms. B represents the Boolean space.

For the sake of simplicity, lets assume that decision makers are based on
threshold detection. Each one of the detectors averages data during a period of
time Ti ∈ T = {Tnoise, Tfall, Tsat}, prior to the notification of an error to the
Anomaly Detector block, avoiding, therefore, rebounds in alarms.

Raising an alarm anoise to detect noise requires that the average energy exceeds
a threshold τεf

, as shown in Eq. 3.4 for a variable or feature f :

εf = 1
Tnoise

Tnoise∑
t=0

f(t)2 ≥ τεf
⇔ anoise (3.4)

Similarly, alarms to detect falls and saturation are raised when are below
or exceed a threshold τfallf or τsatf respectively in different time windows Tfall
and Tsat. Consequently, these conditions for a variable or feature f are described
by Equations 3.5 and 3.6:

f̄ = 1
Tfall

Tfall∑
t=0

f(t) ≤ τfallf ⇔ afall (3.5)

f̄ = 1
Tsat

Tsat∑
t=0

f(t) ≥ τsatf ⇔ asat (3.6)

It is important to clarify here that, at this point of the system, we refer
variables as features and vice versa indistinctly. During the implementation there
is not a best option according to (i) detect sensor status, repair data loss if needed
first, and then pre-process them (compute features) or, (ii) pre-process data and,
after that, repair the data if needed. With the first option we can save energy and
time processing if data are definitively lost; otherwise we would have preprocessed
data that were damaged. The solution to this problem is a trade-off that has to be
decided for each data source independently. As an example: noise detection is a
hard task in variable ECG using simple detectors as the one described in Eq. 3.4;
in addition consecutive signal repair of ECG is impossible for periods of time larger
than few seconds. On the contrary, noise is easily detectable in heart rate.

Two different core algorithms have been implemented in the Signal Repair
module. Each one of them with its advantages and inconveniences, and each one
is suitable for different contexts.

i) A Gaussian process machine learning (GPML) algorithm has been used in
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those implementations where the Signal Repair module runs in
moderate/high power computing infrastructures (as a server in a Data
Center). This algorithm has been developed by Rasmussen [138], and the
code is released under FreeBSD license8.

Gaussian processes provide a probabilistic approach to learning in kernel
machines to detect patterns. Gaussian processes can be used for regression
and classification problems. Gaussian processes represent distributions over
functions instead of the traditional probabilistic methods that define
distributions over individual data values. This is interesting to the analysis
of time series of hemodynamic data, in which it is performed inference over
functions—as Clifton et al. assets in [32].

Gaussian processes’ hyperparameters have been personalized for each patient,
and obtained (trained) with several hours of hemodynamic data for each one
of them. GP performs interpolation over all the data, filling those gaps where
data are not available because of noise, disconnection or sensor saturation.
It is worth to notice that, the larger the gap, the lower the accuracy of the
interpolation, tending it towards a constant value in some variables. This
might be due to over-training or, on the contrary, due to a weak training.
Whatever it is, it would require of a more precise study to draw a conclusion.

The training of hyperparameters as well as the interpolation of new data
are processes that take computation time. Because of this, and despite GPs
provide an accurate result with a probabilistic output, it was necessary to look
for other methods to be run in light computing units such as a monitoring
device.

ii) Hemodynamic variables are controlled by the autonomous nervous system,
and they are somehow interrelated, so that, in the absence data of one of
them, the damaged data could be repaired though the information of the
others. With this idea, the Autocorrelation Function (ACF) and the Partial
Autocorrelation Function (PACF) were studied. Using the software
Statgraphics Centurion XVII [160], it was seen rapidly that hemodynamic
variables can be described by ARIMAX models—in its most general form.

Time series models are polynomial functions based on past data of the
series. Time series models can be used to predict data by recursive iteration
over the past data. Thus, it was decided to create time series models with
exogenous inputs, so that, data loss in one variable could be predicted

8The Gaussian Processes Website. Available online: http://gaussianprocess.org/gpml/code/matlab/
doc/ (accessed January 2018)
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temporary by an ARIMAX model where the exogenous inputs are the
remaining hemodynamic variables (see specifications to the implementation
in Section A.3). ARIMAX models are polynomial equations that can be
executed in the most basic microcontroller embedded in a monitoring device.
This makes this option more suitable for those MCC architectures when the
Signal Repair runs on the monitoring device.

.

3.2.2.1 The training and validation blocks

After preprocessing the gathered data, a set of data is available for model training.
This dataset is randomly divided into two groups: around 75% of the monitored
migraine episodes (T ) are chosen for training and validation of the models, and
the remaining 25% are used to test the models. Each event has as much hours of
data without pain before and after this as possible.

The algorithms chosen in the training and validation blocks for the
predictive modeling of the migraine were the state-space based N4SID and the
holistic Grammatical Evolutionary (GE) approach. In
Section A.1 and Section A.2 the modeling backgrounds are explained. In
addition, the specifications of implementation for our problem are explained
there. In our case, there are the four hemodynamic inputs to create models over
one output, the symptomatic pain. The metric used to evaluate the accuracy of
the models is the aforementioned fit:

fit = 100×
(

1− ‖y − ŷ‖
‖y −mean(y)‖

)
, (3.7)

where y is the real symptomatic curve understood as shown in Section 3.2.1.3,
and ŷ is the modeled one. fit ∈ (−∞, 1]; the higher fit the better the model
represents the behavior of the problem. Henceforth, this metric is used when
we refer to the accuracy of the models/system, unless otherwise specified. There
are several interesting metrics, but the fit has been chosen because it bases in
the well-known Normalized Root Mean Square Error, whose normalization allows
direct comparison between datasets and models with different nature.

In the training process, an optimization loop finds the optimal model
parameters to maximize the fit, as shown in Algorithms 2 and 3. State-space
models define immeasurable states to describe difference equations that calculate
the current and future outputs from past and current inputs. N4SID is defined as
a combined deterministic-stochastic model. Within the N4SID optimization loop,
a study for feature selection has been performed. Algorithm 2 has been applied
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for the four hemodynamic inputs, but also with the combinations in triads of
them. In this thesis, the N4SID algorithm has been selected to solve this
problem. The algorithm has been computed using the System Identification
Toolbox of the MATLAB software [86].

This search of the optimum solution in a bounded problem might be tackled
by brute force, as done using N4SID. However, this issue does not escalate linearly
with the number of parameters to optimize. Furthermore, and this approach is
not affordable more over when the number of parameters increases considerably.
In these cases, heuristic approaches, such as Genetic Algorithms, make necessary
to reduce the set of candidate solutions to evaluate. GE serves as feature creator
as well, and it generates predictive models depicted by a mathematical expressions
for the targeted model. All the details are explained carefully in Section A.2. In
this thesis it has been used the HERO library published in [76] under GPL license.
The HERO library compiles a Java code with the individuals (solutions) of each
generation to evaluate them quickly. To reduce the number of compilations, the
size of the population will be high but still allowing diversity of solutions in the
next generations. The probability of mutation is the inverse of the number of
rules. Wrapping is not allowed, i.e. if a solution is not decoded it will return a
non-valuable mathematical function. The length of the chromosomes have to be
sufficient to avoid this situation.

Training

For each migraine and algorithm, it has been trained a model. On the contrary
to what traditional modeling studies do, each model is not calculated as the result
of a multi-experimental training. In multi-experimental training a single model is
created from several events. In our case, for each algorithm, the training block
provides a batch of (M = T ) models (one per migraine attack) to the validation
block. It will be shown in Chapter 4 that a multi-experimental training does not
provide statistically better results.

The issue stated above is a very important point of the methodology proposed.
The pros of this methodology against a multi-experimental data are two: (i) for
each model it can be optimized the prediction horizon individually. The quality
of the data of a migraine event affects to the accuracy of the trained model for a
given prediction horizon. So, events with good data suffer from the presence of bad
data. These good events could lead individually to better models, but with the
union of data, the multi-experimental model accuracy and potential prediction are
diminished. (ii) Having several models trained with different prediction horizons,
allows those models with higher predictive capacity support the others. For a
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Figure 3.14: Cross-validation. For each patient, each migraine mi lasts a different
time. Each migraine leads to a new model Mi, and each model is validated against the
remaining migraines. Eventually models are ranked and the best are selected to model
the migraines of that patient.

desired prediction horizon, the accuracy of a model trained for a larger prediction
horizon is higher than the accuracy of another one trained for a shorter horizon.
The system takes advantage of this opportunity in the Linear Combiner.

Validation

Not all of these M models are going to be used in the final prediction stage;
just the best ones are selected. The validation block looks for the best models to
predict migraines using the a cross-validation criteria.

The nature of prediction problems in ambulatory eHealth MCC studies
makes a difficult task to get long lasting continuous data records. This leads to
separate migraines and basal data individually. This is possible because there
exists, (i) inter-migraine independence: events are widely separated in time, and
their basal conditions—periods without pain—may differ considerably; and
(ii) intra-migraine similarity: for the same patient events resemble each other,
because the autonomous nervous system is the same.

It is worth to remember that a migraine event, for training, includes as much
hours of data without pain before and after this as possible, in order to capture the
complete dynamic of the hemodynamic variables. With this, the cross-validation
obtains each model Mi, i = 1, 2, . . . ,M , from the i-th migraine, and the model is
validated against the other j-th migraines, with i 6= j, as shown in Figure 3.14.
The validations are made for different horizons, drawing a prediction curve. Each
Mi model performs M − 1 prediction curves and then they are repaired. The
models are ranked and the best are selected.
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3.2.2.2 Set of models

The aim of the model selection is to make more robust predictions. It is
supposed that just one model to predict all the migraines can underestimate or
overestimate the input data. With this idea, a set of models is selected from the
previously trained and validated batch. In the sake of simplicity, and to improve
the readability, the block of Improvement of the results is explained
in Section 3.2.3. Let us assume that this block does not change the validation
result.

In the simple and traditional form to rank models, the average fit value is
prioritized, setting a fixed value of fitmin and observing the achieved prediction
horizon. In the methodology proposed, there have been defined two different
strategies to select the models: regarding to the fit achieved, or regarding the
prediction horizon. This leads to a strategy for the selection of models.

(i) Given a prediction horizon: models are trained for a single prediction
horizon and then these are selected by the average fit fitmin achieved in the
validation stage. (ii) On the other hand, given a requirement of minimum fit of
quality, models that are trained for different horizons are selected according the
level of compliance with the fit requirement achieved. A minimum average fit
(quality) fitmin is required. To rank the models these are sorted in relation to
the average prediction horizon achieved in their validation for a similarity level of
fitmin. The best models are chosen.

The goodness of the fit and the prediction horizon can be used as criteria to
select the models. Selecting one criterion automatically sets the other. Setting
the fit, we can follow a more conservative approach that reduces the prediction
horizon but improves the confidence in the models. However, setting the prediction
horizon can achieve farthest predictions by loosing accuracy.

According to our experimental set, it can been considered that the selection
one third of the models (Mbest = M/3) works well. If it is not possible, a minimum
Mbestmin = 3 models is considered good too. To avoid overfitting, it has been also
considered that these models must validate at least other 3 migraines with a fitmin.

Linear combiner
Each one of the Mbest models will generate a prediction; the prediction result will
be calculated as a linear combination of all of the Mbest predictions performed in
the Linear Combiner.

It our implementation all models are equally considered and the linear
combination is, actually, an average of the predicted values. It is a matter of
future work to define a smarter way to weight models such that it can smooth
high differences among predictions, for example.
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3.2.3 Robust methodologies for improvement of the
prediction and decider

Now that the reader knows how models are trained, and the details of the
implementation for each algorithm, it is going to be presented the block of
improvement of the results of Figure 3.12. It is worth to mention that most of
these techniques are applied offline in order to improve the behavior of the
system. When they are applied offline, all the data (past, present and future) are
known. Nevertheless, its implementation in the real time has the limitation of
the knowledge of future inputs. This Section leads to the Decider module shown
in Figure 3.2.

This block, from the scheme shown in Figure 3.12, implements a sequence
of processes to improve the prediction. This block must detect false positives
and correct them. Hence, the aim is to detect and remove false positives in the
predicted symptomatic curve during the validation.

The predictions obtained by the models have difficulties maintaining a
constant value, and they tend to oscillate around the zero value when no
symptomatic crisis is detected. This fluctuation causes an artificial reduction in
the fit. As an example, the blue curve in Figure 3.16a represents a prediction
with fluctuations (the original symptomatic curve is the black one). These
oscillations can be easily detected and removed. To do this, two methods are
evaluated: (i) reparation of the prediction, and (ii) Gaussian fitting as the
original symptomatic crisis was modeled. These methods are applied to the our
predictive modeling scheme. All the possibilities studied are shown in
Figure 3.15. Each one of the four branches represents a scheme to improve the
predictions.

Reparation of the prediction

The false positive correction works as follows in an iterative process as
Algorithm 1 describes. In order to illustrate these processes,
Figures 3.16a and 3.16b show how to repair a prediction.

False positives are detected using a level and a time threshold (thlevel,
thtime). Firstly, a time window of the predicted curve is selected. The length of
the prediction horizon ph used for training the model. Then, those values out of
limits (below zero and above the maximum) are marked with red x, as shown in
Figure 3.16a. Then, negative values are set to zero, and the rest of outliers are
set to the maximum. After that, the level threshold is applied. This process
marks as candidates those values above 50% of the probability of occurrence,
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Figure 3.15: Schemes proposed to be used in the methodology to improve migraine
predictions for each m− th model based on hemodynamic variables.
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Figure 3.16: Improving the predictions. (a) Prediction over real symptomatic curve.
Detection of events, removal of oscillations and false positive detected; (b) Probability
curve of pain occurrence from the repaired prediction over the ideal probability curve.
Final detection time limits; (c) Result after repairing the prediction and fitting the
prediction to two semi-Gaussian curves.
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P50%, using the linear decider explained below (green circles in Figure 3.16a).
The 50% of pain probability is projected to a level of 32 over the ideal prediction
(same as the original symptomatic curve). The blue dotted line represents this in
Figure 3.16b and extends through Figure 3.16a.

Data: {O = Predicted output}
Variables: {thlevel, thtime, ph}
Result: singleEvent = Prediction improved

Init: MarkA = 0;MarkB = ph;
Improvement of the prediction:
for ∀ time windows do

Select time window: data = O|MarkB
MarkA;

Limit the range:
data(data<0) = 0;
data(data>100) = 100;
Linear decider : candidates = data > thlevel;
Extend curve both sides towards 0 :
MarkA = min{O[ MarkA:candidate[0] ]};
MarkB = min{O[ candidate[end]:MarkB ]};
data = O|MarkB

MarkA;
Detect events: events;
Time threshold: singleEvent;

end
Algorithm 1: Reparation of the prediction with false positive correction.

Finally, the time threshold is applied. Doctors consider that close events are
rebounds of the same migraine, and must be considered together. If the distance
between the farthest points is lower than 60 minutes (enough to detect if a migraine
attack occurs or not), it is considered as a false positive. These points are removed.
In the real time, to avoid multiple alarms, after a migraine detection, the system
stops raising alarms for the time the threshold lasts. This action avoids make the
patients tend to intersection. In Figure 3.16a the left detection is removed.

As a result, the repaired prediction is represented in Figure 3.16c (purple
curve). It is worth noting that the fluctuation that appears in the middle of the
curve was not detected by the threshold level.

Linear decider

At this point, the criteria for considering a pain intensity as migraine crisis
must be defined; this decision is performed during the model repair sub-process.
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The linear decider sub-process is such a decision sub-process, which will detect a
migraine event when the probability of occurrence of a migraine episode exceeds
a threshold.

The linear decider will detect a migraine event when the probability of
occurrence of a detection exceeds the 50% of probability. This a worst case
study; it is the latest probabilistic time the system can raise the alarm. This
linear decider (blue triangle in Figure 3.16b) ranges from 0% (minimum pain
intensity in the normalized symptomatic Gaussian curve) to 100% (maximum
pain intensity in the normalized symptomatic Gaussian curve) of probability.
Therefore, the linear decider projects the repaired prediction (blue signal in
Figure 3.16a) to a probability of occurrence curve (green curve in Figure 3.16b).
The linear decider uses a linear function as the projection function. As a result,
the migraine detected (all those values higher than the 50% of probability of
occurrence) is bounded by the red dotted line in Figure 3.16b.

This method improves the prediction horizon in several minutes for the best
cases. In the worst case, the fit does not change. If this repair sub-process was not
performed, all of the false positives would be included in the validation; the fitness
may be low, and the higher prediction horizon, the faster the fit decreases. With
this, some abrupt fitness breaks occur when the repaired model is not capable of
detecting false positives. Nevertheless, this still remains at a higher fit than not
using this model repair sub-process for the same prediction horizon.s

Gaussian fitting
Figure 3.16c also illustrates the result of applying the Gaussian fit (orange curve).
This process fits the prediction to two semi-Gaussian curves, with reference at
the maximum of the prediction. With the aim of finding the original bells, the
prediction is first normalized and then fitted.

The impact of the combination of both processes (repair and Gaussian fitting,
depicted in the two lower branches of Figure 3.15), is also analyzed in Chapter 4.

3.2.3.1 Hierarchy of models: The Sensor-Dependent Model Selection
System

At this point, lets explain the Sensor-Dependent Model Selection System
(SDMS2) introduced in Section 2.2.2.3. Our system is able to detect saturated
or loose sensors by means of the Sensor Status Detector, and if a sensor fails
it is able to select a different set of models not using that sensor.

Remember the reader that the system stores models according to fit or
prediction horizon—and selecting one criterion automatically sets the other. So,
the SDMS2 can be seen as a pool of models that given the set of available
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Figure 3.17: SDMS2 design and usage for the real-time applications. Results using
the SCS. (a) Sensor-dependent model selection system (SDMS2); (b) Implementation
of the system for real-time applications.

sensors, returns the best models according to a hierarchy based on fit or
predictive horizon.

Figure 3.17 shows the design step of the hierarchy. All models are clustered
in a hierarchy of sets of models, depending on the sensors/features the models use.
The SDMS2 senses the status of the sensors and chooses the best set of models
according to their availability in real time (Figure 3.17b) and the desired criterion:
accuracy (fit) or prediction horizon.
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3.3 DEVS-based migraine predictor simulator
system

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator

3.3.1 DEVS formalization of the conceptual model
3.3.1.1 Coupled models
3.3.1.2 Atomic models

3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system

This thesis pursues the simulation of a Cyber-Physical System (CPS) to
raise alarms for predictive modeling of symptomatic crises in chronic diseases,
specifically, the migraine. To the best of our knowledge, this study is the first
attempt to simulate a real device for the prediction of symptomatic crises.

Once the offline (e.g. in virtual, stand-alone mode) predictive modeling has
been demonstrated, the next step is to test it in real-time. Prior to the expensive
and slow hardware implementation of a complete prediction and monitoring device
we proceed to develop a simulation system able to raise alarms and warn patients.
The advanced simulator presented in this Section simulates a robust system against
sensor failures that performs error signal detection and signal recovery (Sensor
Status Detector in Figure 2.5). In case that the sensors are not available, it
executes a hierarchical methodology of predictive models selection if signal recovery
is not possible.

As it was mentioned, that a co-designed monitoring device had been
developed in collaboration with the company M2C; our own prototype for data
collection and real time experimentation with predictive models. However, our
prototype does not have an alarm interface yet and, in addition, the access to
patients for conducting the study is a difficult task. Before an actual commercial
device is implemented in hardware, a hardware/software (HW/SW)
co-simulation that includes hardware-in-the-loop (HIL) will be used. This will
ensure that the system works in presence of actual hardware sensor failures and
physical actuators, and triggers alarms accurately, as predicted by the simulation
system. The specification of such a HW/SW co-simulation system is specified
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Figure 3.18: Conceptual system diagram. The dotted block represents the system.

using the Discrete Event Systems (DEVS) formalism that specifies unambiguous
structure and behavior of any hybrid complex system.

It was decided to use xDEVS—published as Open Source under General
Public License (GPL) [186]—because of the nature of the different predictive
models that can be used (based on time series, GE or state-space algorithms
among others). Furthermore, its semantics, performance, and its implementation
into a hardware device is very straight forward, due to xDEVS is coded following
the DEVS’ standards. Despite this simulation environment does not implement a
GUI yet, as future work, it might be done implementing a Unified Modeling
Language (UML) executable interface as described in [143].

It is going to be presented an incremental design with easy component
substitution and rapid HW/SW swapping mechanism as previously shown
through a DEVS-based transparent HW/SW modeling and simulation framework
in [144]. In this Section it is implemented a DEVS-based model that will be the
basis for the aforementioned HIL system. With this, it will be possible to start
clinical experiments to inform patients when to take medications in advance
followed by a study of the benefits of prediction in terms of complete or partial
pain relief. This Section focuses on describing a top-down view of the advanced
migraine prediction simulator system.

Conceptual design
The simulator has been implemented incrementally, leading to an advanced system
where it can be simulated any kind of predictive model developed, frameworks of
signal repair, or alarm generation system. It has been used DEVS for model
verification. DEVS gives the formal specifications required to bring formal rigor
to the modeling effort.

Because of the complexity of the system implemented in Figure 3.2, and the
relevance of the fine-grained migraine predictive system based on hemodynamic
signals for the system development, the simulation problem has been bounded to
the fine-grained prediction based on hemodynamic data as shown in the
conceptual diagram depicted in Figure 3.18. Hemodynamic variables and
Migraine alarm represent sensors and a reactive device respectively, and can be
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Figure 3.19: Representation of simulated system. All modules fit in the monitoring
device, which also performs predictions and raise alarms.

easily replaced for HIL implementation. The Sensor Status Detector monitors
the sensors operations and makes decisions if operations are below a specified
threshold. Model Selection selects the set of operational sensors that continue to
meet the operational requirements.

The aim is to demonstrate the robust methodology against sensor failures,
the migraine predictive modeling and the generation of alarms in real time.
Figure 3.19 shows clearly what the simulator encompasses: a MCC problem
where the simulated device performs all tasks from data acquisition to local
alarm generation without knowledge of external prediction from other
sub-systems.

3.3.1 DEVS formalization of the conceptual model
We now describe the detailed migraine prediction system using the DEVS
formalism.

Figure 3.20 represents the top view of the advanced migraine predictor
simulator system. All blocks are described in detail Section 3.5. A detailed
explanation is not necessary for a comprehensive understanding of this
implementation, but main specifications are shown in subsequent sub-sections.
Shadowed boxes in Figure 3.20 represent coupled models, and there are seven of
them divided into five types. Atomic models are represented with uncolored
boxes, and there are twenty-five top-level atomic models divided into seven
different types. Models surrounded by dotted lines are not part of the migraine
prediction system, but they are required in the simulation framework. These will
be removed in a real implementation of the system.

3.3.1.1 Coupled models

The five different types of coupled models in the system are the EFsys, the EFgt,
the SSD, the Predictor and the Graphs. As the RootCoupled is the actual system,
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it is the entire Figure 3.20 itself. The coupled model RootCoupled is the simulator
frame and interconnects the models that simulate the hardware modules, with the
prediction system model in EFsys.

The EFsys (in Figure 3.20) hosts the remaining coupled models detailed
in Figures 3.21a through 3.21c. The EFsys contains the intelligence of the
system, which cannot be replaced by hardware. It also performs the processing
from data of the single-output atomic models TEMP, EDA, HR and SpO2 after data
pass through the error sources ErrorInductor. The system also has as inputs
other single-output atomic models named as Manual Status for each sensor, and
gives an output to the single-input atomic models Actuator, and Status for
each sensor as well.

The EFgt model (Figure 3.21a) contains two atomic models to control the
data flow through model G, and to show simulation statistics through model T.
If the simulator runs in simulated time, T activates the stop signal to finish the
simulation after the simulation’s observation time has elapsed.

The simulator also has a coupled model (Graphs) that does not appear
in Figure 3.20 for the sake of simplicity. Graphs has been included to improve
the user experience. This model is only suitable for software simulation and plots
the input data, the migraine predictions, the status of sensors, the manual resets
of sensors and, the alarm event if it occurs.

The SSD is the Sensor Status Detector (see Figure 3.21b). This coupled
model is able to detect three types of abnormal behaviors in signals: noisy signal,
disconnection of a sensor (fall) and saturation. When an anomaly is detected,
the Anomaly Detector raises an alarm signal detect<bool>. This alarm will
indicate that the sensor has a problem and the core algorithm—implemented as
a GPML algorithm—atomic model gets activated to recover the signal based on
recent buffered data. The Core-algorithm model can perform a Gaussian Process
Machine Learning, or a reparation using time-series models as ARX (both have
been implemented, see Chapter 4). If the anomaly takes too much time to be
removed, the Core-algorithm would not have enough recent data to estimate new
values. In this case, when a predefined time is exceeded, the ete<bool> signal
gets activated and the data from the sensor is not used for migraine prediction
until a signal coming form the Manual Status indicates that the sensor has been
restored. Then all alarms signals are disabled and SSD relays the data from the
sensor without errors.

The Predictor (in Figure 3.21c) is the last type of coupled model, and it
contains the migraine prediction models trained. It holds several atomic models.
The SDMS2 atomic model selects, subject to availability, the group of predictive
models to perform the prediction. Each one of the atomic models
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Predictors∗—where ∗ indicates the set of available sensors—computes several
predictions (three in our case) and sends them to the atomic model
Linear Combiner, which performs a linear combination of the three results.

The simulated system has been tested using state-space and GE models for
the migraine prediction; any of them, or others, can be used in the system. The
SDMS2 applies a hierarchy of models according to the availability of sensors to
maintain prediction accuracy as it was shown. If the monitoring and prediction
systems detects anomalies in sensors, the Sensor Dependent Model Selection
System chooses an appropriate set of models that avoids the use of a damaged
sensor and maintain an accuracy level for a given prediction horizon. Prior to
changing the set of models, the system computes statistical averages to estimate
lost sensor’s values. If the failure in sensor exceeds a pre-defined wall clock
interval, the SDMS2 will choose it definitively.

As future work, it has aimed to provide an advanced feature of the system that
will allow the injection of re-trained migraine prediction models (Predictors∗) in
real time. Then, the behavior of the system will be shown using variable structure
DEVS [82].

3.3.1.2 Atomic models

Among the twenty-five top-level atomic models, we distinguish seven different
types: sensors and stimulus (TEMP, EDA, HR, SpO2 and Pain), statistical error
inductors (ErrorInductor), manual reset model for sensors (Manual Status),
sensor drivers (Sensor Driver), signal synchronizer (Sync), an alarm evaluator
(Decider) and the migraine alarm Actuator. All atomic models in the EFsys
model represent HW modules that can be replaced by real HW components in a
future HIL implementation.

• The atomic models: TEMP, EDA, HR and SpO2 pre-process biometric variables
in their current implementation. In the future release of the prediction
system, these models will provide the raw data from sensors, and will also
incorporate real-time processing models (in the Sensor Driver models
after the ErrorInductor models). Atomic models for hemodynamic
variables remain outside of the EFsys coupled model so that they can be
substituted easily for hardware devices facilitating the execution of HIL
experiments. Pain is the symptomatic pain curve modeled from pain mark
levels indicated by patients as shown in Section 3.2.1.3. This atomic model
does not belong to the system and has been added to compute statistics
when the framework is used with known migraine events.
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Figure 3.21: Three of the coupled models that the EFsys hosts.
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• The error inductor modules {TEMP-EDA-HR-SpO2} ErrorInductor are
atomic models that do not belong to the system but are useful in the
simulation system to induce random errors. These models generate three
types of errors: noise, saturation and disconnections (or falls). Errors are
generated based on signals’ error statistics, and these statistics are used in
SSD coupled models to detect the errors.

• The driver {TEMP-EDA-HR-SpO2} Sensor Driver adds a timestamp to the
data from the RootCoupled’s clock. In the implementation, these models do
not perform any action. In a future release, they might include the signal
processing of raw data coming from sensors.

• The model {TEMP-EDA-HR-SpO2} Manual Status represents hardware that
raises notifications when a damaged sensor has been repaired. The generated
signal resets the alarms. This leads the SDMS2 model to again select the set
of prediction models using all the sensors. In an HIL implementation they
will be replaced by buttons or something similar.

• The Sync atomic model synchronizes and buffers the data for simultaneously
supplying the values for the four biometric variables (Pain, if possible) to
the coupled model EFgt.

• The Decider is an atomic model that determines if prediction results in a
migraine event or not. The Decider is implemented as a threshold crossing
model with a single level only. The numerical threshold value is 32
(normalized units) in the normalized objective symptomatic pain curve and
this represents 50% probability of the maximum pain level as explained
in Section 3.2.3.

• The Actuator is an atomic model that can be substituted by a hardware
device, most likely an acoustic alarm. In the simulation system, this is a
dummy model and it does not perform any action.

• The models {TEMP-EDA-HR-SpO2} Status indicate when sensors have data
errors. In the simulation system, these are dummy models and they do
not perform any action. They will be substituted by stimulus such as LED
diodes.

As it shown in Chapter 4, simulation provides a lot of feedback about the
system implementation and the methodology described in our MBSE problem.
This simulation has opened this research to other areas that escape from the
objective of this thesis. As an example, it is being proved that the simulation
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allows a very straight forward implementation in re-configurable hardware
platforms (FPGAs using VHDL language) to test the system in a real
device [75]—thanks to the easy modularity of DEVS systems, the simulation tool
used, is implemented. As future work, it will be suitable to test re-configurable
hardware techniques over FPGAs to change, for example, re-trained predictive
models in run-time.

3.4 Sub-system II. Prediction support:
coarse-grained modeling from
environmental variables

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support

3.4.1 Environmental data acquisition
3.4.2 Migraine predictive modeling from environmental data

3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system

As stated at the beginning of this Chapter, in this section it is going to
be presented the Sub-system II. This is one of the two modules for prediction
support sketched in this research. This Section describes the basic implementation
carried out to hold the sub-system’s architecture shown in Figure 3.22. This sub-
system has a marginal contribution to the current research results, but it has been
partially implemented as part of the whole system architecture previously shown
in implCerps.

Sub-system II is conceived for the prediction support based on a coarse-grained
prediction obtained from environmental data. The environmental variables such as
room and outdoor temperature, pressure or humidity are considered as trigger or
precursor variables of the migraine disease. This is a controversial topic between
specialized doctors; so much so that it can be found in the literature a wide
variance in the percentage of migraine sufferers that relate environmental factors
an headache—from 7% [79] up to 61% [181]. There are also several apps for
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Figure 3.22: Architecture of the implementation of the Sub-system II for coarse-
grained predictive modeling based on environmental variables. This sub-system provides
information for prediction support to the Expert Decision System.

migraine management such as Migraine Buddy9 or Curelator Headache10 that
contemplates weather conditions for their coarse-grained predictions. However it
is, it seems that there is a reality that some migraineurs blame these to their
pains. So, it has been considered that the information extracted for environmental
variables would help the Expert Decision System, EDS to raise alarms and thus,
we proceed to explain the implementation carried out following the structure of
Section 3.5. Notice that this sub-system does not consider weather variable only,
but environmental as well. This distinction adds, as an example, luminosity and
noise, to the atmospheric ones.

3.4.1 Environmental data acquisition

As aforementioned, in addition to weather, there have been considered other
environmental variables such as noise and luminosity. It has been distinguished
between global—external—and local variables. Global variables refer to external
weather variables in the geographical area of the patient. Local variables are
those that occur within the exact indoor location where the patient is. (i) As
global variables there have been considered the temperature (◦C), relative
humidity (%RH), pressure (hPa) and rainfall (mm). (ii) As local variables there
are gathered the room temperature (◦C), relative humidity (%RH),
pressure (hPa), luminosity (lux) and noise level (W , dB). From them it can be
derivated several features: average, maximum, minimum or differential levels
within a period of time (not for decibels, they need to be converted to energy).

Global data have been obtained from meteorological Cloud services.
Nowadays in addition to the national meteorologic agencies—such as AEMET11

in Spain—there are thousands of private meteorological stations distributed all
around the world. Some are part of global networks that submit the gathered
information to open access databases. This is an easy, fast and cheap way to
access to weather information not restricted to the specific locations provided by
the national entities. In this research, to gather global weather information it has

9Migraine Buddy: http://www.migrainebuddy.com/ (accessed February 2018)
10https://curelator.com/ (accessed February 2018)
11AEMET: http://www.aemet.es (accessed February 2018)
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Figure 3.23: SensorTag CC2650 for local environmental monitoring. Device used to
gather local environmental information for migraine prediction support.

been considered data recorded from the AEMET and the Cloud service Weather
Underground12. Figure 3.24 represents the variation of three external
meteorological variables during 96 hours. Red lines indicate the pain of three
migraines of a patient.

Local environmental data are gathered from the SensorTag CC2650 STK
device (Figure 3.23), which is a commercial device of Texas Instruments13.
Patients bring this device and leave it near them, and the device transmits data
to the smartphone wirelessly via Bluetooth through a BLE interface. Figure 3.25
represents the variation of four local environmental variables one hour before a
migraine episode and during the migraine episode. The episode lasts
approximately seven hours. The red line indicates the pain period.

Table 3.2 shows the amount of environmental data gathered. The total
amount of data (∼ 3 kB) is small enough to be collected and used for a
smartphone just in the case the coarse-grained prediction takes place on it.

Table 3.2: Environmental data acquisition parameters.

Acquisition time (min) Precision (bit) Data-24h (kB)
Global weather information 60 Depends on the weather service ∼ 0.4

Local Temperature 5 16 0.6
Local Humidity. 5 16 0.6
Local Pressure 5 24 0.8

Local Luminosity 5 16 0.6
Total (kB) ∼ 3

For the purpose of creating coarse-grained predictive models to help the EDS,
the pain has been simplified to a binary sequence of 0/1 (yes/no) values that

12Weather Underground: https://www.wunderground.com/ (accessed February 2018)
13Texas Instruments: http://www.ti.com (accessed February 2018)
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Figure 3.24: Global meteorological variables before and during three periods of pain
of a migraineur (indicated as 1 in the bottom graph, and drawn with red lines).
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Figure 3.25: Local environmental variables before and during a migraine episode
(indicated as 1 in the bottom graph, and drawn with red lines).
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indicate if pain exists, or not. To do this, it is enough to know when the pain
starts and ends. Patients indicate this in the aforementioned Android smartphone
app developed in the research group. All the data are collected and merged by
the smartphone. During the training phase, data are send to a Cloud server.
In a real time implementation, the predictive modeling can take place either the
smartphone or the Cloud Computing infrastructures.

3.4.2 Migraine predictive modeling from environmental
data

Environmental data have been considered for a simple purpose of serving as
prediction support in the decision system. Data has been used in two ways:
(i) to create coarse-grained migraine prediction models using the slow global
weather variables, and the faster local environmental variables; (ii) to create
classification/discrimination models (prediction horizon equals 0 minutes) using
the local environmental variables.

The predictive methodology used here is pretty much the same the one used
in Section 3.5 for hemodynamic variables. Models have been trained per
migraine, validated as shown in Figure 3.14, and then the best models have been
selected to create average predictions. Just few considerations must be taken into
account. The following lines draw the most important differences undertaken in
the implementation of this proof of concept. Due to not all the migraineurs relate
weather conditions to the pain, models have been trained per person as well.

Following the data flow in Figure 3.12:

• Preprocessing module. Disconnections and noisy data are fewer in the
device gathering local and environmental variables than in the ambulatory
WBSN. Nevertheless, when failures are detected, similar implementations of
the signal repair module are run. In addition, global meteorological variables
have few lost values in the sequences. When this occurs, because they are
slow variables, simple interpolations may solve the problem.

• The training and validation blocks. Due to the output of the system is
not a curve, but a dichotomous simplification of the pain, the continuous
predictive models used for the fine-grained migraine prediction sub-system,
are not suitable. Instead, there have been implemented classic and well
known machine learning algorithms. There have been studied (i) the
decision tree-based Random Forest algorithm, (ii) the k-means clustering
algorithm, and (iii) the Multilayer Perceptron (MLP), a kind of
feedforwarded artificial neural network. These algorithms have been
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computed using their implementations in the WEKA14 [70] data mining
tool (using 10-fold cross validation and default parameters).
As it was previously mentioned, models have been trained for detection and
prediction.

– Detection. Detection proves the direct consequence of the effect of
the environmental variables over the pain of the migraine, and the
prediction horizon is, of course, 0 minutes. This proof can only be
performed over the local environmental variables because they are fast
enough to be correlated with the hemodynamic variables.

– Prediction. To use the aforementioned machine learning algorithms,
the classification variable, the pain, must be brought forward h minutes
up to current time k. Thus, the training vectors [inputsk, paink+h] are
correlated for the prediction horizon h.
For the sake of simplicity, (i) models using local environmental
features have been trained for a fixed prediction horizon of 20 minutes
(on the average of the best prediction horizon achieved for the
fine-grained prediction). It has been considered, at least, 60 and 30
minutes of data without pain before and after the event respectively.
In addition, (ii) Models using global weather information have been
trained for prediction horizons of 3, 6, 12, 24 and 48 hours.

– Hierarchy of models. It has been assumed that the availability and
robustness of each one of the environmental data sources (independent
sensors of the wireless SensorTag and weather Cloud services) is so high
that it is not necessary to implement the methodology of model selection
(SDMS2) introduced in Section 2.2.2.3.

The models have been tested over basal data—periods without pain—to
measure the false positive rate. Chapter 4 shows briefly some preliminary results
obtained in the implementation of this Sub-system II for prediction support.

3.5 Sub-system III. Prediction support:
clustering classification from qualitative
variables

3 Implementation
14WEKA: https://www.cs.waikato.ac.nz/ml/weka/ (accessed February 2018)
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3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support

3.5.1 Acquisition of qualitative variables
3.5.2 Classification of qualitative variables

3.6 System implementation: CERPS
3.7 Energy aware prediction system

This section describes the second module for prediction support Sub-system
III. In the same way as Sub-system II, this has a marginal contribution to the
current research results, but preliminary results further shown, demonstrate that
information extracted from qualitative data have a powerful interest for future
improvements of the predictive methodology presented in this thesis.

There exist qualitative or descriptive information that surround a prediction
problem that cannot provide accurate pr edition by their own, but they can be
beneficial for an eventual final decision making task, to raise alarms, for example.

Figure 3.26: Architecture of the implementation of the Sub-system III for prediction
support to the Expert Decision System by means of classification of premonitory
symptoms and activity information.

In Section 3.5 and Section 3.3 it was shown a novel predictive system for
migraine prediction based on hemodynamic, which is has been the first one
described in the literature. However, in the state of the art, there are several
contributions that relate symptoms suffered for the migraineurs with the pain, as
well as other information regrading activity or life habits. Apps such as Migraine
Buddy, or M-sense15, acquire information from activity and symptoms to identify
triggers and warn of a possible pain in a near future. However, with this
information they cannot provide accurate predictions and thus, their algorithms
can act only as a diary.

In this section it is explained (i) the basic implementation and, (ii) the
experimentation carried out to hold the sub-system’s architecture (depicted in
Figure 3.26). This offline implementation serves to identify those activity and
symptomatic variables which will help the Expert Decision System in the

15M-sense: https://m-sense.de/ (accessed February 2018)
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Table 3.3: Groups of premonitory symptoms that can serve as prediction support for
decision making.

Group Symptoms
Alterations in moods Euphoria, hyperactivity, sadness, apathy, irritability, anxiety

Cognitive disturbances Difficulty writing, difficulty speaking, difficulty concentrating

Gastrointestinal/urinary disturbances Nausea and/or vomiting, flatulence, constipation,
fluid retention/swelling, increased urinary frequency (polyuria)

Alterations in appetite Increase, decrease, appeal for specific foods, increased thirst

Sensory disturbance Photo/phono/osmophobia, sensitivity to skin friction (alodynia)

Thermal disturbance Feeling cold, feeling hot

Sleep disturbance Insomnia, drowsiness

Others Tinnitus, fatigue, dizziness, dizziness, yawning, dermal/vascular
changes, neck stiffness, blurred vision and others (open field)

decision making. Thus, in real time, the expert system is fed directly with the
information from the most relevant qualitative variables.

3.5.1 Acquisition of qualitative variables

During monitoring of the hemodynamic variables, in the first stage of Figure 3.6
in page 50, patients also provide information relative to the onset—and maybe
release—of premonitory symptoms (subjective and unspecific symptoms) and
aura, before the pain starts. When the pain ends, they are encouraged to fill a
questionnaire where they indicate if there was any activity (e.g. eating specific
foods or sport activities) that they blame to the onset of the pain. All this
information is stored with their timestamps.

Prior to the experiment, patients are trained to recognize most subjective
symptoms related to migraine events. Using the already mentioned mobile app
developed in the research group, patients mark subjective symptoms among the list
shown in Table 3.3. As the reader may suppose, they also indicate the onset of the
pain—if it occurs—thus it can be established a model that identify a premonitory
symptom as predictive or not.

It may occur that patients indicate the end of a subjective symptom;
however, this is very hard to identify, and as can be seen in migPhases, the
premonitory symptoms usually accompanies the pain till the end. It may also
happen that, despite having marked the onset of a symptomatic event, the pain
never starts. In this case, the symptom resets after 72 hours, and it is considered
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as a false positive event. If a pain occurs without premonitory symptoms, in the
final questionnaire patients are allowed to indicate, a posteriori if they remember
to have had a premonitory symptom and, in that case, indicate the approximate
day and hour.

3.5.2 Classification of qualitative variables
In the research shown in this thesis it has not been studied the predictive effect
of the premonitory symptoms, i.e. the effect of a symptom/s at time k to predict
the beginning of the pain at time k + h. This is current research whose results
will be discussed and published in a future work. However, it is an objective of
this study to find—if it exists—the premonitory effect of premonitory
symptoms, i.e. to find if premonitory symptoms are susceptible of indicating that
a migraine is going to occur—it does not matter when (≤ 72h)—or not. For this
purpose it has been trained a Random Forest algorithm using WEKA performing
10-fold cross validation and default parameters. It is also interesting to see which
of the premonitory symptoms are more prone to be predictive. To do this, it has
been performed a Ranker based attribute selection by mean of an Information
Gain evaluation.

There is a clinical objective in this study that tries to correlate confidence of
patients in their premonitory symptoms and the success effectiveness, to identify
if those who are more prone to mark symptoms predict more or less migraines.
This is interesting from the technical perspective too, thus it would be possible to
weight the output of this Sub-system III according to the credibility on patients’
subjectivity. In Chapter 4 there are shown the preliminary technical results of this
sub-system and its utility to the Expert Decision System.

3.6 System implementation: Critical-Events
Robust Prediction System

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system
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Figure 3.27: Expert Decision System implemented as a ANFIS model which receives
data from Sub-systems I, II and III.

The Expert Decision System has been partially implemented. The
assembly of all modules already presented and the implementation of the
complete Critical-Events Robust Prediction System has not been totally
achieved. This research has focused its implementation on a concrete an novel
problem: the migraine prediction. All along the experimentation phase there
have been several drawbacks and the implementation has been carried out by
iterations. The nature of a real problem, working with real data, poses many
difficulties: a lot of people involved, tools and resources, time and money. Due to
this, at the time of writing this manuscript, it has not been possible to join all
the sub-systems and thus, the implementation of the EDS—and hence the
CERPS—shown in this section will draw only partial results.

During all previous sections it has been glimpsed the behavior of the EDS
and few things lack to say. In this section it is briefly explained the structure
sketched and partially tested. Figure 3.27 represents an example of the behavior
of the EDS. On the left side of the figure, along the time axis, there appear events
and predictions as outputs of the Sub-systems I, II and III. This example overlays
the ideal migraine pain curve as a dotted line in the axes. The EDS generates a
decision, an alert/alarm based on all this information.

ANFIS models have been successfully implemented for classification of
neurological problems [68]. So, it was decided to implemented ANFIS model for
a control system of type Takagi-Sugeno. The ANFIS models take the adaptive
capacity by propagation backwards from neural networks, and from fuzzy
systems they take the representation of probabilistic knowledge of a set of inputs,
as well as the smoothed response due to the interpolation of the fuzzy rules. It
has been used the Fuzzy Logic Toolbox of the MATLAB software [88].
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3.7 Energy aware prediction system

3 Implementation
3.1 Overview
3.2 Sub-system I. Fine-grained modeling
3.3 DEVS-based migraine predictor simulator
3.4 Sub-system II. Prediction support
3.5 Sub-system III. Prediction support
3.6 System implementation: CERPS
3.7 Energy aware prediction system

3.7.1 Energy aware predictive models
3.7.2 Compression techniques for energy saving
3.7.3 Workload balancing in an MCC system

Energy consumption is always a constraint to take into account in IoT
scenarios. In Mobile Cloud Computing, sensing nodes might be far away from a
stable and continuous power source. In most of the cases the form factor of the
battery limits the size of the monitoring device such that high density integration
is still a challenge to deal with. The problem addressed in this thesis requires
long lasting monitoring periods, ideally 24 hours a day using small wearable
devices. Thus, the optimization of the energy consumption becomes a major
concern that must be tackled properly.

In this Section there are going to be shown different approaches to optimize
the energy consumption in different study cases from lower to higher abstraction
layers. (i) In the lower layer (Section 3.7.1) it is going to be optimized the energy
consumed by the prediction models and the sensor selection in a monitoring node,
(ii) the second layer (Section 3.7.2) applies compression techniques in order to
reduce the amount of raw data transmitted from the sensing node, and (iii) the
third layer (Section 3.7.3) encompasses all the elements in the system to balance
the workload applying a global energy optimization.

3.7.1 Energy aware predictive models

This Section describes the workflow followed in the optimization process depicted
in Figure 3.28. After the data acquisition and the offline data processing the
predictive modeling block generates an output that represents the prediction of the
system. This output depends on past values of the input variables. To illustrate
the process it is used the already presented Grammatical Evolutionary algorithms
in the prediction modeling block. In the same way, there are going to be used
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biometric variables as system inputs to model the output of a migraine event. The
energy optimization framework proposed in this section can be applied to other
prediction modeling systems.

Figure 3.28: Overview of the energy optimization workflow proposed. The Objective
functions block computes the metrics to be evaluated. The Optimization block
weights metrics and depicts a Pareto front for every generation of the GE algorithm.
Based on NSGA-II, the Predictive modeling block creates new models. Eventually,
after convergence or the last generation established, the last Pareto front provides the
best solutions to be manually selected.

This approach is applied in the implementation scheme depicted in
Figure 3.29. This scheme is the one that also simulated using DEVS. The colored
shadowed block indicates the element of the architecture that benefits by this
energy optimization process. These models implement simple non-linear
equations easily programmable in wireless monitoring devices obtained through
Grammatical Evolutionary algorithms, and optimized for the architecture of the
microprocessor MSP43016F1101.

The GE algorithms create a set of mathematical expressions from which we
extract three optimization objectives. These objectives are: (i) the accuracy or fit
of the predicted values, (ii) the number of clock cycles #clk that the expression
takes to be computed in the embedded microcontroller, and (iii) the energy
consumption εsensing of the sensors used.

Figure 3.29: Optimal approach of low-power migraine prediction models for an
implementation of the system where the CERPS fits in the monitoring device. The
colored shadowed block indicates the element of the architecture that benefits by this
optimization process.
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Table 3.4: Parameters for the GE modeling with energy constraints.

Parameter Value
Number of generations 500000

Population size 250
Probability of crossover 0.9
Probability of mutation 0.083
Chromosome length 100

Wrapping No

Some constrains have been set: 0 ≤ fit ≤ 100, and only solutions that use
data provided by any of the sensors are considered. Those solutions with negative
fit, infinite #clk or infinite εsensing are removed. The multi-objective problem can
be formulated as follows:

min (−fit,#clk, εsensing) (3.8)

Energy optimization in the loop

The goal of this section is the energy optimization methodology and not the
models themselves, and it has been introduced the energy optimization loop in
the already developed GE predictive model (Section 3.2.2.1) where minor changes
have been introduced.

The optimization is based on the Non-dominated Sorting Genetic Algorithm
II (NSGA-II), which draws a bi-dimensional Pareto front.

To train the models, the parameters in Table 3.4 are used. The BNF remains
unchanged with respect to the one in Figure A.4.

The objective functions

In the following lines there are defined the objective functions in Eq. 3.8, and
a detailed explanation of them is further given.

The fit: measures the likeness of the predicted value by the system ŷ—the
migraine pain level in our case—and the known real output y—in our case, the
symptomatic curve reported by the patient. The fit definition is the same already
used. To maximize this value, the optimization process tries to minimize its
opposite value.
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The number of clock cycles: the main goal of this section is the reduction of the
energy consumption of an ambulatory monitoring device. As aforementioned, one
of the ways to achieve it is through the reduction of εµC , the energy consumption
of the microcontroller that eventually will compute the migraine prediction in real
time. Given the impossibility of measuring the real consumption of the monitoring
device to introduce this value into the optimization loop, several assumptions were
taken. The authors did not find neither a simulator or instruction level energy
consumption table for low performance microcontrollers.

#clkS =
∀f∈FinS∑
i=1

#clkfi
(3.9)

#clkfi
=
∑B
b=1 #clkb
B

(3.10)

The main assumption was that the number of clock cycles that the
microcontroller takes in the execution of the prediction is proportional to its
energy consumption, εµC ∝ #clkS. The predictive modeling box is, in most of
the cases, data dependent. In our case using GE, this dependence appears in the
output range of the mathematical expressions generated. Data from sensors
might be bounded, but not the result when they are introduced in a
mathematical function. Thus, trying to make a profile via a static code analysis
is not possible. For the same reason, any strategy of branch prediction could not
be carried out.

Figure 3.30: Unwrapped branches possibilities for the __fixunssfsi function of the C
library glibc. Each node represents a label in the disassembled code.

It is also assumed that the total number of clock cycles for a GE solution S
is computed as the sum shown in Eq. 3.9. Where the number of clock cycles for a
given function fi ∈ F is the average value of the clock cycles of all branches B in
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Table 3.5: Average #clk of all branches of __fixunssfsi.

# Path Label Total #clk
1 -L2-L11-L4 114
2 -L2-L5-L4 157
3 -L2-L7-L7-L8-L9-L10-L4 273

Average path 182

the compiled code for a function (Eq. 3.10), as shown in the example of Figure 3.30
and the corresponding values in Table 3.5. It is known that there exists a data
dependence but it has been assumed that errors in function calls are negligible,
thus the paths that branch directly to terminal labels (as L4 in the example) has
been obviated.

The set of functions F is defined by the BNF. The number of cycles for the
execution of a code depends strongly on the microcontroller architecture: hardware
multipliers, float point unit, vector unit, etc.. This study is based on the well-
known microcontroller MSP43016F1101, a low-performance 16-bit microcontroller
suitable for monitoring devices. Its maximum frequency is 8 MHz, and it has 10
kB of RAM and 48 kB of flash memory. This is the one used by the Shimmer 2r
platform of Figure 3.4a.

The assembler code for each instruction in F is obtained using the msp430-gcc
cross-compiler. All clock cycles and branches are calculated manually, according
to the technical specifications of the microcontroller. The number of clock cycles
for unresolved calls of internal functions of the tool-chain are calculated as well.
In those cases where calls to kernel functions were not able to be resolved, the
mathematical functions where approximated by 10-degree Taylor series—only sine
and cosine functions were approximated. The standard math library is used for
the others.

The sensing energy consumption: εsensing draws the amount of energy
consumption due to the use of every sensor. As the sampling frequency and
hardware of each sensor is different, it is preferred to use the minimum number of
the least consuming sensors that allow the maximum fit.

The experimental set-up

The optimization is based on the architecture of the microcontroller available
in the open source commercial Shimmer device that integrates the microprocessor
MSP43016F1101. With this choice, and using real data, it is possible to implement
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the obtained models in the device to compare their energy performance against
the baseline scenario: monitoring devices without predictive intelligence that sense
using all sensors and transmit the data wirelessly.

The sensors used are the ones described in Section 3.5: the NTC thermistor
SA2F-TH-44031-40 from Omega to measure skin temperature, two differential
electrodes to measure the EDA , a single-lead local differential bipolar sensor
(three leads) to extract the HR from ECG, and the SpO2 using the 8000R SpO2
sensor and the OEM-III board.

For the optimization process, the number of clock cycles for each function,
and the energy consumption of each sensor are needed. According to the
technical reports of the microcontroller and the criteria aforementioned, the clock
cycles for the base functions of the microcontroller are: 184 for addition, 177 for
subtraction, 153 for HW multiplication, 37 for comparison, and 405 for
division. For each mathematical function individually compiled from the F set,
the average number of clock cycles of all possible paths are: 4443 for e, 6416 for
cos, 6612 for sin, 1079 for sqrt, 12344 for pow, 4890 for log and, max and min
values are proportional to the number of comparisons. Clock cycles for the
computation of the HR are introduced too. To this end, it has been implemented
by Boichat et al.in [19]; it takes 4672432 cycles (almost 0.5 seconds in a
microcontroller running at 8 MHz).

For the third objective of the optimization problem it has been used a
HAMEG HM8012 digital multimeter to measure the consumption of the sensors.
TEMP and EDA are analog sensors, sampled every 5 seconds, that consume
0.32mJ (−4.9dBm) each in the Shimmer mote. The ECG is gathered at 250 Hz
leading to an energy consumption of 396mJ (26dBm). The consumption of the
OEM-III and the SpO2 sensor is far from these values, and it is
3665mJ (35.6dBm). The digital module OEM-III samples the SpO2 at 75 Hz,
and sends through the microcontroller 3 kbit of data per second. The presence or
absence of this sensor will have a high impact in the optimization process of the
GE expressions. The HR computation leads to 34mJ (15.3dBm) extra,
approximately.

It is used the HERO Java library using BNFs for 10 and 20 minutes prediction
horizon. The experiments last several days executed in a heterogeneous distributed
cluster of PCs with Intel Core i7-4710HQ and AMD A8-6600K CPU, with 16 GB
and 8 GB of memory and, Ubuntu and CentOS respectively. In Chapter 4 it will
be shown the three-dimensional Pareto front and the decision making task to select
the best models according to the three optimization variables.
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Figure 3.31: Optimized data transmission from the monitoring node to the coordinator
in an implementation of the system where the CERPS is distributed among the different
elements of the MCC architecture. The monitoring node acquires, compresses and
transmits the data, whereas the data processing and prediction takes place either in
the smartphone or in a Cloud Data Center.

3.7.2 Compression techniques for energy saving in wireless
transmissions

Figure 3.29 in the previous Section showed an optimization scheme for an isolated
CERPS fitted in a wireless monitoring node. In this Section the MCC scheme
changes and looks like the one presented in Figure 3.31. Solid lines behind the
monitoring node indicate that data from sensors are collected and transmitted
wirelessly from the monitoring node to a coordinator (smartphone or similar).
As explained in Chapter 2, dotted lines indicate that data are processed out of
the node either in the coordinator or in the Data Center. This scenario makes
interesting if it is necessary to store the raw data in a data base for further data
processing or visualization.

Data transmission is the most power hungry task in a monitoring node
despite of the technological advances in the wireless transmission field (like
Bluetooth Low Energy, BLE). In this Section there are going to be shown
different digital processing techniques which have been used for
lossy-compression to reduce the energy consumption in transmission from the
monitoring node [113]: (i) the Digital Wavelet Transform (DWT), (ii) the
Discrete Fourier Transform (DFT), and (iii) the Compressed Sensing (CS).

In our case, the compression it is only applied over ECG and PPG as shown in
the Optimized Data Driver in Figure 3.32a. PPG is gathered from the OEM-III
module, SpO2 can be obtained from it. ECG and PPG are the two variables with a
higher sampling rate (250 and 75 Hz respectively). The optimization methodology
is shown in Figure 3.32b. Data are transformed using the selected parameters,
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then, in the Parser block data are recovered (through inverse transformation)
and the fit is computed in the Objective function block.

(a) Optimized Data Driver. Only few data of the transformed domain of ECG and PPG are
sent (compressed data). Data recovery and parsing take place in the coordinator.

(b) Optimization of the parameters of the transformation functions. Parameters vary from one
transformation function to another. The objective function is the fit. In the basic workflow the
optimization minimizes the error over the data—parsed (HR) or raw data (PPG). In a more
ambitious case parameters can be optimized to minimize the impact in the migraine prediction
(dotted Predictor block).

Figure 3.32: Energy saving through data compression. (a) Optimized Data Driver;
(b) Proposed optimization workflow. The optimized parameters are used in Optimized
data transformation block in (a).

The problem to solve is a mono-objective optimization with the fit as
optimization objective. The problem is bounded and it has been solved by an
exhaustive search though an optimization loop. For each one the transformation
functions:

• DWT: using a bi-orthogonal family base, the optimization minimize the
number of approximation coefficients (A) in Eq. 3.11. In this case the most
energetic A coefficients are sent to the coordinator, and the detail
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coefficients (D) are removed. Thus, this minimizes the number of A
coefficients, k, and maximizes the fit.

min(k, −fit)

x[n] = 1√
N

∑
k

Wϕ[j0, k]ϕj0,k[n]︸ ︷︷ ︸
Approximation coefficients (A)

+ 1√
N

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[m]
︸ ︷︷ ︸

Detail coefficients (D)

(3.11)

• DFT: the node computes the FFTN and sends the most relevant frequency
components to the coordinator. The optimization problem filters the data
with an ideal rectangular bandpass filter of bandwidth BW = kh−kl [rad] to
minimize the number of frequency components to be sent, while it maximizes
the fit.

min(kh − kl, −fit | kh, kl = 0, 1, . . . N − 1)
It has been chosen an FFT with order N = 2log2(dim(x[n])) to implement a
Butterfly diagram programming too be faster and energy efficient.

• CS: in this case, the compressed data are transmitted. The optimization
problem maximizes the compression ratio and the fit.

max(cr, fit)

For CS, it is worth to do extra on-node data processing because the energy
consumption due to data transmission drops drastically. In this case, on the
contrary to what was done in Section 3.7.1, the energy consumption due to data
processing has not been taken into account in the optimization loop. In this case,
there have been coded optimized implementations of the transformation
functions—Forward biorthogonal 9/7 discrete wavelet transform, CDF 9/7 for
DWT, and an 8-point FFT which is basically a Decimation in Frequency of the
FFT. The energy consumption has been measured over a commercial device
using an ATmega328 microcontroller using the current monitor INA219. The
optimization and energy consumption results are shown in Chapter 4.

3.7.3 Workload balancing in a Mobile Cloud Computing
System

This section describes a high level abstraction implementation to apply global
energy optimization. This encompasses all the elements in the system to balance
the workload among the elements of the prediction system. Figure 3.33 shows
that tasks can be performed almost everywhere. In this figure, the bidirectional
shadowed arrows indicate that the energy optimization covers the whole system.
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Figure 3.33: High level implementation of the CERPS to perform workload balancing
optimization to achieve energy savings in the prediction system. The bidirectional
shadowed arrows represent how the intelligent workload balance—aware of the network
status and the energy consumption of each element—chooses what must be done, where
and when for a energetic and rewarding global optimization.

Savings are not achieved for a particular processing block or element in the
network, but it is achieved globally by an intelligent workload balance that
chooses what must be done, where and when, aware of the network status and
the energy consumption of each task.

This implementation varies the original implementation where the CERPS fits
to the monitoring node. This experiment have been extrapolated to a potential
real IoT scenario with thousands of people—target population—being monitored.
The three main research goals are: (i) the energy efficiency for on-body channel
transmissions in WBSNs, (ii) the predictive modeling of migraines in a real scenario
in the context of a clinical study, and (iii) the optimization of energy consumption
by means of workload balancing in Data Centers in an eHealth scenario.

Figure 3.34 depicts the scheme of the system to be implemented in this
thesis. In the Figure, each monitored patient wears two monitoring devices and a
coordinator node (a smartphone) that sends the biomedical data from the
monitorization nodes to a data center. Data from patients of each country are
sent to the Data Center in that country. As the Figure represents, Data Centers
are understood as a federation of Data Centers distributed in Europe. Shadowed
regions in Figure 3.34 show the countries included in our economic study.

The proposed scenario allows to scale our results and policies for ambulatory
prediction of migraines under energy constraints. In this implementation each
subject is monitored using two Shimmer 2r sensing nodes wirelessly connected to
a coordinator. A coordinator is a computation system with a higher performance
than the monitoring nodes (usually a smartphone). The sensing nodes monitor
the biomedical variables. The coordinator may perform the predictions or it can
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Figure 3.34: Scheme representing the structure of the system. Coordinator nodes
(smartphones) communicate data from monitored migraine patients to a Data Center
that belongs to a federation of Data Centers distributed in Europe. Shadowed regions
are the countries included in the economic study.

send the data to the Cloud and the predictions could be computed there.
The expenses of electricity bills of such deployment are high, as the Data

Center is an infrastructure with a high energy consumption and many smaller
power consumers (nodes) are also deployed. This eHealth scenario must be
economically rewarding to have a smooth establishment in the market. For that
purpose, the policies for the energy efficiency are focused at two different levels of
the eHealth scenario:

• In the monitoring nodes: the battery consumption of the monitoring
devices must be managed in order to increase their lifetime and autonomy.
This problem has been tackled by optimizing the energy consumption of
the monitoring devices: (i) in the radio communication and, (ii) in the
computation of the gathered data. The energy consumption required for
sampling signals has not be considered in the optimization, but it is
detailed in further below.

• In the high performance computing systems: this 24-hour monitoring study
generates vast amounts of data that must be managed in order to create
prediction models for the patients. This process requires computing
capacities only available at state of the art Data Centers. Once prediction
models have been created, the prediction of an incoming event can be
computed at two points of this IoT scenario: (i) a coordinator node
(assuming an intelligent monitoring device) or, (ii) a Data Center. The
energy consumption of these facilities leads to unsustainable costs. In this
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implementation it has been also optimized the energy consumption by
balancing the workload between the two points of the monitoring and
prediction framework (the coordinator node and Data Center), in order to
save money and achieve energy efficiency.

To fulfill the goal of this framework it has been considered that each part of
the eHealth scenario can work in different modes. There are described three
different modes corresponding to the amount of energy used for gathering and
preprocessing data, and making the predictions. The first mode represents a
baseline where data is gathered and transmitted in streaming without saving
energy in the monitoring nodes. The second mode applies energy reduction
techniques in the monitoring devices and energy aware off-loading techniques
between the coordinator and the Data Center. The third one applies Data Center
energy minimization policies on top of the previous off-loading techniques.

In this experiment it has been applied an ECG signal processing algorithm
to assess the impact on the global energy reduction. This is based on the
implementation of Rincon et al. [142] for the ECG delineation using their
single-lead optimization for the Shimmer node. For further implementation
details, we encourage the reader to refer to the original work in [142]. The
surface skin temperature and the electrodermal activity values do not need to be
processed, as well as the SpO2 data that are gathered directly from the OEM-III
module.

Data obtained using the WBSN is communicated to a smartphone, that
forwards the data to the Cloud. In order to predict migraine, huge data sets
must be analyzed. To deal efficiently with such computationally intensive tasks,
part of the processing and storage will be local to the coordinator, while another
part will be communicated and processed in the Cloud, i.e. in Data Centers—the
extreme end of the network. As the target population is so large, the key
challenge in MCC scenario is the definition of strategies to off-load and distribute
efficiently the workload between the different elements of the system. This
implementation devises new strategies to combine these two aspects:
(i) workload off-loading and (ii) Data Center energy efficiency techniques, to
further reduce the energy consumption of eHealth applications. In this section it
is shown a realistic case study for migraine prediction and shows the overall
impact of this strategies over the system.

The experimental set-up

In the following lines it is going to be explained the most important
characteristics of the models for the on-body channel transmission and workload
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balancing. But it is needed to explain firstly how the experiments have been
carried out. Most of the experiments carried out in this thesis that use only one
monitoring node (Plux, or our own device); however there have been realized
other experiments using two nodes—those using the Shimmer node. To explain
this experiment of workload balancing computing, there were used two Shimmer
nodes placed in the body. These two nodes (S1 and S2) communicate with a
coordinator, and in these experiments, there are considered the effect of on-body
transmission—performing two communication links (L1 and L2). For the sake of
simplicity, the study carried out in the clinic for the on-body channel
transmission modeling is explained in Appendix B

The WBSN and the ambulatory monitorization

The ambulatory monitorization starts when the patient leaves the hospital.
During a period that comprises from two weeks to one month approximately (day
D in Figure 3.6), data are transmitted by the coordinator to the Data Center via
a 3G link. The training phase of the predictive modeling through hemodynamic
variables remains as explained in Section 3.2.2. Due to the high computational
burden of these calculations when done for a large population, these models need
to be generated in a Data Center. All models used in this experiment are state-
space models created for a prediction horizon of 30 minutes. When the number
of migraines is large enough, the ambulatory monitorization finishes. During day
D-1 (Figure 3.6) models are validated and tested, and the more accurate ones are
selected. The final prediction is the average of the prediction of several models in
order to avoid overfitting or loss of accuracy.

The state-space matrices calculated in the training phase have been
implemented in C-code to run them in the servers of the Data Center and in the
coordinator node. In parallel to the prediction calculation, the workload
balancing policies are carried out, as can be seen in the right side of Figure 3.6.
Depending on the number of patients being monitored, the computational
burden of the prediction, the Data Center utilization, and the battery status of
the coordinator nodes, the off-loading policy decides during runtime where the
prediction takes place: in the Data Center or in the coordinator node.

The sensing nodes. As aforementioned, in this experiment the WBSN is
composed by two Shimmer nodes and the coordinator (a smartphone) wirelessly
connected in a star topology. Two different working modes for the
sensor-coordinator communication are analyzed: (i) streaming mode—where
data are gathered and transmitted without preprocessing, and
(ii) preprocessing—where data is preprocessed in the nodes before being

101



“main” — 2018/7/20 — 0:23 — page 102 — #133

3.7. ENERGY AWARE PREDICTION SYSTEM CHAPTER 3. IMPLEMENTATION

transmitted.
The main characteristics of the Shimmer devices were detailed in the

implementation done in Section 3.7.1. These nodes incorporates the CC2420 chip
radio, which performs the radio interface, and implements the IEEE 802.15.4
radio standard. To simulate the radio interface it has been used FreeRTOS.
FreeRTOS is portable, open source, and it has a hard real-time mini kernel that
includes support for the microcontroller and the IEEE 802.15.4-compliant radio
chip used by Shimmer.

The data acquisition parameter remain the same as showed in Table 3.1.
However, now that raw data are sent and it might be useful for data processing and
visualization in the Data Center so, the PPG is also considered. Thus, Table 3.6
summarizes the amount of gathered data per day. In case of preprocessing in node
S1, the HR is calculated every 1.25 seconds using 20 seconds of ECG data. This
rate ensures the detection of peaks at 48 bpm for normal resting rates described
in [114]. In case of using node S2 for data processing, SpO2 is only computed once
a second, according to the OEM-III module bitrate.

In this work we apply an ECG signal processing algorithm to assess the impact
on the global energy reduction. This algorithm bases on the implementation of
Rincon et al. [142] for the ECG delineation using their single-lead optimization for
the Shimmer node. For further implementation details, we encourage the reader
to refer to the original work in [142].

The power consumption required for the sampling of the signal has not been
considered in the optimization as it cannot be modified in some of the sensors,
or it would require the application of compressed sensing techniques. As shown
in Table 3.1, the sampling rate of the TEMP and EDA sensors is negligible. The
sampling of the ECG sensor is 250 Hz—the standard quality level in most of the
commercial ECG monitoring devices—so, it has not been contemplated a reduction
of the ECG sampling frequency. It could be possible if we apply compressed sensing
techniques, but that is out of the scope of this experiment.

Battery discharge or sensor disconnections occur frequently. Table 3.7 shows
empirical results of the probabilities of disconnection or unavailability for the
sensors of hemodynamic variables. Probabilities have been computed from 8
migraines lasting 7.7 hours on average. TEMP, EDA and HR sensors have the
same probability of disconnection, 6.2%. This is due to the battery discharge
rate of node S1. However, the SpO2 sensor has a higher probability of
disconnection, 29.7%, mainly due to the misplacement of the sensor in the groin.
On average, almost 1 of 3 packets of SpO2 are lost. Note that whenever a packet
is lost, it has been run the signal repair module as part of the data preprocessing
to recover the signal and be able to obtain a prediction. Thus, data loss increases
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Table 3.6: The acquisition parameters in the Shimmer nodes. Processed data
information shown in parenthesis.

Sampling rate (Hz) Data-24h (kB)
TEMP* 1/60 2.1
EDA* 1/60 2.1

ECG (HR) 250 (0.8) 31640.6 (67.5)
PPG (SpO2) 75** (1***) 31640.6 (84.4)
Total (MB) 61.8 (0.15)

* EDA and TEMP are considered negligible for energy consumption.
** Only PPG is needed but OEM III module captures and sends 375 Bytes.
*** SpO2 is internally calculated by the OEM-III.

the computational burden, and needs to be considered during runtime prediction.

Table 3.7: Probability of sensor data loss.

TEMP EDA HR SpO2
# breaks/hour 0.24 0.24 0.24 0.57

Average duration (min/break) 15.5 15.5 15.5 31.3
Probability (%) 6.2 6.2 6.2 29.7

Regarding to the radio, for the 802.15.4 standard, a 104 Bytes data payload
has been used, with 250 kbps transmission rate. One transmission packet
(including headers) is 128 Bytes long. Table 3.8 shows the transmission rate
TXr, the amount of data sent D (including headers), the transmission time cost
TXt, and the duty cycle (the ratio of transmission time to transmission rate) for
nodes S1 and S2 in each working mode.

Table 3.8: Data transmission properties for Shimmer nodes.

Streaming mode Processing mode
Node S1 Node S2 Node S1 Node S2

TXr (ms) 277 1000 60000 60000
D (Bytes) 128 471 72 84
TXt (ms) 4.1 15.1 2.3 2.7

Duty cycle (%) 1.48 1.51 0.004 0.005

Figures 3.35a through 3.35d complement values in Table 3.8. These figures
are an interpretation of the energy levels of the tasks and their timestamps. In
the streaming working mode for node S1 (in Figure 3.35a), when 104 Bytes are
recorded (69 samples of ECG), the acquisition stops and data flow from the buffer
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(a) ECG streaming.

(b) All NONIN data packet streaming.

(c) HR processed.

(d) SpO2 signal extracted.

Figure 3.35: Diagram of the streaming and processing working modes in the two
sensing nodes. The y-axis (not in scale) of these figures represent the energy level of
each task. The x-axis (not in scale) marks the most important events. Shaded areas
represent the data acquisition.
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in the microcontroller to the buffer in the CC2420 chip to be transmitted. Thus,
every 277 ms the radio wakes up and transmits. During the acquisition time, the
radio is in low power mode. The transmission takes 4.1 ms, as Table 3.8 shows.
Every 60 seconds, when ECG is processed to reduce the amount of transmitted
data, 48 samples (1 Byte each) of HR are sent.

Regarding the working modes in node S2 (Figures 3.35b and 3.35d), it can
seen some peculiarities. The data to be sent are always larger than the radio buffer
size of 128 Bytes. With this, data have to be truncated and sent in burst mode.
375 Bytes of data have to be sent in the streaming mode; this leads to transmit 3
packets of 104 Bytes of payload and an extra packet of 63 Bytes. Thus, 4 headers
of 24 Bytes are sent. In this way, we achieve the 471 Bytes in Table 3.8. The radio
wakes up once a second and sends the data in 15.1 ms. In the second working
mode, this node extract only the SpO2 information once a second, and transmits
data every minute. The SpO2 data extracted are 60 Bytes (one Byte per second)
and 24 Bytes of header are added, leading to the 84 Bytes that appear in Table 3.8.

The beacon time of the communication protocol and the packet transmission
time from the microcontroller to the radio chip in Figures 3.35a through 3.35d are
based on previous work by Rincon et al. [142].

The coordinator node. The coordinator node in the real experiments is
an smartphone. To simplify the energy characterization and isolate the
contribution of the smartphone’s processor from other components, it has been
performed the power characterization in a BeagleBone Black platform16. This
platform uses the same processor as the Samsung Galaxy S smartphone, and can
be easily instrumented to measure power. The processor is an ARM Cortex-A8
at 1 GHz with 512 MB DDR3 RAM. Data are stored in an external 2 GB SD
memory card. In order to isolate the energy measurements, as radio device, the
same CC2420 as in the Shimmer devices is supposed to be used in the
smartphone, and this interface has been attached to the BeagleBone platform.
As it has been envisioned a case study to apply energy-aware off-loading policies
that balance computation between the elements in the WBAN and the Data
Center, the coordinator node—in addition to transmitting an receiving
data—may perform two main actions: (i) data preprocessing (off-loading
computation from sensors), and (ii) online prediction (off-loading computation
from the Data Center).

Energy costs of the WBSN. The energy consumption of the
microcontroller and the external devices has been measured using a high
precision digital amperimeter, whereas, the consumption of the radio has been
simulated, due to the complexity in measurement of energy consumption in the

16Beagle: http://beagleboard.org/BLACK
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real scenario. Simulation has been carried out with the open source simulator
Castalia17, which is designed specifically for WBSN networks and it includes a
channel model based on data measured empirically, and a model of radio
CC2420, used for our experiments.

In order to guarantee reliability, most approaches transmit at a fixed
transmission power that ensures no packet loss. However, these techniques lead
to a waste of energy. Thus, transmission reactive policies based on knowledge of
body posture have been implemented. These accelerometry-based transmission
power control policies allow to regulate the transmission power levels according
to changing link conditions, and minimize the power consumption of the radio
chip, while maintaining service quality.

As aforementioned, the algorithm requires the characterization of the patient
in terms of the RSSI and the Packet Error Rate (PER) metrics with respect to
on-body positions. Once the communication link has been characterized
properly, the calculation of the transmit power optimal level is done offline using
the experimental data, and as result, a LUT with the best power levels for each
body position is generated. Controlling the transmission power is done online;
the optimum level of power required to ensure the quality of the link is
dynamically selected from the values stored in the LUT by using motion
detection—based on accelerometry with low complexity and low overhead.

It is assumed for this experiment that the radio switches on for every
transmission, going off after finishing. Simulations are executed at three different
power transmission levels available in the radio CC2420 chip: −15dBm,
−10dBm and 0dBm; then the reactive policies are applied. A re-transmission
rate has been simulated as random re-transmissions along the time, simulating
the channel effects of medium access, using a 802.15.4 MAC with two
transmission attempts. The simulation adds a model with temporal variation to
recreate the dynamics of the path-loss fluctuations and without collisions.

The configuration setup of the general parameters in simulation has been as
follow:

• The energy consumption model: the power consumption in Castalia has
two components (i) radio consumption and (ii) baseline consumption. The
default baseline consumption value has been modified, thus, the energy
consumption of a mote when the radio is off and the microcontroller is
active, will be 0 mW. In this way, the baseline value does not affect the real
values of energy consumption measured due to processing of the
microcontroller. Finally, only the radio consumption is taken into account.

17Castalia: https://castalia.forge.nicta.com.au/index.php/en
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Table 3.9: Parameters in the Castalia radio simulator for the Shimmer nodes and the
coordinator.

Streaming mode Processing mode
Node S1 Node S2 Coordinator Node S1 Node S2 Coordinator

Pktr (pkt/s) 3.610 3.596 1 1/60 1/60 1
Payload (Bytes) 104 104 20 48 60 20
Headers (Bytes) 18 18 18 18 18 18
MAC (Bytes) 6 6 6 6 6 6
Duty cycle (%) 1.56% 1.56% 1.56% 1.56% 1.56% 1.56%

• Duty Cycle: differences in energy occur because the radio is active for
different periods of time in each node. The parameters, beacon order (BO)
and superframe order (SO), define the duty cycle between the active and
inactive periods. In Castalia, BO equals six and SO equals four, while a
duty cycle of 25% is the default value for MAC protocol 802.15.4.

• Collision Model: in Castalia, the radio collision model is configured according
to the InterfModel parameter, which can take three different levels: Level 0,
1 and 2. In Level 0, the simulator assumes no collision at all. We have used
for this study Level 0.

Table 3.9 summarizes the configuration parameters of in Castalia for sensor
and coordinator nodes in the two working modes. Notice that the values of the duty
cycle in Table 3.8 and in simulation are different. This is due to the minimum duty
cycle as parameter for simulation is 1.56%. For the simulation of the nodes working
in streaming mode, this will lead to be an overestimation of the consumption.

The Data Center

The Data Center setup comprises two clusters: (i) a High-Performance
Computing (HPC) cluster to train and validate the models, as these are CPU
and memory intensive tasks, and (ii) pre-process data and, after that, repair the
data if needed. The tasks of model training and validation are CPU and memory
intensive, and require of a resource of computation during the whole execution of
the tasks, that use a large amount of data. Therefore, they require an HPC
cluster. On the other hand, the execution of the model for prediction is a task
driven by requests, that can be executed on a virtualized machine to release the
resources after that. Therefore, it is executed on a Cloud cluster.

The HPC cluster is composed of Quad-core Intel Xeon RX300 servers with
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16GB of RAM, and the cluster is managed using the SLURM18 resource manager.
The virtualized Cloud computing cluster consists on Intel SandyBridge S2600GZ
servers with six cores and 32 GB of RAM. The SandyBridge servers are virtualized
using KVM, and the OpenStack software is deployed to manage the deployment
and allocation of Virtual Machines (VMs). Due to the intensiveness of prediction
of models, it has not been oversubscribed VMs, i.e. it has been deployed only 1 VM
per core, and it has been assigned 2GB of RAM per VM. In order to characterize
power and performance, servers are monitored via IPMI software and using current
clamps, allowing us to obtain power values with an error of ±10 W .

There have been characterized in terms of power and performance all the
offline tasks in the Intel Xeon server: (i) the data preprocessing—Gaussian Process
Machine Learning (GPML)— (ii) training, and (iii) validation. There have been
also characterized all the online tasks in the SandyBridge server: (i) the data
preprocessing (GPML), and (ii) online prediction. There have been run stress and
performance tests on the VMs of the virtualized cluster to obtain the maximum
number of GPMLs and predictions that can be performed in each VM without
degrading the throughput.

The characteristics of the HPC and the virtualized Cloud cluster to compute
predictions are next outlined. For a detailed explanation on how these parameters
are obtained, the reader is referred to Appendix C:

• The preprocessing, training and validation phase of 1 patient runs for
approximately 3.5 hours in a dedicated server, and degrades up to 3.76
hours when the server is fully utilized, with a power consumption that
varies from 157 W to 173 W . The HPC cluster consists on 2275 server,
providing up to 9100 cores. Preprocessing, training and validation are
performed in a simulated HPC SLURM cluster [110]. It has been
considered that, in average, models need to be re-trained once a month per
patient, to stay within allowable error margins.

• In the online phase predictions are computed every minute. Runtime
prediction consists on a data preprocessing stage (i.e. data recovery via
GPML in case there was a packet data loss), and migraine prediction 30
minutes forward, i.e. a migraine is predicted 30 minutes in advance. The
virtualized cluster consists on 1638 servers that can run up to 9828 VMs.
Up to 230 preprocessing instances and 250 prediction instances can be
packed together in the same VM, without degrading performance. When a
VM reaches this limit, OpenStack is responsible for automatically scaling

18https://slurm.schedmd.com
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up the resources, launching as many VMs as needed to handle the
workload.

The previous setup allows the HPC and Cloud clusters to handle in the offline
and online phases up to 1,393,649 migraine patients. This represents a 2% of the
migraine sufferers in Europe (see Appendix C and Appendix D), which is the target
population in our case study.

It needs to be considered that runtime prediction is a light-weight process that
can be performed either in the coordinator node or in the Data Center. In this
sense, if the coordinators off-load computation from the Data Center, OpenStack
will reduce the amount of VMs used. This, together with the usage of server turn-
off policies, can drastically reduce the power usage of the Data Center, as shown
in Chapter 4.

Regarding cooling, it has been assumed that the whole cluster is cooled via
traditional raised-floor air-cooling techniques. As a baseline, it has been considered
a room temperature of 22 ◦C and a PUE of 1.65, which are the most common value
for room temperature and the world average PUE value respectively [159]. Cooling
optimization policies will be applied to reduce cooling costs while keeping servers
under save environmental conditions.

To simplify the deployment, patients have been divided into four large
groups, according to their nationalities. Patients are included in the system
gradually, as shown in Figure 3.36. The inclusion rates are: 50%, 25%, 15% and
10%, and the total evaluation period is 10 weeks. The gradual inclusion is an
exercise of evaluation of the methodology proposed, and it is considered that all
patients in a group are included at the same time. First, when the HPC cluster is
still empty, 50% of the population is included (patients from Turkey, Germany
and United Kingdom). Every two weeks, the remaining groups come into the
system. The second group are two countries that represent 25% of European
migraineurs (France and Italy). The third group comprises three countries
(Spain, Netherlands and Switzerland) with 15% of patients, and finally the
remaining 10% patients are distributed in eight countries. For further details, the
reader is referred to Appendix D.
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Figure 3.36: Gradual inclusion of migraine sufferers in the system. 50% of this
population is firstly included in the study, when the HPC cluster in Data Center is
still empty.

Table 3.10: Tasks that each level of the network is able to perform.

Tasks
Sensor device Collect and transmit data, process data (limited)
Coordinator Receive, transmit and process data, perform predictions
Data Center Process data, perform predictions

MCC eHealth optimization scenarios

In this work it is being tackled the energy efficiency challenge from the
workload allocation perspective, including the processing and wireless
communication level. From the signal processing level there have been performed
very light preprocessing techniques in the sensor nodes—due to their limited
processing capabilities. The wireless communication level focuses on the on-body
channel communication between the monitoring devices and the central node or
coordinator.

Each one of the three network elements can operate in various modes.
Table 3.10 summarizes the tasks that each level of the network can perform when
working cooperatively.

The energy efficiency policies take these possibilities into account in order to
minimize the power consumption of the whole system. For the sake of clarity,
among all combinations of scenarios, it has been chosen the five considered to be
more significant from the energy perspective. These scenarios are shown
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Table 3.11: Five scenarios for the workload balancing policies.

Sensor device Coordinator Data Center
SC1 Collect + transmit data Receive + transmit data Process data + perform predictions
SC2 Collect + transmit data Receive + process + transmit data Perform predictions
SC3 Collect + transmit data Receive + process data + perform prediction + transmit data -
SC4 Collect + process + transmit data Receive + transmit data Perform predictions
SC5 Collect + process + transmit data Receive data + perform predictions + transmit data -

in Table 3.11. In this, it is claimed that using the WBSN and coordinator to
off-load computation minimizes overall energy consumption. This technique,
together with tailored energy optimization strategies at the Data Center level
can drastically reduce the impact of the application deployment.

According to Table 3.11, the sensor nodes only have two different working
modes:

• Streaming mode: in scenarios SC1-SC2-SC3. Node S1 collects and transmits
data from ECG immediately. Node S2 collects and transmits data from the
NONIN devices every second.

• Processing mode: in scenarios SC4-SC5. Node S1, after collecting ECG data,
calculates the HR and transmits it every minute. Node S2 extract SpO2 data
from the whole frame of 375 Bytes of the OEM-III device and transmit it
once a minute as well.

Regardless of the working mode, partial or total data loss is usual in
ambulatory studies. As mentioned before, these can occur due to two factors:
(i) discharge of the node battery, or (ii) sensor disconnection. When a disruption
occurs, a GPML is executed to recover the signals. This process can be executed
both in the coordinator as in the Data Center. For the purpose of this
experiment, the GPML is executed with the probabilities shown in Table 3.7,
which have been experimentally obtained. The coordinator and the Data Center
can also process raw signal from sensor nodes (in streaming mode). The online
phase can also take place either in the coordinator or in the Cloud Data Center,
whereas the offline phase—due to its computational burden—can only be carried
out in the HPC Data Center. The results of this abstract implementation of the
CERPS are shown in Chapter 4.
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Chapter 4

Results

In this Chapter there are shown the results of the implementation of the robust
predictive methodology applied to the migraine prediction problem. Following
lines summarize the experimental design and data collection. Further below, this
Chapter follows up the structure depicted in the preceding Chapter. (i) First,
the results of the implementation of the Sub-system I are shown, and then (ii) the
results of its DEVS-based simulation. Later, (iii) there are shown some preliminary
results of the implementation of Sub-systems II and III and. Eventually, (iv) the
results of the energy aware prediction system are exposed.

Data collection and metrics for the experiments

Patients are ideally monitored 24 hours a day. To create personalized
prediction models, it is considered that it is necessary a moderate number of
crises—8 for example. However, due to the difficulty of the ambulatory
experiment it not always possible. The patient is under study for approximately
4 to 6 weeks (this depends on the number of migraine attacks registered). The
developed models will correlate changes in the input variables (the hemodynamic
variables) to changes in an output variable, in this case, the symptomatic curve.

Once the patient signs the corresponding informed consent (the study protocol
was approved by the Local Ethics Committee of the Hospital Universitario de la
Princesa of Madrid, see Appendix E), engineers and doctors of the group teach
the patient how and where to place the sensors; they will not require a healthcare
provider. The medical staff of the hospital selects the body locations where the
sensors are placed. The position of the ECG sensors must be on the breast, near
the heart. The SpO2 sensor is located on a finger. EDA can be measured in several
locations; this sensor is located on the arm near the temperature sensor (near the
armpit), to join the sensor’s wires.
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The patient wears the WBSN continuously during the day. If the patient
has awakeness migraines or migraines when he sleeps, the monitoring process also
takes place during the night. During the monitoring process, patients do not
change their daily life. If it is required for some activity, such as certain sports,
the monitoring process is stopped. The patients replace the sensors when the
monitoring restarts. The patients also try to avoid any drug ingestion that can
alter the monitored signals during the monitoring process. This is crucial in order
to register the real body response before and during a migraine crisis. The patient
will be allowed to take some medication if a strong migraine occurs. In these cases,
the hemodynamic variables and the pain evolution are also collected; nevertheless,
how the real pain would end without the effect of medication will be unknown,
due to the effect that medications will accelerate the end of pain.

To evaluate the results the statistical F − value is used. The F − value is the
harmonic mean of precision (or positive predictive value, PPV) and recall (or true
positive rate, TPR), all of them defined as follows:

TPR = TP

TP + FN
(4.1)

PPV = TP

TP + FP
(4.2)

F − value = 2TPR× PPV
TPR + PPV

(4.3)

The TPR shows how many positive detections, TP, are found in the prediction
against the false negatives, FN (those events not detected). The PPV confirms
how many of those detections are true, taking into account the spurious detections
not removed, which are called false positives (FP).

4.1 Sub-system I. Fine-grained migraine
predictive modeling

4 Results
4.1 Fine-grained migraine predictive modeling

4.1.1 Preprocessing block
4.1.2 Training block
4.1.3 Validation block

4.1.3.1 Model Repair: improving predictions
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4.1.4 Model Selection block
4.1.4.1 Sensor-Dependent Model Selection System (SDMS2)
4.1.4.2 Advanced Sensor-Dependent Model Selection System

4.1.5 Test of the Sub-system
4.1.6 Fine-grained modeling using GE algorithms

4.1.6.1 Training of models
4.1.6.2 Validation of models
4.1.6.3 Test results

4.2 Advanced migraine prediction simulation system
4.3 Sub-systems II and III. Prediction support
4.4 Energy aware prediction system

This section presents the results obtained after the implementation of
Sub-system I. Results are shown, as in Chapter 3, following the data flow
depicted in Figure 3.12. We first start from data preprocessing. Then, the results
of the training of the predictive modeling algorithms are shown (N4SID and GE).
Afterwards, the results of the models validation are analyzed to show the
prediction capabilities of the batch of models obtained during the training stage.
The selection of the models is performed based on the validation results. After
the validation, a test phase is run to analyze the capability of the generalization
of the models. During the test phase, the same method followed in the Model
repair block is applied to detect false positives using the Linear decider.
Robustness against sensor failures is also checked during this stage. Some other
tests are also checked to analyze the detection of false positives.

Along this section it has been stated a criterion by which a 70% for the fit value
has been considered a minimum level quality. This is a conservative setup that
will improve the confidence in the models. Thus, a true positive (TP) is considered
when a detection is achieved and the fit in the migraine period is higher than or
equal to 70%. This avoids spurious detections without a reliable fit. As it was
described for Algorithm 1, values above 50% of the probability of the pain curve
are marked as positives. Spurious detections not removed by the Model repair
submodule are called false positives (FP). The alternative approach—to set the
prediction horizon by loosing accuracy—is also tested in strategy. For the sake of
simplicity most of the implementation results in this section have been evaluated
for the state-space models; however, the modeling results for GE models are shown
too.

In the test stage, a Sensor-Dependent Model Selection System (SDMS2)
criteria is proposed, giving a way to deal with sensor failures or saturations.
Finally, the results for a real-time scheme—a pool of models that given the set of
available sensors, returns the best models according to a hierarchy based on fit or
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predictive horizon—are shown.

4.1.1 Preprocessing block

Prior to the synchronization and signal repair, features must be computed from
the gathered data. Remember the reader that, for the case study that concerns
us, only Heart Rate (HR) is extracted from the ECG, and the raw information
of the remaining sensors is used after data parsing. Each migraine episode has a
different duration. For the modeling process, the data acquired during some hours
before the patient marks the start of pain are also analyzed. This is necessary
to identify changes occurring in the monitored variables before the attacks start.
After preprocessing all of the gathered data, a set of data is available for model
training. This dataset is randomly divided into two groups: around 75% of the
monitored migraine episodes (T ) are chosen for training and validation of the
models, and the remaining 25% are used to test the models.

As previously mentioned, this study pursues the search of personalized
predictive models of the migraine attacks per every single patient. Therefore,
from this point, the data and results presented belong to a single patient (Patient
A). Later, the whole study is repeated for other patient (Patient B) in order to
compare the results and draw conclusions. Data from Patient A correspond to a
young female patient that suffers migraines with aura and is not under medical
treatment. Twenty migraines have been acquired in two different experimental
periods (almost a month each). Data from Patient B correspond to a middle
aged female patient that suffers migraines without aura and without preventive
medical treatment. Eleven migraines have been acquired in one experimental
period (almost a month). The variables acquired in real time by our experimental
setup comprise the four hemodynamic variables previously mentioned, and the
subjective pain was collected from the patient by an electronic form.

Data from the four hemodynamic variables to work with are synchronized
(TEMP, EDA, HR and SpO2) and then repaired in the Preprocessing module
(Figure 3.12 in page 58). The results are shown in Figures 4.1a and 4.1b for the two
different core algorithms have been implemented in the Signal Repair module:
GPML and ARX. Some lost data have been recovered by this sub-processes. These
data are represented with black circles in the graphs. The gray area in Figure 4.1a
represents the intervals of confidence of the GPML. The signals have been recovered
with high accuracy, achieving similar result for both processes. The fit shown in
the legends represent the accuracy of a longer signal but just an interval of almost
two hours is drawn. These fits are good enough; nevertheless, a finer tuning of the
modeling parameters in the GPML could improve the results. This work will be
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(a) Signal repair using GPML.
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(b) Signal repair using ARX.

Figure 4.1: Example of signal repair using Gaussian process machine learning (GPML)
and time series algorithms (ARX).
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tackled in the future.

4.1.2 Training block

As shown in Section 3.2.1.3, a symptomatic curve can be modeled as the junction of
two Gaussian curves. The training of the models has been performed for Patient
A with TA = 15 randomly chosen symptomatic crisis. The training dataset for
Patient B was of TB = 8 migraine events. Each one of these attacks Ti leads to
a model Mi. And, according to the stated in Section 3.2.2.2, there will be chosen
MbestA = MA/3 = 5 models (first five models in validation) for Patient A, and
MbestB = MB/3 = 3 models for Patient B.

State-space models have shown as a very good alternative for migraine
predictive models. In the following paragraphs there are going to be presented
the results for the implementation of the Algorithm 2 (page 201). It will be
shown the test results for the best models. These will be tested with new signals:
migraines not used in the training and validation sets.

Each migraine has been trained for 6 different horizons and 5 different feature
combinations. Figures 4.2a and 4.2b summarize the training results for patients
A and B respectively. Each value on the surface of these graphs represents the
average of fits over all the trained models (MA = 15 models for Patient A, and
MB = 8 for Patient B).

For Patient A, the fit decreases more quickly than for Patient B. As expected,
triads of features have a lower fitness than the four features combination, and
the fitness is even lower if duos are studied (not shown). However, as all of the
three feature combinations still show acceptable fit values (close to the threshold
of 70%), they will proceed to the validation stage. In addition, the training results
for patient B are almost 15-20 points higher than the results for Patient A. This
can be explained by the higher amount of data lost during monitoring periods of
Patient A (in spite of the usage of the Signal Repair module).

In Figures 4.2a and 4.2b, maximum fits are reached for lowest horizons (10 and
20 minutes). The fit decreases with the horizon, but also depends on the features
selected. The highest values of fit are reached for the combination of the four
available biometric variables. It is worth to mention that a valley is found around
the prediction horizon of 40 minutes. Surprisingly, this occurs for the TEMP-HR-
SpO2 feature combination in both patients. As the number of individuals is not
enough, this should not be considered as a conclusion. At this point, the fit for
Patient A is 73.2%, and 94.8% for Patient B. This suggests that the time window
for prediction is larger for Patient B than for Patient A. Additionally, fits increase
with prediction horizons larger than 40 minutes (50 and 60 minutes); this is due
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Figure 4.2: Average fits for training. Dependence with the future horizon and selected
variables. (a) Data from Patient A; (b) Data from Patient B

Table 4.1: Training results for the TEMP-EDA-HR-SpO2 features set and 40 minutes
forward horizon for patients A and B.

Patient A Patient B
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M1 M2 M3 M4 M5 M6 M7 M8

fit(%) 84,4 84,1 88,1 75,6 70,6 85,0 86,7 65,8 78,9 82,6 79,2 67,4 80,8 81,0 72,0 97,5 99,6 95,9 99,5 90,0 97,0 99,9 98,1
ph (min) 25 105 60 40 30 30 70 75 15 100 60 95 20 105 90 12 30 14 20 25 25 15 18

nx 6 4 7 8 5 9 5 6 10 9 7 8 7 4 7 6 9 7 6 10 8 10 9

to overfitting during training. It seems that the modeling approach in the training
stage reaches the limit for the migraine prediction at 40 minutes.

Table 4.1 shows the training results for each model for patients A and B. f
is the fit achieved. pw and nx are the best past window (in {0, 5, 10, . . . , 100})
and the best state transition matrix’s order reached by the N4SID algorithm (in
{1, 2, . . . , 10}), respectively. Results for the horizon of 40 minutes—where the
valley of accuracy occurs—for the TEMP-EDA-HR-SpO2 combination of features
are shown. This setup corresponds to the minimum training error. The fits are
78.8% and 97.2% in average for patients A and B, respectively.

No correlation has been found between order, fit and past horizon; hence,
some of the models achieve good fit values with low effort (low matrices’ orders
and short past horizon with high fit), such as modelM7 for Patient A, while others
require a higher effort, such as model M10; this with a high order, and the large
past horizon reaches a lower fit. As can be seen, fits reached are high for both
patients, and they are always over 70% (except for two Patient A cases marked
in bold in Table 4.1). However, models require large matrices (larger than order
nx = 7) in most of the cases. Despite the high orders, past horizons are low for
Patient B (they are always lower than 30, 20 minutes in average); but they are
high for Patient A (61 minutes in average and up to 105 minutes backward).
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Table 4.2: # Useful models after validation.

Patient A Patient B
Features / Horizon (min) 10 20 30 40 50 60 10 20 30 40 50 60
TEMP-EDA-HR-SpO2 15 4 0 0 0 0 8 4 1 0 0 0

TEMP-EDA-HR 15 5 0 0 0 0 8 6 1 0 0 0
TEMP-EDA-SpO2 15 5 0 0 0 0 8 6 2 0 0 0
TEMP-HR-SpO2 15 7 0 0 0 0 8 7 4 0 0 0
EDA-HR-SpO2 15 5 0 0 0 0 8 7 1 0 0 0

The fit metric shows how some migraines behave far better than others for
a given horizon. Some models show a fit over or equal 80%, and none show a fit
lower than 70%. On average, for 40 minutes, these models with four features are
able to fit a migraine event with 74.2% and 95.8% accuracy for Patient A and B
respectively. For the remaining future horizons and feature sets, the average fit in
training keeps high, always over the 70% for both patients.

4.1.3 Validation block

Now the results for model validation are presented. Here, trained models are
tested as predictors of the other symptomatic crises of the training dataset. This
will allow to analyze the overfitting effect as well. It is performed cross-validation
between models, as mentioned in Section 3.2.2.1. Model repair (prediction repair)
and linear decision are also carried out in this block. There were two stages
during the development of this research: (i) first, it was performed the reparation
of the prediction as shown in Algorithm 1 with the linear decision too. Several
studies were carried out and the results are shown here for a fixed predictive
horizon of 30 minutes. They are presented under the heading of Simple-model
repair Conservative Study (SCS). (ii) Later, it was developed the methodology to
add the Gaussian fitting and thus, more results were drawn; which are presented
in the heading of Complete-signal repair Strategic Study (CSS).. Both stages (SCS
and CCS) generated results not only in the validation bock but also in the model
selection and test. It will be indicated properly in each case. The main objective of
this is to discard overfitted models. In this way, there will be found those models
that reach the longest prediction horizon. Results have been obtained firstly for
the 6 different prediction horizons and the 5 feature combinations.

Table 4.2 represents the number of useful models with average fit over all
the cross-validations exceeding 70%. As the average prediction is calculated over
more than one model, this analysis will help on the selection of the models. It is
considered that, at least, one third of the models must validate with high average
fit to choose a feature set as relevant (for each prediction horizon). According to
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Figure 4.3: Validation results for models from Patient A. 20 minutes forward horizon.
For each features set:(a) TEMP-EDA-HR-SpO2; (b) TEMP-EDA-HR; (c) TEMP-EDA-
SpO2; (d) TEMP-HR-SpO2; (e) EDA-HR-SpO2.

the results in Table 4.2, no difference appears between the selected features for a
forward horizon of 10 minutes. In general, no model is able to validate for higher
horizons than 20 and 30 minutes for patient A and B respectively. This confirms
that the valley in training in Figures 4.2a and 4.2b marks the limit of prediction for
state-space models, and models trained over 40 minutes are overfitted. Remember
the reader this point, which we will come back to later.

The four-features combination is always the worst combination. For Patient
A and 20 minutes forward horizon, the combinations of three features, except for
TEMP-HR-SpO2, show 5 available models (in the limit of our criterion to consider
the features as relevant). For Patient B, all the combinations of features look good
(more than 3 models over the average fit of 70% in this case) for 20 minutes,
but only the TEMP-HR-SpO2 feature combination is useful for 30 minutes. As
aforementioned, high fits in training do not assure good models, and some of them
must be discarded in the validation phase.

As the 20 minutes prediction horizon seems to be the safest horizon, we use
this to show the results for Patient A in Figures 4.3a through 4.3e and for Patient
B in Figures 4.4a through 4.4e. Horizontal axes in these figures represent each one
of the validated models. Vertical axes represent the average fit achieved, obtained
as the average of theM−Vov−1 validations. The whiskers represent the standard
deviation, σ.Vov, are the overfitted validations (negative fit). These were removed
to calculate the average. The red line indicates the threshold set as fitting criterion.
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Figure 4.4: Validation results for models from Patient B. 20 minutes forward horizon.
For each features set:(a) TEMP-EDA-HR-SpO2; (b) TEMP-EDA-HR; (c) TEMP-EDA-
SpO2; (d) TEMP-HR-SpO2; (e) EDA-HR-SpO2.

The deviations (the whiskers) for validations in Patient B (σB) are lower
than deviations in Patient A (σA). This means that, the confidence of models
from Patient B should be higher than from Patient A. We can also state that
these models are more generalizable because the results for Patient B are more
consistent than those for Patient A, as data acquired from Patient B have less
discontinuities during monitorization.

Regarding the average values in Figures 4.3a through 4.3e, as the four-features
combination is a poor election, only 4 models have an average fit higher that 70%.
For the TEMP-HR-SpO2 combination of features (Figure 4.3d) we achieve the best
results. In this case, 7 models exceed the threshold of 70%. Something similar
occurs with the results for Patient B.

As aforementioned, to calculate the average fit, validations with negative
results have been removed. In some cases, the number of useful validations is
really low. This happens, for example, with the validation of the model M9 in
Figure 4.3b, that only validates 3 migraines. The model M1 for Patient B
validates also the same number of migraines in Figure 4.4a, and only 2 migraines
are validated in Figure 4.4b and Figure 4.4c (despite its high fitting).

As a result of the validation study: (i) the four-features combination is never
the best option to predict migraines for any horizon length, and (ii) it seems that
20 minutes forward is the best window to predict migraines for both patients.
The first idea means that some biometric variable worsens the prediction in
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combination with others (but not itself). Hence, by removing one variable we
achieve more useful models. The second result achieves a prediction horizon close
to the constraints imposed by the pharmacokinetics of the drugs.

Let us summarize the study above into a key point: in view of the fact that
models trained at 40 minutes are overfitted, it has been decided to use predictive
models at 20 minutes, which do work but the predictive horizon seems a little bit
low for the pharmacokinetics of the drugs (30 minutes in the worst case).

At this point, to tackle this issue, the two stages developed in this research are
introduced. As aforementioned, we refer to them as the Simple-model repair
Conservative Study (SCS), and the Complete-signal repair Strategic Study (CSS):
(i) SCS uses the Mbest predictive models in validation at 30 minutes (the horizon
expected to be reached according the pharmacokinetics) and forces them to
predict closer and further taking average predictions. SCS applies only signal
repair (Algorithm 1) and linear detection. (ii) CSS contemplates the use of one
of the schemes proposed in Figure 3.15, repairing signals and taking a set of
Mbest models too, to lead to an average prediction and a strategy for decision
making. CSS applies both signal repair and Gaussian fitting..

The results of the validation of the SCS are shown below for both patients
and all features combinations at 30 minutes. Section 4.1.3.1 focuses on the study
of the schemes proposed for the CSS.

4.1.3.1 Model Repair: improving predictions

This section is devoted to improve the prediction horizon. In this section, the
results of the schemes proposed in Figure 3.15 in Section 3.2.3 are shown.

Simple-model repair Conservative Study (SCS)

Here, for Patient A only, it is validated each MAi
(i = 1, 2, . . . , 15) model

obtained for each j-th migraine (i 6= j). Despite the models have been trained at
30 minutes, the validation is performed for different prediction horizons: from 1
to 100 minutes. These validations have been obtained after repairing the models
(Proposal 1 of Figure 3.15 in page 67). The results are shown in Table 4.3 for fits
at 70%. The effort to reach fittings greater than 80% in the training stage is hard,
as shown in Figure 4.2a.
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Table 4.3: Simple-model repair Conservative Study. Validation for every Mi model
from Patient A. Future horizons for fit at 70%.

M6 M13 M2 M8 M10 M4 M15 M11 M9 M12 M3 M7 M5 M1 M14

fhaverage 22 20 20 20 16 15 14 14 13 13 12 9 5 5 5
fhmin 18 19 17 17 10 10 9 8 10 8 7 4 3 2 1
fhmax 25 21 22 24 22 20 19 29 14 21 15 11 7 8 10

Models have been sorted according to the average horizon and then according
to the minimum horizon required to ensure the higher minimums. Each model was
trained with one migraine and 30 minutes of prediction horizon; hence, validation
over other migraines will not reach this horizon, as they have not been used in
the training of the model. The validation of one model generates 14 fitting curves
with 100 points each, as previously mentioned. These curves reach 70% of fit at
some point; these crosses lead to a minimum and a maximum horizon, and hence,
an average value represented in Table 4.3.
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Figure 4.5: Validation applying the average model for Patient A. Average model with
Mbest models applied over the remaining 10 migraines.

According to these results, it is wondered if the best model,M6, is good enough
for performing the migraine prediction. As seen in Table 4.3, the maximum horizon
is not achieved by M6, but for M11. This possibility was taken into account in the
design of the experimental setup, and a ranking of the models is performed. With
this purpose, the best MbestA models (first five models in Table 4.3) are chosen to
define an average model—average prediction actually. This works as follows: for
each migraine, each model Mbesti,A is applied. Five predicted symptomatic curve
are achieved. The result is the average of these five validations for a given horizon.
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Table 4.4: Simple-model repair Conservative Study. Prediction horizons for all the
combinations of features for Patients A and B.

TEMP-EDA-HR-SpO2 TEMP-EDA-HR TEMP-EDA-SpO2 TEMP-HR-SpO2 EDA-HR-SpO2
Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B

fhaverage (min) 24 28 25 35 24 47 23 45 25 29
fhmin (min) 19 17 16 28 19 43 17 37 19 25
fhmax (min) 28 32 31 50 28 52 32 52 34 33
fhσ (min) 3 6 5 10 3 4 4 6 4 3

At the end, the false positives are removed with the Model Repair submodule. The
result is shown in Figure 4.5. Axis x represents the prediction horizon, meanwhile
axis y represents the fit between the average prediction and the real symptomatic
curve. In this process, the average, minimum and maximum horizons achieved at
70% are: 25, 18 and 28 min, respectively.

Notice that, while some models such as modelsM1, M3 andM7 exceeded 80%
of the fit in the training stage (achieving 82.0%, 85.2% and 82.9% respectively),
they have not been selected as part of the best models in the validation. This is
due to these models being overfitted.

The same process has been followed for all combinations of three
features—training, validation, ranking, best models selection—and, finally, the
average model technique is applied. The results will show the most useful
features to predict a symptomatic curve for Patient A. These results will also
show the importance of the features in the prediction.

In Table 4.4, a summary of the results is shown. It introduces data from
Patient B in order to check how good or generalizable the training and validation
stage developed is. The analysis of this table brings meaningful results. First of
all, it can be observed how the inclusion of some features in the model worsens the
prediction. For instance, for Patient A, the absence of the EDA features worsens
the average prediction horizon in 2 minutes. On the other hand, the remaining
three combinations of features maintain or improve the average and maximum
prediction horizon. For Patient B, this does not occur in the same way. In this
case, the worst scenario occurs for the four feature combination; in the others,
the absence of one feature improves the prediction horizon. In addition, it can
be noticed that the models of Patient B result in better predictions than the
models of Patient A. The best result is achieved for the TEMP-EDA-SpO2 feature
combination, with up to 52 minutes of a horizon and an average of 47 minutes.
The remaining three feature combinations are almost as good as this. In most of
the cases, the average horizons achieved exceed or they are close to the desired 30
minutes for both patients.

The analysis of these results shows how not only the selection of the acquired
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Table 4.5: Results of the prediction repair methodologies. Fscore to compare the
schemes proposed for the methodology

Base Repair FitGauss Repair + FitGauss FitGauss + Repair
Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B

TPR (%) 24.7 30.4 29.8 36.3 31.0 39.0 33.1 39.6 30.6 39.0
PPV (%) 45.1 60.7 57.2 90.4 75.1 71.6 80.5 81.1 78.5 87.9
F (%) 31.9 40.5 39.1 51.8 43.8 50.5 46.9 53.2 44.1 54.0

variables, but also that their combination in the matrices of the N4SID models
can result in better or worse predictions. Furthermore, it can be observed how
the selection of features (the selection scheme explained further below) changes
for every patient, providing a different set of models per patient; even when the
best set of features is the same for both. So, the use of a set of models trained
at 30 minutes is quite feasible, and it brings them to the limit in order to lead to
higher horizon and more robust predictions.

Complete-model repair Strategic Study (CSS)

There have been studied all the repairing schemes during the validation stage
using the four-features combination (TEMP-EDA-HR-SpO2) and the 6 prediction
horizons (from 10 to 60 minutes). The Fscore is used as the metric to compare
all the schemes with the basic one: the Simple-model repair Conservative Study
(first scheme in Figure 3.15). To compute the Fscore, the sensitivity (TPR) and
the precision (PPV) values are calculated. All values are based on the results of all
the M − 1 predictions of each Mi model. This means that the true positive (TP)
account should be ideally 6 ∗M ∗ (M − 1). The results are shown in Table 4.5.

Table 4.5 shows low levels of the Fscore because it has been calculated as the
average of the Fscores for every horizon. The higher the horizon, the lower the
Fscore, worsening this average Fscore. The results show a high rate of false positives
and low number of detections for horizons higher than 40 minutes, as expected
from the training in Section 4.1.2.

The best scheme for the proposed methodology is the combination of repairing
the prediction (remove spurious) and the Gaussian fitting. The order (first repair
then fitting) affects more to Patient A than to Patient B. Therefore, the scheme
Repair+fitGauss in Figure 3.15 is chosen as the repairing scheme of symptomatic
crises prediction.

Now, the selected scheme is applied and compared with the base scheme.
For the sake of simplicity, only the results for Patient B are presented.
Figure 4.6a presents the results of validation for Patient B and all the trained
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future horizons (10 to 60 minutes forward). Horizontal axis represents the six
different horizons trained and the vertical axis represents the M = 8 models for
each feature combination. Colors represent those models good enough to be used
as predictors in a real time implementation (green), those with an average fit
lower than 70% (orange) and the discarded ones because the overfitting (red, less
than one third of the migraines available are validated).

All models validate all migraines for a prediction horizon of 10 minutes. As
aforementioned, for 20 minutes forward almost all models are useful, except model
M1 for some feature combinations. From 30 minutes ahead, there are not enough
useful models, except in the TEMP-HR-SpO2 feature combination, where 4 models
validate quite well. For prediction horizons equal and greater than 40 minutes,
migraine prediction is not possible, as pointed out in Section 4.1.2.

Applying repairing techniques to the prediction can increase the prediction
horizon. In this case it has been applied reparation of the prediction and
Gaussian fitting, in this order. This is proved by Figure 4.6b, again for Patient
B. The average prediction horizon has been incremented in 10 minutes
(compared to Table 4.2), and some models validate migraines with a future
horizon equal to 40 minutes. There are improvements in models for most of the
prediction horizons and all combination of features. These increments are due to
removing false positive detections, negative values, and values higher than the
maximum, 100, in the normalized symptomatic pain curve.

Regarding results for Patient A, the improvements achieved have been lower.
Although some more models are useful for 20 minutes, no one is useful for 30
minutes of prediction if 70% of fit is expected (validating, at least, dM/3e of the
symptomatic crisis in the training dataset).

As shown, the prediction horizon can be improved applying repairing
techniques to the predicted signal, reaching prediction times close to the current
time of pharmacokinetics and even exceeding it. Additionally, it has been shown
a method to test the limits of a given predictive model, that must be applied for
each patient individually. In particular, it has been found that the maximum
prediction horizon for Patient A is in the interval [20, 30] minutes, and in the
interval of [30, 40] minutes for Patient B, the same results as previously shown in
Table 4.4 for results of the Simple-model repair Conservative Study forcing 30
minutes predictive models to predict beyond.

Finally, in view of the results obtained, it can be said that both simple-model
repair and Gaussian fitting (SCS and CSS) are useful techniques to extend the
limits of prediction horizon of predictive models.
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Table 4.6: Simple-model repair Conservative Study. Robustness analysis. Horizons of
prediction for fit at 70%.

Patient A Patient B
EDA (s) HR (bpm) SpO2 (%) TEMP (°C) EDA (s) SpO2 (%)
0 25 0 100 0 80 0 35 0 25 0 80

fhaverage (min) 22 23 11 18 11 20 11 38 46 41 11 28
fhmin (min) 18 18 10 15 9 16 10 33 42 37 9 24
fhmax (min) 26 33 11 19 12 30 12 45 50 46 13 30
fhσ (min) 3 4 1 2 1 4 1 6 3 3 2 3

* Disconnection means that data do not exists, 0 volts that lead to 0 in each magnitude.
** Saturation levels have been set according to the recordings in our database. HR higher

than 100 is quite common while doing exercise, but there are not such a kind of
monitoring

periods in our database.

4.1.4 Model Selection block

Previous section was devoted to improve the prediction horizon. To motivate
the need of that module and its relation with the Model Selection block, the
models are going to be forced to extreme situations to evaluate the robustness
against failing sensors (total or partial loss and saturation). Later, the strategy
for the selection of models based on the Sensor-Dependent Model Selection System
(SDMS2), is shown.

To force models to extreme situations, for illustrative purposes, lets take the
best feature combination, EDA-HR-SpO2 for Patient A and TEMP-EDA-SpO2 for
Patient B—as well as their selected models MbestA and MbestB—for the 30 minutes
prediction horizon and simple model repair (SCS).

Table 4.6 shows the average, upper and lower prediction horizons (in minutes)
achieved in different situations of failing sensors (again, for a fit reference of 70%).
As in Table 4.4, theM−Mbest migraine crises (not used for the average model) are
used to validate the robustness experiment. As seen, the best cases of prediction
(34 and 52 minutes for Patient A and Patient B, respectively) are never reached
in the case of lossy (variables equal zero) sensors or saturation. Only for Patient
B, the maximum is almost reached when the temperature and EDA sensors are
saturated. The average horizons (25 and 47 minutes for Patient A and Patient B,
respectively) are not exceeded either, and only for Patient B, the average horizon
reaches 46 minutes when the EDA sensor is lost. So, a strategy for model selection
is needed in order to detect failures in sensors and act to maintain the predictability
of the system.
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4.1.4.1 Sensor-Dependent Model Selection System (SDMS2)

At this point, we can introduce the Sensor-Dependent Model Selection System
(SDMS2). This system, shown in Figure 4.7a, is able to detect saturated or
lossy sensors. The SDMS2 senses the status of the sensors and chooses the best
set of models according to their availability in real time. The SDMS2 is very
conservative and bases its strategy only in the accuracy of the models, sorting
them from better to worse quality.

Average

model
Feature

selection

Sensor-Dependent

Model Selection

System

(SDMS²)

Set of 

models

Training/

validation

Te
s
t

(a)

Data

Average

model
Set of 

models

 SDMS² Prediction

(b)

Figure 4.7: SDMS2 design and usage for the real-time applications. Results using
the SCS. (a) Sensor-dependent model selection system (SDMS2); (b) Implementation
of the system for real-time applications.

For each patient this system implements—after creating the whole set of
models for every combination of features—a hierarchy of sets of models,
depending on the availability of sensors. The hierarchies of sets of models for
Patient A and Patient B are shown in Figure 4.8. The ordination is represented
from top to bottom; vector h represents the information of minimum, average
(highlighted) and maximum horizons from Table 4.4.

16 25 31

19 24 28

17 23 32

19 25 34 43 47 52

37 45 52

28 35 50

25 29 33

Figure 4.8: Hierarchies of sets of models for Patient A and Patient B using the SCS.

In an ambulatory monitoring, patients wear the four sensors along the day.
The selected model (and set of features) for the individual will be applied to
predict the migraines. If one of the sensors fails or saturates, then the next model
according to the set of available features will be selected, trying to maintain the
prediction horizon. It is possible to eliminate one of the sensors if the patient
desires it; however, it is worth noting that, if one sensor fails or saturates, the
prediction horizon will be lower, according to Table 4.6.
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4.1.4.2 Advanced Sensor-Dependent Model Selection System

For the results that have been presented in Section 4.1.4.1, the fit value has been
prioritized, setting a fixed value of 70% and observing the achieved prediction
horizon. In this section we present a dual strategy to select the models:
(i) regarding the fit, or (ii) regarding the prediction horizon. In all the cases we
always maintain that a model is considered good when it is able to validate at
least dM/3e of the migraines from the dataset at a given fit (criteria stated in
Figure 4.6b). The number of migraines to validate are 3 for Patient B (8
migraines available in the training dataset) and 5 for Patient A (15 migraines
available in the training dataset). To avoid overfitting and to calculate the
average prediction, we still consider as good the selection of, at least, dM/3e
migraines for each feature combination.

Figure 4.9 shows the number of models available for every horizon at a desired
flt level. As a reference, the vertical bars mark the fit where dM/3e models can
predict at least dM/3e of the migraines in the training dataset. If we focus more
on the prediction, (i) the first strategy works setting a desired horizon and looking
for the best feature combination that reaches the maximum fit. On the contrary,
(ii) if we focus more on the fit level, the second strategy works setting a desired fit
and looking for the feature combination that reaches the farthest horizon. This is
a more conservative selection, for which we set the desired fit or goodness of the
prediction and we settle down the available horizon.

For instance, regarding Figure 4.9, if we are looking for the best prediction
horizon 20 minutes forward, we should use the models calculated with EDA-HR-
SpO2 in Figure 4.9e, because the second vertical bar has a higher fit for this feature
combination than for the others. There, there are found 3 models validating at
least 3 migraines each one, in average, with a 97% of fit. But if a prediction of
30 minutes forward is desired, the best option is to select the models using the
TEMP-HR-SpO2 feature combination in Figure 4.9d. For 50 minutes forward we
will select the models using TEMP-EDA-SpO2 Figure 4.9c, and accept only a 50%
of fit.

Figure 4.9 can also be used to look for a desired fit. For example, if the HR
sensor is not available (Figure 4.9c) and we look for predictions with a fit equal
60% or higher, it could be only satisfied for a horizon of 30 minutes. On the other
hand, if the EDA sensor is not available (Figure 4.9d), for the same minimum fit
of 60% we might predict up to 40 minutes.

It is worth noting that Figure 4.6b is just a representation of the Figure 4.9
at 70% of fit. In this figure, it can be seen at 1% of fit how many models that are
not able to validate more than 3 migraines still remain.

This methodology leads to a versatile tool for the improvement of predictions
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and the selection of models for predictions of symptomatic crises in ambulatory
real environments. The effectiveness of the solution is studied, and the results
have proved to meet the pharmacokinetics limits required to avoid the negative
effects of symptomatic crises. The results also show that for Patient A the limits
of predictions are between 20 and 30 minutes, and between 30 and 40 minutes for
Patient B, achieving fits of 70% in both cases. In the next section the methodology
is applied to the test datasets.

4.1.5 Test of the Sub-system I
In this section, we present some test results. The results are divided, as in previous
sections, in results obtained under the Simple-model repair Conservative Study
(SCS), and under the Complete-signal repair Strategic Study (CSS). The average
models have been applied to the remaining migraine episodes of the dataset—five
for Patient A and four for Patient B—5 and 6 asymptomatic periods of time for
Patients A and B respectively.

To evaluate the results the statistical Fscore is used (Eq. 4.3). A true positive
(Tp) is considered when a detection is achieved and the fit in the migraine period
is higher than or equal to 70%. As was described in Algorithm 1, values above
50% of the probability of the pain curve are marked as positives.

Simple-model repair Conservative Study (SCS)

All tests have been run with the fhaverage achieved for each feature
combination up to a maximum of 30 minutes (see Table 4.4) and applying the
real-time stage in Figure 4.7b.

Table 4.7: SCS. Test results: trust levels on models selected for a fit reference of 70%.

Patient A Patient BFeatures TPR (%) PPV (%) Fscore(%) TPR (%) PPV (%) Fscore(%)

TEMP-EDA-HR-SpO2 60 100 75 50 100 67
TEMP-EDA-HR 67 100 80 60 100 75
TEMP-EDA-SpO2 47 100 64 90 100 95
TEMP-HR-SpO2 53 100 70 90 100 95
EDA-HR-SpO2 67 100 80 40 100 57

Table 4.7 shows the results obtained for both patients. The confidence in the
selected models is good enough for most of the sets of features. Only the TEMP-
EDA-SpO2 combination for Patient A and the EDA-HR-SpO2 combination for
Patient B present quite poor results. Avoiding these cases, in general, the TPR
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Table 4.8: Generalization of models for other patients for the reference fit of 70%.

Patient A Models over Data from Patient B Patient B Models over Data from Patient AFeatures TPR (%) PPV (%) Fscore(%) TPR (%) PPV (%) Fscore(%)

TEMP-EDA-HR-SpO2 0 100 0 0 100 0
TEMP-EDA-HR 22 64 33 0 100 0
TEMP-EDA-SpO2 44 100 62 0 100 0
TEMP-HR-SpO2 33 100 50 0 100 0
EDA-HR-SpO2 33 73 46 0 100 0

is above 70%. In addition, the PPV is 100% for both patients; so, the predicted
migraines are all truly migraines. The best case for Patient A is for the TEMP-
EDA-HR and EDA-HR-SpO2 combinations with an FscoreA

= 80%. For Patient B,
the combinations TEMP-EDA-SpO2 and TEMP-HR-SpO2 with FscoreB

= 95%.
This does not mean that these are the features that achieve the best horizons (as
seen in Section 4.1.3), but they are the most reliable. Notice that the best set for
both patients (EDA-HR-SpO2 for Patient A and TEMP-EDA-SpO2 for Patient B)
are the most reliable ones. The less reliable combinations of features are allocated
at the end (or nearly) of the hierarchy. None of the asymptomatic periods leads
to false positives for any set of features.

Generalization of models for other patients

How generalizable are models for other individuals? Lets apply the models
selected from one patient to all of the migraine events from another. Asymptomatic
time periods are also taken into account, in order to check if baseline periods are
equal for everyone. Again, a true positive (TP) is considered when a detection is
achieved and the fit in the migraine period is higher than or equal to 70%. Results
are shown in Table 4.8.

For Patient A and the combination of features TEMP-EDA-SpO2, models are
capable of detecting some migraines from Patient B (a TPR of 44% means that
this percentage of Patient B’s tested migraines have been detected). Nevertheless,
this does not occur again in other sets of features, and the remaining Fscore are
quite low.

The results for Patient B are good enough: no detections with a fit higher
than 70% lead to false positives during symptomatic periods. The maximum fit
reached is 41.3% for the TEMP-EDA-SpO2 set of features. No asymptomatic
period produces detections. For Patient B, if the calculated average horizons
(larger than 30 min) are applied the TPR and Fscore fall to the 40% and 53%
on average, respectively. This means that only around 40% of migraines will be
detected. This low rate is accepted, due to these average horizons being quite
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high, and it is hard to generalize them.
These results support the initial idea that models must be trained per patient,

as it was assumed from the beginning in accordance with the fact that the behavior
of the autonomous system depends on the patient. None of the asymptomatic
periods led to false positives. This brings the conclusion that variations really
appear in the hemodynamic variables measured before the pain starts, and these
changes are patient dependent.

Figure 4.10 shows several results for the cases previously mentioned. All
results correspond to the first set of features for both patients (EDA-HR-SpO2
for Patient A and TEMP-EDA-SpO2 for Patient B), unless something different
is mentioned. Remember that all of the tests have been run with the fhaverage
achieved in validation up to a maximum of 30 minutes. The orange solid line
represents the prediction response of the average model. The rectangular blue
dotted line is the detection made by the linear decider. It provides the prediction
at the 50% of probability of pain.

Figure 4.10a,b shows the best and the worst test cases for Patient A: 75.7%
and 55.0% of fit, respectively. Notice that in Figure 4.10b, the migraine has been
detected, but our metric—the fit—evaluates this case as no detection, due to the
delay in the detection. Figure 4.10c represents one of the detections achieved for
the set of features (TEMP-EDA-SpO2) with the average model for Patient A over
a migraine of Patient B. As can be seen, the prediction and the detection are good
enough, and this leads to a high Fscore in Table 4.8.

Figure 4.10d,c shows the best and the worst test cases for Patient B: 88.9%
and 79.3% of fit, respectively. Figure 4.10f represents the best detection made for
the set of features EDA-HR-SpO2 with models from Patient B over a migraine
of the same patient. As previously mentioned, this set is less reliable for Patient
B; here is presented a good detection. Figure 4.10g represents one of the fault
detections with the average model for Patient B over a migraine of Patient A.
This detection has a fit of 31.6%; nevertheless, it seems that the prediction is
good, at least for the start of the migraine; but the prediction is not able to reach
the maximum and follow the decay, and it fails.

Figure 4.10h,i represents no detections over asymptomatic periods. In the
first one, the average model from Patient A runs over an asymptomatic period of
the same patient. The second one, on the other hand, runs over an asymptomatic
period from Patient B.

As expected, the provided model seems be patient oriented and fails to
predict the migraine for other patients who are not included in the training of
the model for the metric—fit—used. However, this fact can be explained because
the dysautonomia is differently affected in migraine patients, and a general
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model of the migraine cannot be found at this stage of the research.

Complete-signal repair Strategic Study (CSS)

Tests have been run using the average model in this case too. This is the
average of the prediction given by the best dM/3e models for each feature
combination. Over each prediction, as well as over the average of these, the
selected improvement scheme has been applied: spurious removal and Gaussian
fitting.

Table 4.9: CCS. Test results for Patients A and Patient B at 20 and 30 minutes of
prediction horizon respectively at 70% of fit.

TEMP-EDA-HR-SpO2 TEMP-EDA-HR TEMP-EDA-SpO2 TEMP-HR-SpO2 EDA-HR-SpO2
Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B Pat. A Pat. B

TPR (%) 50.0 90.0 80.0 100 100 70.0 70.0 100 90.0 40.0
PPV (%) 100 57.1 100 90.0 100 70.0 100 100 90.0 40.0
F (%) 66.7 47.1 88.9 90.0 100 77.8 82.4 100 90.0 47.1

A summary of the results is shown in Table 4.9. As expected, for Patient B,
the results of the Fscore follow the trend of the vertical bars in Figure 4.9, and
the best results are achieved for the feature combination TEMP-HR-SpO2. Best
results for Patient A are achieved for the feature combination TEMP-EDA-SpO2.
Besides, the worst results are achieved, for both patients, with the combinations
of four features. This leads to conclude that the best model selection depends on:
(i) the features used, (ii) the desired horizon or (iii) the desired fit.

The results have been calculated using only data from two patients; therefore,
any generalization of the clinical conclusions obtained by this study could be risky.
However, the presented methodology, aim of this work, can be validated by these
results. In addition, it has been shown that an analysis of the prediction horizon
is needed in order to improve the accuracy of the results, supporting our initial
hypothesis.

Figures 4.11a through 4.11c shows some test results for Patient A and
Figures 4.11d through 4.11f for Patient B. Several models applied over different
feature sets are presented to show the accuracy of the trained models. For all the
graphs, (i) black curves represent the original symptomatic curve that must be
predicted, (ii) the orange curves are the final result after the reparation of the
prediction and the Gaussian fitting.

When a migraine occurs, models provide a prediction of some symptomatic
pain levels hours before the pain starts. Nevertheless, these are false positive
predictions, and the repairing process removes them. The same happens with
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negative predictions or those levels higher than 100. For all cases, repairing the
prediction and applying a Gaussian fitting leads us to improve the fit.
Figures 4.11c and 4.11f represent asymptomatic periods of time. The latest
present a false positive event not removed, obtained from prediction using the
TEMP-EDA-HR-SpO2 feature combination, that presents a high false positive
rate. The usage of the board of strategies to select the best models (Figure 4.9)
would have avoided these false positives.

4.1.6 Fine-grained predictive modeling using GE
algorithms

Until now, we have shown the predictive methodology with the N4SID algorithm.
However, as aforementioned, we also wanted to check other heuristic techniques like
GE. In this Section, we show the results after applying our methodology based on
GE for the prediction of migraines. First, the results of the training of the models
are drawn, followed by the cross-validation results. After that, we present how
these results can be benefited from the application of improvement techniques,
and how the model selection phase is conducted. The dependency of the models
with the inputs is studied, in order to select those suitable for implementation in
a real monitoring device. With the selected models, a test is performed with the
test dataset. Finally, an example of robustness against sensor failure is shown.

4.1.6.1 Training of models

After several tests, each model has been trained along 150000 generations with a
solely objective: the minimization of the NRMSE. The four available hemodynamic
variables (i) skin temperature (u1[k]), (ii) electrodermal activity (u2[k]), (iii) heart
rate (u3[k]) and (iv) oxygen saturation (u4[k]) have been used as inputs. The
output of the GE, yp[k] tries to fit the Gaussian adjustment of the real subjective
pain, yr[k]. Six different prediction horizons have been computed: from 10 to 60
minutes in step of 10 minutes, and no restrictions in the data selection have been
imposed to the algorithm. 15 migraine events perform the training dataset for
Patient A and 8 migraines for Patient B.

Regarding previous results using state-space algorithms, it has been
hypothesized that models to predict migraines must be derived per patient, and
thus, both patients are going to be trained separately. The training results for
Patient A and B are shown in Figures 4.12a and 4.12b respectively. In these
figures each circle represents the fit achieved by each model, and for every
prediction horizon. The horizontal black lines represent the average fit of all the
models for every horizon. As expected, in average, lower fits are achieved for
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larger prediction horizons. In this case, again, a fit of 70% represents a good level
of similarity and, with this threshold, the best results for Patient A are for 10
minutes of prediction horizon. The results for 20 minutes achieve a slightly lower
fit (65.8± 8.7% on average). Models trained for Patient B achieve better results,
with average fits higher than 70% for 10 and 20 minutes of prediction and
65.615.0% of fit for 30 minutes (see Figure 4.12).

To remove overfitted models in training, a cross-validation is going to be
performed in the next sub-section.
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Figure 4.12: Training results. (a) Results for Patient A are good enough up to 20
minutes with an average fit of 65.8%; (b) Results for Patient B reach the 30 minutes of
prediction with 65.6% of fit.
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Table 4.10: Validation results for Patient A. The models marked in bold are the best
ones chosen for each prediction horizon.

# Model/ M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
Horizon (min)

10 81.5 NA 74.2 78.2 86.2 86.7 77.1 72.5 77.9 85.5 80.5 80.2 84.2 73.4 78.1
±2.5 ±9.0 ±6.7 ±2.9 ±2.3 ±6.1 ±12.6 ±6.7 ±6.3 ±5.7 ±5.8 ±4.3 ±9.4 ±9.8

20 44.4 58.4 65.5 71.3 58.7 59.1 58.4 56.9 53.3 64.2 69.4 60.9 54.3 60.5 64.7
±39.8 ±15.2 ±12.3 ±8.0 ±11.2 ±15.8 ±13.1 ±17.1 ±0.7 ±15.7 ±18.5 ±12.3 ±21.8 ±14.4 ±17.0

30 66.9 44.7 52.6 45.4 23.4 44.5 43.5 43.1 73.5 67.0 30.2 54.9 64.6 45.3 45.6
±0.4 ±22.2 ±7.9 ±19.8 ±12.8 ±20.1 ±20.2 ±21.5 ±0.0 ±16.0 ±21.1 ±14.2 ±2.6 ±25.8 ±30.6

40 24.4 52.8 35.0 42.6 78.2 48.6 39.7 39.0 NA 44.6 48.9 45.8 2.3 41.0 20.2
±2.5 ±15.8 ±18.6 ±10.1 ±0.0 ±11.1 ±7.9 ±0.0 ±21.8 ±11.7 ±26.2 ±0.0 ±21.9 ±21.6

50 5.6 43.7 37.9 39.3 56.0 45.7 36.1 NA 20.4 40.4 46.9 50.0 NA 47.2 NA
±0.0 ±16.1 ±22.0 ±13.8 ±25.4 ±19.5 ±8.2 ±0.0 ±8.7 ±22.4 ±6.3 ±20.8

60 22.4 31.1 30.7 NA 54.2 37.9 32.8 30.4 15.7 46.5 28.5 26.6 1.3 26.5 NA
±11.1 ±1.6 ±19.2 ±17.8 ±19.8 ±19.6 ±0.0 ±0.0 ±19.5 ±9.4 ±11.6 ±2.6 ±10.0

Table 4.11: Validation results for Patient B. The models marked in bold are the best
ones chosen for each prediction horizon.

# Model/ M1 M2 M3 M4 M5 M6 M7 M8
Horizon (min)

10 69.5 87.2 55.1 85.8 70.2 79.2 41.6 91.7
±7.1 ±10.3 ±11.4 ±5.7 ±8.4 ±23.7 ±13.5 ±5.9

20 47.4 72.2 52.0 49.5 76.6 78.2 46.7 50.8
±6.1 ±19.9 ±18.2 ±17.6 ±7.7 ±13.6 ±9.3 ±11.4

30 74.1 60.1 33.0 55.8 36.2 70.3 53.4 47.1
±0.0 ±11.7 ±14.5 ±5.4 ±0.0 ±10.9 ±9.7 ±0.0

40 65.7 57.0 51.1 65.9 52.6 36.0 NA 28.9
±0.0 ±15.9 ±11.3 ±4.6 ±0.0 ±29.5 ±14.8

50 45.8 32.3 NA 51.0 2.3 36.4 NA NA
±0.0 ±49.8 ±2.4 ±0.0 ±26.8

60 39.5 44.0 93.6 34.6 65.3 17.9 6.3 NA
±0.7 ±33.6 ±0.0 ±20.1 ±0.0 ±11.3 ±0.0

4.1.6.2 Validation of models

In this section, it is computed anM cross-fold validation to find those models that
predict a migraine with higher accuracy for each prediction horizon. In this stage,
predictions have been improved by means of both repairing techniques: signal
repair and Gaussian fitting (Complete-signal repair Strategic Study). It was seen
in Section 4.1.3 how these techniques improve the fit, in average, in more than 10
points. We present an example of such improvement at the end of this section.

For each patient, a model Mi, with i = 1, 2, . . . ,M , trained with the i − th
migraine, is selected and validated with the remaining M − 1 migraines in the
training set. The average of the M − 1 validations is calculated after removing
the overfitted validations (those with negative NRMSE), and the results are shown
in Tables 4.10 and 4.11 for Patient A and B, respectively. These tables represent
the average fit and also the standard deviation. Results with 0.0% of deviation
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represent models only able to validate 1 of the M − 1 migraines in the training
dataset. The higher the horizon, the lower the number of migraines correctly
predicted. Notice that some models are not able to predict any migraine in the
dataset (labeled as NA).

As expected from the training results, models are not able to reach more
than 20 minutes with the defined level of accuracy (close to 70%). Thus, from
this point, we discard prediction horizons greater than 30 minutes. Next we show
some examples of expressions obtained from Patient A and B, after removing all
autoregressive models, which do not depend on the inputs ux, and only depend on
the real output, yr, and/or the predicted one, yp. They are removed because they
cannot be implemented in a real scenario.

Expressions for GE models for Patient A:

M20
A11 : yp[k + 1] = yr[k − 20] + e(log(49∗10−5+u2[k−108])−yr[k−113]+sin(u2[k−114])) (4.4)

M20
A3 : yp[k + 1] = yr[k − 20] + e

u3[k−81]
u2[k−70]

u3[k − 20] (4.5)

M20
A4 : yp[k+1] = yr[k−20]+

(
65 ∗ 10−4 − u3[k − 20]

)
∗∆

(
u2[k + τ ]

∣∣∣∣−20

−100

)
(4.6)

Expressions for GE models for Patient B:

M20
B5 : yp[k+1] = yr[k − 20] ∗ u4[k − 134]

1
3 ∗ u4[k − 134] + yr[k − 46] + ∆

(
u4[k + τ ]

∣∣∣∣−20

−37

)
+ cos

(
∆
(
u3[k + τ ]

∣∣∣∣−20

−140

))
(4.7)

M20
B2 : yp[k + 1] = yr[k − 20] + yr[k − 29]− yr[k − 45] + log(u3[k − 53]) (4.8)

M20
B6 : yp[k + 1] = yr[k − 20] ∗ log

(
log

(
max

(
u2[k + τ ]

∣∣∣∣−20

−136

)))
(4.9)

To avoid overfitting, 3 models have been selected to compute an average
prediction. The models marked in bold in Tables 4.10 and 4.11 have been chosen
as the best ones for each prediction horizon. The criteria have been as follows:
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(i) first, to sort the models according to the number of migraines validated with a
fit higher than 70%, then (ii) to sort them by average fit and take the first three
models. This may cause some undesired selections, such as in the case of the
30-minutes model for Patient B. In this case, it is desirable to select one model
(model M1) validating at least one migraine with a high fit, instead of a model
(like model M4) that barely reaches the 60% of fit.

Equations 4.4 through 4.6 show the expressions corresponding to the
selected models in Table 4.10 for 20 minutes of prediction horizon for Patient A.
For Patient B, the expressions for 20 minutes ahead are those in
Equations 4.7 through 4.9. These models do not depend on the inputs ux, and
only depend on the real output, yr, and/or the predicted one, yp. These models
cannot be implemented in a real scenario, and must be considered as purely
mathematical solutions.

This work is part of a real clinical study, and one of the goals in the envisioning
of GE models is the implementation of low power consuming predictive models to
be executed in the sensing motes. As stated above, this is not feasible using AR
models. For Patient A and 20 minutes of prediction horizon, using modelsM3,M4
andM11, only EDA (u2) and HR (u3) inputs are needed to predict migraines. For
Patient B, using models M2, M5 and M6, EDA, HR, and SpO2 (u4) are needed
to predict migraines with 20 minutes in advance. None of the selected models
requires the FFT functions, which contributes to generate easily implementable
and low power consuming models.

For the purpose of comparison, the average fits achieved with the selected
GE models are shown with those of the ZOH Table 4.12. The ZOH model
supposes that, within h minutes, the current output value will remain the same
for h minutes more, with h = 10, 20, . . . , 60. The ZOH model presents higher fit
values for Patient A because his/her migraines are, on average, longer than those
from Patient B. Longer decay curves lead to a lower error in the ZOH models. In
view of the results, the experimental models using GE for the prediction of
migraine are, so far, limited to 20 minutes of prediction. Therefore, our test
experiments will be limited to this prediction horizon.

Complete-signal repair Strategic Study (CSS)

In the following lines, the benefits of repairing the predicted signals are
shown. Several repairing techniques can be applied to the output generated by
the prediction models. These techniques are the already mentioned. We
remember them briefly, in the following order: (i) removal of spurious events
using both time and level thresholds, (ii) single event detection using a linear
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Table 4.12: Comparison of the results using GE and the ZOH predictive model.

Patient A Patient B
Horizon (min) GE ZOH GE ZOH

10 86.1 69.9 88.2 69.2
20 68.7 45.7 75.7 41.5
30 52.7 28.9 68.2 18.1

decider; and, (iii) recovering of the original desired shape of the migraine event
by Gaussian fitting of the detected event.

Figure 4.13 represents this situation, where in addition to the real pain curve
(dark solid line), a high level event has been detected at the beginning (dotted
line). This event is not considered a symptomatic curve and is removed. The
fit improves from f = −365.0% to the f = 81.1% achieved with the repaired
prediction (clear solid line).
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Figure 4.13: CCS. Example of the benefits of using improvement techniques. Here,
over the original prediction, spurious and high values are removed and a single event
detection is performed before applying a Gaussian fit.

As aforementioned, this improvement techniques are applied for each single
prediction before the calculus of the average prediction.

4.1.6.3 Test results

In this Section the selected models are applied over the test dataset. The test
dataset for Patient A is composed of 5 migraines and 5 asymptomatic periods
of time (time series without migraine events). For Patient B, there are also 5
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Table 4.13: CCS. Test results for Patients A and Patient B at 20 minutes of prediction
horizon at 68.5% and 70% of fit respectively.

Patient A Patient B
TPR (%) 60.0 100
TNR (%) 80.0 100
PPV (%) 75.0 100
F (%) 66.7 100

migraines but 6 asymptomatic periods.
For each patient, the three models for 20 minutes are applied and then the

average prediction is computed. A detection is considered as a migraine event
when the fit is higher than 70% (except for Patient A, where this threshold has
been downgraded to 68.5%, due to this is the average fit achieved by the selected
models in training). The metric to evaluate the goodness of the models is the
F-value, and the results are shown in Table 4.13.

Models for Patient B detect all the events in the test set, and no alarm has
been produced in asymptomatic periods of time. For Patient A, one false positive
has occurred due to an non-reparable prediction in one of the models, and precision
(PPV) falls to 75%. The sensitivity (TPR) is low due to two misclassifications.
Although the F-value is not as good as expected for Patient A, test results show
that the migraine prediction using GE is feasible.

Despite the maximum prediction horizon to predict migraines using GE
algorithms is 20 minutes, and despite this value is far from the almost 40 minutes
achieved using state-space algorithms in Section 4.1.5, the achieved results are
considered enough and sufficient to advance the drug intake and avoid the
symptomatic crisis. GE algorithms are simple non-linear equations easily
programmable in low power monitoring devices for real time prediction. In
addition, the GE performs feature engineering and feature selection opposed to
the exhaustive work that needs to be done in classic methods. Since the
complete evolution of GE is known, the last population can act as a starting
point in the new optimization process that happens when a sensor fails. Results
obtained are excellent as shown in Figure 4.14.

It can be considered a real Mobile Cloud Computing scenario [42] where the
GE models are performed in a cloud server. The selected prediction models run
in the monitoring devices, where any of the sensors can fail. In that case, the
prediction model of the failing device is not valid while the sensor is out.
However, upon this situation, in the remote server, the GE algorithm starts the
training from the obsolete model expression avoiding the use of the immeasurable
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Figure 4.14: Simulation of the recovering capabilities of the GE system against sensor
failures. After a sensor failure, the GE algorithm recovers a new model with an accuracy
near to the one of the original and deprecated model.

biometric variable. In this case, GE quickly finds another expression with a
similar accuracy to be used while the sensor is broken. Therefore, the approach
here discussed, based on GE, is suitable for a large-scale monitoring scenario
with real-life application.

The aforementioned scenario is simulated in Figure 4.14, where it is presented
the evolution of the fit in a training experiment (notice that time axis is not linear).
In the 80% of the trained generations (120000 generations), one of the inputs is
set to 0, and suddenly the fit falls. From that point, the GE starts looking for
new expressions and in 59 minutes achieves a new one with 86.8% of accuracy
of the original (77.3%). 34 minutes later the fit is 71.2%, 92.1% of the original.
This experiment shows the robustness of the GE algorithm for migraine prediction
against sensor failures in a real scenario; the GE automatically finds a new model.
This is another advantage over the classic models, where the selection of a new
model is an exhaustive and manual off-line work.

The utility of GE for predicting migraines has been demonstrated. Better
expressions would be found training the models with a higher population with
higher computing units, and this work must be done in a future work. Also, as a
future work, a penalty will be introduced in the GE training to avoid autoregressive
expressions; in this way better models will be selected.
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4.2 Advanced migraine prediction simulation
system

4 Results
4.1 Fine-grained migraine predictive modeling
4.2 Advanced migraine prediction simulation system
4.3 Sub-systems II and III. Prediction support
4.4 Energy aware prediction system

In the following lines it is going to be presented the result of the simulation
of the migraine predictive system using hemodynamic variables. It is worth to
highlight the power of this simulation. The advanced migraine prediction
simulation has the power of emulation of real time, which implies the feasibility
and reliability of a predictive monitoring device—whose physical implementation
is a next step of this research thesis.

The simulation of Sub-system I has been developed in incremental phases.
The first step did not include the Sensor Status Detector SSD, which gives the
robustness to the system, so it was not wither developed the SDMS2 in this first
step. This first version was tested with the GE models trained in Section 4.1.6.
Later, it was simulated the complete system as shown in Section 3.3; this time
using the state-space models trained in Section 4.1.2.

The evaluation of both implementations are shown in the next paragraphs.
Both represent, for the first time in the literature, that prediction models are
used to predict migraine events in real time. The current implementation of this
simulation raises alarms directly from the average predictions. This may lead to
spurious alarms. One possible solution to reduce spurious events could be the
recursive Gaussian fitting of the prediction in real time. This should be done in
small stretches, and its implementation might be tough. This challenge could be
tackled in the future.

Previously developed GE prediction models have been used to validate the
simulator’s scheme. These models are used in real time where the off-line
reparation of the signal does not take place.

Data from the two migraine sufferers have been used. The GE prediction
models were trained to predict the incoming migraine events at 10 and 20 minutes
in advance. The prediction models (hosted in the atomic models Model_1, Model_2
and Model_3 in the Predictor coupled model) are fed with the four hemodynamic
variables: skin temperature, EDA, HR and SpO2.

Figures 4.15a and 4.15b (Equations 4.4 and 4.6) are two examples of real
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Figure 4.15: Results of the validation of the basic simulator using GE algorithms.
(a) Patient A’s migraine, 10 minutes forward; (b) Patient A’s migraine, 20 minutes
forward; (c) Patient B’s migraine 10 minutes forward; (d) Patient B’s migraine, 20
minutes forward.

time migraine predictions for Patient A at 10 and 20 minutes, respectively.
Figures 4.15c and 4.15d (Equations 4.7 and 4.9) are the corresponding ones for
Patient B. Using the simple threshold implemented in this version, 7 false
positives occur in the examples of Figures 4.15a and 4.15b. This problem will be
tackled in the future, to reduce the number of false positive alarms in
Figures 4.15b and 4.15d using a more intelligent Decider model.

Now the behavior of the complete simulated system against sensor failures
is described. Actual implemented migraine prediction models only support one
sensor failure at a time. Migraine prediction using less that three sensors leads to
low accurate predictions, which makes the system not useful. When all sensors fail,
the system is not able to compute predictions and alarms will not be generated.
To demonstrate the fundamental concept, errors have been induced in only one
sensor (temperature sensor).
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Figure 4.16: Error induction in the temperature sensor and behavior of the system
against the failures.

In Figure 4.16a, three different types of errors have been randomly induced to
the TEMP signal: disconnection, saturation and noise. In normal conditions, the
Predictors_TEMP-EDA-HR-SpO2 model (Figure 3.21c on 77) computes migraine
predictions. When the TEMP SSD model detects an error, it activates the signal
recovery through the GPML (red circles), and after a pre-specified duration (defined
as 10 minutes in this example) the SDMS2 switches the migraine predictor model to
Predictors_EDA-HR-SpO2, which does not use the information from the TEMP
sensor. The gray bands represent the 95% confidence level of the GPML, which
is tight (better) when data are not missing and it is spread (worse) when the
GPML algorithm recovers data. Despite being represented all along the signal,
the gray bands really exist only when the GPML model works (red circles). In a real
HIL implementation, when the TEMP sensor has been replaced or repaired, the
Predictors_TEMP-EDA-HR-SpO2 model will be used again. In the example shown
in Figure 4.16a, two manual resets were simulated.

In Figure 4.16b, it can be seen how these errors affect the prediction (red
curve). Recovering values through the prediction simulation system avoids
destabilization of the migraine system despite an apparent drop in accuracy. In
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this example, the normalized root mean squared error (NRMSE) between the
prediction with noise (red curve) and the prediction without noise (green curve)
is only 12.2%.

With this simple example it has been demonstrated how intermittent sensor
failures can be replaced by predicted values to stabilize the entire system and
keep it within an acceptable operating range. Certainly, a deeper evaluation is
required in real-life conditions for ambulatory monitoring (not having to stay in
bed). This would also required advanced behavior in the Decider model. These
experiments have been computed using state-space algorithms. There are not
shown more examples, but it can be seen that real time predictions using state-
space algorithms are, in general, smoother than those for GE, as can be seen
comparing Figure 4.16b and Figures 4.15a through 4.15d.

4.3 Sub-systems II and III. Methodologies for
migraine prediction support

4 Results
4.1 Fine-grained migraine predictive modeling
4.2 Advanced migraine prediction simulation system
4.3 Sub-systems II and III. Prediction support

4.3.1 Sub-system II. Prediction support using environmental data
4.3.2 Sub-system III. Prediction support using qualitative data

4.4 Energy aware prediction system

As it was mentioned, the research in this thesis focused mainly in the
Sub-system I. Sub-systems II and III were defined in the methodology as entities
for migraine prediction support. Several experiments were performed. They
showed promising preliminary results that foresee a wide research area in
migraine prediction. In this chapter these results are commented briefly. For
further details of the experiments and detailed results, please, refer to the
original theses in [141] and [179].

4.3.1 Sub-system II: Migraine predictive modeling from
environmental data

For the purpose of creating coarse-grained predictive models to help the Expert
Decision System, the pain was simplified to a binary sequence of 0/1 (yes/no).
There were used slow global weather variables, and faster local environmental

150



“main” — 2018/7/20 — 0:23 — page 151 — #182

CHAPTER 4. RESULTS 4.3. SUB-SYSTEMS II AND III. PREDICTION SUPPORT

variables (to create detection and predictive models). Due to the low number of
migraine episodes with weather information, the results of these studies are not
conclusive, however they present a hope on future experiment which will need of
more data and and the specific study of patients whose migraines are attributed
to weather conditions.

Both global weather variables and local environmental conditions depict
similar results. Both generate individual models whose validations against other
migraines show poor results. However, the model selection and the average
predictive modeling improve the results. This is seen in as a moderate low
number of false positives which indicates that environmental data actually do
help to improve fine-grained predictions through coarse-grained predictive
models.

Table 4.14: Accuracy of average models in validation phase for migraine detection and
prediction at 20 minutes ahead using local environmental data for one migraineur.

Accuracy in detection (%) Accuracy in prediction at 20 min. (%)
Other migraines Basal Other migraines Basal

Random Forest 45.4 77.8 35.3 77.8
IBK 44.0 34.7 33.8 34.7
MLP 25.6 15.7 43.7 15.7
ZeroR 34.6 - 33.7 -

For local environmental variables (see Table 4.14), in general, the behavior of
the models has been similar in both the detection and the prediction phases. The
Random Forest algorithm seems to be the most stable solution, leading to models
with average accuracy rate of 45.4%, and individual results up up to 62%. Results
are higher than the mode (ZeroR algorithm) and robust in the test phase. When
the average model is applied over basal data (without pain) the accuracy is high
enough (low rate of false positives).

As a conclusion to go for further, the study has drawn satisfactory results.
The methodology has been developed from scratch and it can be used in later
research as starting point to serve of help in decision making systems.

4.3.2 Sub-system III. Prediction support: clustering
classification from qualitative variables

In the architecture described in this thesis, it was contemplated the usage of
qualitative data for prediction support. Qualitative data are variables that
surround the problem and might have, a priori, a different nature and origin. In
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this research it was suggested the usage of premonitory symptoms as qualitative
data to help the fine-grain migraine prediction. It is a matter of future work the
study of the predictive effect of the premonitory symptoms to predict the
beginning of the pain. However, preliminary proof of concepts have been
performed to sketch out if if premonitory symptoms are susceptible of indicating
that a migraine it is going to occur or not.

It was carried out a study using a Random Forest algorithm boosted with
AdaBoost [170], and performing 10-fold cross validation. Variables were selected
using the Information Gain attribute evaluator with the Ranker search method.
This study were carried out using 229 migraines from 34 patients, of whom 85.3%
experienced at least one premonitory symptom during the lapse of the experiment,
which lasted two months. The mean number of premonitory symptoms recorded
was 4.3 ± 3.3 per event. The mean number of premonitory symptoms recorded
prior to pain onset was 3.4± 2.0, and 5.1± 4.9 for symptoms recorded after onset
(non- predictive symptoms).

Table 4.15: Detailed accuracy for the classification of migraines with predictive
premonitory symptoms, no predictive symptoms, and migraines without symptoms.

Class TP (%) FP (%) TPR (%) PPV (%) F-value (%) ROC
PS pred. 61.9 12.0 66.1 61.9 63.9 82.3

PS no pred. 75.0 15.8 77.4 75.0 76.2 86.8
No PS 100 4.4 90.9 100 95.2 99.1

Weighted average 79.0 11.3 78.4 79.0 78.6 89.3

Results in Table 4.15 show that premonitory symptoms are able to correctly
classify 79.0% of events (classes are: predicted migraine, non-predicted migraine
and migraine without symptoms). The resulting quality parameters are very
promising: F − value = 78.6%, ROC = 89.3%, TPR = 78.4% and
PPV = 79.0%. The premonitory symptoms allowing the highest level of
accuracy in event classification (as predictive or not predictive) were
photophobia, fatigue, sadness, drowsiness, neck stiffness, yawning, phonophobia,
and difficulty concentrating.

These results encourage the researcher to keep ahead with these studies to
further complete the Expert Decision System fed with heterogeneous data to
help the fine-grained migraine predictive system to achieve better results.
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4.4 Energy aware prediction system

4 Results
4.1 Fine-grained migraine predictive modeling
4.2 Advanced migraine prediction simulation system
4.3 Sub-systems II and III. Prediction support
4.4 Energy aware prediction system

4.4.1 Compression techniques for energy saving
4.4.1.1 Discrete Wavelet Transform (DWT)
4.4.1.2 Discrete Fourier Transform (DFT)
4.4.1.3 Compressed Sensing

4.4.2 Energy savings
4.4.3 Energy aware predictive models

4.4.3.1 The concern of the energy consumption
4.4.4 Workload balancing in an MCC system

4.4.4.1 Energy results in WBSN
4.4.4.2 Workload off-loading policies
4.4.4.3 Economic benefits

This Section bases on the MCC scheme like the one presented in Figure 3.31
(page 95). As it was mentioned in Section 3.7.2, data transmission is the most
power hungry task in a monitoring node. In this Section the results of the
aforementioned loosy-compression techniques are shown: (i) Digital Wavelet
Transform (DWT), (ii) Compressed Sensing (CS), and (iii) Fast Fourier
Transform (FFT). The results presented here were obtained as a result of the
Bachelor thesis of Álvaro Martín [113]. The algorithms were implemented and
tested in a ATmega328 microcontroller and using a Bluetooth Low Energy device
for data transmission.

In the following, the results for each one of the techniques are studied in detail.
At the end of the Section, we select solutions of the optimization curves and the
energy savings are computed. These solutions reach energy savings of up to 96.5%.

4.4.1 Compression techniques for energy saving in wireless
transmissions

Figures 4.17a and 4.17b represent both ECG and PPG respectively. Remember
the reader that the compression techniques applied in this study are only focused
on ECG and PPG whose sampling frequency are 250 Hz and 75 Hz respectively—
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(b) Original PPG signal.

Figure 4.17: ECG and PPG signals before applying transformations.

faster than the 0.2 Hz of the skin temperature and EDA.
To compare the different solutions of the optimization process two metrics are

used: the amount of data (relative number of samples (%)) and the fit between
the original HR computed from raw ECG and PPG, and the reconstructed one
ĤR obtained from the uncompressed data.

As it was shown in Figure 3.8 (in page 53), R peaks and the systolic points are
those with higher energy. HR is the averaged time distance between peaks of the
ECG or PPG signal (HR can be measured from the diastolic points as well). As it
can be seen in Figures 3.8b and 3.8d only a range of the spectra contains relevant
information for the calculation of the HR. Based on all this information, in the
following paragraphs there are discussed the optimization results of the different
transformations applied to reduce the amount of data to be wireless transmitted.

4.4.1.1 Discrete Wavelet Transform (DWT)

This section shows the results of the energy optimization using the DWT.
Remember that, in our optimization process, once the DWT is applied, detail
coefficients (D) are removed, and a threshold is set up over the approximation
coefficients (A). All values below the threshold are removed. The threshold filters
the data that have a lower energy level, minimizing though the number of A
coefficients feasible to detect the R peaks. The threshold varies from −200 mV

to 200 mV with in steps of 5mV for the ECG, and from 0 mV to 15 mV with
increments of 1 mV for the PPG. These values were selected in a heuristic way
using the available datasets from patients.

Figure 4.18 compares the original DWT coefficients and the filtered DWT
coefficients after the optimization loop presented in Figure 3.32b in page 96. It
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can be seen that only positive values remain. Only those values those coefficients
over the threshold and their timestamps are sent. The thresholds obtained are 95
and 6 for ECG and PPG respectively, as shown in Figure 4.19.

Figures 4.19a and 4.19b represent the decision curves resulting of the
optimization loops. Setting one of the metrics of the optimization we can get the
others. These figures are useful as decision charts. In a real time problem, it can
be established different policies to automatically select the threshold for
coefficients removal. As an example, with low battery levels it cat be chosen
higher thresholds—coarser fits—to save energy. A deeper study of the benefits of
these decision techniques will be carried out as future work.

Remember the reader that it is not desired to recover the original ECG or
PPG, but the HR, and the fit in Figures 4.19a and 4.19b refers to the latter. In
Figure 4.19a it can be seen how the saving (in % of samples to be transmitted)
keeps high till fit = 87% (rounded point), and then it drops drastically if more fit
is needed. The same situation occurs in Figure 4.19b; the lower the fit, the higher
the saving, and thus the higher the threshold (more coefficients are removed).

Once data are transmitted, in the receiver, the inverse DWT (IDWT) is
performed over all non-zero coefficients (suppressed by the threshold). The
signals representing the peaks are recovered, and then the HR is computed. The
results in the receiver side are shown in Figures 4.18e and 4.18f, and correspond
to the re-marked solutions in Figures 4.19a through 4.19b. Both solutions
perform the optimization with an accuracy of 87%, achieving transmission
savings of 93% and 81% for ECG and PPG signals respectively. It is noticeable
that the compression is higher for ECG that for PPG (observe that the threshold
in PPG leads to more coefficients to be transmitted. This is due to the
variability of the PPG used is higher, and more severe thresholds lead to a
dramatic reduction of the fit (see this in the few number solutions with positive
fit in Figure 4.19b).

4.4.1.2 Discrete Fourier Transform (DFT)

This section shows the results of the energy optimization using the DFT. In this
optimization process only some coefficient in the frequency domain are sent, the
hypothesis behind this suggest that most of the HR information resides in a band
of the ECG signal. Varying the width and position of a rectangular filter there are
obtained a set of decisions points (solutions of the curve) that serve as decision
making policy.

Figures 4.20a and 4.20b show the single-sided frequency spectrum of the ECG
and PPG signals respectively. Most of the information of the ECG signal is found
between 3 Hz and 25 Hz. The ECG signal is filtered to remove high frequencies
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(b) Wavelet PPG (A coefficients).
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(c) Original ECG vs peak reconstruction.
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(d) Original PPG vs peak reconstruction.
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Figure 4.18: Results of the optimization process to achieve energy saving through
data compression using the DWT. The results are depicted for the computation of HR
obtained from ECG and PPG signals.
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(b) 3D decision curve DWT-PPG

Figure 4.19: 3D decision curves for the compression of the DWT. Setting one of the
metrics of the optimization we can get the others. Fit is computed over the HR.

coupled to the signal, such as the 50 Hz of the power grid. The PPG is an optical
signal and does not have electromagnetic coupling; the information groups below
10 Hz, and the lateral lobes in its spectrum are caused by the signal clipping that
acts as an ideal rectangular filter. Due to the reduced bandwidth of the PPG, the
lower frequency kl fixes to 1 Hz.

For each bandwidth and position of the ideal filter, in the receiver, the signal is
recovered by the inverse DFT (IDFT), and then the HR is computed. The decision
curves are drawn in Figures 4.21a and 4.21b. The highlighted solutions define
bandwidths and savings of 18 Hz (BW = 3− 21 Hz) and 71.2% for ECG, and 4
Hz (BW = 0−4 Hz) and 80.5% for PPG. Notice the reader that savings duplicate
because only the positive side of the spectrum is sent. As a result, the fit achieved in
the reconstruction of the HR for the selected solutions is 79.8% and 83.3% for ECG
and PPG respectively. These solutions are depicted in ecgreconsfftppgreconsfft.

4.4.1.3 Compressed Sensing

This section shows the results of the energy optimization using the CS. The
compression ratio (cr) is optimized in this loop. cr represents the savings in % of
samples to be transmitted. Setting the cr we get the fit, as shown in Figure 4.23.

The ECG and the PPG are reconstructed in each one of the iterations of
the optimization process. The HR is computed and the fit achieved is calculated,
leading to the optimization curves in Figure 4.23. Compressed sensing over PPG
achieves better results, and it is easy to reach higher energy savings in PPG than
in ECG for a given cr. It can be noticed comparing the span of the curves in
Figures 4.23a and 4.23b.

The highlighted solution in Figure 4.23a achieves for a cr = 34% a fit of
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(c) Original ECG vs Reconstruction from IDFT.
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(d) Original PPG vs Reconstruction from IDFT.
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Figure 4.20: Results of the optimization process to achieve energy saving through
data compression using the DFT. The results are depicted for the computation of HR
obtained from ECG and PPG signals.
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(b) 3D decision curve DFT-PPG.

Figure 4.21: 3D decision curves for the compression of the DFT. Setting one of the
metrics of the optimization we can get the others. Fit is computed over the HR.

81%. For PPG, in Figure 4.23b, the selected solution as an example, achieves
82% accuracy for a compression ration of 60%. These results are shown in the
reconstructed signals in Figures 4.22a and 4.22b, and the resulting HR in
Figures 4.22c and 4.22d.

4.4.2 Energy savings

In this Section the results obtained after measuring the energy consumption of
each of the optimization methods seen are presented. The initial operation of
the application consists of data acquisition for one minute—migraine prediction
techniques are carried out every one minute—and storing them in a buffer so that,
once this time has elapsed, they can be processed and sent via Bluetooth.

This study compares the transformations and compression techniques with a
baseline case. The solutions highlighted in the previous section have been
implemented for comparison. The results of the relative energy savings and
transmission time are drawn in the bar graphs in Figures 4.24a and 4.24b. For
the specific details of each one of experiments, please, refer to the original work
in [113].

In Figures 4.24a and 4.24b it can be seen that for the ECG signal the
compression method based on DWT has offered better results than the
rest—saving up to 93.2% and 96.5% in the time and consumption of data
transmission. For the PPG instead, the compression methods that have given the
best results have been the DFT and DWT, which are very similar. In this case,
the solution chosen in Figure 4.21b for the DFT, achieves saving of up to 82.2%
and 92.6% in time and consumption of data transmission.
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Figure 4.22: Results of the optimization process to achieve energy saving through data
compressed sensing. The results are depicted for the computation of HR obtained from
ECG and PPG signals.

The differences between the results obtained for ECG and PPG are due to the
properties of these signals (bandwidth of the spectrum where the information of
the HR is, the repetitiveness, the morphology. . . ). Therefore, the results obtained
with each of the compression methods used will depend on the properties of the
signal used; thus, if in the study of migraines it is desired to apply these techniques
on other signals (encephalogram, accelerometry. . . ), the conclusions obtained will
be different. In this study, the shipment has been made once the parameters of the
algorithms have been calculated. These results are specific to the chosen values
and will be deferred according to the parameters chosen: sacrificing consumption,
or sacrificing quality.

The consumption and time for processing is negligible with respect to the
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Figure 4.23: 2D decision curves for the CS. Setting the compression ration cr we can
get the fit. Fit is computed over the HR.

time and consumption of the data transmission, since the processing is
approximately 1% of the total consumption of each optimization algorithm, as
shown in Figure 4.24.
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Figure 4.24: Comparison of the percentage of consumption that the sending and
processing of the data implies in each of the algorithms. Results obtained for the specific
solutions chosen, and compared with the baseline approach where data are acquired and
sent via Bluetooth without prior processing.

Based on the results obtained, it could be feasible for a real implementation
to eliminate the ECG sensor—getting the HR from the PPG signal. This will
entail more comfort, a reduction of the data generated, a lower cost and greater
consumption savings.

In this study it has been demonstrated that using any of the optimization
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techniques, a reduction in transmission time and consumption has been achieved.
With this reduction, a better experience will be obtained for the users in the study,
since the charging time of the monitoring devices reduces and battery lasts more
time allowing more time of continuous monitoring. This implies a reduction of
data loss caused by cuts in the device due to battery depletion.

4.4.3 Energy aware predictive models

In this Section the energy optimization methodology proposed in Section 3.7.1 is
evaluated. The results of the optimization problem are shown. As previously
mentioned, the main goal of this study is to optimize the energy consumption of
monitoring devices as an additional objective of the cost function. For this
evaluation we use GE predictive models whose expressions will not be analyzed
in detail in this Section. However, we focus on optimization curves and the
solutions from the point of view of the optimized parameters: accuracy and
energy consumption.

To create the models, 10 and 5 random migraines have been used. They
belong to the already known patients A and B, respectively. All models have been
trained for predictions of 10 and 20 minutes ahead. As a result of each training
experiment a tri-dimensional Pareto front has been obtained. The Pareto front
ideally contains 250 different solutions (the size of the population). In most of the
cases, repeated solutions appear; thus, a Pareto front reduction is carried out to
remove them.

The goodness of all the solutions in the Pareto front are, objectively, the
same, because they are non-dominated solutions. We must choose subjectively
one criterion to select the models to be embedded in the monitoring device. To
maintain the maximum benefit for the patients, there have been selected those
models with maximum fit. Figures 4.25a through 4.25c show the 3D Pareto front
and one of its 2D projections for models trained with 10 minutes of prediction
horizon for both of the patients. The solutions chosen are rounded by a red circle.
All Pareto fronts obtained are globally convex: the solutions tend to minimize the
error, the number of clock cycles and the energy due to the sampling of sensors.
To improve the visualization and reading, the #clk is shown as thousands of cycles
and the energy of sampling is shown in dBm.

Table 4.16 and Table 4.17 show all the models for Patient A and Patient B
at 10 and 20 minutes of prediction horizon. In general, the average fit is higher
at 10 minutes. Despite the average fit is still high at 20 minutes, the average
number of clock cycles is higher. This leads to a longer computation time to get
the prediction and thus a higher energy consumption. Regarding the sampling,
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Figure 4.25: 3D and 2D views of the Pareto Fronts, result of the optimization process.

Table 4.16: Best fit solutions in the Pareto fronts for Patient A.

idx fit (%) #clk (k-cycles) εsensing(dBm) U
10’ 20’ 10’ 20’ 10’ 20’ 10’ 20’

1 79.2 77.4 74.3 24.8 35.6 -1.9 0.56 0.51
2 94.8 73.9 61.9 17.4 35.6 -1.9 0.52 0.00
3 91.6 92.4 11.6 106.1 35.6 -4.9 0.32 0.55
5 79.3 64.6 1.9 28.6 -4.9 35.6 0.64 0.52
6 75.2 76.7 21.8 21.7 -4.9 35.6 0.00 0.00
7 75.7 75.7 23.0 16.6 -1.9 35.6 0.34 0.41
10 77.1 76.3 21.7 75.7 35.6 -1.9 0.00 0.51
11 81.4 75.8 21.7 51.7 35.6 35.6 0.3 0.51
12 72.9 69.5 129.6 24.3 -1.9 35.6 0.36 0.53
15 76.2 84.2 38.2 86.3 -4.9 35.6 0.61 0.44
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Table 4.17: Best fit solutions in the Pareto fronts for Patient B.

idx fit (%) #clk (k-cycles) εsensing(dBm) U
10’ 20’ 10’ 20’ 10’ 20’ 10’ 20’

2 81.6 83.6 16.6 52.1 -1.9 35.6 0.00 0.22
3 82.0 77.5 4898.7 4697.3 26 36.1 0.49 0.48
4 80.3 81.1 31.6 26.4 35.6 -4.9 0.61 0.62
5 90.4 81.4 54.7 36.2 35.6 -1.9 0.57 0.73
7 89.4 81.4 4773.1 48.1 26 -4.9 0.63 0.54

the presence or not of the SpO2 sensor—consuming 35.6dBm—makes the energy
results vary quite much. For Patient A, it seems that the SpO2 sensor is very
important for the prediction of her migraine. For Patient B it seems that the HR
is an important variable, which makes increase rapidly the number of clock cycles.

From these best-fit solutions, it is computed the average symmetric
uncertainty U . With this, following the ideas that Ghasemzadeh et al. pose
in [61], we can split the GE expressions into a combination of features, if possible,
and thus estimate whether the features that compose the GE expressions are
representative, or not. The symmetric uncertainty U(X, Y ) is a normalization of
the mutual information I(X, Y ) between two discrete random variables X and Y ,
defined as in Eq. 4.10. U is bounded such that U ∈ [0, 1], and the lower the U ,
the better. The idea can be introduced for efficient feature selection and can be
adapted to any problem that the reader desires. For the sake of simplicity, the
average symmetric uncertainty is computed between all pairs of features—as a
worst case of overlapping of the individual entropy—instead of the complex
computation of the multivariate symmetric uncertainty.

U(X, Y ) = 2I(X, Y )
H(X) +H(Y ) (4.10)

In Eq. 4.10 H(X) and H(Y ) represent the entropy of the random variables
X and Y , and I(X, Y ) is the mutual information defined as:

I(X, Y ) = H(X)−H(X|Y ) (4.11)

I can be seen in Table 4.16 and Table 4.17 how U has medium values, that in
most of the cases is lower than 0.5. With this, it can be said that the features that
compose the GE expressions are relevant enough and they do not overlap each
other. This means that the GE expressions do not compute unnecessary features
and the energy consumption of the microcontroller is thus optimized.
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4.4.3.1 The concern of the energy consumption

Peculiarities of a GE predictive modeling box in the optimization framework is
that the selected models are a result of the casuistic of the metaheuristic process
that it is not deterministic. Nevertheless, with any other modeling solution the
reader can also follow the underneath study.
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Figure 4.26: Savings in energy consumption from the perspective of number of clock
cycles in the model execution and the energy consumed by the sensors in the sensing
process.

Depicted Figures 4.26a through 4.26d show examples of the solutions of a
Pareto front that satisfy a maximum error difference of αerror with the best-fit
solution. These figures represent the savings of clock cycles %—proportional to
the energy consumption of the microcontroller—and the energy savings (in dB)
due to the selection of another set of sensors. The abscissa represents αerror, or
the degree of error when we select a different solution of the Pareto front.
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In Figure 4.26a we can see solutions for migraine idx = 3 of Patient A at 10
minutes. It can be seen that clock cycles can be saved if more error is tolerated,
and in addition, the selected sensors consume as much as the ones selected in
the best-fit solution. At a certain point, the savings in clock cycles get over the
90% with the good news that the set of selected sensors does not require the SpO2
sensor anymore, and the savings due to sensing reaches 40 dB. The opposite occurs
in Figure 4.26d—4th migraine from Patient B at 20 minutes. Any of the remaining
solutions in the Pareto front saves energy from sampling; furthermore, when the
saving in the number of clock cycles gets almost the 80%, to maintain that needs
from the SpO2 sensor and the consumption due to sampling increases (negative
savings in dB). The sacrifice of error tolerance at 20 minute does not have such
reward but a penalty of higher consumption. With this, now it can be applied the
methodology for model selection presented in Section 3.2.2.2.

4.4.4 Workload balancing in a Mobile Cloud Computing
System

In this Section it is going to be presented the results of the strategies applied at
the node, coordinator and Data Center level. In addition, a study of the economic
impact of the energy savings is performed.

Results have been extrapolated from real data acquired in the clinic and in
the laboratory. The data used correspond to the migraines of the patients A and
B again. Power and performance characterization for the coordinators and Data
Center corresponds to the description in Section 3.7.3 (page 97).

4.4.4.1 Energy results in WBSN

The energy consumption of the microcontroller for node S1 in both working modes
has been obtained from [142]. The consumption in node S2 has been measured with
a HAMEG HM8012 digital multimeter. Radio consumption has been calculated
in simulation as described in Section 3.7.3 for both of the nodes.

Simulation results have been calculated as the average of the results of 10
simulations of 60 seconds each. For the CC2420 radio chip, the default values
provided by the simulator have been chosen.

Table 4.18 shows the energy consumption of the Shimmer
nodes—microcontroller and radio for node S1, and microcontroller, 8000R
oximetry sensor and OEM-III module and radio for node S2—for both working
modes: streaming and processing. Energy has been calculated for an execution
time of 1 minute and only for 1 patient.
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When working in streaming mode, the nodes collect data and transmit them
immediately without saving energy. These situations are shown in Table 4.18 for
0 dBm of radio power transmission in the streaming mode.

Radio switches on and switches off in every transmission. This explains the
high consumption of node S1 in streaming mode. In processing mode, node S1
switches on just one time per minute, while in streaming mode it does for 217
times (see Table 3.9). A similar situation occurs with node S2; where in streaming
mode radio switches on 60 times more than in processing mode.

Energy savings when computing HR in node S1, applying reactive
techniques and transmitting once per minute, reach 96.9% (from 13767 mJ to
432 mJ). Energy savings in node S2 after the extraction of the SpO2 data,
applying reactive techniques and transmitting once per minute, reach 50.3% in
node S2 (from 7235 mJ to 3637 mJ). Notice that reactive policies in the radio
lead to 1.1% energy savings in streaming mode for node S1 (from 13526 mJ to
13371 mJ); almost negligible. This is because most energy (99.5%) is used during
the initialization process, and barely goes to the energy transmission εTX . These
policies reach 80% of energy saving (from 9 mJ to 1.8 mJ) in streaming mode for
the same node. For node S2, energy savings in the radio link lead to 33.7% and
79.0% for streaming and processing modes respectively.

Even though, the energy reduction in the radio link is significant. The
absolute savings are masked due to the high power consumption of node
computation. To increase the impact of radio energy savings, the computation of
nodes S1 and S2 should be reduced. In this sense, more efficient HR calculation
techniques—or sampling rate reduction techniques—would reduce the power
consumption. For node S2 the strategy would be changing the sensor node and
its proprietary processing module OEM-III.

According to the results, on-node data processing is more convenient than
streaming, reaching a power consumption of 432 mJ for node S1 and 3637 mJ for
node S2. Thus, for the remaining of the paper, we use this setup, an apply our
workload balancing policies in scenarios SC4 and SC5 in Table 3.11, to further
reduce the energy consumption.

4.4.4.2 Workload off-loading policies

In this section we present the results for the workload off-loading policies,
corresponding to scenarios SC4 and SC5. Moreover, in this section we show the
benefits of combining workload off-loading techniques (i.e. moving workload from
the Data Center to the coordinators) together with energy optimization
strategies in the HPC and Cloud Data Centers.

The energy optimization strategies are called: (i) server turn-off policies,
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(ii) workload consolidation, and (iii) cooling power reduction. This yields the
following scenarios:

• SC4 (baseline): the original scenario considers no workload off-loading. The
coordinator nodes simply forward computation to the Data Center. The
off-line phase is performed in the HPC cluster, and the online phase in the
virtualized cluster.

• SC4 (optimized): this scenario applies Data Center energy minimization
techniques, but without any workload off-loading policy.

• SC5, 100% prediction: coordinator nodes perform data preprocessing
(i.e. GPML), but the virtualized Cloud takes care of 100% of the
prediction. The off-line phase is performed in the HPC cluster.

• SC5, 30% prediction: in this case, coordinator nodes execute both GPML
and 70% of the predictions (i.e. when battery power allows it). The
remaining 30% are computed in the virtualized cluster.

All scenarios except for the first SC4 (baseline) apply the three energy
minimization strategies aforementioned. The SC4 (baseline) is used to calculate
the energy savings of the three other experiments.

Server turn-off policies are applied in both the HPC and Cloud clusters when
the Data Center is not fully utilized. In this sense, workload is packed into the
minimum number of servers possible and the remaining servers are turned-off. In
order to guarantee the absorbency of the sudden workload peaks, 20% of unused
servers are always left on. Workload consolidation is applied only in the virtualized
Cloud cluster, and consists on packing together as many instances of either GPML
or prediction as possible, until the server reaches a per-core utilization of 100%. As
shown in Appendix C and explained in Section 3.7.3, up to 230 and 250 instances of
GPML and prediction can be packed together, respectively. These two techniques
are particularly useful during the initial deployment of the application. As both the
HPC and the Cloud cluster have been sized according to the maximum workload,
during the first weeks of the migraine prediction deployment, the clusters are
heavily underutilized.

Figure 4.27 shows the evolution of the HPC cluster utilization for a period of
10 weeks as new models that need to be trained arrive to the system, due to the
gradual inclusion of patients (blue dots). The utilization of the HPC cluster raises
to absorb the peaks. Observe how model re-training increase (red line) as more
migraines are being predicted. Finally, see the reader how utilization stabilizes
around 80%, the design point of the HPC cluster.
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Figure 4.27: Utilization of the HPC Data Center. Blue dots correspond to gradual
inclusion of patients (50%, 25%, 15% and 10%). Red line corresponds to models that
need to be re-trained.

On the other hand, Figure 4.28 shows how the utilization of the virtualized
cluster decreases as we off-load computation to the coordinators. This, by itself,
does not decrease energy. However, when combined with consolidation and server
turn-off policies, drastically minimizes power consumption.

Table 4.19: Energy consumption breakdown in HPC and Cloud Data Center for 10
weeks and various policies (MWh).

HPC IT HPC IT+Cool. Cloud IT Cloud IT+Cool. Total
SC4 (base.) 643.5 1061.2 282.4 466.1 1527.3 (-)
SC4 (opt.) 584.7 907.5 219.1 340.0 1247.5(18.3%)
SC5 (100%) 584.7 907.5 159.1 247.0 1154.5 (24.4%)
SC5 (30%) 584.7 907.5 78.3 121.5 1029 (32.6%)

This behavior can be observed in Table 4.19, which shows the power
consumption breakdown for the HPC and Cloud Data Centers for the whole
period of 10 weeks. Cooling power reduction is achieved by increasing the room
temperature of both clusters. To do so, experiments are run at increased inlet
temperature for both the SandyBridge and the Intel Xeon servers, and
heuristically observed that room temperature can be raised up to 26 ◦C without
thermal redlining. Assuming an initial PUE equal to the world average PUE of
1.65, and a reduction of 4% [159] in cooling power for every degree of increase in
ambient temperature, it has been computed the savings in cooling power. As can
be seen, the proposed techniques achieve significant energy reductions, of up to
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Figure 4.28: Utilization of the Cloud cluster.

32.6% in overall Data Center power when compared with the non-optimized
scenario SC4 (baseline).

Table 4.20: Energy consumption for various workload off-loading scenarios for 1 week
in the stationary state (MWh).

Coord. HPC DC Cloud DC Total Savings
SC4 (baseline) 170.05 104.9 49.9 324.8 -
SC4 (optimized) 170.05 85.4 42.4 297.8 8.3%
SC5 (100% pred.) 170.12 85.4 32.2 287.7 11.4%
SC5 (30% pred.) 170.32 85.4 14.7 270.4 16.7%

Table 4.20 shows the energy consumption for the overall application
framework of migraine monitoring and prediction for all scenarios. Results are
aggregated per device, i.e. each column shows the aggregated energy value for all
1,393,649 patients under test. As can be seen, in a scenario with so large number
of sensors and coordinators, the impact of these devices on the overall energy
consumption of the application is large. In this sense, reducing the energy
consumed by the sensor devices implies significant savings. Data Centers,
however, are still the most important contributors to power consumption, and
off-loading data to coordinators always yields important benefits, reducing
overall energy consumption in the steady-state by up to 16.7%.

Finally, Table 4.20 also summarizes the maximum energy savings achieved for
sensor nodes and the offloading scenario between the coordinator and the Data
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Center. This results are used further below to compute the economic benefits of
the proposed approach.

Table 4.21: Total energy savings in nodes and Data Centers and expenses in
coordinator nodes for 1 minute simulation.

Saving in Saving in Daily saving in Daily expenses in
nodes S1* (kWh) nodes S2* (kWh) Data Centers (kWh) coordinators (kWh)

3.7 ∗ 10−6 1.0 ∗ 10−6 7819.3 51.2

4.4.4.3 Economic benefits

To compute the economic benefits expected by the proposed approach, it has
been computed in Appendix D the total amount of economic savings that can be
achieved by migraine prediction in Europe. These savings are of e 1271.8 million
with an efficiency in prediction of 76%. Given the amount of energy consumed by
the nodes, coordinators, and Data Centers, together with the price of household
and industrial electricity, we can provide some insight on the economic impact
of our approach. The goal of this result is simply to provide a general overview
of the dimension of this problem in particular, and of Mobile Cloud Computing
applications in general.

Table 4.21 shows the energy savings for each element of the monitorization
system. After applying processing techniques and low-power radio policies in node
S1 for HR measurement, we achieve a daily saving of 5.32 ∗ 10−3 kWh; 1.44 ∗ 10−3

kWh doing the appropriate in node S2. These values are shown in Table 4.21 for 1
minute of simulation of the radio channel in Castalia. Bigger than these values are
the energy savings in Data Centers. Energy saving in these facilities brings an issue:
part of the execution is done in coordinators leading to daily expenses of 51.2 kWh.
As shown in Table 4.22, it worth to balance the workload. On average, economic
savings in a year of execution in Data Centers lead to e 287.7 ± 104.1 million.
This average calculation understands the HPC and Cloud clusters as a federation
of Data Centers located in Europe (see Appendix C), and only the variable part
of the industrial and household energy prices is taken into account. Economic
savings in nodes in Europe lead to e 692, 400. This calculation is the sum of
all the savings in Europe taking into account the household energy prices in each
country. Finally, the total amount of saving is e 288.4± 104.1 million.
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Chapter 5

Conclusions and future work

This thesis presents a robust methodology for predictive modeling and
optimization applied to critical scenarios presenting symptomatic crises. In an
IoT context, this work focuses on a real scenario of ambulatory monitoring of
people suffering from chronic migraines. Migraine is one of the most disabling
neurological diseases. It affects around 15% of the population and leads to costs
of e 1222 per patient per year to private and public health services in Europe.
Currently there is no cure for the migraine, and migraine sufferers can only take
their medication once they feel the pain. According to the medical literature, the
intake of medicines in advance can abort the pain and patients can improve their
quality of life. In this research we pose and answer the following questions: is it
possible to model and predict a migraine? Can this prediction be launched in a
specific time? To answer these questions, it has been developed a WBSN in
an eHealth scenario where biomedical data are acquired in non-intrusive way.
Data are processed, and to do so, there have been defined and implemented
different MCC architectures. Due to WBSNs are prone to data loss, the
methodology developed performs autonomous, and intelligent data repair and
adaptive predictive modeling according to the sensors status. It has been
demonstrated for the first time in the literature that it is possible to model and
predict subjective pain of migraine attacks. In average, the system developed is
able to detect 76% of crises, achieving average prediction horizons of 25 minutes
with high accuracy and low rate of false positives. The developed methodology
has been optimized to energy efficient, and in an hypothetical deployment of the
network in Europe, it would lead to savings in the electricity bill of up to
e 287.7± 104.1 million and e 1271.8 million for the health entities.

This research marks a starting point, and very promising future to the
prediction of critical events in chronic diseases. However, further studies will
require of a higher database to give statistical rigor to the technical work done in
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this research. A broader study will allow, for example, the localization of clusters
of migraine sufferers according to the behavior of their ANS that regulates
changes in their hemodynamic variables.

There have been studied and implemented different architectures for the
implementation of the predictive modeling system. In a general overview, there
have been proposed a cascade of three major predictive sub-systems working
together with an energy efficiency framework that support the implemented IoT
network.

Sub-system I is the main and most important subsystem and it is the one
that has more relevance and interest in this thesis. Sub-system I bases on fine-
grained predictive models through information of hemodynamic variables. This is
the most accurate sub-system that can provide alarms based only the information
of an ambulatory and non-intrusive WBSN that patients wear. To create migraine
predictive models, there have been used classic state-space algorithms (N4SID),
and heuristic approaches such as Grammatical Evolutionary algorithms. However,
other alternatives should be further studied. During this research there have been
implemented some test using time series equations, which have shown hopeful
results, but a more profound study is needed. Other interesting alternative that
has been left out of the scope of this thesis, are the Kalman filters. These state-
space models could lead to insightful results so they are able to deal with broken
data as many research studies have shown, for example for tracking problems with
path-information loss.

The fine-grained predictive algorithms, have been fed with raw data from
four hemodynamic variables. Grammatical Evolutionary Algorithms performs
automatic feature creation, however, this has not been fully studied and a deeper
search is makes necessary. As a future work it would be interesting to create
features as traditional time series studies do, such as mean, variance, energy,
spectral information in different time windows. These features could fed the
already implemented algorithms, or other like traditional machine learning
algorithms (k-means, Support Vector Machine,etc.). To delimit the search space
of all possibilities in the feature creation it could be used Grammatical
Evolutionary as well. It would be interesting to see how windowing affects the
prediction horizon, and a trade-off would become necessary. This will need to
define different semi-overlapped and non-overlapped windows, which lead to
more coarse predictions. The research group is already focusing further steps in
this matter and previous test show promising results.

The study of more predictive solutions leads to less objective decisions about
the goodness of each implementation. The simpler the models, the lower the
energy consumption, but the lower the accuracy as well. Often, small increments
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of accuracy require more complex models. Thus, this objective model selection
would require of more sophisticated metrics as the Akaike Information Criterion
(AIC) [2], which takes into account the complexity of the models and its quality
metric. As a first step, in this thesis, it has been desired to improve the fit
regardless the complexity of the model. AIC estimator would be an interesting
metric when modeling energy efficient models as well.

Sub-system I includes the Sensor Dependent Model Selection System, a
module that allows the system maintain the accuracy and prediction horizon
when a sensor of the WBSN fails temporary. Sub-system I has been simulated
using DEVS, and it has been demonstrated for the first time that it is possible to
raise alarms in real time to predict migraines. There have been implemented two
alternatives to perform signal repair: Gaussian Process Machine Learning
techniques, and time series algorithms. There have been tested sensor
disconnections, saturation and noisy signals; however, a complete sensor failure
and the statistical study of the accuracy and improvement as a result of that
failure is out of the scope of this research and will require future work. There is
still room for improvement and comparison of with other alternatives, such as
the Kalman filters. Kalman filters could lead to accurate results so that it
provides prediction and deals with data loss in the same process. In addition, it
would be necessary an study the energetic performance of these alternatives to
achieve better energetic profiles of the implementation.

This research has focused only in the predictive modeling of the pain curve
using hemodynamic variables. However, it might not be the best solution, neither
the most suitable for a real implementation in a real device. Other solutions
may consider the pain as a binary variable (yes/no pain) and, as aforementioned,
using other features it could lead to clustering and machine learning algorithms
for predictive detection. Nevertheless, the simplification of the pain curve to a
binary variable misses a lot of details about the evolution of the pain. Despite it
still requires from a decision module to raise the alarm, it would be an interesting
research to perform the Gaussian fitting in real time, as well as the removal of
spurious events. This should be done in small stretches, and its implementation
might be tough. Prior to a real implementation, the simulation of these tests will
raise objective comparison of both techniques.

Sub-system II is conceived for the prediction support based on a coarse-grained
prediction obtained from environmental data. The environmental variables such as
room and outdoor temperature, pressure or humidity are considered as trigger or
precursor variables of the migraine disease. This system has a lower relevance in the
system, and helps the Expert Decision System, EDS, in the decision making process.
This sub-system has a marginal contribution to the current research results, but
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it has been partially implemented as part of the whole system architecture. Due
to to the low number of migraine episodes with weather information, the results of
these studies are not conclusive, however they present a hope on future experiment
which will need of more data and and the specific study of patients whose migraines
are attributed to weather conditions.

On the other hand, there is plenty of information that can be gathered from
premonitory symptoms and activity related to the migraine crises, such as
triggers or daily activities, as an example. The number of commercial apps
focused on these data collection reflects an interest of the population to register
this information. Likewise, the results obtained encourage the research to keep
ahead with these studies to further complete the Expert Decision System.
During this research it has been noticed that there are few research studies
considering temporal heterogeneous data to help decision making systems. A lot
of decision making problems contemplate a set of events of the same type prior
to the considered crisis. For example, several measurement of the blood pressure
and information regarding nutrition before a heart failure—these events are
probably measured at inconsistent periods of time or with unbalanced number of
registrations. However, one of the major concerns about this in the migraine
prediction problem using premonitory information is that, each one of the
symptoms occurs only once before a migraine attack. In addition to this, in our
case there is about thirty symptoms, and only few of them occur—not always the
same ones—in each crisis. This would require a similar approach to the one
presented by Zhao et al. in [190]. In this study the authors piece-wise and
symbolic aggregate approximations for time series heterogeneous data. Our
research has already detected this lack, and pursues an implementation to
improve the Expert Decision System.

In this thesis there have been proposed different energy saving techniques at
different abstraction levels: creation of energy efficient predictive models, efficient
transmission of only relevant data and workload balancing policies for energy
efficiency in a large deployment of the IoT solution. Regarding one of the most
consuming task of a wearable device, the wireless transmission, in this research it
was provided a solution where, after applying transformation algorithms, only a
part of the transformation coefficients are transmitted. In this way, the energy
savings are achieved at expense of the quality of the signal compressed, as it
happens with the heart rate, computed from the ECG. If prediction methods are
carried out in the back-end, or if compressed data are not needed for
visualization (or other purposes which require signal quality), higher compression
levels can be applied. It has been guessed that this could be possible if, in the
optimization problem, we consider the quality level of the final migraine
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prediction instead of the quality of the heart rate, for example. This assumption
states that higher compression levels in the ECG affects more to the calculation
of the heart rate than to the migraine prediction curve. A deeper study of the
benefits of these decision techniques would be needed to be carried out in the
future.

There might be situations where it is needed high quality signals in the back-
end. A trade-off solution could be applied if it is still desired to maintain the
autonomy of the wearable device. Wearable devices are designed to be worn during
the whole day. It is desired that they operate effectively in risky situations, at least,
when the patient is unsafe out of its home. A trade-off solution could be based on
the control of the battery level using energetic policies. As an example, with high
battery levels it could be transmitted high quality signals to the back-end, and as
the day goes by, the battery level decreases, and the patient is closer to come back
home. In this situations, later in the day, it could be applied higher compression
levels—coarser predictions—to save energy. These situations need to be study, as
they can be interesting from the point of view of research and real implementation
in commercial devices.

As it can be seen, it has been achieved a functional migraine predictive
methodology optimized and with energy constraints. The proof of concept of the
methodology of the architectures proposed has been completed with high
satisfaction degree. Many issues have been covered in this research, and
obviously they have not been deeply studied. This opens the research to many
other areas, which the author consider that would lead to further relevant
innovative solutions.
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Appendix A

Modeling and simulation
background

In this thesis, we create predictive models in order to anticipate a critical events.
Models trained are obtained by supervised and semi-supervised algorithms. For
further theoretical details refer to the original works and authors of the algorithms.

A.1 State-space models

State-space models represent the behavior of a signal through the relation with
system’s states and other variables [71]. In this thesis we restrict our model class as
a Linear and time-invariant (LTI) state-space model of discrete sequences. State-
space models can be written as shown in Equations A.1 and A.2, that represent
the state equation and the observation equation respectively.

xk+1 = Axk +Buk + wk (A.1)

yk = Cxk +Duk + vk (A.2)

State equation is easily resoluble by recursive substitution or more advanced
algorithms as the N4SID algorithm proposed by Overshee and De Moor in [177].

State-space models define immeasurable states to describe difference
equations that calculate the current and future outputs from current inputs, as
shown in Equations A.1 and A.2. Both equations constitute a linear state-space
representation of the dynamic behavior of y. uk are, in our case, U exogenous
inputs and yk are the Y outputs at time k. A is the state transition matrix, B
relates the states at time k (xk) with the inputs, C is the state to output matrix,
and D relates current outputs with current inputs; because the systems to be
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modeled does not use to have an instantaneous response, D in the most of the
cases equals zero. A, B, C and D are the matrices of the deterministic subsystem
which describes the influence of the deterministic input uk on the deterministic
part ydk of the output yk = ydk + ysk. vk and wk are immeasurable white noises that
describe the influence of noise sequences on the stochastic output ysk.

The N4SID order nx (size of the square matrix A) has to be chosen as the
best one in terms of fit. We assume coefficient matrices are time invariant despite
the system might be retrained once in a while due to accuracy loss. Models are
trained for stability, what requires that the eigenvalues of A lie inside the unit
circle. Notice the reader that samples included in the past horizon are needed
only to compute parameters of the state-space equations, but they will never be
used for real time prediction.

Specifications to the implementation of the algorithm

There are many parameters in (Equations A.1 and A.2) that must be
calculated. In our case, uk are the 4 hemodynamic inputs and yk is 1 output
(symptomatic pain), both at time step k, and D equals zero. To calculate
matrices A, B and C, the initial status xinit, it is necessary to use past data and
future data to predict, for an specific order nx. This is a sized limited problem
that has been solved through exhaustive search.

In the training process, the N4SID order nx (size of the square matrix A)
and the number of samples from the past inputs and the output are chosen by
the algorithm as the ones that achieve the best fit. To do this, the process runs
in a triple loop looking for the best parameters, as shown in Algorithm 2. The
inner loop chooses the order of the models. The one in the middle chooses the
backward window to get information from past inputs, and the outer loop only
fixes the prediction horizon.

In addition, a parallel study for feature selection has been performed.
Algorithm 2 has been applied for the four hemodynamic inputs, but also with
the combinations in triads of them; in total, we checked 5 sets of features. From
these experiments, the features that better describe a migraine per patient are
obtained. After training the models, 200 combinations have been checked to
select the best one per future horizon and per migraine event, and per set of
features.

At this point, the reader might have taken into account the problem that the
definitions of Equations A.1 and A.2 imply for the predictive modeling due to the
output y[k] is only defined for the current moment of time k. It is easy to deduce
that to predict the output value at time k + h, it will be necessary to know the
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Data: {I = Hemodynamic features, O = Pain to model}
Variables: {fw future windows,pw past windows,nx orders}
Result: Best model generated for a migraine event

Inital best fit: prevFit = −∞ ;
Exhaustive search:
for fw = 10 : 10 : 60 do

for pw = 0 : 5 : 100 do
Set options: opts = n4sidOptions(fw, pw);
for nx = 1 : 10 do

Calculate the model: stateSystem = n4sid(data, nx, opts);
Calculate the fit: fit = compare(data, stateSystem, futWin);
if fit > prevF it then

Save best model:
prevFit = fit;
bestPast(fw) = pw;
bestOrder(fw) = nx;

end
end

end
Retrieve the best model:
bestOptions = n4sidOptions(fw, bestPast(fw));
bestModel = n4sid(data, bestOrder(fw), bestOptions);

end
Algorithm 2: Space-state model training (N4SID algorithm).

status x[k+h], which implies to know the inputs at u[k+h− 1]. This means that
it is necessary to predict the inputs too. What it is done to solve this issue is to
push the output left h steps—bring the future values to the current moment—in
order to let the models know that current inputs have to be related with future
outputs.

A.2 Grammatical Evolutionary algorithms

Grammatical Evolution (GE) algorithms are a heuristic approach to the model
discovery problem. GE reduce the model complexity and help on the automatic
feature selection automatically by means of symbolic regressions, as opposed to
the time costly manual feature selection of classic modeling methods [7].

GE [148] is a grammar-based form of Genetic Programming (GP) [135], used
to generate programs in any language, where a Genetic Algorithm (GA) which,
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based on biology, evolves a population formed by a set of individuals (the
genotypes) as shown in Figure A.2. Each genotype is represented by a
chromosome. A chromosome is an array of integer numbers (genes) that select
production rules from a group expressed in a Backus Naur Form (BNF) grammar
previously defined, which leads to phenotypes. A phenotype is a tree-shape
structure which is evaluated in an iterative process. Phenotypes can represent
(depending on the problem to solve): (i) mathematical expressions for time
varying function modeling by applying Symbolic Regression (SR), or (ii) sets of
features for feature selection and feature combination problems.

When a GE model symbolizes a time varying function, the model leads to a
mathematical expression, which is a combination of features. This mathematical
expression is an optimal solution obtained by applying SR. The features are
operations, combinations and transformations over the input signals. They are
automatically selected by the GE and this is an advantage over the classic
methods such as state-space or autoregressive models. What the model actually
provides when a GE model symbolizes a set/array of features to be selected is a
weighing or a binary selection of the features.

Data: {I = Input features, O = Function to model}
Variables: {Mmetrics, Pcrossover, Pmutation, Gmax}
Result: Pareto front of best individuals in the last generation

Genesis: Sg = Sgenesis;
Optimization:
for (∀ g ∈ Gmax) or stabilization do

Evaluate: {em} = evaluate(I, O, Sg,metricm);
Rank and select: bestParentsg = max

Sg

{em | ∀m ∈M};

Mix : offspringsg = mix(bestParentsg, Pcrossover);
Mutate: mutg = mutate(offspringsg, Pmutation);
New population (elitist): Sg = mutg ∪ replace(worstParentsg);

end
Algorithm 3: Genetic Evolutionary algorithm with elitists reinsertion (NSGA-
II algorithm).
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Figure A.1: In this diagram, colors represent equally-ranked solutions. The black
vertical line shows how in a population can have different equally-ranked solutions at
the same time. This diversity leads to new and better solutions. Author: Gregory
I. Lang, Lewis-Sigler Institute for Integrative Genomics and Department of Molecular
Biology, Princeton University.

The GE algorithm

Henceforth, this thesis is going to be focused on GE models representing
time varying functions. As Algorithm 3 describes, at the beginning of the
computation, in the Genesis, the GE algorithm creates a first random population
formed by a set of individuals—the genotypes, also called solutions (Figure A.1).
From now, iteratively for each generation (defined by epochs), till the last one, or
stabilization of the metric values it is performed an optimization. It is said
mono-objective optimization or multi-objective optimization if it is used one or
more metrics respectively: (i) solutions are evaluated for each metric; (ii) the
best solutions are chosen (bestParents) and (iii) these mix each other with the
probability of crossover Pcrossover to create new ones (offsprings). (iv) The
offsprings may mutate with a probability of mutation Pmutation, i.e. some genes
change. (v) At the end of the epoch, it is created the next generation as the
union of the offsprings and the best parents (up to complete the size of the
population).

Figure A.1 shows how at the beginning (left side) an individual mutates (red)
and along epochs this individual mix with others. Eventually, a new offspring—due
to mutation or combination of chromosomes—improves the metric (orange). This
happens again when yellow and green (the best) solutions appear. This keeps till
the system tends to stabilization and all solutions are equally-ranked, i.e. different
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Figure A.2: Example of population. Mix and mutation of individuals (genotypes).
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Figure A.3: Example of Pareto front to minimize a two-dimensional objective problem.

mathematical solutions but same quality (metric value).
The computation finishes when all generations Gmax are evaluated or the

metric values stabilize. At the end of the computation, the last generation
represents the optimal solutions. If it used only one metric, there will be only
one optimal solutions. On the contrary, if it has been used two or more metrics,
a decision making problem appears. In this thesis, for multi-objective
optimization, we use a multi-objective genetic algorithm inside GE: the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [38]. The main
difference between a simple GA and NSGA-II is that at the end, as opposed to a
single best solution, a set of non-dominated solutions is obtained (traditionally
named as Pareto front). Figure A.3 illustrates an example of a two-dimensional
Pareto front. Black points in Figure A.3 are the last individuals or solutions of
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the NSGA-II execution. Red circles surround those solutions that lead to the
Pareto front. Refer to [33] for details on multi-objective GE implementation.

NSGA-II is an elitist approach, what means that a small part of the best
candidates remain unchanged into the next generation—they remain as parents of
the next generation. Each individual of the population plots a vector. The NSGA-
II algorithm [38] will choose the best ones that are in the non-dominated Pareto
front. An individual belongs to the Pareto front and is called non-dominated if
any of its objectives can be improved (minimized in our case) without degrading
the others. Figure A.3 represents a two-dimensional Pareto front. Black points
in Figure A.3 are the last individuals or solutions of the GA problem (the best
ones). Red circles surround those solutions that lead to the Pareto front.

For a better comprehension, a BNF grammar decodification example using
real data is shown in Section 3.2.2.

Specifications to the implementation of the algorithm

This is the example of the chromosomes—understood as an array of Bytes
potentially representing a part of a mathematical function—in Genetic
Evolutionary algorithms. As an example, a brute force approach should evaluate,
for a chromosome of 100 elements length and base 8-bit, 28100 = 6.67 × 10240

different solutions. To avoid this, the Genetic Evolutionary algorithm evolves
chromosomes of a population based on the probability of crossover and
probability of mutation as explained in Section A.2.

Given that our GE algorithm is generating predictive models, we have
designed a grammar that produces phenotypes forming symbolic mathematical
expressions for the target model.

The decoding process of a chromosome into a mathematical function, is
made by a set of production rules expressed in a Backus Naur Form (BNF)
grammar [148]. A BNF grammar is represented by a set of parameters in the
form {N, T, P, S}, where N is the set of non-terminals (coded symbols), T is the
set of terminals (decoded expressions), P is the set of production rules to
substitute the elements of N into T , and S is a non-terminal element of N used
as starting symbol.

The grammar in Figure A.4 is the adaptation for 10 minutes of prediction
horizon in BNF format. This is the version of the grammar that has been designed
for the generation of predictive models using GE. This grammar is constituted by
12 production rules that are used to compose functions, variables and constants.
The starting symbol, S, is the most general definition of an expression, the <Model>
production rule. The others are non-terminals N production rules. In addition to
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the basic mathematical pre-operators <PreOp>, other basic mathematical functions
are in <Fcn>. In these functions it has been defined complex functions based on
the Fast Fourier Transform (FFT) over the signals. In addition, the BNF considers
to take past samples of the input variables as described in the Var production rule.

N = { <Model >, <Op >, <PreOp >, <Input >, <Fcn >, <Const >,
<Base >, <Exponent >, <Sign >, <Var >, <Pw >, <Fw > }

T = { +, -, *, /, Exp , Sin , Cos , Log , Avg , Sum , Drv ,
Max , Min , AvgFFT , DrvFFT , MaxFFT , MinFFT ,
0, 1, 2, 3 ,... , 130 , TEMP , EDA , HR , SPO2 , YP }

S = <Model >

P = {
I <Model > ::= (<Model ><Op ><Model >)

| <PreOp >(<Model >)
| <Fcn >(k-<Pw >,k-10,< Input >)
| <Var > | <Const >

II <Op > ::= +| -|*|/
III <PreOp > ::= Exp|Sin|Cos|Log
IV <Input > ::= TEMP|EDA|HR|SPO2
V <Fcn > ::= Avg|Sum|Drv|Max|Min

| AvgFFT | DrvFFT | MaxFFT | MinFFT
VI <Const > ::= <Base >* Pow (10,<Sign ><Exponent >)
VII <Base > ::= 1|2|3...99
VIII <Exponent > ::= 1|2|3...9
IX <Sign > ::= +|-
X <Var > ::= TEMP(k-<Pw >)

| EDA(k-<Pw >)
| HR(k-<Pw >)
| SPO2(k-<Pw >)
| YP(k-<Fw >)

XI <Pw > ::= 10|11|12...130
XII <Fw > ::= 0|1|2...9

}

Figure A.4: BNF grammar used for migraine prediction with 10 minutes in advance.
The inputs of the grammar are the hemodynamic variables: surface skin temperature
(TEMP), electrodermal activity (EDA), heart rate (HR) and oxygen saturation (SPO2),
as well as the past predicted pain level (YP).

As seen in the figure, a predictive model (labeled as Model) is a combination
of functions of five variables (terminals, T ): the set of inputs (the hemodynamic
variables: TEMP, EDA, HR and SPO2), and the predicted signal (YP). There exist a
future horizon, labeled as Fw and a past horizon, labeled as Pw. To avoid
autoregressive expressions using information of the real pain reported by the
migraine sufferer YR, this variable has not been introduced in the grammar. The
maximum past horizon is 120 minutes (<Pw>), enough for our experiments. The
output can also be based on the past predicted pain levels in a 10 minutes
window backwards (<Fw>).

One of the main benefits of GE is the capacity to create complex phenotypes
from a genotype formed by integer values. In this regard, it is shown an example
of the mapping process for the problem at hand using the grammar in
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Figure A.5: Decoding process in GE that, starting from the genotype above, obtains
the phenotype by mapping through the proposed grammar.

Figure A.4. Let’s consider the genotype shown in the upper part of Figure A.5 as
a candidate solution. This individual is a genotype that represents a predictive
model. However, it has to be decoded in order to obtain the symbolic expression
that will define such model.

The mapping or decodification process is performed by applying the modulus
operation between the current codon value—group of bits mapped to an integer—
and the number of options of each production rule corresponding to the non-
terminal symbol being processed. Then, considering the example individual, the
decoding process is performed as shown in Figure A.5. It begins decoding the
starting symbol, <Model>. Here, the first gene of the genotype is selected, 220.
Given that the production for <Model> (rule I) has 4 different options, the selected
value is option 0 (220 MOD 4 = 0), which corresponds to <Model><Op><Model>.
Notice that the first option of the rule is indexed with 0, the second with 1 and so
on. Next, the second gene is read and its value, 106, is used to decode the following
non-terminal symbol, which is <Model> with production rule I once more. Then,
after the modulus operation (106 MOD 4 = 2), the first <Model> is replaced by
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Table A.1: Parameters for the GE experiments.

Parameter Value
Number of generations 150000

Population size 250
Probability of crossover 0.9
Probability of mutation 0.083
Chromosome length 100

Wrapping No

<Fcn>(k-<Pw>,k-10,<Input>). Now, the following non-terminal symbol to be
decoded is <Fcn>, whose production rule, V, has 9 different options. Then, the
codon value, 91, is processed. Given that 91 MOD 9 = 1, the selected value
is Sum. In the same way, the next codon, 123 for <Pw> is turned into 13 using
rule XI, given that 123 MOD 120 = 3. The procedure continues until the full
expression is (i) completely decoded (there might codons left over), or (ii) there
are no codons to finish all the non-terminals, considering the chromosome invalid
(sometimes, a wrapping process is used, but this is not the case presented). As
a result, the genotype of the example returns the phenotype shown in the lower
part of Figure A.5, which represents a predictive model with past horizons of 10
and 13 units of time.

The parameters used for training the models are shown in Table A.1. The
probability of mutation is the inverse of the number of rules, 12 in our case. The
length of the chromosomes is sufficient to avoid wrapping in more than the 80%
of the cases (statistical observation of our experiments).

A.3 Time series analysis

Predictive modeling of time series requires from a deep understanding of our
data. Time series analysis provides a statistical model which allows (i) to
describe the evolution of an observed series (univariate), (ii) the relation between
series (multivariate), and (iii) forecast the evolution. Eq. A.3 shows the basic
decomposition of a time series zt using an additive model of deterministic and
non-deterministic components. This is the basis for the Wold’s Theorem [185] on
what the following explanations base.

zt = Tt + Ct + St + It (A.3)

zt represents the observed values; Tt, the trend, which reflects the long-term

208



“main” — 2018/7/20 — 0:23 — page 209 — #240

APPENDIX A. MODELING AND SIMULATION BACKGROUND A.3. TIME SERIES ANALYSIS

progression of the series; Ct the cyclical component, which shows repeated but
non-periodic fluctuations; St the seasonal movements in a short period; and It
random variations (noise) around the previous components. A different way to
see a time series is the one shown in Eq. A.4.

Time series models are polynomial functions based on past data of the series.
Time series models can be used to predict data by recursive iteration over past
data, and the new predicted data—which, of course, increase the error. Classical
methods try to find the known part of the time series in Eq. A.4, zt∗; while the
methodology proposed by Box-Jenkins [20] looks for at, the unpredictable part,
that does not depend on its past values.

zt = f(zt−1, zt−2, . . .) + at = z∗t + at (A.4)

Time series models are created for a particular time-finite series of a
stochastic process. It is desired the series to be stationary; which means that
mean µ and variance σ do not vary over time. Non-stationary series do not have
a histogram, thus they do not have stable mean nor variance over time.
Stationary series are common in physic variables, but not in social science or
econometry. This hypothesis of stationery may be strict or weak. There are
several transformations that convert non-stationary data into stationary, such as
logarithmic, differentiation (see Figure A.6b) or more complex transformation
like the Box-Cox transformation [21] to ensure the assumptions aforementioned
for linear modeling.
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Figure A.6: Body skin temperature (TEMP) and its first derivative. See how the first
derivative makes mean stationary. However, the variance does not seem to be stationary
after the first derivative and it would require a higher order derivative.

Time series models can be linear (stationary or not), or not. As linear and
stationary models there can be found Autoregresive models AR(p),
Moving-Average models MA(q), or mixed models ARMA(p, q). As linear and
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non-stationary models, there can be found the integrated processes
(Autoregressive Integrated Moving-Average, ARIMA(p, d, q), which become
stationary after d derivatives.

If it is desired to study the relation of a time series—response, lagged
dependent variable yt—and lagged independent variables—exogenous—it is used
an ARIMAX model (in the most general case: autoregresive, integrated and
moving average; other forms are ARX, MAX and ARMAX). The Autoregressive
Moving-Average model including eXogenous covariates, ARMAX(p, q), extends
ARMA(p, q) model by including the linear effect that one or more exogenous
stationary response series yt. On the other hand, there can be found multivariate
models as VARMAX (Vector Autoregressive Moving-Average model with
eXogenous variables), where the output variables—also called dependent,
response, or endogenous variables—of interest can be influenced by other input
variables—are called independent, input, predictor, regressor, or exogenous
variables.

This brief background is focused on ARIMAX linear models—in the most
general form—which are used to predict critical events based on external time
series, and they are also used to repair a signal based on past data from other
signals. Without mathematical details lets explain how to find the model that
represents a time series.

Time series model identification

Looking at a time series to identify the type of model that better represents the
series is not an evident task. The Autocorrelation Function (ACF) and the Partial
Autocorrelation Function (PACF) are two tools that help on the identification of
pure AR(p) or pureMA(q) models. The ACF represents delay k in the series with
its autocorrelation, ρk = cov(zt,zt−k)√

var(zt)−var(zt−k)
. On the other hand the PACF measures

the relation between zt and zt−k removing the effect of zt−1, zt−2, . . . , zt−k+1.
The number of not null coefficients of the PACF determines the order of an

autoregresive model. Table A.2 represents the main characteristics to identify
a model by looking at their autocorrelation coefficients. An example is shown in
Figure A.7. Figures A.7a and A.7b represent the ACF and PACF of the time series
zt depicted in Figure A.6a. It can be seen that the series is not stationary, at least
its mean value. A basic transformation based on its first derivative (Figure A.6b)
makes it more likely a stationary series; the mean is stable while there is still
doubts about the stationarity of the variance. Looking at the ACF of zt and z′t,
we can conclude that z′t is a Moving-Average process, so the time series TEMP
might be a integrative MA process. There might have doubts about the order q,
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Figure A.7: Simple and partial autocorrelation functions for the TEMP time series
and its first derivative. The lag represents the delays zt−k. Observe that for k = 0,
there is no delay and then the autocorrelation is 1. The blue lines represent the 95%
confidence interval assuming zt is an MA process in (a) and (c), or an AR process in
(b) and (d).

but the derivative has changed considerably the shape of the ACF in Figure A.7a
and ACF (z′t) decreases smoothly as expected from Table A.2. The PACF remains
the same, and they have significant coefficients, so it seems zt is a mixed process,
ARIMA.

The identification of a mixed process is not an easy task if it desired to be
strict with the characteristics described in Table A.2. Maybe because it has an
important seasonal series added, the model that represents a process can lead to
an excessive number of parameters (large polynomial equations). Seasonal data
are considerable cyclical and residual variations around the trend, whose values
are grow and diminish with the trend. These are the SARMA models,

Table A.2: Main characteristics to identify pure AR and MA time series models.

ACF PACF
MA(q) Cuts-off after lag q Decreases as an exponential or sinusoidal
AR(p) Decreases as an exponential or sinusoidal Cuts-off after lag p
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multiplicative models that understand a time series as shown in Eq. A.5. They
can be seen as more complex models which reduce the number of parameters
these ARIMA(p, d, q)x(P,Q) [20]. To deal with them, take logarithms in both
sides of Eq. A.5 to transform multiplications into sums, and then the time series
is analyzed as aforementioned.

zt = (Tt ∗ Ct ∗ It) ∗ St (A.5)

The study of time series models is a complex task. In these lines there have
been just mentioned the basics. To know more, please refer to the bibliography
cited.

Specifications to the implementation of the algorithm

If a signal suffer from data loss or disconnections, it might be recovered
temporary through information extracted from the remaining variables. In our
case, hemodynamic variables can be seen as autoregressive, moving-average,
mixed, or multiplicative processes. With this premise, it makes sense to go
further to find a univariate model where relation of past data of unaltered
signals, explain the bahavior of the damaged one. To solve this problem the
algorithm has been computed using the Econometrics Toolbox of the MATLAB
software [85].

To identify the nature of the process behind these models, it has been
conducted an exhaustive search like the one presented for state-space algorithms.
Models have been selected to maximize the fit to the symptomatic pain curve. In
Algorithm 4 it is necessary to preprocess the exogenous inputs ut by testing
stationarity and differencing if needed. Otherwise, if any non-stationary
exogenous variable enters the model, the quality of the system decreases.

In Algorithm 4, due to there is no possibility to force the model to be trained
in prediction, i.e. compute future outputs, it is necessary to bring forward—to
current time k = 0—the output of the system. This lets the model know that it
is desired to correlate current and past input data with future output data.

It is desired to set p = 0 to avoid AR models. AR models depends heavily
on the initial state of the basal system, i.e. it is necessary to know and control
the basal state of the output (the hemodyanmic variable), which seems to be
a very complicated task. In addition, p = 0 reduces the computation time of
the computation of the model. D indicates the order of differentiation of the
hemodynamic variables, if needed.
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Data: {I = Unaltered hemodynamic variables,
O = Damaged signal to model}

Variables: {p past outputs,r past inputs,d integrative window}
Result: Best model generated for a hemodynamic variable

Inital best fit: prevFit = −∞ ;
Exhaustive search:
for p = 1 : 20 do

for r = 0 : 20 do
for d = 0 : 20 do

for D = 0 : 2 do
Set options: opts = arimaxOptions(p, r, d, D);
Calculate the model: system = arimax(data, opts);
Calculate the fit: fit = compare(data, system);
if fit > prevF it then

Save best model:
prevFit = fit;
bestOptions = opts;

end
end

end
end

end
Retrieve the best model:
bestModel = arimax(data, bestOptions);

Algorithm 4: Time series model training (ARIMAX algorithm).

A.4 DEVS simulation

DEVS modeling and simulation formalism allows to simulate models under a
unified modeling and simulation theory in real time, soft-real time and virtual
time.

DEVS is a modular and hierarchical modeling formalism, with all of the
advantages and uses of simulation systems, such as: completeness, verifiability,
extensibility, and maintainability and allows execution of Monte Carlo
simulations, parallel simulation using threads or distributed using webs [183], as
an example. It has been used the xDEVS open source JAVA library with the aim
of making a future implementation on a hardware device. DEVS is a general
formalism for discrete event system modeling based on a mathematical Set
Theory [189]. Over the last four decades it has been used to implement a
formally described system using an existing software/hardware library in
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multiple languages (e.g. Lisp, Scheme, C++, JAVA, Python, etc.). There are
two types of models in DEVS: atomic and coupled. An atomic model is
irreducible and it specifies the behavior for any modeled entity: processes an
input event based on its state and condition, and generates an output event and
changes its state. DEVS formally represents an atomic model by three sets:
input (X), output (Y ) and state (S), and five functions: time advance (ta),
external transition (δext), internal transition (δint), confluent (δcon) and output
(λ). Formally, it is expressed as follows:

A = 〈I, O,X, S, Y, λ, δint, δext, δcon, ta〉 (A.6)

where:

• I is the set of input ports.

• O is the set of output ports.

• X is the set of inputs described in terms of pairs port-value: {p, v}.

• S is the state space. It includes the current state of the atomic model and
also two special parameters called σ and phase. σ is the time until the next
event generation, and the phase is a description of the current state (usually
in natural language).

• Y is the set of outputs, also described in terms of pairs port-value: {p, v}.

• λ : S → Y is the output function. When the time elapsed since the last
output function is equal to σ, then λ is automatically executed.

• δint : S → S is the internal transition function. It is used to change the state
S, phase and σ, and it is executed right after the output function (λ).

• δext : Q · Xb → S is the external transition function. It is automatically
executed when an external event arrives to one of the input ports, changing
the current state if needed.

– Q = (s, e), s ∈ S, 0 ≤ e ≤ ta(s) is the total state set, where e is the time
elapsed since the last transition.

– Xb is a bag of elements of X.

• δcon : Q·Xb → S is the confluent function, subject to δcon(s, ∅) = δint(s). This
transition is selected if δext and δint must be executed at the same instant.

• ta(s) : S → <+
0 ∪∞ is the time advance function.
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A coupled model aggregates and interconnects two or more atomic or coupled
models. And it is formally described as:

M = 〈I, O,X, Y, Ci, EIC,EOC, IC〉 (A.7)

where:

• I, O are the set of external (not coupled) input and output ports.

• X is the set of external input events.

• Y is the set of output events.

• Ci is a set of DEVS component models (atomic or coupled). Note that Ci
makes this definition recursive.

• EIC is the external input coupling relation.

• EOC is the external output coupling relation.

• IC is the internal coupling relation.

Due to the definition in Eq. A.7, a coupled model can itself be a part of a
component in a larger coupled model system giving rise to a hierarchical DEVS
model construction.

In this thesis it has been used DEVS for model verification. It will be shown
the simulation of the an advanced monitoring prediction system from a top-down
view.
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Experimental set-up. On-body
channel transmission modeling

In the offline phase, and still in the clinic, the study of the on-body transmission
parameters is carried out. Figure B.2 corresponds to the initial phase prior to the
experimental procedure described in Figure 3.6. However, in this implementation,
the offline phase of the study lasts between 2 weeks and one month. During this
time the patient’s migraines are recorded and the prediction models are developed.
In the online phase, patients are continuously monitored and a runtime prediction
of the migraine is performed. As it is shown later, each of these two phases has a
different impact on the global consumption of the application.

During the training or offline phase, in the hospital, the sensing nodes are
placed on patients’ body describing a star topology. The coordinator (a
smartphone) is placed in the waist (just over the navel), the sensor node S1 in
the right arm (link L1) and the sensor node S2 in the right knee (link L2). The
sensors are wirelessly connected to the coordinator. Sensor node S1 senses the
ECG signal on the chest using one derivation, EDA in the arm using two
electrodes, and TEMP near the armpit using an NTC thermistor. Sensor node
S2 senses the SpO2 in the capillarity zone near the groin using the 8000R SpO2
sensor and the OEM-III module.

On-body channel transmission parameters
Still in the hospital, the on-body channel transmission parameters for each patient
are calculated. These parameters are required to feed the transmission models and
apply the radio techniques in [174] to reduce the energy consumption.

To develop the models some physiological measurements of each patient are
required, such as: the arm circumference, body fat mass, bone mass, muscle
mass, etc. [175]. Based on the research group previous work, a proactive
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Figure B.1: Sensor placement and monitorization. Two sensors are wirelessly
connected in a star topology to a coordinator (a smartphone in the waist). The sensor
node S1, placed in the right arm, communicates with the coordinator via the L1 link.
The sensor node S2, in the knee, connects via the L2 link. On left side of the figure, the
patient performs a sequence of movements to calculate the on-body channel transmission
parameters. On right side, data are transmitted wirelessly to the Data Center.

Figure B.2: On-body channel transmission scheme. At the beginning of the study the
parameters of the models for the on-body channel transmission are calculated in the
hospital. After that, the study continues as stated in Figure 3.6

technique to control the transmission power in the communication between the
nodes and the coordinator is carried out [173]. This proactive technique adapts
dynamically the transmission power based on the variations in the RSSI index.
These models are patient-dependent and use an ANFIS Link Quality Estimator
(A-LQE) model—based on ANFIS networks—to estimate the quality of the radio
links. RSSI levels and minimum transmission power affordable are related
through values stored in a Look Up Table (LUT). To calculate the parameters of
the models, the patients have to perform a sequence of movements standing up
and sitting down [175].

The exercises are a sequence of movements that simultaneously combine
different positions Pi, i = 1, 2, ..., N , of arm and knee. The number of exercises
N = 5 for sequence 1 of movements, and N = 4 for sequence 2. The positions of
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arm and knee are named as: L1P1+L2P4, L1/P2+L2/P3, L1/P3+L2/P1,
L1/P4+L2/P2 and L1P5+L2P1. For each link, the size of the LUT in the
corresponding node matches the number of exercises considered in that link.
Each one of the positions is described below:

• Sequence 1: the subject sits on a chair and performs five movements of the
arms (Link 1, L1): (i) hands on thighs, denoted as L1/P1; (ii) arms crossed,
L1/P2; (iii) arms extended forward, L1/P3; (iv) arms extended up, L1/P4;
and (v) arms extended to both sides, L1/P5.

• Sequence 2: the subject sits on a chair performs four movements of the legs
(Link 2, L2): (i) leg in 90º angle with the body, L2/P1; (ii) left leg crossed
over the right knee, L2/P2; (iii) right leg crossed over left knee, L2/P3; and
(iv) leg extended forward, L2/P4.
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Sizing of HPC and Cloud clusters

The HPC and Cloud clusters of this thesis can be either understood as either a
centralized Data Centers that performs all the computation needed, but also as
federation of Data Centers located in Europe. In order to compute the power
consumption and performance of these two clusters, the following methodology
has been followed:

1. Profiling and characterization of the GPML, training and validation stages in
the Intel Xeon servers of the HPC cluster, obtaining the power consumption
of each task for one instance of each task and when the server is fully utilized.

2. Profiling of GPML and prediction in the SandyBridge servers and the
coordinators nodes, obtaining power and performance.

3. Consolidation analysis at maximum frequency for the virtualized cluster, to
discover the maximum amount of instances that can be run in one server
until utilization reached 100% without degrading performance. In this
sense, we have found that the computational burden of GPML is of 260 ms,
allowing up to 230 instances to run per core on the same VM without
degrading performance. As for prediction, we can launch simultaneously
250 instances per VM, reaching a per-core utilization of 100% and not
degrading performance.

4. Data Center sizing, i.e. obtaining the amount of servers of each type for both
the HPC and the Cloud cluster.

5. Generation of the incoming workloads, that consists on new models to be
trained in the HPC cluster, as well as model re-training. The output of the
HPC cluster, i.e. the trained models, are the input to the Cloud cluster.
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Regarding Data Center sizing, we need to compute models for P = 1, 393, 649
patients (2% of the migraine sufferers in Europe). To this end, the HPC cluster
is composed of with S = 2275 Intel Xeon servers, with 4 cores each, so that the
total number of cores C = 9100 is able to tackle modeling. Models need to be
re-trained each Rre−train = 30 days per patient.

As for the Cloud cluster, a similar computation needs to be performed. Again,
Data Center has been designed for an 80% utilization. In this sense, considering
that we run one VM per core. There is only one final consideration that must
be taken into account, and is that even though all models are predicted, the
data preprocessing is not run every time, only when data are lost. As it has
been experimentally calculated the probability loss of each sensor separately, to
compute the workload it is needed to obtain the number of GPML instances that
need to be run, on average, for each model. Once the probability is obtained, it
can used the same formula than for the HPC cluster.
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Costs of the migraine disease in
Europe

The migraine affects approximately 15% population in Europe. This value ranges
from 8.8% in Portugal [120] to 24.6% in Switzerland [117]. Each migraine patient
leads to costs of e1222 per year in Europe, and according to the study in [105],
Linde et al. distribute these costs in the way shown in Table D.1. Reducing indirect
costs would lead to a huge amount of savings for the National Health Services and
private health companies.

The migraine is a stable chronic disease whose affection rates in population
vary very slow in time; thus, let’s suppose the percentages of migraineurs
in Table D.2 are still real (despite some of them are studies from more than 20
years ago). Table D.2 shows the number of migraine sufferers in different
European countries. In this thesis it has been considered the European
population in 2014 [51] (excluding Andorra, Bosnia, Kosovo, Monaco, European
area of Russia, San Marino and Armenia).

Second-to-last column in Table D.2 show the amount of patients in the
migraine prediction study. It has been designed a Data Center able to manage
this population. This population is 2% of the migraine population.

In this thesis it has been proposed a methodology in order to change between

Table D.1: Average direct and indirect costs of migraine disease in Europe per patient
per year [105].

Indirect (93%) Direct* (7%)
Productivity (e) Absenteeism (e) Outpatient Diagnostic Hospitalizations (e) Acute Prophylactics (e)

(2/3) (1/3) care (e) investigations (e) medications (e)
758 379 30 19 16 16 5

*Acute medications and prophylactics costs are not reduced by predictions of migraines.
Patients will continue with the medical treatment.
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Table D.2: Migraine sufferers in Europe for the target population of 2% of migraineurs
for this research study. Total savings in direct and indirect costs due to migraine
prediction with 76% of average rate of prediction success.

Country Population [51] Age range Migraineurs (%) [Reference] Total migraineurs Target population Savings (Me)
Turkey 76,667,864 ≥14 19.9 [27] 15,256,905 305,138 278.5
UK 64,308,261 16-65 14.3 [162] 9,196,081 184,150 168.0

Germany 80,767,463 ≥20 11.4 [134] 9,207,491 183,922 167.8
Italy 60,782,668 43±13 15.0 [163] 9,117,400 182,348 166.4
France 65,835,579 ≥18 11.2 [100] 7,373,585 147,472 134.6
Spain 46,512,199 18-65 12.6 [115] 5,860,537 117,211 107.0

Netherlands 16,829,289 20-65 23.2 [101] 3,904,395 78,088 71.3
Switzerland 8,139,631 29-30 24.6 [117] 2,002,349 40,047 36.5
Sweden 9,644,864 18-74 13.2 [34] 1,273,122 25,462 23.2
Norway 5,107,970 18-65 23.0 [156] 1,174,833 23,497 21.4
Denmark 5,627,235 12–41 19.1 [147] 1,074,802 21,496 19.6
Hungary 9,877,365 15-80 9.6 [15] 948,227 18,965 17.3
Portugal 10,427,301 - 8.8 [120] 917,602 18,352 16.7
Austria 8,506,889 ≥15 10.2 [98] 867,703 17,354 15.8
Croatia 4,246,809 15-65 19.0 [193] 806,894 16,138 14.7
Georgia 4,490,498 ≥16 15.6 [89] 700,518 14,010 12.8
Total 477,771,885 15.7±5.2 69,682,444 1,393,649 1271.8

Table D.3: Availability of models depending on features and sensors’ status. Total of
detected events on average to compute accuracy of the prediction system.

Model (Mk) Availability (%) Alarms = TPR (%) Time of usage (%) Detected events (%)
Patient A EDA-HR-SpO2 61.9 67.0 61.9 41.4

TEMP-EDA-SpO2 61.9 60.0 23.6 14.2
TEMP-EDA-HR-SpO2 58.0 53.0 8.4 4.5

TEMP-EDA-HR 82.5 53.0 5.0 2.7
TEMP-HR-SpO2 61.9 47.0 0.7 0.3

Total 63.1
Patient B TEMP-EDA-SpO2 61.9 90.0 61.9 55.7

TEMP-EDA-HR 82.5 90.0 31.5 28.3
TEMP-EDA-HR-SpO2 58.0 90.0 3.9 3.5

EDA-HR-SpO2 61.9 60.0 1.7 1.0
TEMP-HR-SpO2 61.9 50.0 0.7 0.3

Total 88.9
Average 76.0

prediction models according to the availability of sensors. The probability of failure
for each sensor is shown in Table 3.7. With these probabilities, and the prediction
results obtained, the percentage of avoided migraines has been calculated. This
value (76.0%) appears as an average result in Table D.3 and indicates the saving
costs per patient per year.

Table D.3 shows the results for two patients. Availability (%) means the
probability of usage of each kind of model depending on the combination of
features (sensors). The availability has been calculated with probabilities of
failure in Table 3.7. Eq. D.1 shows the most general expression to calculate the
probability of usage of a kind of model Mk, k = 1, 2, . . . , 5.

PU(Mk) = PA(f1) ∗ PA(fi) ∗ . . . ∗ PA(fN) =
(1− PF (f1)) ∗ (1− PF (fi)) ∗ . . . ∗ (1− PF (fN))

(D.1)

where:
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PU(Mk) is the probability of usage or availability of model Mk. PA(fi) is the
probability of availability of sensor fi, and PF (fi) is the probability of failure of
sensor fi in Table 3.7, i = 1, 2, . . . , 4.

The Alarms column in Table D.3 represents the True Positive Rate (TPR)
of each model. These models do not report any False Positive (FP) event, thus,
TPR equals the percentage of real migraines detected by the system. The more
accurate a model ism the more time it is used. Time of usage TU(Mk|k>1) (%) of
model Mk|k>1 in Table D.3 is calculated as shown in Eq. D.2:

TU(Mk|k>1) = (1− TU(M1)− . . .− TU(Mk−1)) ∗ PU(Mk) (D.2)

and:
TU(M1) = PU(M1) (D.3)

As an example, for both of the patients considered in Chapter 4, the models
of features combinations TEMP-HR-SpO2 only detect 0.3% of all the migraines
of each patient. Models detect 63.1% of migraines of Patient A and 88.9% of
migraines of Patient B when hierarchical change of models is applied taking into
account the probability of failure of each sensor. On average it can be extrapolated
that this system detects 76.0% of migraines without false alarms.

76.0% are the savings applied for each row in Table D.2. Total savings of
migraine costs over the migraineurs to whom one Data Center can provide its
prediction benefits leads to e 1271.8 million.
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Appendix E

Ethical consent

In the following it is shown a copy of the ethical consent taken in this reseach
study. Despite it is a public document, the access to it is not easy. The following
lines translate the document:

"The Clinical Research Ethics Committee of the Hospital
Universitario de La Princesa in its meeting of 07-08-2014 (minutes 15/14)
evaluated the following research project:

TITLE: WiMigraine: Non-invasive outpatient monitoring of biometric,
biophysical and electroencephalographic variables as a method for the prediction
of a crisis of migraine (Monitorización no invasiva de variables biométricas,
biofísicas y electrofisiológicas en pacientes con migraña como método para la
predicción de una crisis). Number of registration: PI-771 Main researcher:
Dr. José Vivancos (Neurology Service)

Decision taken: Approval (7-08-14)
This Clinical Research Ethics Committee considers that both the research

project and the Patient Information Sheet are ethically and methodologically
acceptable. Likewise, it considers that the researchers are competent to carry
out this project that is framed within the priority research lines of the Hospital
Universitario de La Princesa."
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COMITÉ ÉTICO DE INVESTIGACIÓN CLÍNICA 
 
 
       Madrid, a 08 de agosto de 2014 
 
 
 
 El Comité Ético de Investigación Clínica del Hospital Universitario de la 
Princesa en su reunión del día 07-08-2014 (acta 15/14) evaluó el siguiente 
proyecto de investigación: 
 
 
 
TITULO: WiMigraine: Non-invasive outpatient monitoring of biometric, 
biophysical and electroencephalographic variables as a method for the 
prediction of a crisis of migraine (Monitorización no invasiva de variables 
biométricas, biofísicas y electrofisiológicas en pacientes con migraña como 
método para la predicción de una crisis). 
Nº de Registro: PI-771 
Investigador principal: Dr. José Vivancos (Servicio Neurología)  
Decisión tomada: Aprobación (7-08-14) 
 
 
 
 
 
Este Comité Ético de Investigación Clínica considera que tanto el proyecto de 
investigación como la Hoja de información al paciente son ética y 
metodológicamente aceptables. Asimismo, considera que los investigadores son 
competentes para llevar a cabo este proyecto que está enmarcado dentro de las 
líneas de investigación prioritarias del Hospital Universitario de La Princesa. 
 
 
 
 

 
 
    Fdo:  Dra. Mª de Mar Ortega Gómez 
     Secretaria del C.E.I.C. 
 
 
 
 
 
 
 
 
CEIC Hospital Universitario La Princesa C/ Diego de León 62, MADRID (28006) Tel.: 91 520 24 76/Fax: 91 520 25 60 
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