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Abstract: Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present
large, specific areas rich with active surface cationic groups. This study shows the adsorption removal
of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were syn-
thetized through periodate oxidation and Girard’s reagent-T cationization. The high value of CCNCs
cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was
performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature.
Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L−1 of dosage. Nevertheless,
a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L−1).
Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the
material surface. The maximum adsorption capacity was 44 mg·g−1. Two mechanisms were found
for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous
growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast
growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm.
Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation
revealed an activation energy between physical and chemical adsorption. CCNC application at
selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.

Keywords: cationic cellulose nanocrystals; hexavalent chromium; adsorption; wastewater treatment;
cationization process

1. Introduction

The presence of chromium in water effluents is related to several environmental con-
cerns since it is cytotoxic and carcinogen to a wide range of species, along with other
acute affections [1–3]. Chromium is typically present as hexavalent and trivalent species,
although the environmental impact associated with chromium presence would vary de-
pending on the species: while hexavalent is highly toxic, bioaccumulable and persistent
in nature, even at low concentrations, the trivalent one shows less cytotoxicity [4]. The
environmental effects of hexavalent chromium spillage would be present for years without
adequate prevention due to its low biodegradability, adsorption onto the soil and the
rapid uptake by plant cells [5]. Industrial wastewaters are the main sources of hexavalent
chromium, including effluents from tanning, electroplating, wood preservation, cement,
paint, stainless steel and metallurgical industries [6,7]. The maximum acceptable concen-
tration of hexavalent chromium in water, according to the USEPA, is 0.1 mg·L−1, which
reinforces the importance of minimizing its discharge to the environment [8].
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Many technologies have been adopted to remove hexavalent chromium from efflu-
ents, but physical-chemical treatments are the most common. These processes show a
great performance stability, allowing compliance with the required final quality in the
effluents during their lifetime with minimal variations, which is desirable by the inter-
ested industries. Some of them include membrane treatments, adsorption, ion exchange,
coagulation-flocculation, chemical precipitation and electrochemical processes [9]. Among
these treatments, adsorption is widely implemented as an end-of-pipe treatment process
for low-concentrated effluents because it is inexpensive, simple to install and manage,
highly effective and its operation shows a low environmental impact. For these reasons,
this process reaches great operating results in terms of technical and economic feasibility to
prevent chromium contamination [10]. Several adsorbents have been used to successfully
remove hexavalent chromium from water, varying from the most common activated car-
bons and zeolites and their varieties to many types of polymeric, mineral, organic, waste, or
composite materials and nanomaterials [11,12]. Nowadays, the demand for cost-effective
green sustainable adsorbents based on natural resources is increasing, but achieving high
removal efficiencies is still a challenge. Cellulose meets most of these requirements, be-
ing a low-cost, renewable, non-toxic, biodegradable and the most abundant material,
which could be obtained from lignocellulosic waste material. As well, this polymer is
easily functionalized and chemically and physically modified to obtain a wide variety of
cellulose-based materials [13]. Some certain cellulosic materials have been widely used as
hexavalent chromium adsorbents, mainly in the form of raw lignocellulosic waste materials
(including bagasses, fruit peels and wastes), composites with other polymers (such as
polyethylenediamine and other polyamines) and inorganic materials (such as hydroxyap-
atite and hydrotalcite) or even as a support for highly active iron species as reducing agents
(such as Fe3O4 or nano-zero valent iron (n-ZVI)) [14]. Nevertheless, among these common
modification technologies, there is a lack of knowledge in the application of cationization
techniques to celluloses, even when this modification would convert cellulose surfaces
into attractive for anionic hexavalent chromium species. This interaction would facilitate
the adsorption of these species, as expected by the adsorption results obtained through
quaternary ammonium cations-modified montmorillonite by Yang et al. [15]. Moreover,
higher fibrillation could lead to a higher adsorption capacity, which would increase the
efficiency of the process. Nanocelluloses have one or more dimensions on the nano-sized
scale [16] and present interesting properties, such as low density, high aspect ratio and
mechanical strength and a large specific area, which are linked to good adsorbent materials.
Besides the possibility of surface modification to promote active groups, these materials
are suitable for adsorbing almost any kind of pollutant from wastewater reaching high
yields [17].

Different types of nanocelluloses have been used for hexavalent chromium adsorption
from wastewater. Cellulose nanofibers (CNFs) and nanocrystals (CNCs) from lignocellu-
losic sources and bacterial cellulose (BC) and their modifications have shown their capacity
to attract hexavalent chromium anions. Yang, et al. [18] developed a hybrid structure based
on BC coupled to poly(m-phenylenediamine) in nanoparticles with a total adsorption
capacity of 434.78 mg·g−1. The hydrogel composite of chitosan/CNC grafted with carbon
dots produced by Zeng, et al. [19] achieved 217.8 mg·g−1 of chromium adsorption capacity
and could be used for quantitative detection of Cr(VI) up to 0.04 µg·L−1 thanks to the
change in fluorescence of the material. The authors of this study developed a first approach
in the application of nanocellulosic materials by studying the hexavalent adsorption onto
hydrophobically modified CNF, reaching 70.38 mg·g−1 of adsorption capacity [20]. Even
though the CNF showed proper characteristics to fix hexavalent chromium, an increase
in the hexavalent chromium adsorption kinetics would be expected when other kinds
of surface modifications are applied to nanocellulose, such as the cationization of CNCs.
The generation of cationic charges on the surface of CNCs could increase the attractive
interaction of the dissolved anionic hexavalent chromium species with the cellulosic adsor-
bent. In fact, the modification to generate quaternary ammonium cations on the surface
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of cellulose while reaching nano-scale cellulose crystals was previously achieved by Yang
and van de Ven [21]. Unlike other surface modifications, such as citric acid-incorporated
CNFs [22], the application of cationized CNCs has not been reported yet. There is a
necessity for proof research in this field to generate new knowledge and lead further in-
vestigations. Together with the need for novel adsorbent materials, there is a tendency to
focus on the direct adsorption of hexavalent chromium onto different materials without
any change in chromium species. This fact implies the need to manage the hexavalent
chromium-concentrated wash water counter currently and the spent adsorbent, which
can be expensive and hazardous. With a view on the objective of reducing hexavalent
chromium on the adsorbent, the production of a cellulose-based nanomaterial with reduc-
ing properties is desirable. As well, the obtention of this adsorbent-reducing nanocellulose
in simple steps without the need for further materials for composites is also intended to
ease the scale-up process. [23]. The current study is focused on the search for nanosized
cellulosic materials that cover these mentioned requirements to fulfill with a seen necessity
due to the reduced information about this topic.

The aim of this study is the synthesis of cationized cellulose nanocrystals (CCNC)
and the optimization of hexavalent chromium adsorption operating conditions using this
nanomaterial. To the best of our knowledge, this CCNC material has not been applied in
the adsorption-reduction treatment of hexavalent chromium in the previous bibliography.
Its application supposes an advance in the search for the implementation of sustainable
adsorbents for the removal of this pollutant. Our hypothesis is that CCNC, new lignocellu-
losic green nanoadsorbents with strong adsorptive properties, could be able to efficiently
attract hexavalent chromium anions and instantly reduce them into less toxic trivalent
chromium, a fact that has not been covered yet in the literature. The most relevant oper-
ating conditions, such as pH, adsorbent dosage, chromium concentration, temperature
and contact time, were evaluated through laboratory batch adsorption. The obtained
kinetic and isotherm data were analyzed to reach the optimal operating conditions. Data
were adjusted to various mathematical models to reveal the adsorbate-adsorbent surface
interaction mechanism. To facilitate the final implementation of the CCNC for industrial
applications, this adsorbent was tested with urban wastewater samples from a wastewater
treatment plant (WWTP) that received tannery industry effluents. Relevant and novel
results in the adsorptive removal of hexavalent chromium in real industrial wastewaters
through the use of CCNC were obtained in this study.

2. Materials and Methods
2.1. Materials

Commercial cotton linters supplied by Sigma Aldrich were utilized as a cellulose
source to produce CCNC. The chemicals applied in the different steps of the synthesis and
characterization processes were sodium (meta)periodate, Girard’s Reagent-T ((2-hydrazinyl-
2-oxoethyl)-trimethylazanium chloride, GT), ethylene glycol, hydroxylamine hydrochlo-
ride, silver nitrate, potassium peroxodisulfate, sodium chloride and hydrochloric acid (37%
v/v) which were supplied by Sigma Aldrich (St. Louis, MO, USA) and sodium hydrox-
ide pellets supplied by Panreac (Barcelona, Spain). All the purchased chemicals were of
analytical grade.

Standard solutions of hexavalent chromium (50 mg·L−1) were used as calibration stan-
dards for the spectrophotometric analysis supplied by Hach. Hexavalent chromium in wastew-
ater samples was analyzed following Standard Method 3500-Cr-B [24] through the analytical
reagent kits supplied by Macherey Nagel (Düren, Germany). Poly(diallyldimethylammonium
chloride) (PDADMAC) and polyethylenesulfonate (PesNA) standard solutions with
2.5·10−4 eq·L−1 of concentration were applied as titration reagents to determine cationic
and anionic demand.
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2.2. CCNC Synthesis

The preparation of CCNC was performed following the methodology developed by
Yang and van de Ven [21]. The overall process consists of an initial dialdehyde formation
reaction on cellulose to produce dialdehyde-modified cellulose (DAMC), followed by a
Schiff-base reaction to synthetize cationic DAMC (CDAMC) and the last step involves
heating and sonication treatments to produce nanosized cationic cellulose in form of
cationic cellulose nanocrystals (CCNC). The synthesis steps are explained in the scheme
presented in Figure 1.
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2.2.1. Dialdehyde Formation Reaction

First, NaIO4 (0.98 g NaIO4·g−1 dried cellulose) and NaCl (0.78 g NaCl·g−1 d.c.) were
added and once dissolved in water, cotton linters were dispersed in the sample (14.93 g
d.c.·L−1). This photosensitive reaction was kept stirring in the dark for 24 h. After 24 h,
ethylene glycol (1 mL·g−1 d.c.) was added to quench the non-reacted periodate. The final
DAMC suspension was filtered and rinsed thoroughly.

2.2.2. Surface Cationization Reaction

The GT reagent (1 g GT·g−1 d.c.) and NaCl (2.4 g NaCl·g−1 d.c.) were dissolved in
water and then, the rinsed DAMC was suspended in the solution after modifying the pH
to 4.5 with HCl. The suspension was stirred for 24 h and after that, the final CDAMC was
filtered and washed.

2.2.3. Synthesis of Nanocellulose

The filtered and washed CDAMC was diluted up to 1% (w/w) of consistency and kept
under intense stirring at 60 ◦C for 2 h. The suspension was then sonicated for 10 min with
an Ultrasonic Processor UP200H supplied by Hielscher (Germany). The CNCC suspension
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was purified by centrifugation at 5000 rpm for 10 min, separating the non-fibrillated fraction
from the nanosized cellulose.

2.3. CCNC Characterization

The physical-chemical characterization of CCNC involves common analytical param-
eters for celluloses and nanocelluloses. The anionic demand determination consists of a
titration in which the charge of a colloidal suspension of a cationic cellulosic material is
continuously measured. Once determined the charge of the suspension in mV, a standard
solution of a well-known concentration of polyelectrolyte with the opposite (in this case,
anionic) charge of the cationic cellulosic material is added. This anionic polyelectrolyte
compensates the corresponding charge of the material until reaching the contrary sign
of the charge on the solution, and the excess of the cationic polyelectrolyte added to the
solution is back-titrated with the standard solution of cationic electrolyte until reaching
neutral charge of the suspension (0 mV). Once reached, the obtained volume of cationic
polyelectrolyte added to the cellulosic material allows the calculation of total charges
through the normality of the standard solution and anionic demand can be calculated by
dividing per unit of added mass of cellulose [25]. The anionic demand was determined
through colloidal titration with a 2.5·10−4 eq·L−1 standard solution of PesNA using a
Charge Analyzing system supplied by AFG Analytic GmbH. The determination of sus-
pension consistency was evaluated as indicated by Balea, et al. [26]. Briefly, this method is
based on the determination of the dried content of a cellulose sample after an overnight
drying at 60 ◦C. The process yield, aldehyde content and cationic groups were measured
through the methodology established by Campano, et al. [27]. The process yield consists
of the percentage of solid sample maintained in the final suspension produced from the
initial solid cellulose source. The aldehyde content of DAMC was measured through its
titration with hydroxylamine hydrochloride. It reacts with aldehyde groups through Schiff
base reaction with DAMC, producing hydrochloric acid. The produced acid is titrated by a
standard solution of sodium hydroxide. The number of cationic groups is measured by con-
ductimetric titration with AgNO3 10 mM solution. Crystallinity index (Cr·I) was measured
as established by Campano, et al. [28]. Summarized, XRD patterns were obtained with a
Philips X’Pert MPD X-ray (Netherlands) diffractometer with an autodivergent slit fitted
with a graphite monochromator applying CuKα working at 45 kV and 40 mA. The patterns
were analyzed between 3 and 40◦ and the crystallinity index could be established by the
Segal’s method with the values of intensity at the 002 interference (2Θ = 22.5◦) and the
amorphous scatter (2Θ = 18◦). The weight content of carbon, nitrogen and hydrogen was
measured through a LECO CHNS-932 elemental analyzer by the combustion of samples at
970 ◦C.

2.4. Batch Adsorption Experiments

The experimental procedure of batch adsorption tests was developed as indicated
by Ojembarrena et al. [20]. Briefly, 100 mL synthetic wastewater samples are stirred
under controlled operating conditions: contact time (up to 72 h), pH (3–9), chromium
concentration (0.1–70 mg·L−1) and adsorbent dosage (10–400 mg·L−1). Blank and treated
samples were placed in each experiment under the same conditions to assess the time
evolution of the untreated sample and to be used as a control of possible environmental
modifications in the samples. The temperature was controlled and monitored during the
experiments. This parameter was also modified between 17 ◦C and 56 ◦C to evaluate its
effect on adsorption. Samples were taken, filtered (0.45 µm) and chromium concentration
was measured three times per water sample following the indications of the Standard
Method 3500-Cr-B [24] at different contact times to achieve kinetic data. The last measured
samples while varying initial chromium concentration corresponds to the equilibrium data
applied to adjust isotherm models.
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The determination of trivalent chromium on the CCNC of the treated samples was
also performed through spectrophotometry. This determination is based on the subtraction
of the total chromium content (as hexavalent chromium specie) minus the hexavalent
chromium concentration of the evaluated sample, as the total chromium in water is com-
posed of the sum of hexavalent and trivalent chromium species. The determination of total
chromium involves a complete oxidation of the samples through potassium peroxodisulfate
oxidation in sulfuric acid under 150 ◦C for an hour, as indicated by the supplier of the
hexavalent chromium photometric determination kits (Macherey Nagel, Germany). The
determination of hexavalent chromium of the oxidized sample following the indications of
the supplier revealed the total chromium amount.

Once analyzed the optimal operating conditions, these parameters were applied to
treat the real wastewater from the urban WWTP which received industrial tannery effluents.

2.5. Isotherm and Kinetic Data Analysis

Hexavalent chromium adsorption capacities were calculated and non-linearly adjusted
to different kinetic and isotherm models which are commonly applied to batch adsorption
treatments, following the equations indicated by Ojembarrena et al. [20]. The selected
kinetic models were pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and
intraparticle (IP) models. In the case of IP model, the adjustment must be divided into
separated linear steps, as each linear step can be associated with the kinetic rate of the
external or internal adsorption of chromium. The fittings of the different steps will be
clearly shown by the consecutive number of the step. As an example, the first linear fitting
of IP model to experimental data will be indicated as IP S1 and the second one, as IP
S2. The chosen isotherm models to fit equilibrium data were Langmuir, Freundlich, Sips,
Dubinin–Raduskevich (D-R) and Temkin models. The first three models offer information
about the major mechanism of hexavalent chromium adsorption, while the other two show
thermodynamic information of the adsorption process.

To obtain the preexponential factor, the energy of activation of the adsorption process
and to reveal if the overall process is endothermic or exothermic, the Arrhenius equa-
tion (Equation (1)) was adjusted to the achieved values of PSO kinetic constants with
temperature [29].

ln(k2) = − EA
R·T + ln(k0) (1)

Being k2 the values of the kinetic constants, T, the temperature (in K) correspond-
ing to each kinetic constant, R, the constant of ideal gases (in J·K−1·mol−1)) and k0, the
preexponential factor.

3. Results
3.1. CCNC Characterization

First, the process yield was determined to evaluate the cellulose losses during the
process. Following the previously indicated procedure, a total process yield of 42.19% was
calculated as a percentage of a solid mass of nanosized cellulose. This value is similar to
the reported yield reached by Yang and van de Ven [21], who applied the same production
process to a different raw material, such as softwood kraft pulp. Campano et al. [27]
repeated the same process with a similar pulp yield of 54.9% as CCNC. The variation in the
resulting yields can be associated with the higher or lower solubilization of cellulose when
it is oxidized. According to Yang and van de Ven [21], the fraction of non-CCNC cellulose
is kept as dissolved cationic cellulose.

The aldehyde content of the DAMC sample is a measurement of the yield of the
dialdehyde formation reaction. In accordance with the indications of Campano et al. [27],
the maximum amount of aldehyde groups if the dialdehyde formation reaction with
NaIO4 yields a 100% is 9.24 mmol·g−1. In the case of the synthetized DAMC in the
present study, the measured value was 1.83 mmol·g−1, which represents an aldehyde
formation yield of 19.76%. This value is relatively low compared to the reaction conversion
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obtained by Campano et al. (3.84 mmol·g−1) [27] when starting with softwood pulp under
the same conditions. These differences can be explained by the cellulosic source used
as a raw material. In the case of the application of cotton linters, this material has a
low percentage of reactive amorphous regions, since its crystallinity index (Cr·I) is high
(72–87%) [30]. Oppositely, eucalyptus cellulose used as raw material for softwood pulp
production shows lower Cr·I values (52–58%) [31], explaining the increased conversion
yield obtained by Campano et al. On the other hand, the dialdehyde cellulose synthetized
by Otoni, et al. [32] under severe temperature conditions (50 ◦C) only reached 0.6 mmol·g−1

of aldehyde conversion, due to the low periodate dosage (4.6-fold lower). Therefore, the
obtained result of 1.83 mmol·g−1 can be considered an intermediate value compared to
other bibliographic results.

To evaluate the performance of the cationization reaction, the number of cationic
groups was determined. The yield of the cationization reaction is obtained from the
previously measured aldehyde content in DAMC. The result of the titration revealed a
total of 1.02 mmol·g−1 of cationic groups in the produced CCNC. This value indicates
a cationization reaction yield of 55.58%. This efficiency is much higher than the one
obtained by Campano et al. (33.42%) [27], who obtained a similar final amount of cationic
groups of 1.31 mmol·g−1. The differences in trends between the similar number of cationic
groups of both materials while a high gap in reaction yield are explained by the previously
determined number of aldehyde groups. Two cationized cellulose samples could show
a similar number of cationic groups, like in this case. When one of them shows a much
larger number of aldehyde groups, which would be the case with Campano et al., its yield
of transformation of aldehyde groups into cationic groups would be much smaller than in
the case of the present study, as most of the aldehyde groups in the cellulose sample would
stay untouched. Another case of similar cationization yield was reached by Yang and van
de Ven (60%) [21], whose total cationic group value was 1.68 mmol·g−1. In both cases,
the initial raw material was softwood pulp, which can be the main cause of the apparent
difference between measurements of cationic groups. In contrast, Otoni et al. [32] found
a relatively low value of cationization yield and cationic groups (33% and 0.2 mmol·g−1),
showing that the process followed by the rest of the studies, including the present one, was
more efficient in terms of the formation of cationic groups on the cellulose surface.

The evaluation of CCNC surface anion attraction capacity was determined through
anionic demand. The anionic demand of the synthetized CCNC material was 675.2 µeq·g−1.
This value is close to other results achieved in cationization reactions of lignocellulosic
nanomaterials. In the case of the lignin cationization with glycidyltrimethylammonium
chloride synthesis performed by Wahlström et al. [33], 513 µeq·g−1 were achieved, and this
material was efficiently applied to remove sulfate anions from wastewater, so the larger
anionic demand found on CCNC would be a great value to attract and remove chromate
anions from water.

The Cr·I was evaluated to define the amount of the amorphous cellulose region
removed during the production and purification process through heat treatment. In this
case, the achieved Cr·I was up to 81.87%. This value is higher than the Cr·I of the CCNC
reported by Yang and van de Ven [21], which was 67%. The main reason for these varied
results is explained by the source of lignocellulosic material. As explained before, the Cr·I
values of the initial raw materials are critical. Cotton linters show a larger Cr·I than the
softwood kraft pulp used by Yang and van de Ven. That high Cr·I cotton linters values are
indicators of the obtention of much higher Cr·I values in the synthetized CCNC, as the
synthesis process involves the removal of the amorphous zones from the cellulose chain.

The elemental analysis of the cellulose sample revealed an average composition of
38.89% of carbon, 6.19% of oxygen and 3.99% of nitrogen. The content of cellulose in cotton
linters is above 90% [34]. Cellulose is a homopolymer composed of β(1–4) D-glucopyranose
units with only carbon, oxygen and hydrogen atoms in its composition, according to
Chen et al. [35]. This means that the presence of nitrogen can only be associated with the
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successful generation of the quaternary ammonium groups generated on the surface of
the material.

3.2. Hexavalent Chromium Adsorption Kinetics on CCNC
3.2.1. Effect of pH

The effect of pH (from 3 to 9) during the hexavalent chromium adsorption with
CCNCs was analyzed as summarized in Figure 2. The experiments were performed at
room temperature with an initial chromium concentration of 0.1 mg·L−1 and an adsorbent
dosage of 100 mg·L−1. A complete abatement of hexavalent chromium is achieved at
pH 3. Equilibrium is rapidly reached (15 min), with more than 60% of total removal in
less than 5 min. At pH 7 and 9, the kinetics were also fast, but the removal yield found at
equilibrium was lower (65.3% and 42.8%, respectively). The fact that the optimum pH is
acidic is common in the bibliography, as monovalent chromate species (HCrO4)− at pH
conditions between 2 and 4 are easy to be attracted by the CCNC surface, and this species
has an ion:active site adsorption ratio of 1:1. However, non-charged chromic acid H2CrO4
is mostly present when pH < 2, and it shows low adsorbate:adsorbent interaction and
divalent chromate species (CrO4)2− is predominant at pH > 6 and it requires an ion:active
site adsorption ratio of 1:2, which is less efficient in terms of adsorbent usage. This optimal
pH value for hexavalent chromium adsorption agrees with the previously obtained one
by Ojembarrena et al., Qiu et al. and Peng et al. by applying hydrophobized CNFs,
polyethyleneimine facilitated ethyl cellulose and polyvinylimidazole-modified cellulose,
respectively [20,36,37].
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Figure 2. Evolution of hexavalent chromium concentration (mg·L−1) during adsorption batch experi-
ments with CCNC with contact time at 0.1 mg·L−1 of initial chromium concentration, 100 mg·L−1 of
CCNC dosage at room temperature at pH values 3 to 9.

The experimental hexavalent chromium concentration data were converted into ad-
sorption capacity values to allow the kinetic adjustment to different models. The resulting
fitted curves for adsorption capacity values at pH 3 conditions are presented in Figure 3.

The adjustment of the different curves reveals that PFO (R2 = 0.9956) and PSO
(R2 = 0.9505) would represent the saturation curve better than the Elovich model. The
obtained kinetic parameters in the different pH experiments can be seen in Appendix A,
Table A1. The IP study indicates the following clear two-step adsorption equation: a first
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rapid adsorption and a second flat straight line during saturation. The plot of the PSO
kinetic model fitting to each tested pH condition data can be seen in Figure 4. This figure
explains the clear trend of adsorption capacity reduction while increasing pH from 7 to
9. The PSO equation is an accurate representation of the experimental data at each pH.
There is a strong minimization of adsorption capacities and rates with a pH increase. It can
be confirmed that the pH rise involves a change from a two-step process to a multi-step
adsorption. This effect is associated with mass-transfer limitations, the need for more active
sites per adsorbed anion and the presence of competitive anions at alkali conditions, such
as hydroxide or carbonate.
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The results reveal that the most adequate pH between the tested ones to obtain high
hexavalent chromium removal through CCNC is pH 3.

3.2.2. Effect of CCNC Dosage

The adsorbent dosage was studied in the interval from 10 to 400 mg CCNC·L−1.
Experiments were carried out with a contaminant concentration of 0.1 mg·L−1 at pH 3 at
room temperature. The removal efficiency at short contact times (5 min) and the kinetic
constant for the different CCNC dosages are shown in Figure 5. Results indicate a complete
depletion of chromium for a dosage of 100 mg·L−1 in just 5 min of contact and a linear
correlation between dosage and the PSO kinetic constant. This dosage shows a great
performance in terms of adsorption rate. On the other hand, possible interactions between
CCNC particles were observed at 400 mg·L−1, as at initial contact times, the hexavalent
chromium removal is lower than at 100 mg·L−1. This interaction could interfere with the
chromium adsorption efficiency due to the formation of flocs or larger crystals [38]. Another
option could be that the large concentration of cationic charges caused a constant repulsion
between CCNCs and affected the adsorption capacity and rate. It is also remarkable that
much lower dosages, such as 40 mg·L−1 would allow the full adsorption of hexavalent
chromium in a relatively short contact time of 60 min. Nevertheless, the increased kinetics
revealed by the kinetic essay with 100 mg·L−1 suggests that this is the real minimum dosage
value to obtain adequate adsorption rates, as there is a 12-fold reduction in the necessary
time for total removal with just a 2.5-fold increase in dosage. This value will be established
as the best operating dosage and will be applied in the rest of the experiments. The
obtained values are relatively lower than those mentioned in the analysis of several studies
performed by Aigbe et al. [38], which are dedicated to the application of nanomaterials,
such as carbon, polymer and metallic nanomaterials, in hexavalent chromium adsorption.
These authors showed that there is a strong correlation between adsorbent dosage and
pollutant removal yield, being 500 mg·L−1 the established the lowest dosage for a minimum
removal of 95% and diminishing to 70% when the dosage was below 200 mg·L−1.
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The obtained optimal nanocellulosic adsorbent dosage of 100 mg·L−1 is several times
lower compared to previous studies in the field. For example, Yang et al. needed 400 mg·L−1

of BC/poly(m-phenylenediamine) nanoparticles for an efficient removal of hexavalent
chromium, due to the large chromium concentration treated in this study (200 mg·L−1) [18].
As a comparison, while treating similar concentrations, in our previous study using hy-
drophobized CNFs, a dosage of 500 mg·L−1 was needed to treat concentrations below
1 mg·L−1 [20]. Peng et al. developed a polyvinylimidazole-modified cellulose adsorbent
whose tested dosage was up to 1000 mg·L−1 [37]. The largest analyzed dosage between
these studies was obtained by Zeng et al., who added 30,000 mg·L−1, two orders of magni-
tude higher than most of the studies. The main differences between the analyzed studies
can be associated with the different concentrations and also with the synergistic effect of
cationization performed in this study, which involves more attraction of chromate anions,
being a more efficient adsorbent than other tested modified cellulosic materials. This aspect
explains the low dosage of CCNC to obtain fast and efficient removal of this contaminant.

Chromium adsorption capacities were calculated and adjusted to different kinetic
models to evaluate the best representation of the experimental results while varying the
CCNC dosage. The calculated kinetic parameters are shown in Appendix B, Table A2. The
trend indicated in Table A2 is similar to the pH effect, where PFO (R2 = 0.9967) and PFO
(R2 = 0.9907) kinetics showed a well-fitting of the experimental data compared to the case
of the Elovich model, and the approximation of the PFO kinetic model to the growth step
and the saturation line of the curve is represented with accuracy. The reduced amount of
active sited due to the addition of low adsorbent dosage present in the 40 mg·L−1 causes
the need for three IP steps. Even happening a fast reduction of hexavalent chromium to
trivalent species, such a minimal number of active sites forces the accumulation of a much
larger amount of chromate anions in the boundary layer of the nanocrystals. In any case,
only half-hour of close contact allowed the removal of more than 90% of the total hexava-
lent chromium from the solution while achieving a relatively high adsorption capacity
(2.80 mg·g−1) when treating low-concentration solutions. This equilibrium capacity value
depicts a five-fold increase when compared to other nanocellulosic materials in the same
order of magnitude, such as hydrophobized CNFs [20].

3.2.3. Effect of Initial Chromium Concentration

To evaluate the limits of this process, the efficiency of the CCNC adsorbent in the
removal of hexavalent chromium solutions at higher concentrations has been tested. The
equilibrium data reached from these experiments were necessary to perform the isotherm
analysis. These experiments were carried out under variable initial hexavalent chromium
concentrations from 0.1 to 70 mg·L−1. The different kinetic constants reached during the
fitting of modifying initial hexavalent chromium concentration data are explained in detail
in Appendix C, Tables A3 and A4. The previously selected operating conditions of pH 3,
100 mg·L−1 adsorbent dosage and room temperature were applied.

The obtained curves showed an opposite trend between the low chromium concen-
tration experiments (0.1–1 mg·L−1) and the highly concentrated tests (>5 mg·L−1). This
tendency is shown in Figure 6a,b, where the experimental data achieved at 1 mg·L−1 and
50 mg·L−1 and the corresponding optimized kinetic adjustments are plotted.

In the case of low-concentration experiments, the chromium was totally adsorbed by
the applied dose of CCNC. For this reason, these curves show a common saturation kinetic
shape with an initial growth step and a late plain line at the end corresponding to the final
equilibrium value. The kinetic behavior changed when the concentration was over 5 mg·L−1

because the number of chromate anions may have overpassed the number of accessible
active sites. For this reason, the complete depletion of hexavalent chromium present in
water was not found after that tested concentration. The shape of the obtained curves when
treating hexavalent chromium-concentrated water reveals the presence of mesas or plain
intermediate steps after the initial growth phase. Both the presence of intermediate plateau
steps, which are typical indicators of multilayer adsorption, and the occurrence of different



Nanomaterials 2022, 12, 4172 12 of 28

mechanisms between treating high- and low-concentrated wastewaters and this fact were
also indicated by Ojembarrena et al. and Pourfadakari et al. when adsorbing hexavalent
chromium onto different lignocellulosic materials [20,39]. The adsorption mechanism
might be explained by this sequence: the first stage before the plateau could be dominated
by the same mechanism of process in a sequence of adsorbate-adsorbent interaction and
hexavalent chromium reduction to trivalent chromium. Once equilibrium was reached,
a strong rate minimization was likely to happen due to the saturation of active sites and
lowered catalytic activity caused by two main factors. The first factor is the accumulation of
the formed trivalent chromium onto the CCNC active sites, which must leave the active site
toward the bulk through the micro and macropores or get attached to other active groups
of cellulose far from the cationic groups. The second factor is due to the difference between
cationic groups and reducing groups. While the number of cationic groups attracting anions
to the CCNC surface that are simultaneously reduced would be relatively constant due
to the sequential rapid adsorption of hexavalent chromium and desorption of generated
trivalent chromium, which frees the active site continuously, the quantity of reducing
groups that have been involved in the reduction reactions would be constantly going down
as these groups may not be regenerated once they are spent. These facts would cause
a severe lowering of the adsorption rate, which can be seen in the plateau. The second
growth step would happen when part of the trivalent chromium leaves the occupied active
sites and the hexavalent chromium present in the micropores could finally get into the
active sites and be converted into cationic trivalent groups during a slow process. Then,
the extremely high concentration of hexavalent chromium in the bulk and the presence of
a positive charge of brand-new trivalent chromium cations close to the active sites might
generate enough driving force to push chromate anions from the bulk to the boundary
layer and then to the macro and micropores of the particles to fill the recently freed active
sites, but this adsorption step would be much slower than the initial growth step.

These results can be confirmed by the comparison between the curves and the ad-
justments of the low-chromium-concentrated adsorption test of 1 mg·L−1 and the highly
concentrated experiment of 50 mg·L−1 (Figure 6a,b). The first adsorption data of 1 mg·L−1

(Figure 6a) seems to approach PSO kinetics, with high correlation parameter values
(R2 = 0.9886), and a three-step IP mechanism ruled by two growing straight lines with
decreasing slope and a last saturation straight line. As the linear regression of the first
IP step has an intercept close to the origin, the rate-controlling step can be considered IP
diffusion [40]. The other adsorption experiment of 50 mg·L−1 (Figure 6b) showed a low
correlation coefficient to PFO and PSO saturation models, a three-step IP model with a
first fast adsorption process (15–30 min), followed by a plateau (30–60 min) and a second
slow adsorption process (from 1 h to equilibrium). The IP model adjustment of the first
step revealed an intercept far from the origin, meaning that external diffusion is the rate-
controlling step of the process while operating under high-concentration conditions [40].
This fact indicates a mechanism of modification between the low- and high-concentrated
wastewaters. The experimental data seen in Figure 6b was well-fitted to the Elovich
model. This fact happened to each experiment depicted as highly concentrated (from 5
to 70 mg·L−1), suggesting a common mechanism associated to all of them. This model is
typically associated with the chemisorption processes of gases on solid surfaces with a low
or no desorption process, where the adsorption rate decreases while the surface coverage
rises up [41]. This model has been effectively applied with the adjustment of batch and
ion exchange adsorption experimental results of several metals from water onto different
materials, such as Cr(III) and Cu(II) on peanut shell, Cr(VI), Pb(II) and Zn(II) on rice husk
ash or Zn(II), Fe(III), Cu(II), Co(II) and Ni(II) on solvent-impregnated resins [42–44]. The
results mentioned by these authors were achieved while treating concentrated solutions
of metals between 10 mg·L−1 and several g·L−1, confirming that the observed behavior is
only representative of highly chromium-polluted wastewaters.
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Figure 6. (a) Evolution of the kinetic adsorption experiment at 1 mg·L−1 of initial chromium concen-
tration under pH 3, room temperature and 100 mg·L−1 of CCNC dosage and 5 h of contact time and
the kinetic fitting of the PSO and IP models; (b) 50 mg·L−1 of initial concentrations under the same
experimental conditions and the kinetic fitting of the Elovich and IP models.

3.2.4. Effect of Temperature

The effect of rising temperatures on hexavalent chromium removal through CCNC
was analyzed. Other operation parameters that were optimized before were kept constant,
including pH 3, the adsorbent dosage of 100 mg·L−1 and the initial concentration of
1 mg·L−1. The experimental data were adjusted to PSO kinetics reaching high correlation
parameter values. The obtained kinetic constants at each temperature were then adjusted
to the Arrhenius equation (Equation (1)), whose plotted results can be seen in Figure 7. The
PSO kinetic parameters obtained under each tested temperature and Arrhenius’ energy of
activation and preexponential constant can be seen in Appendix D, Table A5.
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The trend seen in Figure 7 depicts an accurate fitting of PSO kinetics to the varying tem-
perature experimental data (R2 > 0.98 achieved in each adjustment) and a clear increase in
the kinetic constant while the temperature is rising. Each curve corresponds to an increment
of 12–14 ◦C and involves a two-fold average increase in the k2 value between experiments.
The last slope was almost vertical, meaning an instant removal of hexavalent chromium.

Adsorption of hexavalent chromium coupled to reduction can be explained by an
equilibrium process. Once a hexavalent chromium anion is adsorbed, this anion can
follow the reverse path to get desorbed or it can be converted into trivalent chromium
in the active site. Logically, the direct adsorption process has an enthalpy sign, while
the reverse desorption follows the equivalent enthalpy value with the contrary sign, as
explained by Hess’ law. The trend of the adsorption rate with temperature would show
the enthalpy sign. The temperature rise would deal with the following two possibilities:
a faster hexavalent chromium adsorption in the case of an endothermic direct process;
or a slower or null adsorption in the case of an exothermic direct process, as in this
case, the desorption process is favored by the temperature increase and its rate would be
greater than the adsorption rate. The enhancement of the process kinetics while increasing
temperature demonstrated that the overall process of adsorption of hexavalent chromium
onto CCNC is an endothermic process (∆H0 > 0). Another relevant aspect is the value of the
energy of activation, EA = 45.45 kJ·mol−1. This value is relatively higher but in the order of
magnitude of the energy of activation found by applying V, Ti-bearing magnetite (VTM)
humic acid-modified particles and Magnetite/3D-Printed Wollastonite Hybrid, where
17.408 and 14.49 kJ·mol−1 were calculated, respectively [45,46]. The difference in Temkin’s
heat of sorption can be caused by the sequential adsorption-reduction process involved in
the CCNC application instead of pure adsorption processes. Nollet et al. indicated that the
barrier between physical and chemical processes can be established if a process involves a
total activation energy below or over 40 kJ·mol−1 [47], meaning that the overall removal
process through adsorption and reduction of hexavalent chromium would be energetically
considered a process between chemical and physical processes.
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3.3. Hexavalent Chromium Isotherm Study

The isotherm study was performed by adjusting the maximum adsorption capacity
values at different initial concentrations for the selected isotherm models. The representa-
tion of these equilibrium data would be necessary to understand the adsorption equilibrium
mechanism. The plotted experimental data and the adjustment of the different isotherm
model equations are seen in Figure 8. The evolution of this data suggests a favorable
to a strongly favorable mechanism of hexavalent chromium adsorption onto the CCNC
surface, according to the classification shown by Kaushal and Singh [48]. The curve shows
an intermediate trend between the Langmuir (hyperbolic shape, saturation mechanism,
monolayer adsorption and homogeneous dispersion of energy and active sites over the
adsorbent surface) and Freundlich models (exponential growth, multi-layer adsorption
and dispersion of energy and active sites). The exponential growth shape of the initial
part of the curve is combined with a second step with a lower slope at higher concen-
trations. For this reason, the non-linearly optimized parameters of Sips’ model, a mixed
exponential-hyperbolic equation model, have the best correlation parameter adjustment
(R2 = 0.9787), while both the Langmuir and Freundlich models show a lower and similar
value of correlation parameter of R2 = 0.96. The resulting fittings are shown in Figure 8,
and the adjustment parameters can be seen in Table 1.
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Isotherm parameters 

kL (L·mg−1) = 0.6103 

qe,L (mg·g−1) = 42.02 

RL (C0 = 0.1 mg·L−1) (-) = 2.29·10−2 

RL (C0 = 70 mg·L−1) (-) = 0.9428 

Correlation parameters 
R2 = 0.9636 
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Freundlich 

Isotherm parameters 
kF (mg(1−1/nF)·L−(1/nF)·g−1) = 19.7944 

nF (-) = 8.4674 

Correlation parameters 
R2 = 0.9648 

RSS = 346.55 

Figure 8. Isotherm experimental data of hexavalent chromium on CCNC and isotherm model
adjustment of the Langmuir, Freundlich, Temkin, D-R and Sips equations.

The evaluation of the isotherm parameters reveals a favored interaction between
hexavalent chromium and the CCNC surface. The value of the nF parameter obtained
from the Freundlich model is considerably higher than 1 (nF = 8.4674). Other bibliographic
values of nF > 1, showing favorable hexavalent chromium adsorption, were achieved by the
application of other kinds of nanocellulosic materials, such as polypyrrole surface-modified
CNC [49,50], carboxylated CNC-polyethylenimine composite [51] or black wattle tannin-
immobilized nanocellulose [52]. As well, the Langmuir’s saturation factor has a value
of RL < 1 in all the studied intervals of concentrations, showing an energetically favored
adsorption [49]. These values have been previously mentioned for other cellulosic nano-
materials, such as hydrophobized CNF [20] and polypyrrole surface-modified CNC [49].
The RL values obtained in the initial steps of adsorption are closer to 1, indicating a strong
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bonding interaction between adsorbent-adsorbate, which is reduced together with the RL
value along the adsorption process [53].

Table 1. Adjusted isotherm model parameters to hexavalent chromium adsorption onto CCNC
experimental data.

Model Parameters Values

Langmuir Isotherm parameters

kL (L·mg−1) = 0.6103
qe,L (mg·g−1) = 42.02

RL (C0 = 0.1 mg·L−1) (-) = 2.29·10−2

RL (C0 = 70 mg·L−1) (-) = 0.9428

Correlation parameters R2 = 0.9636
RSS = 160.63

Freundlich
Isotherm parameters kF (mg(1−1/nF)·L−(1/nF)·g−1) = 19.7944

nF (-) = 8.4674

Correlation parameters R2 = 0.9648
RSS = 346.55

D-R
Isotherm parameters BDR (mol2·J−2) = 8.95·10−7

qmax (mg·g−1) = 33.3948
Thermodynamic parameters EDR (J·mol−1) = 747.53

Correlation parameters R2 = 0.9481
RSS = 275.94

Temkin
Isotherm parameters

BT (J·mol−1) = 5.7916
bT (J·mol−1) = 416.52
AT (L·g−1) = 23.6462

Correlation parameters R2 = 0.9441
RSS = 273.18

Sips Isotherm parameters
nS (-) = 4.2882

kS (L(1/nS)·mol−(1/nS)) = 0.2408
qe,S (mg·g−1)= 108.54

Correlation parameters R2 = 0.9787
RSS = 65.87

D-R and Temkin models were selected to fit experimental data and obtain relevant ther-
modynamic information about the process. These calculated or adjusted data can be seen
in Table 1. The mean free energy of the process is established by D-R equations, reaching a
final value of 0.748 kJ·mol−1. As this process was completely spontaneous, this thermody-
namic parameter must be established as ∆G = −0.748 kJ·mol−1. This value is associated
with a physical sorption of hexavalent chromium onto the surface (<8 kJ·mol−1) and is close
to other reported values on fluorescent nanocellulose-based hydrogel incorporating titanate
nanofibers (−0.724 kJ·mol−1) [54] and hydrophobized CNF (−2.24 kJ·mol−1) [20], with this
value being slightly higher due to the mass transfer limitations of chromate anions through
the CNF-coating agent. Other authors indicate a much higher value of ∆G of hexavalent
chromium of (2,3-epoxypropyl) trimethylammonium chloride (EPTMAC)-modified CNC
that is close to the barrier between physical and chemical processes (−7.84 kJ·mol−1) [55].
The main reason is caused by the acid hydrolysis-anionic CNC used as the base for surface
modification. Even when EPTMAC is a cationization agent, if part of the CNC surface
is not attacked by the cationization reagent, this would keep anionic groups unchanged,
causing mass transfer limitations of chromate from the bulk to the active site, which are not
present in CCNC.

The parameter bT from Temkin is associated with the heat of sorption of the adsorption
process, and the obtained value is 0.412 kJ·mol−1. This heat of sorption is slightly higher
but in the same order of magnitude as other values reported in the bibliography for fluores-
cent nanocellulose-based hydrogel incorporating titanate nanofibers (0.129 kJ·mol−1) [54],
hydrophobized CNF (0.19 kJ·mol−1) [20], and nanocellulose-based hydrogel incorporating
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silver nanoclusters (0.135 kJ·mol−1) [56]. The difference between these values can be due
to the fact that the CCNC removal process covers a simultaneous adsorption-reduction
process, which involves a higher exchange of energy. According to the criteria established
by Choudhary and Paul [57], a value of bT < 8 kJ·mol−1 is associated with low energetic
interactions between adsorbent and adsorbate, typical of physisorption processes.

3.4. Determination of Trivalent Chromium in Treated Samples

The determination of trivalent chromium was performed in treated samples with
1 mg·L−1 an initial hexavalent chromium concentration. The results of the initial and final
concentrations of the soluble and non-soluble fractions of both hexavalent and trivalent
chromium species are indicated in Figure 9. The soluble concentrations of hexavalent and
trivalent chromium were measured in water samples, which were filtered with 0.45-micron
syringe filters. The total concentrations of both species were determined by measur-
ing them in water samples without any kind of filtration. Non-soluble concentrations
were calculated by subtracting the total minus the soluble contents of each species. This
hexavalent chromium solution was treated for 24 h under pH 3, 100 mg·L−1 and room
temperature conditions.
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soluble fractions of treated water during adsorption batch experiments with CCNC for 24 h under
pH 3, 100 mg·L−1 of adsorbent dosage and 1 mg·L−1 of initial hexavalent chromium concentration.

The results shown in Figure 9 depict that a complete depletion of hexavalent chromium
is reached in both soluble and non-soluble (adsorbed on CCNC) fractions, meaning that
CCNC could efficiently reduce all the present hexavalent chromium into the less toxic
trivalent species. In addition, the distribution of chromium in the water-adsorbent matrix
changes completely. Obviously, the initial hexavalent chromium was completely dissolved.
After the treatment with CCNC, hexavalent chromium was totally removed and most of
the present chromium (89%) is found as trivalent chromium in the non-soluble fraction.
This happens due to the instant reduction of hexavalent chromium to a trivalent species
and its simultaneous fixation onto the surface of the CCNC. According to the Pourbaix
diagram of chromium [58], Cr3+ is the predominant species at pH 3 in a wide interval of
reduction-oxidation potential values from −250 mV to 800 mV. This fact suggests that this is
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the main present chromium species after CCNC addition to hexavalent chromium-polluted
water. According to previous articles in the field of lignocellulosic adsorbents on trivalent
chromium removal, cellulose hydroxyl groups would play a major role in the fixation of
trivalent chromium to the adsorbent surface [59,60]. Only 11% of the generated trivalent
chromium moved from the active sites back to the bulk and its final soluble concentration
in water was relatively low, averaging 0.10 mg·L−1. The suggested hexavalent chromium
adsorption-reduction removal mechanism is explained in Figure 10.
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This fact would indicate a successful removal of the chromium from the water bulk.
According to the national limits of discharge compiled by Vaiopoulou and Gikas [61], the
final soluble total and hexavalent chromium values comply with almost all the established
national discharge limits for the aquatic environment in the European Union and these
values are lower than all the established national discharge limits for specific industrial
sectors in the European Union, which include metal finishing, pigments and tanning.

3.5. Application of CCNC to Urban Wastewater with Tannery Effluents

To evaluate the performance of CCNC as a hexavalent chromium adsorbent in real
conditions, this material was applied to the treatment of a real wastewater. Samples were
taken from an effluent of a WWTP that receives the industrial effluents from tannery
industries, which contain hexavalent chromium contamination. Adsorption treatment was
focused on the removal of hexavalent chromium and compliance with its local limit of
discharge (0.1 mg·L−1). The physical-chemical characterization of the treated wastewater
is shown in Table 2.

Table 2. Physical-chemical parameters of CCNC real wastewater.

Parameter Units Values

[Cr(VI)]sol (mg·L−1) 0.450 ± 2.8·10−3

CODsol (mg O2·L−1) 82.67 ± 4.73
pH 7.50 ± 0.21
EC (mS·cm−1) 8.88 ± 0.81

To perform this experiment, the previously optimized conditions of pH (pH 3) and
adsorbent dosage (100 mg·L−1) were applied. The resulting evolution of hexavalent
chromium treated by CCNC adsorption with this complex matrix can be found in Figure 11.
The kinetic parameters and constants reached while fitting real wastewater treatment data
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can be found in Appendix E, Table A6. Observing the obtained results and considering the
high concentration of dissolved salts seen in the electrical conductivity result, there is still a
strong attraction between hexavalent chromium and CCNC. Equilibrium concentrations
were close to the total abatement of chromium (0.02 mg·L−1) and only 40 min of contact
time was necessary to reach compliance with legal restrictions. In this case, the kinetics
were slower than in the case of synthetic solutions due to the presence of interferent species
present in real wastewater, such as sulphate anions. The best fitting of experimental data
was achieved by both PFO (R2 = 0.9920) and PSO (R2 = 0.9897), in the same way as treating
low-concentrated synthetic solutions. The IP model shows a three-step process. The first
long step indicates that internal diffusion is the rate-controlling step, as the linear regression
intercepts next to the origin.
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Figure 11. Evolution of hexavalent chromium concentration (mg·L−1) in blank and treated samples
during adsorption batch treatment with CCNC of real wastewater under pH 3 and 100 mg·L−1 of
adsorbent dosage.

The evaluation of the adjustment accuracy of the achieved kinetic parameters from
synthetic solution to real wastewater was carried out. The result of the logarithmic fitting
of PSO kinetic constants under varied low chromium concentrations and the obtained
PSO kinetic constant when treating real wastewater can be seen in Figure 12. According
to the initial concentration (0.45 mg·L−1), if the result was obtained from synthetic water,
the expected k2 kinetic constant would be estimated through logarithmic estimation as
k2,est = 5.49 mg·g−1·h−1 between those obtained for 0.1 mg·L−1 (47.28 mg·g−1·h−1) and
1 mg·L−1 (1.31 mg·g−1·h−1). The final value of PSO is slightly reduced compared to this
value but close to the prediction of the logarithmic adjustment. The inhibition caused by the
presence of other ions and sorbates reduced its value to k2,exp = 1.14 mg·g−1·h−1. This fact
indicates that kinetic experiments with synthetic waters under controlled conditions can be
used to predict the order of magnitude of kinetic constants while treating contaminated
real wastewaters with good accuracy in the order of magnitude.

Faster kinetics would be feasible by adding higher CCNC dosage, as the applied
dosage was tested under favorable conditions (synthetic water with extremely low electrical
conductivity), but the achievement of high removal rates and yields in polluted wastewater
through these selected conditions is remarkable. This experiment confirms the specificity
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of CCNC with hexavalent chromium when large concentrations of interferent species are
present and the applicability of this material in the treatment and legal compliance of real
effluents suffering from hexavalent chromium contamination.
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4. Discussion

The hexavalent chromium results achieved by CCNC were contrasted with previous
bibliographic results of this metal’s adsorption with different lignocellulosic materials,
nanomaterials and other adsorbents. The comparison between the performance of these
mentioned materials with CCNC is detailed in Table 3.

Table 3. Comparison of hexavalent adsorption treatments with different types of adsorbents.

Adsorbent Contact Time
(min)

Adsorbent Dosage
(mg·L−1)

Initial [Cr(VI)]
(mg·L−1) pH qmax (mg·g−1) Maximum

Removal Yield (%) Ref.

EPTMAC-modified CNC 60 1000 25 2.5 22.99 96.0 [55]

Black wattle
tannin-immobilized CNC 300 500 150 2 104.59 [52]

Poly(m-phenylenediamine)-
modified BC nanoparticles 240 400 500 3 434.78 [18]

Carboxymethyl
NC-stabilized nZVI 180 300 15 2–3 87.71 100 [62]

Polypyrrole-modified CNC 60 500 10 2 12.67 80 [49]

Hydrophobized CNF 330 500 50 3 70.38 >97.14 [20]

Humic acid-Fe(II) system
structured on V, Ti-bearing

magnetite surface
700 100 10 2 3.67 90 [45]

Rice husk powder 60 2500 25 6 1.4 87.12 [43]

Lignocellulosic substrate
extracted from wheat bran 1440 8000 20 2.5 35 [63]

Activated carbon synthetized
from Z. jujuba 360 1000 100 2 62 49.6 [64]

CCNC 5 100 70 3 44.36 100 This work
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Compared to the compiled data from the bibliography, the operation of the synthetized
CCNC shows two highlights when compared to other materials: the fast approach to equi-
librium, which is commonly achieved in 5 min, especially when treating low-concentrated
solutions, and the low necessary dosage to reach 100% of removal. The only material able
to reach more than 90% of removal in just 10 min under certain circumstances was car-
boxymethyl NC-stabilized zerovalent iron nanoparticles synthetized by Kumar et al. [62],
but the dosage requirements are three times higher than CCNC and require the presence of
nZVI nanoparticles to obtain an accurate reduction of hexavalent chromium, which in the
case of the present material is reached by the modified-cellulose itself. In terms of adsorbent
dosage, adsorption through humic acid-Fe(II) system structured on V, Ti-bearing magnetite
surface also required 100 mg·L−1 of total dosage but low adsorption capacity (3.67 mg·g−1)
and extended contact times were required (700 min) [45]. This fact suggests that the further
implementation of the material would involve an adsorbent dosage several times higher
than the optimal found in this study. This factor is so critical that CCNC is the only material
that reached the complete removal of hexavalent chromium with an extremely reduced
dosage of 40 mg·L−1. This dosage is so minimal that in most of the presented papers it is
not even considered in the dosage optimization, but its application with CCNC was carried
out with success in 1 h of treatment.

The obtained adsorption capacity of CCNC (44.36 mg·g−1) is in the order of magnitude
of most of the analyzed adsorbents. This material clearly overpassed the experimental
results under lower concentrations of rice husk powder (1.4 mg·g−1) [43] and humic acid-
Fe(II) system structured on V, Ti-bearing magnetite surface (3.67 mg·g−1) [45]. Lower values
were found by applying EPTAC-modified CNC (22.99 mg·g−1) [55] and lignocellulosic
substrate from wheat bran (35 mg·g−1) [63] under comparable conditions for the maximum
tested hexavalent chromium concentration (dozens of mg·L−1), due to the probable pres-
ence of certain anionic repulsion in the first case and the mentioned low reduction capacity
of the second material. The following other materials tested under similar conditions
reached slightly higher adsorption capacities: hydrophobized CNF (70.38 mg·g−1) [20],
carboxymethyl NC-stabilized nZVI (87.71 mg·g−1) [62] and activated carbon synthetized
from Z. jujuba (60 mg·g−1) [64]. This last material does not show a significant difference,
while the variation in the values compared with CNF hydrogel can be associated with the
non-favored shape of the curve, meaning that chromium adsorption was only favored when
large concentrations were applied. In the case of carboxymethyl NC-stabilized nZVI, it can
be associated with the well-known reduction activity of nZVI present in the adsorbents.

In general terms, CCNC adsorbent material shows an adequate adsorption capacity
with an extremely reduced adsorbent consumption needed in remarkably short adsorption
contact times.

5. Conclusions

The application of CCNC to hexavalent chromium adsorption was efficiently per-
formed, reaching the complete removal of the contaminant in only 5 min under the selected
operating conditions. Furthermore, all the soluble hexavalent chromium present in water
samples was converted into trivalent chromium specie, mainly attached to the adsorbent
(89% of the total), which represents a significant advantage with respect to the state of the
art, as the application of this material avoids the harmful effects of hexavalent chromium
since trivalent chromium is less toxic than hexavalent chromium.

This nanomaterial was synthetized from lignocellulosic raw materials, and the cation-
ization reaction was carried out successfully, reaching a high degree of crystallinity
(Cr·I = 81.7%), cationic groups (1.02 mmol·g−1) and anionic demand (675.2 µeq·g−1) levels,
which are great indicators of the material adequation for the adsorption purpose. The
operation parameters were chosen to obtain the best conditions and results, being pH 3 and
an adsorbent dosage of 100 mg·L−1. The complete abatement of chromium was reached
with 40 mg·L−1, which is a low dosage compared to the bibliography values. These condi-
tions allow the total depletion of hexavalent chromium in water samples up to 1 mg·L−1.
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The dominant kinetic mechanisms in the adsorption of low concentrated solutions up to
1 mg·L−1 are PFO and PSO kinetics, which could be interpreted as a saturation kinetic
curve that follows an exponential growth. The IP diffusion model in this situation revealed
a continuous growth in two or three steps under a predominant internal diffusion rate.
On the other hand, highly chromium-polluted waters above 5 mg·L−1 of concentration
followed an Elovich kinetic curve, and the IP diffusion model depicted a sequence of fast
rate-plateau-slow rate, where external diffusion was the dominant step. The results of the
isotherm study showed a great fit to the Sips model and favorable adsorption, meaning
an adsorption mechanism with intermediate behavior between the multilayer and het-
erogeneous distribution of active sites seen on the Freundlich model and the monolayer
and smooth distribution of surface energy and active groups explained by Langmuir. The
maximum experimental capacity was 44.36 mg·g−1 at 70 mg·L−1. The thermodynam-
ical analysis performed through the calculation of the mean free energy of adsorption
(−0.748 kJ·mol−1) and heat of sorption (0.412 kJ·mol−1) values from the D-R and Temkin
isotherms are indicators of physical sorption but higher than the bibliographical values
reached for hexavalent chromium adsorption. According to the rising-temperature experi-
ment indicated an endothermic trend in the overall adsorption process. Together with the
high activation energy (45.45 kJ·mol−1, high for a sorption process and between the limits
of physical and chemical processes (40 kJ·mol−1)), and the relatively high-energy involving
process revealed by the Arrhenius equation, it was suggested that the presence of other
sequential steps combined with an adsorption mechanism involving a chemical reaction
must be considered. The presence of only trivalent chromium in treated samples as total
chromium, mainly attached to CCNC (89% of the total), confirmed the hypothesis. The final
application of the material under the best-operating conditions to real wastewater heavily
contaminated with chromium and dissolved salts was feasible, reaching fast kinetics even
when other pollutants were present, removing the entire content of hexavalent chromium
and allowing the legal compliance of the discharge limit in 40 min of treatment. These
results highlight the high potential of CCNC for adsorption processes thanks to the fast
kinetics, the low dosage needed and the good adsorption performance achieved.
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Appendix A

Table A1. Adjusted kinetic and correlation parameters of different kinetic models fitted to the
experimental data of variable pH (3–9) adsorption of hexavalent chromium onto CCNC.

Kinetic Model pH Value (-) 3 7 9

PFO
Kinetic parameters k1 (h−1) 10.56 0.1222 1.8968

Correlation parameters R2 0.9956 0.6173 0.7429
RSS 2.39·10−2 6.8179 4.4506

PSO
Kinetic parameters k2 (mg·g−1·h−1) 62.41 1.9935 56.24

qe (mg·g−1) 1.1703 0.7838 0.5121

Correlation parameters R2 0.9505 0.7197 0.8884
RSS 0.1998 3.3144 3.3371

Elovich
Kinetic parameters α (h·mg·g−1) 447.99 4481.87 25,757.06

β (g·mg−1) 8.6881 21.83 29.07

Correlation parameters R2 0.8505 0.7705 0.9152
RSS 0.4279 2.5517 3.2042

IP

Kinetic parameters: Step 1
ki,1

(mg·g−1·min−0.5)
2.2945 8.21·10−2 3.8679

Ci,1 (mg·g−1) 2.93·10−2 0.3628 −0.1093

Correlation parameters R2 0.9990 0.9633 0.9999
RSS 2.13·10−10 6.23·10−6 4.29·10−5

Kinetic parameters: Step 2
ki,2

(mg·g−1·min−0.5)
0 4.98·10−3 7.08·10−2

Ci,2 (mg·g−1) 1.1700 0.7313 0.3785

Correlation parameters R2 0.9999 0.9999 0.9111
RSS 6.23·10−6 4.29·10−5 5.36·10−5

Kinetic parameters: Step 3
ki,3

(mg·g−1·min−0.5)
0

Ci,3 (mg·g−1) 0.5119

Correlation parameters R2 0.9999
RSS 6.74·10−9

Appendix B

Table A2. Adjusted kinetic and correlation parameters of different kinetic models fitted to the
experimental data of variable adsorbent dosage (10–400 mg·L−1) adsorption of hexavalent chromium
onto CCNC.

Kinetic Model Adsorbent Dosage (mg·L−1) 10 40 100 400

PFO
Kinetic parameters k1 (h−1) 1.1327 4.7052 10.56 3.5902

Correlation parameters R2 0.9772 0.9967 0.9953 0.8034
RSS 23.23 2.7917 0.2356 2.60·10−2

PSO
Kinetic parameters k2 (mg·g−1·h−1) 0.3502 4.2168 36.87 118.33

qe (mg·g−1) 10.01 2.8547 1.1763 0.2821

Correlation parameters R2 0.9807 0.9907 0.9756 0.9352
RSS 4.4500 0.1818 8.84·10−2 1.02·10−2

Elovich
Kinetic parameters α (h·mg·g−1) 184.91 122.09 349.45 193,123

β (g·mg−1) 0.7049 2.3469 7.1582 62.50

Correlation parameters R2 0.9813 0.9419 0.8505 0.9538
RSS 1.9938 0.5943 0.1922 6.57·10−4
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Table A2. Cont.

Kinetic Model Adsorbent Dosage (mg·L−1) 10 40 100 400

IP

Kinetic parameters: Step 1
ki,1

(mg·g−1·min−0.5)
5.6060 3.5932 2.2945 9.59·10−2

Ci,1 (mg·g−1) 1.3471 6.38·10−2 2.93·10−2 0.1849

Correlation parameters R2 0.9939 0.9999 0.9999 0.9968
RSS 9.16·10−2 8.33·10−9 1.76·10−9 1.19·10−2

Kinetic parameters: Step 2
ki,2

(mg·g−1·min−0.5)
2.6813 0.8322 0 −3·10−16

Ci,2 (mg·g−1) 4.1438 1.9710 1.1700 0.2803

Correlation parameters R2 0.9999 0.9999 0.9968 0.9999
RSS 8.33·10−9 1.76·10−9 1.19·10−2 4.99·10−10

Kinetic parameters: Step 3
ki,3

(mg·g−1·min−0.5)
0 0

Ci,3 (mg·g−1) 9.5065 2.8032

Correlation parameters R2 0.9999 0.9968
RSS 1.76·10−9 1.19·10−2

Appendix C

Table A3. Adjusted kinetic and correlation parameters of different kinetic models fitted to the
experimental data of initial chromium concentration (0.1–10 mg·L−1) adsorption of hexavalent
chromium onto CCNC.

Kinetic Model Initial [Cr(VI)] (mg·L−1) 0.1 1 5 10

PFO
Kinetic parameters k1 (h−1) 10.56 3.3068 0.6412 0.3066

Correlation parameters R2 0.9953 0.9840 0.8336 0.7091
RSS 2.39·10−2 5.5219 251.84 1464.97

PSO
Kinetic parameters k2 (mg·g−1·h−1) 47.28 1.3056 0.2626 0.1014

qe (mg·g−1) 1.1711 10.37 21.11 34.59

Correlation parameters R2 0.9638 0.9886 0.9544 0.8993
RSS 0.1335 2.6428 33.97 227.94

Elovich
Kinetic parameters α (h·mg·g−1) 46.73 5002 28,073 109,044

β (g·mg−1) 3.2292 0.9992 0.5889 0.4108

Correlation parameters R2 0.7859 0.8232 0.9370 0.9650
RSS 2.7155 9.8123 7.3288 9.0262

IP

Kinetic parameters: Step 1
ki,1

(mg·g−1·min−0.5)
2.2945 16.61 3.4953 2.6270

Ci,1 (mg·g−1) 2.93·10−2 −0.7973 11.18 20.58

Correlation parameters R2 0.9995 1.0000 1.0000 0.9284
RSS 3.49·10−4 6.79·10−10 1.05·10−7 9.67·10−2

Kinetic parameters: Step 2
ki,2

(mg·g−1·min−0.5)
0 4.8746 14.98 16.844

Ci,2 (mg·g−1) 1.17 5.2377 3.0577 10.66

Correlation parameters R2 0.9999 0.9800 1.0000 1.0000
RSS 3.68·10−9 0.1236 7.21·10−8 4.16·10−7

Kinetic parameters: Step 3
ki,3

(mg·g−1·min−0.5)
6.79·10−2 0.6576 1.7653

Ci,3 (mg·g−1) 10.04 17.93 25.60

Correlation parameters R2 0.698 0.9985 0.9990
RSS 3.98·10−2 0.8894 5.36·10−2
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Table A4. Adjusted kinetic and correlation parameters of different kinetic models fitted to the experi-
mental data of initial chromium concentration (25-70 mg·L−1) adsorption of hexavalent chromium
onto CCNC (cont.).

Kinetic Model Initial [Cr(VI)] (mg·L−1) 25 50 70

PFO
Kinetic parameters k1 (h−1) 0.2233 0.3162 0.4961

Correlation parameters R2 0.8524 0.6837 0.7066
RSS 707.21 1407.73 1969.33

PSO
Kinetic parameters k2 (mg·g−1·h−1) 38.81 36.74 44.77

qe (mg·g−1) 3.22·10−2 9.32·10−2 6.41·10−2

Correlation parameters R2 0.9507 0.9549 0.8838
RSS 109.16 98.19 471.17

Elovich
Kinetic parameters α (h·mg·g−1) 594 570,868 150947

β (g·mg−1) 0.2177 0.4309 0.3233

Correlation parameters R2 0.7859 0.8232 0.9370
RSS 2.7086 27.24 295.94

IP

Kinetic parameters: Step 1
ki,1

(mg·g−1·min−0.5)
35.31 19.42 34.60

Ci,1 (mg·g−1) −3.0290 14.96 13.90

Correlation parameters R2 1.0000 1.0000 1.0000
RSS 7.65·10−8 5.82·10−9 1.45·10−7

Kinetic parameters: Step 2
ki,2

(mg·g−1·min−0.5)
0 0 2.8476

Ci,2 (mg·g−1) 18.31 27.09 30.11

Correlation parameters R2 0.9999 0.9999 0.9890
RSS 1.41·10−10 3.18·10−9 2.3781

Kinetic parameters: Step 3
ki,3

(mg·g−1·min−0.5)
4.0010 1.9211

Ci,3 (mg·g−1) 18.31 27.09

Correlation parameters R2 0.9985 0.9950
RSS 0.4068 0.3077

Appendix D

Table A5. Adjusted kinetic and correlation parameters of different kinetic models fitted to the
experimental data of variable temperature during adsorption of hexavalent chromium onto CCNC
and Arrhenius equation parameters and thermodynamic calculations.

Kinetic Model Temperature (◦C) 17 30 42 56

PSO
Kinetic parameters k2 (mg·g−1·h−1) 0.9243 2.5799 5.3297 8.4657

qe (mg·g−1) 10.63 10.45 10.38 10.36

Correlation parameters R2 0.9961 0.9872 0.9939 0.9997
RSS 0.7617 2.3274 1.0576 6.13·10−2

Arrhenius equation

Parameters Values

Activation Energy
Preexponential factor

EA (J·mol−1) 45,447
k0 (mg·g−1·h−1) 1.59·108

Correlation parameters R2 0.9779
RSS 6.18·10−2
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Appendix E

Table A6. Adjusted kinetic and correlation parameters of different kinetic models fitted to the
experimental data of hexavalent chromium adsorption on real wastewater treatment.

Kinetic Model Real Wastewater Treatment

Pseudo-first order
Kinetic parameters k1 (h−1) 2.9262

Correlation parameters R2 0.9920
RSS 0.4067

PSO
Kinetic parameters k2 (mg·g−1·h−1) 1.1405

qe (mg·g−1) 4.1621

Correlation parameters R2 0.9897
RSS 0.3201

Elovich
Kinetic parameters α (h·mg·g−1) 67.42

β (g·mg−1) 1.3789

Correlation parameters R2 0.9730
RSS 0.4487

IP

Kinetic parameters: Step 1 ki,1 (mg·g−1·min−0.5) 3.4863
Ci,1 (mg·g−1) 0.1324

Correlation parameters R2 0.9983
RSS 5.03·10−2

Kinetic parameters: Step 2 ki,2 (mg·g−1·min−0.5) 0.9718
Ci,2 (mg·g−1) 2.5269

Correlation parameters R2 0.9999
RSS 5.36·10−11

Kinetic parameters: Step 3 ki,3 (mg·g−1·min−0.5) 0.1801
Ci,3 (mg·g−1) 3.4965

Correlation parameters R2 0.9999
RSS 1.20·10−9
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