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Abstract. We exhibit a possible choice for the four available functionally independent
labelling operators for the missing label problem associated to the reduction chain so(5) ⊃ so(3).

1. Introduction
The labelling of the basis states of irreducible representations (irreps) of a semisimple Lie group
G with respect to some subgroup H often leads to the so called missing label problem (MLP),
i.e., to the problem of determining subgroup scalars1 with respect to H that, added to the
Casimir operators of G and H, enable to completely classify the states. Basis states for irreps
of G are then specified by the common eigenstates of a complete set of labelling operators. The
eight reduction chains with one missing label were solved in [1, 2]. Although some general results
exist concerning arbitrary reduction chains, mainly about the properties of generating functions
and the construction of integrity bases,2 as well as the development of special techniques like the
method of elementary permissible diagrams [1, 3, 4, 5, 6, 7], only for a small number of labelling
problems with more than one labelling operator a general solution has been worked out.

In this paper we determine four functionally independent operators depending on a parameter
that solve the missing label problem associated to the embedding so(5) ⊃ so(3). This reduction
chain appears in many applications involving the subalgebra of angular momentum, like the
classification of states build up by quadrupole phonon states [8, 9]. The corresponding n = 2
missing label problem has been analyzed in [10, 11], where two commuting missing label
operators of degrees four and six, respectively, were found. These two operators were shown
to constitute, in some sense, the simplest possible choice to solve this labelling problem. A
complete set of four independent labelling operators was however not given. In our analysis, it
is verified that the pair of commuting operators found in [11] corresponds to the simplest possible
solution, and the conjecture on the degree of these operators is confirmed. We moreover show the
existence of another pair consisting of operators of degrees four and six that solve the labelling

1 Polynomials in the enveloping algebra of G that commute with all generators of the subgroup H will be called
subgroup scalars.
2 An integrity basis is a set of elementary subgroup scalars in terms of which all can be expressed by polynomials.
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problem. In particular, for special values of the parameter, seven special cases corresponding to
the simplest possible solutions to the MLP are found.

2. Missing label operators
For semisimple Lie algebras s, the rank lN (s) = l specifies the maximal number of (functionally)
independent polynomials in the generators such that they commute with the elements of s [12].
The eigenvalues of these operators, when applied to representations, provide a first class of
suitable labels to distinguish the multiplets and the states. For higher rank algebras, however,
degeneracies are found that cannot be solved using the Casimir operators and/or the generators
of the Cartan subalgebra. According to Racah, we have to find f = 1

2 (dim s− 3l) additional
operators to distinguish the states. This gives a total number of labels equal to

i =
1
2

(dim s−N (s)). (1)

Reducing representations of a Lie algebra with respect to some (inner symmetry) subalgebra
h leads, in the generic case, to a similar situation, where the invariants of the chain do not
provide enough labels to separate the states. The reduction chain provides 1

2(dim h +N (h)) + l′

labels, where l′ denotes the number of common invariants of g and h.3 Using this fact, it is easy
to see that in addition to the Casimir operators, exactly

n =
1
2

(dim s−N (s)− dim h−N (h)) + l′ (2)

additional operators are necessary [13]. The scalar m = 2n gives the total number of available
operators.

We determine labelling operators by means of the analytical approach [13]. Given the Lie
algebra s =

{
X1, .., Xn | [Xi, Xj ] = CkijXk

}
in terms of generators and commutation relations,

we realize the generators Xi in the space C∞ (s∗) by means of the differential operators

X̂i = Ckijxk
∂

∂xj
, (3)

where {x1, .., xn} are the coordinates on a dual basis. In this context, invariants of s are the
solutions of system of partial differential equations given by:

X̂iF = 0, 1 ≤ i ≤ n. (4)

For polynomial solutions of (4), the symmetrization map defined by

Sym(xi1 ..xip) =
1
p!

∑
σ∈Sp

xσ(i1)..xσ(ip) (5)

recover the Casimir operators in their usual form, i.e., as a polynomial in the generators
commuting with s. Observe that the preceding realization shows that the number N (s) of
independent solutions is given by:

N (s) := dim s− rank
(
Ckijxk

)
, (6)

3 I.e., invariants of s that depend only on variables of the subalgebra h.
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Table 1. so(5) brackets in a so(3) = {L0, L±1} basis.

,

[ , ] Q3 Q2 Q1 Q0 Q−1 Q−2 Q−3

L0 3Q3 2Q2 Q1 0 −Q−1 −2Q−2 −3Q−3

L1 0 6Q3 Q2 2Q1 6Q0 10Q−1 Q−2

L−1 Q2 10Q1 6Q0 2Q−1 Q−2 6Q−3 0
Q3 0 0 0 Q3 Q2 10Q1 + 15L1 5Q0 − 15L0

Q2 0 −6Q3 −Q2 −15L1 30Q0 + 60L0 10Q−1 − 15L−1

Q1 0 3L1 −Q1 −3L0 − 3Q0 15L−1 Q−2

Q0 0 −Q−1 − 3L−1 −Q−2 Q−3

Q−1 0 −6Q−3 0
Q−2 0 0

where A(s) :=
(
Ckijxk

)
is the matrix associated to the commutator table of s over the given

basis.

From this perspective, the missing label problem (short MLP) for a reduction chain s ⊃ s′

constitutes a special application of the analytical ansatz. More specifically, the labelling
operators can be seen as those operators that commute with the generators of the subalgebra
s′, thus correspond to a subsystem of (4). The latter has exactly N (f(s′)) = dim s− dim s′ − l′
functionally independent solutions. Transforming this formula using (2), we arrive at the
expression

N (f(s′)) = m+N (s) +N (s′)− l′. (7)

This shows that the subsystem corresponding to s′-generators has n more solutions as needed
to solve the missing label problem [13]. The ansatz based on differential equations provides
an alternative to the usually difficult task of finding integrity bases for the labelling operators
[14]. Because of equation (7), if we find m solutions that are independent among each other and
from the Casimir operators of the chain, a solution to the missing label problem is given by n
polynomials of these solutions that commute mutually. This last step is in practice the most
difficult one, and has been completely solved only for a small number of reduction chains.

To be used later, we introduce the counterpart of labelling operators in the space C∞(s),
that will be useful to measure the non-commutativity of brackets. Let P = ai1...ipXi1 ...Xip be
a labelling operator. Replacing the generators Xij by the coordinate of the corresponding dual
element, we obtain the homogeneous polynomial P ∗ = ai1...ipxi1 ...xip . Observe that since the
variables in s∗ commute, P ∗ will usually have less terms than P . It is clear that if [O1, O2] 6= 0,
then the analytical counterpart of the commutator does not vanish, and the number of terms
gives an approximate idea of how far the operators O1, O2 are from commuting.

3. The nuclear surfon model
For the non-canonical embedding so(5) ⊃ so(3), the subalgebra so(3) turns out to be the
principal simple subalgebra of rank one [3]. We choose the basis of the orthogonal Lie algebra
so(5) to consist of generators {L0, L1, L−1} with brackets [L0, L±1] = ±L±1, [L1, L−1] = 2L0

together with the irreducible tensor representation Qµ (µ = −3..3) of dimension seven. The
brackets of so(5) over this basis are given in Table 1.

In order to describe states when reducing representations of so(5) with respect to this so(3),
we need, according to formula (2), two missing labels among the four available operators. In
tems of the differential realization (3), these labelling operators correspond to solutions of the
following system of equations:
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L̂0F := l1
∂F

∂l1
− l−1

∂F

∂l−.1
+ 3q3

∂F

∂q3
+ 2q2

∂F

∂q2
+ q1

∂F

∂q1
− q−1

∂F

∂q−1
− 2q−2

∂F

∂q−2
− 3q−3

∂F

∂q−3
= 0,

L̂1F := −l1
∂F

∂l0
+ 2l0

∂F

∂l−1
+ 6q3

∂F

∂q2
+ q2

∂F

∂q1
+ 2q1

∂F

∂q0
+ 6q0

∂F

∂q−1
+ 10q−1

∂F

∂q−2
+ q−2

∂F

∂q−3
= 0,

L̂−1F := l−1
∂F

∂l0
− 2l0

∂F

∂l1
+ q2

∂F

∂q3
+ 10q1

∂F

∂q2
+ 6q0

∂F

∂q1
+ 2q−1

∂F

∂q0
+ q−2

∂F

∂q−1
+ 6q3

∂F

∂q−2
= 0.

(8)

For labelling purposes, we are only interested on polynomial solutions. These, after the
corresponding symmetrization (5) of its terms, provide the classical subgroup scalars. The
preceding system (8) has seven functionally independent solutions. It is obvious that the Casimir
operators of so(3) and so(5) satisfy this system, thus can be interpreted as labelling operators
of special kind. More specifically, they are composite functions of labelling operators of lower
order.4

Because of the diagonal action of the generator L0 of so(3) on L±1 and the irreducible
multiplet of dimension seven, polynomials P = αa−1a0a1b3...b−3 l

a0
0 l

a−1

−1 l
a1
1 q

b3
3 ...q

b−3

−3 satisfying the
system (8) must also satisfy the linear condition

−a−1 + a1 + 3b3 + 2b2 + b1 − b−1 − 2b−2 − 3b−3 = 0. (9)

Following the notation of [11], we denote by [k,m] a homogeneous polynomial of degree k +m
such that its degree in the qi-variables is k and its degree in {l0, l1, l1} is m. Observe that by
(9), k = b3 + b2 + b1 + b0 + b−1 + b−2 + b−3 and m = a−1 + a0 + a1. This notation enables us to
rewrite P as a sum of homogeneous polynomials [ki,mj ]. We will say that [ki,mj ] has bi-degree
(ki,mi).

To construct the labelling operators, we proceed basing on the degree of polynomial solutions.
For any fixed n ≥ 2, we determine the functionally independent operators [k,m] such that
k+m = n. Computing such solutions up to a sufficiently high n leads to a set of functions that,
once symmetrized, constitute an integrity basis for the MLP. However, here we are only interested
in finding two pairs of independent operators such that they solve the MLP for so(5) ⊃ so(3)
with the additional commutativity condition.

For n = 2, only two solutions to (8) exist:

[0, 2] = l20 + l1l−1, [2, 0] = −2
5

(q3q−3 + q1q−1) +
1
15
q2q−2 + q20. (10)

It follows at once that [0, 2] is the Casimir operator of so(3). In addition, the polynomial
C2 = [0, 2] + [2, 0] corresponds to the quadratic Casimir operator of so(5).5

A generic polynomial of degree 3 in the generators of so(5) and satisfying constraint (9) has 26
terms. Due to the latter, it automatically gives a solution of the equation L̂0F = 0. Inserting
such a polynomial into the remaining equations of (8) and solving the corresponding system
with respect to the coefficients shows that only the trivial solution is admissible, from which we
conclude that system (8) has no polynomial solutions of order three. This provides additional
information on the behavior of the quadratic solutions. It is well known that if O1, O2 are two

4 This is more apparent when the Casimir operators are contracted with respect to the natural contraction
determined by the embedding of the algebras [15].
5 In the following, we will identify, for computational purposes, the polynomial function f that solves system (8)
with the symmetrized polynomial Sym(f). With an abuse of language, we will call f the labelling operator.
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labelling operators, then their commutator [O1, O2] also provides a labelling operator [1]. As a
consequence of this fact, the two operators [2, 0] and [0, 2] commute after symmetrization, since
their commutator would have terms of order three.

In order four, the three labelling operators [0, 2]2, [0, 2] [2, 0] and [2, 0]2 are functionally
dependent on those of order two, and therefore of no further use for solving the MLP. In
the following we will only be interested on solutions that are not of this type. We call a
polynomial [k,m] indecomposable if it is not a function of polynomials of lower order. Among
the seven linearly independent solutions of (8) of degree four, the only indecomposable ones are
the following:

[1, 3] = 1
4 l0l

2
1q−2 − 3

2 l0l1l−1q0 + 1
4 l

3
1q−3 − l20l−1q1 + l20l1q−1 + l30q0 + 1

4 l0l
2
−1q2 − 1

4 l
3
−1q3

−1
4 l

2
1l−1q−1 + 1

4 l1l
2
−1q1,

[2, 2] = − 1
12 l

2
−1q2q0 + 1

12 l0l−1q2q−1 + 1
6 l0l1q0q−1 + 1

12 l
2
1q1q−3 − 1

3 l
2
0q1q−1 + 7

12 l0
2q20

+ 1
60 l1l−1q2q−2 + 1

12 l
2
−1q3q−1 − 1

12 l0l−1q3q−2 + 1
12 l1l−1q

2
0 − 1

12 l
2
1q0q−2 + 1

12 l
2
1q

2
−1

−1
6 l0l−1q1q0 − 1

12 l1l−1q1q−1 + 1
12 l

2
−1q

2
1 + 1

15 l
2
0q3q−3 + 1

60 l
2
0q2q−2 − 1

12 l0l1q1q−2

−11
60 l1l−1q3q−3 + 1

12 l0l1q2q−3,

[3, 1] = 1
4 l1q2q0q−3 + 1

9 l0q2q0q−2 − l0q30 − 1
2 l0q3q0q−3 + 17

18 l0q1q0q−1 + 1
36 l−1q2q1q−2

−1
4 l−1q3q0q−2 − 2

9 l1q
2
1q−3 + 1

36 l1q3q
2
−2 + 1

9 l1q1q
2
−1 + 1

18 l0q3q−1q−2 − 1
9 l−1q

2
1q−1

+ 1
36 l1q1q0q−2 − 1

6 l0q2q
2
−1 − 1

3 l1q3q−1q−3 + 2
9 l−1q3q

2
−1 − 1

36 l−1q
2
2q−3 − 1

6 l0q
2
1q−2

−1
6 l1q

2
0q−1 + 1

6 l−1q1q
2
0 − 1

36 l−1q2q0q−1 − 1
36 l1q2q−1q−2 + 1

3 l−1q3q1q−3 + 1
18 l0q2q1q−3,

[4, 0] = −1
9q

3
1q−3 − 3

5q3q
2
0q−3 − 1

36q
2
2q−1q−3 + 1

675q
2
2q

2
−2 + 1

100q3q2q−2q−3 − 1
9q3q

3
−1

− 1
15q2q

2
0q−2 − 5

108q
2
1q

2
−1 − 1

540q2q1q−1q−2 + 1
18q

2
1q0q−2 + 7

30q3q1q−1q−3

+ 1
18q2q0q

2
−1 − 3

100q
2
3q

2
−3 − 1

36q3q1q
2
−2 + 1

6q2q1q0q−3 + 1
6q3q0q−1q−2.

The fourth order Casimir operator of so(5) can be recovered from a linear combination of these
operators by simply considering C4 = [4, 0] + [3, 1] + [2, 2] + [1, 3].6 Now, among the operators
[2, 0]] , C2, C4, [1, 3] , [2, 2] , [3, 1] , [4, 0], at most five are functionally independent. This is easily
verified checking a Jacobian. Therefore we can extract two independent linear combinations of
the operators [1, 3] , [2, 2] , [3, 1] , [4, 0]. as labelling operators. However, it can be verified that no
such pair of labelling operators commutes, unless one of them coincides with C4. This follows
from the following table, specifying the number of terms in the analytical counterpart of the
commutator of the elementary subgroups scalars [1, 3] , [2, 2] , [3, 1] , [4, 0]:

[ , ] [4, 0] [3, 1] [2, 2] [1, 3]

[4, 0] − 152 282 130
[3, 1] − 370 218
[2, 2] − 88

This means that subgroup scalars of higher order have to be considered. Following a reasoning
similar to that applied for n = 3, it can be verified that (8) does not admit polynomial solutions
of order n = 5. This further implies that any quadratic labelling operators automatically
commutes with the preceding fourth order operators. Observe further that since the latter do
not commute, solutions of degree seven must exist. In order six, only five order indecomposable
operators [2, 4], [3, 3] [4, 2] [5, 1] and [6, 0] exist, given in Table 2.

6 Using the contraction procedure of [16], it follows that the operators of the previous lemma are the components
of the decomposition of the Casimir operator C4 [15].
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T
ab

le
2.

Indecom
posable

sixth
order

polynom
ial

solutions
to

system
(8)

,

[2
,4

]
=

(q
−

3 q
3
−

14
q
20 )l 40

+
12
(q

0 (q
1 l−

1
−

q
−

1 l1 )
+

l1 q
2 q
−

3
−

l−
1 q

3 q
−

2 )l 30
+

l 20 (l1 l−
1 q

20
−

18
(l 2−

1 q
2

+
l 21 q
−

2 )q
0
−

14
l1 l−

1 (−
2
q
1 q
−

1
+

q
−

2 q
2
−

2
q
−

3 q
3 )

+
14 ((5

q
3 q
−

1
−

q
21 )l 2−

1
+

(+
5
q
1 q
−

3
−

q
2−

1 )l 21 ))
+

(
31
6
q
−

1 q
−

3
−

16
4
q
2−

2 )l 41
+

13
2
l 2−

1 l 21 (2
6
q
1 q
−

1
−

q
−

2 q
2
−

5
0
q
20

+
2
q
−

3 q
3 )

+
(

31
6
q
3 q

1
−

16
4
q
22 )l 4−

1

+
18
l 31 ((9

q
0 q
−

3
−

1
q
−

1 q
−

2 )l0
+

11
6
(6

q
2−

1
+

2
q
1 q
−

3
−

5
q
0 q
−

2 )l−
1 )

+
11
6
l 3−

1 ((6
q
21

+
2
q
3 q
−

1
−

5
q
2 q

0 )l1
+

18
(q

2 q
1
−

9
q
3 q

0 )l0 )
+

18
l 2−

1 l1 l0 (4
q
2 q
−

1
−

q
3 q
−

2
−

1
1
q
1 q

0 )
+

18
l0 l 21 l−

1 (+
q
2 q
−

3
−

4
q
1 q
−

2
+

1
1
q
0 q
−

1 ).

[3
,3

]
=

(q
2 q
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−

2
−

43 (q
21 q
−

2
−

q
2 q

2−
1 )

+
8
q
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−

9
q
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11
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There is a first interesting fact concerning these labelling operators. Although their
symmetrized expressions belong to an integrity basis for this MLP [14], they cannot be deduced
neither from the reduction chain so(5) ⊃ so(3) itself nor from the associated inhomogeneous
contraction. This is due essentially to the fact that the Lie so(5) has no primitive Casimir
operator of degree six. According to [15], these labelling operators are purely formal, and do
not inherit an obvious physical meaning. A routine computation shows that these elementary
scalars do not commute mutually, as shown in the following table:7

[ , ] [2, 4] [3, 3] [4, 2] [5, 1] [6, 0]

[2, 4] − 1070 2112 2980 2112
[3, 3] − 2862 3562 2490
[4, 2] − 3840 2602
[5, 1] − 2154

Clearly all these operators commute with [0, 2] and the quadratic Casimir operator C2 of
so(5), thus with [2, 0]. The next case to be analyzed corresponds to the commutator of an
operator of degree four with another of degree six. Here, in accordance with [11], we find
the first nontrivial pairs of commuting labelling operators. To this extent, we analyze the
commutator of an arbitrary linear combination of the scalars [4, 0], [3, 1], [2, 2] and [1, 3] with
an operator of degree six formed by [2, 4], [3, 3], [4, 2], [5, 1] and [6, 0] and products of lower
order operators.8 Proceeding in this way, we find the two following pairs of linearly independent
operators

{
X1

1 , X
1
2

}
and

{
X2

1 , X
2
2

}
, where

X1
1 = [4, 0] + [3, 1] + (4− 3α) [2, 2] + α [1, 3] , α 6= 1,

X1
2 = −27

5 [6, 0]− 162 [5, 1] + [4, 2]− 216 [3, 3]− [2, 0]
(
5310 [2, 2] + 2025

2 [4, 0]
)

+ [0, 2] (2124 [3, 1] + 528 [1, 3]) + 768 [2, 4]
(11)

and

X2
1 =

(
4
3 − β

)
[4, 0] + 3

2 (1− β) [3, 1] + 3β [2, 2] + [1, 3] , β 6= 1
3

X2
2 = −12

5 [6, 0] + 108 [5, 1] + [4, 2] + 324 [3, 3]− [2, 0] (180 [2, 2]− 1035 [3, 1])
− [0, 2] (17172 [2, 2] + 1728 [2, 4] + 3998 [1, 3]) .

(12)

The corresponding symmetrized operators Oji = Sym(Xj
i ) in the enveloping algebra of so(5)

satisfy the requirements [
O1

1, O
1
2

]
= 0,

[
O1

1, O
2
2

]
6= 0,[

O2
1, O

1
2

]
6= 0,

[
O2

1, O
2
2

]
= 0. (13)

Observe that for the excluded values of the parameters α and β, the fourth order labelling
operator is reduced to the Casimir operator C4 of so(5). Equation (13) further confirms that
the sets F1,α =

{
O1

1, O
1
2

}
and F2,β =

{
O2

1, O
2
2

}
are inequivalent sets, since no element of F1,α

commutes with an element of F2,β.

We claim that the two preceding pairs of labelling operators can be taken as a possible
choice for the four available operators that solve this MLP. This is equivalent to show that
the seven operators [0, 2] , [2, 0] , C4, X

1
1 , X

2
1 , X

1
2 , X

2
2 are functionally independent. To prove

this assertion, it suffices to find a set of seven independent variables such that the Jacobian

7 As before, the table specifies the number of terms for the analytical counterpart of the commutator.
8 Observe that for the four dimensional operator, the products and powers of quadratic labelling operators need
not to be considered, since they commute with the sixth order solutions.
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of these operators with respect to these variables does not vanish. We take the variables
{l0, l−1, q0, q−1, q−2, q−3, q3} and consider

∂
(
[0, 2] , [2, 0] , C4, X

1
1 , X

2
1 , X

1
2 , X

2
2

)
∂ (l0, l−1, q0, q−1, q−2, q−3, q3)

6= 0. (14)

Since the operators are independent, they can be taken as a fundamental set of solutions to
system (8). We remark that this can also be proved using an indirect argument based on
equation (13).

It is clear that any linear combination X1
1 + µC4 or X1

2 + µC4 is also a possible fourth order
labelling operator that commutes withX2

1 andX2
2 , respectively. In view of these possibilities, it is

natural to look for commuting pairs of operators with the lowest possible number of components.
Since the found operators of degree six cannot be modified, this leads to look for operators of
degree four having four or less components. Having in mind that α 6= 1 and β 6= 1

3 , it can
be shown that, up to scalars, only seven non-equivalent operators with less of four components
exist:

(i) X1
1 (0) = [4, 0] + [3, 1] + 4 [2, 2],

(ii) X1
1 (4

3) = [4, 0] + [3, 1] + 4
3 [1, 3],

(iii) X1
1 − C4 = 3 [2, 2]− 1 [1, 3],

(iv) X1
2 (4

3) = −1
2 [3, 1] + 4 [2, 2] + [1, 3],

(v) X1
2 (1) = [4, 0] + 9 [2, 2] + [1, 3],

(vi) X1
2 (0) = 4

3 [4, 0] + 3
2 [3, 1] + [1, 3] ,

(vii) X1
2 − C4 = [4, 0] + 3

2 [3, 1]− 3 [2, 2].

The two component solution found in [11] is equivalent to the symmetrized operators obtained
from

{
X1

1 − C4, X
2
1

}
. The discrepancy in the coefficients of the scalars [2, 2] and [1, 3] is due

to a different normalization factor to that used in [11]. Moreover, it follows from the previous
list that this is the only solution with two terms. In this sense, the pair proposed in [11] is
actually the simplest possible choice for solving the missing label problem. The pair

{
X1

2 , X
2
2

}
constitutes a new solution and has no analogue in the previous analysis. The non-equivalence
of these sets of labelling operators refers to their independence and to the fact they do not
mutually commute. Thus the class of labelling operators is divided into two incompatible
sets with respect to the commutativity requirement. Starting from either the operators of
F1,α or F2,β, labelling operators of higher even order may be constructed. In particular, for
arbitrary constants a, b, the pairs

{
(a [2, 0] + b [0, 2])X1

1 , X
2
1

}
and

{
(a [2, 0] + b [0, 2])X1

2 , X
2
2

}
are solutions to the MLP consisting of two operators of degree six, although one of them is
decomposable. It was further verified that there do not exist two independent of operators of
the form O = a1 [6, 0] + a2 [5, 1] + a3 [4, 2] + a4 [3, 3] + a5 [2, 4] that commute.

Looking for higher order solutions to system (8), we found that it has only three solutions
of degree seven, which correspond to operators of bi-degree [5, 2], [4, 3] and [3, 4] respectively.9

These operators can be shown to appear in the commutator of fourth order elementary scalars:

[[4, 0] , [3, 1]] = [5, 2] , [[4, 0] , [1, 3]] = [4, 3] , [[2, 2] , [3, 1]] = [3, 4] . (15)

As a consequence of the non-existence of elementary scalars of degree three and five, it follows
that no linear combination of [5, 2], [4, 3] and [3, 4] commutes with a fourth order labelling

9 Their symmetrized expressions coincide with those found by other authors for the integrity basis. The
computation of indecomposable solutions up to order nine also agreed completely with the results of [14].
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operator. In agreement with the results of [14], we found also seven indecomposable scalars of
degree nine among the 13 solutions of (8) having this degree. However, no lineal combination of
the latter commutes with an operator of degree four. Due to the computational complications
for these higher order operators, we did not further extended the search of commuting pairs
supplementary to those already found. A question left open in this analysis concerns the
existence of a pair of commuting operators consisting of an operator of degree four and an
operator of odd degree.

Final remarks
We have obtained one possible choice for the four functionally independent label operators
available among the 28 subgroups scalars computed in [14] for the reduction chain so(5) ⊃ so(3).
Two inequivalent sets of solutions have been found, each consisting of operators of degree four
and six, respectively. While the fourth operator can be interpreted as a linear combination
of “broken” Casimir operators with respect to the contraction defined by the embedding of
so(3) into so(5) [15, 16], the operators of order six have no obvious interpretation in terms
of the initial data. As observed in [16], it is unlikely that such operators, which have to be
determined by pure formal means, have really a significant physical meaning other than that
conferred by the labelling of basis states. As shown in [17, 18], for degenerate representations
the number of missing label operators needed is lower than that given by the generic formula
(2). This actually happens for the applications of this chain to the description of quadrupole
vibrations of the nuclear surface about a spherical equilibrium shape and their coupling to giant
dipole resonances [19, 20], where the totally symmetric representations are considered. In these
situations, linear combinations of the operators X1

1 , X
2
1 constitute the natural choice, and allow

to determine the most general form of a fourth order labelling operator. The numerical part,
left untouched here, concerns the determination of the complete eigenvalue spectrum for these
missing label operators.

Finally, one striking point about the missing label problem so(5) ⊃ so(3) is its difficulty
when compared to similar problems with more than one labelling operator, like the Wigner’s
scheme su(4) ⊃ su(2) × su(2) [21]. Although the decomposition of the fourth order Casimir
operator provides a sufficient number of labelling operators, the commutativity requirement is
not fulfilled, regardless of the linear combinations considered. This forces to determine higher
order operators with no apparent link to the information provided by the embedding. One may
wonder whether this difficulty is related to the fact that the subalgebra so(5) is principal, and
therefore possesses special characteristics not shared by other types of subalgebras. Another
obstruction to find suitable pairs of commuting operators seems to be the non-existence of
solutions of orders three and five, and the fact that the seventh order labelling operators arise
as commutators of operators of order four.
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