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ABSTRACT 

COMPUTATIONAL STUDIES OF TOLL-LIKE RECEPTOR 4 

This Thesis is focused on the molecular modeling and computational study of 

the molecular recognition processes involving Pattern Recognition Receptors (PRRs), in 

particular, Toll-like receptors (TLRs). TLRs are the main actors in innate immunity and 

are specialized in the recognition of pathogen associated molecular patterns (PAMPs). 

In particular, TLR4 is located in the plasma membrane where, together with the 

MD-2 protein, it binds to lipopolysaccharides, membrane constituents of Gram

negative bacteria, forming a heterodimeric complex. TLR4 agonists can be used as 

adjuvants in vaccine development and in cancer immunotherapy. TLR4 antagonists 

have also been studied for their promising application in septic shock, chronic 

inflammation and autoimmunity. However, the mechanism at atomic level for such 

activation/inactivation process remains unknown. Our research has been focused on 

the study of the mechanism of the TLR4/MD-2 system by means of computational 

approaches. 

In order to carry out our research objectives, we use a combination of several 

computational tools: geometry optimization, charges calculations, docking, virtual 

screening, and molecular dynamics simulations of protein complexes and membranes. 

The main objective of this Thesis is to elucidate the ligand-protein interactions 

of TLR4 at atomic detail through computational techniques. Computational 

methodologies will be applied to the study of the molecular mechanisms involved in 

the TLRs functionality, and in the recognition of PAMPs. Ligand-protein docking and 

virtual screening will be used as a source of new compounds able to modulate the TLRs 

behavior with possible therapeutic applications, and also as biological probes. 
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CHAPTER 3: Theoretical binding modes will be predicted for reported 

modulators of the TLR4/MD-2 system with agonist and antagonist activity. In 

particular, we will focus our work in synthetic LPS analogues and small molecules with 

a non LPS-like structure. We will undertake a computational study of some 

representative compounds to unveil some of these patterns of interactions. 

CHAPTER 4: The cationic glycolipid IAXO-102, a potent TLR4 antagonist, will be 

used as scaffold to design new potential TLR4 modulators and fluorescent labels for 

the TLR4 receptor complex. These compounds will be synthetized by collaborators. Our 

modelling studies will led us to the proposal of 3D models for the interaction with 

CD14 and TLR4/MD-2 accounting for their binding properties and also for their 

antagonistic activity. 

CHAPTER 5: Virtual screening strategies from commercial, in-house and generic 

drugs libraries, followed by biological assays, will allow us to identify new chemical 

entities for the development of novel TLR4 modulators with a LPS non-related 

structure. 

CHAPTER 6: The computational study of the full TLR4/MD-2 system will be 

performed, simulating the TLR4/MD-2 complex in the membrane environment. Several 

models of the monomer TLR4/MD-2 system inserted in different membranes will be 

built and simulated. These different models will be useful for the final building of the 

complete TLR4/MD-2 dimer and will provide us insights into the mechanism of TLR4 

agonism/antagonism. The analysis of the molecular dynamics simulations will lead us 

to understand the key ligand-receptor and protein-protein interactions implicated in 

the molecular recognition events and the dimerization process. 
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Our work has led to the following conclusions: 

Theoretical binding modes have been predicted for reported modulators of the 

TLR4/MD-2 system, with agonist and antagonist activity. In particular, we focused our 

work in synthetic glycolipids and non LPS-like molecules. For all these TLR4 

modulators, it is clear that, despite their different chemical structure, they must share 

a common pattern of interactions with TLR4. We have undertaken a computational 

study of some representative compounds to unveil some of these patterns of 

interactions. 

The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 

and CD14 co-receptors, has been used as scaffold to design new potential TLR4 

modulators and fluorescent labels for the TLR4 receptor complex (membrane 

TLR4/MD-2 dimer and CD14). Our modelling studies have led to the proposal of 3D 

models for the interaction with CD14 and TLR4/MD-2 accounting for their binding 

properties and also for their antagonistic activity. 

To propose new chemical scaffolds for the development of new ligands able to 

modulate TLR4 functions, we have performed virtual screening. Virtual screening 

strategies from commercial and in-house libraries, followed by biological assays, have 

allowed us to identify new chemical entities for the development of novel TLR4 

modulators with a LPS-non-related structure. So far, we have identified seven novel 

compounds with a promising TLR4 antagonist activity. 

The computational study of the full TLR4/MD-2 heterodimer was performed, 

simulating the full complex inserted in the membrane environment. The analysis of the 

molecular dynamics simulations led us to understand the key interactions implicated in 

the dimerization process at atomic level. 
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Summarizing, molecular modelling approaches have been used to elucidate the 

molecular recognition mechanisms of TLR4/MD-2 modulation, with focus on the 

agonist/antagonist conformational changes of the TLR4/MD-2 system, and to provide 

some hints for the design of novel binders, hopefully with therapeutic potential. We 

also have collaborated with experimental groups to synthesize the designed 

compounds and to perform biological assays. The study of the binding mode of several 

reported TLR4/MD-2 modulators has been undertaken and the simulation of the 

TLR4/MD-2 system in different membranes environments, by means of a combination 

of docking calculations, molecular dynamics simulations and virtual screening 

protocols have been performed. 
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RESUMEN 

ESTUDIOS COMPUTACIONALES DEL RECEPTOR TOLL-LIKE 4 

En esta Tesis Doctoral se han empleado técnicas de modelado molecular y se ha 

llevado a cabo el estudio computacional de los procesos de reconocimiento molecular 

que implican Receptores de Reconocimiento de Patrones (PRRs), en particular, los 

receptores Toll-like (TLRs). Los TLRs son los principales actores en la inmunidad innata 

y se especializan en el reconocimiento de patrones moleculares asociados a patógenos 

(PAMPs). 

En particular, el receptor TLR4 se localiza en la membrana plasmática donde, 

junto con la proteína MD-2, se une a lipopolisacáridos, constituyentes de membrana 

de bacterias Gram-negativas, que forman un complejo heterodimérico. Los agonistas 

de TLR4 pueden ser útiles como coadyuvantes en el desarrollo de la vacuna y en la 

inmunoterapia contra el cáncer. Los antagonistas de TLR4 también han sido estudiados 

por su prometedora aplicación en choque séptico, inflamación crónica y 

autoinmunidad. Sin embargo, el mecanismo a nivel atómico para tal proceso de 

activación/inactivación sigue siendo desconocido. Nuestra investigación se ha centrado 

en el estudio del mecanismo del sistema TLR4/MD-2 mediante métodos 

computacionales. 

Con el fin de llevar a cabo nuestros objetivos de investigación, hemos utilizado 

una combinación de varias herramientas computacionales: optimización de la 

geometría, cálculos de carga, docking, cribado virtual y simulaciones de dinámica 

molecular de complejos y membranas de proteínas. 

El objetivo principal de esta Tesis es elucidar las interacciones ligando-proteína 

del receptor TLR4 a nivel atómico a través de técnicas computacionales. Metodologías 
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computacionales se aplicarán para el estudio de los mecanismos moleculares 

involucrados en la funcionalidad de los receptores Toll-like, y en el reconocimiento de 

los PAMPs. Técnicas de acoplamiento ligando-proteína y cribado virtual serán 

utilizadas, dando lugar a una fuente de nuevos compuestos capaces de modular el 

comportamiento de los TLRs con posibles aplicaciones terapéuticas, y también como 

sondas biológicas. 

CAPÍTULO 3: Para los moduladores descritos del sistema TLR4/MD-2 se 

predecirán modos de unión teórica. En particular, nuestro trabajo se centrará en 

análogos de LPS. Realizaremos un estudio computacional de algunos compuestos 

representativos para desvelar algunos de estos patrones de interacciones. 

CAPÍTULO 4: El glicolípido catiónico IAXO-102, un potente antagonista de TLR4, 

se utilizará como esqueleto para diseñar nuevos moduladores de TLR4 y marcadores 

fluorescentes para el complejo TLR4. Estos compuestos serán sintetizados por otros 

colaboradores. Nuestros estudios de modelado nos permitirán diseñar nuevos 

compuestos y proponer modelos de interacción tanto para el CD14 como para el 

complejo TLR4/MD-2. 

CAPÍTULO 5: Las estrategias de cribado virtual de diferentes bibliotecas de 

compuestos, seguidas por ensayos biológicos, nos permitirán identificar nuevas 

entidades químicas para el desarrollo de nuevos moduladores de TLR4 con una 

estructura diferente al LPS. 

CAPÍTULO 6: Se llevará a cabo el estudio computacional del sistema TLR4/MD

2, simulando el complejo TLR4/MD-2 con diferentes modelos de membrana. Varios 

modelos del monómero TLR4/MD-2 insertado en diferentes membranas serán 

construidos y se llevará a cabo la simulación de dinámica molecular. Estos diferentes 

modelos serán útiles para la construcción final del dímero TLR4/MD-2 completo y nos 

proporcionarán información sobre el mecanismo agonista/antagonista del receptor 
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TLR4. El análisis de las simulaciones de dinámica molecular nos permitirá comprender 

las interacciones clave ligando-receptor y proteína-proteína implicadas en los eventos 

de reconocimiento molecular y el proceso de dimerización. 

Nuestro trabajo ha llevado a las siguientes conclusiones: 

Se han predicho modos de unión teórica para los moduladores descritos del 

sistema TLR4/MD-2. En particular, hemos centrado nuestro trabajo en glicolípidos 

sintéticos y moléculas que no tienen estructura de tipo LPS. Para todos estos 

moduladores de TLR4, está claro que, a pesar de su diferente estructura química, 

deben compartir un patrón común de interacciones con el receptor TLR4. Hemos 

llevado a cabo un estudio computacional de algunos compuestos representativos para 

revelar algunos de estos patrones de interacciones. 

El glicolípido catiónico IAXO-102, un potente antagonista de TLR4, se ha 

utilizado como esqueleto para diseñar nuevos moduladores de TLR4 y marcadores 

fluorescentes para el complejo TLR4/MD-2. Nuestros estudios de modelización nos han 

permitido diseñar nuevos compuestos y nos han permitido proponer modelos de 

interacción tanto para el CD14 como para el complejo TLR4/MD-2. Todos estos 

compuestos han presentado una actividad antagonista para el complejo del TLR4/MD

2. 

El estudio computacional del heterodímero TLR4/MD-2 completo se realizó 

simulando el complejo completo insertado en la membrana. El análisis de las 

simulaciones de dinámica molecular nos llevó a entender las interacciones claves 

implicadas en el proceso de dimerización a nivel atómico. 

Resumiendo, técnicas de modelado molecular se han utilizado para elucidar los 

mecanismos de reconocimiento molecular de la modulación del receptor TLR4/MD-2, 
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centrándonos en los cambios conformacionales agonistas/antagonistas del sistema 

TLR4/MD-2, que nos ha permitido el diseño de nuevos ligandos, con cierto potencial 

terapéutico. También colaboramos con grupos experimentales para sintetizar los 

compuestos diseñados y realizar ensayos biológicos. Se ha realizado el estudio del 

modo de unión de varios moduladores TLR4/MD-2 y se ha llevado a cabo la simulación 

del sistema TLR4/MD-2 en diferentes entornos de membranas, mediante una 

combinación de cálculos de docking, simulaciones de dinámica molecular y protocolos 

de cribado virtual. 
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1. INTRODUCTION 

1. Introduction 

1.1 Understanding Toll Like Receptors 

All living organisms constantly face attack from environmental microorganisms 

and need to cope with perpetual invasions into the body. The vertebrate immune 

response can be classified into innate and acquired immunity, being innate immunity 

the first line of defence against pathogens. Toll-like receptors (TLRs) have a 

fundamental role in early innate immunity, and are responsible for initiating and 

propagating inflammation. Evidences indicate a role for TLRs in immune and 

inflammatory diseases,1 and increasingly in cancer.2 Its relevance was highlighted in 

the award of the 2011 Nobel Prize in Medicine3 to Beutler and Hoffmann for their 

studies on the activation of the innate immune system. Therefore, TLRs have emerged 

as novel targets for drug design. TLR agonists are currently under development for the 

treatment of cancer, allergies, and viral infections, and also as adjuvants as part of 

potent vaccines to be used in prevention or treatment of cancer and infectious 

diseases. As inappropriate TLR stimulation leads to inflammation and autoimmunity, 

significant efforts have also been directed towards the development of compounds as 

TLR antagonists.4 

TLRs trigger two mechanisms of the immune response, the innate and the 

adaptive immunity, that work together to combat infection in mammals. The adaptive 

response generates antibody-secreting B cells and cytotoxic T cells that are specific and 

efficient at targeting pathogen. One disadvantage of this mechanism is that require 

more time to be developed than the innate response. 5 Since TLRs are the first 

responders to danger signals, they are pivotal in the research for fighting infectious 

and inflammatory diseases. New strategies for modulating the immune response 

depend on the understanding of the TLRs cell biology: structure, cell localization, signal 

transduction pathways and expression patterns. 

In 1989, Janeway proposed that cells use pattern recognition to identify 

pathogens. Receptors recognize and subsequently bind to structural shapes or 

patterns called pathogen-associated molecular patterns (PAMPs) which are present in 
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1. INTRODUCTION 

entire groups of pathogens,6 but not in the host. According to Janeway's theory, 

receptors cannot precisely recognize a particular microbe, but they can identify it as a 

foreign entity. Ten years after Janeway´s proposal, the first human pattern-recognition 

receptors (PRRs) were identified. Using the amino acid sequence of the Toll gene from 

the fruit fly,7 related sequences were searched in the Human Genome Project 

database, finally leading to the identification of TLRs.8 

Since some TLR binders are originated from the host, these new ligands are 

hypothesized to act as damage signals (damage-associated molecular patterns, or 

DAMPs) to alert the body of cell and tissue injury, this is evident in cases of necrosis, 

ischemic injury, etc.9 For example, blocking various TLRs (such as TLR2 and TLR4) with 

antagonists may be useful in these circumstances to prevent an overactive immune 

10-11 response. There is also evidence that TLRs contribute to the development of 

atherosclerosis and Alzheimer's disease through sensing of damage signals in the form 

of oxidized lipoproteins.12 

Given their therapeutic potential, there is considerable interest in 

pharmaceuticals that modulate TLR activation. TLR antagonists hold great clinical 

promise for the treatment of numerous inflammatory conditions and are under 

investigation for the treatment of viral infections, redirecting allergic helper T cell 

responses and as anticancer therapeutics. Some TLR agonists have also proven to be 

safe and efficacious as vaccine adjuvants in humans and are currently used in 

Europe.13-16 

The human TLR family comprises of 10 to 12 type I transmembrane 

glycoproteins with a single transmembrane domain, a conserved cytoplasmic Toll

like/interleukin-1 receptor signaling domain,17-20 and an extracellular antigen 

recognition domain comprising of 19–25 tandem leucine-rich repeat (LRR) modules.21 

The LRR modules have 20~30 amino acid residues with conserved ‘‘LxxLxLxxN’’ 

motifs.22-23 

TLRs generally function as heterodimers. Many ligands with distinct PAMPs 

exist, so the ten human TLRs are able to recognize more than ten different PAMPs. In 
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1. INTRODUCTION 

fact, the list of known TLR binders keeps growing. Heterodimer formation also 

increases binders diversity. For example, TLR2 associates with TLR1 and TLR6, and the 

association with proteins outside the TLR family also increase diversity, for example, 

TLR4 recognizes LPS in association with the accessory proteins MD-2 and CD14. Upon 

binding of the ligands to the extracellular domains of TLRs, rearrangement of the 

receptor complex is promoted, thus triggering the recruitment of specific adaptor 

proteins to the intracellular TIR domains.24 In particular, MyD88 is a universal adapter 

protein used by almost all TLRs (except TLR3) to activate the transcription factor NF-κβ/ 

Mal (also known as TIRAP) is another adaptor protein necessary to recruit MyD88 to 

TLR2 and TLR4. TLR expression is particularly significant in different types of white 

blood cells: mast cells, macrophages, and dendritic cells. The innate immune response 

is initiated by mast cells and macrophages, whereas the adaptive immune response is 

primarily initiated by dendritic cells.25 

TLRs 1, 2, 4, 5, and 6 are located primarily in the plasma membrane, where they 

recognize components of microbial cell walls and membranes unique to pathogens 

(Figure 1.1). The best characterized ligands are bacterial, examples include: 

lipopolysaccharide (LPS) and lipoteichoic acid from the cell wall, lipoproteins from the 

cell membrane, and flagellin, a structural component of bacterial flagella. TLRs 3, 7, 8, 

and 9 are situated in the membranes of endosomes and lysosomes, these TLRs bind to 

microbial nucleic acids, such as DNA from most organisms, and double and single 

stranded RNA from RNA viruses. Since these TLRs cannot distinguish self-nucleic acids 

(those of the host cell) on structural differences alone, and recognition of foreign 

nucleic acids (those of the pathogen) largely depends on the location in the cell.26 

5
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1. INTRODUCTION 

Figure 1.1. Human Toll Like Receptor family.2 

1.1.1 Relevance of TLR4 as Therapeutic Target 

TLR4 and the Inmune Response 

TLR4 was the first TLR identified,8 and was characterized as the receptor for LPS 

as it generates an innate immune response upon LPS stimulation.27-29 LPS, glycolipids 

produced by Gram-negative bacteria, are composed of an oligosaccharide core and a 

highly variable O antigen polysaccharide component, along with a hydrophobic lipid A 

segment containing multiple lipid acyl tails and a phosphorylated glucosamine 

disaccharide headgroup (Figure 1.2). TLR4 was found to require to be associated to an 

additional protein, MD-2 (myeloid differentiation factor 2), to be activated by LPS, and 

it was discovered that mice lacking MD-2 do not respond to LPS. There have been 

identified a number of MD-2 polymorphisms that modify LPS binding and/or 

activation.30 MD-2 is very flexible, and allosterically transmits this conformational 

plasticity, in a ligand dependent manner, to a phenylalanine residue (Phe126) in the 

cavity mouth previously implicated in TLR4 activation. The assumption is that Phe126 

is the “molecular switch” in endotoxic signalling/ 

LPS interaction with TLR4/MD-2 involves at least two other proteins, these are 

lipopolysaccharide binding protein (LPB) and cluster of differentiation 14 (CD14). LPS 
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1. INTRODUCTION 

first binds to LBP in serum and it is then transferred to CD14 (Figure 1.2). The major 

role for CD14 is to enhance the sensitivity of the TLR4/MD-2 signaling complex, causing 

the binding affinity toward LPS to drop to picomolar concentrations. It was identified 

that mice without CD14 are resistant to endotoxic shock. Unlike the rest of the TLR 

family, TLR4 does not recognize the lipid in isolation, but when bound to MD-2.31 

TLR4 activation has been associated with certain autoimmune diseases, 

noninfectious inflammatory disorders, and neuropathic pain, as well as metabolic 

syndrome in multiple tissues and cardiovascular diseases, suggesting a wide range of 

possible clinical settings for the application of TLR4 antagonists.32-33 However, agonists 

of TLR4 can be useful as adjuvants in vaccine development and in cancer 

immunotherapy.29 

Targeting TLR is actually a sparkling field for translational cancer research. The 

expression of TLRs mediating innate immune response on tumor cells, influence in the 

proliferation and migration of these cells. The activation of TLRs may play opposite 

role, antitumor or protumor. Better understanding the mechanism of TLRs in cancer 

biology will contribute to expand the opportunities for pharmacological intervention 

and discovery new strategies and new candidates for drug against cancer.34 

Figure 1.2. Left: Bacteria engulped by a macrophage during infection. Right: Detail of the LPS 

recognition by TLR4, in concert with the accessory proteins LBP (LPS-binding protein), and 

CD14 (who transfers LPS from bacteria membranes or aggregates in serum to MD-2). 

7
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1. INTRODUCTION 

Therapeutic Applications of TLR4 Agonists 

TLR agonists have shown to improve currently applied anticancer vaccination 

protocols,35-36 and are also the focal point for new vaccine development as non

infectious subunit vaccines.16, 36 For example, the natural product monophosphoryl 

lipid A (MPLA), a detoxified component of LPS from Salmonella Minnesota which 

contains the lipid A (Figure 1.3) moiety that binds to TLR4/MD-2, is incorporated into 

several vaccines,16, 37 including vaccines for Hepatitis B (Fendrix™),38 and cervical 

cancer (Cervarix™)39-40 and in the immunotherapy for melanoma.41 

Also synthetic TLR4 agonists have been designed and assayed. Compound 

E602042 have shown good adjuvant activity with antitumoral trastuzumab,43 or 

enhancing vaccine efficacy (Figure 1.3).44 Lipid A mimetics, such as the aminoalkyl 

glucosaminide phosphates, have been developed as TLR4 stimulants45 with good 

adjuvant activity,46 including the potent vaccine adjuvant RC-529,47 and the bioisoster 

CRX-547, which has reduced toxicity in comparison to RC-529.48 Small molecules 

pyrimido[5,4- b]indoles have shown to stimulate TLR4 and could potentially be used as 

adjuvants or immune modulators,49 synthetic analogues of natural product Euodenine 

A have exhibited potent and selective agonism towards TLR4,50 and synthetic peptides 

to mimic the TLR4/LPS interaction have also been reported.51 

8
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1. INTRODUCTION 

Figure 1.3. Chemical structures of selected TLR4 agonists. 

Therapeutic Applications of TLR4 Antagonists 

The design of LPS mimetics with TLR4 antagonist activity is an emerging 

strategy for the treatment of sepsis,52 combined with the challenge of obtaining good 

drug-like properties. Lipid IVa is an underacylated lipid A analogue with intriguing 

properties, being antagonist in human TLR4 but agonist in mouse (see Table 1.1 for 

references). The tetraacylated synthetic compound eritoran (or E5564, Figure 1.4) 

reached phase III in clinical trials, but failed to demonstrate sufficient efficacy in late 

stage human trials, although it has recently shown promising activity in preventing 

influenza induced acute lung injury, through a TLR4 antagonism mechanism.53 

9
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1. INTRODUCTION 

Simplified derivatives without the phosphate group have also been reported,54-56 

exploring the presence of a cation. Of merit, new glycolipids and benzylammonium 

lipids (for example, IAXO-102 and IAXO-103, Figure 1.4) are the first family derived 

from a monosaccharide core with effective TLR4 antagonist activity.55 Other synthetic 

lipid A analogues include, for example, compound D1,57 and one lipid X mimetic (Figure 

1.4),58 exhibiting a TLR4 antagonist mechanism by blocking the interaction of LPSs with 

both CD14 and MD-2 proteins. 

Figure 1.4. Chemical structures of selected TLR4 antagonists. 

10
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1. INTRODUCTION 

Several small non LPS-like molecules with TLR4 antagonist activity have also 

been developed (Figure 1.4), such as ethyl 4-oxo-4-(oxazolidin-3-yl)-butenoate 

derivatives (OSL07), benzothiazole-based inhibitors, ethyl phenyl-sulfamoyl

cyclohexene-carboxylate derivatives (TAK-242 or resatorvid), and β-amino alcohol 

derivatives.59-62 However, no successful progress was shown when reaching clinical 

phases (for example, in the case of compound OSL07). Examples of non-lipid TLR4 

antagonists based on dendrimer architecture can also be found in the recent 

literature, showing that the presence of lipidic chains is not an absolute requirement 

for an MD-2 antagonist, and thus opening interesting opportunities for immunity 

modulation.63-64 

1.1.2 Reported X-Ray Structures of TLR4: Key Interactions 

Scientists have elucidated the three-dimensional structure of TLRs by means of 

X-ray crystallography. Presently, the 3D structure is available for TLRs 1, 2, 3, 4, and 6, 

as hetero/homo-dimers, and in complex with some ligands (agonists and antagonists) 

65-66 and/or co-receptors. The analysis of the ligand-receptor interactions at atomic 

detail gives understanding to the signaling processes which gives rise to the design of 

molecules with properties required in TLR modulators (agonist/antagonist 

properties).67-68 Still, the molecular features that drive the recognition processes have 

yet to be unraveled. 

Regarding TLR4, to the best of our knowledge, 15 X-ray crystallographic 

structures have been reported containing any of the partners forming the TLR4/MD

2/ligand complex (Table 1.1). Deposited at the Protein Data Bank (PDB), we can find: 1) 

TLR4 protein, either the nearly complete TLR4 chain (PDB-ID: 2Z63) or either fragments 

of the chain (PDB-ID: 2Z62, and 2Z66); 2) MD-2 protein bound to different ligands 

(PDB-ID: 2E56, and 2E59); 3) the TLR4/MD-2 complex not forming the dimeric (active) 

symmetric complex, either bound to antagonist ligands (PDB-ID: 3ULA, and 2Z65), or 

without any ligand (PDB-ID: 5IJB, 2Z64); and 4) the complete multimeric complex of 

the active TLR4 (PDB-ID: 5IJB, 5IJD, 3FXI, 3VQ1, 3VQ2, and 4G8A) composed by two 

11 



 

 

 

    

    

       

     

 

   

 

      

     

     

 

 

 

 

 
 
 

     

 
 
 

 
 

   

 
 
 

 
 

 

 
 

  

       

       

       

       

    
  

 

 
 

 

 
 

 

 
  

 

 
 

 

 
 

 

 
  

 

 
 

 
     

 
 

 
 

 
    


 

1. INTRODUCTION 

TLR4/MD-2/ligand units interacting in a symmetric manner, forming the extracellular 

complex which finally triggers the TLR4 signaling pathway through the interaction of 

each intracellular TIR domain belonging to the TLR4.67 Table 1.1 also contains 

information about the relevant protein CD14. 

Table 1.1. X-Ray crystallographic structures of TLR4 and CD14 deposited at the Protein Data 

Bank. aThe structures are noted as multimer when two TLR4/MD-2 heterodimers are found in 

the structure. bNot natural complexes. cE. coli LPS. dRe-chemotype of E. coli LPS. eHuman TLR4 

polymorphism D299G and T399I. fHuman TLR4 decoy. gThree units of myristic acid. 

PDB-ID Organism Proteins Ligand Structurea 

MD-2 

Confor 
mation 

Resolution 

(Å) 

5IJD69 Mouse-inshore 
hagfish hybrid 

TLR4/MD-2 Re-LPSd Multimer Agonist 2.7 

5IJC69 Mouse-inshore 
hagfish hybrid 

TLR4/MD-2 
Neoseptin 

-3 
Multimer Agonist 2.57 

5IJB69 Mouse-inshore 
hagfish hybrid 

TLR4 
fragment/ 

MD-2 

None 
Heterodim 

er 
Agonist 2.91 

3FXI67 Human TLR4/MD-2 LPSc Multimer Agonist 3.10 

3VQ170 Mouse TLR4/MD-2 Lipid IVa Multimer Agonist 2.70 

3VQ270 Mouse TLR4/MD-2 Re-LPSd Multimer Agonist 2.48 

4G8A71 Human TLR4/MD-2e Re-LPSd Multimer Agonist 2.40 

2Z6472 Mouse TLR4/MD-2 None 
Heterodim 

er 
Antagon 

ist 
2.84 

3ULA73 Human-inshore 
hagfish hybridf 

TLR4 
fragment/ 

MD-2 

E55 
Heterodim 

er b 
Antagon 

ist 
3.60 

2Z6572 Human-inshore 
hagfish hybrid 

TLR4 
fragment/ 

MD-2 

E55 
Heterodim 

er b 
Antagon 

ist 
2.70 

2Z6372 Human-inshore 
hagfish hybrid 

TLR4 None Monomer N/A 2.00 

2Z6272 Human-inshore 
hagfish hybrid 

TLR4 
fragment 

None Monomer N/A 1.70 
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1. INTRODUCTION 

2Z6672 Human-inshore 
hagfish hybrid 

TLR4 
fragment 

None Tetramerb N/A 1.90 

2E5674 Human MD-2 
Myristic 

acidg Monomer 
Antagon 

ist 
2.00 

2E5974 Human MD-2 Lipid IVa Monomer 
Antagon 

ist 
2.21 

1WWL75 Mouse CD14 -- -- -- 2.50 

4GLP76 Human CD14 --
Amino-

terminal 
pocket 

-- 4.00 

Structure of TLR4 

From the structural point of view TLR4 belongs to the superfamily of the LRR 

proteins, which are characterized for having a typical horse-shoe-like conformation, 

which contains several parallel β-strands in its concave surface and loops in its convex 

surface (Figure 1.7).67 Differences between the β-strands in the concave surface allow 

dividing this region in three different domains. First, the N-terminal domain, which 

includes modules from 1 to 6 (Figure 1.7), and has no sequence homology with the 

typical LRR modules, preventing this region to be highly hydrophobic. Second, the C-

terminal domain is formed by modules 13 to 22 (Figure 1.5). And third, the central 

domain, which is built by typical LRR modules, except one variable residue which has 

different residue lengths over the set of β-strands, deeply related with the horse-shoe

like shape of this kind of proteins. The surfaces of the N-terminal and central domains 

provide charge complementarity in order to bind to its co-receptor MD-2, leading to a 

stable 1:1 heterodimer.68 This heterodimer dimerizes when bound to the bacterial LPS, 

leading to the multimeric complex, and triggering the immune response. When bound 

to an antagonist ligand, the heterodimer is not capable of dimerization. 

13
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1. INTRODUCTION 

Figure 1.5. Multimer complex composed of two copies of heterodimers of the TLR4/MD-2/LPS 

complex arranged symmetrically (PDB-ID: 3FXI). Highlight in the box shows the N-terminal, 

central, C-terminal domains of the TLR4. 

Structure of MD-2 

Before describing any structural attributes of these crystallographic structures, 

it is worth pointing out that the main structural differences observed between the 

activated and inactivated (agonist and antagonist) conformations of the TLR4/MD-2 

complex are mainly related to the twist of a small loop of MD-2, comprised of Phe126 

and Leu124 (Figure 1.6).74 The twist of this small loop acts as an ON/OFF switch, 

allowing the binding of the agonist (ON) or the antagonist (OFF). The formation of the 

TLR4/MD-2/agonist complex builds a hydrophobic region and a dimerization interface. 

This promotes the coupling of the second TLR4/MD-2/ligand partner (referred to here 

as TLR4*/MD-2*). Binding of antagonists leads to changes into the characteristics of 

this hydrophobic interface precluding formation of the activated TLR4/MD-2/ligand 

multimer. 
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1. INTRODUCTION 

The structure of the MD-2 is characterized by two antiparallel β-sheets, 

containing three and six β-strands respectively/ These two β-sheets adopt a β-cup-like 

fold, forming a large internal hydrophobic pocket of 1000 Å2, open to host the large 

lipophilic fatty acid (FA) chains from the LPS.74 This pocket is completely built by 

hydrophobic residues on the interior, and positively charged residues surrounding the 

entrance, allowing the binding of the polar groups from the lipid IVa (PDB-ID: 2E59). 

The formation of the disulfide bond between Cys25 and Cys51, and the hydrogen bond 

between Tyr34 and Tyr36, are crucial for the stability of the MD-2 structure. 

Figure 1.6. Superimposition of agonist (PDB-ID: 3FXI) and antagonist (PDB-ID: 2E59) 

conformations of the human MD-2. Purple circles show main conformational change which 

mainly involves the loop containing Ile124 and Phe126. 

Structure of the TLR4/MD-2 Complex 

The TLR4/MD-2 complex interacts through a narrow and long interface, noted 

as the primary contact interface67 which is formed before the binding of LPS, and is 

divided by the A and B patches belonging to the N-terminal and central domains of 

TLR4 respectively (Figure 1.9). On one hand, the A patch in TLR4 is characterized by 

being highly evolutionarily conserved, and negatively charged, which allows the 

interaction with the positively charged Arg68 and Lys109 residues of MD-2. On the 

other hand, the B patch is built by a poorly conserved area, positively charged, and 

interacts with the negatively charged residues in the F β-strand of MD-2 (Figure 1.7), 

patterns can be found in both, the apo and the eritoran-bound TLR4/MD-2 complexes. 
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1. INTRODUCTION 

Additionally, in the TLR4/MD-2/eritoran complex, it can be observed that eritoran does 

not interact directly with TLR4, while the FA chains are placed deeply inside the 

hydrophobic pocket, and the two phosphate groups interact with positively charged 

residues at the entrance of the pocket, not observing direct polar interactions of the 

disaccharide with MD-2.72 

Figure 1.7. Two views of the dimerization and the primary interfaces of TLR4/MD-2/LPS 

complex (PDB-ID: 3FXI). 

Structure of the Activated TLR4/MD-2/Agonist Multimeric Complex 

Analysis of the structures of the activated multimeric complex of TLR4/MD

2/agonist, composed of two copies of the heterodimer TLR4/MD-2/ligand arranged 

symmetrically, reveals that each copy of the heterodimer interacts through the so

called dimerization interface.67 This involves the LRR modules 15-17 of the C-terminal 

16 
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1. INTRODUCTION 

domain (Figures 1.5, 1.7 and 1.8), and the Phe126 and Leu87 loops that connect the G

H and the E-F β-strands of MD-2 (Figure 1.8). Some interesting interactions that can be 

highlighted are the CH-π interactions between Phe463 (TLR4*) and Leu87 side chains, 

and polar interactions between Glu439 (TLR4*) and Arg90 (MD-2). Interestingly, the 

Phe126 loop of MD-2 is the one related with the main conformational change 

responsible with the agonist/antagonist behaviour (ON/OFF switch). One of the FA 

chains from the LPS does not penetrate into the MD-2 pocket, meaning this is partially 

exposed to the outer, and thus completing the hydrophobic surface of MD-2 that will 

interact with TLR4*. In particular, this FA chain interacts with the hydrophobic side 

chains located at the G β-strands of the MD-2, which could be responsible for 

triggering the conformational change of MD-2, which in turn, promotes the 

dimerization, and the final activation of the TLR4 signaling pathway. In addition to this 

particular (and key) interaction, other hydrophobic interactions contribute to the final 

assembly of the full multimeric complex. 

MD-2 can only be found in the antagonist conformation, either bound to 

antagonists (MD-2/lipid IVa, PDB-ID: 2E59, and TLR4/MD-2/Eritoran, PDB-ID: 2Z65), or 

without any ligand (TLR4/MD-2, PDB-ID: 2Z64). This observation may suggest that the 

conformational change of the Phe126 loop which leads to the dimerization, and to the 

activation of the immune response, is promoted upon agonist binding. The MD-2 

conformational change could be explained by the induced fit paradigm rather than by 

the conformational selection from the MD-2 conformational landscape. This has also 

been suggested by reported NMR studies on hexaacylated endotoxin bound to wild

type and F126A mutant MD-2, which indicate that re-orientation of the aromatic side 

chain of Phe126 is induced by binding of hexaacylated endotoxin, preceding 

interaction with TLR4.77 Multimeric complexes are available with natural agonist 

binder LPS (PDB-ID: 3FXI, human TLR4/MD-2), and with lipid IVa (PDB-ID: 3VQ1, mouse 

TLR4/MD-2)/ In this way, lipid IVa acts as an “accidental” agonist or antagonist 

depending on the species dual binder, able to activate the TLR4 immune response in 

mice, but to block the TLR4 system in humans. As an agonist, it is able to bridge 

between the two phosphate binding sites of the two TLR4/MD-2 units. As a "flipped" 
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1. INTRODUCTION 

antagonist (the glucosamine backbone is in opposite orientation than LPS) it is buried 

more deeply into the cavity of MD-2 (4-5 Å) and thus can only connect to one 

phosphate binding site. Eritoran is not able to bridge between the two TLR4/MD-2 

subunits of any of the analyzed species. 

Figure 1.8. Multimer complex composed of two copies of heterodimers of the TLR4/MD-2/LPS 

complex organized symmetrically (PDB-ID: 3FXI).Box at the bottom shows the standard naming 

for each β-strand of MD-2. 

Structure of CD14 

CD14 acts as a co-receptor for the detection of LPS, and can bind LPS only in the 

presence of the lipopolysaccharide-binding protein (LBP). Human (hCD14) and mouse 

(mCD14) CD14 are characterized by a bent solenoid typical of leucine-rich repeat (LRR) 

proteins, with a large hydrophobic pocket found on the amino-terminal side (PDB-ID: 

4GLP for hCD14, and 1WWL for mCD14). Similarly to MD-2, CD14 is also characterized 

by having a wide lipophilic pocket, but with fewer number of polar residues at the rim, 

and it is capable of recognizing other microbial and cellular molecular determinants, in 

addition to LPS, such as lipopeptides which are the PAMP recognized by TLR2. 

18
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1. INTRODUCTION 

Figure 1.9. 3D structure of the amino-terminal pocket of human CD14 (PDB-ID: 4GLP). On the 

left, hCD14 in cartoon style. On the right, view in surface; highlight in grey the similar binding 

pocket in comparison with MD-2 pocket. 

1.2 Reported Molecular Modeling Studies of the TLR4/MD-2 System 

As a result of the increasing development in computing technology,78 research 

to date has allowed the exploration of the dynamics of these high size TLR4/MD-2 

system by means of MD simulations, and also binding properties of reported 

TLR4/MD-2 modulators. A recent review by our group has summarized these studies. 

We here give a brief overview, as follows.79 

1.2.1 Computational Studies of the TLR4/MD-2 Ectodomain 

There are several reported MD simulation studies focused on the extracellular 

domain of the TLR4/MD-2 complex, more specifically on its ability to recognize lipid A 

and lipid IVa. Garate et al.80 reported several MD simulations of different TLR4/MD

2/ligand complexes, concluding in to highlight the hydrophobicity of the MD-2 pocket 

and its ability to close promptly in an aqueous environment, due to the flexibility of the 

helix connecting MD-2 with TLR4 (helix H1). MD-2 was observed to fluctuate less due to 

the presence of TLR4, reducing the number of degrees of freedom. Another interesting 

conclusion is the key role that charged phosphates play in the early recognition of lipids 

with the corresponding impact on the formation of heterotetramers. Plasticity of MD-2 

has also been observed by DeMarco et al. after several MD simulations performed in 
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1. INTRODUCTION 

complex with variably-acylated lipid A molecules from Escherichia coli and Neisseria 

meningitides, concluding that the level of acylation of these ligands greatly influences 

the final architecture of the dimerization interface,81 and the final agonist/antagonist 

conformation of the TLR4/MD-2 system. This agonist/antagonist transition has also 

been studied by MD simulation by Paramo et al.82 finding that the opening of the 

Phe126 switch disrupts the arrangement of nearby side chains from Leu87, Val82 and 

Met85 of MD-2, in agreement with NMR studies.77 

The TLR4 ectodomain and its dimerization mechanism have also been subjected 

to computational studies. MD simulations of the TLR4/MD-2/TLR4*/MD-2* comlex by 

de Aguiar et al. 83 revealed pronounced conformation and structure alterations in the N

and C-terminal domains of the TLR4 ectodomains, while MD-2 underwent structural 

rearrangements and interacted with TLR4 and partner TLR4*, reinforcing the stabilizing 

role of MD-2 for the TLR4 complexation. In a related work, Anwar et al. performed 

interesting computational studies of the TLR4 signaling mechanism by studying the 

species-specific behavior of TLR4/MD-2 in the recognition of Rhodobacter sphaeroides 

lipid A (RsLA): human, murine, horse and hamster TLR4/MD-2 systems.84 The data 

suggested a relationship between the flexibility of two loops (the on/off switch Phe126 

loop of MD-2, from residues 123–129, and the MD-2 loop containing residues 81–89, 

which are the residues interacting with the partner TLR4*), and the agonist/antagonist 

activity of the ligand, thus providing a plausible explanation for the species-specific 

behavior of RsLA regarding TLR4 activation. 
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1. INTRODUCTION 

Figure 1.10. Lipid A and synthetic lipid A analogues with activity as TLR4 modulators. Activity is 

referred to hTMR4/MD-2. 

Computational Strategies to Study Mutant TLR4 and MD-2 Proteins 

Herein, we report three studies that used in silico-mutated TLR4/MD-2 systems 

to serve different purposes; namely, to transform the mouse complex interface into 

the human one by mutating the residues laying there into their human counterparts, 

to estimate the influence of the mutations on the binding affinity of a ligand and to 
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1. INTRODUCTION 

evaluate the impact of mutations on the structural shape and plasticity of the MD-2 

binding pocket. 

In a 2009 study, Slivka et al.85 used Rosetta software86 to compare the binding 

energy of a truncated MD-2 with the original one. MD-2 was truncated (termed MD-2-I) 

to keep only the residues identified as playing a major role in maintaining the 

TLR4/MD-2 heterodimer stability. The docking experiment was performed targeting 

both a partial human TLR4 retrieved from the Protein Data Bank (PDB-ID: 2Z65) and a 

full-length TLR4 humanized model built by mutating the residues at the TLR4/MD-2 

heterodimer interface in the mouse crystal structure (PDB-ID: 2Z64) into their human 

counterparts (TLR4: F160L, G234N, K263R, D264N, T290A; MD-2: H96R, H98R). In the 

first case, the affinity of MD-2-I was found higher than the one of the full-length MD-2. 

When docked against the human TLR4 model, MD-2-I exhibited a lower affinity than 

the full length MD-2. Altogether, these results indicate that MD-2-I is theoretically able 

to bind TLR4 and might even compete with the full-length MD-2. This was confirmed by 

cell assay experiments showing that the addition of compound MD-2-I abolishes their 

responsiveness to LPS stimulation. Flow cytometry analyses on cells (HEK293 cell line, 

transfected with all proteins involved in the TLR4 activation pathway) incubated with LPS 

covalently linked to fluorescein isothiocyanate (LPS-FITC), suggest that MD-2-I impedes 

TLR4/MD-2 dimerization. The SEAP assay shows that MD-2-I also alters downstream 

signaling. 

A 4-aminoarabinose-containing lipid A from the opportunistic bacterium 

Burkholderia cenocepacia (Figure 1.10) and its aminoarabinose-deficient equivalent 

were docked to hMD-2 and mMD-2.87 These docked models were used to build a full 

dimer complex in order to perform 0.1-ps MD simulations. In both the human and the 

murine systems, the wild-type (WT) LPS obtained a better predicted free energy of 

binding than the aminoarabinose-deprived one, with both the AutoDock88 and AutoDock 

VINA89 docking programs. An energy analysis was conducted to estimate the per 

residue contribution to the total ligand binding energy for both WT and mutated 

TLR4/MD-2/TLR4*/MD-2* complexes (D294A, R322A, S415A* and S416A*) using the 

MM-ISMSA method.90 This study permitted the identification of the mutated residues 
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1. INTRODUCTION 

as major contributors to the total binding energy of B. cenocepacia LPS and suggested 

that the ammonium groups of Ara4N stabilize the complex by providing additional 

anchorage interactions. 

Recently, the critical role of residue 135 of MD-2, located deeply inside the 

hydrophobic pocket, was reported by Vasl et al.91. hMD-2 has the ability to bind LPS in 

the absence of TLR4, while mMD-2 is responsive to LPS only when engaged in a 

complex with TLR4. Site-directed mutagenesis was used on hMD-2, to mutate Val135 

to its murine alanine counterpart. This single point mutation led to a mutant V135A 

hMD-2 lacking the ability of binding LPS. A series of MD simulations of the WT MD-2 

and the V135A mutant MD-2 in solution and in complex with TLR4 was performed to 

study the conformational changes. In the case of the WT hMD-2, the authors reported 

an abrupt decreased of the SASA and volume in the first nanoseconds of the 

simulation, describing it as a hydrophobic collapse. This phenomenon was not observed 

in the V135A systems, suggesting that Val135 is primordial to confer plasticity to MD-2. 

This tendency was confirmed by another simulation of MD-2 in complex with three 

myristic acids (as observed in some crystal structures). The V135A mutant hMD-2 

needed a much longer simulation time to adapt its shape to the three myristic acids 

than the wild-type. The authors concluded that this loss of plasticity could incapacitate 

hMD-2 for binding LPS.91 

1.2.2 Computational Studies on the Intracellular Domain of TLR4 

The intracellular domain of the TLR4 transmembrane protein contains a 

Toll/interleukin-1 receptor homology domain, which is a common feature of all 

adaptors involved in the initiation of TLR4 signaling, mediating protein-protein 

interactions between the TLR4 and the signal transduction components. TLR4 has two 

distinguished signaling pathways involving primarily four TIR-domain-containing 

adaptors. In the first pathway, the MyD88 adapter-like (Mal) acts as a “sorting” 

adaptor by recruiting the myeloid differentiation primary response gene 88 (MyD88), 

the “signaling” adaptor, to the plasma membrane/ In the second pathway, the TRIF 

23 



 

 

 

      

  

     

        

 

       

        

           

        

           

       

    

 

         

     

         

     

    

        

     

         

           

        

      

        

    

        

      

       


 

1. INTRODUCTION 

related adaptor molecule (TR!M) plays the role of “sorting” adaptor, which recruits 

the TIR-domain-containing adapter-inducing interferon-β (TRIF), the “signaling” 

adaptor, to the membrane to initiate the signal. As a major component of theses 

adaptors, the TIR domain is believed to play a central role in the recruitment 

24, 92 processes. 

The crystal structures of human TLR1 (PDB-ID: 1FYV) and TLR2 (PDB-ID: 1FYW) 

revealed the structural basis of the TIR domain93 followed by the crystal structure of 

TLR10 TIR domain (PDB-ID: 2J67)94 and the solution structure of MyD88 TIR domain 

resolved by NMR (PDB-ID: 2JS7 and 2Z5V).95 Prior to that release, two homology 

models of the TIR domain of MyD88 were reported. Both were built based on the TLR2 

TIR domain crystal structure (PDB-ID: 1FYW) resolved by X-ray crystallography.96-97 In 

2012, the crystal structure of Mal was also resolved by X-ray crystallography (PDB-ID: 

3UB2).98 

The lack of structural information for the TIR domain of TLR4 has driven the 

creation of models to clarify the recruitment of adaptors from a structural perspective. 

Dunne et al.99 built monomer models of TLR4, Mal and MyD88 using comparative 

modeling and loop refining techniques. They noted differences in the electrostatic 

surface potentials suggesting that adaptor binding is driven by electrostatic 

complementarity. This point was also emphasized in a study by Kubarenko et al.100 in 

which they compared the surface charges of TIR domains of the crystal structure of 

hTLR2 and of the models of hTLR3 and hTLR4 and noted that the surface charge 

distribution of the BB loop and the αC-helix (Figure 1.11) present similarities in TLR2 

and TLR4 and differ between TLR3 and TLR4. The authors considered that these 

findings could explain why TLR2 and TLR4 recruit MyD88, whereas TLR3 does not. In 

the computational study by Gong et al.101, it was highlighted that, whereas the BB-loop 

is highly conserved among TIR-domains, the APBS electrostatic surfaces differ. The 

authors hypothesized that this finding might explain the specificity and selectivity of 

adaptors recruitment. An experimental study showed that a single point mutation in 

the TIR domain of murine TLR4 (P712H) renders the system hyporesponsive to LPS 
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1. INTRODUCTION 

stimulation. The authors noted that their data do not suggest a direct role for this 

residue. 

Figure 1.11. Intracellular TIR domain of TLR4. Left: 3D representation of homology model.
 

Right: FASTA sequence.
 

al.99Dunne et used a docking procedure based on hydrophobicity and 

geometry. Their results suggest that Mal and MyD88 bind at two distinct binding sites 

(non-overlapping): the DD- and DE-loops of Mal forming interactions with the BB-loop 

and αC helix of TLR4-TIR domain and the AA- and DD-loop of MyD88 with the CD-loop 

of TLR4 (Figure 1.11). The biological relevance of this binding mode was later 

questioned, as it was discovered that TLR4 activation required homodimerization. In 

line with that, in 2007, Miguel et al.102 reported the first 3D model of the dimer of the 

TIR domain of TLR4; a dimer composed of two identical subunits, arranged in a two

fold axis of symmetry (Figure 1.12a). Despite the observation that some loops are 

differently oriented, the overall monomeric fold and the secondary structure of each 

subunit are very similar to the monomer model reviewed above.99 This dimer model 

outlines significant interactions between the BB-loops of each monomer. A flat, but 

slightly curved surface was observed and attributed to the side facing the membrane. 

The authors also reported a docking study of TRAM and Mal with the TLR4 dimeric 

model in which the two adaptors bind at either sides of the dimer interface formed by 

the union of the two TLR4-TIR domains, which are identical due to the symmetry. The 
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1. INTRODUCTION 

residues of the adaptors found at the TLR4 interface are mostly located on the BB-loop 

suggesting that the BB-loop of all three TIR-containing structures is of critical 

importance for binding specificity and selectivity. 

al.101Gong et performed a docking study based on the geometry, 

hydrophobicity and electrostatic complementarity of the molecular surface reporting a 

dimeric model different from the model described above (Figure 1.12b). In another 

study, Basith et al.,103 used in silico approaches (homology modeling, protein-protein 

docking and MD simulations) to investigate the inhibitory effect of ST2L toward TLR4 

activation. ST2L (IL-33r) is a member of the Toll-like/IL-1 receptor superfamily known 

to negatively regulate MyD88-dependant signaling pathway. The authors reported a 

TLR4-TLR4 homodimer model102 (Figure 1.12a), and their docking study also gave a 

similar binding mode for Mal (at each side of the dimer). Their results indicate that 

MyD88 is recruited by Mal, and that ST2L prevents the recruitment of MyD88 by 

binding at the Mal interface. Thus, according to these results, ST2L successfully 

competes with MyD88 to bind at the Mal interface. 

Figure 1.12. Representation of the different ways the dimer is proposed by published
 

computational strategies to be assembled in the literature by computational strategies. 


(a) First reported by 


Miguel et al.102 ; (b) reported by Gong et al.101, (c–e) reported by Guven-Maiorov et al.104. The 


monomer has been built by homology modeling, and the secondary structure representation
 

has been altered to resemble the other models. The dimers have been assembled manually, 

fitting as best as possible the schemes present in each paper, to provide an overview of the 

variety of binding poses reported so far. The dimmers shown do not have the pretention of 

being as precise as those shown in the original papers and should be considered schematic. 
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1. INTRODUCTION 

In a later study, Bovijn et al.105 reported a homology model constructed based 

on the crystal structure of the dimeric TLR10 TIR domain. This model is also in 

agreement with the first model reported by Miguel et al.102. The authors proposed that 

Mal and TRAM adaptors are competing for binding an extended site formed by the 

reunion of two TLR4 intracellular domains. An experimental mutation study showed 

that all mutations that impaired Mal binding also impaired TRAM binding, 

strengthening the idea that Mal and TRAM bind to the same molecular surface. They 

define the TLR4/TLR4* dimer interface as binding site II, composed of residues from 

the BB-loop, DD-loop and αC (Figure 1.11). Then, they describe that the binding site for 

TRAM and Mal is formed by the reunion of two site I (as defined in the study: residues 

from α! αB BB and BC), which is in disagreement with the binding site proposed by 

Miguel et al.102. The authors thus argue that their model is supported by experimental 

data and residue conservation analysis. The binding site III is defined as being located 

at the opposite direction of binding site I and might be implicated in the interferon 

regulatory factor 3 (IRF-3) activation. 

Singh et al.106 studied the importance of the highly conserved β-sheets among 

TLRs’ TIR domain and revealed their primordial implications in the communication 

network. MD simulations of 100 ns of models based on sequence similarity were 

performed// They reported interactions between the backbone atoms of the first β 

sheet with the BB-loop and the third β-sheet. The authors identified four interacting 

hubs mainly constituted of hydrophobic residues/ !mong them, three are in the β 

sheets just before the BB-loop, the αC helix and the DD-loops, stressing their role in 

TIR/TIR interaction. This hypothesis was further supported by analyzing the mutations 

known to completely abrogate signaling. They show that mutantsIFI767-769AAA and 

L815A disturb the interacting network, thus explaining the impaired TIR domain 

homodimerization capacity. In a very recent paper by Guven-Maiorov et al.,104 the 

authors used computational techniques to describe the architecture of the 

signalosome of TLR4. They built three models of the intracellular part of the TLR4 

protein (Figure 1.12c–e). These three dimer models are all unprecedented despite that 

the secondary structure of the monomer is in great agreement with all of the 
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1. INTRODUCTION 

published models. Furthermore, the authors used two of their models (Figure 1.12c,d) 

to propose different binding modes for Mal. 

1.2.3 Binding Mode of TLR4 Modulators 

Several computational studies have been performed in order to clarify the 

binding mode of TLR4/MD-2 agonist and antagonist ligands. The unveiling of the 

molecular recognition process at atomic detail is one of the major challenges in 

TLR4/MD-2 modulation. Molecular modeling, docking studies and MD simulations 

have already provided relevant contributions about the ligand/receptor interactions 

with promising impact for rational drug design.79 

Synthetic LPS mimetics 

Inspired by the LPS structure, different ligands have been designed and 

synthesized. One of the first compounds to enter into clinical trials was Eritoran, a 

synthetic lipid A mimetic, potent TLR4 antagonist, which reached phase III clinical trials 

as an antisepsis agent, but failed since the study did not meet its primary endpoint of 

reduction in 28-day all-cause mortality in patients with severe sepsis.107 Eritoran is a 

tetraacylated lipid A, the structural analogue of lipid A from RsLA, antagonist of human 

TLR4 and agonist of TLR4 from mouse and horse. In order to analyze the species

dependent activity of Eritoran, Scior et al.108 built homology models by means of the 

SCWRL4 program.109 Afterwards, docking of Eritoran was performed with AutoDock in 

order to determine the characteristics of the agonist/antagonist binding in the TLR4 

structures from different species: human, mouse and horse. Some key amino acids 

were identified as relevant in species-specific binding: Lys58 (that corresponds to Asn 

in mouse and to Glu in horse), Lys388 (which is a Ser in mouse and a Lys in horse) and 

Gln436 (which is an Arg in mouse and a Gln in horse). The different pattern of 

interactions that are presented by these different residues impairs the TLR4-TLR4* 

bridging role of the ligand, thus preventing the effective dimerization and the agonist 

activity. 
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1. INTRODUCTION 

Modifications of the chemical structure of the lipid A scaffold have served as a 

starting point for the design of novel TLR4 modulators. One modification reported by 

Cighetti et al.58 was the diphosphorylation of the scaffold of lipid X (Figure 1.10), a 

biosynthetic precursor of lipid A, leading to Compound 1 (Figure 1.13), which has been 

found to be an antagonist in both human and mouse TLR4/MD-2. This compound was 

also shown to stimulate CD14 internalization in bone-marrow-derived murine 

macrophages, thus demonstrating targeting of also CD14 in a TLR4-independent 

manner. In order to propose 3D models for the ligand recognition processes, 

computational studies were undertaken on both CD14 and MD-2 proteins. Docking 

calculations in MD-2 with AutoDock and AutoDock VINA,89 followed by MD simulations 

of the resulting complexes with the Impact program,110 led to the identification of two 

possible binding poses: the most stable one (in terms of predicted binding energy) 

allocated both FA chains inside the MD-2 binding pocket, mimicking the lipid IVa 

binding to MD-2 in the crystal structure (PDB-ID: 2E59). The MD-2/Compound 1 

complex is stabilized by hydrophobic interactions between its two FA chains and 

aliphatic and aromatic residues from the MD-2 pocket together with polar interactions 

at the rim of MD-2, involving mainly the phosphate groups and side chains from 

Ser118 and Arg96 residues and, in some cases, interactions between the amide CO or 

ester CO groups from Compound 3 and the Ser120 OH group. This result was in 

agreement with NMR experiments performed by the authors that clearly showed FA 

chain-protein interactions. In a few cases, calculations predicted a second docked 

binding pose for Compound 1 presenting only one FA chain inside the MD-2 

hydrophobic pocket, while the second FA chain was lying over Ile124. Interestingly, in 

the agonist conformation, this residue has moved towards the inside of MD-2 and 

Phe126 occupies its place. This synchronism allows the agonist/antagonist switch. In 

the bound/unbound equilibrium, this alternative binding pose could co-exist with the 

first and most stable one. Cighetti et al.58 also combined docking and MD simulations 

to propose a binding mode for Compound 1 with CD14. CD14 is also characterized by 

having a wide lipophilic pocket, but with fewer polar residues at the rim. Compound 1 

was predicted to bind with the saccharide moiety and the phosphate groups at the 

entrance of the CD14 hydrophobic cavity and with the FA chains inside the pocket, in 
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1. INTRODUCTION 

agreement with the CD14 binding properties observed experimentally. In addition to its 

properties to prevent TLR4 signaling, Compound 1 has also been proposed as a 

promising hit as TLR4 modulator because of its favorable solubility properties and for 

its lack of toxicity according to the MTT tests. 
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1. INTRODUCTION 

Figure 1.13. Synthetic LPS mimetics studied by computational approaches. 
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1. INTRODUCTION 

Another strategy to mimic lipid A was the design of tetraacylated lipid A 

mimetics based on the βGlcN (1↔1) αGlcN scaffold analogue by substituting the 

β(1→6) with βα(1↔1) glycosidic linkage in order to confer rigidity to the molecule.111 

In particular, Compound DA193 (Figure 1.13) resulted in being a dose-dependent 

antagonist in human and mouse, according to assays performed in HEK293 cells 

transiently transfected with membrane CD14 (mCD14)/hMD-2TLR4, HEK293 cells 

transfected with hMD-2TLR4 only and assays on human macrophage-like cell line (THP

1). In order to propose an atomistic understanding of the interactions between the 

ligand and the receptor, MD simulations of 11 ns were performed starting from two 

possible binding orientations of the ligand into the MD-2 protein. one with the α-GlcN 

ring facing the Phe126 loop and the second one with the β-GlcN facing the Phe126 

loop with an energy difference similar to that found for orientations of lipid A in the 

binding site of hMD-2. Dissociation constants, calculated from MD simulations of the 

MD-2/DA193 complex, estimated a binding to MD-2 20-fold stronger than lipid A and 

three-fold more than lipid IVa. It was concluded that the conformational rigidity of the 

βα(1↔1) diglucosamine backbone of these tetraacylated lipid A mimetics ensures 

strong binding to MD-2, in two possible binding poses, unlike the native lipid A 

structures. 

The commercial TLR4 antagonist IAXO-102 (Figure 1.13)112 has also served as 

inspiration for the rational design of TLR4 modulators and probes. The cationic glycolipid 

IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has 

been used as scaffold to design new potential TLR4 modulators and fluorescent labels 

for the TLR4 receptor complex (membrane TLR4/MD-2 dimer and CD14). The primary 

amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 

receptors, has been exploited to covalently attach a fluorescein (Compound 4 and 5) or 

to link two molecules of IAXO-102 through diamine and diammonium spacers, 

obtaining ‘dimeric’ Compound 2 and 3 (Figure 1.13). The structure-based rational 

design of compounds 2-4 was guided by the optimization of MD-2 and CD14 binding. 

Compounds 4 and 5 inhibited TLR4 activation, in a concentration-dependent manner, 

and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages 
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1. INTRODUCTION 

by compound 4 was inhibited by LPS and was also abrogated when cell surface 

proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 

4 with membrane proteins of the TLR4 receptor system (See Chapter 4). 

Computational studies of natural LPSs 

Rhodobacter sphaeroides lipid A (RsLA, Figure 1.10)84 has five acyl chains, with 

one unsaturated and two shorter chains than Escherichia coli lipid A. It is an antagonist in 

human and mouse, but an agonist in horse, although, intriguingly, the horse TLR4/MD-2 

sequence is more closely related to the human sequence than to the mouse one. To clarify 

the species-specific response, a computational-aided study of the three 3D structures was 

undertaken. A homology model was built for horse and hamster TLR4/MD-2, with 

human and murine X-ray crystallographic structures as templates (PDB-ID: 3FXI and 

2Z64) by means of MODELLER.113 The role of Arg385 had been proven in horse TLR4 

complex activation by lipid IVa114 through polar interactions between the guanidinium 

moiety and the phosphate group of lipid IVa. In fact, in other species, this residue is 

substituted by glycine in human and hamster and by an alanine in murine. The docked 

structure with AutoDock VINA of the horse TLR4/MD-2/RsLa complex closely 

resembled the pose of lipid IVa in murine crystal structure of TLR4/MD-2. On the 

contrary, the docked binding pose found in the hamster MD-2 was similar to the lipid 

IVa pose in the crystal structure from chicken (PDB-ID: 3MU3) and human. The 

difference between the species was mainly attributed to the different characteristic of 

each protein. By docking studies on hMD-2 with AutoDock, it has been observed that 

the longest chain of RsLPS could be accommodated in MD-2 by folding the chains itself 

as has been observed with the Eritoran fatty acid chains. The polar head 

(diglucosamine) is always exposed to the solvent. 

Molecular modeling by Irvine et al. has also showed that the different 

human/horse TLR4 responses towards RsLA is related to two different amino acids, 

Gly384 and Ser441, in human TLR4 (Arg385 and Pro442 in horse).115 Residue Arg385 in 

horse TLR4, although located around a 9 Å distance from the docked RsLA, could 
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1. INTRODUCTION 

establish a long-range electrostatic interaction with a phosphate group of RsLA, while 

the Pro442 is situated near the dimerization interface with TLR4* and interacts with an 

FA chain of RsLA by van der Waals interactions. This hypothesis was confirmed by 

experimental assays with transfected HEK293 cells with G384R/S441P hTLR4 with 

eqMD-2 and R385G/P442S eqTLR4 with hMD-2. It was observed that the R385G/P442S 

mutations in horse caused a complete loss of activity, and in human, the double mutant 

G384R/P441S TLR4 was unable to activate the signaling event. Since the double 

mutation did not revert the activity, other residues must be required. The docking of 

RsLA in human TLR4/MD-2 shares some similarity with the Eritoran crystal structure, 

such as the folding of the longest acyl chain and the polar interaction with charged 

residues of MD-2. RsLPS can adopt two orientations depending on the position of 1-PO4 

(oriented towards primary TLR4 in the case of horse and towards partner TLR4* in the 

case of human). This fact leads to different contacts between acyl chains of RsLPS and 

the hydrophobic pocket of MD-2. Moreover, superimposition of docked RsLA with X-ray 

crystallography poses of lipid A and lipid IVa showed that RsLA and lipid A acyl chains 

occupy more volume than lipid Iva, an, more importantly, the R2 chain of RsLA and lipid 

A protrudes from MD-2 and establishes interactions with the partner TLR4 in contrast to 

the R2 chain of lipid IVa, which is folded into the MD-2 pocket. 

As mentioned above, the severe pathogen B. cenocepacia LPS has been reported 

by Di Lorenzo et al. to strongly activate human TLR4/MD-2, despite the fact that its lipid A 

has only five acyl chains.90 The Ara4N residues in lipid A have been shown to contribute to 

TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic 

shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. 

A combination of docking calculations and MD simulations, together with experimental 

mutagenesis of the TLR4/MD-2 interacting surfaces, suggested that the longer acyl 

chains allow reaching deeper regions inside the MD-2 pocket, thus compensating the 

absence of one FA chain and, at the same time, allowing the exposure of the fifth FA 

chain on the surface of MD-2. This enables interactions with partner TLR4* and 

promotes its dimerization. The replacement of Val82 by Phe enhanced the 

inflammatory response, and it was related to the changes of van der Waals 
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1. INTRODUCTION 

interactions into stronger CH–π interactions with the F! chain, longer than the 

corresponding one on E. coli LPS. Interestingly, the presence of the positively-charged 

ammonium groups in the Ara4N seems to favor the electrostatic interactions and, 

consequently, the binding, whereas uncharged amino acids are critical for responses to 

Bordetella pertussis lipid A, for example.116 As described in Section 1.2.1, this model for 

the TLR4/MD-2/LPSBC complex was used to generate a computational mutant 

TLR4/MD-2/LPSBC complex (D294A, R322A, S415A* and S416A*), which was submitted 

to MD simulations and energy analysis for quantification of the per residue 

contributions to the final binding energy.87 Altogether, these results provided a molecular 

model for the activation of the human TLR4/MD-2 complex by penta-acylated lipid A, 

which sheds some light onto the comprehension of the molecular recognition of LPS by 

TLR4/MD-2. 

Computational Studies of Non LPS-Like TLR4 Modulators 

The species-specific discrimination of TLR4 ligands by MD-2 is exemplified by 

taxanes, in particular paclitaxel (PTX; Figure 1.14), a proinflammatory murine 

TLR4/MD-2 ligand, which activates the subsequent inflammatory cytokine response.117

119 Zimmer et al. demonstrated with different experiments that the activation of TLR4 

by PTX requires the mMD-2 protein, being independent from TLR4 species.120 This 

requirement is due to the electrostatic potential surfaces, hydrophobicity, binding pocket 

size and the conformational gating of the 123–130 amino acids loop. hMD-2 and mMD-2 

have a very large cavity volume that in principle allows lipid IVa, PTX and Eritoran to fit 

inside. The computational study identified the key PTX/protein interactions 

responsible of the differences in the mouse/human TLR4/MD-2 binding mode and of 

the subsequent different agonist/antagonist behaviour. In the best predicted MD

2/PTX binding poses, the benzamido group of PTX is very close to Phe126, suggesting 

that a π-stacking interaction may exist between both aromatic groups. Also, the Lys125 

side chain establishes a hydrophobic contact with the phenyl ring, and the phenyl 

group of PTX establishes a cation-π interaction with the Lys122 side chain, which is the 

only different amino acid in the MD-2 species-conserved sequence Phe119–Gly123. In 
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1. INTRODUCTION 

hMD-2, the multiple interactions attract the Gly123–Lys130 loop to form a concave 

surface facing the docked PTX. The same loop in the mouse protein is oriented in the 

reverse direction. The presence of a Glu122 instead of the Lys122 in mMD-2 leads to a 

completely different binding pose, possibly due to the absence of the cation-π 

interaction.120 Other work by Resmana et al.119 proposed a similar binding mode for 

paclitaxel and the analogue docetaxel, on the basis of docking performed with 

AutoDock in hMD-2 (PDB-ID: 2E59). Also in this case, the most favorable docked 

binding poses of both taxanes oriented the benzoyl group towards the nearby region 

formed by Ile61, Phe76, Leu78, Phe119 and Phe151 of hMD-2. 
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1. INTRODUCTION 

Figure 1.14. Non-LPS-like TLR4/MD-2 modulators studied by computational approaches. 

A docked binding mode for a prenylated chalcone-type (xanthohumol; Figure 1.14) 

into the antagonist conformation of hMD-2 (PDB-ID: 2E59) has been proposed by Fu et 

al.121. The results highlighted the importance of the H-bonds between the OH groups 

present in the xanthohumol and residues Tyr102 and Arg90. Moreover, another H

bond between the OH of the phenolic group and Glu92 was identified from the 

docking studies, but this interaction was rapidly broken during the subsequent MD 
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1. INTRODUCTION 

simulation (50 ns), leading to a final MD-2/xanthohumol complex stabilized by the 

above-mentioned interactions. An analogue behavior was found for curcumin (Figure 

1.14) after docking with AutoDock also in the same crystal structure of hMD-2 (PDB-ID: 

2E59). The hMD-2/curcumin complex resulting from the docking was subjected to MD 

simulations leading to a stable complex with equivalent interactions with Tyr102 and 

Arg90. Accordingly, experimental studies with MD-2 mutants (MD-2R90A/Y102A) have 

pointed to a direct binding of curcumin to MD-2 in the same binding site as LPS. This 

ligand would occupy a large part of the hydrophobic pocket and form H-bonds with 

residues Arg90 and Tyr102. Analogously, the H-bond with Gly92 was broken during the 

simulation. In addition, MD simulations have revealed that the presence of the ligand 

stabilizes the complex. In particular, MD simulations of the apo-state and bound state 

of MD-2 have shown that, in the case of the apo-state, MD-2 suffers an important 

conformational change, reducing the volume of the cavity entrance, in agreement with 

other similar MD simulations performed on the apo MD-2, whereas the bound MD-282, 

91 shows good stability.122 

Cell-based high throughput screening (HTS) allowed the identification of novel 

chemical entities as potent NFκB activators as selective TLR4 ligands: substituted 

pyramid[5-4-b]indole derivatives49 and 4-amino-quinazolines.123 From the former family, 

one hit compound was selected (Figure 1.14; R1 = phenyl, R2 = cyclohexyl, R3 = H). A 

series of pyrimido[5,4-b]indole rings with carboxamides substituted with various alkyl, 

cycloalkyl, aromatic and heteroaromatic groups was synthesized and biologically tested 

in order to establish the SAR. One of the most active compounds (Figure 1.14; R1 = 

phenyl, R2 = 3,3-dimethylbutyl, R3 = H) was docked in the mouse TLR4/MD-2 system. The 

ligand was predicted to bind within the LPS-binding pocket. forming H-bonds and 

multiple hydrophobic interactions. This computational study supported that active 

compounds appeared to bind primarily to MD-2 in the TLR4/MD-2 complex. 

From the second HTS, one 4-amino-quinazoline (Figure 1.14; R = COOEt, X = H) 

was identified with selective agonist activity for human TLR4/MD-2 rather than 

mouse. 123. Moreover, the results from the computational study underlined the 

importance of the Lys122, which happens to be a glutamic acid in mouse. This could 
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1. INTRODUCTION 

produce an electrostatic repulsion effect with the nitro group, thus justifying the 

decreased activity in mTLR4/MD-2.123 Several analogues were synthesized to establish 

the basis for SAR, confirming the relevant role of the nitro group for the TLR binding 

and guiding further optimization of the lead compound. 

It was shown by liquid chromatography-mass spectrometry analysis that the 

compound termed sulforaphane (SFN; Figure 1.14) forms a covalent bond with the 

residue Cys133 of hMD-2. Covalent docking methods were applied in an attempt to 

explain the propensity of SFN to impair LPS engagement with the MD-2 hydrophobic 

pocket. The authors proposed a model in which SFN, once covalently linked to Cys133, 

occupies the same position as the R3” lipid chain of LPS (PDB-ID: 3FXI) and XA2 lipid 

chain of lipid IVa (PDB-ID: 2E59). This model suggests that SFN sterically prevents other 

LPS/lipid A from approaching or settling inside the pocket.124 The same mechanism was 

reported for the caffeic acid phenethyl ester compound, using only experimental 

methods.125 

A series of compounds built by functionalizing pyrazole rings was reported by 

al.126Bevan et to inhibit TLR4 activation. Experimental studies indicated that two 

compounds (Compounds 6 and 7; Figure 1.14) were the lead inhibitors. The results 

indicate that both compounds independently bind at the surface of TLR4 where a 

protruding loop of MD-2 is normally found in the crystal structure. These predicted 

binding modes suggest that these compounds compete with MD-2 for binding TLR4, 

thus preventing or impairing the formation of the TLR4/MD-2 complex, resulting in a 

TLR4 able to carry out its innate immunity role. 

Polyphenol procyanidin B1 (Figure 1.14) has been shown to be able to regulate 

innate and adaptive immunity by, inter alia, impairing LPS-induced inflammatory 

responses in human monocytes.127-129 In order to explain its mode of action at atomic 

level, the authors undertook experimental and docking studies.130 They noted a high 

degree of similarity in terms of the interactions found in the predicted binding pose 

with the TLR4/MD-2 system when compared to the interactions established by LPS 

with TLR4/MD-2 in the crystal structure (PDB-ID: 3FXI). 
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1. INTRODUCTION 

Computational Studies of Fullerenes, Nanotubes and Dendrimers as TLR4 Ligands 

Large molecules have also been subjected to computational studies to unveil 

their mechanism of action as TLR4/MD-2 binders. Among them, we found interesting 

examples, such as fullerenes, carbon nanotubes (CNT) and dendrimers. Several studies 

have indicated a strong impact of carbon nanostructures on the immune system by 

inducing pro-inflammatory activity through their recognition as pathogens by the 

TLRs.131-132 Turabekova et al. have undertaken a theoretical study to analyze 5,5

armchair SWCNT and C60 fullerene (Figure 1.14) interactions with the available X-ray 

structures of TLRs homo- and hetero-dimer extracellular domains.133 The authors have 

searched possible binding sites able to host such nanostructures by identifying the 

most favorable pockets in terms of hydrophilicity/hydrophobicity and size. In the case 

of TLR4, the MD-2 binding pocket was detected as the possible binding site. The 

nanostructures were docked in the environment of the hydrophobic pocket where it 

interacts with aromatic residues (Phe and Tyr side chains) through π–π interactions 

and with aliphatic residues through CH–π and lipophilic interactions (Leu, Ile, !la, Val 

and Pro).A pair of Lys residues from the rim were found to be accessible for 

establishing π-cation bonding. 

al.64On the other hand, Barata et have shown that partially glycosylated 

polyamidoamine (PAMAM) dendrimer inhibits TLR4/MD-2/LPS-induced inflammation. 

Molecular modeling studies indicate that the hydrophilic surface bind to the entrance 

of MD-2 cavity.. Crucially, dendrimer glucosamine interferes with the electrostatic 

binding between LPS and polar residues Ser118, Tyr102 and Lys91 of MD-2. It was also 

determined that the bioactivity was due to their surface properties, such as the 

electrostatic and polar surface, their flexibility and their density. 

Computational Studies of Proteins as TLR4 Modulators 

Peptide-related molecules have also been explored as putative TLR4 modulators by 

computational strategies aiming to shed light onto their mechanisms of interaction. 

Among them, S100A8 is a small protein expressed in neutrophils and platelets, among 
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1. INTRODUCTION 

other cells, and it can be recognized by TLR4, as part of damage-associated molecular 

patterns,134 thus activating TLR4-mediated immune response. To study how TLR4 

recognizes S100A8, a rigid body docking was performed.135 Human S100A8 crystal 

structure (PDB-ID: 1MR8) was docked on mouse TLR4/MD-2 crystal structure (PDB-ID: 

2Z64) using ZDOCK,136 followed by a clustering/re-ranking method. Fifty-four thousand 

structures were initially generated and ranked, taking into account desolvation and 

electrostatic energy and shape complementarity. The top five models were examined as 

possible complex structures. In all of these models, C-terminal residues of S100A8 are 

located on the interface with TLR4/MD-2, in agreement with experimental data, 

suggesting that the C-terminal region plays a crucial role in TLR4/MD-2/S100A8 

recognition. 

Another protein, annexin A2 (AnxA2), has been demonstrated to activate 

human macrophages through TLR4-mediated signaling. Annexins are calcium

dependent proteins that are involved in cell motility, endocytosis and ion channel 

formation, among others cellular processes.137 Recently, experimental data suggested that 

AnxA2 binds to the TRIF/TRAM/TLR4 internalized complex, although the mechanism 

remains unclear. Protein-protein docking showed how this complex is formed.138 Since 

there is no crystal structure available for neither TRIF, nor the TRAM protein, 3D 

structures were constructed with the SWISS-MODEL homology modeling server.139 The 

TRIF model was docked on TRAM using ZDOCK program. The best predicted TRIF/TRAF 

complex was then docked on mouse TLR4 (PDB-ID: 3VQ1), and finally, human AnxA2 

(PDB–ID: 4HRE) was docked on this complex. The results showed that the complex is 

formed through both electrostatic and hydrophobic interactions.. 

A similar approach was used with another protein, the surfactant protein A (SP

A).140 This protein downregulates inflammation, binds to TLR4 and stops cytokine 

release. A protein-protein docking of SP-A trimer on the TLR4/MD-2 complex was 

performed using GRAMM-X.141 Among the 100 poses predicted by the server and taking 

into account experimental data suggesting that SP-A mainly binds to MD-2, only three 

poses were kept. To identify the interacting residues, binding hotspots were predicted 

using shape specificity and biochemical contact features. Twelve residues of SP-A were 
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1. INTRODUCTION 

found to interact with the TLR4/MD-2 complex. Using this information, a 20-residue 

peptide (SPA4) containing the interacting residues of SP-A was synthesized, and it was 

showed to bind to TLR4 and suppress an inflammatory response. 

1.2.4 Virtual Screening in Toll Like Receptors 

In the context of drug discovery, virtual screening (VS) techniques have already 

proved to make hit identification more goal-oriented, allowing the access to a huge 

number of chemically diverse binders (from public and commercial databases) with a 

relatively low-cost in terms of time and materials. This computational approach has 

been subjected to extensive attention and revision over the years, from the early 

perspective of being an emerging method,142 until the current time where new 

challenges are faced.9, 143-147 We could say that TLRs are not standard receptors which 

could be approached following classical strategies in drug design. The complexity of 

the system and the characteristics of their complexation with the PAMPs make them 

especially difficult to tackle following classical procedures in drug design and discovery. 

This is why TLRs constitute a special case study in this context. We herein report 

successful cases of VS approaches that have led to TLR modulators either with agonist 

or antagonist activity. 

Virtual Screening Studies in TLR2 

TLR2 heterodimerization either with TLR1 or TLR6 mediates specific ligand 

recognition of bacterial lipopetides.148 The X-ray crystallographic structures of both 

extracellular heterodimers have been resolved assisted by homology modeling in the 

past few years in complex with the triacylated65 and diacylated149 synthetic 

lipopeptides Pam3CSK4 and Pam2CSK4, respectively. The crystal structure of the 

TLR2/TLR1 heterodimer65 with the triacylated lipoprotein revealed that the two ester

linked lipid chains are inserted into the large TLR2 pocket in extended conformation, 

and the remaining amide-bound lipid chain is inserted into a narrow channel present in 

TLR1. The binding site is mainly composed of hydrophobic residues from Leucine-rich 
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1. INTRODUCTION 

repeat (LRR) modules 9-12 in both receptors. The peptidic head establishes contacts 

with polar groups from Phe349 from TLR2, and Gly313 and Gln316 from TLR1. 

Interestingly, in the case of the (mouse) TLR2-TLR6 heterodimer co-crystalized with the 

diacylated lipopeptide, the TLR2-lipid interaction and strong PPIs seem to be the prime 

force for heterodimerization and signalling since TLR6 channel is shortened by the 

presence of the bulky side chains from Phe343 and Phe365. A H-bond between the 

Phe319 (TLR6) backbone and the first peptide bond of the lipopeptide is herein 

detected. 

Regarding the application of VS tool for the finding of novel TLR2 modulators, 

Zhong et al.150 report the identification of a natural product-like inhibitor of TLR2/TLR1 

heterodimerization (code ZINC12899676, Table 1.2) following a structure-based VS 

strategy, through the docking of a collection of natural products and natural product

like compounds from ZINC database (> 90 000 compounds) to a TLR2/1 ectodomain 

model based on the TLR2/TLR1/Pam3CSK4 crystal structure (PDB-ID: 2Z7X). Flexible 

ligand docking was performed using the virtual library screening module in the ICM-

Pro program151 at the TLR2/TLR1 heterodimeric interface. The 17 best ranked solutions 

according to the Full ICM Score compounds were selected for biological testing. 

Among these 17 compounds, compound ZINC12899676 (Table 1.2) could decrease the 

secretion of pro-inflammatory cytokines TNF-α and IL-6 in RAW 264.7 macrophages 

stimulated with the most studied TLR2/TLR1 agonist, Pam3CSK4. It showed that could 

reduce the secretion of TNF-α by 44% over the concentration range of 0/25 to 4 mM, 

with an IC50 value of ca. 6.1 mM, and the secretion of IL-6 by 56% on the concentration 

range of 0.25 to 2 mM, with an IC50 value of ca. 1.9 mM, displaying similar potency to 

the only other TLR2/TLR1 small molecule antagonist reported to date (CU-CPT22)152-153 

with no cytotoxic activity being detected. Compound ZINC12899676 also 

demonstrated its ability to reduce the phagocytic activity of RAW 264.7 cells. 

The mechanism of the antagonist activity exhibited by compound 

ZINC12899676 is proposed to be by displacement of the synthetic lipopeptide 

Pam3CSK4, as shown by docking studies where two key H-bonds were identified:.. 

Complementary biological and biophysical tests corroborated this possible mechanism 
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1. INTRODUCTION 

of action. A fluorescence polarization assay demonstrated the ability of ZINC12899676 

to disrupt Pam3CSK4-mediated TLR1/TLR2 heterodimerization in a dose-dependent 

manner, with an IC50 value of ca. 7.2 mM. An immunoprecipitation assay was used to 

confirm the inhibitory effect on lipoprotein-induced TLR1/TLR2 heterodimerization 

exhibiting similar potency to reference compound CU-CPT22. Compound 

ZINC12899676 could attenuate NF-kB-luciferase reporter assay in RAW 264.7 cells with 

greater potency than CU-CPT22, and in HEK293T cells transfected with pZERO-TLR1, 

pCMV-Flag-TLR2 and pNF-kB-Luc, and was able to downregulate IBα and IKKα/β 

phosphorylation and IBα expression in cellulo. 

Other interesting results in this field are the work reported by Murgueitio et 

al..154 The authors report the analysis of TLR2 monomer to predict and locate ligand 

binding. A subsequent structure-based strategy was followed by centering the VS on 

the lipopeptide binding site sub-pockets P1-P3. A 3D-pharmacophore model was then 

constructed using LigandScout155 revealing a hotspot for H-bond acceptors. Two 

hydrophobic areas, defined as HYD1 (Ile319, Phe325, and Val348) and HYD2 (Leu266, 

Phe284, Phe295, Ile314, and Leu328) were also characterized. This model was 

validated and used to screen a library of more than 2 800 000 commercially available 

compounds from different vendors (ASINEX, Life Chemicals, Maybridge, ChemBridge, 

ENAMINE HTS Collection, and SPECS) with the help of LigandScout. 150 compounds 

with the highest pharmacophore fit score were docked into the TLR2 binding pocket 

using GOLD156-158 and, after careful visual inspection, five of them were selected for 

biological testing on a NF-kB reporter assay in the cell line HEK293-TLR2. Compound 

with code MolPort-001-796-266 (Table 1.3) exhibited antagonistic activity, and the IC50 

value was measured in human monocytes obtaining µM values. Its presumed binding 

mode was studied by means of docking techniques into the TLR2 binding site, 

displaying key H-bond and hydrophobic interactions with residues located deep inside 

the TLR2 pocket.. 

A ligand-based strategy was followed using a shape- and feature-based 

similarity screening assisted by ROCS and using three reported small-molecule TLR2 

signaling modulators159 and E567160 against a NCI compound library of 260 071 
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1. INTRODUCTION 

compounds. Five hundred hits arose from the VS and, after visual inspection, 39 were 

selected for biological testing. Out of them, 4 exhibited antagonist activity (hit rate: 

10%): compounds ZINC16769362 and ZINC398557 (that were identified from 

compound B as query structure) and compounds ZINC1758666 and ZINC585632 (from 

E567 as query) (Table 1.2). 

Table 1.2. 2D Chemical structure of TLR2 modulators identified by VS techniques and 

mentioned in this review. The database codes are provided. a MolPort is a supplier of 

chemicals included in several VS databases (www.molport.com). 

TLR2/TLR1 TLR2/TLR6
 

3D structure from PDB-ID: 2Z7X 3D structure from PDB-ID: 3A79 

ENAMINE: Z416323354154 

ZINC: ZINC12899676150 

MolPorta: MolPort-009-315-475 
TLR2-TLR1 heterodimerization inhibitor 

TLR2/1 & TLR2/6 inhibitor 

MolPorta: MolPort-009-737-181154 

MolPorta: Molport-001-796-266154 

TLR2/1 & TLR2/6 inhibitor with a decrease of cell 
TLR2/1 & TLR2/6 inhibitor 

viability 

ZINC: ZINC1676936154 MolPorta: MolPort-002-914-354154 

NCI: Plated 2007 44661 TLR2/1 & TLR2/6 inhibitor 
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1. INTRODUCTION 

TLR2/1 & TLR2/6 inhibitor 

ZINC: ZINC398557154 

NCI: Plated 2007: 205636 C29 

MolPorta: MolPort-001-835-401 TLR2 TIR domain inhibitor161 

TLR2/1 & TLR2/6 inhibitor 

ZINC: ZINC1758666154 

C29L (o-vanillin)161 

NCI: Plated 2007: 17379 
TLR2 TIR domain inhibitor 

TLR2/1 & TLR2/6 inhibitor 

ZINC: ZINC585632154 TLR2/1 & TLR2/6 inhibitor 

The same procedure was repeated using compounds A, B, ZINC16769362, and 

ZINC585632 as queries, this time against the collection of more than 2 800 000 

commercially available compounds used in the structure-based approach. From this 

procedure, 22 compounds were selected for biological testing and three of them 

displayed antagonistic activity (Z416323354, MolPort-009-737-181, and MolPort-002

914-354, Table 1.2). Compounds were also tested for TLR2-specificity and toxicity and 

the decrease of pro-inflammatory cytokine TNF-α was evaluated in human monocytes/ 

Additional computational docking studies of ZINC16769362, which showed the 

lowest IC50, were carried out showing that the ligand is embedded into a narrow sub

pocket at the end of the binding site thus interfering with lipopeptide binding. . The 

substitution pattern of the phenyl moiety was shown to be crucial for activity, since 

compounds with other pattern of substitution were inactive, as well as the presence of 

aromatic rings, as compounds with aliphatic rings were inactive. Overall, these results 
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1. INTRODUCTION 

shown to be very promising for the identification of several novel TLR2 antagonist with 

activity in the µM range by using virtual screening techniques. 

Mistry et al.161 have also reported the identification of two novel small 

molecule inhibitors of TLR2 signaling by targeting a pocket within the so-called BB loop 

of the TLR2 TIR domain. The TIR domain, located on the cytosolic face of all TLRs and 

adaptor proteins24 (in TLR2, MyD88 and TIRAP) has been proven to be key for signaling 

through the mediation of certain homotypic and heterotypic PPIs162 that triggers 

downstream signaling cascades and ends in the production of pro-inflammatory 

cytokines and chemokines.163 The crystal structures of human TLR2 and TLR1, as well 

as the P681H mutant of the TLR2 TIR domain93 revealed that the BB loop connects 

strand β-B and helix α-B and sticks out of the structure. The P681H mutation in the BB 

loop has shown to preclude the recruitment MyD88 and therefore TLR2 signaling. 

A pocket within this BB loop of hTLR2, formed by 10 residues (Tyr647, Cys673, 

Asp678, Phe679, Ile680, Lys683, Asp687, Asp688, Asp691, and Ser692) neighboring the 

highly conserved Pro681 and Gly682 pair, was selected as the target for searching new 

TLR2 modulators. Flexible ligand docking of a collection of commercially available small 

molecules and FDA-approved compounds (> 1 million compounds) was performed 

using the DOCK algorithm164 based on the anchor-and-grow search method.165 First, a 

primary docking was performed where each rotatable bond was minimized while 

created without reminimizing the other bonds, with a minimization of the complete 

molecule once it was built. The most favored conformation of each molecule in terms 

of interaction energy was conserved. This resulted in the selection of 50 000 

compounds that were subjected to a secondary docking step with an additional 

simultaneous minimization step of all rotatable bonds against the crystal structure 

(PDB-ID: 1FYW) and three additional conformations obtained from MD simulations of 

the protein.166 

The top 1 000 compounds that exhibited the most favorable interaction 

energies, taking into account every protein conformation, led to the selection of 149 

compounds and 20 FDA-approved drugs attending to chemical diversity and 

physicochemical properties for biological testing in HEK293T-TLR2 transfectants. 
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1. INTRODUCTION 

Among them, compound C29 (Table 1.2) was able to inhibit/disrupt/block both TLR2

TLR1 and TLR2-TLR6 signaling induced by synthetic and bacterial agonist in human cell 

lines. Pam3CSK4- and Pam2CSK4-induced IL-8 mRNA was decreased by compound C29 

in stably transfected HEK-hTLR2 in a dose dependent manner, as well as IL-1β gene 

expression in the human monocytic cell line THP-1. Other effects were not exhibited in 

other TLR agonist- of TNF-α induced signaling nor cytotoxic effects/ This behaviour was 

also observed when HEK-hTLR2 and THP-1 cells were stimulated with heat-killed or live 

Gram-positive and Gram-negative bacteria. 

Notwithstanding, C29 only showed activity on TLR2/1 signaling pathway, 

disrupting only P3C-and Staphylococcus aureus lipoteichoic acid-induced IL-1β mRN! 

in murine macrophages. C29L (o-vanillin), a derivative from the imine cleavage of C29 

in alkaline conditions (NaOH, 65 µM), displayed similar activity and potency in NF-B 

luciferase reporter assay in HEK293T cells and has the advantage of a better water 

solubility. It was shown to be active both in vitro and in vivo. In this work, Mistry et al. 

also performed an Alanine scanning mutagenesis of every residue within the BB loop 

using Y647A as a control mutation as it has been reported to play no role in TLR2 

signaling.167 All 10 BB loop pocket mutants resulted crucial for TR2/1 signaling but not 

for TLR2/6 signaling, were mutations C673A, I680A, K683A, and S692A were found to 

not be needed for TL2/6 signaling. 

Virtual Screening Studies in TLR3 

Toll-like receptor 3 (TLR3) is located at the membrane of the endoplasmic 

reticulum, endosomes, multivesicular bodies, and lysosomes. TLR3 forms a large 

horseshoe shape that contacts with a neighboring horseshoe, yielding a dimer of two 

horseshoes. The overall horseshoe-shaped structure of the ectodomain TLR3 is formed 

by 23 repeating LRRs, ligand-binding domain that is composed of leucine-rich repeats 

(LRRs).168 Some X-ray crystallographic structures are available from mouse (PDB-ID: 

3CIG and 3CIY) and from human (PDB-ID: 2AOZ and 1ZIW). TLR3 recognizes specifically 

dsRNA, and the activation of the receptor induces the secretion of type I interferons 
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1. INTRODUCTION 

and pro-inflammatory cytokines, like a TNF-, IL-1 and IL-6, triggering immune cell 

activation and recruitment of the adaptor molecule TRIF via TIR domain interaction.169 

In contrast to other TLR ligands, dsRNA signaling occurs via MyD88-independent 

pathways.170 It has also been reported to recognize synthetic analogue polyinosinic

polycytidylic acid, Poly(I:C).171 Therefore, the TLR3/dsRNA complex constitutes an 

important target in multiples infectious diseases and cancer, as it has been shown to 

be implicated in several infection models like a herpes simplex encephalitis,172 West 

Nile disease, phlebovirus, vaccinia and Influenza A.173-176 It has also been reported that 

double-stranded DNA from necrotic cells during inflammation or viral infection 

activates the signal of TLR3.177 

Cheng et al. have reported the development of small-molecule probes that 

exhibited activity as competitive inhibitors of dsRNA binding to TLR3.178 The authors 

performed a VS in the dsRNA binding domain of TLR3 using the ENAMINE drug 

database. The docking protocol was performed into the dsRNA binding domain of 

mouse TLR3 (PDB-ID: 3CIY) with Glide program. A HTVS protocol was employed for the 

first docking and ranking, followed by SP protocol for the top 10 000 compounds. The 

resultant top 5 000 compounds were subsequently docked using the more accurate 

and computationally intensive XP mode of Glide. First top-ranked 100 compounds 

were selected and re-ranked by predicted binding energy. The authors finally selected 

nine hits compounds for evaluation by cell assay of TLR3 activation (ENAMINE codes 

are: T5528092, T5631009, T5630975, T0519-9149, T5626448, T5643856, T5260630, 

T55994342, T0505-4844, Table 1.3). 

49
 



 

 

 

   

  

  

   

 

 

   

 
 

  

  

 

   

 

 
  

 
  

 

    

  

 

   

 
  

  

 

    

  

 

   

 

 
  

 

  

 

  
 

   

 

   

 

  

 

  
 

   

 

 
  

 

  

 

 


 


 





 


 


 


 

1. INTRODUCTION 

Table 1.3. 2D Chemical structure of TLR3 and TLR7 modulators identified by VS techniques and 

mentioned in this review. The database codes are provided. 

TLR3 TLR7
 

No X-ray
 

crystallographic structure 


available
 

3D structure from PDB-ID: 3CIY 

(R) Compound 4a178 ENAMINE: T5528092178 
Query 1 

ZINC: 
ZINC1667204179 

TLR3 inhibitor TLR3 inhibitor (Imiquimod)179 

TLR7 inhibitor 

T5631009178 ENAMINE: T5630975178 ZINC: ZINC39698179 

Query 2179 

TLR3 inhibitor TLR3 inhibitor TLR7 inhibitor 

T0519-9149178 ENAMINE: T5626448178 ZINC: 
ZINC12382420179 ZINC: ZINC36416179 

TLR3 inhibitor TLR3 inhibitor 
TLR7 inhibitor 

TLR7 inhibitor 

ENAMINE: T5643856178 ENAMINE: T5260630178 ZINC: ZINC4756232179
 

TLR3 inhibitor TLR3 inhibitor TLR7 inhibitor
 

ENAMINE: T55994342178 ENAMINE: T0505
4844178 ZINC: ZINC8686004179 

TLR3 inhibitor 
TLR3 inhibitor 

TLR7 inhibitor 
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1. INTRODUCTION 

Most of these nine hits resulted to share a structural motif: the chemical 

structure of a D-amino acid conjugated with an aromatic substituent, thus yielding a 

new pharmacophore for the TLR3 binding site. To select the best ranked compounds, 

they took into account different benchmarks: a) predicted binding energy and spatial 

complementarity; b) reasonable chemical structures found in the dsRNA-binding site of 

TLR3; c) existence of at least one H-bond between the ligand and one of the dsRNA

recognizing residues on the TLR3 surface (e.g. His539, Asn541, and Ser571); d) 

protonation state and tautomeric form of the ligand had to be acceptable. 

A dsRNA, Poly(I:C) was employed to selectively activate TLR3 signaling, resulting 

in the activation of nitric oxide (NO) synthase and the production of NO in RAW 264.7 

macrophage cells.180 They monitored the NO level as an indicator of Poly(I:C)-induced 

TLR3 activation to evaluate the inhibitory activity. Hit compounds T5626448 and 

T5260630, both derivatives of D-Phe, were identified with IC50 values of 154 μM and 

145 μM respectively. Different analogues were synthesized and SAR analysis was 

performed. Finally, only one compound, a T5626448 derivative (compound 4a in Table 

1.3), was identified as a very potent dose dependent TLR3 antagonist, with a low μM 

IC50 value (3.44 ± 0/41 μM)/ However, in the case of T5260630 analogues, not 

significant improvement in the activity was observed, so they only focused on the 

T5626448 derivative family. 

Compound 4a was also tested against homologous TLRs: TLR1/2, TLR2/6, TLR3, 

TLR4 and TLR7 using TLR specific ligands, but only TLR3 inhibition was observed. Other 

different biological assays were performed, finding that compound 4a did not affect 

cytochrome P450 CYP3A4, CYP2D6, and CYP2C19 isoforms. Tests on RAW 264.7 

macrophages were also carried out showing low toxicity, and kinase profiling showed 

that 4a demonstrates negligible inhibition activity against a panel of 12 representative 

kinases. Biophysical tests were also carried out, with a negative control, to 

demonstrate that 4a binds to TLR3. Fluorescence anisotropy assay demonstrated that 

this compound competes with dsRNA for binding to TLR3 with a Ki value of 2.96 μM. By 

an ELISA assay, 4a was also demonstrated to inhibit the downstream signaling 

transduction mediated by the formation of the TLR3/ds RNA complex, showing that 
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1. INTRODUCTION 

this compound almost completely abolishes the TL3-mediated inflammation response 

at its IC90 concentration (27 μM). Finally the inhibitory effects of TNF- by compound 

4a at 10 μM were also tested with a result of 60% inhibition, agreeing with the results 

observed in the NO synthase assay. 

Virtual Screening Studies in TLR4 

In the search of novel TLR4 modulators, Yin et al. have applied a computational 

methodology to the identification of small drug-like inhibitors of TLR4/MD-2 PPIs.181 

The authors have developed a novel in silico screening methodology incorporating 

molecular mechanics (MM) and implicit solvent methods181 to evaluate binding free 

energies, in order to improve affinity prediction accuracy without reducing screening 

speed. The ENAMINE database collection was screened against the TLR4/MD-2 

complex of the crystal structure of the human TLR4 TV3 hybrid-MD-2-Eritoran complex 

(PDB-ID: 2Z65). The library was clustered to ensure the least possible computational 

work, while keeping as much of the full chemical diversity of the available library as 

possible. A combination of Jarvis-Patrick and Li algorithms182-183 was used; as well as 

the Tanimoto similarity calculation184-187 with Daylight fingerprints in order to measure 

the distance between the molecules. About 86 000 clusters were isolated. Then, the 

compounds representing the cluster centroids were taken, and an additional filter that 

matched the molecular volume to the biding site was applied. 

Fast molecular docking for the generation of binding poses and subsequent MD 

simulations were performed to rank the ligand poses according to their binding 

affinities. The hits were profiled against a library of 500 representative human proteins 

as a selectivity filter in order to remove the non-specific inhibitors. Finally, as a proof of 

concept, the compounds were screened against both TLR4 and MD-2 to validate the 

181, 188strategy. Two compounds, T5342126 and T6071187 (Table 1.4) were identified as 

potential TLR4- and MD-2-specific antagonists, respectively, completely abolishing LPS

induced activation of signaling. Their biological activity and selectivity were tested in 

vitro using Akt1 and nitric oxide in RAW264.7 cells. 
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1. INTRODUCTION 

In another study, Gobec et al.188 performed parallel ligand-based and structure 

based virtual screenings in order to identify novel TLR4 antagonists targeting the 

TLR4/MD-2 interface using the crystal structure of the human TLR4 TV3 hybrid-MD-2 

Eritoran complex (PDB-ID. 2Z65)/ For both ligand-based and structure-based virtual 

screening, they used the ZINC drug-like subset (~ 11/3 million drug-like compounds) 

from the ZINC database/189 

Regarding the ligand-based virtual screening, they used the OMEG! software190 

on the compound T5342126 (Table 1.4),188 a known TLR4 antagonist, to generate 5 

query conformers/ ROCS software was then used to compare the database to all query 

conformers/ The single best overlay hits were ranked according to the TanimotoCombo 

scoring function,190 considering similarities in the molecular shape and color of atom 

types/ Thereby 5 compounds were identified (ZINC51408124, ZINC464832, 

ZINC26905159, ZINC32525142 and ZINC32524933, Table 1.4) and evaluated in vitro/ 

Unfortunately, these compounds were either not water soluble, or not active, or 

presented cytotoxicity on HEK293 cells/ 

For the structure-based virtual screening, before the docking process, they 

performed an enriching procedure, using ROCS software between the database and 

T5342126, the query molecule, in order to reduce the number of compound and to 

enrich it/ Two sets of 25 000 compounds each, were created. set 1 with the highest 

shape similarities to T5342126, using ShapeTanimoto algorithm, and set 2 with both 

the highest shape and color (atom type) similarities to T5342126, using the 

TanimotoCombo algorithm/191 Both sets were merged and the duplicates were 

removed, leading to a total of 49 600 unique compounds left/ The docking procedure 

was carried out using FlexX program and the active site was defined as an area of TLR4 

within 8 Å around the interacting MD-2 loop (Gly97-Leu108)/ LeadIT-implemented 

pharmacophore constraints were performed then in order to keep only the compounds 

that can form interactions with at least one of the polar amino-acid residues such as 

Ser183 and !sp209 of TLR4, and !rg106 of MD-2/ !t the end of the implementation, 25 

750 compounds had been kept, and the docking procedure was performed/ The 

compounds have been finally ranked according to their best scoring conformation 
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1. INTRODUCTION 

using LeadIT score and 40 were selected and assessed in vitro/ !fter the first in vitro 

assay, only 14 compounds were sufficiently water-soluble, up to 500 μM, and 

completely non-cytotoxic at 100 μM/ Those received further biological evaluation using 

HEK-BlueTM hTLR4 cells, and 3 compounds with promising antagonistic activities were 

discovered. ZINC25778142, ZINC49563556 and ZINC3415865/ 

Table 1.4. 2D Chemical structure of TLR4 modulators identified by VS techniques and 

mentioned in this review. The database codes are provided. 

ENAMINE: T5342126192 ZINC: ZINC04272679193 ZINC: ZINC00611718193 

TLR4 inhibitor Predicted TLR4 inhibitor Predicted TLR4 inhibitor 

ENAMINE: T6071187192 ZINC: ZINC04272561193 ZINC: ZINC48141941193 

MD-2 inhibitor Predicted TLR4 inhibitor Predicted TLR4 inhibitor 

ENAMINE: T5339238 
ENAMINE: T6969316 

ZINC: ZINC25778142188 ZINC: ZINC09535665193 ZINC: ZINC51408124188 

TLR4 inhibitor Predicted TLR4 inhibitor 
TLR4 activity not determined 

(solubility problems) 
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1. INTRODUCTION 

ENAMINE: T5458371 
ZINC: ZINC70039563193 ZINC: ZINC464832188 

ZINC: ZINC49563556188 

TLR4 inhibitor 
Predicted TLR4 inhibitor 

TLR4 activity not determined 
(cytotoxicity on HEK293 cells) 

ENAMINE: T5315798 
ENAMINE: T6417643 

ZINC: ZINC3415865188 
ZINC: ZINC29450369193 

ZINC: ZINC26905159188 

TLR4 inhibitor 
Predicted TLR4 inhibitor Predicted TLR4 inhibitor but 

not active 

ENAMINE: T6280209 

ZINC: ZINC64951618193 ZINC: ZINC41124663193 
ZINC: ZINC32525142188 

Predicted TLR4 inhibitor Predicted TLR4 inhibitor Predicted TLR4 inhibitor but 
not active 

ENAMINE: T6279749 

ZINC: ZINC64951738193 ZINC: ZINC08687988193 
ZINC: ZINC32524933188 

Predicted TLR4 inhibitor Predicted TLR4 inhibitor Predicted TLR4 inhibitor but 
not active 
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1. INTRODUCTION 

ZINC: ZINC72278680193
 

Predicted TLR4 inhibitor
 

In other work, Sowdhamini et al.193 used homology modeling, docking, and 

virtual screening techniques, in combination with known experimental data, molecular 

mechanics calculation to identify novel and potential small molecule inhibitors of 

TR!M-mediated TLR4 signaling/ For this purpose, they identified TLR10 TIR dimer as 

the best model to build the TIR domain of TLR4 as a dimer/ Then, they modeled the C-

terminal region of the !46 poxviral protein containing the VIPER motif, using the crystal 

structure of !52 poxviral protein (PDB-ID. 2VVW) as a template/ This motif is capable to 

bind the TIR domain of different adaptor proteins/ !fter having obtained the two 

models, they performed a two-phase docking for creating reliable models of the 

complex between the TR!M TIR homology model and the VIPER peptide segment/ ! 

virtual screening was then, performed onto the complex/ They used the lead-like and 

drug-like subsets of the ZINC database, totaling 32 million of compounds/ The ligands 

2D structures were converted into their 3D structure including all possible 

stereoisomers, tautomers, and ionization states under a pH range of 6-8, the hydrogens 

were added and the structures were optimized and minimized in LigPrep/ The library 

was preliminary screened based on !DMET properties and reactive functional groups, 

using Qikprop and Lipinski�s rule of five/194 The amino acid residues constituting the BB 

loop (110-122) and alphaC helix (141-154) of the TLR4 TIR domain were selected for 

generating the receptor grid/ 

Glide was used for the docking by concatenating the three protocols. HTVS, SP 

and XP/ The top 10% compounds, based on the Glide score, obtained from the HTVS 

step were retained for the subsequent step/ These were re-docked using the SP 

module/ The XP module was used to perform a more extensive docking of the top 10% 

compounds carried forward from the SP step/ Final ranking of the compounds was 
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1. INTRODUCTION 

based on their Glide XP Score/ The compounds having similar scaffold were then 

clustered using C!NV!S195-196 resulting in a pool of 265 chemically diverse structures/ 

These selected compounds were submitted to induced fit docking within the Maestro 

suite197-199 to restrict the flexibility only into the binding site/ For this purpose, they 

used the Glide SP protocol to generate 2 000 poses for each molecule within the 

binding site/ Finally, they inspected the top 20 receptor-ligand poses for each ligand to 

see if potential interaction between the binding site residues and the ligand atoms 

were maintained or disrupted upon incorporating flexibility to the residues, and the 

ligands with more interactions conserved throughout most of the poses were selected/ 

Binding free energy calculations were performed on the top two poses generated 

during induced-fit docking of each compound/ These complexes between the TR!M TIR 

homology model and each ligand were ranked according to this analysis and a final 

structural analysis of the ligand/receptor interactions was performed, shortlisting 12 

molecules (Table 1.4)/ Interestingly, compound ZINC08687988 remained firmly bound 

in the pocket even after incorporating a considerable degree of conformational 

flexibility during the MD simulations carried out in the complexes/ To date, no further 

biological testing has been performed yet/ 

Virtual Screening Studies in TLR7 

Toll-like receptor 7 (TLR7) is intracellularly located at the membranes of 

endosomes, endoplasmic reticulum, multivesicular bodies, and lysosomes.200 Its 

function is related to defense against viral infection by recognizing single-stranded RNA 

(ssRNA) and small-interfering RNA (siRNA) from viruses,201-202 including human 

immunodeficiency virus, influenza, and vesicular stomatitis virus.203 The host can also 

utilize TLR7 to detect RNA released into endolysosomes by phagosomal bacteria. 

Several synthetic ligands have also been reported to modulate TLR7, such as 

imidazoquinoline derivatives (resiquimod and imiquimod), and guanine analogues.204 

Also, TLR7 recognizes guanosine- and uridine-rich ssRNA, and synthetic polyuridines 

act as potent ligands.202 The development of new antagonist modulators could have 
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1. INTRODUCTION 

important applications for the treatment of autoimmune disorders, like rheumatoid 

arthritis, Sjogren’s syndrome, and systemic lupus erythematosus.14 

Since no X-ray crystallographic structure of TLR7 is available to date, in order to 

identify TLR7 modulators, Gobec et al. undertook a ligand-based VS.179 ROCS was 

employed to carry out the screening protocol from which six compounds with three 

novel chemical scaffolds were discovered. The authors employed ZINC database and 

OMEGA software to prepare the compound library. With the help of ROCS, two query 

compounds were identified as TLR7 binders: query 1 (imiquimod) and query 2 (1-(4

amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol) (Table 1.3). 

Imiquimod (query 1) is a TLR7 agonist currently used for topical treatment of genital 

warts caused by human papillomavirus, actinic keratosis, and superficial basal cell 

carcinoma,205 and query 2 compound was developed in the last years in a systematic 

SAR exploration study as the most potent imidazoquinoline with TLR7 agonist 

activity.206 

From queries 1 and 2, the authors performed parallel VS studies. The results 

were ranked taking into account the TanimotoCombo score, and the best results from 

both VS were finally merged. The best 25 ranked compounds were selected and 

submitted to biological assays, only considering soluble and available compounds. 

Cytotoxicity tests were performed with HEK-BlueTM hTLR7 determined using a 

propidium-iodide based staining method and none of the compounds showed 

cytotoxicity at 250 μM/ In the subsequent step, the soluble compounds were assayed 

for TLR7 agonist activity at 250 and 500 μM using the reporter assay but none of the 

compounds showed any notable agonist activity/ Finally, to evaluate the antagonist 

activity, the compounds were tested using HEK239 cell line co-transfected with hTLR7 

gene using imiquimod as a control/ Six compounds were identified as antagonists at the 

μM scale containing three novel chemical scaffolds. chromeno[3,4-d\imidazole-4-one, 

1H-imidazo[4,5-d\pyridazine-4,7-dione, and 6-amino-9H-purine (ZINC codes 12382420, 

1667204, 39698, 36416, 4756232, and 8686004, Table 1.3)/ The authors also propose a 

simple and straightforward synthesis of derivatives from the chromeno[3,4d\imidazole

4-one scaffold which showed promising TLR7 antagonistic activities/ 
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1. INTRODUCTION 

Virtual Screening Studies in TLR8 

Toll-like receptor 8 (TLR8) is an endosomal membrane receptor that recognizes 

single stranded RNA (ssRNA) from viruses. TLR8207 is expressed in monocytes and 

myeloid dendritic cells.208-209 TLR8 signaling pathways are mediated by MyD88; this 

adaptor protein activates NF-κB, IRF-7, and p38 MAPK, resulting in the induction of 

pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-12, and antiviral type I 

interferons. Therefore, TLR8 is a promising target in the development of vaccine 

adjuvants and anticancer agents.210 The 3D structure is well-known and six X-Ray 

crystallographic structures of human TLR8 in complex with six agonists are available 

211-213 (PDB-ID: 3W3J, 3W3K, 3W3N, 3WN4, 4Q8Z, and 4QC0). TLR8 consists of an 

extracellular domain with a horseshoe-shape containing 26 LRR modules, being the 

ssRNA binding site very large and flexible. Ligand binding induces reorganization of the 

pre-organized TLR8 dimer finally enabling downstream signaling processes.211 

To overcome the difficulty of targeting a flexible binding site, Pei et al.195-196 

have performed an enrichment assessment of multiple virtual screening methods, and 

developed a combined strategy to improve the performance of virtual screening for 

TLR8 agonists. First, they have created a knowledge-based pharmacophore (KBP) by 

merging structure-based pharmacophore and previous SAR analysis including furo[2,3

c]pyridines, furo[2,3-c]quinoles, thiazolo[4,5-c]quinolones, 3-R-quinolone-2-amine, and 

C7-methoxycarbonyl-imidazoquines. The combination of the KBP screening with ROCS 

search was used to improve the efficiency of the virtual screening process. The authors 

prepared a benchmarking data set merging 13 known active compounds,214-217 15 

known inactive compounds, and decoys from ZINC database.218 So finally they had 13 

actives and 1302 decoys. The benchmarking data set was generated from their 

recently developed MUBD-Decoymaker protocol.219 

The six TLR8 crystal structures were used to generate SB pharmacophores and 

shape-based 3D similarity search queries by means of LigandScout software. Eight 

pharmacophore models were derived with similar backbones in agreement with 

reported SAR for TLR8 agonists: three hydrophobic centroids, two aromatic rings, one 

H-bond donor, and one H-bond acceptor. The eight KBPs were used to screen the 
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1. INTRODUCTION 

benchmarking data set in order to select the most robust KBP. The authors selected 

the so-called “Phar1” as the priority KBP and reserved it for the subsequent antagonist 

verification. 

In order to perform an antagonist verification data set to test the 

agonist/antagonist selectivity of their selected KBP, twenty reported antagonists were 

used.206 For the shape-based 3D similarity search, the authors performed ROCS queries 

through the alignment of the six ligands from the six crystal structures, using 

TanimotoShape and TanimotoCombo scores. Among the resulting queries, the so

called “Query4” was taken into further analysis because of its excellent performance/ 

As an additional step in the protocol, a comparative study was performed with four 

docking programs: AutoDock VINA, GOLD, Surflex-Dock and Glide. Cross-docking runs 

were performed with 20 cognate ligands and five dimer TLR8 complexes. Average and 

median RMSD values were statistically analysed to determine which program and 

which crystal structure best matched VS. Taken together, GOLD was identified as the 

most suitable docking program in conjunction with PDB-ID: 3W3J for the VS evaluation 

of the protocol. 

Finally, the selected pharmacophore “Phar1” was combined with the ROCS 

“Query4” in different ways to get to the best performance as VS strategy for TLR8 

agonists. Final docking with GOLD and PDB-ID: 3W3J, led to the screening of seven 

compounds, being three of them known active ligands as TLR8 agonists. The authors 

conclude that this “Phar1_Q4_Gold” strategy was proved to be a promising practice 

for the identification of novel TLR8 agonists. Indeed, this computational effort can be 

of help for the design of efficient VS strategies in other TLRs. 

60
 



 

 

 

  

        

   

    

       

       

     

         

 

 

     

        

     

       

          

    

        

   

      

 

     

       

   

        

      

      

 


 

1. INTRODUCTION 

1.3 Objectives 

The main objective of this Thesis is to deepen into the elucidation of the 

molecular recognition processes involving TLR4/MD-2 at atomic detail by means of 

computational techniques. Computational methodologies, such as MD simulations, 

protein-protein docking and membrane simulations will be applied to the study of the 

molecular mechanisms involved in the TLRs functionality, and in the recognition of 

PAMPs, such as natural lipopolysaccharides (LPS), synthetic glycolipids and non-LPS 

modulators. This knowledge will be used to help in the design and identification of 

new modulators. 

These studies will be carried out by addressing the following specific objectives: 

- CHAPTER 3: Reported modulators of the TLR4/MD-2 system with agonist and 

antagonist activity will be study, more concrete, the theoretical binding modes will be 

predicted. In particular, we will focus our work in synthetic glycolipids lipid A analogues 

and non LPS-like molecules. For all these reported TLR4/MD-2 modulators, there is not 

binding mode proposed. It is clear that, although these molecules have a different 

chemical structure, they must share a common pattern of interactions when bound to 

TLR4/MD-2. We will undertake a computational study of some representative 

compounds to unveil some of these patterns of interactions. 

- CHAPTER 4: The cationic glycolipid IAXO-102, a potent TLR4 antagonist 

targeting both MD-2 and CD14 co-receptors, will be use as scaffold to design new 

potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex 

(membrane TLR4/MD-2 dimer and CD14). Our modelling studies will led us to the 

proposal of 3D models for the interaction with CD14 and TLR4/MD-2 accounting for 

their binding properties and also for their antagonistic activity. 
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1. INTRODUCTION 

- CHAPTER 5: Virtual screening strategies from commercial and in-house 

libraries, followed by biological assays, will be used to the identification of new 

chemical entities with activity in the TLR4 complex, useful for the development of 

novel TLR4 modulators with a non LPS-related structure. 

- CHAPTER 6: The computational building of the full structure of the TLR4/MD-2 

heterodimer will be addressed, simulating the TLR4/MD-2 complex in the membrane 

environment. We are very much interested in the study of the dynamics of the full 

TLR4 at atomic level. The analysis of the molecular dynamics simulations will led us to 

understand the key interactions implicated in the molecular recognition events and in 

the dimerization process of this complex. 
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2. COMPUTATIONAL TECHNIQUES 

2. Computational Techniques In Drug Design And In Molecular Recognition 

Studies 

The principal aim of computational techniques in drug design is to predict 

whether a given molecule or ligand will bind to a biological target and, if so, how 

strongly. This allows the computational design of novel molecules with enhanced 

(predicted) affinity, and guides the synthesis in the optimization protocol. When 

studying molecular recognition events, it also is important the prediction of binding 

poses between small molecules and macromolecules, and/or interactions between 

macromolecules (e.g., dimerization events). Docking techniques predict the possible 

binding poses at a concrete binding site of the target, and provides a first estimation of 

the binding energy. The estimation of the strength of the intermolecular interaction 

between the ligand and its biological target is most often performed by molecular 

mechanics (MM) and molecular dynamics (MD). These methods are also used to 

predict the conformation of the small molecules and to model conformational changes 

in the target that may occur when the small molecule binds to it. Semi-empirical, ab 

initio quantum mechanics methods and density functional theory (DFT) are often used 

to provide optimized parameters for the molecular mechanics calculations and also to 

estimate the electronic properties (electrostatic potential, polarizability, etc.) of the 

drug candidate that will influence binding affinity. 

In this Thesis, diverse computational techniques have been applied to decipher 

some of the basis at the atomic level regarding the mechanism of functioning and the 

ligand recognition processes involving the TLR4/MD-2 system. 

2.1 Docking 

Molecular docking has become an important tool for drug discovery. Basically, 

the aim of molecular docking is to give a prediction of the ligand-receptor complex 

structure using computation methods. Docking can be achieved through two 

interrelated steps: first, by sampling conformations of the ligand in the active site of 

the protein; then, ranking these conformations via a scoring function. Ideally, sampling 
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2. COMPUTATIONAL TECHNIQUES 

algorithms should be able to reproduce the experimental binding mode, and the 

scoring function should also rank the best bound pose among all the generated 

conformations. 

The interaction between protein and ligand has been thought as key-lock 

system. This key-lock model is easy to reproduce with a rigid docking where both 

ligand and protein are treated as rigid. The global vision of this model evolved with the 

advent of the induced-fit theory by Koshland, in which a mutual conformation change 

of both ligand and protein occurs at the moment of the interaction.1 However, these 

two theories are now better substituted by the concept of conformational ensembles. The 

real three-dimensional structure will be represented by an ensemble of structures which 

interconvert through dynamic processes. Thus, the study of dynamics and its impact in 

conformation and molecular recognition is of paramount importance within this field. 

Karush defines this as a configurational adaptability in which the best-fitting configuration 

for a biomolecule after interacting with a ligand would become selected from the whole 

structural ensemble.2 Furthermore, Weber suggested that the binding with a ligand shift 

the conformational equilibrium of the receptor in favor of those conformers in the 

dynamic ensemble that are most complementary to the ligand.3 

The most popular method treats only the ligand as flexible, although receptor 

flexibility is becoming incorporated in several docking programs. The flexibility of a 

protein can be included into the binding site before the docking or afterward it is 

possible to generate different ensembles structures from MD simulation or from 

Normal Mode Analysis (NMA). Some programs use different strategy in order to 

include the flexibility in the receptor. For example, AutoDock4 program allows the 

selection of some bonds of the side chain of several residues as rotatable bonds when 

performing the docking of the ligand. Another strategy is to perform a conformational 

search and a refinement of some side chains of selected residues or in the region of 

the binding site while docking the ligand (e.g. Glide program).4-5 Obviously this 

techniques have an higher computational cost than considering the receptor as rigid.6 
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2. COMPUTATIONAL TECHNIQUES 

In structure-based drug design, the scoring function is one of the most 

important components.7 It is important to development of an energy scoring function 

that can rapidly and accurately describe the interaction between protein and ligand. 

There are three important applications of scoring functions in molecular docking: 

1. The first of these is the determination of the binding mode and site of a ligand 

on a protein. Given a protein target, molecular docking generates hundreds of 

thousands of putative ligand binding orientations/conformations at the active site 

around the protein. A scoring function is used to rank these ligand 

orientations/conformations by evaluating the binding tightness of each of the putative 

complexes. 

2. The second application of a scoring function, which is related to the first 

application, is to predict the absolute binding affinity between protein and ligand. This 

is particularly important in lead optimization. Lead optimization refers to the process 

to improve the tightness of binding for low-affinity hits or lead compounds that have 

been identified. During this process, an accurate scoring function can greatly increase 

the optimization efficiency and save costs by computationally predicting the binding 

affinities between the protein and modified ligands before the much more expensive 

step of ligand synthesis and experimental testing. 

3. The third application, perhaps the most important one in structure-based drug 

design, is to identify the potential drug hits/leads for a given protein target by 

searching a large ligand database, i.e. virtual database screening. A reliable scoring 

function should be able to rank known binders most highly according to their binding 

scores during database screening. Given the expensive cost of experimental screening 

and sometimes unavailability of high-throughput assays, virtual database screening has 

played an increasingly important role in drug discovery. 

All of these three applications, ligand binding mode identification, binding affinity 

prediction, and virtual database screening, are related to each other. 

The different categories of scoring function could be: 

- Force field scoring function: 
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2. COMPUTATIONAL TECHNIQUES 

Force field (FF) scoring functions8 are developed based on physical atomic 

interactions including van der Waals (VDW) interactions, electrostatic interactions, 

and bond stretching/bending/torsional forces. Force field functions and parameters 

are usually derived from both experimental data and ab initio quantum mechanical 

calculations according to the principles of physics. Despite its lucid physical meaning, a 

major challenge in the force field scoring functions is how to treat the solvent in ligand 

binding. The scoring function is composed of two energy components of Lennard-Jones 

VDW and an electrostatic term (Equation [2.1]): 

ቄዽዾ ቅዽዾ ቮዽቮዾ
ቈ ቭ ዮዮቧ ቖ ቧ ቛ ቦ ቨ [2.1]

ቯዽዾ ቯዽዾ ዾኌቯዽዾነቯዽዾዽ ዾ 

where rij represents the distance between an atom i of the protein and an atom j of 

the ligand. Aij and Bij are the van der Walls parameters, and qi and qj are the atomic 

charges of the atom i and j respectively. Here, the effect of solvent is implicitly 

considered by introducing a simple distance-dependent dielectric constant ε(rij) n the 

Coulombic term. 

- Empirical scoring function: 

Empirical scoring function9-10 estimates the binding affinity of a complex on the basis of 

a set of weighted energy terms. Compared to the force field scoring functions, the 

empirical scoring functions are much faster in binding score calculations due to their 

simple energy terms. Glide Score is one of the examples of empirical scoring function 

(Equation [2.2]): 

ዠቊ ቭ ዮቚዽዠቊዽ [2.2] 
ዽ 

ΔGi represents different energy terms such as VDW energy, electrostatics, hydrogen
 

bond, desolvation, entropy, hydrophobicity, etc. ΔGi stands for the individual empirical
 

energy terms and the corresponding coefficients Wi.
 

- Knowledge-based scoring function:
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2. COMPUTATIONAL TECHNIQUES 

Knowledge-based scoring function11-12 employs energy potentials that are derived 

from the structural information embedded in experimentally determined atomic 

structures: 

ሊቛቯቜ [2.3]ሒቛቯቜ ቭ ቧቨዜቩቫ ቩ  
ሊዼቛቯቜ 

In this Equation [2.3] the scoring function is dependent on the density of the 

protein-ligand atom pair at the distance r (ρ(r)) in the training set, and the pair density 

in a reference state (ρ*(r)) where there are no interatomic interactions at the absolute 

temperature T. kB is the Boltzmann constant. 

In this thesis, three different docking protocols were used: AutoDock4,13 VINA14 and 

Glide.5, 15 

2.1.1 AutoDock4 

AutoDock413 combines an empirical free energy force field with a Lamarckian 

Genetic Algorithm. The force field evaluates binding in two steps. The ligand and 

protein start in an unbound conformation. In the first step, the intramolecular 

energetics are estimated for the transition from these unbound states to the 

conformation of the ligand and protein in the bound state. The second step then 

evaluates the intermolecular energetics of combining the ligand and protein in their 

bound conformation. 

The force field includes six pair-wise evaluations (V) and an estimate of the 

conformational entropy lost upon binding ዠቖዷሃሂዺ (Equation [2.4]) 

ዦበዦ ዦበዦ ዪበዪ ዪበዪ ቜዠቊ ቭ ቛዶሃሉሂዸ ቧ ሉሂዶሃሉሂዸ ቜ ቦ ቛዶሃሉሂዸ ቧ ሉሂዶሃሉሂዸ 
[2.4]

ዪበዦ ዪበዦቦ ኌዶሃሉሂዸ ቧ ሉሂዶሃሉሂዸ ቦ ዠቖዷሃሂዺነ 

where L refers to the “ligand” and P refers to the “protein” in a ligand-protein docking 

calculation. 
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2. COMPUTATIONAL TECHNIQUES 

Each of the pair-wise energetic terms includes evaluations for 

dispersion/repulsion, hydrogen bonding, electrostatics, and desolvation (Equation 

[2.5]): 

ቄዽዾ ቅዽዾ ቆዽዾ ቇዽዾ
 ቭ ቚሊዸዱ ዮቧ ቧ ቨ ቦቚዼዶሃሉሂዸ ዮቈቛቱቜ ቧ ቧ ቨቖ ቛ ቖ ቖቕቯዽዾ ቯዽዾ ቯዽዾ ቯዽዾዽ ዾ ዽ ዾ 

[2.5]
ሆድዶ
 

ቮዽቮዾ ቛበ 
ሺ
ቜ

ቦቚዹሀዹዷ ዮቧ ቨ ቦቚሇሃሀ ዮኌቖዽዾ ቦ ቖዾዽነቢ ዾቛቯዽዾቜቯዽዾ
ዽ ዾ ዽ ዾ 

The weighting constants W have been optimized to calibrate the empirical free 

energy based on a set of experimentally determined binding constants. The first term 

is a typical 6/12 potential for dispersion/repulsion interactions. The parameters are 

based on the Amber force field. The second term is a directional H-bond term based on 

a 10/12 potential. The parameters C and D are assigned to give a maximal well depth 

of 5 kcal/mol at 1.9Å for hydrogen bonds with oxygen and nitrogen, and a well depth 

of 1 kcal/mol at 2.5Å for hydrogen bonds with sulfur. The function E(t) provides 

directionality based on the angle t from ideal H-bonding geometry. The third term is a 

screened Coulomb potential for electrostatics. The final term is a desolvation potential 

based on the volume of atoms (V) that surround a given atom and shelter it from 

solvent, weighted by a solvation parameter (S) and an exponential term with distance

weighting factor σ=3.5Å.16 

In the final ranking and clustering-based scoring methods also the loss of 

entropy (ΔSconf) associated to the binding is considered. This contribution is strictly 

related to the number of rotatable bonds (Ntors) in the ligand (Equation [2.6]). 

ዠቖዷሃሂዺ ቭ ቚዷሃሂዺቑለሃሆሇ [2.6] 

2.1.2 VINA 

AutoDock VINA (Vina is not AutoDock) is an open-source molecular docking 

program. 14 It has no graphical interface but it is compatible with MGLTools.17 However, 
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2. COMPUTATIONAL TECHNIQUES 

although MGLTools needs other files, such as AutoDock and AutoGrid parameter files 

(GPF, DPF) and grid map files, VINA does not need them. All it requires is the 3D 

structures of the molecules to be docked and the specification of the search space 

including the binding site. One limitation in VINA is that the maximum number of 

predicted binding poses is limited to 20 per ligand. 

AutoDock VINA uses a hybrid scoring function (Equation [2.7]), where the 

summation is over all of the pairs of atoms that can move relative to each other, 

normally excluding 1–4 interactions. Each atom is assigned a type ti, and a symmetric 

set of interaction functions ባለድለድዶኌሆድዶነ of the interatomic distance rij should be defined. 

በ ቭ ዮ ባለድለድዶኌሆድዶነ [2.7] 
ዽዕዾ 

where i and j represent two atoms and ti and tj their types and rij the interatomic 

distance, excluding the 1-4 interaction. A symmetric set of interaction functions ftitj 

should be defined. Basically, this sum corresponds to the sum of intermolecular and 

intramolecular contributions. Finally, the optimization algorithm used is the Iterated 

Local Search global optimizer.18 

It is inspired by X-score19 and tuned using the PDBbing20-21 and extracting 

empirical information from both the conformational preferences of the receptor

ligand complexes and the experimental affinity measurements. It is both an empirical 

and a knowledge-based function. Regarding the optimization algorithm, the Iterated 

Local Search global optimizer is used, and to treat ligand flexibility and optimization, 

VINA uses a stochastic method with the Iterated Local Search global optimizer.18, 22 

2.1.3 GLIDE 

Glide is a commercial docking program provided by Schrödinger.5, 15, 23 It uses a 

hierarchical series of filters to search for possible locations of the ligand in the active

site region of the receptor. It has a systematic method to treat ligand flexibility, with 
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2. COMPUTATIONAL TECHNIQUES 

an exhaustive search algorithm. The predicting binding affinity and the ranking of the 

binding pose is performed using GlideScore function based on ChemScore function 

(Equation [2.8]). 

ዠቊዶዽሂዸ ቭ ቆሃ ቦ ቆሀዽሄሃ ዮ ባቛቯሀሆቜ 

[2.8]ቦ ቆዼዶሃሂዸ ዮ ቤቛዠቯቜብቛዠዺቜ 

ቦ ቆሁዹለድሀ ዮባቛቯሀሁቜ ቦ ቆሆሃለዶቋሆሃለዶ 

The Glide protocol is intuitive and relies on 4 steps: the ligands and protein 

preparation, the receptor grid generation, and the docking process. Before launching 

the docking step, Glide has to generate a grid that represents the shape and the 

properties of the receptor, using several different sets of fields that provide 

progressively more accurate scoring of ligand poses. The grid permits to dock only the 

relevant region of the receptor, thus saving time calculations. 

Regarding the last point, the full docking VS workflow includes 3 docking 

stages: HTVS, SP (Standard Precision) and XP (eXtra Precision). The first stage performs 

High Throughput Virtual Screening (HTVS) docking. It is intended for rapid screening of 

very large number of ligands and has much more restricted conformational sampling 

than SP docking. The second stage performs SP docking. It is appropriate for screening 

ligands of unknown quality in large numbers. The third stage is the XP docking and 

scoring. It is a more powerful and discriminating procedure using an implementation of 

a modified and expanded version of the ChemScore scoring function, called 

GlideScore5 (Equation [2.9]) and categorized as an empirical scoring function. Glide can 

be used to perform virtual screening, accurate binding mode precision and 

furthermore, Glide exhibits excellent docking accuracy and high enrichment across a 

diverse range of receptor types. 
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2. COMPUTATIONAL TECHNIQUES 

ዠቊዶዽሂዸ ቭ ቆሀዽሄሃበሀዽሄሃ ዮ ባቛቯሀሆቜ 

ቦ ቆዼዶሃሂዸበሂዹሉለበሂዹሉለ ዮ ቤቛዠቯቜብቛዠዺቜ 

ቦ ቆዼዶሃሂዸበሂዹሉለበዷዼድሆዻዹዸ ዮ ቤቛዠቯቜብቛዠዺቜ 

[2.9] 
ቦ ቆዼዶሃሂዸበዷዼድሆዻዹዸበዷዼድሆዻዹዸ ዮ ቤቛዠቯቜብቛዠዺቜ 

ቦ ቆሁድሌበሁዹለድሀበዽሃሂ ዮ ባቛቯሀሁቜ ቦ ቆሆሃለዶቋሆሃለዶ 

ቦ ቆሄሃሀድሆበሄዼሃዶሄሃሀድሆበሄዼሃዶ ቦ ቆዷሃሉሀቈዷሃሉሀ ቦ ቆሊዸዱቈሊዸዱ 

ቦ ተቬቩታቱቦቬቫ ቱቢቯቪተ 

The lipophilic-lipophilic term and H-bonding term is same as defined in 

ChemScore. But the H-bonding term is separated into different weights that depend 

on whether the donor and acceptor are neutral and the other is charged, or both are 

charged. The metal-ligand interaction term also usesthe same functional form as in 

ChemScore but varies in three principal ways: a) this term considers only itneractions 

with anionic acceptor atoms; b) it ocunts just the single best interaction when two or 

more metal ligations are found; and c) the net charge on th metal ion is assessed in the 

unligated apo–protein. If the net carge is positive, the preferene for anionic ligand is 

incorporated into the scoring functio. Else, if net charge is neutral, the prefernce is 

suppressed. The seventh term in the fucntion rewards situations in chich a polar but 

non-H-bonding atom is found in a hydrophobic region. 

The major components are the contributions from the Coulomb and vdW 

interactions energies between the ligand and the receptor (Equation [2.10]). Another 

major component is hte introduction of a solvation model and incoporation of the 

solvation effects. Glide docks explicit waters into the active site for each energetically 

competitive ligand pose and utilize empirical scoring terms that assess the exposure of 

various groups to the explicit waters. 

ቛቓቊቩቦቡቢቖበቬቯቢ ቭ ቈዷሃሉሀ ቦ ቈሊዸዱ ቦ ቈዶዽሂዸ ቦ ቈሄዹሂድሀለልዸ [2.10] 
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2. COMPUTATIONAL TECHNIQUES 

ቈዶዽሂዸ ቭ ቈዼልዸቕዹሂዷሀሃሇሉሆዹ ቦ ቈዼዶቕሂሂቕሁሃለዽዺ ቦ ቈዼዶቕዷዷቕሁሃለዽዺ ቦ ቈዪዣ ቦ ቈዼዶቕሄድዽሆ 
[2.11] 

ቦ ቈሄዼሃዶዽዷቕሄድዽሆ 

where, Ehyd_enclosure represents hydrophobic enclosure; Ehb_nn_motif represents the special 

neutral-neutral H-bond motifs; Ehb_cc_motif represents special charged H-bond motifs, EPI 

pi-stacking and pi-cation interactions; and Ephobic_pair hydrophobic atom-atom pair 

energy term. Ehb_pair term is same as defined in ChemScore scoring function. 

ቈሄዹሂድሀለል ቭ ቈዸዹሇሃሀሊ ቦ ቈሀዽዻድሂዸቕሇለሆድዽሂ [2.12] 

where Edesolv represents desolvation penalties, and Eligand_strain contac penalties 

(penalizing strain energy). 

2.2 Molecular Mechanics and Molecular Dynamics Simulations 

Molecular mechanics (MM) uses classical mechanics to model molecular 

systems. The potential energy of all systems in molecular mechanics is calculated using 

force fields. Molecular mechanics can be used to study molecule systems ranging in 

size and complexity from small to large biological systems or material assemblies with 

many thousands to millions of atoms. 

The force field refers to the functional form and parameter sets used to 

calculate the potential energy of a system of atoms. All-atom force fields provide 

parameters for every type of atom in a system. Force field methods (also known as 

molecular mechanics; MM) ignore the electronic motions and calculate the energy of a 

system as a function of the nuclear positions only. The first assumption of these 

molecular mechanics is the Born-Oppenheimer approximation; MM is based upon a 

rather simple model of the interactions within a system with contributions from 

processes such as the stretching of bonds, the opening and closing angles and the 

rotations about single bonds. 
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2. COMPUTATIONAL TECHNIQUES 

The basic functional form of potential energy in MM includes bondend terms 

for interactions, and nonbonded terms that describe the long-range electrostaic and 

van der Waals forces, as in Equation [2.13]. 

[2.13]ቛቕቜለሃለድሀ ቭ ቛቕቜዶሃሂዸዹዸ ቦ ቛቕቜሂሃሂበዶሃሂዸዹዸ 

The potential energy function (Equation [2.13]) could be divided into two main 

terms: bonded potential energy (Equation [2.14]) and non-bonded (Equation [2.15]): 

ቛቕቜዶሃሂዸዹዸ ቭ ዮ ዶ ቛ ቧ ሃቜ
 ቦ ዮ ሰ ቛሁ ቧ ሁሃቜ

 

ዶሃሂዸሇ ድሂዻሀዹሇ 
[2.14] 

ቦ ዮ  ኔ ቦ ኦኲቛቫ ቧ ቜበ 
ዸዽዼዹዸሆድሀሇ 

In the case the of the bond energy term, ዶ represents the force constant, 

while  and ሃcorrespond to the current bond leght and the equilibrated bond lenght, 

respectively. 

In the case the of the angle-bending energy term, ሰ is the force constant for 

the system composed by the three atoms, and the ሁ and ቦ are the current angle and 

the angle at equilibrium, respectively. And finally in the case of the dihedral energy 

term,  is the force constant,  is the actual angle, and  is the phse shift determining 

the position of the minima. 

ቛቕቜሂሃሂበዶሃሂዸዹዸ ቭ ዮ 
ሂሃሂዶሃሂዸዹዸ 

ዾዽዾ ኆቧ 
ቕኌኈኍ ዽዾ 

ቯዽዾ 
ቨ 

ቖ 

ቧ ቧ 
ቕኌኈኍ ዽዾ 

ቯዽዾ 
ቨ 

ቛ 

ኊ ቦ 
ቮዽቮዾ 

ዾዞቯዽዾ 
ኒ [2.15] 

ድለሃሁ ሄድዽሆሇ 

The non-bonded interactions consist of Lennard-Jones repulsion and dispersion 

ቖ ቛ
ዬኄኀኅ ድዶ ዬኄኀኅ ድዶ ህድህዶዾዽዾ ቩኍ ኑ ቧ ኍ ኑ  as well as Coulomb electrostatics (Figure 2.1). The 12
ሆድዶ ሆድዶ ርዖሆድዶ 

6 Lennard-Jones (LJ) potential is used to describe the repulsion between two atoms (i 
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2. COMPUTATIONAL TECHNIQUES 

and j) in which the overlap of the electron clouds of both atoms induces dipoles 

generating an attractive component. 

Figure 2.1. Lennard-Jones potential for two atoms (extracted and modified from 

http://atomsinmotion.com/book/chapter5/md). 

The electrostatic term is calculated using Coulomb’s law for the system, this 

electrostatic contribution due to the partial charges of each atom (qi and qj) in 

distance-dependent manner (ቯዽዾ), taking into account the permittivity of the solvent 

(ዾዞ). To study biological systems the most accurate approach would use QM 

calculations, but they are very time consuming (Figure 2.2). 

Figure 2.2. Representation of Coulombic electrostatic term (extracted and modified from 

http://atomsinmotion.com/book/chapter5/md) 
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2. COMPUTATIONAL TECHNIQUES 

The various contributions ara schematically represented in Figure 2.3. 

Figure 2.3. Schematic representation of the key contributions to a molecular 

mechanics force field: bond stretching, angle bending, torsional terms and non

bonded interactions. 

Bond stretching: The most elementary approach is to use a Hooke’s law in 

which the energy varies with the square of the displacement from the reference bond 

leght ሃ. 

Angle bending: The angle-bending energy term is also frequently described 

using a Hooke’s law or harmonic potential. The contribution of each angle is 

characterized by a force constant and a reference value. Rather less is required to 

distort an angle away from equilibrium than to stretch or compress a bond, and the 

force constant are proportionately smaller. 

Torsional terms: Most of the variation in structure and relative energies is due 

to the complex interplay between the torsional and non-bonded contributions. The 

exitence of barriers to rotation about chemical bonds is fundamental to understanding 

the structural properties of molecules and conformational analysis. Many force fields 

are used for modelling flexible molecules where the major changes in conformation 
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2. COMPUTATIONAL TECHNIQUES 

are due to rotations about bonds; in order to simulate this it is essential that the force 

field properly represents the energy profiles of such changes. 

Non-bonded interactions: Independent molecules and atoms interact thourght 

non-bonded foreces, which also play an importatn role in determining the structure of 

individual molecular species. This non bonden interactions do not depend upon a 

specific bonding relationship between atoms/ They are “through-space” interactions, 

and are usually modelled as a function of some inverse power of the distance. The 

non-bonden terms in a force fiel are usually considered in two groups, one comprisin 

electrostatic interactions ans the other van der Waals interactions. 

Molecular Dynamics Simulation 

MD relies on Newton’s second law of motion, described in this equation. 

ቡትዽ ሌዽ
ቭ [2.16]

ቡቱ ቪዽ 

where ትዽ is the position in a Cartesian representation of the particle i, ሌዽ is the force 

acting on such a particle with a mass of ቪዽ, and t is the time. To solve this Equation 

[2.16], a Taylor series expansion is used as a propagator to simulate the system’s time 

evolution. The position of the particle in step (n+1) is calculated using molecular 

coordinates and velocity from (n) and (n-1). Iterations continue until sufficient time 

steps (defined by the user) have been produced; the information (coordinationates 

and velocity) from all the steps constitute what is called MD trajectory. A classical MD 

simulation protocol is composed of four important steps: 

1. The structural data coming either from an experimental NMR/X-ray or 

homology modelling are prepared. Missing hydrogen atoms were added and 

protonation state of ionisable groups was computed by using Maestro Protein 

Preparation Wizard. Atom types and charges were assigned according to AMBER ff10 

force field. 
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2. COMPUTATIONAL TECHNIQUES 

2. Minimization phase with the aim of removing the bad contacts between the 

solute and solvent, and a heating phase for increasing the atom velocities through 

gradual scaling until the system reaches the proper temperature. Initial velocities are 

generally calculated using the standard temperature-dependent Maxwell-Boltzmann 

distribution. 

3. The equilibration phase which consists of allowing the system to relax, where 

energy, temperature, volume, pressure, and Root Men Square Deviation (RMSD) are 

monitore to ensure the stability of the system. 

4. And the final step, production phase, where the trajectories are collected for 

further analysis. 

Molecular dynamics simulation algorithms have been implemented in a 

number of simulation software packages: AMBER (Assisted Model building with Energy 

Refinment), CHARMM (Chemistry at Harvard Molecular Mechanics), Desmond, 

ESPResSo, GROMACS, GROMOS, LAMMPS, Martini, NAMD and OPLS (Optimized 

Potentials for Liquid Simulations). Based on classic mechanics and given appropriate 

initial conditions, ‘in theory’ we could calculate exactly how a system of interacting 

particles evolves over time, deriving any desired property of the system through 

statistical mechanics. 

Accurate force fields are required for molecular mechanics. AMBER (Assisted 

Model building with Energy Refinment) is the most common force field used to 

describe proteins, developed in 1995 by Peter Kollman’s group/ The Merck Molecular 

Force Field (MMFF) and the General AMBER Force Field (GAFF) have been developed 

for the descripcion of small, drug-like molecules. Also lipids can be described in silico 

through force fields such as Lipid 14 force field. The AMBER force field was used for 

both ligand and protein, with the gaff parameter used for the ligand and the ff10 

parameter used for the protein complex. MD simulations were run using the sander 

module of AMBER 14. 
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2. COMPUTATIONAL TECHNIQUES 

2.2.1 GAFF 

GAFF24 is a general force field for organic molecules, which has parameters for 

most organic and pharmaceutical molecules. This force field uses 33 basic atom types 

and 22 special atom types to cover almost all the chemical space composed of H, C, N, 

O, S, P, F, Cl, Br, and I. For the basic atom types, all the bond length, bond angle, and 

torsional angle parameters are available or can be calculated with empirical rules. 

Special atom types were introduced to describe certain chemical environments 

accurately, such as conjugated single and double bonds. The charge method used in 

GAFF is HF/6-31G* RESP charge. The van der Waals parameters of GAFF are as same as 

those used by the traditional AMBER force field. 

2.2.2 GLYCAM06 

GLYCAM0625 is the most general biomolecular force filed for carbohydrates. 

GLYCAM development followed the general approach employed in biomolecular force 

fields of defining a single dihedral angle term for each molecular-class-specific linkage. 

QM calculations were employed to compute properties that are difficult or impossible 

to access experimentally, such as, bond and valence angle deformation force 

constants, dihedral angle rotational barriers, and electrostatic properties. The 

generality of the parameters is exemplified by the utilization of a common set of terms 

for α and β carbohydrate anomers. The feature to have just one C atom type facilitates 

the simulation of ring-flipping, having equilibrium between conformers with axial and 

equatorial substituents at the anomeric centre. This force field can be transferable to 

all carbohydrate ring conformations and sizes, also can be readily extendible to 

carbohydrate derivatives and other biomolecules, including monosaccharides and 

complex oligosaccharides, be rigorously assessed in terms of the relative accuracy of 

its component terms, and avoid the use of 1–4 electrostatic or non-bonded scaling 

factors. GLYCAM turns the 1-4 non-bonded interactions off to correctly reproduce the 

rotation of the ω-angle. In a study of the ω-angle rotation (O5—C5—C6—O6) in 

monosaccharides, we observed that O6 may interact with either O4 (in a 1–5 
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2. COMPUTATIONAL TECHNIQUES 

relationship) or O5 (in a 1–4 relationship) and the use of 1–4 scaling therefore 

unbalanced these interactions leading to an inability to correctly predict rotamer 

populations. 

2.2.3 AMBER ffSB14 

Ff14SB improve the accuracy of protein side chain and backbone parameters 

from ff99SB.26 ff99SB uses the functional form and many of the parameters derived in 

ff9427 and ff99,28 which are associated with the Amber software.29 Some characteristic 

features of ff94 include fixed partial charges on atom centers, explicit use of all 

hydrogen atoms, no specific functional form for hydrogen bonding, and dihedral 

parameters fit to relative quantum-mechanical (QM) energies of alternate rotamers of 

small molecules. In particular, the protein φ/ψ dihedrals have specific rotational 

parameters that affect relative energies of alternate backbone conformations. The 

“backbone” dihedral parameters (that can alter the secondary structure) are very 

important component of protein force fields. In AMBER, each dihedral profile is 

defined by a set of four atoms. The set of atoms used to define φ and ψ for glycine is 

as expected, following φ and ψ along the main chain (φ= C-N-Cα-C, ψ= N-Cα-C-N).30 

2.2.4 LIPID 14 

Lipid bilayers were set up and molecular dynamics run with Amber and the 

Lipid14 force field. Amber 14 includes Lipid1431 which is a modular lipid AMBER force 

field, allowing the simulation of a number of lipids via the combination of different 

head and tail groups, a modular lipid force for tensionless lipid phospholipid 

simulations. Lipid14 includes the modular charge derivation framework developed in 

Lipid1132 as well as a reparameterization of key van der Waals and dihedral angles as 

performed in GAFFlipid.33 Hydrocarbon parameters have been refined, resulting in 

good reproduction of thermodynamic and dynamic properties for a number of simple 

carbon chains. To reproduce the experimental density and heat of vaporization of 

alkanes covering a range of chain lengths, LJ and torsion parameters were modified. 
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2. COMPUTATIONAL TECHNIQUES 

Given that both the torsion and LJ parameters affected the simulated density and heat 

of vaporization, these parameters were altered simultaneously, with the 

CH2−CH2−CH2−CH2 torsion being fitted to ab initio data. These modifications were 

tested analyzing different parameters of a selection of hydrocarbon chains. In the case 

of the lipid partial charge, standard AMBER RESP protocol was used to generate partial 

charges from quantum mechanical (QM) optimized structures, using six different 

orientations of a single conformation. A greater number of conformations were used 

per residue, with the partial charges calculated as an average over all conformations. 

The head and tail group starting structures were extracted from previous in-house 

bilayer simulations. This allows one to obtain Boltzmann weighted charges, introducing 

a temperature dependence. The electrostatic potential (ESP) was calculated directly 

from the conformations extracted from a bilayer simulation, with no QM optimization 

performed on those structures. Charges were derived using the standard AMBER RESP 

protocol.34 

The modular nature of the force field allows for many combinations of lipid 

head groups and tail groups as well as rapid parameterization of further lipid types. 

Several van der Waals and dihedral angle parameters have been refined to fit 

experimental data and quantum energies as well as a new partial charge derivation for 

the head groups and tail groups. The force field was validated on six principle lipid 

bilayer types. The lipid bilayer structural features compare favorably with experimental 

measures such as area per lipid, bilayer thickness, NMR order parameters, scattering 

data, and lipid lateral diffusion. The interaction of other species, such as small 

molecules or proteins, with lipid membranes can be studied in AMBER using the 

Lipid14 force field. 

2.3 Free energy of binding: MM-PBSA/MM-GBSA and MM-ISMSA 

The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the 

Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate 
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2. COMPUTATIONAL TECHNIQUES 

binding free energies for macromolecules by combining molecular mechanics 

calculations and continuum solvation models.35 

The Gibbs free-energy formula is applied to calculate ዠቊ (equation [2.17]): 

ዠቊ ቭ ዠቋ ቧ ዠቖ [2.17] 

where ዠቊ is the variation of the free energy in a system, ዠቋ the variation of 

the enthalpy, ዠቖ the variation of the entropy and  the tempearture of the system. 

The AMBER software36 used to poduce MD simulations allow us to calculate the 

absolute free energies of binding by Molecular Mechanics Generalized Born (MM

GBSA) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) 

approaches. The ዠቊዶዽሂዸሂሇሃሀሊ is calculated as the difference between ዠቊ of the solvated 

complex (ዠቊ ዝሇሃሀሊ ) and the sum of the ዠቊ of the solvated receptor(ዠቊ ዬሇሃሀሊ )and ligand 


ቛዠቊ ተቬቩታ ), taking also in consideration the ዠቊ associated to the complex in vacuum 

(equation [2.18]). 

ዝ ዬ ዦ ቜ [2.18]ዠቊዶዽሂዸሂሇሃሀሊ ቭ ዠቊዶዽሂዸሂሊድዷ ቦ ዠቊ ሇሃሀሊ ቧ ቛዠቊ ሇሃሀሊ ቦ ዠቊ ሇሃሀሊ 

The energy of the binding is calculated in vacuum (equation [2.19]), using 

classical methods and taking into account theenrgy differences associated to bonds, 

angles and dihedrals upon binding and the electrostaics and van der Waals terms 

(ዠቈ ዧዧ ) and also the conformatioanl entropy change (ዠቖ) computed by normal 

mode analysis (NMA) on a set of conformational snapshot from MD simulation. 

ቧ ዠቖ [2.19]ዠቊ ዶዽሂዸሂሊድዷ ቭ ዠቈዧዧ 

The solvent free energy (ዠቊ ሇሃሀሊ) (equation [2.20]) has two contributions, the 

electrostatic (polar contribution) and non-electrostatic (non-polar) contributions. The 

electrostatic contribution (ዠቊ ዪዜሡዡዜ ) of the solvation to the free energy is calculated 

by solving either the Generalized Born (GB) or the Poisson-Boltzmann (PB) equation. 
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2. COMPUTATIONAL TECHNIQUES 

The non-electrostatic contribution (ዠቊ ይዛ) is assessed by solvent accessible surface 

area (SASA). 

[2.20]ዠቊሇሃሀሊ ቭ ዠቊዪዜሡዡዜ ቦ ዠቊይዛ 

!nother an ultrafast and accurate scoring function for protein−protein docking 

is MM-ISMSA.37 It includes a molecular mechanics (MM) part based on a 12−6 

Lennard-Jones potential; an electrostatic component based on an implicit solvent 

model (ISM) with individual desolvation penalties for each partner in the 

protein−protein complex plus a hydrogen bonding term- and a surface area (S!) 

contribution to account for the loss of water contacts upon protein−protein complex 

formation. 

2.4 Virtual Screening Strategies in the Search of Novel TLR4 Modulators 

It is imperative to find new chemical entities as TLR modulators with drug-like 

properties in order to facilitate their development as drugs. In the context of drug 

discovery, virtual screening techniques have already proved to make hit identification 

more goal-oriented, allowing the access to a huge number of chemically diverse 

binders (from public and commercial databases) with a relatively low-cost in terms of 

time and materials. This computational approach has been subjected to extensive 

attention and revision over the years, from the early perspective of being an emerging 

method,38 until the current time where new challenges are faced.39-44 TLRs are not 

standard receptors which could be approached following classical strategies in drug 

design. The complexity of the system and the characteristics of their complexation 

with the PAMPs make them especially difficult to tackle following classical procedures 

in drug design and discovery. This is why TLRs constitute a special case study, in this 

context. 
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2. COMPUTATIONAL TECHNIQUES 

2.4.1 Virtual Screening Protocol 

General strategies for a VS protocol include several steps that are summarized 

in Figure 2.3. The availability of the 3D coordinates of the target is mandatory, either 

from X-ray crystallography, NMR or homology modeling. Prior knowledge about the 

ligand binding site may help in the identification of proper binders although, in some 

approaches, the search for novel binding pockets can be an additional interesting and 

challenging element in the drug discovery process. 

Figure 2.3. Summary of the VS protocols applied for the search of novel TLR modulators: 

access to databases and preparation/filtering of small-molecules; docking calculations; 

selection of candidates; experimental testing, and final identification of drug candidates. 
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2.4.2 Database Processing and Inclusion of Decoys 

Database processing constitutes a fundamental step in VS approaches. It is 

crucial to generate the proper chemical library, with the adequate geometries, 

ionization states, conformations, etc. Furthermore, it is very important to discard any 

molecule that will not be a good candidate in the further steps of the VS study in 

relation to the particular system on hand. A good database processing will assure a 

rigorous and well-conducted virtual screening, as well as it will avoid computational 

cost and identification of unsuitable drug candidates. 

To preparate the databases and inclusion of decoys are some different 

software: 

- LigPrep,45 a software created by Schrödinger LLC, is a collection of tools 

designed to prepare high quality, all-atom 3D structures for large numbers of drug-like 

molecules, starting from 2D or 3D structures. LigPrep starts by converting the input 

structure files to Maestro46 format. The LigPrep process consists of a series of steps 

that perform conversions, apply corrections to the structures, generate variations on 

the structures, eliminate unwanted structures, and optimize the geometry. LigPrep 

produces a single low-energy 3D structure with defined chiralities for each processed 

input structure and it can also produce a number of structures from each starting 

geometry with varying ionization states, tautomeric forms, stereoisomers, and ring 

conformations. Additionally, LigPrep offers the option to eliminate molecules from the 

collection to be screened using various criteria including molecular weight or quantity 

and types of functional groups composing the molecule. 

- AutoDockTools47 is the graphical interface implemented within the Python 

Molecular Viewer to make AutoGrid and AutoDock (both are required to be used as 

docking program) widely accessible tools.13, 47-48 It facilitates the formatting of input 

molecule files, with a set of methods that guide the user through protonation, 

calculation of charges, and specification of rotatable bonds in the ligand and the 

protein. As a brief outline of the preparation process, the ligand is loaded to the 

graphical interface, and ADT prepares it for AutoDock docking program. Polar 

hydrogens are added, charges are calculated, and nonpolar hydrogens are merged 
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with the heavier atoms to which they are attached. If the ligand file presents no 

charges, ADT will compute Gasteiger charges. Then, AutoDock atom types are assigned 

to each atom. Regarding the ligand preparation for the virtual screening, it is important 

to treat flexibility of the ligands. For this purpose, ligand flexibility is assigned in several 

steps. First, a root atom is chosen, which will act as the fixed position during 

coordinate transformation in the docking simulation. To find the optimal atom, the 

number of atoms in each branch is evaluated, and the root atom that minimizes the 

size of the largest branch is chosen. However, the ligand flexibility can be limited. As a 

limitation, each step in ADT has to be launched manually, one by one, as well as the 

preparation of each ligand. However, it is possible, with simple scripts, to do it 

automatically. 

2.4.3 Docking Tools for VS 

Molecular docking is a well-established method to investigate how a ligand 

interacts with its receptor. It integrates an automated computer algorithm that 

determines how a compound may bind in the active site of a target (binding mode and 

ligand/receptor interactions) and that tries to predict how tightly it binds (prediction of 

the binding energy), revealing the electrostatic and steric complementarity between 

the protein and the ligand.49-51 

Nowadays, most of the docking programs are characterized by (i) the specific 

method to treat ligand flexibility,52 which can be divided into three categories: 

systematic methods (incremental construction and conformational search); random or 

stochastic methods (Monte Carlo, Genetic Algorithms and Tabu search); and 

simulation methods53 (molecular dynamics and energy minimization); (ii) the scoring 

function,52 classified into three categories: ii.a) force field-based scoring functions,54 

where a classic force field is employed to compute the noncovalent ligand-target 

interactions, such as van der Waals and electrostatic energies (they are often 

augmented by a GB/SA or PB/SA term in order to account for the solvation effect); ii.b) 

empirical scoring function,10 where the overall binding free energy is calculated by 

adding the contributions from several energetic terms, including hydrogen bond (H
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bond) interaction and hydrophobic interaction (the weighting factors of all terms are 

calibrated from a set of known complexes with experimentally determined structures 

and binding affinities); and ii.c) knowledge-based scoring functions,11-12 where the 

ligand/target interactions are computed as a sum of distance-dependent statistical 

potentials between the ligand and the target (only the structural information of ligand

target complexes is needed, which is being accumulated rapidly due to structural 

biology advances). 

1. FLAP 

The new molecular modeling tool FLAP (Fingerprints for Ligands and Proteins) 

provides a common reference framework for comparing molecules, using GRID 

Molecular Interaction Fields (MIFs). The MIFs describe the type, strength and direction 

of the molecular interactions between two biological partners. These MIFs are then 

condensed into discrete pharmacophoric points representing favorable and 

unfavorable interactions using a weighted energy-based and space coverage function. 

Using these discrete points, all four-point quadruplets are generated, and the resulting 

pharmacophore quadruplet fingerprint describes the target of interest. In addition to 

the fingerprints, the GRID MIFs are retained. The targets are then aligned by matching 

quadruplets in Cartesian space and a field similarity computed using the pre-calculated 

MIFs. Hence, the fingerprints are used to find matching pharmacophoric regions and 

the entire fields are used to score the match. Ligands and/or proteins can be the 

targets of interest. 

FLAP consists of a graphical user interface, and several command-line programs which 

execute the various tasks. FLAP is based on four probes only, H, O, N1, and DRY, which 

respectively characterize the shape, hydrogen-bond acceptor, hydrogen-bond donor, 

and hydrophobic interactions. 

We used this program to perform structure-based and ligand- based virtual 

screening. The aim of running structure-based VS is that the 3D structure of a receptor 

binding site is known, and can be used as a target for FLAP. When performing 
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alignments, the MIFs of a drug candidate are compared with the receptor MIFs. These 

similarities are used to rank the potential interactions of drug candidates with the 

receptor. Notice that the structure-based enrichments are in general lower than the 

ligand-based enrichments. This is most likely due to the fact that a structure-based 

search uses a larger cavity definition (there is more noise). Moreover, a ligand-based 

approach is based on the fact that active compounds should be chemically very similar, 

biasing the search results to favor a particular chemical species. The structure-based 

approach has the advantage that ligands binding different subpockets can be 

identified, and should not be as closely tied to the chemotype of a ligand template. 

Virtual screening employing a Ligand-Based Approach is the best way to select 

potential new candidate drugs from a library of compounds with known three

dimensional structure but unknown activity against the biological target (the so-called 

“decoys”)/ Having access to a series of compounds with known activity on a specific 

biotarget, FLAP is able to align the molecules from the database (decoys) to one 

specific and chosen active compound (template). It then computes the GRID based -

MIFs similarity) between decoys and the template assigning a score that can be used 

to rank the most similar compounds The assumption is that the higher the similarity 

with the template, the higher the probability of similar mechanism of action at the 

receptor site. Once scores are produced for each molecule of the dataset, it can be 

necessary to evaluate how well the known active compounds are recognized by FLAP 

through the use of an Enrichment Plot or a ROC curve. 

2. GLIDE 

Glide is a commercial docking program provided by Schrödinger5, 15, 23 and 

designed to dock only the relevant region of the receptor, thus saving time 

calculations. The full docking VS workflow includes 3 docking stages: HTVS, SP 

(Standard Precision) and XP (Extra Precision). The first stage performs High Throughput 

Virtual Screening (HTVS) docking. It is intended for rapid screening of very large 

number of ligands and has much more restricted conformational sampling than SP 
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docking. The second stage performs SP docking. It is appropriate for screening ligands 

of unknown quality in large numbers. The third stage is the XP docking and scoring. It is 

a more powerful and discriminating procedure using an implementation of a modified 

and expanded version of the ChemScore scoring function, called GlideScore5 and 

categorized as an empirical scoring function. Glide can be used to perform virtual 

screening, accurate binding mode precision and furthermore, Glide exhibits excellent 

docking accuracy and high enrichment across a diverse range of receptor types. 

2.4.4 Pan Assay Interference Compounds, PAINS 

A computational tool for identifying new lead compounds for the validated 

drug targets in a virtual screening is high-throughput screening. However, it has also 

introduced a large number of molecules which interfere drug screening. These 

compounds, they are known by the name of Pan Assay Interference Compounds, 

PAINS, which interfere with the progress of drug screening in various ways, such as 

interfering with a biochemical assay, modifying the protein or aggregate-based 

inhibitors. PAINS may result from the presence of functional groups that can rect with 

biological molecules independent of a specific molecular recognition event. The 

physical properties of some small molecules coul cause them the falsely score as a hits 

in assays. So it is of vital significance to remove them. New leads are commonly 

identified using in-house discovery programs, competitor monitoring, and public 

sources of information, such as the current literature or databases of active molecules 

etc).55-57 (ChemBl, PubChem, ChemSpider, UniChem, A number of substructural 

features which can help to identify compounds that appear as frequent hitters 

(promiscuous compounds) in many biochemical highthroughput screens.The 

compounds identified by such substructural features are not recognized by filters 

commonly used to identify reactive compounds. Even though these substructural 

features were identified using only one assay detection technology, such compounds 

have been reported to be active from many different assays. In fact, these compounds 

are increasingly prevalent in the literature as potential starting points for further 

exploration, whereas they may not be.58 They have identified rhodanines, phenolic 
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Mannich bases, hydroxyphenylhydrazones, alkylidene barbiturates, alkylidene 

heterocycles, 1,2,3-aralkylpyrroles, activated benzofurazans, 2-amino-3

carbonylthiophenes, catechols and quinones as PAINS. The most common causes of 

PAINS activity are metal chelation, chemical aggregation, redox activity, compound 

fluorescence, cysteine oxidation or promiscuous binding. Many PAINS have multiple 

functionalities, causing different types of interference and resulting in in vitro and in 

vivo activity. From the pharmaceutical industry GSK has reported filters that their 

59-60 medicinal chemists use to reject molecules containing undesired functional groups. 

Also Abbott reported their ALARM NMR tool and subsequent procedures to remove or 

flag potentially thiol reactive compounds.56, 61 And Eli-Lilly reported on the filters they 

use at the front end of their open-innovation platform in order to discriminate the 

molecules they are interested in testing from unwanted ones. 62 In the academia, 

University of Dundee published a series of SMARTs filters to remove unwanted 

groups. 63 Sean Ekins et al. published a study toward the phenotypic screening of 

Mycobacterium tuberculosis and subsequent findings regarding unwanted groups.64 

And also Jonathan Baell from the Monash University published his report on pan 

assays interference compounds (PAINS) a list of structural features of frequent hitters 

from six different and independent assays. Computational filters exist to remove 

known PAINS from chemical libraries and an experienced medicinal chemist will be 

quickly able to identify a PAINS-type structure. 

There are two servers to remove these PAINS: PAINS-remover, 

http://cbligand.org/PAINS/ and http://zinc15.docking.org/patterns/home/. 
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3. TLR4 LIGANDS 

3.1 Introduction 

As mentioned in Chapter 1, LPSs are large glycolipids consisting of a highly 

conserved lipid moiety, known as lipid A, and a polysaccharide composed of an 

oligosaccharidic core (outer and inner part) and a O-specific polysaccharide. Recently, 

structural information on TLR4 has become available, providing insights on the binding 

at the atomic level.1 In the X-ray crystallographic structure of TLR4/MD-2 in complex 

with potent agonist Escherichia coli LPS (PDB- ID: 3FXI), MD-2 is able to accommodate 

up to five fatty acid (FA) chains of the E. coli lipid A into its large hydrophobic cavity. 

The sixth chain protrudes from the MD-2 hydrophobic pocket, thus completing the 

dimerization interface. The phosphate groups of the LPS are anchored to the polar 

MD-2 rim, and the polysaccharide moiety establishes a network of polar interactions 

with TLR4. Therefore, all of the structural components of the LPS molecule play a 

fundamental role in the TLR4/MD-2 recognition and in the binding.2 

Lipid A is composed of FA chains of different lengths attached to a 1,4-β

diphosphorylated diglucosamine backbone (Figure 3.1). The agonistic activity of lipid A 

has been mainly assigned to the number (established as six), length and chemical 

structure of the attached FA chains, as well as variability in the level of 

phosphorylation and the number and types of substituted groups found attached to 

the phosphate residues. Recent findings have pointed to the need of revisiting this 

paradigm since some examples of LPS bearing a penta-acylated lipid A, together with 

positively-charged residues decorating the lipid A, have been reported with 

immunostimulatory ability. Therefore, these data suggest that subtle changes in lipid A 

structure may profoundly impact the innate immune response from the host. 
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3. TLR4 LIGANDS 

Figure 3.1. Showing the contact interface of the dimerized TLR4/MD-2 complex bound to 

LPS. (PDB-ID 3FXI). At the right, primary contact interface between the MD-2 in purple and 

the TLR4 in green, which includes two different contact regions, the Patch A and Patch B. 

At the left the dimerization interface, remarking the channel created in the surroundings 

of Phe126. 

In a previous work performed by members of our group, the study was focused 

in the binding of lipid IVa,3 which is a synthetic analogue of lipid A, that is the most 

outer region of the LPS used by the gram-negative bacteria to anchor the host outer 

membrane during the invasion process. The main interest of studying the binding of 

lipid IVa is the difference in the mechanism action of the molecule across different 

species; in particular, lipid IVa is an agonist of the immune response in murine and an 

antagonist in human. Lipid IVa bound conformation differs significantly when looking at 

the mouse and human crystal structures by having opposite orientation in the direction 

of the sugar moiety and phosphate groups. Interestingly there are certain substitutions 

in the MD-2 sequence that may stabilize these two different conformations of the lipid 

IVa. The strongest interaction found out from our energy analysis is the polar interaction 

between the Lys122 from MD-2 that interacts with and the O5 from the sugars and the 

oxygen from the glycosidic linkage. Lys122 from the MD-2 is substituted by Glu122 in 
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3. TLR4 LIGANDS 

mouse that interacts with the hydroxyls from the sugar moieties. This is the main 

difference found in the protein sequence that facilitates two different binding modes of 

lipid IVa in terms of polar interactions; other substitutions were found, but only affecting 

to hydrophobic residues which kept their hydrophobic nature. It is remarkable that, in 

human, there is an interaction between Lys122 from the MD-2 and the oxygen atoms 

from the sugar core of lipid IVa exactly in the same way as the Ly360 from the TLR4 is 

interacting with the lipid IVa. Another mayor difference we found that the antagonist 

human conformation interaction pattern lacks of important interactions with the TLR4. 

In the mouse agonist system we observed the interaction with the O5 from the sugar 

moieties and oxygen atom from the glycosidic linkage with Lys360 from the TLR4, this 

interaction could contribute to stabilize the agonist conformation in terms of the 

global motion previously described for the maintaining the TLR4/MD-2 complex. 

Small molecules pyrimido[5,4- b]indoles have shown to stimulate TLR4 and 

could potentially be used as adjuvants or immune modulators.4 Synthetic analogues of 

natural product Euodenine A have exhibited potent and selective agonistic activity 

towards TLR4.5 It has also been reported that synthetic peptides mimic the TLR4/LPS 

interactions.6 On the other hand, several small non LPS molecules with TLR4 antagonist 

activity have also been developed, such as ethyl 4-oxo-4-(oxazolidin-3-yl)-butenoate 

derivatives (OSL07), benzothiazole-based inhibitors, ethyl phenyl

sulfamoylcyclohexenecarboxylate derivatives (TAK-242 or resatorvid), and β-amino 

alcohol derivatives.7-10 However, no successful progress was shown in clinical phases 

(for example, in the case of compound OSL07). 

Due to the wide range of possible therapeutic usages of TLR4 modulators, 

several approaches for their design have been exploited, leading to four general 

classes of therapeutics: LPS mimetics, small molecule modulators, peptides, and 

monoclonal antibodies.11 Compared with all the designed TLR4 therapeutic agents, 

small molecules show interesting advantages given that LPS analogues show important 

solubility and toxicity limitations,12 and peptides have poor pharmacokinetics.13 

Therefore, small molecules that do not structurally resemble to LPS represent a 

different promising and interesting alternative. A deep and extensive study of the 
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3. TLR4 LIGANDS 

molecular mechanisms by which these TLR4 ligands modulate TLR4 activity emerges as 

an interesting strategy to understand TLR4 pharmacodynamics, which is essential for 

drug design and development processes. Also computational chemistry methodologies 

appear as necessary, powerful and time-saving tools for the prediction of ligand 

binding modes with the TLR4/MD-2 systems. 

There is experimental evidence confirming that most of the TLR4 small 

molecule modulators exert their pharmacological activity through binding to MD-2 

inner pocket. Among them we found the TLR4 agonists such as paclitaxel,14 some 

opioids (remifentanil),15 and TLR4 antagonists like xanthohumol (XN),16 sulforaphane 

(SFN),17 N-pyrene maleimide (NPM), dalcetrapib (JTT705), iodoacetylaminonaphtyl 

sulfate (IAANS),18 curcumin,19 cinnamamides,20 and certain opioids such as naxolone.15 

However, TLR4 small molecule modulators show varied physicochemical properties, 

suggesting that not all of them may bind to MD-2 pocket, which is extremely 

hydrophobic. Additionally, MD-2 binding ligands may not be exerting its function by 

binding uniquely to MD-2 pocket, modulating the receptor by binding to other 

unknown binding sites.21 

The presence of drug binding sites other than MD-2 has been further confirmed 

by experimental studies which proof that the TLR4 agonist as DiC14-amidine acts as a 

protein-protein interaction (PPI) stabilizing agent, binding to the TLR4/TLR4* interface 

of the activated system.22 There is also experimental evidence that this dimerization 

interface is targeted by nickel ions, which activate the receptor complex.23 

Furthermore, although there is no experimental evidence for drug binding, Gobec and 

coworkers and Yin and coworkers4 reported series of TLR4 modulating agents which 

presumably act as PPI inhibitors by disrupting the TLR4/MD-2 interface in the 

TLR4/MD-2 system.24 Other compounds, such as 4-aminoquinazolines and pyrimido-[5

4,b]-indoles show TLR4 agonist activity through binding to the TLR4/MD-2* interface of 

the TLR4/MD-2/TLR4*/MD-2 system.4, 25 The design and development of PPI stabilizing 

agents and PPI inhibitors has appeared as a relatively new approach for the 

achievement of drugs with different pharmacodynamic profile.26 
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3. TLR4 LIGANDS 

Many of the ligands that were found to modulate TLR4 activity do not present 

neither experimental nor computational studies of their binding mode: this was the 

case of the heme group, 27 bryostatin-1 (bryo-1)28 and certain polyoxygenated 

cholesterol ester hydroperoxides (BEP-CE),29 as these compounds were proven to 

activate TLR4. Additionally, there are several compounds which are able to inhibit the 

dimerization of the TLR4/MD-2 system whose binding is unknown, such as glycyrrhizin, 

and isoliquiritigenin.30 Furthermore, although eudonenines require MD-2 to activate 

TLR4, their binding modes have not been yet fully defined.5 Finally, the binding mode 

of certain tryciclics such as imipramine, desipramine and amitriptyline is only 

supported by computational studies thus there is no experimental evidence proving 

their binding to MD-2.31 

Our work aimed to propose a binding mode for some reported TLR4/MD-2 

binders, and to understand, at atomic level, the main ligand-macromolecule 

interactions taking place for the agonist/antagonist behaviour comparing with lipid A 

and lipid IVa. 

In particular, we focused our work in simplified LPS analogues, among them 

(Figure 3.2): P01 and P0312 are small molecules with two fatty acid chains containing 

an ammonium group; the tetraacylated synthetic compound Eritoran32 reached phase 

III in clinical trials, but failed to demonstrate sufficient efficacy in late stage human 

trials, although it has recently shown promising activity in preventing influenza

induced acute lung injury, through a TLR4 antagonism mechanism; agonist compounds 

ONO-400733 (a LPS-like compound with TLR4 agonist activity through the induction of 

TNF-α production in tumor cells, with no further clinical development due to the 

limited water solubility), antagonist compound D133 (a synthetic lipid A analogue, 

which inhibits endotoxin activation of TLR4 by precluding interaction of the endotoxin 

with both CD14 and TLR4/MD-2) and the antagonists compounds A1 and A2. 

Non LPS molecules have also been developed among them (Figure 3.3): 

euodenine A,5 a natural product isolated from the leaves of Euodia asteridula, with no 

LPS structure; its synthetic analogues have exhibited potent and selective agonism 
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3. TLR4 LIGANDS 

towards the TLR4, Paclitaxel,34 and pyrimido[5,4-b]indoles4 have shown to stimulate 

TLR4 and could potentially be used as adjuvants or immune modulators. 

For all these TLR4 modulators there are not binding mode proposed. It is clear 

that although these molecules have a different chemical structure, they must share a 

common pattern of interactions with TLR4. We have undertaken a computational 

study of some representative compounds to unveil some of these patterns of 

interactions. Some of them have engender an antagonistic response and other agonist 

response in the TLR4 complex. These molecules were docked comfortably into the 

hydrophobic pocket MD-2, thus creating a stable complex between the MD-2 and TLR4 

in molecular dynamics. There is something common among them that do have this 

behaviour and we are studying by molecular modelling technique. 

It is interesting to note that a number of small molecules have been reported as 

TLR4 modulators. Although it is plausible these molecules bind MD-2, we have to 

consider that they might be targeting other sites/pockets (due to its reduced volume 

and size in comparison with the “native” ligand LPS)/ Moved by this idea, we 

undertook a computational analysis of the different accessible pockets of the 

TLR4/MD-2 system to identify/discover new/alternative binding sites where these 

small molecules could be binding. 

For this, a combined approach involving binding site prediction and docking 

studies was implemented to determine primary and secondary drug binding sites for 

known TLR4 ligands, and evaluate the results to deduce the underlying molecular 

mechanism that reflects ligand pharmacodynamics. Our objectives here were, the 

identification of possible binding pockets in different conformations of the TLR4/MD-2 

system, and the proposal of the binding modes for known TLR4 small molecule 

modulators. Different new primary drug binding sites and secondary sites were found 

in the TLR4/MD-2 systems, especially in protein-protein interfaces. Additionally, 

regarding the specific targeted docking studies, new binding modes for the TLR4 

modulation through different ligands were proposed. 
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3. TLR4 LIGANDS 

LPS-like Molecules 

Figure 3.2. Chemical structures LPS-like molecules. 
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3. TLR4 LIGANDS 

Non LPS-like Molecules 

Figure 3.3. Chemical structures non LPS-like molecules 

3.2 Results and Discussion 

3.2.1 Interaction in TLR4/MD-2 Modulators with LPS-like Structure 

To evaluate putative TLR4/MD-2 binding properties of these compounds, we 

undertook docking studies in the hTLR4/MD-2 system. The X-ray structure PDB-ID: 3FXI 

was used for the agonist conformation. Since the X-ray structure of the hTLR4/MD-2 

complex is not available in the complex with an antagonist, we used a hybrid in house 

model by superimposing MD-2 structure from PDB-ID: 2E59 in one of the MD-2 

subunits of the TLR4/MD-2 complex (PDB-ID: 3FXI, chain C) (for more details, see 

Chapter 3). AutoDock4 and VINA programs were used to carry out the docking 

calculations leading to similar predicted binding poses in all cases, without main 

differencies in the observed ligand-TLR4/MD-2 interactions. 

As in the X-ray crystallographic structures of LPS and lipid IVa in both 

conformation, agonist and antagonist, the predicted binding poses for all the LPS-like 

molecules showed a general tendency to bury their fatty acid (FA) chains deeply buried 

into the hydrophobic pocket of MD-2, establishing van der Waals and CH-π 

interactions with the side chains of the lipophilic residues of the MD-2 pocket, and 

polar interactions between the sugars and the polar residues of MD-2 rim. The 
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3. TLR4 LIGANDS 

resulting docked complexes of TLR4/MD-2 with P01, P03, eritoran, D1, and ONO-4007 

were submitted to MD simulations for a deeper analysis of the ligand-receptor 

interactions. 

3.2.1.1 LPS-like Antagonist Ligands 

Studies into de binding pose of synthetic LPS-like compounds were performed 

for the following ligands: P01, P03, D1, A1 and A2, together with endotoxin, eritoran 

and lipid IVa35 as reference compounds. 

For all the studied LPS-like compounds, docking calculations led to similar 

results in both MD-2 and TLR4/MD-2 systems. The FA chains were allocated inside the 

hydrophobic MD-2 pocket, and sugar moieties were found to be accommodated in the 

MD-2 rim, by establishing polar interactions. In particular, the studied LPS-like 

antagonists were found to establish many hydrophobic interactions in common to 

those observed for lipid IVa 35 inside MD-2: Ile32, Ile44, Ile46, Val48, Ile52, Leu61, 

Ile63, Tyr65, Leu71, Leu74, Phe76, Leu78, Ile80, Val82, Ile94, Phe104, Val113, Ile117, 

Phe119, Phe121, Ile124, Val135, Leu146, Phe147, Leu149, Phe151 and Ile153. Also 

common polar interactions were found in the docked poses for most of the LPS-like 

antagonists, in particular with Tyr65, Arg90, Glu92, Tyr102, Ser118, Ser120, Lys122, 

Tyr131, and Cys133. Additionally, D1 and A2 were found to interact with Arg264 from 

TLR4. 

Regarding P01 and P03,12 our results showed that most of the docking models 

displayed a very rational binding mode with the FA chains toward the pocket (Figure 

3.3), but they were not able to provide an unique binding mode. This result suggests 

that the ligand may be fluctuating in the hydrophobic pocket while being bound to the 

MD-2, and an adaptation of the MD-2 hydrophobic pocket could take place, as shown 

by our calculations of the volume of the hydrophobic pocket. 

For both P01 and P03, two docking calculations were done respectively, first in 

the isolated MD-2 and second in the TLR4/MD-2 complex. Similar results were 
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3. TLR4 LIGANDS 

obtained in terms of the general orientation of the molecule as lower energy binding 

modes tended to bury their FA chains inside the MD-2 pocket and the sugar moiety 

located at the rim of the MD-2 establishing polar interactions. From the all docking 

obtained, the poses with lowest binding energy and having the consistent orientation 

of the FA chains towards the pocket were chosen for MD simulation studies. 

Figure 3.4. P01 (yellow) and P03 (orange) docking binding pose, superimposed with lipid IVa 

(green) in TLR4(cyan)/MD-2(dark blue) system. 

The MD simulations were performed from the resulting docked poses in the 

TLR4/MD-2 complex in antagonist conformation with both ligands P01 and P03. In all 

cases, from the RMSD analysis of the MD simulations (Annex Figure 3.1), it is observed 

that the receptor stays stable throughout the whole of the simulation during the run 

time of 50 ns. In contrast, the ligand had some significant movements that have been 

identified as different regions of stability, corresponding to different conformations of 

the ligand during the MD simulation. So, we have obtained minimized average 

structures and studied in detail for each conformation their significant interactions. As 

shown in the RMSD graph (Annex Figure 3.1) different polar interactions stabilize 
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3. TLR4 LIGANDS 

different conformations of the ligand, allow us to suggest different possible docking 

poses of these ligands in the TLR4/MD-2 complex, with the hypothesis that there is a 

period of stabilization, then, there will be polar bonds holding at that specific time. 

Therefore, we studied the hydrophobic and polar interactions occurring in the parts of 

the simulation where the ligand was stable identifying interactions present in all the 

simulations of P01 and P03. Looking at hydrophobic contacts, we observed many 

common interactions to all the docking models and average structures from these 

simulations as Ile46, Ile52, Leu61, Ile63, Leu74, Phe76, Leu78, Ile80, Ile94, Phe104, 

Ile117, and Val135. In the case of polar interactions only few of them were found in 

the majority of the binding modes, the interaction with Tyr65 is present in all the 

solutions but at the end of the MD simulation of the TLR4/MD-2/P01 simulation is 

weaker; or the interaction with Glu92, that is present again in all the proposed binding 

modes but is only missing at the beginning of the MD simulation of the TLR4/MD

2/P01 and at the end of the simulation of the TLR4/MD-2/P03. Some other remarkable 

polar interactions stabilizing certain stable binding modes, i.e. interactions observed 

during some moments of the MD simulation are: the interaction with Arg90 which is 

formed along the MD simulation of the TLR4/MD-2/P01 or the interaction Tyr102, 

which is found as a very strong interaction in all the binding modes from the docking 

models proposed by AutoDock, but which is lost along all the MD simulations; the 

interaction with Ser118 which is observed in some of the binding modes of P01 but not 

in the ones from P03; opposite to the interaction with Ser120, which can be seen in 

some of the binding modes of P03 but is more rarely seen in the P01 ones; or Lys122 

or Gly123 present in only few of the P01 and P03 complexes. For example, along the 

MD simulation of the MD-2 protein with P01 and P03, according to the RMSD graph of 

the ligand there is a period of stabilization then there will be polar bonds holding at 

that specific time, for example with Tyr102 and in other period of time with Glu92. 

These results show a difference when comparing with other compounds, for example 

of eritoran which shows a significant stability in its proposed binding mode and during 

the MD simulation as it will be shown below, due to the big size of the ligand which 

completely fills the hydrophobic pocket. 
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3. TLR4 LIGANDS 

In particular for P01, we also computed the RMSD of the different parts of the 

P01 molecule, as the two acyl chains (AC-1 and AC-2) and the sugar and aromatic ring 

respectively (sugar scaffold) (Annex Figure 3.2). In general, one of the acyl chains, AC

1, is more stable along the MD simulation but the other acyl chain, AC-2, and the sugar 

scaffold move more along the MD. These results mean that across the MD simulation 

the ligand migrates from its original docking pose to a more central position within the 

MD-2 pocket. The MD simulation implemented on the P01 molecule but with the 

binding pose selected from the docking (Figure 3.5) performed with the full TLR4/MD

2 complex showed no key areas of stability across the whole simulation. Comparing 

the observed polar interactions to the previous simulation, we found that Glu92 is still 

present during most of the simulation, but new polar interactions were observed as 

Arg90. Again to understand the main reason of the motion of the ligand we computed 

the RMSD of the different parts of the P01 molecule, and the contacts over the 

different stable regions of the MD, which showed that in this case AC-1 and the sugar 

scaffold were fluctuating along the whole simulation but the other AC-2 was stable 

along the MD. 

Figure 3.5. Detail of interactions of average structure of P01 during the MD simulation 

with residues of MD-2 pocket. 
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3. TLR4 LIGANDS 

In the case of the docking studies for P03 using MD-2 and TLR4/MD-2 systems, 

we obtained several predicted binding poses. One of them was further studied by 

means of MD simulation. The MD simulation of the docked P03/MD-2 showed that the 

ligand was fairly stable with peaks and troughs varying from 9Å to 12Å. The polar 

interactions found were Glu92, Ser120 and Gly123. When observing the RMSD of the 

P03 ligand we observe that during all the MD simulation again only one of the FA 

chains was stable. The final simulation that was performed for the small antagonist 

molecules was the P03 from the docked full complex being run in and MD simulation 

with the full complex. The complex like all other simulations stayed stable throughout 

the whole simulation. The ligand on the other hand shows some varying regions of 

stability. Again in this simulation we observe that one of the FA chain remains stable 

along the MD simulation, but also the sugar scaffold. The other FA chain moves away 

from its initial position, reaching other conformation in which it is stable (Figure 3.6). 

Figure 3.6. P03 (orange) binding pose on the top, and highlight three binding poses around the 

MD simulation with the interactions with MD-2 pocket. 

So one thing to take into consideration from this result is that P01 along with 

P03 are small molecules, if converted into dimers there will not be nearly as much 

space available for the ligand to move around the MD-2 pocket throughout the MD 
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3. TLR4 LIGANDS 

simulation. Further studies were performed to unravel these questions regarding 

ligand-receptor interactions with relevance for future design of novel binders (for 

more details see Chapter 4).36 

In the case of eritoran, a crystallographic structure in complex with a hybrid 

Insore Hagfish/Human TLR4/MD-2 complex can be found at the PDB (PDB-ID: 2Z65). 

We used this initial X-ray crystallographic structure to build a hTLR4/MD-2 in 

antagonist conformation using the TLR4/MD-2 model from the antagonist MD-2 (PDB

ID: 2E59) and the agonist TLR4 (PDB-ID: 3FXI), and the lipid IVa after superimposing 

the MD-2 subunit found the hybrid model (PDB-ID: 2Z65) to the MD-2 of our model. 

This model was submitted to a 50 ns MD simulation under explicit water which was 

found to be stable during the simulation time (Annex Figure 3.3). 

The RMSD values of the ligand observed during the whole simulation allow us 

to confirm that this binding mode is stable, and that the ligand is placed filling the 

hydrophobic pocket. Further analysis of single residue interactions, we observed some 

stable polar interactions between eritoran and Lys122, Arg90 and Tyr102, also 

observed in the TLR4/MD-2/lipid IVa model, but not in many P01 or P03 binding 

modes. Only the interaction with Leu54 and Thr115 disappear along he MD simulation, 

but is possible to observe new interactions with Val24, Val48, Lys58, Tyr65, Ser118, 

Lys132, Leu146 and Val152 (Figure 3.7 and Annex Figure 3.4). 
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3. TLR4 LIGANDS 

Figure 3.7. Principal interactions of eritoran (pistachio green color, average structure during 

the MD simulation) with TLR4/MD-2 system. 

�ompound D1 from the point of view of the chemical structure is very different 

from other ligands/ The succinic diamide linker with the two negatively charged groups 

from the sulfate mimics the distance between the phosphates of lipid IVa/ So, the 

sulfate role could represent an alternative anchorage group to design new ligands/ In 

the case of D1, the F! chains establishes hydrophobic interactions in the MD-2 pocket 

between the alkyl side chains from residues Ile44, Ile46, Leu61, Ile63, Tyr65, Leu71, 

Leu74, Phe76, Leu78, Ile80, Val93, Ile94, Tyr102, Val113, Ile117, Phe119, Ile124, 

Tyr131, �ys133, Val135, Phe147, and �H-π interactions with Phe104 and Phe151 side 

chains/ !dditionally, polar interactions are established with the residues at the MD-2 

rim between one of the phosphate groups and Glu92, !rg96, !sp100 and Lys122 and 

some interactions with TLR4 between !sn339 and !rg264 side chains (Figure 3.8)/ 
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3. TLR4 LIGANDS 

Figure 3.8. Principal interactions of D1 (magent) with TLR4/MD-2 system/ 

Overall, from docking calculations and MD simulations, we can say that the 

predicted binding pose is analogue to the antagonist binding pose found for lipid IVa in 

the crystallographic structure (PDB-ID: 2E59), with the FA chains deeply buried into the 

lipophilic pocket of MD-2 and with polar interactions with the polar residues from the 

MD-2 rim. Stability of such predicted complex was tested by means of MD simulations. 

!long the MD simulation (50 ns) is possible to observe that the receptor is stable and 

the ligand migrates from its original docking pose to a more central position within the 

MD-2 pocket, where two F! chains (the two F! chains in the deep of the pocket) 

remain stable from the beginning to the end of the simulation/ The other two fatty acid 

chains are moving from the beginning position and remain stable around MD since 20 

ns/ Due to the change in the ligand position, D1 goes toward the innermost part of the 

MD-2 pocket/ !long the MD simulation the interactions with TLR4 (with !rg264, 

!sn339, Lys341 and Lys362) are lost/ It stabilizes in the period from 20 ns to the end 

(Figure 3.9)/ The interactions were analyzed monitoring the distances between the 

residues from TLR4/MD-2 complex which interact with D1 along the MD simulation, 

being possible to observe the loss of interactions with TLR4 (with Arg264, Asn339, 

Lys341 and Lys 362), also others interactions were lost, among them: Val82, Leu87, 
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3. TLR4 LIGANDS 

Val93, Arg96, Asp100 but some interactions were established with Val24, Ile32, Val48, 

Ile52, Lys58, Gly59, Pro67, Thr115, Ser118, Ser120 and Leu149, due to a slight change 

in the initial position of the ligand. 

Figure 3.9. MD simulation of the complex TLR4/MD-2/D1(50 ns): RMSD (Å) is represented for 

the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 (dark blue), and the heavy 

atoms for the ligand D1 (red). 

For selected binding pose, free energy of binding was calculated by means of 

the MM-G�S! method computed with Primea, obtaining. -115 kcal mol -1/ This 

calculation of the free energy of binding by MM-G�S! approach can be appropriate to 

overcome the possible underestimation of binding energy for big hydrophobic ligands/ 

�omparing with lipid IVa, as representative TLR4 antagonist, in the multimeric 

complex of TLR4/MD-2/antagonist from the X-ray structure, some interesting 

interactions are identified (Figure 3.10)/ 

Figure 3.10. �omparison the contacts between D1 (from the docking and average structures 

of the MD simulation) and lipid IVa with the residues from the TLR4/MD-2 antagonist system/ 
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3. TLR4 LIGANDS 

Compounds A1 and A2 are simplification to a single sugar of the lipid A 

chemical structure. A1 presents four fatty acid chains, and A2 with only two. To 

evaluate MD-2 binding properties of A1 and A2, we performed docking studies in the 

hybrid model TLR4/MD-2 in-house system, since the X-ray structure of the TLR4/MD-2 

complex is not available in the antagonist conformation. Most of the best docked 

solutions correspond to binding poses for these compounds with FA chains deeply 

confined inside the MD-2 hydrophobic pocket, in a way equivalent to lipid IVa. 

In the case of the compound A1, the two branched FA chains establishes 

hydrophobic interactions in the MD-2 pocket between the alkyl side chains from 

residues Val24, Ile32, Ile44, Ile46, Val48, Ile52, Leu54, Leu61, Ile63, Leu71, Leu74, 

Leu78, Ile80, Val82, Ile94, Phe104, Phe119, Phe121, Ile117, Ile124, Tyr131, �ys133, 

Val135, Phe147, Leu149, Ile153, and �H-π interactions with Phe76, Tyr102 and Phe151 

side chains/ !dditionally, polar interactions are established with the residues at the 

MD-2 rim, one phosphate group participate in hydrogen bond with Ser120 and the 

second phosphate group with Lys122- also establishes polar contact with !rg90 and 

Ser120, and also one of the phosphates from the ligand interact with Lys122 (Figure 

3.11)/ 

Figure 3.11/ Interactions details of !1 with TLR4/MD-2 system/ 
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3. TLR4 LIGANDS 

In the case of the compound A2, the three best binding poses are shown 

presenting both FA chains inside the pocket, with the polar phosphate groups and the 

sugar placed at the rim of MD-2, similar than lipid IVa (Annex Figure 3.5). 

In all the cases, the two FA chains established hydrophobic contacts with some 

residues and CH-π interactions with Phe151 in a similar way to lipid IVa. In one case, 

polar interaction was also identified in these binding poses, even with Arg264, 

presenting in TLR4. Also we observed in the most cases, that the phosphates groups 

participate in hydrogen bonds with Ser118 and Lys122 from the hydrophilic rim, 

adopting three preferred binding poses, all of them similar to the lipid IVa. But the 

interactions that all the solutions share each other were with Ile32, Ile46, Val48, Ile52, 

Leu61, Ile63, Phe119, Phe121, Phe151 and Ile153. Comparing with lipid IVa all of them 

establish interactions with Phe119, Ser120, Phe121, Phe151 and Ile153 (Figure 3.12). 

Figure 3.12. Comparison the contacts between A1 and A2 (from the docking structures) and 

lipid IVa with the residues from the TLR4/MD-2 antagonist system. 

Here is showed a perspective of the TLR4 antagonist conformation with lipid 

IVa and the superimposition with different antagonist LPS-like ligands (Figure 3.13): 
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3. TLR4 LIGANDS 

Figure 3.13. TLR4 antagonist conformation with lipid IVa (green) superimposition with: 

eritoran, D1, P01, P03, A1, A2. 

3.2.1.2 LPS-like Agonist Ligands 

Regarding ONO-4007, which has an agonist behavior, AutoDock and AutoDock4 

Vina docked binding poses were equivalent to that observed for lipid A in the 

TLR4/MD-2 complex (PDB-ID: 3FXI), and which can be considered as the agonist-like 

binding mode. We selected the best binding pose to perform 50 ns of MD simulations 

(Figure 3.14). At the beginning of the MD simulation, the ligand showed some drastic 

movements. Visibly it can be seen that the ligand almost instantly began to move away 

from the position that it originally sat in when the docking was performed, because the 

chains move towards the deep of the pocket but the receptor was very stable around 

the MD simulation (Figure 3.14). We also identified an alternative binding pose with 
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3. TLR4 LIGANDS 

one phenylalkyl chain occupying the channel and the other two chains inside the MD-2 

pocket (Figure 3.16). 

Figure 3.14. Change the position of ligand ONO-4007 at the beginning of the MD simulation in 

green and during the MD simulation in dark green/ !t the bottom the superimposition with 

lipid ! (pink)/ 

In the docking pose, the two phenylalkyl chains buried inside the MD-2 pocket 

(with hydrophobic interactions with residues Phe119, Phe126, Ile52, Tyr65), and the 

alkyl chain placed in the channel, stabilizing the “on” conformation of Phe126/ The FA 

chains establish hydrophobic interactions with Ile44, Ile46, Ile52, Leu54, Leu61, Ile63, 

Leu71, Phe76, Leu78, Ile80, Val82, Ile117, Lys122, Gly123, Ile124, Cys133, Val135, 

Leu149 and Phe151, CH-π interactions with Tyr65, Phe119, Phe121, Tyr131 and also π 

π interactions with Phe147. We also identified polar interactions between ONO-4007 

and Arg90, Ser118 and Ser120 from MD-2 and Arg264, Asn339 and Lys362 from TLR4. 

After the re-colocation of the ligand new interactions were established, and new 

interactions, the interactions with Ile44, Ile46, Ile52, Leu61, Ile63, Tyr65, Leu71, Phe76, 

Leu78, Arg90, Glu92, Ile117 Phe119, Ser120, Cys133, Val135, Phe147, Leu149 and 

Phe151 were maintained. New hydrophobic interactions with Val24, Ile32, Val48, 

Lys58, Leu74, Ile94, Tyr102, Phe104, Val113, Asn114, Thr115, Ile117, and Leu146 were 
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3. TLR4 LIGANDS 

observed. The contact with Arg264, Asn339 and Lys362 from TLR4, Leu54, Ile80, Val82, 

Phe121, Lys122, Gly123, Ile124, Phe126, Tyr131, and Lys132 MD-2 were lost. 

Figure 3.15. MD simulation of the complex TLR4/MD-2/ONO-4007 (50 ns): RMSD (Å) is 

represented for the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 (purple), and 

the heavy atoms for the ligand ONO-4007 (red). 

For selected binding pose, free energy of binding was calculated by means of 

the MM-G�S! and MM-ISMS! methods, obtaining. -63 kcal mol -1 and -79 kcal mol -1 

respectively/ 

Docked binding poses of the agonist ligands revealed common interactions with 

lipid !, some of them are Val24, Ile32, Ile44, Ile46, Val48, Ile52, Lys58, Leu61, Ile63, 

Tyr65, Phe76, Leu78, !rg90, Glu92, Ile94, Tyr102, Phe104, Val113, Thr115, Ile117, 

Ser118, Phe119, Ser120, �ys133, Val135, Phe147, Leu149 and Phe151 (Figure 3.16)/ 

Figure 3.16. Comparison the contacts between ONO-4007 (from the docking and average 

structures from MD) and lipid A with the residues from the TLR4/MD-2 agonist system. 
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3. TLR4 LIGANDS 

Also in the case of the binding pose with one phenylalkyl chain occupying the 

channel and the other two chains inside the MD-2 pocket, was possible to observe 

from the RMSD along the MD simulation (30 ns) that almost instantly ONO-4007 

moved away from the original position, and keeping stable the complex for around 25 

ns. After that time the phenylalkyl FA chain went outside of the pocket and the others 

FA chains occupied the channel. The complex stayed stable throughout the whole of 

the simulation and although it moves around a little no drastic changes were observed 

during the run time of 30 ns (Figure 3.18). 

Figure 3.17. Docking pose of ONO-4007 (grey) with TLR4/MD-2 system, but with one 

phenylalkyl chain occupying the channel/ 
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3. TLR4 LIGANDS 

Figure 3.18. MD simulation of the complex TLR4/MD-2/ONO-4007 (30 ns): RMSD (Å) 

is represented for the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 

(purple), and the heavy atoms for the ligand ONO-4007 (red). 

3.2.2 Interactions in TLR4/MD-2 Modulators With Non LPS-like Structure 

Scarce small molecules have been reported to modulate TLR4/MD-2 system. 

Because these ligands do not have a LPS-like chemical structure, they are very 

interesting binders to be studied. Some molecules have already shown agonist activity 

such as euodenine A and others with antagonist activity such as ethyl 4-oxo-4

(oxazolidin-3-yl)-butenoate derivatives (OSL07), benzothiazole-based inhibitors, ethyl 

phenyl-sulfamoylcyclohexenecarboxylate derivatives (TAK-242 or resatorvid), 

paclitaxel and β-amino alcohol derivatives. To evaluate putative TLR4/MD-2 binding 

properties of these compounds, we also undertook docking studies in the agonist and 

antagonist hTLR4/MD-2 system. 

3.2.2.1 Non LPS-like Antagonist Ligands 

Non-LPS-like antagonist ligands displayed common hydrophobic and polar 

interactions with lipid IVa. Ile52, Leu61, Phe76, Leu78, Ile80, Glu92, Ile94, Ile117, 
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3. TLR4 LIGANDS 

Phe119, Ser120, Phe121, �ys133, Val135, Phe151 and Ile153/ 

Paclitaxel is a compound isolated from the bark of Taxus brevifolia, has been 

discovered as a cancer chemotherapeutic agent that bound to β-tubulin and prevented 

mitosis through microtubule overstabilization.37 Also paclitaxel has been shown 

implication in the induction of apoptosis of cancer cells via the TLR4 innate immune 

pathway. 

Docking of paclitaxel on the TLR4/MD-2 complex in antagonist conformation 

(using as complex the same model as in all antagonist models) was computed. Several 

low energy docking solutions were found in which the ligand was showing three 

different possible binding modes, one displaying an extended conformation of the 

ligand (typical in non-polar environments) and two similar to the two previously 

described paclitaxel conformations, T-Taxol conformation (tubuline-bound 

conformation) and polar conformation.38-39 

From the lowest binding energy docking models, a total of 14 models (2 in 

extended conformation, 6 in polar conformation and 6 in T-Taxol conformation) were 

selected and further studied were performed by means of MD simulation. Initially, 2 ns 

of MD simulation was carried out. From these initial MD run, only two of the docking 

poses shown stability, hence, longer MD simulation of 50 ns was performed to provide 

reliable conformations for the TLR4/MD-2/paclitaxel complex (Annex Figure 3.6). 

In particular TLR4/MD-2/paclitaxel extended model shown mainly hydrophobic 

interactions due to the high amount of hydrophobic moieties of paclitaxel, as Val24, 

Ile46, Val48, Leu61, Ile63, Phe76, Leu78, Ile80, Ile92, Phe104, Phe119, Phe121, Val135, 

Phe147 among others, but also some polar interactions with key residues observed in 

the TLR4/MD-2/lipid-IVa model as Arg90, Glu92, Ser118 and Ser120 (Figure 3.19). 
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3. TLR4 LIGANDS 

Figure 3.19. On the left, docking pose of paclitaxel; on the top right, during the MD simulation 

change the position establishing in MD-2 pocket, and on the bottom right, in dark green the 

new binding pose showing in sticks the interactions with MD-2 residues. 

Activation of paclitaxel is quite specific as its analogue 

docetaxel does not have immunostimulatory activity (Figure 3.20).37, 40 

Paclitaxel Docetaxel 

Figure 3.20. Chemical structures of paclitaxel and docetaxel. 

140 

http:3.20).37


   

 

 

         

     

         

      

     

        

      

      

       

         

 

     

  

 

 

    

    

          

3. TLR4 LIGANDS 

3.2.2.2 Non LPS-like Agonist Ligands 

Euodenine A is one of the few small molecules reported with TLR4/MD-2 

agonist behavior. Euodenine A, a natural product, was identified as an agonist activity 

of the human TLR4 receptor, this ligand does not have a LPS-like chemical structure, 

and it is a very interesting binder to be studied. Other small molecules have been 

reported to modulate TLR4/MD-2 system but with antagonist behavior. To provide a 

model for understanding the mechanism, docking calculations with euodenine A were 

undertaken into agonist (PDB-ID: 3FXI) and antagonist (PDB-ID: 2E59) hTLR4/MD-2 

proteins. We used the hybrid in-house model. Docking studies led to binding poses into 

the region inside the MD-2 pocket defined by Phe119, Phe121 and Phe151. 

Figure 3.21. On the left, binding pose of euodenine A in TLR4/MD-2 system, and highlight 

interactions at atomic detail for an average structure during the MD simulation and highlight 

the Phe126 which is the agonist/antagonist conformation switch. 

From the analysis of the docking poses hydrophobic interactions with Ile32, 

Ile52, Leu54, Leu78, Ile80, Thr81, Phe119, Cys133 and Ile153 were detected, �H-π 

interactions were observed with Phe126, Tyr131 and Phe151, also π-π interactions 
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3. TLR4 LIGANDS 

with Phe121/ Polar interactions with Lys132 and Ser120 were also established (Figure 

3.21)/ 

Analyzing the MD simulation from the monomer around 70 ns, it can be 

observed that the receptor was stable throughout the whole of the simulation and 

although it moved a little, no drastic changes during the run time of 70 ns were 

registered (Figure 3.22). 

Figure 3.22. MD simulation of the complex TLR4/MD-2/euodenine-A (70 ns): RMSD (Å) is 

represented for the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 (purple), and 

the heavy atoms for the ligand eudenine A (red). 

For selected binding pose, free energy of binding was calculated by means of 

the MM-G�S! and MM-ISMS! methods, obtaining. -38 kcal mol -1 and -48 kcal mol -1 

respectively/ 

The analysis of the water molecules around the MD-2 was performed and it 

was observed that there was always only one water molecule inside the MD-2 pocket; 

in the starting geometry of the MD simulation no water molecules were present into 

the pocket. Along the MD simulation a water molecule sneaked into the pocket 

establishing interaction with the NH group from euodenine A amide group. It is 
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3. TLR4 LIGANDS 

curious because was not always the same molecule and in other cases was not 

possible to observe this. The water molecule was surrounded by Leu35, Tyr36, Cys67, 

Val68 and Val69. 

�omparing with lipid !, was possible to observe some common interactions 

(Figure 3.23)/ 

Figure 3.23. Comparison the contacts between euodenine A (from the docking and average 

structures from MD simulation) and lipid A with the residues from the TLR4/MD-2 agonist 

system. 

A in-house dimer model TLR4/MD-2/euodenine A was built (Figure 3.24), 

starting from an average structure from the MD simulation from the monomer, and we 

were performed the MD simulation of the monomer. Also the dimer was submitted to 

50 ns of MD simulation. The RMSD of the dimer shown high stability for the receptor 

along the MD, as well as for the two euodenine A (Figure 3.25). 

Figure 3.24. TLR4/MD-2 agonist in-house model, with two molecules of euodenine A inside the 


MD-2 pocket. Highlight the major LPS mimic interactions.
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3. TLR4 LIGANDS 

Figure 3.25. MD simulation of the full dimer complex TLR4/MD-2/eudenine-A (50 ns): RMSD 

(Å) is represented for the -Carbons for TLR4/MD-2 (green), TLR4’/MD-2’ (dark green), TLR4 

(cyan), TLR4’ (dark blue), and MD-2 (purple), MD-2’ (magenta), and the heavy atoms for the 

ligand eudenine A (red) and euodenine A’ (yellow)/ 

In terms of the protein-protein interaction, the distance between TLR4 and 

TLR4’ were monitored around dimer MD, analyzing the polar interactions and 

comparing them with the X-ray crystallographic structure (PD�-ID. 3FXI)/ The 

interactions analyzed were (TLR4-TLR4’). !sn365(TLR4)-Ser386(TLR4’), Ser386(TLR4)

Ser386(TLR4’), !sn433(TLR4)-!sn433(TLR4’) and Gln507(TLR4)-Gln507(TLR4’)/ !ll of 

them remained stable around the MD except for the case of Gln507 located in the 

lower part of TLR4 (!nnex Figure 3.7)/ 

Also the docking of the euodenine A in the TLR4/MD-2 antagonist 

conformation was performed. Two binding poses were chosen in which the ligand 

occupied a more central position in the MD-2 pocket. Analyzing the MD simulation (70 

ns) it was observed that the ligand moved away from the original central pose, not 

getting a stable position throughout the MD simulation. 
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3. TLR4 LIGANDS 

3.2.3 Small Molecules 

In this study, a combined approach involving binding site prediction and 

docking studies was implemented to determine primary and secondary drug binding 

sites for known TLR4 ligands, and evaluate the results to deduce the underlying 

molecular mechanism that reflects ligand pharmacodynamics. Therefore, two main 

objectives were aimed for this work: the identification of possible binding pockets in 

different conformations of the TLR4/MD-2 system, and the proposal of the binding 

modes for known TLR4 small molecule modulators. Different new primary drug binding 

sites and secondary sites were found in the TLR4/MD-2 system, especially in protein

protein interfaces. Additionally, regarding the specifically targeted docking studies, 

new binding modes for the TLR4 modulation through different ligands are proposed. 

Binding Site Prediction Studies 

SiteMap. As a result of the structural differences between the receptor 

structures used in this study, certain binding sites were identified in every receptor 

conformation, while others were identified in only two or even one protein structure. 

Identified binding sites and their scoring values can be found in Annex Table 3.1. 

MD-2 pocket was reported as a single binding site in both TLR4/MD-2 systems 

(Figure 3.26a). In the dimer conformation, MD-2 pocket was identified as part of two 

binding sites, named A and Q, which also display a solvent exposed surface 

corresponding to part of the TLR4/MD-2 and TLR4/MD-2 interfaces, respectively. 

Another binding site was predicted in the surface of MD-2, named M. 

The TLR4/MD-2 interface was identified as several binding sites (Figure 3.26b). 

Interestingly, the binding region where the polar interactions of LPS occur was 

identified as two different binding sites, one comprising the solvent exposed region of 

binding site A and another binding site, named as L. Additionally, another binding site 

was identified in all the receptor structures which was described in the TLR4/MD

2/TLR4*/MD-2* system as three different components: B, which comprised most of 

the surface of this dimerization interface for the binding site; X, a region between the 
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3. TLR4 LIGANDS 

LRRs of TLR4 and MD-2, and a small, narrow pocket located in the TLR4 LRRs, named as 

W. 

The TLR4/TLR4* dimerization interface was reported as five different binding 

sites (Figure 3.26c). Two binding sites encompassed the vast majority of this interface: 

J and C comprised the lower half of the interface, while the upper half was composed 

by binding sites P, U and I, being the latter two also reported in both agonist and 

antagonist TLR4/MD-2 systems. Three different binding regions were identified in the 

TLR4/MD-2* dimerization interface (Figure 3.26d): the solvent exposed part of Q, M 

and a highly solvent exposed binding site, named as R. Other binding sites were 

reported in the TLR4 LRRs (Figure 3.26e). A binding region was also detected in the 

TLR4 central domain, comprising binding sites F, G, H and O. Near the TLR4 N-terminal 

domain, a series of binding sites were reported (D, K, N, S and Y). Due to their location, 

binding sites E (transmembrane end) and T (inner cavity) were not considered for 

further studies. Additionally, another binding site was only identified in one monomer 

of the TLR4/MD-2/TLR-4*/MD-2* system; named as V, the identification of this binding 

site could be an artefact secondary to the removal of glycosylations in the protein 

preparation process. 

Figures 3.26a-26e. From left to right: binding sites at MD-2, TLR4/MD-2 interface, TLR4/TLR4* 


interface, TLR4*/MD-2 interface, and TLR LRRs. Acceptor and donor maps are shown in red
 

and blue, respectively; hydrophobic maps are represented in yellow. MD-2 surface is colored in
 

orange; TLR4 surface is colored in grey.
 

CASTp. Probe radius variation resulted in jobs with different characteristics). A 

probe radius of value of 1.7 Å was defined as it combined analysis simplicity with 

minimum loss of SiteMap binding site identification (Figures 3.27a and 3.27b). With 
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3. TLR4 LIGANDS 

the exceptions of binding sites that were not recognized (L, S), partly recognized in 

each (V) or a determined structure (M and F), all SiteMap reported binding sites were 

totally recognized by CASTp. These results were consistent with SiteMap output, given 

that binding site F was only reported in the antagonist conformation, binding sites J, P, 

U and R are located in homodimerization interfaces, and M is absent in the antagonist 

conformation. 

Figure 3.27a. Graphs showing the effect of probe radius variation in the number of 

recognized SiteMap binding sites (left) and the total number of identified sites (right). CASTp 

jobs wherein there is a loss of identification of SiteMap binding sites are depicted in red; 

adequate CASTp jobs are represented in green. 

Figures 3.27b. Results of pocket identification by CASTp for the TLR4/MD-2 system in agonist 

conformation. Left: predicted pockets excluding MD-2 internal pocket; Right: MD-2 inner 

binding site (right) is reported as a huge pocket, even comprising parts of TLR-4. In this pocket, 

sites A and Q are encompassed; certainly all SiteMap binding sites are identified by CASTp. 

Residues forming pockets are represented by spheres and FASTA code letters of different color 

(green: A, Q, part of W; magenta: pocket K, parts of N and M; yellow: parts of C and M; cyan: Y, 
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3. TLR4 LIGANDS 

B and part of W pocket; purple: part of C; dark blue: D and X; orange: O and N; brown: I and 

part of P)/ Regarding the protein structure, β-sheets and α-helices are colored in orange and 

red, respectively; loops are depicted in white. *: these pockets were only partially recognized 

by CASTp. 

Binding Site Rating and Evaluation 

Predicted binding sites were rated regarding their scoring values and their 

identification by SiteMap and CASTp in all the receptor structures. As expected, A and 

Q shown the highest values for SiteScore, supporting the evidence that MD-2 pocket is 

the primary binding site for the TLR4/MD-2 complex. Although binding site M shown 

low scoring values, its consideration as a binding site could be of potential usefulness 

due to its proximity to the external region of Q binding site. As a result of the high 

scoring values of binding sites that comprise the TLR4/MD-2 interface, A, L, B and W 

appear to be potential drug binding sites. Moreover, the presence of pharmacological 

activity in this binding region is supported by previous studies over certain TLR4 

antagonists. Regarding the TLR4/TLR4* interface, C, J and P were reported as highly 

scored binding sites. Due to their location, these binding sites are potential candidates 

for the binding of PPI modulators.59, 83 Regarding the TLR4/MD-2* interface, the 

notable scoring values of M and Q was not a particular surprise given that Phe126, 

located in this region, plays a crucial role in the receptor activation where several TLR4 

modulators have been reported to bind.58, 60 

Docking Studies 

Receptor-Based. The average value for all minimum binding energies 

performed in docking calculations was -7.17 kcal mol-1, with a standard deviation value 

of 1.45, which was indicative of the fact that there was a wide distribution of binding 

energy values between different docking calculations. 

When averaging all the minimum binding energies of all dockings carried out in 

a determined grid box, a differential distribution of energies was observed between 
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3. TLR4 LIGANDS 

different grid boxes for the same receptor conformation, suggesting that ligands 

displayed more favourable binding energies for specific regions in the TLR4/MD-2 

complex. Particularly, AL (-7.72 kcal mol-1 for the average of the three receptor 

structures) and AQ (-7.68 kcal mol-1) grid boxes, comprising MD-2 pocket, showed the 

most favourable binding energy results followed by DN (TLR4 LRRs, -7.63 kcal mol-1), C 

(TLR4 LRRs -7.59 kcal mol-1), B1W (TLR4/MD-2 interface, -7.49 kcal mol-1) and B2 

(TLR4/MD-2 interface, -7.32 kcal mol-1). KS, J, FGHO, MQR, IUP and V grid boxes 

showed less favourable results (-7.29, -7.19, -7.11, -6.67, -6.46 and -5.90 kcal mol-1 , 

respectively). 

Subsequently, when averaging the minimum binding energies for a determined 

grid box in a determined conformation, a differential distribution for these energies 

was observed between different receptor conformations for a specific grid box. These 

results suggest that certain receptor conformations allowed ligands to establish more 

favourable conformations, especially in the case of grid boxes which encompass parts 

of the TLR4*/TLR4* and TLR4*/MD-2 systems, suggesting the presence of ligand poses 

which display interactions in the TLR4/MD-2/TLR-4*/MD-2* systems with both 

TLR4/MD-2 dimers. For example, J grid box showed an energy value of -7.69 kcal mol-1 

in the TLR4/MD-2/TLR-4*/MD-2* system, while less favourable values were found in 

mol-1 the agonist and antagonist TLR4/MD-2 systems (-6.91 and -6.94 kcal , 

respectively). Thus, J, C, IUP and MQR grid boxes were potentially identified as possible 

binding sites for PPI modulating agents. Interestingly, a considerable decrease in 

mol-1 binding energy was found for B1W grid box (-7.63, -7.47, -7.35 kcal for 

antagonist, agonist TLR4/MD-2 systems and TLR4/MD-2/TLR4*/MD-2* system, 

respectively), which may be reflected by the conformational change occurring in the 

TLR4/MD-2 interface between agonist and antagonist conformations. When 

considering the standard deviation related with the different minimum energy values 

calculated for each ligand in each grid box of each structure substantial differences 

was found in the calculated values, suggesting that there are regions of the TLR4 which 

are more likely to bind specific ligands than others. Finally, a correlation between 

certain energy values for a determined grid box of a determined conformation and 
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3. TLR4 LIGANDS 

SiteScore values can be found, which confirms the potential of the predictive score 

obtained by SiteMap. 

Results. Binding site mapping has been performed over all the surface of the 

monomer and dimer TLR4/MD-2 systems in three different structures. The binding 

sites reported by Sitemap have been successfully validated by CASTp. The scoring of 

these binding sites generally correlates with docking results, being MD-2 pocket the 

primary binding site for TLR4 small molecule modulators. Binding site prediction also 

defined the existence of other well scored sites, mainly comprising the TLR4/TLR4*, 

TLR4/MD-2* and TLR4/MD-2 interfaces. As some molecules have been determined to 

bind to these regions of the receptor, these scoring values are consistent with 

experimental evidence. Additionally, regarding docking results, binding site C, which is 

a new highly scored pocket in the C-terminal domain of TLR4, appears to bind 

molecules with low binding energies. Some of these TLR4 modulators could exert their 

pharmacological activity by binding to this site, either stabilizing PPI interactions or by 

other unknown mechanisms. Furthermore, binding site D, a pocket present in the N-

terminal domain of TLR4, appears to be an important binding site for certain TLR4 

modulators. The potential of our binding site prediction studies is established, as these 

two novel binding sites have never been reported in previous studies. 
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3. TLR4 LIGANDS 

Figure 3.28. Some chemical structure, given names and families of TLR4 ligands. 

Additionally, evaluation of the binding energies from different TLR4 modulators 

to the different predicted binding sites has permitted to propose their preferential 

binding to certain areas of the TLR4/MD-2 complex. Thus, the binding site of many 

natural and natural-like products with TLR4 agonist/antagonist activity has been 

proposed: bryostatin-1,28 1-Dehydro-10-gingerdione,41 polyoxygenated cholesterol 

ester hydroperoxides,29 6-shogaol,41 curcumin19 and euodenins5 appear to bind MD-2 
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3. TLR4 LIGANDS 

selectively, while hemin likely binds both TLR4/TLR4* interface and MD-2 pocket 

(Figure 3.28). Furthermore, Isoliquiritigenin30 displayed very good energy values for 

regions comprising both TLR4/TLR4* and TLR4/MD-2 interfaces. However, the 

hypothesis that ILG forms covalent bonds with TLR4/MD-2 cannot be rejected. 

Additionally, three binding modes for GL have been proposed: this compound may be 

binding to either two regions of the TLR4/TLR4* interface or MD-2 pocket. 

On the other hand, the predicted binding site of other TLR4 ligands has been in 

agreement with the experimental evidences shown in previous studies. Although all of 

them presented low binding energies for MD-2 pocket, several differences could be 

found in certain compound series. Although tricyclic compounds31 and cinnamamides 

are thought to bind MD-2 pocket, favourable binding energies were found for binding 

site B, located in the TLR4/MD-2 interface (Figure 3.20). Certain opioids15 showed 

remarkable favourable binding energies for binding sites C and D. Additionally, the 

TLR4/TLR4* interface could be targeted by paclitaxel. Therefore, a more detailed study 

of these compounds is necessary in order to assess mechanisms that may unravel their 

binding modes. Other synthetic compounds, which are thought to bind the TLR4/MD-2 

interface, displayed very good binding energies for site B. Nevertheless, they also 

showed favourable binding energies for MD-2 pocket. Thus, their binding mode should 

be reconsidered. 

Other compounds (sulforaphane,17 helenalin, acrolein, cinnamaldehyde42-43), 

showed low selectivity, as similar predicted binding energies for all the binding sites 

were observed. This could be mainly due to their small sized chemical structure that 

leads to predicted binding to a large variety of regions in the receptor surface. 

However, a mechanism through establishment of covalent bonds with the receptor 

cannot be excluded, which would require additional computational studies to assess 

this possibility. Last but not least, this study has permitted to consider that the 

feasibility of MD-2 binding assays in which 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic 

acid41 participates may be compromised if TLR4/MD-2 systems were used, as it has 

been found that site C could be a secondary binding site for this compound. It can be 

concluded that this combined computational approach has permitted to identify new 
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3. TLR4 LIGANDS 

receptor binding sites in the TLR4/MD-2 complex and predict plausible binding poses 

to them. Ultimately, this may help in understanding the principles that govern TLR4 

activity and thus the development of new TLR4/MD-2 targeting modulators. 

3.2.4 Overview of Agonist and Antagonist Interaction Patterns 

Agonists ligands (lipid A, euodenine A and ONO-4007) always bind to the MD-2 

region delimited for Ile32, Ile52, Leu54, Leu61, Leu78, Ile80, Val82, Arg90, Ser118, 

Phe119, Ser120, Phe121, Ile124, Phe126, Cys133 and Phe151 (Figure 3.29). 

Figure 3.29. Comparison the contacts between the agonist ligands (from the docking and 

average structures from MD) and lipid A with the residues from the TLR4/MD-2 agonist 

system. 

Antagonists ligands (lipid IVa, eritoran, P01, P03, paclitaxel, D1, A1, A2) share 

the following interactions with MD-2 pocket: Ile32, Ile44, Ile46, Val48, Ile52, Leu61, 

Ile63, Phe76, Leu78, Ile80, Arg90, Glu92, Ile94, Tyr102, Phe104, Ile117, Phe119, 

Ser120, Phe121, Cys133, Val135, Phe147, Leu149, Phe151 and Ile153 (Figure 3.30). 
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3. TLR4 LIGANDS 

Figure 3.30. Comparison the contacts between the antagonists ligands (from the docking and 

average structures from MD) and lipid IVa with the residues from the TLR4/MD-2 antagonist 

system. 

In the case of LPS-like ligands (ONO-4007 and lipid A, among the agonists, and 

lipid IVa, D1 and eritoran, among the antagonists), there is like a wall in the MD-2 

pocket where one FA chain is driven towards this region cover by Ile63 and Tyr65 from 

one of the β-sheet, Val113, Thr115 and Ile117 from another β-sheet and some amino 

acids residues from the bottom of the pocket like Leu71, Leu74, Ile94, Tyr102 and 

Phe104. There are three residues at the bottom of the MD-2 pocket (Val135, Phe147 

and Leu149), where one of the fatty acid chain from LPS-ligand always interacts. And 

also around Phe126, LPS-like ligands interact with Phe121 and Ile124 (Figure 3.31). 
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3. TLR4 LIGANDS 

Figure 3.31. Hightlighted residues where LPS-like ligands interact. The pink spheres 

represent like a wall where one FA chain always goes towards this direction in the 

pocket. In yellow spheres the deep residues where another FA chain always 

interacts. Circle red highlights the principal difference between MD-2 

agonist/antagonist conformations (Phe126). 

According to our docking calculations, Paclitaxel (non-LPS ligand) does not bind 

into the pocket depth, this molecule doesn’t establish interactions with the bottom of 

the MD-2 pocket where are the amino acids residues: Tyr65, Pro67, Leu71, Leu74, 

Val113 and Thr115. 

Euodenine A (agonist) and paclitaxel (antagonist) share common interactions 

with MD-2 pocket, both interact with Ile52, Leu78, Ile80, Val82, Arg90, Ser118, 

Phe119, Ser120, Phe121, Cys133, Phe151 and Ile 153, both remain at the rim of MD-2 

and they do not bind in the pocket background. The binding mode of these molecules 

is similar (Figure 3.32 and 3.33). These interactions can be also observed in lipid A and 

lipid IVa. 
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3. TLR4 LIGANDS 

Figure 3.32. Superimposition of the binding pose of euodenine A (pink) and paclitaxel (green) 

in the TLR4/MD-2 complex. MD-2 agonist in purple and MD-2 antagonist in dark blue. 

Figure 3.33. Superimposition of the average structure obtained from MD simulation of 

euodenine A (light pink) and paclitaxel (dark green). MD-2 agonist conformation is shown in 

purple and MD-2 antagonist in dark blue. 

The plasticity of the TLR4/MD-2 complex was analyzed calculating the solvent 

accesible volume on hydrophobic pockets of MD-2 by using CASTp server which 

identifies and computes the molecular area and volume for cavities and pockets of a 
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3. TLR4 LIGANDS 

given protein.44-45For this, the binding pose of the docking and the average structures 

from the MD simulations were used for all the ligands; the ligand was removed and the 

plasticity of the MD-2 pocket was analyzed. The data corresponding to the 

hydrophobic pockets of MD-2 proteins were selected. In the case of the smallest 

compounds and without LPS-like structure (euodenine A and paclitaxel) is possible to 

observe that the MD-2 pocket acquires a more closed conformation and the pocket 

gets a bit smaller in comparison with the LPS-like structure and more bigger ligands 

(ONO-4007, D1, eritoran, P01, P03, A1 and A2). It is possible to confirm that MD-2 is 

very plastic, adapting a conformation in a ligand dependent manner (Annex Table 3.2). 

RMSD of the α-carbons of the loop from Leu78 to Lys89 and from Phe121 to 

Gln129 (loops implicated in the dimerization interface) from all the ligands was 

calculated. It was possible to observe that MD-2 is very flexible around the MD 

simulation (Figure 3.34 and 3.35). We can conclude that MD-2 is very flexible but 

differences between agonist and antagonist conformation are very difficult to be 

detected. 

Figure 3.34. RMSD from Leu78 to Lys89 of the α-Carbons from MD-2 loops implicated in the 

dimerization interface from the agonist (left) and antagonist (right) ligands. 
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3. TLR4 LIGANDS 

Figure 3.35. RMSD from Phe121 to Gln129 α-Carbons from MD-2 loops implicated in the 

dimerization interface from the agonist (left) and antagonist (right) ligands. 

Regarding the plasticity of de MD-2 pocket implicated in the dimerization 

interface distances between Met85-Lys125, Leu87-Ile124 and Val82-Phe126 from MD

2 pocket were analyzed in agonist and antagonist ligands (Figure 3.36). The distance in 

this region in the edge of the MD-2 pocket remains stable along the MD in all the 

cases, not being possible to see any significant differences between agonists and 

antagonists (Annex Figure 3.8). Except in the case of D1, is could be possible to observe 

some drastic movements since 20 ns, which is the time where D1 adopt a new position 

going towards the deep of the pocket. It is possible to think that it could be due to the 

size of D1, which has a bigger size than the other ligands. 

Figure 3.36. Distances between Met85-Lys125, Leu87-Ile124 and Val82-Phe126 from MD-2 

pocket were analyzed in MD simulation of agonist and antagonist ligands. Agonist 

conformation on the left and antagonist conformation on the right. 
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3. TLR4 LIGANDS 

The polar interactions between TLR4 and MD-2 were monitored around the MD 

from agonists and antagonist ligands comparing with the TLR4/MD-2 monomer 

structure (PDB-ID: 3FXI and 2E59). For the agonist conformation the distance 

interactions monitored were (TLR4/MD-2): Ser317-Asp101, Arg264-Asp101, Arg289

Ser98, Arg289-Asp99, Arg234-Asp100, Glu266-Ser103, Ser183-Arg106, Ser184-Arg106, 

Glu135-Thr112, Arg87-Thr112 and Glu42-Arg68. For the antagonist conformation the 

distance interactions monitored were (TLR4/MD-2): Asn339-Asp100, Ser317-Asp100, 

Arg234-Asp99, Arg264-Asp100, Glu266-Ser103, Asn265-Ser103, Glu135-Thr112 and 

Arg87-Thr112 (Annex Figure 3.9a and 3.9b). It was not possible to observe any changes 

in plasticity of MD-2 pocket. The interactions remained stable throughout the MD 

simulation (Annex Figure 3.9a and 3.9b). 

The number of water molecules around Phe126 and Tyr131 were detected in 

the agonist and the antagonist conformation, being able to see that Phe126 in the 

antagonist conformation is exposure to the solvent having around 26 water molecules, 

while in the agonist conformation, has around 9 molecules of water in a 4 Å radius. In 

the case of Tyr131 is not possible to observe many changes between agonist and 

antagonist conformation (Annex Figure 3.10). 

The electrostatic potential from MD-2 pocket was calculated for all the ligands 

using APBS tool,46 a molecular solvation based in the Poisson-Boltzmann 

approximation. It was not possible to observe significant differences between agonist 

and antagonist conformations (Annex Figure 3.11). 

The angle formed for Asp530(TLR4), Phe272(TLR4) and Pro50(MD-2) was 

calculated for all the ligands around the MD simulation (Figure 3.37), it could be said 

that there were no abrupt changes throughout the MD simulations. 
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3. TLR4 LIGANDS 

Figure 3.37. Angle measurement in the TLR4/MD-2 system between Asp530(TLR4)


Phe272(TLR4)-Pro50(MD-2). Agonists ligands on the left, antagonists ligands on the right.
 

3.3 Conclusions 

Theoretical binding modes have been predicted for reported modulators of the 

TLR4/MD-2 system, with agonist and antagonist activity. In particular, we focused our 

work in simplified LPS analogues and non-LPS molecules have also been developed. For 

all these TLR4 modulators there are not binding mode proposed. It is clear that 

although these molecules have a different chemical structure, they must share a 

common pattern of interactions with TLR4. We have undertaken a computational 

study of some representative compounds to unveil some of these patterns of 

interactions. Some of them have engendered an antagonistic response and other 

agonist response in the TLR4 complex. 

3.4 Materials and Methods 

3.4.1 Macromolecule Preparation 

In the case of the agonist conformation of the TLR4/MD-2 monomer, 3D 

coordinates from TLR4/MD-2 heterodimer were obtained from the Protein Data 

Bank,47 (PDB-ID: 3FXI) and then chains A and C were extracted and considered as 

TLR4/MD-2 monomer in agonist conformation. In the case of the antagonist 
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3. TLR4 LIGANDS 

conformation, since the full crystallographic structure of the TLR4/MD-2 complex is not 

available, a in-house model was used. This model was built using the human MD-2 

protein in antagonist conformation (PDB-ID: 2E59) superimposed onto the MD-2 

subunit of the agonist full complex (PDB-ID: 3FXI chain C) through PyMOL. Then, 

coordinates from the TLR4 chain of the 3FXI adjacent to the superimposed MD-2 (PDB

ID: 3FXI chain A) and the superimposed MD-2 in antagonist conformation were 

retained, forming the TLR4/MD-2 monomer in antagonist conformation. Finally, both 

agonist and antagonist structures were subjected to 10.000 cycles of steepest descent 

energy minimization under the OPLS_2005 force field via Maestro.48 

3.4.2 Ligand Preparation 

We built the full 3D structure of the agonists and antagonists ligands, with the 

help of ChemDraw® and Corina.49 Optimization of the 3D geometries was performed 

using Macromodel from Maestro Suite, using steepest descent minimization under the 

MMFFs force field until a convergence in energy of 0.5 kcal/mol was reached. 

3.4.3 Docking Studies 

Starting geometries of the ligands were docked in the agonist or antagonist 

conformation of the TLR4/MD-2 complex respectively, by using AutoDock450 in the 

case of all of the ligands, Vina51 for some molecules (specifically ONO 4007, D1 and 

euodenine A) and also Glide52-55 (in the case of euodenine A to compare the results 

obtained with AutoDock4 and Vina). 

For the docking studies performed with AutoDock4, the TLR4/MD-2 system was 

prepared with the help of AutodockTools by assigning Kollman charges and setting the 

grid as follows. For the TLR4/MD-2 in agonist conformation, the grid point spacing was 

set at 0.375 Å, the center of the grid box were in the midst of Leu78, Val135, Cys133 

and Ile80 residues from MD-2 pocket and number of grid points in x, y, z was 88, 96, 

86. For the TLR4/MD-2 in antagonist conformation, the grid point spacing was set at 
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3. TLR4 LIGANDS 

0.375 Å, the center of the grid box was close to Glu92 and number of grid points in x, y, 

z was 84, 96, 74. 

Ligand was also prepared with the help of AutodockTools, retaining the charges 

obtained from the optimization process. 

All docking calculations with AutoDock4 were performed using the Lamarckian 

genetic algorithm,56 number of individuals in population 150, maximum number of 

energy evaluations 2500000-5000000, maximum number of generations 27000, 

number of top individuals to survive to next generation 1, rate of gene mutation 0.02, 

rate of crossover 0.8, window size 10, Alpha parameter of Cauchy distribution 0.0, Beta 

parameter Cauchy distribution 1.0, run 200. Disposition of the ligand was defined as 

random changes in the torsion angles, location and overall orientation of the molecule. 

In the docking studies with Vina the following boxes were used: the TLR4/MD-2 

system in agonist conformation, the grid point spacing was set at 1 Å, the center of the 

grid box were in the midst of Leu78, Val135, Cys133 and Ile80, and number of grid 

points in x, y, z was 33, 36, 33. For the antagonist conformation, the grid point spacing 

was set at 1 Å, the center of the grid box was close to Glu92 residue from MD-2 

pocket, and number of grid points in x, y, z was 32, 36, 28. For all of them, the 

maximum number of binding modes to generate was 50, and the exhaustiveness of 

the global search (roughly proportional to time) was increased to 20. 

And docking calculations with Glide were performed using the grid points in x, 

y, z 58, 47, and 45, and the lengths of the inner box for agonist protein conformation 

were: 10 Å, 10 Å, 10 Å (x, y, z) and for the outer box: 30 Å, 30 Å, 30 Å (x, y, z). Epik state 

penalties for docking were used, and the non-polar part of the ligand potential were 

soften by scaling the van der Waals radii of ligand atoms with small partial charges. To 

do so, the scaling was 0.8, and the partial charge cutoff was 0.15. Standard Precision 

(SP) was performed and 200 docking poses per ligand was set. The Dock flexibility 

method was used for SP docking allowing us to penalize non-planar conformation for 

amide bonds. A post-docking minimization was also performed, as well as constraints 

for the docking stage. 
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3.4.4 Molecular Dynamic Simulations 

Molecular dynamic simulation was carried out for the some of the complexes 

obtained from the docking studies, i.e. eritoran, P01, P03, paclitaxel, euodenine A, 

ONO-4007 and D1. The AMBER force field was used for both ligand and protein, with 

the ff10 parameter used for the TLR4/MD-2complex, and the gaff parameter were 

applied for the ligand with the help of antechamber. Then counter ions were added to 

the systems as to neutralize it (9 Na+ atoms), and then they were solvated by using 

TIP3P waters in a cubic box with a 10 Å distance around the TLR4/MD-2 complex. 

Minimization was performed using Sander and MD simulations were run using the 

pmemd, which are distributed within the AMBER 12 package.57 A 1 fs integration step 

and the shake algorithm on every hydrogen-containing bond.58 The smooth particle 

mesh Ewald method59 was used to represent the electrostatic attractions in the system 

while each simulation was under periodic boundary conditions, and the grid spacing 

was 1 Å. Initial annealing of the system occurred steadily and lightly from 100 K to 300 

K over 25 ps. The temperature was then kept constant at 300 K during 50 ps with 

progressive energy minimizations and also a solute restraint. The solute restraints 

were gradually released, which was closely followed by a 20 ps heating period which 

went from 100 K to 300 K, once completed the restraints were removed. Each of the 

simulations lasted 50 ns. The systems then advanced in an isothermal-isobaric 

ensemble. 

3.4.5 Average Structures 

Average structures were extracted from molecular dynamics simulations of the 

ligands with ptraj of AmberTools 13. All the average structures were minimized with 

5000 steps of steepest descent minimization with position restrain (force constant of 

Å-2 10 kcal mol-1 ) for all nonhydrogen atoms, plus 5000 steps of steepest descent 

minimization with no restrains. 
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3. TLR4 LIGANDS 

3.4.6 Plasticity of the TLR4/MD-2 Complex 

Solvent accesible volume was calculated on hydrophobic pockets of MD-2 by 

using CASTp server.45 CASTp server identifies and computes the molecular area and 

volume for cavities and pockets of a given protein. The data corresponding to the 

hydrophobic pockets of MD-2 proteins were selected. 

3.4.7 Binding Site Prediction Studies 

Two different programs based in different algorithms were used to predict and 

score potential drug binding sites: SiteMap60 and CASTp.44 

SiteMap. Binding sites were predicted and scored for the mol2 files prepared 

receptor structures. SiteMap default parameters for the identification of site points 

were used. Requiring at least 15 site points per reported site, a maximum value of 30 

sites per run was determined. Calculations were performed in a standard grid, using a 

restrictive definition of hydrophobicity. Maps were cropped at 4 Å from nearest site 

point. Results were visualized using Maestro. Site point groups were saved in xyz 

format. 

CASTp. On a first approach, a probe radius input parameter was fixed. For this 

purpose, different jobs using the TLR4/MD-2 system and varying the probe radius were 

submitted to CASTp server. The correspondent calculations were retrieved, loaded and 

visualized using Pymol. SiteMap results were contrasted with CASTp results using the 

xyz exports. SiteMap sites that were either located next to the membrane domain or 

forming cavities inside TLR4 were not used for this evaluation. For each job, the 

number of pockets which were entirely recognized by CASTp was plotted against the 

number of reported pockets. Once a determined probe radius was fixed, two different 

jobs for the TLR4/MD-2/TLR4*/MD-2* and antagonist TLR4/MD-2 systems were 

submitted to CASTp server. Results were again visualized and compared with SiteMap 

results. Two different parameters were used to rank binding sites: detection of the 

binding site by CASTp in the different receptor structures and SiteScore. 

164 

http:CASTp.44
http:server.45


   

 

 

    

  

 

 

 

    

      

   

     

   

     

   

 

 

 

3. TLR4 LIGANDS 

3.5 Annex III 

a) b) 

c) d) 

Annex Figure 3.1. a) MD simulation of MD-2/P01 (50 ns): RMSD (Å) is represented for the -

Carbons for MD-2 (dark blue) and the heavy atoms for the ligand P01 (red), b) MD simulation 

of TLR4/MD-2/P01 (50 ns): RMSD (Å) is represented for the -Carbons for TLR4/MD-2 (green) 

and the heavy atoms for the ligand P01 (red), c) MD simulation of MD-2/P03 (50 ns): RMSD (Å) 

is represented for the -Carbons for MD-2 (dark blue) and the heavy atoms for the ligand P03 

(red), d) MD simulation of TLR4/MD-2/P03 (50 ns): RMSD (Å) is represented for the -Carbons 

for TLR4/MD-2 (green) and the heavy atoms for the ligand P03 (red). 
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3. TLR4 LIGANDS 

a) b) 

c) d) 

Annex Figure 3.2. RMSD of the positions of the atoms belonging to the P01 ligand. Black acyl 

chain 1, red acyl chain 2 and green sugar moiety.   a) P01 docking in MD-2 and simulation in full 

complex. b) P01 docking in TLR4/MD-2 and simulation in “MD-2 only”/ c) P03 docking in 

TLR4/MD-2 and simulation in full complex. d) P03 docking in TLR4/MD-2 and simulation in 

“MD-2 only”/ 
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3. TLR4 LIGANDS 

Annex Figure 3.3. MD simulation of the complex TLR4/MD-2/Eritoran (50 ns): RMSD (Å) is 

represented for the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 (dark blue), and 

the heavy atoms for the ligand Eritoran (red). 

Annex Figure 3.4. Contacts between Eritoran ligand and the residues from the TLR4/MD-2 

present in two different average structures of the MD simulation. 

Annex Figure 3.5. Three binding poses (orange, magenta and pink) of compound A2 in
 

TLR4/MD-2 system.
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3. TLR4 LIGANDS 

Annex Figure 3.6. MD simulation of the complex TLR4/MD-2/paclitaxel (50 ns): RMSD (Å) is 

represented for the -Carbons for TLR4/MD-2 (green), TLR4 (cyan), and MD-2 (dark blue), and 

the heavy atoms for the ligand paclitaxel (red). 
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3. TLR4 LIGANDS 

!nnex Figure 3.7. Distances between TLR4-TLR4’ residues around dimer MD simulation of the 

euodenine ! in the full complex/ 

Annex Table 3.1. Identified SiteMap binding sites in all the receptor structures, with 

their correspondent SiteScore and Dscore values, and their location in the TLR4/MD-2 

complex. 

�inding site 

name 

dimerization 

state 
�onformation SiteScore Dscore Location 

!, Q homodimer agonist 1,228 1,34 MD-2 pocket 

!, Q heterodimer antagonist 1,205 1,302 MD-2 pocket 

!, Q heterodimer agonist 1,147 1,229 MD-2 pocket 

! homodimer agonist 1,126 1,2 MD-2 pocket 

Q homodimer agonist 1,073 1,118 MD-2 pocket 
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3. TLR4 LIGANDS 

�, W, X homodimer agonist 1,023 1,048 

TLR4/MD-2 

heterodimerizatio 

n interface and 

TLR4 

�, X heterodimer antagonist 1,018 1,035 

TLR4/MD-2 

heterodimerizatio 

n interface and 

TLR4 

�, X homodimer agonist 1,012 1,039 

TLR4/MD-2 

heterodimerizatio 

n interface and 

TLR4 

�, W, X heterodimer agonist 1,01 1,041 

TLR4/MD-2 

heterodimerizatio 

n interface and 

TLR4 

�, � homodimer agonist 1,009 0,959 TLR4* 

T homodimer agonist 0,983 0,968 
TLR4 (internal 

cavity) 

J homodimer agonist 0,981 0,937 

TLR4/TLR4 

homodimerization 

interface 

L homodimer agonist 0,971 0,842 

TLR4/MD-2 

heterodimerizatio 

n interface 

P, I homodimer agonist 0,969 0,897 

TLR4/TLR4 

homodimerization 

interface 

F, G, H homodimer agonist 0,922 0,933 TLR4 
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3. TLR4 LIGANDS 

F, G, H, O homodimer agonist 0,91 0,954 TLR4 

� heterodimer agonist 0,886 0,892 TLR4 

E homodimer agonist 0,841 0,84 

TLR4 (near 

transmembrane 

domain) 

� heterodimer antagonist 0,838 0,84 TLR4 

G, H heterodimer agonist 0,838 0,875 TLR4 

E homodimer agonist 0,835 0,845 

TLR4 (near 

transmembrane 

domain) 

D heterodimer antagonist 0,835 0,844 TLR4 

W homodimer agonist 0,827 0,817 TLR4 

L homodimer agonist 0,786 0,543 

TLR4/MD-2 

heterodimerizatio 

n interface 

W homodimer agonist 0,78 0,741 TLR-4 

U homodimer agonist 0,778 0,747 

TLR4/TLR4 

homodimerization 

interface 

V homodimer agonist 0,777 0,695 TLR-4 

E heterodimer agonist 0,77 0,775 

TLR4 (near 

transmembrane 

domain) 

D homodimer agonist 0,762 0,744 TLR4 

E heterodimer antagonist 0,747 0,735 

TLR4 (near 

transmembrane 

domain) 

D heterodimer agonist 0,738 0,718 TLR4 
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3. TLR4 LIGANDS 

D homodimer agonist 0,705 0,674 TLR4 

L heterodimer agonist 0,703 0,474 

TLR4/MD-2 

heterodimerizatio 

n interface 

M homodimer agonist 0,686 0,595 
MD-2 (external 

binding site)* 

M homodimer agonist 0,676 0,58 
MD-2 (external 

binding site)* 

F, G heterodimer antagonist 0,668 0,659 TLR4 

I heterodimer antagonist 0,649 0,366 TLR4 

I heterodimer agonist 0,64 0,476 TLR4 

G, H heterodimer antagonist 0,627 0,586 TLR4 

M heterodimer agonist 0,623 0,51 
MD-2 (external 

binding site) 

O homodimer agonist 0,62 0,516 TLR4 

X homodimer agonist 0,614 0,566 TLR4 

R homodimer agonist 0,58 0,524 

TLR4/MD-2 

homodimerization 

interface 

K, Y heterodimer antagonist 0,577 0,504 TLR4 

N heterodimer agonist 0,552 0,471 TLR4 

S, Y homodimer agonist 0,547 0,491 TLR4 

O heterodimer agonist 0,543 0,455 TLR4 
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3. TLR4 LIGANDS 

!nnex Table 3.2/ Calculated SASA and volume of MD-2 pockets by CASTp for the binding 

poses and average structure during the MD simulations of the different ligands. 

LIGAND 

Euodenine A 

Nº 

ATOM 

61 

ONO-4007 

D1 

Eritoran 

142 

238 

213 

Paclitaxel 113 

DOCKING/AVERAGE 
SASA (Å2) 

docking: 617.650 

average 42-238: 635.431 

average 1152-1662: 393.377 

average 3837-4249: 334.191 

docking: 667.810 

average 1500-2500: 739.338 

docking: 781.697 

average 3000-4000 819.913 

docking: 613.745 

average 1560-1943: 771.575 

average 2015-2150: 591.068 

EXT-sol2-clust6_docking 635.865 

EXT-sol2-clust6_average 591.347 

EXT-sol2-clust7_docking 645.843 

EXT-sol2-clust7_average 622.278 

POLAR_sol1_clust30_docking 660.009 

POLAR_sol1_clust30_average 557.977 

POLAR_sol1_clust1_docking 660.004 

POLAR_sol1_clust1_av300-1000 653.755 

T-TAXOL_docking 660.016 

T-TAXOL_average 830.141 

Docking 660.009 

Volume 

(Å3) 

602.904 

495.813 

309.073 

261.028 

715.539 

837.885 

1007.779 

781.971 

670.638 

988.573 

659.075 

681.513 

525.086 

721.360 

638.440 

690.237 

470.107 

690.231 

717.826 

690.214 

1005.880 

690.237 P01 113
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3. TLR4 LIGANDS 

FullComplex_av300-390 

FullComplex_av1210-1300 

FullComplex_av2340-2420 

docking 

MD2only_av100-250 

MD2only_av1200-2000 

MD2only_av2130-2230 

P03 104 docking 

FullComplex_av1560-1943 

FullComplex_av2016-2150 

docking 

MD2only_av130-250 

MD2only_av500-850 

A1 193 docking 

115 docking_SOL1 

docking_SOL2 

docking_SOL3 

605.486 

498.415 

459.895 

539.230 

831.267 

518.032 

668.878 

660.009 

572.964 

708.288 

539.221 

733.237 

678.205 

699.866 

699.866 

699.866 

699.866 

497.741 

379.840 

318.623 

527.605 

860.676 

358.442 

575.479 

690.237 

439.545 

595.026 

527.594 

536.505 

647.867 

798.737 

798.737 

798.737 

798.737 

174 



   

 

 

  

 

   

 

 

    

 

 

 

 

 

 

 

 

 

 

3. TLR4 LIGANDS 

Annex Figure 3.8. Distances between Met85

Lys125, Leu87-Ile124 and Val82-Phe126 from 

the loops in MD-2 pocket in agonist and 

antagonist MD simulations of the ligands. 
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3. TLR4 LIGANDS 

Ligand: Euodenine A 

Ligand: ONO-4007 

Annex Figure 3.9a. Polar interactions monitorized between TLR4 and MD-2 residues from 

Euodenine A and ONO-4007 MD simulation. 

176 



   

 

 

  

 

 

  

 

 

 

 

 

 

 

 

3. TLR4 LIGANDS 

Ligand: D1 

Ligand: Eritoran 
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3. TLR4 LIGANDS 

Ligand: P01 

Annex Figure 3.9b. Polar interactions monitorized between TLR4 and MD-2 residues from D1, 


Eritoran and P01 MD simulation.
 

Average of the water Average of the 

ANTAGONISTS Time (ns) molecules around water molecules 

Phe126 around Tyr131 

P01_FullComplex 50 24.724 6.544 

P01_MD2Only 50 23.248 10.208 

P03_FullComplex 50 26.062 8.432 

P03_MD2Only 50 26.906 10.038 

D1 50 26.102 8.56 

Eritoran 50 18.5 6.586 

TAXOL-EXT-clust6 30 26.7733 7.59333 

TAXOL-EXT-clust7 30 28.4333 14.1933 

TAXOL-POLAR-clust1 50 26.552 13.804 

TAXOL-POLAR-clust30 30 25.4933 6.36 

TAXOL-TTAXOL 30 28.2133 9.08667 
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3. TLR4 LIGANDS 

Average of the water Average of the 

AGONISTS Time (ns) molecules around water molecules 

Phe126 around Tyr131 

Euodenine A 70 9.84286 10.0271 

ONO 4007 50 8.954 7.994
 

Annex Figure 3.10. Evaluation of the number of water molecules around Phe126 and Tyr131
 

in a radius of 4 Å from the center of mass of the both residues. The average of the water 


molecules was taken from the MD simulation starting from the docked binding poses.
 

APBS from MD-2 pocket:
 

Ligand Euodenine A
 

docking average 42-238 average 1152-1662 average 3837-4249 

Ligand ONO-4007 

docking average 1500-2500 

Ligand Eritoran 
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3. TLR4 LIGANDS 

docking average 1560-1943 average 2015-2150
 

Ligand D1 

docking average 

Ligand P01 

docking average 100-250 average 1200-2000 average 2130-2230
 

Ligand P03
 

docking average 130-250 average 500-850
 

Ligand A1 Ligand A2
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3. TLR4 LIGANDS 

docking docking
 

Annex Figure 3.11. Electrostatic potential of MD-2 in Pymol plotted on the solvent accessible 


surface. The surface colors are clamped at red (-) or blue (+).
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4. TLR4 MODULATORS AND PROBES 

4.1 Introduction 

As it has been mentioned in the Introduction, the induction of 

inflammatory responses by endotoxin is achieved by the coordinated and 

sequential action of four principal endotoxin-binding proteins: the 

lipopolysaccharide-binding protein (LBP), the cluster differentiation antigen CD14, 

the myeloid differentiation protein (MD-2), and TLR4.1 CD14-dependent or 

independent TLR4 activation by endogenous factors (danger or damage

associated molecular patterns, DAMPs) such as heat-shock proteins, fibronectin, 

and oxidized phospholipids has been recently related to a wide array of 

inflammatory disorders, including neuroinflammation and neurological diseases, 

such as amyotrophic lateral sclerosis (ALS),2 neuropathic pain,3 and !lzheimer’s 

disease (AD).4 Consensus is growing that TLR-directed compounds will provide in 

the near future new specific drugs against a wide array of diseases still lacking 

specific pharmacological treatment,5 and the EU is now strongly committed to 

support academic and industrial research focused on TLR modulation by small 

molecules and antibodies. 

Small molecules able to interact with membrane CD14 and TLR4/MD-2 

dimer are not only new hit for drug development, but also potential templates to 

develop selective chemical probes allowing in vitro and in vivo imaging of innate 

immune receptors and ligand/receptor co-localization studies. The portion of LPS 

that binds to the CD14 and MD-2 receptors is lipid A. Even though lipid A chemical 

structure varies in different bacterial species, it is generally composed by a 

hydrophilic domain formed by a glucosamine disaccharide bearing two phosphate 

groups and a hydrophobic domain formed by linear and branched fatty acid lipid 

chains attached to the disaccharide core through ester or amide bonds.6-7 The 

lipid A structure can be mimicked by synthetic glycolipids bearing anionic 

phosphates. Synthetic TLR4 activators (agonists)8 and inhibitors (antagonists)9-10 

have been developed with a variety of clinical and pharmacological applications.11 

Although the negative charges on phosphate are important for the 

interaction of lipid A and its synthetic analogs with the CD14 and MD-2 
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4. TLR4 MODULATORS AND PROBES 

receptors,12 it has been recently found that also cationic lipids with positively 

charged head groups are active in modulating TLR4 activity as agonists or 

antagonists.13 While the mechanism of action of other cationic lipids seems to be 

mainly based on interaction with LPS and stabilization or solubilization of insoluble 

LPS aggregates, specific interaction with MD-2 and CD14 co-receptors was clearly 

14-16 demonstrated for cationic glycolipids developed by our group. These 

compounds are active in inhibiting TLR4-dependent cytokine production in cells 

and in blocking TLR4 activation by LPS15 and endogenous17 stimulation in animal 

models. Size-exclusion chromatography revealed that incubation of soluble CD14 

(sCD14) with these compounds inhibited the transfer of lipooligosaccharides (LOS) 

from CD14 to TLR4/MD-2.14 Evaluation of transfer of LOS from monomeric sCD14 

to His6-tagged CD14 or MD-2 by co-capture to metal chelating resin clearly 

showed that the cationic lipids derived from D-glucose or benzylamine inhibit the 

transfer of LOS from sCD14 to CD14-His6, but not the transfer of LOS from sCD14 

to MD-2. Finally, saturation transfer difference (STD) NMR data demonstrated 

direct binding of the cationic lipids to CD14, through acyl chains mainly.14 

Altogether, these data suggest therefore that the cationic lipid tails insert into the 

hydrophobic pocket of CD14 and compete with LPS or LOS lipid chains. In fact, the 

wideness of MD-2 pocket leaves space to accommodate extra units of LPS-like 

ligands with two fatty acid chains such as IAXO-102 ligand. 

With this starting background, we undertook the computer-assisted, 

structure-based rational design, the synthesis, and a preliminary evaluation of 

biological activity of compounds 4.1-4.4 (Figure 4.1). Labeling properties of 

fluorescent compound 4.1 were studied in murine macrophages. The synthesis 

and biological evaluation of the compounds were performed at the laboratory of 

Prof. Peri at the University Milano-Bicocca. All the experimental details can be 

found elsewhere.18 

Compounds 4.1 and 4.2 are derived from the glycolipid IAXO-102 

previously developed by Francesco Peri’s group from Milano (Italy) and now 

commercially available (Adipogen, www.adipogen.com). Compound 4.1 has a 
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4. TLR4 MODULATORS AND PROBES 

fluorescein unit directly linked to the glucose C-6, while fluorescein is linked to the 

sugar through a glutaryl-diaminoethyl-thiourea linker in compound 4.2 (Figure 

4.1). Compounds 4.3 and 4.4 are composed by two glycolipid units with the same 

structure of IAXO-102 connected through, respectively, C4 diamino and di

ammonium linkers (Figure 4.1). 

Figure 4.1. Glycolipid derivatives of IAXO-102: fluorescent probes 4.1 and 4.2, dimeric 

derivatives 4.3 and 4.4, and control compound 4.5. 

The use of permanently charged ammonium groups in compound 4.4, 

instead of pH-sensitive amines of 4.3, is aimed at improving water solubility of 

these molecules and at the same time optimizing charge interactions with CD14 

and MD-2 receptors. Compound 4.5, a water-soluble fluorescein derivative, was 
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4. TLR4 MODULATORS AND PROBES 

also synthesized to be used as a negative control for fluorescence labeling studies 

on cells. 

4.2 Results 

Structures of CD14 and MD-2 Binding Pockets 

Structurally, both human and mouse CD14 (hCD14 and mCD14) are 

characterized by a bent solenoid typical of leucine-rich repeat (LRR) proteins, with 

a large hydrophobic pocket found on the amino-terminal side (PDB-ID: 4GLP for 

hCD14, and 1WWL for mCD14). In the TLR4/MD-2 complex, MD-2 protein is 

responsible for LPS binding and it is characterized by a wide lipophilic pocket that 

hosts the fatty acid chains from LPS. Our calculations showed that both hCD14 and 

hMD-2 pockets share a similar topology in terms of solvent accessible surface area 

(SASA) and volume (Figure 4.2 and Table 4.1). However, CD14 possesses fewer 

polar residues in the rim and it is capable of recognizing other microbial and 

cellular molecular determinants, in addition to LPS.9 Therefore, despite being very 

similar in lipophilicity, SASA, and volume, the pockets differ in the polarity of the 

rim, allowing MD-2 to be more selective than CD14 in the recognition of LPS. 

Figure 4.2. Binding pockets identified by CASTp26 in hCD14 (left, PDB-ID: 4GLP) and hMD

2 (right, PDB-ID: 2E59). 
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4. TLR4 MODULATORS AND PROBES 

Rational Design of IAXO-102-derived Fluorescent Probes 4.1 and 4.2 

Based on IAXO-102 structure (Figure 4.1), we aimed to develop small

molecule fluorescent probes for endotoxin receptors, able to bind to CD14 and 

TLR4/MD-2 complex. Then, we designed compounds 4.1 and 4.2 (Figure 4.1) 

where IAXO-102 is chemically linked to fluorescein through a thiourea 0-atoms 

linker (compound 4.1) or a glutaryl-diaminoethyl 9-atoms linker (compound 4.2). 

The C-6 position of the glucose moiety in IAXO-102 has been selected as 

attachment point for fluorescein because it is apart from lipid chains that directly 

interact with hCD14 and MD-2 receptors, according to NMR binding studies on 

IAXO-102.14 

To estimate its CD14 binding properties, designed compounds 4.1 and 4.2 

were submitted to docking studies using the X-ray crystal structure of hCD14 

(PDB-ID: 4GLP), focusing on the amino-terminal pocket, that presumably binds 

acylated ligands including LPS. As the 3D structure of CD14-bound ligands are not 

available, and given that the crystallographic structure for CD14 (PDB-ID: 4GLP) 

adopts a closed conformation of the pocket, thus preventing an efficient 

exploration by docking, we first undertook a normal mode analysis (NMA) of the 

protein to represent motions and conformational changes. Finally, docking 

calculations were performed in three different conformations of hCD14 obtained 

by NMA (see Experimental Section), thus approaching a flexible protein docking 

protocol. Calculations predicted binding poses for compounds 4.1 and 4.2, with a 

general tendency to bury their fatty acid chains inside the hydrophobic pocket, 

with the sugar pyranose ring remaining toward the external portion (Table 4.2). 

Only, 2% of the docking results (performed in the three different structures from 

NMA) predicted fluorescein moiety inserted inside the CD14 pocket with one or 

two FA chain outside the pocket, and always with unfavorable theoretical binding 

energy. These results are in agreement with the binding modes proposed for 

other TLR4 modulators interacting with hCD14.19 Our calculations have predicted 

that the thiourea linker and the fluorescein moiety establish polar interactions 

with the hydrophilic rim, without adopting any preferred binding pose. This 
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4. TLR4 MODULATORS AND PROBES 

heterogeneity can be observed in the docked poses shown in Figure 4.3. These 

results would not be incompatible with the fluorescein tag dangling from the 

CD14 into the solvent. Similar docking results were obtained for mCD14 (Figure 

4.4). Selected docked poses from the most populated clusters were submitted to 

minimization and analysis of the free energy of binding using the MM-GBSA 

approach (see Experimental Section). 

Figure 4.3. Rational design of compounds 4.1 and 4.2. Docked poses for compound 4.1 (left, 

lateral, and top views) and compound 4.2 (right, lateral, and top views) binding to hCD14 (PDB

ID: 4GLP). Fluorescein remains at the hCD14 rim and the IAXO-102 scaffold binds into the hCD14 

pocket. Fatty acid chains are buried inside the hydrophobic pocket. Three different 

conformations of hCD14 from NMA are superimposed. 
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4. TLR4 MODULATORS AND PROBES 

Figure 4.4. Docked poses for compound 4.2 binding to mCD14 (PDB-ID: 1WWL). 

Fluorescein remains at the mCD14 rim and the IAXO-102 scaffold binds into the mCD14 

pocket (on the left). Fatty acid chains are buried inside the hydrophobic pocket (on the 

right). 

To evaluate putative MD-2 binding properties of compounds 4.1 and 4.2, 

we also undertook docking studies in the hTLR4/MD-2 system. As the X-ray 

structure of the hTLR4/MD-2 is not available in complex with an antagonist, we 

used a hybrid model built by us from PDB-IDs 3FXI and 2E59 (see Experimental 

Section). Similarly to CD14, the calculations predicted binding poses with FA 

chains buried inside the MD-2 hydrophobic pocket (Table 4.2). These results are in 

agreement with the antagonist binding pose found for lipid IVa, a precursor of 

lipid A, in the crystallographic structure (PDB-ID: 2E59). In the case of compounds 

4.1 and 4.2, the thiourea linker and the fluorescein moiety resulted outside MD-2, 

adopting different orientations (Figure 4.5) and establishing transient polar 

interactions with MD-2 residues Arg90, Glu92, Lys122, and Tyr102. In the case of 

compound 4.2, the longer linker allows the fluorescein moiety to reach the TLR4 

region delimited by Asn361, Lys362, Gly363, and Arg264. In a dynamic 

environment, it is likely the fluorescein tag may fluctuate into the solvent. 
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4. TLR4 MODULATORS AND PROBES 

A B 

Figure 4.5. Rational design of compounds 4.1 and 4.2. Docked poses for compound 4.1 

(A) and compound 4.2 (B) binding to TLR4/MD-2 (hybrid model from PDB-ID 2E59) 

showing three preferred binding poses. 

Rational Design of IAXO-102 derivatives 4.3 and 4.4 

Previous computational and NMR studies performed by our group showed 

that LPS-like compounds bearing two FA chains are able to bind MD-2, inserting 

both chains inside the pocket, by adopting different biding poses.19 In fact, the 

wideness of MD-2 pocket leaves room to accommodate the ligand while leaving 

enough empty space to host a second ligand molecule. Duplication of the 

structure of IAXO-102 would still allow both ammonium groups to remain at the 

rim of MD-2, while allowing the four FA chains to go inside the pocket, following a 

dimer-based design strategy already used for TLR4 ligands.20-21 Thus, different 

dimeric structures were designed and docked to CD14 and TLR4/MD-2 (data not 

shown), finally leading to the selection of molecules 4.3 and 4.4. 

Predicted binding poses of compounds 4.3 and 4.4 on the hTLR4/MD-2 

receptor complex showed a general tendency to bury their fatty acid chains inside 

the hydrophobic pocket of MD-2, similarly to lipid A and lipid IVa, and to place the 

sugar moieties in the rim of MD-2, establishing polar interactions. Selected docked 

poses from the most populated clusters were submitted to analysis of the free 

energy of binding using the MM-GBSA approach (Table 4.2). The computed energy 
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4. TLR4 MODULATORS AND PROBES 

values were reasonably good when compared with the antagonist lipid IVa, whose 

binding energy was also computed as reference value (Table 4.2). 

Analysis of the docked poses in the hTLR4/MD-2 system for both 

compounds 4.3 and 4.4 showed that the FA chains establish lipophilic interactions 

with the alkyl and aromatic residues building the inside of MD-2 pocket, mainly 

Ile44, Ile46, Ile52, Leu61, Ile63, Tyr65, Leu78, Ile94, Ile117, Phe121, Ile124, Val135, 

Phe147, and Ile153. In addition, CH–π interactions were observed for both 

compounds between the ligand aliphatic chains and Phe76, Phe104, and Phe151 

side chains. No CH–π interactions were observed involving the sugar CH groups. 

For the analysis of the lipophilic interactions, distances of FA chains of compounds 

4.3 and 4.4 with residues alkyl chains were measured (distance to compound 4.3 / 

distance to compound 4.4): Ile44 (3.2 Å / 3.4 Å), Ile46 (3.6 Å / 3.5 Å), Ile52 (2.9 Å / 

3.5 Å), Leu61 (4 Å / 3.6 Å), Ile63 (3.2 Å / 3.7 Å), Tyr65 (3.4 Å / 3.6 Å), Leu78 (3.7 Å / 

3.6 Å), Ile94 (3.4 Å / 3.1 Å), Ile117 (3.3 Å / 3.4 Å), Phe121 (3.4 Å / 3.2 Å), Ile124 

(3.3 Å / 3.6 Å), Val135 (3.3 Å / 3.3 Å), Phe147 (3.6 Å / 3.4 Å) and Ile153 (3.2 Å / 3.5 

Å). Distance for CH-π interactions were also measured with Phe76 (3.2 Å / 3.1 Å), 

Phe104 (3.6 Å / 3.3 Å) and Phe151 (4.1 Å / 4.6 Å). 

Both compounds also showed a similar pattern of polar interactions. 

Several hydrogen bonds can be identified between hydroxyl groups from both 

glucose moieties (glucoses A and B in Figure 4.6). Distances in the docked 

TLR4/MD-2 ligand complex are (compound 4.3/compound 4.4): Arg90 side chain 

and O3 from glucose A (2.6 Å/1.9 Å), Glu92 side chain and O4 from glucose A (2.2 

Å /2.2 Å), and Arg96 side chain and O5 from glucose B (3.8 Å /3.1 Å). The 

ammonium group from glucose B is in the close vicinity of Glu92 side chain 

(distance of 4.5 Å /4.7 Å), establishing a favorable electrostatic interaction for 

both compounds. In the case of compound 4.3, the presence of polar hydrogen 

atoms leads us to suggest the possible formation of a hydrogen bond. Overall, the 

reasonably good predicted binding properties prompted us to synthesize and test 

both compounds.18 
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4. TLR4 MODULATORS AND PROBES 

Figure 4.6. Rational 

design of compounds 

4.3 (top) and 4.4 

(bottom). Docked 

poses for compounds 

4.3 and 4.4 binding to 

TLR4/MD-2. 

Superimposed lipid IVa 

(magenta) is shown as 

reference in the global 

views (left, top, and 

bottom). Details of 

some ligand–receptor 

interactions are shown 

(right, top, and 

bottom). 

4.3 Discussion 

The TLR4 antagonist IAXO-102 has proven to serve as inspiration for 

rational design of new glycolipid-based TLR4 inhibitors: compounds 4.1 and 4.2 

are fluorescein labeled analogs of the parent molecule; compounds 4.3 and 4.4 

are homodimers based on another dimeric version of TLR4 antagonist already 

described by our group. 20 Molecular modeling studies have assisted in the 

structure based design of new molecules and in the rationalization of the putative 

binding modes for the three molecules 4.1-4.4, showing that the primary amino 

group at of IAXO-102 is not directly involved in the binding to CD14 and TLR4/MD

2 receptors, while FA chains are inserted in the lipophilic pockets of the receptors. 

The primary amino group has been covalently attached to a fluorescent tag 

through a long short 0-atom or a long 9-atoms linker (molecules 4.1 and 4.2) or 

used to link two glucose molecules through di-amine and di-ammonium spacers 
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(molecules 4.2 and 4.3). All compounds proved to inhibit in a concentration

dependent manner TLR4 activation and signaling in HEK-BlueTM cells expressing 

hTLR4, compounds 4.1 and 4.2 being more active than 4.3 and 4.4. In preliminary 

confocal microscopy experiments,18 compound 4.1 was able to fluorescently label 

the surface of murine macrophages, and labeling was abrogated when cells were 

pre-treated with LPS or with trypsin. This would suggest a selective interaction of 

compound 4.1 with LPS-binding proteins CD14 and MD-2 of the TLR4 receptor 

system. The reference fluorescein ethanolamine did not bind to cells in the same 

experimental conditions, thus suggesting again that compound 4.1 interact with 

LPS-binding proteins on the macrophage surface. 

We still do not completely exclude some non-specific interactions of 

compounds 4.1 and 4.2 with cell membrane, including insertion into membrane 

bilayer, and we are further investigating this property for these and other 

compounds of the IAXO series. We are also investigating why the presence of the 

9-atoms linker makes compound 4.2 much less efficient than 4.1 in fluorescence 

labeling of cells. 

Homodimers 4.3 and 4.4 with increased hydrophobic part inhibited LPS

stimulated TLR4 signal in cells very weakly.18 Both these compounds have very 

poor solubility in aqueous solutions with tendency to form aggregates. 

Experimentally was found that critical micellar concentration (CMC) for compound 

4.3 and 4.4 are, respectively, 18.1 and 29.7 µM using an established fluorescence 

technique based on pyrene.22 Both compounds present quite low CMC values, if 

compared to other cationic glycolipids active as TLR4 modulators.23 The low value 

of CMC could account for the weak TLR4 activity of these compounds. 

In the concentration range used for biological characterization (10–200 

µM), these molecules form aggregates, so that activity on TLR4 receptor system is 

due to very few residual monomers able to interact with CD14 and MD-2 

receptors. While being active in cells, fluorescent compounds 4.1 and 4.2 failed to 

inhibit LPS-induced cytokine production in vivo. In fact, calculated logP values for 

compounds 4.1 and 4.2 (9.89 and 9.78, respectively) 
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(http://www.molinspiration.com) indicate a high predicted lipophilicity, 

accounting for poor solubility and unfavorable distribution properties that could 

explain the lack of in vivo activity. Given that the physico-chemical properties can 

be tuned, the very low toxicity on cells of compounds 4.1 and 4.2 is however an 

important prerequisite for drug development. Another interesting result from this 

study is the possibility to chemically label with fluorophores TLR4 antagonists 

preserving their TLR4 activity. Overall, these findings suggest that molecules 4.1 

and 4.2 could be promising hits for the development of TLR4/MD-2 modulators 

and probes. 

4.4 Materials and Methods 

Building of Ligands 

3D co-ordinates of the compounds 4.1-4.4 were built in Corina24 from the 

SMILES code. Optimization of the ligands was performed with MMFFs force field 

using MacroModel.25 Two fragments from compounds 4.2 were built and 

optimized with MMFFs force field: the glycolipid moiety F1 and the fluorescein 

moiety plus the linker F2 (Figure 4.7). Fluorescein moiety was modeled according 

to the protonation state at experimental conditions. 3D co-ordinates of human 

CD14 protein (PDB-ID: 4GLP) and mouse CD14 (PDB-ID: 1WWL) were refined and 

optimized under the Protein Preparation Wizard module of Maestro,25 using 

AMBER force field. In the case of human CD14, three geometries resulting from 

the normal mode analysis (NMA) were considered for docking purposes as 

described below. For the building of the human TLR4/MD-2 system, we used the 

(hetero) monomer from crystallographic TLR4/MD-2/LPS heterodimer (PDB-ID: 

3FXI, agonist conformation), by replacement of the MD-2 protein by the human 

MD-2 in antagonist conformation (from PDB-ID: 2E59) by superimposition of the 

Cα trace. Ligand was deleted, missing hydrogens were added, and protonation 

state of ionizable groups was computed using the Protein Preparation Wizard 

module of Maestro. This structure was submitted to 100000 steps of steepest 
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4. TLR4 MODULATORS AND PROBES 

descent minimization with MacroModel,25 optimized with AMBER force field, and 

finally used as TLR4/MD-2 macromolecule for the docking calculations. 

Figure 4.7. Preparation of the macromolecules: fragments F1 and F2 of molecule 4.2. 

SASA and Volume Calculations 

Solvent accessible surface area (SASA) and solvent accessible volume were 

calculated on hydrophobic pockets of CD14 (PDB-ID: 4GLP) and MD-2 (PDB-ID: 

2E59) using CASTp server.26 CASTp server identifies and computes the molecular 

area and volume for cavities and pockets of a given protein. In our case, we 

selected the data corresponding to the hydrophobic pockets of both CD14 and 

MD-2 proteins (Table 4.1). 

Table 4.1. Calculated SASA and volume of 

hCD14 (PDB-ID: 4GLP) and hMD-2 (PDB-ID: 

2E59) pockets by CASTp. 

Molecule SASA (Å2) Volume (Å3) 

hCD14 623 607 

hMD-2 591 621 

201 

http:server.26


 

 

 

   

    

        

       

      

   

    

      

      

      

         

        

 

 

  

    

        

      

     

        

             

       

      

         

         

          

     

        

     

4. TLR4 MODULATORS AND PROBES 

Normal Mode Analysis 

To compute the low frequency normal modes of CD14, the elastic network 

model was used with help of the Webinterface ElNemo.27 We focused our 

attention on the sequence ranging from Glu26 to Leu135 that corresponds to the 

binding pocket, and normal mode 4 was found to account for the opening/closing 

of the pocket. From the trajectory corresponding to this normal mode, we 

selected three structures to be used for docking purposes: the one corresponding 

to the crystallographic structure (CD14-a), the one corresponding to the last 

structure of the displacement in one of the directions of the normal mode (CD14

b), and the last located structure in the opposite direction (CD14-c). The three 

structures were submitted to 100 000 steps of steepest descent minimization with 

MacroModel25 and optimized with AMBER force field, before being used for 

docking calculations. 

Docking Calculations 

Docking calculations were performed by means of AUTODOCK 4.2..28 

Analysis was performed with the help of AUTODOCKTools. For CD14 as 

macromolecule, only the sequence ranging from Ala3 to Leu130 was considered 

for docking purposes and three geometries were considered: CD14-a, CD14-b, and 

CD14-c (as reported above). The grid point spacing was set at 0.375 Å, with a 

number of grid points in xyz of 78, 72, 84 for hCD14, and 66, 72, 88 for mCD14. 

Due to the big size of compound 4.2, and subsequently the high number of 

degrees of freedom, when performing docking on the hTLR4/MD-2 receptor, the 

docking was performed in two steps. First, fragment F1 (Figure 4.7) was docked 

into the hTLR4/MD-2 model using a box with 48, 76, 56 grid points in xyz, and with 

a spacing set at 0.375 Å. Best docked pose (with the FA chains inside the pocket 

and favorable binding energy) was selected for the second step. Second, fragment 

F2 (Figure 4.2) was docked starting from the macromolecule containing the best 

docked solution for F1, using a new box for the TLR4/MD-2/F1 system, with a grid 
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4. TLR4 MODULATORS AND PROBES 

point spacing set at 0.375 Å , and a number of grid points in xyz of 38, 38, 36. 

From the best docked solutions for F2, inside the TLR4/MD-2/F1 system, a full 

geometry for compound 4.2 was built considering appropriate relative fragments 

orientations, allowing a reasonable F1-F2 connection. Thus, resulting geometry for 

compound 4.2 was minimized (10 000 cycles of steepest descent minimization 

with AMBER force field as implemented in Maestro) and subsequently docked into 

TLR4/MD-2 system. The grid point spacing was set at 0.375 Å, and the number of 

grid points in xyz was 84, 96, 74. For all cases, the docking protocol was as follows. 

All allowed torsional bonds were considered rotatable, and Lamarckian algorithm 

was used (number of individuals in population 150, run 200). Results are shown in 

Table 4.2. For compounds 4.1, 4.3, and 4.4, the docking was performed directly 

into TLR4/MD-2 system. The grid point spacing of the box was set at 0.375 Å, and 

the number of grid points in xyz was 84, 96, 74. 

Table 4.2. Results from the docking calculations of compounds 4.1, 4.2, 4.3 

and 4.4 in macromolecules CD14 and TLR4/MD-2 by means of AutoDock. 

Binding energy from MM-GBSA analysis of selected docking poses is 

provided. 

Compound Macromolecule 

Selected 

docked 

solution 

MM-GBSA binding 

energy (kcal mol -1) 

4.1 hTLR4/MD-2 pose 1 -123.25 

4.1 

hCD14-a 

pose 1 

pose 2 

pose 3 

-74.40 

-120.20 

-110.93 

hCD14-b 
pose 1 

pose 2 

-94.97 

-107.51 
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4. TLR4 MODULATORS AND PROBES 

pose 3 -96.33 

pose 1 -95.04 

hCD14-c pose 2 -63.33 

pose 3 -51.37 

4.1 mCD14 pose 1 -134.80 

4.2 hTLR4/MD-2 pose 1 -112.1 

pose 2 -82.2 

pose 3 -129.5 

4.2 hCD14-a pose 1 -24.7 

hCD14-b pose 1 -115.1 

hCD14-c pose 1 -102.3 

pose 2 -90.6 

4.2 mCD14 pose 1 -106.0 

pose 2 -98.4 

4.3 hTLR4/MD-2 pose 1 -142.1 

pose 2 -142.0 

pose 3 -146.9 

4.4 hTLR4/MD-2 pose 1 -136.2 

pose 2 -153.4 

pose 3 -130.1 

Lipid IVa hTLR4/MD-2 pose 1 -201.9 
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4. TLR4 MODULATORS AND PROBES 

MM-GBSA Calculations 

For selected binding poses, free energy of binding was calculated by means 

of the MM-GBSA method computed with Prime. In our hands, AUTODOCK scoring 

function has proved to be an efficient tool to predict binding for LPS and LPS-like 

ligands. Additional calculation of the free energy of binding by MM-GBSA 

approach can be appropriate to overcome the possible underestimation of 

binding energy for big hydrophobic ligands (Table 4.2). 

4.5 Annex IV 

Experimental Section 

Synthesis of the compounds 

The compounds were synthesized at the Prof. Peri´s laboratory following the 

route shown in Scheme 4.1. Details can be found elsewhere.18 
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4. TLR4 MODULATORS AND PROBES 

Scheme 4.1. Reactions and conditions: (a) TFA, CH2Cl2, 25 °C, 1 h, 98%; FITC, CH2Cl2, 25 °C, 

3.5 h, 92%; (b) Glutaric anhydride, dry pyridine, 25 °C, 2 h, 87%; (c) N-Boc

ethylenediamine, DIC, HOBt, DIPEA, dry DMF, 40 °C, 40 h, 67%; (d) TFA, CH2Cl2, 25 °C, 1.5 

h, 73%; (e) FITC, CH2Cl2, 25 °C, 2.5 h, 50%; (f) LiAlH4, dry THF, dry CH2Cl2, 50 °C, 4 h, 78%; 

(g) CH3I, Na2CO3, dry DMF, 40 °C, 24 h, 73%; (h) NH2(CH2)2OH, THF, 40 °C, 10 h, 76%. 
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4. TLR4 MODULATORS AND PROBES 

Biological Characterization 

Biological characterization was performed at the Prof. Peri´s lab. Complete details 

can be found elsewhere.18 

HEK-Blue TLR4 Assay 

HEK-Blue-TLR4 cells (InvivoGen, Toulouse, France) and parental cell line 

HEK-Blue Null 2 (InvivoGen) were cultured according to manufacturer’s 

instructions. Briefly, cells were cultured in DMEM high glucose medium 

supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 19 penicillin/ 

streptomycin, 19 Normocin (InvivoGen), and 19 HEK-Blue Selection (InvivoGen). 

Cells were detached by the use of a cell scraper, and the cell concentration was 

estimated using Trypan Blue (Sigma-Aldrich, St Louis, MO, USA). The cells were 

diluted in DMEM high glucose medium supplemented as described before and 

seeded in multiwall plate at a density of 2 x 104 cells/well in 200 µl. After 14 h 

incubation (37 °C, 5% CO2, 95% humidity), supernatants were removed, cell 

monolayers were washed with warm PBS without Ca2+ and Mg2+ and treated with 

increasing concentrations of synthetic compounds dissolved in DMSO-ethanol 

(1:1) and diluted in DMEM. After 30 min, the cells were stimulated with 100 

ng/mL LPS from Escherichia coli (E. coli) O55:B5 (Sigma-Aldrich) and incubated 14 

h at 37 °C, 5% CO2, and 95% humidity. As a control, the cells were treated with or 

without LPS (100 ng/mL) alone. Then, the supernatants were collected, and 50 lL 

of each sample was added to 100 µl PBS, pH 8, and 0.84 mM 

paranitrophenylphosphate (pNPP) for a final concentration of 0.8 mM pNPP. 

Plates were incubated for 2-4 h in the dark at 25 °C, and then, the plate reading 

was assessed using a spectrophotometer at 405 nm (LT 4000, Labtech). The 

results were normalized with positive control (LPS alone) and expressed as the 

mean of percentage ± SD of at least three independent experiments. 
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4. TLR4 MODULATORS AND PROBES 

Activity on HEK-BlueTM Cells 

The ability of molecules 4.1-4.4 to interfere with LPS-stimulated TLR4 

activation in HEK-Blue hTLR4 cell model was investigated. HEK293 cell line is stably 

transfected with human TLR4, MD-2, and CD14 genes. In addition, HEK-BlueTM 

cells stably express a secreted alkaline phosphatase (sAP) produced upon 

activation of NF-kB. LPS binding activates TLR4 and NF-kB, leading to sAP 

secretion, which is detected by an alkaline phosphatase substrate in cell culture 

media. In this assay, cells were pretreated with increasing concentrations of 

compounds 4.1-4.4 and then stimulated with E. coli LPS (100 ng/mL, Figure 4.8). 

Fluorescent probes 4.1 and 4.2 inhibited TLR4 activation in a dose

dependent way. Compounds 4.1 and 4.2 had IC50 of the same order of magnitude 

(about 25 and 10 µM, respectively). Compounds 4.3 and 4.4 too induced an 

inhibition of the TLR4 pathway, but with lower potencies (IC50 262 and 173 µM, 

respectively). Reference compound 4.5 (fluorescein-ethanol) turned out to be 

totally inactive in inhibiting TLR4 activation in HEK-Blue cells. 

Figure 4.8. Dose-dependent inhibition by compounds 4.1, 4.2 (left) and 4.3, 4.4 (right) of 

LPS-stimulated TLR4 activation. HEK-Blue cells were treated with increasing 

concentrations of synthetic molecules and then stimulated with LPS. TLR4 activation is 

monitored as sAP production. The TLR4 inhibition of compound IAXO-102 at 25 µM 

concentration has been inserted as a reference. nt = HEK-Blue cells treated with 0.25% 

DMSO–ethanol in DMEM. The results are normalized to activation by LPS alone and 
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4. TLR4 MODULATORS AND PROBES 

expressed as the mean of percentage ±SD of three independent experiments. 

As a negative control, compounds 4.1-4.4 were tested in Null cell line 

(InvivoGen), transfected with the same plasmids as HEK-Blue cells but without 

TLR4, MD-2, and CD14 genes, and no effect was observed. All compounds were 

tested by MTT assay and showed no or very low toxicity in the concentration 

range used for biological characterization (Figure 4.9). 

Figure 4.9. Cell viability assay (MTT assay) on compounds 4.1-4.4. 

Labeling of Murine Macrophages by Fluorescent Probe 4.1 

It was hence explored if compound 4.1 can be used as a fluorescent probe 

in cells naturally expressing TLR4, MD-2, and CD14. RAW264.7 murine 

macrophages were treated with 10 µM compound 4.1 and with fluorescein

ethanol 4.5 as a negative control. Confocal microscopy images of the two slides 

showed that only the fluorescent probe 4.1 bound the cells (Figure 4.10A), while 

the negative control 4.5 was completely removed during the washing steps with 

cold PBS. Selectivity of compound 4.1 for membrane bound TLR4/MD-2 and CD14 

endotoxin receptors was tested with a competition assay toward the natural 

ligand (LPS). Cells were treated with LPS (E. coli 055:B5, 100 ng/mL), then 

incubated with compound 4.1 (10 µM), and analyzed in confocal microscopy. As 

expected, no fluorescence was detected suggesting that LPS and compound 4.1 

compete for the binding with hCD14 and TLR4/MD-2 complex. 
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4. TLR4 MODULATORS AND PROBES 

Figure 4.10. Labeling of membrane TLR4 receptor complex on RAW264.7 cells. (A) 

Confocal micrographs show fluorescence when cells were treated with 10 µM compound 

4.1. (B) FACS analysis of RAW264.7 cells. Red: no compound, blue: compound 4.1, green: 

control compound 4.5, mustard: trypsin + compound 4.1; light green: LPS-FITC. 

To investigate which part of the observed fluorescence was caused by non

specific interaction of the lipophilic part of molecule 1 with cell membrane, 

RAW264.7 cells were pretreated with trypsin to hydrolyze the extracellular 

membrane protein components, included endotoxin receptors. Cells were treated 

at 37 °C for 10 min with 200 µL trypsin and then were incubated with compound 

4.1. Very little fluorescence was observed on cells surfaces. The same samples 

described in Figure 4.10A were analyzed with a cytofluorimetric analysis (Figure 

4.10B) to confirm the selectivity of compound 4.1 interaction with the TLR4 

receptor system on the whole cellular population. RAW264.7 cells population 

treated with compound 4.1 (10 µM) shows a remarkable shift toward higher 

fluorescence content, similar to that observed when cells were treated with 

fluorescent LPS, while, when exposed to control compound 4.5 (10 µM) or 

pretreated with trypsin before the addition of 4.1, limited or no increase in 

fluorescence was observed. 

210 



 

 

 

         

   

 

   

         

      

       

       

       

 

 

      

       

 

 

 

  

4. TLR4 MODULATORS AND PROBES 

Compound 4.2 showed a similar behavior than 4.1 as fluorescent probe, but with 

a very low efficiency in cell labeling. 

In Vivo Cytokines Production 

As fluorescent compounds 4.1 and 4.2 were the most active in inhibiting 

TLR4 activation and signaling in HEK-cells, their inhibitory potential was tested in 

vivo in C57/Bl6 mice, estimating the production of IL-6 and TNF-α cytokines 

(Figure 4.11). Unfortunately, the activity found in human cells was not observed in 

mice, as both compounds did not show significant inhibition of LPS-stimulated 

cytokine production. 

Figure 4.11. In vivo activity of compounds 4.1 and 4.2. C57/Bl6 mice were injected ip with 

synthetic molecules (2 x 10 -7 mol/mouse), followed 1 h later by ip injection of LPS (1 x 10 -9 

mol/mouse). Three hours later, sera were collected and TNF-α and IL-6 concentrations 

were determined by ELISA assay. 
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5. VIRTUAL SCREENING ON TLR4 

5.1 Introduction 

Identification of drug-like molecules with potential therapeutic applications for 

the treatment of TLR-related diseases has attracted considerable interest due to their 

clinical potential. TLR modulators have the potential to be used with different 

biomedical applications, especially in the field of infection,1 inflammation2 and 

autoimmune diseases,3 and also in cancer 4-5 and in central nervous system (CNS) 

disorders such as Alzheimer´s disease.6 However, just few candidates are currently 

under clinical development due to the difficulty to find molecules with appropriate 

physic-chemical properties and low toxicity.7 Therefore, it is imperative to find new 

chemical entities, and not necessary with LPS-like structure, as TLR modulators with 

drug-like properties in order to facilitate their development as drugs. There are some 

small molecules, described in Chapter 3, that exemplify this possibility. For example, 

some pyrimido[5,4-b]indoles that have shown to stimulate TLR4 and could potentially 

be used as adjuvants or immune modulators;8 synthetic analogues of natural product 

euodenine A have exhibited potent and selective agonist towards TLR4;9 and synthetic 

peptides to mimic the TLR4/LPS interaction have also been reported.10 Also several 

small non LPS-like molecules with TLR4 antagonist activity have been developed, such 

as ethyl 4-oxo-4-(oxazolidin-3-yl)-butenoate derivatives (OSL07),11 benzothiazole

based inhibitors,12 ethyl phenyl-sulfamoylcyclohexenecarboxylate derivatives (TAK-242 

or resatorvid),13 and β-amino alcohol derivatives.14 

In the context of drug discovery, virtual screening (VS) techniques have already 

proved to make hit identification more goal-oriented, allowing the access to a huge 

number of chemically diverse binders (from public and commercial databases) with a 

relatively low-cost in terms of time and materials. This computational approach has 

been subjected to extensive attention and revision over the years, from the early 

perspective of being an emerging method,15 until the current time where new 

challenges are faced.16-21 We could say that TLRs are not standard receptors which 

could be approached following classical strategies in drug design. The complexity of 

the system and the characteristics of their complexation with the pathogen associated 

molecular patterns (PAMPs) make them especially difficult to tackle following classical 
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5. VIRTUAL SCREENING ON TLR4 

procedures in drug design and discovery. This is why TLRs constitute a special case 

study in this context. These VS approaches constitute a current strategy in drug design 

for the identification of novel chemical entities with a given binding ability.22 

Specifically, on the field of TLR4 research, VS studies have been recently 

reported leading to novel ligands with drug-like properties, trying to overcome the 

solubility problems associated with LPS mimetics (see Chapter 1). Among these works, 

Joce et al.23 have developed a novel in silico screening methodology including 

molecular mechanics and implicit solvent methods to incorporate the evaluation of 

binding free energies and have screened the Enamine database collection.24 The 

resulting clusters were filtered by selecting the representative compounds that were 

submitted to fast molecular docking for the generation of binding poses and 

subsequent MD simulations to rank the ligand poses according to their predicted 

binding affinities. Final filtering led to the identification of compounds T5342126 and 

T6071187 (Figure 5.1) as small drug-like inhibitors of the TLR4/MD-2 protein-protein 

interactions. Their biological activity and selectivity were tested in vitro, and their 

TLR4/MD-2 antagonist activity was confirmed. In another study, Švajger et al.25 

performed parallel ligand-based and structure-based virtual screenings in order to 

identify novel TLR4 antagonists targeting the TLR4/MD-2 interface, by using the ZINC 

drug-like subset (~11.3 million drug-like compounds) from the ZINC database.26 The 

identified ligands after ligand-based VS resulted in being either insoluble in water, or 

inactive, or presented cytotoxicity on HEK293 cells. However, the structure-based VS 

identified 40 putative TLR4/MD-2 ligands that were assessed in vitro. After the first 

assays, only 14 compounds were sufficiently water-soluble and completely non

cytotoxic at 100 μM; These compounds received further biological evaluation, and 

finally, three compounds with promising antagonistic activities were discovered: 

ZINC25778142, ZINC49563556 and ZINC3415865 (Figure 5.1). 
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5. VIRTUAL SCREENING ON TLR4 

Figure 5.1. Novel TLR4/MD-2 modulators identified by VS approaches. 

On the other hand, despite the huge effort of spent time and money on 

research and development, the number of new drugs brought to market drastically 

decreases each year.27 Significant investments by pharmaceutical companies for 

optimizing the drug discovery pipeline have been undertaken, and new techniques 

such as structure-based drug design, combinatorial chemistry and high throughput 

screening (HTS) techniques have emerged. However, the impact of these innovations 

has not been as important as it was expected both in short and long term.28 Drug 

repositioning (also known as drug repurposing, drug redirecting, or drug reprofiling) is 

a process of discovering new uses outside the scope of the original medical indication 

for existing drugs. Before 2004, no traces of this process have been found in the 

literature,29 but it has gained an increasing attention within the international drug 

development community over the last few years, and represents a new promising 

direction.30-35 

Different terms are used to describe drug repositioning, but all mean a way to 

find new indications for existing drugs or potential drug candidates, including those in 

clinical development where mechanism-of-action is relevant to multiple diseases: 

drugs that have failed to demonstrate efficacy for a particular indication during Phase 
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5. VIRTUAL SCREENING ON TLR4 

II or Phase III trials but with no major safety concerns; drugs that have been 

discontinued for commercial reasons; marketed drugs for which patents are close to 

expiry; and drugs candidates from academic institutions and public sector laboratories 

that have not been fully pursued yet, are also took into account. In this way, drug 

repositioning represents unique translational opportunities, and is believed to offer 

great benefits over the de novo drug discovery, reducing the development risks and 

timeline to potentially 3-12 years,35 substantially increasing the probability of success 

to brought drugs into market due to existing knowledge about the drugs, and 

providing relatively inexpensive solutions as therapies for rare and neglected 

diseases36-39 that frequently offer limited potential revenue to pharmaceutical 

companies. 

Before the advancements in computational modeling that have led to rational 

drug repurposing, successful repurposing examples as sildenafil (Viagra®), acetyl 

salicylic acid (Aspirin®),40 and thalidomide41-42 have been due to serendipity. However, 

recent research has shown that bioinformatics-based approaches have the potential to 

offer insights into the complex relationships among drugs, targets and diseases for 

successful repositioning. Given the availability of X-ray crystallographic structures of a 

number of proteins and identified functional binding sites, and also the advent of 

molecular docking for the prediction of the free energy of binding of a ligand and its 

positioning within a defined binding pocket, “computational drug repositioning” is a 

promising and efficient tool for discovering new uses from existing drugs and holds the 

great potential for precision medicine in the age of big data. 

In this work, we aimed to identify novel TLR4 modulators with non LPS-like 

structure by means of computational virtual screening. We have followed a virtual 

screening protocol, and used different commercial and in-house databases. We also 

present the application of computer-aided drug repositioning in the search of novel 

TLR4 modulators. 
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5. VIRTUAL SCREENING ON TLR4 

5.2 Results and Discussion 

Considering the uncertainty (not yet known) in the binding modes of the 

reported small molecules with TLR4 activity, and tacking into account that there are 

plausible pockets of TLR4/MD-2 as binding sites (See Chapter 5), the VS can be 

considered an effective approach to identify new molecular entities as putative TLR4 

binders. 

Receptors 

Presently, there are several available 3D structures of TLR4, as hetero/homo

dimers, and in complex with some ligands (agonists and antagonists) and/or co

receptors.43 In the case of the agonist conformation of the hTLR4/MD-2 monomer 

complex, 3D coordinates from TLR4/MD-2 heterodimer were obtained from the PDB 

(PDB-ID: 3FXI).44 In the case of the antagonist conformation, since the full 

crystallographic structure of the hTLR4/MD-2 complex is not available, a model built by 

us was used. This model was built using the human MD-2 protein in antagonist 

conformation (PDB-ID: 2E59)45 superimposed onto the MD-2 subunit of the agonist full 

complex (PDB-ID: 3FXI chain C) through PyMOL (see Chapter 2). Also in order to 

consider different antagonist conformations of TLR4, we used PDB-ID: 2E56 (only in 

the case of SPECS and Log P 1000 databases). 

Databases 

Database processing constitutes a fundamental step in VS approaches. It is 

crucial to generate the proper chemical library, with the adequate geometries, 

ionization states, conformations, etc. Furthermore, it is very important to discard any 

molecule that will not be a good candidate in the further steps of the VS study in 

relation to the particular system on hand. A good database processing will assure a 

rigorous and well-conducted virtual screening, as well as it will avoid computational 

cost and identification of unsuitable drug candidates. 
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5. VIRTUAL SCREENING ON TLR4 

Different commercial, public and in-house databases have been used: Log P 

1000, SPECS and ZINC as commercial databases, and as in-house databases, a diversity 

collection of compounds from laboratories of Prof. Péter Mátyus (PM) from 

Semmelweis University (Budapest), Prof. Jose Carlos Menéndez46 (JCM) from 

Complutense University of Madrid, Prof. J. R. Pedro (JRP),47-60 and Prof. A. Marco 

(AM)61-66 from the University of Valencia. 

Commercial databases: 

ZINC15 (ZINC Is Not Commercial 2015)26, 67 is a public access database and tool 

set, developed to enable ready access to compounds for virtual screening, ligand 

discovery, pharmacophore screens, benchmarking, and force field development. 

Nowadays ZINC15 database contains over 120 million purchasable compounds. For the 

purpose of this work, we were only interested in the approved compounds which 

represented, that time, a total of 2.459 structures categorized under the substance 

subset called WORLD that is standing for approved drugs in major jurisdictions, 

including the FDA. Being a computational drug repositioning study, the compounds 

present in the ZINC15 database were filtered by clinically approved drugs. Thus 2 459 

from the WORLD subset over 100 million compounds in total were kept for the 

repurposing study. These compounds were submitted to a preparation process and the 

number of compounds increased from 2 459 to 2 949. 

Log P 1000 dataset68 a small diverse subset of the ZIN� database;26, 69 The 

subset was obtained by a similarity search based on 128 molecular VolSurf+ 

descriptors70 covering biologically relevant properties such as shape, surface, volume, 

molecular weight, polar surface area, hydrogen bonding capacity, lipophilicity and 

solubility; This was followed by an additional elimination of permanently charged 

compounds and compounds with a molecular weight lower than 150 Da, resulting in a 

diverse set of drug-like compounds; 

SPE�S dataset is a database of commercially available drug-like compounds;71-72 

Due to the large number of compounds (almost 300;000) and computational 
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limitations, a reduction of the final screening set was necessary; The MOE software73 

was used to perform a cluster analysis on which a diverse subset was created; 

Therefore the fingerprint of each molecule was calculated in form of a bit-packed 

version of the molecular access system (M!��S) structural keys (�IT_M!��S),74 

encoding 166 unique features; The Tanimoto coefficient was used as a measure of 

similarity between fingerprints;75-77 ! similarity of 85% was used for the cluster search; 

This resulted in a reduced diverse subset of SPE�S comprising 23;774 compounds that 

were used for screening; 

In-house databases: 

We selected in-house collections with a wide range of chemical structures from 

different collaborators expert in different types of chemistry. It is important to 

mention that these chemical libraries are available to perform the biological assay, in 

the case of these compounds give very good results in the VS studies. 

First, we used the diversity collection of heterocyclic compounds, based on 

their interesting structural characteristics, from Prof. Mátyus from Semmelweis 

University with around 1964 molecules, a second in-house dataset with quinoline, 

quinazoline and acridine structures from Prof. Menéndez from Complutense University 

of Madrid, with 68 compounds, and a third in-house collection of 25 and 85 

compounds from Prof. Pedro and Prof. Marco (Universidad de Valencia) respectively, 

including pyrroles, indoles, naptholes, heterocyclic derivatives from Prof. Pedro and 

analogues of natural products colchicine and pironetin from Prof. Marco library. All of 

them had the available samples to be tested in case there were successfully screened. 

On the other hand, given that paclitaxel had shown antagonistic activity in 

human TLR4, while agonistic activity in mouse TLR4, showing the species-specific 

ligand recognition by MD-2, we were prompted to include tubuline binders in our VS 

approach. Prof. Marco from the University of Valencia is a well-recognized synthetic 

chemist specialized in the synthesis of natural products analogues, being analogues to 

tubuline binders among them. The binding of paclitaxel to TLR4 had been 
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demonstrated, however not the induction of the cytokine response. Based on these 

reported results, we included other tubulin binders and related compounds as putative 

TLR4 ligands in order to discover novel TLR4 modulators. We chose a family of 

compounds analogue to natural products colchicine and pironetin (Figure 5.2). 

Regarding their antitumoral activity, and their ability to bind to tubulin components 

and microtubules, paclitaxel is a tubulin-interacting drug that stabilizes microtubules, 

while colchicine causes disruption of microtubules, and pironetin derivates bind to α

tubulin, inhibiting tubulin assembly. These opposite effects are due to the different 

tubulin sites with which they interact. We also included compounds derived from 

stilbene, like resveratrol since they are studied for their antimitotic properties and 

their antitumor activity, all of them from Prof. Marco´s laboratory from the University 

of Valencia. 

Figure 5.2. Colchicine, pironetin and euodenine A structures. 

Filtering 

In order to prepare the databases for the VS, different tautomers were 

considered according physiological pH leading to the corresponding increase in the 

total number of screened compounds (see Materials and Methods). Finally, in this 

study, a database composed by around five hundred thousand compounds was built, 

including known binders (data from the literature) and decoys. 

We have considered the following filters: 

1- Lipophilicity of the molecules: a maximum logP of 6 were considered, taking 

into account that the natural LPS and reported synthetic glycolipids have a logP 

very high: 29.14 ± 0.83, 14.35±0.73 and 13.53±0.47 for lipid IVa, P01 and ONO
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4007 respectively. This limit is a reasonable margin above the value of 5 

according to Lipinski´s rules (oral bioavailability). 

2- Molecular weight (MW): we considered a wide range between 300 and 700 Da 

given the MW of glycolipids targeting TLR4, with a reasonable margin above the 

value of 500 according to Lipinski´s rules. 

3- pH: only possible tautomers at physiological pH were considered within a range 

of 7± 0.5. 

4- Prediction of favourable binding from at least two docking programs and in two 

different conformations of TLR4. 

Protocols - Docking programs for virtual screening (SBVS and LBVS) 

Molecular docking screening was performed against the different databases 

based on both, the agonist conformation of hTLR4/MD-2 complex from PDB-ID: 3FXI, 

and our modeled antagonist conformation of hTLR4/MD-2 complex. Ligand Based 

(LBVS) and Structure Based (SBVS) VS were carried following the protocols showed in 

the Figure 5.3. 
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Figure 5.3. Flow chart of VS protocol. 

Structure-Based Virtual Screening (SBVS) with FLAP 

The investigated compounds from Log P 1000, SPECS datasets are drug-like 

molecules and not glycolipids like the known binders lipid A, lipid IVa or eritoran. The 

lipid chains in those glycolipids contain a vast number of free bonds which would 

increase the docking time exponentially. An additional complication would probably 

arise from the circumstance that most scoring functions are calibrated on drug-like 

molecules and would likely have difficulties evaluating the interactions correctly, 

especially in the entropic term, due to the many degrees of freedom and the large 

hydrophobic surface.78 

The literature defines three categories of compounds that may inhibit MD-2.79 

The first class consists of inhibitors that compete with LPS for the binding in the 

hydrophobic pocket but without being able to trigger the final dimerization; Paclitaxel 
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is one example for this class of inhibitors.80-81 Molecules of the second category bind 

covalently to the residue Cys133; compound JTT705 is one example.82 The final class of 

inhibitors does not enter the hydrophobic pocket completely but binds in the opening 

region of the cavity and prevent LPS from entering the pocket; representatives of this 

category are compounds JSH, curcumin, xanthohumol and isoxanthohumol (Figure 

5.4).83-85 The majority of the side chains of the residues form the MD-2 pocket are 

hydrophobics (Leu, Ile, Phe and Val), but the rim of the cavity, on the other hand, 

contains almost no hydrophobic residues. The surface contains many positively and 

negatively charged amino acids which are important for the interaction between TLR4 

and MD-2. 

FL!P’s SBVS method was used to perform target based VS on the TLR4/MD-2 

receptor with SPECS and Log P 1000 databases. As a benchmark, the method was 

applied initially to the set of known active compounds. The result is shown in Table 5.1 

with the ligands ranked according to their Glob-Sum score. This score is a global 

similarity score calculated by summing the four single contributions: shape (H), 

hydrogen-bond acceptor (N1), hydrophobic (DRY), and hydrogen-donor acceptor (O) 

descriptors; Glob-Sum is the global sum of all four energy values. Note that the scores 

of the single contributions are derived from the individual best conformation for this 

type of score, which might be different, while the Glob-Sum score comes from the one 

conformation for which the sum of scores is maximal. 

Table 5.1. Known antagonists of MD-2, ranked descending by Glob-Sum score obtained from 

SBVS. 

Antagonist 

Paclitaxel 

JSH 

Curcumin 

1D10G 

Glob-Sum 

3.245 

2.714 

2.695 

2.669 

Antagonist 

6-shogaol 

Isoxanthohumol 

Isoquiritigenine 

Cinnamaldehyde 

Glob-Sum 

2.498 

2.465 

2.239 

2.179 
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CAPE 2.621 C34 2.136 

Xanthohumol 2.611 OSL7 1.799 

JTT705 2.513 Sulforaphane 1.707 

Since the Glob-Sum score does not reflect any experimental binding affinity, the 

results of the known ligands allow having an idea at which value a screened ligand can 

be considered as a potential hit. The highest score was obtained by paclitaxel (Glob-

Sum=3.245) which was then used as a cutoff value for the screened unknown ligands. 

From Log P 1000 and SPECS libraries, 26 and 2012 compounds were obtained, 

respectively, having a score equal to or higher than 3.245. The highest contribution to 

the global score is given by the hydrophobic score which can easily be explained by the 

high hydrophobicity of the target pocket and the screening model that is obtained 

from it. 

Structure-Based Virtual Screening (SBVS) with Glide, Autodock and VINA 

WORD database from ZINC and in-house databases (PM, JCM, JRP and AM) 

were docked into both agonist and antagonist protein conformations, using three 

docking programs, Glide, AutoDock and VINA, to avoid the limitation of one scoring 

function. The receptor grid was set up in order to fully contain the E. coli LPS, allowing 

small molecules to interact with the entire MD-2 pocket, as well as its rim and its 

entrance (see Materials and Methods). During the docking process, all the ligands were 

kept to facilitate visual inspections, comparisons and selections between the three 

docking programs. 50 poses per ligand were generated with AutoDock, 20 poses per 

ligand with VINA (which is the maximum for the program), and only one pose per 

ligand was generated with Glide, using HTVS, SP and XP protocols in order to also 

facilitate the comparisons, choosing Glide as the main docking software. Either with 

Glide, AutoDock or VINA, the scoring results for all the compounds were consistent 

and correlated to each other. However, the correlation between AutoDock and VINA is 

stronger than between Glide and AutoDock or VINA. For the docking program 
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validation analysis, either with, Glide, AutoDock or VINA, the scoring results for all the 

compounds were consistent and correlated to each other. However, the correlation 

between AutoDock and VINA is stronger than between Glide and AutoDock or VINA. 

The docked compounds, as well as all their corresponding predicted binding poses, 

were visually analyzed to detect any computational errors. The docking scores and the 

delta docking scores, defined by the average score of all the poses from one ligand for 

each docking program were analyzed. Among all the compounds, according to each 

scoring function, only the top 25% from each docking program, has been kept for the 

next analysis step. Among the databases, 23, 18, 16 and 32 compounds were selected 

respectively, being ranked at the top 25% for at least two docking programs at the 

same time and for one or both conformations, prioritizing a correlation with Glide, 

were kept for visual cluster rank analysis. 

Molecular docking using Glide 

The molecules were subjected to a grid-based ligand docking with energetics 

(Glide, Schrodinger, version 6.9)86-88 using the Virtual Screening Workflow protocol 

(See Materials and Methods). Regarding the docking step parameters, Epik state 

penalties for docking were used, and the non-polar part of the ligand potential were 

soften by scaling the van der Waals radii of ligand atoms with small partial charges. 

The full workflow includes three docking stages, each step differing from the preceding 

step in the amount of time taken to dock each molecule and the scoring system used 

to evaluate each pose. The first stage performs HTVS (High Throughput Virtual 

Screening) docking. The ligands that are retained are then passed to the next stage, 

which performs SP (Standard Precision) docking. The survivors of this stage are passed 

onto the third stage, which performs XP (eXtra Precision) docking, a more powerful 

and discriminating procedure. The Dock flexibility method was used for HTVS, SP and 

XP dockings allowing us to penalize non-planar conformation for amide bonds. A post

docking minimization was also performed, as well as constraints for the docking 

stages. One pose per compound state was generated and 100 % of the best 

compounds that passed the HTVS, SP and XP docking have been kept. For HTVS and SP 
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docking, all states have been retained, but only the best scoring state for the XP 

docking. 

Molecular docking using AutoDock and VINA. 

Docking was also performed independently with both VINA89 and AutoDock.90 

In AutoDock the Lamarckian evolutionary algorithm was chosen and all parameters 

were kept default except for the number of genetic algorithm (GA) runs which was set 

to 50 to sample more docked poses. VINA (Vina Is Not AutoDock) uses an Iterated 

Local Search global optimizer91-92 based on Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm which approximates Newton's method and the number of docking poses 

was set to 20, which is the maximum for the program. TLR4/MD-2 receptors were kept 

rigid and the ligands were set partially flexible (i.e. maximum of 32 dihedral angles) for 

AutoDock and totally flexible for VINA. 

Docking program validation analysis 

Either with Glide, AutoDock or VINA, the scoring results for all the compounds 

were consistent and correlated to each other. However, the correlation between 

AutoDock and VINA is stronger than between Glide and AutoDock or VINA. 

Molecular docking data analysis: score and cluster ranks 

The all the docked compounds, as well as all their corresponding predicted 

binding poses, were visually analyzed to detect any computational errors. The docking 

scores and the delta docking scores, defined by the average score of all the poses from 

one ligand for each docking program were analyzed. Among all the compounds, 

according to each scoring function, only the top 10 % in the case of WORD and PM 

databases, and 20% from JCM, JRP and AM databases from each docking program, that 

is to say 89 compounds has been kept for the next analysis step, re-docking with 

Autodock and Glide. 
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Among them, 89 compounds being ranked at the top for at least two docking 

programs at the same time and for one or both conformations, prioritizing a 

correlation with Glide, were kept for visual cluster rank analysis. 

LBVS identified potential hit candidates to inhibit TLR4/MD-2 

In the case of the commercial databases, we have performed LBVS. It was the 

first step of the search for TLR4/MD-2 inhibitors. Even though several inhibitors of the 

TLR4/MD-2 complex acting on MD-2 were found in the literature, only a minority 

shows promising characteristics to become an available drug. Eritoran for example 

showed promising results in phase I and II clinical trials, but in phase II failed in 

showing better properties than existing treatments for sepsis.93 

The FL!P L�VS method uses the common reference framework to align a set of 

candidate molecules to the template binder, to find the optimal overlap according to 

the GRID MIFs; The similarity between the fields is quantified by the Tanimoto 

coefficient; In the output table the user can see the individual scores obtained by the 

single MIF contributions (Glob-Prod), as well as a global score representing the sum 

(Glob-Sum); for each compound; 

In this work, for the L�VS with FL!P, a set of known active antagonists of MD-2 

was built based on a literature search (Figure 5.4); The two datasets Log P 1000 and 

SPE�S were screened on each known active separately and ranked by their obtained 

Glob-Sum scores; 
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Figure 5.4. Known antagonists of the MD-2 reported in the literature. 

LBVS was here performed individually by using the 14 known ligands as 

templates for the screening. The best ranked results are shown in Table 5.2. The 2D 

representations of the compounds of Log P 1000 and SPECS can be found in Annex 

Figure 5.1 and 5.2, respectively. The similarity between template and test molecule of 

the single contributions is a value between 0 (no similarity) and 1 (high similarity). The 

four single contributions are shape (H), hydrogen-bond acceptor (O), hydrogen-bond 
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donor (N1) and hydrophobic (DRY) potential. The global score value that was used as 

result for the screening analysis is the Glob-Sum which is the global sum of all four 

energy values.94 Note that the scores of the single contributions are derived from the 

individual best conformation for this type of score, which might be different, while the 

Glob-Sum score comes from the one conformation for which the sum of scores is 

maximal. 

Table 5.2. Best ranked compounds of Log P 1000 (blue) and SPECS (white) set for each known 

ligand (black). 

Template Compound Glob-

Sum 

H N1 DRY O 

6-shogaol 152 1.326 0.663 0.508 0.224 0.239 

481 1.742 0.598 0.271 0.254 0.702 

Xanthohumol 568 1.269 0.699 0.283 0.340 0.124 

19907 1.912 0.703 0.368 0.508 0.359 

Paclitaxel 383 0.847 0.505 0.175 0.134 0.337 

20513 1.022 0.565 0.171 0.105 0.321 

1D10G 368 1.152 0.579 0.203 0.181 0.310 

20700 1.857 0.654 0.306 0.260 0.734 

JSH 492 1.165 0.598 0.359 0.229 0.144 

21315 1.421 0.515 0.371 0.304 0.329 

Isoliquiritigenine 42 1.181 0.637 0.364 0.195 0.010 

120 1.706 0.750 0.431 0.343 0.294 

Isoxanthohumaol 138 1.054 0.638 0.234 0.308 0.010 

28 1.493 0.634 0.430 0.304 0.305 
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5. VIRTUAL SCREENING ON TLR4 

CAPE 575 1.149 0.625 0.242 0.181 0.243 

22298 1.528 0.587 0.230 0.159 0.700 

Curcumin 548 1.041 0.631 0.242 0.204 0.010 

23010 1.562 0.519 0.264 0.173 0.623 

Sulforaphane 46 1.104 0.650 0.361 0.166 0.000 

3203 1.184 0.684 0.296 0.000 0.000 

Cinnamaldehyde 40 1.489 0.684 0.581 0.383 0.000 

23599 1.500 0.580 0.673 0.273 0.000 

OSL7 35 1.007 0.648 0.295 0.128 0.000 

1171 1.285 0.702 0.445 0.191 0.000 

C34 187 1.142 0.506 0.205 0.137 0.512 

10959 1.428 0.560 0.216 0.102 0.903 

JTT705 439 1.033 0.539 0.391 0.188 0.010 

14650 1.127 0.592 0.347 0.188 0.000 

Table 5.2 shows that for each of the known actives the best scoring SPECS 

compound scored higher than the best scoring one from the Log P 1000 database. This 

could be explained by the sole fact that the SPECS set contain a much higher number 

of compounds than Log P 1000. Consequently the probability is higher to find a good 

scoring compound. 

Regarding the single contributions of the four similarities, the shape similarity 

(H) seems to have the highest impact on the global score in most of the cases. In four 

cases (6-shogaol, CAPE, Curcumin, C34) the hydrogen-bond acceptor and in one case 

the hydrogen-bond donor (N1) similarity made the biggest contribution to the global 

score. All five compounds are from the SPECS set. The reason why the influence of 

hydrophobic (DRY) similarity is comparatively low might be the relatively small size of 
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5. VIRTUAL SCREENING ON TLR4 

the compounds. While strong hydrogen-bond similarities can be derived from single 

donor or acceptor atoms, the hydrophobic potential needs larger apolar surfaces to 

show a strong impact. 

RE-docking with FLAP and GLIDE 

To better understand the interactions of the potential inhibitors retrieved by 

LBVS and SBVS with TLR4/MD-2, a molecular re-docking approach was carried out. In 

order to narrow down the number of compounds to dock, only molecules were 

selected which obtained a good score in the LB and the SBVS approaches. 

In SBVS, in total, 2038 compounds (26 from Log P 1000 and 2012 from SPECS) 

obtained a score higher than the cutoff value of 3.245. Since an analogous cutoff value 

was not available for the LBVS approach, the same number of compounds was chosen 

here, i.e. the top ranked 26 and 2012 compounds from Log P 1000 and SPECS, 

respectively. Of the Log P 1000 set 3 common compounds were found in the top ranks 

of both LBVS and SBVS, while SPECS shared 556 top-ranked compounds. This total 

number of 559 compounds still seemed large, considering the time-consuming FLAP 

docking program. For this reason only the top 100 highest scoring ligands were taken 

for the docking. This selection procedure was found to be in agreement with examples 

from the literature.95-98 

In the case of SBVS with Glide, AD4 and VINA: 

Among them, 23 compounds from ZINC database, 18 from PM, 16 from JCM 

and 32 from JRP and AM, being ranked at the top 25% for at least two docking 

programs at the same time and for one or both conformations, prioritizing a 

correlation with Glide, were kept for visual cluster rank analysis. 

Visually analyzing each most probable cluster for each molecule in the three 

docking programs, 5 compounds from WORD database have proven to outperform all 

the others: compounds 146, 157, 177, 208 and 212; 8 compounds from PM (PM1097, 

PM1811, PM1779, PM567, PM1090, PM810, PM1758 and PM1200), 8 from JCM 

(MS14, MS20, MS21, MS32, MS35, MS40, MS45, MS49) and 3 from JRC and AM 
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5. VIRTUAL SCREENING ON TLR4 

(JRP07, JRp07p and JRP10). This analysis was based on the ligand/receptor 

interactions identified by visual inspection for each compound. Each of the most 

probable clusters in AutoDock and VINA were found to be relatively similar to the best 

pose calculated by Glide. For a deeper pose interactions analysis with Glide, a re

docking process was performed. The results obtained by the docking of the known 

compounds allowed setting a cutoff value. For the screening scores obtained by 

docking, only the ones with a score equal to or higher than the cutoff value were 

retained for further biological analysis. 

Discussion : Identification of key residues that interact with the screened ligands 

Three ligands of the combined Log P 1000 and the SPECS datasets that were 

obtained by docking had an S-score equal to or higher than the threshold of 1.074, 

obtained by the best-scoring known inhibitor sulforaphane. The compounds, their 2D 

description and the respective scores are listed in Table 5.3. The highest scoring 

compound is ID-5382 from the Log P 1000 set, with an S-score of 1.231. The two 

compounds of the SPECS set AG-690/11203225 and AF-399/15128553 obtained a 

score of 1.114 and 1.074 respectively. 

Table 5.3. 2D description and the respective scores from ID-5382, AG-690/11203225 and AF

399/15128553. 

Compound S-score Structure 

ID-5382 1.231 
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5. VIRTUAL SCREENING ON TLR4 

AG-690/11203225 1.114 

AF-399/15128553 1.074 

Compound ID-5382 is in close contact with the hydrophobic residues Ile46, 

Leu61, Leu78, Phe121, Ile124, Val135 and Phe151. Compound AG-690/11203225 

interacts with the residues Ile52, Phe76, Leu78, Ile80, Val82, Glu92, Phe121, Ile124, 

Val135 and Ile153. Finally, the hydrophobic partners of AF-399/15128553 are Ile46, 

Leu61, Ile80, Val82, Leu87, Phe121, Ile124, Tyr131 and Phe151. 

The two amino acids are able to build salt bridges with the compounds ID-5382 

and AG-690/11203225 due to their sulfonyl group. This would explain why the polar 

score is significantly higher for these two ligands than for compound AF-399/15128553 

which possesses no sulfonyl groups. The latter one only forms hydrogen-bonds 

between Arg90 and Lys122 and its nitrogen located in the pentacycle. Interactions with 

Cys133, as the ones reported in the literature99 could not be observed. As already 

discussed, is the simulation of covalent bonds not possible in FLAP docking. 

From J. R. Pedro and A. Sanz-Marco databases the most of the compounds, 

stablishing stacking interactions with Phe76 and the CH-π interactions observed are 

with the side chain of Cys133, Phe151, Phe104 and Leu61. Other interactions observed 

are hydrophobic with the residues Val24, Ile32, Ile44, Val48, Ile52, Leu78, Ile80, Ile94, 

Ile117, Phe119, Val135 and Ile153. 

From P. Matyus databases, the majority of the compounds stablish π-π with 

Phe104 and Phe151, also CH-π interactions with Phe76 and Phe121; Other interactions 

observed are hydrophobic with Ile32, Ile52, Leu61, Ile117, Val135, leu149 and Ile153. 
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5. VIRTUAL SCREENING ON TLR4 

And from J. C. Menendez databases the principal interactions observed are: π-π 

interactions with Phe76 and Phe151, and also hydrophobix interactions with Ile32, 

Ile52, Leu61, Leu63, Ile94 and Val135. 

In all the cases the docked ligand is located at the entry of the hydrophobic 

cavity of TLR4/MD-2 in a similar pose. The principle interactions are hydrophobic and 

polar ones. All the compounds show polar interactions with Arg90 and Lys122. The 

hydrophobic interactions, however, are more wide spread and not with the same set 

of amino acids for all the compounds. Arg90 is assumed to participate in interactions 

with sulforaphane, JTT705, isoxanthohumol, isoliquiritigenin, CAPE and JSH. Lys122 

interacts with OSL07 and cinnamaldehyde. Some of the identified side chains are also 

participating in the interaction with known ligands. Ile80 for example interacts with 

xanthohumol, JSH, OSL07, cinnamaldehyde and 6-shogaol. The side chains Phe121 and 

Ile124 interact with all known ligands. Hydrophobic interactions with the ligand are 

basically with aromatic cycles. 

Regarding drug repurposing results, the analysis revealed 5 compounds 

outperforming the remaining ones: compounds 56, 146, 177, 179 and 208. 

Surprisingly, compared to the previous analysis done only with the best Glide pose, 

compounds 157 and 212 did not show good results in the last analysis. Indeed, having 

a more wide number of poses in Glide permitted to see, for these two compounds, 

that the first pose was not part of the most probable cluster, or any cluster at all, for 

both conformations. Moreover, it has been shown that the most probable clusters for 

these two compounds were ranked in a low energy position, and with a medium total 

percentage of interaction against the main residues. Compound 208, previously 

revealed in the first analysis, having a good cluster position, was reported to have 

medium total percentage of interaction against the main residues. Compound 56 

revealed having similar problem as compounds 157 and 212. However, the most 

probable cluster was ranked in a good position. Compounds 56, 157, 208 and 212 

were kept as a query for future structure similarity search. 

In ascending order of potential prediction, compounds 146, 177 and 179 

outperformed all the compounds. Compounds 146 and 177, already revealed by the 
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first cluster analysis, have shown having in each pose, interactions with almost all the 

main residues. Moreover, in about 50% of the poses, they were able to make 2 

hydrogen bonds at the same time, and in about 70% of the poses, able to make 2 salt 

bridge interactions simultaneously. Regarding compound 179, it was predicted having 

the highest affinity potential with all the main residues. It interacts with all the main 

residues with high affinity, making in 80% of the poses, up to 3 hydrogen bonding and 

a salt bridge in 50% of the poses. Compounds 146, 177 and 179 were also kept as 

queries for future structure similarity search. 

Regarding compound 146, it is known as Diphenoxylate. It is a meperidine 

congener used as an antidiarrheal, usually in combination with atropine. At high doses, 

it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is 

used similarly. It has little or no analgesic activity. According to DrugBank 

(www.drugbank.ca), it is categorized as: analgesics, opioid, antidiarrheals, 

antiperistaltic agents, alimentary tract and metabolism, antidiarrheals, intestinal anti

Inflammatory/anti-infective agents, and antipropulsives. Because TLR pathways can be 

related to inflammatory and microbial pathologies, it can be conceivable that 

Diphenoxylate could have a certain affinity for TLR4. It has also been shown that 

NF-κ-B,100 Diphenoxylate can regulate a protein present downstream in the TLR 

pathway. Moreover, some studies have proven the binding between morphine and 

TLR4,101-103 that could suggest also a conceivable effect of Diphenoxylate to TLR4. 

Compound 177 is known as Ono-Rs 411 or Pranlukast. It is a cysteinyl 

leukotriene receptor-1 antagonist. It antagonizes or reduces bronchospasm caused, 

principally in asthmatics, by an allergic reaction to accidentally or inadvertently 

encountered allergens. It is classified as: anti-asthmatic agents, respiratory system, 

drugs for obstructive airway diseases, leukotriene receptor antagonists, cytochrome P

450 CYP2C9 inhibitors, cytochrome P-450 CYP2C9 inducers, and CYP3A4 inhibitors. 

Besides, some studies have shown that Pranlukast can inhibit NF-κ-B activation,104-105 a 

protein present downstream in the TLR activation pathway. It has also been shown 

that it indirectly induces cytoplasmic membrane depolarization of Gram-negative 
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5. VIRTUAL SCREENING ON TLR4 

bacteria, promoting E. coli outer membrane detachment,106 which some are 

recognized by TLR4. 

Compound 179 is known as Vemurafenib, a V600 mutant BRAF enzyme 

inhibitor for the treatment of late-stage melanoma.107 Vemurafenib inhibits the active 

form of the kinase,108-109 firmly anchoring itself in the ATP-binding site. By inhibiting 

only the active form of the kinase, it selectively inhibits the proliferation of cells with 

unregulated BRAF, normally those that cause cancer. It is classified as: antineoplastic 

agents, protein kinase inhibitors, antineoplastic and immunomodulating agents, 

cytochrome P-450 CYP1A2 inhibitors, cytochrome P-450 CYP1A2 inducers, CYP2D6 

inducers, CYP2D6 inducers (strong), and CYP3A4 inhibitors. Up to date, it has been 

shown that TLR4 and its signaling pathway promote the migration of human 

melanoma cells,110-111 but no studies showing an effect from Vemurafenib to TLR4 

have been done yet. 

All hit structures show a very common scaffold and binding pattern: two 

hydrophobic moieties separated by a polar linker. The larger hydrophobic part 

occupies the hydrophobic MD-2 cavity, while the smaller one is placed in the same 

hydrophobic side region where also one of the lipid A alkyl chains is located in the 

bound X-ray structure. Key interactions are those stablished with residues Arg90, 

capable of making salt bridges and hydrogen bonds, Phe121, able to make strong 

hydrophobic interactions, and situated closely to Phe126, and Tyr131, also able to 

make hydrogen bonds. These interactions were common for all the compounds, and 

conferred them a strong predicted binding energy. The polar linker seems to be 

interacting with two of the positively charged amino acids Arg90 and Lys122 at the 

entry region of the pocket which have already been described in the literature to 

interact with known active compounds. The literature reports a covalent interaction 

between Cys133 of MD-2 and some of the known actives. This observation could be 

reproduced with some of the known actives. The identified screening hits, however, 

represent an interesting scaffold for a new class of possible inhibitors for the 

TLR4/MD-2 complex. 
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Activity on HEK293 Cells Transfected with hTLR4/MD-2. 

Then biological testing has been performed in HEK-Blue hTLR4 cells to assess 

the potential of the compounds as agonist or antagonist molecules. Indeed, with 

molecular docking, it is only possible to predict the binding and the affinity of a 

molecule for a biological or chemical entity, but it is not possible, or it is very complex 

and not accurate, to predict the activity of a compound without doing biological 

assays. Further, if the biological testing reveals to show an activity for the compounds, 

several strategies will be followed starting by screening wider libraries using structure 

similarity search, creating pharmacophores, then a new docking protocol using the 

brand-new compounds. 

The ability of molecules to interfere with LPS-triggered TLR4 activation in HEK-

Blue hTLR4 cells model was investigated. This HEK293 cell line is stably transfected 

with human TLR4, MD-2, and CD14 genes. In addition, Hek-BlueTM cells stably express a 

secreted Alkaline Phosphatase (SEAP) produced upon activation of NF-kβ; LPS binding 

activates TLR4 and NF-kB leading to SEAP secretion, which is detected by an alkaline 

phosphatase substrate in cell culture media (Figure 5.5).  

Figure 5.5. Cell-based colorimetric assay for the detection of biological active endotoxin. 

In this assay, HEK293 cells transfected with human CD14 and TLR4/MD-2 were 

treated with increasing concentrations of synthetic molecules and then stimulated 

with LPS (LPS, 100 ng/ml). TLR4 activation is monitored as SEAP production. The results 

are normalized to activation by LPS alone and expressed as the mean of percentage ± 
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5. VIRTUAL SCREENING ON TLR4 

SD of three independent experiments. Compounds B (ID-5382), F (MS21), H (MS32), I 

(MS35), X (PM1090) and Z (PM1200) inhibited TLR4 activation in a dose-dependent 

way (Figure 5.6). As a negative control, compounds were tested in Null cell line 

(InvivoGen), transfected with the same plasmids as HEK-Blue but without TLR4, MD-2, 

and CD14 genes, and no effect was observed. The toxicities of all compounds are being 

assaying by MTT assay and no inhibitory effects on cell viability has being observed in 

the concentration range used for biological characterization. 

Figure 5.6. Results are expressed in % of TLR4 activation. Positive control (LPS 20ng/mL) 

represents 100% of activation. Dose-dependent inhbiton of LPS-stimulated TLR4 activation by 

compounds. 
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5. VIRTUAL SCREENING ON TLR4 

We finally obtained the following possible antagonsit compounds: 

LogP LogP 
Compound Structure 

ChemSketch Molinspiration 

ID-5382 
5.3 (exp) 

(B) 

MS21 (F) 5.89+/- 0.40 6.331 

MS32 (H) 4.20+/- 0.83 6.434 

MS35 (I) 

4.68+/-0.84 6.728
 

PM1090 

(X) 
5.70+/- 0.89 6.063
 

PM1200 
6.29+/- 0.45 6.116 

(Z) 

243 

http:6.29+/-0.45
http:5.70+/-0.89
http:4.68+/-0.84
http:4.20+/-0.83
http:5.89+/-0.40
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5.3 Conclusions 

In this work, we have applied virtual screening and computational repositioning 

strategies for the finding of novel TLR4 modulators. The computational protocol has 

made use of different conformations of TLR4/MD-2 system, and a deep 

ligand/receptor analysis, including ligand-based and structure-based virtual screening, 

leading to a robust approach for the final identification of 7 possible antagonist 

compounds: Compounds B (ID-5382), F (MS21), H (MS32), I (MS35), X (PM1090) and Z 

(PM1200) inhibited TLR4 activation in a dose-dependent way as putative of TLR 

modulators. The identified screening hits, however, represent interesting scaffolds for 

a new class of possible inhibitors for the TLR4/MD-2 complex. 

5.4 Materials and Methods 

Computational Methods 

Library Preparation 

Importation. All the databases were saved as a SD File and imported in Maestro 

software (Schrodinger, version 10.4),112 which is an all-purpose molecular modeling 

environment. During the importation process, the chirality and the atom type of each 

compound has been checked. 

Ligand Preparation using LigPrep. LigPrep (Shrodinger, version 3.6)113 is a program 

specialized in preparing all-atom 3D structure of drug like molecules, was used for 

many purposes: to refine the geometry of the ligands imported from the databases; to 

generate accurate, energy minimized 3D molecular structures; to expand tautomeric, 

ring conformation, and stereoisomers in order to produce broad chemical and 

structural diversity from each input structure and to predict protonation states. The 3D 

structures were minimized using OPLS 2005;114 to generate ionization states, Epik115-117 

was used, in order to simulate the physiological pH. In many cases, the compounds 

contain water molecules or ions, these extra molecules were removed with Desalt 

option. The generating tautomer options were also used in order to generate up to 8 

tautomers per input structure. Regarding the setting stereoisomer options, the choice 
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of retaining the specified chiralities to keep this information from the input file and 

fixed these chiralities for the entire calculation has been made. The number of 

stereoisomers generated was limited up to 32 per ligand. From a 2D structure, it is not 

immediately obvious which ring conformations give the lowest energy or are preferred 

for binding to an active site. Therefore it was decided to generate one low energy ring 

conformation per ligand with LigPrep. The final output was in Maestro format to keep 

the total information calculated for all the compounds. For the virtual screening, the 

compounds were selected according to their molecular weight and their lipophilicity, 

between 300 Da and 700 Da, and between 4 and 6 respectively, using the property 

calculation tool from the Maestro software. 

Protein Preparation 

In the case of the agonist conformation of the TLR4/MD-2 monomer, 3D 

coordinates from TLR4/MD-2 heterodimer were obtained from the PDB (PDB-ID: 

3FXI).44 By contrast, in the case of the antagonist conformation, since the full 

crystallographic structure of the TLR4/MD-2 complex is not available, a model built by 

us was used. This model was built using the human MD-2 protein in antagonist 

conformation (PDB-ID: 2E59)45 superimposed onto the MD-2 subunit of the agonist full 

complex (PDB-ID: 3FXI chain C) through PyMOL. Then, coordinates from the TLR4 chain 

of the 3FXI adjacent to the superimposed MD-2 (PDB-ID: 3FXI chain A) and the 

superimposed MD-2 in antagonist conformation were retained, forming the TLR4/MD

2 monomer in antagonist conformation. Finally, both agonist and antagonist the 

structures were subjected to 10.000 cycles of steepest descent energy minimization 

under the Amber force field via Maestro (see Chapter 3). Also PDB-ID: 2E56 were used 

to consider different antagonist conformation of MD-2. 

Receptor Grid Preparation 

Glide. For preparing the receptor grids for the two protein conformations, Glide 

software (Schrodinger, version 6.9) was used.86-88 All the parameters from the software 
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were kept at their default values. We only determined where the scoring grids will be 

positioned and their sizes. The coordinates of the box were set up to fully contain E. 

coli LPS. Glide software uses two "boxes" that can be parametrized to organize the 

calculation: the inner box, which can be monitored in the advanced panel, and where 

the ligand center is allowed to move within that box during the site point search; and 

the outer box, which is the box within all the ligand atoms must be contained. Its size is 

function of the inner box, and the inner box has to be included within the outer box. 

For the inner box, the center was set up at residue serine 120 and the lengths of the 

boxes for both protein conformations were the following ones: 33 Å in X, 40 Å in Y and 

35 Å in Z. For the outer box, 10 Å has been chosen, that is to say 10 Å bigger than the 

inner box (43 Å in X, 50 Å in Y and 45 Å in Z). 

AutoDock, FLAP and VINA. As the receptor grids were already set up with 

Glide, the same grids have been chosen for the softwares. Glide coordinates were kept 

for VINA, but were converted in AutoDock coordinates using scaling calculation tool. In 

the case of FLAP, The pockets of MD-2 were identified and defined by FLAP's pocket 

search algorithm. 

Docking 

Structure �ased Virtual Screening (S�VS) with FL!P 

The FL!P software explicitly distinguishes between the so called SBVS method 

and docking;118-119 While in FL!P docking is primarily used for pose prediction and a 

more precise quantification of binding energies, S�VS is a tool for large-scale virtual 

screenings; Even though docking is often used as a structure based virtual screening 

technique,120 the term SBVS will hereafter refer only to FL!P’s correspondent screening 

program; 

The S�VS program first creates MIFs of the receptor’s binding site; During 

screening, the MIFs of the ligand are compared with those of the binding site; Time 

consuming calculations describing each atom-atom interaction are not needed here; 
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One downside of this method is that there is no energetic penalty for atom clashing 

with the target; In some scenarios however, this might even be an advantage, since it 

overcomes the rigidity of the target to some extent; 

The S�VS in FL!P was performed on the 3D structure of the human co-receptor 

MD-2; The structure was obtained from the PD� (PD� code: 2E56)45 and the MOE 

software was used to prepare the protein by removing water molecules, adding 

hydrogens and missing atoms and side chains;73 The optimized structure was loaded 

into FL!P and the Search for pockets function was used to define the binding area; The 

results are then treated in analogy to the L�VS approach; 

S�VS with Glide 

The molecules were subjected to a grid-based ligand docking with energetics 

(Glide, Schrodinger, version 6.9)86-88 using the Virtual Screening Workflow protocol. It 

is designed to run an entire sequence of jobs for screening large collections of 

compounds against one or more targets. However, as the compounds and the grids 

had already been prepared, in this case, only the docking steps of the program have 

been used. The compound files and the receptor grid files were imported into the 

Virtual Screening Workflow program. Regarding the docking step parameters, Epik 

state penalties for docking were used, and the non-polar part of the ligand potential 

were soften by scaling the Van der Waals radii of ligand atoms with small partial 

charges. To do so, the scaling factor was 0.80, and the partial charge cutoff was 0.15. 

The full workflow includes three docking stages, each step differing from the preceding 

step in the amount of time taken to dock each molecule and the scoring system used 

to evaluate each pose. The first stage performs HTVS (High Throughput Virtual 

Screening) docking. The ligands that are retained are then passed to the next stage, 

which performs SP (Standard Precision) docking. The survivors of this stage are passed 

onto the third stage, which performs XP (eXtra Precision) docking, a more powerful 

and discriminating procedure. 
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The Dock flexibility method was used for HTVS, SP and XP dockings allowing us to 

penalize non-planar conformation for amide bonds. A post-docking minimization was 

also performed, as well as constraints for the docking stages. One pose per compound 

state was generated and 100 % of the best compounds that passed the HTVS, SP and 

XP docking have been kept. For HTVS and SP docking, all states have been retained, 

but only the best scoring state for the XP docking. 

Ligand re-docking using Glide 

The shortlisted molecules were submitted to a re-docking procedure using 

Glide. All the parameters were kept as mentioned in the docking paragraph using 

Glide, except for the docking poses which were set to 50 per molecule. 

Molecular re-docking using FLAP 

The FLAP software implements a fragmentation-based docking algorithm, 

called FLAPdock, which works as follows. MIFs are calculated for the target binding 

site, in a similar manner to the SBVS approach but with more points to describe the 

site in more detail (Reference manual for FLAP 2.0, © 2014 Molecular Discovery Ltd). A 

set of ligand conformations is generated using a stochastic search and a customized 

implementation of the MM3 force field121 with a cutoff of 30 kcal mol-1 to remove high 

energy and duplicate conformations respectively. The ligands are then split into 

fragments with only 1-3 rotatable bonds. For each fragment conformation, GRID MIFs 

are calculated. The first fragment is docked into the binding site and the best scoring 

solutions, according to the global S-Score, are retained for the next iteration. In the 

next step, the next fragment, is attached to the first one and scored in the same way. 

The S-Score is a scoring function that includes terms from the GRID MIF similarities 

(Hydrogen-bonding and hydrophobic interactions as well as shape matching), Lennard-

Jones and electrostatic interactions. It was validated, amongst other targets, on those 

of the Astex and DUD datasets.119, 122-123 In each iteration the best scoring solutions are 

kept and filtered by RMS clustering. Once the reconstruction of the ligand has finished, 
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the final pose can be optionally optimized by minimization and the final score is 

recalculated. The benefit of FLAPdock towards the SBVS method lies in the more 

detailed chemical interactions that are considered for docking and the respect of steric 

clashes that are not regarded in the SBVS method. In order to obtain score reference 

values, a set of known MD-2 inhibitors was docked, followed by the docking of 

compounds from the Log P 1000 and the SPECS dataset. 

Biological characterization 

HEK-Blue TLR4 assay. HEK-Blue-TLR4 cells (InvivoGen, Toulouse, France) and 

parental cell line HEK-Blue Null 2 (InvivoGen) were HEK-Blue cells were used to test the 

agonist or antagonist effect of different compounds. This cell line expresses TLR4, MD

2 and CD14 and do not express any other TLR. The activation of TLR4 leads to the 

expression of SEAP, a protease that enzimatically hydrolyze a molecule present in the 

media. The amount of hydrolized molecule can be mesured using colorimetric 

methods. These cells were cultured according to manufacturer’s instructions; �riefly, 

cells were cultured in DMEM high glucose medium supplemented with 10% fetal 

bovine serum (FBS), 1% glutamine, 1% penicillin/ streptomycin, 1X Normocin 

(InvivoGen). Experiments were performed when 70-80% of confluence was reached. 

Cells were detached by the use of PBS, tapping the flask and the cell concentration was 

estimated using. Four different compound concentrations were used: 0.1, 1, 5 and 10 

μg/mL; 20 μL of compound dilution were added in a 96-well plate, in triplicate (3 wells 

for each concentration), seeded in multiwall plate at a density of 2 x 104 cells/well in 

200 µl. LPS was used as positive control (20ng/mL final concentration) and PBS 1x was 

used as negative control. Cells were detached using 4mL of PBS and 140.000 cell/mL 

solution was prepared using Detections Media. 180 µL of this solution were added into 

each well (25.000 cells/well). After a 30 min incubation, 20 µL of LPS solution were 

added in each well (final LPS concentration: 20ng/mL) (LPS was diluted in PBS as well). 

Plates were incubated for 16 h in the dark at 37 °C, 95% of humidity and 5% of CO2 and 

then, the plate reading was assessed using a spectrophotometer at 620 nm. The 
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results were normalized with positive control (LPS alone) and expressed as the mean 

of percentage ± SD of at least three independent experiments. 

5.5 Annex V 

Annex Figure 5.1. Top scoring compounds obtained by LBVS on th Log P 1000 database 
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Annex Figure 5.2. Top scoring compounds obtained by LBVS on the SPECS database. 
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Table 5.1. 2D Chemical structure of predicted TLR4 modulators identified by 

computational drug repurposing, and kept for future structure similarity search. 

Compound 

number 
ZINC ID 

Usual/Commercial 

name 
2D structure 

146 3830716 Diphenoxylate 

157 1493878 Sorafenib 

177 15919406 Ono-Rs 411 

179 52509366 Zelboraf 

208 53073961 Antrafenine 

212 19685790 Lercanidipine 
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Table 5.2. 2D Chemical structure from PM databases obtained from SBVS. 

Number Compound Structure 

1 PM1097_p_R/1097 

2 PM1811 

3 PM1779 

4 PM567S ó R 
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5 PM1090 

6 PM810 

7 PM1758 

8 PM1200 
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Table 5.2. 2D Chemical structure from JCM 

databases obtained from SBVS. 

Number Compound Structure 

1 MS_35/35p 

2 MS_29 

3 MS_40 

4 MS_34 

5 MS_31 

6 MS_22 

7 MS_45 

8 MS_21 

9 MS_32 
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10 MS_26 

11 MS_14 

12 MS_49 

13 MS_37 

14 MS_46 

15 MS_20 

Final compounds:
 

Quinoline family: MS-14, MS-20
 

Quinazoline family: MS-40, MS-45, MS-49
 

Acridine family: MS-32 and MS-21
 

MS-35, MS-29=MS-22, MS-26, MS-31, MS-34, MS-37
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Table 5.3. 2D Chemical structure from J. R. Pedro and A. Sanz-Marco databases obtained from SBVS. 

Name Structure Name Structure 

JRP07 !M15 

JRP10
	 !M18 

JRP18 !M19 

!M20 !M54 

momo 

!M21 !M57 
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!M20 !M58 

AM59 

!M22 !M62 

!M23 !M65 
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!M24 !M66 

!M25 !M72 

!M40 !M16 

!M41 JRP01 
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!M42 !M08 

!M48 !M14 

!M53 !M71 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

6.1 Introduction 

Cell membranes, also known as the plasma membrane or cytoplasmic 

membrane, consists in a lipid bilayer with ions, channels and proteins embedded, and 

separate the cell interior from the outside environment (Figure 6.1).1 The membrane 

has important implications for many cellular processes, e.g., protein trafficking and 

aggregation, membrane fusion, and signal transduction. Lipids are the main 

components of lipid bilayers and play an important role in many cell signaling and 

physiological processes. Changes in expression levels of individual lipid species have 

been implicated in many diseases including: cancers, diabetes, !lzheimer’s disease, 

HIV entry, and aterosclerosis.2-3 

Figure 6.1. Cell envelopes of various microbial families.1 

A typical plasma membrane requires a lipid organization,4 which is formed by 

hundreds of different lipids. All the lipid molecules in cell membranes are amphipathic, 

being phopholipids the most abundant ones, together with glycolipids and sterols.5 

The fatty chains (FA) in phospholipids and glycolipids may be saturated or unsaturated 

and usually contain an even number of carbon atoms, typically between 16 and 20, 

where the 16- and 18-carbon FAs the most common ones. The polar head groups are 
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exposed to water and nonpolar lipid tails groups go inside the membrane.6-8 The 

length and the degree of unsaturation of FA chains have an effect on membrane 

fluidity, preventing the FA from packing together as tightly, thus decreasing the 

melting temperature (increasing the fluidity) of the membrane. In particular, 

mammalian membrane is composed by phosphatidylcholine (PC), sphingomyelin (SM), 

and gangliosides (GM) in the outer leaflet and phosphatidylcholines (PE), 

phosphatidylserine (PS), and other charged lipids in the inner leaflet; also eukaryotic 

plasma membrane contains approximately 20-50% sterols (Figure 6.2).6, 9 

Figure 6.2. Lipid organization of the plasma membrane extracted from Marrink et al.4 

The importance of study of receptors in a membrane environment may be used 

to explore in detail the interactions of membrane proteins and specific lipids, yielding 

predictions of lipid binding sites in good agreement with available structural data. 

Molecular dynamics (MD) simulation approaches provide important tools which allow 

us to simulate both individual membrane proteins and more complex membrane 

systems. Thus, MD simulations have become a valuable addition to the range of 

experimental structural and biophysical techniques for studying membrane proteins 

and their interactions with lipids.10-12 

For all of this, the computational study of the membranes at atomic details has 

become an essential tool for elucidate the structural and dynamic organization of 

cellular membranes and to understand the different mechanims where the 

membranes are implicated, such as: mechanims of diffusion through ions or 
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membranes, mechanisms of signalling and also the active transport throught 

transporters. 

TLR4 together with MD-2, is one of the main receptors involved in innate 

immunity. TLR4/MD-2 modulation constitutes a challenging and sparkling area of 

research with high potential for the development of novel drugs. The molecular 

modelling approaches have been used to elucidate the molecular recognition 

mechanisms of TLR4/MD-2 modulation, with focus on the agonist/antagonist 

conformational changes of the TLR4/MD-2 system, and to provide some hints for the 

design of novel binders, hopefully with therapeutic potential. And the analysis of the 

MD simulation of the dimer TLR4/MD-2 complex in the membrane environment could 

help us to identify the key ligand-receptor and protein-protein interactions governing 

the molecular recognition events and the dimerization process. Our previously 

calculated complexes of TLR4 with reported agonists will be also calculated accounting 

for the validation of the proposed binding modes. 

6.2 Results and Discussion 

Several models of the TLR4/MD-2 system inserted in different membranes have 

been built and simulated. These different models will be useful for the final building of 

the complete TLR4/MD-2 dimer and will provide us insights into the mechanism of 

TLR4 agonism/antagonism. The MD simulations of the full complex will help us to 

identify the key ligand-receptor and protein-protein interactions governing the 

molecular recognition events and the dimerization process at atomic level. 

We started carrying out the building and simulation of different models of 

membranes. With these models, we inserted the monomer TLR4/MD-2 with three 

molecules of myristic acid. X-ray structure is available for the extracellular domain 

(ED) in complex with lipid A. The intracellular (ID) and transmembrane domains (TD) 

were modelled by homology modelling by members of our group and were used for 

this study. The building and simulation of the full dimer complex of TLR4/MD-2 system 

in the bilayer membrane is in progress, especially the build and simulation of the full 
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dimer complex of TLR4/MD-2 system in the bilayer membrane in complex with 

agonists ONO-4007 (LPS-like molecule)13 and Euodenine A (non-LPS-like molecule).14 

The binding poses have been already modelled by means of docking techniques plus 

MD simulations (see Chapter 3). The proposed binding modes will be assessed and 

compared with the model obtained for lipid A. 

Membrane models: 

We started this approach with the building of different simple symmetric 

membrane models (Table 6.1). It is often important to understand the dynamics of the 

bilayer itself before proceeding with protein systems. 

The lipid bilayers models are: POPC (1palmitoyl-2-oleoyl-sn-glycero-3

phosphocoline), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine)-POPC 

[1:1], CHOL (Cholesterol)-POPC [1:1], DPPC(1,2-dipalmitoyl-sn-glycero-3

phosphocholine)-POPC [1:1], DPPC-POPE [1:1] (Annex Table 6.1, structure of the lipid 

and sterols). 

Also reviewing the literature and given that the composition of the mammalian 

plasma membranes are composed by different type of lipids and sterols, we decided to 

approach the complexicity of real cell membranes and build a more complex 

asymmetric membrane model and which resembled more the composition of the 

mammalian plasma membrane, with following composition: The outer leaflet is 

composed by 35% cholesterol and 65% lipids (60% DPPC, DPPE (0 insaturation), 20% 

POPE, POPC (1 insaturation), 20% DOPE, DOPC (>1 insaturation)), and the inner leaflet 

by 30% cholesterol and 70% lipids (50% DPPC, DPPE, 20% POPE, POPC and 30% DOPE, 

DOPC) (Figure 6.3 and 6.4). 
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Figure 6.3. Composition of the asymmetric membrane model built by us. 

Figure 6.4. Our asymmetric membrane model built by us, with the lipids and sterols 

represented in different colors. 
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Regarding TLR4/MD-2 system, an X-ray structure is available for the 

extracellular domain in complex with lipid A (PDB-ID: 3FXI). The intracellular and 

transmembrane domains have been modelled by members of our group by homology 

modelling and were used for this study (Ref. Uniprot O00206). 

The MD simulations of these models were carried out, and with the area per 

molecule and the electron density were analyzed (see Figures 6.5 and 6.6). 

Area per molecule: 

Figure 6.5. Area per molecule for different models of membranes during MD simulation (50 

ns). 

Figure 6.6. Electron density profile for the different models of membranes during MD 

simulations (50 ns). 
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In order to undertand the behaviour of the TLR4/MD-2 system in the 

membrane enviorment, we started to build different models from the most simple 

until more complex with the different models of membranes as follows: 

1- The building and simulation of the transmembrane and intracellular domain of 

TLR4 in the different bilayer membranes environment complex (100 ns for POPC, 

POPE-POPC and CHOL-POPC, DPPC-POPE and DPPC-POPC) was carried out, with the 

corresponding analysis of different parameters. 

2- The building and simulation of the full monomer system (extracellular, 

transmembrane and intracellular domains) of the complete complex of agonist 

TLR4/MD-2 system with three molecules of myristic acid in the different bilayer 

membranes environment complex (100 ns for POPC, POPE-POPC and CHOL-POPC, 

DPPC-POPE and DPPC-POPC) was carried out, with the corresponding analysis of 

different parameters (Figure 6.7). 

3- The building and simulation of the full dimer system of the complete monomer 

complex of agonist TLR4/MD-2 system in the different bilayer membranes 

environment in our asymmetric complex bilayer model is in progress with the 

corresponding analysis of different parameters. 

Figure 6.7. Example of the monomer TLR4/MD-2 complex with three molecules of myristic 

acid in the CHOL-POPC bilayer membrane. 
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ANALYSIS: 

The analysis was performed using the cpptraj module of AmberTools15.15 After 

production several lipid bilayer parameters, including area per lipid, electron density 

profiles, RMSD, RMSF, distances and angles were analyzed. The results for the 

transmembrane + intracellular domain in the membrane environment are very similar 

compared with the full monomer system (extracellular + transmembrane + 

intracellular domains of TLR4). 

Area per molecule: The area per molecule is a common experimental structural 

parameter used in the validation of lipid bilayer simulations. The area is determined 

from the specified cross-section of the box. 

Very little is known about the experimental data of membranes. For the case 

POPC membrane, the experimental data indicate that area per lipid is between 64.3 

16-17 and 68.3 Å2. Our models indicate that the area per lipid is around 65 Å2, so 

satisfactory are in agreement with the experimental value. In the case of POPE, the 

experimental data indicates that the area per lipid is around 59-60 Å2.18 The area per 

molecule of the bilayer systems are seen to be stable during the simulation time and 

shows lower fluctuations in all the cases. In the case if CHOL-POPC the area per 

molecule is less, because the sterols occupy less area in relation to lipids (Figure 6.8). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic 
TLR4 (TD+ID) 

acids 

Figure 6.8. Area per molecule of the TLR4/MD-2 system with three molecules of myristic acids 

on the left  and TLR4 (TD+ID) on the right, for the different bilayer systems. 

Electron density profile: The electron density profile provides a time-averaged 

measurement of the density of electrons through the lipid bilayer. The total electron 

density profile for the lipid bilayers was carried out. It is possible to compute the 

thickness of the lipid bilayer using the peak-to-peak distance. 

Regarding the experimental data, the thickness for different models of 

membranes is: 37 Å for POPC, 17 and 39.5 Å for POPE.18 The results obtained for the 

transmembrane and intracellular domains are very similar comparing with the full 

system; in all the cases we have obtained a thickness around 40 Å (Figure 6.9). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic 
TLR4 (TD+ID) 

acids 

Figure 6.9. Electron density profile of the bilayer systems. 

RMSD: The root mean-square deviation (RMSD) of the backbone of the protein (TLR4 

and MD-2) and the heavy atoms of the ligands (three molecules of myristic acid) were 

calculated around the molecular dynamic (MD) simulations (100ns). In the case of the 

TLR4, we have monitorized also the extracellular (ED), transmembrane (TD) and 

intracellular (ID) domain. 

From studying the RSMD of the simulations in all the cases, it could be 

observed that TLR4 (full system), at the beginning had some significant movements but 

acquire certain stability since 40 ns of the MD simulation, except in the case of CHOL

POPC membrane which has drastic movements throughout all the MD simulation 

(Figure 6.10) but in the case of the RMSD separate into fragments (ED, TD and ID), it 

could be possible to observe stability in all the models for the TD, but in the case of the 

ED and ID all the models are stable, except in the case of DPPC-POPC model which has 

some drastic movements throughout the whole of the simulation (Figure 6.11). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Figure 6.10. RMSD of the backbone of the TLR4/MD-2 monomer (EC, TM and IC domains) in 

complex with three myristic acids (left) and the MD-2 protein (right). 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic acids 

TLR4 (TD+ID)
 

Figure 6.11. RMSD of the backbone of the extracellular, transmembrane and intracellular TLR4 

domains for the different models of membranes. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

In the case of the MD-2 and the three molecules of myristic acid (Figure 6.12), 

MD-2 remains stable throughout the whole of the simulation; regarding the ligands, 

the three molecules of myrisitc acid in the case of POPC membrane change the 

positions since 30 ns, but from here remains stable until the end of the simulation. In 

the case of POPE-POPC, the myristic acids 146 and 147 change the position from 45 ns. 

In the DPPC-POPC model, the ligands change at the beginning but remain stable during 

the whole of the simulation. For the others models, the molecules of myrist acid 

remain stable during the whole of the simulation. 

Figure 6.12. RMSD of the heavy atoms of the three molecules (145, 146 and 147) of  myristic 

acid for the different membranes. 

RMSF: We have measure the root mean-square fluctuation (RMSF), a measure of the 

average atomic mobility of backbone atoms (N, Cα and C atoms) during the MD 

simulations, in order to evaluate internal fluctuation in the different models (figure 

6.13). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic acids 

TLR4 (TD+ID)
 

Figure 6.13. RMSF of the backbone of different parts of TLR4 (ED, TD and ID) and MD-2 with 

myristic acids (top) and TLR4 (TD and ID) (bottom) for the different models of membranes. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

In the case of the MD-2 pocket, the graphics show the average RMSD of the 

amino acid residues. It is possible to observe that the mayor fluctuations correspond to 

the residues in the loops implicate in the dimerization interface. 

For the ED, the pics of fluctuation correspond to the amino acids residues in the 

loops, the mayor fluctuations are due to the first residue which is the initial part of 

TLR4, and the final residue correspond to threonine, which is in the end of the TLR4 

extracellular domain, and very close to the membrane. 

Distances: The lenght for the TD of TLR4 was measured from Lys631 to Lys653. The 

distance is stabley around the MD simulations both cases (TD +ID domain of TLR4 adn 

TLR4 complete in the models of membranes), the distance is around 35 Å (Figure 6.14). 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic 
TLR4 (TD+ID) 

acids 

Figure 6.14. Distances for the TM domain from Lys631 to Lys653 of TLR4 in the different 

models of membranes. 

Also the distance from Lys653 to the middle of the ID of TLR4 was measured, 

and it was possible to observe that the ID approaches to the membrane in all the 

models, establishing interactions with the head gropus of the inner leaflet from the 

membrane (Figure 6.15). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Regarding the ID of TLR4 from CHOL-POPC membrane (Figure 6.15 and 6.16), 

this domain aprroach to the membrane establishing polar interactions the residues 

Gly663, Tyr667, Arg689, Arg669, Glu698, Gly699 and Gln704 eith the polar head 

groups of POPC inner leaflet, also CH-π interaction between the Phe656 and Pro714. 

The portion of linker since Tyr653 to Cys664 is inserted in the membrane. 

Figure 6.15. MD simulation of TLR4/MD-2 with three molecules of myristic acid in CHOL-POPC 

membrane. The ID is aprroach towards the inner leaflet of the membrane, establishing polar 

interactions with the head groups of the inner leaflet. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Figure 6.16. Polar interactions of the ID of TLR4 with the head groups of POPC from the inner 

leaflet of the CHOL-POPC membrane. 

Regarding the model with POPC membrane, also de portion of the linker since 

Tyr653 to Gly668 is inserted in the membrane and is possible to observe polar 

interaction from the residues Gly663, Lys666, Tyr667, Arg669, Glu698, Gly828, Thr829 

and Trp833 of TLR4 with the head groups of the inner leaflet of the membrane. 

Regarding the model with POPE-POPC membrane, the linker is also inserted in 

the mebrane from Tyr653 to Cys664 and the residues from TLR4: Gly663, Lys666, 

Arg669 and Gln704 establish polar interactions with the head groups of the lipids. 

Regarding the model with DPPC-POPC, the residues of TLR4 Gly663, Lys666, 

Tyr667 and Arg669 and establish polar interactions with the head groups of the 

membrane. Also the linker from Tyr653 to Cys664 is inserted in the membrane. 

Regarding the model with DPPC-POPE Lys666, Arg669, Glu671, Arg763, Asp817 

and Lys819 from TLR4 establish polar interactions with the head groups of the 

membrane, also the linker since Tyr653 to Cys664 is inserted in the membrane. 

For the models built with only TD and ID of TLR4 in the different membranes 

enviorment was possible observe the same interactions from the ID of TLR4 with the 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

head groups of the inner leaflet of the membranes and the linker is also inserted in the 

membrane. 

It could be said that the ID approach to the membrane, due to contains 

residues in this part that interact with the heads groups of the inner leaflet. 

Secondary structure – helicity of the transmembrane and intrecellular domain of 

TLR4: DSSP method of Kabsch and Sander19 were calculated for TD and ID of TLR4 , 

which assigns secondary structure types for residues based on backbone amide (N-H) 

and carbonyl (C=O) atom positions. We have measured the evolution of secondary 

structure over 100 ns. In the case of the ID for all the models, we observed stable 

structural features with minor variations in turn or loop regions around the MD 

simulation. And the secondary structure of the transmembrane region was stable, 

which was a α-helix around residues Ile633 and Val651 (Annex Figure 6.1 and Annex 

Figure 6.2). 

Angles: In order to see the torsion and movement of the TLR4 during the MS 

simulation toward the membrane, we measured two angles, angle 123 between 

Cys390-Cy391(1), Cys585- Cys627 (2) and Lys653 (3), and angle 234 between Cys585

Cys627 (2), Lys653 (3) and Cys735-Cys736 (4) (Figure 6.17). We observed in both 

models, TD+ID domain of TLR4 and TLR4 complete in the different models of 

membranes, and we can conclude that it remains more or less stable throughout the 

simulation, not be possible to observe great changes at different angles (Figure 6.18). 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Figure 6.17. Angles measured in the 

TLR4 during the MD simulation of 

the different models of membranes. 

TLR4 (ED+TD+ID)/MD-2 with 3 myristic acids 

TLR4 (TD+ID)
 

Figure 6.18. Angle 134 between Cys390-Cys391 (1), Cys585-Cys627 (2), Lys653 (3) and Cys735

Cys736 (4) from TLR4. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

6.3 Conclusions 

We have presented results from MD simulation of bilayers with different kind 

of lipids and also including cholesterol in order to see the behaviour of the TLR4/MD-2 

system in different membrane enviorments. The analysis of the MD simulation led us 

to understand better the key ligand-receptor and protein-protein interactions 

implicated in the molecular recognition events and in the dimerization process. 

Firslty, we started this approach with the building of different symmetric 

models, and the analysis were carried out. The area per lipid is different depending if 

the composition include saturation or insaturation lipids and also depending if their 

composition include or not cholesterol. Regarding the membranes with cholesterol or 

insaturated lipids the area per lipid is less than the others membranes with saturated 

lipids. But very little is know about the experimental data of membranes.In relation to 

the thickness of the models, is approximatley the same for all the models, 40 Å in all 

the cases. An asymmetric membrane model including cholesterol has been built trying 

to represent the complexity of the mamalian membranes. We have perfomed the MD 

simulation, and we are going to use this model to insert now the TLR4/MD-2 system. 

The TLR4/MD-2 monomeric complex has been simulated inserted in all the 

membrane models (in the asymmetric model , the MD simualtion is still running), and 

was possible to observe that the membranes with DPPC (saturated lipid) are more 

instable comparing with the membranes with unsaturated lipids or choleterol. We are 

trying to undertand this fact and to figure out what is happen, because the analysis of 

the membranes with DPPC-POPC and DPPC-POPE give worse results in comparation 

with the models POPC, CHOL-POPC, POPE-POPC and asymmetric models. 

We are working now in the full dimer structure (ED, TD and ID) with the 

different models of membranes, in order to have more insights, to understand better 

the full TLR4 dimer. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

6.4 Materials and Methods 

Recently has been developed a new generation of all-atom phospholipid force 

fields for MD simulations of membrane bilayers (Amber Lipid Force Field).20 

Lipid bilayers were set up and molecular dynamics run with Amber and the 

Lipid14 force field. Amber 14 includes Lipid14 (Table 6.1) a modular lipid force for 

tensionless lipid phospholipid simulations. Lipid14 includes the modular charge 

derivation framework developed in Lipid11 as well as a reparameterization of key van 

der Waals and dihedral angles as performed in GAFFlipid. 21 21 20 21 

Table 6.1. Lipid14 residues name. 

Lipid 14 Residues 

Description LIPID14 Residue Name 

Acyl Chain 

Lauroyl (12:0) L! 

Myristoyl (14:0) MY 

Palmitoyl (16:0) P! 

Stearoyl (18:0) ST 

Head Group 
Oleoyl (18:1 n-9) OL 

Phosphatidylcholine PC 

The lipid bilayers structures were built using the CHARMM Membrane Builder 

GUI,22 an internet based solution to generating lipid bilayer structures as well as 

membrane-bound protein structures. The membranes were created with a rectangular 

box, 22.5 water layers thick on the top and bottom of the system and 200 length of XY 

(Table 6.2). All systems are modeled using suitable AMBER parameters, and converted 

to Lipid14 PDB format using the charmmlipid2amber.x script.23 Formatted structure 

files were loaded into the program Leap, and parameters and topology were assigned. 

Glycerophospholipid parameters from Lipid14 were used for the lipids. 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Table 6.2. Composition of the different models of membranes. 

Membrane 

Model 

Lipid 

Type 

Upper 

Leaflet 

Number 

Lower 

Leaflet 

Number 

Average 

Area (Å2) 

Area 

Upper 

(Å) 

Area 

Inner 

(Å) 

CHOL-POPC 
CHOL 370 370 

40071.00 200.18 200.18 
POPC 370 370 

POPE-POPC 
POPE 315 315 

40036.50 200.09 200.09 
POPC 315 315 

POPC POPC 586 586 40023.80 200.06 200.06 

DPPC-POPC 
DPPC 305 305 

40046.50 200.12 200.12 
POPC 305 305 

DPPC-POPE 
DPPC 329 329 

40072.20 200.18 200.18 
POPE 329 329 

ASYMMETRIC 

MODEL 

CHOL 

DPPC 

DPPE 

POPE 

POPC 

DOPE 

DOPC 

263 250 14221 119.25 119.25 

Regarding TLR4/MD-2 system, an X-ray structure is available for the 

extracellular domain in complex with lipid A (PDB-ID: 3FXI). The intracellular and 

transmembrane domains have been modelled by our Computational Chemical Biology 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

lab (at CIB-CSIC) by homology modelling and were used for this study (Ref. Uniprot 

O00206). 

The following protocol was used for molecular dynamics of lipid bilayer, lipid 

bilayer with the intracellular and transmembrane TLR4 domains, and finally the full 

system TLR4/MD-2: a minimization phase, following two steps of heat, holding to 

equilibrate periodic box dimensions and finally production with constant pressure. 

The full system was minimized for 10000 steps, of which the first 5000 steps 

used the steepest descent method and the remaining steps used the conjugate 

gradient method. The system was then heated from 0 K to 100 K using Langevin 

dynamics24 for 5 ps at constant volume, with weak restraints on the lipid (force 

constant 10 kcal mol−1 Å−2). The systems were heated through two sequential runs to 

303 K while keeping the lipid fixed. First the systems were heated to 100 K and then 

slowly to the production temperature. The Langevin thermostat was used for the initial 

heating. The second phase of heating slowly increased the temperature to the desired 

production temperature. This time an anisotropic Berendsen weak-coupling barostat 

was used to also equilibrate the pressure in addition to the use of the Langevin 

thermostat to equilibrate the temperature. 

To hold, in order to equilibrate the system's periodic boundary condition 

dimensions, it was necessary to run 5ns MD with a barostat. The system's dimensions 

and density must equilibrate before proceeding with production MD. Because the 

periodic boundary condition box dimensions are changing, it was necessary to increase 

the "skinnb" value and to restart the MD simulation after 500ns. This avoided most 

"skinnb" errors. If these cells change size, due to the box changing size, by too much 

then it will cause the code to halt with an error related to skinnb. Once the system was 

equibrated the box size fluctuations were small and so this was not an issue during 

production.During the production (100 ns), the temperature was controlled using the 

Langevin thermostat while pressure was controlled using the anisotropic Berendsen 

barostat. 

The analysis was performed using the cpptraj module of AmberTools15.15 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

6.5 Annex VI 

Annex Table 6.1. Different type of lipids and sterols. 

POPC 
POPE 

(1-palmitoyl-2 DPPC 
(1palmitoyl-2

oleoyl-sn-glycero
3-phosphocoline) 

oleoyl-sn-glycero
3

phosphoethanola 

(1,2-dipalmitoyl
sn-glycero-3

phosphocholine) 

CHOL 
(Cholesterol) 

PA-PC-OL mine) PA-PC-PA 
PA-PE-OL 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

DPPE DOPE DOPC 
(1,2-dipalmitoyl-sn-glycero- (1,2-Dioleoyl-sn-glycero-3- (1,2-dipalmitoyl-sn-glycero

3-phosphoethanolamine) phosphoethanolamine) 3- phosphocholine) 
PA-PE-PA OL-PE-OL OL-PC-OL 
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6. MD SIMULATIONS MEMBRANES WITH TLR4 

Annex Figure 6.1. The helicity of the transmembrane domain of TLR4 for all the membranes 

models. 

Annex Figure 6.2. The helicity of the intracellular domain of TLR4 for all the membranes 

models. 
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7. CONCLUSIONS 

CONCLUSIONS
 

In this Thesis, we have contributed to the elucidation of the molecular 

recognition events involving TLR4/MD-2 and some modulators at atomic level. This 

work has been carried out by means of computational methodologies, such as MD 

simulations, ligand-protein and protein-protein docking, virtual screening, and 

membrane simulations. Ligand-protein docking and virtual screening has been 

employed as a source of new compounds able to modulate the TLR4 behavior with 

possible therapeutic applications. We have combined the computational work with 

experimental biological assays, and a fruitful collaboration with Prof. Peri´s group for 

the synthesis of compounds. Overall, we have helped to provide new insights for the 

understanding of the molecular recognition events underlying the biological functions 

of the TLR4. 

Theoretical binding modes have been predicted for reported modulators of the 

TLR4/MD-2 system, with agonist and antagonist activity. In particular, we focused our 

work in synthetic glycolipids and non LPS-like molecules. For all these TLR4 

modulators, it is clear that, despite their different chemical structure, they must share 

a common pattern of interactions with TLR4. We have undertaken a computational 

study of some representative compounds to unveil some of these patterns of 

interactions. 

The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 

and CD14 co-receptors, has been used as scaffold to design new potential TLR4 

modulators and fluorescent labels for the TLR4 receptor complex (membrane 

TLR4/MD-2 dimer and CD14). Our modelling studies have led to the proposal of 3D 

models for the interaction with CD14 and TLR4/MD-2 accounting for their binding 

properties and also for their antagonistic activity. 

To propose new chemical scaffolds for the development of new ligands able to 

modulate TLR4 functions, we have performed virtual screening. Virtual screening 

strategies from commercial and in-house libraries, followed by biological assays, have 

allowed us to identify new chemical entities for the development of novel TLR4 
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modulators with a LPS-non-related structure. So far, we have identified seven novel 

compounds with a promising TLR4 antagonist activity. 

The computational study of the full TLR4/MD-2 heterodimer was performed, 

simulating the full complex inserted in the membrane environment. The analysis of the 

molecular dynamics simulations led us to understand the key interactions implicated in 

the dimerization process at atomic level. 
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7. CONCLUSIONS 

CONCLUSIONES
 

En esta Tesis, hemos contribuido a la elucidación de los eventos de 

reconocimiento molecular del complejo TLR4/MD-2 y algunos moduladores a nivel 

atómico. Este trabajo se ha realizado por medio de metodologías computacionales, 

como simulaciones de dinámica molecular, acoplamiento ligando-proteína, cribado 

virtual y simulaciones de la membrana. Técnicas de acoplamiento ligando-proteína y 

cribado virtual han sido utilizadas, dando lugar a una fuente de nuevos compuestos 

capaces de modular el comportamiento de los TLRs con posibles aplicaciones 

terapéuticas, y también como sondas biológicas. 

Hemos combinado el trabajo computacional con ensayos biológicos 

experimentales y hemos llevado a cabo una fructífera colaboración con el grupo del 

Prof. Peri para la síntesis de compuestos. En general, hemos ayudado a proporcionar 

nuevas ideas para la comprensión de los eventos de reconocimiento molecular 

subyacente a las funciones biológicas de los receptores TLR4. 

Se han predicho modos de unión teórica para los moduladores descritos del 

sistema TLR4/MD-2. En particular, hemos centrado nuestro trabajo en glicolípidos 

sintéticos y moléculas que no tienen estructura de tipo LPS. Para todos estos 

moduladores de TLR4, está claro que, a pesar de su diferente estructura química, 

deben compartir un patrón común de interacciones con el receptor TLR4. Hemos 

emprendido un estudio computacional de algunos compuestos representativos para 

revelar algunos de estos patrones de interacciones. 

El glicolípido catiónico IAXO-102, un potente antagonista de TLR4, se ha 

utilizado como esqueleto para diseñar nuevos moduladores de TLR4 y marcadores 

fluorescentes para el complejo TLR4. Nuestros estudios de modelización nos han 

permitido diseñar nuevos compuestos y a proponer modelos de interacción tanto para 

el CD14 como para el complejo TLR4/MD-2. Todos estos compuestos han presentado 

una actividad antagonista para el complejo del TLR4. 

El estudio computacional del heterodímero TLR4/MD-2 completo se realizó 

simulando el complejo completo insertado en la membrana. El análisis de las 
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simulaciones de dinámica molecular nos llevó a entender las interacciones claves 

implicadas en el proceso de dimerización a nivel atómico. 
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