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RESUMEN 

CAPÍTULO I: NUEVOS INHIBIDORES DE ANGIOGÉNESIS CON ACTIVIDAD ANTITUMORAL IN 

VIVO 

La angiogénesis, el proceso de formación de nuevos vasos sanguíneos, es un requerimiento 

esencial para la supervivencia y proliferación de los tumores sólidos.1 Por consiguiente, la búsqueda 

de inhibidores de la angiogénesis se ha convertido en una importante línea de investigación en el 

área de cáncer, y se ha traducido en la presencia de múltiples fármacos en el mercado que han 

mejorado claramente los resultados en pacientes con distintos tipos de tumores y metástasis. Sin 

embargo, todavía existen limitaciones, como la falta de eficacia en algunos pacientes, y la aparición 

de efectos adversos o de resistencia al tratamiento.2-4 Se considera que cuando se bloquea 

farmacológicamente la señalización del factor de crecimiento vascular endotelial (VEGF), otros 

factores proangiogénicos -especialmente el factor de crecimiento de fibroblastos (FGF)- cumplen su 

función, favoreciendo la angiogénesis tumoral.2,5,6 Además, se ha descrito que el aumento de la 

hipoxia tumoral causado por la terapia antiangiogénica potencia la supervivencia celular al estimular 

varios factores, particularmente el factor inducible por hipoxia-1α (HIF-1α).7 

En este contexto, el principal objetivo del presente trabajo es la identificación de nuevas 

estructuras químicas capaces de bloquear la angiogénesis afectando varios factores 

proangiogénicos (especialmente VEGF y FGF), así como de inducir una inhibición sostenida de la 

señalización proangiogénica generada por la hipoxia. Este objetivo general supone llevar a cabo los 

siguientes pasos: 

1. Identificación de un hit y proceso hit to lead. 

2. Caracterización biológica de los compuesto(s) seleccionado(s) en relación a su capacidad 

para bloquear la señalización proangiogénica ante la hipoxia. 

3. Estudio del efecto antitumoral de los compuesto(s) seleccionado(s). 

Por tanto, en este capítulo describimos una nueva serie de compuestos antiangiogénicos.8 Entre 

ellos, el compuesto óptimo 22 (UCM-2711) inhibe la señalización proangiogénica en hipoxia en 
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Resumen 


células de cáncer de mama. Más concretamente, la administración de 22 disminuye los niveles de 

las moléculas proangiogénicas VEGF, FGF, y óxido nítrico (NO). Además, este compuesto inhibe 

las formas activas de los receptores correspondientes a los mencionados factores (las formas 

fosforiladas de VEGFR y FGFR) y baja los niveles de la enzima óxido nítrico sintasa inducible (iNOS). 

Dichos efectos se correlacionan con un bloqueo en las vías de señalización MEK/ERK y PI3K/AKT, 

así como de la migración celular; y están mediados por HIF-1α, puesto que los efectos del compuesto 

22 prácticamente desaparecen cuando su expresión se reduce mediante un knock-down genético. 

Adicionalmente, la evaluación del perfil genético ha permitido identificar un conjunto de genes 

relacionados con la angiogénesis cuya expresión se altera con el compuesto 22. Finalmente, la 

administración del compuesto 22 a un modelo xenograft produjo reducciones en el crecimiento 

tumoral entre el 46 y el 55% en un 38% de los animales tratados. Cabe destacar que en los tumores 

que respondieron al tratamiento, se observó además una reducción significativa del número de vasos 

sanguíneos y de los niveles de VEGF, apoyando así el mecanismo de acción del compuesto. Aunque 

sería deseable una mayor eficacia, el hecho de que el compuesto 22 no indujese toxicidad alguna 

in vivo, y que fuese capaz de bloquear de forma efectiva la angiogénesis en los tumores que 

respondieron al tratamiento, refuerza el potencial del compuesto como un lead para el desarrollo de 

nuevos agentes antiangiogénicos aptos para el tratamiento del cáncer, ya sea solos o en 

combinación con otros fármacos de referencia. 

Migración
celular 

CAPÍTULO II: PROCESO DE OPTIMIZACIÓN Y CARACTERIZACIÓN BIOLÓGICA DE UN 
NUEVO INHIBIDOR DE ICMT CON ACTIVIDAD ANTITUMORAL 

Las mutaciones puntuales del gen ras llevan a la producción de una proteína Ras 

constitutivamente activa, resultando así en una estimulación constante de la proliferación celular y 

la inhibición de la señalización intracelular que conduce a la apoptosis. Sin embargo, pese a más de 

tres décadas de intenso esfuerzo, ningún fármaco que inhiba eficazmente las oncoproteínas Ras ha 

llegado a fase clínica, lo cual ha motivado la amplia creencia de que las proteínas Ras son 

‘undruggable’.9,10 Por ello, la posibilidad de bloquear la actividad de Ras interfiriendo con las 

4 
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modificaciones post-traduccionales responsables de su activación ha ganado atención en los últimos 

años.  

Ras es un miembro de una gran clase de proteínas conocidas como las proteínas CAAX, donde 

C es cisteína, A es normalmente un aminoácido alifático, y X es cualquier aminoácido. Su producto 

primario tras la traducción contiene una secuencia CAAX, que sirve como sustrato de tres enzimas 

que la modifican de manera secuencial para crear un dominio lipídico e hidrofóbico que media la 

asociación con membranas celulares. Primero, la secuencia CAAX intacta sirve de sustrato para su 

prenilación por la geranilgeranilasa tipo I (GGTase I) o la farnesiltransferasa (FTasa).11  A 

continuación, se da la proteólisis de los tres últimos aminoácidos AAX, gracias a la enzima 

convertidora de Ras (Rce1).12,13 Y por último, la nueva prenilcistína C-terminal sirve como sustrato 

para una enzima metiltransferasa específica, la isoprenilcisteína carboximetiltransferasa (ICMT), que 

metila el grupo carboxilo libre, neutralizando la carga negativa de la prenilcisteína y aumentando así 

su afinidad por la membrana.14 

En ausencia de cualquiera de estas modificaciones post-traducccionales, Ras pierde su habilidad 

para inducir transformación tumoral. Sin embargo, hasta el momento los intentos de bloquear los 

primeros dos pasos de estas modificaciones post-traduccionales han fracasado.15-18 Además, el 

hecho de que los genomas de mamíferos codifiquen únicamente para un miembro de la clase ICMT 

de las metiltransferasas, y que ésta no presente homología con ninguna otra metiltransferasa, 

convierte la inhibición de ICMT en una prometedora alternativa para las terapias antitumorales. En 

este contexto, en nuestro grupo de trabajo hemos iniciado un proyecto orientado al diseño, síntesis 

y desarrollo de nuevos inhibidores de ICMT. Esto nos ha llevado al nuevo lead UCM-1325, que 

mostró el mejor perfil en términos de capacidad inhibitoria de ICMT. Así pues, los principales 

objetivos del presente trabajo son: 

1. Optimización del lead UCM-1325. 

2. Estudio del mecanismo de acción de los compuesto(s) seleccionado(s). 

Por consiguiente, en este capítulo describimos el proceso de optimización del lead UCM-1325 

hasta llegar al lead optimizado UCM-1336 (3), que mostró una inhibición de ICMT del 93% a 50 μM 

(CI50  =  2 μM), siendo por tanto seleccionado para su estudio biológico y caracterización del 

mecanismo de acción. Este nuevo compuesto potencia la muerte celular programada, afectando 

especialmente a aquellas líneas celulares que expresan K-Ras mutante oncogénica; e induce una 

deslocalización de todas las isoformas de Ras. Además, UCM-1336 (3) reduce significativamente la 

actividad de Ras, bloquea la activación de las vías de señalización MEK/ERK y PI3K/AKT, y afecta 

la capacidad de migración de las células tumorales. Cabe destacar que UCM-1336 (3) ha mostrado 

una mayor potencia que el ya validado inhibidor de ICMT cysmethynil en todos los ensayos 
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realizados, sugiriendo que podría funcionar como un nuevo inhibidor de ICMT que contribuiría a la 

definitiva validación de dicha enzima desde un punto de vista mecanístico, como una diana de interés 

terapéutico para el tratamiento de cánceres caracterizados por una elevada activación de Ras. 

Todos estos prometedores resultados nos han llevado a estudiar la eficacia in vivo del compuesto 

UCM-1336 (3) en un modelo xenograft de cáncer de páncreas en ratón, experimentos que se están 

realizando actualmente. 
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SUMMARY 

CHAPTER I: NEW INHIBITORS OF ANGIOGENESIS WITH ANTITUMOR ACTIVITY IN VIVO 

Angiogenesis, the process of new blood vessel formation, is an essential requirement for the survival 

and proliferation of solid tumors.1 Accordingly, the search for angiogenesis inhibitors has become a  

leading line of investigation in anticancer research, and it has translated into several drugs in the market 

that have clearly improved outcomes in patients with different tumor types and metastatic disease. 

However, several limitations still exist, such as the lack of efficacy in some patients, the appearance of 

adverse effects, and drug resistance.2-4 It has been suggested that when the vascular endothelial growth 

factor (VEGF) signaling is pharmacologically blocked, other proangiogenic factors -especially the 

fibroblast growth factor (FGF)- take over its signaling, thereby supporting tumor angiogenesis.2,5,6 

Besides, it has been described that increasing tumor hypoxia during antiangiogenic therapy enhances 

cell survival through the stimulation of several factors, particularly the hypoxia-inducible factor-1α (HIF-

1α).7 

In this context, the main objective of the present work is the identification of new small molecules able 

to block angiogenesis affecting various proangiogenic factors (especially VEGF and FGF signaling 

pathways), and to induce a sustained inhibition of the proangiogenic signaling generated by hypoxia. This 

overall objective involves the following steps: 

1. Hit identification and hit to lead process. 

2. Biological characterization of selected compound(s) in terms of impairment of proangiogenic 

signaling under hypoxia. 

3. Antitumor effect of selected compound(s). 

Hence, in this chapter we describe a new series of antiangiogenic compounds.8 Among them, the optimal 

compound 22 (UCM-2711) inhibits the proangiogenic signaling under hypoxic conditions in breast cancer 

cells. Specifically, administration of 22 decreases the levels of the proangiogenic molecules VEGF, FGF, 

and nitric oxide (NO). Moreover, this compound inhibits the active forms of the corresponding receptors 

of these factors (phosphorylated forms of VEGFR and FGFR) and the levels of the inducible nitric oxide 
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synthase (iNOS) enzyme. These effects correlate with a blockade of the MEK/ERK and PI3K/AKT 

pathways and the inhibition of cellular migration; and they are mediated by HIF-1α, since the effects of 

compound 22 mostly disappear when its expression is knocked-down. Additionally, gene profiling 

identified a set of genes related to angiogenesis whose expression is altered by compound 22 and that 

might contribute to the antiangiogenic effects. Furthermore, administration of compound 22 in a xenograft 

model produced tumor growth reductions ranging from 46 to 55% in the 38% of the treated animals. 

Importantly, in the responding tumors, a significant reduction in the number of blood vessels and in the 

levels of VEGF was observed, further supporting the mechanism of action of the compound. Although 

better efficacy would be desirable, the fact that compound 22 did not induce any toxic effects in vivo and 

that it was able to effectively block angiogenesis in the tumors of responding animals strongly support the 

potential of this compound as a lead for the development of new antiangiogenic agents suitable for the 

treatment of cancer either alone or in combination with other benchmark drugs. 

CHAPTER II: LEAD OPTIMIZATION PROCESS AND BIOLOGICAL CHARACTERIZATION OF A 

NOVEL INHIBITOR OF ICMT WITH ANTITUMOR ACTIVITY 

Single-point mutations of ras gene can lead to the production of constitutively activated Ras protein, 

resulting in a continuous stimulation of cell proliferation and inhibition of apoptotic signaling, thus 

promoting cancer. However, despite more than three decades of intensive effort, no effective 

pharmacological inhibitors of the Ras oncoproteins have reached the clinic, prompting the widely held 

perception that Ras proteins are ‘undruggable’.9,10 Hence, the possibility of blocking Ras activity by 

interfering with the post-translational modifications responsible for its activation has gained an increasing 

attention within the last years. 

Ras is a member of a large class of proteins known as CAAX proteins, where C is cysteine, A is usually 

an aliphatic amino acid and X is any amino acid. Their primary translation product ends with a CAAX 

sequence, which serves as a substrate for three enzymes that modify the sequence in a step-wise manner 
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to create a lipidated, hydrophobic domain that mediates the association with cellular membranes. First, 

unmodified CAAX sequences serve as substrates for prenylation by geranylgeranyltransferase type I 

(GGTase I) or farnesyltransferase (FTase).11 Second, there is a specific proteolytic removal of the last 

three amino acids AAX, carried out by the Ras-converting enzyme 1 (Rce1).12,13 And finally, the newly 

formed C-terminal prenylcysteine becomes a substrate for a specific protein carboxyl methyltransferase, 

isoprenylcysteine carboxyl methyltransferase (ICMT), which methylates the free carboxyl group, 

neutralizing the negative charge of the prenylcysteine and thereby increasing membrane affinity.14 

In absence of any of these post-translational modifications, Ras losses its ability to induce tumor 

transformation. However, thus far attempts to abrogate the first two steps of the post-translational 

modifications have failed.15-18 Besides, the fact that mammalian genomes encode only one member of 

the ICMT class of methyltransferases and that it lacks homology to other protein methyltransferases, turns 

the inhibition of ICMT into a promising alternative for anticancer therapies. In this context, in our research 

group we have started a project aimed at the design, synthesis and development of new ICMT inhibitors. 

This has led us to the new lead UCM-1325, which showed the best overall profile in terms of ICMT 

inhibitory capacity. Thus, the main objectives of the present work are: 

3. Optimization of the lead UCM-1325. 

4. Study of the mechanism of action of the selected compound(s). 

Hence, in this chapter we describe the lead optimization process of UCM-1325 that has led us to the 

new lead UCM-1336 (3), which showed an ICMT inhibition of 93% at 50 μM (IC50 = 2 μM), hence being 

selected for in depth biological studies and characterization of its mechanism of action. This new 

compound enhances programmed cell death, affecting specially those cell lines expressing oncogenic 

mutant K-Ras; and induces mislocalization of all Ras isoforms. Besides, UCM-1336 (3) significantly 

reduces Ras activity, blocks the activation of the downstream MEK/ERK and PI3K/AKT signaling 

pathways, and impairs the migratory capacity of tumor cells. Noteworthy, UCM-1336 (3) has shown to be 

more potent than the already validated ICMT inhibitor cysmethynil in all performed assays, suggesting 

that it could work as a new ICMT inhibitor that would help to definitively validate this enzyme from a 

mechanistic standpoint as a therapeutic target of interest for the treatment of cancers characterized by 

high Ras overactivation. All these promising results have prompted us to study the in vivo efficacy of 

compound UCM-1336 (3) in a xenograft mouse model of pancreatic cancer, experiments that are currently 

ongoing.  
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1. INTRODUCTION AND OBJECTIVES 

Solid tumors initially grow as avascular nodules by absorbing nutrients and removing waste 

through simple diffusion, but once they grow beyond approximately 1 mm in diameter, they need to 

develop a novel network of blood vessels to satisfy their increasing need for nutrients and oxygen, 

and to remove waste products.1 Angiogenesis, the process of new blood vessel formation, is then an 

essential requirement for the survival and proliferation of solid tumors. 

The angiogenic process starts when a cell activated by a lack of oxygen releases proangiogenic 

factors that attract and promote the proliferation of inflammatory cells, which intensify the angiogenic 

call; and of endothelial cells from existing blood vessels, which proliferate and secrete proteases that 

break the blood-vessel wall, allowing their migration toward the angiogenic stimuli (Figure 1). 

Furthermore, one characteristic feature of new tumor vessels is that they fail to become quiescent, 

enabling the constant growth of tumor vasculature, which consequently becomes distinct from the 

normal blood supply system, showing irregularly shaped, dilated and tortuous vessels. 

Figure 1. The development of new vessels in tumor angiogenesis (from Siemann, D.W. Vascular targeting 
agents. Horizons in Cancer Therapeutics 2002, 3, 4-15). 
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Introduction and objectives
	

Accordingly, the search for angiogenesis inhibitors has become a leading line of investigation in 

anticancer research, and it has translated into several drugs in the market that have clearly improved 

outcomes in patients with different tumor types and metastatic disease. 

There are many proangiogenic factors supporting tumor growth, such as vascular endothelial 

growth factors (VEGF), platelet derived growth factors (PDGF), fibroblast growth factors (FGF), 

tyrosine-protein kinase KIT (c-KIT or CD117), etc. And consequently, there are a number of 

possibilities to obtain an angiogenesis blockade. In fact, there are thirteen antiangiogenic drugs 

approved by the Food and Drug Administration (FDA), categorized as a) monoclonal antibodies or 

fusion proteins designed against the specific proangiogenic growth factors and/or their receptors; b) 

tyrosine kinase inhibitors (TKIs) of multiple proangiogenic growth factor receptors; and c) inhibitors 

of mammalian target of rapamycin (mTOR) (Figure 2).2 

PDGFR VEGFR c-KIT FGFR 

PI3K 

AKT 

mTOR 

Ras 

Raf 

MEK 

ERK 

Cell survival 
Angiogenesis
Tumor growth 

mTOR inhibitors 
(everolimus, 
pazopanib) 

TKIs 
(sorafenib, 
sunitinib, 

regorafenib) 
VEGF inhibitors 
(bevacizumab, 

aflibercept) 

Figure 2. Summary of the mode of action of some proangiogenic factors and of major therapeutic agents 
designed against them (in red boxes). 
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Among these agents, bevacizumab (Avastin®, Genentech Ltd.) was the first antiangiogenic drug 

approved by the FDA in 2004.3 Bevacizumab is a monoclonal antibody that targets VEGF -also known 

as VEGFA- and hinders it from binding to its corresponding receptor, thus blocking its signaling. 

Initially considered a first-line treatment for metastatic colorectal cancer, it is also prescribed for the 

treatment of other types of cancer, and its development still stands out as one of the landmark 

achievements of anticancer research.4 With this same target, aflibercept (Zaltrap®, 

Sanofi/Regeneron), a soluble recombinant fusion receptor composed of VEGFR1 and VEGFR2 

fragments, has recently been approved for the second-line treatment of patients with metastatic 

colorectal cancer in combination with chemotherapy.5 

On the other hand, some TKIs (Figure 3) have also been approved by the FDA for the treatment 

of cancer angiogenesis. These compounds exert their effect at the intracellular level, inhibiting the 

kinase activity of receptors and/or downstream signa transducers of important angiogenic signaling 

systems. For instance, sorafenib tosylate (Nexavar®, Bayer) inhibits the kinase activity of certain 

receptors and the downstream transducer rapidly accelerated fibrosarcoma (RAF) blocking both 

angiogenesis and tumor proliferation, and it was approved for hepatocellular carcinoma and kidney 

cancer.6,7 With similar mechanism of action, sunitinib malate (Sutent®, Pfizer) was approved for 

gastrointestinal stromal tumors and advanced kidney cancer,8 and regorafenib (Stivarga®, Bayer) 

has been recently approved for patients with refractory advanced colorectal cancer.9 However, the 

main problem of these TKIs is their relatively low specificity, which allows them to inhibit multiple 

pathways, but with lower efficiency and potential arise of adverse effects.2 

Besides, some mTOR inhibitors (Figure 3) have been approved by the FDA as antiangiogenic 

agents for the treatment of cancer, such as everolimus (Afinitor®, Novartis) for both kidney cancer 

and neuroendocrine tumors, and pazopanib (Votrient®, GlaxoSmithKline/ Novartis) for kidney 

cancer. However, the activation of phosphoinositide 3-kinase/protein kinase B, also known as Akt-

(PI3K/AKT) signaling pathway through the inhibition of mTOR, which could lead to outgrowth of more 

aggressive lesions; together with the lack of predictive biomarkers of efficacy for tumors treated with 

these inhibitors is an important concern that limits their clinical applications.10,11 
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Figure 3. Representative examples of antiangiogenic compounds approved by the FDA. 

Although the previously mentioned, as well as other drugs with similar mechanisms of action, 

have progressed into the clinic,2,12,13 several limitations still exist, such as the lack of efficacy in some 

patients, the appearance of adverse effects, and drug resistance. Among them, this last one is 

perhaps the most important efficacy-limiting factor of the current antiangiogenic therapies. This effect 

has been observed especially for angiogenesis inhibitors targeting VEGF signaling pathways, which 
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have been clinically used for a longer period of time and in a larger number of patients, thus providing 

us with more clinical data. Results obtained up to day show that, although they are affording 

demonstrable therapeutic efficacy in mouse models of cancer and in an increasing number of human 

cancers, the benefits achieved in both preclinical and clinical studies are at best transitory and are 

followed by a restoration of tumour growth and progression.14 A number of factors are behind the 

appearance of this resistance. For example, it has been suggested that when VEGF signaling is 

pharmacologically blocked, other proangiogenic factors take over its signaling thereby supporting 

tumor angiogenesis.2,15,16 Amid these compensatory angiogenesis pathways, FGF seems to play an 

integral role in the resistance to anti-VEGF therapy, and different studies have suggested a critical 

role of the FGF signaling in clinical tumor progression.17-19 Besides, it has been described that 

increasing tumor hypoxia during antiangiogenic therapy enhances cell survival through the 

stimulation of several factors, especially the key regulator hypoxia-inducible factor-1α (HIF-1α). Its 

activation leads to an increase in transcription levels of the VEGF gene, making it even more difficult 

for the antiangiogenic drugs to achieve their goal.20 

Although targeting FGF signaling has lagged behind that of other receptor tyrosine kinases, there 

is now substantial evidence for the importance of FGF signaling in the pathogenesis of diverse tumor 

types. Hence, the development of compounds that inhibit the FGF pathway is receiving much 

attention although they are still early in development.21-23 Among the different FGFs, FGF-2, also 

known as basic FGF (bFGF), has been functionally implicated in tumor angiogenesis and it is an 

important target of antiangiogenic therapies.17,21,23,24 Notwithstanding the importance of blocking 

angiogenesis for antitumor therapies, it has been shown that prolonged antiangiogenic treatments 

eventually lead not only to drug resistance but also to enhanced tumor migration and metastasis.25-

27 A main reason for this is that an antiangiogenic compound will eventually generate a hypoxic 

microenvironment, fact that turns on all pro-anginogenic signaling increasing the levels of factors that 

promote the acquisition of an invasive and metastatic tumor phenotype such as nitric oxide (NO), 

VEGF and FGF. In addition, the same cells often express the cognate membrane receptors for these 

factors, resulting in autocrine signaling.20 Accordingly, the development of new antitumor compounds 

that simultaneously block angiogenesis and induce a sustained inhibition of the proangiogenic 

signaling generated by hypoxia currently remains as an important unmet need, as these agents 

should be more effective drugs than the ones currently in the clinic and should lack the associated 

more aggressive recurrence with metastasis and drug resistance. 
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Introduction and objectives
	

In this context, the main objective of this work is the identification of new small molecules able to 

block angiogenesis affecting various proangiogenic factors (especially VEGF and FGF signaling 

pathways), and inducing a sustained inhibition of the proangiogenic signaling generated by hypoxia.  

This overall objective involves the following steps: 

1. 	 Hit identification and hit to lead process. 

2. 	 Biological characterization of selected compound(s) in terms of impairment of 

proangiogenic signaling under hypoxia. 

3. 	 Antitumor effect of selected compound(s). 
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2. RESULTS AND DISCUSSION 

2.1. Hit identification and hit to lead process 

Selected representative compounds of our in-house library were screened in a bFGF-induced cell 

proliferation assay using human umbilical vein endothelial cells (HUVECs) in order to identify a hit 

chemically tractable and with drug-like properties that could be amenable to further optimization. 

From this screening, carbamate 1 emerged as an initial hit with an IC50 value of 317 M. 

Figure 4. Exploration of the scaffold of the initial hit 1. 

We started the exploration of this scaffold (Figure 4) by introducing substituents in the carbamate 

group and keeping constant the methyl ester moiety (as its removal led to complete inactivity of the 

corresponding carboxylic acid, derivative 2, IC50 > 500 M) as well as the phenolic hydroxyl group 

(compounds 3-10). Target compounds were synthesized as depicted in Scheme 1. 
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Results and discussion
	

Scheme 1. Reagents and conditions: a) CSI, DCM, rt, o/n, 30-34%; b) H2, Pd(C), EtOH, rt, 3 h, 100%; c) R2NCO, 
DIEA, THF, rt, 16 h, 70-71%; d) NaH, CH3CN, rt, 3 h, 14-64%; e) 4-nitrophenylchloroformate, DABCO, DCM, rt, 
5 h, 40%; f) 1-methylpiperazine, DIEA, DCM, 0 °C to rt, 3 h, 67%; g) CH3I, CH3CN, rt, 24 h, 36%. 

Reaction of methyl or benzyl 2,5-dihydroxybenzoate with chlorosulfonylisocyanate (CSI), followed 

by benzyl ester cleavage of intermediate 24 yielded carbamates 1 and 2, respectively. 

N-monosubstituted carbamates 3 and 4 were obtained by addition of methyl 2,5-dihydroxybenzoate 

to ethyl and phenyl isocyanate, in the presence of N,N-diisopropylethylamine (DIEA) as a base, 

whereas reaction of methyl 2,5-hydroxybenzoate with the corresponding carbamoylchloride afforded 

disubstituted carbamates 5-8. Piperazine derivative 9 was synthesized by nucleophilic substitution of 

4-nitrophenylchloroformate with methyl 2,5-dihydroxybenzoate, followed by treatment of the resultant 

carbonate with 1-methylpiperazine. Alternatively, acylation of methyl 2,5-dihydroxybenzoate with 

carbonylimidazol derivative 25 gave intermediate 26, which afforded final compound 10 by benzyl 

ether deprotection under palladium-catalyzed hydrogenation. Carbamates 2-10 were screened for 

activity in the bFGF-induced proliferation assay (Table 1).  
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Table 1. Inhibition of bFGF-induced cell proliferation of HUVECs for compounds 1-10 


Cpd R1  R2  R3 IC50 (M)a 

1 Me H H 317 

2 H H H >500 

3 Me Et H 17 

4 Me Ph H 165 

5 Me Me Me >500 

6 Me Et Et >500 

7 Me Ph Me 48 

8 Me Ph Ph 35 

9 Me (CH2)2NCH3(CH2)2 >500 

10 Me p-hydroxyphenyl Me 96 

aIC50 values are the means from two or three independent experiments performed in triplicate. The standard 
error of the mean (SEM) is in all cases within a 10% of the mean value. 

From the obtained results, the main conclusion is that the replacement of a hydrogen of the 

carbamate group by an ethyl or phenyl group gave active compounds (3 and 4), whereas 

disubstitution of the carbamate with alkyl chains is detrimental for the activity (compounds 5, 6, and 

9, IC50 >500 M). However, when one or both substituents are aromatic rings the antiproliferative 

activity is restored (7, 8, and 10). Among this first series of compounds, carbamates 3, 7, and 8 

deserve special attention as they show the highest potency in the inhibition of cell proliferation, with 

IC50 values of 17, 48, and 35 M, respectively. In order to select the best scaffold to continue with the 

optimization process, we determined some pharmacokinetic parameters (Table 2).  
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Table 2. Pharmacokinetic properties of compounds 3, 7, 8, 21, and 22a 

Compound
	

Property 3 7 8 21 22
	

Aqueous solubility 

(PBS, pH 7.4, µM) ND 103.5 5.8 35 175.7
	

Partition coefficient
	
(LogD, n-octanol/PBS, pH 7.4) ND 3.13 4.46 4.19 2.95
	

Chemical stability pH 7.4 
ND 67 24 93 108

(remaining compound, %) 

A-B Permeability 

(TC7, pH 6.5/7.4, 10-6cm/s) ND 46.1 7.9 35.1 53.5
	

Human plasma stability 

(remaining compound, %) <5 94 105 87 111
	

Mouse plasma stability 
<5 83 89 78 99

(remaining compound, %) 

aData are expressed as the means from two independent experiments performed in duplicate. The SEM in all 
cases is within a 10% of the mean value. ND, not determined. For stability studies, the percentage of the 
remaining compound after 1 h is given. 

Although the most potent derivative 3 showed a disappointing low stability that disqualified it as a 

suitable candidate for further optimization, compound 7 showed good properties, especially in terms 

of aqueous solubility, lipophilicity, permeability and stability. Therefore, it was selected for further 

structural exploration focused on whether the phenolic hydroxy group was required for activity and if 

it was possible to replace the methyl ester group without significant activity decrease (compounds 

11-23, Figure 4). These new derivatives were synthesized as depicted in Scheme 2. Disubstituted 

carbamates 11, 12 and 14-18 were prepared by reaction of the corresponding 5-hydroxybenzoates 

with N-methyl-N-phenylcarbamoyl chloride. Methyl ester 7 was transformed into amide 13 by reaction 

with methylamine. Finally, phenyl methyl carbamates 19-23 were obtained by condensation of 

carboxylic acid 28 with the corresponding alcohol or amine in the presence of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) as coupling reagent. All these new compounds were 

screened for activity (Table 3).  
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CO2R1CO2R1 
R4OR4 a 

N OOHO
	
Ph
	

N Cl
R1 = Me, Et, iPr, tBu, Me
Bn, pyridin-3-ylmethyl 11, 12, 14-18 
R4 = OH, OMe, H 

27a-e 

CO2Me CONHMe 

OH OH
OO 

b
	

N
	 N OO 

7 13 

O X 
R1CO2R1 
OHOH OO d 

N ON O 

X = O,  NH, NMe  14: R1 = Bn  
c R1 = 1-pyridin-3-ylethyl, (1-methylpiperidin-3-yl)methyl, 28: R1 = H  

Bn, pyridin-3-ylmethyl 

19-23 

Scheme 2. Reagents and conditions: a) NaH, CH3CN, rt, 3 h, 14-64%; b) CH3NH2, CH3OH, 0 ºC to rt, 3 h, 76%; 
c) H2, Pd(C), EtOH, rt, 3 h, 100%; d) R1OH, R1NH2, or R1NHMe, EDC, DMAP, DMF, 0 ºC to rt, 16 h, 27-64%.  
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Table 3. Inhibition of bFGF-induced cell proliferation of HUVECs for compounds 11-23
	

Cpd X R1  R4 IC50 (M)a 

7 O Me OH 48 

11 O Me OMe 118 

12 O Me H 290 

13 NH Me OH 67 

14 O Bn OH 17 

15 O Et OH 28 

16 O Isopropyl OH 26 

17 O tert-Butyl OH 25 

Bn 

OH 16 18 O 

19 O OH 39 

20 O OH 74 

OH 22
	

22 NH
	

21 NH 

14 
OH 

23 N(Me) 90 

aIC50 values are the means from two or three independent experiments performed in triplicate. The SEM is in all 
cases within a 10% of the mean value. 

Our results suggest that the phenolic hydroxy group is essential for activity, since both its 

methylation (compound 11) or its removal (derivative 12) led to an important decrease in the activity 

(IC50 (7) = 48 M vs IC50 (11) = 118 M and IC50 (12) = 290 M, Table 3). Accordingly, the phenolic 

hydroxy group was kept in carbamates 13-23 and different esters and amides were introduced trying 

to replace the initial methyl ester group. Our first attempt was to prepare the amide 13, analogue to 

7, but this change led to a decrease in activity (IC50 value for 7 was 48 M whereas amide 13 showed 
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an IC50 value of 67 M, Table 3). This result suggested that the substitution of the ester by an amide 

probably would involve some reduction in biological activity, so we first kept the ester bond but 

replaced the methyl group by other aliphatic and (hetero)aromatic groups searching for better 

activities. In this case, we could later substitute the ester by an amide group and still keep good 

activity values. With this idea in mind, esters 14-20 were prepared. Among them, the best results in 

terms of IC50 values were obtained for benzyl and 3-methylpyridinyl groups as R1 substituents, 

compounds 14 and 18, with IC50 values of 17 and 16 M, respectively (Table 3). Hence, these two 

R1 groups were selected and the analogue amides 21-23 were synthesized. The biological activity of 

these amides was similar to that of the corresponding esters, as shown, for example, by the IC50 

values of esters 14 and 18 (17 M and 16 M, respectively) when compared with the IC50 values of 

amides 21 and 22 (22 M and 14 M, respectively). Hence, we determined their pharmacokinetic 

properties in order to select the best candidate to continue with the biological studies. Taking into 

account all these data (Table 2), amide 22 (UCM-2711) showed the best overall profile with the 

highest solubility (175.7 M), stability (around 100% in the three assayed conditions), and 

permeability values. Accordingly, this compound was selected for in-depth characterization. 

2.2. Biological evaluation of compound 22 (UCM-2711) 

2.2.1. Proangiogenic signaling in hypoxic MCF7 cells  

Tumor hypoxia, a common feature of many solid tumors, has been identified as a key driver for 

angiogenic regulation mechanisms. Hence, we first explored whether compound 22 is able to inhibit 

the proangiogenic signaling generated by hypoxia in the MCF7 human breast adenocarcinoma cell 

line that was chosen as a model. Our results show that compound 22 decreases the levels of 

important proangiogenic factors VEGF and bFGF in hypoxic MCF7 cells (Figure 5A,B). In addition, 

this derivative also induces a decrease in the NO levels, which runs parallel to a strong inhibition of 

iNOS expression (Figure 5C,F). 

Considering the importance of the enhancement of autocrine signaling under hypoxic conditions, 

especially in terms of activation of the corresponding receptors, VEGFR and FGFR,  we  also  

assessed whether compound 22 affected their activation. Remarkably, this derivative inhibits the 

activation of these two receptors, as it decreases their phosphorylated (active) forms (Figure 5D,E). 
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Figure 5. Compound 22 (UCM-2711) decreases the production of hypoxia-induced proangiogenic factors VEGF, 
bFGF, and NO and inhibits the activation of their corresponding receptors. Incubation of MCF7 cells with 
compound 22 (50 M) under hypoxic conditions significantly reduces the levels of (A) VEGF, (B) bFGF, and (C) 
NO, decreases the activation of the (D) VEGF and (E) FGF receptors, and decreases (F) iNOS expression (131 
kDa band). β-actin (42 kDa) is shown as loading control. Data correspond to the average ± SEM of at least three 
independent experiments, and representative gels are shown. The bar graphs in panels D and E represent the 
optical density of the immunoreactive phosphorylated protein normalized to the total corresponding protein, 
which is expressed as the percentage relative to normoxia. The bar graph in panel F represents the optical 
density of the immunoreactive protein (iNOS) expressed as the percentage relative to normoxia *, P<0.05; **, 
P<0.01; ***, P<0.001 (vs hypoxic vehicle-treated cells) (Student’s t test). 

The main effects of the activation of the FGFR pathway include the induction of proliferation, 

migration, and antiapoptotic signals. Proliferation enhancement is mainly achieved through activation 

of the MAPK cascade, whereas the induction of antiapoptotic signals is mediated by activation of the 

PI3K/AKT pathway.17,21 This latter cell survival pathway is also reinforced by VEGFR activation. 

Hence, we explored whether compound 22 was able to suppress the phosphorylation of the 

downstream kinases AKT, MEK and ERK. As expected, hypoxia activated the AKT and the MEK and 

ERK signaling pathways as demonstrated by the increased phosphorylation of these kinases and, 
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remarkably, incubation of the cells with compound 22 prevented this activation (Figure 6A). 

Importantly, inhibition of these signaling pathways by compound 22 was accompanied by an 

impairment in hypoxia-stimulated cell migration (Figure 6B). 

Figure 6. Compound 22  (UCM-2711) inhibits hypoxia-activated signaling pathways and suppresses cell 
migration. (A) Representative western blots of phosphorylated (pAKT) and total AKT (T-AKT), phosphorylated 
MEK1/2 (pMEK1/2) and total MEK1/2 (T-MEK1/2), and phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 (T-
ERK1/2). Lysates were obtained from MCF7 cells treated with compound 22 (50 M) under hypoxic conditions. 
Data correspond to the average ± SEM of at least three independent experiments. The bar graphs in panel A 
represent the optical density of the immunoreactive phosphorylated protein normalised to the total corresponding 
protein, which is expressed as the percentage relative to normoxia. *, P<0.05; **, P<0.01 (Student’s t test). (B) 
In vitro scratches (wounds) were made by scraping confluent cell monolayers with a sterile pipette tip and were 
visualized by phase contrast microscopy. After 48 h under hypoxic conditions, the remaining wound area was 
quantified. The bar graph represents the average ± SEM of at least three independent experiments and three 
different fields. ***, P<0.001 (vs DMSO-treated cells) (Student’s t test). Bar, 250 m. 
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Figure 7. Compound 22  (UCM-2711) impairs cell migration without inducing general cytotoxicity. (A-C) 
Compound 22 prevents cell migration but cells recover their ability to migrate in the absence of compound. In 
vitro scratches (wounds) were made by scraping confluent cell monolayers with a sterile pipette tip and were 
visualized by phase contrast microscopy. After the indicated time under hypoxic conditions, remaining wound 
area was quantified in cells treated with (A) vehicle, (B) 50 μM of compound 22 during 96 h, and (C) 50 μM of 
compound 22 during 48 h and vehicle for additional 48h. Bar, 250 m. (D) The bar graph represents the average 
± SEM of the remaining wound area of at least three independent experiments and three different fields. ***, 
P<0.001 (vs DMSO-treated cells) (Student’s t test). ###, P<0.001 (vs cells treated with 50 μM of compound 22 
during 96 h) (Student’s t test). (E) Cell viability is not significantly affected by compound 22. Cells were incubated 
under hypoxic conditions and the number of viable cells determined after 96 h of incubation with vehicle (black 
bar), 50 μM of compound 22 (grey bar) or 50 μM of compound 22 during 48 h and vehicle for additional 48 h 
(white bar). 
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In order to determine whether the decrease in migration was due to general cytotoxicity, we carried 

out a similar set of experiments in which cells were incubated with compound 22 for 48 h, after which 

the compound was removed and then the cells were incubated for an additional 48 h. The obtained 

results show that cells recover their ability to migrate after removal of the compound (Figure 7). In 

addition, the number of viable cells remains similar to that in the vehicle treated cells (Figure 7E). 

Taken together, these data strongly suggest that compound 22 is mainly affecting cell migration and 

not inducing general cytotoxicity. 

2.2.2. Proangiogenic signaling via hypoxia-inducible factor-1α (HIF-1α) 

Intratumoral hypoxia is one of the major factors that drive tumor angiogenesis, and hypoxia-driven 

angiogenesis is primarily mediated by HIF-1α, often considered to be a master regulator of 

angiogenesis under hypoxia.28 In addition, in MCF7 breast cancer cells, HIF-1α is the factor that 

mainly contributes to the expression of genes under hypoxic conditions.29 Therefore, we analyzed 

whether HIF-1α was involved in the antiangiogenic response elicited by compound 22. To this end, 

we knocked-down HIF-1α using selective small interfering RNAs (siRNAs) (Figure 8A). As shown in 

Figure 8B,C, hypoxia induced an increase in bFGF and VEGF levels in MCF7 cells transfected with 

a nontargeted (control) siRNA (C siRNA), and this effect was prevented by compound 22. 

Conversely, genetic silencing of HIF-1α abrogated the increase in these two proangiogenic factors 

upon hypoxia stimulus, and compound 22 did not enhance this effect. These results suggest that the 

effect of compound 22 on bFGF and VEGF levels is mediated via HIF-1α. To further ascribe the 

effects of compound 22 to HIF-1α modulation and not to other members of its family, mainly HIF-2α, 

we selected two proteins, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNip3) and 

Angiopoietin 2 (Ang2), which have been described to be mainly regulated by HIF-1α and HIF-2α, 

respectively.30 As expected, and consistent with the literature, hypoxia increased the levels of both 

proteins, BNip3 and Ang2. Remarkably, compound 22 decreased only the levels of BNip3 (Figure 

8D) without affecting the expression of Ang2 (Figure 8E). These results provide further support for 

the specific involvement of HIF-1α in the effects induced by compound 22. In addition, and to discard 

potential effects of this derivative upstream of HIFs, we verified that compound 22 did not affect the 

expression levels either of HIF-1α or of HIF-2α (Figure 8F). 
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Figure 8. Compound 22 (UCM-2711) inhibits the production of the hypoxia-induced proangiogenic factors via 
HIF-1α. (A) HIF-1α mRNA levels after transient transfection of MCF7 cells with a siRNA selectively targeting 
HIF-1α (HIF-1α siRNA) or with a nontargeted siRNA (C siRNA). Results are expressed in arbitrary units (au). 
bFGF (B) and VEGF (C) levels in MCF7 cells transiently transfected with the indicated siRNAs under normoxic 
and hypoxic conditions and in the presence/absence of compound 22. Representative western blots of (D) BNip3 
(22 kDa), (E) Ang2 (65 kDa), (F) HIF-1α (132 kDa) and HIF-2α (115 kDa). In all cases, β-actin (42 kDa), marked 
with an arrowhead, is used as a loading control. Lysates were obtained from MCF7 cells treated with compound 
22 (50 M) under normoxic or hypoxic conditions as indicated. Data correspond to the average ± SEM of at least 
three independent experiments. The bar graphs in panels D and E represent the optical density of the 
immunoreactive protein (BNip3 or Ang2, respectively) expressed as the percentage relative to normoxia. Ns, 
not significant; *, P<0.05; ***, P<0.001 (vs hypoxic vehicle-treated cells) (Student’s t test). 
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2.2.3. Antiangiogenic gene profile of hypoxic MCF7 cells  

To further confirm the antiangiogenic profile of compound 22, we analyzed the expression of 84 

key genes involved in angiogenesis in hypoxic MCF7 cells treated with this compound. We identified 

12 genes that were significantly affected by compound 22 (fold change  2, Figure 9). As expected, 

several proangiogenic genes were down-regulated in the presence of compound 22. Among them 

are several cytokines such as CCL11, IL-1 or the chemokine-like PROK2 that have been linked to 

angiogenesis in solid tumors31-33 as well as other known proangiogenic factors such as the vascular 

endothelial cadherin CDH5, and the receptors VEGFR-2 (also known as KDR) and Notch4.34 On the 

other hand, up-regulation of several genes in response to compound 22 was also observed, including 

the chemokine CXCL9, which has been described to attenuate angiogenesis in some situations.35 

Surprisingly, we observed an increase in the transcript levels of certain proangiogenic factors such 

as the cell adhesion molecules integrin ITGB3 and PECAM1, the angiopoietin receptor TIE1 and the 

proangiogenic factors FGF1 and FGF2. These apparently contradictory results may be due to 

differential regulation at the transcriptional and translational levels. In this regard, for example, it is 

worth noting that although some increase is observed at the transcriptional level (Figure 9), 

compound 22 reduces the protein levels of FGF2 (bFGF) as shown in Figure 5B. 

Figure 9. Compound 22 (UCM-2711) regulates the expression of angiogenesis-related genes. An angiogenesis 
PCR array was performed in hypoxic MCF7 cells challenged with compound 22 or the corresponding vehicle. 
The graph shows the 12 genes that were modulated (threshold = 2 fold increase/decrease) in compound 22-
treated cells vs control cells. Results are expressed as fold regulation. 
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2.2.4. In vivo antitumor effect  

In order to assess the in vivo efficacy of compound 22 we used a breast cancer xenograft model. 

Tumor-bearing mice were injected intraperitoneally with compound 22 (25 mg/kg) once a day for 28 

days and tumor volumes were routinely measured (Figure 10A). In vehicle-treated animals, tumors 

grew in an exponential manner. Treatment of mice with compound 22 produced no effect in 62% of 

them (5 out of 8), but we observed a significant reduction in tumor growth (ranging from 46% to 55%) 

in the remaining 38% (3 out of 8) (Figure 10B). 

To analyze the in vivo inhibition of angiogenesis, we quantified the number of blood vessels within 

the tumors by immunofluorescence staining of CD31 (a marker of endothelial cells) in vehicle-treated 

animals as well as in responding and not-responding individuals (Figure 10C). Significant inhibition 

of angiogenesis was not detected in non-responding animals. In contrast, in the tumors of compound-

responding individuals, a marked reduction in the number of blood vessels was observed. 

Remarkably, this result correlates with the expression levels of VEFG (Figure 10D). Importantly, the 

inhibition of angiogenesis and tumor growth induced by compound 22 was not accompanied by any 

sign of toxicity, as assessed by histopathological analysis of liver, lungs, spleen and heart of 

compound-treated animals (data not shown). The degree of interindividual variability in the response 

to compound 22 might be related to a different bioavailability of the compounds caused by the distinct 

growth and size of each individual tumor or by the existence of clonal variability of xenograft cells, 

something that has been previously observed for other antitumor targets36 and also in the clinic after 

treatment with other angiogenesis inhibitors. In this case, it is possible that increasing the number of 

individuals would also augment the number of positive cases. In addition, it is important to note that 

a tumor is a heterogeneous entity, with hypoxic portions but also with other zones, near the blood 

vessel, which are not hypoxic and each may have different signaling factors. In this context, Figure 9 

suggests up-regulation of some proangiogenic genes even in the presence of compound 22. Hence, 

it is possible that in the mice in which the drug decreased tumor size the effects of the down-regulated 

proangiogenic genes predominated, while the increase in tumor size observed in the other mice was 

dominated by the effect of the proangiogenic genes that remained upregulated even in the presence 

of the compound. 
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Figure 10. Antitumor effects of compound 22 (UCM-2711) in a breast cancer xenograft model. (A) Tumor growth 
in vehicle-treated (represented as mean ± SEM, grey dashed line, n=8) and compound 22-treated animals 
(represented individually, n=8, solid grey lines). (B) Tumor weight at the end of the treatment for vehicle-treated 
animals (white bar), compound 22-responding animals (black bar) and compound 22-treated not-responding 
animals (grey bar). (C) Compound 22 significantly reduces angiogenesis in responding animals (22-R) whereas 
it does not affect the number of blood vessels in treated but not-responding animals (22-NR). Images correspond 
to representative immunofluorescence stainings of tumor sections of each experimental group. Blood vessels 

are stained with an antibody against CD31 (in green), and nuclei are shown in blue. Scale bar, 100 m. The bar 
graph represents the number of blood vessels (mean ± SEM, 3 tumors/experimental group and 4 sections/tumor) 
for vehicle-treated animals (white bar), compound 22-responding animals (black bar) and not-responding 
animals (grey bar). *, P<0.05; ***, P<0.001 (vs compound 22-treated non-responding mice) (Student’s t test). 
(D) Compound 22 significantly reduces VEGF mRNA levels in responding animals (22-R) compared to vehicle-
treated mice or to mice treated with compound 22 that are not responding (22-NR). Images correspond to 
representative data obtained from independent samples of tumor sections from each experimental group. 
Controls include lack of RNA (right lane, labelled -) and GAPDH as housekeeping gene. 
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3. CONCLUSIONS 

In conclusion, in this work, we describe a new series of antiangiogenic compounds.37 Among 

them, the optimal compound 22 (UCM-2711) inhibits proangiogenic signaling under hypoxic 

conditions in breast cancer cells. Specifically, administration of  22 decreases the levels of the 

proangiogenic molecules VEGF, bFGF, and NO. Moreover, this compound inhibits the active forms 

of the corresponding receptors of these factors (phosphorylated forms of VEGFR and bFGFR) and 

the levels of the iNOS enzyme. These effects correlate with a blockade of the MEK/ERK and 

PI3K/AKT pathways and the inhibition of cellular migration, and they are mediated by HIF-1α, since 

the effects of compound 22 mostly disappear when its expression is knocked-down. Additionally, 

gene profiling identified a set of genes related to angiogenesis whose expression is altered by 

compound 22 and that might contribute to the antiangiogenic effects. Furthermore, administration of 

compound 22 in a xenograft model produced tumor growth reductions ranging from 46 to 55% in the 

38% of the treated animals. Importantly, in the responding tumors, a significant reduction in the 

number of blood vessels and in the levels of VEGF was observed, further supporting the mechanism 

of action of the compound. Although better efficacy would be desirable, the fact that compound 22 

did not induce any toxic effects in vivo and that it was able to effectively block angiogenesis in the 

tumors of responding animals strongly support the potential of this compound as a lead for the 

development of new antiangiogenic agents suitable for the treatment of cancer either alone or in 

combination with other benchmark drugs.  

47
	

http:compounds.37


	

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



	

 

 

 

 

 

 

 

 

 

 

EXPERIMENTAL SECTION 




	

	

 

 



	

 

 

 

  

  

   

  

    

  

 

 

 

   

      

 

         

 

   

 

  

   

   

 

     

   

4. EXPERIMENTAL SECTION 

4.1. Chemistry 

Unless stated otherwise, starting materials, reagents and solvents were purchased as high-grade 

commercial products from Sigma-Aldrich, Acros, Fluorochem, Abcr, Scharlab or Panreac, and were 

used without further purification. Anhydrous tetrahydrofuran (THF) and diethyl ether (Et2O) were 

distilled from sodium benzophenone ketyl and used immediately, dichloromethane (DCM) was 

distilled from CaH2. All reactions were carried out under an argon atmosphere in oven-dried 

glassware. Flash chromatography was performed on a Varian 971-FP flash purification system using 

silica gel cartridges (Varian, particle size 50 µm, for final compounds). Analytical thin-layer 

chromatography (TLC) was run on Merck silica gel plates (Kieselgel 60 F-254) with detection by UV 

light (254 nm), ninhydrin solution, or 10% phosphomolybdic acid solution in ethanol. Melting points 

(mp, uncorrected) were determined on a Stuart Scientific electrothermal apparatus. Infrared (IR) 

spectra were measured on a Shimadzu-8300 or Bruker Tensor 27 instrument; frequencies () are 

expressed in cm-1. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance 

300-AM (1H, 300 MHz; 13C, 75 MHz) at the UCM’s NMR facilities. Chemical shifts () are expressed 

in parts per million relative to internal tetramethylsilane; coupling constants (J) are in hertz (Hz). The 

following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), 

t (triplet), q (quartet), qt (quintet), sept (septuplet), m (multiplet), br (broad), dd (doublet of doublets), 

td (triplet of doublets). 2D NMR experiments (HMQC and HMBC) of representative compounds were 

carried out to assign protons and carbons of the new structures. Elemental analyses (C, H, N) were 

obtained on a LECO CHNS-932 apparatus at the UCM’s analysis services and were within 0.4% of 

the theoretical values. High Pressure Liquid Chromatography-Mass Spectrometry (HPLC-MS) 

analysis was performed using an Agilent 1200LC-MSD VL. LC separation was achieved with an 

Eclipse XDB-C18 column (5 µm, 4.6 mm x 150 mm) together with a guard column (5 µm, 4.6 mm x 

12.5 mm). The gradient mobile phases consisted of A (95:5 water/MeOH) and B (5:95 water/MeOH) 

with 0.1% ammonium hydroxide and 0.1% formic acid as the solvent modifiers. MS analysis was 

performed with an ESI source. The capillary voltage was set to 3.0 kV and the fragmentor voltage 
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was set at 70 eV. The drying gas temperature was 350 ºC, the drying gas flow was 10 L/min, and the 

nebulizer pressure was 20 pounds per square inch (psi). Spectra were acquired in positive and 

negative ionization mode from 100 to 1000 m/z and in UV-mode at four different wavelengths (210, 

230, 254, and 280 nm). Spectroscopic data of all described compounds were consistent with the 

proposed structures. Satisfactory HPLC chromatograms and elemental analyses (C, H, N) were 

obtained for the final compounds, confirming a purity of at least 95% for all tested compounds. 

Pharmacokinetic properties of selected compounds 3, 7, 8, 21, and 22 (UCM-2711) were determined 

at CEREP (www.cerep.fr). 

The free amines 9, 18-20, 22, and 23 were characterized (yield, Rf, IR, NMR), dissolved in 

anhydrous DCM (6 mL/mmol) and a commercial 1 M HCl(g)/Et2O solution (1 mL/mmol) was added. 

The hydrochloride salts were isolated by filtration or evaporation of the solvents, washed with 

anhydrous Et2O, dried under high vacuum, and characterized (Mp, elemental analysis).  

4.1.1 Synthesis of final compounds 1- 23 

General procedure for the synthesis of esters 27a and 27b. A solution of 2,5-dihydroxybenzoic 

acid (1 g, 6.5 mmol) and 1,1’-carbonyldiimidazole (CDI, 1 g, 6.5 mmol) in anhydrous DMF (16 mL) 

was heated at 40 ºC for 1 h under an argon atmosphere. Then, isopropanol or tert-butanol (13 mmol) 

and 1,8-diazabicyclo[5.4.0.]undec-7-ene (DBU, 1 mL, 6.5 mmol) were added and the reaction mixture 

was stirred at 40 ºC for additional 24 h. After cooling to rt, Et2O (60 mL) was added and the mixture 

was washed with an aqueous saturated solution of NaHCO3 (3 x 40 mL). The organic layers were 

dried (Na2SO4) and evaporated. The residue was purified by column chromatography to afford the 

title esters. 

Isopropyl 2,5-dihydroxybenzoate (27a). Obtained from 2,5-dihydroxybenzoic acid (1 g, 6.5 

mmol) and isopropanol (1 mL, 13 mmol) in 17% yield. Chromatography: hexane/EtOAc, 7:3; oil. Rf 

(hexane/EtOAc, 7:3) 0.48. 1H NMR (300 MHz, CDCl3) 1.38 (d, 6H, J = 6.3 Hz, 2CH3), 4.63 (br s, 

1H, OH), 5.27 (sept, 1H, J = 6.3 Hz, CH(CH3)2), 6.87 (d, 1H, J = 8.9 Hz, H3), 6.99 (dd, 1H, J = 8.9, 

3.1 Hz, H4), 7.29 (d, 1H, J = 3.1 Hz, H6), 10.48 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3) 22.0 

(2CH3), 69.5 (CH), 112.9 (C), 115.0, 118.6, 123.9 (3CH), 147.7, 156.1, 169.4 (3C). The spectroscopic 

data are in agreement with those previously described.38 
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tert-Butyl 2,5-dihydroxybenzoate (27b). Obtained from 2,5-dihydroxybenzoic acid (1 g, 6.5 

mmol) and tert-butanol (1.2 mL, 13 mmol) in 61% yield. Chromatography: hexane/EtOAc, 8:2. Mp 

76-77 ºC (Lit.39 77-78 ºC). Rf (hexane/EtOAc, 7:3) 0.50. 1H NMR (200 MHz, CDCl3) 1.53 (s, 9H, 

3CH3), 4.47 (br s, 1H, OH), 6.78 (d, 1H, J = 8.9 Hz, H3), 6.90 (dd, 1H, J = 8.9, 3.1 Hz, H4), 7.16 (d, 

1H, J = 3.1 Hz, H6), 10.54 (br s, 1H, OH). 13C NMR (50 MHz, CDCl3) 28.2 (3CH3), 83.2, 113.9 (2C), 

115.4, 118.3, 123.6 (3CH), 147.8, 155.4, 169.5 (3C). The spectroscopic data are in agreement with 

those previously described.39 

Synthesis of benzyl 2,5-dihydroxybenzoate (27c). To a solution of 2,5-dihydroxybenzoic acid 

(2 g, 13 mmol) in anhydrous DMF (17 mL), KHCO3 (1.6 g, 16 mmol) was added, under an argon 

atmosphere, and the reaction mixture was stirred at rt for 15 min. Then, benzyl bromide (2.3 mL, 19 

mmol) was added and the reaction was heated at 40 ºC for 3 h. After cooling to rt, H2O (10 mL) was 

added and the mixture was extracted with EtOAc (3 x 40 mL). The organic layers were washed with 

a saturated aqueous solution of NaHCO3 and brine successively, dried (Na2SO4) and evaporated to 

afford the title ester 27c in 88% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 

7:3) 0.57. 1H NMR (200 MHz, CDCl3) 4.62 (br s, 1H, OH), 5.36 (s, 2H, CH2), 6.88 (d, 1H, J = 8.9 

Hz, H3), 7.01 (dd, 1H, J = 8.9, 2.9 Hz, H4), 7.31 (d, 1H, J = 2.9 Hz, H6), 7.36-7.44 (m, 5H, Ar), 10.34 

(br s, 1H, OH). 13C NMR (75 MHz, CDCl3) 67.1 (CH2), 112.2 (C), 114.9, 118.6, 124.2 (3CH), 128.3 

(2CH), 128.6 (CH), 128.8 (2CH), 135.2, 147.7, 156.0, 169.5 (4C). The spectroscopic data are in 

agreement with those previously described.40 

Synthesis of pyridin-3-ylmethyl 2,5-dihydroxybenzoate (27d). To a solution of 2,5-

dihydroxybenzoic acid (700 mg, 4.5 mmol) in DMF (20 mL), pyridin-3-ylmethanol (491 mg, 4.5 mmol), 

EDC (1.30 g, 6.8 mmol) and DMAP (832 mg, 6.8 mmol) were added. The reaction was warmed to 

50 ºC and stirred for 12 h. The mixture was evaporated and the residue was purified by 

chromatography (DCM/MeOH, 98:2) to afford the title ester as a solid in 27% yield. Mp 173-174 ºC. 
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Rf (DCM/MeOH, 95:5) 0.33. IR (KBr, cm-1) 3429, 3245 (OH), 1678 (COO), 1627, 1589, 1485 (Ar). 
1H NMR (300 MHz, CD3OD) 5.35 (s, 2H, CH2), 6.71 (d, 1H, J = 8.9 Hz, H3), 6.89 (dd, 1H, J = 8.9, 

3.0 Hz, H4), 7.15 (d, 1H, J = 3.0 Hz, H6), 7.40 (dd, 1H, J = 7.8, 4.9 Hz, H5’), 7.89 (d, 1H, J = 7.8 Hz, 

H4’), 8.45 (dd, 1H, J = 4.9, 1.4 Hz, H6’), 8.58 (d, 1H, J = 1.4 Hz, H2’). 13C NMR (75 MHz, CD3OD) 

65.3 (CH2), 113.0 (C), 115.2, 119.2, 125.4, 125.5 (4CH), 133.9 (C), 138.4 (CH), 150.1 (2CH), 150.9, 

156.3, 170.8 (3C). 

Methyl 5-hydroxy-2-methoxybenzoate (27e). a solution of methyl 5-(benzyloxy)-2-

hydroxybenzoate41 (460 mg, 1.8 mmol) in DMF (14 mL), K2CO3 (738 mg, 5.3 mmol) and methyl iodide 

(0.1 mL, 1.8 mmol) were added and the mixture was stirred at 80 ºC for 2 h. Then, additional amounts 

of K2CO3 (246 mg, 1.8 mmol) and methyl iodide (0.1 mL, 1.8 mmol) were added and the reaction was 

stirred at 60 ºC for 2 h. The mixture was quenched with H2O (15 mL) and extracted with DCM (5 x 30 

mL). The combined organic layers were dried (Na2SO4) and evaporated to afford methyl 5-

(benzyloxy)-2-methoxybenzoate as an oil in quantitative yield. Rf (hexane/EtOAc, 8:2) 0.20. IR (neat, 

cm-1) 1728 (COO), 1583, 1528, 1499 (Ar). 1H NMR (300 MHz, CDCl3) 3.90 (s, 3H, OCH3), 3.93 

(s, 3H, OCH3), 5.08 (s, 2H, CH2), 6.95 (d, 1H, J = 9.1 Hz, H3), 7.13 (dd, 1H, J = 9.1, 3.2 Hz, H4), 7.36-

7.49 (m, 6H, H6, H2’-H6’).13C NMR (75 MHz, CDCl3)  52.2, 56.8 (2CH3), 70.8 (CH2), 113.8, 117.4 

(2CH), 120.5 (C), 120.6 (CH), 127.6 (2CH), 128.1 (CH), 128.7 (2CH), 136.9, 152.2, 153.8, 166.5 

(4C). 

To a solution of methyl 5-(benzyloxy)-2-methoxybenzoate (478 mg, 1.8 mmol) in EtOH (20 mL), 

10% Pd(C) (273 mg) was added and the mixture was hydrogenated at rt for 5 h, with an initial 

hydrogen pressure of 37 psi The reaction was filtered through celite and the solvent was evaporated 

to afford pure title compound 27e as a solid in quantitative yield. Mp 75-76 ºC. Rf (hexane/EtOAc, 
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9:1) 0.21. IR (KBr, cm-1)  3370 (OH), 1710 (COO), 1589, 1502, 1441 (Ar). 1H NMR (300 MHz, CDCl3) 

 3.86 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.88 (d, 1H, J = 8.9 Hz, H3), 7.00 (dd, 1H, J = 9.0, 3.2 Hz, 

H4), 7.33 (d, 1H, J = 3.2 Hz, H3). 13C NMR (CDCl3)  52.3, 56.9 (2CH3), 114.2, 118.3, 120.6 (3CH), 

149.2 (2C), 153.7, 166.7 (2C). 

General procedure for the synthesis of compounds 1 and 24. To a solution of methyl or benzyl 

2,5-dihydroxybenzoate (1 equiv) in anhydrous DCM, CSI (1 equiv) was added dropwise and the 

reaction was stirred at rt for 2 h. Then, the resultant solid was separated by filtration and treated with 

cold H2O. The solution was stirred overnight to afford a white precipitate which was filtered and 

washed with H2O to afford the title compounds, which were purified by chromatography. 

Methyl 5-[(aminocarbonyl)oxy]-2-hydroxybenzoate (1). Obtained from methyl 2,5-

dihydroxybenzoate (1.8 mmol) and CSI (1.8 mmol) in 30% yield. Chromatography: hexane/EtOAc, 

8:2. Mp 194-196 ºC. Rf (DCM/EtOH, 9:1) 0.39. IR (KBr, cm-1)  3423, 3305 (OH, NH2), 1728, 1705 

(NH2COO, COO), 1610, 1560, 1493, 1443 (Ar). 1H NMR (300 MHz, acetone-d6)  3.75 (s, 3H, CH3), 

6.65 (d, 1H, J = 8.9 Hz, H3), 6.89 (dd, 1H, J = 8.9, 3.0 Hz, H4), 7.09 (d, 1H, J = 3.0 Hz, H6), 7.96 (br 

s, 2H, NH2), 10.01 (br s, 1H, OH). 13C NMR (75 MHz, acetone-d6) 51.9 (CH3), 123.4 (CH), 124.5 

(C), 124.7, 126.8 (2CH), 146.8, 147.5, 154.3, 164.2 (4C). MS (ESI): [(M-H)-] 210.2. 

Benzyl 5-[(aminocarbonyl)oxy]-2-hydroxybenzoate (24). Obtained from benzyl 2,5-

dihydroxybenzoate (4.1 mmol) and CSI (4.1 mmol) in 34% yield. Chromatography: hexane/EtOAc, 

7:3. Mp 153-154 ºC. Rf (hexane/EtOAc, 6:4) 0.36. IR (KBr, cm-1)  3429, 3310 (OH, NH2), 1709, 1677 

(NH2COO, COO), 1610, 1490, 1430 (Ar). 1H NMR (300 MHz, CDCl3)  5.04 (br s, 2H, NH2), 5.29 (s, 

2H, CH2), 6.90 (d, 1H, J = 9.0 Hz, H3), 7.16 (dd, 1H, J = 9.0, 2.8 Hz, H4), 7.31-7.36 (m, 5H, Ph), 7.54 

(d, 1H, J = 2.8 Hz, H6), 10.60 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  67.2 (CH2), 112.2 (C), 

55 

http:7.31-7.36


 
	

	

  

 

  

       

    

  

 

  

     

 

 

 

   

     

  

  

 

    

   

Experimental section
	

118.4, 122.2 (2CH), 128.4 (2CH), 128.6 (2CH), 128.7, 129.7 (2CH), 134.9, 142.4, 155.1, 159.3, 169.2 

(5C). 

Synthesis of 5-[(aminocarbonyl)oxy]-2-hydroxybenzoic acid (2). To a solution of benzyl ester 

24 (117 mg, 0.41 mmol) in absolute EtOH (15 mL), 10% Pd(C) (25 mg) was added and the mixture 

was hydrogenated at rt for 3 h, with an initial hydrogen pressure of 10 psi. The reaction was filtered 

over celite and the solvent was evaporated to afford pure title acid 2 as a white solid in quantitative 

yield. Mp 216-217 ºC. Rf (DCM/EtOH, 8:2) 0.28. IR (KBr, cm-1)  3450, 3305 (OH, NH2), 1708, 1673 

(NH2COO, COO), 1602, 1485, 1400 (Ar).1H NMR (300 MHz, DMSO-d6)  6.90 (d, 1H, J = 8.9 Hz, 

H3), 7.15 (br s, 2H, NH2), 7.20 (dd, 1H, J = 8.9, 2.9 Hz, H4), 7.41 (d, 1H, J = 2.9 Hz, H6). 13C NMR (75 

MHz, DMSO-d6)  113.6 (C), 117.2, 122.3, 128.9 (3CH), 142.3, 154.9, 158.1, 171.0 (4C). Elemental 

analysis: calcd. for C8H7NO5: %C: 48.74, %H: 3.58, %N: 7.10; found, %C: 48.49, %H: 3.66, %N: 

6.88. 

General procedure for the synthesis of final compounds 3 and 4. To a solution of methyl 2,5-

dihydroxybenzoate (1 equiv) in anhydrous THF (4 mL/mmol), DIEA (1 equiv) and the proper 

isocyanate (1 equiv) were added dropwise, and the reaction mixture was stirred at rt for 16 h. The 

solvent was evaporated and the residue was purified by chromatography to afford the title final 

compounds as white solids. 

Methyl 5-{[(ethylamino)carbonyl]oxy}-2-hydroxybenzoate (3). Obtained from methyl 2,5-

dihydroxybenzoate (3.9 mmol) and ethyl isocianate (3.9 mmol) in 70% yield. Chromatography: 

hexane/EtOAc, 8:2. Mp 84-85 ºC. Rf (hexane/EtOAc, 8:2) 0.34. IR (KBr, cm-1) 3331, 3254 (NH), 

1697 (NHCOO), 1653 (COO), 1622, 1593, 1533, 1488 (Ar). 1H NMR (300 MHz, CDCl3)  1.15 (t, 3H, 

J = 7.2 Hz, CH3), 3.25 (qt, 2H, J = 7.2 Hz, CH2), 3.87 (s, 3H, OCH3), 4.89 (br s, 1H, NH), 6.91 (d, 1H, 

J = 9.0 Hz, H3), 7.15 (dd, 1H, J = 9.0, 2.9 Hz, H4), 7.54 (d, 1H, J = 2.9 Hz, H6), 10.56 (br s, 1H, 

56 



 

	

 

   

 

 

  

 

    

   

    

 

 

 

   

 

   

  

  

   

   

     

 

Experimental section
	

OH).13C NMR (75 MHz, CDCl3)  15.2 (CH3), 36.3 (CH2), 52.5 (CH3), 112.3 (C), 118.4, 122.4, 129.7 

(3CH), 142.9, 150.1, 159.1, 170.1 (4C). Elemental analysis: calcd. for C11H13NO5: %C: 55.23, %H: 

5.48, %N: 5.86; found, %C: 54.90, %H: 5.32, %N: 5.58. 

Methyl 5-{[(phenylamino)carbonyl]oxy}-2-hydroxybenzoate (4). Obtained from methyl 2,5-

dihydroxybenzoate (3.1 mmol) and phenyl isocianate (3.1 mmol) in 71% yield. Chromatography: 

hexane/EtOAc, 8:2. Mp 129-130 ºC. Rf (hexane/EtOAc, 7:3) 0.44. IR (KBr, cm-1)  3354, 3325 (NH), 

1724 (NHCOO), 1683 (COO), 1602, 1541, 1485, 1439 (Ar). 1H NMR (300 MHz, CDCl3)  3.96 (s, 3H, 

CH3), 6.92 (br s, 1H, NH), 7.02 (d, 1H, J = 9.0 Hz, H3), 7.12 (t, 1H, J = 7.9 Hz, H4’), 7.29 (dd, 1H, J = 

9.0, 2.9 Hz, H4), 7.34 (t, 2H, J = 7.9 Hz, H3’, H5’), 7.44 (d, 2H, J = 7.9 Hz, H2’, H6’), 7.68 (d, 1H, J = 2.9 

Hz, H6), 10.69 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  52.4 (CH3), 112.2 (C), 118.3 (CH), 118.4 

(2CH), 122.3, 123.9 (2CH), 129.0 (2CH), 129.4 (CH), 137.1, 142.1, 151.7, 159.1, 169.8 (5C). 

Elemental analysis: calcd. for C15H13NO5: %C: 62.72, %H: 4.56, %N: 4.88; found, %C: 62.56, %H: 

4.55, %N: 4.94. 

General procedure for the synthesis of final compounds 5-8, 11, 12, and 14-18. To a solution 

of 1 equiv of the corresponding ester (commercially available or 27a-e) in anhydrous acetonitrile (4 

mL/mmol), 1.3 equiv of NaH (60% in mineral oil) and 1 equiv of the appropriate carbamoyl chloride 

were added. The reaction mixture was stirred at rt for 3 h and the solvent was evaporated. The 

residue was purified by chromatography to afford the title final pure compounds. 

Methyl 5-{[(dimethylamino)carbonyl]oxy}-2-hydroxybenzoate (5). Obtained from methyl 2,5-

dihydroxybenzoate (500 mg, 3 mmol) and dimethylcarbamoyl chloride (0.3 mL, 3 mmol) in 21% yield. 

Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.24. IR (neat, cm-1)  3173 (OH), 

1725 (NCOO), 1681 (COO), 1621, 1483 (Ar).1H NMR (300 MHz, CDCl3)  3.02 (s, 3H, NCH3), 3.10 

(s, 3H, NCH3), 3.94 (s, 3H, OCH3), 6.97 (d, 1H, J = 9.0 Hz, H3), 7.22 (dd, 1H, J = 9.0, 3.0 Hz, H4), 
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7.61 (d, 1H, J = 3.0 Hz, H6), 10.62 (s, 1H, OH). 13C NMR (75 MHz, CDCl3)  36.8, 37.1, 52.8 (3CH3), 

112.5 (C), 118.5, 122.8, 130.2 (3CH), 143.7, 155.4, 159.3, 170.4 (4C). MS (ESI): [(M-H)-] 238.1. 

COOMe 

OH 

O 

1 
2 

3 
4

5 

6 

N 

O 

5 

Methyl 5-{[(diethylamino)carbonyl]oxy}-2-hydroxybenzoate (6). Obtained from methyl 2,5-

dihydroxybenzoate (500 mg, 3 mmol) and diethylcarbamoyl chloride (0.4 mL, 3 mmol) in 16% yield. 

Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.46. IR (KBr, cm-1)  3191 (OH), 

1719 (NCOO), 1683 (COO), 1620, 1480 (Ar).1H NMR (300 MHz, CDCl3)  1.18-1.28 (m, 6H, 2CH3), 

3.38-3.45 (m, 4H, 2CH2), 3.94 (s, 3H, OCH3), 6.97 (d, 1H, J = 9.0 Hz, H3), 7.23 (dd, 1H, J = 9.0, 2.9 

Hz, H4), 7.60 (d, 1H, J = 2.9 Hz, H6), 10.62 (s, 1H, OH). 13C NMR (75 MHz, CDCl3)  13.8, 14.6 

(2CH3), 42.2, 42.7 (2CH2), 52.8 (CH3), 112.5 (C), 118.5, 122.8, 130.2 (3CH), 143.7, 154.7, 159.2, 

170.4 (4C). MS (ESI): [(M-H)-] 266.1. 

Methyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (7).  Obtained from 

methyl 2,5-dihydroxybenzoate (400 mg, 2.4 mmol) and N-methyl-N-phenylcarbamoyl chloride (404 

mg, 2.4 mmol) in 46% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.38. 

IR (neat, cm-1) 3168 (OH), 1724 (NCOO), 1680 (COO), 1620, 1597, 1487 (Ar). 1H-NMR (300 MHz, 

CDCl3) 3.43 (s, 3H, NCH3), 3.94 (s, 3H, OCH3), 6.96 (d, 1H, J = 9.0 Hz, H3), 7.27-7.45 (m, 7H, H4, 

H2’- H6’), 7.53 (m, 1H, H6), 10.62 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  38.7, 52.8 (2CH3), 112.6 

(C), 118.6 (2CH), 122.7, 126.3, 127.1, 129.5 (4CH), 130.0 (2CH), 143.2, 143.5, 154.5, 159.4, 170.4 

(5C). MS (ESI): [(M-H)-] 300.1. 
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Methyl 5-{[(diphenylamino)carbonyl]oxy}-2-hydroxybenzoate (8). Obtained from methyl 2,5-

dihydroxybenzoate (500 mg, 3 mmol) and diphenylcarbamoyl chloride (688 mg, 3 mmol) in 36% yield. 

Chromatography: hexane/EtOAc, 9:1. Mp 121-123 ºC. Rf (hexane/EtOAc, 8:2) 0.24. IR (KBr, cm-1) 

3179 (OH), 1729 (NCOO), 1682 (COO), 1594, 1488 (Ar).1H NMR (300 MHz, CDCl3)  3.95 (s, 3H, 

OCH3), 6.97 (d, 1H, J = 9.0 Hz, H3), 7.23-7.30 (3H, m, H4, Ph), 7.35-7.42 (8H, m, Ph), 7.66 (d, 1H, J 

= 2.9 Hz, H6), 10.64 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  52.9 (CH3), 112.6 (C), 118.7, 122.6 

(2CH), 127.1 (2CH), 127.3 (4CH), 129.6 (4CH), 129.9 (CH), 142.6 (C), 143.3 (2C), 153.7, 159.6, 

170.4 (3C). Elemental analysis: calcd. for C21H17NO5: %C: 69.41, %H: 4.72, %N: 3.85; found, %C: 

68.99, %H: 4.76, %N: 3.90. 

Methyl 2-methoxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (11).  Obtained from 

methyl ester 27e (273 mg, 1.5 mmol) and N-methyl-N-phenylcarbamoyl chloride (254 mg, 1.5 mmol) 

in 58% yield. Chromatography: DCM/EtOAc, 9:1; oil. Rf (DCM/EtOAc, 9.5:0.5) 0.37. IR (neat, cm-1) 
1723 (NCOO, COO), 1596, 1497, 1437 (Ar).1H NMR (300 MHz, CDCl3)  3.43 (s, 3H, NCH3), 3.88 

(s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.95 (d, 1H, J = 9.0 Hz, H3), 7.27-7.44 (m, 6H, H4, H2’-H6’), 7.58 

(m, 1H, H6). 13C NMR (75 MHz, CDCl3) 38.3, 52.1, 56.5 (3CH3), 112.8 (CH), 120.3 (C), 124.8 (CH), 

125.9 (2CH), 126.8 (CH), 129.1 (3CH), 142.8, 144.1, 154.0, 156.7, 165.7 (5C). MS (ESI): [(M+Na)+] 

338.1. 

Methyl 3-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (12). Obtained from methyl 5-

hydroxybenzoate (477 mg, 3.1 mmol) and N-methyl-N-phenylcarbamoyl chloride (533 mg, 3.1 mmol) 

in 64% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 9:1) 0.23. IR (neat, cm-

1) 1723 (NCOO, COO), 1593, 1495 (Ar). 1H NMR (300 MHz, CDCl3)  3.47 (s, 3H, NCH3), 3.94 (s, 

3H, OCH3), 7.30-7.48 (m, 7H, H3, H4, H2’-H6’), 7.81 (m, 1H, H6), 7.91 (d, 1H, J = 7.6 Hz, H2). 13C NMR 
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Benzyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (14).  

Experimental section
	

(75 MHz, CDCl3)  38.3, 52.2 (2CH3), 122.9, 126.0, 126.4, 126.5, 126.8 (5CH), 129.1 (3CH), 129.2 

(CH), 131.5, 142.8, 151.3, 153.6, 166.2 (5C). MS (ESI): [(M-CH3+Na)+] 293.2. 

Obtained from 

benzyl ester 27c (630 mg, 2.6 mmol) and N-methyl-N-phenylcarbamoyl chloride (437 mg, 2.6 mmol) 

in 28% yield. Chromatography: hexane/EtOAc, 9:1. Mp 103-105 ºC. Rf (hexane/EtOAc, 7:3) 0.80. IR 

(KBr, cm-1) 3194 (OH), 1726 (NCOO), 1679 (COO), 1622, 1599, 1489 (Ar). 1H NMR (300 MHz, 

CDCl3)  3.41 (s, 3H, NCH3), 5.38 (s, 2H, CH2), 6.96 (d, 1H, J = 9.0 Hz, H3), 7.20-7.46 (m, 11H, H4, 

H2’-H6’, H2’’-H6’’), 7.60 (m, 1H, H6), 10.66 (s, 1H, OH).13C NMR (75 MHz, CDCl3)  38.3 (CH3), 67.3 

(CH2), 112.2 (C), 118.3, 122.3, 126.0, 126.7 (4CH), 128.6 (2CH), 128.7 (CH), 128.8 (3CH), 129.1 

(2CH), 129.9 (CH), 135.1, 142.9, 143.2, 154.2, 159.3, 169.5 (6C). MS (ESI): [(M-H)-] 376.1. 

Ethyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (15). Obtained from ethyl 

2,5-dihydroxybenzoate (433 mg, 2.4 mmol) and N-methyl-N-phenylcarbamoyl chloride (404 mg, 2.4 

mmol) in 14% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.55. IR (neat, 

cm-1)  3163 (OH), 1726 (NCOO), 1677 (COO), 1619, 1597, 1487 (Ar). 1H NMR (300 MHz, CDCl3)  
1.44 (t, 3H, J = 7.1 Hz, CH3), 3.46 (s, 3H, NCH3), 4.43 (q, 2H, J = 7.1 Hz, CH2), 6.96 (d, 1H, J = 8.9 

Hz, H3), 7.19-7.45 (m, 6H, H4, H2’-H6’), 7.62 (m, 1H, H6), 10.77 (s, 1H, OH). 13C NMR (75 MHz, CDCl3) 

 14.2, 38.3 (2CH3), 61.7 (CH2), 112.4 (C), 118.2, 122.3, 125.9, 126.7 (4CH), 129.1 (3CH), 129.5 

(CH), 142.9, 143.0, 154.2, 159.2, 169.6 (5C). MS (ESI): [(M-H)-] 314.1. 
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Isopropyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (16). Obtained from 

isopropyl ester 27a (211 mg, 1.1 mmol) and N-methyl-N-phenylcarbamoyl chloride (183 mg, 1.1 

mmol) in 28% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.57. IR (neat, 

cm-1) 3178 (OH), 1728 (NCOO), 1675 (COO), 1622, 1599, 1489 (Ar). 1H NMR (300 MHz, CDCl3) 

1.42 (d, 6H, J = 6.3 Hz, 2CH3), 3.47 (s, 3H, NCH3), 5.30 (sept, 1H, J = 6.3 Hz, CH), 6.98 (d, 1H, J 

= 9.0 Hz, H3), 7.23-7.33 (m, 2H, Ar), 7.39-7.48 (m, 4H, Ar), 7.61 (m, 1H, H6), 10.97 (br s, 1H, OH). 
13C NMR (75 MHz, CDCl3)  21.8, 38.3 (2CH3), 69.6 (CH), 112.8 (C), 118.2, 122.3, 126.0, 126.7 

(4CH), 129.1 (3CH), 129.5 (CH), 142.9, 143.0, 154.2, 159.3, 169.2 (5C). MS (ESI): [(M-H)-] 328.1. 

tert-Butyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (17).  Obtained from 

tert-butyl ester 27b (500 mg, 2.4 mmol) and N-methyl-N-phenylcarbamoyl chloride (404 mg, 2.4 

mmol) in 32% yield. Chromatography: hexane/EtOAc, 9:1; oil. Rf (hexane/EtOAc, 7:3) 0.61. IR (neat, 

cm-1)  3070 (OH), 1727 (NCOO), 1673 (COO), 1620, 1599, 1457 (Ar). 1H NMR (300 MHz, CDCl3)  
1.61 (s, 9H, 3CH3), 3.43 (s, 3H, NCH3), 6.93 (d, 1H, J = 8.9 Hz, H3), 7.17-7.19 (m, 1H, H4), 7.26-7.30 

(m, 2H, Ar), 7.36-7.45 (m, 3H, Ar), 7.49 (m, 1H, H6), 10.95 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3) 

 28.1 (3CH3), 38.2 (CH3), 83.2 (C), 113.6 (C), 118.1, 122.4, 125.8, 126.6 (4CH), 129.0 (3CH), 129.1 

(CH), 142.8 (2C), 154.2, 159.3, 169.1 (3C). MS (ESI): [(M-H)-] 342.1. 

Pyridin-3-ylmethyl (2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (18). 

Obtained from pyridinyl ester 27d (272 mg, 1.1 mmol) and N-methyl-N-phenylcarbamoyl chloride 
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(188 mg, 1.1 mmol) in 22% yield. The free amine was characterized (yield, Rf, IR, NMR), dissolved 

in anhydrous Et2O (4 mL) and treated with a commercial 1 M HCl(g)/Et2O solution (0.6 mL). The 

hydrochloride salts was isolated by evaporation of the solvents and characterized (Melting point, 

elemental analysis). Chromatography: DCM/MeOH, 99:1. Mp 183-185 ºC.  Rf (DCM/MeOH, 95:5) 

0.56; IR (KBr, cm-1) 3170 (OH), 1724 (NCOO), 1680 (COO), 1595, 1488 (Ar). 1H-NMR (300MHz, 

CDCl3)  3.42 (s, 3H, NCH3), 5.40 (s, 2H, CH2), 6.97 (d, 1H, J = 9.0 Hz, H3), 7.22-7.44 (m, 7H, H4, 

H2’-H6’, H5’’), 7.58 (m, 1H, H6), 7.84 (d, 1H, J = 7.8 Hz, H4’’), 8.66 (m, 1H, H2’’/H6’’), 8.76 (m, 1H, H2’’/H6’’), 

10.51 (s, 1H, OH). 13C-NMR (75 MHz, CDCl3)  38.8 (CH3), 64.9 (CH2), 112.1 (C), 118.8, 122.6, 

124.3, 126.3, 127.2 (5CH), 129.5 (3CH), 130.6 (CH), 132.0 (C), 137.4 (CH), 143.1, 143.5 (2C), 149.7, 

149.8 (2CH), 154.5, 159.7, 169.6 (3C). Elemental analysis: calcd. for C21H18N2O5·HCl·H2O: %C: 

58.27, %H: 4.89, %N: 6.47; found, %C: 58.64, %H: 5.28, %N: 6.62. 

Synthesis of 3-(methoxycarbonyl)phenyl 4-methylpiperazine-1-carboxylate (9). To a 

solution of methyl 2,5-dihydroxybenzoate (550 mg, 3.3 mmol) and 4-nitrophenyl chloroformate (659 

mg, 3.3 mmol) in anhydrous DCM, 1,4-diazabicyclo[2.2.2]octane (DABCO, 734 mg, 6.5 mmol) was 

added dropwise at 0 ºC and the reaction mixture was stirred for 5 h. The solvent was evaporated and 

the residue was purified by chromatography (hexane/EtOAc, 9:1) to afford methyl 2-hydroxy-5-{[(4-

nitrophenoxy)carbonyl]oxy}benzoate in 40% yield. Rf (hexane/AcOEt, 7:3): 0.57. 1H NMR (300 MHz, 

CDCl3) 3.97 (s, 3H, OCH3), 6.89 (d, 2H, J = 9.1 Hz, H2’, H6’), 7.03 (d, 1H, J = 9.1 Hz, H3), 7.37 (dd, 

1H, J = 9.1, 3.0 Hz, H4), 7.77 (d, 1H, J = 3.0 Hz, H6), 8.13 (d, 2H, J = 9.1 Hz, H3’, H5’). 

To a solution of methyl 2-hydroxy-5-{[(4-nitrophenoxy)carbonyl]oxy}benzoate (130 mg, 0.4 mmol) 

and 1-methylpiperazine (0.07 mL, 0.6 mmol) in anhydrous DCM (6 mL), DIEA (0.3 mL, 1.6 mmol) 

was added dropwise at 0 ºC and the reaction mixture was stirred for 3 h at  rt.  The  solvent  was  
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evaporated and the residue was purified by column chromatography (EtOAc/EtOH, 8:2) to afford the 

title final compound 9 as a solid in 67% yield. Mp 218-219 ºC. Rf (EtOAc/EtOH, 7:3) 0.32. IR (KBr, 

cm-1) 3197 (OH), 1724 (NCOO), 1683 (COO), 1621, 1489 (Ar). 1H NMR (300 MHz, CDCl3)  2.28 

(s, 3H, NCH3), 2.39 (t, 4H, J = 5.1 Hz, 2H3’, 2H5’), 3.52 (m, 2H, 2H2’/2H6’), 3.61 (m, 2H, 2H2’/2H6’), 

3.87 (s, 3H, OCH3), 6.90 (d, 1H, J = 9.0 Hz, H3), 7.15 (dd, J = 9.0, 2.9 Hz, H4), 7.53 (d, 1H, J = 2.9 

Hz, H6), 10.56 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  43.9, 44.4 (2CH2), 46.2, 52.4 (2CH3), 54.6, 

54.8 (2CH2), 112.2 (C), 118.3, 122.4, 129.7 (3CH), 143.1, 153.8, 159.0, 170.0 (4C). Elemental 

analysis: calcd. for C14H18N2O5·HCl: %C: 50.84, %H: 5.79, %N: 8.47; found, %C: 50.47, %H: 5.61, 

%N: 8.68. 

Synthesis of N-[4-(benzyloxy)phenyl]-N-methyl-1-imidazole-1-carboxamide (25). To a 

suspension of CDI (750 mg, 3.5 mmol) in anhydrous THF (20 mL), 4-(benzyloxy)-N–methylaniline 

(627 mg, 3.9 mmol) was added. The mixture was refluxed for 16 h. The solvent was evaporated and 

the residue was dissolved in DCM (20 mL) and washed with H2O (2 x 30 mL). The organic layers 

were dried (Na2SO4) and evaporated to afford the title carbamoylimidazole as a solid in 85% yield. 

Rf (hexane/ EtOAc, 7:3) 0.37. IR (KBr, cm-1) 1697 (NCON), 1608, 1510, 1460 (Ar).1H-NMR (300 

MHz, CDCl3)  3.46 (s, 3H, NCH3), 5.06 (s, 2H, CH2), 6.83-6.84 (m, 1H, H4’’/H5’’), 6.89-6.90 (m, 1H, 

H4’’/H5’’), 6.97 (d, 2H, J = 9.0 Hz, H2,H6/H3,H5), 7.07 (d, 2H, J = 9.0 Hz, H2,H6/H3,H5), 7.38-7.45 (m, 

5H, H2’-H6’), 7.58 (br s, 1H, H2’’). 

Synthesis of methyl 5-({[[4-(benzyloxy)phenyl](methyl)amino]carbonyl}oxy)-2-

hydroxybenzoate (26). To a solution of 25 (937 mg, 3.1 mmol) in acetonitrile (8 mL), methyl iodide 

(0.9 mL, 12.2 mmol) was added and the mixture was stirred at rt for 24 h. The solvent was evaporated, 

the residue was dissolved in acetonitrile and methyl 2,5-dihydroxybenzoate (506 mg, 3 mmol) and 

triethyl amine (0.4 mL, 3 mmol) were added dropwise. The reaction was refluxed for 18 h. The solvent 
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was evaporated, the residue was dissolved in DCM and an aqueous solution of 0.1 M HCl (50 mL) 

was added. The aqueous layer was extracted with DCM (3 x 50 mL). The organic layers were dried 

(Na2SO4) and evaporated, and the residue was purified by chromatography (hexane/EtOAc, 8:2) to 

afford the title compound as an oil in 36% yield. Rf (hexane/EtOAc, 7:3) 0.28. IR (neat, cm-1)  3172 

(OH), 1722 (CON), 1681, 1618, 1541, 1484 (Ar).1H NMR (300 MHz, CDCl3)  3.36 (s, 3H, NCH3), 

3.94 (s, 3H, OCH3), 5.08 (s, 2H, CH2), 6.95 (d, 1H, J = 8.9 Hz, H3), 7.01 (d, 2H, J = 8.8 Hz, H2’, H6’), 

7.14-7.27 (m, 3H, H4, H3’, H5’), 7.35-7.46 (m, 5H, H2’’-H6’’), 7.57 (m, 1H, H6), 10.63 (br s, 1H, OH). 13C 

NMR (75 MHz, CDCl3)  37.8, 53.6 (2CH3), 70.7 (CH2), 110.7 (C), 113.7, 116.5, 120.4 (3CH), 125.4 

(3CH), 125.4 (C), 125.9 (2CH), 126.5 (2CH), 127.4 (2CH), 134.2, 140.3, 151.0 (3C), 155.4 (2C), 

165.9 (C). 

Synthesis of 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoic acid (28). To  a  

solution of benzyl ester 14 (120 mg, 0.3 mmol) in absolute EtOH (20 mL), 10% Pd(C) (50 mg) was 

added and the mixture was hydrogenated at rt for 4 h, with an initial hydrogen pressure of 30 psi. 

The reaction mixture was filtered through a pad of celite and washed with EtOH. The solvent was 

evaporated to afford the title pure compound as a solid in quantitative yield. Mp 157-158 ºC. Rf 

(DCM/EtOH, 95:5) 0.20. IR (KBr, cm-1)  3071 (OH), 1699 (NCOO, COO), 1596, 1489 (Ar). 1H NMR 

(300 MHz, CDCl3) δ 3.44 (s, 3H, NCH3), 6.95 (d, 1H, J = 8.9 Hz, H3), 7.22-7.45 (m, 6H, H4, H2’-H6’), 

7.61 (m, 1H, H6). 13C NMR (75 MHz, CDCl3) δ 38.4 (CH3), 114.2 (C), 118.8, 119.1, 126.1, 127.0, 

127.3 (5CH), 129.3 (3CH), 142.5, 142.7, 154.8, 159.2, 169.8 (5C). 

Synthesis of methyl 2-hydroxy-5-({[(4-hydroxyphenyl)-(methyl)amino]carbonyl}oxy) 

benzoate (10). To a solution of 26 (100 mg, 0.3 mmol) in EtOH (10 mL), 10% Pd(C) (39 mg) was 

added and the mixture was hydrogenated at rt for 5 h, with an initial hydrogen pressure of 57 psi. 

64 

http:7.22-7.45
http:7.35-7.46
http:7.14-7.27


 

	

 

   

   

   

   

  

   

 

 

 

    

    

 

   

   

  

 

 

  

 

  

   

    

Experimental section
	

The reaction was filtered through celite and the solvent was evaporated to afford pure the title 

compound as a solid in quantitative yield. Mp 54-56 ºC. Rf (hexane/EtOAc, 7:3) 0.23. IR (KBr, cm-1) 

 3352 (OH), 1687 (NCOO), 1619, 1515, 1485 (Ar). 1H NMR (300 MHz, CD3OD)  3.32 (s, 3H, NCH3), 

3.95 (s, 3H, OCH3), 6.82 (d, 2H, J = 8.7 Hz, H3’, H5’), 6.93 (d, 1H, J = 7.8 Hz, H3), 7.19 (d, 2H, J = 8.7 

Hz, H2’, H6’), 7.36 (m, 1H, H4), 7.49 (m, 1H, H6).13C NMR (75 MHz, CD3OD)  39.1, 53.1 (2CH3), 

113.5 (C), 116.8 (2CH), 119.1 (2CH), 123.4, 128.7, 130.8 (3CH), 135.9, 144.7, 156.3, 157.7, 160.1, 

171.1 (6C). Elemental analysis: calcd. for C16H15NO6: %C: 60.57, %H: 4.77, %N: 4.41; found, %C: 

60.29, %H: 4.98, %N: 4.25. 

Synthesis of 4-hydroxy-3-[(methylamino)carbonyl]phenyl methyl(phenyl)carbamate (13). 

To a solution of methyl ester 7 (200 mg, 0.7 mmol) in MeOH (2 mL), a solution of methylamine (40% 

in H2O) (0.5 mL, 10 mmol) was added dropwise at 0 ºC and the reaction mixture was stirred for 3 h 

at rt. The solvents were evaporated and the residue was purified by chromatography (hexane/EtOAc, 

7:3) to afford the title compound as a solid in 76% yield. Mp 69-70 ºC. Rf (DCM/EtOH, 95:5) 0.43. IR 

(KBr, cm-1) 3366 (NH, OH), 1705 (NCOO), 1647 (CON), 1602, 1552, 1494 (Ar).1H NMR (300 MHz, 

CDCl3)  2.92 (d, 3H, J = 4.8 Hz, NHCH3), 3.43 (s, 3H, NCH3), 6.41 (br s, 1H, NH), 6.95 (d, 1H, J = 

8.8 Hz, H3), 7.10-7.44 (m, 7H, H4, H6, H2’-H6’), 12.22 (s, 1H, OH). 13C NMR (75 MHz, CDCl3)  26.5, 

38.4 (2CH3), 114.2 (C), 118.8, 119.1, 126.1, 127.0, 127.3 (5CH), 129.3 (3CH), 142.5, 142.7, 154.8, 

159.2, 169.8 (5C). Elemental analysis: calcd. for C17H18N2O4: %C: 63.99, %H: 5.37, %N: 9.33; found, 

%C: 63.70, %H: 5.39, %N: 9.26. 

General procedure for the synthesis of final compounds 19-23. To a solution of benzoic acid 

28 (1 equiv) in anhydrous DMF (12 mL/mmol), EDC (1.5 equiv) and DMAP (0.3 equiv) were added 

and the mixture was stirred at rt for 15 min. Then, a solution of the corresponding amine or alcohol 

65 

http:7.10-7.44
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(1 equiv) in DMF (6 mL/mmol) was added at 0 ºC, and the reaction mixture was stirred for 2 h at this 

temperature and at rt for 14 additional h. The mixture was evaporated and the residue was purified 

by column chromatography to give the title final compounds. 

1-(Pyridin-3-yl)ethyl 2-hydroxy-5-({[methyl(phenyl)amino]carbonyl}oxy)benzoate (19). 

Obtained from acid 28 (201 mg, 0.7 mmol) and 1-pyridin-3-ylethanol (86 mg, 0.7 mmol) in 52% yield. 

The free amine was characterized (yield, Rf, IR, NMR), dissolved in anhydrous DCM (4 mL) and 

treated with a commercial 1 M HCl(g)/Et2O solution (0.6 mL). The hydrochloride salts was isolated 

by evaporation of the solvents and characterized (Melting point, elemental analysis). 

Chromatography: DCM/EtOH, 99:1. Mp 80-82 ºC. Rf (DCM/MeOH, 95:5) 0.20. IR (KBr, cm-1)  3177 

(OH), 1723 (NCOO), 1677 (COO), 1620, 1596, 1487 (Ar). 1H NMR (300 MHz, CDCl3)  1.73 (d, 3H, 

J = 6.7 Hz, CH3), 3.44 (s, 3H, NCH3), 6.17 (q, 1H, J = 6.7 Hz, CH(CH3)2), 6.96 (d, 1H, J = 9.0 Hz, H3), 

7.25-7.45 (m, 7H, H4, H2’-H6’, H5’’), 7.61 (m, 1H, H6), 7.76 (d, 1H, J = 7.9 Hz, H4’’), 8.60 (dd, 1H, J = 

4.8, 1.6 Hz, H6’’), 8.73 (d, 1H, J = 2.1 Hz, H2’’). 13C NMR (75 MHz, CDCl3)  22.3, 38.7 (2CH3), 72.1 

(CH), 112.4 (C), 118.8, 122.5, 124.0, 126.3, 127.1 (5CH), 129.5 (3CH), 130.5 (CH), 134.2 (C), 136.6 

(CH), 143.2, 143.5 (2C), 148.4, 150.1 (2CH), 154.5, 159.8, 169.1 (3C). Elemental analysis: calcd. for 

C22H20N2O5·HCl·5/3H2O: %C: 57.58, %H: 5.34, %N: 6.10; found, %C: 57.42, %H: 5.53, %N: 5.99. 

(1-Methylpiperidin-3-yl)methyl (20). 

Obtained from acid 28 (230 mg, 0.8 mmol) and (1-methylpiperidin-3-yl)methanol (0.1mL, 0.8 mmol) 

in 34% yield. The free amine was characterized (yield, Rf, IR, NMR), dissolved in anhydrous DCM 

(4.5 mL) and treated with a commercial 1 M HCl(g)/Et2O solution (0.7 mL). The hydrochloride salts 

was isolated by evaporation of the solvents and characterized (Melting point, elemental analysis). 

Chromatography: DCM/EtOH, 9:1. Mp 75-77 ºC. Rf (DCM/EtOH, 8:2) 0.55. IR (KBr, cm-1)  3168 

(OH), 1726 (NCOO), 1678 (COO), 1596, 1489 (Ar). 1H-NMR (300 MHz, CDCl3)  1.00-1.14 (m, 1H, 

H4’’), 1.62-1.86 (m, 4H, H4’’, 2H5’’, H6’’), 1.99 (td, 1 H, J = 11.0, 2.7 Hz, H2’’), 2.10-2.23 (m, 1H, H3’’), 

2.32 (s, 3H, NCH3), 2.81 (d, 1H, J = 10.9 Hz, H6’’), 2.94 (d, 1H, J = 10.1 Hz, H2’’), 3.44 (s, 3H, PhNCH3), 

4.15-4.24 (m, 2H, CH2), 6.96 (d, 1H, J = 9.0 Hz, H2), 7.22-7.45 (m, 6H, H4, H2’-H6’), 7.54 (m, 1H, H6), 

10.67 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  24.7, 26.6 (2CH2), 35.8 (CH3), 38.3 (CH), 46.7 
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(CH3), 56.1, 59.0, 68.2 (3CH2), 112.2 (C), 118.3, 122.2, 126.0, 126.8 (4CH), 129.1 (3CH), 129.8 (CH), 

142.8, 143.1, 154.2, 159.2, 169.5 (5C). Elemental analysis: calcd. for C22H26N2O5·HCl·2H2O: %C: 

56.11, %H: 6.63, %N: 5.95; found, %C: 56.49, %H: 6.36, %N: 6.07. 

hexane/EtOAc, 8:2, oil. Rf (hexane/EtOAc, 95:5) 0.40. IR (neat, cm-1)  3358, 3068 (NH, OH), 1706 

(NCOO), 1646 (CON), 1599, 1545, 1493 (Ar). 1H NMR (300 MHz, CDCl3)  3.45 (s, 3H, NCH3), 4.62 

(d, 2H, J = 5.6 Hz, CH2), 6.56 (br s, 1H, NH), 6.97 (d, 1H, J = 9.0 Hz, H3), 7.14-7.43 (m, 12H, H4, H6, 

H2’-H6’, H2’’-H6’’), 12.14 (br s, 1H, OH). 13C NMR (75 MHz, CDCl3)  38.3 (CH3), 43.6 (CH2), 114.1 (C), 

118.9, 125.8, 126.9, 127.5, 127.6 (5CH), 127.9 (3CH), 128.7 (2CH), 129.2 (3CH), 137.6, 142.5, 

142.6, 154.5, 159.1, 169.1 (6C). MS (ESI): [(M-H)-] 375.1. 

yield. The free amine was characterized (yield, Rf, IR, NMR), dissolved in anhydrous DCM (4.5 mL) 

and treated with a commercial 1 M HCl(g)/Et2O solution (0.7 mL). The hydrochloride salts was 

isolated by evaporation of the solvents and characterized (Melting point, elemental analysis). 

Chromatography: DCM/EtOH, 95:5. Mp 110-112 ºC. Rf (DCM/EtOH, 9:1) 0.32. IR (KBr, cm-1)  3348 

(NH, OH), 1719 (NCOO), 1646 (CON), 1599, 1545, 1492 (Ar). 1H-NMR (300 MHz, CDCl3)  3.35 (s, 

3H, NCH3), 4.40 (d, 2H, J = 5.7 Hz, CH2), 6.87 (d, 1H, J = 9.0 Hz, H3), 7.04-7.06 (m, 1H, H4), 7.19-

7.36 (m, 6H, H5’’, H2’-H6’), 7.41 (m, 1H, H6), 7.60 (d, 1H, J = 7.9 Hz, H4’’), 8.12 (br s, 1H, NH), 8.44 (br 
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s, 2H, H2’’, H6’’). 13C NMR (75 MHz, CDCl3)  38.7 (CH3), 41.3 (CH2), 115.0 (C), 119.1, 120.2, 124.1, 

126.3, 127.2, 127.8 (6CH), 129.5 (3CH), 134.3 (C), 136.5 (CH), 142.9, 143.0 (2C), 148.8, 149.3 

(2CH), 154.9, 159.0, 169.4 (3C). Elemental analysis: calcd. for C21H19N3O4·HCl·H2O: %C: 58.40,  

%H: 5.13, %N: 9.73; found, %C: 58.01, %H: 5.19, %N: 9.75. 

4-Hydroxy-3-{[methyl(pyridin-3-ylmethyl)amino]carbonyl}phenylmethyl(phenyl)-

carbamate (23). Obtained from acid 28 (144 mg, 0.5 mmol) and N-methyl-N-(pyridin-3-

yl)methylamine (61 mg, 0.5 mmol) in 64% yield. The free amine was characterized (yield, Rf, IR, 

NMR), dissolved in anhydrous DCM (2 mL) and treated with a commercial 1 M HCl(g)/Et2O solution 

(0.3 mL). The hydrochloride salts was isolated by evaporation of the solvents and characterized 

(Melting point, elemental analysis). Chromatography: DCM/EtOH, 95:5. Mp 207-209 ºC. Rf 

(DCM/EtOH, 95:5) 0.14. IR (KBr, cm-1)  3062 (OH), 1721 (NCOO), 1629 (CON), 1601, 1493 (Ar). 
1H NMR (300 MHz, CDCl3)  3.05 (s, 3H, NCH3), 3.39 (s, 3H, PhNCH3), 4.73 (s, 2H, CH2), 6.93 (d, 

1H, J = 8.7 Hz, H3), 7.02-7.09 (m, 2H, H4, H5’’), 7.26-7.41 (m, 6H, H6, H2’-H6’), 7.69 (d, 1H, J = 7.7 Hz, 

H4’’), 8.56 (d, 1H, J = 4.1 Hz, H6’’ ), 8.62 (m, 1H, H2’’). 13C NMR (75 MHz, CDCl3)  37.0, 38.7 (2CH3), 

60.8 (CH2), 118.3 (CH), 119.2 (C), 121.6, 124.3, 125.8, 126.3, 127.1 (5CH), 129.5 (3CH), 132.8 (C), 

136.5 (CH), 143.2 (2C), 149.1, 149.4 (2CH), 154.5, 155.3, 171.4 (3C). Elemental analysis: calcd. for 

C22H21N3O4·HCl·1/2H2O: %C: 60.48, %H: 5.31, %N: 9.62; found, %C: 60.16, %H: 5.12, %N: 9.51. 
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4.2. Biological experiments 

4.2.1. Inhibition of bFGF-induced cell proliferation of HUVECs. HUVECs, obtained from 

American Type Culture Collection (ATCC, Rockville, MD), were cultured in a humidified atmosphere 

of 95% air and 5% CO2 at 37 C in M199 medium containing 10% fetal bovine serum (FBS) and 10 

μg/mL heparin. Cells were incubated in the presence of bFGF (1 μg/mL) and the appropiate 

concentration of compound or vehicle (0.4% DMSO) for 2 days, and cell proliferation was quantified 

spectrofluorimetrically. IC50 values are the mean from at least two independent experiments carried 

out in triplicate. In all cases, the SEM is within a 10% of the mean value. 

4.2.2. Determination of VEGF and bFGF levels. Cells were seeded in 12-well plates at a density 

of 5 x 104 cells per well and were grown for 24 h to obtain a 70-80% confluent monolayer. Then, 

medium was replaced with fresh Dulbecco’s Modified Eagle Medium (DMEM) with or without 150 μM 

CoCl2. After 5 h, compound 22 or vehicle (DMSO) were added to the culture medium, and cells were 

incubated for 4 h more. Supernatants were then collected and used straightaway or stored at -80 ºC 

for further use. Concentrations of VEGF and bFGF in the culture medium were measured using an 

enzyme-linked immunosorbent assay (ELISA), according to the manufacturer’s instructions (VEGF 

human ELISA kit and FGF-basic human ELISA kit, Invitrogen, Carlsbad, CA). Absorbance was 

measured at 450 nm using an Asys UVM 340 (Biochrom Ltd., Cambridge, UK) microplate reader, 

and data were normalized to the kit controls and the number of producing cells. Data from three to 

five independent experiments carried out in triplicate were represented as mean fold ± SEM with bar 

graphs. 

4.2.3. Nitric oxide (NO) quantification. Nitric oxide production was measured through 

determination of nitrite concentration in the culture medium using the Griess test. Briefly, cells were 

seeded in 96-well plates at a density of 1 x 104 cells per well in DMEM with 10% FBS and incubated 

for 24 h prior to treatments. The medium was then replaced with fresh DMEM with or without 150 μM 

CoCl2; after 5 h of incubation, compound 22 or vehicle was added, and incubation was continued for 

another 4 h. Then, 100 μL of supernatant from each condition was mixed with 100 μL of Griess 

reagent (1% sulphanilamide, 0.1% N-(1-naphthyl)ethylendiamine dihydrochloride, 2.5% phosphoric 

acid). After 15 min at rt in the dark, absorbance was measured at 548 nm in an Asys UVM 340 

(Biochrom Ltd., Cambridge, UK) microplate reader. The concentration of nitrite, a stable oxidized 

derivative of NO in cell cultures, was determined from a sodium nitrite (NaNO2, Sigma-Aldrich) 

standard curve. Data from three independent experiments performed in triplicate were presented as 

mean ± SEM. 
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4.2.4. Western blot analysis. MCF7 cells were plated at a density of 2 x 106 cells in 15-cm dishes 

and allowed to grow 24 h in DMEM with 1% FBS, to a 80% confluent monolayer. The medium was 

then replaced by fresh DMEM with or without 150 μM CoCl2 and cells were incubated for 5 h to allow 

hypoxic response. After that, compound 22 or vehicle were added and cells were incubated during 4 

h. Cells were washed with phosphate buffered saline (PBS) and lysed with ice-cold RIPA buffer (50 

mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Igepal) containing protease and phosphatase inhibitors 

(Roche and Sigma-Aldrich, respectively). Lysates were clarified by centrifugation at 10000g for 10 

min at 4 ºC and used straightaway or stored at -80 ºC until use. Protein concentration was measured 

(DC protein assay kit, Bio-Rad), and samples with equal amounts of total protein were diluted into 

Laemmli reducing sample buffer (Bio-Rad) and denatured at 95 ºC for 5 min. Samples were then 

resolved on 4-20% SDS-PAGE gels (Bio-Rad), and proteins were transferred to nitrocellulose 

membranes (GE Healthcare, Amersham). After 1 h of incubation in blocking buffer [10 mM Tris-HCl 

pH 8.0, 150 mM NaCl, 0.05% Tween-20 (TBS-T) with 1% BSA], membranes were incubated 

overnight at 4 ºC with the corresponding primary antibody. Then, membranes were washed three 

times (5 min each) with TBS-T and incubated with the corresponding secondary antibody for 1 h at 

rt. Protein bands were visualized using enhanced chemiluminescence detection reagents (GE 

Healthcare, Amersham) in a Fujifilm LAS-3000 developer (Tokyo, Japan) and quantified by 

densitometry using ImageJ software (NIH). 

Primary antibodies were from Cell Signaling and used at 1:1000 dilution (rabbit anti-phospho-AKT 

(pS473), rabbit anti-AKT, rabbit anti-phospho-ERK1/2, rabbit anti-ERK1/2, rabbit anti-phospho-

MEK1/2, rabbit anti-MEK1/2, rabbit anti-VEGFR, rabbit anti-phospho-VEGFR, rabbit anti-FGFR, 

rabbit anti-phospho-FGFR) or from Santa Cruz Biotechnology and used at 1:200 dilution (mouse anti-

HIF-1α, mouse anti-HIF-2α, mouse anti-iNOS, rabbit anti-β-actin). Secondary antibodies used were 

goat anti-mouse or goat anti-rabbit IgG HRP conjugates (1:5000, Sigma-Aldrich) accordingly. 

Relative phosphorylation levels from three independent experiments were presented as mean ± SEM 

with bar graphs.  

4.2.5. Migration or wound healing assay. Cells were seeded in 96-well plates at a density of 

1.5 x 104 cells per well in DMEM with 10% FBS and grown for 24 h at 37 ºC and 5% of CO2 to obtain 

a 90-100% confluent monolayer. Wounds were made with a sterile p20 pipette tip and each well was 

washed twice with PBS to eliminate nonadherent cells and cell debris. Fresh DMEM with or without 

150 μM CoCl2 was then added and after 5 h of incubation, compound 22 (50 μM) or vehicle was 

added. At this time (0 h) and after 48 h, cells were photographed under phase contrast with an 

Olympus FW1200 microscope. Empty area in each wound was quantified using ImageJ software 

(NIH) and compared with the corresponding area of the initial wound. The percentage of area from 
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three independent experiments performed in triplicate was presented as mean ± SEM with bar 

graphs. 

4.2.6. RNA interference-mediated silencing of the HIF-1α gene. Cells were transfected with 

specific siRNA duplexes using DharmaFECT 1 as transfection reagent according to the 

manufacturer’s instructions (Dharmacon-Thermo Scientific, Lafayette, CO). Selective siRNA against 

human HIF-1α was a smart pool from Dharmacon-Thermo Scientific, and the sequences were: 5'-

GAACAAAUACAUGGGAUUA-3'; 5'-AGAAUGAAGUGUACCCUAA-3'; 5'-

GAUGGAAGCACUAGACAAA-3'; 5'-CAAGUAGCCUCUUUGACAA-3'. The nontargeted control 

sequence, 5'-UUCUCCGAACGUGUCACGU-3’, was from Applied Biosystems-Ambion (Austin, TX). 

Twenty-four hours after transfection, cells were seeded for ELISA assays, which performed as 

described below. 

4.2.7. Quantitive polymerase chain reaction (qPCR). RNA from cell cultures or tumor tissues 

was isolated with TRIzol reagent (Sigma-Aldrich). cDNA was subsequently obtained with Transcriptor 

reverse transcriptase (Roche). Real-time quantitative PCR assays were performed using the 

FastStart master mix with Rox (Roche), and probes were obtained from the Universal Probe Library 

(Roche). The primers used for human HIF-1α were as follows: sense, 5’-

GATAGCAAGACTTTCCTCAGTCG-3’; and antisense, 5’-TGGCTCATATCCCATCAATTC-3’. 

Amplifications were run in a 7900 HT-fast real-time PCR system (Applied Biosystems). Each value 

was normalized to human β-actin RNA levels as an internal control: sense, 5’-

CCAACCGCGAGAAGATGA-3’; and anti-sense, 5’-CCAGAGGCGTACAGGGATAG-3’. 

4.2.8. Gene expresssion analysis. The RT2 profiler PCR array of human angiogenesis (Qiagen, 

Valencia, CA), which analyzes the expression of 84 key genes involved in modulating the biological 

processes of angiogenesis, was used. RNA from cell cultures was isolated with TRIzol reagent 

(Sigma-Aldrich), including a DNA digestion step with genomic DNA elimination mix (Qiagen). cDNA 

was subsequently obtained with a RT2 first strand kit according to manufacturer’s instructions 

(Qiagen). Real-time PCR assay was performed using the RT2 profiler PCR array of human 

angiogenesis in combination with RT2 SYBR Green master mix (Qiagen). Amplifications were run in 

a 7900 HT-fast real-time PCR system (Applied Biosystems) and data were analyzed using the 

SABiosciences PCR array data analysis template Excel (Qiagen). 

4.2.9. VEGF expression analysis. RNA was isolated from tumors with TRIzol reagent 

(Invitrogen) with the real star kit (Durviz, Valencia, Spain), and cDNA was obtained with Transcriptor 

reverse transcriptase (Roche). The primers used for VEGF-A amplification were: sense, 5'-

GTCCTGTGTGCCGCTGAT-3'; antisense, 5'-AGGTTTGATCCGCATGATCT-3'. GAPDH was used 
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as reference (sense, 5'-GGGAAGCTCACTGGCATGGCCTTCC-3'; antisense, 5'-

CATGTGGGCCATGAGGTCCACCAC-3').  

4.2.10. Subcutaneous xenografts. All procedures involving animals were performed with the 

approval of the Complutense University Animal Experimentation Committee in compliance with 

European official regulations. Five million MDA-MB-231 breast cancer cells in 100 µL of PBS were 

subcutaneously injected into the flank of 6-week-old athymic mice (Harlan Interfauna Iberica, 

Barcelona, Spain). Tumors were routinely measured with external caliper, and volume was calculated 

as (4/3) x (width/2)2 x (length/2). When tumors reached ca. 200 mm3, the mice were treated 

intraperitoneally three times a week with compound 22 (25 mg/kg) or vehicle (DMSO 0.2 mg/μL in 

PBS) for 4 weeks. After treatment, animals were sacrificed, and tumors and organs were collected. 

Tumors were divided into different portions for preparation of tissue sections for immunofluorescent 

staining [frozen in Tissue-Tek (Sakura Finetek Europe, Zoeterwoude, The Netherlands)] or snap 

frozen for RNA extraction (and stored at -80 ºC until use). Organs collected were fixed in 

formaldehyde and stained with hematoxylin-eosin for analysis. 

For immunofluorescence analysis, Tissue-Tek frozen sections were fixed in PFA 4% and were 

subjected to heat-induced antigen retrieval in citrate buffer. Then, sections were blocked with PBS 

containing 0.25% TritonX-100 and 10% goat serum, and incubated with anti-CD31 (Pharmingen/BD 

Biosciences, San Jose, CA). Secondary anti-mouse antibodies conjugated with Alexa Flour 488 were 

from Invitrogen (Carlsbad, CA). Cell nuclei were stained with DAPI (Invitrogen). Images were 

acquired using a Leica DM400B microscope (Leica, Wetzlar, Germany). 
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LEAD OPTIMIZATION PROCESS AND BIOLOGICAL CHARACTERIZATION OF 
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1. INTRODUCTION AND OBJECTIVES 

The Ras protein family members are monomeric low-molecular-weight GTP-binding proteins that 

play a role in regulating cell differentiation, proliferation, and survival. To do so, Ras proteins act as 

binary molecular switches, exchanging guanosine 5’-triphosphate (GTP, active form) for guanosine 

5’-diphosphate (GDP, inactive form), or vice versa. GTP binding induces a marked conformational 

change in Ras that allows it to bind effectors via their Ras binding domains (RBD). This switch is 

regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), 

which change the activation state of Ras without covalently modifying it (Figure 1).1 

Figure 1. The GTP/GDP cycle of Ras. 

Single-point mutations of ras gene can lead to the production of constitutively activated Ras 

protein, with impaired GTPase activity. These activating mutations of ras result in continuous 

stimulation of cell proliferation and inhibition of apoptotic signaling, thus promoting cancer. In fact, 

intensive sequencing of the cancer genome has revealed that, despite the identification of more than 

500 validated cancer genes, the three ras genes (hras, nras and kras) still constitute the most 

frequently mutated oncogene family in human cancers. Considering also that mutations in ras are 
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found in some of the most lethal cancers -they have been found in almost 30% of all cancers, 

including 50% of colon and up to 90% of pancreatic tumors-,2,3 it is easy to understand the interest 

that has been spurred in developing Ras inhibitors. However, despite more than three decades of 

intensive effort, no effective pharmacological inhibitors of the Ras oncoproteins have reached the 

clinic, prompting the widely held perception that Ras proteins are ‘undruggable’.4,5 Hence, the 

possibility of blocking Ras activity by interfering with the post-translational modifications responsible 

for its activation has gained an increasing attention within the last years. 

Ras is a member of a large class of proteins known as CAAX proteins, where C is cysteine, A is 

usually an aliphatic amino acid and X is any amino acid. The primary translation product of CAAX 

protein genes ends with a CAAX sequence, which serves as a substrate for three enzymes that 

modify the sequence in a step-wise manner to create a lipidated, hydrophobic domain that mediates 

the association with cellular membranes. First, unmodified CAAX sequences serve as substrates for 

prenylation by one of the cytosolic prenyltransferases: geranylgeranyltransferase type I (GGTase I) 

if the X amino acid is leucine or phenylalanine, or farnesyltransferase (FTase), for any other amino 

acid.6 For Ras protein, this first modification means the addition of a farnesyl moiety, turning an 

otherwise globular and hydrophilic protein into one that binds to the cytoplasmic leaflet of cellular 

membranes, which is an essential process required for Ras biological activation.1 However, it has 

been demonstrated that upon inhibition of FTase, N-Ras and K-Ras (but not H-Ras) can also be 

geranylgeranylated.7 

The second step for prenylated proteins consists in a specific proteolytic removal of the last three 

amino acids AAX, which is carried out by the Ras-converting enzyme 1 (Rce1), an integral membrane 

protease of the endoplasmic reticulum.8,9 Finally, the newly formed C-terminal prenylcysteine 

becomes a substrate for a specific protein carboxyl methyltransferase, isoprenylcysteine carboxyl 

methyltransferase (ICMT), also localized in the endoplasmic reticulum,10 which methylates the free 

carboxyl group, neutralizing the negative charge of the prenylcysteine and thereby increasing 

membrane affinity (Figure 2).6 
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Figure 2. Post-translational modifications of Ras. 

In absence of any of these post-translational modifications, Ras losses its ability to induce tumor 

transformation. Therefore, the blockade of the enzymes involved in these modifications represents 

an attractive strategy to inhibit Ras activity. However, thus far attempts to abrogate the plasma 

membrane binding of Ras by FTase11,12 have failed because N-Ras and K-Ras are also good 

substrates for GGTase I.7 Meanwhile, inactivation of Rce1 has been shown to promote the 

development of lethal cardiomyopathy in mice,13 as well as to accelerate the growth of some 

malignancies, such as myeloproliferative disease.14 Besides, mammalian genomes encode only one 

member of the ICMT class of methyltransferases and it lacks homology to other protein 

methyltransferases,10 thus resulting in a more specific target than Rce1, and turning the inhibition of 

ICMT into a promising alternative for anticancer therapies.15 

Up to date, few structurally distinct inhibitors of ICMT have been disclosed and only two 

compounds have been studied for their potential use as anticancer agents. First, cysmethynil (CYSM, 

Figure 3) was discovered in 2005 by high-throughput screening (HTS), and it has been characterized 
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as an ICMT inhibitor (IC50 = 2.4 μM) able to impact on tumor growth, but its in vitro antiproliferative 

activity and in vivo antitumor efficacy are still quite modest.16,17 

More recently, and also from a HTS followed by structure-activity relationship (SAR) studies, some 

tetrahydropyrane derivatives have been described (general structure referred as THP, Figure 3). 

However, none of the cellular effects observed using these ICMT inhibitors were very pronounced,18 

so no further biological characterization -either in vitro or in vivo- has been carried out regarding these 

derivatives. 

Figure 3. Representative synthetic inhibitors of ICMT. 

Given the interest of ICMT and the paucity of inhibitors, in our research group we have started a 

project aimed at the design, synthesis and development of new ICMT inhibitors. For the initial design, 

we built a 3D pharmacophore model that was subsequently refined by homology models based on 

the ICMT prokaryotic ortologue,19 and followed by virtual screening of the Natural Cancer Institute 

database. This work first led us to the hit UCM-1310 (Figure 4),20 which showed 30% of ICMT 

inhibition at 50 μM. The subsequent hit to lead process yielded the lead UCM-1325 (Figure 4), with 

54% of ICMT inhibition at 50 μM. 

Figure 4. Hit to lead process carried out in our research group. 

Thus, the main objectives of this work are: 

1. Optimization of the lead UCM-1325. 

2. Study of the mechanism of action of the selected compound(s). 
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2. RESULTS AND DISCUSSION 

2.1. Optimization of the lead compound UCM-1325 

We have carried out an optimization process aimed at the improvement of the inhibitory capacity 

of lead compound UCM-1325, while keeping good pharmacokinetic properties. For this purpose, the 

three types of structural modifications depicted in Figure 5 were carried out: substitution of the 

cyclopropyl ring for different aromatic rings (compounds 1-15); modifications in the hydrophobic chain 

(compounds 16-27); and modifications in the amide group (compounds 28-30). 

Figure 5. Structural modifications in compound UCM-1325. 
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2.1.1. Modification of the cyclopropyl ring  

To start the exploration of compound UCM-1325 with the aim of increasing the ICMT inhibitory 

capacity, we first designed compounds 1-3 (Scheme 1), where the cyclopropyl ring was substituted 

by an aromatic moiety (pyridine or benzene). 

The synthesis of compounds 1-3 was carried out following the approach depicted in Scheme 1, 

starting from acryloyl chloride, which through reaction with the corresponding amine in the presence 

of a base (triethylamine or pyridine) gave acrylamides 31-33. The aza-Michael reaction of 1 

equivalent of acrylamide 33 with 3 equivalents of octylamine in the presence of 1,8-

diazabicycloundec-7-ene (DBU) for 5 h gave secondary amine 34, which through reaction with the 

acrylamides 31 and 32 in the presence of DBU afforded the final compounds 1 and 2, respectively. 

The aza-Michael reaction of 3 equivalents of acrylamide 33 with 1 equivalent of octylamine in the 

presence of DBU for 24 h gave final compound 3. 

Scheme 1. Reagents and conditions: a) 2- or 3-aminopyridine, Et3N, DCM, -78 to 0 ºC, 57-68%; b) aniline, 
pyridine, DCM, 0 ºC to rt, 2 h, 84%; c) CH3(CH2)7NH2, DBU, CH3CN, 60 ºC, 5 h, 79%; d) 31 or 32, DBU, CH3CN, 
60 ºC, 24 h, 37-45%; e) CH3(CH2)7NH2, DBU, CH3CN, 60 ºC, 24 h, 83%. 

The synthetized compounds were screened for ICMT inhibitory capacity and for cell 

antiproliferative effect in a panel of cancer cell lines (Table 1).  
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Results and discussion
	

To determine the capacity of these new derivatives to inhibit the activity of ICMT, we used as a 

source of enzyme membranes from Sf9 insect cells that overexpressed ICMT, biotinyl-S-

farnesylcysteine (BFC) as substrate, and [3H]-S-adenosylmethionine ([3H]-SAM) as cosubstrate. 

Incubation of the enzyme with BFC and [3H]-SAM in the presence of the compound under study 

allowed us to quantify the percentage of inhibition of the methyl esterification reaction, in which the 

tritiated methyl group of [3H]-SAM was transferred to the substrate BFC. The incorporated 

radioactivity was measured by liquid scintillation spectrometry.  

The antiproliferative effect of the compounds in breast cancer MCF7 and MDA-MB-231 cells, as 

well as in prostate cancer PC-3 cells, was measured through MTT assays. Cells were incubated with 

different concentrations of the compounds for 48 h and then, the formation of formazan crystals by 

the remaining viable cells was measured and compared to the vehicle-treated cells. 

Table 1. Biological activity of compounds UCM-1325 and 1-3a 

UCM-1325 34 36 34 54 

1 19 28 22 24 

2 37 48 54 18 

3 10 17 22 93 

Antiproliferative effect (IC50, μM) ICMT inhibition
Cpd R 

MCF7 MDA-MB-231 PC-3 (%, 50 μM) 

aData from three independent experiments performed in triplicate; the standard error of the mean (SEM) is in all 
cases within a 10% of the mean value. 

As can be deduced from the biological data obtained for compounds 1-3 (Table 1), while the 

introduction of pyridine rings does not improve the ICMT inhibitory capacity of derivatives 1 and 2, 

the opposite occurs when a phenyl ring is introduced (3). In this last case, we can observe a 

significant increase in the inhibitory capacity (93% ICMT inhibition at 50 μM), which comes along with 

an improvement in the antiproliferative effect of the resulting derivative, compound 3. 
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Scheme 2. Reagents and conditions: a) acryloyl chloride, pyridine, DCM, 0 ºC to rt, 2 h, 35-93%; b) acryloyl 

Results and discussion
	

We hence decided to keep the phenyl group and analyze the influence of the introduction of 

different substituents, which led to derivatives 4-15. The synthesis of the compounds was achieved 

following the conditions depicted in Scheme 2. The aza-Michael reaction between amine 34 and the 

corresponding acrylamide (37-47) in the presence of DBU afforded asymmetric amides 4-14. The 

hydrolysis of the ethyl ester 14 with lithium hydroxide gave final compound 15. Synthesis of 

acrylamides (37-47) was carried out as previously described in Scheme 1, starting from acryloyl 

chloride, which afforded the corresponding acrylamides by reaction with the adequate anilines in the 

presence of a base. 

chloride, Et3N, THF/DMF, 0 ºC to rt, o/n, 41%; c) N1-phenyl-N3-octyl-β-alaninamide (34), DBU, CH3CN, 77 ºC, 
24 h, 32-100%; d) LiOH·H2O, THF/H2O, reflux, 3h, 28%. 

All the anilines used in Scheme 2 were commercial except for derivative 36, which was prepared 

as described in Scheme 3. 

Scheme 3. Reagents and conditions: a) NHMe2·HCl, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 
tetrafluoroborate (TBTU), Et3N, rt, 2 h, 75%; b) TFA/DCM, rt, 1 h, 93%. 

We then determined the antiproliferative activity and the ICMT inhibitory capacity of compounds 

4-15 (Table 2). First, we analyzed the influence of the position of the substitution in the phenyl ring 

(ortho, meta or  para) for F and CF3 substituents (compounds 4-9). Regarding the antiproliferative 
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Results and discussion
	

effect, both meta and para positions led to similar biological activity (IC50 = 10-15 μM for F substituted 

derivatives 5 and 6, and 8-22 μM for CF3 substituted compounds 8 and 9), better than the ortho 

substitution (IC50 = 21-38  μM for F substituted derivative 4, and 25-36 μM for CF3 substituted 

derivative 7). However, the inhibition of ICMT was much higher for the derivatives with the substituent 

at para position rather than for those with ortho or meta substitutions, as observed when comparing 

para substituted compounds 6 and 9 (with percentages of ICMT inhibition at 50 μM of 84% and 63%, 

respectively) with the meta substituted 5 and 8 (23% and 35%), or the ortho substituted 4 and 7 (23% 

and 30%, respectively). Hence, the para position was chosen for the rest of substituents (compounds 

10-15). 

With respect to the influence of the electronic effects we could not observe any clear correlation 

between the biological activity (antiproliferative activity and ICMT inhibitory capacity) and the electron 

donor or acceptor character of the different substituents. In any case, none of the modifications 

improved the 93% inhibition obtained with derivative 3, and their antiproliferative activity in cancer 

cells was clearly decreased (Table 2). 
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Results and discussion
	

Table 2. Biological activity of compounds 3-15a 

Cpd R 
Antiproliferative effect (IC50 μM) 

MCF7 MDA-MB-231 PC-3 

ICMT 
Inhibition 
(%, 50 μM) 

3 H 10 17 23 93 

4 o-F 22 38 21 23 

5 m-F 14 13 10 23 

6 p-F 15 14 14 84 

7 o-CF3 36 25 30 30 

8 m-CF3 15 20 22 35 

9 p-CF3 11 8 12 63 

10 p-NHCOCH3 32 38 31 40 

11 p-CN 14 25 27 68 

12 p-OCH3 16 25 25 53 

13 p-CON(CH3)2 22 33 25 47 

14 p-COOCH2CH3 17 21 15 21 

15 p-COOH >50 48 >50 15 

aData from three independent experiments performed in triplicate; the SEM is in all cases within a 10% of the 
mean value. 

2.1.2. Influence of the hydrophobic chain 

In order to study the influence of the hydrophobic chain, we designed a new series of compounds 

(16-27) with lower calculated logarithm of the octanol/water partition coefficient (clogP) values by 

replacing the hydrophobic n-octyl chain by shorter alkyl chains or more polar substituents. First, the 

importance of the length of the alkyl chain was evaluated in order to check whether it is possible to 
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Scheme 4. Reagents and conditions: a) 3-bromopropanoyl chloride, pyridine, DCM, rt, 2 h, 92%; b) NH3 (2 M in 

Results and discussion
	

decrease the lipophilicity of compounds by shortening it, while keeping a good biological activity. This 

led us to compounds 16-18. Next, we analyzed the influence of the introduction of oxygen atoms in 

the hydrophobic chain (19-22) or its replacement by more polar groups (23-27). 

The synthesis of compounds 16-27 was carried out following the approach depicted in Scheme 

4. The nucleophilic substitution of 48 with  NH3 gave compound 16, whereas its reaction with 

piperidinyl or piperazinyl amines in the presence of triethylamine afforded compounds 26 and 27. 

Intermediate phenylamide 48 was obtained by nucleophilic substitution of 3-bromopropanoyl chloride 

and aniline using pyridine as a base. The aza-Michael reaction of acrylamide 33 (Scheme 1) with the 

appropriate primary amine in the presence of DBU gave compounds 17-25. 

MeOH), DCM, rt, o/n, 15%; c) RNH2, Et3N, 10% KI, DCM, 60 ºC, 24 h, 48-54%; d) RNH2, DBU, CH3CN, 60 ºC 

or 45 ºC, 24 h, 21-100%. 
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Results and discussion
	

This synthetic route involved the previous preparation of the non-commercial amines 6-

methoxyhexyl-1-amine (52), 2-(2-ethoxyethoxy)ethylamine (54), 3-(2-methoxyethoxy)propyl-1-amine 

(56), 2-(3-pentyloxetan-3-yl)ethylamine (59) and (4-ethylpiperazin-1-yl)ethylamine (61). 

Amines 52, 54, and 56, with oxygen atoms introduced in their alkyl chains, were synthetized as 

depicted in Scheme 5. 6-Methoxyhexyl-1-amine (52) was obtained using 2-methoxycyclohexyl-1-one 

as starting material. This ketone was transformed into the corresponding oxime (49) by reaction with 

hydroxylamine, and further acetylated to give intermediate 50. Later reductive Beckman 

fragmentation and reduction with BH3 finally provided amine 52. 2-(2-Ethoxyethoxy)ethylamine (54) 

was prepared through Mitsunobu reaction of 2-(2-ethoxyethoxy)ethanol and phthalimide, in the 

presence of diisopropylazodicarboxylate (DIAD) and triphenylphosphine, followed by deprotection 

with hydrazine and sodium borohydride. 3-(2-Methoxyethoxy)propyl-1-amine (56) was synthetized 

starting from 2-methoxyethanol, by addition of acrylonitrile in the presence of KOH, followed by 

reduction of the resulting nitrile (55) with BH3. 

Scheme 5. Reagents and conditions: a) NH2OH·HCl, NaOAc, H2O, MeOH, 60 ºC, 24 h, 99%; b) Ac2O, pyridine, 

rt, 16 h, 95%; c) Et3SiH, CF3SO3SiMe3, DCM, 0 ºC, 6 h, 83%; d) BH3, THF, reflux, 3.5 h, 68-89%; e) DIAD, PPh3, 

phthalimide, MeOH, toluene, 0 ºC to rt, o/n, 58%; f) N2H4·H2O, NaBH4, MeOH, rt, o/n, 71%; g) acrylonitrile, KOH, 

HCl, 0 ºC, 1.5 h, 100%. 
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Results and discussion
	

2-(3-Pentyloxetan-3-yl)ethylamine (59) was prepared as shown in Scheme 6. The intermediate 

nitrile 57, obtained by a Wittig reaction between oxetan-3-one and the appropriate phosphorane, was 

reacted with pentylmagnesium bromide in the presence of copper (I). Reduction of the resulting 

product 58 with lithium aluminium hydride (LAH) gave the desired amine 59. 

Scheme 6. Reagents and conditions: a) Ph3P=CHCN, DCM, rt, 6 h, 79%; b) C5H11MgBr, CuI, Et2O, 0 ºC, 2 h, 
26%; c) LAH, Et2O, 0 ºC, 2 h, 59%. 

(4-Ethylpiperazin-1-yl)ethylamine (61) was obtained through formation of nitrile 60 by reaction of 

1-ethylpiperazine and bromoacetonitrile in the presence of K2CO3, followed by reduction with LAH, 

as previously described in the literature (Scheme 7).21 

Scheme 7. Reagents and conditions: a) BrCH2CN, K CO2 3, CH3CN, rt, o/n, 100%; b) LAH, THF, 0 ºC, 4 h, 86%. 

The biological activity of compounds 16-27 was also determined. The obtained results (Table 3) 

show that a decrease in the length of the alkyl chain (compounds 16-18), despite it significantly 

improves cLogP values, involves important reductions in the inhibitory activity of the compounds, 

ranging from 0% to 30% inhibition. Neither the introduction of oxygen atoms in the alkyl chain (19-

22), nor the introduction of the oxetane group (23) allows to keep good inhibition values, compared 

to the 93% inhibition induced by derivative 3 at the same concentration. Finally, replacement of the 

n-octyl chain by cyclopropane, methylcyclopropane, (4-ethylpiperidin-1-yl)ethane or (4-

ethylpiperazin-1-yl)ethane (24-27) also implies an important decrease in the antiproliferative and 

inhibitory activities of the resulting compounds. 
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Results and discussion
	

Table 3. cLogP and biological activity of compounds 3 and 16-27
	

Antiproliferative effect 
(IC50 μM)b ICMT 

Cpd R cLogPa inhibitionb 

MCF7 MDA-MB-231 PC-3 (%, 50 µM) 

3 -(CH2)7CH3 4.11 10 17 23 93 

16 -H 1.92  >50 >50 >50 30 

17 -CH3 0.39 ND ND ND 0 

18 -(CH2)5CH3 2.52  >50 >50 >50 9 

19 -(CH2)3O(CH2)3CH3 2.21  >50 40 >50 14 

20 -(CH2)6OCH3 1.68  >50 >50 >50 30 

21 -(CH2)2O(CH2)2OCH2CH3 0.26  >50 >50 >50 15 

22 -(CH2)3O(CH2)2OCH3 0.26  >50 >50 >50 45 

23 2.90 ND ND ND 0 

0.76 24 29 >50 33 24 

25 1.29 >50 >50 >50 36 

26 2.83 39 >50 >50 13 

0.41 >50 >50 >50 15 27 

aParameter calculated using ACD/Labs Percepta. bData from three independent experiments performed in 
triplicate; the SEM is in all cases within a 10% of the mean value. ND, not determined. 
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Results and discussion
	

Taken together, the data obtained suggest that a long hydrophobic chain attached to the nitrogen 

atom is needed, so we decided to keep the n-octyl chain and continued with the exploration of the 

amide group. 

2.1.3. Influence of the amide group 

Previous experiments carried out in our research group have shown that the amide group present 

in both UCM-1325 and compound 3 is necessary for a good inhibitory activity. However, when we 

studied the metabolic stability of derivative 3 in mouse serum, we observed that it was only moderate, 

with a half-life value (t1/2) of 27 min. Thus, we decided to introduce a methyl substituent in one of the 

amide groups of compound 3 (derivative 28), since it has been described that tertiary amides tend to 

have increased metabolic stabilities. We also replaced the initial amide by a sulfonamide (29) or by 

an oxadiazole heterocyclic ring (30), considering that they have been reported as more stable 

isosteres of the amide group.22 

Compounds 28-30 were obtained as described in Scheme 8, starting from secondary amine 34 

and following a similar approach to the previously described (Scheme 1). 

Scheme 8. Reagents and conditions: a) N-methyl-N-phenylacrylamide (62), DBU, CH3CN, 60 ºC, 24 h, 58%; b) 
N-phenylethylensulfonamide (63), DBU, CH3CN, 60 ºC, 24 h, 12%; c) 2-(chloromethyl)-5-phenyl-1,3,4-
oxadiazole, Et3N, CH3CN, 60 ºC, 24 h, 62%. 
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Results and discussion
	

The reaction of secondary amine 34 with either N-methyl-N-phenylacrylamide (62), N-

phenylethylensulfonamide (63) or 2-(chloromethyl)-5-phenyl-1,3,4-oxadiazole in the presence of  a  

base (DBU or triethylamine), afforded final compounds 28-30. Intermediates 62 and 63 were obtained 

as previously described (Scheme 1). Thus, acrylamide 62 was prepared using N-methylaniline and 

acryloyl chloride as starting materials, whereas sulfonamide 63 was obtained from aniline and 2-

chloroethanesulfonyl chloride. 

The biological evaluation of compounds 28-30 as ICMT inhibitors and antiproliferative agents in 

the selected panel of cancer cell lines, suggested that none of these modifications in the amide group 

improved the inhibitory capacity of the resulting derivatives in comparison to the reference compound 

3, as can be observed in Table 4.  

Table 4. Biological activity of compounds 3 and 28-30a 

Cpd 

3 

X 

NHCO 

Antiproliferative effect (IC50 μM) 

MCF7 MDA-MB-231 PC-3 

10 17 23 

ICMT 
Inhibition 
(%, 50 μM) 

93 

28 NCH3CO 6  7 8 68 

29 NHSO2 30  34  25  22 

30 >50  >50  >50  13 

aData from three independent experiments performed in triplicate; the SEM is in all cases within a 10% of the 
mean value. 

Taken together the inhibitory capacity, the antiproliferative effect, and the pharmacokinetic 

parameters of this derivative, compound 3 (UCM-1336) deserves special attention as a structurally 

new inhibitor of the ICMT enzyme that could be a promising lead for anticancer treatment, so it was 

selected for its further biological characterization.  
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Results and discussion
	

In order to compare the biological results obtained with compound 3, we decided to use 2-[5-(3-

methylphenyl)-1-octyl-1H-indol-3-yl]acetamide (cysmethynil) as a positive control for ICMT inhibition. 

The synthesis of cysmethynil was carried out following the route previously described in the literature 

(Scheme 9).16 

Scheme 9. Reagents and conditions: a) CH2O, (CH3)2NH, 1,4-dioxane, AcOH, H2O, 0 ºC to rt, o/n, 83%; b) 

KCN, (CH3)2SO4, THF, 10 ºC to 60 ºC, 2h, 95%; c) KOH, t-BuOH, reflux, 1.5 h, 74%; d) m-tolylboronic acid, 

Pd(PPh3)4, NaHCO3, toluene, EtOH, reflux, o/n, 23%; e) NaH , Br(CH2)7CH3, DMF, 55 ºC, o/n, 43%. 

Hence, we analyzed the ICMT inhibitory capacity and antiproliferative effect of compound 3 in 

comparison to the already validated ICMT inhibitor cysmethynil. As can be observed in Table 5, the 

values obtained with compound 3 (UCM-1336) were very similar or even better than those of 

cysmethynil, reinforcing the potential of compound 3 as an ICMT inhibitor.  

Table 5. Biological activity of cysmethynil (CYSM) and compound 3 (UCM-1336)a 

Cpd 
Antiproliferative effect (IC50, μM) 
MCF7 MDA-MB-231 PC-3 

ICMT inhibition at 
50 μM (%) 

IC50 values of 
ICMT inhibition 

CYSM 24 24 23 90 2.4 µM 

3 (UCM-1336) 10 17 22 93 2 µM 

aData from three independent experiments performed in triplicate; SEM is in all cases within a 10% of the mean 
value. 
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Results and discussion
	

2.2. Biological evaluation of compound 3 (UCM-1336) 

Validation of the new lead 3 (UCM-1336) as an ICMT inhibitor required not only to check that it 

effectively blocked the enzyme activity, but also to demonstrate its significant in vivo efficacy in cancer 

cell lines through the blockade of the activity of downstream Ras protein. In order to confirm the 

mechanism of action of this compound and the relevance of ICMT inhibition for Ras inactivation, we 

assessed whether UCM-1336 affects specifically tumor cell lines characterized by oncogenic Ras 

activity, enhances programmed cell death, induces mislocalization of Ras protein, inactivates all Ras 

isoforms, blocks the downstream signaling pathways, and impairs cell migration.  

2.2.1. Determination of cytotoxicity in a panel of cancer cell lines 

First, we established the antiproliferative activity of UCM-1336 using the MTT assay. The panel 

of cells was chosen to include multiple examples of cell lines that express wild-type or oncogenic 

mutant K-Ras, which was selected for being the most frequently mutated Ras isoform in cancer. It is 

remarkable that regardless of the origin of the tumor, UCM-1336 inhibited the proliferation of cells 

expressing oncogenic mutant K-Ras (breast cancer MDA-MB-231 cells, pancreatic cancer MIA 

PaCa-2 and PANC-1 cells, and colon cancer SW620 cells) more potently than cells expressing wild-

type K-Ras (pancreatic cancer BxPC-3 cells, breast cancer MCF7 cells, prostate cancer PC-3 cells, 

and melanoma SK-Mel-28 cells), as can be observed in Table 6. Interestingly, UCM-1336 did not 

induce significant cytotoxic effects at concentrations up to 100 µM in non tumoral cell lines such as 

NIH3T3 and 142BR fibroblasts, suggesting that the mechanism of action of the compound is specific 

for cancer cell lines.  

Table 6. Cytotoxicity of UCM-1336 in a panel of cancer cell lines 

Mutant K-Rasa Wild-type K-Rasb 

Cell Line IC50c (µM) Cell Line IC50c (µM) 

MDA-MB-231 10 MCF7 17 

MIA PaCa-2 2 BxPC-3 > 50 

PANC-1 7 PC-3 23 

SW620 3 SK-Mel-28 15 

aMutant K-Ras and wild-type H- and N-Ras; bwild-type H,K,N-Ras [Ras status according to the Catalog of 
Somatic Mutations in Cancer (Wellcome Trust Sanger Institute)]; call errors are less than 10%. 
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Results and discussion
	

2.2.2. Induction of autophagy and apoptosis 

An important property of anticancer agents is the ability to induce cell death, and many current 

antitumoral drugs enhance either autophagy (eg. tamoxifen) or apoptosis (eg. rapamycin) in cancer 

cells.23,24 Besides, it has been recently reported that both knockdown of ICMT and treatment of cells 

with cysmethynil increase protein levels and aggregation of microtubule-associated protein light chain 

3 (LC-3) into vesicular structures characteristic of autophagosomes; as well as elevation of cleaved 

poly(ADP-ribose) polymerase (cPARP) levels and caspase 3 activity, suggesting that the inhibition 

of ICMT promotes both autophagy and apoptosis in cancer cell lines.17,25 Hence, we studied the cell 

death mechanism of action of UCM-1336.  

Autophagy was assessed by determining the vesicular accumulation of LC-3, using a fusion 

protein with mCherry in a live cell imaging assay. To do so, we chose two different cell lines: human 

embryonic kidney AD-293 cells, as they are easily transfected and were hence selected as our model 

for transient transfections; and osteosarcoma U2OS cells, as they have been described in the 

literature as a model of cells that use autophagy as a protective mechanism to survive treatment with 

antineoplasic drugs such as doxorubicin.26 Our results show that both UCM-1336 and cysmethynil 

used at 5 µM cause a dramatic increase in total abundance of LC-3, which also aggregates into 

vesicular structures characteristic of autophagosome formation in AD-293 cells and in U2OS cells 

(Figure 6A). Noteworthy, the observed effect was greater for treatment with UCM-1336 than for 

cysmethynil. This was further supported by immunoblot analysis of LC-3, which showed a significant 

elevation of this protein in PC-3 cells treated with 10 µM UCM-1336 or 25 µM cysmethynil, included 

as a positive control (Figure 6B). 

Apoptosis was assessed by measurement of caspase 3 activation using a colorimetric assay, and 

by the appearance of cPARP through immunoblot analysis (Figure 6C and D). Caspases are cysteine 

aspartyl proteases that serve as the central engine of apoptosis. In particular, caspase 3 is used as 

a control of the overall levels of apoptosis, as it is activated both by extrinsic and intrinsic pathways.27 

PC-3 cells were incubated in the presence of 10 µM UCM-1336 or 25 µM cysmethynil. Our results 

showed that exposure of cells to either UCM-1336 or cysmethynil increased caspase 3 activity in a 

4-5 fold (Figure 6C). In addition, caspase 3 is responsible, either wholly or partially, for the proteolytic 

cleavage of a large number of substrates during apoptosis, including PARP -a family of proteins 

involved in DNA repair and programmed cell death-,27 so we confirmed the previous results by 

measuring the levels of cPARP in cells treated with UCM-1336. Immunoblot analysis showed the 

appearance of cPARP after 48 h in UCM-1336 or cysmethynil exposed cells (Figure 6D), whose 

levels revealed a 4-8 fold increase. These data provide clear evidence that UCM-1336 treatment 

induces both apoptosis and autophagy. 
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Results and discussion
	

Figure 6. Treatment with UCM-1336 induces autophagy and apoptosis in cancer cells. (A) Confocal images of 
live AD-293 (upper) and U2OS (lower) cells transiently transfected with mChery-LC-3 plasmid and treated 

overnight with vehicle (DMSO), 5 M cysmethynil (CYSM) or 5 M UCM-1336 (UCM). Images were taken using 
an inverted Zeiss LSM 510 Meta laser scanning confocal microscope and are representative of two independent 
transfections performed in triplicate. Bars, 10 µm. (B) Representative immunoblot analysis of LC-3. PC-3 cells 

were treated with either vehicle (DMSO), 25 M cysmethynil (CYSM) or 10 M UCM-1336 (UCM) for 48 h. The 
bar graphs represent the optical density of the LC-3 protein normalised to the tubulin (loading control), and 
expressed as the percentage relative to DMSO. (C) Caspase 3 activity induction. PC-3 cells were treated for 48 
h with vehicle (DMSO), 25 M cysmethynil (CYSM) or 10 M UCM-1336 (UCM) before being harvested and 
lysed. Lysates were assayed for caspase 3 activity and results are presented as the percentage relative to 
DMSO. (D) Representative immunoblot analysis of cPARP. PC-3 cells were treated with either vehicle (DMSO), 
25 M cysmethynil (CYSM) or 10 M UCM-1336 (UCM) for 48 h. cPARP protein was quantified as the indication 
for the level of apoptosis and tubulin protein was used as loading control. In all cases, data correspond to the 
average ± SEM of three independent experiments performed in triplicate. **, P<0.01; ***, P<0.001 vs DMSO 
treated cells (Student’s t test). 
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Results and discussion
	

2.2.3. Mislocalization of endogenous Ras in PC-3 cells 

Then, we determined whether inhibition of ICMT leads to Ras mislocalization in tumor cells. PC-

3 cells were incubated with increasing concentrations of compound UCM-1336 or cysmethynil for 96 

h. This time frame was chosen to allow trafficking of newly synthesized Ras proteins and turnover of 

Ras proteins that were already present when treatments started. As expected, in the absence of 

compounds, Ras was localized along the plasma membrane (Figure 7, 0 µM). In contrast, a large 

fraction of Ras in the UCM-1336 or cysmethynil treated cells was trapped within the cytoplasm, and 

fluorescence at the plasma membrane was reduced (Figure 7, 1-25 µM). Remarkably, this effect was 

higher for UCM-1336 than for cysmethynil at the same concentration, and increased in a dose-

dependent manner. These data are consistent with previous observations of Ras mislocalization 

caused by knockout of ICMT28 and by the ICMT inhibitor cysmethynil.16 

UCM (μM) 0 1 5 10 25 

CYSM (μM) 0 1 5  10 25 

Figure 7. Compound UCM-1336 induces Ras mislocalization from the cellular membrane (far-left image) to 
intracellular locations in PC-3 cells in a dose-dependent manner. The observed effect is higher for UCM-1336 
than for cysmethynil at the same concentration. Immunofluorescence images show Ras in green stained using 
an anti-Ras primary antibody followed by the appropriate secondary FITC-labelled antibody. Nuclei (in blue) 
were stained with Hoechst 33258. Images were obtained in a Leica confocal microscope under the same 
conditions and are representative of three to five independent experiments. Bars, 30 µm. 
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Results and discussion
	

2.2.4. Mislocalization of the four isoforms of Ras 

There are three ras genes in mammals: hras, kras, and nras, but through alternative splicing of 

exon 4, the kras gene gives rise to two isoforms: K-Ras4A and K-Ras4B.1 To determine whether the 

observed effects of UCM-1336 on the localization of Ras affected equally all isoforms, we used 

confocal live cell fluorescent imaging of AD-293 cells transfected with the four Ras isoforms tagged 

with green fluorescent protein (GFP).  

DMSO CYSM UCM 

H-Ras-GFP 

N-Ras-GFP 

K-Ras4A-GFP 

K-Ras4B-GFP 

Figure 8. UCM-1336 impairs plasma localization of the four Ras isoforms in live cells. Confocal images of live 
AD-293 cells that had been transiently transfected with H-Ras, K-Ras4A, K-Ras4B, and N-Ras GFP fusion 
plasmids, and treated overnight with vehicle (DMSO), 5 µM cysmethynil (CYSM), or 5 µM UCM-1336 (UCM). 
Live cells were imaged with an inverted Zeiss LSM 510 Meta laser scanning confocal microscope. Similar results 
were obtained with three independent transfections performed in triplicate. Bars, 10 µm. 
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Results and discussion
	

Transfected cells were treated overnight with 5 µM cysmethynil or UCM-1336, or with DMSO. 

While the vehicle-treated cells showed a predominant localization of Ras in the plasma membrane, 

all four isoforms of Ras were substantially mislocalized to the cytosolic region after treatment with 

UCM-1336 (Figure 8). Furthermore, this effect was more significant for UCM-1336 than for 

cysmethynil, included for comparison, at the same concentration. 

2.2.5. Study of the specificity of the mechanism of action of UCM-1336 

To confirm that the effect of mislocalization of the Ras isoforms is due to ICMT inhibition, and not 

to any other unspecific mechanism, we performed two additional sets of tranfections: with Fyn protein, 

to discard potential detergent-like effects; and with a geranylgeranylated K-Ras, to confirm that the 

mislocalization of Ras is not caused by inhibition of any other upstream enzyme rather than ICMT.  

As a control to discard any possible nonspecific detergent-like effects of the compounds, cells 

were transfected with GFP-tagged Fyn, a member of the Src family of tyrosine protein kinases that 

targets the plasma membrane after myristoylation and palmitoylation, but which is not processed by 

ICMT (Figure 9). In this case, neither UCM-1336 nor cysmethynil affected the localization pattern of 

Fyn. 

Fyn-GFP 

DMSO CYSM UCM 

Figure 9. UCM-1336 does not affect Fyn localization. To discard any possible nonspecific detergent-like effects, 
AD-293 cells were transfected with GFP-tagged Fyn, which is not processed by ICMT, and treated overnight 
with vehicle (DMSO), 5 µM cysmethynil (CYSM), or 5 µM UCM-1336 (UCM). After treatments, GFP-tagged Fyn 
showed the same localization pattern in all cases. Live cells were imaged with an inverted Zeiss LSM 510 Meta 
laser scanning confocal microscope. Similar results were obtained with three independent transfections 
performed in triplicate. Bars, 10 µm. 

Furthermore, it has been previously demonstrated that CAAX proteolysis and carboxyl 

methylation by ICMT are required only for previously farnesylated Ras proteins to proper localize in 

the plasma membrane, but not for geranylgeranylated proteins. The substrate specificity for FTase 

versus GGTase I is determined by the residue in the X position of the CAAX motif: S and M specifies 

farnesylation whereas L specifies geranylgeranylation.29 Using a GFP-tagged K-Ras4B protein with 
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Results and discussion
	

a CAAX motif point mutation expected to switch the chain length of the isoprenyl modification 

(farnesylation for geranylgeranylation), we studied the effect of derivative UCM-1336 on its cellular 

localization. Geranylgeranylated K-Ras4B (K-Ras4B-CVIL-GFP) localized in the plasma membrane 

of AD-293 cells with an indistinguishable pattern in both vehicle and compound treated cells, whereas 

farnesylated K-Ras4B-GFP was mislocalized to the cytosol in the presence of compound UCM-1336 

(Figure 10). This further confirmed the specific effect of UCM-1336 on farnesylated GTPases through 

inhibition of ICMT, as geranylgeranylated Ras should not be affected by an ICMT inhibition.  

DMSO CYSM UCM 

K-Ras4B-GFP 

K-Ras4B-CVIL-GFP 

Figure 10. UCM-1336 affects the membrane association of farnesylated K-Ras, but not geranylgeranylated K-
Ras. Confocal images of live AD-293 cells transiently transfected with a GFP-tagged K-Ras4B plasmid with a 
CAAX motif point mutation that switches farnesylation for geranylgeranylation, or with wild-type K-Ras4B-GFP. 
Geranylgeranylated K-Ras4B (K-Ras4B-CVIL-GFP) localizes in the plasma membrane with an indistinguishable 
pattern in both vehicle and compound treated cells, whereas farnesylated K-Ras4B-GFP mislocalizes to the 
cytosol in the presence of cysmethynil or compound UCM-1336. Live cells were imaged with an inverted Zeiss 
LSM 510 Meta laser scanning confocal microscope. Images are representative of two to three independent 
experiments performed in triplicate. Bars, 10 µm. 

These results supported the specificity of the mechanism of action of UCM-1336 through inhibition 

of signaling pathways upstream of Ras. 
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Results and discussion
	

2.2.6. Study of the activation status of Ras

 As Ras signaling is dependent on membrane association, we next explored the ability of our 

compound to prevent Ras activation, by analysing the GTP loading capacity of Ras using a pulldown 

assay, and studying its effects on the activation of the downstream MAP kinase pathways. Figure 

11A shows that UCM-1336 at 10 µM significantly reduces pan-Ras GTP loading to a greater extent 

than treatment with 25 µM cysmethynil. This reduction in Ras activation correlates closely with a 

concomitant reduction in the phosphorylation of MEK/ERK and PI3K/AKT signaling pathways (Figure 

11B). After activation of PC-3 cells with epidermal growth factor (EGF), the phosphorylated levels of 

MEK1/2 (p-MEK1/2), ERK1/2 (p-ERK1/2), and AKT (p-AKT) were decreased in cells treated with 10 

μM UCM-1336, and this reduction was greater than the one produced by 25 µM cysmethynil. 

A B 
kDa 

Figure 11. Compound UCM-1336 significantly reduces the Ras-GTP (active form) levels and its downstream 

MEK/ERK and PI3K/AKT signaling pathways. (A) Ras-GTP complex from PC-3 cells treated with DMSO, 25 M 
cysmethynil or 10 µM UCM-1336 were immunoprecipitated and visualized by western blot. The bar graph shows 
the ratio Ras-GTP/total Ras, expressed as percentage relative to DMSO. (B) Representative western blots of 
phosphorylated MEK1/2 (p-MEK1/2) and total MEK1/2 (T-MEK1/2), phosphorylated ERK1/2 (p-ERK1/2) and 
total ERK1/2 (T-ERK1/2), and phosphorylated AKT (p-AKT) and total AKT (T-AKT). Lysates were obtained from 

PC-3 cells treated with DMSO, 25 M cysmethynil (CYSM) or 10 M UCM-1336 (UCM). The bar graphs 
represent the optical density of the immunoreactive phosphorylated protein normalised to the total corresponding 
protein, and expressed as the percentage relative to DMSO. White bars, DMSO; grey bars, 25 M cysmethynil; 

black bars, 10 M UCM-1336. In all cases, data correspond to the average ± SEM of three to five independent 
experiments. ns, not significant; *, P<0.05; **, P<0.01 vs DMSO (Student’s t test). 
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Results and discussion
	

2.2.7. Study of the impairment of cellular migration 

Importantly, inhibition of Ras signaling pathways by compound UCM-1336 was accompanied by 

a reduced invasive phenotype as measured by in vitro wound-healing assays, where MDA-MB-231 

cells expressing oncogenic mutant K-Ras treated with UCM-1336 or cysmethynil showed a 

significantly reduced capacity for wound closing at 48 h, which decreased in a dose-dependent 

manner and was much higher in cells treated with UCM-1336 than in those treated with the same 

concentrations of cysmethynil (Figure 12). However, the number of viable cells remained similar to 

the vehicle-treated cells (data not shown), meaning that the inhibition of cell migration was not simply 

due to a cytotoxic effect caused by the compound. 
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Figure 12. Compound UCM-1336 significantly impairs cellular migration in a dose-dependent manner. (A) After 
wound scratching, MDA-MB-231 cells were treated with vehicle or different concentrations of cysmethynil 
(CYSM) or UCM-1336 (UCM), and after 48 h cells were visualized under the microscope. The percentage of the 
remaining wound area was quantified and expressed as percentage of initial wound area. The bar graph 
represents the average ± SEM of at least three independent experiments performed in triplicate and three 
different fields. ns, not significant; *, P<0.05; **, P<0.01; ***, P<0.001 (vs DMSO treated cells at 48 h) (Student’s 
t test). (B) Representative images of at least three independent experiments performed in triplicate, taken at 
time 0 h and after 48 h of treatment with vehicle (DMSO), 10 M cysmethynil (CYSM) or 10 M UCM-1336 

(UCM), under phase contrast with an Olympus FW1200 microscope. Bars, 250 m. 
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Results and discussion
	

The main effects of the activation of the Ras pathway include the induction of proliferation, 

migration, and antiapoptotic signals; so its inhibition should lead to an arrest of all these processes, 

and consequently, of tumor growth. All these promising results have prompted us to study the in vivo 

efficacy of compound UCM-1336 in a xenograft mouse model of pancreatic cancer, experiments that 

are currently ongoing in our laboratory.  
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3. CONCLUSIONS 

In this work we have started the lead optimization process of UCM-1325 (54% inhibition of ICMT 

at 50 μM) that has led us to the new compound UCM-1336 (3), which showed an ICMT inhibition of 

93% at 50 μM (IC50 = 2 μM), hence being selected for in depth biological studies and characterization 

of its mechanism of action. This new compound enhances programmed cell death, affecting specially 

those cell lines expressing oncogenic mutant K-Ras; and induces mislocalization of all Ras isoforms. 

Besides, UCM-1336 (3) significantly reduces Ras activity, blocks the activation of the downstream 

MEK/ERK and PI3K/AKT signaling pathways, and impairs the migratory capacity of tumor cells. 

Noteworthy, UCM-1336 (3) has shown to be more potent than cysmethynil in all performed assays, 

suggesting that it could work as a new ICMT inhibitor that would help to definitively validate this 

enzyme from a mechanistic standpoint as a therapeutic target of interest for the treatment of cancers 

characterized by high Ras overactivation, a current unmet clinical need. All these promising results 

have prompted us to study the in vivo efficacy of compound UCM-1336 in a xenograft mouse model 

of pancreatic cancer, experiments that are currently ongoing. 
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4. EXPERIMENTAL SECTION 

4.1. Chemistry 

Unless stated otherwise, starting materials, reagents and solvents were purchased as high-grade 

commercial products from Sigma-Aldrich, Acros, Fluorochem, Abcr, Scharlab or Panreac, and were 

used without further purification. Dichloromethane (DCM) and tetrahydrofuran (THF) were dried using 

a Pure Solv™ Micro 100 Liter solvent purification system. All non-aqueous reactions were carried out 

under an argon atmosphere in oven-dried glassware. Chromatography was performed on glass 

column using silica gel type 60 (Merck, particle 230-400 mesh) or using a VARIAN 971-FP system 

with cartridges of silica gel (Varian, size particle 50 μm). Analytical thin-layer chromatography (TLC) 

was run on Merck silica gel plates (Kieselgel 60 F-254) with detection by UV light (254 nm), ninhydrin 

solution, or 10% phosphomolybdic acid solution in ethanol. Melting points (mp, uncorrected) were 

determined on a Stuart Scientific electrothermal apparatus. Infrared (IR) spectra were measured on 

a Shimadzu-8300 or Bruker Tensor 27 instrument equipped with a Specac ATR accessory of 5200-

650 cm-1 transmission range; frequencies () are expressed in cm-1. Nuclear Magnetic Resonance 

(NMR) spectra were recorded on a Bruker Avance 300-AM (1H, 300 MHz; 13C, 75 MHz) at the UCM’s 

NMR facilities. Chemical shifts () are expressed in parts per million relative to internal 

tetramethylsilane; coupling constants (J) are in hertz (Hz). The following abbreviations are used to 

describe peak patterns when appropriate: app (apparent), s (singlet), d (doublet), t (triplet), q 

(quartet), qt (quintet), m (multiplet), br (broad), dd (doublet of doublets), ddd (doublet of doublets of 

doublets), tt (triplet of triplets). 2D NMR experiments (HMQC and HMBC) of representative 

compounds were carried out to assign protons and carbons of the new structures. Elemental 

analyses (C, H, N) were obtained on a LECO CHNS-932 apparatus at the UCM’s analysis services 

and were within 0.4% of the theoretical values. High Performance Liquid Chromatography-Mass 

Spectrometry (HPLC-MS) analysis was performed using an Agilent 1200LC-MSD VL. LC separation 

was achieved with an Eclipse XDB-C18 column (5 µm, 4.6 mm x 150 mm) together with a guard 

column (5 µm, 4.6 mm x 12.5 mm). The gradient mobile phases consisted of A (95:5 water/MeOH) 

and B (5:95 water/MeOH) with 0.1% ammonium hydroxide and 0.1% formic acid as the solvent 
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Experimental section
	

modifiers. MS analysis was performed with an ESI source. The capillary voltage was set to 3.0 kV 

and the fragmentor voltage was set at 70 eV. The drying gas temperature was 350 ºC, the drying gas 

flow was 10 L/min, and the nebulizer pressure was 20 psi. Spectra were acquired in positive or 

negative ionization mode from 100 to 1000 m/z and in UV-mode at four different wavelengths (210, 

230, 254, and 280 nm). High resolution mass spectrometry (HRMS) was carried out on a FTMS 

Bruker APEX Q IV (UCM) spectrometer in electrospray ionization (ESI) mode at UCM’s spectrometry 

facilities. Spectroscopic data of all described compounds were consistent with the proposed 

structures. Satisfactory HPLC chromatograms and elemental analyses (C, H, N) were obtained for 

the final compounds, confirming a purity of at least 95% for all tested compounds.  

4.1.1. Synthesis of asymmetric diamides 1, 2, 4-15 and 28-30 

Synthesis of tert-butyl 4-[(dimethylamino)carbonyl]phenylcarbamate (35).30 To a solution of 

4-(Boc-amino)benzoic acid (261 mg, 1.1 mmol), dimethylamine hydrochloride (269 mg, 3.3 mmol) 

and TBTU (459 mg, 1.4 mmol) in DMF (1.3 mL) was added, under argon atmosphere, triethylamine 

(0.92 mL, 6.6 mmol) and the reaction mixture was stirred for 2 h at rt. Then, the reaction crude was 

washed with H2O (10 mL) and extracted with EtOAc (3 x 10 mL). The organic phase was dried over 

Na2SO4 and the solvent was evaporated under reduced pressure to obtain the title compound as an 

oil in 75% yield. Chromatography: hexane/EtOAc, 3:7; oil. Rf (EtOAc) 0.56. IR (ATR) 3256 (NH), 

1725, 1612 (CO), 1535, 1494, 1454 (Ar). 1H NMR (300 MHz, CD3OD) Mixture of rotamers A:B 1:1; 

1.52 (s, 9H, 3CH3C), 3.05, 3.07 (2br s, 6H, 2CH3N, rotamers A and B), 7.35 (d, J = 8.7 Hz, 2H, H3, 

H5), 7.49 (d, J = 8.6 Hz, 2H, H2, H6). 13C NMR (75 MHz, CD3OD) 28.6 (3CH3), 35.8, 40.2 (2CH3), 

81.2 (C), 119.0 (2CH), 129.1 (2CH), 130.7, 142.6, 154.9, 173.7 (4C). MS (ESI): [(M+H)+] 265.1. 

Synthesis of 4-amino-N,N-dimethylbenzamide (36). A solution of 35 (216 mg, 0.8 mmol) in 

TFA/DCM 1:1 (8.7 mL) was stirred 1 h at rt under argon atmosphere. The reaction crude was washed 

with saturated solutions of NaHCO3 (2 x 10 mL) and NaCl (10 mL); dried over Na2SO4 and the solvent 

was evaporated under reduced pressure to obtain the title compound as a white solid in 93% yield. 

Chromatography: EtOAc. Mp 147-148 ºC (Lit.31 151-154 ºC) . Rf (EtOAc) 0.35. IR (ATR) 3462, 3344 

(NH), 1604 (CO), 1525, 1490, 1444 (Ar). 1H NMR (300 MHz, CD3OD) 3.06 (s, 6H, 2CH3N), 6.69 (d, 
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J = 8.6 Hz, 2H, H3, H5), 7.22 (d, J = 8.6 Hz, 2H, H2, H6). MS (ESI): [(M+H)+] 165.1. The spectroscopic 

data are in agreement with those previously described.32 

General procedure for the synthesis of pyridinylacrylamides 31 and 32.33 A solution of the 

corresponding amine (1 equiv.) and triethylamine (1 equiv.) in anhydrous DCM (9 mL/mmol) was 

stirred, under argon atmosphere and at -78 ºC, for 10 min. Then was added dropwise the acryloyl 

chloride (1 equiv.). The mixture was stirred for 3 h, warming it up to 0 ºC, and the solvent was removed 

under reduced pressure.  

N-Pyridin-2-ylacrylamide (31). Obtained following the general procedure for the synthesis of 

pyridinylacrylamides from acryloyl chloride (0.22 mL, 2.8 mmol) and 2-aminopyridine (260 mg, 2.8 

mmol) in 68% yield. Chromatography: EtOAc. Mp 66-68 ºC (Lit.33 71 ºC). Rf (hexane/EtOAc, 1:1) 

0.44. 1H NMR (300 MHz, CDCl3) 5.84 (dd, J = 10.2, 1.2 Hz, 1H, 1/2CH2), 6.28 (dd, J = 16.9, 10.2 

Hz, 1H, CHCO), 6.48 (dd, J = 16.9, 1.1 Hz, 1H, 1/2CH2), 7.08 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H, H5), 7.75 

(td, J = 7.9, 1.9 Hz, 1H, H4), 8.23 (br s, 1H, NH), 8.28-8.34 (m, 2H, H3, H6). MS (ESI): [(M+H)+] 149.0. 

The spectroscopic data are in agreement with those previously described.33 

N-Pyridin-3-ylacrylamide (32). Obtained following the general procedure for the synthesis of 

pyridinylacrylamides from acryloyl chloride (0.45 mL, 5.5 mmol) and 3-aminopyridine (520 mg, 5.5 

mmol) in 57% yield. Chromatography: EtOAc/MeOH, 9:1. Mp 121-123 ºC  (Lit.33 118-121 ºC). Rf 

(hexane/EtOAc, 1:1) 0.25. 1H NMR (300 MHz, CDCl3) 5.84 (dd, J = 10.1, 1.2 Hz, 1H, 1/2CH2), 6.29 

(dd, J = 16.9, 10.2 Hz, 1H, 1/2CH2), 6.49 (dd, J = 16.8, 1.2 Hz, 1H, CHCO), 7.31 (dd, J = 8.3, 4.8 Hz, 

1H, H5), 7.59 (br s, 1H, NH), 8.28 (d, J = 9.4 Hz, 1H, H4), 8.38 (dd, J = 4.7, 1.3 Hz, 1H, H6), 8.61 (d, 

J = 2.5 Hz, 1H, H2). MS (ESI): [(M+H)+] 148.9. The spectroscopic data are in agreement with those 

previously described.33 
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General procedure for the synthesis of phenylacrylamides 33, 37-47 and 62-63. To a solution 

of the corresponding aniline (1 equiv) in anhidrous DCM (2 mL/mmol) was added, under argon 

atmosphere and at 0 ºC, acryloyl chloride (1.1 equiv) and pyridine (1.1 equiv), consecutively. Then, 

the reaction mixture was stirred 2 h at rt. In the case of N-[4-(acetylamino)phenyl]acrylamide (43), 

triethylamine was used as the base, THF with the minimum volume required of DMF as the solvent, 

and the reaction was stirred overnight at rt. For the synthesis of N-phenylethylensulfonamide (63), 2-

chloroethanesulfanoyl chloride was added instead of acryloyl chloride, anhydrous acetone was used 

as the solvent, and the reaction was stirred overnight at 0 ºC. In all cases, the reaction crude was 

washed with saturated solutions of NaHCO3, CuSO4 (when pyridine was used) and NaCl; dried over 

Na2SO4, and the solvent was evaporated under reduced pressure to afford title compounds as white 

solids. In some cases, the solid was purified by column chromatography (hexane/EtOAc). 

N-Phenylacrylamide (33). Obtained following the general procedure for the synthesis of 

phenylacrylamides from aniline (0.98 mL, 10.7 mmol) and acryloyl chloride (0.95 mL, 11.8 mmol) in 

84% yield. Chromatography: hexane/EtOAc, 7:3. Mp 107-108 ºC (Lit.34 105-106 ºC). Rf 

(hexane/EtOAc, 7:3) 0.39. 1H NMR (300 MHz, CDCl3) 5.71 (dd, J = 9.6, 2.0 Hz, 1H, 1/2CH2), 6.31 

(dd, J = 16.9, 9.7 Hz, 1H, CHCO), 6.42 (dd, J = 16.9, 1.9 Hz, 1H, 1/2CH2), 7.10 (t, J = 7.4 Hz, 1H, 

H4), 7.30 (t, J = 7.9 Hz, 2H, H3, H5), 7.60 (d, J = 7.9 Hz, 2H, H2, H6), 8.16 (br s, 1H, NH). MS (ESI): 

[(M+H)+] 147.9. The spectroscopic data are in agreement with those previously described.35 

N-(2-Fluorophenyl)acrylamide (37).36 Obtained following the general procedure for the 

synthesis of phenylacrylamides from 2-fluoroaniline (0.5 mL, 5.2 mmol) and acryloyl chloride (0.46 

mL, 5.8 mmol) in 87% yield. Mp 102-103 ºC. Rf (hexane/EtOAc, 7:3) 0.53. IR (ATR) 3276, 3209 

(NH), 1669 (CO), 1616, 1547, 1490 (Ar). 1H NMR (300 MHz, CDCl3) 5.80 (dd, J = 10.0, 1.4 Hz, 1H, 

1/2CH2), 6.30 (dd, J = 16.9, 10.1 Hz, 1H, CHCO), 6.45 (dd, J = 16.9, 1.4 Hz, 1H, 1/2CH2), 7.02-7.17 

(m, 3H, H3, H4, H6), 7.54 (br s, 1H, NH), 8.40 (t, J = 7.6 Hz, 1H, H5). 13C NMR (75 MHz, CDCl3) 114.9 
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(d, J = 19.2 Hz, CH), 122.0 (CH), 124.7 (d, J = 13.5 Hz, CH), 124.8 (d, J = 8.8 Hz, CH), 126.4 (d, J = 

10.0 Hz, C), 128.5 (CH2), 131.0 (CH), 152.6 (d, J = 244.7 Hz, C), 163.6 (C). 19F NMR (282 MHz, 

CDCl3)  -131.9. MS (ESI): [(M+H)+] 166.1. 

N-(3-Fluorophenyl)acrylamide (38). Obtained following the general procedure for the synthesis 

of phenylacrylamides from 3-fluoroaniline (0.5 mL, 5.2 mmol) and acryloyl chloride (0.46 mL, 5.8 

mmol) in 70% yield. Mp 119-120 ºC (Lit.36 125-126 ºC). Rf (hexane/EtOAc, 7:3) 0.51. 1H NMR (300 

MHz, CDCl3)  5.79 (dd, J = 10.1, 1.3 Hz, 1H, 1/2CH2), 6.27 (dd, J = 16.9, 10.1 Hz, 1H, CHCO), 6.45 

(dd, J = 16.8, 1.3 Hz, 1H, 1/2CH2), 6.79-6.86 (m, 1H, H4), 7.20-7.30 (m, 2H, H5, H6), 7.56 (d, J = 10.9 

Hz, 1H, H2), 7.70 (br s, 1H, NH). MS (ESI): [(M+H)+] 166.1. The spectroscopic data are in agreement 

with those previously described.36 

N-(4-Fluorophenyl)acrylamide (39). Obtained following the general procedure for the synthesis 

of phenylacrylamides from 4-fluoroaniline (0.22 mL, 2 mmol) and acryloyl chloride (0.18 mL, 2.2 

mmol) in 35% yield. Mp 152-153 ºC. Rf (hexane/EtOAc, 7:3) 0.41. 1H NMR (300 MHz, CDCl3)  5.80 

(dd, J = 10.2, 1.3 Hz, 1H, 1/2CH2), 6.24 (dd, J = 16.8, 10.2 Hz, 1H, CHCO), 6.46 (dd, J = 16.8, 1.3 

Hz, 1H, 1/2CH2), 7.05 (t, J = 8.7 Hz, 2H, H3, H5), 7.24 (br s, 1H, NH), 7.53-7.58 (m, 2H, H2, H6). MS 

(ESI): [(M+H)+] 166.0. The spectroscopic data are in agreement with those previously described.37 

N-[2-(Trifluoromethyl)phenyl]acrylamide (40). Obtained following the general procedure for the 

synthesis of phenylacrylamides from 2-(trifluoromethyl)aniline (0.5 mL, 3.9 mmol) and acryloyl 
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chloride (0.35 mL, 4.3 mmol) in 62% yield. Chromatography: hexane/EtOAc, 7:3. Mp 115-116 ºC. Rf 

(hexane/EtOAc, 7:3) 0.39. IR (ATR) 3275 (NH), 1664 (CO), 1634, 1613, 1591, 1534 (Ar). 1H NMR 

(300 MHz, CDCl3) 5.82 (dd, J = 10.1, 1.2 Hz, 1H, 1/2CH2), 6.29 (dd, J = 16.9, 10.0 Hz, 1H, CHCO), 

6.44 (dd, J = 16.9 Hz, 1.2 Hz, 1H, 1/2CH2), 7.25 (t, J = 7.7 Hz, 1H, H3), 7.56 (t, J = 7.8 Hz, 1H, H4), 

7.61 (d, J = 7.9 Hz, 1H, H5), 7.67 (br s, 1H, NH), 8.24 (d, J = 7.9 Hz, 1H, H6). 13C NMR (75 MHz, 

CDCl3)  120.3 (q, J = 28.9 Hz, C), 124.2 (q, J = 273.2 Hz, C), 124.5, 124.8 (2CH), 126.2 (q, J = 5.4 

Hz, CH), 128.6 (CH2), 131.1, 133.1 (2CH), 135.2, 163.7 (2C). 19F NMR (282 MHz, CDCl3)  -60.8. 

MS (ESI): [(M+H)+] 216.0. 

N-[3-(Trifluoromethyl)phenyl]acrylamide (41).37 Obtained following the general procedure for 

the synthesis of phenylacrylamides from 3-(trifluoromethyl)aniline  (0.5 mL, 4 mmol) and acryloyl  

chloride (0.35 mL, 4.4 mmol) in 84% yield. Chromatography: hexane/EtOAc, 7:3. Mp 85-86 ºC. Rf 

(hexane/EtOAc, 7:3) 0.38. IR (ATR)  3285 (NH), 1671 (CO), 1608, 1557, 1492, 1447 (Ar). 1H NMR 

(300 MHz, CDCl3) 5.82 (dd, J = 10.2, 1.2 Hz, 1H, 1/2CH2), 6.26 (dd, J = 16.8, 10.2 Hz, 1H, CHCO), 

6.48 (dd, J = 16.8 Hz, 1.2 Hz, 1H, 1/2CH2), 7.38 (d, J = 7.8 Hz, 1H, H4), 7.45 (t, J = 7.9 Hz, 1H, H5), 

7.51 (br s, 1H, NH), 7.79 (d, J = 8.1 Hz, 1H, H6), 7.88 (s, 1H, H2). 13C NMR (75 MHz, CDCl3)  116.9, 

121.2, 123.3 (3CH), 123.9 (q, J = 272.5 Hz, C), 128.9 (CH2), 129.7, 130.8 (2CH), 131.5 (q, J = 32.6 

Hz, C), 138.3, 164.0 (2C). 19F NMR (282 MHz, CDCl3)  -63.1. MS (ESI): [(M+H)+] 215.9. 

N-[4-(Trifluoromethyl)phenyl]acrylamide (42). Obtained following the general procedure for the 

synthesis of phenylacrylamides from 4-(trifluoromethyl)aniline (0.3 mL, 2.4 mmol) and acryloyl 

chloride (0.21 mL, 2.6 mmol) in 64% yield. Chromatography: hexane/EtOAc, 7:3. Mp 171-172 ºC. Rf 

(hexane/EtOAc, 7:3) 0.33. 1H NMR (300 MHz, CDCl3) 5.84 (dd, J = 10.2, 1.2 Hz, 1H, 1/2CH2), 6.25 

(dd, J = 16.8, 10.2 Hz, 1H, CHCO), 6.48 (dd, J = 16.8, 1.1 Hz, 1H, 1/2CH2), 7.35 (br s, 1H, NH), 7.60 
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(d, J = 8.7  Hz, 2H, H3, H5), 7.72 (d, J = 8.7  Hz, 2H, H2, H6). MS (ESI): [(M+H)+] 216.1. The 

spectroscopic data are in agreement with those previously described.37 

N-[4-(Acetylamino)phenyl]acrylamide (43).38 Obtained following the general procedure for the 

synthesis of phenylacrylamides from 4-(acetylamino)aniline (1 g, 6.7 mmol) and acryloyl chloride 

(0.94 mL, 11.7 mmol) in 41% yield. Rf (hexane/EtOAc, 1:1) 0.18. Mp >220 ºC (decomposed). IR 

(ATR) 3277 (NH), 1665 (CO), 1616, 1583, 1517 (Ar). 1H NMR (300 MHz, CDCl3) 2.02 (s, 3H, 

CH3), 5.73 (dd, J = 10.0, 2.2 Hz, 1H, 1/2CH2), 6.23 (dd, J = 17.0, 2.2 Hz, 1H, 1/2CH2), 6.42 (dd, J = 

17.0, 10.0 Hz, 1H, CHCO), 7.51 (d, J = 9.0 Hz, 2H, H2, H6 / H3, H5), 7.58 (d, J = 9.0 Hz, 2H, H2, H6 / 

H3, H5), 9.90 (br s, 1H, NH), 10.08 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3) 23.9 (CH3), 119.3 

(2CH), 119.7 (2CH), 126.5 (CH2), 131.9 (CH), 134.2, 135.1, 162.8, 168.0 (4C). MS (ESI): [(M)+] 204.8. 

N-(4-Cyanophenyl)acrylamide (44). Obtained following the general procedure for the synthesis 

of phenylacrylamides from 4-aminobenzonitrile (550 mg, 4.6 mmol) and acryloyl chloride (0.41 mL, 5 

mmol) in 68% yield. Chromatography: hexane/EtOAc, 7:3. Mp 197-199 ºC. Rf (hexane/EtOAc, 7:3) 

0.18. 1H NMR (300 MHz, CDCl3) 5.87 (dd, J = 10.2, 1.0 Hz, 1H, 1/2CH2), 6.26 (dd, J = 16.8, 10.2 

Hz, 1H, CHCO), 6.50 (dd, J = 16.8, 1.0 Hz, 1H, 1/2CH2), 7.44 (br s, 1H, NH), 7.63 (d, J = 8.8 Hz, 2H, 

H3, H5), 7.73 (d, J = 8.8 Hz, 2H, H2, H6). MS (ESI): [(M+H)+] 173.0. The spectroscopic data are in 

agreement with those previously described.39 
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N-(4-Methoxyphenyl)acrylamide (45). Obtained following the general procedure for the 

synthesis of phenylacrylamides from 4-methoxyaniline (680 mg, 5.5 mmol) and acryloyl chloride (0.49 

mL, 6 mmol) in 72% yield. Chromatography: hexane/EtOAc, 7:3. Mp 98-99 ºC (Lit.33 97-98 ºC). Rf 

(hexane/EtOAc, 6:4) 0.27. 1H NMR (300 MHz, CDCl3) 3.78 (s, 3H, CH3), 5.71 (dd, J = 10.0, 1.4 Hz, 

1H, 1/2CH2), 6.24 (dd, J = 16.8, 10.0 Hz, 1H, CHCO), 6.40 (dd, J = 16.8, 1.4 Hz, 1H, 1/2CH2), 6.85 

(d, J = 9.0 Hz, 2H, H3, H5), 7.48 (d, J = 8.9 Hz, 2H, H2, H6), 7.63 (br s, 1H, NH). MS (ESI): [(M+H)+] 

178.1. The spectroscopic data are in agreement with those previously described.35 

4-(Acryloylamino)-N,N-dimethylbenzamide (46). Obtained following the general procedure for 

the synthesis of phenylacrylamides from 36 (69 mg, 0.4 mmol) and acryloyl chloride (0.04 mL, 0.5 

mmol) in 72% yield. Chromatography: hexane/EtOAc, 4:6. Mp 149-151 ºC. Rf (hexane/EtOAc, 6:4) 

0.23. IR (ATR)  3265 (NH), 1688 (CO), 1608, 1532, 1492 (Ar). 1H NMR (300 MHz, CDCl3) 2.99 (s, 

3H, CH3), 3.10 (s, 3H, CH3), 5.74 (dd, J = 9.8, 1.8 Hz, 1H, 1/2CH2), 6.32 (dd, J = 16.9, 9.8 Hz, 1H, 

CHCO), 6.44 (dd, J = 16.9, 1.8 Hz, 1H, 1/2CH2), 7.29 (d, J = 8.5 Hz, 2H, H3, H5), 7.52 (d, J = 8.5 Hz, 

2H, H2, H6), 8.45 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  35.7, 39.9 (2CH3), 120.0 (2CH), 128.1 

(2CH+CH2), 131.2 (CH), 131.7, 139.5, 164.1, 171.6 (4C). MS (ESI): [(M+H)+] 219.1. 

Ethyl 4-acrylamidobenzoate (47).40 Obtained following the general procedure for the synthesis 

of phenylacrylamides from ethyl 4-aminobenzoate (550 mg, 3.3 mmol) and acryloyl chloride (0.29 

mL, 3.6 mmol) in 86% yield. Chromatography: hexane/EtOAc, 8:2. Mp 119-121 ºC. Rf 

(hexane/EtOAc, 7:3) 0.31. IR (ATR) 3312 (NH), 1716, 1674 (CO), 1603, 1541, 1474 (Ar). 1H NMR 

(300 MHz, CDCl3) 1.38 (t, J = 7.1 Hz, 3H, CH3), 4.35 (q, J = 7.1 Hz, 2H, CH2O), 5.79 (dd, J = 10.0, 

1.4 Hz, 1H, 1/2CH2), 6.31 (dd, J = 16.8, 10.0 Hz, 1H, CHCO), 6.46 (dd, J = 16.8, 1.4 Hz, 1H, 1/2CH2), 

7.69 (d, J = 8.8 Hz, 2H, H2, H6), 8.00 (d, J = 8.8 Hz, 2H, H3, H5), 8.07 (br s, 1H, NH). 13C NMR (75 
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MHz, CDCl3)  14.5 (CH3), 61.1 (CH2), 119.2 (2CH), 126.2 (C), 128.8 (CH2), 130.9 (2CH), 131.0 (CH), 

142.1, 164.0, 166.4 (3C). MS (ESI): [(M+H)+] 220.0. 

N-Methyl-N-phenylacrylamide (62). Obtained following the general procedure for the synthesis 

of phenylacrylamides from methylaniline (0.5 mL, 4.5 mmol) and acryloyl chloride (0.4 mL, 5 mmol) 

in quantitative yield. Mp 75-76 ºC (Lit.41 74-76 ºC). Rf (hexane/EtOAc, 7:3) 0.26. 1H NMR (300 MHz, 

CDCl3) 3.37 (s, 3H, CH3N), 5.52 (dd, J = 10.3, 2.0 Hz, 1H, 1/2CH2), 6.08 (dd, J = 16.8, 10.4 Hz, 1H, 

CHCO), 6.37 (dd, J = 16.8, 2.0 Hz, 1H, 1/2CH2), 7.19 (d, J = 7.1 Hz, 2H, H2, H6), 7.34 (t, J = 7.3 Hz, 

1H, H4), 7.42 (t, J = 7.4 Hz, 2H, H3, H5). MS (ESI): [(M+H)+] 162.1. The spectroscopic data are in 

agreement with those previously described.41 

N-Phenylethylensulfonamide (63). Obtained following the general procedure for the synthesis 

of phenylacrylamides from aniline (0.24 mL, 2.7 mmol) and 2-chloroethanesulfanoyl chloride (0.31 

mL, 3 mmol) in 30% yield. Chromatography: hexane/ EtOAc, 6:4. Mp 67-68 ºC. Rf (hexane/EtOAc, 

7:3) 0.29. IR (ATR) 3262 (NH), 1599, 1495 (Ar), 1338, 1147 (SO2). 1H NMR (300 MHz, CDCl3) 

5.94 (d, J = 10.0 Hz, 1H, ½CH2), 6.09 (d, J = 16.5 Hz, 1H, ½CH2), 6.66 (dd, J = 16.5, 10.0 Hz, 1H, 

CHCO), 7.06 (tt, J = 6.9, 1.8 Hz, 1H, H4), 7.21-7.32 (m, 4H, H2, H3, H5, H6), 8.69 (br s, 1H, NH). The 

spectroscopic data are in agreement with those previously described.42 
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Synthesis of N1-phenyl-N3-octyl-β-alaninamide (34). To a solution of acrylamide 33 (230 mg, 

1.6 mmol) and octylamine (0.78 mL, 4.7 mmol) in anhidrous acetonitrile (0.8 mL) was added DBU 

(0.71 mL, 4.7 mmol) and the reaction mixture was stirred 5 h at 60 ºC. Then, the solvent was removed 

under reduced pressure to give the secondary amine in 79% yield. Chromatography: EtOAc/MeOH, 

9:1; oil. Rf (EtOAc) 0.12. IR (ATR) 3297 (NH), 1667 (CO), 1601, 1551, 1497, 1444 (Ar). 1H NMR 

(300 MHz, CDCl3)  0.86-0.88 (m, 3H, CH3), 1.29 (m, 10H, (CH2)5CH3), 1.54-1.58 (m, 2H, 

CH2(CH2)5CH3), 2.48 (t, J = 5.2 Hz, 2H, CH2CO), 2.69 (t, J = 6.8 Hz, 2H, (CH2)6CH2N), 2.97 (t, J = 

5.4 Hz, 2H, NCH2CH2CO), 3.48 (br s, 1H, NH), 7.06 (t, J = 7.3 Hz, 1H, H4), 7.29 (t, J = 7.7 Hz, 2H, 

H3, H5), 7.53 (d, J = 7.8 Hz, 2H, H2, H6). 13C NMR (75 MHz, CDCl3) 14.1 (CH3), 22.7, 27.5, 29.3, 

29.5, 30.1, 31.8, 36.1, 45.5, 49.3 (9CH2), 119.7 (2CH), 123.6 (CH), 128.9 (2CH), 138.8, 171.1 (2C). 

MS (ESI): [(M+H)+] 277.2. 

General procedure for the synthesis of asymmetric diamides 1, 2, 4-15 and 28-30. To a 

solution of the corresponding or 2-(chloromethyl)-5-phenyl-1,3,4-

oxadiazole (1.5 equiv) and secondary amine 34 (1 equiv) in anhidrous acetonitrile (0.5 mL/mmol), 

was added DBU (1.5 equiv), and the reaction mixture was stirred 24 h at 60 ºC. Then, the solvent 

was removed under reduced pressure and the residue was purified by column chromatography to 

give the title compounds. For the synthesis of N3-octyl-N1-phenyl-N3-[(5-phenyl-1,3,4-oxadiazol-2-

yl)methyl]-β-alaninamide (30) triethylamine was used as a base. 

N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-pyridin-2-yl-β-alaninamide (1). Obtained following the 

general procedure for the synthesis of asymmetric diamides from amine 34 (75 mg, 0.3 mmol) and 

acrylamide 31 (60 mg, 0.4 mmol) in 45% yield. Chromatography: EtOAc; oil. Rf (EtOAc/MeOH, 98:2) 

0.28. IR (ATR) 3274 (NH), 1665, 1540 (CO), 1600, 1436 (Ar). 1H NMR (300 MHz, CDCl3) 0.83 (t, 

J = 6.9 Hz, 3H, CH3), 1.04-1.34 (m, 10H, (CH2)5CH3), 1.51 (m, 2H, CH2(CH2)5CH3), 2.51-2.60 (m, 6H, 

(CH2)6CH2N , 2CH2CO), 2.90 (t, J = 6.0 Hz, 4H, 2NCH2CH2CO), 6.98-7.01 (m, 2H, H5, H4’), 7.20 (t, J 

= 7.8 Hz, 2H, H3’, H5’), 7.47 (d, J = 7.8 Hz, 2H, H2’, H6’), 7.66 (t, J = 7.9 Hz, 1H, H4), 8.17-8.22 (m, 2H, 

H3, H6), 9.89 (br s, 1H, NH), 10.55 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  14.1 (CH3), 22.6, 26.7, 

27.5, 29.2, 29.5, 31.7, 34.1, 36.3, 50.0, 51.0, 54.1 (11CH2), 114.5, 119.7 (2CH), 120.0 (2CH), 123.9 
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(CH), 128.8 (2CH), 138.5 (C), 138.6, 147.5 (2CH), 151.6, 170.9, 171.0 (3C). HRMS (ESI): [(M)+] 

calcd. for C25H36N4O2, 424.2833; found, 424.2832. 

N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-pyridin-3-yl-β-alaninamide (2). Obtained following the 

general procedure for the synthesis of asymmetric diamides from amine 34 (100 mg, 0.4 mmol) and 

acrylamide 32 (80 mg, 0.5 mmol) in 37% yield. Chromatography: EtOAc/MeOH, 9:1; oil. Rf 

(EtOAc/MeOH, 9:1) 0.28. IR (ATR) 3265 (NH), 1664, 1546 (CO), 1600, 1489, 1444 (Ar). 1H NMR 

(300 MHz, CDCl3) 0.84 (t, J = 6.8 Hz, 3H, CH3), 1.07-1.34 (m, 10H, (CH2)5CH3), 1.51 (m, 2H, 

CH2(CH2)5CH3), 2.50-2.59 (m, 6H, (CH2)6CH2N, 2CH2CO), 2.82 (t, J = 6.4 Hz, 2H, NCH2CH2CO), 

2.84 (d, J = 6.4 Hz, 2H, NCH2CH2CO), 6.99 (t, J = 7.4 Hz, 1H, H4’), 7.10 (dd, J = 8.3, 4.8 Hz, 1H, H5), 

7.15 (t, J = 7.8 Hz, 2H, H3´, H5´), 7.41 (d, J = 7.8 Hz, 2H, H2´, H6´), 7.99 (d, J = 8.5 Hz, 1H, H4), 8.21 

(d, J = 5.8 Hz, 1H, H6), 8.54 (d, J = 2.4 Hz, 1H, H2), 9.52 (br s, 1H, NH), 9.98 (br s, 1H, NH). 13C NMR 

(75 MHz, CDCl3)  14.1 (CH3), 22.6, 26.7, 27.7, 29.3, 29.5, 31.8 (6CH2), 34.3 (2CH2), 49.6, 49.8, 53.7 

(3CH2), 119.9 (2CH), 123.7, 124.1, 127.1 (3CH), 128.8 (2CH), 135.4, 138.0 (2C), 140.9, 144.4 (2CH), 

170.6, 171.4 (2C). HRMS (ESI): [(M)+] calcd. for C25H36N4O2, 424.2833; found, 424.2831. 

N3-{3-[(2-Fluorophenyl)amino]-3-oxopropyl}-N3-octyl-N1-phenyl-β-alaninamide (4). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(60 mg, 0.2 mmol) and acrylamide 37  (54 mg, 0.2 mmol) in 85% yield. Chromatography: 

EtOAc/MeOH, 95:5; oil. Rf (EtOAc/hexane, 7:3) 0.38. IR (ATR) 3287 (NH), 1663 (CO), 1600, 1543, 

1497, 1449 (Ar). 1H NMR (300 MHz, CDCl3) 0.84 (t, J = 6.8  Hz, 3H, CH3), 1.19-1.25 (m, 10H, 

(CH2)5CH3), 1.53 (m, 2H, CH2(CH2)5CH3), 2.52-2.59 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.83-2.92 (m, 

4H, 2NCH2CH2CO), 6.95-7.07 (m, 4H, H3, H4, H6, H4’), 7.18 (t, J = 7.8 Hz, 2H, H3’, H5’), 7.43 (d, J = 

7.7 Hz, 2H, H2’, H6’), 8.25 (t, J = 7.9 Hz, 1H, H5), 8.80 (br s, 1H, NH), 9.61 (br s, 1H, NH). 13C NMR 
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(75 MHz, CDCl3) 14.2 (CH3), 22.7, 26.5, 27.7, 29.4, 29.6, 31.9, 34.3, 34.7, 49.7, 49.8, 53.7 (11CH2), 

114.9 (d, J = 19.3 Hz, CH), 119.8 (2CH), 122.1, 124.1 (2CH), 124.3 (d, J = 34.5 Hz, CH), 124.4 (d, J 

= 30.5 Hz, CH), 126.6 (d, J = 10.4 Hz, C), 128.9 (2CH), 138.1 (C), 152.6 (d, J = 243.0 Hz, C), 170.3, 

171.7 (2C). 19F NMR (282 MHz, CDCl3)  -130.4. HRMS (ESI): [(M+Na)+] calcd. for C26H36FN3O2Na, 

464.26892; found, 464.27185. 

N3-{3-[(3-Fluorophenyl)amino]-3-oxopropyl}-N3-octyl-N1-phenyl-β-alaninamide (5). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(80 mg, 0.3 mmol) and acrylamide 38  (72 mg, 0.4 mmol) in 88% yield. Chromatography: 

EtOAc/MeOH, 8:2; oil. Rf (EtOAc/MeOH, 95:5) 0.50. IR (ATR)  1685 (CO), 1604, 1543, 1492, 1443 

(Ar). 1H NMR (300 MHz, CDCl3)  0.83 (t, J = 6.8 Hz, 3H, CH3), 1.16-1.27 (m, 10H, (CH2)5CH3), 1.49 

(m, 2H, CH2(CH2)5CH3), 2.47-2.51 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.77-2.81 (m, 4H, 2NCH2CH2CO), 

6.65-6.72 (m, 1H, H4), 6.99-7.06 (m, 3H, H5, H6, H4’), 7.17 (t, J = 7.8 Hz, 2H, H3’, H5’), 7.41-7.47 (m, 

3H, H2, H2’, H6’), 9.32 (br s, 1H, NH), 9.65 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3) 14.1 (CH3), 

22.7, 26.8, 27.7, 29.4, 29.6, 31.9, 34.2, 34.4, 49.6, 49.9, 53.6 (11CH2), 107.3 (d, J = 26.2 Hz, CH), 

110.6 (d, J = 21.3 Hz, CH), 115.2 (d, J = 2.6 Hz, CH), 120.1 (2CH), 124.2 (CH), 128.9 (2CH), 129.9 

(d, J = 9.4 Hz, CH), 138.0 (C), 139.8 (d, J = 10.8 Hz, C), 162.9 (d, J = 244.1 Hz, C), 170.7, 171.0 

(2C). 19F NMR (282 MHz, CDCl3)  -112.0. HRMS (ESI): [(M+H)+] calcd. for C26H37FN3O2, 442.28698; 

found, 442.28703. 

. 

N3-{3-[(4-Fluorophenyl)amino]-3-oxopropyl}-N3-octyl-N1-phenyl-β-alaninamide (6). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(44.8 mg, 0.3 mmol) and acrylamide 39 (50 mg, 0.2 mmol) in 58% yield. Chromatography: 

EtOAc/MeOH, 8:2. Mp 79-80 ºC. Rf (EtOAc) 0.32. IR (ATR)  3290 (NH), 1659 (CO), 1604, 1550, 
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1508, 1445 (Ar). 1H NMR (300 MHz, CD3OD)  0.87 (t, J = 7.0 Hz, 3H, CH3), 1.08-1.41 (m, 10H, 

(CH2)5CH3), 1.51 (m, 2H, CH2(CH2)5CH3), 2.52-2.61 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.85-2.90 (m, 

4H, 2NCH2CH2CO), 6.90 (t, J = 8.8 Hz, 2H, H3’, H5’), 7.07 (t, J = 7.4 Hz, 1H, H4’), 7.23 (t, J = 7.9 Hz, 

2H, H3, H5), 7.43-7.50 (m, 4H, H2, H6, H2’, H6’). 13C NMR (75 MHz, CD3OD) 14.4 (CH3), 23.7, 28.3, 

28.8, 30.5, 30.8, 33.0, 35.5, 37.9, 51.0, 51.1, 54.7 (11CH2), 116.1 (d, J = 22.4 Hz, 2CH), 121.4 (2CH), 

123.1 (d, J = 7.8 Hz, 2CH), 125.1 (CH), 129.7 (2CH), 135.8 (d, J = 2.8 Hz, C), 139.6 (C), 160.5 (d, J 

= 240.0 Hz, C), 173.2, 173.3 (2C). 19F NMR (282 MHz, CD3OD)  -121.2. Elemental analysis: calcd. 

for C26H36FN3O2: %C: 70.72, %H: 8.22, %N: 9.52; found, %C: 70.23, %H: 8.23, %N: 9.29. 

N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-[2-(trifluoromethyl)phenyl]-β-alaninamide (7). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(50 mg, 0.2 mmol) and acrylamide 40  (58 mg, 0.3 mmol) in 89% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc) 0.35. IR (ATR)  3301 (NH), 1663 (CO), 1600, 1546, 1499, 1456 

(Ar). 1H NMR (300 MHz, CDCl3) 0.84 (t, J = 6.8 Hz, 3H, CH3), 1.20-1.27 (m, 10H, (CH2)5CH3), 1.49 

(m, 2H, CH2(CH2)5CH3), 2.49-2.60 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.87-2.92 (m, 4H, 2NCH2CH2CO), 

6.99 (t, J = 7.4 Hz, 1H, H4’), 7.14-7.21 (m, 3H, H3’, H5’, H6), 7.38-7.47 (m, 3H, H5, H2’, H6’), 7.55 (d, J 

= 7.8 Hz, 1H, H3), 7.96 (d, J = 8.1 Hz, 1H, H4), 8.80 (br s, 1H, NH), 9.02 (br s, 1H, NH). 13C NMR (75 

MHz, CDCl3)  14.2 (CH3), 22.7, 26.0, 27.7, 29.3, 29.6, 31.9, 34.1, 34.2, 49.1, 49.7, 53.3 (11CH2), 

119.8 (2CH), 121.2 (q, J = 28.3 Hz, C), 123.9 (CH), 124.0 (q, J = 273.3 Hz, C), 124.8, 125.8 (2CH), 

126.1 (q, J = 5.5 Hz, CH), 128.9 (2CH), 132.8 (CH), 135.1, 138.2, 170.5, 170.8 (4C). 19F NMR (282 

MHz, CDCl3)  -60.9. HRMS (ESI): [(M+H)+] calcd. for C27H37F3N3O2: 492.28324; found, 492.28235. 
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N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-[3-(trifluoromethyl)phenyl]-β-alaninamide (8). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(50 mg, 0.2 mmol) and acrylamide 41  (26 mg, 0.2 mmol) in 49% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH, 9:1) 0.50. IR (ATR)  3299 (NH), 1661 (CO), 1601, 1554, 

1498, 1446 (Ar). 1H NMR (300 MHz, CDCl3) 0.83 (t, J = 6.8  Hz, 3H, CH3), 1.17-1.25 (m, 10H, 

(CH2)5CH3), 1.51 (m, 2H, CH2(CH2)5CH3), 2.49-2.56 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.78-2.84 (m, 

4H, 2NCH2CH2CO), 6.99 (t, J = 7.4 Hz, 1H, H4’), 7.12-7.25 (m, 4H, H3’, H5’, H5, H6), 7.40 (d, J = 7.8 

Hz, 2H, H2’, H6’), 7.52 (d, J = 7.3 Hz, 1H, H6), 7.87 (s, 1H, H2), 9.22 (br s, 1H, NH), 9.70 (br s, 1H, 

NH). 13C NMR (75 MHz, CDCl3)  14.2 (CH3), 22.7, 26.7, 27.7, 29.4, 29.6, 31.9, 34.2, 34.4, 49.6, 

49.9, 53.8 (11CH2), 116.5 (d, J = 3.9 Hz, CH), 120.0 (2CH), 120.4 (d, J = 3.8 Hz, CH), 122.9 (CH), 

124.0 (q, J = 272.7 Hz, C), 124.3 (CH), 129.0 (2CH), 129.4 (CH), 131.1 (q, J = 32.2 Hz, C), 137.9, 

138.8, 170.7, 171.1 (4C). 19F NMR (282 MHz, CDCl3)  -63.0. HRMS (ESI): [(M+H)+] calcd. for 

C27H37F3N3O2: 492.28324; found, 492.28379. 

N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-[4-(trifluoromethyl)phenyl]-β-alaninamide (9). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(94 mg, 0.3 mmol) and acrylamide 42 (110 mg, 0.5 mmol) in quantitative yield. Chromatography: 

EtOAc/MeOH, 7:3. Mp 77-78 ºC. Rf (EtOAc/MeOH, 8:2) 0.58. IR (ATR)  3286 (NH), 1660 (CO), 

1603, 1544, 1499, 1444 (Ar). 1H NMR (300 MHz, CDCl3) 0.84 (t, J = 6.8 Hz, 3H, CH3), 1.15-1.28 

(m, 10H, (CH2)5CH3), 1.46-1.51 (m, 2H, CH2(CH2)5CH3), 2.50-2.57 (m, 6H, 2CH2CO, (CH2)6CH2N), 

2.81-2.89 (m, 4H, 2NCH2CH2CO), 7.05 (t, J = 7.4 Hz, 1H, H4’), 7.20 (t, J = 7.8 Hz, 2H, H3’, H5’), 7.33 

(d, J = 8.6 Hz, 2H, H3, H5), 7.38 (d, J = 8.1 Hz, 2H, H2’, H6’), 7.50 (d, J = 8.6 Hz, 2H, H2, H6), 8.32 (br 

s, 1H, NH), 9.44 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  14.1 (CH3), 22.7, 26.7, 27.8, 29.4, 29.6, 

31.8, 34.3, 34.5, 49.6, 50.0, 53.6 (11CH2), 119.5 (2CH), 120.1 (2CH), 124.2 (q, J = 271.5 Hz, C), 

124.4 (CH), 125.4 (q, J = 32.6 Hz, C), 126.0 (q, J = 3.9 Hz, 2CH), 128.9 (2CH), 137.9, 141.3, 170.7, 

171.3 (4C). 19F NMR (282 MHz, CDCl3)  -62.4. Elemental analysis: calcd. for C27H36F3N3O2: %C: 

65.97, %H: 7.38, %N: 8.55; found, %C: 66.43, %H: 7.36, %N: 8.45. 
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N3-(3-{[4-(Acetylamino)phenyl]amino}-3-oxopropyl)-N3-octyl-N1-phenyl-β-alaninamide (10). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(36 mg, 0.13 mmol) and acrylamide 43  (40 mg, 0.2 mmol) in 32% yield. Chromatography: 

EtOAc/MeOH, 8:2; oil. Rf (EtOAc/MeOH, 9:1) 0.33. IR (ATR)  3291 (NH), 1664 (CO), 1600, 1550, 

1515, 1499, 1444 (Ar). 1H NMR (300 MHz, CDCl3)  0.84 (t, J = 6.8 Hz, 3H, CH3), 1.13-1.28 (m, 10H, 

(CH2)5CH3), 1.51 (m, 2H, CH2(CH2)5CH3), 2.12 (s, 3H, CH3CO), 2.52-2.55 (m, 6H, 2CH2CO, 

(CH2)6CH2N), 2.82-2.86 (m, 4H, 2NCH2CH2CO), 7.01 (t, J = 7.4 Hz, 1H, H4’), 7.19 (t, J = 7.8 Hz, 2H, 

H3’, H5’), 7.26 (d, J = 8.9 Hz, 2H, H2, H6/ H3, H5), 7.32 (d, J = 8.9 Hz, 2H, H2, H6/ H3, H5), 7.44 (d, J = 

7.4 Hz, 2H, H2’, H6’), 7.74 (br s, 1H, NH), 9.32 (br s, 1H, NH), 9.37 (br s, 1H, NH). 13C NMR (75 MHz, 

CDCl3)  14.2 (CH3), 22.7 (CH2), 24.5 (CH3), 26.6, 27.7, 29.4, 29.6, 31.9, 34.1, 34.4 (7CH2), 49.9 

(2CH2), 53.7 (CH2), 120.0 (2CH), 120.7 (2CH), 121.0 (2CH), 124.1 (CH), 129.0 (2CH), 134.1, 134.6, 

138.2, 168.8 (4C), 170.6 (2C). HRMS (ESI): [(M+Na)+] calcd. for C28H40N4O3Na: 503.29981; found, 

503.30008. 

N3-(3-Anilino-3-oxopropyl)-N1-(4-cyanophenyl)-N3-octyl-β-alaninamide (11). Obtained 

following the general procedure for the synthesis of asymmetric diamides from amine 34 (80 mg, 0.3 

mmol) and acrylamide 44 (75 mg, 0.4 mmol) in 59% yield. Chromatography: EtOAc/MeOH, 95:5. Mp 

99-100 ºC. Rf (EtOAc) 0.24. IR (ATR)  3294 (NH), 2926 (CN), 1664 (CO), 1597, 1531, 1500, 1444 

(Ar). 1H NMR (300 MHz, CDCl3)  83 (t, J = 6.9 Hz, 3H, CH3), 1.14-1.25 (m, 10H, (CH2)5CH3), 1.48 

(m, 2H, CH2(CH2)5CH3), 2.47-2.57 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.77-2.85 (m, 4H, 2NCH2CH2CO), 

7.07 (t, J = 7.3 Hz, 1H, H4’), 7.20 (t, J = 7.8 Hz, 2H, H3’, H5’), 7.31 (d, J = 8.7 Hz, 2H, H3, H5), 7.38 (d, 

J = 7.9 Hz, 2H, H2’, H6’), 7.52 (d, J = 8.6 Hz, 2H, H2, H6), 8.66 (br s, 1H, NH), 9.83 (br s, 1H, NH). 13C 

NMR (75 MHz, CDCl3)  14.2 (CH3), 22.7, 26.8, 27.8, 29.4, 29.6, 31.9, 34.4, 34.8, 49.4, 50.3, 53.7 
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(11CH2), 106.2, 119.2 (2C), 119.6 (2CH), 120.2 (2CH), 124.6 (CH), 129.1 (2CH), 133.0 (2CH), 137.7, 

142.5, 170.5, 171.5 (4C). HRMS (ESI): [(M+Na)+] calcd. for C27H36N4O2Na: 471.27359; found, 

471.27339. 

N3-(3-Anilino-3-oxopropyl)-N1-(4-methoxyphenyl)-N3-octyl-β-alaninamide (12). Obtained 

following the general procedure for the synthesis of asymmetric diamides from amine 34 (85 mg, 0.3 

mmol) and acrylamide 45 (82 mg, 0.5 mmol) in 59% yield. Chromatography: EtOAc/MeOH, 95:5; oil. 

Rf (EtOAc/MeOH) 0.26. IR (ATR)  3279 (NH), 1658 (CO), 1601, 1544, 1510, 1464, 1443 (Ar). 1H 

NMR (300 MHz, CDCl3)  0.82 (t, J = 6.8 Hz, 3H, CH3), 1.16-1.26 (m, 10H, (CH2)5CH3), 1.48 (m, 2H, 

CH2(CH2)5CH3), 2.45-2.50 (m, 6H, 2CH2CO, (CH2)6CH2N), 2.78 (t, J = 6.0 Hz, 4H, 2NCH2CH2CO), 

3.71 (s, 3H, CH3O), 6.67 (d, J = 9.0 Hz, 2H, H3, H5), 7.00 (t, J = 7.4 Hz, 1H, H4’), 7.16 (t, J = 7.8 Hz, 

2H, H3’, H5’), 7.32 (d, J = 9.0 Hz, 2H, H2, H6), 7.43 (d, J = 7.6 Hz, 2H, H2’, H6’), 9.30 (br s, 1H, NH), 

9.45 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  14.1 (CH3), 22.7, 26.8, 27.7, 29.4, 29.6, 31.8, 34.1, 

34.3 (8CH2), 49.8 (2CH2), 53.6 (CH2), 55.4 (CH3), 114.0 (2CH), 119.9 (2CH), 121.7 (2CH), 123.9 

(CH), 128.8 (2CH), 131.4, 138.3, 156.1, 170.5, 170.8 (5C). HRMS (ESI): [(M+H)+] calcd. for 

C27H39N3O3Na: 454.30696; found, 454.30446. 

N3-(3-Anilino-3-oxopropyl)-N3-octyl-N1-[4-(dimethylbenzamide)phenyl]-β-alaninamide (13). 

Obtained following the general procedure for the synthesis of asymmetric diamides from amine 34 

(42 mg, 0.15 mmol) and acrylamide 46  (33 mg, 0.23 mmol) in 56% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH/NH3, 9:1:0.1) 0.35. IR (ATR)  3302 (NH), 1683, 1605 (CO), 

1542, 1496, 1446, 1401 (Ar). 1H NMR (300 MHz, CDCl3) 0.83 (t, J = 6.6 Hz, 3H, CH3CH2), 1.18-

1.24 (m, 10H, (CH2)5CH3), 1.51 (m, 2H, CH2(CH2)5CH3), 2.50-2.53 (m, 6H, 2CH2CO, (CH2)6CH2N), 

2.83 (t, J = 5.3 Hz, 4H, 2NCH2CH2CO), 2.94 (s, 3H, CH3N), 3.06 (s, 3H, CH3N), 6.99 (t, J = 7.3 Hz, 
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1H, H4’), 7.17 (m, 4H, H3, H5, H3’, H5’), 7.41 (m, 4H, H2, H6, H2’, H6’), 9.39 (br s, 1H, NH), 9.70 (br s, 

1H, NH). 13C NMR (75 MHz, CDCl3)  14.2 (CH3), 22.7, 26.7, 27.7, 29.4, 29.6, 31.9, 34.3, 34.4 (8CH2), 

35.6, 39.8 (2CH3) 49.8, 49.9, 53.6 (3CH2), 119.4 (2CH), 120.0 (2CH), 124.0 (CH), 128.1 (2CH), 128.9 

(2CH), 131.0, 138.3, 138.8, 170.7, 171.0, 171.6 (6C). HRMS (ESI): [(M+H)+] calcd. for C29H43N4O3: 

495.33351; found, 495.33450. 

Ethyl 4-{[N-(3-anilino-3-oxopropyl)-N-octyl-β-alanyl]amino}benzoate (14). Obtained following 

the general procedure for the synthesis of asymmetric diamides from amine 34 (190 mg, 0.7 mmol) 

and acrylamide 47 (226 mg, 1 mmol) in 84% yield. Chromatography: EtOAc/MeOH, 9:1; oil. Rf 

(EtOAc/MeOH, 9:1) 0.50. IR (ATR)  3309 (NH), 1712, 1664 (CO), 1599, 1537, 1444, 1409 (Ar). 1H 

NMR (300 MHz, CDCl3) 0.83 (t, J = 6.8 Hz, 3H, CH3), 1.17-1.28 (m, 10H, (CH2)5CH3), 1.38 (t, J = 

7.1 Hz, 3H, CH3CH2O), 1.47-1.54 (m, 2H, CH2(CH2)5CH3), 2.50-2.58 (m, 6H, 2CH2CO, (CH2)6CH2N), 

2.83-2.90 (m, 4H, 2NCH2CH2CO), 4.34 (q, J = 7.1 Hz, 2H, CH2O), 7.05 (t, J = 7.4 Hz, 1H, H4’), 7.21 

(t, J = 7.9 Hz, 2H, H3’, H5’), 7.41 (d, J = 7.7 Hz, 2H, H2, H6), 7.49 (d, J = 8.7 Hz, 2H, H2’, H6’), 7.83 (d, 

J = 8.7 Hz, 2H, H3, H5), 8.47 (br s, 1H, NH), 9.39 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  14.1, 

14.4 (2CH3), 22.7, 26.8, 27.7, 29.3, 29.6, 31.8, 34.2, 34.5, 49.6, 49.9, 53.5, 60.8 (12CH2), 118.9 

(2CH), 120.0 (2CH), 124.2 (CH), 125.4 (C), 128.9 (2CH), 130.6 (2CH), 138.0, 142.5, 166.3, 170.7, 

171.1 (5C). HRMS (ESI): [(M+H)+] calcd. for C29H42N3O4: 496.31753; found, 496.31665. 

N3-{3-[Methyl(phenyl)amino]-3-oxopropyl}-N3-octyl-N1-phenyl-β-alaninamide (28). Obtained 

following the general procedure for the synthesis of asymmetric diamides from amine 34 (100 mg, 

0.24 mmol) and acrylamide 62 (87 mg, 0.54 mmol) in 58% yield. Chromatography: EtOAc/MeOH, 

9:1; oil. Rf (EtOAc/MeOH, 9:1) 0.31. IR (ATR)  3306 (NH), 1658 (CO), 1599, 1547, 1497 (Ar). ). 1H 
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NMR (300 MHz, CDCl3) 0.88 (t, J = 6.8 Hz, 3H, CH3CH2), 1.23 (m, 10H, (CH2)5CH3), 1.47 (m, 2H, 

CH2(CH2)5CH3), 2.30 (t, J = 6.8 Hz, 2H, CH2CO), 2.39 (t, J = 7.5 Hz, 2H, (CH2)6CH2N), 2.46 (app t, 

2H, CH2CO), 2.63 (app t, 2H, NCH2CH2CO), 2.84 (t, J = 6.8 Hz, 2H, NCH2CH2CO), 3.18 (s, 3H, 

CH3N), 7.07 (t, J = 7.4 Hz, 1H, H4), 7.10 (d, J = 6.7 Hz, 2H, H2´, H6´), 7.27-7.42 (m, 5H, H3, H5, H3´-

H5´), 7.50 (d, J = 7.9 Hz, 2H, H2, H6), 10.40 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3)  14.1 (CH3), 

22.6, 26.6, 27.6, 29.3, 29.5, 31.5, 31.8, 33.9 (8CH2), 37.3 (CH3), 49.1, 50.3, 53.4 (3CH2), 119.8 (2CH), 

123.5 (CH), 127.1 (2CH), 128.0 (CH), 128.8 (2CH), 129.9 (2CH), 138.7, 143.7, 170.9, 171.2 (4C). 

HRMS (ESI): [(M+H)+] calcd. for C27H39N3O2: 437.3042; found, 437.3041. 

N3-[2-(Anilinosulfonyl)ethyl]-N3-octyl-N1-phenil-β-alaninamide (29). Obtained following the 

general procedure for the synthesis of asymmetric diamides from amine 34 (151 mg, 0.8 mmol) and 

sulfonamide 63 (150 mg, 0.8 mmol) in 12% yield. Chromatography: hexane/EtOAc, 7:3; oil. Rf 

(hexane/EtOAc, 7:3) 0.35. IR (ATR)  3253 (NH), 1661, 1545 (CO), 1599, 1498, 1466 (Ar), 1376, 

1148 (SO2). 1H NMR (300 MHz, CDCl3)  0.81 (t, J = 6.8 Hz, 3H, CH3), 1.04-1.29 (m, 10H, (CH2)5CH3), 

1.36 (m, 2H, CH2(CH2)5CH3), 2.35 (app t, J = 7.7  Hz, 2H, (CH2)6CH2N), 2.44 (t, J = 5.8  Hz, 2H,  

CH2CO), 2.71 (t, J = 5.7 Hz, 2H, NCH2CH2CO), 2.96 (t, J = 6.5 Hz, 2H, CH2SO2), 3.21 (t, J = 6.5 Hz, 

2H, NCH2CH2SO2), 6.99-7.12 (m, 4H, H4, H2´, H4´, H6´), 7.19-7.32 (m, 5H, H3, H5, H3´, H5´, NH), 7.48 

(d, J = 7.7 Hz, 2H, H2, H6), 9.12 (br s, 1H, NH). 13C NMR (75 MHz, CDCl3) 14.1 (CH3), 22.6, 26.3, 

27.5, 29.2, 29.4, 31.8, 34.6, 47.4, 48.1, 50.5, 53.7 (11CH2), 119.9 (2CH), 120.5 (2CH), 124.1, 125.0 

(2CH), 128.9 (2CH), 129.6 (2CH), 136.9, 138.1, 170.8 (3C). HRMS (ESI): [(M+H)+] calcd. for 

C25H38N3O3S: 460.26284; found, 460.26383. 

Synthesis of N3-octyl-N1-phenyl-N3-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]-β-alaninamide 

(30). Obtained following the general procedure for the synthesis of asymmetric diamides from amine 
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34 (200 mg, 0.73 mmol) and 2-(chloromethyl)-5-phenyl-1,3,4-oxadiazole (117 mg, 0.6 mmol) in 62% 

yield. Chromatography: DCM/EtOAc, 8:2; oil. Rf (DCM/EtOAc, 8:2) 0.40. IR (ATR) 3304 (NH), 1728 

(CO), 1599, 1550, 1499, 1444 (Ar). 1H NMR (300 MHz, CDCl3)  0.85 (t, J = 6.9 Hz, 3H, CH3), 1.25-

1.30 (m, 10H, (CH2)5CH3), 1.50-1.60 (m, 2H, CH2(CH2)5CH3), 2.63 (t, J = 6.3 Hz, 2H, CH2CO), 2.70 

(app t, J = 7.3 Hz, 2H, NCH2), 3.00 (t, J = 6.3 Hz, 2H, NCH2CH2CO), 4.10 (s, 2H, NCH2Chet), 7.07 (tt, 

J = 7.7 Hz, 1.8, 1H, H4), 7.28 (t, J = 7.2 Hz, 2H, H3, H5), 7.44 (t, J = 7.7 Hz, 2H, H3´, H5´), 7.50 (d, J = 

7.3 Hz, 1H, H4´), 7.57 (d, J = 8.6 Hz, 2H, H2, H6), 7.93 (d, J = 8.6 Hz, 2H, H2´, H6´), 10.17 (br s, 1H, 

NH). 13C NMR (75 MHz, CDCl3)  14.5 (CH3), 23.0, 27.2, 27.8, 29.6, 29.8, 32.1, 34.2, 47.7, 51.0, 54.4 

(10CH2), 120.3 (2CH), 123.8, 124.3 (2CH), 127.3 (2CH), 129.3 (2CH), 129.5 (2CH), 132.3, 138.8, 

163.8, 165.9, 170.4 (5C). HRMS (ESI): [(M+H)+] calcd. for C26H35N4O2: 435.2755; found, 435.2752. 

Synthesis of 4-{[N-(3-anilino-3-oxopropyl)-N-octyl-β-alanyl]amino}benzoic acid (15).43 To a 

solution of 14 (34 mg, 0.07 mmol) in THF/H2O 2:1 (1.2 mL) was added LiOH·H2O (6.5 mg, 0.3 mmol) 

and the reaction mixture was stirred at reflux for 3 h. Then, the solvent was removed under reduced 

pressure, and the residue was taken up in EtOAc and washed with saturated solution of NaCl (3 x 

10 mL). The organic phase was dried over Na2SO4 and the solvent was evaporated under reduced 

pressure to obtain the title compound in 28% yield. Chromatography: EtOAc/MeOH, 1:1; oil. Rf 

(EtOAc/MeOH/NH3, 7:3:0.2) 0.34. IR (ATR) 3275, 3193, 3057 (NH, OH), 1685 (CO), 1602, 1544, 

1502, 1446 (Ar). 1H NMR (300 MHz, CD3OD) 0.86 (t, J = 6.7 Hz, 3H, CH3), 1.25-1.29 (m, 10H, 

(CH2)5CH3), 1.67-1.72 (m, 2H, CH2(CH2)5CH3), 2.52 (q, J = 6.3 Hz, 4H, 2CH2CO), 3.00 (t, J = 7.5 Hz, 

2H, (CH2)6CH2N), 3.34 (m, 4H, 2NCH2CH2CO), 7.07 (t, J = 7.4 Hz, 1H, H4’), 7.24 (t, J = 7.4 Hz, 2H, 

H3’, H5’), 7.51 (d, J = 7.6 Hz, 2H, H2, H6), 7.62 (d, J = 8.6 Hz, 2H, H2’, H6’), 7.89 (d, J = 8.6 Hz, 2H, H3, 

H5). 13C NMR (75 MHz, CD3OD)  14.4 (CH3), 23.7, 26.3, 28.0, 30.3, 30.4, 30.8, 32.5, 32.9 (8CH2), 

51.1 (2CH2), 55.1 (CH2), 120.2 (2CH), 121.3 (2CH), 124.3 (C), 125.4 (CH), 129.8 (2CH), 131.7 (2CH), 

139.5, 143.4, 170.5, 171.6, 171.8 (5C). HRMS (ESI): [(M-H)-] calcd. for C27H36N3O4: 466.27058; 

found, 466.27198. 
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4.1.2. Synthesis of symmetric diamides 3 and 16-27 

Synthesis of 3-bromo-N-phenylpropanamide (48). To a solution of aniline (4.1 mL, 45 mmol) 

in anhidrous DCM (225 mL) was added, under argon atmosphere and at 0 ºC, 3-bromopropanoyl 

chloride (5 mL, 50 mmol) and pyridine (4 mL, 50 mmol), consecutively. The reaction mixture was 

stirred for 1 h at rt, and the crude was washed with saturated solution of NaHCO3, H2O and saturated 

solution of NaCl, sequentially. The aqueous phase was dried over Na2SO4 and the solvent was 

evaporated at reduced pressure, giving the compound as a solid in 71% yield. Rf (DCM/MeOH, 95:5) 

0.56. Mp: 118-122 ºC (Lit.44 123-124 ºC). 1H NMR (300 MHz, CDCl3) 2.96 (t, J = 6.5  Hz, 2H,  

CH2CO), 3.65 (t, J = 6.5 Hz, 2H, CH2Br), 7.10 (t, J = 7.4 Hz, 1H, H4), 7.27 (t, J = 7.8 Hz, 2H, H3, H5), 

7.55 (d, J = 7.8 Hz, 2H, H2, H6), 8.63 (br s, 1H, NH). The spectroscopic data are in agreement with 

those previously described.44 

Synthesis of (1E)-N-hydroxy-2-methoxycyclohexylimine (49). To a solution of sodium acetate 

(192 mg, 2.3 mmol) and hydroxylamine hydrochloride (163 mg, 2.3 mmol) in H2O (5.8 mL) previously 

heated at 60 ºC, was added a solution of 2-methoxycyclohexyl-1-one (0.15 mL, 1.1 mmol) in methanol 

(0.6 mL) under argon atmosphere. The reaction mixture was stirred overnight at 60 ºC, and the crude 

was washed with H2O  (5.5 mL) and  extracted  with Et2O. The organic phase was washed with 

saturated aqueous solutions of NaHCO3 and NaCl, dried over Na2SO4, and the solvent was removed 

under reduced pressure to obtain the title compound in quantitative yield. Chromatography: 

hexane/EtOAc, 7:3; oil. Rf (hexane/EtOAc, 7:3) 0.40. 1H NMR (300 MHz, CDCl3) 1.35-1.94 (m, 5H, 

2CH2, 1/2CH2), 2.03-2.14 (m, 2H, CH2), 3.01-3.05 (m, 1H, 1/2CH2), 3.27 (s, 3H, CH3), 3.75 (m, 1H, 

CH), 6.05 (br s, 1H, OH). MS (ESI): [(M+H)+] 143.9. The spectroscopic data are in agreement with 

those previously described.45 
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Synthesis of 1-{[(E)-(2-methoxycyclohexylidene)amino]oxy}bethanone (50). A solution of 

ketoxime 49 (166 mg, 1.2 mmol), pyridine (0.34 mL, 4.2 mmol) and acetic anhydride (0.68 mL, 7.2 

mmol) was stirred overnight under argon atmosphere at rt. The solvent was removed under reduced 

pressure and coevaporated with toluene to obtain the title compound in 85% yield. Chromatography: 

hexane/EtOAc, 7:3; oil. Rf (hexane/EtOAc, 7:3) 0.42. IR (ATR)  1769 (COO), 1702 (CN), 1193 

(COC). 1H NMR (300 MHz, CDCl3) 1.34-1.70 (m, 5H, 2CH2, 1/2CH2), 1.73-2.02 (m, 2H, CH2), 2.07-

2.26 (m, 5H, CH2, CH3CO), 3.03-3.08 (m, 1H, 1/2CH2), 3.30 (s, 3H, OCH3), 3.95 (m, 1H, CH). 13C 

NMR (75 MHz, CDCl3)  19.3 (CH3 diastereomers), 19.4 (CH2 diastereomers), 19.4 (CH3 

diastereomers), 19.6, 23.2, 25.5, 26.8, 28.0, 31.8, 32.7 (7CH2 diastereomers), 56.0, 56.2 (CH3 

diastereomers), 70.1, 77.0 (CH diastereomers), 166.9, 167.4, 168.3, 168.5 (2C diastereomers). MS 

(ESI): [(M-OCOCH3)+] 125.9. 

Synthesis of 6-methoxyhexanenitrile (51).46 A solution of 50 (120 mg, 0.7 mmol), 

trimethylsilane (0.12 mL, 0.8 mmol) and catalytic quantities of trimethylsilyl trifluoromethanesulfonate 

(TMSOTf) (12 μL, 70.0 nmol) was stirred at 0 ºC for 6 h. Then, the solvent was removed under 

reduced pressure to give the title compound in 87% yield. Chromatography: hexane/EtOAc, 8:2; oil. 

Rf (hexane/EtOAc, 8:2) 0.33. IR (ATR) 2246 (CN), 1120 (CO). 1H NMR (300 MHz, CDCl3) 1.47-

1.75 (m, 6H, (CH2)3CH2CN), 2.36 (t, J = 7.1 Hz, 2H, CH2CN), 3.34 (s, 3H, CH3), 3.39 (t, J = 6.1 Hz, 

2H, CH2O). 13C NMR (75 MHz, CDCl3)  17.3, 25.4, 25.6, 29.0 (4CH2), 58.8 (CH3), 72.3 (CH2), 119.8 

(C). MS (ESI): [(M-CH3+H)+] 113.0. 
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Synthesis of 6-methoxyhexyl-1-amine (52). To a solution of nitrile 51 (100 mg, 0.8 mmol) in 

anhydrous THF (1 mL) was added under argon atmosphere a solution of 1M BH3 in THF (3.2 mL, 

3.2 mmol) and the mixture was stirred at reflux for 3.5 h. Once at rt, the reaction was quenched by 

slow addition of MeOH (1.8 mL) and concentrated HCl (0.2 mL), and the product was extracted with 

DCM, dried over Na2SO4, and the solvent was removed under reduced pressure. The title amine was 

obtained in 66% yield. Chromatography: EtOAc/MeOH, 9:1; oil. Rf (hexane/EtOAc, 1:1) 0.13. IR 

(ATR)  3332 (NH). 1H NMR (300 MHz, CDCl3) 1.34-1.49 (m, 4H, 2CH2), 1.56 (qt, J = 6.6 Hz, 2H, 

CH2), 1.79 (qt, J = 7.4 Hz, 2H, CH2), 2.99 (t, J = 7.7 Hz, 2H, CH2N), 3.32 (s, 3H, CH3), 3.37 (t, J = 6.4 

Hz, 2H, CH2O). 13C NMR (75 MHz, CDCl3)  25.7, 26.4, 27.6, 29.4, 40.0 (5CH2), 58.6 (CH3), 72.6 

(CH2). MS (ESI): [(M+H)+] 132.0. 

Synthesis of 2-[2-(2-ethoxyethoxy)ethyl]-1H-isoindol-1,3(2H)-dione (53). To a solution of 2-

(2-ethoxyethoxy)ethanol (0.5 mL, 3.7 mmol), phthalimide (549 mg, 3.7 mmol) and triphenylphosphine 

(977 mg, 3.7 mmol) in anhydrous toluene (11 mL) was added, under argon atmosphere and at 0 ºC, 

DIAD (0.8 mL, 4 mmol). The reaction mixture was stirred at 0 ºC for 50 min and at rt for 1 h. Then, 

was added methanol (2.9 mL) and the mixture was stirred overnight at rt. Solvent was removed under 

reduced pressure and precipitate was washed with hexane, filtered and dried over Na2SO4, to obtain 

the title compound in 58% yield. Chromatography: hexane/EtOAc, 7:3; oil. Rf (hexane/EtOAc, 7:3) 

0.22. 1H NMR (300 MHz, CDCl3) 1.13 (t, J = 7.0 Hz, 3H, CH3), 3.45 (q, J = 7.0 Hz, 2H, CH3CH2O), 

3.52-3.55 (m, 2H, CH2N), 3.62-3.65 (m, 2H, CH2O), 3.74 (t, J = 5.8 Hz, 2H, CH2O), 3.90 (t, J = 5.8 

Hz, 2H, CH2O), 7.70 (m, 2H, 2H3), 7.84 (m, 2H, 2H2). MS (ESI): [(M+H)+] 264.0. The spectroscopic 

data are in agreement with those previously described.47 

Synthesis of 2-(2-ethoxyethoxy)ethylamine (54). To a solution of 53 (295 mg, 1.1 mmol) in dry 

methanol (4.9 mL) was added, under argon atmosphere, hydrazine (0.1 mL, 2.2 mmol) and  the  

reaction mixture was stirred for 2 h. Then, NaBH4 (42 mg, 1.1 mmol) and a second portion of 

hydrazine (0.1 mL, 2.2 mmol) were added and stirring was continued overnight at rt. The suspension 

was filtered and the solvent was removed under reduced pressure. The residue was dissolved in 
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EtOAc (20 mL), warmed to 50 °C, sonicated, and filtered. The filtrate was evaporated, redissolved in 

Et2O (20 mL), filtered, and the solvent was removed under reduced pressure to  afford the title  

compound as a yellowish oil in quantitative yield. Rf (EtOAc/MeOH, 9:1) 0.35. 1H NMR (300 MHz, 

CDCl3) 1.20 (t, J = 7.0 Hz, 3H, CH3), 1.95 (br s, 2H, NH2 ), 2.85 (t, J = 5.2 Hz, 2H, CH2N), 3.42-3.53 

(m, 4H, 2CH2O), 3.56-3.62 (m, 4H, 2CH2O). The spectroscopic data are in agreement with those 

previously described.47 

Synthesis of 3-(2-methoxyethoxy)propanenitrile (55). A solution of 2-methoxyethanol (2 mL, 

26 mmol) in acrylonitrile (15 mL, 229 mmol) was stirred under argon atmosphere at 0 ºC for 10 min. 

Then, KOH (133 mg, 2.4 mmol) was added and the mixture was stirred at 0 ºC for 1.5 h. Four drops 

of an aqueous solution of concentrated HCl were added and the solvent was removed under reduced 

pressure. The residue was dissolved in chloroform, filtered and the solvent was removed under 

reduced pressure to obtain the title nitrile as a colorless oil in 94% yield. Rf (hexane/EtOAc, 7:3) 0.28. 
1H NMR (300 MHz, CDCl3) 2.64 (t, J = 6.5 Hz, 2H, CH2CN), 3.40 (s, 3H, CH3), 3.55-3.58 (m, 2H, 

CH2O), 3.66-3.69 (m, 2H, CH2O), 3.73 (t, J = 6.5 Hz, 2H, CH2O). MS (ESI): [(M+H)+] 130.0. The 

spectroscopic data are in agreement with those previously described.48 

Synthesis of 3-(2-methoxyethoxy)propyl-1-amine (56). To a solution of nitrile 55 (440 mg, 31.8 

mmol) in anhydrous THF (41.6 mL) was added, dropwise and under argon atmosphere, a solution of 

1M BH3 in THF (7.7 mL, 7.7 mmol) and the mixture was stirred at reflux for 3.5 h. Once at rt, the 

reaction was quenched by slow addition of MeOH (73 mL) and concentrated HCl (8 mL), the product 

was extracted with DCM, dried over Na2SO4, and the solvent was removed under reduced pressure 

to obtain the title amine as an oil in 89% yield. Rf (hexane/EtOAc, 9:1) 0.25. 1H NMR (300 MHz, 

CDCl3) 1.74 (qt, J = 6.5 Hz, 2H, CH2CH2N), 2.78 (t, J = 6.8 Hz, 2H, CH2N), 3.38 (s, 3H, CH3), 3.52-

3.60 (m, 6H, 3CH2O). MS (ESI): [(M+H)+] 134.1. The spectroscopic data are in agreement with those 

previously described.48 
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Synthesis of (oxetan-3-ylidene)acetonitrile (57). To a solution of oxetan-3-one (0.67 mL, 10.4 

mmol) in dry DCM (3 mL) was added, dropwise and under an argon atmosphere, a solution of 

Ph3P=CHCN (3.14 g, 10.4 mmol) in dry DCM (15 mL). The mixture was stirred for 6 h at rt, and the 

solvent was evaporated under reduced pressure. The residue was dissolved in hexane/Et2O (3:2), 

filtered over a plug of silica gel and washed with Et2O (2 x 50 mL). The solvents were removed under 

reduced pressure to give the nitrile in 79% yield. Chromatography: hexane/EtOAc, 8:2; oil. Rf 

(hexane/EtOAc, 7:3) 0.40. IR (ATR) 2218 (CN), 1690 (C=C). 1H NMR (300 MHz, CDCl3) 5.30 (m, 

1H, CH), 5.25-5.28 (m, 2H, CH2O), 5.29-5.32 (m, 2H, CH2O). 

Synthesis of (3-pentyloxetan-3-yl)acetonitrile (58). To a suspension of CuI (200 mg, 1 mmol) 

in anhydrous Et2O (1 mL), pentylmagnesium bromide (2 M in Et2O, 1.3 mL) was added dropwise 

under argon atmosphere. The mixture was cooled to 0 ºC before a solution of nitrile 57 (210 mg, 2.2 

mmol) in Et2O (4 mL) was added within 15 min. The reaction mixture was stirred at this temperature 

for 2 h, quenched with saturated NH4Cl, and extracted with EtOAc (2 x 50 mL). The organic layers 

were washed with saturated aqueous solution of NaCl and dried over Na2SO4. The solvent was 

removed under reduced pressure to give the title compound in 26% yield. Chromatography: 

hexane/EtOAc, 8:2; oil. Rf (hexane) 0.20. IR (ATR) 2245 (CN). 1H NMR (300 MHz, CDCl3) 0.84 

(t, J = 6.7 Hz, 3H, CH3), 1.16-1.29 (m, 6H, (CH2)3CH3), 1.74 (m, 2H, CH2C), 2.75 (s, 2H, CH2CN), 

4.43 (d, J = 6.4 Hz, 2H, CH2O), 4.51 (d, J = 6.4 Hz, 2H, CH2O). 13C NMR (75 MHz, CDCl3)  14.0 

(CH3), 22.5, 23.9, 25.0, 31.9, 35.7 (5CH2), 41.1 (C), 79.9 (2CH2), 118.3 (C). 

Synthesis of 2-(3-pentyloxetan-3-yl)ethylamine (59). To a suspension of LAH (96 mg, 2.5 

mmol) in anhydrous Et2O, nitrile 58 (200 mg, 1.2 mmol) was added dropwise at 0º C and under argon 
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atmosphere. The reaction was stirred for 2 h at this temperature and the crude was quenched by 

adding H2O (2.5 mL), NaOH 1 M (2.5 mL), and H2O (5 mL). The reaction mixture was extracted with 

EtOAc (2 x 50 mL) and the organic layers were washed with saturated aqueous solution of NaCl and 

dried over Na2SO4. Then, the solvent was removed under reduced pressure to obtain the amine as 

an oil in 59% yield. Rf (EtOAc/MeOH, 85:15) 0.10. IR (ATR) 3360 (NH). 1H NMR (300 MHz, CDCl3) 

0.90 (t, J = 6.7 Hz, 3H, CH3), 1.18-1.35 (m, 6H, (CH2)3CH3), 1.54 (br s, 2H, NH2), 1.65 (app t, J = 

7.3, 2H, CH2C), 1.84 (app t, J = 8.1 Hz, 2H, CH2CH2N), 2.69 (t, J = 7.3 Hz, 2H, CH2N), 4.40 (AB 

system, J = 5.7 Hz, 4H, 2CH2O). 13C NMR (75 MHz, CDCl3)  14.1 (CH3), 22.6, 23.7, 31.0 (3CH2), 

32.3 (C), 34.3, 35.9, 41.5 (3CH2), 81.9 (2CH2). MS (ESI): [(M+H)+] 172.1. 

Synthesis of (4-ethylpiperazin-1-yl)acetonitrile (60).21 A mixture of 1-ethylpiperazine (0.7 mL, 

5.4 mmol), bromoacetonitrile (0.43 mL, 6.0 mmol) and K2CO3 (1.7 g, 12 mmol) in anhidrous 

acetonitrile (0.5 mL/mmol) was stirred overnight at rt. The product was isolated by filtration with celite, 

washed with acetonitrile, and the solvent was evaporated under reduced pressure to give the title 

compound as a pure orange oil in quantitative yield. Rf (EtOAc/MeOH, 8:2) 0.28. IR (ATR)  2231 

(CN). 1H NMR (300 MHz, CDCl3) 1.08 (t, J = 7.2 Hz, 3H, CH3), 2.42 (q, J = 7.2 Hz, 2H, CH3CH2), 

2.51 (m, 4H, 2CH2N), 2.64 (t, J =  4.6  Hz, 4H, 2CH2N),  3.50 (s, 2H, CH2CN). 13C NMR (75 MHz, 

CDCl3) 11.9 (CH3), 45.7 (CH2), 51.7 (2CH2), 52.0 (CH2), 52.1 (2CH2), 114.7 (C). MS (ESI): [(M+H)+] 

154.1. 

Synthesis of (4-ethylpiperazin-1-yl)ethylamine (61).21 A mixture of nitrile 60 (465 mg, 3 mmol) 

in THF (3 mL/mmol) was treated with LAH (242 mg, 6 mmol) at 0 ºC for 4 h. After completion, the 

reaction was quenched with Na2SO4·10H2O (8.4 g, excess) and stirred for 30 min. The product was 

isolated by filtration with celite, washed with THF and dried under reduced pressure to give the title 

compound as a pure orange oil in 86% yield. IR (ATR)  3311 (NH2). 1H NMR (300 MHz, CDCl3)  
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1.07 (t, J = 7.2 Hz, 3H, CH3), 2.36-2.48 (m, 12H, CH2CH3+4CH2N+CH2CH2NH2), 2.78 (t, J = 6.3 Hz, 

4H, CH2NH2). 13C NMR (75 MHz, CDCl3) 12.1 (CH3), 38.9, 52.4 (2CH2), 52.9 (2CH2), 53.3 (2CH2), 

61.3 (CH2). MS (ESI): [(M+H)+] 158.2. 

General procedure A for the synthesis of symmetric diamides 3 and 17-25. To a solution of 

N-phenylacrylamide 33 (3 equiv) and the corresponding amine (1 equiv) in anhidrous acetonitrile (0.5 

mL/mmol), was added DBU (3 equiv), and the reaction mixture was stirred 24 h at 60 ºC (except for 

24). The solvent was removed under reduced pressure and the crude was purified by column 

chromatography (EtOAc/MeOH) to obtain the title compounds as yellowish oils. 

N3-(3-Anilino-3-oxopropyl)-N1-phenyl-N3-octyl-β–alaninamide (3). Obtained following the 

general procedure A for the synthesis of symmetric diamides from acrylamide 33 (500 mg, 3.4 mmol) 

and octylamine (0.18 mL, 1.1 mmol) in 83% yield. Chromatography: hexane/EtOAc, 1:1; oil. Rf 

(hexane:EtOAc, 1:1) 0.45. IR (ATR)  3294 (NH), 1659 (CO), 1601, 1546, 1497 (Ar). 1H NMR (300 

MHz, CDCl3)  0.85 (t, J = 6.7 Hz, 3H, CH3), 1.08 (m, 2H, CH2CH3), 1.19-1.25 (m, 8H, (CH2)4CH2CH3), 

1.52 (m, 2H, CH2(CH2)5CH3), 2.53 (t, J = 6.3 Hz, 6H, 2CH2CO, (CH2)6CH2N), 2.85 (t, J = 6.2 Hz, 4H, 

2NCH2CH2CO), 7.02 (t, J = 7.3 Hz, 2H, 2H4), 7.20 (t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.43 (d, J = 7.8 Hz, 

4H, 2H2, 2H6), 8.90 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  14.0 (CH3), 22.6, 26.8, 27.7, 29.3, 

29.5, 31.8 (6CH2), 34.5 (2CH2), 49.9 (2CH2), 53.7 (CH2), 119.9 (4CH), 124.0 (2CH), 128.9 (4CH), 

138.1 (2C), 170.4 (2C). HRMS (ESI): [(M+H)+] calcd. for C26H38N3O2, 424.2959; found, 424.2959. 

general procedure A for the synthesis of symmetric diamides from acrylamide 33 (500 mg, 3.4 mmol) 
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and methylamine (2 M solution in THF, 1.1 mmol) in 95% yield. Chromatography: DCM/MeOH, 95:5; 

oil. Rf (DCM/MeOH, 95:5) 0.13; IR (ATR) 3298 (NH), 1660 (CO), 1600, 1547, 1497, 1443 (Ar). 1H 

NMR (300 MHz, CDCl3)  2.30 (s, 3H, CH3), 2.52 (t, J = 5.9 Hz, 4H, 2CH2CO), 2.75 (t, J = 5.9 Hz, 

4H, 2CH2N), 7.01 (t, J = 7.2 Hz, 2H, 2H4), 7.17 (t, J = 7.6 Hz, 4H, 2H3, 2H5), 7.46 (d, J = 7.8 Hz, 4H, 

2H2, 2H6), 9.36 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  34.3 (2CH2), 41.3 (CH3), 53.0 (2CH2), 

120.1 (4CH), 124.0 (2CH), 128.8 (4CH), 138.2 (2C), 170.5 (2C). HRMS (ESI): [(M+H)+] calcd. for 

C19H24N3O2, 326.1863; found, 326.1866. 

N3-(3-Anilino-3-oxopropyl)-N3-hexyl-N1-phenyl-β-alaninamide (18). Obtained following the 

general procedure A for the synthesis of symmetric diamides from acrylamide 33 (500 mg, 3.4 mmol) 

and hexylamine (111 mg, 1.1 mmol) in 76% yield. Chromatography: EtOAc/MeOH, 9:1; oil. Rf 

(EtOAc/MeOH, 9:1) 0.21. IR (ATR)  3298 (NH), 1660 (CO), 1601, 1547, 1498, 1443 (Ar). 1H NMR 

(300 MHz, CDCl3)  0.82 (t, J = 6.9 Hz, 3H, CH3), 1.20-1.28 (m, 6H, (CH2)3CH3), 1.50-1.54 (m, 2H, 

CH2(CH2)3CH3), 2.52 (t, J =  6.2 Hz, 6H, 2CH2CO, (CH2)4CH2N), 2.83 (t, J = 6.2  Hz, 4H,  

2NCH2CH2CO), 7.02 (t, J = 7.4 Hz, 2H, 2H4), 7.19 (t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.44 (d, J = 7.9 Hz, 

4H, 2H2, 2H6), 9.08 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  14.4 (CH3), 23.0, 27.1, 27.7, 32.1 

(4CH2), 34.7 (2CH2), 50.1 (2CH2), 54.0 (CH2), 120.2 (4CH), 124.4 (2CH), 129.3 (4CH), 138.5 (2C), 

170.9 (2C). HRMS (ESI): [(M+H)+] calcd. for C24H34N3O2, 396.2646; found, 369.2648. 

N3-(3-Anilino-3-oxopropyl)-N3-(3-butoxypropyl)-N1-phenyl-β-alaninamide (19). Obtained 

following the general procedure A for the synthesis of symmetric diamides from acrylamide 33 (336 

mg, 2.3 mmol) and 3-butoxypropyl-1-amine (0.1 mL, 0.76 mmol) in 25% yield. Chromatography: 

EtOAc; oil. Rf (EtOAc) 0.30. IR (ATR) 3287 (NH), 1661 (CO), 1600, 1547, 1498, 1443 (Ar). 1H NMR 

(300 MHz, CDCl3)  0.76 (t, J = 7.3 Hz, 3H, CH3), 1.10-1.37 (m, 4H, (CH2)2CH3), 1.64 (qt, J = 6.6 Hz, 
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2H, NCH2CH2CH2O), 2.44-2.52 (m, 6H, 2CH2CO, NCH2(CH2)2O), 2.75 (t, J = 6.3 Hz, 4H,  

2NCH2CH2CO), 3.13 (t, J = 6.6 Hz, 2H, CH2O), 3.30 (t, J = 6.4 Hz, 2H, CH2O), 6.93 (t, J = 7.4 Hz, 

2H, 2H4), 7.10 (t, J = 7.9 Hz, 4H, 2H3, 2H5), 7.37 (dd, J = 8.8, 1.0 Hz, 4H, 2H2, 2H6). 13C NMR (75 

MHz, CDCl3)  14.4 (CH3), 20.4, 28.3, 32.9 (3CH2), 35.6 (2CH2), 51.2 (2CH2), 51.3, 69.8, 71.7 (3CH2), 

121.3 (4CH), 125.1 (2CH), 129.8 (4CH), 139.7 (2C), 173.4 (2C). HRMS (ESI): [(M+Na)+] calcd. for 

C25H35N3O3Na, 448.25761; found, 448.25641. 

N3-[3-(Phenylamino)-3-oxopropyl]-N3-[6-(methoxyhexyl)]-N1-phenyl-β-alaninamide (20). 

Obtained following the general procedure A for the synthesis of symmetric diamides from acrylamide 

33 (168 mg, 1.1 mmol) and amine 52 (60 mg, 0.46 mmol) in 21% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH, 9:1) 0.42. IR (ATR) 3238 (NH), 1678, 1645 (CO), 1601, 

1548, 1495, 1443 (Ar). 1H NMR (300 MHz, CDCl3)  1.18-1.58 (m, 8H, OCH2(CH2)4), 2.51 (t, J = 7.1 

Hz, 2H, (CH2)5CH2N), 2.53 (t, J = 5.9 Hz, 4H, 2CH2CO), 2.83 (t, J = 6.1 Hz, 4H, 2NCH2CH2CO), 3.29-

3.33 (m, 5H, CH2OCH3), 7.02 (t, J = 7.4 Hz, 2H, 2H4), 7.18 (t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.44 (d, J = 

7.8 Hz, 4H, 2H2, 2H6), 9.20 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  25.9, 26.6, 27.2, 29.5 (4CH2), 

34.6 (2CH2), 50.0 (2CH2), 53.4 (CH2), 58.6 (CH3), 72.8 (CH2), 119.9 (4CH), 124.0 (2CH), 128.9 (4CH), 

138.3 (2C), 170.7 (2C). HRMS (ESI): [(M-H)-] calcd. for C25H34N3O3, 424.26001; found, 424.26106. 

N3-(3-Anilino-3-oxopropyl)-N3-[2-(2-ethoxyethoxy)ethyl]-N1-phenyl-β-alaninamide (21). 

Obtained following the general procedure A for the synthesis of symmetric diamides from acrylamide 

33 (332 mg, 2.3 mmol) and amine 54 (100 mg, 0.8 mmol) in 53% yield. Chromatography: 

EtOAc/MeOH, 8:2; oil. Rf (EtOAc/MeOH, 9:1) 0.30. IR (ATR) 3303 (NH), 1660, 1547 (CO), 1601, 
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1496, 1443 (Ar). 1H NMR (300 MHz, CDCl3)  1.14 (t, J = 7.0 Hz, 3H, CH3), 2.53 (t, J = 6.0 Hz, 4H, 

2CH2CO), 2.74 (t, J = 4.9 Hz, 2H, NCH2CH2O), 2.87 (t, J = 6.0 Hz, 4H, 2NCH2CH2CO), 3.44-3.49 (m, 

4H, NCH2CH2O, OCH2CH3), 3.54-3.59 (m, 4H, O(CH2)2O), 6.98 (t, J = 7.4 Hz, 2H, 2H4), 7.13 (t, J = 

7.8 Hz, 4H, 2H3, 2H5), 7.43 (d, J = 7.7 Hz, 4H, 2H2, 2H6), 9.24 (br s, 2H, 2NH). 13C NMR (75 MHz, 

CDCl3)  15.0 (CH3), 35.2 (2CH2), 51.4 (2CH2), 54.7, 66.6, 69.3, 69.6, 70.3 (5CH2), 120.0 (4CH), 

123.8 (2CH), 128.7 (4CH), 138.3 (2C), 171.0 (2C). HRMS (ESI): [(M+Na)+] calcd. for C24H33N3O4Na, 

450.23688; found, 450.23663. 

33 (332 mg, 2.3 mmol) and amine 56 (100 mg, 0.8 mmol) in 39% yield. Chromatography: 

EtOAc/MeOH, 8:2; oil. Rf (EtOAc/MeOH, 9:1) 0.29. IR (ATR) 3305 (NH), 1662, 1545 (CO), 1600, 

1497, 1443 (Ar). 1H NMR (300 MHz, CDCl3)  1.59 (qt, J = 5.7 Hz, 2H, NCH2CH2CH2O), 2.51 (app t, 

4H, 2CH2CO), 2.54 (t, J = 5.4 Hz, 2H, NCH2CH2CH2O), 2.75 (t, J = 5.4 Hz, 4H, NCH2CH2CO), 3.28 

(t, J = 5.5 Hz, 2H, NCH2CH2CH2O), 3.39-3.42 (m, 2H, OCH2CH2O), 3.45 (s, 3H, CH3), 3.60-3.63 (m, 

2H, OCH2CH2O), 6.98 (t, J = 7.3 Hz, 2H, 2H4), 7.11 (t, J = 7.7 Hz, 4H, 2H3, 2H5), 7.39 (d, J = 8.1 Hz, 

4H, 2H2, 2H6), 8.89 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  27.1 (CH2), 35.5 (2CH2), 49.3 (CH2), 

50.6 (2CH2), 58.9 (CH3), 67.2, 69.4, 72.5 (3CH2), 119.8 (4CH), 123.6 (2CH), 128.7 (4CH), 138.4 (2C), 

171.9 (2C). HRMS (ESI): [(M+H)+] calcd. for C24H34N3O4, 428.25493; found, 428.25429. 

N3-(3-Anilino-3-oxopropyl)-N3-[3-(2-methoxyethoxy)propyl]-N1-phenyl-β-alaninamide (22). 

Obtained following the general procedure A for the synthesis of symmetric diamides from acrylamide 
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N3-(3-Anilino-3-oxopropyl)-N3-[(3-pentyloxetan-3-yl)ethyl]-N1-phenyl-β-alaninamide (23). 

Obtained following the general procedure A for the synthesis of symmetric diamides from acrylamide 

33 (275 mg, 1.9 mmol) and amine 59 (98 mg, 0.62 mmol) in 21% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH, 95:5) 0.60. IR (ATR) 3304 (NH), 1657 (CO), 1598, 1542, 

1498, 1442 (Ar). 1H NMR (300 MHz, CDCl3)  0.88 (t, J = 7.1 Hz, 3H, CH3), 1.15-1.31 (m, 6H, 

(CH2)3CH3), 1.56 (app t, J = 7.3 Hz, 2H, CH2C), 1.78 (t, J = 7.1 Hz, 2H, CCH2CH2N), 2.56 (t, J = 5.8 

Hz, 4H, 2CH2CO), 2.63 (t, J = 7.1 Hz, 2H, CCH2CH2N), 2.87 (t, J = 5.8 Hz, 4H, 2NCH2CH2CO), 4.30 

(d, J = 5.9 Hz, 2H, CH2O), 4.45 (d, J = 5.9 Hz, 2H, CH2O), 7.02 (t, J = 7.5 Hz, 2H, 2H4), 7.16 (t, J = 

7.5 Hz, 4H, 2H3, 2H5), 7.38 (d, J = 8.1 Hz, 4H, 2H2, 2H6), 8.63 (br s, 2H, 2NH). 13C NMR (75 MHz, 

CDCl3)  14.1 (CH3), 22.6, 23.8, 31.6, 32.2 (4CH2), 35.1 (2CH2), 36.9 (CH2), 41.4 (C), 49.2 (CH2), 

50.1 (2CH2), 80.9 (2CH2), 119.8 (4CH), 124.0 (2CH), 128.8 (4CH), 138.0 (2C), 170.6 (2C). HRMS 

(ESI): [(M+H)+] calcd. for C28H39N3O2, 466.3025; found, 466.3050. 

N3-(3-Anilino-3-oxopropyl)-N3-cyclopropyl-N1-phenyl-β-alaninamide (24). Obtained following 

the general procedure A for the synthesis of symmetric diamides from acrylamide 33 (100 mg, 0.7 

mmol) and cyclopropylamine (16 μL, 0.2 mmol) at 45 ºC in 27% yield. Chromatography: 

EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH, 9:1) 0.51. IR (ATR)  3296 (NH), 1659 (CO), 1598, 1546, 

1498, 1443 (Ar). 1H NMR (300 MHz, CDCl3) 0.50-0.55 (m, 2H, CH2cyc), 0.58-0.61 (m, 2H, CH2cyc), 

1.78-1.83 (m, 1H, CHcyc), 2.63 (t, J = 6.2 Hz, 4H, 2CH2CO), 3.02 (t, J = 6.2 Hz, 4H, 2CH2N), 7.03 (t, 

J = 7.4 Hz, 2H, 2H4), 7.19 (t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.41 (d, J = 7.7 Hz, 4H, 2H2, 2H6), 8.70 (br s, 

2H, 2NH). 13C NMR (75 MHz, CDCl3)  6.9 (2CH2), 34.5 (2CH2), 37.2 (CH), 51.7 (2CH2), 119.6 (4CH), 

124.1 (2CH), 129.0 (4CH), 138.1 (2C), 170.6 (2C). HRMS (ESI): [(M+Na)+] calcd. for C21H25N3O2Na: 

374.18445; found, 374.17157. 
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N3-(3-Anilino-3-oxopropyl)-N3-(cyclopropylmethyl)-N1-phenyl-β-alaninamide (25). Obtained 

following the general procedure A for the synthesis of symmetric diamides from acrylamide 33 (100 

mg, 0.7 mmol) and aminomethylcyclopropane (0.02 mL, 0.2 mmol) in quantitative yield. 

Chromatography: EtOAc/MeOH, 9:1; oil. Rf (EtOAc/MeOH, 9:1) 0.42. IR (ATR)  3306 (NH), 1658 

(CO), 1599, 1548, 1498, 1444 (Ar). 1H NMR (300 MHz, CDCl3) 0.13 (q, J = 5.0 Hz, 2H, CH2cyc), 

0.49-0.55 (m, 2H, CH2cyc), 0.88-0.94 (m, 1H, CHcyc), 2.43 (d, J = 6.7 Hz, 2H, CHCH2N), 2.52 (t, J = 

6.3 Hz, 4H, 2CH2CO), 2.90 (t, J = 6.3 Hz, 4H, 2NCH2CH2CO), 7.01 (t, J = 7.4 Hz, 2H, 2H4), 7.18 (t, 

J = 7.8 Hz, 4H, 2H3, 2H5), 7.46 (d, J = 7.7 Hz, 4H, 2H2, 2H6), 9.53 (br s, 2H, 2NH). 13C NMR (75 MHz, 

CDCl3)  4.3 (2CH2), 8.6 (CH), 34.3 (2CH2), 49.7 (2CH2), 58.5 (CH2), 119.9 (4CH), 124.1 (2CH), 128.9 

(4CH), 138.3 (2C), 170.7 (2C). HRMS (ESI): [(M+Na)+] calcd. for C22H27N3O2Na: 388.20010; found, 

388.19619. 

2.2 mmol), and the mixture was stirred overnight at rt. The solvent was removed under reduced 

pressure, and the residue was dissolved in DCM, washed in saturated aqueous solutions of NaHCO3 

and NaCl, dried over Na2SO4, and the solvent removed under reduced pressure to give final 

compound 16 in 15% yield. Chromatography: EtOAc/MeOH 95:5; oil. Rf (DCM/MeOH, 95:5) 0.18. IR 

(ATR) 3285 (NH), 1733 (CO), 1668, 1602 (Ar).1H NMR (300 MHz, CDCl3) 2.59 (t, J = 6.3 Hz, 4H, 

2CH2CO), 2.89 (t, J = 6.3 Hz, 4H, 2CH2N), 6.97 (t, J = 7.4 Hz, 2H, 2H4), 7.10 (t, J = 7.7 Hz, 4H, 2H3, 

2H5), 7.37 (d, J = 7.7 Hz, 4H, 2H2, 2H6). 13C NMR (75 MHz, CDCl3) 35.6 (2CH2), 50.9 (2CH2), 121.5 

(4CH), 125.0 (2CH), 129.7 (4CH), 139.5 (2C), 173.3 (2C). HRMS (ESI): [(M+H)+] calcd. for 

C18H22N3O2: 312.1706; found, 312.1706. 
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General procedure B for the synthesis of symmetric diamides 26 and 27. To a solution of 3-

bromo-N-phenylpropanamide 48 (3 equiv) and the corresponding amine (1 equiv) in DCM (0.5 

mL/mmol), was added triethylamine (2.5 equiv) and 10% of KI, and the reaction mixture was stirred 

24 h at 60 ºC. The solvent was removed under reduced pressure and the crude was purified by 

column chromatography (EtOAc/MeOH/NH3) to give the title compounds as colorless oils. 

N3-(3-Anilino-3-oxopropyl)-N3-[2-(4-ethylpiperidin-1-yl)ethyl]-N1-phenyl-β-alaninamide (26). 

Obtained following the general procedure B for the synthesis of symmetric diamides from 48 (185 

mg, 0.8 mmol) and 2-(4-ethylpiperidin-1-yl)ethanamine (42 mg, 0.3 mmol) in 48% yield. 

Chromatography: EtOAc/MeOH/NH3, 9:1:0.2; oil. Rf (EtOAc/MeOH/NH3, 9:1:0.2) 0.43. IR (ATR) 

3310 (NH), 1675 (CO), 1602, 1551, 1498, 1445 (Ar). 1H NMR (300 MHz, CDCl3) 0.76 (t, J = 7.3 

Hz, 3H, CH3), 1.04-1.12 (m, 5H, CH2CH3+CH+2x1/2CH2cyc), 1.48 (d, J = 11.2 Hz, 2H, 2x1/2CH2cyc), 

1.92 (t, J = 11.1 Hz, 2H, 2x1/2CH2cycN), 2.52-2.54 (m, 6H, NcycCH2CH2N+ 2CH2CO), 2.71 (t, J = 6.1 

Hz, 2H, NcycCH2CH2N), 2.85 (t, J =  6.0 Hz, 4H, 2NCH2CH2CO), 2.95 (d, J = 11.3 Hz, 2H, 

2x1/2CH2cycN), 7.01 (t, J = 7.4 Hz, 2H, 2H4), 7.17 (t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.44 (d, J = 7.9 Hz, 

4H, 2H2, 2H6), 8.84 (br s, 2H, 2NH). 13C NMR (75 MHz, CDCl3)  14.3 (CH3), 29.2 (CH2), 31.6 (2CH2), 

35.2 (2CH2), 37.3 (CH), 50.8 (2CH2), 51.5 (CH2), 54.9 (2CH2), 56.8 (CH2), 120.2 (4CH), 124.1 (2CH), 

128.9 (4CH), 138.2 (2C), 170.8 (2C). HRMS (ESI): [(M+H)+] calcd. for C27H39N4O2: 451.30730; found, 

451.30714. 
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N3-(3-Anilino-3-oxopropyl)-N3-[2-(4-ethylpiperazin-1-yl)ethyl]-N1-phenyl-β-alaninamide 

(27). Obtained following the general procedure B for the synthesis of symmetric diamides from 48 

(218 mg, 0.9 mmol) and amine 61 (50 mg, 0.3 mmol) in 54% yield. Chromatography: 

EtOAc/MeOH/NH3, 7:3:0.2. Mp 70-72 ºC. Rf (EtOAc/MeOH/NH3, 8:2:0.2) 0.22. IR (ATR) 3276 (NH), 

1664 (CO), 1601, 1548, 1498, 1445 (Ar). 1H NMR (300 MHz, CDCl3) 0.96 (t, J = 7.2 Hz, 3H, CH3), 

2.23 (q, J = 7.2 Hz, 2H, CH2CH3), 2.19-2.53 (m, 14H, 2CH2CO+4CH2cyc+NcycCH2CH2N), 2.64 (t, J = 

5.9 Hz, 2H, NcycCH2CH2N), 2.80 (t, J = 6.1 Hz, 4H, 2NCH2CH2CO), 7.00 (t, J = 7.4 Hz, 2H, 2H4), 7.16 

(t, J = 7.8 Hz, 4H, 2H3, 2H5), 7.44 (d, J = 7.7 Hz, 4H, 2H2, 2H6), 9.24 (br s, 2H, 2NH). 13C NMR (75 

MHz, CDCl3) 11.9 (CH3), 34.8 (2CH2), 50.6 (2CH2), 50.8, 52.2 (2CH2), 52.4 (2CH2), 53.8 (2CH2), 

56.3 (CH2), 120.3 (4CH), 124.1 (2CH), 128.9 (4CH), 138.3 (2C), 170.7 (2C). HRMS (ESI): [(M+H)+] 

calcd. for C26H38N5O2: 452.30255; found, 452.30104. 

4.1.3. Synthesis of cysmethynil 

Synthesis of N-[(5-bromo-1H-indol-3-yl)methyl]-N,N-dimethylamine (64). To a solution of 1,4-

dioxane (10.4 mL) and acetic acid (10.4 mL), were added sequentially at 0 ºC, formaldehyde (0.8 

mL, 11.1 mmol), H2O (0.8 mL), NHMe2 (1.4 mL, 11.1 mmol), and 5-bromoindole (2 g, 10.1 mmol) 

previously solved in 10.4 mL of 1,4-dioxane. The reaction mixture was stirred at 0 ºC for 2 h after 

which time it was removed from the ice bath and allowed to stir overnight at rt. Then, the reaction 

crude was diluted with H2O (130 ml), and active charcoal (0.6 g) and celite (0.6 g) were added. The 

mixture was stirred for 10 min, filtered, and a 20% solution of NaOH (200 mL) was added to the filtrate 

to precipitate it. The resulting precipitate was filtered in vacuo, washed with H2O (3 x 50 mL), and 

dried under reduced pressure to give a white solid in 83% yield. Mp 149-150 ºC (Lit.16 149-152 ºC). 
1H NMR (300 MHz, CDCl3) 2.27 (s, 6H, 2CH3), 3.57 (s, 2H, CH2), 7.06 (d, J = 2.0 Hz, 1H, CHAr), 

7.20-7.29 (m, 2H, 2CHAr), 7.84 (d, J = 0.8 Hz, 1H, CHAr), 8.24 (br s, 1H, NH). The spectroscopic data 

are in agreement with those previously described.16 
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Synthesis of (5-bromo-1H-indol-3-yl)acetonitrile (65). To a solution of Me2SO4 (7.6 mL, 39.5 

mmol) in THF (5.4 mL) and acetic acid (0.16 mL) under argon atmosphere, was added dropwise the 

bromoindol 64 (2 g, 7.9 mmol), previously solved in THF (13.8 mL) and acetic acid (0.16 mL). The 

reaction mixture was stirred for 1 h at 10 ºC, and the crude was filtered in vacuo, washed with Et2O 

and dried under reduced pressure. Then, the precipitate was solved in a solution of KCN (1.5 g, 23.7 

mmol) in H2O (20 mL); and the mixture was stirred vigorously for 1 h at 60-70 ºC, and then allowed 

to cool down to rt. The product was extracted with Et2O (2 x 50 mL) and dried under reduced pressure 

to give a pale solid in 95% yield. Mp 100-101 ºC (Lit.16 100-102 ºC). 1H NMR (300 MHz, CDCl3) 3.80 

(s, 2H, CH2), 7.23-76 (m, 3H, 3CHAr), 7.75 (s, 1H, CHAr), 8.23 (br s, 1H, NH). The spectroscopic data 

are in agreement with those previously described.16 

Synthesis of 2-(5-bromo-1H-indol-3-yl)acetamide (66). To a solution of nitrile 65 (1.77 g, 7.53 

mmol) refluxed in t-BuOH (16 mL), was added under argon atmosphere KOH (3.98 g, 60.2 mmol), 

and the reaction mixture was stirred at reflux for 1.5 h. Then, the reaction crude was cooled down to 

rt, diluted with H2O (16 mL), and acidified with 1N HCl (65 mL) in order precipitate the product as a 

brown solid. The resulting suspension was filtered, washed with H2O (16 ml) and dried under reduced 

pressure to give the title compound in 74% yield. 1H NMR (300 MHz, DMSO-d6) 3.44 (s, 2H, CH2), 

6.86 (s, 1H, CHAr), 7.15-7.38 (m, 4H, 2CHAr+NH2), 7.73 (s, 1H, CHAr), 11.08 (br s, 1H, NH). The 

spectroscopic data are in agreement with those previously described.16 
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2-[5-(3-methylphenyl-1H-indol-3-yl]acetamide Synthesis of (67). To a suspension of 

bromoindole 66 (1.36 g, 5.37 mmol) in anhydrous toluene (107 ml) was added Pd(PPh3)4 (0.35 g, 

0.31 mmol) and the reaction mixture was stirred for 1 h at rt under argon atmosphere. Hence, were 

added a solution of m-tolylboronic acid (1.13 g, 8 mmol) in ethanol (20 mL), and a saturated aqueous 

solution of NaHCO3 (50 mL). The mixture was refluxed overnight, the reaction crude was washed 

with saturated aqueous solution of NaCl (2 x 50 mL), and the organic fraction was extracted with 

EtOAc (3 x 100 mL), dried over Na2SO4, and the solvent was removed under reduced pressure. The 

product appeared as a yellow solid in 23% yield. Chromatography: DCM/MeOH, 1:1. 1H NMR (300 

MHz, CDCl3)  2.40 (s, 3H, CH3), 3.70 (s, 2H, CH2), 5.49 (br s, 1H, NH), 5.62 (br s, 1H, NH), 7.05-

7.42 (m, 7H, 7CHAr), 7.68 (s, 1H, CHAr), 8.23 (br s, 1H, NH). The spectroscopic data are in agreement 

with those previously described.16 

Synthesis of 2-[5-(3-methylphenyl)-1-octyl-1H-indol-3-yl]acetamide (cysmethynil). To a 

suspension of NaH (25 g, 0.63 mmol) in DMF (0.8 mL) was added dropwise indol 67 (139 mg, 0,53 

mmol) in DMF (1.1 mL) and the mixture was stirred for 1.5 h at rt under argon atmosphere. Then 1-

bromooctane (309 mg, 1.6 mmol) was added dropwise and the reaction was stirred overnight at 55 

ºC. The reaction crude was poured into ice water (23 mL) and was stirred for 10 min. The product 

was extracted with Et2O (6 x 10mL), washed with saturated aqueous solution of NaCl (4 x 15 mL), 

and dried over Na2SO4. The solvent was evaporated under reduced pressure to give the title 

compound as a yellowish oil in 43% yield. Chromatography: DCM/MeOH, 95:5; oil. 1H NMR (300 

MHz, CDCl3) 0.85 (t, J = 6.7 Hz, 3H, CH3CH2), 1.25-1.34 (m, 10H, (CH2)5CH3), 1.86 (m, 2H, 

CH2(CH2)5CH3), 2.44 (s, 3H, CH3C), 3.76 (s, 2H, CH2CO), 4.11 (t, J = 7.1 Hz, 2H, (CH2)6CH2N), 5.60 

(br s, 1H, NH), 5.71 (br s, 1H, NH), 7.08 (s, 1H, CHAr), 7.14 (d, J = 7.1 Hz, 1H, CHAr), 7.31-7.53 (m, 
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5H, 5CHAr), 7.76 (s, 1H, CHAr). HRMS (ESI): [(M+Na)+] calcd. for C25H32N2ONa, 399.24123; found, 

399.24078. 

4.2. Biological experiments 

4.2.1. ICMT activity assay. ICMT activity was determined as previously described49 with slight 

modifications. Briefly, membranes that overexpress ICMT enzyme were incubated in the presence of 

the corresponding concentration of the compound under study in assay buffer (100 mM Hepes, 5 mM 

MgCl2, pH 7.4) for 10 min, with shaking, at rt. Then, BFC and [3H]-SAMt were added at final 

concentrations of 5 and 2 μM, respectively (final volume 45 μL). Reactions were carried out for 30 

min at 37 ºC after which they were terminated by addition of 5 μL of 10% Tween 20 in phosphate 

buffered saline (PBS). Then, the reaction mixture was transferred to a 96-well plate containing 

streptavidin beads (10 μL of packed beads, Thermofisher, suspended in 500 μL of PBS), and mixed 

by gentle shaking overnight at 4 °C. Finally, the radioactivity bound to the beads was counted in a 

Microbeta TopCount instrument (Perkin-Elmer). The percentage of inhibition was determined with 

respect to the 100% activity obtained in the absence of compounds. For the determination of IC50 

values, the percentage of ICMT activity was plotted against log concentration of the compound on 

GraphPad Prism (Version 5.0, GraphPad Software, San Diego, CA). In all cases, the reported data 

corresponded to the average obtained from three independent experiments carried out in duplicate. 

4.2.2. Cell lines and culture. MDA-MB-231, MIA PaCa-2, PANC-1, SW620, MCF7, SK-Mel-28, 

NIH3T3, AD-293, and U2OS cells from American Type Culture Collection (ATCC, Rockville, MD) and 

142BR fibroblasts from Sigma-Aldrich, were grown in Dulbecco’s Modified Eagle medium (DMEM, 

Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum (FBS, HyClone), 1% L-

glutamine (Invitrogen), 1% sodium pyruvate (Invitrogen), 50 U/mL penicillin and 50 μg/mL 

streptomycin (Invitrogen). BxPC-3 and PC-3 cells were obtained from ATCC and maintained in 

Roswell Park Memorial Institute medium (RPMI) supplemented with 10% heat-inactivated FBS, 1% 

L-glutamine, 1% sodium pyruvate, 50 U/mL penicillin, and 50 μg/mL streptomycin. Cells were 

incubated in a humidified atmosphere at 37 ºC in the presence of 5% of CO2. 
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4.2.3. MTT citotoxicity assay. The sensitivity of MDA-MB-23, MIA PaCa-2, PANC-1, SW620, 

BxPC-3, PC-3, MCF7, SK-Mel-28, NIH3T3, and 142BR cell lines to compounds was tested through 

a standard MTT assay. Briefly, cells were seeded in 96-well plates at a density of 5 or 10 x 103 cells 

per well in the corresponding medium with 10% FBS for 24 h prior to treatments. The medium was 

then replaced by fresh medium containing different concentrations of compounds or the equivalent 

volume of DMSO. Cells were treated for 48 h, when medium was replaced by fresh medium with 2 

mg/mL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma-Aldrich) and 

cells were incubated for 4 h at 37 ºC in the dark. Once supernatants were removed, formazan crystals 

previously formed by viable cells were dissolved in DMSO (100 μL/well) and absorbance was 

measured at 570 nm (OD570-630) using an Asys UVM 340 microplate reader (Biochrom Ltd., 

Cambridge, UK). Background absorbance from blank wells containing only media with compound or 

vehicle were substracted from each test well. For the determination of the IC50 values, the percentage 

of absorbance was plotted against log concentration of the compound on GraphPad Prism (Version 

5.0, GraphPad Software, San Diego, CA). Results were reported as IC50 from three independent 

experiments carried out in triplicate. 

4.2.4. Serum stability assay. To 900 µL of mouse serum (Europa Bioproducts) previously 

warmed at 37 ºC, were added 300 µL of a 2 mM solution of the compound in phosphate buffered 

saline (PBS), and the mixture was incubated at 37 ºC for different times (0, 5, 10, 20, 40 and 60 min). 

Then, 200 µL of each mixture were added over 200 µL of cold acetonitrile, mixed, and incubated for 

10 min on ice to precipitate proteins. Supernatants were separated by centrifugation at 39000g for 

10 min, filtered (0.22 µm); and 50 µL of each filtered supernatant were analyzed by HPLC-MS in an 

spectrometer Agilent 1200LC-MSD VL, using a column Eclipse XDB-C18 (5 µm, 4.6 mm x 150 mm) 

together with a guard column (5 µm, 4.6 mm x 12.5 mm). The gradient mobile phases consisted of A 

(95:5 water/MeOH) and B (5:95 water/MeOH), with 0.1% ammonium hydroxide and 0.1% formic acid 

as the solvent modifiers. In all cases, a constant flow of 0.5 mL/min was used for a total time of 15 

min. MS analysis was performed with an ESI source. The capillary voltage was set to 3.0 kV and the 

fragmentor voltage was set at 70 eV. The drying gas temperature was 350 ºC, the drying gas flow 

was 10 L/min, and the nebulizer pressure was 20 psi.  

4.2.5. Intracellular imaging of endogenous pan-Ras in PC-3 fixed cells. PC-3 cells were 

seeded at a density of 2 x 104 cells per well on 12-mm coverslips previously treated with poly-D-

lysine hydrobromide (Sigma-Aldrich) and grown for 24 h at 37 ºC and 5 % of CO2 in RPMI medium 

with 10% FBS. Medium was replaced with fresh medium with the indicated concentrations of 

compounds or DMSO and cells were incubated for 96 h, replacing the medium after the first 48 h. 

Cells were washed twice with PBS, fixed with 4% paraformaldehyde (Sigma-Aldrich) and 

permeabilized with PBS-T (PBS with 0.1% Triton X-100, Sigma-Aldrich). Incubation with primary 
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antibody mouse anti-Ras (1:200, Thermo Scientific) in PBS with 4% normal goat serum (NGS) was 

performed at rt with gentle shaking for 2 h. Then, cells were washed twice with PBS-T and incubated 

for 1 h in the dark with Alexa Fluor 488 goat anti-mouse (1:1500, Life Technologies) diluted in PBS 

with 1% NGS. Afterwards cells were washed twice with PBS-T and incubated with 5 µg/mL Hoechst 

33258 (Sigma-Aldrich) in PBS for 10 min at rt to visualize cell nuclei. Finally, cells were washed thrice 

with PBS-T and coverslips were carefully mounted with Immumount (Thermo Scientific). Visualization 

was performed using an Olympus IX83 inverted confocal microscope fitted with the appropriate 

excitation and emission filters and a 60X oil immersion objective. Images shown are representative 

of three to five independent experiments. 

4.2.6. Plasmid constructs. The coding sequences of K-Ras4A, K-Ras4B, N-Ras and H-Ras 

cDNAs were amplified by polymerase chain reaction (PCR) and cloned in-frame into pEGFPC1 

(Clontech, Mountain View, CA), producing a fusion between the Ras proteins and a monomeric form 

of green fluorescent protein (GFP), as previously described.50 Point mutation in CAAX motif in order 

to obtain the K-Ras-CVIL-GFP plasmid was generated by PCR with primers incorporating the desired 

mutation, and the resulting DNA was cloned into pEGFP-C3 (BD Biosciences Clontech, PaloAlto, 

CA).29 The coding sequence of LC-3 was amplified by PCR and cloned in-frame into mCherry 

(Clontech, Mountain View, CA).51 All plasmid constructs were verified by bidirectional DNA 

sequencing. 

4.2.7. Transfection of cells and live cell imaging. AD-293 and U2OS cells were seeded at 2 x 

105 cells in 35-mm plastic dishes with a 1-cm round glass coverslip (MatTek, Ashland, MA) 24 h 

before transfection. Transient transfections were performed with Lipofectamine Plus (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. In all cases, 2 µg of DNA total was used 

for each 35-mm dish. After 4 h of incubation at 37 ºC, media was replaced by fresh DMEM 

supplemented with 10% FBS containing 5 µM cysmethynil, UCM-1336 or an equivalent volume of 

DMSO, and incubated overnight. Live cells were imaged the next day with an inverted Zeiss LSM 

510 Meta laser scanning confocal microscope (63 Plan-Neofluar 1.25-numerical-aperture oil).  

4.2.8. Active Ras pulldown assay. PC-3 cells were plated at a density of 2 x 106 cells in 15-cm 

dishes and grown in RPMI medium with 10% FBS at 37 ºC and 5% of CO2. After 24 h, medium was 

replaced by fresh medium with 25 µM cysmethynil, 10 µM UCM-1336 or an equivalent volume of 

DMSO for vehicle control, and cells were incubated for 48 h at 37 ºC and 5% of CO2. At this point, 

medium was replaced once again by fresh medium with compounds or DMSO, and the incubation 

was kept for additional 48 h. After 5 min of stimulation with EGF (10 ng/mL), cells were washed with 

PBS and lysed with ice-cold lysis buffer provided by the manufacturer. Lysates were clarified by 

centrifugation at 16000g for 15 min and protein concentration was measured using bicinchoninic acid 
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method (Thermo Scientific). Before performing the assay, 50 µL of each lysate were separated to 

analyze the total Ras expression. For the analysis of active Ras, a Ras-GTP pulldown assay kit 

(Thermo Scientific) was used following manufacturer’s instructions. Briefly, lysates were incubated 

with a glutathione S-transferase fusion of the RBD of Raf1 along with glutathione agarose resin to 

pull down active Ras. The entire samples obtained after the pulldown assay were boiled for 5 min 

and loaded onto 4-20% SDS-PAGE gels (Bio-Rad). Ras proteins were visualized by immunoblotting 

on nitrocellulose membranes using a mouse anti-Ras antibody provided by the manufacturer. Blots 

were analyzed by densitometry using ImageJ software (NIH). Data from four independent 

experiments were presented as mean ± SEM with bar graphs. 

4.2.9. Western blot analysis. PC-3 cells were plated at a density of 2 x 106 cells in 15-cm dishes 

and allowed to grow for 24 h in RPMI medium with 10% FBS, to obtain a 80% confluent monolayer. 

The medium was then replaced by fresh RPMI with 10 µM cysmethynil or UCM-1336, or an equivalent 

volume of DMSO, and cells were incubated overnight, except for LC-3 and PARP immunoblots, 

where the incubation times were prolonged up to 48 h following previously described results.25 Five 

minutes prior to lysis, cells were stimulated with EGF (10 ng/mL). Cells were washed with PBS and 

lysed with ice-cold RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Igepal) containing 

protease and phosphatase inhibitors (Roche and Sigma-Aldrich, respectively). Lysates were clarified 

by centrifugation at 16000g for 10 min at 4 ºC and used immediately or stored at -80 ºC until use. 

Protein concentration was measured (DC Protein Assay Kit, Bio-Rad) and samples with equal 

amounts of total protein were diluted into a Laemmli reducing sample buffer (Bio-Rad) and denatured 

at 95 ºC for 5 min. Samples were then resolved on 4-20% SDS-PAGE gels (Bio-Rad) and proteins 

transferred to nitrocellulose membranes (GE Healthcare, Amersham). After 1 h of incubation in a 

blocking buffer [10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05% Tween-20 (TBS-T) with 1% BSA], 

membranes were incubated overnight at 4 ºC with the corresponding primary antibody. Then, 

membranes were washed three times (5 min each) with TBS-T and incubated with the corresponding 

secondary antibody for 1 h at rt. Protein bands were visualized using enhanced chemiluminescence 

detection reagents (GE Healthcare, Amersham) in a Fujifilm LAS-3000 developer (Tokyo, Japan) and 

quantified by densitometry using ImageJ software (NIH). 

Primary antibodies used were rabbit anti-phospho-AKT, rabbit anti-AKT, rabbit anti-phospho-

ERK1/2, rabbit anti-ERK1/2, rabbit anti-phospho-MEK1/2, rabbit anti-MEK1/2, rabbit anti-PARP, 

rabbit anti-α/β tubulin (1:1000, Cell Signalling), rabbit anti-LC-3 (1:1000, Abgent), or mouse anti-Ras 

(1:1000, Thermo Scientific). Secondary antibodies used were goat anti-mouse or goat anti-rabbit IgG 

HRP conjugates (1:5000, Sigma-Aldrich). Relative phosphorylation levels from at least three 

independent experiments performed in triplicate were presented as mean ± SEM with bar graphs.  
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4.2.10. Migration or wound healing assay. MDA-MB-231 cells were seeded in 96-well plates at 

a density of 1.5 x 104 cells per well in DMEM with 10% FBS for 24 h at 37 ºC and 5% of CO2 to a 90-

100% confluent monolayer. Wounds were made with a sterile p20 pipette tip and each well was 

washed twice with PBS to eliminate non adherent cells and cell debris. Fresh DMEM with indicated 

concentrations of cysmethynil or UCM-1336, or with an equivalent volume of DMSO was then added. 

At this time (0 h) and after 48 h, cells were photographed under phase contrast with an Olympus 

FW1200 microscope. Empty area in each wound was quantified using ImageJ software (NIH) and 

compared with the corresponding initial wound. Percentage of the areas from three independent 

experiments performed in triplicate was presented as mean ± SEM with bar graphs.  

4.2.11. Caspase 3 enzyme activity assay. PC-3 cells were seeded at 5 x 104 cells per well in a 

24-well plate and grown for 24 h before treatments in RPMI medium with 10% FBS. The medium was 

then replaced by fresh RPMI with 10 µM cysmethynil or UCM-1336, or an equivalent volume of 

DMSO, and cells were incubated for 48 h. After this time, cells were washed with ice-cold PBS, 

counted and harvested by centrifugation at 400g for 5 min. The activity of caspase 3 was determined 

by a caspase colorimetric assay kit (Clontech, Mountain View, CA), according to the manufacturer's 

protocol. Briefly, the protease activity was tested using a caspase 3 specific peptide, conjugated to 

the color reporter molecule p-nitroaniline (p-NA). The chromophore p-NA, cleaved by caspase 3, was 

quantified with a spectrophotometer at a wavelength of 405 nm. The caspase enzymatic activities in 

cell lysates are directly proportional to the color reaction. Data from three independent experiments 

performed in triplicate were presented as mean ± SEM with bar graphs. 
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