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Abstract: Melanoma is one of the most severe public health issues worldwide, not only 

because of the high number of cases but also for its poor prognosis in late stages. Therefore, 

early diagnosis and efficient treatment are key toward a future solution. However, melanoma 

is highly resistant to cytotoxicity in its metastatic form. In this context, we propose a 

therapeutic strategy based on a targeted chemo-photothermal nanotransporter for cytotoxic 

compounds. This approach comprises the use of core-multishell gold nanorods, coated with 

mesoporous silica and further covered with a thermosensitive polymer, which is vectorized 

for selective internalization in melanoma cells. The proposed nanoformulation is capable of 

releasing the transported cytotoxic compounds on demand, in response to near-IR irradiation, 

with high selectivity and efficacy against malignant cells, even at low concentrations, thereby 

providing a new tool against melanoma disease. 

1. Introduction 

Melanoma is one of the most severe public health issues worldwide, as indicated by the yearly 

increasing number of cases.[1] Although early diagnosed melanoma is usually treated by 

Complete Manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

2 

 

radical surgery, conversely, at metastatic malignant late states it has a poor prognosis.[2] 

Indeed, melanoma has been named as one type of tumor with the highest metastatic 

potential.[3] Currently, only dacarbazine as a single agent and bolus interleukin-2 as an 

immunotherapy alternative, have been approved by the FDA (Food and Drug Administration) 

as selective treatments for malignant melanoma with poor prognosis. This deficient situation 

has stimulated the scientific community to find novel strategies for early diagnosis and 

efficient treatment.  

Early diagnosis is one of the keys toward reducing the risks of this malignant disease. 

Nowadays, the development of new synthetic strategies for radiolabeled targeting agents has 

afforded new diagnostic systems based on the melanoma overexpression of the melanocortin-

1 receptor (MC1R). MC1R is a G-protein localized in the cell membrane, linked to skin 

pigmentation, which has avidity for the alpha-melanocyte stimulating hormone (α-MSH). 

Peptide emulations of this hormone, both linear[4] and circular[5] derivatives, named 

NAPamide, have been extensively used as vectorization moieties for imaging, leading to a 

significant improvement in early diagnosis.[6]   Mechanism is based on the alpha melanocyte 

recognition with this receptor. MCR-1 is present in the cell wall and binds with the peptide 

that emulates the specific spot of interaction of the alpha melanocyte. 

On the other hand, melanoma is also considered a malignant and refractory tumor in its 

metastatic form, highly resistant to cytotoxic agents. On account of their intrinsic and 

acquired properties, melanocytes have developed resistance against apoptosis. The classical 

treatment for most solid tumors based on the systemic administration of cytotoxic drugs, 

immunotherapy and cocktail combinations, usually effective against other tumors in classic 

chemotherapy,[7] result almost useless against melanoma.[8],[9],[10]  

As a representative example, Doxorubicin (DOX) administration, because of its multiple 

modes of action, is one of the most relevant treatments for multiple cancerous diseases. 

However, melanoma is naturally resistant to its effect through the protection of the 
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mitochondrial DNA system[8] active in these cells, and systemic treatments result almost 

ineffective. Treatment with DOX, even at high doses, would only lead to an increase of multi-

resistance and important side effects for the patient.  

The possibility of improving the performance of DOX for the treatment of melanoma, 

whether metastatic or primary, has been recently studied, involving the combination of this 

drug with immunotherapy, vectorized conjugates and other approaches.[11],[12] 

Alternatively, nanomedicine may offer promising alternatives for such extreme cases. The 

passive targeting, known as Enhanced Permeability and Retention (EPR) effect, results in 

nanometer-sized objects passively accumulating within tumoral mass, as a consequence of the 

highly porous blood vessels that irrigate the malignant tissue.[13–15] This effect has been 

exploited to deliver cytotoxic drugs to tumor cells in a selective manner, via encapsulation 

within nanometric carriers. In the case of DOX, previous works have reported the higher 

cytotoxic efficacy employing nanoformulations, as compared to classic chemotherapy in 

melanoma tumors.[12],[16] The increased tumor cell mortality achieved with nanocarriers can be 

associated with the significantly higher local concentration of DOX that can be achieved 

inside melanoma cells, which allows a decrease of the administered doses, thereby reducing 

the usually severe side effects. 

On the other hand, photothermal therapy (PTT) is attracting great attention as a minimally 

invasive treatment for cancer therapy.[17–19] This therapy is based on the conversion of light 

into localized heating, mediated the strong absorption of certain nanoparticles.[20–22] This is 

particularly effective in the near infrared (NIR) spectral range between 650-900 nm, known as 

the first biological window. In this region the penetration of light in tissues is higher due to 

reduced absorption and scattering, which also results in marginal tissue damage.[23] 

Nanomaterials such as gold nanorods, gold nanoshells, gold nanocages, gold nanostars, 

graphene and carbon nanotubes, have been extensively studied for light-induced local heating, 

because of their ability to efficiently absorb NIR radiation and release it as heat.[24–27] 
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PPT using a NIR laser has however two main limitations: the penetration depth of the laser[28] 

and the amount of NIR-responsive nanoparticles that can be accumulated inside the tumor, 

which determines the local heating efficiency. NIR penetration depends on the specific type 

of tissue and the power of the irradiation source, but in any case it is limited to a few 

centimeters in the best cases.[29] Thus, PPT is only suitable for treatment of superficial cancers 

such as melanoma, uveal or even laser accessible cancers such as cervix or colon. One of the 

most popular types of nanocrystals for PTT are gold nanorods (GNRs).[30] GNRs have 

attractive optical properties related to localized surface plasmon resonances (LSPR), in 

particular the most intense longitudinal LSPR in the NIR, which can be tuned by the GNR 

dimensions, through the synthesis procedure.[31] GNRs show excellent photothermal 

conversion effects and generate localized hyperthermia.[21,27] The clinical application of GNRs 

in PTT has however been limited due to the cytotoxicity caused by the remaining surfactant 

cetyltrimethylammonium bromide (CTAB), which is typically used for GNR synthesis. In 

previous works, this problem has been solved by encapsulating the GNRs with polyethylene 

glycol (PEG),[32] or with mesoporous silica shells (GNR@MS).[33,34] GNR@MS nanoparticles 

are of particular interest, due to the properties of the mesoporous silica layer, which can not 

only reduce the cytotoxicity and the aggregation of GNRs, but also improve the drug-loading 

ability. In addition, mesoporous silica can be easily modified by introducing different 

functional groups, which act as anchoring points for subsequent surface modification with 

functional biomolecules. In Vallet-Regí’s group, mesoporous silica nanoparticles have been 

studied as controlled drug delivery systems,[35,36] and more recently core@shell 

magnetite@mesoporous silica with a polymer surface coating were used as heating/stimuli-

response drug delivery systems.[37] This polymeric coating exhibited a linear-to-globular 

transition at temperatures above 42-43 oC, thereby allowing the release of drugs encapsulated 

inside the mesoporous silica channels.[38]  
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Scheme 1.  Representation of a photoresponsive nanocarrier with surface anchored 

NAPamide targeting (PR-NC-NAP), which is proposed for melanoma treatment. 

 

We present herein a strategy for melanoma treatment, based on core-shell GNR@MS covered 

with a thermosensitive polymeric shell capable of both releasing on demand the transported 

cytotoxic compounds, in response to NIR illumination, and selectively recognizing melanoma 

cells. (Scheme 1) The selectivity is provided by the external decoration of the polymer shell 

with NAPamide, which is expected to enhance the internalization of the drug nanocarrier 

inside the melanoma cancer cells, even in the presence of healthy cells. This system shows a 

selective capacity to destroy tumor cells by triggering drug release only when NIR light is 

applied, exploiting the synergic effect between the cytotoxic drug and the local temperature 

increase caused by the photothermal effect.[34,39,40, 41,42,43] This design provides a means to 

achieve a higher therapeutic efficacy while minimizing the administered drug dose. 

2. Results and discussion 

The first step for the construction of the “smart” nanovehicles comprised the synthesis of 

GNRs. To this aim, a modified seed-mediated growth method in aqueous solution was used, 

as described in the experimental section. Figure 1A shows a representative TEM micrograph 

of the obtained GNRs, where the monodispersity of the sample can be appreciated. The GNRs 

featured average length, width and aspect ratio of 43±4 nm, 10±3 nm and 3.9±0.3, 
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respectively. The extinction spectrum of GNRs is provided in Figure S2 (Supporting 

Information), displaying an intense absorbance around 808 nm due the longitudinal LSPR 

(max 766 nm for bare rods, 796 after silica coating). After synthesis, GNRs were washed by 

centrifugation to remove excess reactants and coated with mesoporous silica. 

 

Figure 1: Representative transmission electron micrographs of GNR (a), GNR@MS (b) PR-

NC (c) and PR-NC-NAP (d). The insets provide higher magnification images. 

 

Mesoporous silica encapsulation (GNRs@MS) was carried out using a recently reported 

method based on a CTAB-templated sol-gel process that yielded mesoporous silica shells 

with radial pores (average diameter 2.1 nm) upon CTAB removal.[33] Representative TEM 

images of the silica coated GNRs are displayed in Figure 1B and in Figure S1 (Supporting 

Information), showing homogenous coating of individual GNRs, with no sign of aggregation. 

GNR@MS were then washed by centrifugation to remove small silica nanoparticles formed 

by TEOS condensation.  
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To avoid silica degradation in water,[44] the colloidal particles were re-dispersed in ethanol. 

Prior to the polymerization of pNIPAM/NHMA around the nanoparticles, it is necessary to 

introduce polymerizable groups onto the silica surface. For this purpose, and with the aim to 

functionalize only the nanoparticle surface, GNR@MS were treated with 3-

[tris(trimethylsiloxy)silyl]propyl methacrylate (MPS) prior to surfactant extraction, following 

a reported method.[38] After this step, the CTAB template was removed by ionic exchange 

employing a solution of NH4NO3, to prevent the degradation of the new moiety (MPS). Once 

the particles are free of surfactant inside the silica channels, polymer coating was performed 

by radical polymerization, employing a monomer feed NIPAM/NHMA/MBA molar ratio of 

0.85/0.10/0.05. This composition was established to obtain a lower critical solution 

temperature (LCST) at 42-43 oC.[38] Figure 1C shows representative TEM images of PR-NC, 

where the polymer shell is observed as a dark coating around the particles, because 

phosphotungstic acid staining was applied to enhance the contrast of the organic shell. 

Selectivity against melanoma cells was obtained by choosing the peptide NAPamide as the 

targeting moiety. NAPamide was thus synthetized with protected amine and acid groups 

within the main chain (Scheme 2).  

 Scheme 2. a) Solid phase NAPamide synthesis, b) NAPamide PEGylation and coating over 

polymer surface on the PR-NC. 
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This methodology leaves only one amino nucleophilic active site localized in the lysine rest 

chain for the PEGylation process. The employed di-acid PEG ((NHS)2PEG (2000 g/mol)) 

previously activated by NHS, enables the selective condensation of the free amino group with 

one of the acid groups of the PEG chain, even in the presence of the non-activated acid group 

from the aspartic acid in the initial peptide. Additionally, the absence of a base until the last 

step minimizes the aspartimide problem, which is very common in peptide sinthesys.[45] 

PEG/peptide condensation was carried out with a 1:1 ratio, preventing formation of the bis-

adduct and leaving the acid group at the end of the PEG chain for subsequent Steglich 

esterification[46] with the available primary alcohol groups from the NHMA monomer in the 

polymer coating. Finally, an Fmoc deprotection step was carried out over the peptide-

functionalized PR-NC, under mild conditions. 

The nanoparticles were characterized by TEM, Z-potential, DLS, FTIR and TGA. FTIR was 

used to verify the successful functionalization of GNR@MS with MPS and further with the 

NIPAM/NHMA polymer, Figure S3. The spectra present a characteristic peak at 1100 cm-1 

assigned to the Si–O vibration of silica. When the mesoporous silica nanoparticles were 

successfully functionalized with MPS, two characteristic peaks appeared at 1633 and 1702 

cm-1 (C=O stretching). Upon deposition of the pNIPAM/NHMA polymer shell on the 

nanoparticles, these two peaks are hidden by three new bands due to the formation of a 

secondary amide (C=O stretching 1637 and 1532 cm-1) and the deformation of methyl groups 

on –C(CH3)2 (1460 cm-1), which is in accordance with previous pNIPAM/NHMA 

functionalizations.[38] Unfortunately, functionalization of the nanoparticles with NAPAmide 

did not lead to any variations in the FTIR spectra as expected, owing to the low amount that 

the targeting moiety represents as compared to the polymer bands, and the peptide bands 

being present within the same IR spectral region. Additionally, Z-potential measurements 

provided an estimate of the variation in surface charge during the functionalization process. 
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The Z-potential was found to vary from -14.4 mV for GNRs coated with silica (GNR@MS) 

to -21.6 mV when the polymer layer was grown on the surface. NAPamide anchoring on the 

polymer layer resulted in a very low surface charge (Z-Pot= -2.27 mV). TGA was also 

performed at all steps to confirm the successful functionalization of the nanoparticles and 

extraction of the surfactant. The final amount of polymer coating was determined as 36.45% 

of the total mass loss. (S.I. Figures S4 and S5.) 

The amount of heat produced upon NIR irradiation depends on the NIR laser power and the 

concentration of nanoheaters, as well as on the irradiation time. It is well known that efficient 

hyperthermal therapy requires the local temperature to reach at least 43 oC,[17] at which 

protein denaturation and disruption of the cellular membrane would occur, leading to tumor 

tissue ablation. Studies at different particle concentrations were performed, from 10 µg/mL to 

100 µg/mL. Different laser power densities were also tested to achieve the target temperature 

with the lowest possible power density, and to reduce residual side effects of NIR radiation. 

Additionally, exposure times of 5, 10 and 15 minutes were tested toward reaching the 

hyperthermia temperature in the shortest time possible. As described in Table S2 of the 

Supporting Information, a hyperthermia macroscopic temperature required a concentration of 

nanoheaters of 50 g/mL, 1 W/cm2 NIR laser power density and 10 minutes of exposition 

time.  

Drug loading and release capacities of the nanocarriers were tested using fluorescein as a 

model drug molecule. The mesoporous material PR-NC was incubated overnight under 

magnetic stirring at 50 oC in a saturated solution of fluorescein. The nanocarriers were then 

washed by centrifugation until the supernatant was clear, and subsequently dried in a vacuum 

oven at 30 oC. The fluorescein release experiments were performed by placing a dispersion of 

fluorescein-loaded nanocarriers (1 mg/mL) in a transwell permeable support in PBS. The 

different transwell plates were placed in two different ovens at 37 and 50 oC. An additional 
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transwell plate was placed in an oven at 37 oC and irradiated with a NIR laser at 0.5 W/cm2 

for 10 minutes each hour. The PBS medium was measured by fluorescence spectroscopy and 

replaced every hour to estimate the amount of released fluorescein. As shown in Figure 2, 

fluorescein release was significantly enhanced under NIR laser irradiation, as compared to its 

counterpart in an incubator at 50 0C.  

These results are in accordance with the existing literature,[38] where higher fluorescein 

release was achieved when heat was first produced at the nanoscale. In the case of magnetic 

hyperthermia, two effects have been described with PR-NC: (1) the collapse of the 

thermosensitive polymer structure leads to opening of the mesoporous silica pores, and (2) 

enhanced diffusion of fluorescein from the pores when the temperature was increased.[38] 

Although fluorescein leaking was observed at 37 oC, it should be taken into consideration that 

the polymer coating acts as a diffusion barrier around the nanoparticle and fluorescein release 

is forced by the continuous replacement of the incubation media (PBS). Heating temperatures 

optimization of the material is shown on Table S2 in Supporting information. 

).  

Figure 2: Responsive fluorescein release profile over time (24h) at 37 oC and 50 oC, and with 

NIR laser irradiation (1W, 10 min) for fluorescein loaded PR-NC. 
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In order to study the effect of the grafted NAPAmide targeting agent, FF_C108, a fibroblast 

healthy cell line from foreskin as control, and #17 melanoma cancer cells were seeded to 

carry out in vitro cellular uptake tests. Cell internalization was monitored by fluorescence 

microscopy (Figure 3a) and flow cytometry (Figure 3b), with tagged NCF-NAP and NCF. 

For this purpose, fluorescent mesoporous silica nanoparticles without metal cores were 

prepared as described in the experimental section. 

For uptake experiments, a concentration of 75 µg/mL of NCF-NAP and NCF was used for 

both cell  lines and both materials. The cell cultures were incubated for 24 hours and uptake 

was evaluated by flow cytometry measuring FITC percentage (Figure 3b), which represents 

the percentage of cells that had engulfed nanoparticles. Figure 3a,b shows that NCF 

nanoparticles did not internalize into either fibroblast or melanoma cells, which was expected 

due the negative surface charge of these nanoparticles. However, the presence of NAPAmide 

at the polymer surface promotes internalization of the NCF-NAP particles by both cell lines. 

Our data clearly show that internalization in melanoma is higher (25%) than in the fibroblast 

healthy cell line, pointing toward a ligand–receptor mediated process besides the charge 

induction effect. As can be rationalized from the experiments, the uptake by melanoma cancer 

cells is higher than that for healthy cells, due to overexpression of NAPamide receptors on the 

melanoma cell wall. 

In order to probe this differentiation in the internalization results from NAPamide interaction, 

a further experiment was performed to study cell uptake with different concentrations of 

NCF-NAP. Figure 4 reveals that, in the best case (100 µg/mL), nanoparticle uptake by 

fibroblasts is almost 3 times lower than that by melanoma cancer cells. This difference 

however decreases when increasing the concentration of the targeted particles, due to receptor 

saturation, which allows us to conclude that the internalization process is concentration-

dependent. 
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Figure 3: A) Optical microscopy images for both cell lines (#17 skin cancer cells and 

fibroblast FFC_C108) incubated with 75g/mL, for 2 hours, using NCF and NCF-NAP. Bar: 

200 µm B) Cell uptake at 75 g/mL, for 2 h, using NCF-NAP and NCF. 

 

Figure 4: Dose-dependent cell uptake of NCF-NAP, for FF_C108, fibroblasts (control) and 

#17 melanoma cancer cells. 
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Figure 5. Optical microscopy images for cells incubated with 50g/mL of PR-NC-NAP and 

DOX-loaded PR-NC-NAP, with and without NIR irradiation. Bar 200 µm. 

 

The final nanoparticle concentration in melanoma cancer cells appears to be higher than in 

fibroblasts at low concentrations, making more effective the potential synergy between 

chemo- and photo-thermal therapies, induced by the nanocarrier. To verify the synergistic 

effect of the treatment, the targeted nanocarrier was loaded with doxorubicin and tested in cell 

viability assays, as described in the experimental section. The same cell lines used for 

internalization experiments, i.e. FF_C108 (healthy fibroblast) and #17 (melanoma cancer 

cells), were employed, keeping in all experiments n=3. It is worth mentioning that 

nanoparticles and cells were incubated for 2 hours, and then the cells were washed with PBS 

twice to remove non-internalized nanoparticles. Cytotoxicity was tested using alamarBlue® 

assay, 24 hours after irradiation.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

14 

 

Figure 5 illustrates the cell viability of both cell lines treated with 50 g/mL blank 

nanoparticles (free of DOX) and DOX-loaded nanoparticles. (For more information, see 

Figure S10) As expected, both cell lines maintain high viability values in the presence of 

unloaded nanocarriers, without NIR application. For melanoma cancer cells the viability 

decreases dramatically (up to 13%) when DOX- loaded nanoparticles are present in the 

culture medium. This effect can be attributed to the higher internalization of the nanoparticles 

in melanoma cancer cells and spontaneous DOX release. On the other hand, fibroblast cell 

viability was 72%, mainly due to lower nanocarrier uptake, added to the better defense 

mechanisms that healthy cells present against chemotherapeutics.[47] The same experiment 

groups (control, blank PR-NCF-NAP and DOX-loaded PR-NCF-NAP) with both cell lines, 

were irradiated with NIR light (808 nm, 1 W/cm2) for 10 minutes, monitoring the temperature 

with a fluorooptic probe (this irradiation set up was fixed for every subsequent experiment). 

As can be observed, the viability controls were not affected by laser exposure. In the case of 

blank nanocarriers, a macroscopic temperature of 41 0C was reached after irradiation and a 

55% decrease in cell viability was achieved only for melanoma cancer cells. Meanwhile, for 

fibroblasts cell viability was almost the same as for the nanoparticles control without NIR 

irradiation (77%).  

We then studied the combined action of chemo and PPT effects, by incubating cells with 

DOX loaded PR-NCF-NAP and irradiating with the NIR laser. We found an extraordinary 

increase of cell death for melanoma cancer cells, down to 1% viability, whereas viability of 

the healthy cell line remains close to that of the DOX-loaded photoresponsive nanocarriers 

control (73%). These findings are again related to the enhanced nanocarrier uptake by 

melanoma cancer cells. Higher internalization rates lead to a higher concentration of both 

gold nanorods and drug inside the cells, resulting in a heat shock which effectively provokes 

cancer cell death by itself. In addition, the decrease in melanoma cell viability with the 

combined treatment (DOX+NIR laser) reveals that drug release is allowed through polymer 
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shrinkage, induced by the temperature rise inside living cells under NIR laser irradiation. On 

the other hand, it has been described in the literature that the cytotoxicity of DOX can be 

enhanced at higher temperature, thereby improving the cytotoxicity of the loaded drug.[48,49]  

As discussed above, the thermosensitive polymer coating responds to temperature changes 

within the hyperthermia range. An additional important aspect about the heating mechanism 

should also be evaluated; namely, whether the temperature increment must be macroscopic in 

order to trigger the polymer transition or whether the local heating in close vicinity to the 

GNRs is sufficient to induce the polymer transition and pore opening. This “hot-spot” effect 

comprises a local heating when the gold nanorods are irradiated with a NIR laser, without 

reaching a macroscopic hyperthermia temperature. The presence of this effect in thermo-

responsive materials allows the use of low nanoparticle doses because it is not necessary to 

increase the temperature all over the tissue to trigger drug release and subsequent cell death.  

In order to test if the cytotoxic effect can be achieved without a macroscopic temperature rise, 

the concentration of nanoparticles was decreased by 5-fold and 10-fold, to prevent overall 

heating of the cell cultures. The macroscopic temperature after irradiation was monitored 

during the experiments, being ca. 38 0C in all cases. Figure 6 shows the viability of both cell 

lines treated with low doses, (5 and 10 g/mL) of blank and DOX-loaded PR-NC-NAP, as 

well as with and without NIR irradiation. As expected, both cell lines incubated with drug-

free nanocarriers maintained a similar high viability as that of the controls without NIR 

irradiation. However, the cell viability of melanoma cancer cells exposed to 5 and 10 g/mL 

significantly decreases (60 and 41%, respectively) when DOX-loaded PR-NC-NAP were used. 

On the contrary, the fibroblasts were only affected by the DOX-loaded nanoparticles at the 

higher dose (10 g/mL). In the same cellular assay, both cell lines were irradiated with NIR 

light (808 nm), observing 15% melanoma cell viability at higher doses and almost no cell 
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death at the lower dose. It is also remarkable that the cell viability of fibroblasts is the same as 

that for non-irradiated cells exposed to the blank nanocarriers (100%).  

 

Figure 6: Cell viability at different nanocarrier concentrations, 10 g/mL (A) and 5 g/mL 

(B), for healthy fibroblasts and melanoma cancer cells. 

 

When the melanoma cancer cells were incubated with DOX-loaded nanoparticles and 

irradiated with NIR laser, the viability of melanoma cells fell down to 24%, in the case of 

cells treated with 10 g/mL, while at 5 g/mL the viability decrease was less pronounced but 

still noticeable. This is a clear evidence of the synergistic effect of PTT and chemotherapy, at 

low nanoparticle dose. Again, the healthy fibroblasts were not affected by the DOX loaded 

nanocarriers treatment, even under NIR irradiation, at both concentrations. The treatment with 

DOX and NIR laser at low dose also shows that the viability of melanoma cells was the same, 

with or without laser irradiation. This could mean that the thermal effect is no longer enough 
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to overcome the cancer cell countermeasures. Even though the thermal effect is lost at very 

low concentrations, the chemotherapy treatment is still working, probably due to doxorubicin 

delivery mediated by NAPAmide targeting.  

We finally explored the possibility to enhance cell death by multiple irradiations. Melanoma 

cancer cells were incubated as in previous assays, with 5 g/mL of the final PR-NC-NAP 

(with and without DOX). Every 24h the cells were irradiated with NIR laser (808 nm) for 10 

minutes at 1W/cm2. Cell viability was evaluated by alamarBlue® assay, 24h after irradiation. 

As the viability assay is biocompatible, the culture medium of each sample was maintained 

during the test and replaced again at the end of the assay. As shown in Figure S11, cell 

viability was almost the same after 2 and 3 NIR-laser irradiations. This result is in agreement 

with the drug release experiment, where we found that after one irradiation almost half of the 

cargo was released, so a single NIR irradiation is sufficient to achieve the desired therapeutic 

effect.  

3. Conclusion 

In summary, multifunctional PR-NC-NAP composite nanoparticles were synthesized via 

radical polymerization onto GNR@MS hybrid nanoparticles. The nanoparticles demonstrated 

thermal/NIR laser sensitivity and outstanding photothermal conversion. The NAPamide 

peptide was demonstrated to be an excellent targeting ligand for melanoma cancer cells, as it 

could discriminate healthy cells of human fibroblast foreskin from metastatic ones. The 

viability of cancer cells treated with DOX-loaded nanocarriers was significantly reduced at 

relatively low nanoparticle concentration (10 g/mL) and short NIR laser irradiation time (10 

minutes). Thus, DOX-loaded nanoparticles exhibited high cytotoxicity as compared with 

chemotherapy or PTT alone, due to a synergistic effect between chemo and PTT, where NIR 

light acts as a trigger to induce DOX release from the nanoparticles through the temperature 

increase inside the cells, causing cell death. Our results demonstrate the feasibility of such 

nanocarriers to be a powerful instrument for drug delivery systems, in response to 
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thermal/NIR laser irradiation, for melanoma cancer cells, on account of the discrimination 

between cancerous and healthy cells present in tumors. Our nanocarriers could be exploited as 

a combined chemo-PTT system, with improved therapeutic efficacy even at low drug dose for 

superficial tumors, being a promising candidate for “in vivo” evaluation. 

 

4. Experimental Section 

Materials  

Amino-protected Fmoc aminoacids, piperidine, N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-

1-yl)uronium hexafluorophosphate, O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

hexafluorophosphate (HBTU), 1-Hydroxybenzotriazole hydrate (HOBT), Diisopropyl Ethyl 

amine (DIPEA), Trifluoroacetic acid (TFA), Triisopropyl silane (TIPS), O,O′-Bis[2-(N-

Succinimidyl-succinylamino)ethyl]polyethylene glycol 2KDa, Rink amide resin, Sephadex G-

25, as well as the solvents used in the condensation, deprotection and release stages, such as 

N’,N’-dimethylformamide (DMF) and dichloromethane (DCM), gold chloride trihydrate 

(HAuCl4.3H2O), ammonium nitrate (NaNO3), Sodium carbonate (Na2CO3), 

cetyltrimethylammonium bromide (CTAB), tetraethyl orthosilicate (TEOS), 

amminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MPS), as 

well as the reagents for polymerization, N-isopropylacrylamide (NIPAM,≥99%), N-

(hydroxymethyl)acrylamide solution (NHMA, 48 wt % in H2O), N,N′-

methylenebis(acrylamide) (MBA, 99%), ammonium persulfate (APS), and fluorescein 

sodium salt were also purchased from Sigma-Aldrich. 

All other chemicals (absolute ethanol, acetone, ethyl acetate, heptane, dry solvents, 

ammonium nitrate, etc.) were of the highest commercially available quality and used as 

received. 

GNR@MS: GNRs were prepared using a modified seeded growth method.[50] Gold 

concentration was determined from the extinction spectra using the absorbance at 400 nm.[51] 
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Coating of Au NRs with mesoporous silica was performed following a previously described 

protocol,[33] with minor modifications. Excess reactants  were removed from the freshly 

prepared GNR solutions via two cycles of centrifugation, after which the particles were 

resuspended in 0.1 M CTAB, at a final gold concentration of 5 mM. Subsequently, 20.4  mL 

of a 6 mM CTAB solution was mixed with 60 mL of ethanol  and 134 mL of water at 30 oC in 

a 500 mL round beaker under magnetic stirring. Upon equilibration at 30 °C for 10 min, 400 

μL of NH4OH (25 vol %) was added to adjust the pH value to ca. 9. Then, 6 mL of the GNR 

solution was poured into the synthesis solution. After 5 min to ensure homogeneity of the 

solution, 160 μL of TEOS was added dropwise under vigorous stirring. The reaction mixture 

was allowed to react at 60 °C for two days. The synthesized particles were centrifuged (30 

min; 7500 rpm; 35 °C), and washed in ethanol.  

Fluorescein-labeled GNR@MS (GNR@MSF): GNR@MSF were synthesized using the same 

procedure, except that APTES-FITC (25 L) was added at low temperature (30 °C) after 5 

hours of silica growth and the temperature was then set again to 60 °C for the remaining 

reaction time (two days).  

Nanoparticles (GNR@MS, GNR@MSF, MSNF) coated with pNIPAM/NHMA (PR-NC, PR-

NCF and NCF respectively): Once GNR@MS were synthetized, the polymer layer was 

formed as described by Baeza and coworkers.[37] 40 mL of GNR@MS, GNR@MSF or MSNF 

(1.5 mg/mL) were poured in a 100 mL round-bottom flask and 0.4 mL of MPS was added in 

order to functionalize the surface with methacrylate groups where the further polymerization 

will take place (GNR@MS@MPS, GNR@MSF@MPS or MSNF@MPS). After magnetic 

stirring for 12 h at 40 oC, the mixture was washed twice by centrifugation and redispersed in 

ethanol. The surfactant template was removed by ion exchange, using an extracting solution 

comprising 1.59 g of NH4NO3, 573 mL of EtOH (99.6 %) and 27 mL of water. The mixture 

was heated up to 70 oC and stirred overnight. Then, the solution was washed twice by 

centrifugation and redispersied in ethanol. Upon surfactant extraction, polymer coating was 
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carried out following a well described protocol.[38,52] In a 100 mL three-neck round bottom 

flask, 142.5 mg (1.33 mmol) of NIPAM, 12 mg of MBA (0.078 mmol), 33.1 μL of NHMA 

(0.148 mmol), 3.6 mg of CTAB, and 5 mg of Na2CO3 were added to 45 mL of water. The 

solution was stirred under N2 bubbling at 70 °C for 30 min to remove oxygen. Meanwhile, the 

solution of NIPAM/NHMA was kept under N2, 50 mg of MPS functionalized nanocarrier was 

redispersed in 5 mL of Ethanol (99.5%) and kept under N2 bubbling for 20 min to remove 

oxygen. Then, 5 mL of MPS functionalized nanocarrier was added to the monomer solution 

and magnetically stirred for 15 min to homogenize. To initiate the monomer polymerization, 

0.2 mL of a 25 mg/mL APS solution in previously deoxygenated H2O (mQ) was added to the 

reaction mixture. Ten minutes after addition of the initiator, the reaction mixture was allowed 

to cool down to room temperature for 12 h. The mixture was centrifuged and washed twice 

with THF to remove unreacted monomers, twice with ethanol and again twice with water. 

Finally, it was dried under vacuum overnight. 

Mesoporous silica labeled with fluorescein (MSNF): Fluorescent Mesoporous Silica 

Nanoparticles (MSNF), were synthesized by a modified Stöber method, from TEOS in the 

presence of CTAB as a structure directing agent. Fluorescein-labeled nanoparticles were 

synthesized by mixing 1 mg of fluorescein isothiocyanate with 2.2 μL APTES in 50 μL 

ethanol for 2h. Then the reaction mixture was mixed with 5 mL of TEOS. In a round-bottom 

flask, 1 g of CTAB, 480 mL of H2O (Milli-Q) and 3.5 mL of NaOH (2 M) were added. The 

mixture was heated to 80 °C and gently stirred. Then, 5 mL of TEOS mixed with 52.2 L of 

the APTES-fluorescein product were added dropwise at 0.25 mL/min rate, with a pump. After 

two hours, the reaction mixture was centrifuged and washed with water and ethanol. (For 

more information about nanoparticles synthesis and functionalization, see Supporting 

Information Scheme S1 and Figures S1-S5) 

NAPamide Targeting Agent Synthesis: NAPamide synthesis was carried out through a 

conventional solid phase Fmoc/coupling methodology, previously used in our group.[53] Fmoc 
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protected amino acids were condensed to each other following the sequence Fmoc-NH-Nle-

Asp-His-D,Phe-Arg-Trp-Gly-Lys-CONH2. In this case, we used Rink amide resin to obtain an 

amide group in the acid final position, and Fmoc protected extreme amine. This analogue 

would be ready for the PEGylation step, prior to anchoring to the nanoparticle 

NIPAM/NHMA co-polymer. 

The starting Rink amide resin (1 mmol NH-Fmoc/gr x 0.3 gr) was activated by suspension in 

a DMF/piperidine 20% solution for primary amine Fmoc deprotection. After washing steps 

with DMF, the first aminoacid, (NHMtt)LysFmoc (3Eq) was condensed to the resin through a 

HBTU/HOBT/DIPEA (3Eq/3Eq/6Eq) typical coupling reaction and all the amino acids were 

deprotected and coupled until the end group, which was not unprotected. The final cleavage 

step was performed by incubation of the resin in a cocktail mixture of TFA/TIPS/H2O 

(95/2.5/2.5). The crude was afforded by precipitation of the filtered solution in cold ethyl 

ether, which was purified by flash column for molecular exclusion chromatography 

(stationary phase: Sephadex® G-25; mobile phase: water). Around 30 mg of isolated peptide 

was frozen at -80 °C and lyophilized prior to characterization (For more information about 

NAPamide synthesis, see Supporting Information Scheme S2 and Figures S6-S9). 

Targeting agent anchoring of PR-NC, PR-NCF and NCF: To a solution of (NHS)2PEG (2000 

g/mol) (11 mg, 1 mL DMF), Fmoc-protected NAPamine was added drop-wise (7 mg in 1 mL 

of DMF and 10 µL of TEA) under inert atmosphere. When the addition was finished, the 

reaction mixture was stirred overnight. The mixture was added dropwise to each nanocarrier 

previously obtained, PR-NC, PR-NCF and NCF, (12 mg) dispersion in DCM under nitrogen 

flow and the new mixture was stirred overnight. The functionalized nanoparticles were 

isolated and purified by successive washings with DCM, ethanol and water. Finally, Fmoc 

deprotection was carried out with 2mL of DMF/Piperidine solution (20%). The material was 

dried under vacuum and characterized. (See Supporting information Scheme S3) 
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Drug loading: All synthetized materials were loaded with doxorubicin hydrochloride by 

suspension of 2 mg of each material in 1 mL of ca. 5 mg/mL DOX solution in PBS. The 

suspension was stirred at 50 oC for 24 h and the nanomaterials were thoroughly washed with 

H2O 5-fold, until the typical red color from DOX disappeared from the solution. 

Internalization assay: #17 (melanoma skin cancer cells) and FF_C108 (fibroblast foreskin 

cells) were seeded in Dulbecco's modified eagle medium (DMEM) and incubated in 24-well 

plates at 40,000 cells/well, for 24 hours at 37 oC, 5% CO2 and 95% humidity. Cells were 

exposed to several concentrations of fluorescein tagged nanocarriers, for 2 hours under 

incubation conditions. 

Cells were then washed with PBS and incubated again in DMEM at the same conditions for 

24 hours. After the uptake time ended, the cells were washed again with PBS, harvested and 

treated with trypan blue. The percentage of FITC+ cells and mean fluorescence indexes (MFI) 

were obtained by flow cytometry using a FACSCanto II flow cytometer and the FACSDiva 

software v6.1.2 (BD Biosciences, San Jose, Ca.). 

Cytotoxicity in vitro assays: In order to evaluate the cytotoxicity of doxorubicin hydrochloride 

loaded on PR-NC-NAP in vitro, #17 (melanoma skin cancer cells) and FF_C108 (fibroblast 

foreskin cells) were seeded in 24-well plates at 40,000 cells/well, at 37 0C, 5% CO2 and 95% 

humidity, in DMEM. Cells were exposed to different concentrations of the loaded targeted 

nanocarrier for 2 hours and then washed with PBS to place them atincubation conditions 

again. Cell viability was determined by alamarblue® assay at various times. Percentages of 

dead cell populations are shown as the normalized mean of three independent replicates. 

 

Characterization  

UV-visible spectra were obtained using a HELIOS-ZETA UV-vis spectrophotometer. 

Transmission electron microscopy (TEM) images were obtained in a JEOL 1400 transmission 

electron microscope (TEM). The p-NIPAM/NHMA coating and the polymer plus targeting 
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samples were observed after staining the organic layer with 1% phosphotungstic acid. The 

hydrodynamic size of mesoporous nanoparticles was measured by means of a Zetasizer Nano 

ZS (Malvern Instruments) equipped with a 633 nm laser. Zeta potential was measured by a 

Zetasizer Nano ZS (Malvern Instruments). All measurements were performed in triplicate. 

FTIR spectra were measured on a Nexus spectrometer equipped with a Goldengate attenuated 

total reflectance device. Thermogravimetric analysis was performed in a Perkin Elmer Pyris 

Diamond TG/DTA analyzer, with 5 oC/min heating ramps, from room temperature to 600 oC. 

Liquid NMR experiments were made in a Bruker AV 250MHz. Mass spectra were acquired 

with a Voyager DE-STR Biospectrometry MALDI-TOF mass spectrometer. A Newport 

Diode Laser was used, with a continuous-wave NIR laser at 808 nm, the maximum fluence 

was 3 W/cm2 and the spot size 5 mm. Pre- and post-illumination temperatures of the control 

experiments were measured by a fluorooptic probe Luxtron I652. 

Abbreviations 

Mtt……protecting group methyltrityl, typical for primary amine. 

Acronyms for materials names : 

1– GNR@MS@NIPAM --------------------- PR-NC 

2– GNR@MS@NIPAM@NAPamide----- PR-NC-NAP 

3– GNR@MSF@NIPAM -------------------- PR-NCF 

4– GNR@MSF@NIPAM@NAPamide---- PR-NCF-NAP 

5– MSNF@MS@NIPAM -------------------- NCF 

6– MSNF@MS@NIPAM@NAPamide---- NCF-NAP 

 

PR: Photoresponsive 

NC: Nanocarrier 

NAPA: Napamide, targeting 

NCF: Fluorescent Nanocarrier  
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Supporting Information is available from the Wiley Online Library or from the author. 
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Core-multishell gold nanorods, coated with mesoporous silica and further covered with 

a thermosensitive polymer were  vectorized for selective internalization in melanoma 

cells. The proposed nanoformulation is capable of releasing the transported cytotoxic 

compounds on demand, in response to near-IR irradiation, with high selectivity and efficacy 

against malignant cells, even at low concentrations, thereby providing a new tool against 

melanoma disease. 

 

Keyword NAPamide, melanoma, photothermal therapy 

 

Gonzalo Villaverde,a# Sergio Gómez-Graña,a# Eduardo Guisasola,a Isabel García,b Christoph 

Hanske,b Luis M. Liz-Marzán,b,c Alejandro Baeza,a,* Maria Vallet-Regí.a 

 

Targeted Chemo-Photo Thermal Therapy: a Nanomedicine Approximation to Selective 

Melanoma Treatment. 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

29 

 

 

  1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

Supporting Information

Click here to access/download
Supporting Information

SI.docx

http://www.editorialmanager.com/particle-journal/download.aspx?id=26639&guid=5eaddaee-ff86-48b4-8eac-8fadbcca3499&scheme=1

