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Introduction 

Increasing our knowledge of the HLA system, including both the complete sequence description 

and the assessment of its diversity at the worldwide human population-level, is of great importance 

for elucidating the molecular functional mechanisms of the immune system and its regulation in 

health and disease. Furthermore, assessment of HLA allelic and haplotypic diversity of each 

human population is essential in the clinical histocompatibility and transplantation setting as well 

as in the pharmacogenetics, immunotherapy and anthropology fields. Nevertheless, the inherent 

vast polymorphism and high complexity presented by the HLA system have been an important 

challenge for its unambiguous and in-depth (high-resolution) characterization by previously 

available legacy molecular HLA genotyping methods (e.g. SSP, SSO and even SBT). Recent 

application of novel next-generation sequencing (NGS) technology for high-resolution molecular 

HLA genotyping has enabled to obtain, at a high-throughput mode and larger scale, full-length 

and/or extended sequences and genotypes of all major HLA genes, thus overcoming most of these 

previous limitations. 

Objectives 

I) Characterization of HLA allele and haplotype diversity of all major classical HLA genes

(HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5) by application of NGS 

of a first representative cohort of the Spanish population that could also serve as a healthy 

control reference group. Respective statistical analyses were performed for this immunogenetic 

population data. 

II) Characterization of HLA allele and haplotype diversity of all major classical HLA genes

(HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5) by application of NGS 

of a respective cohort of multiple sclerosis (MS) patients in the Spanish population (recruited at 

the Department of Neurology, Hospital Clínic, Barcelona, Catalonia, Spain). A first case-control 
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study was carried out to examine HLA-disease associations with MS in these Spanish population 

cohorts as well as to attempt a fine-mapping of these allele and haplotype associations by full 

gene resolution level via NGS. In addition, a second analysis exercise (i.e. test case) of this case-

control study was carried out using an alternative healthy control group dataset, exclusively from 

the Spanish northeastern region of Catalonia in this second case, to evaluate possible differences 

in the findings of HLA-disease association with MS due to plausible regional HLA genetic 

variation within mainland Spain (i.e. as a statistical way to try controlling for any possible 

existing population stratification). 

Materials and Methods 

HLA-disease association was examined between HLA class I and class II alleles and extended 

haplotypes with MS in Spanish population cohorts comprising 238 MS patients (recruited at the 

Department of Neurology, Hospital Clínic, Barcelona, Catalonia, Spain) and 282 healthy unrelated 

ethnically matched individuals (coming from different regions across Spain) as controls (HC) 

using high-resolution NGS for the 11 major classical HLA loci (HLA-A, -B, -C, -DPA1, -DPB1, -

DQA1, -DQB1, -DRB1 and -DRB3/4/5)  at the 3- to 4-field resolution. All collected and received 

de-identified genomic DNA samples were genotyped using the MIA FORA NGS HLA FLEX 

Typing 11 Kit (RUO) 96 Tests (Immucor, Inc. Norcross, GA, USA), following manufacturer’s 

semi-automated protocol. Research version 3.0 of the MIA FORATM NGS FLEX HLA genotyping 

software was used for allele calling (version 3.25.0 (July 2016) IPD-IMGT/HLA database was 

available at the time of the study). Statistical analyses were performed for this immunogenetic 

population data, firstly using Pypop v.0.7.0 software to carry out Hardy-Weinberg Equilibrium 

(HWE) test, Ewens-Waterson homozygosity (EWH) statistic, determination of allele frequencies 

and 2-locus haplotypes and linkage disequilibrium (LD) estimates. Hapl-o-Mat v.1.1 software was 

used for estimation of extended haplotypes frequencies via an expectation-maximization (EM) 
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algorithm. Calculation of genetic distances (Nei genetic distances (DA)) and construction of 

respective dendograms were performed using POPTREEW (web version of POPTREE software). 

Statistical analyses for the case-control studies were performed using R language for statistical 

computing with the BIGDAWG v.2.1 R package. Additionally, a second available HLA dataset of 

another healthy control group (comprising HLA genotyping data only available for HLA-A, -B, -

C, -DPB1, -DQB1, -DRB1 and -DRB3/4/5 loci, only resolved at the 2-field allele resolution level 

and according to version 3.35.0 (January 2019) IPD-IMGT/HLA database in this case) from 196 

de-identified unrelated ethnically matched individuals exclusively from the region of Catalonia (in 

Northeast Spain)) was also used to verify the findings of HLA-disease associations from this initial 

case-control study (aforementioned) and to evaluate the effect of plausible regional HLA genetic 

variation within mainland Spain. 

Results  

I) Firstly, in relation to the Spanish population healthy cohort (as part of the 17th-IHIW) studied 

here: 

1) At the HLA allele level, the following main findings (defined at a very high-resolution) are 

noteworthy:   

1a) At the 3-/4-field allele resolution level, no overall deviations from expected Hardy-

Weinberg Equilibrium Proportions (HWEP) are observed in any of the HLA loci analyzed 

with the exception of a minor but significant departure at the HLA-DPA1 locus (p-value = 

0.0104). NGS HLA genotyping data of the present thesis work is completely concordant with 

available lower resolution typing data from Spanish local participating laboratories. 

1b) Respectively, 36 HLA-A, 53 HLA-B, 40 HLA-C, 14 HLA-DPA1, 29 HLA-DPB1, 23 HLA-

DQA1, 24 HLA-DQB1, 37 HLA-DRB1, 5 HLA-DRB3, 5 HLA-DRB4 and 3 HLA-DRB5 

distinct alleles (k) were identified. Relative to HLA class I region, NGS-based HLA 
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genotyping data at the 3-/4-field reveal a significant diversity at the nucleotide level for HLA-

A and -C loci in contrast to HLA-B locus. Similarly in HLA class II region, higher level of 

heterozygosity is found at the 4-field level for HLA class II loci encoding alpha subunits 

(HLA-DPA1 and HLA-DQA1) in comparison to HLA class II loci encoding beta subunits 

(HLA-DPB1, HLA-DQB1 or HLA-DRB1). 4-field allele resolution level by NGS also reveals 

how in certain allele groups, an allele considered rare initially it actually presents a common 

occurrence while the lowest numbered allele is not the most frequent (e.g. HLA-

B*35:01:01:01 allele represents only 3.6% of this allele group whereas HLA-B*35:01:01:02 

allele represents 96.4% of this allele group found in this Spanish population healthy cohort). 

Rare alleles in Spanish population such as HLA-C*12:166 (AF=0.2%) and HLA-B*15:220 

(AF=0.4%), as well as null alleles such as HLA-C*04:09N allele (AF=0.4%) and HLA-

DRB4*01:03:01:02N allele (AF=1.8%), were also detected and described in the present NGS 

HLA Spanish healthy population study. 

1c) Two novel HLA alleles (HLA-B*38:20:02 and HLA-DRB3*02:71) were identified during 

this Spanish population study using a NGS-based HLA genotyping method. One individual 

presents a single base mismatch with HLA-B*38:20 reference allele sequence in exon 3 

(codon 99), which leads to a synonymous substitution (Tyr or Y (TAC) to Tyr or Y (TAT)). 

Whereas, another subject shows a single base mismatch with HLA-DRB3*02:02:01:01 

reference allele sequence in exon 3 (codon 166), which leads in this case to a non-synonymous 

substitution and, therefore, to an amino acid (aa) change (Arg or R (CGG) to Gln or Q (CAG)). 

This latter observed non-synonymous amino acid change (with a plausible associated 

alteration of aa side chains interactions and corresponding bonds) could potentially mean a 

certain level of variation of protein folding and configuration within the encoded β2 domain 

by exon 3. Thus, respective HLA class II α2/β2 domain for binding the given CD4 T cell co-

receptor may be partially or minimally conditioned by this amino acid change. 
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1d) Just as an initial and tentative analysis, Ewens-Waterson Homozygosity (EWH) test of 

neutrality was used for analysis of selective processes based on HLA allelic diversity at the 

3-/4-field allele resolution level of this Spanish population cohort. Here, all HLA loci 

analyzed show levels of observed homozygosity (Fo) that are below the expected 

homozygosity under neutrality (Fe) with the exception of HLA-DPB1 locus. These initial 

observations, however, would need to be further confirmed on a larger Spanish population 

cohort. 

1e) A comparison of HLA allele distributions was carried out, by calculating Nei genetic 

distances (DA) and constructing respective Neighbor-joining (NJ) dendogram specifically 

based on allele frequencies found at HLA-A, -B, -C, -DQB1 and -DRB1 loci, between the 3 

different major geographical Spanish regions established (Northern-Central, Eastern and 

Southern Spain) as well as between the 10 Spanish locations included in the present study. In 

general, these major Spanish population regions and different individual local sub-groups, 

which were compared according to these HLA-A, -B, -C, -DQB1 and -DRB1 allele 

distributions in this NJ relatedness analysis, also clustered according to their geographical 

location, thus illustrating the existing HLA regional variation within Spanish general 

population. Moreover, despite of limitations in the sample size shown by these different 

Spanish population sub-groups in the present study thus taking these observations with 

caution; it can be observed the present entire Spanish population healthy cohort shows a 

Mediterranean genetic substrate that seems to be represented more predominantly by Eastern 

and Central regions/locations situated within the Central Plateau. Whereas the most Northern 

and Southern regions/locations (which are mountainous areas that are more isolated 

geographically unlike this Central Castilian Plateau region in mainland Spain; or even being 

very unique island areas such as Canary Islands) diverge from this aforementioned 

Mediterranean Spanish HLA genetic background. As a notable example, the striking 
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divergence in the NJ clustering observed in Malaga and Gran Canaria population subsets may 

be explained by the reported historical genetic contribution from North African Berber and 

Muslim Arab population ancestries in the Iberian Peninsula and Canary Islands, as a very 

relevant demographic event with a great impact in the HLA allele diversity observed in 

modern-day Spanish population and in particular in certain Spanish neighboring regions close 

to North Africa. 

2) At the HLA haplotype level, very interesting, novel and informative 3-/4-field associations 

have been described for both HLA 2-locus and extended class I and class II haplotypes: 

2a) We observed unique 2-locus haplotype associations in non-coding regions at the 4-field 

allele resolution level that are not apparent when testing at the 2-field level (e.g. non-coding 

HLA-DQA1*05:01:01 variants, HLA-B*18:01:01 variants, HLA-C*05:01:01 variants or 

HLA-C*06:02:01 variants). In contrast, HLA loci pairs such as B*07:02:01~C*07:02:01:03, 

DQA1*01:01:01:02~DQB1*05:01:01:03 and DQB1*02:02:01:01~DRB1*07:01:01:01 are 

some examples of 4-field highly conserved associations found in this Spanish population 

cohort. Also very interestingly, the present NGS HLA study allowed us to describe that a very 

common allele such as HLA-B*51:01:01:01 displays a very broad distribution in relation to 

its association with HLA-C alleles (i.e. 7 different associated HLA-C alleles were observed in 

the present study), thus it may represent a primary negative predictive factor when searching 

for a full-match unrelated donor (URD), as it has been similarly observed in other populations 

of European ancestry. 

2b) In relation to the distribution of extended HLA class I and class II haplotypes, and 

similarly to what it was found in 2-locus haplotypes, it can be observed very distinctive 

extended haplotype associations in non-coding regions at the 4-field level that are not 

apparent, and indeed unattainable, at lower allele resolution level (2-field or 3-field) results 
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that are obtained when using legacy methodologies. Most common haplotypes (i.e. for 

example, haplotype frequencies (HF) higher than 5.0%) that were identified in the present 

Spanish population cohort include:  

HLA-A*01:01:01:01~C*07:01:01:01~B*08:01:01:01~DRB3*01:01:02:01~ 

DRB1*03:01:01:01~DQA1*05:01:01:02~DQB1*02:01:01 (HF=7.8%);  

HLA-A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQA1*02:01:01:01~DQB1*02:02:01:01 (HF=7.8%); and 

HLA-A*02:01:01:01~C*07:02:01:03~B*07:02:01~DRB5*01:01:01~DRB1*15:01:01:01~ 

DQA1*01:02:01:01~DQB1*06:02:01 (HF=5.2%). 

Most of these common extended HLA haplotypes are also relevant haplotypes in worldwide 

registries and population datasets of predominant European ancestry. Nevertheless, there are 

also certain common extended haplotypes in our Spanish population cohort, which are not as 

frequent as in other foreign (mostly of predominant European descent) registries or reported 

populations datasets. For instance, this occurs with HLA-

A*30:02:01:01~C*05:01:01:01~B*18:01:01:01~DRB3*02:02:01:01~DRB1*03:01:01:01~

DQA1*05:01:01:01~DQB1*02:01:01 (HF=4.7%); and, even more steeply, in the case of 

HLA-A*25:01:01~C*12:03:01:01~B*18:01:01:02~DRB5*01:01:01~DRB1*15:01:01:01~ 

DQA1*01:02:01:01~DQB1*06:02:01 (HF=2.1%) as well as for HLA-

A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQA1*02:01:01:01~DQB1*02:02:01:01 haplotype (HF=7.8%). 

Therefore, this remark illustrates the importance of development of local donor registries. 

2c) At the same time, from an anthropological standpoint, interrogation of HLA diversity via 

NGS with the description of very high-resolution 3-/4-field extended haplotypic associations 
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and specific patterns displayed within the present Spanish population cohort have permitted 

the detection and characterization of genetic imprints from both: 

-Early ancestral contributions throughout the history, where it is found a complex European-

Mediterranean overall genetic substrate made up of North-Central European (such as HLA-

B*44:02:01:01, HLA-B*18:01:01:01, HLA-B*07:02:01 and HLA-B*08:01:01:01 bearing 

extended haplotypes), North African Berber-Muslim Eastern Arab (HLA-B*51:01:01:01, 

HLA-B*49:01:01, HLA-DQB1*03:19:01 and HLA-DRB1*01:03~DQB1*05:01:01:03 

bearing extended haplotypes) and Sephardic Jew (HLA-B*35:02:01~DRB1*11:04:01 and 

HLA-B*38:01:01~DRB1*13:01:01:01 bearing extended haplotypes) genetic components, 

in addition to a remarkable presence of still relatively isolated Romani (“Gypsy”) genetic 

ancestry in a portion of the Spanish general population 

(C*15:02:01:01~B*40:06:01:02~DRB1*14:04:01~DQB1*05:03:01:01~ DPB1*02:01:02 

bearing extended haplotypes).  

-And also from some other more recent and current demographic events, mainly Latin 

American (presenting Amerindian genetic background such as HLA-

A*68:17~B*40:02:01~DRB1*04:04:01 bearing extended haplotypes) and Eastern 

European-Mediterranean (especially from Romania) ethnic groups migrating to Spain.  

2d) As previously reported in other recent studies, many identical haplotypes across 7 loci 

(comprising HLA-A-~B~C~DRB3/4/5~DRB1~DQA1~DQB1, and excluding HLA-DPA1 and 

-DPB1) become extremely divergent in terms of the multiplicity of HLA-DP alleles with 

which they associate. This seems to be especially due to the weak LD between HLA-DP and 

the rest of the class II haplotype since existing hotspot of recombination is present between 

HLA-DQ and -DP loci. We also observed this pattern at the 3-/4-field level in the present 

study. Therefore, these observed prominently increased multiplicity and haplotype diversity 

when evaluating 3-/4-field allele resolution and, even more, when including HLA-DP loci 
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(which, as an example, critically contribute to the increase of mismatches in the donor-

recipient transplantation setting) inside haplotype distributions may have direct implications, 

for example, in relation to the lesser likelihood of finding a full-matched URD in HSCT. 

2e) Moreover, as one of the main dissimilarities observed between reported Iberian 

populations (including the present NGS HLA Spanish population study) and other populations 

of Northern-Central-Eastern European descent, it should be noted the very striking findings 

that are particularly related to the respective HLA-B*44:02:01:01/HLA-B*44:03:01:01 

carrying extended HLA haplotype frequency distributions detected (and, indeed, being found 

inverted between these two broad population groups). Relative to HLA-B*44:02:01:01 

carrying extended HLA haplotype frequency distributions, in Spanish population these 

specific extended haplotypes are found in much lower relative frequencies and in a more 

spread distribution than in other reported populations of European ancestry. Conversely, HLA-

B*44:03:01:01 carrying extended HLA haplotypes are found in much higher relative 

frequencies in comparison to those frequency distributions described in other reported 

populations of European ancestry. 

II) Secondly, referring now to the HLA-MS association study in these aforementioned Spanish 

population cohorts and related analyses performed as part of the current thesis work, exemplifying 

the great potential of NGS HLA data for the fine-mapping of allele and haplotype associations: 

In summary, the refined HLA-DRB5*01:01:01~DRB1*15:01:01:01 signal was significantly 

associated with predisposition as expected. A second independent risk allele HLA-

DPB1*03:01:01 was also identified, being in consonance with previous studies in populations 

of European descent. Protective effects from several distinctive HLA class II signals (including 

HLA-DRB1*04:01:01:01, -DRB1*04:02:01 and -DRB1*04:04:01, which all are tightly 

associated with the secondary DRB HLA-DRB4*01:03:01:01; and, separately, HLA-
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DRB5*01:02~DRB1*15:02:01:02~DQB1*06:01:01 signal) were attributed to negative LD 

with the highly predisposing HLA-DRB1*15:01:01:01 allele. While the HLA class I alleles 

HLA-B*38:01:01, previously identified in other studies, and newly HLA-B*58:01:01:01 

showed moderately protective effects independently from each other and from the HLA class 

II associated factors. Furthermore, we did not find a clear Bw4 (relative to only HLA-B alleles 

and according to motif subgroups NLRIALR, DLRTLLR and NLRTALR, respectively) 

protective association by itself with MS susceptibility. On the other hand, we described that the 

Bw6 epitope (SLRNLRG), encoded by the respective group of HLA-B alleles analyzed here, 

shows a risk association that cannot be attributed simply to LD patterns in relation to the highly 

predisposing allele DRB1*15:01:01:01. 

Conclusions 

I) Firstly, in relation to the Spanish population healthy cohort (as part of the 17th-IHIW) studied 

here: 

1) To the best of our knowledge, this is the first and largest study performed using NGS for the 

genomic characterization of HLA diversity found in Spanish population. In the present NGS 

study, we were able to describe allelic diversity at the 3-/4-field resolution of major HLA genes 

HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 (enabling full 

sequencing of class I loci and extended coverage of class II loci) with minimum level of 

ambiguities and also to estimate extended haplotype frequencies. 

2) NGS HLA sequencing in the present Spanish population cohort has shown striking and 

highly informative 3-/4-field genotyping results including the description of previously 

unknown haplotype associations in non-coding regions up to the 4-field allele resolution level, 

the detection of rare, null and novel polymorphisms as well as the more accurate evaluation of 

allele and haplotype distributions and prevalence in Spanish population. 
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3) Overall, results of the present study may contribute as a useful and first reference source for 

future population studies, for HLA-disease association and pharmacogenetics studies as a 

healthy control group dataset, for improved virtual panel reactive antibody (vPRA) calculations 

in Spanish population and for improving donor recruitment strategies of bone marrow and 

umbilical cord blood registries. Moreover, fine ultra-high allele resolution by NGS and 

determination of 3-/4-field haplotypic associations have allowed us to identify more accurately 

specific patterns displayed within Spanish population (including a significant regional variation 

and population substructure) and to better detect genetic imprints and substrates of either more 

ancient demographic events or some other more recent or stable throughout history. Data from 

the present and from future larger NGS studies may also contribute to establish strategies for 

improving the efficacy of both current and novel immunotherapies and selection criteria of 

personalized therapeutic approaches. Lastly, knowledge of the most common extended HLA 

haplotypes at the 3-/4-field resolution in Spanish population may also serve to construct the 

most representative Spanish HLA haplo-homozygous bank for allogeneic transplantation of 

induced pluripotent stem cells (iPSC) derived cell therapies such as novel cellular adoptive 

therapies based on genetically engineered T cells. 

II) Secondly, referring now to the HLA-MS association study: 

1) Overall, very high-resolution HLA genotyping data allows fine-mapping of susceptibility 

and protective factors and exclusion of bystander (“hitchhiking”) alleles from contiguous loci. 

2) The refined HLA-DRB5*01:01:01~DRB1*15:01:01:01 signal was significantly associated 

with predisposition. 

3) Nominal and stratified analyses identified a second significant MS risk signal relative to 

HLA-DPB1*03:01:01 allele, being independent from the highly predisposing HLA-

DRB1*15:01:01:01 factor. 
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4) Protective effects from several distinctive HLA class II signals (several HLA-DRB1*04- and 

the HLA-DRB1*15:02:01:02-bearing haplotypes) were attributed to negative LD with the 

highly predisposing HLA-DRB1*15:01:01:01 allele. 

5) HLA-B*38:01:01 and -B*58:01:01:01 alleles confer protection and operate independently of 

the presence of HLA-DRB1*15:01:01:01 risk factor. 

6) In the present dataset, we did not find a clear Bw4 (relative to only HLA-B alleles and 

according to motif subgroups NLRIALR, DLRTLLR and NLRTALR, respectively) protective 

association by itself with MS susceptibility. On the other hand, we described that the Bw6 

epitope (SLRNLRG), encoded by the respective group of HLA-B alleles analyzed here, shows 

a risk association that cannot be attributed simply to LD patterns in relation to the highly 

predisposing allele DRB1*15:01:01:01. 
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Introducción 

El estudio del sistema HLA, incluyendo la descripción completa de su secuencia y de la 

diversidad de este complejo HLA a nivel poblacional, es de gran importancia de cara a poder 

entender los mecanismos moleculares y funciones del sistema inmune así como su regulación en 

individuos sanos y enfermos. Además, la caracterización exhaustiva de la diversidad de alelos y 

haplotipos HLA de cada población humana es esencial en el campo de la inmunología de trasplante 

e histocompatibilidad al igual que en las áreas de farmacogenética e inmunoterapia. El inmenso 

polimorfismo y gran complejidad que presenta el sistema HLA han sido hasta ahora importantes 

barreras de cara a poder caracterizarlo en gran detalle (por alta resolución) y sin ambigüedades 

mediante métodos de genotipaje HLA tradicionales disponibles (como son SSP, SSO o incluso 

SBT). La reciente aplicación de la novedosa tecnología de secuenciación masiva NGS para el 

genotipaje molecular HLA por alta resolución ha posibilitado obtener secuencias completas o 

mucho más extendidas para genotipos de los principales genes de HLA, superándose así estas 

previas limitaciones. 

Objetivos 

I) Caracterización de la diversidad alélica y haplotípica de los principales genes HLA (HLA-A, 

-B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 y -DRB3/4/5) mediante la aplicación de NGS en 

una primera cohorte representativa de la población española que, igualmente, constituirá una 

población control de referencia para estudios de asociación de HLA y enfermedades. También, 

respectivos análisis estadísticos se realizaron para estos resultados de genotipaje HLA. 

II) Caracterización de la diversidad alélica y haplotípica de los principales genes HLA (HLA-

A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 y -DRB3/4/5)  mediante la aplicación de NGS 

en una correspondiente cohorte de pacientes con esclerosis múltiple (EM) de la población 

española (reclutados y procedentes del Departamento de Neurología del Hospital Clínic 
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(Barcelona, Cataluña)). Un primer estudio de asociación HLA tomando casos (pacientes EM) 

frente a controles sanos se llevó a cabo para examinar la asociación de genes HLA y la 

enfermedad de EM en estas cohortes de población española antes mencionadas. Así se buscaba 

realizar un mapeo fino de las respectivas asociaciones alélicas y haplotípicas de HLA mediante 

la gran resolución alélica proporcionada por esta metodología de secuenciación masiva. De 

modo adicional,  y como un segundo ejercicio de análisis en este estudio de asociación HLA, se 

utilizó un grupo control sano alternativo al previo, que incluía individuos procedentes de la 

región de Cataluña (situada al noreste de España) exclusivamente en este caso, para evaluar así 

posibles diferencias dadas en la asociación de HLA con EM debido a la probable variación 

genética en HLA existente a nivel regional dentro del territorio de España.  

Materiales y Métodos 

Se llevó a cabo el estudio de asociación entre alelos y haplotipos extendidos de los 11 

principales genes HLA de clase I y II (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and 

-DRB3/4/5; genotipados mediante secuenciación masiva NGS por alta resolución del 3- al 4-

campo) y enfermedad de EM en unas cohortes de población española, siendo de origen étnico 

similar, que comprendían muestras (anónimas y codificadas para no identificarse) de 238 pacientes 

españoles de EM (reclutados y procedentes del Departamento de Neurología del Hospital Clínic 

(Barcelona, Cataluña)) y 282 sujetos sanos no emparentados (procedentes de diferentes regiones 

del territorio de España) como grupo control. Tras su recogida y recepción, todas las muestras de 

ADN genómico fueron genotipadas empleando kits de HLA MIA FORA NGS HLA FLEX Typing 

11 (RUO) de 96 tests (Immucor, Inc. Norcross, GA, USA), siguiendo el protocolo semi-

automatizado del fabricante. Para el análisis de las secuencias obtenidas y asignación de alelo/s de 

cada gen por muestra, se utilizó la versión 3.0 para investigación del software MIA FORATM NGS 

FLEX para genotipaje HLA (la versión 3.25.0 (Julio 2016) de la base de datos IPD-IMGT/HLA 
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fue la disponible en el momento de este estudio). Posteriormente, a partir de estos resultados de 

genotipos HLA, se realizó una serie de análisis estadísticos. En primer lugar, mediante el software 

de Pypop v.0.7.0 se llevo a cabo el test de Hardy-Weinberg Equilibrium, el test de homocigosidad 

Ewens-Waterson, determinación de  frecuencias alélicas y de haplotipos de 2-locus así como la 

estimación de sus respectivos valores de desequilibrio de ligamiento. También el software Hapl-

o-Mat v.1.1 se empleó para la estimación de frecuencias de haplotipos a través del algoritmo de 

Expectation-Maximization (EM). El cálculo de distancias genéticas (Nei genetic distances (DA)) 

y construcción de respectivos dendogramas se realizó mediante POPTREEW, la versión web del 

software POPTREE. Los análisis estadísticos correspondientes al estudio de asociación HLA de 

casos EM frente a controles sanos se llevaron a cabo utilizando el paquete BIGDAWG v.2.1 

software en lenguaje R. Como segunda parte de este estudio de asociación HLA, se escogió un 

dataset de genotipos HLA (correspondiente en este caso y sólo disponible para los genes HLA-A, 

-B, -C, -DPB1, -DQB1, -DRB1 y -DRB3/4/5, establecido al 2-campo de resolución alélica y en la 

versión 3.35.0 (Enero 2019) de la base de datos IPD-IMGT/HLA) de un grupo control alternativo 

constituido por 196 sujetos (anónimos y codificados para no identificarse) sanos, no emparentados, 

étnicamente similares y procedentes exclusivamente en este caso de la región de Cataluña. Con la 

finalidad de verificar las asociaciones HLA encontradas inicialmente en el primer análisis (antes 

mencionado) de casos EM españoles frente a controles sanos del grupo representativo de una gran 

parte del territorio español, y evaluar así el posible efecto de la variación de distribuciones 

genéticas de HLA a nivel regional dentro del territorio de España en las asociaciones encontradas 

en EM y HLA dentro de este estudio concretamente. 

 

 



___________________________________________________________Resumen 
 

Page | 23  

   © Gonzalo Montero Martin  

Resultados 

I) En relación al estudio en la cohorte de población Española sana (siendo parte del 17th-IHIW): 

1) A nivel alélico, y definido en alta resolución vía NGS, estos fueron los principales hallazgos: 

1a) Al 3-/4-field de nivel de resolución alélica estudiado aquí, no se observaron desviaciones 

respecto al equilibrio de proporciones de Hardy-Weinberg (HWEP) en ninguno de los HLA 

loci estudiados salvo en el caso de HLA-DPA1 locus (p-value = 0.0104). Todos los datos de 

genotipaje de HLA por NGS de este estudio coincidieron totalmente con los datos de tipaje 

molecular disponibles que habían sido obtenidos a una resolución alélica menor y siendo 

procedentes de los diferentes laboratorios participantes de origen en España. 

1b) Respectivamente, 36 HLA-A, 53 HLA-B, 40 HLA-C, 14 HLA-DPA1, 29 HLA-DPB1, 23 

HLA-DQA1, 24 HLA-DQB1, 37 HLA-DRB1, 5 HLA-DRB3, 5 HLA-DRB4 and 3 HLA-DRB5 

distintos alelos (k) fueron identificados en el presente estudio. En relación a la región de HLA 

clase I, la aplicación de esta metodología de NGS para el tipaje HLA nos permitió poder 

detectar una significativa diversidad genómica siendo mayor a nivel nucleótido en los genes 

HLA-A y HLA-C y en comparación con el HLA-B locus (mucho más diverso a nivel proteína). 

Asimismo, en el caso de los genes HLA de clase II, se pudo observar un elevado nivel de 

heterocigosidad a este 3-/4-field de resolución en aquellos genes (HLA-DPA1 y HLA-DQA1) 

que codifican para la respectiva subunidad alpha del correspondiente heterodimero siendo 

además mayor que en el caso de aquellos genes HLA de clase II que codifican por su parte la 

subunidad beta (HLA-DPB1, HLA-DQB1 o HLA-DRB1). También, la resolución al 3-/4-field 

vía NGS nos permitió revelar como en ciertos grupos alélicos, aquellas variantes que se 

podrían considerar “raras” dada su mayor numeración al 4-field en la nomenclatura son en 

realidad más comunes que aquellas otras variantes con una numeración menor de acuerdo con 
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la nomenclatura actual definida (como ejemplo particular dentro de este estudio en población 

Española, el alelo HLA-B*35:01:01:01 representaba el 3.6% dentro de este grupo alélico 

mientras que el alelo HLA-B*35:01:01:02 correspondía al 96.4%). El genotipaje de genes 

HLA vía NGS también nos permitió asimismo poder detectar alelos raros en población  

Española como por ejemplo HLA-C*12:166 (AF=0.2%) y HLA-B*15:220 (AF=0.4%). 

Igualmente, con este genotipaje HLA vía NGS se pudo caracterizar alelos nulos en esta 

cohorte Española como el alelo HLA-C*04:09N (AF=0.4%) y el alelo de clase II HLA-

DRB4*01:03:01:02N (AF=1.8%). 

1c) Se identificaron y confirmaron dos nuevos alelos, HLA-B*38:20:02 y HLA-DRB3*02:71, 

durante este estudio gracias a la metodología NGS. Así, dentro de esta cohorte, uno de los 

individuos estudiados presentaba una única diferencia en el codón 99 del exón 3 respecto a la 

secuencia de referencia para el alelo HLA-B*38:20, donde se encontró una mutación puntual 

con una sustitución sinónima (de Tyr ó Y (TAC) a Tyr ó Y (TAT)). Mientras que en otro 

individuo dentro de esta misma cohorte, se observó una única diferencia en el codón 166 del 

exón 3 respecto a la secuencia de referencia para el alelo de clase II HLA-DRB3*02:02:01:01, 

donde se tenía una mutación puntual con una sustitución en este caso no sinónima que 

conllevaba un cambio de amino ácido (de Arg ó R (CGG) a Gln ó Q (CAG)). En este último 

caso, se podría pensar que a priori este cambio de amino ácido (con un muy probable efecto 

en las interacciones entre cadenas laterales dado el cambio de carga y de enlaces asociados) 

supondría cierto nivel de variación respecto a la configuración y plegamiento proteico del 

dominio β2 de la molécula HLA dada, que se encuentra codificado por este exón 3. Como 

consecuencia, y desde un punto de vista funcional, la región α2/β2 de la respectiva molécula 

HLA de clase II que se sabe que interacciona con la molécula co-receptor CD4 expresada en 
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células T podría verse condicionada dado este cambio de amino ácido descrito para este nuevo 

alelo. 

1d) Únicamente como un test estadístico preliminar e inicial, se realizó el test de neutralidad 

de Ewens-Waterson Homozygosity (EWH) para poder evaluar los posibles procesos 

selectivos que estarían dirigiendo la diversidad alélica encontrada en la presente cohorte de 

población Española estudiada a este 3-/4-field de nivel de resolución. Así, en el caso de todos 

los genes HLA estudiados aquí y con la única excepción del locus HLA-DPB1, se vio que 

bajo condición de neutralidad los valores de homocigosidad observada (Fo) eran siempre 

menores que aquellos expresados para la homocigosidad esperada (Fe). Aun así, estos 

resultados preliminares dados en el contexto de este estudio de NGS necesitarían ser 

posteriormente confirmados en futuros estudios a una mayor escala. 

1e) También se llevó a cabo un análisis estadístico para la comparación de distribuciones 

alélicas de HLA (considerando en este caso los genes de mayor diversidad HLA-A, -B, -C, -

DQB1 y -DRB1) entre las 3 principales regiones geográficas diferenciadas de la presente 

cohorte de población Española (regiones Norte-Centro, Este y Sur de España) así como de las 

10 diferentes localidades que se cubrieron individualmente en el presente estudio. Donde se 

calcularon las respectivas distancias génicas de Nei (DA) y se construyó el correspondiente 

dendograma Neighbor-joining (NJ). En general, se observó que todos estos subgrupos 

comparados se situaban en el dendograma construido no solo de acuerdo con estas 

distribuciones de frecuencias alélicas analizadas sino que también esta misma disposición 

coincidía de acuerdo a su distribución geográfica, mostrándose así esta variación de HLA a 

un nivel también regional en población Española. Asimismo, a pesar de las limitaciones de 

tamaño de muestra del presente estudio especialmente en relación a cada uno de los subgrupos 

evaluados y por tanto teniendo que tomarse con cautela las posibles interpretaciones derivadas 
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de los resultados de este análisis; se puede decir que la presente cohorte de población Española 

sana estudiada mostraba un sustrato genético principalmente Mediterráneo dada también una 

mayor representatividad de regiones/localidades del Este y Centro y fundamentalmente dentro 

de la Meseta Central. Mientras que aquellas regiones localizadas más en los extremos Norte 

y Sur (caracterizadas por ser zonas generalmente más montañosas y aisladas de la Meseta 

Central así como de zonas geográficas tan singulares como aquellas que son insulares siendo 

el caso, por ejemplo, de las Islas Canarias) divergen de manera significativa de este sustrato 

genético típicamente Mediterráneo en relación a los genes HLA. Como ejemplo 

representativo, se tiene la llamativa divergencia observada en el dendograma NJ representado 

del clúster que engloba los subgrupos de Málaga y Gran Canaria; pudiéndose deberse esto 

muy probablemente a la contribución genética (como un evento demográfico muy relevante 

para entender la diversidad de genes HLA observada hoy día en población Española) muy 

bien documentada y bien conocida históricamente procedente del Norte de África por la 

influencia de Musulmanes Bereberes/Árabes especialmente en regiones próximas de la 

Península Ibérica y también del territorio de las Islas Canarias. 

2) Respecto a la distribución de haplotipos HLA observada, y gracias de nuevo a la aplicación 

de la tecnología NGS para la secuenciación de genes HLA, se pudieron describir asociaciones 

al 3-/4-field de resolución muy interesantes, novedosas e informativas tanto para asociaciones 

haplotípicas de 2-locus como para haplotipos completamente extendidos de clase I y clase II. 

En resumen: 

2a) Pudimos observar singulares asociaciones haplotipicas de 2-locus respecto a regiones no 

codificantes al 4-field de resolución en NGS que no eran evidentes cuando se testaba con 

metodologías más tradicionales limitadas al 2-field de resolución (como, por ejemplo, 

variantes no codificantes de HLA-DQA1*05:01:01, HLA-B*18:01:01, HLA-C*05:01:01 y 
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HLA-C*06:02:01). Por el contrario, pares haplotipicos de genes HLA como, por ejemplo, 

B*07:02:01~C*07:02:01:03, DQA1*01:01:01:02~DQB1*05:01:01:03 y 

DQB1*02:02:01:01~DRB1*07:01:01:01 fueron casos característicos en esta cohorte de 

población Española donde se encontró un significativo nivel de conservación al 4-field de 

resolución. Asimismo, y de modo muy interesante, el presente estudio de HLA mediante 

secuenciación por NGS nos permitió observar que un alelo muy común en población Española 

como el HLA-B*51:01:01:01 establece una muy amplia distribución haplotípica en su 

asociación a alelos HLA-C (hasta 7 diferentes asociaciones se pudieron describir en este caso), 

representando así un importante factor predictivo negativo en la búsqueda de un donante 

totalmente compatible, tal y como también se ha visto en otras poblaciones de ascendencia 

Europea. 

2b) En relación a la distribución de haplotipos extendidos HLA de clase I y clase II, y en la 

misma línea que con lo hallado anteriormente para haplotipos de 2-locus, se pudieron describir 

muy distintivos y singulares asociaciones haplotipicas respecto a regiones no codificantes al 

4-field de resolución en NGS que no eran evidentes cuando se testaba con metodologías de 

genotipaje HLA más tradicionales limitadas a una menor resolución alélica (al 2-field o 3-

field de resolución). Los haplotipos extendidos más comunes (por ejemplo, aquellos con una 

frecuencia alélica mayor al 5%) identificados en esta presente cohorte de población Española 

fueron los siguientes: 

HLA-

A*01:01:01:01~C*07:01:01:01~B*08:01:01:01~DRB3*01:01:02:01~DRB1*03:01:01:01~

DQA1*05:01:01:02~DQB1*02:01:01 (HF=7.8%);  

HLA-A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQA1*02:01:01:01~DQB1*02:02:01:01 (HF=7.8%); y 
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HLA-A*02:01:01:01~C*07:02:01:03~B*07:02:01~DRB5*01:01:01~DRB1*15:01:01:01~ 

DQA1*01:02:01:01~DQB1*06:02:01 (HF=5.2%). 

Así pues, y en general, la mayoría de estos haplotipos HLA extendidos más comunes 

observados en población Española también son generalmente frecuentes en registros y bases 

de datos poblacionales de todo el mundo, y especialmente en aquellos de predominante 

ascendencia Europea. Por otro lado, también se observaron ciertos haplotipos relativamente 

comunes en población Española que sin embargo no eran tan frecuentes en otros registros del 

extranjero, aun siendo todavía preferentemente de ascendencia Europea. Por ejemplo, este era 

el caso del haplotipo HLA-

A*30:02:01:01~C*05:01:01:01~B*18:01:01:01~DRB3*02:02:01:01~ 

DRB1*03:01:01:01~DQA1*05:01:01:01~DQB1*02:01:01 (HF=4.7%); e incluso de modo 

más acentuado en el caso del haplotipo HLA-

A*25:01:01~C*12:03:01:01~B*18:01:01:02~DRB5*01:01:01~DRB1*15:01:01:01~ 

DQA1*01:02:01:01~DQB1*06:02:01 (HF=2.1%), al igual que en el caso del haplotipo 

HLA-A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQA1*02:01:01:01~DQB1*02:02:01:01 (HF=7.8%). Por lo tanto, 

estos últimos ejemplos mostrados aquí subrayan la importancia del desarrollo de registros de 

donantes locales dentro del país que cubran de manera efectiva y representativa la diversidad 

alélica y haplotípica más común de población Española en este caso dado.  

2c) Al mismo tiempo, y en este caso en el contexto de un estudio antropológico, la evaluación 

de la diversidad del sistema HLA a través de la aplicación de genotipaje por NGS (con la 

descripción a altísima resolución al 3-/4-field de asociaciones haplotípicas y determinados 

patrones de desequilibrio de ligamiento) permitió poder detectar y caracterizar contribuciones 
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de sustratos genéticos (debidos a eventos demográficos de transcendencia) que han persistido 

en la población actual moderna Española: 

-Tanto de muy temprano origen en la historia, como es el componente general y complejo 

Europeo-Mediterráneo constituido por un bloque del Norte-Centro de Europa (representado 

por haplotipos conteniendo HLA-B*44:02:01:01, HLA-B*18:01:01:01, HLA-B*07:02:01 y 

HLA-B*08:01:01:01); un bloque también del Norte de África de origen Bereber-Árabe 

(representado por haplotipos conteniendo HLA-B*51:01:01:01, HLA-B*49:01:01, HLA-

DQB1*03:19:01 y HLA-DRB1*01:03~DQB1*05:01:01:03); así como de un bloque 

correspondiente al origen Judío Sefardita (representado por haplotipos conteniendo HLA-

B*35:02:01~DRB1*11:04:01 y HLA-B*38:01:01~DRB1*13:01:01:01); y adicionalmente 

al también llamativo bloque genético de origen Romaní-Gitano dentro de una porción de la 

población general de España  (caracterizado por haplotipos conteniendo 

C*15:02:01:01~B*40:06:01:02~DRB1*14:04:01~DQB1*05:03:01:01~ 

DPB1*02:01:02).  

-Como de eventos demográficos más recientes e incluso que están transcurriendo todavía 

en la actualidad. Principalmente, dado el importante y muy reciente movimiento migratorio 

a España procedente de Latino América (presentando un perfil singular y característico 

como es el Amerindio, con haplotipos que contienen por ejemplo HLA-

A*68:17~B*40:02:01~DRB1*04:04:01) y de regiones del Este de Europa (especialmente 

Rumanía) y del Mediterráneo.   

2d) También, como ya se había observado en otros estudios con anterioridad, haplotipos que 

son totalmente idénticos en relación a los 7 principales HLA loci (comprendiendo HLA-A-

~B~C~DRB3/4/5~DRB1~DQA1~DQB1) pasan a ser realmente divergentes al incluir y dada 

la multiplicidad vista con los loci HLA-DP en su respectiva asociación haplotípica. Se 
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entiende que esto se debe al muy bajo desequilibrio de ligamiento presentado en la región 

HLA-DP con respecto al resto de la región HLA de clase II dada la existencia de “puntos 

calientes” de recombinación específicamente ente los loci HLA-DQ y HLA-DP. Este patrón 

se pudo así también ver al 3-/4-field de resolución en el presente estudio. Esta elevada 

diversidad haplotípica observada al 3-/4-field, y en adición a esta multiplicidad dada por HLA-

DP, sin duda constituye un factor importante en el número de incompatibilidades a poder 

encontrar en la pareja donante-receptor en trasplantes y así en la menor probabilidad de 

encontrar un donante totalmente compatible, siendo esto especialmente crítico en trasplante 

alogénico de células madre hematopoyéticas. 

2e) Asimismo, y como una de las principales y más notorias diferencias encontradas entre 

poblaciones Ibéricas (incluyendo la cohorte de población Española del presente estudio) y el 

resto de Europa (incluyendo regiones del Norte-Centro-Este), destacan las respectivas 

distribuciones  haplotipicas relativas a HLA-B*44:02:01:01/HLA-B*44:03:01:01 

encontrándose invertidas entre estos dos amplios grupos poblacionales. Así, en relación a 

haplotipos que contienen HLA-B*44:02:01:01, y de forma opuesta a lo observado en 

poblaciones de ascendencia Europea, en población Española estos haplotipos se encuentran 

con frecuencias relativas menores y mostrando una distribución aún más dispersa. Mientras 

que en el caso contrario de haplotipos conteniendo HLA-B*44:03:01:01, estos presentan 

frecuencias relativas mucho mayores en población Española y con respecto a otras 

poblaciones de ascendencia Europea.  

II) En segundo lugar, en relación ahora al estudio de asociación de genes HLA y Esclerosis 

Múltiple (EM) en población Española,  donde la aplicación de secuenciación masiva NGS en el 

genotipaje HLA permitió el mapeo de gran precisión de aquellas variantes alélicas y haplotipicas 

asociadas:  
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Resumidamente, la señal refinada HLA-DRB5*01:01:01~DRB1*15:01:01:01 asociada a 

predisposición con EM fue estadísticamente significativa tal y como se esperaba en base a 

previos estudios publicados. Una segunda señal significativa de susceptibilidad a EM, en este 

caso independiente del factor principal de riesgo DRB1*15:01:01:01, se encontró asociada al 

alelo HLA-DPB1*03:01:01, concorde también con resultados procedentes de estudios previos 

realizados en otras poblaciones de origen Europeo. Por otro lado, se detectaron efectos de 

protección a EM correspondientes a varias diferentes señales HLA de clase II (incluyendo HLA-

DRB1*04:01:01:01, -DRB1*04:02:01 y -DRB1*04:04:01, en fuerte desequilibrio de 

ligamiento (DL) con el DRB secundario HLA-DRB4*01:03:01:01; y, separadamente, la señal 

correspondiente a HLA-DRB5*01:02~DRB1*15:02:01:02~DQB1*06:01:01). Todos los cuales 

se debían a un patrón negativo de DL con respecto al factor principal de riesgo 

DRB1*15:01:01:01 y haplotipos asociados. Mientras que alelos HLA de clase I HLA-

B*38:01:01, previamente identificado en anteriores estudios, y la nueva señal de HLA-

B*58:01:01:01 mostraron un efecto protector moderado siendo independiente entre ellos y 

también independiente de factores asociados de HLA clase II. Además, no encontramos un claro 

efecto protector a EM atribuido para el Bw4 por si solo (considerando alelos HLA-B y los 

correspondientes subgrupos NLRIALR, DLRTLLR y NLRTALR respectivamente). Mientras 

que, por otra parte, el epitopo Bw6 (SLRNLRG, codificado por los respectivos alelos HLA-B 

estudiados aquí) mostraba una asociación con riesgo a EM que no podía explicarse simplemente 

en relación a patrones de DL con respecto al factor principal de riesgo DRB1*15:01:01:01, 

siendo así más bien independiente. 

Conclusiones 

I) En primer lugar, relativo a la cohorte de población Española sana (siendo parte del 17th-IHIW) 

estudiada en el presente trabajo de tesis: 
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1) Desde nuestro conocimiento y habiéndose revisado ampliamente la literatura publicada hasta 

la fecha, el presente trabajo de tesis constituye el mayor estudio realizado por primera vez 

haciendo uso de la tecnología NGS para el genotipaje de genes HLA al 3-/4-field de resolución 

en el caso de población Española. Donde se ha podido describir la diversidad alélica de todos 

los principales genes HLA: HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -

DRB3/4/5, con la caracterización de la secuencia completa de genes HLA clase I y una cobertura 

muy extendida de la secuencia de genes HLA de clase II consiguiendo así tener un mínimo nivel 

de ambigüedades y donde también se ha podido así estimar las frecuencias haplotipicas 

2) La secuenciación de los genes HLA mediante NGS en la presente cohorte de población 

Española ha permitido obtener unos resultados interesantes y muy informativos al 3-/4-field de 

resolución incluyendo: la descripción de asociaciones haplotipicas (no conocidas hasta ahora) 

en el contexto de regiones no codificantes al 4-field de resolución; la detección precisa y rápida 

de variantes raras, nuevos alelos y alelos nulos; así como una evaluación mucho más fehaciente 

de las distribuciones alélicas y haplotípicas y su prevalencia en población Española.  

3) En definitiva, y como principales posibles aplicaciones a tener en cuenta, los resultados del 

presente estudio podrían contribuir como una primera base de datos HLA de referencia para: 

futuros estudios poblacionales; para estudios de asociación a enfermedades y para el campo de 

la farmacogenética como un grupo control sano; para actualizar y mejorar las estimaciones del 

virtual panel-reactive antibody (vPRA) en relación a población Española; y también para 

mejorar las estrategias y protocolos de reclutamiento de donantes en los registros de médula 

ósea y de sangre de cordón umbilical. Asimismo, gracias a la muy elevada resolución alélica 

proporcionada por la tecnología NGS para el genotipaje HLA, la determinación de asociaciones 

haplotipicas al 3-/4-field de resolución nos ha permitido poder identificar en mucho mayor 

detalle patrones característicos de distribución HLA dentro de esta cohorte de población en 
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España (incluyendo una significativa variación regional observada dada una muy posible 

estratificación de la población respecto a esta variabilidad genética en HLA); así como una 

mejor detección de aquellos sustratos genéticos debidos a eventos históricos demográficos 

relevantes del pasado o también de aquellos más recientes o estables a lo largo de la historia en 

la Península Ibérica y, en concreto, en población Española. Por otro lado, datos del presente 

estudio, así como también de futuros estudios relacionados, podrían tener una contribución 

relevante en la eficacia de nuevas y presentes inmunoterapias y en los criterios de selección de 

terapias personalizadas. Por último, el conocimiento de los haplotipos HLA al 3-/4-field de 

resolución más comunes en población Española podría ser de gran utilidad para el diseño de 

haplo-bancos representativos de determinadas líneas celulares homocigóticas para el trasplante 

alogénico de células madre pluripotentes inducidas (iPSC) y su respectiva terapia como en el 

caso de la terapia adoptiva con el uso de células T diseñadas genéticamente (como, por ejemplo, 

las células CAR-T con un receptor de antígeno quimérico). 

II) En segundo lugar, en relación al estudio de asociación de genes HLA y Esclerosis Múltiple 

(EM) en población Española: 

1) La aplicación de secuenciación masiva NGS en el genotipaje HLA permitió el mapeo de gran 

precisión de aquellas variantes alélicas y haplotipicas asociadas, pudiendo excluir al mismo 

tiempo aquellas asociaciones que no estaban directamente asociadas (únicamente por DL) con 

riesgo o protección a EM. 

2) La señal refinada HLA-DRB5*01:01:01~DRB1*15:01:01:01 asociada a predisposición con 

EM fue estadísticamente significativa. 

3) Análisis nominales y por estratificación identificaron también una segunda señal significativa 

de riesgo a EM relativa al alelo HLA-DPB1*03:01:01, siendo en este caso independiente del 

factor principal de riesgo DRB1*15:01:01:01. 
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4) Efectos de protección asociados a varias diferentes señales HLA de clase II (varios haplotipos 

que contenían respectivamente HLA-DRB1*04- y HLA-DRB1*15:02:01:02) se debían a un 

patrón negativo de DL con respecto al factor principal de riesgo DRB1*15:01:01:01. 

5) Alelos HLA de clase I HLA-B*38:01:01, previamente identificado en anteriores estudios, y 

la nueva señal de HLA-B*58:01:01:01 mostraron un efecto protector moderado siendo 

independiente entre ellos y también independiente de factores asociados de HLA clase II. 

6) En el presente estudio, no se encontró un claro efecto protector a EM atribuido para el Bw4 

por si solo (considerando alelos HLA-B y los correspondientes subgrupos NLRIALR, 

DLRTLLR y NLRTALR respectivamente). Mientras que, por otra parte, el epitopo Bw6 

(SLRNLRG, codificado por los respectivos alelos HLA-B estudiados aquí) mostraba una 

asociación con riesgo a EM que no podía explicarse simplemente en relación a patrones de DL 

con respecto al factor principal de riesgo DRB1*15:01:01:01, siendo así más bien 

independiente. 
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I. HUMAN LEUKOCYTE ANTIGEN (HLA) SYSTEM 

 

1. DEFINITION, DISCOVERY AND GENERAL ASPECTS 

The human Major Histocompatibility Complex (MHC), also denominated as the Human 

Leukocyte Antigen (HLA) system, is a genomic region located on the short arm of chromosome 

6, band p21.3 (6p21.3). The classic human MHC region comprises approximately 3.8 million base 

pairs (Mbp) of DNA representing 0.13% of the human genome [1]. More recent studies have 

defined the concept of the extended human MHC (xMHC), which includes a total of 7.6 Mbp, 

based on the finding that linkage disequilibrium (LD) and MHC related genes exist outside the 

boundaries of this classic human MHC region [2].  

 The classic 3.8 Mbp MHC region is among the most gene-dense segments of the human 

genome in which about 40% of the protein-coding human MHC genes have immune-related 

function in both innate and adaptive immunities. Importantly, this classic human MHC region 

includes the highly polymorphic HLA genes that encode the HLA glycoproteins, which play a key 

role in immune recognition and regulation [3]. These cell-membrane-bound glycoproteins known 

as HLA classical class I and class II molecules regulate the immune response by presenting 

peptides of fragmented proteins to different types of effector cells. In the context of adaptive 

immunity, HLA class I and II serve as the structures that present self and foreign peptides to 

cytotoxic (CD8+) and helper (CD4+) T lymphocytes, respectively [4]. At the same time, HLA 

class I molecules also participate in aspects of innate immunity by acting as ligands that interact 

with receptors located on the surface of natural killer (NK) cells [5]. 

The MHC region is now known to be part of the genome of all the jawed vertebrates studied so 

far, presenting also a highly complex and large group of linked genes where many of them are 

involved functionally with the adaptive and innate immune responses [6]. The MHC system was 
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first discovered in 1936 by Peter Gorer (inspired by John B. S. Haldane’s hypothesis about possible 

resistance factors to the growth of allogeneic tumors that might be associated with some blood 

group antigens) during his pioneering studies of antigenic responses to transplanted sera by inbred 

mouse strains in which he identified an antigen (named as antigen II) responsible for tumor 

rejection [7-9]. Even before then, in the early 1900s, based on previous Carl Jensen and Leo Loeb’s 

work on allogenic tumor transplantations in different mice strains, geneticists Ernest Tyzzer and 

Clarence Little arrived at the conclusion that susceptibility/resistance to the growth of allogeneic 

tumors was somehow genetically determined [10]. In 1948, the MHC in mice (named as the H-2 

locus or H-2 complex) was genetically defined more precisely by George Snell (initially in 

collaboration with Peter Gorer) in his studies of tumor resistance genes, which he called 

histocompatibility or H genes [11][12]. The human MHC system was initially discovered and 

defined as an antigenic system by Jean Dausset in 1958, as he found the first iso(allo)antibodies in 

the blood of transfusion patients which were specific against antigens expressed by human 

leukocytes from certain individuals [13]. During that same year, there were two other research 

groups (leaded by Jon van Rood and Rose Payne, respectively) that independently also noted how 

sera from multiparous women or from previously transfused individuals contained antibodies that 

agglutinated leukocytes from many but not all individuals who were tested [14][15]. As a 

consequence of the observations made about these first leukocyte antigens described on these 

initial and other subsequent studies, the human MHC system was termed as the Human Leucocyte 

Antigen (HLA) complex. During the 1960s, 1970s and 1980s there was a very remarkable progress 

of knowledge in the field thanks to significant instrumental and technical innovations (especially 

in serological typing methods and microlymphocytotoxicity assays), including their 

standardization, as well as an extensive international collaboration represented by the organization 

of International Histocompatibility Workshops (IHIWs) [16]. In that period of time, many different 
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groups of investigators carried out studies that contribute to describing and defining the genomic 

organization of the HLA chromosomal region and its six different major and very polymorphic 

series of determinants (A, B, C, DR, DQ and DP antigens) (from the studies of respective groups 

leaded by Dausset, van Rood, Payne, Amos, Ceppellini, Bodmer, Kissmeyer-Nielsen and Thorsby 

among others); the evidence that HLA class I and II molecules are important histocompatibility 

antigens in transplantation (from the studies of respective groups leaded by Dausset, van Rood, 

Amos, Ceppellini, Kissmeyer-Nielsen, Terasaki, Thorsby, Leiden, Ting and Morris among others); 

the first associations of HLA antigens with diseases (from the studies of respective groups leaded 

by Amiel, Brewerton and Schlosstein among others); the immunobiological function of these HLA 

antigens as peptide-presenting molecules (from the studies of respective groups leaded by 

Benacerraf, McDevitt, Tyan, Doherty and Zinkernagel among others); the molecular structure of 

HLA antigens that also help to understand the phenomenon of MHC/HLA restriction where both 

the peptide and the presenting HLA molecule comprise a complex ligand that interact with the 

corresponding receptor located on the surface of certain effector cells (from the studies of 

respective groups leaded by Doherty, Zinkernagel, Ziegler, Unanue, Townsend, Strominger, 

Wiley, Bjorkman, Brown and Engelhard among others) [16][17]. 

The basis of the initial discovery of the HLA molecules was that they constitute 

histocompatibility transplantation antigens defining rejection response to grafted tissue. However, 

it was not until later (in the 1970s and 1980s) when it became known their primary biological 

function and pivotal role in the regulation of the immune system [16]. The main function of both 

HLA class I and class II molecules is to bind peptides derived from self or nonself antigens and 

then traffic to the cell surface, where these peptides are presented for recognition by the appropriate 

effector T cells. Conversion of antigens from pathogens or transformed (tumor) cells into HLA-I 

and HLA-II bound peptides is critical for mounting protective T cell responses (engaging the key 
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elements of adaptive immunity: specificity, memory and diversity), and similar processing of self 

proteins is necessary to establish and maintain tolerance [18]. These peptides are products of 

proteolysis, and there are two major proteolytic systems operating within the cell that contribute 

to HLA-dependent T cell recognition depending on the antigen source of the displayed peptides: 

- HLA class I molecules (expressed on the surface of all nucleated somatic cells) present 

peptides (8-11 amino acids in length) from intracellular antigens (coming from the cell’s own 

proteome (e.g. tumor cell) or from foreign intracellular pathogens (e.g. virus or bacteria)) to 

T cell receptors of specific CD8+ cytotoxic T cells (see references in [16]). Additionally, 

HLA class I proteins can also act as ligands for killer-cell immunoglobulin-like receptors 

(KIRs) [19] that regulate the cytotoxic activity of CD8+ cytotoxic T cells (CTLs) and natural 

killer (NK) cells and leucocyte immunoglobulin-like receptors (LILRs) expressed on 

myelomonocytes and other leucocyte lineages [20]. 

- Meanwhile, HLA class II molecules (expressed normally on the surface of a subgroup of 

immune cells that includes B cells, activated T cells, macrophages, dendritic cells, and 

thymic epithelial cells) present peptides (15-25 amino acids in length) from exogenous 

antigens (coming from foreign extracellular pathogens (e.g. parasite or bacteria)), which are 

degraded in the endocytic pathway, to T cell receptors of specific CD4+ helper T cells (see 

references in [16]). 

The HLA’s immunobiological function in immune responsiveness is also intrinsically reflected 

in its genetic polymorphism. Within the human MHC, the classical HLA class I and class II genes 

or loci are among the most polymorphic in the human genome (as well as their close MHC 

homologs in other organisms [21]) [1], presumably (as this is still an unproven hypothesis) to 

preserve the variability of the antigen-presenting ability. As this reflects the evolutionary 

advantages of a diverse immunological response to defend against and survive the natural selection 
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pressure from a wide range of infectious pathogens [22][23]. Where this extensive HLA allelic 

sequence diversity affects peptide binding and recognition of the HLA-peptide complex by the T 

cell receptor [3]. 

In brief, the main properties of the HLA system, which define its complex and diverse nature, 

are: 

-Polygenic: it contains several different HLA class I and class II genes, so that every individual 

possesses a set of HLA molecules with different ranges of peptide-binding specificities [18]. 

-Diallelic/Codominant expression: in an individual for each HLA gene, the alleles inherited 

from both maternal and paternal chromosomes are codominantly expressed on the cell surface, 

maximizing the number of HLA molecules available to bind peptides for presentation to T 

cells [18][24] (see Figure I-1). 

 

https://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3065/
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Figure I-1. Codominant expression of HLA gene products encoded by the major histocompatibility 

complex. The HLA-A, -B, and -C class I loci, and the linked HLA-DR, -DQ, and -DP class II loci are 

located the short arm of chromosome 6 (6p21), and the class I light-chain locus, β2M, is encoded on 

chromosome 15. HLA genes and their respective proteins are shaded to reflect the different loci 

encoding these proteins and the inheritance of different alleles from the two parental chromosomes. 

The separate HLA class II α- and β-chain loci are also shown. The products of both maternal and 

paternal chromosomes are codominantly expressed on the surface of antigen-presenting cells, resulting 

in expression of up to six distinct class I allotypes. The number of expressed class II gene products can 

be even greater, because some haplotypes have extra HLA-DRB loci that produce additional β chains 

capable of assembling with DRα. In addition, pairing of certain DQα molecules from the HLA-DQA 

locus encoded on one chromosome, with DQβ chains derived from the other chromosome, can result 

in expression of new DQ cis–trans isotypes. The HLA class I and class II loci are separated by the class 

III region of the major histocompatibility complex (not shown). HLA class II molecules are 

constitutively expressed only on B cells, macrophages, and dendritic cells, whereas class I molecules 

are found on nearly all nucleated cell types. Figure and respective footnote are obtained and adapted 

from [24]. 

 

 

-Polymorphic: there are multiple allelic variants, relatively with high frequency, of each HLA 

gene within the population as a whole. HLA genes exhibit a high degree of polymorphism, and 

a number of different mechanisms may contribute to the generation and maintenance of this 

polymorphism. Among these are the selective advantage of a heterozygous pool of antigen 

presenting elements in a given individual that might allow the binding and presentation of 

antigenic peptides derived from a wide variety of environmental pathogens [24]. 2005). It has 

been widely described how nucleotide substitutions are shared by more than one HLA gen, 

and thus indicating a patchwork nature of HLA sequence polymorphism suggestive of 

segmental exchanges. Therefore, it is well-accepted that the extensive allelic diversity at these 

HLA loci is generated by recombinations and gene conversions (involving relatively short 

fragments of DNA leading to single or short amino acid motives substitutions) as well as by 

point mutations [25]. 

-HLA Haplotype: an important concept (first introduced by Cepellini and his associates in 1967 

[16]) commonly used is “haplotype,” which refers to the linked set or string of particular alleles 

at distinct neighboring loci (relatively located physically close) that occur and are inherited as 



________________________________________________________Introduction 
 

Page | 44  

   © Gonzalo Montero Martin  

a group on a parental chromosome. This existing linkage of HLA loci on chromosome 6 means 

that a given individual will usually inherit (in a Mendelian fashion) a set of nonrecombined 

HLA alleles encoded at linked HLA loci from each parent [16][24]. Thus, the complete HLA 

genotype of an individual comprises the corresponding paternal and maternal HLA haplotypes 

(see Figure I-2). 

 

Figure I-2. Segregation of HLA haplotypes in a nuclear family. Each of these sets (haplotypes) of 

neighboring HLA polymorphisms is co-transmitted or segregated on a single parental chromosome in the 

absence of recombination during meiosis (in that case, crossing-over events occur between HLA loci 

generating newer haplotype/s different from original parental one/s) When meiotic recombination appears 

to have occurred within a family, interpretation of HLA typing results as well as related phasing and 

assignment of HLA haplotypes can be difficult. Nevertheless, before concluding that recombination explains 

the results observed, HLA histocompatibility clinical laboratories should also consider the possibilities of 

typing error and false paternity as possible alternatives. Figure and respective footnote are obtained and 

adapted from [24][90]. 

 

-Linkage Disequilibrium (LD): Genes within the HLA region demonstrate extensive linkage 

disequilibrium observed even among relatively distant genomic regions. Linkage 
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disequilibrium is a phenomenon where alleles at linked loci (organized in Haplotypes) 

segregate more commonly together than predicted by chance. Existing data suggest that 

positive selection is operating on the haplotype and that the linked loci confer a particular 

selective advantage for the host [26]. Moreover, common haplotypes within a given population 

appears to reflect functional interdependencies of the HLA gene alleles. 

 

2. GENOMIC ORGANIZATION OF THE HUMAN MHC OR HLA SYSTEM 

The human MHC complex, or HLA system, is located on the short arm of chromosome 6, in 

the distal portion of the region 6p21.1-6p21.3. The MHC system is among the most gene-dense 

segments and polymorphic regions of the human genome, where the defined classic MHC region 

at around 4 Mbp occupies 0.13% of the human genome (3x109 bp), but contains about 0.5% (which 

is more than 150) of the approximately 32,000 known protein-coding genes [27]. 

2.1 Human Major Histocompatibility Complex (MHC) or HLA Genomic Map  

In 1991, Trowsdale et al. reported the first genetic map of the human MHC [28]. Few years 

later, in 1999, the first-sequenced based map (derived from many individuals of unknown HLA 

type, defining a “mosaic” human MHC haplotype) comprised 3.6 Mbp DNA, described 224 gene 

loci of which 57% were predicted to be expressed and about 40% of the expressed genes were 

estimated to have immune system function. It also divided the human MHC into three regions: 

class I (located at the telomeric end), class III, and class II (located at the centromeric end) [1]. 

Later on, that virtual MHC haplotype of 1999 was replaced by a single reference sequence of a 

homozygous haplotype derived from sequencing the PGF cell line [29]. When the entire sequence 

of the chromosome 6 was described [30], linkage disequilibrium (LD) and MHC related genes 

were found outside the boundaries of this classic 3.6 Mbp human MHC region [2]. Thus, this 

evidence has led to the concept of the extended MHC (xMHC) region, which covers a total of 7.6 

Mbp on the short arm of this chromosome (corresponding to the updated region 6p22.2-6p21.3), 
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and it is divided into 5 subregions: extended class I (telomeric side of HCG4P11; ~3900 kbp), 

class I (ranges from HLA-F to MICB; ~1900 kbp), class III (ranges from PPIAP9 to BTNL2; ~700 

kbp), class II (from HLA-DRA to HLA-DPA3; ~900 kbp) and extended class II (centromeric side 

of COL11A2; ~200 kbp) regions. In this human xMHC, of the 421 loci described, 60% are 

considered to be expressed and about 28% of the expressed transcripts are potentially associated 

with immunity [2]. Whereas the human MHC class I and class II genomic subregions encode the 

highly polymorphic gene complex of the HLA class I and HLA class II genes, the class III 

subregion is the most gene dense subregion (containing 58 (23%) of the expressed genes in a 0.7 

Mbp segment) of the xMHC and of the human genome [31]. Additionally, within the xMHC there 

are also 139 loci classified as pseudogenes (since xMHC region is very rich in paralog genes as a 

result of genomic duplications), representing a 33%, and the remaining 7% includes tRNA genes 

[2]. In 2008, the MHC Haplotype Project study, which described over 44,000 variations, both 

substitutions and indels (insertions and deletions) by comparing eight different haplotype 

sequences from homozygous cell lines, also confirmed the presence of more than 300 loci, 

including over 160 protein-coding genes within the human MHC region. Combined analysis of the 

variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 

were non-synonymous [32]. Currently, the defined classic human MHC genomic map comprises 

3.8 Mbp and includes 158 protein-coding genes and 86 pseudogenes of unknown functionality, 

spanning from the gamma-aminobutyric acid receptor (GABBR1) gene on the telomeric side of the 

region to the kinesin family member C1 (KIFC1) gene toward the centromere, based on the 

Genome Reference Consortium Human Build 38 patch release 7 (GRCh38.p7) in the National 

Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/gene/) 

(ENSEMBL 86 GRCh38. p7 coordinates chr6: 29555629-33409924) [27][33] (see Figure I-3 and 

Figure I-4).  

 

http://www.ncbi.nlm.nih.gov/gene/
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Figure I-3. Gene map of the HLA genomic region showing main but not all genes and/or gene clusters. The current classic 3.8 Mbp 

MHC gene map corresponds to the genomic coordinates of 29555629 (GABBR1) to 33409924 (KIFC1) in the human genome 
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GRCh38.p7 primary assembly of the NCBI map viewer. The regions separated by arrows show the HLA sub-regions such as 

extended class I, class I, class III, classical class II and extended class II regions from telomere (left and top side) to centromere (right 

and bottom side). Family pedigree analysis has shown that recombination occurs at specific locations within the MHC, leading to a 

structure of four major genomic blocks (in general, each block defines a set of loci without an intervening hotspot of recombination). 

Dawkins and colleagues referred to these blocks (delimiting segments between these respective pair of genes) as the Alpha (α; 

HOG4P11 and HLA-J), Kappa (κ; TRIM26BP and HLA-E), Beta (β; HCG27 and MICB), Gamma (γ; PPIAP9 and HCG23) and Delta 

(δ; BTNL2 and HLA-DMA) blocks [459]. The Alpha block contains HLA-A; the Beta block contains HLA-C and HLA-B; the Gamma 

block (which lies between the Beta and Delta blocks, it contains >60 genes; which were also used to characterize Conserved Extended 

Haplotypes (CEH), or also known as Ancestral Haplotypes (AH), in the past [486][530]) contains the tumor necrosis factor (TNF) 

gene and the complement proteins C2, C4, and factor B (Bf); and the Delta block contains the HLA-DR and HLA-DQ genes, where 

the HLA-DP genes could be also considered part of this latter Delta block as an exception, despite the presence of a hotspot of 

recombination that creates a weak LD between the HLA-DPB1 and the -DQB1 loci [459][485].  Blue and pink boxes and arrows 

show the spans of α, κ, β, γ, δ blocks and framework gene (well-conserved non-MHC genes in mammalian species) blocks, 

respectively. White, grey, dotted and black boxes show protein-coding genes, non-coding RNAs (ncRNAs), small nucleolar RNAs 

(snoRNAs) and pseudogenes, respectively. Red and blue letters indicate HLA class I/MIC and HLA class II genes, respectively. 

Figure and respective footnote are obtained and adapted from [34] and [35]. 

 

 

 
 

Figure I-4. Gene map of the HLA genomic region (located on the short arm of chromosome 6, band p21.3 (6p21.3)) showing, from 

telomere (right side) to centromere (left side), main relevant genes of interest in the immunogenetics and histocompatibility field. 

Highlighted in red color are the 11 major classical HLA genes characterized via next-generation sequencing (NGS) in the present 

thesis work. In bold black color letters, the most polymorphic major classical HLA loci (HLA-A, -C, -B, -DRB1, -DQB1 and -DPB1) 

are indicated. Original figure and respective footnote are obtained and adapted from [531]. 
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2.2 Human xMHC Gene Clusters 

Segmental duplication that results in the formation of gene clusters is a particular hallmark of 

the human MHC complex [2] [36]. This existing linkage or clustering of immune-system genes 

along the HLA system is thought to be functionally advantageous. For instance, in order to ensure 

that the protein components will be co-expressed in quantities appropriate for the formation of 

heterodimers (e.g. HLA-DQA1 and HLA-DQB1) or those products involved in antigen processing, 

including peptide transporters (TAP1/2) which are needed to provide peptide antigens for loading 

onto HLA class I molecules [36]. These clusters (three or more paralogous genes or pseudogenes 

that are present within a 1 Mbp stretch,) and superclusters (clusters with additional related gene(s) 

outside the core cluster, but within the xMHC) are described according to their main position on 

the chromosome from telomere to centromere [2]: 

-Histone supercluster: Histones are basic proteins involved in nucleosome formation. They 

occur in five classes, H1 (linker histone), and H2A, H2B, H3 and H4 (core histones).With a 

total of 66 loci (55 expressed genes, 11 pseudogenes), mostly located in the extended class I 

subregion, they present the largest histone cluster in the human genome and the largest protein 

encoding supercluster within the xMHC [37].  

-Solute carrier cluster: Solute carrier (SLC) genes, located in both the extended class I and 

extended class II subregions, are part of a diverse family with significant physiological roles 

in solute and nutrient transport [38]. 

-HLA class I supercluster: The HLA class I supercluster comprises the classical class I genes 

(HLA-A, -B and -C), the non-classical class I genes (HLA-E, -F, -G, HFE and 12 pseudogenes) 

and the class I-like genes (MICA, MICB, and 5 pseudogenes) [27][39]. Although structurally 

very similar, classical HLA class I molecules are distinguished by their extraordinary 
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polymorphisms, whereas the non-classical HLA class I genes, HLA-E, HLA-F and HLA-G, 

are distinguished by their tissue-specific expression and limited polymorphism [27]. 

-tRNA supercluster: tRNA genes are only 75–90 bases long and are crucial as the molecular 

adaptors in mRNA-mediated protein synthesis [40]. The tRNA supercluster found within the 

xMHC (located in the extended class I subregion), it is the largest tRNA cluster in the human 

genome, comprising 157 tRNA loci. 

-Butyrophilin supercluster: Butyrophilin (BTN) genes are members of the immunoglobulin 

superfamily (IgSF). Although it is still unknown, the function of the BTN genes is thought to 

be related with lipid metabolism [41]. 

-Vomeronasal-receptor cluster: Vomeronasal-receptor (VNR) genes, also located in the 

extended class I subregion, are members of the pheromone receptor family, which is involved 

in the subconscious perception of volatile substances such as pheromones. Nevertheless, there 

is only exclusive presence of pseudogenes in the human VNR cluster [42]. 

-Olfactory-receptor supercluster: it contains 34 olfactory-receptor loci, 14 of which are 

potentially functional as they provide the basis for odor perception. Similar to immune genes 

that provide protection from pathogens, they provide an essential survival tool in behavioral 

processes, including reproduction and predation [43]. 

-Zinc-finger supercluster: Genes that encode zinc-finger proteins are grouped according to the 

presence of particular zinc-finger domains rather than overall genomic sequence similarity. 

Zinc finger gene products have diverse functions and can act as enzymes, storage proteins, 

replication proteins and transcription factors [44]. 
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-Tumor necrosis factor cluster: The tumor necrosis factor (TNF) cluster contains genes for 

three cytokines (TNF, LTA and LTB). All three genes belong to the TNF superfamily and are 

involved in various inflammatory pathways [45]. 

-Lymphocyte antigen cluster: Lymphocyte antigen 6 (LY6) genes encode glycosyl-

phosphatidyl-inositol (GPI) anchored cell-surface proteins with putative immune function 

[46]. They present the largest gene cluster within the MHC class III subregion. 

-Heat shock cluster: Heat shock protein (HSP) genes are upregulated by cellular stress such as 

heat shock and act as chaperones in the synthesis, folding, assembly, transport and degradation 

of proteins [47]. The cluster of three HSP genes in the MHC class III subregion is involved in 

stress-induced signaling for immune system mediated elimination of damaged, infected or 

malignant cells [48]. 

-Complement factor genes: the C4A, C4B, C2, CFB genes in the HLA class III region are 

involved in cascade activation of the classical complement pathway and consequently interact 

with proteins encoded by genes from outside the MHC [49]. 

-HLA class II cluster: The HLA class II cluster comprises the classical class II genes (HLA-

DP, -DQ, -DR and pseudogenes) and the non-classical class II genes (HLA-DM and -DO). The 

classical class II genes are expressed on the cell surface as heterodimers consisting of 

corresponding α and β chains that present antigens to CD4+ T cells. The non-classical class II 

genes are not expressed on the cell surface, but form heterotetrameric complexes involved in 

peptide exchange and loading onto classical class II molecules [50]. No class II-like gene has 

yet been found elsewhere in the human genome [2]. 
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3. HLA CLASS I REGION  

This region is located at the telomeric end of the human MHC complex in chromosome 6 and 

spans approximately 1.9 Mbp of DNA [2]. 

3.1 HLA Class I Genes 

 

 The HLA class I region includes the classical HLA class I genes (HLA-A, HLA-B and HLA-C), 

the class I–related (like) genes (MICA and MICB), the non-classical HLA class I genes (HLA-E, 

HLA-F and HLA-G), and a group of pseudogenes (http://hla.alleles.org/genes/index.html). 

Although structurally they are very similar and some of their functions seem to be coordinated, 

HLA class I molecules present differences in aspects such as tissue-specific expression and level 

of polymorphism. 

3.1.1. Classical HLA Class I Genes (HLA Class-Ia) 

 

The classical HLA class I genes include HLA-A, HLA-B and HLA-C loci (of ~4-5 kb of DNA 

sequence length per gen). Each of these classical HLA class I loci encode a corresponding heavy 

α chain that is highly polymorphic. The classical class I molecules are ubiquitously expressed (in 

all nucleated cells and in platelets) membrane-bound glycoproteins that associate non-covalently 

with the “light” β2 microglobulin (encoded by its respective non-polymorphic gene (B2M) on 

chromosome 15) to present, on the cell surface, intracellularly processed self/nonself peptide 

antigens to T CD8+ cytotoxic lymphocytes, thereby controlling cell-mediated immune response. 

Additionally, intact HLA-A, HLA-B, or HLA-C molecules are also ligands for KIR receptors 

(encoded by the KIR cluster that maps to chromosome 19q13.4 within the leukocyte receptor 

complex (LRC)) located on the surface of NK cells, regulating their development, tolerance and 

response [51]. 

http://hla.alleles.org/genes/index.html
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3.1.2. Non-Classical HLA Class I Genes (HLA Class-Ib) 

 

The non-classical HLA class I genes HLA-E (~8 kb of length), -F (~6 kb of length) and -G (~5 kb 

of length) encode, respectively, molecules E, F, and G. These molecules have a similar protein 

structure (presenting an α chain associated to the β chain, β2 microglobulin) to that of the classical 

HLA class I counterparts and also require a bound peptide in the binding groove to form a stable 

complex. However, non-classical HLA class I molecules are characterized by few allelic 

polymorphisms and play a more tolerogenic role in regulating both innate and adaptive immune 

responses. Furthermore, they present a more limited tissue distribution, where their expression 

patterns are often related to their function, such as HLA-G expression in the extravillous trophoblasts 

at the placenta where it interacts with maternal effector cells [52]. In addition, although the gene HFE 

is also included as another non-classical HLA class I gen, the function of its product is in iron 

metabolism rather than in antigen processing and presentation [27]. 

3.1.3. HLA Class I-like Genes  

Within the HLA class I region, there is also a group of genes called HLA class I-related polypeptide 

sequence A (~11 kb of length) and B (~13 kb of length) (MICA and MICB) that encode molecules 

presenting other functions different from antigen processing and presentation. The products of these 

genes are more distantly related members of the class I family that neither associate with β2 

microglobulin nor bind peptides. These molecules are expressed as “danger signals” by virus-infected 

or otherwise stressed/transformed (i.e. tumor) cells. Thus, MICA and MICB are ligands for the natural 

killer group 2D (NKG2D) receptor located on the surface of memory-effector Tγδ cells or NK cells, 

where this interaction activate their effector cytolytic response [35][53]. 
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3.2 Genetic Organization of HLA Class I Genes 

 HLA class I genes are each composed of a series of eight exons delineated by intervening seven 

introns in addition to the untranslated regions (UTR) located at the 5’UTR and 3’UTR ends. Each 

HLA class I exon encodes for a specific region of the α chain molecule: exon 1 encodes the leader 

peptide sequence; exons 2, 3 and 4 encode the α1, α2 and α3 domains, respectively; exon 5 encodes 

the trans-membrane portion, and exons 6, 7 and 8 encode the C-terminal cytoplasmic tail [54][55] 

(see Figure I-5). The leader peptide sequence, which presents a central hydrophobic region, is located 

at the N-terminus of the new translated protein and plays a role as a targeting signal to direct the 

immature protein into the endoplasmic reticulum (ER). Exons 2 and 3 present the most polymorphic 

nucleotide sequences, where the respective encoded α1 and α2 domains, which are the most distal to 

the cell membrane, are responsible for the peptide binding specificity of each HLA class I molecule 

[56]. For HLA-A and -C genes, the cytoplasmic tail domain is encoded by exons 6, 7 and 8 whereas 

for HLA-B gen it is encoded by exons 6 and 7 since the termination codon is contained on that exon 

7. Similar to HLA-B, although shorter in length due to an existing deletion that causes a reading frame 

shift establishing an earlier termination codon, the cytoplasmic tail domain of the non-classical HLA-

E molecule is also encoded by exons 6 and 7 [57]. In contrast, exon 5 (partially) and exon 6 generate 

the intracellular cytoplasmic tail of the HLA-F protein. The cytoplasmic tail of HLA-F is much 

shorter than those of the other HLA-I molecules because of the in-frame translation termination codon 

located at codon 2 in exon 6. Thus, exons 7 and 8 are not translated. Moreover, the length of the 

cytoplasmic tail of HLA-F molecule varies, which can lead to the generation of different HLA-F 

isoforms (splicing variants) [58]. Regarding the HLA-G molecule, a total of seven isoforms exist due 

to mRNA alternative splicing and differential association with β2 microglobulin. Four of them are 

found on the cell surface (HLA-G1, -G2, -G3, and -G4), while the other three are soluble forms 
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released from the cell (HLA-G5, -G6, and -G7), due to the lack of the transmembrane and intracellular 

domains of membrane-bound HLA-G [59]. 

 

 

Figure I-5. (Upper Image) Schematic diagram of HLA (or MHC) class I gene, respective messenger RNA 

(mRNA) transcript (after transcription) and respective assembled protein molecule (after translation and 

maturation). There is a correspondence between exons (represented in colored boxes) and the domains of the 

MHC class I molecule in the gene products [exon 1 encodes the leader peptide sequence; exons 2, 3 and 4 encode 

the α1, α2 and α3 domains (in the N-terminal side of the protein), respectively; exon 5 encodes the trans-
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membrane (TM) portion (embedded in the lipid bilayer of the cell surface), and exons 6, 7 and 8 encode the C-

terminal cytoplasmic tail (C)] with the exception of the leader (L) exon (encoding leader peptide, which is 

removed in a post-translational reaction after leading the pre-mature peptide to the endoplasmic reticulum (ER) 

and before the MHC class I molecule is expressed on the cell surface). Note that (during the process of 

transcription) the mRNA transcript is spliced to remove introns sequences (represented as black thin lines 

between exons). (Lower Image) Schematic diagram of HLA (or MHC) class I gene similar to previous upper 

one (showing in addition here non-polymorphic gene (B2M)), showing again correspondence between exons 

(represented in colored boxes) and the domains (L, leader sequence; UTR, untranslated region; CP, connecting 

peptide; TM, transmembrane region; C, cytoplasmic region; CS, coding sequence) of the MHC class I molecule. 

Note that β2 microglobulin is encoded by its respective non-polymorphic gene (B2M) on chromosome 15 

different from chromosome 6. Original figures and respective footnotes are obtained and adapted from [532] and 

[533]. 

 

3.3 Structure of HLA Class I Molecules 

The HLA class I molecule consist of a membrane-spanning glycosylated heavy α chain (masses 

45 kilodalton (kDa) and is 362-366 amino acids long) bound non-covalently to extracellular light 

chain β2 microglobulin (12 kDa), which does not span the membrane [35]. The α chain has three 

extracellular domains (α 1-3, with alpha α1 being at the N terminus), a transmembrane region and 

a C-terminal cytoplasmic tail which is enriched in serine and tyrosine amino acids (see Figure I-

6). 

The α chain folds into three domains: α1, α2, and α3. The first two α domains (α1 and α2) are 

the most distal to the cell membrane. They fold together into a single structure consisting of two 

segmented α helices lying on a sheet of eight antiparallel β strands. Folding of the α1 and α2 

domains creates a peptide-binding groove (where the floor is composed of symmetric strands of β 

pleated sheet), or cleft, that is flanked by a surface that interacts with a T cell receptor (TCR) or a 

NK KIR receptor. In the class I peptide-binding groove, the ends of the helixes of the α1 and α2 

domains converge to close the groove and fix the peptide’s orientation. Thus, the class I groove 

accommodates peptides that average nine amino acids in length (6-16 aa). The α3 domain and β2-

microglobulin show similarities in amino acid sequence to immunoglobulin C domains and have 
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similar folded structures. Together they create a structure that supports the peptide-binding domain 

and, with the transmembrane domain of the α chain, attaches the molecule to the cell surface [60]. 

Sequence polymorphism is concentrated in the α1 and α2 domains that are encoded by exon 2 

and 3, respectively. Some of these polymorphic HLA class I residues (mostly found in the 

α1 domain) determine the binding specificities for peptides by forming structures called pockets 

that interact with complementary residues of the bound peptide, called anchor residues. In 

consequence, the anchor residues of peptides that bind to each allelic HLA variant are different. 

Typically, a HLA class I molecule has six pockets (A through F) distributed along the length of 

the groove. But only two or three of the pockets (in HLA-A, B, or C molecules, usually pockets B 

and F) are particularly influential in determining which peptide a molecule binds, because the side 

chains that fit into them serve as the peptide’s anchors [61]. Moreover, other polymorphic HLA 

class I residues (mostly found in the α2 domain) and some residues of the peptide define the 

structure that interacts with the TCR [62][63]. The α3 domain interacts through an acidic loop with 

the CD8 co-receptor in the T cell (where CD8 uses its two dimeric Ig-like domains to clamp onto 

the CD loop of the MHC class I α3 domain in a fashion similar to an antibody binding to an 

antigen) [64]. 

Although with important exceptions and a much lower level of polymorphism, the non-classical 

HLA class I molecules present a very similar protein structure to their classical HLA class I 

counterparts, showing three globular domains heavy-chain non-covalently bound to β2-

microglobulin and a nonapeptide [65]. In the HLA-E molecule, its groove preferentially presents 

a restricted subset peptides derived from leader sequences of other classical class I molecules 

(where mature HLA class I molecules expressed on the cell surface are encoded by exons 2–7). 

Transporters associated with antigen processing (TAP), in cooperation with tapasin, transfer leader 

peptides to the endoplasmic reticulum (ER), where they can be associated to HLA-E molecules 
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permitting their expression on the cell surface [66]. HLA-F molecule can be found in at least three 

conformational forms: complexed with the light chain β2-microglobulin, in open conformation, 

and complexed with a HLA I heavy chain (HC). However, an amino acid-peptide has never been 

eluted from its peptide-binding groove. Studies have suggested that HLA-F glycoprotein would be 

capable to escape the ER lumen and reach the cell surface independently from TAP, tapasin, and 

peptide binding, but using an alternative ER signal encoded in its cytoplasmic tail [65][67]. The 

extracellular structure of HLA-G1 and HLA-G5 molecules is identical to the well described 

structure of classic HLA class I molecules. The other HLA-G isoforms are simpler structures with 

only one or two globular domains, not binding to β2-microglobulin neither presenting peptides 

[68]. 

 

Figure I-6. Schematic diagram and crystal structure of MHC class I molecule. Figure and respective footnote 

are obtained and adapted from (https://veteriankey.com/diseases-of-immunity/) being originally from Dr. P. 

Bjorkman (California Institute of Technology, Pasadena, CA, USA). 



________________________________________________________Introduction 
 

Page | 59  

   © Gonzalo Montero Martin  

3.4 Biological Function of HLA Class I Molecules 

HLA class I molecules are ubiquitously expressed in all nucleated cells and in platelets. HLA class 

I molecules bind endogenously synthesized peptide fragments of proteolytically degraded proteins 

originally coming from an intracellular pathogen or other self/nonself antigen. The processing of 

antigens and the peptide binding to HLA class I molecules is accomplished by a complex series of 

intracytoplasmic events involving antigen-processing machinery [69] (see Figure I-7). Briefly, 

self/non-self cytosolic proteins are processed primarily by the action of the proteasome generating 

peptides.  Exceptionally, in certain antigen presenting cells, particularly dendritic cells (DCs), 

exogenous proteins can also be fed into this pathway by retrotranslocation from phagosomes 

(vacuolar pathway) or can be exported into the cytosol after phagocytosis (cytosolic pathway), a 

phenomenon known as cross-presentation. At the same time, HLA class I molecules are assembled 

and stabilized by chaperone proteins (calreticulin, Erp57, protein disulfide isomerase (PDI) and 

tapasin) in the endoplasmic reticulum (ER). Tapasin interacts with the transport protein TAP 

(transporter associated with antigen presentation) which translocates peptides from the cytoplasm 

into the ER. Translocated 8-16 amino acids may require additional trimming by aminopeptidases in 

the ER before binding to MHC class I molecules. Once on the cell surface, HLA class I molecules 

present peptide antigens to peripheral CD8+ T cells, whose main function is cytolysis of pathogen-

infected cells or transformed tumor cells. The phenomenon that T lymphocytes recognize, via their 

TCR, a foreign peptide antigen only when it is bound to a particular allelic form of a self MHC 

molecule is called the MHC restriction. Thus, the recognition of antigens by CD8+ T cells is restricted 

by self MHC class I alleles (see Figure I-7). In addition to the induction and regulation of immune 

responses in the context of CD8+ T cells, self HLA class I molecules are involved in the selection of 

the engaged CD8+ T cell repertoire at the thymus establishing also self-tolerance [70].     
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Intact expressed HLA-A, HLA-B, or HLA-C proteins are also ligands for KIR molecules located 

on the surface of NK cells, regulating their development, tolerance and response [51]. Essentially, 

upon encounter with infected or stressed/tumor cells with decreased expression of these HLA class I 

molecules (the denominated “missing-self”), NK cells are no longer subject to inhibitory signals 

initiated by the engagement of HLA class I-specific KIR receptors, promoting NK cell cytotoxicity 

and cytokine production [71]. Different from HLA-TCR interaction, KIR receptors do not interact 

with the whole top area of the HLA molecule. Instead, they interact with one end of the top of the 

molecule, where dimorphisms in the HLA class I α domains are the major determinants for this 

interaction (binding motifs are referred to as C1 and C2 in HLA‐C and Bw4 in HLA‐B and HLA‐A). 

Interaction between HLA class I and their inhibitory KIR receptors is thus thought to play a major 

role in the mechanisms of self tolerance during NK cell effector phases [72]. 

The non-classical HLA molecules have low expression levels, are less polymorphic and present 

more limited tissue distribution compared with their classic HLA class I counterparts. HLA-E (is 

expressed in all nucleated cells and frequently overexpressed in tumor cells and virus-infected 

cells) primarily presents self peptides to the TCR of CD8+ T cells. The diversity of these self 

peptides is limited and includes the leader peptide of classic HLA class I molecules. The binding 

of HLA-E to inhibitory receptors in NK cells, such as CD94/NKG2A, is an important part of the 

surveillance mechanism for missing-self. Although HLA-F is predominantly expressed in an 

intracellular, unstable, and immature form, high level of HLA-F surface expression has been 

observed in activated B, T, and NK cells. HLA-F molecule has a small binding cleft that does not 

contain peptide, and its functions are not well known (although it is thought that it may present 

tolerogenic and immunomodulatory properties). HLA-G is primarily expressed by placental 

trophoblast cells, the thymus, the cornea, and some erythroid and endothelial precursor cells. HLA-

G has a peptide groove, binds a nonamer peptide, and is recognized as an MHC–peptide complex 
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ligand by the leukocyte Ig-like inhibitory receptors (LIR-1 and LIR-2) and KIR receptors. HLA-

G seems to be important in the modulation of the maternal immune system during pregnancy and 

thereby the maternal acceptance of the semiallogenic fetus [65]. 

  

Figure I-7. (On the Left Image) Peptide loading of MHC-I molecules. Panel shows the synthesis and peptide loading of MHC-I 

through the endogenous pathway. Endogenous proteins (e.g., a self-protein or a viral protein) synthesized in the cytoplasm are modified 

initially by ubiquitin (1), following which they are processed by the proteasomes (with protein subunit LMP2 shown here) (2). After 

trimming by cytosolic proteases (3), the peptides enter the endoplasmic reticulum via the TAP 1 and TAP 2 transporters (4). The MHC-

I alpha chain, which is initially formed as a linear peptide in the ER, is then folded with the help of several chaperones (calnexin, 

calreticulin [CRT]). Binding immunoglobulin protein (BiP) and endoplasmic reticulum protein 57 (ERP57), during which the β2 

microglobulin is added to the α chain, complete the synthesis of the complete MHC-I molecule (right inset). The complex is held 

together by tapasin (TPN), which facilitates transfer of the peptide to the antigen-binding cleft (5). The peptide-loaded MHC-I complex 

is then transferred to the Golgi (6) and then transported to the surface of the cell (7). (On the Right Image) It is shown a simplified 

version of peptide loading of MHC-I molecules and, once expressed on the cell surface, the final recognition of antigens by CD8+ T 

cells restricted by self MHC class I alleles. Figures and respective footnotes are obtained and adapted from 

(https://www.immunopaedia.org.za/immunology/basics/4-mhc-antigen-presentation/), [534] and [535].  

 

https://www.immunopaedia.org.za/immunology/basics/4-mhc-antigen-presentation/
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4. HLA CLASS II REGION 

The HLA class II cluster comprises the classical class II genes (HLA-DP, -DQ, -DR and respective 

pseudogenes) and the non-classical class II genes (HLA-DM and -DO) 

(http://hla.alleles.org/genes/index.html). This region is located at the centromeric end of the human 

MHC complex in chromosome 6 and spans approximately 0.9 Mbp of DNA [2]. 

4.1 HLA Class II Genes 

The classical class II genes (~10-17 kb of DNA sequence length per gen) are selectively 

expressed on the cell surface of antigen presenting cells (APCs), including primarily dendritic cells 

(DCs), B cells, macrophages and activated T cells   but also, under IFN-γ stimuli, by mesenchymal 

stromal cells, fibroblasts and endothelial cells, as well as by epithelial cells and enteric glial cells. 

These class II molecules form heterodimers consisting of corresponding α (encoded by respective 

HLA-DPA, -DQA, -DRA genes) and β (encoded by respective HLA-DPB, -DQB, -DRB genes) 

chains that bind and display antigens to CD4+ T cells. The non-classical class II genes (HLA-DM 

and -DO) are not expressed on the cell surface, but form heterotetrameric complexes involved in 

peptide exchange and loading onto classical class II molecules [2][50]. 

4.1.1. Classical HLA Class II Genes (HLA-IIa) 

Within the HLA-DP region (located in the centromeric end of human MHC classical class II 

subregion), it has been described a total of five genes, three genes “A” (HLA-DPA1, -DPA2 and -

DPA3) and two genes “B” (HLA-DPB1 and -DPB2). Respective encoded HLA-DPA1 (α chain) 

and -DPB1 (β chain) molecules form functional heterodimers. In contrast, nucleotide sequence 

determination of the HLA-DPA2, -DPA3 and -DPB2 shows that these are pseudogenes which are 

not expressed [73]. 

http://hla.alleles.org/genes/index.html
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Similarly, the HLA-DQ region contains two genes “A” (HLA-DQA1 and -DQA2) and three 

genes “B” (HLA-DQB1, -DQB2 and -DQB3), where only heterodimers DQA1-DQB1 are 

functional. Whereas HLA-DQA2, -DQB2, -DQB3 could encode respective α and β chains but are 

not known to be expressed [74].  

The unique HLA-DR region (located in the telomeric end of human MHC classical class II 

subregion) is characterized by the presence of one invariant DRA gene, encoding the α chain, and 

multiple DRB genes, encoding the β chain, on different haplotypes, which display, in addition, 

copy number variation (usually according to Andersson’s HLA-DRB haplotype rule) 

[344].  Although the HLA-DRA gene is highly conserved, nine different HLA-DRB genes have 

been described. HLA-DRB1 (highly polymorphic), -DRB3, -DRB4 and -DRB5 (presenting lower 

polymorphism) encode functional gene products, whereas -DRB2, -DRB6, -DRB7, -DRB8, and -

DRB9 represent pseudogenes as manifested by various insertions/deletions (indels) and deleterious 

mutations. In humans, the non-polymorphic HLA-DRA gene is linked to a varying number of HLA-

DRB genes defining different HLA-DR haplotypes. Based on this variation, five different HLA-

DR haplotypes (denoted as DR1, DR51, DR52, DR8 and DR53) have been identified, where all 

these described haplotypes present at least the DRB1 and DRB9 loci [56][75][344] (see Figure I-

8). At the same time, DRB1 sequences from the 13 allelic lineages (defined by phylogenetic 

analyses) cluster within the five haplotypic groups from where they are encoded. The allelic 

lineages are denoted: *01 and *10 (the DR1 group), *08 (the DR8 group), *15 and *16 

(the DR51 group), *03, *11, *12, *13, and *14 (the DR52 group), and *04, *07, and *09 

(the DR53 group). Thus, DRB1 allelic lineages can be further grouped into five families which 

correspond to the five main haplotypic groups. Moreover, linkage constraints between the 

DRB3/4/5 loci and the DRB1 locus are based on these DRB1 allele families.  Where DRB3, DRB4 

and DRB5 loci are exclusive to the DR51, DR52 and DR53 haplotypes, respectively [56][75]. In 
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closer detail, and according to literature of reported human population studies [75], alleles of the 

HLA-DRB3/4/5 loci occur within a specific HLA-DRB1 context, being present in some haplotypes 

and absent in others. Haplotypes with HLA-DRB1 always carry the pseudogene HLA-DRB9, which 

is located downstream of HLA-DRB1 and that consists of two exons. HLA-DRB1*01, -DRB1*08 

and -DRB1*10 are not found with any HLA-DRB3/4/5 allele. Haplotypes with HLA-DRB1*03, 

*11, *12, *13 and *14 are found with HLA-DRB2 and -DRB3. HLA-DRB1*04, *07, *09 are found 

with HLA-DRB4 as well as -DRB7 and -DRB8. Finally, HLA-DRB1*15 and *16 are reported to be 

located on the same haplotype as HLA-DRB5. Relatively infrequent exceptions to this rule have 

been described for HLA-DRB1*15 and *16, where especially in African Americans HLA-DRB5/6 

can be missing. HLA-DRB1*08 has also been previously identified together with -DRB3*03:01. 

 

Figure I-8. Known architecture of HLA-DRB3/4/5: HLA haplotypes that usually contain a specific HLA-DRB1 allele (HLA-DRB1 

column) are shown. 1-field alleles are denoted. All loci are depicted in order of their genomic location. HLA-DRA, HLA-DRB1 and 

HLA-DRB9 coincide with all haplotypes. The remaining loci are present or absent depending on the haplotype. The most prevalent 

haplotypes with the known exceptions are shown in the rows below. Exceptions are sometimes seen for HLA-DRB1*08, -DRB1*07, -

DRB1*15 and -DRB1*16. HLA-DRB1*08 can occur with HLA-DRB3; HLA-DRB1*07 can occur without an expressed form of HLA-

DRB4 and HLA-DRB1*15 and -DRB1*16 can occur without HLA-DRB5/6. Loci that usually occur together are joined by a line. The 

name of the corresponding serotype is shown on the left and haplotypes are ordered by serotype name. Information for this figure was 

retrieved from [177] and, in turn, originally from Robbins et al., Holdsworth et al. and Bontrop et al. [75][86][536]. 
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4.1.2. Non-Classical HLA Class II Genes (HLA-IIb) 

Genes in the DO (DOA and DOB genes)(~5 kb and ~8 kb of length per gen respectively) and 

DM (DMA and DMB genes)(~20 kb and ~6 kb of length per gen respectively) regions of the HLA 

complex encode polypeptides that closely resemble classical HLA class II α and β chains. HLA-

DM and HLA-DO molecules are non-peptide binding class II MHC-II homologs, which function 

to edit the peptides presented by classical MHC class II molecules. These non-polymorphic non-

classical class II molecules HLA-DM and HLA-DO are localized not on the cell surface but within 

the endosomal compartment where classical MHC class II molecules are loaded with peptides. 

HLA-DM appears to facilitate and regulate peptide loading onto classical MHC class II molecules 

(thereby shaping MHC-II immunopeptidomes). Whereas HLA-DO has recently been found to 

associate HLA-DM with in the endosomal compartment of B cells, specifically, and to negatively 

regulate HLA-DM activity [35][50]. 

4.2 Genetic Organization of HLA Class II Genes  

In relation to functional HLA class II heterodimeric molecules, classical HLA class II “A” 

(DPA1, DQA1, DRA) and “B” genes (DPB1, DQB1 and DRB1/3/4/5) encode α and β chains, 

respectively (see Figure I-9). Thus, the HLA class II molecule is made up of α and β protein 

transmembrane subunits, encoded by these separate genes within the human MHC complex, which 

are non-covalently associated post-translationally. 

 Each classical HLA class II “A” (DPA1, DQA1, DRA) gene is composed of a series of five 

exons delineated by intervening four introns in addition to the untranslated regions located at the 

5’UTR and 3’UTR ends. Exon 1 encodes the leader peptide sequence; exons 2 and 3 encode, 

respectively, α1 and α2 domains constituting the extracellular portion; while exon 4 encodes a 
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short transmembrane region and the cytoplasmic domain; finally, exon 5 encodes part of the 

3’Untranslated (UTR) region.  

On the other hand, each classical HLA class II “B” (DPB1, DQB1, DRB1/3/4/5) gene is 

composed of a series of six to seven exons delineated by intervening five to six introns. Where 

exon 1 encodes the leader peptide sequence; exons 2 and 3 encode, respectively, β1 and β2 

domains constituting the extracellular portion; while exon 4 encodes a short transmembrane region 

and part of the cytoplasmic domain; finally, exons 5 to 7 encode the rest of the cytoplasmic domain 

and the 3’UTR region depending on the HLA class II molecule [76]. For instance, and as an 

exception, the β chain of the HLA-DQ molecule (being specific for certain HLA-DQB1 alleles 

only) is shorter by eight amino acid residues than other major histocompatibility complex class II 

β chains due to elimination of the fifth exon coding for part of the cytoplasmic domain. This 

elimination is caused by one base substitution in the splice acceptor site of the exon [77].   

Although, α1 and β1 domains form the peptide-binding groove. Polymorphisms of HLA class 

II molecules occur mainly in the first amino terminal β1 domain (encoded on exon 2) of HLA-

DRB1/3/4/5, DQB1, and DPB1 gene products. Whereas α1, α2 and β2 have limited 

polymorphisms, with the single exception of the α1 domain of HLA-DR molecule (encoded on 

HLA-DRA) which is not polymorphic [56]. 
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Figure I-9. (Upper Image) Schematic diagram of HLA (or MHC) class II gene “A” or α (bottom) and “B” or β 

(top) pair, respective messenger RNA (mRNA) transcripts (after transcription) and respective assembled protein 

chain (α and β) molecules (after translation and maturation). There is a correspondence between exons 

(represented in colored boxes) and the domains of the MHC class II chain molecules in the gene products, 

respectively: 

MHC class II gene “A” or α: exon 1 encodes the leader peptide sequence; exons 2 and 3 encode, respectively, 

α1 and α2 domains constituting the extracellular portion (in the N-terminal side of the protein chain); while 

exon 4 encodes a short transmembrane region and the cytoplasmic C-terminal domain; finally, exon 5 encodes 

part of the 3’Untranslated (UTR) region. 
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MHC class II gene “B” or β: exon 1 encodes the leader peptide sequence; exons 2 and 3 encode, respectively, 

β1 and β2 domains constituting the extracellular portion; while exon 4 encodes a short transmembrane region 

and part of the cytoplasmic domain; finally, exons 5 to 7 encode the rest of the cytoplasmic domain and the 

3’UTR region depending on the HLA class II molecule. 

Here again, with the exception of the leader (L) exon (encoding leader peptide, which is removed in a post-

translational reaction after leading the pre-mature peptide to the endoplasmic reticulum (ER) and before the 

MHC class II molecule is expressed on the cell surface. Note that (during the process of transcription) the 

mRNA transcript is spliced to remove introns sequences (represented as black thin lines between exons).  

(Lower Image) Schematic diagram of HLA (or MHC) class II gene similar to previous upper one, showing again 

correspondence between exons (represented in colored boxes) and the domains (L, leader sequence; UTR, 

untranslated region; TM, transmembrane region; C, cytoplasmic region) of the MHC class II molecule. Original 

figures and respective footnotes are obtained and adapted from [532] and [533]. 

 

4.3 Structure of HLA Class II Molecules  

Classical HLA class II molecules are heterodimers that consist of two transmembrane glycoprotein 

α (33-35 kDa) and β (26-29 kDa) chains that are non-covalently associated post-translationally (see 

Figure I-10). Each chain has four regions: the peptide-binding region (formed by α1 and β1 

domains); the immunoglobulin-like region proximal to the membrane (α2 and β2 domains), the 

transmembrane region and the C-terminal cytoplasmic tail. At the N-terminus, the extracellular α1 

and β1 domains of class II molecules form the peptide-binding groove or cleft. Unlike HLA class I, 

the class II binding cleft is open-ended and thus can bind longer peptides ranging in length from 12 

to 24 amino acids (aa), but longer ones are not uncommon. In relation to its structure, four β strands 

of the floor of the cleft and one of the α-helical walls are formed by the α1 segment, and the other 

four β strands of the floor and the second wall are formed by the β1 segment. HLA class II molecules 

bind their peptides in an extended conformation with about a third of the peptide surface being 

accessible for interaction with the TCR. The termini of class II-bound peptides are not ligated by the 

same network of H-bonds that bind class I peptides so they may hang over the end of the cleft. Similar 

to HLA class I molecules, the docking of a peptide with the peptide-binding cleft of MHC class II 

protein is facilitated by peptide-binding pockets, which include polymorphic residues mostly located 
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in the first amino terminal β1 domain. In this sense, several studies have described peptide binding 

to class II MHC protein as a combination of discrete anchor residue preferences for pockets 1, 4, 6, 

7 and 9, where both negative and positive cooperative effects between both pocket and solvent 

exposed residues are involved during the peptide binding process. The α2 and β2 segments of class 

II molecules, like class I α3 and β2-microglobulin, are folded into Ig domains. Both the α2 and β2 

domains of class II molecules, proximal to the membrane, contribute to a concavity which 

accommodates a protrusion from the CD4 co-receptor in the T cell (where CD4 solely uses its N-

terminal domain for insertion into a hydrophobic cave-like structure formed by the two membrane-

proximal domains of the MHC class II molecule). The C-terminal ends of the α2 and β2 segments 

continue into short connecting regions followed by approximately 25-amino acid stretches of 

hydrophobic transmembrane residues. In both chains, the transmembrane regions end with clusters 

of basic amino acid residues, followed by short hydrophilic cytoplasmic tails [63][78-80]. 

The structure and sequence of HLA-DM proteins is very similar to other MHC class II molecules. 

However, HLA-DM differs in that it lacks a transport signal N-terminus and does not have the 

capability to bind peptides. This is due to lack of a deep peptide binding groove; instead, it contains 

a shallow, negatively charged indent with two disulfide bonds. On its β chain cytoplasmic tail, a 

tyrosine based motif YTPL regulates trafficking to specific endosomal compartments called MHC 

class II compartments (MIICs) from the ER. In complex with HLA-DM, HLA-DO adopts a classical 

HLA class II structure, with alterations in the N-terminus. The structure of the free HLA-DO protein, 

however, remains to be elucidated [81]. 
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Figure I-10. Schematic diagram and crystal structure of MHC class II molecule. Figure and respective footnote 

are obtained and adapted from (https://veteriankey.com/diseases-of-immunity/) being originally from Dr. P. 

Bjorkman (California Institute of Technology, Pasadena, CA, USA). 

 

4.4 Biological Function of HLA Class II Molecules  

Human MHC class II molecules are expressed by APCs, including dendritic 

cells (DCs), macrophages and B cells. In addition, under IFN-γ stimuli, they are also expressed by 

mesenchymal stromal cells, fibroblasts and endothelial cells, as well as by epithelial cells and 

enteric glial cells. Regarding antigen processing (see Figure I-11) in the context of HLA class II. 

APCs use specialized receptors to bind and internalize exogenous antigens (derived from 

extracellular bacteria or parasites) in vesicles called phagosomes which may fuse with lysosomes 

to produce phagolysosomes or secondary lysosomes. Additionally, though this occurs less often, 

cytoplasmic and membrane proteins may be processed and displayed by HLA class II molecules. 

In this case, cytoplasmic proteins are trapped within membrane bound vesicles called 

autophagosomes. These vesicles fuse with lysosomes, and the cytoplasmic proteins are degraded 

https://veteriankey.com/diseases-of-immunity/
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by proteolysis. In both cases, degraded proteins are then able to bind to HLA class II molecules in 

the ER. Thus, HLA class II molecules bind to peptides that are derived from proteins degraded in 

the endocytic pathway. Regarding peptide-binding in the context of HLA class II. Firstly, HLA 

class II α and β chains assemble in the ER with a non-polymorphic protein called invariant chain 

(Ii). The interaction with the Ii has the effect of stabilizing the structure of the HLA class II 

molecule while preventing the binding of peptides within the peptide-binding groove. Ii protein is 

anchored in the ER membrane, and the cytosolic portion of the molecule directs intracellular 

sorting of class II molecules through the Golgi to the late endosomal HLA class II compartment 

(MIIC). Within the MIIC, proteolytic enzymes such as cathepsins S an L generate peptides from 

internalized proteins and also act on the Ii to degrade it and leave only a 24 amino acid remnant 

called class II-associated invariant peptide (CLIP), which sits in the peptide-binding groove. Later, 

the CLIP is exchanged for an antigenic peptide derived from a protein degraded in the endosomal 

pathway. This process requires the chaperone HLA-DM, and, in the case of B cells, the HLA-DO 

molecule. HLA-DO binds to HLA-DM at the same sites implicated in HLA class II interaction, 

and kinetic analysis demonstrates that HLA-DO acts as a competitive inhibitor. After DM-editing 

of the highest-affinity peptides, a cohort of HLA class II molecules that has stable peptides bound 

is exported to the cell surface for presentation to CD4+ T cells [82]. Thus, class II–bearing cells 

can activate CD4+ T cells. CD4 + T cells after being activated and differentiated into distinct 

effector subtypes play a major role in mediating immune response through the secretion of specific 

cytokines. The CD4+T cells carry out multiple functions, ranging from activation of the cells (e.g. 

macrophages) of the innate immune system, B-lymphocytes, cytotoxic CD8+ T cells, as well as 

nonimmune cells, and also play critical role in the suppression of immune reaction (see Figure I-

11). [83]. In addition, various HLA class II-bearing thymic APCs subsets are strategically 
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positioned in particular microenvironments of the thymus and orchestrate the selection of a 

functional, self-restricted and self-tolerant CD4+ T cell repertoire [84]. 

 
 

Figure I-11. (On the Left Image) Peptide loading of MHC-II molecules. Panel shows the uptake of protein and peptide loading of 

MHC-II through the exogenous pathway. Exogenous proteins are taken up (1) and processed in the early endosomal compartment (2) 

and cleaved into peptides by cathepsins and other acid proteases (3). MHC-II molecules are formed in the endoplasmic reticulum (ER) 

with the help of the chaperone calnexin (4) and are held ready by the invariant chain (li); the complex is later fused with the HLA-

DM (DM) (right lower inset in panel B). After passage of the li-loaded MHC-II-DM complex through the Golgi (5) into the late 

endosomes (6), the invariant chain is cleaved by acid proteases, leaving a residual peptide referred to as the class II-associated invariant 

chain peptide (CLIP) (7) in the MHC-II cleft (right upper inset in panel B). The HLA-DM facilitates the insertion of the peptide in 

the MHC-II cleft replacing CLIP (8). The MHC molecule loaded with peptide is transported (9) and expressed on the cell surface 

(10). (On the Right Image) It is shown a simplified version of peptide loading of MHC-II molecules and, once expressed on the cell 

surface, the final recognition of antigens by CD4+ T cells restricted by self MHC class II alleles. Figures and respective footnotes are 

obtained and adapted from (https://www.immunopaedia.org.za/immunology/basics/4-mhc-antigen-presentation/), [534] and [535]. 

 

 

https://www.immunopaedia.org.za/immunology/basics/4-mhc-antigen-presentation/
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5. IMPORTANT ASPECTS OF THE HLA SYSTEM 

Polygeny, codominant expression (including a high heterozygosity) and extensive polymorphism 

are the main intrinsic features that contribute to the vast diversity presented by the HLA system and, 

ultimately, maximizing the peptide repertoire presented to T cells both in a given individual and in 

the population as a whole. Because of the polygeny of the HLA system (as it contains several different 

HLA class I and MHC class II genes), every individual possesses a set of HLA molecules with 

different ranges of peptide-binding specificities on the cell surface. HLA alleles are also expressed in 

codominant fashion from both HLA haplotypes in an individual, with the protein products of both 

the alleles at a locus being expressed in the cell, and both gene products being able to present antigens 

to T cells. Moreover, extensive polymorphism at each locus thus has the potential to increase the 

number of different HLA molecules expressed in an individual and thereby rises the diversity already 

available through polygeny. Particularly, classical HLA class I and class II genes exhibit a high 

degree of polymorphism, where a number of different mechanisms may contribute to the generation 

and maintenance of this polymorphism. It is believed among these are the selective advantage of a 

heterozygous pool of antigen-presenting elements in a given individual that might allow the binding 

and presentation of antigenic peptides derived from a wide variety of environmental pathogens [27].  

Another unique characteristic of the HLA system is the extensive linkage disequilibrium (LD) 

observed among the very distant genomic regions of HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-

DQ genes, but not the HLA-DP genes. LD is the phenomenon whereby particular alleles of gene loci 

on the same strand of DNA are inherited together more often that would be expected by chance. 

Anthropological population studies have suggested that the particular combinations of alleles of the 

different genes, as distant as they may be, provide a survival advantage, perhaps reflecting functional 

interdependence in antigen-specific immune responses [26].  
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5.1 Polymorphism  

The HLA system is one of the most highly polymorphic regions known to date of the human 

genome, where the majority of this polymorphism has been found at the classical HLA class I and 

class II loci [56].  

Polymorphisms in these HLA loci were first defined phenotypically using serological typing, 

which was based on serologic and cell proliferation methodologies that use defined human 

alloantisera or monoclonal antibodies (mAbs) to identify HLA antigens (alloantigens) on the cell 

surface.  Initial human alloantisera were able to identify an unprecedented number of antigenic 

determinants or HLA antigens at different HLA loci with unique sequence motifs or epitopes defining 

private specificities. As the field evolved, new antisera were discovered that could “split” some HLA 

antigens into narrower specificities. At the same time, it was observed how some antigenic 

determinants are shared by many HLA antigens. Consequently, these public specificities lead to 

antigenic cross-reactivity. Due to epitope sharing, those HLA antigens were also arranged in cross-

reactive groups or CREGs. Overall, these serologic and cell-based methodologies were successfully 

utilized to initially characterize the HLA system. However, in spite of their broad application, these 

methodologies presented important limitations in terms of reproducibility and accuracy. In fact, most 

of these allotypic epitopes recognized by alloantisera were found to be three-dimensional 

conformational determinants commonly located on the most external part of the HLA molecules 

(mainly in the helices of the α1 and α2 domains as well as external portions of the β-pleated sheet in 

class I molecules; and α1 and β1 domains in class II molecules). Whereas other polymorphic amino 

acid residues on the HLA molecules (e.g. all allelic variation located deep within the cleft) were not 

accessible to alloantibodies and, thus, remained undetectable [85]. To date (January 2020), a variety 

of serological and cellular HLA specificities have been described for classical HLA genes: 28 
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different specificities for HLA-A locus; 62 for HLA-B locus; 10 for HLA-C locus; 24 for HLA-DR 

genes; 9 for HLA-DQ genes; and 6 for HLA-DP genes [74]. 

 The application of polymerase chain reaction (PCR)-based HLA genotyping methods to 

histocompatibility testing made apparent the fact that the extent of HLA protein phenotypic 

polymorphism greatly underestimates the true degree of HLA polymorphism found at the genomic 

level. Furthermore, detailed analyses of HLA genes lead to the determination that serologically 

defined antigens included multiple allelic variants that differed at one or more nucleotide residues. 

Thus, several alleles could encode proteins, all recognized as a single serologic specificity [86].  In 

the last decades, wide application of molecular methods has allowed the characterization of a vast 

number of alleles in all HLA class I and II loci. Up to date, almost 26,214 HLA alleles have been 

described and registered in the IPD-IMGT/HLA Database (Release 3.39.0 January 2020), with some 

genes currently having over 5,000 known allelic variants (see Figure I-12 and Figure I-13)[87]. 
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Figure I-12 Summary Table of IPD-IMGT/HLA database v.3.39.0 (Release in January, 2020) [295]. The 

numbers above represent the number of named alleles for each gene. This number includes alleles which have 

been named but whose sequences are still held as confidential. This means that the number of sequences found 

in some files may differ to the numbers printed in this table. Details of which alleles are still confidential can be 

seen in the latest version report. The numbers below do not include the names of any deleted alleles - details of 

deleted alleles can be found in a separate report (https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi). The 

https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi
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main HLA Reference Sequence Repository is a centrally curated repository for the sequence data of the 

hyperpolymorphic genes of the HLA system and it is provided by the IPD-IMGT/HLA database [87][295][362]. 

Every 3 months, it releases a fresh snapshot of all publicly available sequences of the HLA system, officially 

named by the WHO Nomenclature Committee for Factors of the HLA System [74]. The IPD-IMGT/HLA 

Database is updated every three months, and the number of named HLA gene and pseudogene sequences 

increases with each update. As such it provides the canonical reference sequences against which HLA 

genotyping is performed. For historical reasons the IPD-IMGT/HLA database is populated to a large extent by 

alleles where only certain gene features have been characterized. For many entries (~80-90%) in the database, 

only the antigen recognition domains (ARD) have been characterized, which are encoded by exons 2 and 3 for 

the class I genes and exon 2 for class II genes. Figure and respective footnote are obtained and adapted from [35] 

and [295]. 

 

 

Figure I-13. Gene map Graph showing the number of HLA alleles (green colored bars corresponding to HLA 

class I, and black colored bars corresponding to HLA class II alleles respectively) reported and officially named 

by year from 1987 to the end of September 2019 (http://hla.alleles.org/nomenclature/index.html). Figure and 

respective footnote are obtained and adapted from [295]. 

 

A general feature of the highly polymorphic classical HLA class I and II genes is that the distal 

membrane domains present a high degree of variability, whereas the proximal membrane domains as 

http://hla.alleles.org/nomenclature/index.html
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well as the transmembrane and cytoplasmic domains have limited or no polymorphism within each 

locus. The differences among classical HLA proteins are localized primarily to the amino-terminal 

region of these molecules, which bind peptides and interact with T cell receptor molecules. Class I 

polymorphisms are predominantly found in the first 180 amino acids of the heavy chain, at the 

extracellular α1 and α2 domains of the protein that comprise the peptide-binding groove. While class 

II polymorphisms are found in the first 90 to 95 amino acids of the α and/or β chains [56]. In detail, 

for the β chain genes (HLA-DPB1, HLA-DQB1, HLA-DRB1/3/4/5), polymorphisms are concentrated 

within the β1 domain of the molecule. Whereas polymorphism within the α chain genes varies by 

locus, with the HLA-DRA gene being nonpolymorphic and, on the other hand, the HLA-DQA1 and 

HLA-DPA1 molecules show polymorphic residues at the α1 domain. In addition, unlike class I, where 

the peptide-binding domain is encoded by α1 and α2 domains in the same gene, cis- and trans-

arrangement and configuration of α and β chains derived from the two different haplotypes of the 

same or even different isotypes permit combinatorial polymorphism in class II [88].  

Analysis of the nucleotide sequences indicates that exons or segments of the gene that encode these 

polymorphic residues are exons 2 and 3 for HLA class I, and exon 2 for HLA class II genes (encoding 

both α and β chains). Since most HLA polymorphisms are located in positions that interact with 

antigenic peptides or the T cell receptor, it is widely believed the high degree of polymorphism likely 

has been positively selected for during evolution to promote diversity in the repertoire of peptides 

that can be presented by HLA class I and class II molecules [89]. Therefore, it is widely thought that 

HLA polymorphisms provide a major evolutionary survival benefit, since they equip the species with 

a large number of very specific, but alternative, HLA molecules that differ in their binding pockets, 

are most efficient in presenting different peptides, and selecting different T cell repertoires. 

Many studies have also pointed out how the pattern of allelic sequence diversity for both the class 

I and class II loci is unusual. Most alleles differ from their closest neighbor by multiple substitutions, 
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with some alleles differing in the second and third exons by as much as 15 %. This pattern is 

suggestive of segmental exchange of nucleotide motifs between alleles of the same locus. Thus, 

different HLA alleles of a locus are patchwork (i.e., mosaic) combinations of polymorphisms 

[90][91]. Moreover, the extensive allelic diversity at these HLA loci is thought to have been generated 

by intra- and intergenic recombination, by gene conversion and also by single-point mutation events 

[56][91]. In detail: 

- Recombinant meiotic events can occur within human families. Chromosomal crossover is the 

bidirectional sequence exchange between homologous chromosomes (exchange of 

interhomologous arms) that results in recombinant chromosomes. Crossover events have been 

described between nearly all the neighboring HLA loci (A-C, C-B, B-DR, DQ-DP) except for 

between HLA-DR and -DQ [26][501]. Genetic recombination or crossing over in the HLA region 

is a relatively rare event, occurring for the most part no more than 1% per meiosis between HLA-

A and HLA-B and between HLA-B and HLA-DR. Recombination also can occur between HLA-A 

and HLA-C and between HLA-B and HLA-C (0.6% and 0.2%, respectively). The frequency of 

recombination between DQ and DP is 0.74%. Recombination provides a means of generating 

novel haplotypes, which may eventually prove to be beneficial to a population against a recently 

introduced pathogen. This crossing over in the human MHC is thought to have played a role in 

generation of novel alleles at various HLA loci. It is also responsible for the diversity observed at 

the haplotype level, although the functional consequences of this activity are not clear [92]. 

- Gene conversion refers to the unidirectional transfer of a DNA segment from a ‘donor’ sequence 

to a highly homologous ‘acceptor’ sequence that can happen during meiosis but also as a 

mechanism for repair of double-strand breaks caused by DNA damage. Interallelic or intralocus 

gene conversion (conversions between alleles of same HLA locus) appears to be more common 

than intergenic or interlocus gene conversions (conversions between alleles of different HLA loci, 
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where most are the result of HLA-B and HLA-C recombination) in the contribution of generating 

the extensive allelic diversity [93]. 

- Point mutation can occur as substitution or insertion/deletion of a single nucleotide. A nucleotide 

substitution can lead to synonymous (without amino acid altering) or non-synonymous (change of 

amino acid coding) nucleotide exchange. Insertion/deletion of one nucleotide or more (other than 

three or the multiple of three) nucleotides often causes a frame shift with subsequent generation of 

a premature stop codon [56].  

5.2 Nomenclature  

The highly polymorphic nature of the HLA system has required an enormous effort from the 

international histocompatibility scientific community during these last decades in order to establish 

a systematic and common uniform nomenclature that could define the complexity of HLA genes 

and their products [515]. 

Initially, a standard nomenclature for expressing serologically defined antigens was established 

by the World Health Organization (WHO) Nomenclature Committee for Factors of the HLA 

System [74]. The WHO Nomenclature Committee for Factors of the HLA system undertook the 

first systematic approach for the naming of HLA alleles in 1968. Currently, for serological and 

cellular HLA specificities, HLA refers to the entire genetic region whereas A, B, C, DR, DQ, and 

DP each refer to a particular locus. A small ”w” is included in HLA-C allele nomenclature. This 

connotation was originally a designation of alleles in workshop status and it is retained to 

distinguish it from the C designation of the complement genes [94]. Another feature of the 

nomenclature at the serological level is the Bw4 and Bw6 specificities. These latter constitute 

public epitopes, where HLA-B antigens (as well as some HLA-A (23, 24, 25, 32) and HLA-C (1, 

3, 7, 8, 9, 10, 12, 14, 16:01) antigens that also bear the Bw4 and Bw6 epitopes, respectively 
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[537][538]) present one of these two possible epitopes located on the α1 helix. The “w” prefix is 

retained in this case to distinguish them from true HLA alleles. In addition to the WHO 

Nomenclature Committee for Factors of the HLA system, the standardization of HLA antigenic 

specificities has been controlled by the exchange of typing reagents and cells in the International 

Histocompatibility Workshops and the UCLA International Cell Exchange Program [95]. 

With the introduction of molecular biology techniques in the 1980s, HLA typing at the DNA 

level resulted in a rapid increase in newly identified alleles and eventually created a need to further 

refine the HLA nomenclature. In 1998, the IPD-IMGT/HLA database 

(http://www.ebi.ac.uk/imgt/hla) became the official centrally curated public repository for HLA 

sequences data [87]. This HLA repository and database is the primary source of DNA sequences 

and protein sequences for all known HLA alleles. In addition to the physical sequences, this 

repository also contains analysis tools, data submission pipeline and a database with detailed 

information concerning the material from which the sequence was derived and data on the 

validation of the sequences. The HLA naming convention at the DNA level underwent a 

substantial number of iterations because the earlier naming conventions were unable to address the 

growing numbers and complexity of new alleles being discovered.  

Finally, the most recent nomenclature was introduced in 2010 by the Harmonization of 

Histocompatibility Typing Terms Working Group to address these challenges and to reduce 

naming complexity and confusion [96]. The changes added colons (:) into the allele names to act 

as delimiters of the separate fields (field separator). Also an asterisk in an allele name indicates 

that the allele has been typed using molecular methods. Thus each HLA allele name has a unique 

number corresponding to up to four sets of digits separated by colons. The first field (1-field) 

following the asterisk in the allele name (XX:xx:xx:xx) describes the allele family and generally 

corresponds to the serological assignment carried by the allele (traditionally referred to as “low-
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resolution typing”). The second field following the first colon (xx:XX:xx:xx) is assigned 

sequentially as new alleles are determined (e.g., 01, 02, 03….101, etc…). Together, these two 

fields (XX:XX) indicate one or more nucleotide substitutions that change the HLA protein coding 

sequence. HLA typing defined at the second field is often referred to as “2-field typing”, that 

distinguishes alleles based on the sequence of the peptide-binding region of the HLA molecule 

(and also, traditionally referred to as “high-resolution typing”). The third field (3-field) 

(xx:xx:XX:xx) is for designating synonymous nucleotide substitutions within the coding sequence 

that do not change the amino acids of the protein.  Lastly, the fourth field (4-field) (xx:xx:xx:XX) 

identifies sequence polymorphisms in introns, or in the 5’ and 3’ untranslated regions and it is 

currently referred to as “4-field typing”. All alleles receive a name that includes at least the first 

two fields. At the end of the allele name, specific characters have been added to designate unique 

characteristics for an allele (N = null expression; L = low cell surface expression; S = secreted, 

expressed as a soluble; C = present in cytoplasm and not on the cell surface; A = aberrant 

expression, where there is some doubt as to whether a protein is actually expressed; Q = 

questionable expression, given that the mutation seen in the allele has been shown to affect normal 

expression levels in other alleles). For ambiguous allele strings, the codes “P” and “G” were 

introduced (and also defined by the HLA nomenclature system). A group of alleles having 

nucleotide sequences that encode the same protein sequence for the peptide binding domains (exon 

2 and 3 for HLA class I and exon 2 only for HLA class II alleles) will be designated by an upper 

case “P,” which follows the two-field allele designation of the lowest-numbered allele in the group. 

For example, HLA-A*01:01:01:01, HLA-A*01:01:01:03, or HLA-A*01:37 could be named HLA-

A*01:01P. A group of alleles that have identical nucleotide sequences across the exons encoding 

the peptide-binding region (PBR) or antigen recognition domain (ARD) (exons 2 and 3 for HLA 

class I and exon 2 for HLA class II) were named after the first allele in the sequence and given the 
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code “G” as a suffix. The upper case “G” follows the first three fields of the allele designation. For 

example, HLA-A*01:01:01:01, HLA-A*01:01:01:03, or HLA-A*01:37 could be named HLA-

A*01:01:01G [35]. HLA nomenclature and convention of HLA allele naming are shown in Figure 

I-14. 

 

 

Figure I-14. Nomenclature system of HLA alleles. Figure and respective footnote are obtained and adapted 

from (http://hla.alleles.org/nomenclature/naming.html) and [90]. The digits before the first colon describe 

the type, which often corresponds to the serological antigen carried by an allotype. The next set of digits are 

used to list the subtypes, numbers being assigned in the order in which DNA sequences have been 

determined. Alleles whose numbers differ in the two sets of digits must differ in one or more nucleotide 

substitutions that change the amino acid sequence of the encoded protein. Alleles that differ only by 

synonymous nucleotide substitutions (also called silent or non-coding substitutions) within the coding 

sequence are distinguished by the use of the third set of digits. Alleles that only differ by sequence 

polymorphisms in the introns, or in the 5' or 3' untranslated regions that flank the exons and introns, are 

distinguished by the use of the fourth set of digits. 

 

http://hla.alleles.org/nomenclature/naming.html
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5.3 Linkage Disequilibrium  

Linkage disequilibrium is the phenomenon whereby particular alleles at adjacent and linked 

HLA loci on the same strand of DNA segregate together more often that would be expected by 

chance (based on random association of single locus frequencies). The HLA system is known to 

be one of the most dense, clustered and linked gene regions of the human genome [27].  In this 

context, human MHC presents an extensive linkage disequilibrium (LD) observed among the very 

distant genomic regions of HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ genes, but not the 

HLA-DP genes. In detail, it is well described that LD is strongest between HLA-B and HLA-C 

(these two loci are situated within a 90-kb region at chromosome 6p21.33) and, also, between 

HLA-DR and HLA-DQ (HLA-DRB3/4/5, HLA-DRB1, HLA-DQA1 and HLA-DQB1 genes within 

HLA class II region are located in a 150–210-kb region at chromosome 6p21.32), most likely 

because of their physical proximity [29]. However, there is no strong LD between HLA-DP and 

the rest of the class II haplotype because of existing hotspot of recombination between DQ and DP 

loci, even though these two loci are relatively proximal to each other (belonging to the same δ-

block) [92]. Also, in contrast to the tight LD between HLA-DRB1, DQA1 and DQB1 loci, the 

monomorphic HLA-DRA locus is separated from HLA-DRB1 by a recombination hotspot region. 

It is widely believed that LD can be created by various evolutionary factors: selection (including 

disease) either directly on one or both loci, or indirectly via a hitchhiking event, migration and 

admixture, inbreeding, or genetic drift [97]. Furthermore, anthropological population studies have 

suggested that the particular combinations of alleles of the different genes, as distant as they may 

be, provide a survival advantage, perhaps reflecting functional interdependence in antigen-specific 

immune responses [26]. Different measures of LD strength have been established [97]. The basic 

definition of the LD parameter Dij (also written as DAiBj) of nonrandom association between a pair 

of alleles Ai and Bj at two loci (A and B) is the difference between the observed (or estimated) 
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haplotype frequency (fij = f(AiBj)) and that expected under random association of the two alleles 

(linkage equilibrium) [97]. In addition, there are several normalized measures of the strength of 

LD for ‘bi-’ and ‘multi-allelic data’ [98][99][780][787]. 

As mentioned previously, a particular combination of alleles of different loci in LD on the same 

strand of DNA is called an haplotype. This set of neighboring polymorphisms is co-transmitted or 

segregated on a single parental chromosome in the absence of recombination (in that case, 

crossing-over events occur between HLA loci). Population studies have extensively showed how 

the frequency of a given haplotype varies among different ethnic groups and geographical regions, 

reflecting distant effect of these aforementioned evolutionary factors on the haplotype frequency 

distributions and that are intrinsically related to these LD patterns [97]. In this sense, due to LD, 

the number of haplotypes observed in populations is much restricted than theoretically expected, 

indicating that segregation of these alleles at various loci is not random [100]. There are three main 

approaches to determine haplotypes [101]. The first approach includes several molecular methods 

that allow for the construction of the haplotypes in unrelated individuals, such as allele-specific 

polymerase chain reaction (AS-PCR) and somatic cell hybrids. A second approach relies on 

statistical methods, such as the expectation-maximization (EM) algorithm, for the inference of 

haplotype frequency distributions in unrelated individuals from large population HLA genotype 

datasets. The third method involves family based studies, which is considered the most efficient 

and robust current tool (i.e. being considered the gold standard for assessing HLA haplotype 

segregation patterns) to establish phase and determine haplotype segregation. 

5.4 Diversity and Evolution 

As mentioned previously, the vast diversity (at both the protein and DNA level) of the HLA 

system is believed to be intrinsically related to its function in the immune system. The majority of 
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HLA polymorphisms are concentrated in the domains that form a groove-like structure known as 

the peptide-binding region (PBR) of HLA class I and II molecules, which engages the peptides to 

be presented to T cells respectively [60]. At the DNA level, the PBR codons (exons 2 and 3 for 

classical HLA class I genes; and exon 2 for classical HLA class II genes) exhibit striking features 

regarding their diversity, including a high heterozygosity [56] and high rates of non-synonymous 

substitutions [102]. Thus, HLA variation often deviates significantly from neutral expectations 

towards an excess of genetic diversity [103]. Considering HLA diversity in human populations, 

although a very large number of alleles can be found in the global population, a much smaller 

number is present in most individual populations. Importantly, different populations tend to have 

different frequency distributions of alleles and exhibit different patterns of LD (thus, presenting 

also different frequency distributions of haplotypes). This variability has been widely reported 

among both different ethnicities and groups from different geographical regions [90]. Altogether, 

these extensively reported characteristics of HLA diversity have convincingly shown that classical 

HLA loci bear signatures of natural selection, where certain evolutionary mechanisms have been 

proposed [103].   

The HLA system presents a complex evolution where not only deterministic (including positive 

natural selection, negative or purifying selection, neutral selection, and balancing selection (in the 

form of frequency-dependent selection and heterozygote advantage)) but also stochastic (e.g. 

genetic drift) forces appear to be involved [103][104]. Important research advances in knowledge 

on HLA function, HLA protein and genomic diversity and in theoretical population genetics have 

allowed evolutionary hypotheses to be proposed and tested [104]. Currently, there are several key 

ideas which are firmly established regarding HLA evolution:  

-High degree of allele polymorphism, excess of nonsynonymous variants and higher 

heterozygosity than expected at classical HLA loci are hallmarks of balancing selection. As 
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balancing selection can enhance variation by maintaining alleles in a population for longer than 

expected under neutrality. Furthermore, balancing selection maintains a larger number of alleles 

than expected from genetic drift [105]. At the same time, balancing selection encompasses a 

broad range of selective regimes (heterozygote advantage or overdominance; variable selection 

over time and space; and negative frequency-dependent selection (or rare allele advantage), 

which favors maintaining less frequent alleles since pathogens are likely to evolve escape 

mutations to the most common alleles), all of which generate high levels of adaptive genetic 

variation [104]. Moreover, sequence data suggest that balancing selection in HLA is asymmetric 

as distinct heterozygote genotypes display greater fitness than others and, thus, a frequency-

dependent selection with fluctuation in the fitness of specific heterozygotes may be operating 

over time [106]. 

-Host-pathogen co-evolution has also been proposed to lead to balancing selection that 

maintains high levels of HLA allelic diversity within populations (the model is known as the 

pathogen-driven balancing selection or PDBS). There are several lines of support for a role of 

pathogen-driven selection in shaping HLA variation: HLA genes are associated with 

susceptibility (or risk, or predisposing) and resistance (or protection) to infectious diseases 

[107][513]; experimental studies show that pathogen pressure influences MHC variability 

[108]; and HLA polymorphism is correlated with pathogen diversity [89]. Therefore, it is 

assumed that HLA genotypes with more divergent alleles allow for broader antigen-

presentation to immune effector cells, by that increasing immunocompetence and, then, being 

a critical selective advantage against pathogens. Furthermore, in addition to the generation of 

certain promiscuous HLA alleles capable of binding an exceptionally large set of epitope 

peptide segments, incessant arise of new HLA alleles in human populations with specific 

peptide binding repertoires may be importantly contributing to cope with the also substantial 
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emergence of novel pathogens [502-504]. To further comprehend this complex relationship of 

the genetic diversity found in the HLA system and in pathogens, studies based on ancient DNA 

sample cohorts can also shed light on how certain past (as well as present or future) outbreak, 

epidemic and pandemic events may have had shaped the immunogenetic diversity of human 

populations which is currently observed [505][514][520]. 

-Recent availability of new genomic data (at the 4-field resolution) at the scale of populations 

is contributing to understand in-depth other additional functional evolutionary processes that 

may be involved in the generation and maintenance of this vast HLA diversity, for instance: 

infer the selection pressures that operate on the observed high LD and its effect on haplotype 

frequency distributions; selection on HLA genes can be identified at various timescales, 

detecting long-term selection or recent selection events as well as ancient and modern admixture 

demographic events; epistatic interactions can be better evaluated between HLA loci and other 

genes (e.g. KIR genes) to consider co-evolutionary events; regulation of expression levels of 

the HLA genes can be also incorporated into evolutionary analyses [104].  

- Finally, the role of stochastic forces such as population bottlenecks (sharp reduction in the size 

of a population due to environmental events), genetic drifts (random fluctuation of allele 

frequencies over time; thus, adaptive alleles may be lost and deleterious alleles could be fixed 

in the population), inbreeding and/or certain demographic events (e.g. migrations) in shaping 

HLA variation over time has been also described and particularly detected in small and isolated 

human populations [103].  

Therefore, complex selection mechanisms appear to be acting simultaneously (in general terms, 

led by both natural selective forces as well as stochastic major environmental and demographic 

events) on the human MHC system, including among others: pathogen-driven selection for 
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antigen-binding breadth and expansion of the HLA gene clustered system; associated 

autoimmunity/tolerance trade-offs; hitchhiking of deleterious mutations linked to the human 

MHC; geographic subdivision in the context of major environmental and demographic events; and 

even genetic influence of ancient traces in the form of adaptive introgression of archaic HLA 

alleles (i.e. incorporation of a given foreign HLA variant from primitive ancient hominids which 

may have led to an increase of the fitness of the recipient modern-day human (Homo sapiens) 

populations pool) [501].  

6. ROLE AND RELEVANCE OF HLA IN MEDICINE AND POPULATION GENETICS 

Histocompatibility testing is most often equated with the determination of the human leukocyte 

antigen (HLA) phenotype (referred to as serological HLA typing) and/or genotype (referred to as 

molecular HLA typing) of an individual. Histocompatibility testing became a very specialized area 

of clinical laboratory science with particular relevance to transplant programs since the discovery 

of HLA antigens as strong and important histocompatibility antigens [16]. In addition, the 

description of the diversity and biological function of HLA genes and molecules have been found 

to be also important in non-transplant settings such as disease association [109] and 

pharmacogenetics [110]. Furthermore, HLA phenotype and genotype characterization performed 

in hundreds of populations worldwide and their resulting allele and haplotype frequency 

distributions have been most useful to describe signatures of demographic events and/or selective 

pressures within and across the different continents. Thus, this has provided an abundant source of 

information to infer human migration history based on this extensive HLA genetic variation 

geographically and between different ethnic groups [111]. 
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6.1 Clinical Transplantation 

Transplantation of solid organs (kidney, liver, pancreas, lungs, heart, intestine, cornea, etc…) 

is an important medical therapy that has made possible significantly saving lives in patients 

affected by terminal organ failures and substantially improving quality of life. However, the 

immune system poses a significant barrier to successful organ transplantation when tissues/organs 

are transferred from one individual to another (allotransplantation, which is the most common 

type). Rejection of solid organ allografts is the result of a complex series of interactions involving 

coordination between both the innate and adaptive immune system with T cells central to this 

process. The ability of recipient T cells to recognize donor-derived antigens, called allorecognition, 

initiates allograft rejection. Once recipient T cells become activated, they undergo clonal 

expansion, differentiate into effector cells, and migrate into the graft where they promote tissue 

destruction. In addition, CD4+ T cells help B cells produce alloantibodies [112]. On the other 

hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established therapy for 

a broad range of hematological malignancies, bone marrow failure states, and genetic diseases, 

where sustained engraftment of donor stem cells represents a fundamental prerequisite for a good 

outcome. However, bone marrow failure (BMF) syndromes are severe complications of allo-

HSCT, including: the graft failure (GF), as the result of a classical alloreactive immune response 

mediated by residual host immunity persisting after the conditioning regime; and the poor graft 

function (PGF), which is the consequence of more complex and less well-defined interactions 

between the immune system and the hematopoietic compartment (niches) [113]. Furthermore, 

donor-derived T cells can also result in a series of critical events for the outcome of HSCT, such 

as: the graft-versus-host disease (GVHD), a life‐threatening complication in patients undergoing 

HSCT, induced by the reaction of donor T cells to recipient alloantigens; or the graft-versus-
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leukemia (GVL) effect, that is a result of donor T cells capable of recognizing residual tumor cells 

from the recipient and rejecting these cells, resulting in dramatically reduced risk of relapse [114]. 

The HLA system plays a crucial role in the regulation of immune function in the determination 

of self from non-self. As HLA molecules interact with T cell receptors in the thymus to modulate 

the immune response and determine what antigens and cells are recognized as self, thus, shaping 

immune tolerance [18]. As a consequence of this in vivo function of HLA molecules, there is now 

a clear understanding that HLA antigens (particularly, the most polymorphic classical HLA class 

I and II molecules) constitute an important and major biological barrier to a successful 

transplantation and has substantial impact on the prolongation of graft survival. As HLA molecules 

can elicit an immune response either by presentation of variable peptides or by recognition of 

polymorphic fragments of foreign HLA molecules [18]. Thus, it has been extensively reported 

how HLA disparity or HLA mismatch between donor and recipient is clinically relevant as it is 

associated with rejection, in turn, graft failure and, ultimately, resulting in considerable morbidity 

and mortality of the recipient.  In the mid-1960s, this was first reported by Kissmeyer-Nielsen 

[115] and Terasaki [116] groups who showed in clinical kidney grafting that hyperacute rejection 

resulted from recipient sensitization specific for mismatched donor HLA antigens, and that a pre-

transplant lymphocytotoxicity crossmatch test could predict such rejection. Similarly, among the 

many factors that influence the outcome of HSCT, polymorphism of the classical HLA genes 

represents the most important barrier [117]. As HLA compatibility or matching affects not only 

the ability to achieve sustained engraftment following HSCT but also the risk of developing acute 

and chronic GVHD [114]. In fact, many studies have also indicated how even single amino acid 

differences can result in immunologic responses against donor antigens, where also allelic level 

differences in HLA antigens have been shown to affect graft survival and especially for the 

successful engraftment in HSCT [117]. Moreover, studies have reached different conclusions 
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regarding the relative contributions of HLA class I and class II mismatching because of population-

based differences in the specific HLA-mismatch combinations between patients and donors. 

Furthermore, recent observational studies in HSCT have described how not only the high 

expression loci (HLA-A, -B, -C, and -DRB1) are strongly associated with transplant outcome but 

also, and especially in combination with mismatches in other loci, considered low expression loci 

(HLA-DRB3/4/5, -DQ, and -DP loci) appear to have a contribution on the outcome as well [118]. 

Nevertheless, further and larger studies still need to be carried out to accurately define these 

contributions. 

Although advances in immunosuppression modalities have been shown to improve transplanted 

graft outcomes, accurately determining both the donor and recipient HLA types and minimizing 

HLA mismatches is also of utmost importance to maximizing graft and patient survival. 

Consequently, accurate HLA typing has become essential in solid organ transplantation (SOT) and 

in HSCT. In the field of HSCT, bone marrow transplant graft survival has been highly dependent 

mostly on the degree of HLA matching (e.g. a registry donor matched for HLA-A, -B, -C, -DRB1, 

and -DQB1 at 2-field resolution, designated as 10/10 matched, is usually considered optimal for 

unrelated donor (URD) transplant) [112-114][117][119]. Furthermore, application of 4 field-

resolution DNA-based HLA typing in different populations has significantly contributed for 

improving donor recruitment strategies of bone marrow registries. While in the context of SOT, 

knowledge of the donor and recipient HLA genotypes (allele-level) and phenotypes 

(antigen/epitope-level) is also needed (in addition to optimize HLA matching) to monitor 

recipients for development of donor-specific anti-HLA antibodies (presence of donor-specific anti-

HLA antibodies (DSAs) before transplantation (preformed/preexisting DSAs) leads to a 

hyperacute rejection; whereas DSAs may be also formed after transplantation (de-novo DSAs) and 

are associated typically with acute and chronic graft rejection). Since, in the majority of antibody-
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mediated transplant rejection, the antibodies are directed against donor HLA antigens expressed 

by the transplanted organ but not present in the recipient [119]. Another important clinical scenario 

that requires the evaluation of HLA matching is platelet (which bears HLA antigens) transfusion 

from random donors in, for example, patients with aplastic anaemia (AA) who typically become 

alloimmunized and develop immunological platelet refractoriness (IPR) [119]. 

As previously mentioned, HLA match of donor and recipient is crucial as it increases the 

success rate of grafts. Nevertheless, perfect HLA matching is possible mostly when donor and 

recipient are related (e.g. 25% likelihood of having a full HLA-matched sibling donor for patients 

with one sibling) and, even in these cases, genetic differences at other non-HLA genes may still 

trigger rejection mechanisms (e.g. minor histocompatibility antigens, killer cell immunoglobulin-

like receptor (KIR) genes and/or several other groups of genes) [117]. 

6.2 Disease Associations 

The MHC has been established as the region of the genome that is associated with the greatest 

number of human diseases. The majority of these diseases have an immunological component, 

which is consistent with the enrichment for key immune genes within the MHC region. During the 

last several decades, a large number of studies have reported strong associations between certain 

diseases (particularly those with an autoimmune component, on the basis of the fundamental role 

played by HLA molecules on orchestrating thymic selection as well as peripheral anergy of T 

cells) and individuals (where, in certain instances, there are also age and gender related differences) 

carrying particular HLA alleles [120]. Main reported HLA-disease associations are shown in 

Figure I-15. 
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LIST OF MAIN EXAMPLES OF HLA-DISEASE ASSOCIATIONS REPORTED 

 
 

AUTOIMMUNE DISEASES 
 

Disease 

 

Main (HLA-) locus associated       

in susceptibility 

 

 

Main Review Reference 

Celiac Disease (CD) HLA-DQ2 and -DQ8 [90] 

Diabetes Mellitus Type 1 (DMT1) DRB1*03, DQA1*03, DQB1*02 [539] 

Ankylosing Spondylitis (AS) B27 (B*27:04, B*27:05) [123] 

Behçet’s Disease (BD) B51 (B*51:01) [90] 

Birdshot Retinochoroidopathy (BR) A29 [90] 

Rheumatoid Arthritis (RA) Shared Epitope DRB1alleles [395-397] 

Graves Disease (GD) C*07, B*08, DR3, DRB1*08 [540] 

Psoriasis in skin Cw6 (C*06:02) [383] 

Pemphigus Vulgaris (PV) DQB1*05:03 and DRB1*04:02 [541] 
 

INFECTIOUS DISEASES 

 

Disease 

 

Main (HLA-) locus associated       

in susceptibility 

 

 

Main Review Reference 

Human Immunodeficiency Virus (HIV) A23, B37, B49, B35-Cw*04, 

Class I Homozygosity 

[513][539] 

Leprosy A*02, A*11, B*40, B*51, Cw*04, 
Cw*07 

[513][539] 

Tuberculosis (TB) DQB1*05 [513][539] 
 

CANCER 

 

Cancer Disease 

 

Main (HLA-) locus associated       

in susceptibility 

 

 

Main Review Reference 

Cervical Carcinoma DQB1*03 [383] 

Lymphoid Tumors  A2, A24, B12, Cw3  [383] 
 

NEUROLOGICAL DISEASES 

 

Disease 

 

Main (HLA-) locus associated       

in susceptibility 

 

 

Main Review Reference 

Narcolepsy DQB1*06:02 (and DQA1* pair) [90] 

Multiple Sclerosis (MS) DRB1*15 and associated 

 class II haplotype 
 

[290] 

Neuromyelitis Optica (NMO) DRB1*03, DPB1*05 [290] 

Parkinson’s Disease (PD) DRB1*04 [290] 

Alzheimer’s Disease (AZD) DRB1*03 [290] 

Myasthenia Gravis (MG) DRB1*03,*04 [290] 

Schizophrenia Disease (SCZD) DRB1*01,*03 [290] 

Amyotrophic Lateral  

Sclerosis (ALS) 

A*03, A*02, A*28; B*40, B*35, 

C*04 

 

[290] 
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(Image originally from Mary Carrington, NIH, MD, USA) 

 

(Image originally from Jill Hollenbach, UCSF, CA, USA) 

Figure I-15. (Upper Image) Main examples of HLA-disease associations reported in scientific literature. These 

HLA-disease associations may vary among ethnic/regional groups and worldwide populations between other co-

factors. Some of the reasons attribute for such variation are occurrence of population stratification based on 

geographical location and level of isolation, consequences of founder effect, racial admixture or selection 

pressures due to environmental factors. Hence certain HLA alleles that are predominantly associated with disease 

susceptibility or resistance in one certain population may or may not show any association in other populations 
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for that same given disease. Despite of these limitations, HLA associations are widely studied across the 

populations worldwide and are found to be important in prediction of disease susceptibility, (Lower Image) 

Schemes of gene map of the HLA genomic region and related mapped disease associations (top image including 

the main group of diseases; bottom image including only neurological diseases).  Respective tables/figures are 

obtained and adapted from [90][123][290][383][395-397][539-541]. 

 

In general, although immune mechanisms appear to be involved in their pathogenesis, such 

diseases have unclear etiology. Moreover, these diseases have familiar recurrence and are 

supported by polygenic and environmental factors. Thus, their relation with HLA alleles identifies 

only one of the predisposing genetic factors, where the development of these diseases involves a 

genetic predisposition resulting from a combination of factors at HLA and at other genes [121]. 

There are at least 100 Online Mendelian Inheritance in Man (OMIM) identifiers concerning the 

HLA region loci, mostly of expressed genes, that can be accessed through 

http://www.ncbi.nlm.nih.gov/ or through links from other sites, including Entrez Gene database at 

NCBI [27]. 

HLA disease associations are of diagnostic importance. Nevertheless, no situation has been 

identified yet where all individuals with a particular allele develop a disease, but some diseases 

have been identified in which most affected individuals have a particular HLA allele. Based on 

this, it is widely believed the inheritance of a disease-associated HLA allele may increase a 

patient’s likelihood of developing the disease but is only a risk factor and does not guarantee that 

the disease will occur (i.e. incomplete penetrance). For instance, one of the very first reported and 

best known HLA-disease association is HLA-B27 with ankylosing spondylitis (AS) [122]. In this 

sense, AS is strongly associated with HLA-B27, but the lifetime risk of a HLA-B27-positive 

individual developing it is only about 2%. This illustrates that in diseases with HLA associations, 

it is not the disease itself, but the predisposition to it that is inherited.  
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It is also noteworthy that initial HLA-disease associations defined at the serological level have 

been refined as HLA molecular testing has improved and become more widespread [119]. 

Continuing this previous example of HLA-B27 association with AS, HLA molecular typing at 

higher resolution (making genetic testing more accurate over and above serological testing) has 

shown that while most HLA-B27 alleles, such as the common HLA-B*27:05, are associated with 

increased risk of AS, other alleles such as HLA-B*27:06 and -B*27:09 are not associated with this 

disease [123]. In addition, association between risk of AS and other HLA loci and alleles have 

been identified, including HLA-B*40:01 and HLA-DRB1*04:04 [124]. Therefore, the high-

resolution typing of classical class I and class I HLA genes and the identification (e.g. via genome-

wide association studies (GWAS) by analyzing an enormous number of genetic variants called 

single-nucleotide polymorphisms (SNPs) as markers) of other genes (both within and outside the 

human MHC region) have significantly increased the definition of the genetic basis of these HLA-

associated diseases of unknown etiology. 

The ultimate goal of all studies on HLA-linked diseases is to determine the molecular and 

cellular bases for disease. Even though it is commonly difficult to reconcile with epidemiologic 

data and functional characteristics of HLA molecules, three general categories of hypotheses have 

been proposed to explain these diseases associations with the HLA region [35][125]:  

-The first category invokes linkage disequilibrium between a particular HLA allele that is 

associated with a given disease and another neighboring genomic element on the haplotype that 

is actually causative of the disease and does not involve HLA molecules directly. This can occur 

because the genes within the MHC are in extensive LD. An example of this type of associations 

include hereditary hemochromatosis, where an apparent association with HLA-A alleles (A3 

and A29) results from mutations in a non-classic HLA class I gene, HFE, which is in LD with 

HLA-A locus.  
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-A second category implicates antigen presentation by the HLA allele, especially in the case of 

diseases that have a strong immunological component. Under this second category, different 

hypothesis have been proposed: immune reactivity to self-antigens due to aberrant T cell 

repertoire selection; immune cross-reactivity with foreign antigens; immune attack of “altered-

self” antigens; or differences in the expression levels of certain HLA alleles that secondarily 

influence the course of certain diseases (including infectious diseases and cancer).  

-The MHC cusp theory represents the other third hypothesis. In this case, the MHC codes for 

allele-specific ligands in the cusp region of the molecule, which interact with non-MHC 

receptors and activate various pathways. Aberrations in these pathways could cause MHC-

associated diseases. According to this hypothesis, the cusp region constitutes a peculiar three-

dimensional shape that has been conserved on both class I (in the α2 domain) and class II (in 

the β1 domain) molecules through evolution, not dependent on antigen presentation, and is a 

hub for signal transduction ligands that interact with a variety of receptors and activate 

important biological functions. 

6.3 Pharmacogenetics 

Adverse drug reactions (ADRs) are a significant cause of morbidity and mortality and represent 

a major burden on the healthcare system. Besides classical reactions that are related to 

pharmacologic activity of the drug (on-target ADRs or type A), some reactions are unpredictable, 

not dose dependent, and seem to occur in genetically predisposed individuals (off-target ADRs or 

type B). Moreover, it has been better understood how a significant group of this type of reactions 

is immunologically driven and they are referred to as hypersensitivity reactions (immune mediated 

ADRs or IM-ADRs). The expanding field of pharmacogenetics aims to understand these genetic 

factors that influence the outcomes of drug therapy, both beneficial and adverse. More recently, a 
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growing number of studies have provided clear evidences that specific HLA alleles increase the 

risk of developing hypersensitivity drug reactions [110][126]. 

As previously mentioned, extensive polymorphism of HLA molecules enables presentation of 

a wide range peptide ligands (termed as the immunopeptidome) thus maximizing immune 

surveillance of evolving pathogens diversity. A consequence of the diversification of the HLA 

peptide-binding pocket is the enhanced opportunity for off-target binding/interaction of small 

drugs or metabolites by HLA molecules, with subsequent immune reactivity. As these potential 

off-target interactions can generate T cell-mediated adverse drug reactions even though the precise 

mechanisms of most HLA-drug interactions are still poorly understood [127]. As it is considered 

unlikely that small molecule drugs (similar in size to one to two amino acids) would be able to 

stabilize HLA molecules alone, three core hypotheses have been proposed to explain the 

interaction of small molecule drugs or metabolites with the HLA-peptide-TCR axis to induce drug-

specific T cell responses [127]: 1) Small molecule drugs or metabolites can react with specific 

amino acid side chains to covalently modify proteins. This covalent modification of cellular 

proteins can generate haptenated HLA ligands via antigen processing or direct haptenation of 

HLA-peptide complexes at the cell surface; 2) they may interact non-covalently with immune 

receptors either at the HLA-TCR interface or allosteric, creating neoantigens that engender HLA-

TCR ligation and T cell activation; 3) the denominated “altered repertoire model” establishes how 

a non-covalent interaction between these small molecule drugs or metabolites and the HLA 

molecule antigen-binding cleft can modify the peptide-binding motif,  allowing the entry of a novel 

array of self-peptides into the immunopeptidome and creating a new different conformation of the 

original HLA-peptide complex that is recognized now as foreign by circulating T cells. This latter 

proposed model has allowed to understand, as an exception, the association between abacavir 

hypersensitivity syndrome and HLA-B*57:01 at a molecular and mechanistic level. 
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The associations reported (see Figure I-16) between drug hypersensitivity and specific HLA 

alleles have been a recent finding and this has led to the possibility that hypersensitivity reactions 

may be predictable and preventable, as it is already the case of abacavir hypersensitivity and HLA-

B*57:01 association, established into the clinic as a routine screening test [126][127]. 

 

LIST OF MAIN EXAMPLES OF  

HLA-ASSOCIATED DRUG HYPERSENSITIVITIES REPORTED* 

 

 

Drug 

 

Main (HLA-) allele associated       

in susceptibility 

 

 

Main Review References* 

 

Abacavir 

 

 
B*57:01 

 

[126][127] 

 

Allopurinol 

 

 
B*58:01 

 

[126][127] 

 

Carbamazepine 

 

 
B*15:02 

 

[126][127] 

 

Figure I-16. Main examples of HLA-associated alleles to adverse drug reactions (ADRs) or drug 

hypersensitivities. Respective table is obtained and adapted from [126][127]. 

 

6.4 Population Genetics and Anthropology 

Knowledge of the genetic diversity of the human populations has expanded considerably in 

recent decades, especially thanks to the rapid progress in genomic research, where application of 

DNA markers (e.g. mitochondrial DNA (mtDNA), Y chromosome, SNPs, microsatellites, 

molecular HLA genotyping data or molecular KIR genotyping data) has become predominant in 

comparison to the use of serological/protein based genetic markers (including serological HLA 

typing data) [128].  

The high and functional polymorphism, tight linkage among the different loci and the 

perpetuation of allelic lineages over time makes the HLA genes a very informative DNA marker 
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and a very useful tool for population genetics, phylogenetic and anthropological studies [128]. 

Thus, the frequency distributions of HLA alleles and haplotypes of human populations have been 

used to track human evolutionary processes, such as migration, admixture and selection. In 

addition, the accurate description of allelic and haplotypic HLA profiles and the identification of 

both common and rare or new HLA variants in human populations is also of great importance for 

the fields of clinical transplantation, epidemiology, pharmacogenetics and characterization of the 

genetic predisposition to many diseases that may enable a more predictive, preventative and 

personalized medicine [120]. 

During these last three decades, significant advances in molecular HLA typing methods 

(including the very recent development of ultra high-resolution typing at the 4-field, minimizing 

significantly the level of ambiguities thanks to full-length sequence analysis [152]) and 

accumulation of large population datasets by the international community (in the context of the 

International Histocompatibility and Immunogenetics Workshops (IHIWS) [129][487]; and the 

online Allele Frequency Net Database (AFND; http://www.allelefrequencies.net) [130][464]) 

have been most useful to radically increase our knowledge on the HLA polymorphism and 

diversity in human populations. Thus, it has been more extensively reported that different 

populations exhibit different HLA genetic profiles, where common allele and haplotype frequency 

distributions (and, thus, also patterns of LD) vary between population groups. Moreover, this 

worldwide HLA variation exists among both racial and ethnic groups as well as geographically 

between different regions [111][136]. Consequently, the improved and more precise description 

of HLA polymorphism at the DNA-level (mostly based on the distribution of allele and haplotype 

frequencies defined at the allele-level of resolution as well as distribution of HLA lineages) has 

been contributing to an in-depth understanding of the two main types of genetic signatures that 

appear to shape this HLA genetic diversity found among different worldwide human populations: 
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1) Human peopling history (genetic signatures related to demographic events). Indeed, patterns 

and distributions of this genetic variation of HLA genes among populations can help to better 

correlate genetic profile of populations and their past migrations in the determination of their 

origin as well as the geographic dispersal and recent admixture of modern human populations 

throughout the world [131][132].  

2) The interaction of populations with their environment in a pathogenic context (genetic 

signatures related to natural selection). As previously mentioned, description of the extensive 

HLA polymorphism through population studies has been also contributing to unraveling the 

mechanisms of its molecular evolution, where strong selection appears to be operating at 

various levels. In this sense, the current level of diversity and the variation in observed allelic 

and haplotypic distributions for different populations probably also may result from 

evolutionary forces that have changed as human populations have encountered new 

environments in their spread around the globe [133]. 

Therefore, whereas the molecular evolution of these polymorphisms has most likely been 

subject to natural selection, principally driven by host-pathogen interactions [107], their patterns 

of genetic variation worldwide also show significant signals of human geographic expansion, 

demographic history and cultural diversification events [131]. 

To date, there are some key findings and proposed concepts from the main HLA modern 

population studies that have been carried out so far:  

- At the allelic variation level, for most classical HLA loci that have been studied, allele 

frequency distributions are usually even (except in some cases) and populations achieve very 

high heterozygosity levels. Where certain alleles have identical protein sequences and are 

distinguished at the nucleotide sequence level by silent substitutions or substitutions in non-
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coding segments, and thus these may be related by descent from a common ancestral sequence 

group [132]. As a result, both ancient and recent allelic diversification and strong selection for 

haplotype diversity may have sustained a maximized available peptide-binding repertoire [132]. 

Also, LD patterns displayed between neighboring loci may have had also an imprint on the 

evolutionary relationship between parental (more ancestral) and novel (more recent) alleles 

[132]. In addition, most classical HLA loci experience asymmetric balancing selection, a pattern 

that is found across diverse human populations. The main exception from these observations 

has been detected at the HLA-DPB1 locus, which appears to fit more into a neutral model of 

evolution [131]. At the same time, in parallel and conversely to allele diversification events 

being led by selective pressure mechanisms, there are also a group of alleles that appear to have 

arisen independently through convergent evolutionary mechanisms [132]. 

-Furthermore, genetic distances between open populations estimated from frequency data (at 

both the allele and haplotype level) for all HLA loci are highly significantly correlated with 

geographic distances, and for migrant populations with their regions of origin. In contrast, the 

genetic distance measurements are larger than expected between inbred populations of the same 

region, very likely because of the existence of a large number of unique alleles in a small number 

of lineages as the result of limited founder polymorphism [131-134]. 

- LD patterns between alleles of various HLA loci can certainly provide significant insight with 

regard to the history of a particular allele. The examination of both LD and structural features 

may help elucidate possible evolutionary relations between alleles (e.g. rapid or recent 

diversification of an allelic lineage or selection for specific cis combinations). For instance, 

some alleles are found in multiple populations with distinctive haplotypic associations, 

suggesting that convergent evolution events may have taken place as well [132]. Thus, alleles 

differing only by silent substitutions either can be related by descent from a common ancestral 
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sequence or arise independently (convergent evolution) as they are selected on the basis of its 

functional capabilities. In addition, as the HLA region is characterized by strong LD between 

neighboring loci, long (extended) haplotypes encompassing several HLA loci have been 

preserved in present-day populations. Therefore, the sharing of HLA haplotypes among 

populations can be used for inferring genetic background and ethnical composition to evaluate 

relatedness between modern human populations and also for tracing migrations of modern or 

more ancient populations. In this sense, although a given population presents distinctive HLA 

allele frequency distributions in comparison to other populations, even more clear distinctions 

arise through the analyses of distribution of extended haplotypes between human populations, 

ethnic groups or regions. Hence, allelic diversity in HLA needs to be analyzed in the context of 

HLA haplotypes and blocks and in conjunction with other genetic markers to accurately track 

the migrations of modern humans [131]. At the same time, information from HLA genes as 

human migration markers for anthropological population studies needs to be interpreted with 

caution since undetected convergent evolution events may be confounding in the investigation 

of population relatedness, leading to erroneously close relations between populations 

[132][542][543]. Thus, it may not be always feasible to totally distinguish selective pressure 

events from demographic events, and vice versa, in the context of HLA [104]. 

- Some studies [135][136] have also proposed that, while many HLA lineages are old and have 

been inherited in a trans-specific fashion, the alleles within these lineages may be the result of 

a recent diversification. One illustrative example is the complex evolutionary history of the 

HLA-DRB1 locus as this locus seems to be composed of segments with different levels of 

nucleotide diversity. On one hand, sites (exon 2 in this case of HLA-DRB1 locus) encoding for 

amino acids involved in antigen binding (located in antigen recognition sites (ARS), or also 

known as the peptide-binding region (PBR) or antigen recognition domain (ARD)), where 
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evidence of selection has been observed, appear to have a more ancient origin, defining the 

different main allelic lineages. Whereas the polymorphism found at coding sites that are not 

involved in antigen binding (synonymous substitutions), which are thought to be evolving under 

(or close to) neutral conditions, suggests a more recent origin of the intra-lineage diversity. 

Furthermore, the lower level of intron diversity at the HLA-DRB1 locus appears to also reflect 

a recent origin of most alleles from the same allelic lineage rather than being an effect of 

homogenization. In fact, this is consistent with a relatively rapid generation of novel alleles by 

gene conversion like events. 

 -Nevertheless, until recently the majority of reported population studies have presented 

important limitations in the most available traditional molecular typing methods (while being 

very useful for the clinical routine practice, they only capture a part of the molecular diversity 

information and generate a lot of ambiguities) and from a statistical perspective (low sample 

size to be representative of the given population of interest). Therefore, still more and larger 

high-resolution (ideally at the 4-field) HLA genotyping studies at a worldwide geographic scale 

need to be performed for obtaining complete HLA sequence data to allow a detailed comparison 

of different regions (coding and non-coding) of HLA genes in many populations [137]. 

II. MOLECULAR HLA GENOTYPING METHODOLOGIES 

  

7. MOLECULAR HLA GENOTYPING METHODOLOGIES   

Since the discovery of the HLA system over 50 years ago, there has been a concerted effort 

from the international histocompatibility scientific community [16] to properly and accurately 

define the high and complex polymorphism shown by the HLA loci. Both description and 
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understanding of the complexity and polymorphic nature of the HLA genes has been substantially 

improved as the HLA typing technologies have advanced and have been constantly innovated.  

Initially, serological and cellular testing (antibody and mixed lymphocyte culture [MLC]) was 

first developed in the 1960s [115][116]. HLA serological typing was able to define HLA antigenic 

types based on cytotoxicity and antibody responses. Basically, panels of antisera (obtained from 

individuals sensitized to HLA antigens via pregnancy, transfusion, or transplantation or with 

monoclonal antibodies) were incubated with viable lymphocytes (to be HLA typed) in the presence 

of complement and a vital dye. These panels were designed containing sera with antibodies to a 

multitude of known HLA alleles and, thus, detect most of the HLA antigenic types defined at that 

time (including latter discovered “splits” that defined HLA antigens into narrower specificities). 

Thus, when a cell expresses a specific HLA antigen that is defined by a particular antiserum from 

the panel, the antibodies will bind and activate the complement, resulting in cell death that is 

detected by the addition of a viability dye. A positive result (meaning cell death indicating 

recognition of the unknown HLA antigen by the typing serum) is indicated by greater than 20% 

cell death in the reaction. In spite of refinement and standardization of extensive panels of antisera 

and complement were established, these serologic methods still could only resolve a very small 

and limited number of HLA antigenic specificities (e.g. typing sera are often polyspecific, 

requiring the use of larger numbers of antisera to be able to clearly define the presence of a HLA 

antigen). Therefore, despite of being initially useful for clinical transplantation purposes, 

significant limitations (relying on the availability of viable lymphocyte preparations and a battery 

of antisera to recognize HLA polymorphisms) of serologic HLA typing methods represented an 

important handicap in order to fully understand the diversity of the HLA system [88]. 

In the 1970s and 1980s, first molecular DNA-based methods applied to HLA typing (e.g. two-

dimensional electrophoresis and restriction fragment length polymorphism (RFLP)) started to 
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show, although still insufficiently, a higher degree of HLA polymorphism that was still not 

properly revealed [138]. In the mid-1980s, the development of the polymerase chain reaction 

(PCR) and the application of (PCR)-based HLA genotyping methods to histocompatibility testing 

have allowed to clearly characterize this complex polymorphism by sequencing HLA genes: 

- Since molecular HLA typing allows the definition of HLA type based on DNA sequence in 

addition to the amino acid sequence and serologic reactivity. It was able to confirm that the 

HLA phenotypic polymorphism define by HLA serological typing methods had greatly 

underestimated the true degree of HLA polymorphism. Indeed, sequencing analyses of HLA 

genes lead to the determination that alleles with different DNA sequences can encode proteins 

with similar serologic reactivity (even all can be recognized as a single serologic specificity) 

[88]. 

-At the same time, immunologic studies demonstrated that these small nucleotide 

differences, which implied in some cases only a single amino acid difference between two HLA 

molecules, although not serologically distinguishable, could be recognized by the cellular arm 

of the immune system as foreign and lead to cellular immune reactivity. Thus, identification of 

HLA genes to the allele-level by molecular-based DNA typing methods have become extremely 

important in the clinical setting, being critical and essential in the transplantation field (as HLA 

allele-level matching contributes to minimize complications such as acute rejection, graft failure 

or GvHD) [112-119]. 

-Sequencing of HLA genes by molecular typing methods resulted in a rapid increase of newly 

identified alleles that also promote and significantly help to refine and standardize nomenclature 

of the HLA system [87][96]. 
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First (PCR)-based HLA genotyping methods utilizing sequence-specific oligonucleotide probes 

(SSOPs, or SSO), [139] among others, and sequence-specific primers (SSPs), [140] among others, 

provided the means for more directly evaluating the highly variable sequence motifs within the 

HLA genes. Subsequently, Sanger sequence-based typing (SBT), [141] among others, in the 1990s 

significantly advanced tissue typing and transplantation genetics by providing an unprecedented 

molecular view of HLA polymorphism in the context of variation at coding and non-coding 

regions. Most recently, application of “next-generation sequencing” (NGS) [142] appears to have 

revolutionized the field by addressing the HLA typing complexity in a very definitive way. As 

NGS-based HLA typing provides complete and phased (allele-level or locus-level) HLA genomic 

sequence characterization of these highly polymorphic genes [76]. 

Consequently, clinical HLA typing over the past decade has transitioned from a combination of 

serological and cellular-based methods to more direct, faster, more affordable, and more 

informative DNA-based techniques. Even though serological typing may continue to have some 

clinical or research-based testing in determining the expression of the HLA molecule at the cell 

surface (a function that DNA-based testing cannot always verify), direct DNA-based typing 

techniques have all but replaced serological methods in routine HLA typing [76]. 

8. TRADITIONAL MOLECULAR HLA GENOTYPING METHODOLOGIES: 

ADVANTAGES, LIMITATIONS AND UNRESOLVED AMBIGUITIES 

Over the last decades, and still in use today, SSO, SSP, and SBT have been the most prevalent 

and well-developed DNA-based HLA typing techniques. Despite each of them presents a different 

basis and approach, their respective designs and chemistries (with the exception of SBT until 

certain extent) have optimized only the analysis of exons 2 and 3 of HLA class I genes and exon 

2 of HLA class II genes. Since these regions include most of the known polymorphisms and encode 
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those domains that interact with bound peptides being directly related with the functional biology 

of the HLA system and clinically relevant [56][89][112-119]. Nevertheless, it is well known how 

this limited genomic characterization, given by these traditional or legacy techniques, still cannot 

describe all the HLA polymorphism (also found in other coding and non-coding regions) and, in 

turn, causing this many typing ambiguities.  

8.1 Sequence-Specific Oligonucleotide (SSO) Probes  

The SSO or SSOP technique interrogates polymorphic differences using panels or “pools” of 

short (~20-30 bp) individual DNA oligonucleotide probes that differentially hybridize to the target 

of interest (the probe either perfectly matches or mismatches the target’s polymorphic sites) found 

in a HLA PCR product or amplicon. In this sense, control of hybridization conditions and the 

stringency of the washing process are critical and challenging aspects of this methodology. The 

hybridization pattern of the oligonucleotides is compared to a reference pattern, based on the 

sequence database of HLA alleles, and is interpreted as a HLA type or allele call. After the early 

development and application of, firstly, forward and, later, reverse SSO “dot-blot”/’’line-blot” 

typing methods on a solid membrane system as the hybridization medium. The newer microbead-

based reverse SSO typing is one of the most widely used methods currently as it is able to provide 

low-cost, rapid and low-to intermediate-resolution typing. In which, the microbeads presenting 

complementary probes to the amplicon will hybridize. Furthermore, both the microbeads’ 

fluorescent signature (thereby identifying the specific attached SSO oligonucleotide probe) and 

the fluorescent hybridization signal generated by the biotinylated HLA PCR product labeled with 

a streptavidin-phycoerythrin conjugate are detected by a flow cytometer system in an automated 

manner (interrogation of HLA amplicons by up to 500 sequence-specific probes in a single tube) 

[143]. Thus, software analysis program for allele assignment translates the probe reaction patterns 

into HLA genotypes. Nevertheless, because of its nature and design, SSO mostly provides low-
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resolution typing expressed commonly as serological equivalents and rarely produces 

unambiguous two-field high-resolution typing. In addition, short oligonucleotide probes can only 

provide phasing information for polymorphisms underlying the probe, making linkage across an 

exon difficult, and between exons impossible. This technique also requires continual development 

as new probes often have to be developed to detect the newly defined alleles, otherwise 

undetectable [76][85]. 

8.2 Sequence-Specific Primers (SSP)  

The SSP method uses panels of specific primer sets that target and overlap polymorphic sites. 

Perfectly matched primers produce an amplification product, while mismatched primers do not. 

Thus, the pattern of amplification from multiple primer sets determines the HLA allele. In detail, 

resulting amplification products are separated and imaged by standard gel electrophoresis or 

separated by polymer-based capillary separation, allowing HLA typing to be inferred from the 

pattern of amplification. SSP method offers a short turnaround time (“STAT”) (2-3 h) making it a 

good choice for STAT HLA typing cases as in deceased donor typing for organ transplantation. 

Also, a significant advantage over the SSO method is its ability to provide some phasing 

information, leading to fewer ambiguities. But it is still limited to only those instances when is 

possible to design PCR primers that overlie polymorphisms on both the forward and reverse strand, 

therefore linking the phase of the two polymorphic sites together. Furthermore, the SSP method 

can be used to provide both low-(1-field) and, although challenging, high-resolution (2-field) 

typing results. However, similar to SSO method, SSP does not provide comprehensive coverage 

of all known and unknown alleles. Thus, if there are no primers that target the position 

differentiating the novel/rare/null allele, then that allele will go unassigned and may lead to false 

reporting of the HLA genotype [76][85]. 
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8.3 Real-Time PCR (RT-PCR) 

Traditional real-time PCR (RT-PCR) is an extension of SSP typing. This automated method 

utilizes real-time PCR to amplify (amplification processes similar to those of the SSP method) 

specific HLA gene regions (overlapping known polymorphic sites) and an intercalating dye which 

has two main functions. Firstly, the intercalating dye signal is measured to verify that amplification 

has occurred (endpoint identification of amplification). Secondly, the melting temperature of any 

given amplicon is reached, the double-stranded PCR product denatures and the intercalating dye 

is released, resulting in a drop in fluorescence, and this defines a specific melting curve profile. 

Allele specificities are evaluated through differences in melting temperature (specific melting 

curve profile analysis). Thus, software analysis program converts the specific 

amplification/melting-curve profile into allele calls, which are then used to determine genotype 

based on expected assay behavior and known IPD-IMGT/HLA database alleles. RT-PCR not only 

has the fastest turnaround time but it has also a unique set of SSP assays that can identify the 

majority of known alleles, including null alleles (or non-expressed alleles, which are often due to 

“InDels” (insertions/deletions) causing a frameshift mutation resulting in a premature stop codon 

or single point mutations causing a premature stop codon). However, RT-PCR still shows similar 

limitations (e.g. limited phasing information, limited identification of novel alleles, limited allele-

level resolution) as in SSO and SSP methods [76]. 

8.4 Sanger Sequence-Based Typing (SBT)  

As a robust and comprehensive method of determining high-resolution HLA typing results, 

Sanger SBT became the gold standard for HLA molecular typing, being able to overcome many 

of the limitations presented by these previous methods (SSO or SSP). With expanded coverage of 

the HLA genes, an improved accuracy and resolution in a bidirectional sequencing fashion, SBT 

generates high-resolution typing results (not only at the 2-field, but also at the 3- and, even, 4-
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field) and, thus, enables the detection of known and many novel/rare/null alleles. In SBT, specific 

gene regions are amplified and sequenced through a process of polymerase-based extension of 

specific sequencing primers using, in addition to normal nucleotides (dNTPs), distinguishable 

fluorescently labeled 2’, 3’-dideoxynucleotides (ddNTPs), indicating allelic differences base by 

base. In general, SBT requires two amplification steps: a first amplification that serves to expand 

the copy number of a particular gene region (exons or an entire gene), in which balanced and 

specific amplification for every possible pair of alleles is crucial; then there is an intermediate 

cleanup step, that is essential to remove or inactivate excess of thermal cycling reactants and 

amplification primers; and, finally, a second amplification step to perform the cycle sequencing 

reactions (called dideoxynucleotide or chain termination sequencing) that produce the 

fluorescently terminated sequences for subsequent capillary analysis. The sequences of the 

fluorescently labeled, single-stranded DNA (ssDNA) fragments are determined by performing 

electrophoresis using a capillary genetic analyzer, in a process called dye terminator sequencing 

(based on the detection of the respective fluorescent dye attached to the terminal ddNTP of each 

of the ssDNA fragments that go through the capillary sequencer). Thus, the entire DNA sequence 

of interest can be determined as the pool of fragments, one nucleotide longer than the previous, 

sequentially reveal their base content (determination of sequence from terminal dideoxy labeling). 

Where the sequencing data is represented as an “electropherogram” (showing a combination of the 

DNA sequences of two alleles of a given locus, which are amplified and sequenced together). 

Finally, HLA typing software compares electropherograms against a reference database of all HLA 

alleles in order to provide the HLA allele calls per locus. Nevertheless, while Sanger sequencing 

is considered the gold standard for HLA typing, it still has important limitations. From a technical 

point of view, SBT is more complex, more laborious and more time-consuming than SSO or SSP 

methods, presenting many steps (one or several primary amplifications, cleanup steps, sequencing 
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reaction setup per exon/region and each direction (forward/reverse), and further cleanup steps) 

and, consequently, it has increased costs comparatively. Furthermore, although SBT typically 

yields higher resolution results than the SSO and SSP methods, it also presents HLA typing 

ambiguities. The primary cause is that since SBT generates heterozygous electropherograms (i.e. 

SBT can produce long contiguous reads (up to ~1000 bp) but it mixes the signals from the two 

chromosomal strands), the phase of the polymorphic sites (i.e. which nucleotides are linked 

together forming an allele) cannot be determined in many cases (known as cis/trans ambiguities or 

phasing ambiguities). In addition, due its technical complexity and in order to meet the clinical 

demand and expected turnaround times routinely, existing SBT kits have been primarily designed 

to characterize only exons 2, 3, and 4 for class I and exons 2 and 3 for class II, and, thus, 

polymorphisms outside of these sequenced regions cannot be resolved [76][85]. 

 

8.5 Limitations and Unresolved Ambiguities of Traditional HLA Typing Methods 

Overall, these traditional molecular methods (SSO, SSP, RT-PCR and SBT) have been 

successfully established and prevalent in the HLA typing field, being able to interrogate and 

characterize an important part of HLA polymorphism that, in addition, is clinically relevant. Each 

of these traditional DNA-based methods continues to be used for routine low- and high-resolution 

HLA typing. No one method has supplanted the others as each has its unique benefits and 

limitations. However, common limitations shared by all these legacy methods certainly still 

represent an important restriction for advancement in both research and clinical applications 

[143][144]: 

1) Scalability: despite development of sophisticated automated systems (e.g. including, liquid- 

and plate-handling robotics and pipeline software to operate, collect and analyze sequencing 
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data), the sequencing chemistry basis and instrumentation of these legacy HLA typing methods 

only permit low and moderate test volumes (low-throughput, of the order of dozens of 

samples/HLA loci per run) not very compatible with the growing demand of clinical HLA 

typing or large-scale population studies. In addition, significant amount of DNA per sample is 

required for testing. 

2) Cost: Once again, the chemistries and design of these legacy HLA typing methods make 

them labor intensive and not very cost-effective, considering also their low scalability. 

3) Time: Despite RT-PCR and SSP methods offer very rapid HLA typing (of great importance 

for deceased donor typing in solid organ transplantation), traditional molecular HLA typing 

methods are low-throughput and mostly produce low-resolution typing with significant 

ambiguities, which to be resolved they require additional typing tests extending the turnaround 

time.  

4) Coverage and Ambiguities: Most importantly, and again based on the chemistries and design, 

traditional DNA-based HLA typing approaches are limited in their ability to discriminate 

between all possible alleles and combinations of alleles. Three different types of ambiguities 

are recognized [85]: 

a) Single alleles, which cannot be discriminated because the nucleotide differences 

(polymorphisms) between the alleles are located outside the region amplified. Using 

traditional molecular HLA typing methods it has been attempt to overcome this limitation by 

expanding coverage of the HLA genes (e.g. incorporation of additional primers and probes as 

well as allele-specific sequencing primers) but still this has not been sufficient considering 

the high and complex HLA polymorphism. In addition, this limitation contributes to the 

inability to directly detect novel alleles. 
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b) Polymorphism at the HLA loci is clustered in a distinctive patchwork pattern of sequence 

motifs, which results in the extensive allelic diversity observed for these loci [145]. A 

consequence of the patchwork pattern of sequence polymorphism is that a large number of 

alleles share the same gene segments and therefore cannot be easily distinguished. In this 

context, the sequencing chemistry, nature and coverage of traditional molecular HLA typing 

methods shows an inability or very low ability to determine phasing (which nucleotides are 

linked together forming an allele) between enough number of proximal and/or distal 

polymorphic sites, generating this type of ambiguities termed as “phasing” or “cis/trans” 

ambiguities. Thus, several allele pairs are equally possible as a HLA typing result for a given 

locus as the different allele combinations present identical heterozygous sequences. Different 

strategies have been used in order to resolve these ambiguous heterozygous combinations (e.g. 

allele-specific amplification, family based HLA haplotype segregation studies, application of 

cloning techniques, or single-allele amplification), however all these approaches are usually 

time-consuming, labor-intensive and costly. 

c) Finally, many other HLA genotyping ambiguities also exist since only about 10% of known 

HLA class I and class II alleles have been fully sequenced (full genomic sequences) 

[146][463] and that, in turn, are available as HLA sequence references in the official database 

(IPD-IMGT/HLA) [87] (see Figure I-17). Thus, HLA genotype calling software programs 

are limited by this incomplete sequence database, which (until recently) have been built using 

only these traditional HLA typing methods that interrogate HLA genes only partially. In 

addition, this also contributes to the inability to detect more novel alleles. 
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Figure I-17. Bar plot showing the number of available exons and introns (presumably, including also here, under 

this category, the 5’ and 3’UTR regions) sequences per HLA locus in the IPD‐IMGT/HLA database (according 

to release v.3.36.0; April 2019). As it can be observed, only a small portion of HLA alleles has been fully 

sequenced (colored in darkest green at the bottom of each bar represented). Currently, most (~80-90%) of the 

HLA alleles sequences reported and officially named and incorporated in this IPD-IMGT/HLA reference 

database only cover the domains that encode for the antigen recognition domain (ARD; exons 2 and 3 for the 

HLA class I genes; and exon 2 for HLA class II genes). Thus, HLA polymorphism in rest of coding regions 

(beyond these exons that encode the ARD) and most of the non-coding regions is considerably underrepresented 

in the current IPD‐IMGT/HLA database. Figure and respective footnote are obtained and adapted from [463]. 
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Considering the fact that resolution of HLA ambiguities (caused by both the new allele 

sequence and the unknown phasing of the additional polymorphisms that can lead to 

additional allele possibilities) is a time-consuming, labor-intensive and costly process. In the 

clinical transplantation setting, HLA typing reporting needed a set of guidelines where alleles 

could be categorized based on the prevalence in the population to resolve ambiguities 

accurately as possible, but in an optimized and prioritized way, given the technical limitations 

in these traditional molecular HLA typing methods. Thus, through a detailed analysis of large 

datasets and pertinent literature review (originally it had the goal to provide guidance for 

external proficiency testing but it rapidly became a reference for clinical decision making and 

a critical tool for testing development and laboratory clinical decisions and registry policy), 

an initial Common and Well-Documented (CWD) allele catalogue was reported by the Ad-

Hoc Committee of the American Society of Histocompatibility and Immunogenetics (ASHI) 

(v.1.0.0.)[147] (v.2.0.0.)[148]. This CWD catalogue defined “common” (HLA alleles found 

at known high frequencies), “well-documented” (replicated using sequence-based typing and 

HLA haplotype data) and “rare” (HLA alleles found at known low frequencies) alleles 

applying a specific criteria that is based on the frequency of the alleles in a given population 

and on the polymorphisms located within exons 2 and 3 of class I and exon 2 of class II alleles. 

The CWD categories also extend to ‘G’ and ‘P’ designations for different alleles with identical 

nucleotide and protein sequences, respectively. Furthermore, this CWD catalogue became a 

worldwide reference to infer (being used as a statistical approach) the most likely allele in a 

string of possible alleles or ambiguous combinations to assist with resolving HLA genotyping 

ambiguities. Thus, this allele-prevalence information allowed clinical testing laboratories to 

establish a reporting convention criteria where, for instance, rare alleles (based on their low 

frequency in the population tested) may be discounted as well as certain ambiguities, 
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including alleles with identical antigen recognition sites (ARS) are left unresolved, as they 

are presumed to be clinically irrelevant. Nevertheless, technological and scientific innovations 

provide new criteria for considering allele prevalence and CWD catalogues need to be 

constantly updated [146][463][479]. In addition to the U.S. population, studies from European 

and Chinese population HSCT donor registries have shown the importance of developing 

local tables of CWD alleles according to each population/region due the differences found in 

allele frequency distributions between human populations, since CWD catalogues based on 

different population sets do not overlap completely [149][150][480]. It is also noteworthy that 

precise definitions of common and well-documented differed somewhat among all these 

studies [147-150][480], in general, alleles were classified as common if they were observed 

in multiple population groups with frequencies greater than 1 in 1000 in groups of at least 

1500 individuals. Well-documented alleles were more restricted in their distribution with 

unclear frequencies but were observed at least five times by DNA sequencing or three times 

in a shared haplotype. The remainder of the alleles were classified as not-CWD. 

At the same time, in order to report HLA genotyping results with unresolved ambiguities 

(having one or two allele lists instead of one or two true final allele calls per HLA locus, in 

situations such as: when the full nucleotide sequence of a given HLA gene is not characterized 

or when the quality of data does not allow a clear-cut interpretation), certain HLA ambiguities 

reporting systems have been established by international immunogenetics organizations and 

working groups [296]. A common form of representing such ambiguous genotypes is by using 

Multiple Allele Codes (MAC), also known as NMDP (National Marrow Donor Program) 

codes (https://bioinformatics.bethematchclinical.org/hla-resources/allele-codes/). With this 

MAC system, any currently known combination of allele numbers is encoded as 2–4 letters 

which are added to an allele name following the first field. As an example, an allele reported 
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as DQB1*02:GKDU can be any allele from the DQB1*02: 02 group of alleles or DQB1*02: 

97 [296]. While MAC codes are widely used in particular for communicating donor registry 

genotyping data, they are not part of the official HLA nomenclature system as it is the case of 

“P” or “G” allele groups as previously explained [35][74]. 

Overall, because of all these limitations found in traditional molecular HLA typing methods (as 

well as in many other genetic testing fields), a need for a more accurate, more informative and 

high-throughput DNA sequencing strategy stimulated and leaded to the recent development of 

novel technologies of multiplex DNA sequencing denominated “next-generation sequencing” 

(NGS) and its implementation in HLA genotyping, being able to obtain full length and phased 

(locus-level) genomic sequences of HLA loci with minimum ambiguities (see Figure. I-18). 
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Figure I-18. Scheme of main molecular HLA typing techniques and their respective genotyping approaches/coverage 

capacity for interrogating the HLA gene polymorphism. For any given HLA gene sequence (dark blue rectangles (exons) 

and adjunct lines (introns)):  

-Sequence-Specific Oligonucleotide (SSO) Probes of an average segment size ~20 bp (light blue lines) can only provide 

single-nucleotide resolution of HLA haplotype differences (polymorphic differences, represented as red lines in exon 2 

rectangle). This technique requires a complex panel of oligonucleotide probes to discern differences between specific 

HLA alleles. Moreover, this (commercially available or prepared in-house) set of probes is mostly static and therefore 

cannot adjust to novel alleles (it is unable to identify them).  

 -Sequence-Specific Primers (SSP) (orange arrows) can provide HLA haplotype-specific and/or allele-specific resolution 

of nucleotide differences and additionally provide some level of phasing between polymorphic sites. As with the SSO 

probes, these oligonucleotide sets for performing SSP HLA typing are complex and static, being thus very limited to 

describe HLA diversity.  

 -Sanger Sequence-Based Typing (SBT) most commonly (especially in the case of commercial versions) only provides 

whole-exon information on the polymorphic content of the HLA allele (amplification primers [dark green] and sequencing 

primers [light green arrows]) but cannot discern phasing, as this sequencing method generally does not rely on allele-

specific primers for amplification as a first step.  

-Next-generation sequencing (NGS) provides whole-gene (exon, intron and UTR regions) amplification (amplification 

primers, purple arrows) and detection of polymorphic content for any HLA allele (known or unknown) and provides 

significant phasing between polymorphic sites that are within the read lengths of the system being used (usually between 

200-600 bp for short-read sequencing platforms and over 1000 bp for long-read sequencing platforms). In the case of 

short-read sequencing strategies, this is accomplished through the alignment of thousands of short overlapping reads that 

are combined to form a single consensus sequence (blue lines).  

Figure and respective footnote are obtained and adapted from [35][76]. 
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9.  NEXT GENERATION SEQUENCING (NGS)-BASED HLA GENOTYPING 

STRATEGIES: IMPACT AND RELEVANCE 

 

9.1 Three Generations of Sequencing Technologies and Its Application to High-Resolution 

HLA Typing 

I) The Sanger method (considered the “first generation” sequencing technology) was the 

primary sequencing technology between 1975 and 2005. Sanger sequencing produces relatively 

long (500-1000 bp) high quality DNA sequences. The implementation of Sanger based sequencing 

of targeted HLA amplicons (Sequencing Based Typing (SBT)) has allowed the analysis of all the 

sequences within the amplicon, giving rise to SBT as the gold standard for high-resolution HLA 

typing. Nevertheless, as previously mentioned, SBT presents important limitations such as: 

genomic regions not targeted by the primers or not full-coverage to minimize time-consuming and 

laborious workflow amenable to low and moderate test volume; and the inability to set phase for 

linked polymorphisms within the amplicon for heterozygous samples providing ambiguous 

genotyping results (phasing ambiguities) that are very difficult to resolve if not impossible 

[141][143][144].  

II) Beginning in 2005, a new series of short-read (~25-600 bp) sequencing platforms emerged, 

which are based on massively parallel clonal sequencing and are commonly referred to as “second 

generation sequencing” or “next-generation sequencing” (NGS) [151]. Although these short-read 

sequencing platforms differ substantially (e.g. in terms of DNA template generation and 

immobilization, sequencing chemistry, engineering configuration, imaging system, read length 

and data analysis), they all are conceptually similar through the combination of a clonal sequencing 

chemistry and a high level of parallelism defined by its own engineering design. Clonal sequencing 

chemistry allows that single fragments of DNA (where each of the fragments is derived from a 

given single strand) are amplified and sequenced (one nucleotide base at a time) independently. 
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Therefore, this allows a potential complete distinction and characterization of both alleles for a 

given targeted gen. This is accomplished using methods that enable the isolation of single DNA 

molecules (originally generated as part of a prepared DNA library of the targeted region of 

interest), which are subsequently immobilized to a surface/medium and clonally amplified. During 

this clonal amplification, each original DNA template produces a clonal population or cluster that 

represents thousands of identical copies of that same original DNA fragment, which are in close 

proximity in a defined area ensuring that the sequencing signal can be distinguished from the 

background noise. In addition, creation of millions of spatially separated immobilization DNA 

template sites displayed in a microscale designed sequencer system allows this massive 

parallelization of clonal sequencing reactions (where hundreds of thousands to hundreds of 

millions of sequencing reactions can be performed simultaneously) in a single run and instrument. 

Consequently, with a “step-wise” cycling process of sequencing reactions of each of the templates 

copies of each cluster, of the order of millions of sequencing reads are generated (where a read 

refers to the consensus number of nucleotide bases or the sequence of a given cluster that is 

obtained after the end of the sequencing base calling process, which is ultimately the sequence of 

a section of that unique original single template molecule) and then analyzed. Thus, all these 

features of “second generation sequencing” technologies define them as deep-sequencing 

platforms presenting very high coverage (through the generation of such as high number of reads, 

where coverage refers to number of unique reads that include a given nucleotide in the final 

reconstructed sequence in order to provide a reliable base call) and, consequently, low error rates 

(ranging from 0.2% to 2.0% at the individual raw read level, where the per-read error rate is defined 

as the proportion of reads containing sequencing errors). Furthermore, through the use of multiplex 

identifiers (MID), a very high number of samples (hundreds or even thousands) tagged with unique 

identifiers (indexing) can be pooled and sequenced together in a single run increasing even more 
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the high-throughput capacity of these NGS sequencing systems [151]. It is also noteworthy that, 

in addition to the inherent high-throughput capacity of multiplexed NGS platforms, 

implementation of automation and robotics systems for plate- and liquid-handling steps have also 

contributed to the high scalability and reproducibility of NGS targeting and library preparation 

workflows. Therefore, in comparison to NGS technologies, the technology of capillary 

electrophoresis-based dye-terminator Sanger sequencing is very limited, especially in aspects such 

as: 1) Throughput (very limited number of capillary tubes presented by the Sanger sequencer 

system in comparison to the massive NGS template immobilization systems); 2) Accuracy (while 

Sanger sequencing presents inherent diploid cis/trans ambiguities (a single signal trace for both 

alleles delivered by Sanger sequencing does not allow putting heterozygous positions in phase)); 

NGS methods enable separate, parallel sequencing of multiple single strands of DNA, allowing 

base calls at heterozygous positions to be correctly assigned to the paternal or maternal allele and, 

thus, yielding a high level of phased data per targeted locus (referring here to NGS short-read 

sequencing platforms) in a single pass than Sanger sequencing); 3) Dynamic range in sensitivity 

for detection of both alleles (the signal-to-noise ratio intensity is proportional to the number of 

clusters in NGS, while Sanger sequencing presents a very low signal-to-noise ratio that directly 

depends on number of dye-terminated fragments per allele); and 4) Cost per sample (in comparison 

to the limited scalability offered by SBT, heavy multiplexing of genes and samples enabled by 

NGS technologies (based on massively parallel clonal sequencing of single DNA molecules) has 

led to a dramatic reduction in cost per sample). 

The significant value of the unique and novel properties of short-read NGS platforms was rapidly 

recognized and this NGS technology was soon applied for developing targeted high-throughput 

high-resolution HLA typing approaches that could overcome the important limitations given by 

the current gold standard Sanger SBT [152]. Since the clonal sequencing property allows setting 
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phase for linked polymorphisms within each HLA gene, thereby reducing the level of genotyping 

ambiguity (cis/trans ambiguities); while the massively parallel property makes possible the 

sequencing of many different genomic regions (enabling an expansion of the coverage of HLA 

regions sequenced and, thus, facilitating the description of both novel exonic and intronic 

polymorphisms); as well as, with the multiplexing approach, testing simultaneously all classical 

HLA class I and II loci per sample and a large number of samples (of the order of hundreds and 

even thousands [154]) in a single run. Starting around 2009, many different approaches for using 

short-read NGS platforms for high-resolution HLA genotyping have been developed using a 

variety of targeting (including PCR-based or capture/hybridization-based methods) and library 

preparation strategies for DNA template isolation; sequencing platforms; and sequence analysis 

approaches to greatly enhance sequencing coverage depth and resolution of ambiguities [152]. 

Consequently, approximately since 2015, the development, clinical validation (regulated by 

accreditation organizations such as the American Society for Histocompatibility and 

Immunogenetics (ASHI) or the European Federation for Immunogenetics (EFI)) and 

implementation of  vendor-supported (e.g. Omixon, GenDX, CareDX, ThermoFisher/One Lambda 

or Immucor) and/or in-house kits and HLA genotyping analysis software packages for high-

throughput HLA genotyping by NGS have taken place in histocompatibility laboratories (some 

main examples in [153-157]).  

Nevertheless, current second generation sequencing platforms present a primary inherent 

limitation on the read length (number of bases identified contiguously in the same read) as they 

generate short reads due to the nature and basis of their own main chemistries that have been 

developed so far: 1) Sequencing by hybridization and ligation (SBL): consisting on cycles of 

hybridization and ligation of various one/two-base-encoded probes to the template only allow read 

lengths up to ~ 80 bp; 2) Sequencing by synthesis (SBS) (with read lengths up to ~300-600 bp): 
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being the most widely adopted clonal chemistry among second generation sequencing platforms, 

here the sequence of a DNA template is determined by synthesizing the complementary DNA one 

nucleotide base at a time that is detected or “gated” in a “wash-and-scan” sequencing cycle process. 

Hence, these two main second generation sequencing “step-wise” and “ensemble-based” 

chemistries tend to present loss of DNA sequence quality with sequence length because the yield 

for the gated addition of each base is less than 100% due to uneven PCR amplification efficiency 

during either DNA ligation or DNA polymerization. Subsequently, this causes that sequence reads 

of each cluster gradually diverge in length (becoming asynchronous, as primers move out of 

synchronicity for any given processing cycle), if an extra base is added (leading-strand dephasing) 

or a base fails to incorporate (lagging-strand dephasing). With the many “wash-and-scan” repeated 

cycles, this loss of synchronicity amplifies into what is referred to as dephasing error, which 

represents the main limit of achieving long read lengths. The decrease of the signal-to-noise ratio 

per cluster associated to this dephasing error causes a decrease in quality (more sequencing errors) 

towards the ends of longer extending reads. This fact effectively limits the maximum reliable read 

length (to a range of only several hundred bases per read that is established by a maximum number 

of sequencing cycles possible to be performed) produced by these ensemble-based second 

generation sequencing systems while still maintaining a suitable signal-to-noise ratio intensity; 

and, consequently, being significantly less than the average read lengths achieved by Sanger 

sequencing [151][158]. Furthermore, in relation to the bioinformatics analysis of the raw 

sequencing data, short reads represent a very significant and major challenge. As the processing 

of short-read sequencing data requires multiple over-lapping of sequences to achieve full gene and 

even partial gene sequencing. This becomes very challenging (even impossible in many cases) 

when establishing mapping and alignment of targeted sequencing reads in regions highly 

homologous and yet polymorphic as it occurs in many regions (especially non-coding) along the 
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different HLA loci (e.g. some combinations of HLA-DPB1 alleles cannot be unambiguously 

phased because of the low SNP diversity shown across intron 2) [159]. In addition, as sequencing 

errors (due to decaying signal intensity detection errors in later cycles) tend to accumulate towards 

the read end, longer reads are in general better than shorter ones and can be trimmed near the end 

[184]. Also, second generation technologies tend to have reduced or completely absent coverage 

over DNA regions (mostly non-coding regions) with repetitive and extensive low-complexity and 

imbalanced sequence composition (e.g. short tandem repeats (STRs) or high AT- or GC-rich 

regions), due to amplification-bias, making also this assembly of reads very difficult [160]. In the 

context of high-resolution HLA typing via short-read NGS, the major problem is that incorrectly 

aligned fragments could result in HLA typing errors. Thus, it is possible that in a system as 

polymorphic as the HLA genes, incorrect phasing of polymorphic positions (or SNPs) that are 

distant to each other across the gene but otherwise show complete sequence homology could result 

in an incorrect allele being assigned. At the same time, rare or novel alleles formed by a 

recombination event may be missed if the consensus sequence analysis tools are biased towards 

the more common alleles and/or as these rare or novel allele sequences are not or only partially 

characterized yet in the available IPD-IMGT/HLA sequence database [159]. Therefore, since the 

short reads from the second generation sequencing platforms tend to generate relatively 

fragmented genome assemblies. The need of longer reads, in order to generate closed and fully 

completed reference genomes, has leaded to the development and introduction of the so-called 

“third generation sequencing” platforms [160]. Also, importantly and aside from the 

aforementioned limitation given by the assembly and alignment of short reads. Main current 

chemistries and engineering designs of second generation sequencing platforms are based on 

sequencing a large ensemble of DNA molecules with “wash-and-scan” techniques in a massively 

parallel fashion, where tens of thousands of identical strands per cluster are anchored to a given 
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location to be read in a process consisting of successive cycles of washing and scanning operations. 

Due to the large number of scanning and washing cycles required for this type of sequencing 

process, the time-to-result of raw sequencing data for these second generation sequencing methods 

is generally long, of the order of a full day (17-24h) or even several days depending on the 

sequencing throughput capacity used. Moreover, this period of sequencing time does not include 

the required time for doing the previous step of DNA template isolation process (~6-16 hours) and, 

also, for the post-sequencing step of the genotyping software analysis process (of the order of 

minutes to hours depending on number of samples per test). Thus, in comparison to Sanger 

sequencing, where results can be delivered in 2-3 days, at least 4-5 days are needed from sample 

entrance to the final report by using a NGS-based HLA typing approach. As for the 

histocompatibility clinical setting, although in living donation the test-to-result time associated 

with these second generation sequencing workflows may be acceptable, there are applications like 

HLA genotyping for deceased donors that require much faster total turnaround times (less than 7 

hours to minimize ischemia time) which are not compatible with current short-read sequencing 

methods [161]. In this sense, the new developed sequencing chemistries and engineering designs 

of the “third generation sequencing” platforms have also shown the capacity to optimize and to 

drastically decrease the time (of the order of few hours even minutes instead of days) required for 

generation of raw sequencing data, by not depending on time-consuming cycles scanning and 

washing steps but based on approaches that directly interrogate single molecules of DNA 

[158][161]. 

III) Quite recently, approximately since 2010 (and even earlier), the so-called “third generation 

sequencing” platforms or “single-molecule sequencing” technologies (or even, “long-read 

sequencing platforms”) have been developed with potential for dramatically longer read lengths 

(~1-100 kb or even more), shorter time-to-result (only hours or minutes) and lower overall cost 
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than the “first-“ and “second-generation sequencing” technologies [158]. Despite the existing 

broad range of chemistry sequencing approaches and engineering designs, single-molecule 

sequencing technologies can be defined into three different categories: (i) non-step-wise SBS 

technologies in which single molecules of DNA polymerase are observed as they synthesize a 

single molecule of DNA; (ii) nanopore-sequencing technologies in which single molecules of 

DNA are threaded through a nanopore or positioned in the vicinity of a nanopore, and individual 

bases are detected as they pass through the nanopore; and (iii) direct imaging of individual DNA 

molecules using advanced microscopy techniques [158]. Most importantly, the majority of these 

novel single-molecule sequencing approaches presents a series of common and related 

characteristics that have enabled to overcome important limitations from the previous generations 

of sequencing technologies. In summary: 

1) Application of novel biology/chemistry/engineering systems that allow production of 

extremely long sequencing reads:  

In comparison to first-generation (with reads up to 1000 bp but with significant cis/trans 

ambiguities) and second-generation (where short reads offer high quality base calling on each 

position and phasing over short distances (<600 bp)) sequencing technologies; third generation 

sequencing platforms or single-molecule sequencing technologies radically increase read length 

from tens of bases to tens of thousands of bases per read. The breakthrough of these single-

molecule sequencing technologies is based on the application of a variety of novel systems of 

different nature. The two main approaches that have been developed so far are the following:  

a) In the context of single-molecule SBS technologies, it has been possible to achieve high 

catalytic rates and high replicative processivity of DNA polymerase systems by selection of 

novel DNA polymerases from specific microorganisms in addition to further improvement 
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via protein engineering or directed enzyme evolution as well as incorporation of newly 

modified nucleotides for the ease of signal detection. Thus, while DNA polymerase systems 

used in previous first- (Escherichia coli DNA polymerase I proteolytic (“Klenow”) fragment 

was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry due 

to its specific efficiency for the incorporation of 2,3-ddNTPs; and later improved with the use 

of specific family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea due 

to their efficient incorporation of bulky dye-terminator for the ease of signal detection); and 

second-generation sequencing (with the use of other specific family A/B DNA polymerases 

from mesophilic/thermophilic bacteria/archaea efficiently incorporating reversible dye-

terminator nucleotides in this case) technologies are not extremely optimal. Single-molecule 

SBS technologies present DNA polymerase systems with a super-high replicative processivity 

(thousands of bases in length) such as the enterobacterial phage ɸ29 derived DNA 

polymerase. Indeed, this particular strand-displacing DNA polymerase is used in single-

molecule real-time (SMRT) SBS technology, as it also possesses an intrinsic unique capability 

to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates whose dye 

disposition shows a very low interference to the DNA polymerase activity allowing the 

observation of DNA synthesis in real time. In addition, it enables the resequencing of closed 

circular templates, increasing even more the output of number of reads [151][158][162]. 

b) As for the rest of single-molecule sequencing technologies which are not SBS-based. This 

group of platforms presents very sophisticated and complex electronic and/or optic designs of 

nanoscale dimensions with inherent unique biological (e.g. biological nanopores) and/or 

engineering-based physical systems (e.g. solid-state synthetic nanopores, scanning-tunneling 

and transmission-electron microscopy-based approaches or transistor-based technology). Due 

to the nature of these systems, each of these platforms allows the direct interrogation of single 
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molecules of DNA by imaging/measuring a certain structural feature of every nucleotide and 

chemically/physically detecting and identifying the complete nucleotide bases sequence 

comprising a DNA template. Furthermore, this type of systems also enables the generation of 

very long sequencing reads not depending, for example, on the enzymatic efficiency and 

processivity of a DNA polymerase system or on a chemical labeling step [158]. In this sense, 

under this group of single-molecule sequencing strategies, the biological nanopore-based 

sequencing technology, driven by electronics and not optics, has been one of the most 

developed and optimized platforms and it provides a high long read length profile that is very 

similar to that of single-molecule real-time (SMRT) SBS technology [163].  

2) Direct sequencing of single DNA molecules without the need for PCR amplification: 

 Unlike most widely used SBS-based second generation sequencing technologies (which rely 

on PCR to grow clusters of a given DNA template in order to generate that large number of 

DNA molecules and, consequently, to provide a high-coverage and high-throughput capacity), 

single-molecule sequencing does not require routine PCR amplification for the generation of 

reads as raw sequencing data. Therefore, third generation sequencing platforms can overcome 

issues related to the systematic biases introduced by PCR amplification: 

a) Amplification bias: non-uniform amplification of DNA that leads to over- or under-

representation of some complex sequences (e.g. repetitive DNA, high sequence homology, or 

extreme AT or GC content) and/or, even, one of the two alleles (allele imbalance or drop-out) 

of the gene tested [152][158]. 

b) Dephasing error: As step-wise and ensemble-based second generation sequencing 

technologies present dephasing error (sequence reads of each cluster gradually diverge in 

length due to uneven PCR amplification efficiency during either DNA ligation or DNA 
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polymerization), they rely on precisely gating the identical processing of many DNA 

molecules during sequencing. Consequently, production of limited short read lengths is 

required to assure a minimum level of length synchronicity and, thus, DNA sequence quality 

within each clonal population or cluster for the ultimate interrogation of the sequencing result 

(as an example see Figure I-19). In contrast, single-molecule sequencing technologies 

directly interrogate each DNA molecule independently and not in an uneven PCR clustered 

configuration, thereby avoiding this problem of loss of synchronicity or dephasing, allowing 

the generation of long read lengths with uniform DNA sequence quality [158]. 

3) Workflow and design bases of single-molecule sequencing technologies considerably 

decreases time-to-result: 

In comparison to first- and second-generation sequencing technologies (see Figure I-20), 

nanoscale third generation sequencing platforms drastically decrease time-to-result as they 

require minimal amounts of input material (theoretically only a single DNA molecule may be 

required for sequencing) and sample preparation to carry out a run. In addition, there are no 

time-consuming scanning and washing steps (even during DNA synthesis in the case of SBS-

based single-molecule technologies) and minimal use of biochemical reagents, enabling time-

to-result in a matter of minutes or few hours as opposed to days [158]. 

4) Generation of long reads by single-molecule sequencing technologies enables the tentative 

highly improvement of bioinformatics analysis of raw sequencing data [158]: 

Bioinformatics analysis of the NGS raw sequencing data is a complex process that comprises 

several main steps, in general [296]: i) Filtering of raw sequence reads based on quality metrics 

of the sequencing software instrument; ii) Sequence alignment or mapping of filtered raw reads 

against the given reference sequence database to capture all SNPs and structural variance; iii) 
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Sequence assembly (reference-based or de-novo) and phasing (based on polymorphic linkage) 

of mapped reads in order to build and resolve consensus sequences or contigs (that define the 

series of mapped, assembled and phased reads); iv) Final sequence alignment or mapping of  

these built phased consensus sequences against the given reference sequence database to 

determine the best fit and to provide the final allele/genotype variant call. In this bioinformatics 

analysis process, the read length is a critical factor for the assembly step. At this step, assembly 

algorithms are used to align overlapping mapped reads, which allows the original genomic 

region of interest to be assembled into contiguous sequences. Assembly algorithms can be 

reference-based and consider a reference sequence as input, or can be de-novo and blind to any 

data beyond the sequence reads. Long read length at the scale of the one generated by single-

molecule sequencing technologies (generally limited only by the sample preparation process) 

significantly facilitates and enhances both reference-based and de-novo assembly 

bioinformatics algorithms of very long genomic regions and even full genomes and, thus, it can 

provide a very high consensus sequence accuracy. Since the larger reads are easier to assemble 

due to more overlap between reads. Importantly, single molecule sequences spanning several 

thousand bases can also span repeats in the DNA sequence, allowing unambiguous location of 

the read on a reference, or overlapping the flanking contigs to unambiguously resolve the contig 

order and orientation (a bioinformatics process known as scaffolding) to reconstruct the original 

DNA sequence. Whereas contigs assembled from short-read data alone cannot be 

unambiguously ordered (especially in very homologous regions) because they overlap but do 

not span a repeat region. Therefore, in this respect, third generation of sequencing technologies 

offer clear advantages over previous generations of sequencing technologies, that can be 

summarized as: 



________________________________________________________Introduction 
 

Page | 133  

   © Gonzalo Montero Martin  

a) Direct detection of haplotypes (including challenging regions that are highly homologous 

(low SNP diversity) and yet polymorphic, presenting very distal polymorphic positions) and 

even, potentially, whole chromosome phasing thanks to long-read enhanced assembly 

algorithmic process during the bioinformatics analysis. 

b) Detection of extremely rare or novel variant thanks to very high consensus sequence 

accuracy.  

c) Construction and completion (filling the gaps) of full genomic sequence references based 

on all these aspects previously mentioned. 

5) Single-molecule sequencing technologies present a lower overall cost, when sequencing very 

long DNA regions or even complete whole genomes at high fold coverage in comparison to the 

“first-“ and “second-generation sequencing” technologies. 

6) Single-molecule sequencing technologies can detect DNA base modifications as part of 

sequencing [158]: 

Single-molecule sequencing technologies can also detect chemical modifications to nucleotide 

bases (that, for example, constitute important epigenetic markers or signals of DNA damage 

products), such as methylation, in the normal course of collecting sequence data since they are 

able to detect changes either in the kinetics of incorporation or by direct inspection of a specific 

physical property that is associated with a given DNA base modification. In contrast, the 

majority of these modifications cannot be sequenced with ensemble-based second generation 

sequencing methods, and where possible require very complex chemical steps. 

 

On the other hand, and very importantly, current long-read single-molecule sequencing 

technologies are still highly limited and restricted by a much lower throughput (referring to number 
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of reads generated per run as well as the degree of sample multiplexing), much higher error rate 

(at the individual raw read level) and much higher cost per base in comparison to short-read 

sequencing platforms. Nonetheless, several considerations are worthy to be mentioned in relation 

to these current limitations [158]: 

1) Low-throughput: The unique nanoscale single-molecule scanning approach of third 

generation sequencing platforms intrinsically limits the throughput of this type of technologies. 

In relation to its engineering design, there is an ongoing optimization to maximize the number 

and extension of reaction sites while still maintaining this crucial nanoscale dimension. In 

addition, some single-molecule sequencing platforms allow certain approaches (e.g. by 

overloading the template molecule or by increasing the number of sequencing passes) to 

increase the number of reads (higher coverage) but unavoidably causing a decreased read length 

and, thus, complicating the posterior assembly bioinformatics analysis process. Furthermore, 

the degree of sample multiplexing per instrument is still significantly limited. 

2) High error rate:  single-molecule sequencing platforms show an inherent relatively high error 

rate (>10%) at the individual raw read level. Unlike previous generations of sequencing 

technologies, the error model here is stochastic given the random fluctuations that result from 

interrogating a single-template DNA molecule. Thus, to compensate this initial high error rate, 

this type of technologies systems are still able to sequence the same template molecule more 

than once in order to construct a consensus read (by aligning all the sequences from each 

template molecule) that is much more accurate than the original raw read. Nevertheless, 

complex assembly and error correction algorithms need to be employed in order to produce 

high quality assemblies. In addition, this error rate is mostly biased towards indels (insertions 

and deletions) being still difficult to accurately call long homopolymer stretches (so far, only 9-

mers of the T nucleotide [159]) and repetitive sequences in some cases. Thus, once a 
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homopolymer stretch reaches a certain length, the exact number of nucleotides at such positions 

still become impossible to ascertain with current sequencing technologies [296]. 

3) High cost: due to their very low-throughput capacity, current single-molecule sequencing 

technologies present a much higher cost per base relative to short-read sequencing platforms. 

This may be decreased with future developments, but, at the moment, only second-generation 

sequencing workflows have been able to operate on a cost-covering basis (in relation to both 

amount of data generated and number of samples to be tested in a single run) despite the required 

high costs associated to reagents, automated robotics instrumentation and bioinformatics 

systems and support-storage logistics. 

 In addition, as this third generation sequencing still comprises very evolving sequencing platforms 

(at varying stages of development), the streamline, standardization and validation of workflows, 

informatics infrastructure, associated primary, secondary and tertiary analysis tools and, 

ultimately, data generated of these platforms are still at a very early stage. Thus, many more 

research studies still need to be carried out in order to prove the feasibility of these single-molecule 

sequencing for their validation and implementation into the clinical routine while also meeting the 

quality control (QC) and quality assurance (QA) requirements of the respective official laboratory 

regulatory institutions (e.g. International Organization for Standardization (ISO)) [164]. 

In the context of high-resolution HLA typing, the power given by long-read single-molecule 

technologies has been rapidly considered, although just very recently developed and tested, as the 

possible new definitive sequencing approach with the potential for [159][200]:  

1) Obtaining complete full-length consensus sequences for all HLA loci due to long sequence 

reads (20 kb and even longer) can allow full coverage to encompass whole HLA class I (~4-5 
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kb) and class II (~10-17 kb) genes sequences. Therefore, having the potential for obtaining the 

maximum allele-level resolution HLA genotyping at the 4-field unambiguously. 

2) Consequently, thanks to the long-read enhanced assembly algorithmic process during the 

bioinformatics analysis, having the potential of resolving the important HLA ambiguities found 

in previous sequencing generation platforms: 

a) Sanger sequence-based typing (cis/trans phasing heterozygous ambiguities). 

b) And short-read NGS platforms: presenting low coverage on DNA regions (mostly non-

coding regions) with repetitive and extensive low-complexity and imbalanced sequence 

composition, such as: repetitive DNA regions (including homopolymer repeats poly(dA), 

poly(dT), poly(dG) and poly(dC); regions of short-tandem repeats (STRs); or high AT- or 

GC-rich regions). Also in HLA sequence regions where de-novo assembly of shorts reads is 

very limited or even impossible to be done accurately, such as highly homologous sequences 

with very distal polymorphic positions (e.g. coding and non-coding sequences of HLA genes 

of the same class that are highly homologous between them; as well as nonfunctional HLA 

pseudogenes (e.g. HLA-H) with very similar sequences to functional HLA genes (e.g. HLA-

A)). Thus, a HLA genotype may present two adjacent but distal SNPs or variants that cannot 

be linked by a single read, either because the distance between the variants is greater than the 

achievable read or read-pair length, or because they are located on different exons deriving 

from separate PCR reactions. To some extent, this phasing ambiguity can be mitigated by 

considering only exact matches to the allele reference repository and restrict results to those 

alleles during the bioinformatics analysis for HLA allele assignment. However, this approach 

will lead to spurious results if the sample harbors a so far undescribed allele that has evolved 

by recombination [296]. 
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3) While second-generation short-read sequencing approaches have only the potential to obtain 

phased nucleotide sequence within each HLA locus, thanks to clonal sequencing property that 

allows setting phase for linked polymorphisms within each HLA gene (although with some 

important exceptions, especially in long HLA class II genes, such as HLA-DPB1 and HLA-

DRB1). Long-read single molecule sequencing platforms can provide very long sequences that 

can define entire full phased HLA haplotypes. Thus, allowing, for example, a better delineation 

of genes from pseudogenes and a potential absolute resolution of cis/trans ambiguities. Since 

long-read data, unlike short-read data, can overcome even challenging regions including those 

that are highly homologous (low SNP diversity) and yet polymorphic, presenting very distal 

polymorphic positions. It is expected that future analysis of the entire HLA haplotype region 

may allow more detailed understanding of the linkage of human MHC genes and its relation to 

their biological role (not only as individual genes but also as a single haplotype sequence) in 

different contexts such as pregnancy, transplantation or disease. Therefore, complete LD 

patterns could be totally described and understood within and, even, outside the human MHC 

region. 

4) Also, importantly, with the potential to fill in the vast number of gaps of the current HLA 

allele sequence database, which is largely incomplete as only the 10% of submitted reference 

HLA alleles are completely sequenced [146][463]. Thus, a more comprehensive catalog of HLA 

allele reference sequences would be very beneficial for improving primer/probe design, current 

NGS bioinformatics HLA genotyping analysis software tools and, ultimately, in the evaluation 

of the role of HLA in all its different applications (such as mismatches in transplantation, studies 

of population genetics, the evolution of HLA system, regulatory mechanisms and HLA 

expression, genomic organization of the MHC, etc….). 
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5) In the clinical histocompatibility setting, the highly time-effective (of the order of minutes to 

hours) workflow of single-molecule sequencing technologies opens, for the first time, the 

possibility to consider a real “STAT” high-resolution HLA typing protocol for clinical needs as 

deceased donor typing for organ transplantation in a low-throughput manner [161]. 

 

 

 

 

 

 

 



________________________________________________________Introduction 
 

Page | 139  

   © Gonzalo Montero Martin  

 

Figure I-19. Base quality along the length of sequencing reads in the Illumina SBS system (as a representative 

example of 2nd generation of sequencing technologies). For each fragment size, box plots are generated showing 

the median (blue line), upper and lower quartiles (orange bands), and the 10% to 90% quantiles (grey bands) 

with a smoothed curve shown across the read length in purple. (Top Graph) Short (343–535 base pair [bp]) 

fragments demonstrate a better quality of base calling. (Bottom Graph) Long (1015–1322 bp) fragments 

demonstrate a comparatively lower quality of base calling, which drops further toward the end of the reads. 

Figure and respective footnote are obtained and adapted from [157].  
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*Sanger Sequence-Based Typing (SBT) is considered the “first generation” sequencing technology. In the context of HLA 

genotyping, upon completion of sequencing, all the raw sequence files of the given sample are then loaded into the software analysis 

program and aligned with the IPD-IMGT/HLA reference sequences database. Specific positions in the sample sequence that do not 

align with the IPD-IMGT/HLA database are known as alignment inconsistencies. The technology of capillary electrophoresis-based 

dye-terminator Sanger sequencing is very limited, especially in terms of accuracy as it presents inherent diploid cis/trans ambiguities. 

Figure and respective footnote are obtained and adapted from: 

https://www.thermofisher.com/order/catalog/product/313001R#/313001R 

https://www.gendx.com/downloads/IFU/GenDx%20SBTengine%20IFU%20CE-IVD%20V3-2013-09%20M-13009%20EN.pdf 

 

 

*Next-Generation Sequencing is considered the “second generation” sequencing technology and it is based on short-read sequencing 

approaches. Here, as an example, it is represented an overview of Illumina Sequencing By Synthesis (SBS) chemistry. 

Figure and respective footnote are obtained and adapted from: 

https://www.illumina.com/systems/sequencing-platforms/miniseq.html 

https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf 

 

 

*Single-Molecule Sequencing is considered the “third generation” sequencing technology and it is based on long-read sequencing 

approaches. Here, as an example it is represented an overview of Oxford Nanopore Technologies (ONT) chemistry. 

Figure and respective footnote are obtained and adapted from: 

https://nanoporetech.com/about-us/news/oxford-nanopore-announces-ps100-million-140m-fundraising-global-investors 

and [544] 

 

 

Beginning around 2015, several research groups have been developing and reporting the first 

studies showing different approaches (depending on which are the amplicon-based targeting 

strategy and the commercial single-molecule sequencing platform used) for using long-read NGS 

platforms for high-resolution HLA genotyping [159][165-173]. Most of these studies have 

described a common targeted sequencing strategy (oriented to clinical practical purposes) based 

on an initial long-range PCR step (to specifically target and amplify these highly polymorphic 

HLA genes), followed by a simplified DNA library preparation step prior to the final single-

molecule sequencing process in a very fast time-to-result workflow. Through this approach, all 

these studies have shown robust and accurate full-gene sequencing results for HLA class I loci 

[165-173][475]. However, mostly due to the inherent limitations given by this PCR-dependent 

approach (PCR associated errors/biases and limitations of coverage), full-length genomic typing 

https://www.thermofisher.com/order/catalog/product/313001R#/313001R
https://www.gendx.com/downloads/IFU/GenDx%20SBTengine%20IFU%20CE-IVD%20V3-2013-09%20M-13009%20EN.pdf
https://www.illumina.com/systems/sequencing-platforms/miniseq.html
https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf
https://nanoporetech.com/about-us/news/oxford-nanopore-announces-ps100-million-140m-fundraising-global-investors
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of HLA class II loci (substantially longer in length than the HLA class I genes) has not been 

achieved yet, being equivalent or even inferior to the one obtained by short-read NGS approaches. 

Thus, while a robust HLA class II typing strategy is still pending (although being already in the 

first stages of development [368]), some groups [172][173] have tried to compensate these current 

limitations (e.g. lack of full-length sequencing and complete phasing) by using a complex and 

laborious dual redundant sequencing strategy (e.g. using programs such as DR2S software, with 

the combined final analysis of HLA sequence genotyping data generated independently and in 

parallel by short-read and long-read sequencing platforms) that at least serves as a workflow, not 

for clinical routine HLA typing, but for submission of novel full‐length alleles and characterization 

of sequences that are as yet incomplete (especially for the characterization of novel alleles 

harboring long intronic regions) [146][463]. Therefore, in contrast to short-read NGS-based HLA 

genotyping methods (which are relatively more simple, reproducible, robust, scalable, highly 

accurate and amenable to clinical and research testing), optimization of long-read NGS-based 

approaches is still required in order to be completely feasible for considering its future clinical 

validation and implementation [296][368]. 

 

9.2 Main Characteristics of NGS-based HLA Genotyping Workflow Approaches 

From a very broad general perspective, molecular- or DNA-based HLA genotyping workflow 

strategies can be categorized into two major groups: 

I) Targeted sequencing HLA genotyping strategies (based on direct and specific targeting of 

HLA genes from the genomic DNA to determine the HLA typing profile information) that, in 

turn, comprise: 
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1) Traditional legacy sequence-based typing methods: the previously described SSO, SSP, 

RT-PCR and SBT [76][85].  

2) Novel NGS-based typing methods: including both short- and long-read sequencing 

platforms respectively and that have been previously mentioned in the introduction of the 

present thesis work [152][159]. 

II)  Non-targeted sequencing HLA genotyping strategies (where HLA genotyping information 

is determined indirectly by whole genome/exome sequencing data approaches and inferred in-

silico by bioinformatics analysis approaches using either genomic or exonic or SNPs data 

sources that potentially include or are linked to HLA sequence data) that, in turn, comprise: 

1) HLA typing can be determined from the sequencing (applying NGS-based methods with 

very high-capacity instruments) of non-amplified genomic DNA using whole-genome 

sequencing (WGS) data [152][174]. Presently, as previously mentioned for single-molecule 

NGS sequencing approaches, this strategy does not generate sufficient amount of data to 

obtain a high enough depth of coverage for accurate HLA genotyping. Also, the current cost, 

turnaround time and logistical support required for WGS technologies are still not optimal 

and almost prohibitive for HLA typing, especially at the clinical setting [76].  

2) HLA typing can be also determined from the sequencing (applying also NGS-based 

methods with very high-capacity instruments) of non-amplified complementary DNA 

(cDNA) (generated by reverse transcription of RNA into complementary DNA) using whole-

exome sequencing (WES) data [152][174][175]. Nevertheless, the WES data is only 

comparable to the exon-based typing strategy (where polymorphism in non-coding regions is 

not defined) given by traditional legacy methods or even NGS-based methods. In addition, 

WES data shows relatively lower coverage expected for the HLA regions of interest causing 
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allelic imbalance or dropouts very often [76]. A similar approach as it is transcriptome 

sequencing (or the so-called RNA-Sequencing) also presents similar limitations. 

3) In addition, HLA typing can be determined from dense SNP array data by using genotype 

imputation algorithmic methods and reference panels (datasets of which SNP variants are 

associated with which HLA alleles in previously genotyped samples of a given population 

and ethnic group) [528]. Where known comprehensive linkage disequilibrium information 

between single nucleotide polymorphism variants (SNPs) in the MHC region and specific 

HLA alleles is informative in predicting the HLA genotype. Thus, using a large number of 

SNPs in the neighborhood of classical HLA loci can potentially produce accurate inferences. 

In comparison to other approaches, the combined use of inexpensive array-based SNP 

genotyping and HLA imputation represents a very cost-effective strategy avoiding costs for 

wet lab-based HLA typing and thus renders association analyses of the HLA in large cohorts 

feasible (of special interest for large-scale disease-association studies and population studies) 

[176][177]. However, imputed HLA genotype calls are still much less accurate than those 

obtained by direct molecular sequencing approaches (both traditional and NGS-based) [142] 

especially due to important limitations presented by the imputation reference panels and the 

current knowledge of SNP data in the human MHC region. Since current imputation reference 

panels are based [176][177]: 

a) On LD data between the SNPs and the sequence variants located only (mostly) in the exons 

of HLA class I and class II genes (and not always for the totality of the classical polymorphic 

HLA genes), thus it is limited to 2-field allele resolution level. 

b) Only on the most common HLA alleles for a given population, where rare alleles are 

usually poorly represented and novel alleles cannot be detected. 
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c) On HLA data only from certain ethnic groups (mostly Caucasoid/European ethnicities). 

Thus, complete multi-ethnic HLA imputation reference panels have not been established yet.  

d) Many imputation tools allow the imputation of HLA-A, -B, -C, -DQB1 and -DRB1 but only 

a few studies have reported on the imputation of the HLA-DRB3, -DRB4 and -DRB5 (HLA-

DRB3/4/5) loci. Where, as previously mentioned, these genes can be present or absent in an 

individual depending on the HLA-DRB1 genotype [56][75]. 

On the other hand, it is expected that high-resolution NGS-based HLA typing (including 

phased datasets from long-read technologies) data can significantly contribute for the 

development of more comprehensive and more accurate future imputation reference panels 

(since the discovery of variants via NGS will allow imputation-based analyses to take into 

account an increasingly extensive set of SNPs, including regulatory and intronic variants) 

[137]. 

Therefore, this second set of non-targeted sequencing HLA genotyping approaches can provide 

huge amounts of potentially valuable information more suitable for nonclinical applications such 

as large-scale population genetics studies, MHC-disease association studies and identification of 

de-novo MHC-linked histocompatibility loci [178]. But, at the moment, non-targeted sequencing 

HLA genotyping approaches are still less robust, less accurate, less comprehensive and less 

efficient time-wise and cost-wise than targeted sequencing HLA genotyping approaches. In 

contrast, these latter comprise methods that show high specificity and sensitivity for obtaining 

accurate HLA genotyping, with minimum level of ambiguities at the highest resolution (4-field), 

and that present a series of streamlined, standardized and validated lab-work protocols and data 

analysis bioinformatics systems of great importance in time constrained clinical diagnostics and 

applications. In this context, current targeted NGS-based HLA genotyping approaches have 
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become the considered new gold standard (especially for the clinical setting but also for HLA 

research purposes) for high-resolution HLA typing with minimum level of ambiguities, allowing 

also the detection of new HLA alleles as well as null and rare alleles 

[76][142][152][159][161][178]. 

All targeted NGS-based HLA genotyping workflows consist of the following general steps 

[76][157][296]: 1) DNA extraction and quantitation; 2) Template generation or preparation; 3) 

DNA sequencing library preparation; 4) Sequencing platform; and 5) HLA sequence data 

bioinformatics analysis process for assignment of HLA genotypes. In the following, the main 

technological/technical aspects and relevant metrics of each of these workflow steps are described: 

1) DNA extraction and quantitation:  

NGS-based HLA genotyping workflows are compatible with standard and conventional DNA 

extraction either automated or manual methods [76][157]. Importantly, NGS-based HLA 

genotyping workflows generally require less amount of genomic DNA (gDNA) per sample 

(ranging from 2.0 to 30.0 ng/uL) per test than other legacy sequence-based typing methods 

(SSO, SSP, RT-PCR and SBT) while covering and providing the genotyping data of more HLA 

loci in a single run. Nonetheless, many of these NGS-based methods are quite sensitive to low 

quality of gDNA sample (e.g. nucleic acid degradation, protein or RNA contamination or 

presence of anticoagulant chemical components). As this factor can interfere with the 

downstream PCR efficiency and data analysis affecting, consequently, the performance and 

robustness of this NGS-based HLA genotyping test. Nevertheless, several studies have shown 

how optimized NGS-based HLA genotyping methods can overcome these limitations to provide 

high quality and high-resolution HLA typing even in the most challenging cases such as when 

testing buccal swab samples (since buccal DNA is prone to nucleic acid degradation, presents 
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a much lower yield and is more contaminated with exogenous DNA from bacteria than that 

obtained from peripheral blood) [179]. 

2) Template generation or preparation:  

Once the genomic DNA specimen is extracted with required optimal conditions, the first step 

of NGS-based HLA typing workflows is the targeted isolation and enrichment (referred here to 

as template generation or preparation) of the HLA-specific region of the genomic DNA (either 

the entire human MHC (currently only considered for large-scale research studies) or, more 

oriented for practical clinical purposes, full-length genes or only certain exons within HLA 

genes) prior to the library preparation for sequencing [76][152][157][178][296]. For target 

isolation and enrichment in highly polymorphic regions as the HLA genes, two major optimal 

approaches have been developed [76][184]: 

a) Mid-/Long-range PCR-based target enrichment methods with the selection of target HLA 

sequence regions by PCR amplification (generating targeted templates termed as amplicons) 

that, in turn, can be divided into two main subgroups depending on the targeted amplicon size 

(which, at the same time, define the subsequent type of library preparation workflow and 

sequencing strategy that need to be carried out):  

(i) Mid/Short-range amplicon-based (exon-based) sequencing strategy (when the targeted 

region is relatively small, amplicon size <500 bases) with the:  

Multiplex PCR targeting of the clinically relevant and most highly polymorphic exons 

encoding for the antigen recognition domain (ARD) (exons 2 and 3 for HLA class I and 

exon 2 for HLA class II loci) and the surrounding genomic regions (e.g. exon 4 in HLA 

class I genes or exon 3 in HLA class II genes) [180-183]: 
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Principle: Designed “fused” region-specific primers with universal adapter/tag sequences 

are used to amplify target HLA regions by PCR. Thus, the resulting specific PCR HLA 

amplicon incorporates a universal adapter sequence at its ends. In a second PCR 

thermocycling step, there is an additional second primer pair that binds specifically to 

these universal adapter sequence ends. This second primer pair usually contains: a unique 

sample/amplicon-specific DNA barcoding sequence (or multiplex identifier tag (MID)), 

where the most common strategy used is the indexing by sample; also, possibly, a 

sequence that allows for specific final PCR enrichment of adapter‐ligated DNA fragments 

only; and the specific-instrument sequencing adapters at the very ends. These latter 

instrument sequencing 5' and 3' adapters have important functions for the sequencing 

process, since they may hold forward/reverse primers (only required for paired-end 

sequencing platforms) and act as binding sequences for immobilizing the adapter-ligated 

library fragments to the respective sequencer hybridization sites system (flow cell or chip). 

To cover completely these most polymorphic exons of HLA genes with a maximum length 

of ~276 bp, these amplicon-based methods must be able to produce reads with at least 

300-350 bp, and primers must be located close to the exons, which might be challenging 

(as these are high polymorphic sequence regions that could cause mismatches between 

primers and template easily) [184]. 

Advantages: In comparison to shotgun-based sequencing strategy, amplicon-based 

enrichment offers the advantage that DNA library is created without the need for 

subsequent manipulations such as fragmentation (only required for short-read sequencing 

platforms). Thus, their entire wet lab-workflow may be faster and simpler as well as the 

posterior bioinformatics HLA allele calling analysis [152]. 
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Disadvantages: Apart from common PCR-based associated errors and the challenging 

design of primers to amplify the highly polymorphic genes of a multi-gene family with 

enough specificity (amplification of only one locus) while maintaining enough robustness 

(amplification of all alleles with comparable efficiency to minimize allelic imbalance or 

even complete allele “drop-out” due to inherent PCR preferential amplification or 

inefficiency). As with Sanger sequencing, mid/short-range amplicon-based approaches 

present important ambiguous genotyping results, due to genomic regions not targeted by 

the primers and to the inability to set phase for linked polymorphisms within the amplicons 

for heterozygous samples [152]. 

Relevance: Up to now, all PCR amplification (short-/mid-/long-range) strategies are the 

most suitable method for target enrichment in highly polymorphic regions like HLA genes 

even in comparison to capture hybridization-based strategies. In addition, although this 

particular mid/short-range amplicon-based approach may present the same level of allelic 

resolution as routine HLA Sanger sequencing (targeting most commonly only the ARS-

exons), its workflow and NGS-nature allows a much more streamlined and higher 

sample/locus volume test than this legacy HLA typing method being suitable for the 

transplantation clinical setting [152]. 

(ii) Long-range shotgun-based sequencing strategy (when large targeted regions or 

amplicons of >500 bases in length are generated) with the:  

Targeting of the full-length gene using long-range PCR, spanning most or the totality of the 

coding and non-coding genomic regions for each HLA loci [185-190]: 

Principle: Large parts of the HLA genes or even the complete genomic sequence of the 

genes are specifically amplified in long-range PCRs followed by fragmentation of the 
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PCR product to sizes more appropriate for sequencing on NGS instruments (only required 

for short-read sequencing platforms). In this case, ligation of sequences that include 

instrument sequencing adapters and unique indexes MID-tagged adapters are added post-

PCR prior to the final step of shotgun sequencing [184]. Alternatively, full HLA gene 

constructs, generated by long-range PCR, can be sequenced in whole on a given long-read 

sequencing platform [296]. 

Advantages: Long-range PCR method enables sequencing of (almost) the entire HLA 

genes providing a much higher resolution (lower ambiguity) genotyping than a targeted 

amplicon strategy for selected regions, being able to generate high-resolution typing 

results (not only at the 2-field, but also at the 3- and, even, 4-field) routinely [152]. 

Furthermore, this long-range PCR strategy gives the possibility to place primers in less 

polymorphic regions allowing for improved resolution of genetic differences and using 

only one set of primers per locus. Thus, exons of the same gene can be amplified in one 

fragment, decreasing variation in coverage as it happens in mid/short-range amplicon-

based (exon-based) sequencing strategies [184]. Therefore, more polymorphic sites are 

sequenced to provide genotyping information of higher definition and the physical linkage 

between exons can be determined to resolve combination ambiguity. 

Disadvantages: Apart from common PCR-based associated errors and the challenging 

design of primers with maximum coverage and minimal allelic imbalance or drop-outs 

(due to inherent PCR preferential amplification or inefficiency; being very common with 

long-range PCR, where PCR efficiency decreases with increasing amplicon length). 

Methods using long-range PCR require intact DNA at least several kilobases (kb) long 

because the amplicons for delineating the HLA genes can potentially range from 4 to 17 

kb. Also, long-range PCR approaches require a more laborious and time-consuming 
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workflow (e.g. longer PCR times and a complex DNA library preparation with several 

steps and manipulations of long amplicons). Nevertheless, very recent developments, 

performed by different vendors now, have substantially increased the multiplexing 

capacity of this initial PCR amplification (e.g. single high-multiplexed PCR set-up for 

simultaneous amplification of all major HLA class I and class II genes per sample, 

removing the need for multi-amplicons pooling for each sample) and thus, consequently, 

simplifying the following DNA library preparation plus minimizing the overall protocol 

time (less than 3 days). This is due to all locus-specific primers are multiplexed in a single 

tube for amplicon generation, followed by an innovative library preparation process that 

allows the pooling of all samples into a single tube during the first steps of library 

preparation [191][483][484]. Moreover, although long-range PCR of HLA class I genes 

is relatively easy to design and perform, for HLA class II genes it is more difficult because 

of their large size and the relatively high GC content. For instance, HLA-DRB1 locus has 

a very large intron 1 (about 10,000 base pair) that is difficult to amplify as a whole by 

PCR. To overcome these difficulties, 2 primer sets are usually designed to amplify the 

desired gene in sections or, alternatively, designing primers that skip intron 1 to amplify 

the gene starting with exon 2. However, this lack of coverage influenced by the 

experimental long-range PCR design limitations significantly increases the level of typing 

ambiguities for these loci [192]. Therefore, current long-range shotgun-based sequencing 

strategies do not present 100% unambiguous HLA genotyping results for all HLA loci 

(especially longer HLA class II genes) yet. 

Relevance: Long-range PCR approach allows to optimize and maximize the entire 

capacity of NGS-based methods at a large-scale in terms of test volume. In contrast to 

amplicon-based strategies, long-range PCR approach has the full potential to provide 
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complete, minimally ambiguous and very high-resolution HLA typing in addition to 

complete genomic characterization of novel/rare/null HLA alleles and the completion of 

sequence for existing, partially sequenced alleles on the IPD-IMGT/HLA database. 

Therefore, at the moment, this strategy has become the most widely developed 

(encompassing the large majority of vendor-supported and/or in-house NGS-based HLA 

genotyping kits), standardized, validated and practiced showing a high feasibility and 

robustness for its routine use in clinical and research applications [192]. 

In the context of mid-/long-range PCR-based methods, during this step of template generation 

or preparation certain quality metrics and aspects need to be considered. Robust and 

reproducible amplification of every targeted locus and of every sample is required, where the 

efficiency and success of the used multiplexed set of primers need to be evaluated and 

confirmed after every PCR run. Thus, the common approach to confirming and quantifying 

amplicons is to use gel electrophoresis to detect amplification success/failure (usually per 

HLA gen per sample). After confirmation of the amplicons, there is a quantification step 

(using methods based on ultra-sensitive fluorescent nucleic acid stain for quantitating double-

stranded DNA (dsDNA) from DNA amplification products) and, usually, a subsequent 

normalization step (either balancing by simple equimolar pooling of amplicons per sample or 

balancing by using paramagnetic beads for the collection of comparable amounts of DNA 

between amplicons for each sample). Since NGS is based on massive parallel sequencing of 

a vast number of clones with multiple loci of many different samples in a single run. This is 

why confirmation, quantitation and normalization of initial amplicons are important steps in 

order to optimize an equal representation (which is also essential during the posterior 

bioinformatics analysis stage) of all genes/amplicons in each of the samples that constitute 

the final DNA sequencing library [157]. In some NGS-based HLA typing workflows, there is 
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a bead-based clean-up step prior to the normalization step in order to get rid of primer-dimers 

(and/or adapter-dimers) and any other PCR sub-product or reagent that are not of interest and, 

thus, isolating the targeted HLA amplicons. 

b) Hybridization-based capture methods, with the enrichment of target HLA sequence regions 

by complementary oligonucleotide (oligo-based) hybridization, represents an alternative to 

PCR-based target enrichment methods [193-196]: 

Principle: A high number of biotinylated DNA or RNA oligonucleotides or baits of 

specific length (~55-120 bp) are designed specifically complementary to the target 

regions. As a specific probe panel, these baits are then hybridized (via either in-solution 

hybridization capture approach (known as region specific extraction, which is based on 

pull-down of hybridization oligomers attached to magnetic beads); or solid-phase 

hybridization capture approach that can be array-based or presenting high-density on-chip 

baits) to the adapter-ligated and fragmented (through nebulization, sonication, 

enzymatically using endonucleases or transposons-based methods) genomic DNA library 

and bind to their respective target sequences. Adapter-ligated fragments bound by the baits 

are then enriched by streptavidin coated micro magnetic beads. These enriched fragments 

are subsequently amplified by PCR and further processed/purified to obtain a final DNA 

sequencing library that is sequenced in a massively parallel fashion as well [184]. 

Advantages: It is generally applicable for NGS-based target sequencing of larger genomic 

regions and a larger number of genes than the PCR-based methods, presenting a high-

multiplexing capacity [142][178]. 

Disadvantages: Target sequencing of the HLA genes using the sequence capture method 

has not been well developed compared with PCR-based HLA typing. Furthermore, PCR-
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based strategies have the potential for higher throughout of sequencing reads and thus, 

lower cost per sample. This hybridization-based enrichment requires an expensive and 

high-quality-balanced probe-pool to cover all of the allelic variations of the targeted HLA 

genes. As some regions are better captured than others, the main difficulty of this method 

is to achieve a homogeneous coverage along all targeted genes and alleles per locus. In 

addition, design of probes is limited to the current knowledge of the described HLA 

sequence variation in the incomplete reference databases (IPD-IMGT/HLA) [146][463]. 

These drawbacks make it difficult for large-scale and routine high-resolution HLA typing 

[142][178]. 

Relevance: As previously mentioned, it is notable that the hybridization-based capture 

method is generally applicable for NGS-based target resequencing of larger genomic 

regions (e.g. entire human classic MHC region (~4 Mbp); or the ~1 Mbp Leukocyte 

Receptor Complex (LRC) located on chromosome 19 (19q13.4); or within this LRC, there 

is the KIR region (~150 Kb)) and a larger number of genes than the PCR-based methods. 

Therefore, currently, this strategy appears to be more suitable for nonclinical applications 

such as large-scale population genetics studies, MHC- or KIR-disease association studies 

and identification of de-novo MHC-linked histocompatibility loci as well as the evaluation 

of the LD at the KIR region. 

3) DNA sequencing library preparation:  

In the context of mid-/long-range PCR-based methods, after the generation, confirmation, 

quantitation and normalization of initial targeted HLA amplicons per sample there is a post-

PCR DNA sequencing library preparation step that consists on several processes depending on 

the targeted sequencing strategy and the type of sequencing platform selected [76][157][192]:  
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a) Mid/Short-range amplicon-based (exon-based) sequencing strategy using short-read 

sequencing platforms: 

(i) Consolidation of samples into a single tube creating a whole double-stranded DNA 

(dsDNA) sequencing library. Where each sample consists on a normalized pool of adapter-

ligated (including unique sample (more used than by amplicon) barcoding sequence, 

sequence for specific final PCR enrichment and sequencing platform-specific sequence) 

cleaned amplicons of all the targeted HLA exonic regions. On the other hand, a very few 

recent protocols are based now on a single multiplex reaction which amplifies all major 

class I and class II loci, completely removing the need for amplicon pooling. Samples are 

transferred directly to library preparation and made ready for sequencing in a single 

workday [191][483][484]. 

(ii) Post-consolidation purification or clean-up of adapter-ligated dsDNA library: there may 

be possible additional steps of bead-based clean-up of the consolidated DNA library.  

(iii) Size-Selection of adapter-ligated dsDNA sequencing library amplicon fragments: the 

proper selection of size of the amplicon fragments from the DNA library (obtaining a final 

adequate representations of both smaller and larger fragments (uniform size distribution) 

for optimal library preparation) secures optimization of the sequencing run, increases the 

number of samples sequenced, provides high-quality sequencing data and maximizes 

possible phasing. In short-read sequencing platforms, when the size of the fragment 

increases, consequently, the sequencing efficiency decreases. Thus, smaller fragments have 

higher quality sequencing data than larger fragments (although they provide distal phase 

information not available from smaller fragments). In general, for short-read sequencing 

platforms, fragments of 300 to 500 bases are sequenced efficiently. Whereas the very small 
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(<150 bp) and very large fragments (>0.7-1.3 kb) have the ability to interfere with the 

sequencing of the most optimal intermediate-sized fragments and should be excluded before 

sequencing. Also this size selection step allows to remove adapters and/or adapter dimers 

from the libraries as they decrease the availability of library hybridization sites for 

subsequent clonal amplification due to competitive binding. Commonly used size selection 

strategies include bead-based technologies or gel electrophoresis-based technologies. Bead-

based methods have the advantage of simultaneously concentrating the pools, while 

electrophoresis-based methods provide better precision. 

(iv) Final PCR enrichment of size-selected adapter-ligated dsDNA library: the size-selected 

DNA library is amplified by PCR with specific-sequencing platform primers that may 

contain the sequences necessary for cluster generation (if they have not been added 

previously). Here, there is also a post-PCR bead-based clean-up step. 

(v) Final quantification of cleaned PCR-enriched size-selected adapter-ligated dsDNA 

library: generally, DNA library final quantitation can be done using a fluorometric 

measurement of DNA or more sensitively by real-time quantitative PCR (qPCR). The real-

time qPCR assays can use the ligated adapter sequence as the priming site for amplification; 

therefore, only DNA molecules that have successfully incorporated adapters at both ends 

will amplify. Nonspecific intercalating fluorescent dyes such as SYBR green are then used 

to detect the amplification in “real-time.” Concentration of the library is determined by 

comparison of fluorescence to that of a standard curve. Thus, the advantage of using real-

time qPCR is that the primers are complementary to the instrument specific adapters and, 

therefore, only adapter-ligated libraries are quantified thereby providing useful information 

about the robustness of the library preparation process (as only those fragments with both 

adapters will eventually be sequenced). Alternatively, automated electrophoresis-based 
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instruments for DNA library quality control can determine both size distribution of the 

library and concentration. However, the concentration measurement from these systems 

does not accurately represent the library concentration, as it measures all double-stranded 

DNA that is present and cannot differentiate between completely ligated fragments 

containing both adapters and fragments that are missing adapter sequences. 

(vi) Cleaned PCR-enriched size-selected adapter-ligated dsDNA library template final 

preparation and loading onto the short-read sequencing platform instrument: a process that 

generally consists on a conditioning treatment including denaturation of dsDNA fragments 

to obtain single single-stranded (ssDNA) fragments followed by dilution with a sequencing 

buffer that optimizes the final ssDNA library concentration for a balanced loading and an 

efficient immobilization process of the ssDNA library fragments to the respective sequencer 

hybridization sites system (flow cell or chip). Since the overloading of the DNA library onto 

the short-read sequencing platform instrument results in poor template generation and low 

sequencing owing to the clusters being too compacted. While the underloading of final DNA 

library material wastes the flow cell/chip (not using all its optimal clustering capacity) and, 

consequently, fewer data can be generated. 

b) Long-range shotgun-based sequencing strategy using: 

b.1) Short-read sequencing platforms: 

(i) Fragmentation of cleaned normalized pools of long dsDNA amplicons per sample 

(although a few very recent protocols start directly with a single tube [191][483][484]): 

the large PCR amplicons must be fragmented to sizes more appropriate and compatible 

for sequencing on short-read NGS instruments (since they cannot sequence fragments 

larger than about 700 bases, which are not cloned and sequenced as efficiently, presenting 
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also a too high dephasing error). Breaking large amplicons into smaller fragments is 

accomplished through either nebulization or sonication or enzymatically using two 

endonucleases system (the first enzyme randomly generates nicks on dsDNA and the 

second one recognizes the nicked sites and cuts the opposite DNA strand across the nick, 

producing dsDNA breaks) or using transposons-based methods. Fragmentation typically 

results in dsDNA fragments with short overhangs of 5´-phosphates and 3´-hydroxyl 

groups. DNA fragmentation needs to be performed in a measured way (optimizing 

fragmentation treatment conditions to avoid over- or underfragmentation), so there are 

adequate representations of both smaller and larger fragments for optimal library 

preparation. 

(ii) End-repair (blunt-ending and dA-tailing): the ends of the fragmented dsDNA 

amplicons are then enzymatically blunt-ended and in some cases 3′ adenylated in 

preparation for adapter ligation.  

(iii) Adapter ligation: this step involves attaching adapter sequences (with an overhang of 

a single T base) to the A-tailed ends of the fragmented end-repaired HLA dsDNA 

amplicons per sample. An adapter sequence will potentially consist on three components 

with different purposes: 

-Unique sample/amplicon barcoding sequence or index: the use of indexed adapters 

enables pooling of multiple samples and loci in a single run. There are two primary 

indexing strategies: indexing by locus or indexing by sample. In the first strategy, a 

single library is prepared with a unique index for each HLA locus for a single sample. 

The sequences obtained with this index can then be definitively assigned to a particular 

locus (having more reads per locus than in the indexing by sample strategy). The primary 
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benefit of this strategy is that software programs used to align sequence data and assign 

HLA genotypes can be aided by this information and can guard against misalignment of 

reads to an incorrect locus. The second approach, indexing by sample, offers a much 

simplified sample preparation process that also reduces cost. Thus, the massively 

parallel sequencing ability of NGS platforms is best exploited by the sequencing of 

many samples (each loci for each sample has the same index) in a single run through the 

use of indexed adapters. That is why indexing by sample is most commonly used instead 

of indexing by amplicon.  In this strategy, amplicons of all loci from a single sample are 

normalized and pooled prior to library preparation. The indexing here is simply used to 

distinguish one sample from the next. Nevertheless, this amplicon pooling strategy 

requires sophisticated bioinformatics HLA software programs that accurately obtain 

genotyping when cross-mapped reads from different loci may be present. 

-Sequence for specific final PCR enrichment: which allows for specific final PCR 

enrichment of adapter‐ligated DNA fragments only. 

-Sequencing platform-specific sequence: platform-specific sequencing 5' and 3' adapters 

have important functions for the sequencing process, since they may hold 

forward/reverse primers (only required for paired-end sequencing platforms) and act as 

binding sequences for immobilizing the adapter-ligated library fragments to the 

respective sequencer hybridization sites system (flow cell or chip). 

 (iv) Most, but not all, shotgun sequencing workflows include one or more purification or 

clean-up steps (typically accomplished with bead-based systems) to remove enzymes and 

other reactants between the fragmentation, end-repair, and adapter ligation steps. 

Nonetheless, recent developments have made possible to integrate these three enzymatic 
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processes (fragmentation, end-repair and adapter ligation) into the same thermocycling 

reaction and thus, consequently, simplifying the following DNA library preparation plus 

minimizing the overall protocol time [197]. 

(v) From this point on, the same NGS experimental workflow steps (i) to (vi) occur as 

previously described in a) Mid/Short-range amplicon-based (exon-based) sequencing 

strategy using short-read sequencing platforms. It is noteworthy that when using shotgun 

sequencing, it is also important to specifically select for library sizes that are ideal for 

clonal amplification on the short-read NGS platforms (300 to 500 bp) while, at the same 

time, being as long as possible for phasing distal polymorphic HLA positions. 

b.2) Long-read sequencing platforms: 

(i) In this context and in comparison to the workflow described before in b.1) Long-range 

shotgun-based sequencing strategy using short-read sequencing platforms:  

Workflows of long-range shotgun-based sequencing strategy using long-read sequencing 

platforms show many similarities and share all the main steps as previously described in 

b.1), in general:  

-Initial long-range PCR generating targeted HLA amplicons. 

-Confirmation, quantitation and normalization (using typically the amplicon pooling 

strategy, with the equimolar pooling of the HLA amplicons per loci of the same sample). 

-A series of steps (with also intermediate bead-based clean-up steps in between) 

including: barcoding of samples with unique indexes, end-repair (blunt-ending and dA-

tailing), consolidation of samples into a single tube and adapter ligation (adding to the 

end-repaired amplicon fragments the long-read sequencing platform-specific 
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sequences) creating a whole adapter-ligated double-stranded DNA (dsDNA) sequencing 

library.  

-Thus, steps such as fragmentation or PCR enrichment of adapter-ligated dsDNA library 

are not required in this case. This is because long-read sequencing platforms enable 

direct sequencing analysis of entire long single DNA molecule where no cluster 

generation is required. 

-At a certain stage of this workflow (generally prior to consolidation of samples), a size-

selection step (using bead-based technologies or gel electrophoresis-based technologies) 

may be included in order to obtain a final size-selected adapter-ligated dsDNA library 

that only presents very long fragments to maximize the potential offered by these third-

generation single-molecule long-read sequencing platforms (that are able to produce 

long read lengths of 20 kb and even longer). 

4) Sequencing platform: 

Up to now, the sequencing platforms that have been used in NGS-based HLA genotyping 

workflows can be broadly classified depending on the fragment-length that is read and phased 

[76][152][157][158][159][163][184][192][198][199]:  

a) Short-read (ranging from ~25 to 600-800 bp) sequencing platforms or second-generation 

sequencing technologies for both amplicon-based and shotgun-based DNA libraries, which 

mainly differ in the following characteristics: 

In general, DNA libraries contain the targeted HLA sequences and ‘‘adapter’’ sequences that 

allow capture of single molecules by an oligonucleotide immobilized to a bead/sphere particle 

or a sequencer slide/chip surface system in a massively parallel fashion. The captured single 
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molecules are then clonally amplified and the parallel clonal populations or clusters 

sequenced. Second-generation short-read sequencing application to HLA genotyping, by 

virtue of massively parallel sequencing and clonal DNA amplification, is able to provide high-

resolution allele-level typing with minimal ambiguity, high coverage of HLA sequences for 

several loci and a high-throughput capacity for testing a large number of samples 

simultaneously. 

a.1) Roche 454 systems (started in 2005): 

(i) Clonal amplification: DNA library fragments are clonally amplified on beads upon an 

emulsion PCR (emPCR). In emPCR, the DNA library is diluted and stoichiometrically 

added to capture beads such that a single ssDNA molecule binds to a single bead. The 

ssDNA binds to beads via adapter sequence with homology to oligonucleotides that are 

bound to the bead surface. The DNA-bound beads, along with biotinylated primers and 

other amplification reagents, are placed into an oil emulsion and are shaken in a controlled 

way such that a single DNA-carrying bead becomes encapsulated in a single micelle 

droplet. Amplification is thereby performed in isolation within each micelle 

(microreactor), producing a bead covered with many copies of DNA with identical 

sequence. After emPCR, the beads are recovered and enriched using streptavidin-coated 

magnetic microparticles. 

(ii) Sequencing: Roche 454 sequencing platform is based on single-end (library fragment 

is sequenced exclusively from one direction) sequencing by synthesis (SBS) 

pyrosequencing reactions that take place in a picotiter plate with wells containing each a 

previously isolated single DNA-carrying bead (in turn, each bead contains millions of 

copies of the respective original single-stranded DNA molecule). Although this system 
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presents single-end sequencing, in order to yield phased data: from each of the original 

dsDNA library molecules that are loaded, one strand is captured by one set of beads and 

the other strand is captured by another set of beads so that the two strands of the target 

DNA are both sequenced but in different wells. During a given pyrosequencing reaction, 

once a nucleotide is incorporated by the DNA polymerase, the released pyrophosphate 

(used as an indicator of specific base incorporation) is enzymatically (with the use of a 

sulfurylase and a luciferase) transformed into a light signal (photon) that can be recorded 

by a charge coupled device (CCD) sensor. 

(iii) Current relevance for HLA-sequencing: despite this technology is able to generate 

reads of up to ~550 bases for amplicon sequencing and it presents a maximum 

multiplexing capacity for the analysis of 380 samples in one GS FLX instrument run. Due 

to a number of limitations (e.g. low throughput of number of reads, high reagent costs and 

high error rate related to insertion-deletion (indel) variants and long homopolymer regions 

(since the signal strength (based on optical detection) does not increase linear with 

growing homopolymer length)) the Roche company ended the production of these 454 

platform systems in 2016. 

a.2) Illumina platforms (started in 2006): 

(i) Clonal amplification: in Illumina platforms, instead of emPCR, clonal amplification is 

based on a solid-phase (since all of the enzymatic processes and imaging steps of the 

Illumina technology take place in a flow cell slide system) process called bridge PCR 

amplification. In which, firstly, denaturated adapter-ligated ssDNA library molecules are 

hybridized or captured onto the flow cell surface system through one of the two 

oligonucleotides (forward and reverse oligos for amplification (one with a cleavable site)) 
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that are complementary to the adapter sequences introduced during the DNA library 

preparation step. These two oligonucleotides are pre-bound onto the flow cell surface at a 

concentration that allows spatial separation between captured immobilized single original 

adapter-ligated ssDNA library molecules. These capture oligonucleotides also act as 

amplification primers, priming each captured ssDNA library fragment for an initial 

amplification in each immobilization site. Thus, a respective initial copy of each of the 

individual sequencing template molecules is generated, obtaining respective dsDNA 

products, one per immobilization site. Then, each of these dsDNA molecules is denatured 

and each of the initial original DNA strand library molecules is removed. After that, each 

of the remaining copied flow cell-attached strands is clonally amplified through bridge 

PCR amplification in an isothermal amplification program, generating, each of them, a 

localized clonal cluster of identical template molecules. In this isothermal amplification 

program, multiple cyclic alternations of three specific buffers take place and they mediate, 

respectively, the denaturation, annealing and extension steps at 60 °C. In closer detail, 

during this bridge PCR amplification process, performed in a cyclic parallel fashion, for 

each of the initial remaining copied flow cell-attached strands:  

-Firstly, the initial copied strand folds over and the 3’ adapter region hybridizes 

(annealing step) to the nearby second type of oligonucleotide on the flow cell creating a 

bridge structure.  

-Then, DNA polymerase generate the complementary strand forming a double stranded 

bridge (extension step). 

-After that, this double stranded bridge is denatured, resulting in two single stranded 

copies of the molecule that are tethered to the flow cell (denaturation step). 
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-This process is then repeated over and over, and occurs simultaneously for millions of 

clusters resulting in clonal amplification of all the fragments. 

-Upon completion of all the cycles of denaturation-annealing-extension of this bridge 

PCR amplification process. The final step (right after the last extension step) consists 

on, firstly, the removal of one of the two strands of each of the generated dsDNA 

fragments through the cleavable site found in one of the two flow cell surface 

oligonucleotides (thus, reverse strands are cleaved and washed off, leaving only the 

forward strands); and, secondly, the blocking of all 3′ ends of the remaining forward 

strands with ddNTP to prevent unwanted priming (the otherwise open 3′ ends to act as 

sequencing primer sites on adjacent library molecules). At this point, for each of the 

clusters, all the generated forward ssDNA library strands are ready to be sequenced. 

The clonal generation of clusters is necessary to generate sufficient signals for detecting 

the sequencing reaction, as a minimum of signal intensity is necessary before it is detected 

by the camera of the instrument. Optimal cluster density depend not only on the 

concentration of the library, but also on the length of the molecules. Short molecules yield 

clusters with a small area that are denser and therefore generate more intense signals. 

Loading a wide fragment size distribution will generate clusters varying widely in size 

and signal strength which may impair the number of passing filter reads. These final clonal 

clusters, each produced from different, single DNA fragments, are then sequenced. 

(ii) Sequencing: the Illumina sequencing by synthesis (SBS) technology is based on a 

cyclic reversible termination (CRT) sequencing chemistry (using reversible terminator 

(RT) nucleotides) with a unique paired-end sequencing mode. The RT nucleotides consist 

on modified dNTPs protected at 3’-OH groups (2-cyanoethyl) and that are fluorescently 
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labeled with a specific single dye (Illumina 4-channel SBS detection method) or a mix of 

dyes (Illumina 2-channel SBS detection method). In this Illumina sequencing process, 

each of the attached ssDNA library fragments from each of the clusters on the flow cell is 

read simultaneously (in a massively parallel process), one nucleotide at a time per cycle 

in repetitive cycles. Thus, the number of cycles determines the length of the read in each 

direction. As Illumina SBS technology presents a unique paired-end sequencing mode, 

this means that each attached ssDNA library fragment is sequenced from both the ends 

(bidirectional read through for a target region), defining Read # 1 (R1) or Forward read 

and Read # 2 (R2) or Reverse read. For instance, paired-end 2x150 bp reads in a 300 

cycles sequencing run means that the given Illumina SBS technology kit/flow cell is able 

to generate sequencing paired-end reads (in both directions, forward and reverse) of 150 

bp in length of each attached ssDNA library fragment that is sequenced. Where the first 

150 sequencing run cycles (one nucleotide at a time per cycle) correspond to the 

sequencing of the forward ssDNA library fragments (Read #1); whereas the second left 

150 sequencing run cycles (one nucleotide at a time per cycle) correspond to the 

sequencing of the reverse ssDNA library fragments (Read #2). In closer detail, Illumina 

SBS paired-end sequencing by reversible termination consists of these following steps:  

• For the generation of the Read #1 or Forward read of each of the clusters: 

-First step: incorporation of the complementary RT nucleotide by DNA polymerase to 

each of the respective forward ssDNA templates attached to the flowcell. 

-Second step: imaging detection of the different fluorescence signals for a given cycle 

used as an indicator of specific base incorporation through two possible detection 

approaches: a separate dye for each base (Illumina 4-channel SBS detection method, 
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presented in Illumina MiSeq or HiSeq sequencers); or a mix of dyes for some of the 

bases (Illumina 2-channel SBS detection method, presented in Illumina MiniSeq or 

NextSeq 500/550 sequencers, that allows shorter sequencing (also reducing 

fluorophore usage) and data processing times comparatively; nevertheless, 2-channel 

systems present a more ambiguous base discrimination which causes slightly higher 

error profile and underperformance for low-diversity samples). 

 -Third step: restoration of free 3′OH group of all the incorporated RT nucleotides in 

a given cycle by cleaving the terminating moiety and reporter dye molecule. As a 

result, the template strands are ready for the next incorporation cycle. Thus, the 

sequence of each forward DNA template is read by following the fluorescent signal 

per cycle extension step repeatedly for each cluster. 

• For the generation of the Read #2 or Reverse read of each of the clusters: 

-After the completion of the first read, the read product is denatured and washed away. 

Then, the 3′ ends of the respective forward ssDNA templates (already sequenced) are 

deprotected. This allows that a single bridge PCR amplification event can occur on 

each of the deprotected forward ssDNA templates. Thus, forward ssDNA templates 

fold over and the 3’ adapter region hybridizes (annealing step) to the adjacent second 

type of oligonucleotide on the flow cell creating a bridge structure in each case. DNA 

polymerase extends (extension step) these second flow cell oligonucleotides forming 

double stranded bridges. Double stranded DNA molecules are then denatured and 

linearized and the 3’ ends are blocked. The original forward strands (already 

sequenced) are now cleaved off and washed away leaving only the complementary 

reverse strands. 
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-After this single bridge amplification PCR event and isolation of reverse ssDNA 

library strands. Generation of the Read #2 or Reverse read of each of the clusters take 

place through the same series of sequencing by reversible termination steps as 

previously described for generation of Read #1, completing the paired-end Illumina 

sequencing process. 

-Although it is not described in detail here, during the Illumina SBS paired-end 

sequencing process and immediately after the generation of Read #1 of each of the 

clusters as well as after generation of Read #2 of each of the clusters, the different 

respective specific indexing sequences of each sequenced fragment are also detected 

by the sequencer system to later identify and assign the reads generated with each of 

the barcoded samples/HLA amplicons (demultiplexing). In some instances this 

identification process of the reads is not done directly by the sequencer but by the 

posterior HLA calling bioinformatics software tool. 

Unlike Sanger sequencing (based on dideoxynucleotide or chain termination sequencing 

chemistry), Illumina sequencing by synthesis (SBS) technology prevents multiple 

extension events by using exclusively this reversible termination chemistry during the 

sequencing process. Consequently, although this reversible termination chemistry may 

slow the sequencing process, it provides very accurate base detection, reducing the 

intrinsic error rate, at the individual raw read level (ranging from 0.2% to 0.8% error rate). 

Furthermore, homopolymer and indel associated sequencing errors are minimized by this 

technique due to highly controlled incorporation of single base at a time (“letter-space” 

based nature), as the terminating moiety needs to be removed first before the addition of 

another base. Therefore, in comparison to other short-read sequencing platforms (Roche 

454 (1.0% error rate) or Ion torrent (1.78% error rate)) and long-read sequencing platforms 



________________________________________________________Introduction 
 

Page | 169  

   © Gonzalo Montero Martin  

(>10% error rate), the Illumina sequencing by synthesis (SBS) technology currently shows 

a very high sequence quality and a very low error rate [198].  

Also, a distinctive feature of the Illumina SBS chemistry is the inherent capacity (via 

bridge PCR amplification) to perform paired-end sequencing runs. Importantly, paired-

end sequencing allows to sequence each DNA fragment from both the ends resulting in 

high coverage, high numbers of reads and more data as compared to single-end sequencing 

systems (such as Roche 454 and Ion Torrent platforms). At the same time, paired-end 

sequencing may cause that the two distinct sequencing reads performed (one from each 

end of the template DNA library fragments) may be separated by a stretch of unsequenced 

DNA of distinct length termed insert. This is because in short-read sequencing platforms 

the read length is limited and most typically shorter than the actual DNA fragment size of 

the library. Nevertheless, this is not a drawback. Since insert size distributions can provide 

valuable information to infer structural variations or in de-novo genome sequencing (by 

producing longer contigs for de-novo sequencing by filling gaps in the consensus 

sequence). Alternatively, the paired-end reads may overlap to join the two distinct reads 

together in order to form a longer, continuous read. This joined read can then for example 

be employed in amplicon sequencing to generate reads that encompass the complete 

amplicon length. Furthermore, paired-end sequencing facilitates detection of genomic 

rearrangements (insertions, deletions, and inversions), repetitive sequence elements and 

gene fusions.  

(iii) Current relevance for HLA-sequencing: based on its very informative paired-end 

sequencing reads, high sequence quality and very low error rate. The Illumina sequencing 

by synthesis (SBS) technology is predominantly used in NGS-based HLA genotyping 

workflows as it sequences both amplicon-based and shotgun-based DNA libraries very 
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efficiently in comparison to other second-generation or, even, third-generation sequencing 

systems developed so far. In relation to high-resolution NGS-based HLA genotyping, and 

in comparison to other short-read platforms, Illumina paired-end sequencing reads data 

can offer a much higher phasing within a given targeted HLA locus (whose respective 

amplicon has been generated via long ranged PCR amplification) over longer distances 

for resolution of potential ambiguities associated to cis/trans polymorphisms. At the same 

time, insert size distributions, created by this paired-end sequencing process, can be a 

useful tool because one long fragment can effectively anchor 2 distant polymorphisms to 

establish phasing. The average length of HLA antigen recognition site coding exons is 

270 base pairs. Thus, polymorphisms that span exons and even into the introns can be 

phased. From a systems standpoint, the primary disadvantage of the Illumina systems is 

the relatively long (~17h to 39 h, depending on flow cell and reagents cartridge capacity) 

run time and onboard data analysis of the instrument. Therefore, as it happens with other 

short-read sequencing platforms, Illumina SBS technology is clearly not a HLA 

sequencing system for rapid turnaround of HLA results that in certain contexts is required 

in the clinical setting. For high-resolution NGS-based HLA genotyping, MiniSeq (with 

multiplexing capabilities of a total of 96 distinguishable samples per run; and 2x150 bp 

paired-end sequencing runs in about 17h run time) and NextSeq 500/550 (with 

multiplexing capabilities of a total of 384 distinguishable samples per run; and 2x150 bp 

paired-end sequencing runs in about 29h run time) instruments are among the most 

suitable. 

 a.3) ThermoFisher Ion Torrent platforms (started in 2010): 

(i) Clonal amplification: Ion Torrent platforms (ion sensing) present a very similar process 

as in Roche 454 systems (fluorescence sensing), where DNA library fragments are also 
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clonally amplified on beads/sphere particles upon an emPCR-based process in a single-

nucleotide addition (SNA) approach. This approach consists on the addition of four 

nucleotides iteratively and the scanning of a signal after each addition in order to record 

an incorporated nucleotide.  

(ii) Sequencing: Ion Torrent platforms are also based on the principle of SBS with 

sequential flows of nucleotide triphosphates (dNTPs) as in the Roche 454 platform. 

However, Ion Torrent platforms present a semi-conductor silicon chip with sensor wells 

(each well can adapt a single ion sphere particle on which a single DNA template molecule 

has been clonally amplified in an emulsion PCR). This semi-conductor chip enables the 

detection of the specific incorporated bases by the DNA polymerase during sequencing, 

not based on imaging of fluorescent signals but based on the release of a hydrogen ion H+ 

during extension of each nucleotide (termed as pH mediated sequencing, silicon 

sequencing or semiconductor sequencing). Since the incorporation of a dNTP into a 

growing DNA strand involves the formation of a covalent bond and the release of 

pyrophosphate and also a positively charged hydrogen ion. The release of H + is detected 

as a change in the pH within the sensor wells on this semi-conductor chip. Thus, the Ion 

Torrent platform sequencing process is not dependent upon altered bases, enzymes nor 

optical detection, thereby simplifying the overall sequencing process, dramatically 

accelerating the time to result, reducing the overall footprint of the instrument and 

lowering cost. Indeed, Ion Torrent has the shortest sequencing run times of the short-read 

platforms (2–4 h for 200–400 bp). Nevertheless, similar to Roche 454 systems, 

homopolymer and indel associated sequencing errors as well as AT-/GC-bias are 

significant owing to the “flow-space” based nature of its sequencing chemistry. At the 

same time, although it still yields phased data (as Roche 454 systems), the limited single-
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end sequencing is the most common approach in Ion Torrent technologies. There are three 

different Ion Torrent sequencing chips available with an increasing number of sequencing 

wells to enable different scales of throughput: the 314 chip enables an output of up to 10 

Mb, the 316 chip up to 100 Mb, and the 318 chip up to 1 Gb. The chips cannot be further 

partitioned, yet there are 96 MIDs available for multiplexed sequencing. 

(iii) Current relevance for HLA-sequencing: similar to Illumina platforms, Ion Torrent 

platforms (whose main strengths are the very high sequencing speed and an average read 

length (~400 bp) that encompasses the average length of a single HLA exon (~280 bp) 

[184][200]) are currently used in NGS-based HLA genotyping workflows for sequencing 

both amplicon-based and, although less efficiently than other platforms (e.g. Illumina), 

shotgun-based DNA libraries as well.  

b) Long-read (20 kb or more) sequencing platforms or third-generation sequencing 

technologies for shotgun-based DNA libraries, which mainly differ in the following 

characteristics:  

Instead of sequencing clonally amplified templates, single HLA DNA library templates are 

sequenced directly with minimal use of biochemicals and at nanoscale dimensions. Thus, 

third-generation sequencing technologies achieve long read lengths (>20 kb) by 

interrogating the nucleotide sequences at the single molecule level in contrast to second-

generation sequencing platforms. Furthermore, third-generation sequencing technologies 

are characterized by a very significant decrease in sequencing run time (ranging from 

minutes to hours) and, not relying on PCR to generate clusters, a decrease in or elimination 

of sequencing biases introduced by PCR. In addition, third-generation platforms can directly 
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target single DNA molecules in real time so that the sequenced reads are ready for analysis 

immediately. 

b.1) Pacific Bioscience (PacBio) platforms (started in 2010): 

(i) Sequencing: Pacific Bioscience (PacBio) platforms (RSII and Sequel) are based on 

single-molecule real-time (SMRT) SBS technology. In this PacBio technology, instead of 

immobilizing ssDNA library strands, the high fidelity ɸ29 derived DNA polymerase along 

with a single strand DNA library template is immobilized at the bottom of zero mode 

waveguides (ZMW). Zero-mode waveguide (ZMW) is a nanophotonic confinement 

structure that allows the accurate detection of the activity of a single DNA polymerase 

incorporating a single dye-labeled nucleotide (where a fluorescence signal is detected by 

instrument optics) as it synthesizes the complementary strand of DNA. The entire 

sequencing process is performed on a chip (SMRT Cell) containing around 150,000 of 

these ZMWs. In addition, adapter sequences added to the target DNA library fragment by 

ligation allow formation of a dumbbell-shaped circular double stranded molecule, the 

SMRTbell library.  Within each ZMW, the polymerase synthesizes a complementary 

strand to the denatured strand of the circular template and can generate strands of up to 40 

kb with the median length around 10 kb. With a relatively short library insert, the 

polymerase can go around the circle multiple times (increasing the number of sequencing 

passes) thus, the error rate can be reduced by increasing the number of subreads generated. 

Whereas with a longer library insert, only one sequence may be generated per ZMW, 

having here a higher error rate and lower number of reads. While each individual read has 

an important inherent non-systematic error rate (11%-15%) in Pac Bio systems, a reliable 

consensus sequence is bioinformatically (assembly algorithm that relies on error 

correction) derived from the multiple reads within a ZMW (only when there are smaller 
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inserts) and the multiple reads from other ZMWs. The PacBio run time is fast (30–240 

min per SMRT Cell). 

b.2) Oxford Nanopore Technologies (ONT) platforms (started in 2014-2015): 

(i) Sequencing: Oxford Nanopore Technologies (ONT) platform is based on direct, 

electrical detection of single DNA molecules. This ONT system consists on a biological 

nanopore which is constructed from a modified α-hemolysin pore that has an exonuclease 

attached on the normally extracellular face of the pore. A synthetic cyclodextrin sensor is 

also covalently attached to the inside surface of the nanopore. This 3-component system 

is contained in a synthetic lipid bilayer, so that when DNA is loaded onto its exonuclease-

containing face and a voltage is applied across the bilayer by changing the concentration 

of salt, the exonuclease can cleave off individual nucleotides. The individual nucleotides 

are detected once they are cleaved based on their characteristic disruption of the ionic 

current flowing through the pore. Therefore, this type of sequencing technology does not 

require polymerase enzyme, there is no need for DNA polymerization (no sensitive to 

temperature changes) and incorporation of nucleotides as well as no need for pH alteration 

detection. For instance, the ONT MinION instrument (of the size of a USB stick) 

comprises 512-2000 of these nanopores with each nanopore having the sequencing speed 

of 120-1000 bases per minute. The read length profile of MinION is very similar (~10 kb 

or more) to that of PacBio, but the error rate is even higher (12%-38 %) though it has been 

improving with recent advances in chemistry. Unlike PacBio, the error rate cannot be 

improved by increasing coverage since the MinION is limited to two sequencing passes 

by design. Similar to PacBio, complex assembly and error correction algorithms need to 

be employed in order to produce high quality assemblies. The current throughput is low 
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and not very stable and the default run time is 48 h though data can be analyzed in real-

time as the reads pass through the sequencer. 

Current relevance of long-read sequencing platforms for HLA-sequencing: as previously 

described, long-read HLA sequencing data (although presenting low-throughput, high error 

rate and a high cost) has the potential of resolving, in a very fast sequencing mode, all the 

important remaining HLA ambiguities found in previous sequencing generation platforms 

by providing full coverage for all HLA sequence genes. Therefore, having the potential for 

obtaining whole-gene consensus sequences at the maximum 4-field allele-level resolution 

unambiguously and completely phased HLA haplotypes. However, so far all long-read 

sequencing HLA genotyping approaches have been long-range shotgun-based sequencing 

strategies and, thus, still based on an initial long-range PCR with its inherent limitations of 

coverage (especially for longer HLA class II genes) and associated biases. In addition, long-

read data quality (with a high error rate) so far lacks behind other current short-read NGS 

technologies. Therefore, improved bioinformatics algorithms are needed to generate HLA 

genotyping results at the accuracy required to be feasible and reliable for clinical and 

research applications. Furthermore, to be economically and practically viable, long-read 

sequencing technologies still need to improve their throughput capacity (number of reads 

generated and degree of sample multiplexing). At the same time, long-read sequencing 

approaches can be a good complementary HLA sequencing data source to generate a 

scaffold of long reads where shorter high quality reads, produced by short-read 

technologies, could be overlaid and, thus, to maximize coverage of all HLA loci 

[172][173][204][359]. 

5) HLA sequence data bioinformatics analysis process for assignment of HLA genotypes:  
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Bioinformatics analysis of the NGS-based HLA sequencing data is a critical step for obtaining 

accurate high-resolution HLA genotyping information. The nature of these bioinformatics 

approaches and the achievable level of typing resolution are dictated by the sample preparation 

methods and sequencing platforms used [296]. Many different software packages (both in-

house and commercial) have been developed, validated (as they need to meet both quality QC 

and QA requirements) and released. All programs have the capacity to handle NGS data and 

utilize the IPD-IMGT/HLA allele database (even some programs present an additional in-house 

database that includes sequences of genomic regions lacking references in the current IPD-

IMGT/HLA database [187]) genotype assignment. With most of the commercial programs also 

offering user interfaces that enable the visualization of sequences, coverage, genotype 

assignment, and mismatch information. While there has been significant development of 

software programs dedicated to NGS-based HLA data, these programs continue to evolve 

alongside the sequencing technology and approaches (e.g. long-read sequencing platforms) for 

HLA template generation [167]. At the same time, the majority of NGS-based HLA sequence 

data bioinformatics software analysis programs require major capital investments to the 

user/laboratory facility. As complex and costly informatics logistics and infrastructures are 

required to ensure optimal data storage and data processing routinely, especially in the clinical 

setting [76][156][192]. Since the amounts of data generated by NGS platforms are typically 

magnitudes larger compared to Sanger sequencing, where high volume and complex nature of 

NGS datasets necessitate non-trivial IT infrastructure and expert bioinformatics skills [296]. 

In detail, bioinformatics analysis of the NGS-based HLA sequencing data is a complex process, 

based on a combination of algorithmic and statistical methods (overlapping between the NGS 

sequencer software program and the respective external HLA allele calling and genotype 
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assignment bioinformatics software program), that comprises three main analysis stages 

[76][152][157][184][188][192][296]: 

a) Primary analysis (generation of raw reads sequencing data and quality scores) by the 

respective NGS sequencing platform:  

After the sequencing and base calling processes are completed by the respective sequencer 

system. The sequence information or read from each fragment/cluster is recorded by the 

sequencer’s software system along with the quality scores. Quality scores evaluate the 

probability of a base calling error quantified using Phred (e.g. Sanger sequencing technology) 

or Q (e.g. Q30 in Illumina short-read platforms; QV50-QV70 in long-read PacBio SMRT 

technology; or Q5-Q13 in long-read ONT Nanopore platforms) values as sequencing and base 

calling quality metric scales. For instance, Q30 score is used as a metric and indicates that a 

base has a 1:1000 probability of being called incorrectly (or 99.9% base call accuracy). 

Therefore, the higher percentage of reads presenting the Q30 score, the more accurate the 

sequencing data is [192]. In this sense, each sequencing platform is unique not only in how 

quality scores are calculated but also in relation to the data storage format used (e.g. .sff or 

.bam). Regardless, most NGS data formats can be converted into the FASTQ format, which 

is a standard representation of NGS data, containing entries for each read’s haploid DNA 

sequence and corresponding quality scores. For paired-end sequencing (Illumina platforms), 

two FASTQ files are generated, with reads from each end (Forward/Read #1 and 

Reverse/Read #2) of the DNA fragment placed into separate files and linked (demultiplexing) 

through the sequence identifier (sample or, less commonly, amplicon). 

b) Secondary analysis (of the reads per each respective barcoded sample and HLA locus) by 

the respective HLA allele calling and genotype assignment bioinformatics software program 
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using a certain set of algorithms for: first, alignment of cleaned reads to a reference sequence; 

and, second, identification of variants and subsequent sequence assembly and phasing. 

Although the bioinformatics algorithms/pipelines (where their parameterization is often a 

compromise between speed and accuracy of the analysis) for interpreting mid/short-range 

amplicon-based sequencing data (in which the primer sequences are used to assign the reads, 

which all start at a defined position, to a specific genomic region) are different from the ones 

used for interpreting long-range shotgun-based sequencing data (which deal with a more 

diverse set of overlapping reads and typically assemble them based on a reference sequence), 

this NGS data secondary analysis stage may include all or several of these following main 

steps:  

 i) Read cleaning/filtering: at this step, there is a filtering of raw sequence reads based on 

quality metrics of the sequencing software instrument as well as the removal of adapter 

sequences (which are useless and misleading for HLA allele calling). Removal of low-

quality reads, too short in length (e.g. due to PCR errors/artifacts), and trimming of the ends 

of the reads (as for most of the NGS platforms, the quality of base calls declines toward the 

ends of the reads), including the adapter sequences, by bioinformatics tools is important to 

improve the quantity of reads useful for final HLA genotype assignment. If the data may 

derive from HLA-untargeted sequencing libraries or if amplicons/captured sequences from 

different genomic locations have been pooled for sequencing, reads first need to be correctly 

attributed to a specific genomic location prior to sequence alignment or mapping step [296]. 

ii) Sequence alignment or mapping of cleaned reads against the given HLA alleles reference 

sequence database: competitive sequence alignment or mapping of cleaned raw reads 

against the given known (and any additional in-house described one (e.g. [187])) HLA 

alleles reference sequence database allows to capture all SNPs and structural variance of the 
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targeted HLA regions. Thus, reads are compared across a reference sequence database and 

attempts to locate the proper position of the read, or pairs of reads, given certain reference 

allele sequence. Where read mapping typically involves two sub-steps: a fast initial heuristic 

is used for identifying one or more top mapping locations on the reference for each read, 

followed by local alignment optimized for accuracy [296].  At the same time, different levels 

of reference sequences may be applied (establishing a hierarchical scoring strategy [296]), 

considering: partial cDNA (exons 2 and 3 for HLA class I loci, and exon 2 for HLA class II 

loci), full cDNA (all exon sequences) and full gDNA (both intron and exon sequences). A 

ranking list of candidate alleles is generated indicating also exon/intron mismatch in allele 

assignment information. 

iii) Sequence assembly (reference-based or de-novo) and phasing (based on polymorphic 

linkage) of cleaned, mapped reads building one (homozygous sample) or two (heterozygous 

sample) consensus sequences or contigs (where a contig defines the series of mapped, 

assembled and phased reads per HLA allele of each HLA locus in a given tested sample): 

at this step, there is the identification of variants at different positions (polymorphic sites or 

SNPs) together with their phased assembly (as the process for annotation/interpretation of 

the identified variants) for building the consensus sequence/s per targeted HLA locus of a 

given sample. After alignment, firstly, the variant positions are determined at locations 

where the aligned sequencing data (reads) are different from the reference, and can be either 

homozygous or heterozygous in nature. In this variant calling step, two crucial sequencing 

data parameters/metrics (depth of coverage and the quality score) are used by the analysis 

program’s algorithms and statistical methods to decide whether a position is truly different 

from the reference. The depth of coverage refers to the number of reads aligned to a given 

position in the reference sequence. Thus, aligned bases with lower quality scores indicate 
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lower confidence that the nucleotide call is correct and are down-weighted during variant 

calling at a given position (with preference given to aligned bases with higher quality scores) 

(see Figure I-21). Whereas a higher number of reads present at a given position (higher 

depth of coverage) makes it easier to discriminate the signal (actual bases present, high 

quality scores) from the noise (errors during sequencing, base calling, and alignment, often 

with lower quality scores) during variant calling. Moreover, the uniformity/extent of 

coverage (i.e. depth of coverage throughout the length of the amplified/targeted region of a 

given HLA gene) is also a very important metric so that all targeted regions of both HLA 

alleles per locus are equally represented. In this sense, as both the number of HLA loci (up 

to 11 classical loci) and the number of samples (of the order of hundreds) tested tend to be 

usually high for a given NGS-based workflow run, coverage uniformity becomes even a 

more relevant parameter to take into account. Since running fewer samples per run results 

in greater coverage per allele/locus, but at a higher cost per sample. Conversely, running 

more samples means less coverage per allele/locus and possibly less confidence in the final 

genotyping result. In addition, and intrinsically related to the depth and uniformity of 

coverage, a minimum total number of raw reads of a certain minimum average length (e.g. 

if the reads are 150 bases long, then proportionally more reads per allele/locus/sample are 

needed to obtain the same depth of coverage as a sequencing run with reads of 250 bases) 

must be initially obtained for HLA genotyping software analysis in order to: optimize a 

balanced representation metric of cleaned mapped reads of each allele, of each locus and of 

each sample that can ensure a final reliable HLA genotyping result; and, at the same time, 

to compensate (until certain extent) the technical/chemical/enzymatic-related limitations of 

these PCR-based NGS HLA genotyping workflows (e.g. PCR-related limitations/errors that 

cause allele imbalance/drop-outs as well as imbalanced representation of  HLA gene 
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amplicons of different length (more reads are required for longer class II genes than for the 

shorter HLA class I genes)). Therefore, a careful optimized balance of all these factors (e.g. 

number of samples/loci per run to be tested and, also, minimum number of obtained raw 

reads of certain average length per locus/sample to be analyzed) must be established in the 

design of both the experimental protocol and the bioinformatics data analysis stage of any 

given PCR-based NGS HLA genotyping workflow to ensure minimum optimal sequencing 

data analysis metrics (such as quality score, coverage depth and coverage uniformity) in 

order to have a robust analysis for a reliable HLA allele calling and genotype assignment. 

At the same time, HLA genotyping software programs present built-in default filters to 

define the thresholds of each of these sequencing data analysis metrics (such as quality score 

(e.g. Q30 ≥ 75%), coverage depth (e.g. 30-40 reads (30-40x)); coverage uniformity (e.g. 30-

40 reads (30-40x)); and balanced representation metric of reads to define 

heterozygosity/homozygosity at a given position (e.g. to call a heterozygous position, ratio 

of bases must be at least 20%)) in order to establish credible genotyping. Importantly, the 

depth of coverage (at a given position and throughout the length of the given targeted HLA 

region with a minimum required balanced representation of reads per allele-per locus-per 

sample) has a significant and direct impact on the reliability of the consensus sequences that 

are built, as this consensus building process is based on all these identified variant positions 

(polymorphic sites or SNPs). During this same identification process of variants at different 

positions, assembly algorithms are used to align overlapping mapped reads, which allows 

the original targeted HLA genomic region of interest to be assembled into contiguous 

sequences. In general, assembly algorithms can be reference-based and consider a reference 

sequence as input, or can be de-novo and blind to any data beyond the sequence reads (i.e. 

algorithmic reconstruction of the source sequences from read fragments without recourse to 
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a reference). So far, analysis of HLA sequence regions without or only partial reference 

sequences in the IPD-IMGT/HLA database (as only about 10% of known HLA class I and 

class II alleles have been fully described (full genomic sequences)) [146][463] requires 

suitable NGS bioinformatics software that performs de-novo assembly of sequence reads. 

In the same de-novo assembly algorithmic process, proximal/distal identified polymorphic 

sites are linked using phasing algorithms and based on polymorphic linkage information 

according to the read length available from the given single-end/paired-end short-read (with 

the potential of phasing alleles within a given HLA locus) or long-read (with the potential 

of phasing entire haplotypes encompassing different HLA loci) sequencing data. Haplotypic 

linkage can, however, only be reliably reconstructed if two heterozygous variants that need 

to be phased are covered by reads or read pairs [296]. The combination of these two 

approaches (de-novo assembly plus phasing) is a very useful feature that also facilitates not 

only overlapping the flanking and gapped contigs but also resolving the contig order and 

orientation (scaffolding) to reconstruct the original targeted HLA DNA sequence. At the 

end of this sequence de-novo assembly and phasing combined algorithmic process, one 

(homozygous sample) or two (heterozygous sample) phased consensus sequences or contigs 

are built. Importantly, quality scores for each consensus base generated need to be 

considered at the final HLA allele assignment [296]. 
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Figure I-21. Depth of coverage as derived from NGS reads. NGS reads (whether single or paired-end) are 

aligned to a consensus reference sequence (Ref.Seq.) to form an overlapping, stacked view of the coverage at 

any given nucleotide position. The number of reads at any given position represents the depth of coverage and 

is derived by the number of overlapping reads at that nucleotide position. Read depth at polymorphic positions 

is split between the reference sequence and the alternative allele (blue and orange bars) and indicates allelic 

representation. Figure and respective footnote are obtained and adapted from [76].  

 

iv) Final sequence alignment or mapping of these built phased consensus sequences against 

the given HLA alleles reference sequence database: mapping of these built phased 

consensus sequences against the given known (and any additional in-house described one 

(e.g. [187])) HLA alleles reference sequence database allows now to determine the best fit 

and to provide the final allele/genotype variant call or assignment of each targeted HLA 

locus for a given tested sample. In addition to this “traditional” combined approach for HLA 

allele assignment (just described above and based on competitive mapping to a reference 

allele sequence repository (followed by varied scoring and refinement schemes to hone 

typing accuracy and precision) plus de-novo assembly and phasing consensus sequence 

generation from sequence reads followed by a final reference allele matching); it is 



________________________________________________________Introduction 
 

Page | 184  

   © Gonzalo Montero Martin  

noteworthy a very novel alternate strategy (although it is still evolving) which consists on 

read mapping to graph-based structures that succinctly encode nucleotide and structural 

variation in a single rich reference structure (i.e. an alternative to the linear model of 

representing sequence data emerged by imagining a set of genotypes as a graph, a network 

with nodes denoting nucleotides and edges connecting each nucleotide to all its possible 

predecessor and successor nucleotides) [296]. 

c) Tertiary Analysis: bioinformatics interpretation of results to determine the best fit and to 

provide the final HLA allele/genotype variant call per sample. As previously described, 

haplotype frequencies for alleles in strong LD have been established for specific ethnic 

groups, racial categories and certain worldwide populations (in both family and unrelated 

subjects studies) [131][132][201]. Thus, although the haplotype LD information is not used 

(most commonly) to determine computed sample genotypes through these NGS HLA allele 

calling and genotype assignment bioinformatics software programs. This haplotype LD 

information (from the publicly available information and from analysis of internally typed 

samples of a particular given HLA genotyping analysis software) can be used manually or 

with recently developed software programs [201] to validate observable haplotypes in NGS-

based HLA genotype data (to check if alleles identified in different loci match expected 

linkage disequilibrium tables) as well as helping to resolve situations of true homozygosity 

from allele dropout or vice versa (although it is still required to be confirmed by an alternative 

genotyping method) [157]. In addition to report the final HLA genotyping results per sample, 

NGS HLA allele calling and genotype assignment bioinformatics software programs are 

expected to identify and report the following events that also indicate the level of accuracy 

achieved by the given NGS-based HLA genotyping workflow (a critical aspect, especially in 

the clinical setting): 
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i) Novel alleles: 

Novel alleles (exon variants) can be also identified as discrepancies from the coding 

sequence (exons) of the reference alleles as well as the identification of new non-coding 

variants (allele variants detected in introns and untranslated regions). Nevertheless, while 

new alleles that are possible due to novel single nucleotide polymorphisms can be detected 

by current NGS methods with a high level of accuracy, detection and characterization of 

new alleles that are hybrids of two or more known alleles is still a major challenge for the 

so far and currently developed bioinformatics tools [76]. Furthermore, most of the 

introduced HLA genotyping software analysis programs do not report a nucleotide sequence 

but yield the best matching alleles in the IPD-IMGT/HLA database [87]. As such, the 

genotyping accuracy and benefit for clinical applications rely highly on the current status of 

correctness and completeness of the database [296]. 

ii) Unresolved ambiguities and mistyping situations in NGS-based HLA genotyping: 

So far, and as previously mentioned, all targeted sequencing HLA genotyping approaches 

developed (including both general groups: hybridization-based capture methods; and, the 

most widely used, PCR-based target enrichment methods with all their different strategy 

versions (mid/short-range amplicon-based or long-range shotgun-based using short-

read/long-read sequencing platforms accordingly)) have inherent limitations avoiding a 

100% unambiguous characterization at the 4-field and full phasing of HLA alleles yet and, 

thus, certain genotyping ambiguities still remain. In relation to the most widely applied 

PCR-based target enrichment methods, while some of their inherent PCR-related 

limitations/problems can be addressed or minimized during either the initial PCR 

amplification (e.g. optimizing reaction components (such as amplification conditions, 



________________________________________________________Introduction 
 

Page | 186  

   © Gonzalo Montero Martin  

inclusion of co-solutes, molar ratios of reagents, primers design and targeted genomic 

location (primers binding sites)) for a robust and reproducible amplification of every 

targeted locus and of every sample) or at particular steps of the DNA sequencing library 

preparation (e.g. normalization and balancing (equimolar pooling) of amplicons in order to 

optimize an equal representation of all genes/amplicons per sample). Also, the NGS HLA 

allele calling and genotype assignment bioinformatics software programs can be able 

(although only until certain extent) to detect and address or minimize these observed PCR-

related ambiguous events that can lead to incorrect HLA genotype determination. At the 

same time, other observed ambiguous events, that also compromise the accuracy and 

reliability of HLA genotype determination by NGS methods, are due to additional 

limitations coming from different current sources of ambiguity and mistyping (some of them 

closely related) such as: the incomplete/partial HLA allele sequence references in the 

official database (IPD-IMGT/HLA) [87][146][463]; inefficiency of the sequencing process; 

partial targeting strategy of NGS-based HLA genotyping approaches; NGS bioinformatics 

algorithm-related ambiguities; and the observed patchwork pattern of sequence 

polymorphism along the HLA system. In summary, these types of ambiguities (ambiguous 

events) and their corresponding sources as well as the possible troubleshooting options can 

be categorized and described as follows [202][296]: 

• PCR-related ambiguities: considering the major role that PCR amplification plays in the 

majority of NGS-based HLA genotyping workflows (e.g. template generation based on 

PCR-based target enrichment; and short-read sequencing platforms based on clonal 

amplification (either emPCR or bridge PCR amplification)), it is important to be aware of 

possible inherent errors and artifacts that can be originated from PCR amplification, as 



________________________________________________________Introduction 
 

Page | 187  

   © Gonzalo Montero Martin  

these can greatly affect the accuracy of HLA genotyping. PCR-related ambiguities are 

usually caused by two main issues: 

- Signal loss caused by inefficient and imbalanced amplification having HLA allele or 

locus imbalances or drop-outs that can make consensus assembly difficult or can cause 

low coverage, both of which can increase ambiguity. Most common causes of this signal 

loss are: sample-related issues (e.g. input/quality DNA issues or false homozygous HLA 

typing results for HSCT in cancer patients due to chromosome 6 loss in cancer affected 

cells (e.g. acute lymphocytic leukemia)); technical-related issues (e.g. 

thermocycler/instrument malfunction); protocol-related issues (e.g. primer design 

problems or human user error); and/or uncharacterized HLA polymorphism-related 

issues (e.g. novel variant (coding or non-coding) in primer binding site). Samples or 

HLA loci affected by dropt-outs/imbalances need to be re-processed and re-sequenced 

in most cases, which can be very time-consuming and it delays the turnaround time. On 

the other hand, there are circumstances during the HLA genotype assignment 

bioinformatics analysis and review process in which going below the default thresholds 

of sequencing data analysis metrics may be acceptable in order to address these dropt-

out/imbalance situations. This is the case when the polymorphisms of the two alleles of 

a locus are phased, the typing does not have a lot of noise from sequencing errors, and 

the locations with a low depth of coverage occur in a region that does not affect critically 

the allele call genotyping as well as the determination of homozygosity versus 

heterozygosity at a given locus. 

- Mixed signals caused by PCR crossover artifacts or PCR stutter artifacts basically 

create a mix of artificial alleles in vitro that makes allele selection difficult and not very 

reliable. PCR crossover artifacts can be generated by incomplete primer extension 
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(premature extension stops), mostly due to non-targeted annealing of already existing 

partially amplified complementary sequences (e.g. partial length product becomes 

primer for another locus or allele; thus, there may be annealing between homologous 

HLA loci and/or between the two alleles within the same HLA locus), presenting higher 

concentrations especially at the end (during the last cycles) of the PCR amplification 

process. Thus, out of the PCR products generated, an important percentage of re-

annealed partial amplicons are amplified (instead of the designated primer-amplicon 

template annealed pairs) which do not follow the original primer-designed specific 

targeting strategy. At the experimental protocol level, decreasing the number of 

amplification cycles or adjusting initial template concentration can greatly reduce the 

amount of PCR crossover artifacts. Also during the HLA genotype assignment 

bioinformatics analysis (if there is available an enough amount of initial raw reads at 

certain length to be analyzed), PCR crossover reads can be identified as systematic noise 

and, thus, filtered-out or down-weighted thanks to the phasing process. In which the 

algorithms can determine the correct base combination for each consecutive variant pair 

as long as the majority of the reads generated support the given real correct combination. 

On the other hand, PCR stutter products (differing from the original template by 

multiples of the repeat unit length) are a common artifact in the PCR amplification (and 

also in SBS-based sequencing approaches) of DNA regions (mostly non-coding regions) 

with repetitive and extensive low-complexity and imbalanced sequence composition, 

and that are present along the HLA system, especially at non-coding regions, such as: 

homopolymer repeats poly(dA), poly(dT), poly(dG) and poly(dC) (composed of eight 

or more nucleotides); regions of short-tandem repeats (STRs; comprised of 1–6 bp per 

repeating unit); or high AT- or GC-rich regions (that often contain mononucleotide 
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repeats of 10 or more bases). All these particular DNA regions can establish complex 

folded structures in the DNA molecule that, in turn, are prone to mutation via slipped-

strand mispairing (termed also as “slippage”) by the DNA polymerase during in vitro 

PCR-mediated DNA replication, as well as during in vivo DNA replication [203]. 

Mutations at these particular DNA regions during in vitro enzymatic replication are 

usually the result of insertion or deletion of repeats in the extending, or nascent, DNA 

strand sequence. In order for slipped-strand mispairing or slippage to occur, the DNA 

polymerase enzyme first stalls (when it reaches a complex folded structure that 

constitute a physical barrier for continuing the replication) and dissociates from the 

dsDNA complex during replication of the repeated motif. If base pairing is disrupted 

after polymerase dissociation, then a loop of one or more repeat units may form in either 

the nascent or the template strand prior to re-association and cause the insertion or 

deletion of one or more units, respectively, in the newly formed DNA strand during 

replication. Deletion mutations are believed to be more common as they require fewer 

nucleotides of the dsDNA to dissociate and therefore are more energetically favorable 

than insertion mutations. Thus, these mutations may confound the delimitation of the 

true repeat number, as stutter products can be generated (during PCR-mediated DNA 

replication) in similar or even greater proportions than the true product in length (where 

slippage rates increase with the length of these particular DNA regions). A particular 

variation on DNA polymerase slippage is when it is not the length of the homopolymer 

that is changed, but a base surrounded by two homopolymers such as CCCCACCCC 

changing to CCCCCCCCC and, thus, omitting the A in the middle position (i.e. short 

homopolymers in low complexity motifs as for instance GGGGCCGG (A*68:01:02:02) 

versus GGGCCCGG (A*68:142N) may not be reliably differentiated) [296]. During the 
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HLA genotype assignment bioinformatics analysis, the consensus assembly of these 

particular DNA regions with repetitive and extensive low-complexity and imbalanced 

sequence composition is itself difficult, and reads containing PCR stutter artifacts 

exacerbate this problematic analysis. Consequently, as it is very hard to identify PCR 

stutter artifacts as systematic noise and very challenging to filter them out, it is almost 

impossible to resolve (either with short-read or long-read sequences) the ambiguity of 

length polymorphisms, in this case between alleles that differ only in the length of these 

very repeats. Some common representative examples are the following: 

 (a) PCR-induced STR length mutation has been shown to lead to a loss of heterozygotic 

genotyping and to confound the discrimination of allelic differences in the HLA region 

in particular cases. In a well optimized PCR setup, however, those artefacts will only 

affect particular, mostly intronic, regions or a low fraction of samples [296]. STRs of 

considerable length and diversity exist, for instance, in intron 2 of HLA-DPB1 as 

(AAGG)(4–17) tetranucleotide repeats or in intron 2 of various HLA-DRB genes as (GT)(7–

27)(GA)(5–30) dinucleotide patterns [296]. As an example, HLA-DRB1*03:01:01:01 and 

HLA-DRB1*03:01:01:02 alleles differing only in an SNP in intron 1 and the length of 

GT repeats in intron 2. When the whole (very long) intron 1 of HLA-DRB1 is not 

sequenced (as for most of the available NGS HLA genotyping kits) these two alleles are 

practically indistinguishable. This type of ambiguity is commonly found in other HLA-

DRB1 alleles as well, since there is an extensive low complexity region with STRs at 

the border of HLA-DRB1 exon 2 and intron 2. 

(b) The length of homopolymers can reach up to 30 nucleotides in classical HLA genes 

(HLA-DRB1*15:02:01:02) and up to 45 in other clinically relevant genes in the MHC 

(e.g. MICB) [296]. Thus, classical HLA alleles differing in the length of the 
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homopolymer can be displayed as ambiguities, such as the null allele HLA-A*03:21N 

where there is an insertion in the originally 7 bases-long C homopolymer in exon 4 of 

the allele compared to HLA-A*03:01:01:01. Or B*51:01:01:01 and B*51:11N, which 

differ by a 6C versus 7C homopolymer stretch. Another example is the case of alleles 

of the pseudogene HLA-H (sequence stretch harboring 8 C nucleotides) that differ from 

the corresponding HLA-A alleles only in the length of homopolymers.  

• Incomplete/partial HLA allele sequence references in the official database (IPD-

IMGT/HLA)-related ambiguities: as previously mentioned, only about 10% of known 

HLA class I and class II alleles have been fully sequenced and are publicly available as 

HLA sequence references in the official database (IPD-IMGT/HLA) [87][146][463]. 

Thus, HLA genotype calling software programs are limited by this incomplete sequence 

database for comparing alleles and selecting the most probable alleles identified in the 

sample data. Since most of the alleles are defined only partially, these comparisons cannot 

be always done accurately and unambiguously. De-novo assembly of sequence reads 

generated by short-read sequencing approaches or long-read sequencing approaches try to 

compensate and/or work through this lack of reference sequence data. In addition, in those 

instances where more than one combination of alleles is equally possible based on the 

references sequences only if the phase information is available and reliable, these kinds 

of ambiguities can be resolved reassuringly. Another way to deal with some of the 

ambiguity introduced by the incomplete HLA reference space is to employ some 

hierarchical scoring strategy. By penalizing mismatches in ARD-encoding exons higher 

than in other non-ARD-encoding exons and by penalizing mismatches in other non-ARD-

encoding exons higher than in non-coding sequences, the best possible full resolution 

alleles may be recursively identified [296]. 
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• Inefficiency of the sequencing process-related ambiguities: regardless of the sequencing 

signal detection technology (e.g. sequencing errors caused by the “flow-space” based 

nature of the sequencing chemistry, where the signal strength does not increase linear with 

growing repetitive DNA sequence regions) or of the DNA polymerase enzymatic system 

(e.g. sequencing errors caused by slippage events) applied by both short-read and long-

read sequencing platforms; there are known current cross-platform problems and 

limitations during the sequencing process (especially of these particular DNA regions with 

repetitive and extensive low-complexity and imbalanced sequence composition) that can 

lead to HLA allele calling ambiguity as well. Even though very long single DNA 

molecules are sequenced or big amounts of sequencing reads of certain optimal length are 

generated and analyzed by the respective HLA genotype assignment bioinformatics 

analysis program. Also, it is possible that sequencing platforms generate low-quality reads 

(e.g. too short in length) and random artifacts reads (“orphan” or “off-target” reads which 

do not map at all to any known reference sequence used and/or are not similar to any other 

reads in the sequencing data) that may be identified (although only until certain extent) as 

systematic/random, respectively, noise and filtered-out by the given HLA genotype 

assignment bioinformatics analysis program tools.  

• Partial targeting strategy of NGS-based HLA genotyping approaches-related 

ambiguities: due to inherent technical limitations (referring to those shown by the most 

widely applied PCR-based target enrichment methods, whose coverage ability resides on 

the primer design possibilities and the PCR amplification capacity) and the very high cost-

coverage-time efficiency requirements involved (especially for its highly demanded 

clinical application), the large majority of current NGS PCR-based HLA genotyping 

approaches still characterize a limited number of genomic regions (excluding some 
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introns, UTRs and, even, exons) along the different HLA genes (especially in the long 

HLA class II genes, such as HLA-DPB1 and HLA-DRB1). This is usually a compromise 

between accuracy and throughput depending on the given clinical/research application. 

Thus, the ambiguity introduced by partial targeting depends on the selection of the non-

characterized regions, where polymorphisms located outside of these sequenced regions 

cannot be resolved. Some common relevant examples are the following: 

- Some HLA class II loci have very long introns (>5,000 bp) which also present 

repetitive and extensive low-complexity and imbalanced sequence composition and, 

consequently, low SNP diversity. All these unique structural characteristics make very 

challenging the primer design and selection of primer binding sites while trying to span 

the maximum length of the targeted genomic sequence. Two major cases are 

noteworthy: 

 (a) For the HLA-DRB1/3/4/5 loci (presenting a very large intron 1, about 10,000 bp), 

the designated binding sites of the targeting primers are usually not in the UTR region, 

but skipping the long intron 1 and, even, exon 1. Thus, there are two main long-range 

amplification strategies:  

*One consists on two separated reactions: exon 1 amplified region and, skipping 

intron 1, exon 2 to exon 6 amplified region respectively. 

*Or, alternatively, just a single reaction: skipping exon 1 and intron 1 to amplify the 

HLA-DR loci starting from exon 2 to exon 6. 

This latter case makes space for ambiguities such as HLA-DRB1*12:01:01 versus 

HLA-DRB1*12:10 that are differing in a single SNP on exon 1. 



________________________________________________________Introduction 
 

Page | 194  

   © Gonzalo Montero Martin  

 (b) Another HLA class II locus that is particularly notorious for generating 

ambiguities is the HLA-DPB1 locus. In this case, there are two main types of 

ambiguity possible for the HLA-DPB1 locus:  

*The first one is, as previously mentioned with the HLA-DR loci, because the current 

NGS PCR-based HLA genotyping assay approaches do not characterize neither 

exon 1 nor the very long intron 1, where targeted amplification starts from exon 2 to 

exon 4 or exon 5. Therefore, HLA-DPB1 alleles whose only difference is in exon 1 

are not distinguished. 

*The second type of HLA-DPB1 ambiguity is due to the inability (in particular when 

using only short-read sequencing data) to set phase between the heterozygous 

positions found within the exons sequenced (exons 2 to 5) based on the distinctive 

genomic organization found at the HLA-DPB1 locus. Where many of the different 

described HLA-DPB1 alleles, especially at their non-coding regions, are highly 

homologous (present low SNP diversity) and yet polymorphic, although presenting 

very distal polymorphic positions that are difficult to be phased. For instance, phase 

is often broken in intron 2, which is approximately 4 kb in length, and can be either 

sparsely or densely populated with heterozygous positions, depending on the 

combination of alleles. Consequently, different HLA-DPB1 allele combinations may 

satisfy a same set of heterozygous positions but in different cis/trans combinations. 

Therefore, these combinations of HLA-DPB1 alleles (combination of alleles that as 

pairs share the same exon 2) cannot be unambiguously phased. For example, the 

allele combination HLA-DPB1*654:01 + HLA-DPB1*417:01 have the same set of 

heterozygous positions as the HLA-DPB1*01:01:01 + HLA-DPB1*11:01:01 allele 

combination. The difference between the two allele combinations is the arrangement 
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of a polymorphic position located in exon 4 (encoding the transmembrane domain) 

with the polymorphic positions in exon 2 (encoding the antigen recognition domain) 

that are 4.8 kb apart, and phase is broken by a 1.6-kb homozygous region in intron 

2. Therefore, unless all positions across the sequenced region are phased, the two 

possible combinations of alleles cannot be discerned from each other. Nonetheless, 

very recent bioinformatics data analysis strategies based on the combination of third-

generation sequencing data (error prone but long reads) and second-generation 

sequencing data (high-quality data with short reads) have shown the potential to 

allow the resolution of these current very challenging cis/trans combination 

ambiguities when genotyping HLA-DPB1 locus and, even, aid in novel allele 

discovery within this locus (especially for the characterization of novel alleles 

harboring long intronic regions) [172][173][204][359]. This novel combining short-

read and long-read data approach allows the creation of highly accurate (e.g. solving 

the phasing between these heterozygous positions) allele sequences out of targeted 

HLA sequencing. Where the long reads are used for providing a phased guide 

alongside which the short reads can be mapped to receive an accurate sequence 

signal (coverage) [296]. 

-Also, untranslated regions of HLA class I loci are rarely targeted, although numerous 

alleles are differing from each other in a single base in these UTRs and these regions 

may influence to the gene expression after transcription [205]. Prime examples are HLA-

A*02:01:01:01 and HLA-A* 02:01:01:02L (differentiating SNP in the middle of the 

5'UTR sequence) or HLA-B*35:01:01:01 and HLA-B*35:01:01:02 (differentiating SNP 

is at the end of the 3'UTR). 
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• NGS bioinformatics algorithm-related ambiguities: as previously described, most HLA 

genotyping bioinformatics algorithms incorporate reference alignment, assembly and 

phasing strategies that reconstruct, based on the application of a complex series of 

statistical methods, the DNA sequence of the respective HLA targeted regions. All these 

statistical methods always include some assumptions to avoid extremely high computation 

needs and very unlikely genotype assignment situations (e.g. bioinformatics phasing may 

assume that a potential genotype assignment with two novel alleles (i.e. both alleles absent 

from the database) is extremely unlikely; or several existing approaches rather arbitrarily 

reduce the search space by ignoring putatively rare alleles). When these assumptions fail 

this leads to ambiguity in the HLA genotyping results. Thus, since the alignment execution 

is essentially independent for each read/read pair, alignment algorithms often miss the 

capability of differentiating between random noise (e.g. “off-target” reads) and systematic 

noise (e.g. PCR artifacts or low-quality reads). Meanwhile, random noise is not disturbing 

the statistical methods (e.g. variant calling, coverage profile analysis, etc…), usually 

applied after the alignment step, the systematic noise introduces significant error that 

might prevent unambiguous genotype resolution due to not enough reliable information 

available to discriminate between candidate alleles. Both assembly and phasing 

algorithmic strategies have to consider only well-supported assembly-phasing paths to 

connect reads to each other to avoid the situation when artifacts mislead the assembly and 

phasing processes and to avoid multiple separate contigs (which hinder phasing and where 

the distance separation in-between contigs becomes unknown) of the targeted region 

(where continuous consensus of sequence parts is preferred, even if there are regions 

where the amount of reads is relatively low). A particular challenging situation is the 

identification of novel alleles. For alignment-based algorithms where input data is 
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processed read by read (or read pair by read pair in case of paired data), the differentiation 

between mismatches imposed by the novel allele and mismatches related to random noise 

is not possible during the alignment. For assembly-based algorithms, when the final 

consensus sequence is built, including the novelty, it is always required an exhaustive 

review and further investigation by the user of the respective sequencing data analysis 

metrics (such as quality score (e.g. Q30 ≥ 75%), coverage depth (e.g. 30-40 reads (30-

40x)); coverage uniformity (e.g. 30-40 reads (30-40x)); and balanced representation 

metric of reads to define heterozygosity/homozygosity at a given position (e.g. to call a 

heterozygous position, ratio of bases must be at least 20%)) to support the authenticity of 

the novel coding/non-coding variant detected. 

• Patchwork pattern of sequence polymorphism along the HLA system-related 

ambiguities: polymorphism at the HLA loci is clustered in a distinctive patchwork pattern 

of sequence motifs, which results in the extensive allelic diversity observed for these loci 

[145]. At the same time, a consequence of the patchwork pattern of sequence 

polymorphism is that a large number of alleles share the same gene segments and therefore 

cannot be easily distinguished, showing a high level of homology between different HLA 

genomic regions (also known as HLA gene homology). This characteristic high homology 

pattern of HLA polymorphism often leads to an important level of ambiguity because: on 

one hand, makes the primer design difficult and not specific enough (where primer binding 

sites are not sufficiently unique and specific); and, at the same time, it is also very 

challenging for HLA genotype assignment bioinformatics software analysis programs 

(where more reliable mapping positions result in more accurate local alignments of reads, 

especially in repetitive regions or in the large HLA sequence space). In relation to the 

latter, two general circumstances are noteworthy: 
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- The consensus assembly and phasing of highly homologous sequences that present 

very distal polymorphic positions (e.g. as previously described, being common in long 

HLA class II genes and notably in HLA-DPB1 locus) is itself extremely difficult 

(especially when they rely on short-read sequencing data: where, once polymorphisms 

(i.e. heterozygous positions) are separated by a long homozygous stretch of more than 

about 1000 bp, resolution of phase between the two chromosomes tends to fail using 

short-read technologies as read pairs no longer reliably span this distance) and it 

prevents unambiguous genotype resolution in most cases [296]. Generic examples may 

include: coding and non-coding sequences of HLA genes of the same class that are 

highly homologous between them; as well as nonfunctional HLA pseudogenes (e.g. 

HLA-H) with very similar sequences to functional HLA genes (e.g. HLA-A)). 

-At the same time, and also as a consequence of this patchwork pattern of HLA sequence 

polymorphism, this HLA gene homology can easily lead to the so-called “cross-

mapping” events during HLA genotype assignment bioinformatics analysis. Where 

generated sequencing reads are mapping to multiple HLA loci at same sequence 

positions, being almost impossible to determine unambiguously their specific HLA 

genomic origin or “ownership/identity”. Which, in turn, creates a significant imbalance 

of the representation of specific reads per allele/locus in each tested sample. Common 

examples of these “cross-mapping” events are the following: 

(a) The conserved exons of HLA genes, such as those coding cross-membrane and 

intracellular components, are very similar to each other and, consequently, are 

associated with significant cross-mapping events. It is especially true for HLA-DRB1 

and HLA-DQB1 loci, where there is also a significant homology between intronic 

segments of HLA-DRB1/3/4/5/7 loci (also between these loci) and HLA-DQB1 locus. 
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A particular and very challenging case is when trying to determine unambiguously not 

only the HLA-DRB1 allele (e.g. HLA-DRB1*07:01:01:01) but also its respective 

associated HLA-DRB3/4/5 allele, where several aligned candidate alleles can be 

extremely similar (e.g. HLA-DRB4*01:01:01:01 versus -DRB4*01:03:01:01 versus -

DRB4*01:03:01:02N) based on the generated reads. Moreover, important cross-

mapping events are very common here (e.g. in the true presence of HLA-

DRB1*07:01:01:01 allele, reads generated from its exon 3 sequence (in particular 

from the differential base position G at codon 135) provoke the automatic over-calling 

of HLA-DRB4*01:03:01:01 allele sequence (containing also a base G at codon 135) 

to the detriment of the possible true but under-called HLA-DRB4*01:01:01:01 allele 

(presenting instead a base A at codon 135)). 

(b) Weaker cross-mapping can be also observed among HLA class I genes and 

between some HLA class I and class II sequences coming from conserved exons. In 

addition, as previously mentioned, cross-reads generated from physically closed 

located HLA pseudogenes (e.g. HLA-H) may interfere/contaminate the specific reads 

generated from contiguous functional loci (e.g. HLA-A). 

Therefore, as these reads covering highly homologous sequences are not very 

informative, the HLA genotype assignment bioinformatics software analysis programs 

should be able to identify and filter them out as non-uniquely mapping. However, this 

identification process is quite complicated especially taking into account the currently 

used partial targeting strategy of NGS-based HLA genotyping approaches and the actual 

incomplete HLA allele sequence references database. In this situation, instead of using 

“mapping-uniqueness” some bioinformatics tools use a phred-scaled mapping 

probability (i.e. reference-based read mapping followed by various quality filtering steps 
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to discard spurious reads with low alignment scores). Using this metric, 

excluding/involving reads that are mapping to multiple genes can be assessed more 

objectively [202]. On the other hand, some other algorithms simply discard these reads, 

risking coverage holes in homologous regions.  

iii) Reporting NGS-based HLA genotyping results and related metadata [296]: 

As previously mentioned, the use of CWD catalogues [147-150][479][480], MAC or 

NMDP codes system [296], “P” and “G” groups (these latter as part of the official HLA 

nomenclature defined by the WHO Nomenclature Committee for Factors of the HLA 

System) [74][94][296] have been so far the most common forms of representing and 

reporting HLA ambiguous genotypes. However, NMDP codes, P allele groups (alleles that 

encode identical ARD protein sequences) and G allele groups (alleles that share identical 

ARD-encoding exon sequences) very often lead to loss of accuracy as not all alleles encoded 

in a certain group may be valid results from the given HLA genotyping of a sample tested 

and, thus, these more traditional HLA ambiguities reporting approaches can be considered 

inadequate (even obsolete) to address the currently described HLA allelic diversity which 

is vast and dramatically increasing via NGS application [295][296]. Therefore, in this recent 

era of rapid HLA allele discovery and ultra-high allele polymorphism (at the 4-field) 

described by application of NGS technologies and in order to accurately report genotyping 

ambiguity and allele variation, more suitable alternatives have been developed such as the 

so-called Genotype List (GL) Strings system [324]. In detail, the GL string text format uses 

a hierarchical set of operators to describe precisely the relationships between alleles, lists of 

possible alleles, phased alleles, genotypes, lists of possible genotypes, and multilocus 

unphased genotypes, without losing typing information or increasing typing ambiguity. 

Furthermore, phasing ambiguities can be systematically reported using GL strings 
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[296][324]. Moreover, in addition to report HLA allele assignments and ambiguities from 

NGS-based HLA data (e.g. IPD-IMGT/HLA reference context or consensus sequence), the 

international histocompatibility and immunogenetics scientific and clinical community 

(organized in this particular case as the Immunogenomic NGS Consortium)  has also 

recently defined the Minimum Information for Reporting Immunogenomic NGS 

Genotyping (MIRING) reporting guidelines for ensuring the long-term portability, common 

standardized format when reporting and exchanging genotyping data 

(Histoimmunogenetics Markup Language (HML) with XML structures (i.e. hla.xml files) 

and GL strings) [325], and broad application (e.g. data collection, data processing, and 

interpretation) of this NGS HLA genotyping data [296][326]. Lastly, while the current four 

colon-delimited field HLA nomenclature system (which enumerates non-synonymous, 

synonymous and non-coding nucleotide variants in the second through fourth fields of an 

allele name) [74][94] provides insight into the types of polymorphism that distinguish 

alleles, this current nomenclature annotation does not identify the patterns and location of 

polymorphism across HLA gene features (GFs) at a given locus (since the extent of the 

nucleotide sequence represented by a HLA allele name cannot be inferred from that name 

annotation system). In this context, a novel gene feature enumeration (GFE) notation has 

been recently proposed as a supplement to this current HLA nomenclature for the purposes 

of: cataloging nucleotide sequence polymorphisms for non-ARD-encoding GFs; defining 

HLA alleles in the context of polymorphism distributed between GFs; and capturing novel 

nucleotide sequences for non-ARD-encoding GFs generated via NGS technologies [327]. 
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9.3 Impact and Relevance of NGS Technologies on HLA Research and Clinical 

Applications  

 

Within the human genome, the HLA system (namely the classic human MHC, ~4 Mbp in 

length) represents one of the most highly complex genomic regions with a mosaic nature of unique 

features, such as [206]:   

1) Vast allele and haplotype polymorphism.  

2) Very high gene-dense regions (e.g. class III region).  

3) A high number of genes (~220 gene loci, encoding molecules participating in immune and 

inflammatory pathways but also molecules with nonimmunological roles) that display a 

complex and extensive LD structure (with, at the same time, certain known recombination 

hotspot regions that interrupt it). 

4) Regions with numerous SNPs but also many other regions showing repetitive and extensive 

low-complexity and imbalanced sequence composition (e.g. STR regions, homopolymer 

stretches and AT- and GC-rich regions). 

5) As well as regions with structural variation (e.g. inversions, deletions and duplications) and 

the presence of closely related genes (e.g. presence of paralogs) in these regions (e.g. two such 

regions contain the complement (C2, C4A and C4B in a copy-number variation (CNV) region) 

and HLA-DRB (B1-B9) genes (a segmental duplication region)). 

In contrast to limited sequencing approaches such as SNP genotyping (only describing 

reference-based polymorphisms with limited allele resolution and until certain extent) 

[176][177][206] or exome-sequencing (ignoring non-coding regions known to be involved in 

control over expression, translation, regulation and protein presentation) [207]. New recently 
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developed NGS-based HLA genotyping methods (referring here to all its different targeted long-

range deep-sequencing approaches based on both short-read (although presenting limitations of 

sequence coverage) and long-read (although currently not being very accurate) sequencing 

technologies) have shown the potential to describe, at a single-molecule level [207]:  

1) Almost full-length (up to 4-field allele resolution) variation, with minimum level of 

ambiguity, in both coding and non-coding HLA regions thanks to extended genomic sequence 

coverage. 

2) As well as to phase variants via phased-sequencing (in the case of long-read sequencing) 

and/or via de-novo assembly (in the case of short-read sequencing). Importantly, resolution of 

long-range haplotype structures with minimum levels of cis/trans ambiguity (at least within 

each locus via short-read sequencing, and potentially along the entire HLA region via long-read 

sequencing) may enable the description of intergenic variation (e.g. in order to understand cis- 

and trans-effects of regulatory polymorphisms involving the human MHC region as well as 

other related gene clusters located elsewhere in the genome) [309]. 

Based on this remarkable NGS potential, recent studies have started showing the significant 

impact of NGS-based HLA genotyping data for obtaining an in-depth understanding of the 

biological function-significance and underlying mechanisms of this complex HLA structural 

diversity, which is, in turn, of great importance for many relevant clinical and research 

applications. Major impacts, first main reported NGS-related findings and immediate future 

perspectives can be summarized as follows: 

1) Clinical transplantation: 
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The use of NGS for HLA typing in clinical practice provides broader coverage (not only full-

length HLA sequences but also including a higher number of HLA loci) and higher resolution 

and phasing of HLA genes in comparison to previous legacy methods. 

a) Hematopoietic stem cell transplantation (HSCT): improved analytic accuracy and 

efficiencies (in cost (particularly, high volume HLA typing laboratories), turnaround time and 

throughput) of HLA genotyping by NGS (so far, only based in short-read sequencing since 

its scalability can meet the high test volume demands in the HSCT and registries setting) has 

been a key recent advancement for donor bone marrow (BM) and umbilical cord blood (UCB) 

stem cell registries and the field of HSCT. The degree of matching of HLA genes at the allele-

level is the most critical determinant of immunologic compatibility between donor and 

recipient for HSCT [112-114][117][119]. In this sense, and in comparison to previous 

traditional HLA typing methods, the diagnostic value of NGS-based methods for HLA 

genotyping is reasonably well-established as it clearly improves unambiguous high-resolution 

HLA genotyping (lower error rates) and facilitates the identification of rare [208][209], null 

[210] and novel alleles (and, importantly, respective haplotypes) [172][211] (with important 

potential impacts in donor selection and transplant outcome), providing a very accurate HLA 

matching donor-recipient information (e.g. NGS advances have led to a demonstrated 3.5-

fold reduction in genotyping error rates compared to Sanger Sequencing (SBT)) and an 

eventual simplified donor search process in which, as an example, donor confirmatory HLA 

typing step could become optional but not mandatory as it is currently) [212][213]. However, 

the clinical utility of these improvements has not been well-defined yet (i.e. explore the extent 

of diversity outside of the antigen recognition domain (ARD) and to determine the impact of 

this diversity on transplant outcome). Most updated current donor selection criteria (based on 

guidelines from National Marrow Donor Program /Center for International Blood and Marrow 
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Transplant Research (NMDP/CIBMTR)) for standard matched unrelated allogeneic HSCT 

donors consider high-resolution allele-level (2-field) matching of HLA-A, -B, -C, -DRB1 and 

also, very recently included, -DPB1 as essential for optimal outcomes, with compatibility for 

-DQB1 and -DRB3/4/5 as significant factors for consideration [214]. Thus, while in HSCT 

using donors matched to “G” and “P” group alleles is currently well-accepted and clinically 

tolerated [215] (although with some drawbacks such as that they might also contain null 

alleles), it is still unclear whether more stringent matching that could be enabled by NGS 

methods would improve clinical outcomes. In this regard, very recent published studies have 

suggested that when HLA genotyping is done at very high-resolution (up to the 4-field), 

including exons outside of the ARD, introns, and untranslated regions, it can significantly 

improve outcomes for recipients in unrelated allogeneic HSCT [216][217]. Nevertheless, as 

indicated by some other expert groups in the HSCT field [218], larger cohorts for further 

clinical outcome retrospective multi-center studies are still required in order to confirm this 

(e.g. by comparing HSCT outcomes for patients who are matched with their donors according 

to very recent standard-of-care criteria to those that are more accurately matched using newer 

NGS methodologies). Although it may be challenging because it will require very large 

sample sizes and at a wide geographic scale; since the impact of amino acid sequence variation 

caused by substitutions in exons outside ARD regions, specifically, in donor-recipient pairs 

will be difficult to assess in these HSCT outcome studies because these mismatches do not 

occur relatively very often [219]. Some of these first larger studies are now in progress (e.g. 

the CIBMTR has initiated a study evaluating ultra-high-resolution matching in a cohort of 

nearly 6000 recent transplants (from 2000 to 2017)) [218].  

At the same time, from the perspective of HSCT, better knowledge of very high-resolution 

(up to the 4-field, provided by NGS-based HLA genotyping) HLA allele/haplotype 
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frequencies in worldwide and local (within each country/geographical region) donor registries 

(which may be representative of regional diversity within a given population/region) can 

certainly allow to: better delineate donor search strategy with a more accurate estimation of 

the probability of finding a match in a particular population and, consequently, to better adjust 

priority on waiting lists; to guide also the well-representative (with an adequate size of the 

given registry/bank showing optimal number of units and, especially, number of different 

HLA haplotypes) [472] and, at the same time, targeted collection of BM/UCB from under‐

represented populations/regions to focus donor selection on specific donor population groups; 

thereby, and overall, optimizing the development of stem cell repositories such as UCB 

banking and in BM donor programs [214][215][220]. Moreover, although UCB is primarily 

used in HSCT, the use of UCB‐derived products for regenerative medicine and other 

transplantation applications is growing. Induced pluripotent stem cell lines (iPSCs) derived 

from the UCB of HLA‐homozygous donors (presenting homozygous major conserved 

extended HLA haplotypes), for instance, have been established as a very suitable alternative 

to autologous iPSCs [221][222][545][546]. Hence, NGS-based studies have started to 

characterize the extent of HLA diversity in national BM and UCB donor registries (e.g. among 

others, American (NMDP), British, Argentinian, Dutch, Norwegian, German, Polish and 

Belgian donor registry populations) [179][223-227][474][476][943] as well as local donor 

registries (e.g. [221]), where, typically, substantial differences in HLA allele and haplotype 

frequencies exist between regional recruitment centers and neighboring regions within a given 

country [136][220]. 

Furthermore, very informative high-resolution HLA genotyping data generated by NGS 

methods is likely to require changes [215] and improved and complex developments of the 

current matching donor-selection algorithms (e.g. [228]) that may increase efficiency and 
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accuracy of the donor search process (e.g. refined matching strategies for unrelated donor 

search that may be more beneficial for HSCT outcome minimizing potential complications).  

Also, as previously mentioned, NGS-based HLA genotyping approaches enable not only the 

description of coding (exon sequences) but also of non-coding (intron and UTR sequences) 

and intergenic polymorphisms which modulate gene expression and its regulation at all 

different levels (e.g. transcriptional control, translational control, intracellular processing 

(including protein folding and stability), cell-membrane presentation and cellular interaction) 

[207]. Therefore, in the context here of HSCT, NGS-based HLA genotyping data, ultimately, 

is also expected to allow the comprehensive characterization of HLA cell surface expression 

levels of mismatched alleles and the detection of possible known and novel/deleterious 

mutations (e.g. key amino acid substitutions, impact in mRNA splicing sites, impact in 

microRNA (miRNA) binding sites and identification of unknown stop codons that may result 

in no expression of alleles (defining novel null alleles)), which are not detected by legacy 

HLA genotyping methodologies, with limited sequence coverage and phasing capacity [76]. 

Importantly, this may contribute to reveal additional HLA allele mismatches and, 

consequently, to understand their biological (their putative immunogenicity) and clinical 

significance (permissive or non-permissive nature) that are not well-understood currently. At 

the same time, defined polymorphisms associated with specific HLA expression patterns may 

be surrogate markers of HLA haplotypes associated with higher risks of post-transplant 

complications (e.g. GvHD or engraftment failure) [215]. Important examples of the role (and 

its potential clinical relevance) of HLA expression pattern (associated with certain SNP 

variation in the UTRs) have been recently described in relation to HLA-C [229] (where HLA-

C expression levels define permissible mismatches and risk for GvHD) and HLA-DPB1 [230-

232] loci in the context of HSCT. Interestingly, the clinical utility that the HLA-DPB1 locus 



________________________________________________________Introduction 
 

Page | 208  

   © Gonzalo Montero Martin  

plays in transplantation has grown significantly in the past decade, where HLA-DPB1 

matching status has been found to be critically important in the HSCT outcome [204][230-

232]. In fact, HLA-DPB1 locus represents an important challenge for obtaining a maximum 

degree of HLA matching during donor search, since it presents a weak LD with the rest of the 

HLA class II genes within the given haplotype due to existing hotspot of recombination 

between DQ and DP loci [92] (as a result, the frequency distributions of extended haplotypes 

including HLA-DPB1 locus are quite spread in human populations). Consequently, finding 

HLA-DPB1 matched (thus, 12/12 matched, considering also HLA-A, -B, -C, -DQB1 and DRB1 

loci) donors for a significant proportion of patients has been assumed to be unrealistic (being 

very unlikely) [233]. This fact, among others, has led and required to define a model of 

permissiveness (as a way to assess clinical significance/impact) for a HLA-DPB1 mismatch 

in order to maximize the chances for finding a matched donor [230-236]. Thus, transplants 

with well-tolerated (permissive) HLA-DPB1 mismatches seem to carry outcomes similar to 

HLA-DPB1 matched transplants, whereas non-permissive HLA-DPB1 mismatches result in 

higher transplant-related and overall mortality [233]. Currently, the permissiveness of a HLA-

DPB1 mismatch can be determined either by the expression levels of the mismatched HLA-

DPB1 alleles [230-232] (Expression model criteria); alternatively, by the relative 

immunogenicity of T cell epitopes (TCE) of the patient and donor HLA-DPB1 alleles [234] 

(Structural TCE model criteria), or by an in-silico functional distance score between these two 

previous models [235]. Traditionally, determination of the permissive or non-permissive 

nature of mismatched HLA-DPB1 alleles in the selection process of unrelated donors for 

HSCT as well as the evaluation of risk for acute GvHD [112-114] have been assessed using 

the Structural T cell epitope (TCE) algorithm model criteria as it is based only on the sequence 

content of exon 2 of HLA-DPB1 locus, encoding the considered critical ARD and routinely 
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tested by legacy typing methods [234]. Nonetheless, TCE model does not account for the level 

of expression of the HLA-DPB1 alleles. The SNP rs9277534, within the 3’UTR of the HLA-

DPB1 gene, is an expression level marker (although it may not be directly involved in 

regulation of expression but it segregates with multiple undescribed potential regulatory 

polymorphic elements) defining two differentiated clades (high- (G) and low-expression (A)) 

of lineage-specific expression in HLA-DPB1 locus. This SNP rs9277534 has been found to 

serve also as a marker for permissive HLA-DPB1 mismatches (to prospectively identify 

DPB1-mismatched donors who generate a permissive DPB1 mismatch against low-

expression patient DPB1 alleles) and it has been associated with GvHD (when donor-recipient 

HLA mismatches involving a high-expression DPB1 variant in the patient) (termed as 

Expression model criteria) [230-232]. Thus, it is expected that complete resolution of HLA-

DPB1 cis/trans ambiguities by NGS long-read sequencing methods (enabling the accurate 

definition of HLA-DPB1 allele combinations) will allow to accurately model HLA-DPB1 

permissible mismatches and the risk for GvHD (as well as to understand the level of 

association between these two current Structural and Expression DPB1 models [235][236]), 

phasing precisely polymorphisms in exon 2 (TCE model), polymorphisms of other relevant 

genomic regions (such as exon 3) and polymorphisms in expression level markers such as the 

SNP rs9277534 in the 3’UTR [204]. In addition, data from complete phasing of haplotypes 

within and outside the HLA region may allow to resolve not just the associated polymorphic 

markers but the specific discrete genomic elements/regions directly involved in the regulation 

and definition of these mentioned and other HLA expression patterns [207].  

Application of NGS (providing a full HLA gene panel including typically up to 11 classical 

HLA loci: HLA-A, -B, -C, -DRB1, -DRB3,4,5, -DQA1, -DQB1, -DPA1 and -DPB1) has also 

allowed to obtain extended HLA genotyping including loci less or not tested routinely (e.g. 
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HLA-DPB1, -DPA1, -DQA1 and -DRB3/4/5) until now in the clinical transplantation setting. 

Thus, the impact of the mismatches of these traditionally untested loci (which it is thought to 

play also an important role in the HSCT outcome [118]) can be now evaluated. For instance, 

this has been found to be important when: 

i) Considering the HSCT patients’ level of humoral sensitization against HLA (allo-

immunogenicity) prior to transplant. Application of NGS allows full evaluation of the nature 

of HLA allele and antigen/epitope mismatches. Where, full NGS HLA gene panel, coupled 

with detailed antibody testing (solid-phase antigen immunoassays, typically using single 

antigen beads (SABs)) assessing reactivity for HLA antigens/epitopes, can be used in the 

analysis of donor-specific HLA antibodies (DSAs) in the patient [211][237]. 

ii) In addition, NGS-based HLA genotyping has proven to be useful in detecting unexpected 

mismatches. In the related allogeneic HSCT context [238], this can be observed in those 

instances when, for example, crossing-over events between HLA loci would create 

mismatches between donor-recipient pairs of related siblings. As it has been recently 

described [237] for unexpected mismatches found in HLA-DP loci and caused, most likely 

in this case, by crossing-over events in the intervening region between HLA-DQB1 and -

DPA1, where hotspot of recombination has been identified [92]. 

b) Solid organ transplantation (SOT): many of the NGS-related applications and 

advancements that have been just mentioned for HSCT are also found similarly in the context 

of SOT [161]. At the same time, the SOT setting presents certain singularities, challenges and 

specific requirements in which recent application of NGS-based HLA genotyping has started 

to show also its value and potential contributions [161]. In this regard, as previously 

mentioned, HLA genotyping in SOT is necessary for determining not only HLA-matching 
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status between donor-recipient pairs but also for assessing patients’ anti-HLA antibody 

profiles [119]. 

In the case of HSCT, both donor search (in related allogeneic HSCT probability of identifying 

a HLA-identical sibling donor mainly depends on the number of siblings; whereas in unrelated 

(URD) allogeneic HSCT average probability of finding a highly matched unrelated donor 

mainly is based on the ethnic origin of the patients (since worldwide registry of donors has an 

uneven representation of different ethnic groups (e.g. more Northern Europeans than African 

Americans)), on the frequency of the patient’s HLA haplotypes and on the matching grade 

required (e.g. 8/8 or 10/10 or 12/12)) and HLA matching requirements are highly strict, in 

order to minimize critical life-threating post-transplant complications such as GvHD or 

engraftment failure [112-114][215]. In contrast, in the SOT setting, although characterization 

of HLA polymorphisms (both genotypes (allele-level) and phenotypes (antigen/epitope-

level)) of donors and recipients is essential and HLA matching affects outcomes and long‐

term graft survival [239], general clinical practice has been favoring utilization of relatively 

effective immunosuppressive drugs (although immunosuppression enables the prevention and 

management of early-phase T cell–mediated rejection, still the humoral allo-response is not 

well-managed by current treatments and it remains as a major source of late graft loss (late-

phase B cell-mediated chronic rejection)) and less of HLA matching [161]. This is mainly 

because of three relevant limiting factors that exist in the SOT setting:  

i) Shortage of available organs (e.g. where a worldwide search for HLA-compatible donors 

is not feasible for logistic reasons). Thus, long waiting lists for deceased donors and limited 

numbers of living donors are the current scenarios. 
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ii) The humoral sensitization history against HLA antigens presented by each given patient 

(with a variable, unique and dynamic HLA antibody reactivity history profile). Moreover, 

HLA sensitization status has been traditionally evaluated by a panel-reactive antibody 

(PRA) assay (which is most commonly based on a solid-phase HLA antibody assay that 

uses up to ~100 microbeads coated with purified class I or II HLA molecules of a single 

specificity (SABs), and, thus, it can detect anti-HLA class I or II antibodies in patient’s 

tested serum). Where the PRA score value reflects the expected percentage of representative 

organ donor HLA antigens that will potentially induce an allo-antibody reaction on the given 

patient tested and, thus, estimating the degree of “transplantability” for that patient. 

Consequently, a high PRA score value indicates that the given patient is primed (allo-

sensitized) to react immunologically against a large proportion of the respective organ donor 

population and, thus, being considered at high-risk of developing transplant rejection. 

However, this PRA assay is method-dependent and does not consider all the diversity found 

in HLA allele frequency distributions between different ethnic groups. In contrast, a more 

accurate calculated PRA (cPRA), or also termed as virtual PRA (vPRA), correctly estimates 

the percentage of not suitable organ donors for recipient candidates and it is increasingly 

being used in organ allocation algorithms. As this estimation computes the PRA percentage 

using both anti-HLA class I and class II antibody specificities tested, which assigned to each 

patient the unacceptable HLA antigens/alleles, and the respective frequencies values of the 

assigned unacceptable HLA antigens/alleles (defined at 1-field or 2-field resolution) 

described in a representative organ donor population cohort [240]. 

iii) The highly polymorphic complexity of HLA system [56].  

As a result, all these facts make absolute HLA matching in SOT virtually impossible, 

especially in such as clinical time-constrained context (being even more critical in the case of 
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deceased donor organ transplants than for living donation) [161][220]. Therefore, the 

currently adopted clinical strategy and practice for donor-recipient HLA assessment and 

matching in SOT establishes a balance of HLA antigens/alleles matching grade in the donor-

recipient pair that can also fit properly with the given patient’s HLA antibody reactivity 

history profile, and always compensated with the most optimal immunosuppressive 

medications and regimens, thereby reducing as much as possible the risk on DSAs formation 

after transplantation and, thus, graft failure (where early graft failure is significantly 

associated with de-novo DSAs) [161]. However, this current approach in SOT still leads to a 

significant average loss of grafts (~40%), as it has been evaluated during the last decade [241]. 

In this complex and restricted scenario, there are two other important aspects (in addition to 

the HLA matching grade as a criteria factor, and apart from standard medical considerations 

such as the evaluation of the medical necessity and feasibility between recipient candidates 

for a given available organ donor) that are also considered and analyzed for SOT in order to 

maximize the chances of organ donor availability and compatibility/matching (especially for 

hypersensitized patients) as well as to establish the most suitable and efficient organ allocation 

scoring system and recipient-donor pair selection criteria: 

i) Defining the immunogenicity/acceptability grade of HLA mismatches: in contrast to 

HSCT, where HLA matching grade at the allele-level is the key element for the decision-

making process and in which this immunogenicity definition of HLA mismatches has been 

so far only addressed for HLA-C (permissible mismatches based on expression patterns) 

[229] and HLA-DPB1 (TCE Structural model and Expression model) [230-236] loci. In 

SOT, not only the number of HLA mismatches is taking into account as a potent predictor 

of transplant outcome (determining thus also organ allocation and recipient-donor pair 

selection criteria) but, importantly, the differential allo-immunogenicity (based on the 
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respective identified antigen/epitope load) of each of the given HLA mismatches is also 

considered.  Being well-accepted that not every HLA mismatch may have an equal effect 

on promoting graft failure via activation of the allo-antibody response (due to preexisting 

(memory) and/or de-novo DSAs) [242]. Consequently, an organ donor with acceptable 

HLA mismatches of low immunogenicity may be found the most suitable option in the most 

common cases of not having a perfect HLA matched organ donor [242]. Defining HLA 

mismatch acceptability of organ transplant donors for recipients has traditionally been based 

on serologically defined HLA antigens (low 1-field resolution typing), known as antigen-

based HLA matching or HLA antigen analysis [242][243]. Nonetheless, high-resolution (2-

field) molecular HLA typing at the allele-level has resulted in increased knowledge of amino 

acid sequences of HLA alleles which has facilitated the identification of potential 

immunogenic HLA epitopes that may constitute the specific anti-HLA core targets 

responsible of these post-transplant allo-antibody responses [242]. HLA epitopes have been 

defined by some research groups as molecular entities denominated “eplets” [244]. These 

eplets contain amino acids that linearly can be continuous or discontinuous but are clustered 

closely together (radius of ~3 Å patches) and that represent the potential functional epitope 

of the antibody determining specificity in the given three‐dimensional structure of the HLA 

molecule [244]. Thus, it is well-accepted that anti-HLA allo-antibodies specifically 

recognize a wide range of epitopes present on HLA antigens and that molecularly defined 

high-resolution alleles corresponding to the same low resolution antigen can possess 

different epitope repertoires. Hence, determination of HLA compatibility at the allele-level 

(or epitope-based HLA matching) represents a more accurate approach than at the antigen-

level in order to identify suitable donors for sensitized patients in the context of SOT or 

platelet transfusions [119][245][246]. Where, HLA epitope analysis (performed by 
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programs such as HLAMatchmaker (B-cell epitopes) [247] or PIRCHE-II (T cell helper 

epitopes) [248]) consists on the comparison of amino acid sequences of the given HLA 

allele mismatches of a certain donor to antibody reactivity patterns of the respective patient 

to detect correlations between the two, based on the supposition that there is an association 

between amino acid sequence similarities or differences and antibody reactivity [249][250]. 

Therefore, this epitope-based HLA matching (or HLA epitope analysis) can be used to 

identify acceptable mismatches for sensitized patients and to develop permissible mismatch 

strategies for non-sensitized patients. Nevertheless, still there is not enough conclusive data  

to support the added clinical benefit of epitope-based matching over traditional antigen-

based matching, as there is also an ongoing debate regarding the utility and suitability of 

high-resolution epitope-based HLA matching at the allele-level in the SOT setting 

[243][249-251]. In this sense, large-scale multi-center studies need to be conducted to 

confirm the potential utility of HLA epitope-based matching, which also needs to be 

standardized and validated (e.g. the threshold of eplet mismatches for developing adverse 

allograft outcome has not been well-established yet), before it can be recommended in 

widespread clinical practice [243]. At least, so far, it is thought that epitope-based HLA 

matching can definitely contribute to avoid future allo-sensitization with the development 

of anti-HLA antibodies and to allow selection of a suitable allograft for highly sensitized 

patients through virtual crossmatch (where physical crossmatch assay results can be 

predicted reliably based on patient antibody profile and donor HLA antigen/epitope 

mismatches, allowing donors’ organs, especially from deceased donors, to be allocated 

more efficiently and without the need for a time-consuming prospective physical 

crossmatch) [243][252].  
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ii) Defining the specificity (i.e. HLA antibody recognition patterns) and nature of detected 

antibodies in patient’s serum: testing or screening for anti-HLA antibodies is mandatory to 

identify pre-sensitized patients. Distinguishing anti-HLA antibodies from those against non-

HLA antigens is very relevant in order to predict accurately the solid organ transplant 

outcome. Thus, high-resolution HLA typing combined with detailed SAB-based solid-phase 

antibody screening at the allele-level provides the best level of discrimination possible for 

a sensitive and specific detection of anti-HLA antibodies [161]. The identity and intensity 

of anti-HLA antibodies is useful not only in safely finding an organ donor for a sensitized 

recipient, but also in deciding on which sensitized patients require treatment (i.e. 

desensitization via plasma exchange, intravenous immunoglobulin (IVIG) or rituximab) 

prior to transplantation. With the introduction of the solid-phase bead-based multiplex flow 

cytometry assays for HLA antibody detection, the detailed characterization of HLA 

antibody specificities (SABs) has become possible with a high degree of accuracy [253]. 

However, it still presents technical limitations, particularly false positives due to denatured 

HLA antigens [254]. At the same time, still there is no consensus to define an appropriate 

cut-off for solid-phase antibody assays that allows accurate prediction of physical 

crossmatch [254]. 

Thus, having a full understanding of the complexities, singularities and challenges of HLA 

matching in the SOT setting. Several clinical laboratory groups have recently reported first 

important and compelling evidences of some of the areas and scenarios in which adoption of 

NGS-based HLA genotyping can be not only feasible but clearly beneficial in the context of 

SOT [255-258]. In summary: 

i) Regarding living donation: 
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• Until now clinical laboratories supporting SOT programs have mostly relied on SSO-

based HLA typing methods employed for high test volumes and on SBT technology 

employed for obtaining high-resolution HLA data, although with the previously described 

workflow, throughput and ambiguity limitations [35][76][85]. On the other hand, robust, 

single-pass and cost-effective NGS-based HLA genotyping approaches, which can be 

routinely performed with a relatively adequate turnaround time for living donation (e.g. 

2-3 days in the case of NGS short-read sequencing strategies), allow both high-resolution 

typing for all 11 major classical HLA loci (eliminating almost all ambiguities, including 

the cis/trans ambiguities found in SBT) and a very suitable scalability (even higher than 

the one offered by SSO technologies) to meet the high test volume demand in the SOT 

setting. 

• NGS-based HLA genotyping data can provide critical information in both solid organ 

pre‐ and post-transplant settings for living donation: 

*At the 2-field resolution level (covering all the coding region of HLA genes): 

- NGS HLA genotyping data is informative for living donation evaluations. For non-

sensitized patients with multiple potential donors, the rank order of preferred donors 

is directly dependent on HLA 2-field typing and criteria for matching. Consequently, 

there is an optimal matching categorization, prioritization, and selection of donors 

during donor searching process. 

- In living donation, availability of NGS HLA genotyping data (providing full HLA 

gene panels) of the given organ donor and recipient candidates avoids the traditional 

necessity of using inaccurate statistical imputation/extrapolation methods (based on 

described 1-field or 2-field resolution HLA haplotype frequency tables of a given 
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representative population cohort (e.g. [259] or HaploStats database from NMDP)) and 

other computational approaches for, ultimately, clinical decision-making in regards to 

patient management. At the same time, cPRA/vPRA score values can be more 

accurately and unambiguously estimated, when this estimation is based on NGS HLA 

genotyping data for describing the HLA allele frequency distributions of 

representative organ donor population cohorts, thus significantly improving the organ 

donor assignment, being this especially critical for hypersensitized patients [260]. 

- In combination with detailed SAB-based solid-phase antibody screening at the allele-

level, NGS HLA genotyping data allows the fine-mapping of epitope mismatches 

during epitope analysis at the allele-level and, thus, assessing and monitoring patients’ 

anti-HLA antibody profiles and recognition patterns with high specificity and 

sensitivity. So, in contrast to SSO and SBT legacy typing methods, NGS-based HLA 

genotyping enables the characterization of complete and unambiguous protein 

sequences of specific alleles, identifying mismatched epitopes in both ARD and non‐

ARD portions of the HLA molecule. At the same time, the own NGS high-resolution 

and unambiguous HLA genotyping data obtained from both the given prospective 

organ donor and recipient candidates allows to correctly interpret the results of the 

antibody reactivity patterns of the given recipient candidates (being of great 

importance especially for highly sensitized patients with difficulty receiving transplant 

offers) and also to detect and to troubleshoot possible common errors found in these 

SAB-based solid-phase antibody screening techniques (with a more thorough and 

credible evaluation of bead reactivity, which, in turn, also facilitates the subsequent 

correlation and interpretation of corresponding physical crossmatch results). Main 

examples are the following [258]: 
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- Discernment of allele‐specific (particularly when certain DSA involve HLA alleles 

that are not discriminated by lower resolution methods such as SSO typing), possible 

anti‐self antibodies, or artifacts in the setting of bead reactivity through accurate 

characterization of anti‐HLA antibodies.  

- NGS unambiguous 2-field HLA genotyping data enables the attribution of positive 

results to anti-HLA or non anti‐HLA antibodies. Thus, DSAs can be characterized 

appropriately if the incompatible mismatched HLA alleles of the graft are known 

and represented by the SAB panel used for detection. 

- Retrospective post-transplant NGS-based HLA genotyping can be useful for the 

appropriate selection of SAB bead/s for DSAs detection and monitoring (as it is 

necessary to detect antibodies developed against mismatched HLA alleles on the 

allograft) in sensitized patients, which can influence decisively in patient 

management (e.g. clinical decision-making about immunosuppressive medications 

and regimens). In this regard, de-novo anti‐DQ antibodies, predominantly in the 

post-transplant setting and critically implicated in late-phase antibody‐mediated 

rejection and allograft loss, are particularly challenging to properly characterize. 

Due to current SAB panels do not assess with enough specificity HLA-DQ antibody 

reactivity at the allele-level. Furthermore, when particular antibody specificities are 

excluded from the SAB panel used (i.e. when donor's alleles are not represented by 

available SAB panels), epitope analysis with NGS HLA typing data can provide the 

best alternative “surrogate” specificities for monitoring DSAs on the given patient 

still with enough accuracy. 
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- NGS unambiguous 2-field HLA genotyping data and subsequent epitope fine 

analysis can also help to identify characteristic antibody reactivity patterns due to 

common epitopes that may be present on different beads, having respectively lower 

mean fluorescence intensity (MFI) values than expected (the so-called “epitope 

sharing” phenomenon, being in part as a consequence of the known patchwork 

nature of HLA sequence polymorphism [145]). Where precise identification of 

shared epitopes (e.g. broad shared epitope Bw4) between different solid-phase beads 

is essential for proper interpretation of antibody screening results avoiding the 

underrecognition of DSAs (false negatives) and, in turn, favoring also the correct 

interpretation of initially unexpected positive physical crossmatches [261]. 

Therefore, NGS-based HLA genotyping allows to better understand DSA 

development or absence and assessing antibody cross-reactivity to products of 

related alleles and their potential involvement in antibody-mediated rejection [161]. 

*At the 4-field resolution level (covering expanded exons, enhancer or promoter 

regions, introns and the untranslated regions): 

- Although using donors matched to “G” and “P” group allele designations (i.e. 

focusing on the ARD only) still is well-accepted in the clinical transplantation setting 

(for both HSCT and SOT) [215][258]. Several recent studies have shown that 

immunogenic molecular HLA epitope targets of DSAs can be located also in non-

ARD-encoding regions (e.g. leader, alpha 3 (in class I), alpha 2 (in class II), 

transmembrane and cytoplasmic domains), which are unambiguously defined only by 

NGS-based HLA typing methods [262-264] (e.g. DSA against the α2 domain of the 

DQα chain). Thus, this is calling into question current assumptions regarding 

immunogenic epitopes (i.e. epitopes must be present only on the mature protein, 
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solvent accessible, on the ‘top’ peptide binding surface (antigen recognition domain 

(ARD)) of the molecule, restricted to the same class as the antibody, and in the same 

position on the target allele if reactive to more than one locus) [247][248]. Therefore, 

non-ARD-encoding regions may have an important impact when performing virtual 

crossmatches in the SOT setting or, at the same time, in HSCT donor selection 

especially for patients with complex sensitizations [258]. 

- Characterization not only of all HLA exons but also of the enhancer or promoter 

regions, introns and the untranslated regions (5’UTR and 3’UTR) by NGS-based HLA 

typing methods can enable to assess in-depth the impact of HLA polymorphism on 

HLA expression and overall immune reactivity [207]. As recently reported in a recent 

journal issue with a series of studies describing illustrative examples (that are later 

described in this section) about the biological/functional role and significance of non‐

ARD regions of HLA molecules [265] as well as in other previously published reviews 

(e.g. [266]).  

- Furthermore, despite non-ARD mismatches are presumed to be rare (low frequency) 

events, only application of NGS-based HLA typing methods can accurately evaluate 

the real frequency of these events and, thus, their clinical relevance [258]. 

ii) Regarding SOT from deceased donors:  

• Although available NGS-based HLA typing methods are presently not viable for rapid 

turnaround prospective high-resolution (2-field) typing of deceased donors (i.e. having 

HLA genotyping results in less than 7h to minimize ischemia time, where traditional SSP 

and RT-PCR are still the most optimal methods for that strict turnaround time 

requirement). The highly time-effective (of the order of minutes to hours) workflow of 
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novel NGS single-molecule long-read sequencing technologies allows to consider a real 

“STAT” prospective high-resolution HLA typing protocol able to generate high-

resolution HLA genotypes in time for decease donor organ allocation 

[159][161][512][516][519]. Hence, one of the key aspects in the development and 

refinement of this type of ultra-fast HLA typing approach is to establish a rapid but 

efficient and specific targeted enrichment method (probably different from the current 

PCR-based systems that still require several hours) for the HLA genomic regions, which 

can also provide full-length and unambiguous characterization of the HLA polymorphism 

for all major HLA genes to be tested [159][161][512][516][519]. 

2) Population genetics: 

Recent application of NGS-based HLA genotyping in population studies has started to enable 

a full assessment of HLA diversity (at both allele and haplotype (LD patterns) levels) at the 

genomic 4-field resolution level in worldwide human population cohorts (comprising both 

unrelated individuals [267-283] or nuclear families (trios/quartets) [284-287] respectively that 

are representative of a given well-defined population (>100 individuals per cohort)), being this 

a very important breakthrough in the field of population immunogenetics.  

At the same time, NGS HLA population-based studies (which are presumed to have a relevant 

statistical power and level of representativeness and biological significance) are providing novel 

and relevant insights to better identify, interpret and understand the HLA genomic diversity (at 

both allele and haplotype (LD patterns) levels) in relation to a variety of contexts such as:  

a) Fine-mapping of HLA-disease associations (defining associations of HLA 

alleles/haplotypes with certain diseases (particularly those with an autoimmune component)) 

and pharmacogenetics (defining associations of HLA alleles/haplotypes with certain drug-
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induced hypersensitivity reactions) [120][121][126][127][142][170][207][288-294]. Also, 

specific and trans-ethnic epidemiology programs on HLA linked diseases can definitely 

benefit from NGS HLA populations studies [288]. 

b) Filling unambiguously (by full-length sequencing and complete phasing of heterozygous 

positions even over long distances without remaining HLA genotype ambiguities) the gaps 

[146][172][204][463][475] in the existing incomplete HLA allele sequences IPD-IMGT/HLA 

database [87][295] and, consequently, enhancing, among other bioinformatics features, both 

reference-based and de-novo assembly algorithms as well as integrative parameters related to 

ethnicity frequency information as part of the HLA sequence data bioinformatics analysis 

process for assignment of HLA genotypes [296][463]. At the same time, the rapid and massive 

discovery of new HLA alleles (up to the 4-field of resolution) by application of NGS is 

causing the vast expansion of the most updated HLA alleles list in official databases (e.g. 

IPD-IMGT/HLA database) [362-364]. Consequently, this latter may represent an important 

challenge for the NGS-based HLA genotype calling process performed by software programs, 

which will constantly need to be addressed in order to be still compatible with clinical 

turnaround time requirements [296]. 

c) Establishing new or improved underrepresented population-specific reference HLA 

databases with improved accuracy (e.g. [297]). Since current reference HLA alleles sequence 

databases and related worldwide human populations genomic projects (e.g. 1,000 Genomes 

Project [305]) have historically been based largely upon European (also known as Caucasian 

or Caucasoid) populations [464], and the full extent of HLA diversity in African [465][496], 

Middle-Eastern [466][467] or Asian [468-470][497] populations as well as certain isolated 

and rural ethnic tribes/groups [471] still remains poorly understood [499]. Assessment of 

HLA diversity across worldwide human populations may also shed light into the evolution of 
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HLA polymorphism [104][496][497]. Hence, a comprehensive description of the global HLA 

genetic variation will be also very relevant to health and disease [499]. 

d) Evaluating the prevalence of HLA alleles (especially for those alleles previously belonging 

to an allele ambiguity group), and haplotypes, within a given population and across worldwide 

populations more precisely. In fact, very recent NGS-based HLA studies carried out in 

population cohorts [267-287] and bone marrow registries [224-227] have unexpectedly found 

a greater number of examples of HLA alleles with relatively common frequency that were 

previously considered to be rare (when only using legacy methods for HLA genotyping), and 

actually represent the most common allele of the 1st-2nd fields allele group [300]. For 

instance, a study of an Argentinian registry population cohort has described that HLA alleles 

such as HLA-A*80:01:01:02 or -B*15:03:01:02 appear to be more common than their “:01” 

counterpart at the 4-field [224]. Thus, application of NGS technology enables the 

characterization of intronic diversity within genes sharing exon sequences (even alleles 

closely related), obtaining a highly improved assignment of HLA allele prevalence and, 

consequently, determination of LD for the description of haplotypes [224]. This refined 

description of HLA allele prevalence (since it is influenced by natural selection [104]) may 

contribute to define in great detail HLA evolutionary mechanisms such as allele 

diversification and convergent evolution in modern populations [300]. Furthermore, this 

information is invaluable for updating and refining current CWD catalogues [137][300]. In 

this sense, a very new report (covering the time period 2012-2018, and thanks to late advances 

supporting cost-effective high volume DNA sequencing as well as the efforts of registries to 

grow and diversify their volunteer donor pool in terms of multiple ancestries and regional 

HLA variation found within a given same country [136][481]) has been recently published. It 

has been named as “3.0.0 CIWD” and it compiles an updated catalog of common, intermediate 
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(as a novelty) and well-documented (CIWD) HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, 

-DQB1 and -DPB1 alleles from over eight million individuals using data (both G and P level 

resolution assignments) from twenty worldwide (World Marrow Donor Association 

(WMDA)) unrelated HSCT volunteer donor registries according to IPD-IMGT/HLA version 

3.31.0 released in January 2018) [479]. Importantly, this study points out, and tries to address 

them as well, some of the current challenges (that still need further revision) in order to be 

able to establish the most representative, integrative and updated HLA CIWD catalog [479]: 

-Over time (especially during these last two decades), the constant evolving ability to assign 

and report HLA diversity due to the almost exponential increase of described HLA alleles 

[87] in parallel with improvements in the allele resolution level (from 1-field to the 4-field 

routinely tested now via NGS) based on the advancements in chemistry and technology 

basis for HLA genotyping methods (i.e. initially using serologic typing of HLA proteins 

later replaced by DNA-based methods (which identified the presence or absence of specific 

polymorphisms through the binding of oligonucleotide probes or primers) and later, in turn, 

by DNA sequencing (first, SBT-based with many ambiguities in resolution and phasing, 

and most recently NGS-based with phased high-resolution and minimum ambiguity)) 

[35][76]. All these constant changes have created a wide variety of HLA assignments found 

in the millions of individuals listed in worldwide donor registries. 

-Even now for NGS-based HLA genotyping methods, the lack of uniformity in relation to 

the given coverage (exons, introns, 5’ and 3’ UTRs) of the HLA sequence for the tested loci 

between the respective method(s) and reagents of different vendors and/or in-house 

developments has also created an additional level of variability within the databases of 

unrelated hematopoietic stem cell donor registries. Thus, this makes it difficult to determine 

if a given assignment truly reflects any unresolved ambiguity. For example, HLA-
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B*51:01:01:01 might be assigned by a given laboratory based on a sequence that includes 

all exons and introns but not the 3’UTR. Alleles identified later that differ in this 3’UTR 

(e.g., HLA-B*51:01:01:02) make the assignment ambiguous. Therefore, standardization of 

this 3- and 4-field nomenclature accompanies differential practices among registries, both 

in typing methodology and standardization Likewise, it is not clear from the HLA 

assignment what level of resolution was applied. For example, a two-field assignment, HLA-

A*01:01, is not clear as to what alleles are included (e.g., HLA-A*01:103 because it is 

included in the HLA-A*01:01:01G group) or excluded (HLA-A*01:87N because it is a non-

expressed allele and the assignment was provided without the “P” because of registry 

specifications). Thus, this type of variations has presented a major challenge for determining 

accurately the frequency of individual alleles. 

-Inclusion and accurate estimation of the worldwide distribution of null alleles (there are 

about 464 class I and 124 HLA-DRB1, -DRB3, -DRB4, -DRB5, -DQB1, -DPB1 non-

expressed alleles (IPD-IMGT/HLA version 3.31.0) described [87]) are still pending. 

-Overrepresentation/underrepresentation of worldwide human population groups 

(represented by the different unrelated hematopoietic stem cell donor registries) as well as 

considering accordingly geographic/ancestral/ethnic categories with the difficulty of their 

broad variability. 

Lastly, future studies based on novel long-read sequencing strategies may contribute to a more 

comprehensive and diverse analysis of HLA and, thus, improve estimation frequencies in 

different geographic/ancestral/ethnic population groups to keep updating and refining these 

CWD catalogues. 
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e) Assessing signatures of demographic events and selective pressures reflected in HLA 

population variation as well as ancestry remoteness and relatedness (to shed light on possible 

common origins of certain populations/ethnic groups throughout human peopling history and 

more recently migration waves and/or admixture episodes in modern populations) between 

different populations and geographical regions [104][137][301]. 

f) Unravelling in-depth the vast diversity (e.g. identifying routinely novel, null and rare 

alleles) of the HLA system [172][211][302-304][323] and, thus, having a better understanding 

of the evolutionary mechanisms (and the respective putative evolutionary relationships) that 

shaped the HLA diversity patterns observed in human populations [104][137][273][307][308] 

(which has been mostly described only at the ARD-encoding exons level until recently 

[305][306]) and, importantly, also identified more precisely the main immunobiological roles 

of HLA loci and other linked genes within the human MHC region 

[104][137][178][288][309]. 

g) Studying the impact of coding and non-coding variation (and also the phased variation 

within and between HLA loci) on HLA expression (at both transcriptional (RNA) control and 

translational (protein) control levels) [309], on HLA biology and function at different levels 

(e.g. intracellular processing (including protein folding and stability, and binding of the 

peptide), cell-membrane presentation and functional cellular interaction and signaling) 

[265][266][288][309-317], in relation to susceptibility/protection to infectious diseases 

[309][318-322][513], and, as previously described, on immune reactivity in the context of 

transplantation [204][211][229-237][255-258]. 

h) Implementation of NGS-based HLA typing methodologies (enabling the sequencing of 

previously unsequenced regions of HLA alleles) in the routine clinical practice has allowed 
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the rapid and massive discovery of new alleles [172][211][302-304][323]. Which, in turn, 

may be a potential challenge to the current four colon-delimited field HLA nomenclature 

system nomenclature naming conventions and, thus, it may require to be honed [74][94][178]. 

Therefore, a proper updated HLA nomenclature must be assigned by the WHO Nomenclature 

Committee for Factors of the HLA System [74][94], in order to: address the growing numbers 

of new alleles being discovered; to reduce naming complexity; and to provide the most 

informative nomenclature system possible (e.g. to better distinguish 5’- and 3’UTR variations 

from the intronic ones). Furthermore, several more precise and adapted HLA allelic 

polymorphism and ambiguity complementary reporting systems (as previously described) 

have been developed and are in process to be established for this new and very recent era of 

NGS-based genotyping in the histocompatibility and immunogenetics field [324-327]. It is 

noteworthy the recently implemented GFE system (which describes the distribution of 

polymorphism between the various features that are known for HLA alleles) that 

complements the current HLA allele nomenclature (which only defines silent, replacement 

and non-coding polymorphisms) [327][365].  At the same time, it is expected NGS-based 

HLA genotyping data will provide a more comprehensive serological equivalent list for HLA 

class I and II alleles (e.g. compiling a list of HLA class I and II alleles (especially in the case 

of novel and infrequent alleles) for which serological patterns and the serological assignments 

or equivalents (i.e. association of HLA alleles to serologically defined HLA antigens) have 

not been identified (e.g. [518]), may have been incorrectly categorized or not listed yet) and, 

thus, to update the last 2008 HLA Dictionary (whose information has been traditionally 

contributed from several sources such as: WHO Nomenclature Committee for Factors of the 

HLA System, the UCLA International Cell Exchange Program, NMDP, recent publications 

and individual HLA laboratory groups) [86]. 
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Referring back to the HLA population genetics topic itself (as just previously summarized in 

the listed point “e)”), NGS-based HLA genotyping studies of worldwide population cohorts 

have allowed a very comprehensive HLA assessment of population diversity, in which 

molecular distances between alleles and haplotypes in terms of nucleotide differences 

(including genetic variation found at non-coding regions) can be now taking into account 

[104][137][178][301]. In this regard, and as expected [104][137], it has been found how NGS-

based HLA genotyping data at the 4-field significantly furthers genetic distance computation 

(e.g. when being evaluated by phylogenetic dendrograms) between and within populations (e.g. 

see [328]). Furthermore, NGS-based HLA population studies have revealed, so far, both some 

unique and striking as well as some other more commonly shared 4-field extended haplotype 

associations (e.g. HLA-DQA1*05:01:01 variants, HLA-B*18:01:01 variants, HLA-C*05:01:01 

variants or HLA-C*06:02:01 variants), previously undescribed at 2-field resolution by legacy 

molecular HLA genotyping methodologies, among worldwide human populations/ethnic 

groups (e.g. see [224][268][286][287][328]). As a very specific example illustrating this latter 

observation; in a recent large US European American population cohort the two 4-field variants 

HLA-C*06:02:01:01 and HLA-C*06:02:01:03 are distinctly associated with HLA-A*30:01:01 

and HLA-A*29:02:01:02 respectively [268]. Thus, a significant portion of “silent” 3-/4-field 

HLA polymorphism, previously undescribed in population genetics studies, may be relevant to 

infer geographical and/or historical relationships between human populations [137]. In this 

sense, the information relative to 4-field extended haplotype associations at the population level 

can be extremely helpful, as an example, for selecting matched unrelated donors in HSCT and 

as a first reference source for future studies and current database registries, such as Bone 

Marrow Donor Worldwide (BMDW) database (https://wmda.info/) (World Marrow Donor 

Association (WMDA) took over the activities of Bone Marrow Donors Worldwide (BMDW) 

https://wmda.info/
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and the NetCord Foundation since 2017), that may present incomplete genotyping data for some 

of the HLA loci. Moreover, some recent NGS-based HLA studies have shown that comparison 

of the nucleotide diversity at different coding and non-coding regions of HLA genes (which are 

presumably driven by distinct types of selective pressures) may facilitate to disentangle 

demographic from natural selection effects on HLA allele/haplotype diversity patterns at a 

given population/geographical region (e.g. HLA-A, -B and -DRB1 genes may underwent similar 

selective pressures in the Uyghur (Central Asia) and Ami (Taiwan) populations which present 

very distinct demographic histories) [137][178][301]. In parallel, more sophisticated statistical 

methods, based on high-resolution HLA haplotype frequencies, are required to resolve 

demographic events such as the recent admixture between populations which can mask the 

ancestral haplotype frequency distribution and present an important challenge, as an example, 

for the HLA matching process in the transplantation setting [329]. Also, a more accurate 

generation of HLA phased data (at both the level of SNPs within a locus and among loci 

describing haplotypes) can be achieved now via NGS sequencing and, consequently, it is 

possible to obtain a highly improved and more reliable estimation of LD values and patterns of 

HLA haplotypes at the population level. Being this LD parameter very useful to understand in-

depth worldwide human population history and past migrations [104][137]. For instance, LD 

may serve for the assessment of ancestry remoteness of populations as this parameter is 

expected to decrease with time through recombination events [26][137]. In fact, it has been 

generally observed how LD values for different HLA loci pairs tend to be low in populations 

of remote ancestry. Thus, and in line with the “out-of-Africa” migration theory of worldwide 

human population dispersion outside Africa, some studies have shown how lower LD values 

have been detected on African and African-descent populations (more likely to be populations 

of remote ancestry) in comparison to other European, Chinese or Japanese population cohorts 
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(being these more likely to represent more modern populations) [26][137][330]. At the same 

time, recent NGS HLA studies have revealed that African and African-descent populations 

present a relatively rich repository for HLA genetic variation (especially considering the high 

levels of heterozygosity detected across HLA loci), which might have arisen in the African 

continent before human dispersion [279][328]. In fact, these more recent observations are also 

in line with previous studies. Which already showed that in African populations, the genetic 

distances (although only based on HLA allele/haplotype class I frequency distributions) 

between each other are greater than those observed between European (Caucasoid) populations. 

Thus, the remarkable current allelic and haplotypic diversity in the HLA system as well as their 

variable distribution in different sub‐Saharan populations is probably the result of evolutionary 

forces and environments that have acted on each individual recent population and/or in their 

earliest ancestors [496]. Furthermore, in regards to the effect of the quality of the phasing of 

NGS HLA genotyping data (so far, mostly generated by NGS short-read or 2nd generation 

sequencing platforms) on the accuracy of LD estimation for 2-locus haplotypes; interestingly, 

a recent study [331] has described the existing overestimation of LD (higher values) for EM 

estimated haplotypes (using the statistical EM algorithm approach, typically carried out for the 

inference of haplotype frequency distributions in population cohorts comprising unrelated 

individuals, where the phasing between HLA loci is uncertain [101][332-336]) in comparison 

to LD values estimated by accurately phased HLA haplotypes (most typically built by family-

based allele segregation analysis [101][337-339]). This observed singularity is even more 

ostensible in those 2-locus haplotype pairs known for presenting a weak LD, where a broader 

range, and also more rare, of combinations of these loci occur (e.g. HLA-A∼HLA-C, HLA-

B∼HLA-DRB1 or HLA-DQB1∼HLA-DPA1) [92]. This aforementioned finding may be 

explained by the well-known fact that the EM algorithm approach not only estimates haplotype 
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frequency distributions from unphased (or phased-unknown) HLA genotyping data but also 

considers the assumption that all HLA loci are under Hardy-Weinberg Equilibrium Proportions 

(HWEP). When, in reality, HWEP deviation is commonly observed at multiple HLA loci in 

population studies due to, as an example, population stratification among other causative factors 

[268][340][341]. Thus, these aspects may be causing that EM algorithm approach 

underestimates the frequency of rare (n<3-4) haplotypes, and thereby LD values of 2-locus or 

other extended haplotypes are overestimated [268][286][331]. Nonetheless, EM algorithm 

approach is still considered a very useful tool for inferring haplotype frequency distributions 

(despite their estimation is not completely accurate, particularly at low frequencies), especially 

from HLA genotyping data of registries comprising unrelated potential HSCT donors 

[179][223-227][259][299][474][476][481][943] as well as in the case of population-specific 

cohorts of unrelated individuals [267-283] which, in both cases, generally lack information on 

family pedigrees. On the other hand, HLA allele segregation analysis of NGS HLA genotyping 

data in nuclear families generally allow to establish a very accurate phasing (intra- and 

interlocus) and, thus, a robust determination of HLA haplotype (via family pedigree analysis or 

phasing analysis with Mendelian constraints), including the reliable identification of haplotypes 

encompassing rare, null or novel alleles that exist in the given general population [284-287]. 

Moreover, HLA family-based studies [101][287] are especially invaluable for the assessment 

of distinctly admixed and/or not very well-characterized populations (e.g. the distinctive nature 

of highly admixed Argentinian [224] or Mexican Admixed [267][522][547-552] populations 

which include an important variety and disparity of ethnic backgrounds of Amerindian, 

European, African and even Asian origin within the general population). In addition, NGS HLA 

family-based studies facilitate (in those instances when the most common segregation pattern 

of alleles of HLA loci, inherited as HLA chromosomal haplotype blocks from both parents to 
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their offspring [100], is not observed) the detection of potential chromosomal crossing-over 

events between HLA loci (as a consequence of occasional existing meiotic recombination) [92]. 

Although there are some exceptions and limitations that make difficult to determine, in general, 

a very precise and absolute recombination fraction for HLA haplotypes (e.g. crossover events 

cannot be determined reliably among trio families; also, only in families that have more than 

two children, it is usually possible to identify the specific parental haplotypes that participate in 

a given crossover event; on the other hand, even in families with two or more children, crossover 

events within homozygous HLA loci may not be detected) [284-287][331]. Also, despite it 

presents a high robustness and accuracy, the family-based approach for phasing and 

determination of haplotype frequencies is not very feasible for large-scale studies at the 

population level, in contrast to the EM algorithm approach in large-scale study cohorts with 

samples collected from unrelated individuals of a given population [342]. Consequently, as a 

main drawback, unless significantly large numbers of families at a highly wide geographical 

scale can be studied, HLA allele and haplotype (although very accurately phased) distributions 

reported by family-based studies (generally presenting a non-random nature with some 

plausible biases) may not be very representative, reflective and generalizable of their respective 

larger populations and, thus, neither meaningful for anthropological analysis [284-287][331]. 

Nonetheless, large family-based studies can be used to refine segregation patterns of alleles in 

worldwide populations. Thus, these NGS studies may contribute to construct accurately high-

resolution HLA haplotype databases that can be useful for, as some main examples: improving 

NGS HLA genotyping software applications and, especially, their algorithms for the assembly 

of consensus sequences (especially for challenging loci to be correctly genotyped such as HLA-

DPA1, HLA-DPB1 or HLA-DRB3/4/5) [284][331]; enabling and facilitating, together with the 

clonal property of NGS platforms, the identification of rare variant sequences as well as 
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detection of PCR and sequencing errors of given NGS HLA genotyping methods [343]; and 

downstream analyses for studies in fields such as: disease association (e.g. which may facilitate, 

by discarding possible hitch-hiking effects, identification of specific allele within an haplotype 

as the determinant factor for a certain disease association) [207]; transplantation (e.g. more 

confident predictions of match grade in HSCT) [211-220]; evaluation and detection of 

chromosomal crossover events and/or potential HLA genotyping errors (e.g. homozygous 

overcalling at HLA-DPA1 locus (with only a single consensus sequence resolved by NGS 

instead of two) or accurate haplotype designation and determination of copy number variation 

of HLA-DRB genes) [331][344]; and validation of new HLA analysis tools, novel HLA 

genotyping technologies (including cross-platform validations) and statistical estimation 

approaches of HLA haplotype frequencies and LD values at the population level [284-

287][331][345][346]. At the same time, despite these current limitations found in both HLA 

population family-based and studies of unrelated individuals using currently available NGS 

HLA typing technologies (so far, mostly based on NGS short-read sequencing platforms); the 

very recent application (although still in evolving development) and optimization of NGS long-

read or 3rd generation sequencing approaches, it is expected to facilitate this complex analysis 

and phasing of the entire HLA haplotype region and hence enhance estimation of the LD 

parameter [159][165-173][204]. It has been extensively reported that natural selection (in the 

context of the relevant and complex role of HLA molecules in the immune response and the 

related immunoregulatory mechanisms, and in addition to populations’ demography and 

migration contributions) seems to operate on the observed diversity of HLA alleles at different 

loci and the LD between neighboring and non-neighboring loci [22][23][56][103][104]. In turn, 

both of these may influence on the distribution of respective extended haplotypes [100]. Unlike 

traditional molecular HLA genotyping methods, NGS-based HLA studies (both based on 
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unrelated individuals or families within a given population) are also able to report maximum 

extended 9-locus (including all main classical HLA class I (-A, -B, -C) class II (-DPA1, -DPB1, 

-DQA1, -DQB1, -DRB1, -DRB3/4/5) loci) haplotype associations at the highest 4-field allele 

resolution level. So far, one of the main general observations about these haplotype frequency 

distributions in different NGS HLA worldwide populations studies has been that many identical 

haplotypes across 7 loci (comprising HLA-A-~B~C~DRB3/4/5~DRB1~DQA1~DQB1, and 

excluding HLA-DPA1 and -DPB1) become extremely divergent in terms of the multiplicity of 

HLA-DP alleles with which they associate [268][286][287][331]. Thus, as previously 

mentioned, since HLA-A~B~C~DRB1~DQB1 haplotypes carry very differing HLA-DPB1 

associations (which is even more pronounced at the 3-/4-field resolution), these associations 

also impact considerably (and, in fact, negatively) the likelihood of finding unrelated donors 

(URD) in HSCT [233]. This seems to be especially due to the weak LD between HLA-DP and 

the rest of the class II haplotype since existing hotspot of recombination is present between 

HLA-DQ and -DP loci [92]. At the same time, the non-coding sequence variation confers an 

additional higher level of diversity which in combination with weak haplotype associations (as 

it is observed for HLA-DP loci) imply a substantial widespread distribution of extended HLA 

haplotypes presenting very low frequency values that, in turn, require to be precisely estimated 

and where it is also required a large sample size of the respective given population cohorts in 

order to be representative and meaningful for evaluating anthropological aspects based on these 

4-field extended HLA haplotype frequency distributions [268][286][287][331]. 

It is also noteworthy that the majority of these cited NGS HLA population studies (and their 

respective previously summarized findings) [267-287] (including the NGS HLA Spanish 

population study that is part of the present thesis work [269]) were greatly spurred by and 

carried out as part of the activities, components and projects of the past 17th International HLA 
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and Immunogenetics Workshop (17th IHIW), held in September 2017 [347][348][487]. The 17th 

IHIW was primarily focused on the applications of NGS technology in the histocompatibility 

and immunogenetics fields, establishing a preliminary multicenter quality control project [349] 

to validate various NGS HLA (and also KIR separately) genotyping platforms and related 

genotyping software analysis programs and, importantly, creating an innovative centralized 

database [297] for: HLA genotyping data collection (including both sequence and allele-

name/genotype data according to v.3.25.0 IPD-IMGT/HLA (released July 2016)) for the 

different 17th IHIW components and projects; for its visualization; and for the posterior data 

management and analysis with different computational tools (e.g. to submit, to report and to 

transfer accurately NGS HLA genotyping data; to calculate allele and haplotype frequencies; to 

estimate LD; to validate HLA haplotypes; or using HLA DNA sequence alignment tool for 

reporting novel variants in the generated consensus sequences) [324-327][331][350-354]. Thus, 

under the auspices of the 17th IHIW, full-length description of coding and non-coding variation 

of classical HLA genes and also, separately, of KIR genes [355] were analyzed at high 

resolution through the application of various NGS platforms (mostly of 2nd generation as well 

as a few of 3rd generation sequencing methods) in the context of different components and 

topics: population genetics (worldwide unrelated- and family-based population studies) [267-

287]; refined and extended molecular characterization of HLA genes of the International 

Histocompatibility Working Group (IHIWG) reference cell lines (representing an important 

resource for quality control purposes, validation and optimization of genotyping methods for 

HLA and KIR gene clusters as well as MHC extended haplotype studies) [356]; 

pharmacogenetics and disease association (for example, see [291-294]); immunogenetics of 

aging [357]; HSCT [309]; and mapping of serologic epitopes [262][263] among other main 

projects. Also, in addition to optimized and standardized short-read [179-193]; very initial (still 
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in development) long-read [159][165-171][358] NGS technologies; and NGS dual-combined 

approaches [172][173][204][359]; there was a 17th IHIW component dedicated to the full-length 

hemizygous Sanger sequencing approach (based on group-specific priming, and especially 

designed for genotyping HLA class I genes) as a valuable alternative to unambiguously identify 

and confirm (by resolving genotype ambiguity due to cis–trans polymorphism and allele 

ambiguity due to polymorphism located outside the ARD region) the genomic sequence of 

alleles with novel variants, alleles with unknown intron and exon sequences, or consensus 

sequences obtained by PCR-based short-read and long-read NGS technologies that may be 

difficult to interpret due to, for instance, existing homopolymer stretches or STR regions 

[360][361]. Overall, the main breakthrough of this past 17th IHIW [487] was the completion of 

a very refined and full-length characterization of extended HLA, and also KIR, genomic 

reference sequences defined by allele name and respective consensus sequences at the 

population level using different NGS platforms (enabling an extensive phasing across genes, 

minimal genotyping ambiguity and in-depth description of allelic diversity) together with 

related resources and tools available for the international histocompatibility and 

immunogenetics community and to continue completing and updating (by replacing or 

confirming incompletely defined sequences) [146][463] the IPD‐IMGT/HLA database 

[87][362] with full‐length HLA sequences as well as for KIR genes in the respective IPD-KIR 

database [363][364]. At the same time, there are still a number of remaining challenges to be 

addressed, which have been now set as goals for the upcoming 18th IHIW in 2021 in order to 

achieve: improved automated annotation and curation systems of sequence variation and its 

related nomenclature [365] (e.g. which may be able to deal with either partial-gene sequence 

and/or multiple consensus blocks per gene provided by many NGS platforms as well as defining 

SNP locations within the genes); and application of newer developments in HLA and KIR genes 
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(as well as for other human MHC and LRC genes and/or complete regions) sequencing 

platforms that: can generate more comprehensive, extensive and reliable consensus and/or 

directly generated sequences; that can also circumvent phasing uncertainties, especially of distal 

polymorphic positions, and resolve rest of remaining ambiguities, especially those associated 

with DNA regions presenting repetitive and extensive low-complexity and imbalanced genomic 

sequence composition (e.g. homopolymer stretches; STR regions; high AT- or GC-rich regions) 

[366]. Moreover, in relation to NGS technology and its application to HLA genotyping, it is 

expected that current major NGS limitations (e.g. time required to sequence and analyze data, 

costs, coverage, sequencing error rates and multiplexing capabilities) may be overcome by 

introduction of novel sequencing instruments with varied improved chemistry approaches and 

engineering design [367][368]. Ultimately, characterization of unambiguous and full genomic 

allelic and haplotypic polymorphisms of the HLA (and KIR, respectively) region with an 

exhaustive description of all possible existing HLA-allele and -haplotype SNPs at the 

population level (and also at the individual level, in the context of precision medicine and 

personalized treatment) may contribute to understand and to elucidate which particular variants 

(and at which particular genomic locations: regulatory, untranslated, coding or non-coding 

region) are functionally relevant, hence having a crucial effect on immune system phenotypes 

(regarding antigen presentation to immune effector cells and its regulatory influence in 

downstream humoral and cellular immune responses) [120] and being intrinsically linked to 

certain risk factors and risk stratification in the context of, as some of the main examples, 

transplantation (donor registries) and disease associations [358][369][370]. Nonetheless, due to 

the vast genomic diversity within the human MHC region (unambiguously, extensively and 

fully described at high-resolution now via NGS technologies), the evolutionary and functional 

significance of the HLA region may be difficult to assess and define (especially from a statistical 
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point of view) in most cases as a consequence of the relatively low frequency distributions 

observed at 3-/4-field high-resolution HLA alleles and haplotypes, being this especially the case 

of rare non-coding sequence variants [104][137][152][301]. Within the context of HSCT, it is 

highly unlikely to have a fully 10/10 matched URD identified for patients affected by 

haematological disease [371], and even more unlikely now as a consequence of this increased 

level of HLA polymorphism (at coding and non-coding sequences) described, since the HLA 

haplotype frequency distributions are considerably more spread out at these higher resolution 

levels. In this sense, the choice of haploidentical donors for HSCT may represent a more 

plausible and relevant alternative (in which, in spite of that level of HLA disparity, so far it has 

shown favorable outcomes in the engraftment, a decline in the rate of GVHD, and an 

improvement in the morbidity and mortality of patients, similar to those reported for unrelated 

HSCTs) when a fully matched donor is not available [372][373]. At the same time, the expected, 

and already current, huge and rapid increase of reported HLA alleles (newly discovered and/or 

whose genomic sequence has been now entirely characterized) and respective related 

haplotypes, based on the massive amount of HLA genomic phased sequence data generated at 

high-resolution (and hence immense HLA diversity being described) in the era of NGS, also 

present a series of new challenges and possible pitfalls that definitely require new analytical 

and statistical approaches and methods in addition to a thorough revision of, as some main 

examples: so far reported disease-associated alleles or haplotypes, reference cell line panels and 

HLA sequence databases, CWD (and CIWD recently defined) catalogues and donor-recipient 

matching algorithms and likelihood estimates in the transplantation field 

[104][137][152][153][178][265][301][479].  

Current NGS-based HLA population studies enable the description at high-resolution of new 

common alleles as well as new rare alleles (especially at non-coding regions) although in a 
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context of both limited sample size and incomplete geographical and regional coverage of 

worldwide population cohorts studied so far (in comparison to the given vast HLA genomic 

diversity that has started to be found recently via NGS). Moreover, these current sampling 

limitations certainly avoid an entirely accurate estimation of allele frequency distributions, as it 

is also the case of haplotype frequency distributions. Thus, the HLA genetic profile of a given 

population cohort may not be still very truthful and representative at such high resolution levels, 

which require (as a statistical condition) very large population study cohorts at a highly wide 

geographical scale to be conducted [137][301]. At the same time, evaluation and definition of 

rare alleles/haplotypes have to be consistent with geographical origin/distribution and linkage 

disequilibrium [374]. Furthermore, it is also important to consider the contribution of rare 

alleles/haplotypes to the overall genetic diversity pool (i.e. the overall HLA allele repertoire) as 

well as the rapid turnover that may occur in a significant number of HLA alleles 

[137][375][376], since generation of novel MHC immune gene variants confers a selective 

advantage in host-pathogen coevolution [104][137][301][377][378]. Consequently, statistical 

assessment of population relatedness (e.g. considering the computation of genetic distances 

using phylogenetic dendrograms) and other related population data analyses (e.g. HLA 

evolution or disease-association studies) only based on allele/haplotype frequencies may not be 

suitable at this 3-/4-field allele resolution level. Since there is an inaccurate estimation of rare 

alleles as well as a reduced statistical power (and, thus, a lack of reproducibility) because of this 

rarity and higher population divergence [137][379]. In this sense, a series of new statistical 

methods (including the use of computer simulation models and neural network programs) 

[104][137][380-382] and approaches (e.g. coalescent theory; sample frequency spectrum (SFS) 

and polymorphism/divergence ratio; excess of identity by descent (IBD) regions; long-term 

shared polymorphism; or composite likelihood), most of them based on the interrogation of 
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HLA sequence instead of simply allele/haplotype frequency data, have been suggested and 

initially tested [104]. Nevertheless, these new strategies may still require further optimization 

and a higher level of robustness, accuracy and consistency with previous studies [104][137]. 

Overall, direct examination of human MHC region sequence (providing invaluable information 

not only regarding molecular HLA polymorphism but also in relation to, for instance, 

mutation/recombination rates and linkage disequilibrium) by these new analytical and statistical 

methods may: facilitate identification and discernment of natural selection (where several 

selective regimes account for the patterns of variation of HLA loci) and demographic (e.g. 

population size changes, migrations or admixture) effects on the evolution of different HLA 

polymorphisms, respectively, at various timescales; as well as to assess the effect of epistatic 

interactions (e.g. HLA-KIR) and epigenetic mechanisms (e.g. DNA methylation, histone 

modifications and non-coding RNA (such as miRNA)) in order to unveil also the complex 

crosstalk between genetic and environmental factors [104][137][288][521]. 

In relation to the remaining previously listed a) to h) points, some of them are further discussed 

in the next pages showing recent and significant applications of NGS-based HLA genotyping 

in some other related fields at the population-level.  

3) Disease Associations (as previously listed on point “a)”): 

Till date, over 160 complex diseases (including autoimmune diseases, cancer and infectious 

diseases) [27][120][383-390][513] and multiple hypersensitivity reactions (phenotypically 

distinct T cell mediated ADRs) [110][126][127][391] (see respective Figures I-15 and I-16) 

have been relatively and/or significantly associated with a variety of numerous HLA variants 

(haplotypes, alleles and/or their respective SNPs structures) as well as other gene 

polymorphisms (generally immune-related and commonly in close linkage with the human 
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MHC region). Nevertheless, the current understanding and knowledge of the biological 

significance (and underlying molecular mechanisms) of these HLA disease- and 

hypersensitivity-associations have been defined only partially and still remain very limited 

[121][207], with only few exceptions (e.g. HLA-B*57:01-associated abacavir hypersensitivity 

[392-394]; or the proposed “shared epitope-coding HLA-DRB1 alleles” hypothesis in 

rheumatoid arthritis (RA) [395-397]). Thus, despite the human MHC region shows the highest 

number of disease associations across the human genome [120], fine-mapping and 

deconvolution of discrete causal variants in the human MHC are still uniquely challenging and 

remain elusive due to the main following reasons [121][207][398]:  

(a) The extreme (and still not completely described [146][463]) sequence polymorphism (e.g. 

it has been estimated that HLA genes may contain on the order of millions of alleles per locus 

[306][376]) and the complex mosaic structural genetic architecture (e.g. numerous SNPs; 

regions showing repetitive and extensive low-complexity and imbalanced sequence 

composition (such as STR regions, homopolymer stretches and AT- and GC-rich regions); 

loci in extensive LD, with also plenty of recombination hotspots that may break the haplotype 

structure; as well as many structural variations including gene inversions, deletions, 

duplications and copy number variants (CNV) [206]) which may play an important role in the 

haplotype structure and, thus, function. Furthermore, HLA allele polymorphisms that are 

associated with diseases may include both ARD-encoding regions (defining the peptide 

binding and presentation but also the specificity of the entire HLA-peptide-TCR interaction 

[399][400]) and non-ARD-encoding regions (for protein elements like transmembrane and 

cytoplasmic regions, which can also affect activation of the engaged cells) [121][265][266]. 

Moreover, these HLA sequence and structural polymorphisms greatly vary (at the 

allele/haplotype frequency level and also, in the case of haplotypes, at the level of LD strength 
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and length) between human populations and ethnic groups/geographical regions [309][401]. 

At the same time, due to this extensive LD, for many reported associations between a disease 

phenotype and a particular variant in the human MHC region, it may not be feasible to 

determine whether the variant is causal or whether that association simply reflects LD with 

the true causal variation [402]. 

(b) The high density of human MHC genes, which are in extensive LD and are tightly related 

to innate and adaptive immune functions, show a pleiotropic nature. Since many of these 

clustered MHC genes are involved in a variety of both physiological and immune-mediated 

disease pathways (where MHC gene clusters encode a series of proteins for cellular and 

extracellular antigen presentation to circulating T cells, inflammatory and immune-responses, 

heat shock, complement cascade systems, cytokine signaling, and the regulation of various 

aspects of cellular development, differentiation, and apoptosis) [403]. Thus, many immune-

mediated diseases (e.g. autoimmune diseases) show an important overlap between disease-

associated loci (even finding in some instances discordant associations between autoimmune 

diseases) [207][385][404]. Also, it is noteworthy that the majority of these immune-mediated 

diseases are polygenic, heterogeneous and multifactorial, in which, so far, an incomplete 

penetrance of known HLA genes or loci has been observed [207][383][405]. Another aspect 

to consider is the concept of evolutionary-genetic tradeoffs, having the 8.1 ancestral haplotype 

(AH) (containing HLA‐A*01, -C*07, -B*08, TNFAB*a2b3, TNFN*S, C2*C, Bf*s, C4A*Q0, 

C4B*1, DRB1*03:01, DRB3*01:01, DQA1*05:01, DQB1*02:01, -DPA1*01, -DPB1*03:01, 

-TAP1*01:01, -TAP2*02:01) as a prototypic example. Since it has been widely reported the 

association of this extremely long 8.1 AH haplotype (spanning ~3-4 Mb) for conferring 

susceptibility to autoimmune disorders (as a deleterious effect) on one hand, and protection 

against infections (from selective pressures) on the other hand, which both may be also under 
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the influence of other genetic and environmental co-factors [406][407]. Furthermore, beyond 

functions related to host defense, it has been recently reported how HLA and non-HLA genes 

of the human MHC cluster may be also involved in neurobiological processes including both 

synaptogenesis and synaptic pruning [401][406]. Thus, immune dysregulation of a certain set 

of human MHC genes (including HLA genes) may also influence susceptibility towards 

neurological diseases [290-294]. In addition, small molecules and human metabolites may 

dramatically interfere with the peptide repertoire and, thus, immunomodulating the HLA-

peptide-TCR interaction, which, in turn, may be also implicated in the etiology of certain 

autoimmune/inflammatory diseases [408][409]. 

(c) Human MHC genes (including HLA and non-HLA genes, and their respective molecules 

ultimately) show a coordinated “multigene” and “long-range haplotype” (both cis- and trans-

) interaction (in a likely allele/haplotype-specific pattern) to both regulate and carry out their 

functions [207]. However, as an example, only few studies have interrogated the variation and 

phasing of human MHC class III clusters (such as TNF, BTNL2, and C4) with the classical 

HLA class I and II alleles [401]. Besides HLA-disease association studies, in the 

transplantation field there is also an increasing interest in the full characterization of the 

gamma block (which contains numerous inflammatory and immune regulatory genes) within 

the human MHC (as well as other less characterized MHC blocks so far) [27] and the 

evaluation of the impact of gamma block matching on clinical outcomes in HSCT [410][411]. 

Moreover, it is also noteworthy the regulation of expression and, consequently, biological 

functions of human MHC genes by epigenetic mechanisms (e.g. DNA methylation, histone 

modifications and non-coding RNA (such as miRNA)) acting at key regulatory sites 

especially located in non-coding regions (e.g. enhancers, silencers, promoter and untranslated 

regions (5’- and 3’-UTRs)) [121][288][521]. In addition, gene-gene epistatic interactions (e.g. 
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HLA-KIR) also seem to contribute significantly to disease associations involving the 

combined presence and interplay of variants within and outside the human MHC, showing a 

higher overall risk for the given disease phenotype [104][121][290]. 

(d) The technical limitations and inherent biases of traditional analysis approaches and 

sequencing/genotyping technologies in studying human MHC gene variation (and particularly 

HLA genes) and its association with disease phenotypes. First, assessment of the differential 

presence/absence of HLA alleles/haplotypes in a patient-disease cohort versus a considered 

healthy control cohort has been the most traditional and extended approach for establishing 

the HLA association of specific diseases [412]. Nonetheless, many of these candidate gene 

studies have also indicated that HLA variation alone may not be sufficient as a 

susceptible/protective genetic factor to deduce the underlying mechanism of those diseases 

initially HLA-associated [401]. At the same time, this traditional case-control approach 

presents important limitations, especially for the distinction between the effects of HLA loci 

that show a strong LD complicating the deconvolution of discrete causal factors [402]. Thus, 

in order to try to differentiate the effects of tightly linked loci under this traditional approach, 

this type of studies require to be conducted with very large sample sizes and by analyzing an 

enough number of different ethnic groups. This may facilitate the identification of 

recombination events and, thus, the detection of the real and distinctive causative HLA 

variation pattern [412]. In addition, conditional analyses can be applied to separate allelic 

from haplotypic association (i.e. thus, to discern hitchhiking effects of given detected 

associations) [402]. Another methodological challenge in this type of traditional studies is the 

so-called “population stratification”. In which unrecognized ethnic/regional differences 

between the disease and control population groups can be detected as genetic HLA-disease 

associations that are actually not related to the disease of interest. Thus, designing ethnicity-



________________________________________________________Introduction 
 

Page | 246  

   © Gonzalo Montero Martin  

matched case-control studies with a consistent sampling strategy and large sample size (that 

even may allow stratified analyses) can contribute to minimize this type of issue [384]. 

Second, current GWAS (including HLA genotype imputation; although being very 

informative for indicating possible regions of interest, it still presents limited density of SNP 

arrays and a lack of allelic high-resolution, LD and specific population/ethnicity-reference 

data) [413] or exome sequencing (being unable to evaluate non-coding variation) [414] 

approaches present limited ability to detect and interconnect the actual causative genetic 

variants and their role in the given disease phenotype [121][207]. In fact, GWAS data itself 

has shown that 90% of causal autoimmune disease variants reside within non-coding regions 

of the human genome, with many of these disease-association SNPs mapping to the human 

MHC [415]. Moreover, within these 90% non-coding variants about 60% are mapping to 

immune cell enhancer-like elements most of them involved in transcription of non-coding 

RNAs such as miRNAs, which may also play a role in the pathophysiology of certain HLA-

associated diseases [121][288][416]. Therefore, not only HLA structural domains involved in 

peptide binding but also regulatory variants operating at the human MHC region are important 

for understanding both the evolution of HLA polymorphisms at the population-level and the 

role that they play in disease [104][309][521].  

All of these previous considerations show the inherent difficulty in fully deconvoluting the 

causative aspects of HLA-associated diseases. In order to overcome these difficulties, more 

comprehensive approaches have been recently developed, which are focused on targeted deep-

sequencing strategies (based on NGS) of the entire human MHC region [195] (allowing for 

long-range haplotype structure to be fully resolved in phase; although, so far, current sequencing 

methods have described only homozygous DNA samples) in conjunction with multidisciplinary 

analysis methods (for instance, based on pattern recognition and complexity theory [417)] to 
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decipher more accurately causal nucleotide changes, regulatory factors and interactions of 

extended genomic regions being part of complex underlying mechanisms associated with 

disease phenotypes [121]. In addition, recognizing the relevance of non-coding variants and 

their association with disease phenotypes, many efforts have been devoted to identifying DNA 

elements and to describing their variation as well as their interactive relationships and, in turn, 

their regulation in gene expression [121][309]. In this sense, it is noteworthy the contributions 

made so far by the ENCODE (ENCyclopedia Of DNA Elements) consortium [418] as well as 

by several studies that have examined expression quantitative trait locus/loci (i.e. SNP variants 

altering gene expression, named as eQTLs) [419][420]. These identified SNPs (operating as 

single SNP units or as several haplotype-specific SNPs) may influence expression over several 

HLA genes within an haplotype or on a certain HLA allele [309] and at different genomic 

locations (cis-eQTLs and trans-eQTLs) [401]. Thus, human MHC polymorphism also displays 

a transcript diversity, where regulatory variants of gene expression may be a key component of 

biological mechanisms underlying the MHC-associated phenotypes and diseases [421]. 

Therefore, the comprehensive global map of regulatory gene expression variation may facilitate 

the fine-mapping of disease causal variants within an associating locus or region contained by 

the human MHC [401]. Overall, complex HLA-associated with disease risks and adverse effects 

of drugs may be caused by a combination of variants: operating at both cis- and trans-; being 

both rarely and commonly frequent; located in coding and non-coding regions; and from within 

and outside the human MHC [207]. Recently, studies based on 4-field resolution assignments 

of HLA alleles/haplotypes using NGS approaches have started to elucidate more accurately the 

role of HLA variation in the multifactorial etiopathogenesis of complex diseases [288-294] and 

adverse effects of drugs [422][517].  



________________________________________________________Introduction 
 

Page | 248  

   © Gonzalo Montero Martin  

At the same time, application of NGS-based HLA typing methods may be also useful for a 

better characterization of clinical phenotypes and for monitoring and predicting more accurately 

the given disease course and the response to respective current and novel (even individualized) 

therapies as well as conditioning regimens (in the case of HSCT) [288]. In this sense, NGS 

technology presents a high depth of sequencing coverage enabling not only a high-resolution 

characterization of HLA polymorphism (even from challenging, but precious, biological sample 

sources (such as umbilical cord blood (UCB) samples) for DNA extraction [473]) but also a 

reliable detection of minor and rare mutational genomic events that were unattainable by 

previous legacy methods when studying diseases [121]. Thus, application of NGS has allowed 

to evaluate more precisely the role of HLA and non-HLA genes in complex diseases, having 

also a significant impact in cancer biology and cancer immunotherapies [121][424]. In relation 

to HLA, NGS may allow to have a better understanding of the immune escape underlying 

mechanisms exploited by cancer [387][510][942] including HLA allele-/haplo-specific loss 

heterozygosity (LOH) and/or reduction in expression (impaired at different levels: during 

transcription or affecting some of the elements of the antigen processing machinery) of intact 

and functional HLA molecules loaded with the respective peptide (where ligandome originating 

from cancer-associated antigens is also important to be characterized [314][423]) on the cell 

surface [386-390]. At the same time, NGS-based HLA genotyping facilitates considerably the 

detection of loss of HLA function mutations in cancer patients (e.g. presenting myelodysplastic 

syndromes (MDS)). Being critical in those cases to confirm the presence of novelties (especially 

for the verification of detected null alleles) in the germline from a non-blood based source (e.g. 

buccal swab saliva sample), since this information determines the search for the appropriate 

HSCT donor [425]. 
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It is also expected that all this knowledge (provided by NGS-based HLA allele and haplotype 

frequency distributions datasets at the worldwide population-level) can contribute to establish 

strategies for improving the efficacy of both current and novel immunotherapies (that can be 

also used in combination with, or alternatively to, the application of monoclonal antibodies 

and/or cytokines) [488-490]:  

-Which are mainly based on the use of HLA restricted peptide/epitope-based vaccines to treat 

both cancer and infectious (viral/bacterial/parasitic) diseases. 

-As well as those adoptive autologous/allogeneic cell-based therapies (e.g. infusions of TCR-

engineered T cells, tumor-infiltrating lymphocyte (TIL), Chimeric Antigen Receptor (CAR) 

T cells or virus/bacteria/parasite-specific T cells) for treatment in the context of oncology and 

also to combat viral infections (for instance, caused by Epstein-Barr virus (EBV) or 

cytomegalovirus (CMV) and that are commonly found in the setting of HSCT in patients with 

primary immunodeficiency disorders (PIDDs)) in addition to bacterial and parasitic diseases.  

Since a thorough and most updated depiction of HLA diversity and respective HLA 

allele/haplotype frequencies panel (especially of the most common ones) of a given population 

group may be highly informative for developing and establishing an optimal and effective 

(clinically as well as cost-wise) design of the following main examples as for therapeutic 

approaches that have been recently explored so far: 

-Updated and extended population-specific panel of the most common HLA alleles (in order 

to reach the majority of targeted patients from the corresponding population) as potential 

novel targets for development of more efficient peptide/epitope-based vaccines in therapies 

for treating cancer and infectious diseases, and in particular for those patients presenting a 

highly resistant and/or refractory profile. Here, it may be also essential to take into 

consideration the specific HLA allele repertoire restrictions [70][89][553] of either malignant 
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tumor- or infection-related antigen presentation on the given diseased recipient tissue in order 

to induce efficient and specific anti-tumoral/anti-infectious immune responses that, at the 

same time, can be clinically safe for the patient. 

-Updated and extended population-specific panel of the most common full (i.e. encompassing 

at least the 11 major classical HLA class I and class II loci) extended HLA haplotypes, in this 

case, may serve to define and construct the most suitable (in terms of histocompatibility 

barriers to be considered) and representative (considering an adequate size and comprised 

diversity of the given therapeutic cell registry/bank) population-specific allo-donors pool of 

cell-based therapy products. Where these therapeutic allogeneic genetically engineered (e.g. 

via lentivirus/retrovirus vector systems or via more recent and sophisticated gene editing 

systems such as CRISPR/Cas9) T cells are collected and stored (generally via 

cryopreservation) in a donor registry or bank specific for a given population, or even locally 

organized per region within the same country, in order to cover the majority of the given 

targeted patient/recipient population to be treated for cancer and infectious diseases 

respectively. Here, although most of the current cell-based therapy products are still of 

autologous origin (the so-called per se personalized medicine approach (which is highly 

costly and labor-intensive) where the cells source is directly from the own given patient); 

alternatively, the more recent selection and use of allogeneic cells from donors (thus called 

allo-donors) show clear and significant advantages especially in relation to required logistics, 

coverage, volume and costs associated to the development of these therapeutic genetically 

engineered T cells registries/banks. As a consequence, the selection criteria and prioritization 

(ranking) of allo-donors, that made-up this type of registries as providers of these cell-based 

therapy products, is primarily conditioned by considerations on histocompatibility barriers 

since these therapeutic allogeneic genetically engineered T cells do express HLA molecules 



________________________________________________________Introduction 
 

Page | 251  

   © Gonzalo Montero Martin  

that most likely cause rejection (or even GvHD effect) events when there are HLA mismatches 

between respective donor and potential targeted recipient (similarly, as it occurs in the case 

of strategic donor recruitment and planning in HSCT (using in this case BM and UCB cell 

sources from related/unrelated allo-donors)). On the other hand, there may be cases in which 

given HLA mismatching situations could be used for therapeutic purposes (e.g. GvL effect in 

patients with cancer), however these desired therapeutic effects are still very difficult to 

predict and to clinically manage. Consequently, construction of registries of therapeutic 

allogeneic genetically engineered T cells exclusively selected from HLA homozygous allo-

donors (making up the so-called haplo-banks/-registries/-repositories) has been proposed 

[491] to be an effective (and more adequate) way to match a maximal number of targeted 

patients receiving this type of cell-based therapy. Hence, this approach actually consists on 

achieving the matching on only one of the two HLA haplotypes (ideally, one of the most 

commonly found within a given population) of the recipient in the absence of allele 

mismatches for the other haplotype due to the haplo-homozygosity of the donor T cells’ HLA 

[492][950]. 

 In the regenerative medicine field, and similarly to the above mentioned application, moderate 

sized banks of iPSCs lines, once again, exclusively selected from HLA homozygous allo-donors 

can be constructed. Where a diverse set of these HLA haplo-homozygous iPSCs lines 

respectively carrying the most common HLA haplotypes of a given population (once again, 

based on respective HLA haplotype frequency distributions dataset) can make up this 

population-specific repository (which can be also locally organized per regions within the same 

country) [492][493][950]. Thus, differentiated cells from iPSCs (since these present unique 

properties of self-renewal and plasticity to be differentiated in vitro to many diverse cell 

lineages) can be generated depending on respective clinical need (e.g. various 
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conditions/injuries that can be potentially treated are hematopoietic disorders, musculoskeletal 

injury, spinal cord injury, cardiovascular injury, liver damage; however,  there are limitations 

such as safe iPSCs infusion, post-treatment adverse effects and standardization of protocols to 

generate large amounts of pure good quality differentiated cells originally from iPSCs) [494]. 

Importantly, in addition to HLA matching requirements based on this HLA haplo-homozygosity 

of the given donor, a certain patient can only receive iPSCs-differentiated cells from a respective 

healthy donor, that has been previously screened and tested, and is considered free of any known 

disorder or condition [494]. Interestingly, as previously mentioned, in addition to its role in 

HSCT (e.g. to treat blood diseases and inherited metabolic disorders), there are new and 

emerging uses of umbilical cord blood (UCB) units in regenerative therapy and immune 

modulation, including the generation of iPSCs derived from UCB. Consequently, an haplo-bank 

of most frequent HLA haplo‐homozygous iPSCs lines can be fittingly and effectively 

constructed starting from an existing UCB registry population which has already been 

characterized for HLA genotypes [221][222][495][545][546]. 

 

4) HLA diversity and evolution (as previously listed on point “f)”): 

Characterization of DNA variability at both coding and non-coding sequence regions by using 

NGS has been found to be very informative for deciphering in-depth the HLA diversity and the 

related evolutionary processes and origins found in human populations. Based on the most 

updated known and described (greatly improved with application of NGS technology although 

still with important gaps in the related reference HLA sequence databases [87][146][463]) HLA 

allelic polymorphism and diversity, it is noteworthy some of the general and preliminary 

observations/patterns (which some appear to be common whereas some other may vary across 

human populations) that NGS-based HLA population studies have shown so far:  
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(a) In relation to classical HLA class I loci, although HLA-B locus most commonly presents 

the highest allele diversity at the 2-field resolution level (defining protein-coding alleles) in 

comparison to HLA-A and -C loci. Interestingly, these two latter HLA class I loci appear to 

show a relatively higher allelic diversity at the level of synonymous (3-field) and non-coding 

sequences (4-field) in comparison to HLA-B locus. Therefore, these differences found in the 

HLA allelic diversity (between the protein (2-field alleles) and nucleotide (3- and 4-field 

alleles) levels for these HLA class I loci) may suggest that these different HLA class I genes 

likely underwent dissimilar selective forces that have been shaping HLA allelic diversity and 

defining its mode of evolution according to specific pathogen-driven selection mechanisms 

and/or demographic events over time on a given population or ethnic group of a certain 

geographical region [104][136][137][260][301]. At the same time, introduction of NGS 

sequencing has allowed to assess the fine nucleotide molecular diversity between different 

genomic regions across HLA loci (for both class I and class II) at the population level. Where 

such observed distinctions between individual HLA class I and/or class II genomic regions 

may reflect not only their specific modes of evolution but also, consequently, their roles 

played in the immune process [301]. For instance, a recent study evaluated the genomic 

variability of the entire HLA‐A gene by using massively parallel NGS sequencing (including 

all exons and introns and regulatory segments (containing also the extended promoter)) in a 

highly admixed population sample from Brazil [307]. In that particular study, it has been 

observed how HLA-A promoter regulatory segments present few but divergent sequences, 

which are in close association with the coding regions and, thus, might be presumably under 

the same positive selective pressure. Whereas, as possible exceptions of the high genetic 

diversity found at HLA-A locus, the 3’UTR segment seem to be highly conserved (this 

conservation is probably related to the maintenance of an adequate HLA‐A expression pattern 
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via an important post‐transcription regulation) as well as the evidence of purifying selection 

at exon 4 (tentatively, maintaining an invariable or similar α3 domain to assure a proper 

α3/CD8 interaction) [307]. Another recent publication about the Mandenka population from 

Eastern Senegal is also among the first HLA studies that has compared the molecular diversity 

between different HLA regions at the population level by using NGS sequencing [273][301]. 

This latter study has shown, for example, how the highest genetic diversity at HLA class I 

loci seems to be lying at exon 3 (encoding the α2 domain of HLA class I molecules, with a 

tentative greater involvement in peptide presentation in comparison to α1 domain encoded by 

exon 2), with the exception of HLA-C locus presenting a lesser variability of both ARD- and 

non-ARD-encoding codons in comparison to HLA-A and -B loci [273][301]. Thus, by 

analyzing full-length HLA sequences, several aspects of the genetic diversity within the main 

classical HLA loci have been so far evaluated in these NGS population‐level studies, such as: 

the level of association between regulatory segments with the respective coding allele regions; 

the definition of distinct patterns of molecular DNA diversity among certain exons and introns 

which, together with certain population parameters, allow to better postulate and to 

discriminate between the effects of, on one side, positive selection or demographic expansion 

and, on the other side, balancing selection or demographic contraction; [301]; moreover, the 

identified differences in these HLA regions at the population level may be also explained, at 

least until certain extent, by signatures of adaptations to peculiar environments (e.g. distinct 

pathogen richness or prevalence) during human evolution globally and/or regionally 

[137][301]; in addition, NGS HLA studies may allow to examine more in depth (at both ARD 

and non-ARD regions) proposed HLA evolutionary mechanisms, that seem to be even 

opposite to each other in certain instances, such as: the hypothesis of divergent allele 

advantage (which explains the high levels of heterozygosity found at HLA genes in worldwide 
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open populations) [426]; and, conversely, the recently proposed model of joint divergent 

asymmetric selection [427] (which is based on the multi-locus and pleiotropic effects that 

HLA genes (e.g. observed in classical HLA class I loci) may coordinately present in relation 

to its main biological function of antigen presentation as part of the immune response) that 

may explain the fact that some small isolated human populations often exhibit a reduced 

diversity at individual HLA genes and HLA regions in strong LD [104][137][301]. 

(b) Regarding classical HLA class II loci, so far, it has been generally observed how HLA-

DPA1 and HLA-DQA1 loci, that encode alpha subunits (DPα and DQα respectively), present 

a striking high allelic diversity at the 4-field level unlike what is observed at the 2-field level. 

In contrast to this previous observation, the counterpart HLA-DPB1 and HLA-DQB1 loci 

(encoding beta subunits (DPβ and DQβ respectively)) display a higher allele diversity at the 

2-field level instead of at the 4-field level. Similarly for HLA-DR molecules, HLA-DRA locus 

(encoding the respective alpha subunit) shows virtually no protein sequence diversification 

whereas HLA-DRB1 and HLA-DRB3/4/5 loci (which encode the respective beta subunits of 

HLA-DR molecules) present a high allele diversity at the 2-field level but not as elevated at 

the 4-field level. Hence, it can be conjectured that classical HLA class II “A” (DPA1, DQA1, 

DRA) loci, despite worldwide human population diversity, appear to be under high selective 

pressure in which synonymous and non-coding allele variants are predominantly generated 

over protein-coding allele variants. In this way, from a functional perspective, allele 

diversification at the protein level (defining contact positions of these alpha subunits for the 

binding with the respective beta subunits) of HLA class II “A” loci may be restrained and 

relatively conserved to facilitate and ensure the pairing with the respective wide allele range 

of classical HLA class II “B” loci (DPB1, DQB1, DRB1/3/4/5) [268]. Moreover, since HLA 

class II “A” (DPA1, DQA1, DRA) loci variants are mostly located in non-coding regions, these 
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5-UTR/3’UTR/intronic polymorphisms may be involved in regulatory functions related to 

cell surface expression of respective HLA class II molecules and the stability of their peptide 

binding groove [178][288][309]. In fact, this shows a very similar pattern as it is observed in 

the case of β2 microglobulin, which is the stable non-polymorphic structural component 

(associated non-covalently to the given heavy α chain encoded by HLA-A,-B, -C genes 

respectively) of classical MHC class I molecules [27][35][268]. In contrast, and in comparison 

to classical HLA class II “A” loci, the classical HLA class II “B” loci present a higher allele 

diversity at the protein level defining an extensive peptide binding repertoire that is intimately 

related with their immunobiological role for antigen presentation [56][104][268]. At the same 

time, recent refined analysis (at a fine molecular scale of the DNA sequence variation) in 

certain human populations of these classical HLA class II “B” loci have shown how HLA-

DRB1 and HLA-DQB1 loci display a high allele diversity at the ARD-encoding exon 2; 

whereas the HLA-DPB1 locus exhibits much greater variability at non-ARD-encoding exons 

than at the ARD-encoding exon 2. This may suggest existing distinct functional roles and 

modes of evolution between these classical HLA class II “B” loci [273][301][428]. 

Furthermore, full-length HLA sequencing enabled by NGS (including both 2nd and, 

especially, 3rd generation platforms) has allowed the interrogation of the previously 

underestimated genomic variation in certain HLA genes considered to be monomorphic or 

highly conserved (at least at the protein level) such as HLA-DRA locus. In this sense, some 

recent studies have shown how SNPs and polymorphism clusters within the introns and 

3’UTR region of HLA-DRA locus (in spite of being not as polymorphic as the other class II 

alpha genes (HLA-DQA1 and HLA-DPA1)) define distinct gene lineages, which, in turn, 

facilitate the identification and definition of HLA-DRA~DRB3/4/5~DRB1~DQB1 haplotype 

patterns [429]. A more comprehensive HLA sequence assessment by NGS has also contribute 
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to shed light on understanding the evolution (defining allelic/haplotypic lineages/clades) and 

biological functions of the DRB region, particularly the previously not well-characterized 

second expressed DRB genes (HLA-DRB3/4/5) [308][430]. For instance, a very recent and 

thorough study has evaluated coding and non-coding regions (including analysis of the 

variations of simple repeat stretches with the basic structures poly(A), poly(T) as well as 

microsatellite (GT)x(GA)x motif of STR repeats (especially those in the vicinity of the 

polymorphic exon 2 region)) of HLA-DRB5 alleles. In this regard, SNP analysis has shown 

that most of the diversity is located in the segment defined between exon 1 and intron 3 in 

comparison to other downstream segments of HLA-DRB5 locus. Furthermore, that study 

points out that plausible coevolution with proximal exons may suggest a relevant 

biological/regulatory role (that needs to be further evaluated) of these composite intron 

microsatellites (GT)x(GA)x, which define specific DRB5 lineages and also associate 

distinctly with haplotypes and ethnic groups [308][431]. In relation to the relatively low 

diversity found in the coding region of second expressed DRB genes (as it is HLA-DRB5), 

this study also conjectured that elective pressures such as convergent evolution may be acting 

and, thus, the exon variability would be restricted to that of the intron microsatellites due to 

their physical proximity [308][431]. At the same time, based on the prominent variation 

identified in HLA-DRB3/4/5~DRB1~DQA1~DQB1 haplotypes, it has been previously 

postulated that the different respectively encoded HLA-DQ, -DP, and -DR molecules may 

complement coordinately their biological functions in antigen presentation and regulation of 

the immune response [409][432]. Similarly, other NGS studies have been focused on HLA-

DPA1 and HLA-DPB1 loci, describing in-depth variations in coding regions and previously 

undescribed variability in non-coding regions [359][433][434]. In HLA-DPA1 locus, its intron 

1 shows many SNPs and indels which contribute to the striking nucleotide diversity of this 
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long segment (~3.5-3.6 kb) as well as it contains length polymorphisms; whereas much 

shorter (~0.2-0.3 kb) intron 2 and intron 3 are not that variable in size and present low 

polymorphism [433]. In relation to non-coding regions of HLA-DPB1 locus, its intron 2 

appears to present the largest nucleotide variability. In turn, this HLA-DPB1 intron 2 harbors 

one variable STR region (the tetranucleotide motif (AAGG(4–17)) that is adjacent to the 5’ side 

of exon 3. Interestingly, it has been observed how this particular composite intron 

microsatellite repeats motif distinguishes two clades of HLA-DPB1 alleles: one group presents 

only 4 repeats (denominated as “short STR”); while the other has 8-14 repeats (termed as 

“long STR”) [433]. Furthermore, it has been found how 3’UTR variants of HLA-DPB1 [230-

236], which correlate with high (rs9277534-G) and low (rs9277534-A) cell surface 

expression, also associate tightly with these mentioned short and long HLA-DPB1 intron 2 

STR (AAGG(4–17)) length variants, respectively [433]. Nevertheless, further functional studies 

are still required to better clarify the plausible molecular mechanism (e.g. alternative splicing 

(with the splicing defect involving exon 3) or, on the other hand, transcriptional repression) 

of the regulatory role of these short/long STR variants of intron 2 in the expression of HLA-

DPB1 gen [236]. At the same time, recent identification of unexpected extensive 

polymorphism in the promoter region of HLA-DP, may also contribute for a better 

understanding of the regulation of the cell surface expression of this heterodimer [434]. In 

relation to the 3’UTR region, the SNP rs9277534 (G/A) correlates with two clades that are 

fully differentiated by 174 fixed polymorphisms throughout a stretch of this 3’UTR end of 

HLA-DPB1 locus, where A-clade alleles (including the including the most frequent HLA-

DPB1*04:01, -DPB1*02:01 and -DPB1*04:02 alleles) may have experienced a more recent 

divergence in comparison to those G-clade alleles [359]. 
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(c) In addition, the high-coverage capability of NGS-based HLA genotyping methods has 

enabled to initially obtain a full description of the nucleotide diversity along the major non-

classical HLA class I (HLA Ib) genes, HLA pseudogenes (e.g. HLA-H), class I-like genes 

MICA/MICB and non-classical HLA class II genes in large cohorts (i.e. in a population level 

approach) at high-resolution. Some striking and novel findings of the following recent studies 

are noteworthy: 

 i) Recent studies have described the full-length HLA-G, -E and -F gene variability 

(including the regulatory segments (both distal and proximal promoter regions and 

3’UTRs), all exons and introns) in several different worldwide populations by using NGS 

technology (e.g. see [279-283]). In these studies, application of NGS technology has 

allowed the identification of variable sites and haplotype structures (e.g. 

promoter/coding/3’UTR haplotypes) along different genomic regions of these non-classical 

HLA class I loci. Interestingly, it has been found that sequence variability is much greater 

(especially at the regulatory regions) than previously thought, where known and new HLA-

G, -E and -F coding alleles have been also described. Nevertheless, these gene coding 

regions remained relatively conserved, since all the coding alleles (described so far) 

converged to encode few molecules for each gene [279][280]. Hence, these findings may 

illustrate the immunomodulatory role (with well-characterized immunomodulatory 

activities, including downregulation of the innate and adaptive immune responses and the 

induction of tolerance) of these non-classical HLA class I genes as well as their role as 

immune checkpoint genes in tumor immunosurveillance, transplantation or protection 

against infection diseases [65-68]. Since low variability at their coding regions (likely under 

high selective pressures and particularly in relation to the non-synonymous substitutions) 

may sustain certain optimal protein modifications at the ligand-binding sites that critically 
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define the molecular binding to a corresponding wide diverse range of leukocyte receptors 

on target cells and, thus, to ensure this biological regulatory function (which occurs at 

various different contexts such as pregnancy, transplantation or disease). Whereas the higher 

variability found at regulatory regions (e.g. enhancers, promoters and 3′UTRs) may 

facilitate a plausible wide range of binding sites to transcription factors (mainly at the 

promoter region) and post-transcriptional factors, such as microRNAs (mainly at the 3’UTR 

region), that may directly influence expression both quantitatively (e.g. gene variation may 

account for the magnitude of protein production) and qualitatively (e.g. gene variation may 

account for protein modification) [279][280] in a likely allele/haplotype-specific expression 

pattern. At the same time, functional studies are required to define the exact mechanisms 

underlying the tentative correlations found between, for instance, mRNA expression levels 

and specific given allele/haplotype groups [279][280]. In addition to the full description of 

allelic polymorphism of HLA-E, -F and -G genes, NGS sequencing also allows to determine 

the poorly understood linkage disequilibrium between classical HLA class-Ia and non-

classical HLA class I-b alleles, with special interest (previously described only by very few 

studies [435][436][498]) between HLA-A and HLA-G genes which are in relative close 

physical proximity within the human MHC genomic region [27][436]. In addition to obtain 

a more comprehensive evaluation of worldwide genetic diversity and linkage disequilibrium 

for non-classical HLA class I genes (HLA class-Ib genes), HLA class I pseudogenes can be 

also evaluated in-depth by NGS-based typing methods. Notably, HLA-H pseudogene 

(defined as a non-functional gene because it is deleted at different frequencies in humans 

and because it encodes a potentially non-functional truncated protein) remains scarcely 

explored. In fact, recent studies (although not via NGS yet in this case) have pointed out 

that this HLA pseudogene may have, unexpectedly, relevant functional roles (e.g. HLA-H 
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transcriptional activity and HLA-E mobilization at the cell surface by the HLA-H signal 

peptide) [500]. Thus, further insight provided by NGS studies into HLA-H genetic diversity 

may allow to understand how this variability potentially affects its expression as well as its 

allelic diversity and LD patterns displayed with other HLA class-Ia and class-Ib genes at 

the population-level (e.g. it has been initially described strong LD between HLA-H and -A, 

and between HLA-H and -G, where these three genes have shown distinct worldwide allelic 

distribution. Conversely, HLA-E and HLA-F both have apparently shown weak LD, 

displayed restricted allelic diversity and practically no difference in their global distribution) 

[498]. 

ii) Furthermore, long (~11-13 kb) class I-like genes MICA/MICB have been recently 

characterized in full length [437][511] using dual redundant reference sequencing 

approaches [172][173][204][359] by combining short-read sequencing data with long-read 

sequencing data. So far, unexpected high sequence variability (identifying SNPs and indels 

in both exons and introns) has been observed, which may tentatively influence on receptor 

interaction and, thus, immune regulation. Therefore, this may be of interest to be further 

evaluated especially in the context of transplantation (e.g. assessment of MICA/MICB 

matching status and its impact on transplant outcomes) [554]. Following this latter example, 

future improved NGS-based HLA approaches (especially by long-read sequencing) may 

open the window for the assessment of genetic variation at the population level across other 

genes within the human MHC region such as HLA-DMB [438] or TAP1 [439] (which may 

be important to explain HLA-disease associations or transplant outcomes) and their specific 

linkage with physically closed and well-characterized classical HLA genes such as HLA-

DRB1 [440]. Likewise, application of NGS technology may also enable the characterization 

of other non-classical (HLA-IIb) HLA class II genes and class II pseudogenes of interest 
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(e.g. HLA-DQA2 and -DQB2 polymorphisms and their linkage disequilibrium with classical 

HLA-DQB1) [506]. 

(d) Moreover, the high-scalability and high-coverage of NGS (especially with the most recent 

long-read sequencing platforms) has also allowed moving beyond HLA genes by developing 

reliable high-throughput and population-scale genotyping methods and algorithmic analysis 

pipelines [296] for other immunogenetically relevant loci such as (ABO) blood groups [441] 

and the KIR cluster of genes (at first, being less heterozygous than HLA system (i.e. high 

level of homologous sequence) and presenting many allele combinations heterozygous 

positions which are more than 800 bp apart) [194][442-445]. 

5) Regulatory variation on HLA expression and its effect on HLA function (as previously listed 

on point “g)”): 

As previously mentioned, NGS-based HLA genotyping methods have contributed significantly 

for the (almost) unambiguous, 4-field high-resolution and phased sequencing of HLA genes, 

being very informative and useful for many applications [137]. Nevertheless, in order to 

increase our knowledge of HLA diversity and related functions, HLA expression and its 

regulation (at both transcriptional (RNA) control and translational (protein) control levels) are 

also pivotal features that have not been well-defined yet and, thus, HLA expression is still 

clinically poorly utilized and undervalued as well as it has been rarely incorporated into HLA-

disease association studies or evolutionary analyses as phenotypic information (e.g. 

traditionally, only serological methods have been used to assess expression) [104][446]. 

As recently reviewed in [951]:  Evidence from the IPD-IMGT/HLA database 

(http://www.ebi.ac.uk/ipd/imgt/hla/allele.html) [87][295][362] shows less than 30% of the full‐

length HLA gene is transcribed into protein (only 7% for HLA DRB1). The remaining 70%–
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93% of the gene contains sites for transcription promoters, inhibitors, alternative splice sites, 

methylation sites, binding sites for post‐translational miRNA degradation and many other 

functions as yet undetermined. The vast quantity of information contained within noncoding 

regions reinforces the biological importance of this portion of the DNA. In fact, evidence is 

growing to show how polymorphisms in the 5’UTR will affect subsequent RNA translation, 

and indeed, there are data to show how polymorphisms even further upstream can promote 

DNA unwinding to allow RNA polymerase access to the transcription sites. Once transcribed, 

polymorphisms in the 3’UTR may allow miRNA binding, rapid RNA degradation and reduced 

protein synthesis. HLA transcription is also subject to alternative splicing, although it is not 

clear whether this happens in isolated cases or is a common occurrence, or whether external 

stimuli such as infection are always required.  

Since NGS enables the refined description of non-coding region variation within the HLA 

region, this has started to facilitate the discernment of the effect of regulatory variation on HLA 

expression and how exactly HLA diversity and polymorphisms shape allelic lineage-specific as 

well as haplotype-specific expression (where each pattern/associated lineage appear to have a 

distinctive functional unit, related evolutionary mechanism and history, serological affinities, 

binding repertoire and expression level) and, in turn, how this may be associated with disease 

susceptibility (particularly in the case of infectious diseases, since HLA expression determines 

an individual’s ability to respond to virus/bacteria infection) [309][318-322] and transplantation 

outcomes (e.g. knowledge of the basal and induced expression of each HLA antigen could allow 

a more informed stratification of transplant risk for each patient/donor combination) 

[204][211][229-237][255-258][951]. To date, HLA class I expression (whose patterns seem to 

be relatively consistent (HLA-B similar to HLA-A and higher than HLA-C)) [447] has been 

better characterized than in the case of HLA class II genes (which appears to follow a more 
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complex expression model than just the 2-state model (basal and induced) described for HLA 

class I genes) [309][448]. Yet accurate quantification of relative expression levels of HLA loci 

is challenging due to the complex and vast polymorphism of the HLA system [448] as well as 

due to the technical limitations of methods such as: array-based expression tests using probes 

[421]; quantitative PCR (qPCR) using primers [449]; quantitative flow cytometry (antibody-

based testing which allows for assessments of variations in expression levels of HLA molecules 

in cells over time) [450]; whole-transcriptome sequencing (also known as RNA-Seq: NGS 

RNA-based HLA genotyping sequencing strategy that is also able to quantify the abundance of 

mRNA originating from each gene or exon) [451] and even using mass spectrometry (which 

allows the identification of HLA-bound peptides, where the target peptides may be unique to 

each HLA protein and, thus, these can be used for quantitation) [448]. With the exception of 

RNA-Seq (in which implementation of long-read NGS technology (in some cases combined 

with short-read sequencing strategies) has allowed a significant improvement in the expression 

estimates) [451][507-509], all the HLA expression estimates provided by these other mentioned 

methods are still inherently biased since all of them account for a very limited range of 

polymorphism [104][448]. Furthermore, HLA expression appears to vary not only at the 

allele/haplotype/loci level but also depending on the tissue adding another layer of complexity. 

At the same time, diversity found in HLA peptide repertoires, modes of peptide binding, 

specificity mismatches between the HLA molecules and related components of the antigen 

processing machinery (e.g. TAP) as well as cognate T cell recognition [399] may also define 

HLA molecule assembly and cell surface stability (cell surface longevities (half-lives)) and, 

consequently, HLA expression [450]. Nevertheless, the role of these factors have not been yet 

fully evaluated and neither the correlation with this complex regulatory genomic polymorphism 

that determines HLA expression [309]. Moreover, the prediction of regulatory single nucleotide 
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polymorphisms (rSNPs) in proximal promoters of disease‐related HLA genes could be a useful 

tool for personalized medicine in both patient stratification and customized therapies for 

transplantation and cancer immunotherapy. 

Recent studies have identified regulatory non-coding variation (enhancer, promoter regions, 

introns and UTRs) of HLA expression that is clearly associated with disease [309][318-322]. 

For instance, HLA-C expression and its diversity is an important determinant in influencing 

disease outcome especially in the case of HIV-1 infection [448][452]. Accumulating evidence 

from different studies has shown how a promoter region SNP of HLA-C is linked with control 

of HIV infection, being also in LD with a 3’UTR variant that regulates binding of micro-RNA 

[319]. In neurological diseases, anomalous gene expression (e.g. soluble isoform of  HLA-

B*44:02) [453] and increased expression of HLA-associated alleles (HLA-DRB1*15) for 

susceptibility upon activation by associated environmental factors (vitamin D) in the disease 

etiology [454] have been described as in the case of multiple sclerosis (MS). Interestingly, many 

miRNA transcripts have been located within a LD block that also contains a disease associated 

SNP, suggesting that these miRNA transcripts may play a role in the etiology of the numerous 

diseases associated with the human MHC [416][521]. 

In the transplantation field, application of NGS is also having a great impact in the assessment 

of HLA expression in order to elucidate its effect in transplantation outcome [204][211][229-

237][255-258]. The main current serological test to determine the presence and strength of 

DSAs is the (physical) flow cytometric crossmatch (FCXM) method, which is commonly used 

in combination with other antibody testing solid phase immunoassays [455]. In addition, and as 

previously mentioned, histocompatibility and transplantation laboratories are increasingly using 

virtual crossmatching (VXM) to reliably predict recipient and donor compatibility assessment, 

especially in clinical situations when there is not enough time to perform prospective physical 
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crossmatch assays such as in the case of deceased donors’ organs allocation [243][252]. 

Information from crossmatching (XM) tests (physical or virtual) is crucial in order to establish 

a threshold for assessing the risk of antibody mediated rejection (e.g. patients transplanted 

across positive XM tests tend to have a higher incidence of early graft loss and reduced graft 

survival) and determining eligibility for transplantation (e.g. when performing transplants with 

certain HLA mismatches, the XM data supports donor selection and in determining the extent 

of desensitization needed for a particular DSA barrier) [455]. Furthermore, currently both 

FCXM (which also depends on factors such as purity of the lymphocyte population, cell-serum 

ratio, the detection antibody used or the presence of auto-antibody) and VXM mainly rely on 

donor and recipient HLA genotypes (highly phased and unambiguously resolved up to the 4-

field now by NGS) and recipient’s antibody profiling [456]. Nevertheless, they still fail to take 

donor HLA expression (including also the evaluation of plausible differences in living versus 

deceased donors) into consideration. Even though several studies have pointed out that donor 

HLA expression may have an important influence on XM tests results, as well as in the 

development and optimization of epitope-based matching algorithms and data-driven modeling 

approaches for predicting recipient and donor compatibility, yet it has not been thoroughly 

investigated [456]. Interestingly, a recent study [456] has shown the feasibility of introducing 

novel NGS-based RNA-Seq methods (enabling simultaneous determination of donor-recipient 

high-resolution HLA genotyping and relative donor HLA expression) as part of the recipient 

and donor compatibility assessment and respective histocompatibility clinical protocol. Thus, 

these novel RNA-Seq methods in combination with long-read single molecule sequencing 

strategies using third generation sequencing platforms eventually may allow a much faster 

crossmatching process, although still with some important technical limitations (e.g. RNA 

isolation and stabilization) and lack of knowledge in relation to HLA class II expression and its 
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correlation with FCXM results (since overrepresentation of T cells within the total lymphocyte 

population prevents accurate evaluation of HLA class II expression). So far, it has been 

observed a direct correlation between this RNA-Seq estimated donor HLA expression (at the 

HLA locus level, being only evaluated for class I) to which the DSA (if consistent) is against 

and FCXM median channel shifts (MFI) values (only at the HLA class level) [456]. Therefore, 

these novel RNA-Seq methods in combination with epitope analysis at the allele-level may 

increase the accuracy and reliability of XM tests significantly [258][457]. Moreover, evaluating 

in-depth the expression patterns of HLA expression variants (including alleles that show: 

encoded soluble proteins (S); low expression levels (L); and questionable expression status (Q)) 

may contribute to improve HLA allogenicity prediction algorithms since these variants appear 

to be also fully functional [458], reflecting once again the complex structure and evolutionary 

mechanisms of the human MHC system [459][460]. In addition to NGS-based RNA-Seq 

technology approaches, introduction of precise novel gene editing systems, such as 

CRISPR/Cas9, may be a useful analysis tool of HLA protein expression and the assessment of 

its variants [461]. Also this latter tool has the potential for considering the development of 

immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen 

engineering for transplantation applications [462]. 
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III. PREVIOUS STUDIES ON HLA DIVERSITY IN SPANISH POPULATION 

 

10. SPANISH DEMOGRAPHIC HISTORY, GENETIC LANDSCAPE OF THE IBERIAN 

PENINSULA AND OVERVIEW OF HLA SPANISH POPULATION STUDIES   

Mainland Spain is located on the Iberian Peninsula (which also contains mainland Portugal) at 

the southwestern edge of Europe. The Iberian Peninsula is separated from the rest of Central and 

North Europe by a range of mountains (called the Pyrenees) in the North-East, and from North 

Africa by the Strait of Gibraltar in the South. Moreover, the Spanish mainland is bordered to the 

South and East almost entirely by the Mediterranean Sea and to the West by the Atlantic Ocean 

and Portugal (that borders Spain on its northern and eastern frontiers). The current Spanish territory 

also includes the Balearic Islands in the Mediterranean Sea, the Canary Islands off the North 

African Atlantic coast and two port cities, Ceuta and Melilla, located on the northern coast of 

Africa (thus, showing the historical Spanish influence in this area). The unique geographical 

location of the Iberian Peninsula (and of mainland Spain in particular), as it is presenting a wide 

access to the Mediterranean Sea and Atlantic Ocean and being the westernmost region of Europe 

and also the nearest European region to the African continent, was strategically pivotal for 

facilitating the Spanish kingdom (initiated by the dynastic union of the Catholic Monarchs in 

1469), as well as to the previous cultures that had also settled in the Iberian Peninsula, the control 

on overseas trade and for its own territory defense throughout the history. In this sense, this 

privileged geographical location of the Iberian Peninsula also relatively facilitated the Spanish 

kingdom to organize transatlantic maritime expeditions that led to the final discovery of the 

Americas in 1492 [555]. In relation to the geographical characteristics of the Iberian Peninsula, it 

is noteworthy its orography [556], since mainland Spain is very mountainous in relation to some 

other European countries. First, there is a central big plateau called “Meseta Central”, which 

occupies most of the peninsula and it is split in two parts by a mountain range called Central 
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System. Second, this central plateau is, in turn, surrounded by mountains ranges: the Galician 

Massif to the Northwest, the Cantabrian Mountains to the North, the Iberian System to the East 

and both the Sierra Morena and the Baetic System (which is divided into two ranges: Sub-baetic 

and Penibaetic) to the South (see Figure I-22 and Figure I-23).  

 

 

Figure I-22. Topographic map of Spain including the Iberian Peninsula, Balearic Islands (in the Mediterranean Sea) and the Canary 

Islands (off the North African Atlantic coast). (From: http://infantes-science5.blogspot.com/2013/05/the-relief-of-spain_7.html) 

http://infantes-science5.blogspot.com/2013/05/the-relief-of-spain_7.html
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Figure I-23. Political  map of Spain. Autonomous Communities of Spain (respective administrative capital in parentheses): 

Galicia (Santiago de Compostela); Asturias (Oviedo); Cantabria (Santander); Pais Vasco (Basque Country) (Vitoria); La Rioja, 

(Logroño); Navarra (Pamplona); Aragón (Zaragoza); Cataluña (Catalonia) (Barcelona); Comunidad Valenciana (Valencia); 

Murcia (Murcia); Andalucía (Andalusia) (Sevilla); Extremadura (Mérida); Castilla-La-Mancha (Toledo); Castilla y León 

(Valladolid); Islas Baleares (Balearic Islands) (Palma de Mallorca); Islas Canarias (Canary Islands) (Santa Cruz de Tenerife 

jointly with Las Palmas de Gran Canaria); and the two autonomous cities Ceuta and Melilla. Figure is obtained and adapted 

from: https://www.ezilon.com/maps/europe/spain-maps.html 

 

 

Importantly, as a consequence (at least to a certain extent) of this singular orographic 

organization across the Iberian Peninsula, Spanish territory has showed throughout the history (and 

also nowadays) an extensive cultural and social diversity (e.g. linguistically diverse) within its 

entire population shaped by a complex demographic history. In fact, this population diversity 

observed in Spain has been inherited from the contribution of different European (e.g. German 

tribes), Atlantic (e.g. Celts), African (e.g. Carthaginians first, and later North African Muslim 

https://www.ezilon.com/maps/europe/spain-maps.html
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Arabs and Berbers), Middle-East (e.g. Phoenicians first, and later Sephardic Jews (originally from 

the Levant)) and Mediterranean (e.g. Greeks and Romans) populations during different past time 

periods. Some of these civilizations settled more in certain regions than others (in general, 

sequentially at different times throughout the history) of the Iberian Peninsula at times when intra-

migration flows and, thus, population admixture were partially limited for many centuries favoring 

the settlement of some isolated population nuclei especially within these different mountainous 

regions (e.g. Galicia, Asturias, Cantabria and all the Pyrenees area in northern Spain or, in a lesser 

extent, some southeastern regions of Spain in the Sierra Morena and the Baetic System areas) 

[260][557-561]. This is currently reflected, for instance, by the very different languages and 

dialects that are spoken and officially recognized in Spain. Thus, in addition to Castilian Spanish 

(“Castellano”) as the main language spoken, Catalan in the East, Galician in the Northwest, 

Euskera in the Western Pyrenees area (including Basque Country and Navarra regions) and the 

Astur-Leonese languages (as the “Bable” language spoken in Asturias) are examples of other 

spoken languages in Spain. The Spanish population diversity resulting from different civilizations 

that migrated and inhabited the Iberian Peninsula throughout its history is well documented [555]. 

Chronologically, considering the majority of the more modern era history timeline in the Iberian 

Peninsula it can be included: 

-During the pre-Roman Iron Age: first Iberians (concentrated in central regions of the Iberian 

Peninsula), Celts (northern regions), Lusitanians (western regions) and Tartessians 

(southwestern regions); as well as posterior settlements of Phoenicians, Greeks and 

Carthaginians (especially along the eastern coast). 

 -Then, in the majority of the territory of the Iberian Peninsula: firstly Romans (2nd century 

BCE - 5th century CE); followed by Germanic tribes (5th-8th century in CE); later North African 

Muslim Arabs and Berbers (8th-15th centuries in CE); and, through the “Reconquista”, Christian 
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Visigoths (especially starting from the 14th-15th century in CE), that finally led to the beginning 

of the Spanish Kingdom with the Catholic Monarchs in 1469 [555]. From there and up to now 

(thus, during these last five centuries), a more homogenous and stable Spanish (Iberian) 

population group settled in the Iberian Peninsula that mainly came from this Christian Visigoth 

lineage although still showing important cultural, social and genetic signatures from other past 

civilizations and genetic backgrounds as well.  

Thus, these different past civilizations of the Iberian Peninsula had also a significant cultural 

and technological exchange and enrichment over the centuries. In this sense, it is noteworthy a 

very distinctive period (in comparison to other regions of Europe) of the history that occurred in 

the Iberian Peninsula denominated the “Convivencia” during the Middle Ages between 8th-15th 

century in the CE, and being especially important in the 12th and 13th centuries. In which cultures 

(with very distinct geographical origins as well as cultural and religious traditions between them) 

of Christian Visigoths, North African Muslim Arabs-Berbers and Sephardic Jews coexisted for 

several centuries under the Islamic rule in the Iberian Peninsula [562]. Christian Visigoths had 

emerged as a western branch of the nomadic German tribes or Goths; and whose kingdom (after 

defeating the Roman Empire) occupied what is currently southwestern France and the Iberian 

Peninsula from the 5th century to the 8th century CE until North African Muslim Arabs and Berbers 

conquered most part of the Iberian Peninsula forcing the Christian Visigoths to retreat to northern 

regions of the peninsula [555].The Muslim forces who occupied the Iberian Peninsula in the 8th 

century CE were mainly Berbers (comprising an ethnic group indigenous to Northwest Africa or 

the so-called Maghreb; which also were closely related to the indigenous people of the Canary 

Islands [563-568]) together with Muslim Eastern Arabs (originally from Eastern and Southern 

Syria as well as from the Arabian Peninsula) under the suzerainty of the Arab Umayyad Caliphate 

of Damascus [569]. In the case of Sephardic Jews (also known as Western Sephardim), it has been 
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hypothesized (as it is still uncertain) a very early Jewish presence in the Iberian Peninsula due to 

their plausible connection with Phoenicians and even Tartessians during the pre-Roman Iron Age. 

However, it is thought that still most of them had arrived from (at least) the later centuries of the 

Roman Period, either voluntarily or originally as slaves brought from the Near East/Levant (e.g. 

Lebanon and Israel areas) by the Romans (around the 1st century CE). Yet, very important Jewish 

congregations (many of them with a pivotal economic role in the Iberian society and as a 

demographically non-negligible minority) were present across the entire Iberian Peninsula as well 

as other Spanish territories (such as the Balearic Islands, where Jewish groups were locally known 

as “Chuetas” [570][571]) throughout the history and until the present day [572]. This 

“Convivencia” period of time, which was uniquely characterized by a relative religious, cultural 

and social tolerance, it was terminated under the Christian rule (at the end of the 15th  century in 

CE, once the “Reconquista” was completed) when both Jewish and Muslims were forced by royal 

decree (The 1492 Edict of Expulsion) to either religious conversion (being denominated 

respectively “conversos” and “moriscos” those who converted to Catholicism) or to be expelled 

(as it occurred to many people from these communities). Even, few centuries later (starting in 

1609) most of the “moriscos” (especially from eastern regions of the Iberian Peninsula) were also 

finally expelled under the reign of Philip III of Spain [573]. As for the Sephardic Jewish groups, 

although many non-converted had to emigrate outside the Iberian Peninsula (mainly to other 

Northern-Central European countries; as well as to North Africa, especially to Morocco and Libya; 

also to the Near East or Levant regions (e.g. Lebanon or Syria); and even to the Americas), many 

others officially converted to Catholicism and could remain in the Spanish Kingdom as Crypto-

Jews [572][574]. Moreover, from a historical standpoint and as a consequence of the Jewish 

Diaspora (i.e. dispersion of Jews out of their ancestral homeland in the current-day Israel region, 

and their subsequent settlement in other parts of the world over the centuries, that initially occurred 
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with the large exile of Jewish people due to the historic Roman persecution in the Levant (e.g. 

Siege of Jerusalem in the year 70 CE)), it is important to remark that different worldwide Jewish 

population groups can be categorized into three major lineages based on their traditional 

geographical areas of settlement [575-577]:  

-Eastern Jews who have been historically residing in the Near-Eastern and Middle-Eastern 

regions. Although it is considered that this group category (also denominated as “Mizrahi” 

Jews) comprises more broadly the descendants of the local Jewish communities that had existed 

in both the Near-/Middle-East as well as along the North African coast region. 

-Sephardic Jews established in the Iberian Peninsula until the 1492 Edict of Expulsion, and after 

that as “conversos” (i.e. Crypto-Jews) who were well integrated in the Christian Iberian society. 

-And, in contrast to the two above considered non-Ashkenazi Jewish population groups, the 

diverse community of Ashkenazi Jews who belonged to Central and Eastern European regions. 

Even though a large group also migrated from those European regions to the Americas, Western 

Europe, Australia and South Africa more recently in the 19th and 20th centuries. 

Interestingly, these three main groups (shaped by geographical isolation and/or religious and 

sociocultural constraints against intermarriage over the centuries) share a common Near-/Middle 

Eastern ancestry, together with variable degrees of admixture and introgression from the 

corresponding host Diaspora populations [577]. 

Based on all these abovementioned historical facts, it is remarkable the profound cultural and 

anthropological heritage and genetic imprint left by all these three past civilizations in the Iberian 

Peninsula making up the main ancestry of modern Iberians (comprising the Spanish and 

Portuguese) [555][556][558][578]. At the same time, from a demographic perspective it is 

historically evident that the predominant contribution came from the Christian Visigoths 
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representing the large majority of the ancestry population in the modern Iberian Peninsula and, 

thus, being much less clear the demographic impact in the case of the relatively fewer “moriscos” 

and “conversos” descendants. Nevertheless, recent genetic studies (also supported by some 

historical studies [572][573]) have shown how constant immigration events (promoting gene flow 

and integration) from the Near-/Middle-East and North Africa to the Iberian Peninsula over the 

last two millennia, followed by introgression driven by religious conversion and intramarriage (i.e. 

endogamy, thus to counteract the expected admixture), especially starting at this period in the 

Middle Ages, of both “moriscos” (as North African Arab-Berber descendants) and “conversos” 

(as Sephardic Jewish descendants) seem likely to have contributed to a relatively substantial 

genetic proportion of the gene pool ancestry of modern populations in the Iberian Peninsula 

[574][578]. At the same time, these two groups seem to have succeeded in maintaining, until 

certain extent, not only certain genetic influence (although that still needs to be further studied) of 

their own until the present time but also a cultural tradition in the Iberian Peninsula as well as those 

other neighboring foreign regions where these groups migrated after being expelled back in the 

15th century [571][572][573][578][579]. 

Another important ethnic minority in the Iberian Peninsula, and in fact with a long presence 

(since their earliest settlement was documented in the Northwest region of Spain (Aragon) back in 

1425) [580], is the Roma or Romani people (Gypsies). Roma people are known as “gitanos” in 

Spain and as “ciganos” in Portugal and they belong to the denominated Iberian Kale (“Calé”), an 

ethnic group native to Iberia and Southern France [580-584][757]. At the same time, this Iberian 

Romani subgroup is a branch of a much larger Roma (Gypsies) group (including a very diverse 

range of social and religious traditions between the existing Romani subgroups), that make up a 

founder population dispersed throughout Europe, whose origins might be traced (based on 

previous genetic, anthropological and linguistic studies) to Indo-Aryan ethnic groups from ancient 
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India back in the 10th century (both modern-day northwestern regions of India and northeastern 

regions of Pakistan) as the ancestral population [580-589]. Until recently, knowledge about the 

origin, migration history and background of Roma people has been limited mainly due to their 

nomadic nature, broad cultural and social diversity and illiteracy (e.g. no written history or 

genealogy). Thus, despite these limitations, several recent studies have inferred (and it is now 

generally accepted) that the migration of the first ancestors of Roma groups from modern-day 

Northwest India/Northeast Pakistan regions (e.g. Punjab region, Sindh or Baluchistan) to Middle-

East and, later, to Europe occurred between the 10th  (if not earlier) and the 14th  centuries, in a 

number of waves [580-589]. These first Indo-Aryan ethnic groups were forced to migrate 

westward due to the expansion of Muslim invaders (e.g. the Ghaznavid dynasty first, and later the 

Seljuk Empire) as well as due to the periods of famine in those ancient Indian regions. Furthermore, 

Roma people’s migration routes (where in most cases they were considered aliens and were 

commonly enslaved or persecuted as outlaws) included first regions such as Persia, Armenia and 

Anatolia. During the Byzantine Empire, it was here where Romani people acquired the ethnic 

name they bear still today: tsigane (in Greek athínganos or atsínganos). Later, the conquest of the 

Byzantine territory by the Ottoman (Turkish) Emipre forced the Christians and many of the Indo-

Aryan descendants (or proto-Romani people) to emigrate further to the West as well as by the time 

the “Black Death” reached that area. Thus, in this migration process proto-Romani peoples 

diverged into three different major groups between the 6th and the 11th century. Those groups that 

moved as far as Western Europe are identified as Rom or Roma/Romani people. While the ones 

who remained in Persia and Anatolia are denominated Dom (or Domi) people, who also dispersed 

along the North African region. A divergent third group comprises those who remained in Armenia 

and are known as Lom (or Bosha) people. Additionally, there were some other Indo-Aryan ethnic 

groups that remained in ancient India and were established in the region of the Rajasthan known 
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today as the Rajasthani people (who are native) and the Banjara people (also known as Laman or 

Lambadi, who are nomadic) who might be closely related with the common Indo-Aryan ancestors 

of the emigrated and divergent Rom, Dom and Lom peoples [580]. Thus, the Rom or Romani 

people continue migrating to the Peloponnese region, the rest of the Balkans area, and later being 

rapidly widespread in all East, Central and West Europe (including the Iberian Peninsula) by the 

15th century. Even from Europe, some Romani groups also migrated to the Americas later around 

the 18th-19th centuries period. Moreover, there are also documented historical records of Romani 

slaves that were brought to the European colonies in the New World to forcedly work in the galleys 

and on plantations [522][590]. Therefore, especially with the contribution of genetic studies 

[582][585-589], it has been possible to confirm the origins of modern-day Romani groups 

distributed around the world linked to these Indo-Aryan ethnic groups from ancient India back in 

the 10th  century and thus to discard other previous initial theories that postulated their origins in 

modern-day Egypt (as apparently, the Romani people had migrated to the Peloponnese region from 

a region along the Adriatic coast known as "Little Egypt” (in the Tzingania region near by 

Methoni) and the local Greek people mistakenly believed they had come from Egypt and called 

them “Egyptians”) or in modern-day Romania (in the historical region of Wallachia, where the 

long period of enslavement of the Roma people is extensively documented) [590][591]. In the 

Iberian Peninsula, it has been suggested that Roma people arrived via two plausible paths. Firstly, 

the better documented trans-Pyrenees route from France at the beginning of the 15th century by 

the Roma people per se [580]. Secondly, although not as well-documented, a route across the 

Mediterranean Sea coming from the Near East, southern European regions and, even, the North 

African coastline. Thus, there is the possibility that not only Roma groups but also some of the 

Dom people arrived to the Iberian peninsula through this route as well) during the 15th century 

[583][584][591]. Nevertheless, genetic studies based on uniparental and/or biparental genetic 
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markers (e.g. single nucleotide polymorphisms (SNPs), mitochondrial markers (mtDNA), Y-

haplogroup or microsatellite markers) have not found evidence yet supporting a putative North 

African origin of the Iberian Roma groups which present a complex demographic history 

[582][585-588][592-594]. Furthermore, although sharing a common origin, the different European 

Romani Gypsy groups are highly heterogeneous (with also significant genetic substructure) as a 

consequence of genetic drift and different levels of admixture with neighboring host populations 

[582][585-588][592-594][757]. Moreover, in the Iberian society (especially in Southern regions), 

and in contrast to many other European regions, Romani Gypsies (although with an important 

nomadic way of life) were more socially accepted, being highly involved in the development of 

regional folkloric culture and who generally adopted and practiced Christian traditions [580][581]. 

In addition, contrary to many other European Roma population groups, the Iberian Gypsies are 

non-Romani-speakers as they experienced a profound linguistic immersion after entering Iberia 

long time ago. Where Spanish Gypsies (“gitanos”) speak Spanish language with the Calo dialect 

just being a reminiscent reference language (i.e large amount of original Romani loan words) 

[580][581]. At the present time, as a demographically non-negligible minority, Romani Gypsies 

are estimated to amount to 650.000-800.000 individuals in Spain (representing 1.5% out of the 

entire population) according to recent studies and official demographic population databases [595-

598].  

Finally, mostly after this “Convivencia” period of time during the Middle Ages between 8th-

15th century in the CE, it is also important to underscore that Spain did not receive any new major 

inward population contributions from neighboring populations, while important emigration events 

to the Americas and to Europe gradually took place along these last five centuries due to 

socioeconomic factors [555][556][578]. More recently, substantial emigration from rural to urban 

areas within Spain occurred during the 19th and 20th centuries. Interestingly, the trend of migration 



________________________________________________________Introduction 
 

Page | 279  

   © Gonzalo Montero Martin  

events observed in Spain for the past centuries has been recently shifted and, indeed, reversed 

during the last decades of the 20th century and the beginning of the 21st century [599]. In fact, 

relative to its population size, Spain has become very rapidly one of the most important 

immigration destinations in Europe due to socioeconomic factors. Currently, immigrants account 

for up to 13.0% of the present Spanish population according to official demographic population 

databases [595]. Furthermore, out of this 13.0% of immigrant population in Spain [260][595][600]: 

-Approximately 5.1% corresponds to the Central, Caribbean and Southern American group 

(mainly from Andean countries such as Ecuador, Bolivia, Peru and Colombia), and thus it 

represents the largest immigrant population group (with a common shared language, family ties 

and cultural proximity) in Spain. 

 -There is also an important European immigrant component (accounting for 4.7%), primarily 

coming from Eastern Europe and other Mediterranean regions (especially from Romania). 

-And finally, the North African and sub-Saharan African incoming component (especially from 

Morocco and Senegal) accounts for 2.1% of this immigrant population in Spain.  

Therefore, at the present time and in the future decades, this strikingly new demographic scenario 

in Spanish general population may have important implications to be especially considered in the 

biomedical field and particularly in the fields of pharmacogenetics, transplantation (e.g. of 

relevance for optimizing donor search and donor recruitment strategies for UCB and BM 

registries), and both regenerative and immune modulation therapies and related biobanks [600]. 

Referring now to the genetic landscape that has been described so far in the Iberian Peninsula, 

and in particular for the Spanish general population, by main previous population genetics studies. 

On one hand, and in comparison to those very early studies [557], Spanish population genetic 

structure and diversity have been delineated mainly and more thoroughly by the analysis of 
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uniparental genomic markers (such as mitochondrial DNA (mtDNA) and the non-recombining 

portion of Y chromosome, including their respective SNPs and STRs and also considering 

respective haplogroups) [565][578][601], whose inheritance is not altered by recombination events 

or driven by natural selection but only by possible mutations, being this particularly useful in 

anthropological studies for reconstructing population expansions and migrations based on descent 

relationships [542][543]. On the other hand, other major Spanish population genetics studies have 

been also focused on autosomal DNA markers (including high density arrays of SNP, STR and 

CNV variants of certain polymorphic regions of the human genome, many of them also used for 

genome-wide studies, thus allowing to disentangle the extensive and fine-scale population 

structure in the Spanish (and Iberian) population) [260][558][602-606]; which, in turn, can be 

useful for inferring biogeographical ancestry, population admixture and also population 

stratification and substructure [542][543]. In this sense, main findings from these two types of 

approaches have allowed to establish certain widely accepted conventions in regards of the very 

complex demographic history and genetic makeup in the Iberian Peninsula in addition to the also 

evident existence of a current remarkable regional genetic variation across the Spanish territory. 

In summary, the present-day Iberian gene pool has been shaped by differentiated contributions 

from a diverse group of population migrations throughout the history: 

-As an initial point in history established here, starting with the local Paleolithic Iberian 

population, which already existed by 50,000 BCE, and that would have received an important 

African gene flow (between 8,000 and 4,000 BCE) due to the vast desertification that took place 

across the Sahara region. 

-Secondly, it has been also well-defined genetic signatures of population migrations to the 

Iberian Peninsula along the history, even back from the Neolithic period (approximately 5500–

3000 BCE), from both Central European regions (trans-European migrations through the 
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Pyrenees Mountains and from the Atlantic seaboard of the West of Europe (Bay of Biscay 

regions) by respective, and subsequent, Celtic, Roman, Germanic population groups among 

others) and a significant maritime colonization around the Mediterranean Basin including from 

both the Levant (presenting Arab and Jewish backgrounds) and the Northern African coastlines 

(Berber-Arab and even sub-Saharan backgrounds) as previously commented. 

- Furthermore, these genetic studies have also revealed a relatively significant genetic structure 

(i.e. population stratification) among broad geographic regions of the Iberian Peninsula in the 

current population. Where some of the local patterns that have been detected could be 

tentatively explained by the complex orography of the Iberian Peninsula resulting on the 

historical settlement of certain isolated population nuclei for long periods of time in 

geographical niches such as: the Galician Massif to the Northwest; the Cantabrian Ridge to the 

North; the higher Ebro Valley to the Northeast; the Western Pyrenees region; and the Baetic 

System (a mountain range across Southern Spain). Nevertheless, despite the unique 

geographical landscape of the Iberian Peninsula and its tentative influence on this population 

stratification, it is widely accepted that these striking regional variations in the genetic makeup 

of the modern-day Iberian general population are better fitted with historical, political and 

cultural constraints that influenced migratory patterns and the relationships between populations 

throughout the history. Thus, singular genetic signatures of relatedness have been observed 

between those regions sharing a common linguistic background, illustrating a significant 

influence of the cultural diversity in both Spain and Portugal. As a remarkable and 

representative example, genetic data supports that the linguistic and geopolitical boundaries 

present around the end of the time of Muslim rule (8th-15th centuries in CE) in the Iberian 

Peninsula might have a significant and long-term impact on the genetic population structure 

currently observed in Spain and Portugal.  
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-At the same time, even in the case of a traditionally considered genetic isolate and supposed 

outlier in Western Europe as the Basque population (in Northern Spain) based on early genetic 

studies (using classical markers) [557]. Actually, it has been recently disclosed in various 

genetic studies (e.g. based on either a dense map of genome-wide SNPs or HLA genotyping 

data [260][558][559][607][608]) that people of Basque origin are not genetically differentiated 

from other non-Basque Iberian populations. Where a primary North African-Iberian 

Mediterranean genetic substrate is part of the overall Basque gene pool as it has been described 

for other Southern European populations [609]. In fact, it has been also widely reported how 

these current Basque, Iberian and North African populations cluster more closer together than 

to the rest of Central and Northern European populations [260][558][559][578][607][608].  

-On the other hand, there is indeed a set of singular Spanish population groups which also need 

to be remarked. These groups are related with territories geographically isolated, cutting off 

from the main landmass of the Iberian Peninsula. These particular Spanish population groups 

are found respectively in the Balearic Islands (Majorca, Minorca, and Ibiza islands situated in 

the Mediterranean Sea) and in the Canary Islands (Santa Cruz de Tenerife, Fuerteventura, Gran 

Canaria, Lanzarote, La Palma, La Gomera, El Hierro and La Graciosa islands located off the 

North African Atlantic coast (specifically located off the southern coast of present-day 

Morocco)). Which, in turn, have experienced certain unique demographic events (and even, 

hypothetically, some indistinguishable natural selection events) and specific gene flows (also 

observed at the HLA system level) over the centuries that in some cases clearly differ (or are 

observed in a greater manner) from those identified within the Iberian Peninsula. In the case of 

the Canary Islands (which, due to their oceanic volcanic origin, they have probably never been 

connected to any continent), modern-day populations of this archipelago show significant North 

African Berber genetic signatures in addition to Iberian and sub-Saharan genetic imprints. Thus, 
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it is widely accepted (and supported also by archaeological, anthropological and linguistic 

studies) that the first Canarian indigenous or native populations (e.g. known as “Guanches” for 

Tenerife, “Benehaoritas” for La Palma or “Bimbapes” for El Hierro) were of North African 

Berber origin. Furthermore, initial comparisons of genetic markers between these insular 

populations have shown some striking dissimilarities where some populations might have 

experienced high genetic diversity, while others were probably affected by genetic drift and/or 

bottlenecks during pre- and especially post-European conquest (in the 15th century by the 

Spanish Kingdom) times [563-568][610-613]. As for the Balearic Islands, it has been detected 

a significant Near-/Middle-East Jewish genetic substratum in their modern-day local insular 

populations, including at the HLA level [130][464][558][571][574][614-621]. In fact, it is 

historically well-documented that relatively large Jewish communities (where descendants of 

this Balearic Jewish population were known as “Chuetas”), as a consequence of both the initial 

historical Jewish Diaspora from the Levant and Near East regions and also due to the posterior 

1492 Edict of Expulsion, also settled in this Mediterranean archipelago (as similarly observed 

in the case of  other previous cultures such as Phoenicians, Greeks, Carthaginians, Romans, 

Vandals, Byzantines and Moors). Since this was a pivotal location in the very concurred 

maritime trading routes that crisscrossed the Mediterranean Sea throughout the history 

[558][571][574-577][620][622][623]. 

Overall, the general profile of genetic variation across the Iberian Peninsula seems to be relatively 

continuous along the main geographic axes. Nonetheless, future data based on genetic studies with 

larger sample sizes and at a wider geographical scale where covering a higher degree of 

polymorphism (e.g. hundreds of thousands of SNPs typed individually in large samples and 

application of both short- and long-read NGS technologies) will allow to depict a much more 

comprehensive map of the genetic diversity in the Iberian Peninsula. 
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In relation now to the diversity of the highly complex and very polymorphic HLA system so far 

described in the Iberian Peninsula, and in particular for the Spanish general population. Previous 

HLA genotyping studies (including the present thesis work; see Figure I-24) are in consonance 

with the findings just abovementioned from population genetics studies based on other 

uniparental/biparental and autosomal genetic markers. Thus, as previously mentioned, HLA allele 

and haplotype frequency distributions data and specific LD patterns shown by a given population 

(despite being partially shaped by host-pathogen interactions and evolutionarily driven by natural 

selection in ancestral populations even at a microgeographic scale [542][543][607]) are a powerful 

and very informative approach for inferring genetic background and ethnical composition. In turn, 

this key information enables a fair assessment of relatedness between modern human populations 

and also detection of demographic historical events as well as tracking migration waves of modern 

or more ancient populations [131][132][137]. As a matter of fact, due to the vast polymorphism 

and LD displayed by the HLA system, characterization of the diversity of a few major HLA loci 

can provide an equivalent level of in-depth genetic population-level data in comparison to genome-

wide analyses based on hundreds of thousands of bi-allelic SNPs distributed across the whole 

genome [260]. However, in the recent past and before the development and application of NGS 

technology for molecular HLA genotyping, only restricted very low- or low-resolution HLA data 

from very specific Spanish (and Iberian) population groups of generally delimited geographical 

areas [260][546][558-561][563][564][571][600][602][603][608][624-630][757] and from certain 

particular disease association studies [631-636] had been reported. Since the large majority of 

previously reported HLA studies in Spanish population were conducted:  

-Using lower resolution legacy typing methods (e.g. either 1-field or 2-field or reporting by P, 

G groups), where only capturing HLA polymorphism comprised by exon 2 and 3 in HLA class 
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I genes and exon 2 in HLA class II genes, and, thus, with an important level of both allelic and 

phasing ambiguities. 

- HLA typing was performed for covering certain loci but not for all major classical HLA loci. 

As a result, most of these previous studies did not define complete extended HLA class I and 

class II haplotypes, and consequently Spanish (and Iberian) HLA haplotype landscape had not 

been accurately and thoroughly described yet. 

-Additionally, these studies (with very few exceptions [221][260][546][628]) were restricted to 

small sample size cohorts (or where even only considering a cohort of patients but not 

considering a group of healthy individuals) of some Spanish (and Iberian) population groups 

and regions. Therefore, this group of previous HLA studies have not been still adequately 

representative of the entire Spanish general population, not being able to reveal a very 

comprehensive map of the HLA diversity in the Iberian Peninsula. 

Yet, despite the paucity of early studies describing both all major HLA class I and class II loci and 

respective high-resolution 3-/4-field allelic/haplotypic data at the genomic level in previous 

Spanish population cohorts; these past studies, indeed, have reported certain relevant findings that 

have significantly contributed to a first (although incomplete) depiction of the HLA genetic 

diversity found in the Iberian Peninsula. Thus, this first group of studies have described and 

identified singular and most common HLA alleles and partially extended haplotypes in Spanish 

(Iberian) populations (mainly summarized in [558][620]). Furthermore, these initial studies have 

also contributed to the discovery of novel/rare alleles (thus, being able to infer tentative genetic 

mechanisms involved in HLA polymorphism generation, where most HLA alleles have arisen by 

point mutation and gene conversion or recombination events of short fragments of DNA leading 

to single or short amino acid motives substitutions) (e.g. [637-639] among many other new allele 
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reports); as well as identification of clinically relevant null alleles in both classical [640] and non-

classical [641] HLA loci, being certainly characteristic of  Spanish (Iberian) populations.  

On the other hand, and just very recently with the introduction of NGS technologies, a few novel 

NGS-based HLA typing (including the present thesis work) and high-resolution (via SBT or SSO) 

typing data studies in Spanish population, [221][269][297][545][546][564][624] have overcome 

many of these past technical HLA typing limitations. As a result, these last studies have achieved 

to gain a better insight of the existing genetic complexity of the Spanish general population and 

thus of the HLA diversity (both at the allele and extended haplotype levels for the majority of the 

classical HLA loci) across the Iberian Peninsula. Nevertheless, and of note, all these recent studies 

(with the exception of the present thesis work) still show important limitations especially in regards 

to incomplete coverage of HLA gene sequence for many of the major HLA class I and, especially, 

class II loci. Moreover, HLA loci such as HLA-DQA1, -DPA1 and -DRB3/4/5 have not been well-

characterized either in this more recent group of HLA studies. Main results from these more 

recently published works are also later reviewed, commented and compared with the current thesis 

work in great detail at the DISCUSSION section.  

It is also noteworthy the significant efforts made during these last decades by Spanish Public 

Health institutions (and specifically coordinated by the Spanish National Transplant Organization 

(ONT) and the José Carreras Foundation agencies) that have led to the development of a very 

robust and large national transplantation network for both clinical settings in SOT [642] and HSCT 

(here with the Spanish registry of BM and UCB donors named as REDMO (“Red Española de 

Donantes de Medula Osea”) presenting a respective very large HLA typing donor pool database 

(n= 423,455 registered donors; as of July 2020)) [643]. In this sense, so far there have been two 

main reported HLA studies [260][546] that have attempted to describe the HLA diversity found in 

this Spanish donor registry population: 
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-Firstly, Romòn et al. study [260] described (comprising the largest reported sample size up to 

date) the HLA regional diversity found within the Iberian Peninsula although only based on 1-

field very low-resolution (generic level of resolution) HLA genotyping data of a reduced set of 

loci (HLA-A, -B, -C, -DQB1, -DRB1) obtained from a very large cohort (N=63,484) of this 

Spanish registry. Here, Romòn et al. [260] mapped HLA variation in the majority of Iberian 

Peninsula (and, indeed, existing population substructure) by combining classical population 

genetic analyses with geographic information approaches (i.e. evaluating the correlation 

between variation of HLA allele/haplotype frequency distributions and latitude/longitude as 

geographical parameters) as previously conducted in the context of European populations [136]. 

-A second very recent study (Alvarez-Palomo et al. study) [546] has demonstrated the feasibility 

of tentatively using in the future (as part of the IPS-PANIA project) banked cord blood units 

from this REDMO Spanish donor registry population in order to create a well-represented 

national iPSC haplobank (made up of HLA-matching iPSC lines from homozygous donors as 

starting material for iPSC-derived cell therapies) that will cover a significant percentage of the 

Spanish population for future advanced therapy replacement strategies [222][491-495][950]. In 

this case, after inferring via EM algorithm the most common HLA-A~C~B~DRB1~DQB1 

haplotypes at 1-/2-field allele resolution level from a N=30,000 randomized cohort of this 

REDMO Spanish donor registry population (where 0.62% of the cord blood units were 

homozygous for HLA-A, HLA-B and HLA-DRB1). Authors of this work have estimated that ten 

cord blood units from homozygous donors bearing the most common haplotypes detected in 

Spanish registry population could provide a HLA-A, HLA-B and HLA-DRB1 matching for 

approximately 30% of the population.  

Nonetheless, it is important to underscore that there is an important level of variability in the 

REDMO Spanish donor registry population HLA typing database in regards to the number of HLA 
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loci and allele resolution level consistently and historically tested and reported per donor (due to 

application of a variety of HLA typing methodologies during the last three decades, creating not 

uniform high-resolution data at various definition levels (at the 1-field, 2-field, 3-field or 4-field)). 

This lack of uniformity in the REDMO HLA data has been critically limiting the current 

characterization of Spanish donor registry population. Therefore, upcoming standardized HLA 

typing results of most common HLA allele and extended haplotype frequency distributions of all 

11 major HLA classical genes obtained from future larger NGS studies and at a wider geographic 

scale of the Spanish territory will provide an invaluable refined information for the potential 

improvement of the current registry in terms of population coverage as well as strategies of the 

organization/prioritization of donors recruitment. Moreover, development of local donor registries, 

in addition to improvements of the most national main registry, may contribute to better cover the 

diverse HLA genetic background found in Spain, which actually presents remarkable geographical 

(regional) HLA signatures. 

Finally, there have been also several significant past HLA-disease association studies conducted 

in Spanish population, and in particular relative to pathologies presenting a major autoimmune 

component such as (some main examples): Behcet's disease [633], pemphigus vulgaris [636], 

psoriatic arthritis and ankylosing spondylitis (among other spondyloarthropathies) [631], 

rheumatoid arthritis [632], celiac disease [634] or neurological diseases as multiple sclerosis (MS) 

[635][737]. In this context, single locus HLA genotyping has been traditionally used as an ancillary 

testing to assist with diagnosis of these related HLA-associated diseases. Nonetheless, there has 

been now substantial evidence supporting that other not as well described HLA and non-HLA 

genes within the MHC region may be associated with the given disease. Thus, additional HLA 

alleles and bearing haplotypes implicated in susceptibility/protection may play a role in 

determining specific features of the respective disease phenotypes. However, it has not yet been 
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well established whether these associations are driven by direct associations or by linkage 

disequilibrium (LD) mechanisms. Thus, recent and future population large-scale case-control 

studies (ethnically- and regionally-matched) with adequate patient groups and replication cohorts, 

as well as confirmation studies in family pedigrees through the use of novel NGS genotyping 

methods, will help for the fine-mapping of the etiological role of both HLA and non-HLA genes 

in diseases. 

 

Spanish Population/Region 

 

Sample Size 

(N) 

 

HLA- loci tested/ 

Allele Resolution Level 

 

Reference 

 

Galicia 

 

264 

 

A, B, C at 1-field 

 

[625] 

 

Galicia 

 

125 

 

A, B, DRB1 at 1-field 

 

[626] 

 

Basque Country 

 

82 

 

A, B, C, DQAl, DQB1,  

DRB1, DRB3/4/5  at 1-/2-field 

 

[608] 

 

Basque Country 

 

100 

 

A, B, C, DQA1, DPAl, DPB1, 

DRB1 at 1-/2-field 

 

[627] 

 

Cantabria (Pas Valley) 

 

88 

 

 

 

A, B, DQA1, DQB1, DRB1  
at 1-/2-field 

 

 

 

 

 

 

 

 

[559] 

 

Cantabria (Cabuérniga) 

 

95 

 

 

Cantabria (North Spain) 

 

83 
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Castilla y León 

 

1,818 

 

A, B and DRB1 at 1-field 

 

[628] 

 

Navarre 

 

116 

 

DPAl, DPB1 at 2-field 

 

 [630] 

 

Navarre 

 

112 

 

DQAl at 2-field 

 

[629] 

 

Barcelona UCB Bank 

 

5,458 

 

A, B, C, DQB1, DRB1 at 2-field 

 

[221] 

 

Catalonia (North Girona) 

 

88 

 

A, B, C, DQA1, DPAl, DPB1, 

DRB1 at 1-/2-field 

 

[627] 

 

Majorca 

 

407 

 

A, B, C, DQB1, DRB1 at 1-field 

 

 

 

[571] 

 

 

 

 

Majorca-Jewish (“Chuetas”) 

 

103 

 

A, B, C, DQB1, DRB1 at 1-field 

 

Minorca 

 

94 

 

A, B, C, DQB1, DRB1 at 1-field 

 

Ibiza 

 

88 

 

A, B, C, DQB1, DRB1 at 1-field 

 

Murcia 

 

173 

 

A, B, C, DQB1, 

DRB1, DRB3/4/5  at 1-/2-field 

 

[560] 

 

 

Granada-Almería 

 

125 

 

A, B, DQA1, DQB1, 

DRB1 at 1-/2-field 

 

[561] 
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Madrid 

 

176 

 

A, B, C, DQAl, DQB1, 

DRB1, DRB3/4/5  at 1-/2-field 

 

[608] 

 

Madrid 

 

253 

 

A, B, C, DQB1, 

DRB1, DRB3/4/5  at 3-/4-field 

 

[624] 

 

Madrid 

 (Amerindian immigrants) 

 

173 

 

 

A, B, DQB1, DRB1 at 1-/2-field 

 

[600] 

 

Tenerife 

 

83 

 

 

DRB1 and DQB1 at 2-field 

 

[563] 

 

Gran Canaria 

 

215 

 

 

A, B, C, DQB1, DRB1 at 2-field 

 

[564] 

 

REDMO 

 

63,484 

 

A, B, C, DQB1, DRB1 at 1-field 

 

[260] 

 

REDMO 

 

30,000 

 

A, B, C, DQB1, DRB1 at 2-field 

 

[546] 

 

IBERIA 

 

(Review)  

 

Variety of typing methods and loci 

 

[558] 

 

17th-IHIW 

Spanish healthy population 

 

282 

 

A, B, C, DPAl, DPB1,   

DQAl, DQB1, DRB1, DRB3/4/5   

at 3-/4-field 

[269] 

(Present 

Thesis 

Work) 

 

Spanish Romani Gypsy  

of Andalusia 

 

 

80 

 

DRB1, DQB1 and DPB1 at 2-field 

 

[757] 

 

Figure I-24. Summary of main HLA Spanish population studies reported in literature. 
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IV. HLA ASSOCIATION STUDIES IN MULTIPLE SCLEROSIS (MS)  

 
 

11. OVERVIEW OF MS GENETICS AND HLA-MS ASSOCIATION STUDIES  
 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) 

mediated by the adaptive and innate arms of an unregulated immune response that leads to 

demyelination and axonal degeneration and accompanying neurological impairment and disability 

[644][645]. MS affects around 2.3 million people worldwide with very different incidence and 

prevalence among human populations [646]. In fact, MS risk varies within the same geographical 

region across racial and ethnic groups. Traditionally, MS had been found to be more frequent in 

high latitude regions and Central-Northern European populations. Notwithstanding, it has been 

observed an increase of the worldwide MS prevalence over the last decades (global median 

prevalence reported by World Health Organization (WHO) in 2013 was 33 per 100,000 [647]), 

occurring primarily in women and even in populations previously considered to be at low-risk, 

such as those with Latin American, Asian, and African ethnic backgrounds. It is not clear yet if 

this increase may be explained due to the overall improvement of diagnosis and reporting systems, 

lifestyle and diet changes, or specific evolving environmental factors [648]. It is widely accepted 

that MS presents a multifactorial etiology, since it has been described that a variety of both genetic 

and environmental factors can influence the disease risk, severity and clinical course. Vitamin D 

levels, smoking and Epstein Barr Virus (EBV) infection history (both anti-Epstein Barr Nuclear 

Antigen-EBNA-IgG seropositivity and infectious mononucleosis) are some of the well-

documented environmental elements [649]. At the same time, evidence for a significant but 

complex genetic component in MS pathogenesis is found in the clustering of affected individuals 

in families (e.g. via linkage analyses employing multiple-affected member (multiplex) MS 

families), high disease concordance rate in monozygotic twins (20-30%), and observed differences 
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in disease prevalence among different ancestral groups irrespective of geographic location 

[650][651].  

Similarly to other autoimmune diseases, MS is characterized by moderate heritability, 

polygenicity, and multifaceted gene-environment interactions. This polygenic model of MS 

heritability has offered the rationale and drive for assembling very large DNA datasets to pursue 

genome-wide association studies (GWAS), which (based on novel chemistries, system 

miniaturization, and automation strategies that have enabled a much more comprehensive and 

efficient DNA microarrays panel configuration) have been highly successful in identifying 

associated variants for susceptibility [652]. To date, targeted genomic screens in populations, 

mostly of European descent, have revealed 233 independent regions that are across the human 

genome significantly associated with susceptibility, including 32 independent allelic and locus 

effects within the MHC region [651][653]. Here, association to HLA gene variants (which was 

first described several decades ago [654-656]) carries the strongest genetic burden for MS risk, 

although non-HLA genes and gene-gene interactions (i.e. epistasis) seem to also play a significant 

role in MS pathogenesis (in the plausible scenario of an antigen(s)-specific autoimmune disease) 

[657-659]. The main signal in those described MS genome-wide maps has been detected at the 

class II region of the HLA system and it actually explains up to 10.5% of the genetic variance 

underlying risk. Predominantly, class II HLA-DRB1*15:01 allele variant has been observed as the 

strongest genetic determinant on MS risk, showing an average odds ratio of 3.08. In fact, this major 

HLA-DRB1*15:01 susceptibility factor has been also associated (although still without a total 

consensus across studies) with phenotypic markers of disease severity, in contrast to other MS 

associated HLA-DRB1 alleles [650][651][660][661]. Yet, complex allelic hierarchical lineages, 

HLA-DRB1 allelic heterogeneity across studied populations, cis/trans haplotypic effects, and 
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independent both risk and protective MS signals in the HLA class I region have been additionally 

described [290][645][650][659][662-664]. In summary: 

i) HLA-DRB1*15:01 as a major MS risk signal and respective haplotypic associations: 

From the very initial detection of the serological specificity DR2 as a highly associated factor 

to MS [654-656], continuous examination of HLA polymorphism coupled with incremental 

technological advance during the last decades and, thus, improved resolution of molecular 

genotyping methods allowed to finally refine this association with MS to the HLA-DRB1*15:01 

allele [665]. Up to date, HLA-DRB1*15:01 represents the strongest genetic determinant on MS 

risk, where its allele frequency distribution has been consistently found greater in MS patients 

than controls in many studies (the majority being focused on populations groups of European 

ancestry) [666]. At the same time, HLA-DRB1*15:01 allele is most often embedded in a 

relatively common extended HLA class II haplotype in populations of European descent (e.g. 

HF=12.2% in European American healthy population [268]; or HF=8.6% in the present Spanish 

healthy population [269]), in which it is tightly linked with HLA-DRB5*01:01, HLA-

DQA1*01:02 and HLA-DQB1*06:02 alleles that have been also reported for their association 

with MS susceptibility [667][668]. Consequently, so far it has been extremely difficult to 

distinguish the definitive and primary predisposing locus or allele within this extended HLA 

class II haplotype. In fact, previous attempts to localize the MS susceptibility gene with in the 

DR-DQ regions of the MHC have not provided consensus. For instance, on one hand, HLA-MS 

studies in African American population groups have clearly attributed risk to HLA-DRB1 locus 

but not to HLA-DQB1*06:02 allele (this latter being ruled out as the causative allele of the 

association signal, at least in the case of this population) [669]. Conversely, studies in other 

different populations (e.g. Sardinians [670], Afro Brazilians [671], and Canadian families 

[672]) have suggested a possible secondary role of HLA-DQ variation in MS susceptibility as 
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it has been also observed in other autoimmune diseases (e.g. celiac disease) (reviewed in [650]). 

Moreover, it has been described that this characteristic extended HLA class II haplotype may 

also influence disease severity (e.g. based on clinical phenotypic data such as age of onset, 

presence of oligoclonal bands and IgG levels in the cerebrospinal fluid of MS patients and 

radiological imaging data of the brain) [661]. These observations suggest that this HLA-

DRB1*15:01 bearing haplotype (where HLA-DRB1*15:01 alone explains up to 10.5% of the 

genetic variance underlying risk [652]) plays a specific and singular role in MS disease 

pathogenesis, and indeed being distinct and unique from other associated HLA alleles and 

haplotypes (where additional HLA-DRB1 associations appear to account for less than 2% of the 

remaining variance [652], where these may contribute to disease risk through alternative 

mechanisms) [650][659]. In addition to the increased risk for disease observed for HLA-

DRB1*15:01 homozygous genotypes (following an additive model [673]), there appears to be 

an epistatic effect for the HLA-DRB1*15:01/DRB1*08:01 heterozygous genotype, where 

increased risk in comparison to other different heterozygous DRB1*15:01 genotypes has been 

described [674]. In this sense, HLA-DRB1*08:01 allele does not seem to confer risk on its own 

although a weak independent signal was detected in an Ashkenazi Jewish population cohort 

study [675]. 

ii) Additional HLA-DRB1 risk alleles and other described HLA class II associations: 

Besides the HLA-DRB1*15:01 allele and its most common bearing class II haplotype (HLA-

DRB5*01:01~HLA-DRB1*15:01~HLA-DQA1*01:02~HLA-DQB1*06:02) as a major MS risk 

factor frequently found in populations of Northern-Central European descent, it has been also 

identified a striking allelic heterogeneity in HLA-DRB1 locus importantly associated with MS 

susceptibility as well as other secondary associated HLA class II signals (conferring 

susceptibility or protection, respectively) across worldwide populations [650][659][676][677]. 
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In this case, it is important to underscore that the lack of clear association for these other HLA 

class II alleles and loci can be most likely, and generally, due to the limited statistical power 

presented by them since their respective allele frequency distributions are globally low and 

uneven (i.e. with a relatively low representability and being rarely found at population 

frequencies higher than 3% worldwide) [650]. In detail, differentiating between global regions 

and broad ethnic groups or even in the case of peculiar populations so far described: 

-Some studies have reported a relevant correlation of HLA-DRB1*04:05 allele with MS, in 

addition to the also HLA-DRB1*15:01 detected signal, in Japanese and Asian populations 

[294][678-681]. In fact, this suggested independent role of HLA-DRB1*04:05 with MS 

etiology (conferring risk) has been further replicated in results from other various studied 

populations (e.g. Sardinians [670], Sicilians [682] and African Americans [683]). 

Furthermore, within the HLA class II region, HLA-DPB1*03:01 allele has been also 

significantly, and independently, associated with MS susceptibility in a Japanese population 

study [678] and also in a study based on Australian HLA-DQB1*06:02-negative MS patients 

and controls [684]. 

-Additional HLA-DRB1 risk alleles that have been consistently reported include HLA-

DRB1*13:03 and -DRB1*03:01, especially detected in certain regions of Western Europe and 

the Mediterranean basin, with some specific considerations that are noteworthy. The 

association of HLA-DRB1*13:03 allele with MS was first identified through analysis of 

Ashkenazi and non-Ashkenazi Jewish cohorts from Israel [675]. Where, despite HLA-

DRB1*13:03 is rarely observed at population frequencies greater than 3% worldwide [650], 

its association with MS appears to be more robust with a stronger effect size as it is seen in 

the case of previously reported HLA imputation studies based on SNP data from very large 

cohorts (e.g. in populations of European descent) [652][658] and in those given studied 
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population groups (e.g. Israeli) that show considerably higher allele frequency distributions 

of this variant [675][685]. Whereas in the very singular Sardinia region of Italy, where MS 

prevalence is strikingly high, all characteristic HLA-DRB1*04:05, -DRB1*03:01, -

DRB1*13:03 and -DPB1*03:01 allelic signatures (in addition to major HLA-DRB1*15:01 

risk factor) have shown positive associations to MS susceptibility [650][662][670][686][687]. 

It has been suggested that these results may be indicating that the HLA genetic structure and 

patchwork (or mosaic) observed in the present Sardinian islander population is the result of a 

fixation of haplotypes, which are very rare elsewhere, and are most likely to have originated 

from a relatively large group of diverse founder populations [688]. Similarly to HLA-

DRB1*08:01 (with a weak independent signal detected in Ashkenazi Jewish population) [675] 

and in contrast to HLA-DRB1*13:03, HLA-DRB1*03:01 is also relatively common in 

populations of European Mediterranean ancestry and it also seems to contribute less 

significantly to risk through recessive modes or interaction effects [689-693]. Thus, HLA-

DRB1*03:01 and HLA-DRB1*08:01 do not appear to impact primarily disease severity, 

suggesting a dissimilar role in disease in comparison to those other HLA-DRB1 alleles (e.g. 

HLA-DRB1*15:01/15:03, -DRB1*13:03 and -DRB1*04:05) that have consistent findings of 

risk and severity in MS [650]. Moreover, recent studies in which HLA alleles were assigned 

by imputation methods proposed a positive association of HLA-DPB1*03:01 allele with MS 

risk [658][945]. 

-Interestingly, HLA-MS studies in African American populations [669][683] and populations 

of African descent [694][695] have described that this ethnic background not only shows the 

prototypic association of HLA-DRB1*15:01 (although much more weakly since it presents a 

low allele frequency in these populations) on MS susceptibility. But also, within the HLA-

DRB1*15 allele group (HLA-DRB1*15:01 through HLA-DRB1*15:06, which is distinguished 
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from other common HLA-DRB1 alleles by the small and hydrophobic Alanine (Ala) residue 

at amino acid position 71 defining a distinctive structure on the P4 pocket of the HLA-DRβ1 

molecules and thus a unique peptide binding profile), the allele HLA-DRB1*15:03 (which is 

the most common HLA-DRB1*15 allele in these African-related populations) confers 

susceptibility to MS as well, being highly specific to people of African ancestry. In contrast 

to this clear association to MS susceptibility of both HLA-DRB1*15:01 and -DRB1*15:03 

alleles (which differ only at amino acid position 30 (Tyr → His, respectively) and have an 

identical peptide binding motif), the structurally similar HLA-DRB1*15:02 allele does not 

seem to be associated with MS, either in populations of European descent where the frequency 

of this allele is very low (AF~1%) [696], or in Asian populations (primarily in Southeast Asia 

and Oceania) where the frequency is much higher (AF~8%) but incidence of MS appears to 

be much lower [697]. In fact, this HLA-DRB1*15:02 allele differs from the major 

predisposing HLA-DRB1*15:01 allele by a single amino acid substitution, Val → Gly at 

position 86, likely enlarging the P1 pocket of the peptide binding groove. However, presence 

of Val at HLA-DRβ86 position (initially suggested to be pivotal for susceptibility to MS) has 

not been observed across all main HLA-DRB1 risk alleles for MS susceptibility that have 

been described on different populations (e.g. Gly at HLA-DRβ86 position is also found, as an 

example, in HLA-DRB1*13:03 allele) (see Figures I-25 and I-26). Moreover, Finn et al. study 

[698] showed that the difference in risk association with MS of HLA-DRB1*15:01 versus -

DRB1*15:02 is not due to a lack of antigen presentation by DRβ1*15:02, at least in the 

context of putative myelin peptides, and suggested that other mechanisms involving HLA-

DRB1*15:01 may account for increased susceptibility to MS. In this sense, distinctive 

haplotypic associations observed still need to be further evaluated (in a trans-ethnic analysis 

at high-resolution) to allow the fine-mapping of the different elements in tight LD [297][668]:  
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HLA-DRB5*01:01~HLA-DRB1*15:01~HLA-DQA1*01:02~HLA-DQB1*06:02 (European) 

HLA-DRB5*01:02~HLA-DRB1*15:02~HLA-DQA1*01:03~HLA-DQB1*06:01 (Asian) 

HLA-DRB5*01:01~HLA-DRB1*15:03~HLA-DQA1*01:02~HLA-DQB1*06:02 (African) 

 

 
 

Figure I-25. Full Length Protein Sequence Alignment of these shown HLA-DRβ1 chains according to IPD-

IMGT/HLA Release 3.41.0 (2020-07-13). The alignment above is a graphical representation to allow comparison 

of known sequences. Every hyphen symbol represents a given position in the sequence where amino acidic residue 

(aa) is identical between, in this particular case, HLA-DRβ1*15:01 reference protein sequence aligned and 

compared here with sequences of other respective HLA-DRβ1 proteins of interest reported for conferring risk to 
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MS susceptibility. Figure and respective footnote are obtained and adapted from: https://www.ebi.ac.uk/cgi-

bin/ipd/imgt/hla/align.cg [87]. 

 

  

Figure I-26. Graphical representation of a 3D ribbon model for generic HLA-DRα/HLA-DRß heterodimer molecule, 

indicating the location of amino acid position 86 within the P1 pocket of the peptide binding groove. 

 

-In the case of Hispanic ethnic groups and Latin American population groups, incidence of 

MS appears to be much lower [699] and it is mostly due to the historical European genetic 

contribution (with the well-known HLA-DRB1*15:01 association, and even also the HLA-

DRB1*03:01 association previously described) [700-703] from the colonization period 

between 15th and 19th centuries [267]. These current populations of the New World resulted 

from complex and ongoing admixture processes during the last five centuries involving 

mainly Native American (Amerindian) and European (colonizers mainly from Iberia) genetic 

components; and in a lesser extent (more localized depending on the region) also with the 

contributions of sub-Saharan African (from the transatlantic African slave trade) and South-

East Asian genetic backgrounds as well as observed minorities from North Africa and Middle-

East, and even including a few Romani people [522]. Thus, particularly in certain specific 

familial MS studies of admixed groups additional MS HLA risk signatures (i.e. ancestry-

specific MS-associated HLA alleles previously mentioned) from these other ethnic 

https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/align.cg%20%5b87
https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/align.cg%20%5b87
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backgrounds have been also identified although being less significant [701]. Moreover, 

epidemiological studies show an extremely low prevalence of MS among non-mixed 

Amerindians [702]. Yet, the possible genetic contribution (for both risk and protection) of 

Native American ancestry to MS susceptibility in patients still needs to be further investigated 

as it has been initially described in very recent studies in MS [704] and also in a relatively 

similar neurological disease (of a clear autoimmune nature) denominated Neuromyelitis 

Optica [705]. 

-Although still limited and without consistent results, studies on MS patients from the Middle-

East and North Africa regions have initially shown certain similar trends and allele/haplotype 

associations (e.g. HLA-DRB1*15:01, -DRB1*03 and -DRB1*04) as those found in European 

cohorts from the Mediterranean basin [706][707]. 

-Protective effects in HLA class II region have been also observed in some studies. HLA-

DRB1*14:01 allele has been consistently associated with protection to MS susceptibility in 

European population cohorts [674][676]. Where it seems to exert a dominant counter effect 

on the susceptibility attributed to HLA-DRB1*15:01 major risk allele when both are present 

in the same heterozygous genotype [676]. Similar initial findings have been also identified on 

the tentative protective role of DRB1*07 allele group [690][708][709]. In African American 

populations, HLA-DRB1*11:01 and HLA-DRB1*04:01 have been identified as resistant 

alleles, while HLA-DRB1*14:01 and HLA-DRB1*09:01 are suggestive (although weakly) 

resistant alleles for MS among African descent populations [669][683]. Finally, similarly to 

the African American background, HLA-DRB1*09:01 has been reported to confer resistance 

to MS in both Japanese and Chinese populations [678][681]. While the mechanism for class 

II-mediated protection in MS is still unknown, engagement of MHC-promiscuous, auto-
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reactive thymocytes, and resultant Treg formation, has been suggested as an explanation for 

these associations [710]. 

iii) Despite their implication in MS has been much less examined so far, some HLA class I 

alleles have been also reported to be associated with either risk or protection to MS 

susceptibility, considering also tentative epistatic interactions [711]. A possible epistatic risk 

interaction between HLA-DRB1*15:01 and HLA-A*03:01 was identified in a Norwegian 

population study [712]. Likewise, associations for risk to MS susceptibility observed for HLA-

B*07 allele group in European descent populations are most likely secondary to LD with the 

canonical extended HLA class II DRB1*15:01~DQB1*06:02 risk haplotype [713]. Conversely, 

the HLA class I protective effect has been reported to be mainly driven by HLA-A*02:01 allele, 

which does not appear to be secondary to class II associations [652]; and also by HLA-B*44:02 

allele (presenting the motif Bw4-80T, later explained) [714][715], however this latter is in 

extremely tight LD with HLA-C*05 allele group and thus it is difficult to discriminate between 

their tentative individual contributions to protection [650]. In addition, HLA class I‐mediated 

protection has also been observed for HLA‐B*38:01 and HLA‐B*55:01 alleles in some HLA 

imputation studies in European descent populations [658][677]. At the same time, these 

associations detected for HLA class I alleles (commonly interpreted only in the context of 

peptide binding and presentation driving specific adaptive immune T cell responses) have been 

also analyzed and explained with respect to their role as regulatory ligands for killer-cell 

immunoglobulin-like (KIR) receptors [5], mainly expressed on natural killer (NK) cells and 

being key elements in innate immunity and possible contributors to MS pathogenesis [716]. 

Main studies have been focused in the following well-documented HLA-KIR interactions, 

where NK-mediated responses are basically governed by the avidity of interaction with HLA 

class I α1-helix residue-80 (summarized in [717-719]): 
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-Even with a very high polymorphism, HLA-B alleles can be clustered based on 

polymorphisms at amino acid positions 77–83 that define either the Bw6 epitope, which has 

not been described to interact with any KIR [720], or the Bw4 epitope (that, in turn, can be 

divided in several different Bw4 motif groups), a ligand for KIR3DL1 receptor [721]. Based 

on a dimorphism (Ile(I) versus Thr(T)) at position 80 that affects interaction with KIR3DL1, 

the HLA-Bw4 alleles can be further segregated into Bw4-80I or Bw4-80T subtypes. In 

particular, Bw4 alleles characterized by I80 give an optimal inhibitory signal, whereas those 

characterized by T80 are responsible for weaker inhibition. Thus, KIR3DL1 interacts 

exclusively with HLA class I molecules that contain the Bw4 epitope, which is present within 

∼33% of HLA-B allotypes and also ∼20% of HLA-A allotypes [537][538]. 

-The dimorphism among HLA-C molecules at position 80 is recognized by KIR2DL1 and 

KIR2DL2/3 and dictates their reactivity with C2 (characterized by V76 and K80 residues, 

essentially the majority of HLA-Cw2, 4, 5, and 6 and some other alleles) or C1 (displaying 

V76 and N80 amino acids, mainly defined by HLA-Cw1, 3, 7, 8, and some other alleles) 

molecules, respectively [722][723].  

The specific interaction between these highly polymorphic KIR and HLA loci appears to play 

a relevant role in both progression and outcome of several diseases, such as viral infection, 

cancer and autoimmunity (summarized in [717]). In MS studies, the most consistent finding has 

been so far that the combined presence of KIR3DL1 and Bw4 appears to confer protection to 

MS susceptibility in both European and African-American cohorts [724-727].  

Finally, in the following Figure I-27, and for the purposes of the present thesis work, it is shown 

the main list of HLA-B antigens that present either serological Bw6 epitope or Bw4 epitope 

(including also main Bw4 motif subgroups). Amino acid residues indicated for each Bw6/Bw4 
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epitope correspond to positions 77-83 (Figure I-27 is obtained and adapted from:  

http://www.dorak.info/hla/bw4bw6.html [728]): 

SLRNLRG       DLRTLLR   NLRIALR   NLRTALR   VARIOUS 

Bw6       Bw4   Bw4   Bw4     

                      

B*07021    B*35011  

  B*0727   B*0803    B*0802    B*0711  

B*07022    B*35012  
  B*1543   B*1513    B*1301    B*0723  

B*07023    B*3502  
  B*2703   B*1516    B*1302    B*0806  

B*0703    B*3503  
  B*27052   B*1517101    B*1303    B*1557  

B*0704    B*3504  

  B*27053   B*1517102    B*1304    B*3527  

B*0705    B*3505  
  B*27054   B*1523    B*1306    B*3536  

B*0706    B*3506  
  B*2707   B*1524    B*1308    B*3705  

B*0707    B*3507  
  B*2709   B*1567    B*1536    B*3920  

B*0708    B*3508  

  B*2710   B*2702    B*1809    B*4037  

B*0709    B*35091  
  B*2713   B*3801    B*2701    B*4105  

B*0710    B*35092  
  B*2714   B*3805    B*38021    B*4703  

B*0712    B*3510  
  B*2716   B*3806    B*38022    B*5305  

B*0713    B*3511  

  B*2717   B*3807    B*3804    B*7301  

B*0714    B*3512  
  B*2719   B*4013    B*44021      

B*0715    B*3513  
  B*3701   B*4019    B*44022      

B*0716    B*3514  
  B*3702   B*4406    B*44023      

B*0717    B*3515  

  B*3704   B*4418    B*44031      

B*0718    B*3516  
  B*4701101   B*4425    B*44032      

B*0719    B*3517  
  B*4701102   B*4901    B*4404      
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http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*5510
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*5601
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http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*5606
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*67011
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*67012
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*6702
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*7801
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*78021
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*78022
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*7803
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    B*7804  

                

    B*7805  
                

    B*8101  
                

    B*8201  
                

    B*8202  

   B*83:01             

 

Several main studies of HLA-MS association have been performed in Spanish population 

cohorts although just from very specific regions or genetic backgrounds. For the most part, cohorts 

of Caucasian Spanish ancestry have been evaluated from Northern and Eastern regions 

(Mediterranean region) in Spain as well as from few Central and Southern regions, including also 

one very small study in Spanish Romani Gypsy patients from Andalusia [635][689][709][729-

742][761]. Moreover, all these cited studies were based on direct DNA sequencing (i.e. direct 

DNA-based typing techniques such as SSO or SBT) of the HLA region. However, molecular 

characterization of these HLA-MS associations reported in these previous studies has been highly 

limited due to the only use of lower resolution (e.g. either 1-field or 2-field) HLA typing methods 

with several drawbacks: an important level of both allelic and phasing ambiguities; covering just 

a few HLA loci (where most extended haplotypes have not been well-defined and thus, for 

example, lacking the description of relevant class II HLA-DRB3/4/5 or HLA class I loci 

[293][650][668][743]); and in most cases restricted to relatively small sample size cohorts. Yet, 

there have been important findings that have partially described the HLA genetic background 

associated to risk/protection for MS in Spanish population. In summary, from these previously 

reported HLA studies in Spanish population (which are relatively representative of the general MS 

patient and healthy population groups although not completely):  

i) The most consistent finding has been the association between MS risk and the canonical DR2 

(DR15) haplotype (HLA-DRB1*15:01~HLA-DQA1*01:02~HLA-DQB1*06:02) as well as 

respective risk associations from these embedded individual alleles, being in line with many 

http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*7804
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*7805
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*8101
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*8201
http://www3.ebi.ac.uk/Services/imgt/hla/cgi-bin/get_allele.cgi?B*8202
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studies carried out in populations of European ancestry (reviewed in [650][664]). In this sense, 

this may be most likely reflecting the significant genetic imprint left by Germanic 

tribes/Christian Visigoths in modern-day populations of the Iberian Peninsula 

[555][556][558][578]. Moreover, in some of these studies, HLA-DQB1*06:02 allele has been 

particularly found to be more prevalent in MS cases and to maintain its significance after 

correction for univariate analysis, and also when analyzed by means of a multivariate test with 

a logistic regression model [741][742]. Nevertheless, similar to other European descent 

populations, identification of the truly causative predisposing alleles within this risk haplotype 

for MS susceptibility is unlikely to be unraveled by HLA Caucasian population association 

studies due to the extraordinarily strong linkage disequilibrium displayed between HLA-

DRB1*15:01 and -DQB1*06:02 alleles (reviewed in [650]). Furthermore, the possible epistatic 

(both cis- and trans-) interactions involved between these HLA class II genes (and also class I 

loci) and their contribution (within the context of the combined effect of the two parental 

haplotypes) to the overall risk for developing MS also need to be taken into account and, in 

turn, to be further elucidated in future studies [672][709][711][744-746]. At the same time, it 

has been also postulated that the observed effects associated to individual classical HLA alleles 

may be modulated (in terms of biological functions, structural properties and expression 

patterns [747]) to some extent by many weak effects at many loci (SNPs) across the genome (in 

a network of fine-regulated interactions between HLA and non-HLA risk/protection variants), 

thus defining a polygenic epistasis [309][659]. 

ii) Among these previously reported HLA-MS Spanish population studies, some of them can 

be considered relatively comprehensive since most of them are based on intermediate high-

resolution 2-field HLA data where, at least, main HLA class II genes of interest were 

generally interrogated and relatively large sample sizes were studied [635][689][709][729-
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742][761]. Thus, apart from the DR15 major risk signal, additional secondary (in some cases 

more tentative than others) but informative HLA-MS positive (suggestive to confer 

susceptibility) and negative (suggestive to confer protection) association signals have been 

also initially described both at the allelic and haplotypic levels in some given Spanish 

population groups/regions. In detail: 

-In Northern [742] and Northeastern Spain [734][735], haplotype HLA-

DRB1*13:03~DQA1*05:05~DQB1*03:01 was observed to be increased in MS patients. 

This finding is in consonance with, among others, studies of MS patients in Ireland [748], 

Sardinia [670], U.S (European American) [749] and non-Ashkenazi patients from Israel 

[675]. 

-Other studies in Spanish MS cohorts from various geographical regions, despite being 

located far apart, such as the Basque region (Northern Spain) [742], Canary Islands [738] 

and Madrid (Central region of Spain) [732] have also detected associated risk that would be 

conferred by haplotype HLA-DRB1*04:02~DQA1*03:01~DQB1*03:02. Where, in 

particular, this positive association with MS has been linked to some DR4 alleles (HLA-

DRB1*04:02, -DRB1*04:03, and -DRB1*04:04) that indeed present Val residue at HLA-

DRβ86 position. Which has been suggested to play a role for susceptibility to MS, since this 

amino acid position defines the configuration of P1 pocket of the peptide-binding groove 

and is located at the end of the alpha helix in the given HLA-DRβ chain, being thus a key 

element for the peptide presentation to T cells [650][732]. However, this specific molecular 

motif has not been consistently found in multi-ethnic MS patients, having important 

exceptions such as HLA-DRB1*04:05 risk allele (presenting Gly at HLA-DRβ86 position 

instead) which appears increased, for example, in MS Asian populations [678][679] and 

also, strikingly, in MS Sardinian patients [670]. Moreover, De la Concha et al study in 
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Madrid MS patients [732] showed that HLA-DRB1*15:01 and DRβ86-Val DR4 alleles were 

associated only with approximately 50% of MS in that studied cohort and thus did not 

account for all the susceptibility to the disease (where other different gene associations both 

inside and outside the HLA region may be also relevant in the pathogenesis of MS [650]). 

Also, it is noteworthy that when the statistically conservative Bonferroni’s method 

correction is applied, and probably due to the relative small sample size from these previous 

studies in Spanish population, none of these predisposing haplotypes for MS showed a 

significant difference in frequency between MS patients and controls [742]. On the other 

hand, and very interestingly, predisposing role to MS susceptibility for HLA-DRB1*04 

allele group and its associated bearing haplotypes have been also initially described in MS 

patients from the Middle-East and North Africa regions (e.g. HLA-

DRB1*04:04~DQA1*03~DQB1*03:02 haplotype associated in Turkish population; or HLA-

A*01~B*51~DRB1*04 and HLA-A*03~B*44~DRB1*04 haplotypes associated in Iranian 

population) [706][707][750][751]. Therefore, this particular HLA-MS association signature 

observed here could be also reflecting, at least to certain extent, the shared demographic 

history and, consequently, genetic substrate between certain modern-day Middle-Eastern 

and North African MS/healthy cohorts and the current Spanish MS/healthy cohorts due to 

the original settlement for many centuries (8th-15th centuries in CE) of North African 

Muslim Eastern Arabs and Berbers in the Iberian Peninsula [555][556][558][578]. 

-In relation to the HLA-DRB1*03:01 risk allele association (which may contribute to risk 

through recessive modes or interaction effects) reported for other populations mainly of 

European ancestry [650][670][690-693]. This HLA allele has not been detected by itself as a 

clear predisposing factor to MS susceptibility in Spanish population studies so far (where 

both cohorts of healthy controls and MS patients generally showed similar allele frequency 
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distributions) [689][740]. Notwithstanding, a more recent study by De la Concha et al. [733] 

evaluated the role of HLA-DRB1*03:01 allele specifically in the context of its more 

conserved and common bearing extended haplotypes (such as ancestral haplotypes AH 8.1 

(more common in Northern European populations) or AH 18.2 (more common in European 

Mediterranean populations)) in certain Spanish population cohorts (from both Madrid 

(Central region of Spain) and Malaga (Southern Spain)) according to MS risk and 

production of oligoclonal IgM against myelin lipids (OCMB), thus studying more 

homogeneous groups of MS patients. By following this study design and approach, it was 

observed that diverse HLA-DRB1*03:01 carrying haplotypes contribute with different risk 

to MS susceptibility, where, in particular, the ancestral haplotype AH 18.2 (HLA-

A*26:01~C*05:01~B*18:01~ DRB1*03:01~DQA1*02:01~DQB1*05:01) [486][530], 

which is also common in Sardinians, showed the highest risk specifically to those MS 

patients presenting OCMB. Whereas the more common extended HLA-DRB1*03:01 bearing 

haplotype in North European regions, the AH 8.1 (HLA-A*01:01~C*07:01~B*08:01~ 

DRB1*03:01~DQA1*02:01~DQB1*05:01) [486][530] did not show that level of risk.  

-At the same time, many studies (especially in MS patient populations of European descent) 

have thoroughly investigated the role of relevant associated genes (both MHC- and non-

MHC-related) in disease outcome, prognosis and progression in MS. Given the fact that, in 

addition to influencing disease susceptibility, epidemiological and genetic evidence suggests 

that these genetic factors (considering also their respective epistatic interactions as well as 

complex interactions with environmental factors) may affect phenotypic expression of the 

disease [454][650][752]. However, associations of MS genetic risk variants (both HLA and 

non-HLA) and the clinical phenotype are still debatable although many studies have 

approached this aim (e.g. [753]). In this sense, some of these more comprehensive HLA-MS 
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studies conducted in Spanish population have also attempted to elucidate the impact of the 

different predisposing HLA alleles/haplotypes on the clinical phenotype with special interest 

in the disability progression of MS [635][689][737][739][741][742]. Nevertheless, similar 

to other worldwide family-based or unrelated HLA-MS studies (as reviewed in [689][752]) 

and even though employing large numbers of patients with MS (very well characterized in 

relation to all standardized clinical and demographical variables), evaluation of the 

association of the natural history of the disease and HLA genotype has led to controversial 

or even statistically no significant results and, thus, this still remains unclear. Still, it is 

important to consider the possibility that statistical power in these HLA-MS studies series 

may have not be sufficient to detect the reported effects or trends. Especially, if the given 

respective HLA datasets were underpowered to detect modifying genes of moderate effect 

following stratification by clinical categories (despite these may be more homogenous). In 

relation to the latter point, and as an additional issue, conflicting results may also be 

explained due to the different criteria used for selecting, categorizing and subdividing 

patients in each study. Moreover, another critical confounding aspect is the not well-defined 

yet epistatic interactions between HLA alleles/loci (where extended MHC haplotypes could 

be a fundamental unit of genetic regulation/deregulation of immune response and 

pathogenesis in MS) [711] that could help clarifying some of these contradictory and 

inconsistent results found on the correlation between the HLA genotype-phenotype in MS. 

-Previous HLA-MS studies in Spanish population groups have also shed some light 

(although still results have not been very consistent and not with a total consensus between 

different studies [740]) into the identification of certain HLA alleles and respective bearing 

haplotypes with a given putative protective role. Where their respective relatively higher 

frequency distributions (or overrepresentation) observed in healthy control population 
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cohorts could be interpreted as that they are protective factors on their own or because of 

their specific epistatic interactions displayed, exerting a protective effect, with those other 

risk alleles that imply susceptibility to develop the disease [672][709][711][744-746]. Thus, 

in Northern [742] and Northeastern Spain [734][735] haplotype HLA-

DRB1*01:01~DQA1*01:01~DQB1*05:01 as well as its individual embedded alleles (being 

especially significant for HLA-DRB1*01:01) appear to exhibit a protective association with 

MS, all retaining statistical significance after application of respective statistical correction 

methods [742]. In this case, some studies have suggested that HLA-DRB1*01:01 carrying 

haplotypes may be specifically interacting in trans- with HLA-DRB1*15:01 bearing 

haplotypes [674][746][754]. In contrast, other reports have revealed protective properties of 

the HLA-DRB1*01:01 allele on its own [755][756]. Furthermore, in the HLA-MS study on 

Basque population from Northern Spain, HLA-DQB1*03:03 allele also seems to exert a 

protective effect on the MS outcome. Interestingly, relatively common respective HLA-

DQB1*03:03 bearing extended haplotypes such as HLA-

DRB1*09:01~DQA1*03:02~DQB1*03:03 and HLA-

DRB1*07:01~DQA1*02:01~DQB1*03:03 have also been detected for their putative 

protective role in MS susceptibility in other studies [650][664]. Also, another HLA-MS 

case-control study of a Spanish population cohort from Catalonia (Northeastern Spain) 

[709] described that HLA-DRB1*07 allele could exert an epistatic effect along with the 

HLA-DRB1*15 allele in an opposite direction which neutralizes this genotype, although this 

hypothesis still needs to be further corroborated.  

-Finally, in the peculiar, but very small (n=14), Spanish Romani Gypsy MS patient population 

study from the Andalusian region (Southern Spain) [729], HLA-DRB1*15:01, -DQB1*06:02 

and -DQB1*06:08 alleles were the only positive HLA associations with MS. Where HLA-



________________________________________________________Introduction 
 

Page | 314  

   © Gonzalo Montero Martin  

DRB1*15:01~DQB1*06:02 was the most frequent haplotype in this MS group. In this sense, 

this could be illustrating the certain level of admixture in which this Spanish Romani Gypsy 

ethnic group (despite showing a relatively high level of consanguinity (i.e. genetically 

conserved) due to the high degree of endogamy and intramarriage that this people have 

practiced throughout their itinerant history) may have undergone in the Iberian Peninsula with 

local populations of a significant Northern-Central European genetic substrate, since they 

were socially and culturally well integrated [580][581][757][758]. Consequently, this would 

be also supporting the finding from Fernandez et al. MS study [729] that described an 

estimated relevant prevalence of MS in Gypsies in Andalusia (52/100,000) strikingly higher 

than in other previously reported European Romani populations (which were much more 

isolated and persecuted historically and, thus, tentatively experiencing lesser admixture with 

local populations) [759][760], and despite being significantly less than that the one found in 

Caucasians from Spain (75–79/100,000) [729]. On the other hand, HLA-

DRB1*15:02~DQB1*05:03, HLA-DRB1*15:02~DQB1*06:01 or HLA-

DRB1*16:01~DQB1*06:01 haplotypes were not detected in the Gypsy MS group, whereas 

they were present significantly in the Gypsy healthy controls [729]. 
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Spanish 

Population/Region 

 

 

Sample Size  

 Patients 

(MS) / 

Controls 

(HC) 

 

 

 

 

Main HLA-MS  

positive (+) / negative (-)  

associations identified 

(generally for both allele and  

common bearing haplotypes) 

 

 

 

 

 

 

Ref. 

 

Basque (North) 

 

197 / 200 

 

(+) DRB1*15:01, DRB1*04:02, DRB1*13:03 

(-) DRB1*01:01, DQB1*03:03 (with DRB1*07:01 and 

DRB1*09:01) 

 

 

[742] 

 

Malaga  

(Caucasian, South) 

 

149 / 160 

 

(+) DRB1*15:01, DQA1*01:02 and, especially, DQB1*06:02 

 

 

[741] 

 

Madrid (Central) 

 

143 / 143 

 

(+) DRwl5, DQw6, Dw2 

 

 

[731] 

 

Madrid (Central) 

 

135 / 168 

 

(+) HLA-DRB1*15:01 and IL-1Ra allele 2 were significantly 

higher in R/R MS 

 

[732] 

 

Madrid and Malaga  

(Central and South) 

 

1068 / 624 

 

(+) DRB1*03:01-containing AH 18.2 with OCMB 

 

[733] 

 

Calatayud, Aragon 

(North-East) 

 

31 / 895 

 

(+) A19, B5, B41, Cw7, DR15(2) (DRB1*15:01 and 

 DRB5*01:01), DR6, DR13(6), DR10, DQ1 

(-) Cw4, DR1 

 

[734][735] 

 

Asturias (North) 

 

43 / 100 

 

(+) B7, B27, DR2 

(-) B35 

 

[761] 

 

Mediterranean 

Spanish Basin 

 

 

194/0 

 

(+) DR2 (familial MS dataset) 

 

 

[635][737] 

 

Gran Canaria  

(Canary Islands) 

 

53/55 

 

(+) DR15 (DQA1*01:02, DQB1*06:02, DRB1*15:01 and  

DRB5*01:01) and DR4 (DRB1*04:02 and DRB1*04:04) 

 

 

[738] 

 

Asturias (North) 

 

121 / 156 

 

(+) MICB*004 and HLA‐DRB1*15 belonging to the AH 7.1  

(-) DRB1*01 

 

 

[730] 



________________________________________________________Introduction 
 

Page | 316  

   © Gonzalo Montero Martin  

 

 

Catalonia 

(North‐East) 

 

 

380 / 1088 

 

(+) DRB1*15, DRB1*03 

(HLA‐DRB1*01 and ‐DRB1*04 alleles were independently 

associated with a worse prognosis when considering the time 

taken to reach severe disability)  

(-) DRB1*11 

 

 

[689] 

 

 

Catalonia 

(North‐East) 

 

 

 

268 / 1088 

 

(+) HLA‐DRB1*15 allele is associated with oligoclonal 

immunoglobulin IgG bands (OCB) positive patients with MS 

 

[739] 

 

 

Catalonia 

(North‐East) 

 

380 / 1088 

 

(+)  Genotypes DRB1*08/*15, DRB1*03/*03, DRB1*03/*15 

and DRB1*04/*15. The DRB1*01/*04 and the DRB1*15/*15 

genotypes were associated with a worse prognosis when 

considering the time taken to reach severe disability. 

(-) DRB1*03/*07, DRB1*07/*08, DRB1*07/*16, 

DRB1*07/*15  

 

 

[709] 

 

 

 

 

 

 

 

 

Malaga  

(Gypsy, South) 

 

14 / 80 

 

(+) HLA-DRB1*15:01~DQB1*06:02 and  

HLA-DRB1*13~DQB1*06:08 

(-) HLA-DRB1*15:02~DQB1*05:03, HLA-

DRB1*15:02~DQB1*06:01, HLA-DRB1*16:01~DQB1*06:01 

 

 

[729] 

 

Asturias (North) 

 

96 / 123 

 

(+) DR15/DQw6, general 

DR4/DQw8, in primary progressive form 

(-) DRw13/DQw5 

 

 

[736] 

 

Figure I-28. Summary of main HLA-MS Spanish population studies reported in literature. 

 
 

In this context, mechanistically and functionally speaking, still it has not been elucidated how 

all these HLA-associated alleles/haplotypes exactly contribute to MS susceptibility [658][663]. 

Although it is thought that, consistent with the known biology of MS, disease-associated variants 

in HLA-DR/-DQ could primarily influence the structural characteristics of the peptide-binding 

groove and, thus, presumably lead to alterations of the T cell repertoire that enhance the likelihood 
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of an inflammatory demyelinating process [658]. At the same time, it has been observed that the 

implicated HLA-associated alleles/haplotypes are neither necessary nor sufficient to cause or 

predict completely the development of MS, thus other pivotal factors must also contribute to the 

disease [662]. Moreover, despite the remarkable and comprehensive molecular dissection carried 

out at the HLA region in MS (mainly via GWAS with large sample sets (of predominant European 

descent) and controlling the best possible for any population stratification (i.e. differences in 

genetic structure between disease and control groups)), the role of genetic variation at the HLA 

loci has not been completely defined, due, in part, to the aforementioned extensive LD (i.e. a non-

random statistical association of the variants due to physical linkage on the chromosomes) that 

exists among the HLA loci. Where this widespread LD across the entire HLA region hinders the 

identification of the true predisposing factor(s) within the detected disease susceptibility (and 

protective) haplotypes. Thus, any associated marker may not itself be the causal variant but is in 

linkage disequilibrium with the causal variant. To distinguish between these primary and 

secondary risk/protection effects due to LD, several studies have applied a practical approach by 

scrutinizing large number of HLA haplotypes in datasets with different ancestral histories, since 

LD patterns can differ between populations and, thus, enabling to narrow down the putative 

causative regions and improve our understanding of MS pathogenesis [664][668]. Also, as an 

statistical analysis strategy, conditional analyses (i.e. after excluding from the dataset a given 

statistically significant HLA variant found, all remaining variants are re-analyzed for association 

to identify the possible statistically independent effects) can be applied to separate allelic from 

haplotypic association and thus to discern hitchhiking effects of given detected associations 

[401][402][412]. In addition to the extended LD structure, structural complexity and high 

polymorphism of the human MHC; the observed ambiguity and the lack of replication for many 

of the HLA associations previously identified can be also attributed to the limited number of HLA 



________________________________________________________Introduction 
 

Page | 318  

   © Gonzalo Montero Martin  

loci analyzed, the restricted allele resolution level offered by legacy HLA genotyping methods and 

the relatively small sample size of preceding studies. Therefore, subsequent fine-mapping studies 

of the associated genetic HLA region and related studies of the functional relevance of the 

respective specific variants have been and are still needed to further assess initial findings of 

association given mainly by GWAS [662]. Within this group of fine-mapping genetic studies, it is 

important to note that most of the reported HLA risk/protection associations with MS have been 

detected through large-scale association studies based on statistical imputation of HLA alleles 

from SNP data (i.e. where HLA imputation relies on patterns of LD in the tagging SNP flanking 

regions) [658], rather than direct DNA sequencing (e.g. HLA genotyping methods). However, 

accuracy of imputation results is quite limited and it varies with respect to HLA locus, machine-

learning (imputation algorithm) training and testing populations, as well as reliability of 

confidence metrics associated with each prediction. Consequently, mechanistic assessment of 

these associations is certainly difficult or, even, impossible if not all alleles of a HLA locus are 

identified and/or some of them are imputed in error [650]. Moreover, the association testing of 

HLA imputation methods (mostly based on reference 2-field HLA healthy and MS population 

datasets (predominantly of European descent)) is restricted only to variations at the peptide-

binding region of the HLA molecule, omitting examination of non-coding variants that may 

influence HLA expression or interaction with accessory molecules, as well as it is unable to detect 

novel variants, which may be relatively common for a given regional/ethnic group but are not 

considered in these reference HLA population datasets [650]. Furthermore, patterns of LD across 

the HLA region and the strength of these associations can drastically vary not only by locus or 

allele but particularly on specific haplotypes. For instance, due to the extensive structural variation 

found around HLA-DRB1 locus, where the additional HLA-DRB loci (HLA-DRB3, -DRB4 and -

DRB5) are present to varying degrees depending on the specific HLA-DRB1 lineage, imputation 
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accuracy can be also very inadequate [650]. To circumvent these limitations observed in HLA 

imputation methods (and in contrast to limited traditional low-resolution, low-coverage and low-

throughput HLA genotyping methods), very recent large-scale, high-throughput and high-

resolution HLA analysis of MS by NGS has allowed the almost full characterization of coding and 

non-coding sequence variation and it has significantly facilitated the description of the specific 3-

/4-field allelic LD patterns displayed by the different HLA class I and class II loci (i.e. where 

alleles differing only in non-coding variations have differential associations with alleles of 

neighboring loci across all regions of the HLA system), being this very informative for MS fine-

mapping studies [293][294][650][727]. Thus, it is possible to evaluate and to deconstruct more 

accurately, by direct DNA sequencing via NGS-based HLA genotyping data, the plausible 

synergic action established between different HLA alleles/loci to confer susceptibility or 

protection to MS risk [677]. In fact, this fine-mapping of MS susceptibility and protection can be 

more accurately performed when both HLA class I and II loci are examined simultaneously by this 

very high-resolution typing approach. For example, the broadly genotyped allelic groups of HLA-

B*44 and HLA-C*05, which have been described as having protective effects in MS risk and 

progression [714], show distinctive 3-/4-field haplotypic associations. In a NGS HLA European 

American population study [268], HLA alleles -C*05:01:01:01 and -C*05:01:01:02, which differ 

by a single nucleotide substitution in intron 2, are found with distinctively tight associations with 

HLA-B*18:01:01 and -B*44:02:01:01 alleles, respectively. Furthermore, in the respective Creary 

et al. NGS MS study also in European American population [293] analyses of the HLA-DRB1*04 

in the absence of HLA-DRB1*15:01 haplotypes revealed that the HLA-

DQB1*03:01:01:01~DQA1*03:03:01:01~DRB1*04:01:01:01~DRB4*01:03:01:01 haplotype 

was protective, whereas the HLA-DQB1*03:02:01~DQA1*03:01:01~DRB1*04:01:01:01~ 

DRB4*01:03:01:01 haplotype was associated with disease susceptibility. These recent findings 
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underscore the importance of evaluating variants at the highest HLA allele resolution level to 

identify with certainty the primary associations to MS risk/protection. Therefore, larger multi-

ethnic studies using NGS-based HLA genotyping combined with genotyping of a highly dense set 

of SNP markers are planned to further elucidate the HLA contribution to MS pathogenesis. Also, 

results from these future HLA studies will also provide a more comprehensive guidance for 

conducting more detailed functional studies to unravel the causal variants and genes in MS as well 

as to establish more reliable correlations with respect to pivotal clinical phenotypic data such as 

disease severity or progression of MS, treatment regimens (e.g. therapeutic response to interferon-

beta) and prognosis. 

In summary, the lesson from the study of HLA polymorphism over the last several decades has 

been that each incremental technological advance that leads to higher resolution has yielded further 

insights into the cause or mechanisms of disease. With the advent of highest-resolution NGS 

technologies, there is an opportunity to more comprehensively define the role of HLA in health 

and disease populations. The present thesis work characterizes the nature and extent of HLA 

variation in established and well-characterized MS cohorts in Spanish population to evaluate HLA 

genetic associations as well as to provide a significant public data resource with a more complete 

description (for the first time in this population) of HLA variation for all exons, introns, and 

flanking regions in a representative Spanish population healthy control group. 

 

 

 



__________________________________________________________Objectives 
 

Page | 321  

   © Gonzalo Montero Martin  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



__________________________________________________________Objectives 
 

Page | 322  

   © Gonzalo Montero Martin  

 

 

 

 

 

 

 

 

 

 

OBJECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



__________________________________________________________Objectives 
 

Page | 323  

   © Gonzalo Montero Martin  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



__________________________________________________________Objectives 
 

Page | 324  

   © Gonzalo Montero Martin  

On the scope of the present thesis work, the main aim of this study was to explore and evaluate 

the advantages and the data offered by this novel NGS technology for obtaining very high-

resolution (at the 3- to 4-field resolution) with minimum ambiguity of HLA genotypes at large-

scale by a high-throughput system based on the multiplexing capability of NGS technology in 

combination with automated liquid-handling systems for the DNA library preparation protocol. 

Thus, the specific objectives of this thesis work, by which this would be achieved, were: 

I) Characterization of HLA allele and haplotype diversity of all major classical HLA genes 

(HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5) by application of NGS 

of a first representative cohort of the Spanish population that could also serve as a healthy 

control reference group. This NGS-based HLA Spanish population study also includes 

statistical analyses for: estimating HLA allele (by count) and haplotype (via an expectation-

maximization (EM) algorithm) frequencies; quality control (QC) verification of the integrity of 

NGS-based HLA genotype data for this given population cohort by Hardy-Weinberg 

Equilibrium Proportions test; measures of pairwise linkage disequilibrium (LD); measurement 

of selection by Ewens-Watterson homozygosity statistic; and estimation of genetics distances 

(Nei’s DA distance) between the main Spanish subgroups of this cohort from HLA allele 

frequency data by using the neighbor-joining method (NJ) as an exercise (i.e. test case) to study 

relatedness between these subgroups. 

II) Characterization of HLA allele and haplotype diversity of all major classical HLA genes 

(HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5) by application of NGS 

of a respective Spanish cohort of multiple sclerosis (MS) patients (recruited at the Department 

of Neurology, Hospital Clínic, Barcelona, Catalonia, Spain). Thus, a first case-control study 

was carried out to examine HLA-disease associations with MS in these Spanish population 
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cohorts as well as to attempt a fine-mapping of these allele and haplotype associations by full 

gene resolution level via NGS. In addition, a second exercise (i.e. test case) of this case-control 

study was carried out using an alternative healthy control group dataset, in this case specifically 

from the Spanish northeastern region of Catalonia, to evaluate possible differences in the 

findings of HLA-disease association with MS due to plausible regional HLA genetic variation 

within Spanish population. 
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1. STUDY POPULATION, DESIGN AND DATA COLLECTION 

The study of the current thesis work included three main cohorts in order to obtain their 

respective NGS high-resolution HLA genotype datasets. First, as part of the NGS HLA Population 

Genetics Unrelated Project at the 17th International Histocompatibility and Immunogenetics 

Workshop (IHIW) [269][328], a representative Spanish population cohort of healthy unrelated 

individuals randomly selected (collection of de-identified genomic DNA samples and their 

shipping, to the Stanford Blood Center HLA Histocompatibility and Immunogenetics Laboratory 

for testing, were coordinated by the Spanish Working Group in Histocompatibility and Transplant 

Immunology (GETHIT) of the Spanish Society for Immunology (SEI)) was studied and also used 

as a healthy control reference group for carrying out a subsequent case-control study. Second, 

under the auspices (NIH-funded) of both Immunogenetics of Neurological DIseases working 

GrOup (INDIGO) consortium and the HLA and KIR Region Genomics in Immune Mediated 

Diseases Consortium (HLARGC), a Spanish cohort of multiple sclerosis (MS) patients (collection 

of de-identified genomic DNA samples and their shipping, to the Stanford Blood Center HLA 

Histocompatibility and Immunogenetics Laboratory for testing, were coordinated by Dr. Albert 

Saiz and Dr. Pablo Villoslada from the Department of Neurology, Hospital Clínic, Barcelona, 

Catalonia, Spain) was tested for HLA genotyping via NGS as part of the aforementioned case-

control study to evaluate HLA-disease association at the allele and haplotype levels. At the same 

time, in parallel to this first exercise (i.e. test case) of case-control study and in order to evaluate 

possible differences in the findings of HLA-disease association with MS due to plausible regional 

HLA genetic variation within mainland Spain. An alternative healthy control reference group was 

used, which comprised exclusively healthy unrelated individuals randomly selected from the 

Spanish northeastern region of Catalonia (collection of de-identified genomic DNA samples and 

their shipping, to the Stanford Blood Center HLA Histocompatibility and Immunogenetics 
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Laboratory for testing, were coordinated by Dr. José Luis Caro from the Histocompatibility and 

Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Catalonia, Spain).  

The entire study, including these three different main cohorts, followed ethical guidelines of the 

most recent revision of the Declaration of Helsinki (2013) [762]: 

1.1 17th IHIW-Spanish Unrelated Healthy Control Reference Group 

 

This representative Spanish population cohort included N=282 de-identified genomic DNA 

samples from corresponding healthy unrelated individuals randomly selected from Spain in 

collaboration with the Spanish Working Group in Histocompatibility and Transplant 

Immunology (GETHIT) of the Spanish Society for Immunology (SEI). Collection of all de-

identified genomic DNA samples consisted of 11 participating clinical histocompatibility and 

immunogenetics (H&I) laboratories that are located in 10 different regions in Spain (Santander, 

Salamanca, Madrid (which included 2 different participating clinical laboratories), Barcelona, 

Valencia, Murcia, Córdoba, Sevilla, Málaga and Gran Canaria) which provided a set of n=25-

26 de-identified genomic DNA samples per institution (see Figure M-1 and Table M-1). This 

HLA Spanish population study was approved by the Institutional Review Board (IRB) of the 

17th International Histocompatibility and Immunogenetics Workshop (IHIW) as well as by the 

respective local research and ethics committee of each Spanish participating institution. De-

identified genomic DNA samples were tested for HLA genotyping in parallel:  

i) On one hand, all N=282 de-identified genomic DNA samples were genotyped by using a 

commercially available HLA genotyping method (MIA FORA NGS HLA FLEX Typing 11 Kit 

(RUO) 96 Tests (Immucor, Inc. Norcross, GA, USA)) whereby 11 major classical HLA genes 

were typed using a high-resolution (according to version 3.25.0 (released in July 2016) IPD-

IMGT/HLA database, available at the time of this study) long-range PCR amplicon-based next 
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generation sequencing approach and a short-read sequencing platform [187][763-766] at the 

Stanford Blood Center HLA Histocompatibility and Immunogenetics Laboratory. 

 ii) On the other hand, the 11 Spanish participating clinical laboratories performed HLA 

genotyping tests (with a variable range of allele resolution level and number of HLA genes 

tested) of their respective sets of n=25-26 de-identified genomic DNA samples by using other 

HLA molecular typing techniques (either using an in-house NGS platform or commercial/in-

house SSO, SSP or SBT technologies) (see Table M-1).  

The purpose of this dual and in parallel HLA genotype testing was to evaluate, at the end, the 

level of concordance (and, thus, the validity of the HLA genotyping results as well as discarding 

possible errors associated to sample-switching, allele dropout (for the HLA loci tested 

respectively) and contamination) between the HLA genotyping results obtained by these other 

high-/intermediate-resolution methods performed at the different participating Spanish HLA 

laboratory groups and the NGS-based high-resolution HLA genotyping results obtained from 

this replicated entire Spanish population cohort at the Stanford Blood Center HLA 

Histocompatibility and Immunogenetics Laboratory (see RESULTS section). 

For posterior statistical analysis, particularly relative to estimation of genetic distances and 

construction of dendograms, several Spanish geographically related sub-groups of samples 

were considered in the scope of this study: 

-Northern-Central Spain sub-group: including samples from Santander, Salamanca and Madrid. 

-Southern-Spain sub-group: samples from Málaga, Córdoba, Sevilla and Gran Canaria. 

-Eastern-Spain sub-group: samples from Barcelona, Valencia and Murcia. 
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Figure M-1. Map of the geographical location of Spain (Spanish territory colored in light yellow, where 

Spanish autonomous regions are delimited by black borders and, in turn, respective provinces are delimited by 

grey borders) which shows the location of the 11 participating Spanish local clinical laboratories (coded from 1 

to 11) in the collection of samples (n=282 healthy unrelated individuals) for this study. In detail: 

[1] Immunology, Hospital Universitario Marqués de Valdecilla in Santander (n=25 samples);  

[2] Molecular Biology-Hematology, Hospital Clínico Universitario, in Salamanca (n=26 samples);  

[3] Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro in Madrid 

(n=25 samples);  

[4] Histocompatibility, Centro de Transfusión de la Comunidad de Madrid in Madrid (n=26 samples);  

[5] Histocompatibility and Immunogenetics, Banc de Sang i Teixits in Barcelona (n=26 samples);  

[6] Histocompatibility, Centro de Transfusión de la Comunidad Valenciana in Valencia (n=26 samples);  

[7] Immunology, Hospital Clínico Universitario Virgen de la Arrixaca in Murcia (n=26 samples);  

[8] Immunology, Hospital Universitario Reina Sofía in Córdoba (n=26 samples);  

[9] Immunology, Hospital Universitario Virgen del Rocío in Sevilla (n=25 samples);  

[10] Histocompatibility, Centro de Transfusión de Málaga in Málaga (n=26 samples);  

[11] Immunology, Hospital Universitario de Gran Canaria Dr Negrín in Las Palmas de Gran Canaria (n=25 

samples).  

*(Maps of this figure are a modified version from: 

 https://en.wikipedia.org/wiki/2020_FIBA_Intercontinental_Cup#/media/File:España-Canarias-loc.svg) 

https://en.wikipedia.org/wiki/2020_FIBA_Intercontinental_Cup#/media/File:España-Canarias-loc.svg
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Table M-1. HLA molecular typing techniques used by 11 Spanish local participating clinical and histocompatiblity 

laboratory institutions (de-identified and coded here A through K) for testing in parallel the respective institution’s 

sample set out of this entire 17th-IHIW Spanish population cohort (n=282 subjects). HLA genotyping results (data 

not shown) generated present a variable range of allele resolution level and number of HLA genes tested (see 

RESULTS section). 

 

 

HLA molecular typing technique 

 

 

Spanish local participating laboratories  

In-house Next Generation Sequencing (NGS)1  E and F  

Sequence-Specific Oligonucleotide (SSO)2,3 A, B, C, D, G, H, I, J and K 

Sequence-Specific Primer (SSP)3 C  

Sequence Based Typing (SBT)2,3 C and D  

 

Notes: 

1. In-house NGS-based HLA typing method used by laboratories “E” and “F”. 

2. Laboratory “D” used a commercially avaiable SSO method for HLA typing in 7 samples (out of 26) and rest 19 

samples (out of 26) were HLA typed by SBT using local reagents for HLA-A, -B, -C and -DRB1 loci (In-house SBT 

method). 

3. Laboratory “C” used a commercially avaiable SSO method for HLA typing in 7 samples (out of 26) and rest 19 

samples (out of 26) were HLA typed by either commercially avaiable SSP method or by SBT using local reagents 

for HLA-A, -B, -C and -DRB1 loci (In-house SBT method). 

 

1.2 Spanish Multiple Sclerosis Cohort 

 

De-identified genomic DNA samples were collected from a Spanish cohort of N=238 multiple 

sclerosis (MS) patients who were recruited at the Department of Neurology, Hospital Clínic, 

Barcelona, Catalonia, Spain. This group of N=238 MS patients [age average=32.5 years; and in 

turn, phenotypically divided in MS patients male gender sub-group (age average=32.6; 

n=67(28%)), and MS patients female gender sub-group (age average=32.4; n=171(72%))] was, 

in turn, clinically divided in three sub-groups: n=216 relapsing-remitting (RR); n=19 secondary 

progressive (SP); and n=3 primary progressive (PP). Nevertheless, for the purpose of this case-

control study of the present thesis work, and the respective statistical analyses that were carried 

out, the entire MS patients group was the only one disease group considered, especially since 



________________________________________________Materials and Methods 
 

Page | 335  

   © Gonzalo Montero Martin  

the MS RR sub-group and the MS female gender sub-group were very predominant in 

comparison to the other respective MS clinical/phenotype sub-groups. In addition, there was 

not phenotypic data (e.g. age or gender) available from healthy control reference groups used 

in the present study. All MS subjects met established McDonald diagnostic criteria [767] and 

were ethnically matched (defined as European-Spanish-Mediterranean (Caucasoid) ancestry) in 

regards to the 17th IHIW-Spanish Unrelated Healthy Control Group as well as the Northeast 

Spain (Catalan) Healthy Control Reference Group. This study was approved by the Institutional 

Review Board (IRB) (Research and Ethics Committee) of the Hospital Clínic, Barcelona, Spain. 

All genomic DNA samples from this Spanish MS cohort were tested using MIA FORA™ NGS 

HLA FLEX Typing 11 Kit (RUO) 96 Tests (Immucor, Inc. Norcross, GA, USA)) for 

characterizing the full-length and/or the most possible extended sequence of HLA-A, -B, -C, -

DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci, and including respective HLA 

genotyping software analysis package (MIA FORA™ NGS FLEX HLA Genotyping Software 

version 3.0, via VNC viewer, with reference to IPD‐IMGT/HLA database release 3.25.0. 

available at the time of the current study (Immucor, Inc. Norcross, GA, USA)). 

 

1.3 Northeast Spain (Catalan) Healthy Control Reference Group 

An additional HLA genotype dataset specifically representative of the Catalan population 

cohort from Northeast Spain (region of Catalonia) included N=196 de-identified healthy 

unrelated individuals randomly selected and originally recruited at the Histocompatibility and 

Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Catalonia, Spain. This 

Northeast Spain (Catalan) healthy control reference group comprised HLA genotyping data 

only available in this case for: HLA-A, -B, -C, -DPB1, -DQB1, -DRB1 and -DRB3/4/5 loci, 

established at the 2-field allele resolution level and according to version 3.35.0 (released in 

January 2019) IPD-IMGT/HLA database. All subjects that were part of this Catalan heathy 
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control reference group ethnically matched (as previously indicated) the respective MS cohort 

of this study and all were individuals exclusively from the region of Catalonia, distributed in 

the respective Catalan provinces as follows (shown in percentages): 66% from Barcelona, 23% 

from Tarragona, 5% from Lleida and 6% from Girona (see Figure M-2). This Northeast Spain 

(Catalan) healthy control reference group served to verify the findings of HLA-disease 

associations from this initial case-control study (17th IHIW-Spanish Unrelated Healthy Control 

Reference Group versus Spanish Multiple Sclerosis Cohort) and to evaluate the effect of 

plausible regional HLA genetic variation within mainland Spain. This study was approved by 

the Institutional Review Board (IRB) (Research and Ethics Committees) of both the Hospital 

Clínic, Barcelona, Catalonia, Spain and the Histocompatibility and Immunogenetics 

Laboratory, Blood and Tissue Bank, Barcelona, Catalonia, Spain. 

The corresponding generation of genotyping results of this HLA genotype dataset, as a healthy 

control reference group from Northeast Spain (region of Catalonia), was carried out originally 

at the Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, 

Catalonia, Spain. Briefly: 

Blood samples (4 mL) were collected and sent to the Histocompatibility and Immunogenetics 

Laboratory, Blood and Tissue Bank (Banc de Sang e Teixits), Barcelona, Catalonia, Spain. The 

QIAsymphony DNA kit (QIAGEN, Hilden, Germany) was used for genomic DNA 

extraction following the instructions provided by the manufacturer. Molecular HLA typing was 

performed using an in-house next-generation sequencing (NGS) technique in combination with 

the commercially available NGSgo kit (GenDx, Utrecht, Netherlands). All samples were 

genotyped for HLA loci, namely HLA-A, -B, -C, -DPB1, -DQB1, -DRB1 and -DRB3/4/5, at a 

variable range of allele resolution level (between 2- to 4-field) according to version 3.35.0 

(released in January 2019) IPD-IMGT/HLA database. The amplification of HLA genes was 



________________________________________________Materials and Methods 
 

Page | 337  

   © Gonzalo Montero Martin  

performed using an in-house long-range PCR protocol in a single-tube tube per sample. In this 

NGS in-house approach, the whole gene sequence is amplified for the HLA class I loci: HLA-

A, -B and -C. Whereas, since HLA class II genes have extremely large introns, only exons 2 and 

3 of HLA-DPB1, -DQB1, -DRB1 and -DRB3/4/5 were respectively amplified by multiplex 

PCR. The HLA amplicons and size were verified on a 1 % agarose gel. Library preparation was 

performed by enzymatic fragmentation of PCR amplicons and double indexing using the 

NGSgo kit (GenDx, Utrecht, Netherlands) according to the manufacturer’s instructions. The 

indexed libraries were pooled, denaturized, and diluted to a final concentration of 4 nM. The 

pooled DNA library was sequenced on the MiSeq system (Illumina, San Diego, CA, 

USA). Results were analyzed with NGSEngine version 2.13.0 (GenDx, Utrecht, 

Netherlands) according to the manufacturer’s recommendations. 
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Figure M-2. Map of the geographical location of the region of Catalonia (Spain), which shows the location of the 4 

participating sub-regions (or provinces) in the collection of HLA genotyping data (n=196 healthy unrelated 

individuals) for this study. In detail, all subjects that were part of this Catalan heathy control reference group were 

individuals exclusively from the region of Catalonia, distributed in the respective Catalan provinces as follows (shown 

in percentages): 66% from Barcelona (Blue colored), 23% from Tarragona (Green colored), 5% from Lleida (Orange 

colored) and 6% from Girona (Pink colored). Respective images are obtained and adapted from:  

http://www.orangesmile.com/travelguide/catalonia/high-resolution-maps.htm 

https://www.bbc.com/news/world-europe-20345071 

 

2. HLA CLASS I AND II NGS GENOTYPING BY A LONG-RANGE SHOT-GUN BASED 

SEQUENCING STRATEGY USING A SHORT-READ SEQUENCING PLATFORM 

At the time of the preparation of this thesis work (between years 2014-2019) and when this 

NGS HLA Spanish health and disease population cohorts study was carried out at the Stanford 

Blood Center HLA Histocompatibility and Immunogenetics Laboratory for testing both 17th 

IHIW-Spanish Unrelated Healthy Control Reference Group and the Spanish Multiple Sclerosis 

Cohort. We considered, as one of the most suitable, advanced and innovative NGS-based HLA 

genotyping protocol to be used, the following:  

http://www.orangesmile.com/travelguide/catalonia/high-resolution-maps.htm
https://www.bbc.com/news/world-europe-20345071
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i) A kit that was commercially available and clinically validated and implemented (MIA 

FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 96 Tests (Immucor, Inc. Norcross, GA, 

USA)) for characterizing the full-length and/or spanning to the most possible extended sequence 

of HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci. This method 

also includes respective HLA genotyping software analysis package: MIA FORA™ NGS 

FLEX HLA Genotyping Software version 3.0, via VNC viewer, with reference to IPD‐

IMGT/HLA database release 3.25.0. available at the time of the current study (Immucor, Inc. 

Norcross, GA, USA)) [187][763-766]. 

ii) Whose manufacturer’s protocol was already semi-automated for liquid-handling processes, 

thus being very compatible for large-scale studies: 

-Biomek NXP Automated Workstation, Span-8 and Gripper (A31840) (Beckman Coulter, Brea, 

CA, USA) for pre-PCR procedures related to initial long-range PCR reactions set-up. This 

automation system allows to prepare the respective nine PCR master mix reaction plates from one 

DNA plate of 96 samples (see more details below on 2.2 Long-range PCR of HLA Genes). 

-Biomek FXP Dual Arm System, Multichannel Pipettor and Span-8 Pipettors Workstation 

(A31844) (Beckman Coulter, Brea, CA, USA) for post-PCR procedures related to DNA library 

construction set-up. This automation system allows to run automated protocols of the 2.3 

Quantification, Balancing and Pooling of PCR products steps per 96 sample DNA set. Also, 

this automation system allows to run automated protocols of the 2.4 Construction of DNA 

Sequencing Library steps simultaneously for two different 96 sample DNA libraries (see more 

details below on 2.4 Construction of DNA Sequencing Library). 

iii) And, most importantly, a protocol that combined the advantage of long-range PCR 

amplification (thus, defining this targeting strategy for maximum coverage of HLA genes) and 
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the power of high-throughput (high multiplexing capacity) and paired-end mode in a short-read 

sequencing platform (using both MiniSeq and 500/550 NextSeq sequencers (Illumina, San 

Diego, CA, USA)) with the maximum possible depth of sequencing coverage and minimum 

possible base-calling error rate (Q30) [152][184]. Thus, the linkage across ~400 bases from 

paired-end reads, together with polymorphic sites in intron regions provide important phasing 

information that is very useful to resolve combination ambiguities. As previously mentioned, 

this type of NGS-based HLA genotyping method substantially enhances the allele resolution 

and dramatically improves the combination resolution in comparison to the conventional SBT 

method [35][76]. 

iv) Moreover, other research groups and clinical institutions have also successfully applied this 

same commercial HLA genotyping protocol and software analysis for large-scale HLA clinical 

and research population studies (see the following articles in the BIBLIOGRAPHY section): 

[267][268][272-274][284][286][291][293][300][308][328][356][433][473][474][476-

478][482]. 

Therefore, MIA FORA™ NGS FLEX HLA typing protocol (see Figure M-3 and Figure M-4) 

provides the full-length and/or extended HLA sequence and genotyping results of these clinically 

relevant eleven HLA loci and respective phasing information per gen to achieve high-resolution 

(3- up to the 4-field) HLA typing with minimum ambiguity (since the extensive coverage across 

HLA loci minimized the possibility for ambiguous genotypes). Furthermore, using this particular 

MIA FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 96 Tests (Immucor, Inc. Norcross, GA, 

USA), genomic DNA samples are tested here in sets of: 94 samples of interest for the given study 

plus NTC (negative control sample) and PTC (positive control sample) per run. 
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Figure M-3. Scheme of MIA FORA™ NGS HLA FLEX Genotyping Workflow. Courtesy: 

https://www.immucor.com/en-us/Products/Pages/MIA-FORA-NGS.aspx. 

 

 

https://www.immucor.com/en-us/Products/Pages/MIA-FORA-NGS.aspx
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Figure M-4. Scheme of MIA FORA™ NGS HLA FLEX Genotyping Instrument Workflow (Top 

Image) and scheme of molecular basis of this NGS-based protocol (Bottom Image). Respective images 

are obtained and adapted from: 

https://www.thermofisher.com/order/catalog/product/4375786#/4375786 

https://www.beckman.com/liquid-handlers/biomek-nxp 

https://www.beckman.com/liquid-handlers/biomek-fxp 

https://www.illumina.com/systems/sequencing-platforms/miniseq.html 

https://sagescience.com/products/pippin-prep/ 

https://www.illumina.com/systems/sequencing-platforms/nextseq.html 

http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-

00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf 

[531] 

https://www.gendx.com/products/ngsgo-illumina 

 

On the next pages, it is described a summarized version of this NGS-based HLA genotyping 

protocol and the subsequent HLA allele base-calling and genotyping software analysis showing 

https://www.thermofisher.com/order/catalog/product/4375786#/4375786
https://www.beckman.com/liquid-handlers/biomek-nxp
https://www.beckman.com/liquid-handlers/biomek-fxp
https://www.illumina.com/systems/sequencing-platforms/miniseq.html
https://sagescience.com/products/pippin-prep/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html
http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf
http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf
https://www.gendx.com/products/ngsgo-illumina
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the main information and features of each step as it is fully explained in corresponding descriptions 

of patents [763][764], publications [187], commercial guides and protocols [765][766] (available 

via online), and according to International Histocompatibility and Immunogenetics Clinical and 

Research Laboratory Standards and Policies regulated by accreditation organizations (e.g. ASHI 

and EFI) [768][769]: 

2.1 Specimen Collection and Preparation 

 Human genomic double-stranded DNA (hg-dsDNA) was purified from whole blood and/or buffy 

coats at the respective participating Spanish clinical institutions (for both healthy control and MS 

disease cohorts), using any validated method (e.g. QIAamp DNA Blood Mini Kit (QIAGEN, 

Hilden, Germany)) that met the criteria shown here below. As a note, DNA extracted from blood 

and preserved in EDTA is compatible with this NGS-based HLA typing assay, whereas DNA 

extracted from blood preserved in heparin cannot be used in this assay. The specific criteria is the 

following: 

• The isolated DNA should be in 10 mM Tris-HCl, pH 8.0-9.0, or in nuclease free water. If a 

chelating agent such as EDTA is present, the final concentration of the chelating agent should 

not exceed 0.5 mM. 

• Final DNA concentration should be from 5 to 15 ng/μL in a volume of 115 uL per sample, 

located separately on each well of the DNA 96-well plate. 

• Absorbance measurements of the DNA sample at 260 and 280 nm should give a ratio of 1.65 

to 2.0. 

• DNA can be used immediately after isolation or stored at –20ºC for up to one year. Repeated 

freeze/thawing should be avoided since this can result in DNA degradation. 
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• At least 50% of genomic DNA samples must have fragments greater than 10 kb for successful 

long-range PCR amplification. 

DNA 96-well plates are manually prepared, including 94 samples to be tested at a time and two 

controls samples: negative/blank control (NTC; made with nuclease free water on A01 well) 

and positive control (PTC; located in H12 well and using a DNA reference sample whose HLA 

genotype is already well- known and -documented). Thus, 94 samples are tested per NGS-based 

HLA genotyping run using this MIA FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 96 Tests 

(Immucor, Inc. Norcross, GA, USA). 

2.2 Long-range PCR of HLA Genes 

The first stage of the protocol is the long-range PCR amplification for targeting the HLA genes 

of interest, which takes place in a Pre-PCR room to avoid any contamination (e.g. by post-PCR 

products found in the environment) according to International Histocompatibility and 

Immunogenetics Clinical and Research Laboratory Standards and Policies regulated by 

accreditation organizations (e.g. ASHI and EFI) [768][769]. All samples were genotyped for 11 

HLA loci, namely HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and 

-DRB5. Here, each HLA gene is amplified as one large segment in its entirety, with the 

exception of HLA-DRB loci (HLA-DRB1 and -DRB3/4/5 genes), due to their large size, which 

are co-amplified in two separated PCR amplification reactions generating one PCR product in 

each case denominated, respectively: DRB-S (or “DRB1”; covering exon 1 and adjacent regions 

at both ends); and DRB-L (or “DRB2”; covering segment from the end of intron 1 to the very 

first bases of 3’UTR). Thus, nine different all-in-one PCR master mixes (PCR MMs; containing 

a cocktail of primers unique for each gene, dNTPs, PCR buffers, and DNA polymerase enzyme) 

are used, denominated: HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRBS and -DRBL. 
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In detail, the specific PCR amplification coverage (i.e. amplicon extension) in each case is (see 

also scheme on Figure M-5): 

• HLA class I (HLA-A, -B and -C loci): for each gen, respective single amplicon encompasses 

from more than 200 base pairs (bp) of the 5’UTR to 100-1100 base pairs (bp) of the 3’UTR, 

including all exons and introns. 

• HLA class II (in each tested locus): 

-HLA-DPA1: amplicon includes all exons and introns, at least 45 bp of the 5’ UTR and 25-

190 bp of the 3′ UTR. 

-HLA-DPB1: coverage includes only key regions: exons 2–4 and introns 2–3. 

-HLA-DQA1: this coverage includes all exons and introns, at least 45 bp of the 5’ UTR and 

25-190 bp of the 3′ UTR. 

-HLA-DQB1: amplicon includes key regions: exons 1–5 and introns 1–4. 

-HLA-DRB1: this coverage includes all exons 1-6, introns 2–5, at least 440 bp of the 5′ UTR, 

12 bp of the 3′ UTR, 275 bp of intron 1 adjacent to exon 1, and 210 bp of intron 1 adjacent 

to exon 2. 

-HLA-DRB3 and HLA-DRB4: respective amplicon includes all exons, introns 2–5, at least 

440 bp of the 5′ UTR, 12 bp of the 3′ UTR, 275 bp of intron 1 adjacent to exon 1, and 210 

bp of intron 1 adjacent to exon 2. 

-HLA-DRB5: this coverage includes exons 2–6, introns 2–5, and 260 bp of intron 1 adjacent 

to exon 2. 
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Figure M-5. Coverage of HLA loci using MIA FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 96 

Tests (Immucor, Inc. Norcross, GA, USA). Each following segment represents a different targeted HLA 

locus/loci. Purple boxes at each end represent 5’ and 3’ untranslated regions (UTR); orange boxes 

represent exons and black thin lines represent introns in respective HLA class I and class II loci; red 

arrows represent positions of primers used for long-range PCR. HLA-DRB1, 3, 4, 5 loci are amplified 

together in two separate reactions (DRB-S and DRB-L). Courtesy: https://www.immucor.com/en-

us/Products/Pages/MIA-FORA-NGS.aspx. 

 

Therefore, nine individual long-range PCR amplifications are performed per sample. Each PCR 

amplification (total volume = 25 uL) contains 10 uL (containing 50-150 ng) of respective 

genomic dsDNA sample and 15 uL of respective solution of PCR master mix (PCR MM) (HLA-

A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRBS and -DRBL). Thus, for each run of 94 

samples plus NTC and PTC to be tested, there is an automated preparation of these nine different 

96-well PCR plates (one plate per PCR master mix (PCR MM)) according to the manufacturer’s 

semi-automated protocol [765].  

PCR amplification reactions are performed using Veriti Thermal Cyclers (Veriti™ 96-Well 

Thermal Cycler, Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA). The 

https://www.immucor.com/en-us/Products/Pages/MIA-FORA-NGS.aspx
https://www.immucor.com/en-us/Products/Pages/MIA-FORA-NGS.aspx
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thermal cycling program (total duration t~6h) parameters and conditions for long-range PCR 

reactions (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRBS and -DRBL) are the same 

for all eleven HLA genes tested, as follows (see Table M-2): 

 

Table M-2. Thermal cycling program (total duration t~6h) parameters and conditions for long-range PCR 

amplification reactions (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRBS and -DRBL) for targeting the 

HLA genes (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and -DRB5) of interest. 

Courtesy: http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

Upon completion of the long-range PCR amplification reactions, a gel electrophoresis (0.8-

1.0% w/v agarose gel; using Ethidium Bromide or GelRed as the fluorescent nucleic acid gel 

stains; 80-150 V until the dye line is approximately 75-80% of the way down the gel; a typical 

run time is about 1-1.5 hours, depending on the gel concentration) can be performed for the 

analysis of amplification products by size (see Figure M-6 as an example). 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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Figure M-6. Example of gel electrophoresis showing robust and mostly specific amplification of targeted HLA 

genes (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and -DRB5) of interest. Observed 

bands of PCR products [“A”(3.23 kb; HLA-A locus), “B”(4.12 kb; HLA-B locus), “C”(4.37 kb; HLA-C locus), 

“DPA”(4.98 kb; HLA-DPA1 locus), “DPB1”(5.24 kb; HLA-DPB1 locus), “DQA”(5.83 kb; HLA-DQA1 locus), 

“DQB”(6.31 kb; HLA-DQB1 locus), “DRB1” or “DRB-S”(co-amplicons of 0.94 kb; HLA-DRB1/3/4 loci) and 

“DRB2” or “DRB-L”(co-amplicons of 5.56 kb; HLA-DRB1/3/4/5 loci)] that correspond to the respective nine 

different long-range PCR amplification reactions according to the nine different all-in-one PCR master mixes 

(MMs) used. Indicated between parentheses are the average amplicon/co-amplicons lengths (in kilobases (kb)) and 

respective targeted HLA loci. Courtesy: http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

2.3 Quantification, Balancing and Pooling of PCR products  

After long-range PCR amplification step is performed (and from now on in the protocol, 

working only at the Post-PCR room designated areas), concentration of each HLA gene PCR 

product (corresponding to the different targeted HLA genes per sample) is quantified and then, 

PCR products per sample are balanced and equimolarly (equimolar amounts of the amplified 

gene products (amplicons)) pooled to ensure equal representation of each gene per tested 

sample. Since PCR yield is typically variable among different reactions, this set of steps allow 

to balance the final amounts of certain targeted genes with a higher PCR yield and those others 

with a lower PCR yield. Thus, importantly, this contributes to have, ultimately, a sufficiently 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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even generation of sequencing reads per HLA gen/allele per tested sample (i.e. obtaining a high 

evenness of coverage), considering also a high-throughput setting in which the simultaneous 

testing of 94 samples plus NTC and PTC per run is also evenly optimized (since it is maximized 

the number of PCR products that can be multiplexed per analytical sample in the final deep-

sequencing process). Briefly, in detail: 

• Quantification step: concentration of each PCR product is quantified by performing the 

PicoGreen® dsDNA quantification assay (Invitrogen/Thermo Fisher Scientific, Waltham, 

MA, USA) according to the manufacturer’s semi-automated protocol and following 

respective particular MIA FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 96 Tests 

(Immucor, Inc. Norcross, GA, USA) protocol guidelines. A Victor X3 plate reader (Perkin 

Elmer, Waltham, MA, USA) is used to indirectly measure dsDNA concentration of PCR 

products (using only a minimal aliquot of the total original volume) per sample by obtaining 

relative fluorescent dye intensity values. These fluorescent dye intensity values shown in 

Victor X3 output files are then firstly converted into dsDNA concentration values within the 

MIA FORA™ NGS software system via the so-called Sirona Quant tool. In turn, based on 

this PCR products’ length and calculated dsDNA concentration data, on the number of 

targeted HLA genes in each PCR reaction, on the number of samples to be tested and on 

balancing default values (recommended pmol value is 0.0035), this Sirona Quant tool 

generates the final instructions file for the Biomek FXP Dual Arm System, Multichannel 

Pipettor and Span-8 Pipettors Workstation (A31844) (Beckman Coulter, Brea, CA, USA) to 

be used for balancing and pooling steps. 

• Balancing and Pooling steps: via an automated program, PCR products are balanced (i.e. all 

nine HLA PCR products per sample are made equimolar either using pre-dilutions (with 

10mM Tris-HCl, pH 8.0 solution) only for certain cases; and/or pooling certain specific 
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volumes per HLA gen; and also by defining a final common total volume of pooling (final 

volume per sample = 55 uL)) and pooled in optimal equimolar amounts. Pooled volumes of 

each sample (where each pooled volume per sample includes the respective equimolar mixture 

of the nine amplicons) are then purified (also termed as bead clean-up step) using Agencourt 

AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA) via respective 

manufacturer’s semi-automated protocol. In which always, after incubating with magnetic 

beads, there are several washes with newly prepared 80% EtOH and a final elution using 

10mM Tris-HCl, pH 8.0 solution. Thus, starting from nine original PCR plates, after the 

balancing and pooling steps there is a single 96-well plate (one well per sample’s balanced 

and pooled PCR products) prepared and ready for the next set of steps: construction of DNA 

sequencing library. 

2.4 Construction of DNA Sequencing Library 

In preparation for the final stage of sequencing for the targeted (via PCR amplification) HLA genes 

of interest per tested sample, the construction of DNA sequencing library consists on the following 

main steps: 

• Equimolar mixtures of balanced and pooled HLA gene PCR products per sample are, 

subsequently (although this occurs during the same thermal setup reaction and cycling program), 

enzymatically fragmented and end-repaired (including blunt-ending and dA-tailing steps). Then, 

each processed sample’s PCR products are purified. 

• Purified and processed PCR products belonging to each sample solution are enzymatically 

ligated with unique index-adapters that include the so-called barcodes. Each barcode consists on 

a target specific sequence identifier, thus having one barcode per sample.  Later in this protocol, 

at the end of the sequencing stage and during the posterior primary analysis of the raw 
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sequencing data (including steps such as demultiplexing and adapter and quality trimming of 

reads) these different barcodes enable to unequivocally identify and assign the source of the 

given genomic DNA sample linked to a particular barcode. 

• After the index-adapters have been ligated, the 96 (94 testing samples plus NTC and PTC) 

samples are consolidated into one tube, designated as the pre-final sequencing library, whose all 

initial fragments still need to be (prior to sequencing): 

-Size-selected (since a length of ~400-600 bp is the most suitable DNA library fragment size 

for lllumina sequencer systems (Illumina, Inc., San Diego, CA, USA)). 

 -And, then, specifically PCR amplified for selectively enriching those size-selected DNA 

library fragments that are also ligated to Illumina’s flow cell-specific sequencer adapters 

(Illumina, San Diego, CA, USA). Thus, P5 and P7 adapter sequences, which are needed for 

binding to the Illumina flow cell, are incorporated to size-selected DNA library fragments in 

this step. 

In detail: 

2.4.1 Primary DNA Library Preparation  

Pooled PCR products are enzymatically cleaved into fragments and, subsequently during the 

same thermal setup reaction and cycling program, end-repaired (including blunt-ending of 

both ends and A-tailing at the 3’-end so that, later, the respective index-adapter that has a 5’-

T-overhang can be ligated). Thus, upon manual preparation of Primary Buffer Mix (Primary 

Enzyme Mix + Primary Buffer Mix) and following respective manufacturer’s semi-automated 

protocol, 11 uL of Primary Buffer Mix are combined with only 14 uL (out of the original 55 

uL solution) of each balanced and pooled DNA PCR HLA gene products sample respectively 

in a new 96-well plate denominated “Primary Prep Plate”. Then, using a Veriti Thermal 
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Cycler (Veriti™ 96-Well Thermal Cycler, Applied Biosystems/Thermo Fisher Scientific, 

Waltham, MA, USA), the thermal cycling program (total duration t~40min) parameters and 

conditions for Primary DNA Library Preparation is as follows (see Table M-3): 

 

Table M-3. Thermal cycling program (total duration t~40min) parameters and conditions for Primary DNA 

Library Preparation reaction for enzymatic fragmentation and end-repaired (including blunt-ending and 

dA-tailing steps) of balanced and pooled HLA gene PCR products per sample. Courtesy: 
http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

At the conclusion of this thermal reaction, there is an immediate Post-Primary Preparation 

Bead Clean-Up step (as previously described) using Agencourt AMPure XP magnetic beads 

(Beckman Coulter, Brea, CA, USA) via respective manufacturer’s semi-automated protocol 

(final eluted volume per sample = 23 uL). After that, user directly proceeds to the index-

adapter ligation step. 

2.4.2 Index-Adapter Ligation  

Index-adapters include unique barcode sequences that are used to identify the different samples 

during posterior sequence analysis. The MIA FORA™ NGS HLA FLEX Typing 11 Kit (RUO) 

96 Tests (Immucor, Inc. Norcross, GA, USA) contains one index-adapter plate with 96 barcodes 

(2.5 uM original concentration of barcode per well in a volume of 10 uL). The index-adapters 

(which present a 5’-T-overhang) are ligated to the A-tailed 3’-end samples’ fragments. At this 

step, the user must record the sample layout including the sample name and the corresponding 

position of the index-adapter in the plate (as well as specific the Index-Adapter 96 barcoding 

Plate # used). The sample layout is used later, after sequencing, for data analysis by the MIA 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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FORA™ NGS software system. Therefore, upon manual preparation of Index-Adapter Ligation 

Master Mix (Ligase Enzyme Solution + Ligase Buffer Solution) and following respective 

manufacturer’s semi-automated protocol: 26 uL of Index-Adapter Ligation Master Mix are 

combined with the original 23 uL of each balanced_pooled_cleaned_fragmented_end-

repaired(A-tailed)_cleaned DNA PCR HLA gene products sample plus 8 uL of the respective 

index-adapter respectively, defining thus the “Primary Prep-Index-Adapter Ligated Plate” (final 

volume per sample = 57 uL). Then, using a Veriti Thermal Cycler (Veriti™ 96-Well Thermal 

Cycler, Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA), the thermal cycling 

program (total duration t~40min) parameters and conditions for Index-Adapter Ligation is as 

follows (see Table M-4): 

 

Table M-4. Thermal cycling program (total duration t~40min) parameters and conditions for Index-

Adapter Ligation reaction. Courtesy: http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

2.4.3 Consolidation of Adapter Ligated Products  

Adapter-ligated (balanced_pooled_cleaned_fragmented_end-repaired(A-tailed)_cleaned DNA 

PCR HLA gene products sample) samples are pooled (adding 7 uL per adapter-ligated sample, 

making final consolidated volume of 96 samples up to = 672 uL) into a single microcentrifuge 

tube. Then, consolidated 96 samples solution is cleaned with Agencourt AMPure XP magnetic 

beads (Beckman Coulter, Brea, CA, USA) via respective manufacturer’s semi-automated 

protocol. Thus, after this Post-Adapter Ligation Bead Clean-Up step, final eluted consolidated 

volume of 96 samples = 60 uL. 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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2.4.4 DNA Library Size Selection  

The consolidated and cleaned 96 adapter-ligated (previously 

balanced_pooled_cleaned_fragmented_end-repaired(A-tailed)_cleaned DNA PCR HLA 

gene products sample) samples (from now also referred as DNA library) are size selected 

within the 500–900 bp range using a 1.5% w/v agarose gel cassette (DF Marker R2) on a 

PippinPrep instrument (Sage Science, Beverly, MA, USA), in a run time of size-selection of 

t~45min, following respective manufacturer’s manual protocol (see Figure M-7). Thus, this 

step allows the collection (in which final eluted volume of consolidated_cleaned_size-selected 

96 adapter-ligated samples DNA library = 40 uL) of specific and uniformed DNA library 

fragments’ range size and, consequently, optimizing the posterior sequencing step in the 

Illumina sequencer systems (Illumina, Inc., San Diego, CA, USA).  

 

Figure M-7. Schematic of PippinPrep Gel Cassette Instrument. Courtesy: 

http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

Then, size-selected DNA library concentration is estimated and its fragment distribution is 

assessed using the Agilent DNA 1000 kit (5067-1505) or the Agilent DNA High Sensitivity 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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kit on the 4200 TapeStation system and the D1000 ScreenTape assay (Agilent 

Technologies, Santa Clara, CA, USA) following respective manufacturer’s manual protocol 

(see Figure M-8). 

 

 

Figure M-8. Example of Electropherogram pattern of size-selected DNA library, showing maximum 

peak size (~592 bp of average) between 500 and 700 bp, separated with the D1000 ScreenTape assay on 

the 4200 TapeStation system. 

 

2.4.5 Amplification of Size-Selected DNA Library  

By following respective manufacturer’s manual protocol, an aliquot (5 uL) of the size-

selected 96 samples DNA library eluate from the PippinPrep is amplified, in a PCR cocktail 

reaction (of 12 cycles of amplification; t~30min) setup (see Table M-5): in combination 

with 25 uL of specific PCR Enzyme/Buffer Mix plus 2 uL of amplification pair of Illumina 

primers Fw/Rev and also adding 18 uL of nuclease-free water. These Illumina primers (P5 

and P7 adapter sequences (Illumina, Inc., San Diego, CA, USA)) contain the sequences 

necessary for binding to the Illumina flow cell and, consequently, for optimal cluster 

generation.  
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Table M-5. Thermal cycling program (total duration t~30min) parameters and conditions for PCR 

amplification reaction with Illumina primers of this size-selected 96 samples DNA library, using a Veriti 

Thermal Cycler (Veriti™ 96-Well Thermal Cycler, Applied Biosystems/Thermo Fisher Scientific, 

Waltham, MA, USA). Courtesy: http://www.immucor.com/LIFECODES%20Documents/SR-190-

00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf 

 

2.5 Preparation of Final DNA Library for Sequencing  

These post-amplification steps should be performed in a sequencing room or in an area separate 

from library preparation (most common Post-PCR room areas), preferably in an AirClean PCR 

box to avoid contamination of index-adapter ligated DNA with final products that contain the 

Illumina cluster sequences. 

Firstly, the respective amplified (and thus enriched), and previously size-selected, 96 samples 

DNA library product is cleaned by doing a manual Post-Amplification DNA Bead Clean-Up 

step using Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA) 

following respective manufacturer’s manual protocol. Final eluted volume of this final cleaned 

“stock” DNA library = 15 uL. The amplified DNA library should be purified within 1 hour post-

amplification. 

Secondly, concentration of cleaned final 96 samples DNA library is quantified by performing 

the Qubit® dsDNA BR (Broad-Range) Kit assay and using the respective Qubit 2.0 

flurometer (ThermoFisher Scientific, Waltham, MA, USA), according to respective 

manufacturer’s manual protocol. The Qubit® 2.0 Fluorometer provides the final DNA library 

http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
http://www.immucor.com/LIFECODES%20Documents/SR-190-00525_MIA_FORA_NGS_FLEX_HLA_Typing_Package_Insert-RUO-A.pdf
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concentration (in units of ng/uL) based on the measured fluorescence intensity values of 

concentration references and of the sample of interest. This dsDNA library concentration 

reading (in ng/uL) is mathematically converted to units of nanomolar (nM), using the equation 

listed in Figure M-9: 

 

Figure M-9. Equation for converting ng/µl to nM when calculating dsDNA library concentration. In this 

particular case and protocol established average dsDNA library size is 600 bp. The value of 660g/mol 

corresponds to the average molecular weight (MW) of dsDNA. 

 

This measured and, thus, calculated concentration value is important (it should be preferably 

higher than 10 nM) for the preparation of the final DNA Library for sequencing as it determines 

how optimal the cluster generation will be.  

Thirdly, preparation of the DNA library template for the sequencing run is done as follows and 

according to respective manufacturer’s manual protocol: 

• Using only an aliquot, cleaned final 96 samples DNA library is denatured (using NaOH 

solution) and diluted (using Tris-HCl, pH 8.0 solution) to a final concentration of 1.3 pM. 

• In addition, 0.2% Illumina PhiX Control v3 (Illumina, San Diego, CA, USA) is used as 

spike-in to monitor sequencing quality control. PhiX is a small and well-defined genome 

seqeunce, which enables quick alignment and estimation of error rates. 

• Then, final denatured and diluted DNA library spiked with 0.2 % PhiX is loaded onto a 

respective thawed reagent cartridge and, finally, user sets up the sequencing run. 

• Sequencing is carried out on either: 
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-Illumina MiniSeq sequencer instrument (Illumina, San Diego, CA, USA) using respective 

High-Output 300 cycle paired-end (2x150bp) kit (FC-420-1003)(Illumina, San Diego, CA, 

USA). In this sequencing setup, a single 96 samples DNA library can be sequenced. 

-Or alternatively on Illumina 500/550 NextSeq sequencer instrument (Illumina, San Diego, 

CA, USA) using respective Mid-Output 300 cycle paired-end (2x150bp) v2.5 kit 

(20024905)(Illumina, San Diego, CA, USA). In this sequencing setup, up to two different 

DNA library sets of 96 samples (total of 192 samples) each can be sequenced in this case 

(using 2 different 96 index-adapter plates). 

Overall, >80.0% of Illumina MiniSeq and/or 500/550 NextSeq (Illumina, San Diego, CA, USA) 

average paired‐end sequencing base calls exceeded a quality score of 30 (Q30), which is 

equivalent to the probability of an incorrect base call 1 in 1000 times. Cluster density ranged 

between 180 and 260 k/mm2 with 70% to 95% clusters passing the filter. 

In this particular MIA FORA™ NGS HLA FLEX Typing protocol and setup, Illumina 

sequencers generate raw sequencing data that is stored as it is described here: 

 -Illumina MiniSeq (with one physical lane per dimensional surface of the flow-cell): as two 

major FASTQ files (R1 and R2), each of them corresponds to the respective Read 151 cycles 

run on each respective dimensional surface of the flow-cell. 

- Illumina 500/550 NextSeq (with four physical lanes per dimensional surface of the flow-

cell): as eight major FASTQ files (i.e. four R1 and four R2 FASTQ files). 

2.6 HLA Allele Calling and Genotype Assignment Bioinformatics Analysis of Sequencing 

Reads  

Following sequencing, the raw sequencing data is transferred, processed and analyzed using 

MIA FORA™ NGS FLEX HLA Genotyping Software version 3.0 (Immucor, Inc. Norcross, 
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GA, USA)), via VNC viewer, with reference to IPD‐IMGT/HLA database release 3.25.0. 

available at the time of the current study. Thus, raw NGS reads are used as input to call 

genotypes for all 11 HLA loci per sample with high allele resolution (from 3- up to the 4-field). 

Moreover, key coverage statistics are combined in proprietary algorithms to calculate 

confidence scores and select the top computed alleles for each HLA gene. Basically, MIA 

FORA™ NGS FLEX HLA Genotyping Software performs the following main analysis steps 

(see Figure M-10): 

• Firstly, this software program demultiplexes (or deconvolutes) FASTQ files according to 

each unique barcode (defining thus set of raw NGS reads that unequivocally belong to each 

respective tested sample for these 11 HLA loci).  

• Secondly, this software program uses two complementary bioinformatics strategies 

(generally called mapping and phasing), that, in turn, are based on three orthogonal 

algorithms. This set of algorithms is employed to calculate a probability score and rank the 

genotype candidates as well as to generate consensus sequences for individual alleles. In detail 

(see Figure M-11): 

-Mapping: it consists on competitive mapping of paired-end sequence reads. It is based on 

a Competitive Alignment Algorithm. 

-Phasing: in which de-novo assembly strategies of paired-end reads enables to construct one 

or two phased consensus sequences (contigs). It is based on Dynamic Phasing Analysis 

Algorithm and Consensus Algorithms. 

Thus, these two complementary bioinformatics strategies allow:  

-To align, first, the reads and, later on, the built consensus sequences to HLA reference 

sequences. Importantly, as a unique feature of this MIA FORA™ NGS FLEX HLA 



________________________________________________Materials and Methods 
 

Page | 360  

   © Gonzalo Montero Martin  

Genotyping Software, paired-end reads and consensus sequences are compared with three 

different sources of HLA reference sequences; (i) from the IPD‐IMGT/HLA database 

release 3.25.0; (ii) from an internal MIA FORA™ HLA reference database generated by 

cloning and sequencing (using suffixes e, v, x in HLA allele names) as well as by an internal 

MIA FORA™ HLA collection (iii) of computational filled in-silico HLA sequences (using 

suffix I in HLA allele names). 

-To de-novo assemble reads into each respective contig. One‐ or two‐phased consensus 

sequences (contigs) per targeted HLA locus are built by de-novo assembly of mapped, 

paired‐end reads. In the same assembly process, polymorphic sites are identified where the 

minor allele frequency exceeds a threshold of 0.2. Once polymorphic sites are identified, 

phased (where the previous Illumina paired-end sequencing process allows to generate 

respective fragments that can effectively anchor 2 distant polymorphisms to establish 

phasing), and resolved, consensus sequences (phased contigs) are built based on sequence 

assembly and polymorphic linkage. 

-To parse the resulting alignments to provide the best match result (to keep only alignments 

with the, so-called, best “bit-scores”) for a genotype of each allele. Here, several 

bioinformatics processes are involved in order to: filter out incorrect alignments; to filter 

out unlikely reference candidates; to enumerate combinations of candidate alleles; to count 

the number of reads mapped to each combination of candidate alleles, etc. Thus, a mismatch 

filter eliminates alignments with mismatches or gaps and a paired-end filter increases 

specificity by requiring both ends to map to a single HLA reference. Then minimum 

coverage is computed for each allele candidate and allele pairs are computed as described 

in [187]. The phased resolved consensus sequences are aligned to HLA reference sequence 
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database to determine the best fit. This consensus alignment provides an independent check 

of the genotype call.  

• Ultimately, HLA allele candidates are computed and the final HLA genotyping is called by 

the software. HLA genotyping results generated by the software program have to be manually 

reviewed by the user. To further improve the accuracy of HLA genotype algorithm, a flagging 

system (that the user can use for reviewing the initial automatic calls made by the software) 

is integrated on this software program and it is based on public information and pattern learned 

from results generated by these algorithms (see Figure M-12). In the flagging system, the 

linkage disequilibrium between different genes and sequencing depth are used to calibrate the 

reliability of genotypes (although, just as a clarification, LD data across HLA genes is not 

directly used within the algorithmic analyses for the HLA genotype assignment that separately 

takes place for each tested HLA locus). Furthermore, for a single allele, per locus, the 

minimum average coverage read depth for automated base call needs to be 40× at each 

position, and uniform coverage has to be generally observed throughout the entire region. 

Also, to call a heterozygous position, ratio must be at least 20%. In those instances when a 

given allele presents coverage less than 40×, the user can manually assign (overwrite (OWI)) 

genotype calls based on reviewing various quality parameters/indicators available in the MIA 

FORA™ NGS FLEX HLA Genotyping Software. Thus, several embedded quality metrics 

(e.g. read length, read quality, consensus coverage, imbalance ratio loci, and phasing) 

improved the accuracy and the confidence of allele calling. A particular interesting parameter 

is the so-called “central-reads”, which is very useful in those scenarios that require to quantify 

difference between the two given alignment patterns (continuous tiling pattern: when reads 

are mapped onto a correct reference sequence; and discontinued tiling pattern: when reads are 

mapped onto an incorrect reference sequence). To quantify this difference between the two 



________________________________________________Materials and Methods 
 

Page | 362  

   © Gonzalo Montero Martin  

alignment patterns, the number of "central reads" for any given point is counted, where central 

reads are empirically defined as mapped reads for which the ratio between the length of the 

left arm (of aligned reads) and that of the right arm (of the aligned reads) related to a particular 

point is between 0.5 and 2. This central reads counting method may facilitate to distinguish 

true HLA alleles from sequencing artifacts and thereby improve the reliability of HLA typing. 
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Figure M-10. MIA FORA™ NGS FLEX HLA Genotyping Software version 3.0 (Immucor, Inc. Norcross, 

GA, USA)). Annotated detail window. Block A displays sample information; Block B displays the selected 

genotypes for the sample. Block C displays the Variants, Smart Guide, and LD Suggestion tables; Block D 

displays the table of computed allele candidates; Block E displays coverage plots and alignment browsers 

for mapped sequence of sample; Block F displays the alignment browser for phase resolved de novo 

contigs.Courtesy:http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA

%20NGS/SR-190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf 
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Figure M-11. MIA FORA™ NGS FLEX HLA Genotyping Software version 3.0 (Immucor, Inc. Norcross, 

GA, USA)). MIA FORA NGS genotyping strategy. Two complementary strategies are employed to 

compute the best fit to HLA reference alleles and resolve consensus sequences. The left side illustrates 

mapping. Paired end reads are mapped using a competitive alignment algorithm to rank candidate alleles. 

The right side illustrates assembly and phasing. Starting with paired end reads, a multi-step process includes 

mapping, local assembly, and phase resolution to construct phase resolved consensus sequences. Courtesy: 

http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-

00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf 
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Figure M-12. MIA FORA™ NGS FLEX HLA Genotyping Software version 3.0 (Immucor, Inc. Norcross, 

GA, USA)). Flags (colored shapes) are used to depict each predicted genotype status. Indicators for 

confidence score (green triangle > blue > red > gray) where green is the highest confidence score and grey 

is the lowest confidence score, common or well-documented allele (green diamond) or not (amber 

diamond), whether a call has been edited (amber pentagon) or not (green pentagon), whether a call is 

consistent with linkage disequilibrium data (green hexagon) or not (amber hexagon), and whether special 

review is required (amber circle with question mark or exclamation mark), indicating a potential novel 

allele in the coding sequence. PC: the number of phased contigs. If the count of contigs is different from 

the number of alleles of the corresponding locus, it will show amber color in the circle. Otherwise, it is 

green color. Courtesy: 

 http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-

190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf 
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• Novel alleles are identified by variation in the coding sequence only. For the purpose of the 

present study, no attempt was made to record novel intron and 5’-/3’-UTR variation. Since, 

although it is mostly feasible to be evaluated using this MIA FORA™ NGS FLEX HLA 

Genotyping Software, in many instances it is quite challenging and complex due to low 

coverage and related ambiguities found in some of these intronic and 5’-/3’-UTR regions as 

it is explained in the following point. In addition, currently available IPD-IMGT/HLA 

Database resources and tools are considerably limited in terms of recorded non-coding 

reference sequences [87][146][463](https://www.ebi.ac.uk/ipd/imgt/hla/blast.html). Thus, as 

a criteria established by the user, found alleles with novel intron variation are consolidated to 

the closest and lowest 4-field allele name (see Table M-6). 

• It is important to remark that, (as it also occurs with the majority of NGS-based HLA 

genotyping methods and related software HLA allele assignment analysis tools so far 

developed) using this MIA FORA™ NGS FLEX HLA typing method and related software 

analysis program, certain HLA allelic and allele combination (phase) ambiguities (see 

INTRODUCTION section for more details about HLA ambiguities) cannot be still resolved. 

Thus, two main ambiguity groups are noteworthy (see also 2.7 Ambiguity Groups Criteria 

and Standardization Assignments for more details):   

-Allelic ambiguities: as previously mentioned, there are DNA regions (mostly non-coding 

regions) with repetitive and extensive low-complexity and imbalanced sequence 

composition, and that are present along the HLA system, especially at non-coding regions, 

such as: homopolymer repeats poly(dA), poly(dT), poly(dG) and poly(dC) (composed of 

eight or more nucleotides); regions of short-tandem repeats (STRs; comprised of 1–6 bp per 

repeating unit); or high AT- or GC-rich regions (that often contain mononucleotide repeats 

of 10 or more bases). All these particular DNA regions can establish complex folded 

https://www.ebi.ac.uk/ipd/imgt/hla/blast.html
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structures in the DNA molecule that, in turn, are prone to mutation via slipped-strand 

mispairing (termed also as “slippage”) by the DNA polymerase during in vitro PCR-

mediated DNA replication, as well as during in vivo DNA replication [203]. Thus, coverage 

and, consequently, reliability of the called base/s are very low at those positions. Therefore, 

related ambiguities found in these intronic and 5’-/3’-UTR regions make indistinguishable 

the 4-field allele resolution level for different HLA loci (in particular, class II under this 

context of MIA FORA™ NGS FLEX HLA Genotyping Software and method), being 

necessary to establish an ambiguity reporting criteria by the user (see Table M-6 for more 

details). 

-Allele combination (phase or cis/trans) ambiguities: at the same time, different described 

HLA-DPB1 alleles, especially at their non-coding regions, are highly homologous (present 

low SNP diversity) and are yet polymorphic, although presenting very distal polymorphic 

positions that are difficult to be phased, especially in the currently used approach of short-

read NGS sequencing. For instance in HLA-DPB1 locus, phase is often broken in intron 2, 

which is approximately 4 kb in length, and can be either sparsely or densely populated with 

heterozygous positions, depending on the combination of alleles. Thus, HLA-DPB1 

genotypes that include alleles with identical sequences in exon-2 that differ in exon-3 

generally cannot be placed in phase because of lack of informative SNPs. Consequently, 

different HLA-DPB1 allele combinations may satisfy a same set of heterozygous positions 

but in different cis/trans combinations. These combinations of HLA-DPB1 alleles 

(combination of alleles that as pairs share the same exon 2) cannot be unambiguously phased 

(the so-called phase ambiguities) and, thus, are equally possible. In this case, HLA genotype 

results output generated by the MIA FORA™ NGS FLEX HLA genotyping software 

includes all equally possible ambiguous HLA-DPB1 allele pairs. Nevertheless, for posterior 
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statistical analysis purposes in the present study, the most likely genotype was assigned on 

the basis of allele distributions in unambiguous genotypes (i.e. only the HLA-DPB1 allele 

pair presenting, although with some exceptions, the respective lowest 2-/3-/4-field name 

pair was generally considered as the “most likely one”) (see Table M-7 for more details).  

2.7 Ambiguity Groups Criteria and Standardization Assignments 

• First ambiguity group is according to allele ambiguities in intronic and 5’-/3’-UTR regions. 

Here, some HLA assignments resulted ambiguous when trying to distinguish alleles at the 4-

field allele resolution level (intronic and untranslated (UTR) sequence level). In these particular 

cases, called allele candidates present differences only in length of either homopolymer 

sequences or short tandem repeats (STRs); these were not sequenced with precision by the NGS 

method. Due to limitations for resolving this type of ambiguities, indistinguishable alleles at the 

4-field level were merged (as final genotyping results and for posterior statistical analyses) to 

the lowest numbered allele according to IPD-IMGT/HLA database version 3.25.0 (see second 

column on Table M-6, where selected lowest numbered HLA alleles for merging are displayed 

in bold letters). A complete list of indistinguishable alleles and their respective standardization 

criteria is shown here (see Table M-6 on next page; obtained and adapted from [268][297]):  
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Table M-6. Characteristics of related HLA class II allele ambiguities found in intronic and 5’-/3’-UTR regions that make 

indistinguishable the 4-field allele resolution level according to v.3.25.0 IPD-IMGT/HLA database (released July 2016). 

Ambiguity group Alleles in ambiguity group Reason for 

ambiguity 

Gene region Position Motif 

HLA-DQA1*01:01:01:02SG HLA-DQA1*01:01:01:02 STR (mononucleotide) Intron 1 3107 to 3118 bp A 

 HLA-DQA1*01:01:01:03     

HLA-DQA1*01:02:01:01SG HLA-DQA1*01:02:01:01 STR (mononucleotide) Intron 1 3100 to 3113 bp A 

 HLA-DQA1*01:02:01:03   3355 to 3368 bp A 

 HLA-DQA1*01:02:01:05     

HLA-DQA1*01:02:01:04SG HLA-DQA1*01:02:01:04 STR (mononucleotide) Intron 1 3108 to 3121 bp A 

 HLA-DQA1*01:02:01:06     

 HLA-DQA1*01:02:01:07     

HLA-DQA1*01:03:01:02SG HLA-DQA1*01:03:01:02 STR (mononucleotide) Intron 1 3105 to 3114 bp A 

 HLA-DQA1*01:03:01:06     

HLA-DQA1*01:03:01:03SG HLA-DQA1*01:03:01:03 STR (mononucleotide) Intron 1 3104 to 3118 bp A 

 HLA-DQA1*01:03:01:04   3360 to 3374 bp A 

HLA-DQA1*01:04:01:01SG HLA-DQA1*01:04:01:01 STR (mononucleotide) Intron 1 3353 to 3368 bp A 

 HLA-DQA1*01:04:01:02     

 HLA-DQA1*01:04:01:04     

HLA-DQA1*02:01:01:01SG HLA-DQA1*02:01:01:01 STR (mononucleotide) Intron 3 4836 to 4848 bp T 

 HLA-DQA1*02:01:01:02     

HLA-DQA1*05:05:01:01SG HLA-DQA1*05:05:01:01 STR (tetranucleotide) Intron 3 4947 to ~5028 bp TTTC 

 HLA-DQA1*05:05:01:02     

HLA-DQA1*05:05:01:05SG HLA-DQA1*05:05:01:05 STR (tetranucleotide) Intron 3 4952 to 5033 bp TTTC 

 HLA-DQA1*05:05:01:06     
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Table adapted and originally obtained from [268] and [297].  

 

 

 

 

 

HLA-DQB1*03:03:02:02 HLA-DQB1*03:03:02:02 Unsequenced region Intron 5 6488 bp T>G SNP 

 HLA-DQB1*03:03:02:03     

HLA-DQB1*05:03:01:01 HLA-DQB1*05:03:01:01 Unsequenced region 5’UTR -157 bp C>T SNP 

 HLA-DQB1*05:03:01:02     

HLA-DRB1*03:01:01:01SG HLA-DRB1*03:01:01:01 Unsequenced region Intron 1 1522 bp A>T SNP 

 HLA-DRB1*03:01:01:02     

  STR (dinucleotide) Intron 2 8412 to ~8465 bp GT  

    ~8466 to ~8477 bp GA 

HLA-DRB1*04:01:01:01SG HLA-DRB1*04:01:01:01 STR (dinucleotide) Intron 2 8676 to ~8719 bp GT 

 HLA-DRB1*04:01:01:02   ~8720 to ~8749 bp GA 

HLA-DRB1*07:01:01:01SG HLA-DRB1*07:01:01:01 Unsequenced region Intron 1 11734-35 bp Indel CA 

 HLA-DRB1*07:01:01:02   7929 bp G>A SNP 
  

STR (trinucleotide) Intron 5 14786 to 14890 bp GAA 

 
 

  
  

HLA-DRB1*13:01:01:01SG HLA-DRB1*13:01:01:01 STR (dinucleotide) Intron 2 ~8417 to ~8462 bp GT 

 HLA-DRB1*13:01:01:02   ~8463 to ~8504 bp GA 

HLA-DRB1*15:01:01:01SG HLA-DRB1*15:01:01:01 STR (dinucleotide) Intron 2 5701 to 5740 bp GT 

 HLA-DRB1*15:01:01:02   5741 to 5784 bp CA 
 

HLA-DRB1*15:01:01:03 
    

HLA-DRB1*15:03:01:01SG HLA-DRB1*15:03:01:01 STR (dinucleotide) Intron 2 5682 to 5717 bp GT 
 

HLA-DRB1*15:03:01:02 
    

HLA-DRB3*01:01:02:01 HLA-DRB3*01:01:02:01 Unsequenced region Intron sequence not available for 

HLA-DRB3*01:01:02:02 

 HLA-DRB3*01:01:02:02 
 

HLA-DRB4*01:03:01:01 HLA-DRB4*01:03:01:01 Unsequenced region Intron 1 3616 bp G>A SNP 

 HLA-DRB4*01:03:01:03  Intron 1 7069 bp C>A SNP 

HLA-DPB1*02:01:02 HLA-DPB1*02:01:02 Unsequenced region             Exon 5                         codon 225           CAA>CAG 

 HLA-DPB1*02:01:19  
 

HLA-DPB1*13:01:01 HLA-DPB1*13:01:01 Unsequenced region Exon 1 codon -22 GCG>GCA 

 HLA-DPB1*107:01  
 

codon -14 ACG>ATG 
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• Second group comprises HLA-DPB1 allele combination phase ambiguities: 

 

Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*01:01:01 DPB1*416:01 DPB1*461:01 DPB1*462:01 

DPB1*01:01:01 DPB1*460:01 DPB1*131:01 DPB1*462:01 

DPB1*01:01:01 DPB1*02:01:04i2 DPB1*417:01 DPB1*02:01:04i1 

DPB1*01:01:01 DPB1*23:01:01i1 DPB1*23:01:01 DPB1*417:01 

DPB1*01:01:01 DPB1*29:01i1 DPB1*29:01 DPB1*417:01 

DPB1*01:01:01 DPB1*33:01i1 DPB1*33:01 DPB1*417:01 

DPB1*01:01:01 DPB1*46:01:01i1 DPB1*417:01 DPB1*46:01:01 

DPB1*01:01:01 DPB1*47:01i1 DPB1*417:01 DPB1*47:01 

DPB1*01:01:01 DPB1*51:01i1 DPB1*417:01 DPB1*51:01 

DPB1*01:01:01 DPB1*51:01i1 DPB1*462:01 DPB1*51:01 

DPB1*01:01:01 DPB1*59:01i1 DPB1*417:01 DPB1*59:01 

DPB1*01:01:01 DPB1*72:01i2 DPB1*417:01 DPB1*72:01i1 

DPB1*01:01:01 DPB1*78:01i1 DPB1*417:01 DPB1*78:01 

DPB1*01:01:01 DPB1*81:01i1 DPB1*417:01 DPB1*81:01 

DPB1*01:01:02 DPB1*02:01:02 DPB1*162:01 DPB1*461:01 

DPB1*01:01:02 DPB1*17:01 DPB1*131:01 DPB1*162:01 

DPB1*01:01:02 DPB1*02:01:04i2 DPB1*162:01 DPB1*02:01:04i1 

DPB1*01:01:02 DPB1*46:01:01i1 DPB1*162:01 DPB1*46:01:01 

DPB1*01:01:02 DPB1*47:01i1 DPB1*162:01 DPB1*47:01 

DPB1*01:01:02 DPB1*72:01i2 DPB1*162:01 DPB1*72:01i1 

DPB1*01:01:02 DPB1*81:01i1 DPB1*162:01 DPB1*81:01 

DPB1*02:01:02 DPB1*03:01:08 DPB1*124:01 DPB1*352:01 

DPB1*02:01:02 DPB1*04:02:01:01 DPB1*105:01 DPB1*416:01 

DPB1*02:01:02 DPB1*04:02:01:01 DPB1*416:01 DPB1*105:01i1 

DPB1*02:01:02 DPB1*04:02:01:02 DPB1*105:01 DPB1*416:01 

DPB1*02:01:02 DPB1*04:02:01:02 DPB1*416:01 DPB1*105:01i1 

DPB1*02:01:02 DPB1*104:01 DPB1*124:01 DPB1*414:01 

DPB1*02:01:02 DPB1*126:01 DPB1*04:01:01:01 DPB1*416:01 

DPB1*02:01:02 DPB1*126:01 DPB1*04:01:01:02 DPB1*416:01 

DPB1*02:01:02 DPB1*131:01 DPB1*17:01 DPB1*461:01 

DPB1*02:01:02 DPB1*138:01 DPB1*23:01:01 DPB1*416:01 

DPB1*02:01:02 DPB1*138:01 DPB1*416:01 DPB1*23:01:01i1 

DPB1*02:01:02 DPB1*19:01 DPB1*106:01 DPB1*414:01 

DPB1*02:01:02 DPB1*296:01 DPB1*28:01 DPB1*352:01 

DPB1*02:01:02 DPB1*351:01 DPB1*124:01 DPB1*416:01 

DPB1*02:01:02 DPB1*414:01e1 DPB1*02:01:02e1 DPB1*414:01 

DPB1*02:01:02 DPB1*414:01e1 DPB1*02:01:02e2 DPB1*414:01 

DPB1*02:01:02 DPB1*414:01e1 DPB1*02:01:02e3 DPB1*414:01 

DPB1*02:01:02 DPB1*414:01e1 DPB1*02:01:02e4 DPB1*414:01 

DPB1*02:01:02 DPB1*460:01 DPB1*17:01 DPB1*416:01 

DPB1*02:01:02 DPB1*46:01:01 DPB1*141:01 DPB1*46:01:01i1 

DPB1*02:01:02 DPB1*46:01:01 DPB1*352:01 DPB1*46:01:01i1 

DPB1*02:01:02 DPB1*46:01:01 DPB1*414:01 DPB1*46:01:01i1 

DPB1*02:01:02 DPB1*46:01:01 DPB1*416:01 DPB1*46:01:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02 DPB1*46:01:01 DPB1*461:01 DPB1*46:01:01i1 

DPB1*02:01:02 DPB1*47:01 DPB1*141:01 DPB1*47:01i1 

DPB1*02:01:02 DPB1*47:01 DPB1*352:01 DPB1*47:01i1 

DPB1*02:01:02 DPB1*47:01 DPB1*414:01 DPB1*47:01i1 

DPB1*02:01:02 DPB1*47:01 DPB1*416:01 DPB1*47:01i1 

DPB1*02:01:02 DPB1*47:01 DPB1*461:01 DPB1*47:01i1 

DPB1*02:01:02 DPB1*81:01 DPB1*141:01 DPB1*81:01i1 

DPB1*02:01:02 DPB1*81:01 DPB1*352:01 DPB1*81:01i1 

DPB1*02:01:02 DPB1*81:01 DPB1*414:01 DPB1*81:01i1 

DPB1*02:01:02 DPB1*81:01 DPB1*416:01 DPB1*81:01i1 

DPB1*02:01:02 DPB1*81:01 DPB1*461:01 DPB1*81:01i1 

DPB1*02:01:02 DPB1*72:01i1 DPB1*141:01 DPB1*72:01i2 

DPB1*02:01:02 DPB1*72:01i1 DPB1*352:01 DPB1*72:01i2 

DPB1*02:01:02 DPB1*72:01i1 DPB1*414:01 DPB1*72:01i2 

DPB1*02:01:02 DPB1*72:01i1 DPB1*416:01 DPB1*72:01i2 

DPB1*02:01:02 DPB1*72:01i1 DPB1*461:01 DPB1*72:01i2 

DPB1*02:01:02 DPB1*104:01i1 DPB1*124:01 DPB1*414:01 

DPB1*02:01:02 DPB1*51:01i1 DPB1*416:01 DPB1*51:01 

DPB1*02:01:02e1 DPB1*04:01:01:01 DPB1*02:01:02e2 DPB1*04:01:01:02 

DPB1*02:01:02e1 DPB1*04:01:01:01 DPB1*02:01:02e3 DPB1*04:01:01:02 

DPB1*02:01:02e1 DPB1*04:01:01:01 DPB1*02:01:02e4 DPB1*04:01:01:02 

DPB1*02:01:02e1 DPB1*04:01:01:02 DPB1*02:01:02e2 DPB1*04:01:01:01 

DPB1*02:01:02e1 DPB1*04:01:01:02 DPB1*02:01:02e3 DPB1*04:01:01:01 

DPB1*02:01:02e1 DPB1*04:01:01:02 DPB1*02:01:02e4 DPB1*04:01:01:01 

DPB1*02:01:02e1 DPB1*04:01:01e1 DPB1*02:01:02e2 DPB1*04:01e1 

DPB1*02:01:02e1 DPB1*04:01:01e1 DPB1*02:01:02e3 DPB1*04:01e1 

DPB1*02:01:02e1 DPB1*04:01:01e1 DPB1*02:01:02e4 DPB1*04:01e1 

DPB1*02:01:02e1 DPB1*04:01e1 DPB1*02:01:02e2 DPB1*04:01:01e1 

DPB1*02:01:02e1 DPB1*04:01e1 DPB1*02:01:02e3 DPB1*04:01:01e1 

DPB1*02:01:02e1 DPB1*04:01e1 DPB1*02:01:02e4 DPB1*04:01:01e1 

DPB1*02:01:02e1 DPB1*04:02:01:01 DPB1*02:01:02e2 DPB1*04:02:01:02 

DPB1*02:01:02e1 DPB1*04:02:01:01 DPB1*02:01:02e3 DPB1*04:02:01:02 

DPB1*02:01:02e1 DPB1*04:02:01:01 DPB1*02:01:02e4 DPB1*04:02:01:02 

DPB1*02:01:02e1 DPB1*04:02:01:02 DPB1*02:01:02e2 DPB1*04:02:01:01 

DPB1*02:01:02e1 DPB1*04:02:01:02 DPB1*02:01:02e3 DPB1*04:02:01:01 

DPB1*02:01:02e1 DPB1*04:02:01:02 DPB1*02:01:02e4 DPB1*04:02:01:01 

DPB1*02:01:02e1 DPB1*104:01 DPB1*02:01:02e2 DPB1*104:01i1 

DPB1*02:01:02e1 DPB1*104:01 DPB1*02:01:02e3 DPB1*104:01i1 

DPB1*02:01:02e1 DPB1*104:01 DPB1*02:01:02e4 DPB1*104:01i1 

DPB1*02:01:02e1 DPB1*104:01 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e1 DPB1*105:01 DPB1*02:01:02e2 DPB1*105:01i1 

DPB1*02:01:02e1 DPB1*105:01 DPB1*02:01:02e3 DPB1*105:01i1 

DPB1*02:01:02e1 DPB1*105:01 DPB1*02:01:02e4 DPB1*105:01i1 

DPB1*02:01:02e1 DPB1*14:01:01 DPB1*02:01:02e2 DPB1*14:01:01i1 

DPB1*02:01:02e1 DPB1*14:01:01 DPB1*02:01:02e3 DPB1*14:01:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02e1 DPB1*14:01:01 DPB1*02:01:02e4 DPB1*14:01:01i1 

DPB1*02:01:02e1 DPB1*19:01 DPB1*106:01 DPB1*414:01e1 

DPB1*02:01:02e1 DPB1*23:01:01 DPB1*02:01:02e2 DPB1*23:01:01i1 

DPB1*02:01:02e1 DPB1*23:01:01 DPB1*02:01:02e3 DPB1*23:01:01i1 

DPB1*02:01:02e1 DPB1*23:01:01 DPB1*02:01:02e4 DPB1*23:01:01i1 

DPB1*02:01:02e1 DPB1*29:01 DPB1*02:01:02e2 DPB1*29:01i1 

DPB1*02:01:02e1 DPB1*29:01 DPB1*02:01:02e3 DPB1*29:01i1 

DPB1*02:01:02e1 DPB1*29:01 DPB1*02:01:02e4 DPB1*29:01i1 

DPB1*02:01:02e1 DPB1*33:01 DPB1*02:01:02e2 DPB1*33:01i1 

DPB1*02:01:02e1 DPB1*33:01 DPB1*02:01:02e3 DPB1*33:01i1 

DPB1*02:01:02e1 DPB1*33:01 DPB1*02:01:02e4 DPB1*33:01i1 

DPB1*02:01:02e1 DPB1*39:01 DPB1*02:01:02e2 DPB1*39:01i1 

DPB1*02:01:02e1 DPB1*39:01 DPB1*02:01:02e3 DPB1*39:01i1 

DPB1*02:01:02e1 DPB1*39:01 DPB1*02:01:02e4 DPB1*39:01i1 

DPB1*02:01:02e1 DPB1*46:01:01 DPB1*02:01:02e2 DPB1*46:01:01i1 

DPB1*02:01:02e1 DPB1*46:01:01 DPB1*02:01:02e3 DPB1*46:01:01i1 

DPB1*02:01:02e1 DPB1*46:01:01 DPB1*02:01:02e4 DPB1*46:01:01i1 

DPB1*02:01:02e1 DPB1*46:01:01 DPB1*414:01e1 DPB1*46:01:01i1 

DPB1*02:01:02e1 DPB1*47:01 DPB1*02:01:02e2 DPB1*47:01i1 

DPB1*02:01:02e1 DPB1*47:01 DPB1*02:01:02e3 DPB1*47:01i1 

DPB1*02:01:02e1 DPB1*47:01 DPB1*02:01:02e4 DPB1*47:01i1 

DPB1*02:01:02e1 DPB1*47:01 DPB1*414:01e1 DPB1*47:01i1 

DPB1*02:01:02e1 DPB1*51:01 DPB1*02:01:02e2 DPB1*51:01i1 

DPB1*02:01:02e1 DPB1*51:01 DPB1*02:01:02e3 DPB1*51:01i1 

DPB1*02:01:02e1 DPB1*51:01 DPB1*02:01:02e4 DPB1*51:01i1 

DPB1*02:01:02e1 DPB1*59:01 DPB1*02:01:02e2 DPB1*59:01i1 

DPB1*02:01:02e1 DPB1*59:01 DPB1*02:01:02e3 DPB1*59:01i1 

DPB1*02:01:02e1 DPB1*59:01 DPB1*02:01:02e4 DPB1*59:01i1 

DPB1*02:01:02e1 DPB1*78:01 DPB1*02:01:02e2 DPB1*78:01i1 

DPB1*02:01:02e1 DPB1*78:01 DPB1*02:01:02e3 DPB1*78:01i1 

DPB1*02:01:02e1 DPB1*78:01 DPB1*02:01:02e4 DPB1*78:01i1 

DPB1*02:01:02e1 DPB1*81:01 DPB1*02:01:02e2 DPB1*81:01i1 

DPB1*02:01:02e1 DPB1*81:01 DPB1*02:01:02e3 DPB1*81:01i1 

DPB1*02:01:02e1 DPB1*81:01 DPB1*02:01:02e4 DPB1*81:01i1 

DPB1*02:01:02e1 DPB1*81:01 DPB1*414:01e1 DPB1*81:01i1 

DPB1*02:01:02e1 DPB1*72:01i1 DPB1*02:01:02e2 DPB1*72:01i2 

DPB1*02:01:02e1 DPB1*72:01i1 DPB1*02:01:02e3 DPB1*72:01i2 

DPB1*02:01:02e1 DPB1*72:01i1 DPB1*02:01:02e4 DPB1*72:01i2 

DPB1*02:01:02e1 DPB1*72:01i1 DPB1*414:01e1 DPB1*72:01i2 

DPB1*02:01:02e1 DPB1*104:01i1 DPB1*02:01:02e2 DPB1*104:01 

DPB1*02:01:02e1 DPB1*104:01i1 DPB1*02:01:02e3 DPB1*104:01 

DPB1*02:01:02e1 DPB1*104:01i1 DPB1*02:01:02e4 DPB1*104:01 

DPB1*02:01:02e1 DPB1*104:01i1 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e1 DPB1*105:01i1 DPB1*02:01:02e2 DPB1*105:01 

DPB1*02:01:02e1 DPB1*105:01i1 DPB1*02:01:02e3 DPB1*105:01 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02e1 DPB1*105:01i1 DPB1*02:01:02e4 DPB1*105:01 

DPB1*02:01:02e1 DPB1*14:01:01i1 DPB1*02:01:02e2 DPB1*14:01:01 

DPB1*02:01:02e1 DPB1*14:01:01i1 DPB1*02:01:02e3 DPB1*14:01:01 

DPB1*02:01:02e1 DPB1*14:01:01i1 DPB1*02:01:02e4 DPB1*14:01:01 

DPB1*02:01:02e1 DPB1*23:01:01i1 DPB1*02:01:02e2 DPB1*23:01:01 

DPB1*02:01:02e1 DPB1*23:01:01i1 DPB1*02:01:02e3 DPB1*23:01:01 

DPB1*02:01:02e1 DPB1*23:01:01i1 DPB1*02:01:02e4 DPB1*23:01:01 

DPB1*02:01:02e1 DPB1*29:01i1 DPB1*02:01:02e2 DPB1*29:01 

DPB1*02:01:02e1 DPB1*29:01i1 DPB1*02:01:02e3 DPB1*29:01 

DPB1*02:01:02e1 DPB1*29:01i1 DPB1*02:01:02e4 DPB1*29:01 

DPB1*02:01:02e1 DPB1*33:01i1 DPB1*02:01:02e2 DPB1*33:01 

DPB1*02:01:02e1 DPB1*33:01i1 DPB1*02:01:02e3 DPB1*33:01 

DPB1*02:01:02e1 DPB1*33:01i1 DPB1*02:01:02e4 DPB1*33:01 

DPB1*02:01:02e1 DPB1*39:01i1 DPB1*02:01:02e2 DPB1*39:01 

DPB1*02:01:02e1 DPB1*39:01i1 DPB1*02:01:02e3 DPB1*39:01 

DPB1*02:01:02e1 DPB1*39:01i1 DPB1*02:01:02e4 DPB1*39:01 

DPB1*02:01:02e1 DPB1*46:01:01i1 DPB1*02:01:02e2 DPB1*46:01:01 

DPB1*02:01:02e1 DPB1*46:01:01i1 DPB1*02:01:02e3 DPB1*46:01:01 

DPB1*02:01:02e1 DPB1*46:01:01i1 DPB1*02:01:02e4 DPB1*46:01:01 

DPB1*02:01:02e1 DPB1*47:01i1 DPB1*02:01:02e2 DPB1*47:01 

DPB1*02:01:02e1 DPB1*47:01i1 DPB1*02:01:02e3 DPB1*47:01 

DPB1*02:01:02e1 DPB1*47:01i1 DPB1*02:01:02e4 DPB1*47:01 

DPB1*02:01:02e1 DPB1*51:01i1 DPB1*02:01:02e2 DPB1*51:01 

DPB1*02:01:02e1 DPB1*51:01i1 DPB1*02:01:02e3 DPB1*51:01 

DPB1*02:01:02e1 DPB1*51:01i1 DPB1*02:01:02e4 DPB1*51:01 

DPB1*02:01:02e1 DPB1*59:01i1 DPB1*02:01:02e2 DPB1*59:01 

DPB1*02:01:02e1 DPB1*59:01i1 DPB1*02:01:02e3 DPB1*59:01 

DPB1*02:01:02e1 DPB1*59:01i1 DPB1*02:01:02e4 DPB1*59:01 

DPB1*02:01:02e1 DPB1*72:01i2 DPB1*02:01:02e2 DPB1*72:01i1 

DPB1*02:01:02e1 DPB1*72:01i2 DPB1*02:01:02e3 DPB1*72:01i1 

DPB1*02:01:02e1 DPB1*72:01i2 DPB1*02:01:02e4 DPB1*72:01i1 

DPB1*02:01:02e1 DPB1*78:01i1 DPB1*02:01:02e2 DPB1*78:01 

DPB1*02:01:02e1 DPB1*78:01i1 DPB1*02:01:02e3 DPB1*78:01 

DPB1*02:01:02e1 DPB1*78:01i1 DPB1*02:01:02e4 DPB1*78:01 

DPB1*02:01:02e1 DPB1*81:01i1 DPB1*02:01:02e2 DPB1*81:01 

DPB1*02:01:02e1 DPB1*81:01i1 DPB1*02:01:02e3 DPB1*81:01 

DPB1*02:01:02e1 DPB1*81:01i1 DPB1*02:01:02e4 DPB1*81:01 

DPB1*02:01:02e2 DPB1*04:01:01:01 DPB1*02:01:02e3 DPB1*04:01:01:02 

DPB1*02:01:02e2 DPB1*04:01:01:01 DPB1*02:01:02e4 DPB1*04:01:01:02 

DPB1*02:01:02e2 DPB1*04:01:01:02 DPB1*02:01:02e3 DPB1*04:01:01:01 

DPB1*02:01:02e2 DPB1*04:01:01:02 DPB1*02:01:02e4 DPB1*04:01:01:01 

DPB1*02:01:02e2 DPB1*04:01:01e1 DPB1*02:01:02e3 DPB1*04:01e1 

DPB1*02:01:02e2 DPB1*04:01:01e1 DPB1*02:01:02e4 DPB1*04:01e1 

DPB1*02:01:02e2 DPB1*04:01e1 DPB1*02:01:02e3 DPB1*04:01:01e1 

DPB1*02:01:02e2 DPB1*04:01e1 DPB1*02:01:02e4 DPB1*04:01:01e1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02e2 DPB1*04:02:01:01 DPB1*02:01:02e3 DPB1*04:02:01:02 

DPB1*02:01:02e2 DPB1*04:02:01:01 DPB1*02:01:02e4 DPB1*04:02:01:02 

DPB1*02:01:02e2 DPB1*04:02:01:02 DPB1*02:01:02e3 DPB1*04:02:01:01 

DPB1*02:01:02e2 DPB1*04:02:01:02 DPB1*02:01:02e4 DPB1*04:02:01:01 

DPB1*02:01:02e2 DPB1*104:01 DPB1*02:01:02e3 DPB1*104:01i1 

DPB1*02:01:02e2 DPB1*104:01 DPB1*02:01:02e4 DPB1*104:01i1 

DPB1*02:01:02e2 DPB1*104:01 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e2 DPB1*105:01 DPB1*02:01:02e3 DPB1*105:01i1 

DPB1*02:01:02e2 DPB1*105:01 DPB1*02:01:02e4 DPB1*105:01i1 

DPB1*02:01:02e2 DPB1*14:01:01 DPB1*02:01:02e3 DPB1*14:01:01i1 

DPB1*02:01:02e2 DPB1*14:01:01 DPB1*02:01:02e4 DPB1*14:01:01i1 

DPB1*02:01:02e2 DPB1*19:01 DPB1*106:01 DPB1*414:01e1 

DPB1*02:01:02e2 DPB1*23:01:01 DPB1*02:01:02e3 DPB1*23:01:01i1 

DPB1*02:01:02e2 DPB1*23:01:01 DPB1*02:01:02e4 DPB1*23:01:01i1 

DPB1*02:01:02e2 DPB1*29:01 DPB1*02:01:02e3 DPB1*29:01i1 

DPB1*02:01:02e2 DPB1*29:01 DPB1*02:01:02e4 DPB1*29:01i1 

DPB1*02:01:02e2 DPB1*33:01 DPB1*02:01:02e3 DPB1*33:01i1 

DPB1*02:01:02e2 DPB1*33:01 DPB1*02:01:02e4 DPB1*33:01i1 

DPB1*02:01:02e2 DPB1*39:01 DPB1*02:01:02e3 DPB1*39:01i1 

DPB1*02:01:02e2 DPB1*39:01 DPB1*02:01:02e4 DPB1*39:01i1 

DPB1*02:01:02e2 DPB1*46:01:01 DPB1*02:01:02e3 DPB1*46:01:01i1 

DPB1*02:01:02e2 DPB1*46:01:01 DPB1*02:01:02e4 DPB1*46:01:01i1 

DPB1*02:01:02e2 DPB1*46:01:01 DPB1*414:01e1 DPB1*46:01:01i1 

DPB1*02:01:02e2 DPB1*47:01 DPB1*02:01:02e3 DPB1*47:01i1 

DPB1*02:01:02e2 DPB1*47:01 DPB1*02:01:02e4 DPB1*47:01i1 

DPB1*02:01:02e2 DPB1*47:01 DPB1*414:01e1 DPB1*47:01i1 

DPB1*02:01:02e2 DPB1*51:01 DPB1*02:01:02e3 DPB1*51:01i1 

DPB1*02:01:02e2 DPB1*51:01 DPB1*02:01:02e4 DPB1*51:01i1 

DPB1*02:01:02e2 DPB1*59:01 DPB1*02:01:02e3 DPB1*59:01i1 

DPB1*02:01:02e2 DPB1*59:01 DPB1*02:01:02e4 DPB1*59:01i1 

DPB1*02:01:02e2 DPB1*78:01 DPB1*02:01:02e3 DPB1*78:01i1 

DPB1*02:01:02e2 DPB1*78:01 DPB1*02:01:02e4 DPB1*78:01i1 

DPB1*02:01:02e2 DPB1*81:01 DPB1*02:01:02e3 DPB1*81:01i1 

DPB1*02:01:02e2 DPB1*81:01 DPB1*02:01:02e4 DPB1*81:01i1 

DPB1*02:01:02e2 DPB1*81:01 DPB1*414:01e1 DPB1*81:01i1 

DPB1*02:01:02e2 DPB1*72:01i1 DPB1*02:01:02e3 DPB1*72:01i2 

DPB1*02:01:02e2 DPB1*72:01i1 DPB1*02:01:02e4 DPB1*72:01i2 

DPB1*02:01:02e2 DPB1*72:01i1 DPB1*414:01e1 DPB1*72:01i2 

DPB1*02:01:02e2 DPB1*104:01i1 DPB1*02:01:02e3 DPB1*104:01 

DPB1*02:01:02e2 DPB1*104:01i1 DPB1*02:01:02e4 DPB1*104:01 

DPB1*02:01:02e2 DPB1*104:01i1 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e2 DPB1*105:01i1 DPB1*02:01:02e3 DPB1*105:01 

DPB1*02:01:02e2 DPB1*105:01i1 DPB1*02:01:02e4 DPB1*105:01 

DPB1*02:01:02e2 DPB1*14:01:01i1 DPB1*02:01:02e3 DPB1*14:01:01 

DPB1*02:01:02e2 DPB1*14:01:01i1 DPB1*02:01:02e4 DPB1*14:01:01 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02e2 DPB1*23:01:01i1 DPB1*02:01:02e3 DPB1*23:01:01 

DPB1*02:01:02e2 DPB1*23:01:01i1 DPB1*02:01:02e4 DPB1*23:01:01 

DPB1*02:01:02e2 DPB1*29:01i1 DPB1*02:01:02e3 DPB1*29:01 

DPB1*02:01:02e2 DPB1*29:01i1 DPB1*02:01:02e4 DPB1*29:01 

DPB1*02:01:02e2 DPB1*33:01i1 DPB1*02:01:02e3 DPB1*33:01 

DPB1*02:01:02e2 DPB1*33:01i1 DPB1*02:01:02e4 DPB1*33:01 

DPB1*02:01:02e2 DPB1*39:01i1 DPB1*02:01:02e3 DPB1*39:01 

DPB1*02:01:02e2 DPB1*39:01i1 DPB1*02:01:02e4 DPB1*39:01 

DPB1*02:01:02e2 DPB1*46:01:01i1 DPB1*02:01:02e3 DPB1*46:01:01 

DPB1*02:01:02e2 DPB1*46:01:01i1 DPB1*02:01:02e4 DPB1*46:01:01 

DPB1*02:01:02e2 DPB1*47:01i1 DPB1*02:01:02e3 DPB1*47:01 

DPB1*02:01:02e2 DPB1*47:01i1 DPB1*02:01:02e4 DPB1*47:01 

DPB1*02:01:02e2 DPB1*51:01i1 DPB1*02:01:02e3 DPB1*51:01 

DPB1*02:01:02e2 DPB1*51:01i1 DPB1*02:01:02e4 DPB1*51:01 

DPB1*02:01:02e2 DPB1*59:01i1 DPB1*02:01:02e3 DPB1*59:01 

DPB1*02:01:02e2 DPB1*59:01i1 DPB1*02:01:02e4 DPB1*59:01 

DPB1*02:01:02e2 DPB1*72:01i2 DPB1*02:01:02e3 DPB1*72:01i1 

DPB1*02:01:02e2 DPB1*72:01i2 DPB1*02:01:02e4 DPB1*72:01i1 

DPB1*02:01:02e2 DPB1*78:01i1 DPB1*02:01:02e3 DPB1*78:01 

DPB1*02:01:02e2 DPB1*78:01i1 DPB1*02:01:02e4 DPB1*78:01 

DPB1*02:01:02e2 DPB1*81:01i1 DPB1*02:01:02e3 DPB1*81:01 

DPB1*02:01:02e2 DPB1*81:01i1 DPB1*02:01:02e4 DPB1*81:01 

DPB1*02:01:02e3 DPB1*04:01:01:01 DPB1*02:01:02e4 DPB1*04:01:01:02 

DPB1*02:01:02e3 DPB1*04:01:01:02 DPB1*02:01:02e4 DPB1*04:01:01:01 

DPB1*02:01:02e3 DPB1*04:01:01e1 DPB1*02:01:02e4 DPB1*04:01e1 

DPB1*02:01:02e3 DPB1*04:01e1 DPB1*02:01:02e4 DPB1*04:01:01e1 

DPB1*02:01:02e3 DPB1*04:02:01:01 DPB1*02:01:02e4 DPB1*04:02:01:02 

DPB1*02:01:02e3 DPB1*04:02:01:02 DPB1*02:01:02e4 DPB1*04:02:01:01 

DPB1*02:01:02e3 DPB1*104:01 DPB1*02:01:02e4 DPB1*104:01i1 

DPB1*02:01:02e3 DPB1*104:01 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e3 DPB1*105:01 DPB1*02:01:02e4 DPB1*105:01i1 

DPB1*02:01:02e3 DPB1*14:01:01 DPB1*02:01:02e4 DPB1*14:01:01i1 

DPB1*02:01:02e3 DPB1*19:01 DPB1*106:01 DPB1*414:01e1 

DPB1*02:01:02e3 DPB1*23:01:01 DPB1*02:01:02e4 DPB1*23:01:01i1 

DPB1*02:01:02e3 DPB1*29:01 DPB1*02:01:02e4 DPB1*29:01i1 

DPB1*02:01:02e3 DPB1*33:01 DPB1*02:01:02e4 DPB1*33:01i1 

DPB1*02:01:02e3 DPB1*39:01 DPB1*02:01:02e4 DPB1*39:01i1 

DPB1*02:01:02e3 DPB1*46:01:01 DPB1*02:01:02e4 DPB1*46:01:01i1 

DPB1*02:01:02e3 DPB1*46:01:01 DPB1*414:01e1 DPB1*46:01:01i1 

DPB1*02:01:02e3 DPB1*47:01 DPB1*02:01:02e4 DPB1*47:01i1 

DPB1*02:01:02e3 DPB1*47:01 DPB1*414:01e1 DPB1*47:01i1 

DPB1*02:01:02e3 DPB1*51:01 DPB1*02:01:02e4 DPB1*51:01i1 

DPB1*02:01:02e3 DPB1*59:01 DPB1*02:01:02e4 DPB1*59:01i1 

DPB1*02:01:02e3 DPB1*78:01 DPB1*02:01:02e4 DPB1*78:01i1 

DPB1*02:01:02e3 DPB1*81:01 DPB1*02:01:02e4 DPB1*81:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*02:01:02e3 DPB1*81:01 DPB1*414:01e1 DPB1*81:01i1 

DPB1*02:01:02e3 DPB1*72:01i1 DPB1*02:01:02e4 DPB1*72:01i2 

DPB1*02:01:02e3 DPB1*72:01i1 DPB1*414:01e1 DPB1*72:01i2 

DPB1*02:01:02e3 DPB1*104:01i1 DPB1*02:01:02e4 DPB1*104:01 

DPB1*02:01:02e3 DPB1*104:01i1 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e3 DPB1*105:01i1 DPB1*02:01:02e4 DPB1*105:01 

DPB1*02:01:02e3 DPB1*14:01:01i1 DPB1*02:01:02e4 DPB1*14:01:01 

DPB1*02:01:02e3 DPB1*23:01:01i1 DPB1*02:01:02e4 DPB1*23:01:01 

DPB1*02:01:02e3 DPB1*29:01i1 DPB1*02:01:02e4 DPB1*29:01 

DPB1*02:01:02e3 DPB1*33:01i1 DPB1*02:01:02e4 DPB1*33:01 

DPB1*02:01:02e3 DPB1*39:01i1 DPB1*02:01:02e4 DPB1*39:01 

DPB1*02:01:02e3 DPB1*46:01:01i1 DPB1*02:01:02e4 DPB1*46:01:01 

DPB1*02:01:02e3 DPB1*47:01i1 DPB1*02:01:02e4 DPB1*47:01 

DPB1*02:01:02e3 DPB1*51:01i1 DPB1*02:01:02e4 DPB1*51:01 

DPB1*02:01:02e3 DPB1*59:01i1 DPB1*02:01:02e4 DPB1*59:01 

DPB1*02:01:02e3 DPB1*72:01i2 DPB1*02:01:02e4 DPB1*72:01i1 

DPB1*02:01:02e3 DPB1*78:01i1 DPB1*02:01:02e4 DPB1*78:01 

DPB1*02:01:02e3 DPB1*81:01i1 DPB1*02:01:02e4 DPB1*81:01 

DPB1*02:01:02e4 DPB1*104:01 DPB1*124:01 DPB1*414:01e1 

DPB1*02:01:02e4 DPB1*19:01 DPB1*106:01 DPB1*414:01e1 

DPB1*02:01:02e4 DPB1*46:01:01 DPB1*414:01e1 DPB1*46:01:01i1 

DPB1*02:01:02e4 DPB1*47:01 DPB1*414:01e1 DPB1*47:01i1 

DPB1*02:01:02e4 DPB1*81:01 DPB1*414:01e1 DPB1*81:01i1 

DPB1*02:01:02e4 DPB1*72:01i1 DPB1*414:01e1 DPB1*72:01i2 

DPB1*02:01:02e4 DPB1*104:01i1 DPB1*124:01 DPB1*414:01e1 

DPB1*03:01:01 DPB1*04:01:01:01 DPB1*124:01 DPB1*350:01 

DPB1*03:01:01 DPB1*04:01:01:02 DPB1*124:01 DPB1*350:01 

DPB1*03:01:01 DPB1*04:02:01:01 DPB1*351:01 DPB1*463:01 

DPB1*03:01:01 DPB1*04:02:01:02 DPB1*351:01 DPB1*463:01 

DPB1*03:01:01 DPB1*05:01:01 DPB1*104:01 DPB1*135:01 

DPB1*03:01:01 DPB1*05:01:01 DPB1*135:01 DPB1*104:01i1 

DPB1*03:01:01 DPB1*05:01:02 DPB1*03:01:08 DPB1*05:01:01 

DPB1*03:01:01 DPB1*05:01:02 DPB1*03:01:08 DPB1*135:01 

DPB1*03:01:01 DPB1*105:01 DPB1*124:01 DPB1*463:01 

DPB1*03:01:01 DPB1*126:01 DPB1*350:01 DPB1*351:01 

DPB1*03:01:01 DPB1*133:01 DPB1*124:01 DPB1*13:01:01 

DPB1*03:01:01 DPB1*23:01:01 DPB1*104:01 DPB1*23:01:01i1 

DPB1*03:01:01 DPB1*23:01:01 DPB1*104:01i1 DPB1*23:01:01i1 

DPB1*03:01:01 DPB1*29:01 DPB1*03:01:08 DPB1*29:01i1 

DPB1*03:01:01 DPB1*29:01 DPB1*104:01 DPB1*29:01i1 

DPB1*03:01:01 DPB1*29:01 DPB1*124:01 DPB1*29:01i1 

DPB1*03:01:01 DPB1*29:01 DPB1*351:01 DPB1*29:01i1 

DPB1*03:01:01 DPB1*29:01 DPB1*104:01i1 DPB1*29:01i1 

DPB1*03:01:01 DPB1*33:01 DPB1*104:01 DPB1*33:01i1 

DPB1*03:01:01 DPB1*33:01 DPB1*104:01i1 DPB1*33:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*03:01:01 DPB1*462:01 DPB1*351:01 DPB1*417:01 

DPB1*03:01:01 DPB1*46:01:01 DPB1*104:01 DPB1*46:01:01i1 

DPB1*03:01:01 DPB1*46:01:01 DPB1*104:01i1 DPB1*46:01:01i1 

DPB1*03:01:01 DPB1*47:01 DPB1*104:01 DPB1*47:01i1 

DPB1*03:01:01 DPB1*47:01 DPB1*104:01i1 DPB1*47:01i1 

DPB1*03:01:01 DPB1*51:01 DPB1*104:01 DPB1*51:01i1 

DPB1*03:01:01 DPB1*51:01 DPB1*104:01i1 DPB1*51:01i1 

DPB1*03:01:01 DPB1*59:01 DPB1*104:01 DPB1*59:01i1 

DPB1*03:01:01 DPB1*59:01 DPB1*104:01i1 DPB1*59:01i1 

DPB1*03:01:01 DPB1*78:01 DPB1*03:01:08 DPB1*78:01i1 

DPB1*03:01:01 DPB1*78:01 DPB1*104:01 DPB1*78:01i1 

DPB1*03:01:01 DPB1*78:01 DPB1*124:01 DPB1*78:01i1 

DPB1*03:01:01 DPB1*78:01 DPB1*351:01 DPB1*78:01i1 

DPB1*03:01:01 DPB1*78:01 DPB1*104:01i1 DPB1*78:01i1 

DPB1*03:01:01 DPB1*81:01 DPB1*104:01 DPB1*81:01i1 

DPB1*03:01:01 DPB1*81:01 DPB1*104:01i1 DPB1*81:01i1 

DPB1*03:01:01 DPB1*02:01:04i1 DPB1*104:01 DPB1*02:01:04i2 

DPB1*03:01:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*104:01i1 

DPB1*03:01:01 DPB1*72:01i1 DPB1*104:01 DPB1*72:01i2 

DPB1*03:01:01 DPB1*72:01i1 DPB1*104:01i1 DPB1*72:01i2 

DPB1*03:01:01 DPB1*02:01:04i2 DPB1*124:01 DPB1*02:01:04i1 

DPB1*03:01:01 DPB1*105:01i1 DPB1*124:01 DPB1*463:01 

DPB1*03:01:01 DPB1*46:01:01i1 DPB1*124:01 DPB1*46:01:01 

DPB1*03:01:01 DPB1*47:01i1 DPB1*124:01 DPB1*47:01 

DPB1*03:01:01 DPB1*51:01i1 DPB1*351:01 DPB1*51:01 

DPB1*03:01:01 DPB1*72:01i2 DPB1*124:01 DPB1*72:01i1 

DPB1*03:01:01 DPB1*81:01i1 DPB1*124:01 DPB1*81:01 

DPB1*03:01:08 DPB1*05:01:01 DPB1*05:01:02 DPB1*104:01 

DPB1*03:01:08 DPB1*05:01:01 DPB1*05:01:02 DPB1*104:01i1 

DPB1*03:01:08 DPB1*28:01 DPB1*124:01 DPB1*296:01 

DPB1*03:01:08 DPB1*414:01 DPB1*104:01 DPB1*352:01 

DPB1*03:01:08 DPB1*414:01 DPB1*352:01 DPB1*104:01i1 

DPB1*03:01:08 DPB1*416:01 DPB1*351:01 DPB1*352:01 

DPB1*03:01:08 DPB1*02:01:04i2 DPB1*124:01 DPB1*02:01:04i1 

DPB1*03:01:08 DPB1*46:01:01i1 DPB1*124:01 DPB1*46:01:01 

DPB1*03:01:08 DPB1*47:01i1 DPB1*124:01 DPB1*47:01 

DPB1*03:01:08 DPB1*51:01i1 DPB1*351:01 DPB1*51:01 

DPB1*03:01:08 DPB1*72:01i2 DPB1*124:01 DPB1*72:01i1 

DPB1*03:01:08 DPB1*81:01i1 DPB1*124:01 DPB1*81:01 

DPB1*04:01:01:01 DPB1*104:01 DPB1*04:01:01:02 DPB1*104:01i1 

DPB1*04:01:01:01 DPB1*104:01 DPB1*124:01 DPB1*350:01 

DPB1*04:01:01:01 DPB1*105:01 DPB1*04:01:01:02 DPB1*105:01i1 

DPB1*04:01:01:01 DPB1*138:01 DPB1*126:01 DPB1*23:01:01 

DPB1*04:01:01:01 DPB1*138:01 DPB1*126:01 DPB1*23:01:01i1 

DPB1*04:01:01:01 DPB1*13:01:01 DPB1*133:01 DPB1*350:01 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*04:01:01:01 DPB1*14:01:01 DPB1*04:01:01:02 DPB1*14:01:01i1 

DPB1*04:01:01:01 DPB1*23:01:01 DPB1*04:01:01:02 DPB1*23:01:01i1 

DPB1*04:01:01:01 DPB1*29:01 DPB1*04:01:01:02 DPB1*29:01i1 

DPB1*04:01:01:01 DPB1*33:01 DPB1*04:01:01:02 DPB1*33:01i1 

DPB1*04:01:01:01 DPB1*351:01 DPB1*124:01 DPB1*126:01 

DPB1*04:01:01:01 DPB1*39:01 DPB1*04:01:01:02 DPB1*39:01i1 

DPB1*04:01:01:01 DPB1*460:01 DPB1*126:01 DPB1*17:01 

DPB1*04:01:01:01 DPB1*463:01 DPB1*105:01 DPB1*350:01 

DPB1*04:01:01:01 DPB1*463:01 DPB1*350:01 DPB1*105:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*04:01:01:02 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*04:01:31 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*126:01 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*350:01 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*415:01 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*459:01 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*46:01:01 DPB1*464:01 DPB1*46:01:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*04:01:01:02 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*04:01:31 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*126:01 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*350:01 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*415:01 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*459:01 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*47:01 DPB1*464:01 DPB1*47:01i1 

DPB1*04:01:01:01 DPB1*51:01 DPB1*04:01:01:02 DPB1*51:01i1 

DPB1*04:01:01:01 DPB1*59:01 DPB1*04:01:01:02 DPB1*59:01i1 

DPB1*04:01:01:01 DPB1*78:01 DPB1*04:01:01:02 DPB1*78:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*04:01:01:02 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*04:01:31 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*126:01 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*350:01 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*415:01 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*459:01 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*81:01 DPB1*464:01 DPB1*81:01i1 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*04:01:01:02 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*04:01:31 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*126:01 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*350:01 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*415:01 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*459:01 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*02:01:04i1 DPB1*464:01 DPB1*02:01:04i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*04:01:01:02 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*04:01:31 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*126:01 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*350:01 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*415:01 DPB1*72:01i2 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*459:01 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*72:01i1 DPB1*464:01 DPB1*72:01i2 

DPB1*04:01:01:01 DPB1*02:01:04i2 DPB1*04:01:01:02 DPB1*02:01:04i1 

DPB1*04:01:01:01 DPB1*104:01i1 DPB1*04:01:01:02 DPB1*104:01 

DPB1*04:01:01:01 DPB1*104:01i1 DPB1*124:01 DPB1*350:01 

DPB1*04:01:01:01 DPB1*105:01i1 DPB1*04:01:01:02 DPB1*105:01 

DPB1*04:01:01:01 DPB1*14:01:01i1 DPB1*04:01:01:02 DPB1*14:01:01 

DPB1*04:01:01:01 DPB1*23:01:01i1 DPB1*04:01:01:02 DPB1*23:01:01 

DPB1*04:01:01:01 DPB1*29:01i1 DPB1*04:01:01:02 DPB1*29:01 

DPB1*04:01:01:01 DPB1*29:01i1 DPB1*29:01 DPB1*350:01 

DPB1*04:01:01:01 DPB1*33:01i1 DPB1*04:01:01:02 DPB1*33:01 

DPB1*04:01:01:01 DPB1*39:01i1 DPB1*04:01:01:02 DPB1*39:01 

DPB1*04:01:01:01 DPB1*46:01:01i1 DPB1*04:01:01:02 DPB1*46:01:01 

DPB1*04:01:01:01 DPB1*47:01i1 DPB1*04:01:01:02 DPB1*47:01 

DPB1*04:01:01:01 DPB1*51:01i1 DPB1*04:01:01:02 DPB1*51:01 

DPB1*04:01:01:01 DPB1*51:01i1 DPB1*126:01 DPB1*51:01 

DPB1*04:01:01:01 DPB1*59:01i1 DPB1*04:01:01:02 DPB1*59:01 

DPB1*04:01:01:01 DPB1*72:01i2 DPB1*04:01:01:02 DPB1*72:01i1 

DPB1*04:01:01:01 DPB1*78:01i1 DPB1*04:01:01:02 DPB1*78:01 

DPB1*04:01:01:01 DPB1*78:01i1 DPB1*350:01 DPB1*78:01 

DPB1*04:01:01:01 DPB1*81:01i1 DPB1*04:01:01:02 DPB1*81:01 

DPB1*04:01:01:02 DPB1*104:01 DPB1*124:01 DPB1*350:01 

DPB1*04:01:01:02 DPB1*138:01 DPB1*126:01 DPB1*23:01:01 

DPB1*04:01:01:02 DPB1*138:01 DPB1*126:01 DPB1*23:01:01i1 

DPB1*04:01:01:02 DPB1*13:01:01 DPB1*133:01 DPB1*350:01 

DPB1*04:01:01:02 DPB1*351:01 DPB1*124:01 DPB1*126:01 

DPB1*04:01:01:02 DPB1*460:01 DPB1*126:01 DPB1*17:01 

DPB1*04:01:01:02 DPB1*463:01 DPB1*105:01 DPB1*350:01 

DPB1*04:01:01:02 DPB1*463:01 DPB1*350:01 DPB1*105:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*04:01:31 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*126:01 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*350:01 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*415:01 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*459:01 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*46:01:01 DPB1*464:01 DPB1*46:01:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*04:01:31 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*126:01 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*350:01 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*415:01 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*459:01 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*47:01 DPB1*464:01 DPB1*47:01i1 

DPB1*04:01:01:02 DPB1*81:01 DPB1*04:01:31 DPB1*81:01i1 

DPB1*04:01:01:02 DPB1*81:01 DPB1*126:01 DPB1*81:01i1 

DPB1*04:01:01:02 DPB1*81:01 DPB1*350:01 DPB1*81:01i1 

DPB1*04:01:01:02 DPB1*81:01 DPB1*415:01 DPB1*81:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*04:01:01:02 DPB1*81:01 DPB1*459:01 DPB1*81:01i1 

DPB1*04:01:01:02 DPB1*81:01 DPB1*464:01 DPB1*81:01i1 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*04:01:31 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*126:01 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*350:01 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*415:01 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*459:01 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*02:01:04i1 DPB1*464:01 DPB1*02:01:04i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*04:01:31 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*126:01 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*350:01 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*415:01 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*459:01 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*72:01i1 DPB1*464:01 DPB1*72:01i2 

DPB1*04:01:01:02 DPB1*104:01i1 DPB1*124:01 DPB1*350:01 

DPB1*04:01:01:02 DPB1*29:01i1 DPB1*29:01 DPB1*350:01 

DPB1*04:01:01:02 DPB1*51:01i1 DPB1*126:01 DPB1*51:01 

DPB1*04:01:01:02 DPB1*78:01i1 DPB1*350:01 DPB1*78:01 

DPB1*04:01:01e1 DPB1*104:01 DPB1*04:01e1 DPB1*104:01i1 

DPB1*04:01:01e1 DPB1*105:01 DPB1*04:01e1 DPB1*105:01i1 

DPB1*04:01:01e1 DPB1*14:01:01 DPB1*04:01e1 DPB1*14:01:01i1 

DPB1*04:01:01e1 DPB1*23:01:01 DPB1*04:01e1 DPB1*23:01:01i1 

DPB1*04:01:01e1 DPB1*29:01 DPB1*04:01e1 DPB1*29:01i1 

DPB1*04:01:01e1 DPB1*33:01 DPB1*04:01e1 DPB1*33:01i1 

DPB1*04:01:01e1 DPB1*39:01 DPB1*04:01e1 DPB1*39:01i1 

DPB1*04:01:01e1 DPB1*46:01:01 DPB1*04:01e1 DPB1*46:01:01i1 

DPB1*04:01:01e1 DPB1*47:01 DPB1*04:01e1 DPB1*47:01i1 

DPB1*04:01:01e1 DPB1*51:01 DPB1*04:01e1 DPB1*51:01i1 

DPB1*04:01:01e1 DPB1*59:01 DPB1*04:01e1 DPB1*59:01i1 

DPB1*04:01:01e1 DPB1*78:01 DPB1*04:01e1 DPB1*78:01i1 

DPB1*04:01:01e1 DPB1*81:01 DPB1*04:01e1 DPB1*81:01i1 

DPB1*04:01:01e1 DPB1*02:01:04i1 DPB1*04:01e1 DPB1*02:01:04i2 

DPB1*04:01:01e1 DPB1*72:01i1 DPB1*04:01e1 DPB1*72:01i2 

DPB1*04:01:01e1 DPB1*02:01:04i2 DPB1*04:01e1 DPB1*02:01:04i1 

DPB1*04:01:01e1 DPB1*104:01i1 DPB1*04:01e1 DPB1*104:01 

DPB1*04:01:01e1 DPB1*105:01i1 DPB1*04:01e1 DPB1*105:01 

DPB1*04:01:01e1 DPB1*14:01:01i1 DPB1*04:01e1 DPB1*14:01:01 

DPB1*04:01:01e1 DPB1*23:01:01i1 DPB1*04:01e1 DPB1*23:01:01 

DPB1*04:01:01e1 DPB1*29:01i1 DPB1*04:01e1 DPB1*29:01 

DPB1*04:01:01e1 DPB1*33:01i1 DPB1*04:01e1 DPB1*33:01 

DPB1*04:01:01e1 DPB1*39:01i1 DPB1*04:01e1 DPB1*39:01 

DPB1*04:01:01e1 DPB1*46:01:01i1 DPB1*04:01e1 DPB1*46:01:01 

DPB1*04:01:01e1 DPB1*47:01i1 DPB1*04:01e1 DPB1*47:01 

DPB1*04:01:01e1 DPB1*51:01i1 DPB1*04:01e1 DPB1*51:01 

DPB1*04:01:01e1 DPB1*59:01i1 DPB1*04:01e1 DPB1*59:01 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*04:01:01e1 DPB1*72:01i2 DPB1*04:01e1 DPB1*72:01i1 

DPB1*04:01:01e1 DPB1*78:01i1 DPB1*04:01e1 DPB1*78:01 

DPB1*04:01:01e1 DPB1*81:01i1 DPB1*04:01e1 DPB1*81:01 

DPB1*04:01:31 DPB1*29:01i1 DPB1*29:01 DPB1*350:01 

DPB1*04:01:31 DPB1*51:01i1 DPB1*126:01 DPB1*51:01 

DPB1*04:01:31 DPB1*78:01i1 DPB1*350:01 DPB1*78:01 

DPB1*04:02:01:01 DPB1*104:01 DPB1*04:02:01:02 DPB1*104:01i1 

DPB1*04:02:01:01 DPB1*105:01 DPB1*04:02:01:02 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*124:01 DPB1*105:01 DPB1*351:01 

DPB1*04:02:01:01 DPB1*124:01 DPB1*351:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*14:01:01 DPB1*04:02:01:02 DPB1*14:01:01i1 

DPB1*04:02:01:01 DPB1*17:01 DPB1*105:01 DPB1*460:01 

DPB1*04:02:01:01 DPB1*17:01 DPB1*460:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*23:01:01 DPB1*04:02:01:02 DPB1*23:01:01i1 

DPB1*04:02:01:01 DPB1*23:01:01 DPB1*105:01 DPB1*138:01 

DPB1*04:02:01:01 DPB1*23:01:01 DPB1*138:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*29:01 DPB1*04:02:01:02 DPB1*29:01i1 

DPB1*04:02:01:01 DPB1*33:01 DPB1*04:02:01:02 DPB1*33:01i1 

DPB1*04:02:01:01 DPB1*350:01 DPB1*126:01 DPB1*463:01 

DPB1*04:02:01:01 DPB1*39:01 DPB1*04:02:01:02 DPB1*39:01i1 

DPB1*04:02:01:01 DPB1*417:01 DPB1*462:01 DPB1*463:01 

DPB1*04:02:01:01 DPB1*46:01:01 DPB1*04:02:01:02 DPB1*46:01:01i1 

DPB1*04:02:01:01 DPB1*47:01 DPB1*04:02:01:02 DPB1*47:01i1 

DPB1*04:02:01:01 DPB1*51:01 DPB1*04:02:01:02 DPB1*51:01i1 

DPB1*04:02:01:01 DPB1*51:01 DPB1*105:01 DPB1*51:01i1 

DPB1*04:02:01:01 DPB1*51:01 DPB1*463:01 DPB1*51:01i1 

DPB1*04:02:01:01 DPB1*51:01 DPB1*105:01i1 DPB1*51:01i1 

DPB1*04:02:01:01 DPB1*59:01 DPB1*04:02:01:02 DPB1*59:01i1 

DPB1*04:02:01:01 DPB1*78:01 DPB1*04:02:01:02 DPB1*78:01i1 

DPB1*04:02:01:01 DPB1*81:01 DPB1*04:02:01:02 DPB1*81:01i1 

DPB1*04:02:01:01 DPB1*02:01:04i1 DPB1*04:02:01:02 DPB1*02:01:04i2 

DPB1*04:02:01:01 DPB1*72:01i1 DPB1*04:02:01:02 DPB1*72:01i2 

DPB1*04:02:01:01 DPB1*02:01:04i2 DPB1*04:02:01:02 DPB1*02:01:04i1 

DPB1*04:02:01:01 DPB1*02:01:04i2 DPB1*105:01 DPB1*02:01:04i1 

DPB1*04:02:01:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*104:01i1 DPB1*04:02:01:02 DPB1*104:01 

DPB1*04:02:01:01 DPB1*105:01i1 DPB1*04:02:01:02 DPB1*105:01 

DPB1*04:02:01:01 DPB1*14:01:01i1 DPB1*04:02:01:02 DPB1*14:01:01 

DPB1*04:02:01:01 DPB1*23:01:01i1 DPB1*04:02:01:02 DPB1*23:01:01 

DPB1*04:02:01:01 DPB1*23:01:01i1 DPB1*105:01 DPB1*138:01 

DPB1*04:02:01:01 DPB1*23:01:01i1 DPB1*138:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*29:01i1 DPB1*04:02:01:02 DPB1*29:01 

DPB1*04:02:01:01 DPB1*29:01i1 DPB1*29:01 DPB1*463:01 

DPB1*04:02:01:01 DPB1*33:01i1 DPB1*04:02:01:02 DPB1*33:01 

DPB1*04:02:01:01 DPB1*39:01i1 DPB1*04:02:01:02 DPB1*39:01 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*04:02:01:01 DPB1*46:01:01i1 DPB1*04:02:01:02 DPB1*46:01:01 

DPB1*04:02:01:01 DPB1*46:01:01i1 DPB1*105:01 DPB1*46:01:01 

DPB1*04:02:01:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*47:01i1 DPB1*04:02:01:02 DPB1*47:01 

DPB1*04:02:01:01 DPB1*47:01i1 DPB1*105:01 DPB1*47:01 

DPB1*04:02:01:01 DPB1*47:01i1 DPB1*47:01 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*51:01i1 DPB1*04:02:01:02 DPB1*51:01 

DPB1*04:02:01:01 DPB1*59:01i1 DPB1*04:02:01:02 DPB1*59:01 

DPB1*04:02:01:01 DPB1*72:01i2 DPB1*04:02:01:02 DPB1*72:01i1 

DPB1*04:02:01:01 DPB1*72:01i2 DPB1*105:01 DPB1*72:01i1 

DPB1*04:02:01:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*105:01i1 

DPB1*04:02:01:01 DPB1*78:01i1 DPB1*04:02:01:02 DPB1*78:01 

DPB1*04:02:01:01 DPB1*78:01i1 DPB1*463:01 DPB1*78:01 

DPB1*04:02:01:01 DPB1*81:01i1 DPB1*04:02:01:02 DPB1*81:01 

DPB1*04:02:01:01 DPB1*81:01i1 DPB1*105:01 DPB1*81:01 

DPB1*04:02:01:01 DPB1*81:01i1 DPB1*81:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*124:01 DPB1*105:01 DPB1*351:01 

DPB1*04:02:01:02 DPB1*124:01 DPB1*351:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*17:01 DPB1*105:01 DPB1*460:01 

DPB1*04:02:01:02 DPB1*17:01 DPB1*460:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*23:01:01 DPB1*105:01 DPB1*138:01 

DPB1*04:02:01:02 DPB1*23:01:01 DPB1*138:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*350:01 DPB1*126:01 DPB1*463:01 

DPB1*04:02:01:02 DPB1*417:01 DPB1*462:01 DPB1*463:01 

DPB1*04:02:01:02 DPB1*51:01 DPB1*105:01 DPB1*51:01i1 

DPB1*04:02:01:02 DPB1*51:01 DPB1*463:01 DPB1*51:01i1 

DPB1*04:02:01:02 DPB1*51:01 DPB1*105:01i1 DPB1*51:01i1 

DPB1*04:02:01:02 DPB1*02:01:04i2 DPB1*105:01 DPB1*02:01:04i1 

DPB1*04:02:01:02 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*23:01:01i1 DPB1*105:01 DPB1*138:01 

DPB1*04:02:01:02 DPB1*23:01:01i1 DPB1*138:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*29:01i1 DPB1*29:01 DPB1*463:01 

DPB1*04:02:01:02 DPB1*46:01:01i1 DPB1*105:01 DPB1*46:01:01 

DPB1*04:02:01:02 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*47:01i1 DPB1*105:01 DPB1*47:01 

DPB1*04:02:01:02 DPB1*47:01i1 DPB1*47:01 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*72:01i2 DPB1*105:01 DPB1*72:01i1 

DPB1*04:02:01:02 DPB1*72:01i2 DPB1*72:01i1 DPB1*105:01i1 

DPB1*04:02:01:02 DPB1*78:01i1 DPB1*463:01 DPB1*78:01 

DPB1*04:02:01:02 DPB1*81:01i1 DPB1*105:01 DPB1*81:01 

DPB1*04:02:01:02 DPB1*81:01i1 DPB1*81:01 DPB1*105:01i1 

DPB1*05:01:01 DPB1*29:01 DPB1*05:01:02 DPB1*29:01i1 

DPB1*05:01:01 DPB1*352:01 DPB1*05:01:02 DPB1*414:01 

DPB1*05:01:01 DPB1*78:01 DPB1*05:01:02 DPB1*78:01i1 

DPB1*05:01:01 DPB1*02:01:04i2 DPB1*135:01 DPB1*02:01:04i1 



________________________________________________Materials and Methods 
 

Page | 384  

   © Gonzalo Montero Martin  

 

Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*05:01:01 DPB1*23:01:01i1 DPB1*135:01 DPB1*23:01:01 

DPB1*05:01:01 DPB1*29:01i1 DPB1*135:01 DPB1*29:01 

DPB1*05:01:01 DPB1*33:01i1 DPB1*135:01 DPB1*33:01 

DPB1*05:01:01 DPB1*46:01:01i1 DPB1*135:01 DPB1*46:01:01 

DPB1*05:01:01 DPB1*47:01i1 DPB1*135:01 DPB1*47:01 

DPB1*05:01:01 DPB1*51:01i1 DPB1*135:01 DPB1*51:01 

DPB1*05:01:01 DPB1*59:01i1 DPB1*135:01 DPB1*59:01 

DPB1*05:01:01 DPB1*72:01i2 DPB1*135:01 DPB1*72:01i1 

DPB1*05:01:01 DPB1*78:01i1 DPB1*135:01 DPB1*78:01 

DPB1*05:01:01 DPB1*81:01i1 DPB1*135:01 DPB1*81:01 

DPB1*05:01:02 DPB1*29:01i1 DPB1*135:01 DPB1*29:01 

DPB1*05:01:02 DPB1*78:01i1 DPB1*135:01 DPB1*78:01 

DPB1*104:01 DPB1*105:01 DPB1*124:01 DPB1*463:01 

DPB1*104:01 DPB1*105:01 DPB1*104:01i1 DPB1*105:01i1 

DPB1*104:01 DPB1*106:01 DPB1*124:01 DPB1*19:01 

DPB1*104:01 DPB1*133:01 DPB1*124:01 DPB1*13:01:01 

DPB1*104:01 DPB1*14:01:01 DPB1*104:01i1 DPB1*14:01:01i1 

DPB1*104:01 DPB1*23:01:01 DPB1*104:01i1 DPB1*23:01:01i1 

DPB1*104:01 DPB1*29:01 DPB1*124:01 DPB1*29:01i1 

DPB1*104:01 DPB1*29:01 DPB1*104:01i1 DPB1*29:01i1 

DPB1*104:01 DPB1*33:01 DPB1*104:01i1 DPB1*33:01i1 

DPB1*104:01 DPB1*39:01 DPB1*104:01i1 DPB1*39:01i1 

DPB1*104:01 DPB1*416:01 DPB1*351:01 DPB1*414:01 

DPB1*104:01 DPB1*46:01:01 DPB1*104:01i1 DPB1*46:01:01i1 

DPB1*104:01 DPB1*47:01 DPB1*104:01i1 DPB1*47:01i1 

DPB1*104:01 DPB1*51:01 DPB1*104:01i1 DPB1*51:01i1 

DPB1*104:01 DPB1*59:01 DPB1*104:01i1 DPB1*59:01i1 

DPB1*104:01 DPB1*78:01 DPB1*124:01 DPB1*78:01i1 

DPB1*104:01 DPB1*78:01 DPB1*104:01i1 DPB1*78:01i1 

DPB1*104:01 DPB1*81:01 DPB1*104:01i1 DPB1*81:01i1 

DPB1*104:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*104:01i1 

DPB1*104:01 DPB1*72:01i1 DPB1*104:01i1 DPB1*72:01i2 

DPB1*104:01 DPB1*02:01:04i2 DPB1*124:01 DPB1*02:01:04i1 

DPB1*104:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*104:01i1 

DPB1*104:01 DPB1*105:01i1 DPB1*105:01 DPB1*104:01i1 

DPB1*104:01 DPB1*105:01i1 DPB1*124:01 DPB1*463:01 

DPB1*104:01 DPB1*14:01:01i1 DPB1*14:01:01 DPB1*104:01i1 

DPB1*104:01 DPB1*23:01:01i1 DPB1*23:01:01 DPB1*104:01i1 

DPB1*104:01 DPB1*29:01i1 DPB1*29:01 DPB1*104:01i1 

DPB1*104:01 DPB1*33:01i1 DPB1*33:01 DPB1*104:01i1 

DPB1*104:01 DPB1*39:01i1 DPB1*39:01 DPB1*104:01i1 

DPB1*104:01 DPB1*46:01:01i1 DPB1*124:01 DPB1*46:01:01 

DPB1*104:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*104:01i1 

DPB1*104:01 DPB1*47:01i1 DPB1*124:01 DPB1*47:01 

DPB1*104:01 DPB1*47:01i1 DPB1*47:01 DPB1*104:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*104:01 DPB1*51:01i1 DPB1*351:01 DPB1*51:01 

DPB1*104:01 DPB1*51:01i1 DPB1*51:01 DPB1*104:01i1 

DPB1*104:01 DPB1*59:01i1 DPB1*59:01 DPB1*104:01i1 

DPB1*104:01 DPB1*72:01i2 DPB1*124:01 DPB1*72:01i1 

DPB1*104:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*104:01i1 

DPB1*104:01 DPB1*78:01i1 DPB1*78:01 DPB1*104:01i1 

DPB1*104:01 DPB1*81:01i1 DPB1*124:01 DPB1*81:01 

DPB1*104:01 DPB1*81:01i1 DPB1*81:01 DPB1*104:01i1 

DPB1*105:01 DPB1*13:01:01 DPB1*133:01 DPB1*463:01 

DPB1*105:01 DPB1*14:01:01 DPB1*105:01i1 DPB1*14:01:01i1 

DPB1*105:01 DPB1*23:01:01 DPB1*105:01i1 DPB1*23:01:01i1 

DPB1*105:01 DPB1*29:01 DPB1*105:01i1 DPB1*29:01i1 

DPB1*105:01 DPB1*33:01 DPB1*105:01i1 DPB1*33:01i1 

DPB1*105:01 DPB1*39:01 DPB1*105:01i1 DPB1*39:01i1 

DPB1*105:01 DPB1*46:01:01 DPB1*463:01 DPB1*46:01:01i1 

DPB1*105:01 DPB1*46:01:01 DPB1*105:01i1 DPB1*46:01:01i1 

DPB1*105:01 DPB1*47:01 DPB1*463:01 DPB1*47:01i1 

DPB1*105:01 DPB1*47:01 DPB1*105:01i1 DPB1*47:01i1 

DPB1*105:01 DPB1*51:01 DPB1*105:01i1 DPB1*51:01i1 

DPB1*105:01 DPB1*59:01 DPB1*105:01i1 DPB1*59:01i1 

DPB1*105:01 DPB1*78:01 DPB1*105:01i1 DPB1*78:01i1 

DPB1*105:01 DPB1*81:01 DPB1*463:01 DPB1*81:01i1 

DPB1*105:01 DPB1*81:01 DPB1*105:01i1 DPB1*81:01i1 

DPB1*105:01 DPB1*02:01:04i1 DPB1*463:01 DPB1*02:01:04i2 

DPB1*105:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*105:01i1 

DPB1*105:01 DPB1*72:01i1 DPB1*463:01 DPB1*72:01i2 

DPB1*105:01 DPB1*72:01i1 DPB1*105:01i1 DPB1*72:01i2 

DPB1*105:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*105:01i1 

DPB1*105:01 DPB1*104:01i1 DPB1*124:01 DPB1*463:01 

DPB1*105:01 DPB1*14:01:01i1 DPB1*14:01:01 DPB1*105:01i1 

DPB1*105:01 DPB1*23:01:01i1 DPB1*23:01:01 DPB1*105:01i1 

DPB1*105:01 DPB1*29:01i1 DPB1*29:01 DPB1*463:01 

DPB1*105:01 DPB1*29:01i1 DPB1*29:01 DPB1*105:01i1 

DPB1*105:01 DPB1*33:01i1 DPB1*33:01 DPB1*105:01i1 

DPB1*105:01 DPB1*39:01i1 DPB1*39:01 DPB1*105:01i1 

DPB1*105:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*105:01i1 

DPB1*105:01 DPB1*47:01i1 DPB1*47:01 DPB1*105:01i1 

DPB1*105:01 DPB1*51:01i1 DPB1*51:01 DPB1*105:01i1 

DPB1*105:01 DPB1*59:01i1 DPB1*59:01 DPB1*105:01i1 

DPB1*105:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*105:01i1 

DPB1*105:01 DPB1*78:01i1 DPB1*463:01 DPB1*78:01 

DPB1*105:01 DPB1*78:01i1 DPB1*78:01 DPB1*105:01i1 

DPB1*105:01 DPB1*81:01i1 DPB1*81:01 DPB1*105:01i1 

DPB1*106:01 DPB1*46:01:01 DPB1*19:01 DPB1*46:01:01i1 

DPB1*106:01 DPB1*47:01 DPB1*19:01 DPB1*47:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*106:01 DPB1*81:01 DPB1*19:01 DPB1*81:01i1 

DPB1*106:01 DPB1*02:01:04i1 DPB1*19:01 DPB1*02:01:04i2 

DPB1*106:01 DPB1*72:01i1 DPB1*19:01 DPB1*72:01i2 

DPB1*106:01 DPB1*104:01i1 DPB1*124:01 DPB1*19:01 

DPB1*124:01 DPB1*138:01 DPB1*23:01:01 DPB1*351:01 

DPB1*124:01 DPB1*138:01 DPB1*351:01 DPB1*23:01:01i1 

DPB1*124:01 DPB1*13:01:01 DPB1*133:01 DPB1*104:01i1 

DPB1*124:01 DPB1*460:01 DPB1*17:01 DPB1*351:01 

DPB1*124:01 DPB1*463:01 DPB1*104:01i1 DPB1*105:01i1 

DPB1*124:01 DPB1*46:01:01 DPB1*351:01 DPB1*46:01:01i1 

DPB1*124:01 DPB1*46:01:01 DPB1*104:01i1 DPB1*46:01:01i1 

DPB1*124:01 DPB1*47:01 DPB1*351:01 DPB1*47:01i1 

DPB1*124:01 DPB1*47:01 DPB1*104:01i1 DPB1*47:01i1 

DPB1*124:01 DPB1*81:01 DPB1*351:01 DPB1*81:01i1 

DPB1*124:01 DPB1*81:01 DPB1*104:01i1 DPB1*81:01i1 

DPB1*124:01 DPB1*02:01:04i1 DPB1*351:01 DPB1*02:01:04i2 

DPB1*124:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*104:01i1 

DPB1*124:01 DPB1*72:01i1 DPB1*351:01 DPB1*72:01i2 

DPB1*124:01 DPB1*72:01i1 DPB1*104:01i1 DPB1*72:01i2 

DPB1*124:01 DPB1*29:01i1 DPB1*29:01 DPB1*104:01i1 

DPB1*124:01 DPB1*51:01i1 DPB1*351:01 DPB1*51:01 

DPB1*124:01 DPB1*78:01i1 DPB1*78:01 DPB1*104:01i1 

DPB1*126:01 DPB1*417:01 DPB1*350:01 DPB1*462:01 

DPB1*126:01 DPB1*51:01 DPB1*350:01 DPB1*51:01i1 

DPB1*126:01 DPB1*51:01 DPB1*415:01 DPB1*51:01i1 

DPB1*126:01 DPB1*51:01 DPB1*459:01 DPB1*51:01i1 

DPB1*126:01 DPB1*51:01 DPB1*464:01 DPB1*51:01i1 

DPB1*126:01 DPB1*29:01i1 DPB1*29:01 DPB1*350:01 

DPB1*126:01 DPB1*78:01i1 DPB1*350:01 DPB1*78:01 

DPB1*131:01 DPB1*29:01 DPB1*168:01 DPB1*29:01i1 

DPB1*131:01 DPB1*416:01 DPB1*460:01 DPB1*461:01 

DPB1*131:01 DPB1*78:01 DPB1*168:01 DPB1*78:01i1 

DPB1*131:01 DPB1*02:01:04i2 DPB1*17:01 DPB1*02:01:04i1 

DPB1*131:01 DPB1*46:01:01i1 DPB1*17:01 DPB1*46:01:01 

DPB1*131:01 DPB1*47:01i1 DPB1*17:01 DPB1*47:01 

DPB1*131:01 DPB1*51:01i1 DPB1*460:01 DPB1*51:01 

DPB1*131:01 DPB1*72:01i2 DPB1*17:01 DPB1*72:01i1 

DPB1*131:01 DPB1*81:01i1 DPB1*17:01 DPB1*81:01 

DPB1*133:01 DPB1*463:01 DPB1*13:01:01 DPB1*105:01i1 

DPB1*133:01 DPB1*46:01:01 DPB1*13:01:01 DPB1*46:01:01i1 

DPB1*133:01 DPB1*47:01 DPB1*13:01:01 DPB1*47:01i1 

DPB1*133:01 DPB1*81:01 DPB1*13:01:01 DPB1*81:01i1 

DPB1*133:01 DPB1*02:01:04i1 DPB1*13:01:01 DPB1*02:01:04i2 

DPB1*133:01 DPB1*72:01i1 DPB1*13:01:01 DPB1*72:01i2 

DPB1*133:01 DPB1*29:01i1 DPB1*13:01:01 DPB1*29:01 



________________________________________________Materials and Methods 
 

Page | 387  

   © Gonzalo Montero Martin  

 

Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*133:01 DPB1*78:01i1 DPB1*13:01:01 DPB1*78:01 

DPB1*138:01 DPB1*17:01 DPB1*23:01:01 DPB1*460:01 

DPB1*138:01 DPB1*17:01 DPB1*460:01 DPB1*23:01:01i1 

DPB1*138:01 DPB1*51:01 DPB1*23:01:01 DPB1*51:01i1 

DPB1*138:01 DPB1*51:01 DPB1*23:01:01i1 DPB1*51:01i1 

DPB1*138:01 DPB1*02:01:04i2 DPB1*23:01:01 DPB1*02:01:04i1 

DPB1*138:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*23:01:01i1 

DPB1*138:01 DPB1*46:01:01i1 DPB1*23:01:01 DPB1*46:01:01 

DPB1*138:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*23:01:01i1 

DPB1*138:01 DPB1*47:01i1 DPB1*23:01:01 DPB1*47:01 

DPB1*138:01 DPB1*47:01i1 DPB1*47:01 DPB1*23:01:01i1 

DPB1*138:01 DPB1*72:01i2 DPB1*23:01:01 DPB1*72:01i1 

DPB1*138:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*23:01:01i1 

DPB1*138:01 DPB1*81:01i1 DPB1*23:01:01 DPB1*81:01 

DPB1*138:01 DPB1*81:01i1 DPB1*81:01 DPB1*23:01:01i1 

DPB1*141:01 DPB1*29:01i1 DPB1*29:01 DPB1*414:01 

DPB1*141:01 DPB1*29:01i1 DPB1*29:01 DPB1*461:01 

DPB1*141:01 DPB1*51:01i1 DPB1*416:01 DPB1*51:01 

DPB1*141:01 DPB1*78:01i1 DPB1*414:01 DPB1*78:01 

DPB1*141:01 DPB1*78:01i1 DPB1*461:01 DPB1*78:01 

DPB1*14:01:01 DPB1*23:01:01 DPB1*14:01:01i1 DPB1*23:01:01i1 

DPB1*14:01:01 DPB1*29:01 DPB1*14:01:01i1 DPB1*29:01i1 

DPB1*14:01:01 DPB1*33:01 DPB1*14:01:01i1 DPB1*33:01i1 

DPB1*14:01:01 DPB1*39:01 DPB1*14:01:01i1 DPB1*39:01i1 

DPB1*14:01:01 DPB1*46:01:01 DPB1*14:01:01i1 DPB1*46:01:01i1 

DPB1*14:01:01 DPB1*47:01 DPB1*14:01:01i1 DPB1*47:01i1 

DPB1*14:01:01 DPB1*51:01 DPB1*14:01:01i1 DPB1*51:01i1 

DPB1*14:01:01 DPB1*59:01 DPB1*14:01:01i1 DPB1*59:01i1 

DPB1*14:01:01 DPB1*78:01 DPB1*14:01:01i1 DPB1*78:01i1 

DPB1*14:01:01 DPB1*81:01 DPB1*14:01:01i1 DPB1*81:01i1 

DPB1*14:01:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*72:01i1 DPB1*14:01:01i1 DPB1*72:01i2 

DPB1*14:01:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*23:01:01i1 DPB1*23:01:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*29:01i1 DPB1*29:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*33:01i1 DPB1*33:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*39:01i1 DPB1*39:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*47:01i1 DPB1*47:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*51:01i1 DPB1*51:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*59:01i1 DPB1*59:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*78:01i1 DPB1*78:01 DPB1*14:01:01i1 

DPB1*14:01:01 DPB1*81:01i1 DPB1*81:01 DPB1*14:01:01i1 

DPB1*168:01 DPB1*02:01:04i2 DPB1*17:01 DPB1*02:01:04i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*168:01 DPB1*46:01:01i1 DPB1*17:01 DPB1*46:01:01 

DPB1*168:01 DPB1*47:01i1 DPB1*17:01 DPB1*47:01 

DPB1*168:01 DPB1*51:01i1 DPB1*460:01 DPB1*51:01 

DPB1*168:01 DPB1*72:01i2 DPB1*17:01 DPB1*72:01i1 

DPB1*168:01 DPB1*81:01i1 DPB1*17:01 DPB1*81:01 

DPB1*17:01 DPB1*46:01:01 DPB1*460:01 DPB1*46:01:01i1 

DPB1*17:01 DPB1*47:01 DPB1*460:01 DPB1*47:01i1 

DPB1*17:01 DPB1*81:01 DPB1*460:01 DPB1*81:01i1 

DPB1*17:01 DPB1*02:01:04i1 DPB1*460:01 DPB1*02:01:04i2 

DPB1*17:01 DPB1*72:01i1 DPB1*460:01 DPB1*72:01i2 

DPB1*17:01 DPB1*51:01i1 DPB1*460:01 DPB1*51:01 

DPB1*23:01:01 DPB1*29:01 DPB1*23:01:01i1 DPB1*29:01i1 

DPB1*23:01:01 DPB1*33:01 DPB1*23:01:01i1 DPB1*33:01i1 

DPB1*23:01:01 DPB1*39:01 DPB1*23:01:01i1 DPB1*39:01i1 

DPB1*23:01:01 DPB1*46:01:01 DPB1*23:01:01i1 DPB1*46:01:01i1 

DPB1*23:01:01 DPB1*47:01 DPB1*23:01:01i1 DPB1*47:01i1 

DPB1*23:01:01 DPB1*51:01 DPB1*23:01:01i1 DPB1*51:01i1 

DPB1*23:01:01 DPB1*59:01 DPB1*23:01:01i1 DPB1*59:01i1 

DPB1*23:01:01 DPB1*78:01 DPB1*23:01:01i1 DPB1*78:01i1 

DPB1*23:01:01 DPB1*81:01 DPB1*23:01:01i1 DPB1*81:01i1 

DPB1*23:01:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*72:01i1 DPB1*23:01:01i1 DPB1*72:01i2 

DPB1*23:01:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*29:01i1 DPB1*29:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*33:01i1 DPB1*33:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*39:01i1 DPB1*39:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*47:01i1 DPB1*47:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*51:01i1 DPB1*51:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*59:01i1 DPB1*59:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*78:01i1 DPB1*78:01 DPB1*23:01:01i1 

DPB1*23:01:01 DPB1*81:01i1 DPB1*81:01 DPB1*23:01:01i1 

DPB1*28:01 DPB1*46:01:01 DPB1*296:01 DPB1*46:01:01i1 

DPB1*28:01 DPB1*47:01 DPB1*296:01 DPB1*47:01i1 

DPB1*28:01 DPB1*81:01 DPB1*296:01 DPB1*81:01i1 

DPB1*28:01 DPB1*02:01:04i1 DPB1*296:01 DPB1*02:01:04i2 

DPB1*28:01 DPB1*72:01i1 DPB1*296:01 DPB1*72:01i2 

DPB1*29:01 DPB1*33:01 DPB1*29:01i1 DPB1*33:01i1 

DPB1*29:01 DPB1*350:01 DPB1*415:01 DPB1*29:01i1 

DPB1*29:01 DPB1*350:01 DPB1*459:01 DPB1*29:01i1 

DPB1*29:01 DPB1*350:01 DPB1*464:01 DPB1*29:01i1 

DPB1*29:01 DPB1*39:01 DPB1*29:01i1 DPB1*39:01i1 

DPB1*29:01 DPB1*417:01 DPB1*462:01 DPB1*29:01i1 

DPB1*29:01 DPB1*463:01 DPB1*105:01i1 DPB1*29:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*29:01 DPB1*46:01:01 DPB1*29:01i1 DPB1*46:01:01i1 

DPB1*29:01 DPB1*47:01 DPB1*29:01i1 DPB1*47:01i1 

DPB1*29:01 DPB1*51:01 DPB1*29:01i1 DPB1*51:01i1 

DPB1*29:01 DPB1*59:01 DPB1*29:01i1 DPB1*59:01i1 

DPB1*29:01 DPB1*78:01 DPB1*29:01i1 DPB1*78:01i1 

DPB1*29:01 DPB1*81:01 DPB1*29:01i1 DPB1*81:01i1 

DPB1*29:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*29:01i1 

DPB1*29:01 DPB1*72:01i1 DPB1*29:01i1 DPB1*72:01i2 

DPB1*29:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*29:01i1 

DPB1*29:01 DPB1*33:01i1 DPB1*33:01 DPB1*29:01i1 

DPB1*29:01 DPB1*39:01i1 DPB1*39:01 DPB1*29:01i1 

DPB1*29:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*29:01i1 

DPB1*29:01 DPB1*47:01i1 DPB1*47:01 DPB1*29:01i1 

DPB1*29:01 DPB1*51:01i1 DPB1*51:01 DPB1*29:01i1 

DPB1*29:01 DPB1*59:01i1 DPB1*59:01 DPB1*29:01i1 

DPB1*29:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*29:01i1 

DPB1*29:01 DPB1*78:01i1 DPB1*78:01 DPB1*29:01i1 

DPB1*29:01 DPB1*81:01i1 DPB1*81:01 DPB1*29:01i1 

DPB1*33:01 DPB1*39:01 DPB1*33:01i1 DPB1*39:01i1 

DPB1*33:01 DPB1*46:01:01 DPB1*33:01i1 DPB1*46:01:01i1 

DPB1*33:01 DPB1*47:01 DPB1*33:01i1 DPB1*47:01i1 

DPB1*33:01 DPB1*51:01 DPB1*33:01i1 DPB1*51:01i1 

DPB1*33:01 DPB1*59:01 DPB1*33:01i1 DPB1*59:01i1 

DPB1*33:01 DPB1*78:01 DPB1*33:01i1 DPB1*78:01i1 

DPB1*33:01 DPB1*81:01 DPB1*33:01i1 DPB1*81:01i1 

DPB1*33:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*33:01i1 

DPB1*33:01 DPB1*72:01i1 DPB1*33:01i1 DPB1*72:01i2 

DPB1*33:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*33:01i1 

DPB1*33:01 DPB1*39:01i1 DPB1*39:01 DPB1*33:01i1 

DPB1*33:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*33:01i1 

DPB1*33:01 DPB1*47:01i1 DPB1*47:01 DPB1*33:01i1 

DPB1*33:01 DPB1*51:01i1 DPB1*51:01 DPB1*33:01i1 

DPB1*33:01 DPB1*59:01i1 DPB1*59:01 DPB1*33:01i1 

DPB1*33:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*33:01i1 

DPB1*33:01 DPB1*78:01i1 DPB1*78:01 DPB1*33:01i1 

DPB1*33:01 DPB1*81:01i1 DPB1*81:01 DPB1*33:01i1 

DPB1*350:01 DPB1*78:01 DPB1*415:01 DPB1*78:01i1 

DPB1*350:01 DPB1*78:01 DPB1*459:01 DPB1*78:01i1 

DPB1*350:01 DPB1*78:01 DPB1*464:01 DPB1*78:01i1 

DPB1*351:01 DPB1*414:01 DPB1*416:01 DPB1*104:01i1 

DPB1*351:01 DPB1*51:01 DPB1*104:01i1 DPB1*51:01i1 

DPB1*352:01 DPB1*51:01i1 DPB1*416:01 DPB1*51:01 

DPB1*39:01 DPB1*46:01:01 DPB1*39:01i1 DPB1*46:01:01i1 

DPB1*39:01 DPB1*47:01 DPB1*39:01i1 DPB1*47:01i1 

DPB1*39:01 DPB1*51:01 DPB1*39:01i1 DPB1*51:01i1 



________________________________________________Materials and Methods 
 

Page | 390  

   © Gonzalo Montero Martin  

 

Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*39:01 DPB1*59:01 DPB1*39:01i1 DPB1*59:01i1 

DPB1*39:01 DPB1*78:01 DPB1*39:01i1 DPB1*78:01i1 

DPB1*39:01 DPB1*81:01 DPB1*39:01i1 DPB1*81:01i1 

DPB1*39:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*39:01i1 

DPB1*39:01 DPB1*72:01i1 DPB1*39:01i1 DPB1*72:01i2 

DPB1*39:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*39:01i1 

DPB1*39:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*39:01i1 

DPB1*39:01 DPB1*47:01i1 DPB1*47:01 DPB1*39:01i1 

DPB1*39:01 DPB1*51:01i1 DPB1*51:01 DPB1*39:01i1 

DPB1*39:01 DPB1*59:01i1 DPB1*59:01 DPB1*39:01i1 

DPB1*39:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*39:01i1 

DPB1*39:01 DPB1*78:01i1 DPB1*78:01 DPB1*39:01i1 

DPB1*39:01 DPB1*81:01i1 DPB1*81:01 DPB1*39:01i1 

DPB1*414:01 DPB1*51:01i1 DPB1*416:01 DPB1*51:01 

DPB1*416:01 DPB1*51:01 DPB1*461:01 DPB1*51:01i1 

DPB1*417:01 DPB1*78:01 DPB1*462:01 DPB1*78:01i1 

DPB1*417:01 DPB1*51:01i1 DPB1*462:01 DPB1*51:01 

DPB1*463:01 DPB1*78:01 DPB1*105:01i1 DPB1*78:01i1 

DPB1*463:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*105:01i1 

DPB1*463:01 DPB1*46:01:01i1 DPB1*46:01:01 DPB1*105:01i1 

DPB1*463:01 DPB1*47:01i1 DPB1*47:01 DPB1*105:01i1 

DPB1*463:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*105:01i1 

DPB1*463:01 DPB1*81:01i1 DPB1*81:01 DPB1*105:01i1 

DPB1*46:01:01 DPB1*47:01 DPB1*46:01:01i1 DPB1*47:01i1 

DPB1*46:01:01 DPB1*51:01 DPB1*46:01:01i1 DPB1*51:01i1 

DPB1*46:01:01 DPB1*59:01 DPB1*46:01:01i1 DPB1*59:01i1 

DPB1*46:01:01 DPB1*78:01 DPB1*46:01:01i1 DPB1*78:01i1 

DPB1*46:01:01 DPB1*81:01 DPB1*46:01:01i1 DPB1*81:01i1 

DPB1*46:01:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*72:01i1 DPB1*46:01:01i1 DPB1*72:01i2 

DPB1*46:01:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*47:01i1 DPB1*47:01 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*51:01i1 DPB1*51:01 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*59:01i1 DPB1*59:01 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*78:01i1 DPB1*78:01 DPB1*46:01:01i1 

DPB1*46:01:01 DPB1*81:01i1 DPB1*81:01 DPB1*46:01:01i1 

DPB1*47:01 DPB1*51:01 DPB1*47:01i1 DPB1*51:01i1 

DPB1*47:01 DPB1*59:01 DPB1*47:01i1 DPB1*59:01i1 

DPB1*47:01 DPB1*78:01 DPB1*47:01i1 DPB1*78:01i1 

DPB1*47:01 DPB1*81:01 DPB1*47:01i1 DPB1*81:01i1 

DPB1*47:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*47:01i1 

DPB1*47:01 DPB1*72:01i1 DPB1*47:01i1 DPB1*72:01i2 

DPB1*47:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*47:01i1 

DPB1*47:01 DPB1*51:01i1 DPB1*51:01 DPB1*47:01i1 
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Table M-7. List of HLA-DPB1 allele combination phase ambiguities according to v.3.25.0 IPD-IMGT/HLA 

database (released July 2016). 

 

 

HLA-DPB1_Allele1 

 

HLA-DPB1_Allele2 

 

HLA-DPB1_Alternate 

Allele1 

 

HLA-DPB1_Alternate 

Allele2 

DPB1*47:01 DPB1*59:01i1 DPB1*59:01 DPB1*47:01i1 

DPB1*47:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*47:01i1 

DPB1*47:01 DPB1*78:01i1 DPB1*78:01 DPB1*47:01i1 

DPB1*47:01 DPB1*81:01i1 DPB1*81:01 DPB1*47:01i1 

DPB1*51:01 DPB1*59:01 DPB1*51:01i1 DPB1*59:01i1 

DPB1*51:01 DPB1*78:01 DPB1*51:01i1 DPB1*78:01i1 

DPB1*51:01 DPB1*81:01 DPB1*51:01i1 DPB1*81:01i1 

DPB1*51:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*51:01i1 

DPB1*51:01 DPB1*72:01i1 DPB1*51:01i1 DPB1*72:01i2 

DPB1*51:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*51:01i1 

DPB1*51:01 DPB1*59:01i1 DPB1*59:01 DPB1*51:01i1 

DPB1*51:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*51:01i1 

DPB1*51:01 DPB1*78:01i1 DPB1*78:01 DPB1*51:01i1 

DPB1*51:01 DPB1*81:01i1 DPB1*81:01 DPB1*51:01i1 

DPB1*59:01 DPB1*78:01 DPB1*59:01i1 DPB1*78:01i1 

DPB1*59:01 DPB1*81:01 DPB1*59:01i1 DPB1*81:01i1 

DPB1*59:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*59:01i1 

DPB1*59:01 DPB1*72:01i1 DPB1*59:01i1 DPB1*72:01i2 

DPB1*59:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*59:01i1 

DPB1*59:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*59:01i1 

DPB1*59:01 DPB1*78:01i1 DPB1*78:01 DPB1*59:01i1 

DPB1*59:01 DPB1*81:01i1 DPB1*81:01 DPB1*59:01i1 

DPB1*78:01 DPB1*81:01 DPB1*78:01i1 DPB1*81:01i1 

DPB1*78:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*78:01i1 

DPB1*78:01 DPB1*72:01i1 DPB1*72:01i2 DPB1*78:01i1 

DPB1*78:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*78:01i1 

DPB1*78:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*78:01i1 

DPB1*78:01 DPB1*81:01i1 DPB1*81:01 DPB1*78:01i1 

DPB1*81:01 DPB1*02:01:04i1 DPB1*02:01:04i2 DPB1*81:01i1 

DPB1*81:01 DPB1*72:01i1 DPB1*72:01i2 DPB1*81:01i1 

DPB1*81:01 DPB1*02:01:04i2 DPB1*02:01:04i1 DPB1*81:01i1 

DPB1*81:01 DPB1*72:01i2 DPB1*72:01i1 DPB1*81:01i1 

DPB1*02:01:04i1 DPB1*72:01i1 DPB1*02:01:04i2 DPB1*72:01i2 

DPB1*02:01:04i1 DPB1*72:01i2 DPB1*72:01i1 DPB1*02:01:04i2 

 

Notes: Table originally prepared and courtesy by: Y. Thorstenson (Senior Data Analyst) – Immucor, Inc. 

Suffixes shown here in some of the HLA allele names correspond to: 

a) MIA FORA™ NGS FLEX HLA Genotyping Software cloned and sequenced alleles: 

e: Sequences with the suffix e (e1, e2, etc.) are those with new intronic sequence not represented in the 

IMGT database. The vast majority of cloned sequences are of this type. 



________________________________________________Materials and Methods 
 

Page | 392  

   © Gonzalo Montero Martin  

v: Sequences with the suffix v (v1, v2, etc.) are a small subset of cloned alleles that contain new intron 

variants relative to existing genomic sequences in the IMGT database. 

x: Sequences with the suffix x (x1, x2, etc.) are a small subset of cloned alleles that contain new exon 

variants. The suffix is added to the closest known reference sequence but if confirmed by IMGT the allele 

name will change. 

b) MIA FORA™ NGS FLEX HLA Genotyping Software in-silico sequences: 

Many IMGT reference sequences contain partial exon sequences. To facilitate data analysis, the closest 

complete exon was copied to fill in the gaps in IMGT reference sequences with an incomplete exon. The 

suffix i (i1, i2, etc.) is used to identify those computationally filled sequences. 

Courtesy: http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-

190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf 

 

• Finally, although not as an ambiguity but as a retrospective correction comment, it is also 

noteworthy the update of a deleted HLA-DPA1 allele on the IPD-IMGT/HLA database: 

Also, according to IPD-IMGT/HLA database version 3.25.0 there was originally an allele 

named as HLA-DPA1*02:02:01 (as it is described and left in the current study). However, 

later studies determined that sequence has now been shown to be in error and is identical to 

HLA-DPA1*02:07:01 (defined as the correct allele name in March 2017 by IPD-IMGT/HLA; 

see in https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi). 

3. STATISTICAL ANALYSES  

 

Upon completion of generation of 11 HLA loci genotyping results per sample by the MIA 

FORA™ NGS FLEX HLA Genotyping Software version 3.0 (Immucor, Inc. Norcross, GA, USA)) 

program and, then, manual review (including annotation of these ambiguities, applying respective 

above mentioned standardization criteria and managing HLA genotyping data according to guidelines 

from [351] and [770]) by the user; a series of statistical analyses were performed for all NGS-based 

HLA genotyping data generated and related HLA datasets received from collaborators for this study 

http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf
http://www.immucor.com/global/Products/LIFECODES%20Software/MIA%20FORA%20NGS/SR-190-00523-EN-A%20MIA%20FORA%20FLEX%20Software%20User%20Guide.pdf
https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi
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(see 1. STUDY POPULATION, DESIGN AND DATA COLLECTION). Performed statistical 

analyses can be categorized in two main groups: 

i) Population genetics statistical analyses of this immunogenetic as well as analysis methods for 

data primary quality control (QC) and verification of the integrity of genotyping data (as 

references used here, see [771][772]). 

ii) Analytical methods for HLA-disease association study with this immunogenetic data, where 

case-control studies were carried out (as references/examples used here, see [773][774]). 

In detail: 

3.1 Hardy-Weinberg Equilibrium Proportions (HWEP) Test 

Calculated allele frequencies (see next point 3.2 HLA Allele Frequencies Calculation) at each 

HLA locus were evaluated for deviations from Hardy-Weinberg Equilibrium Proportions 

(HWEP) using the exact test of Guo and Thompson [775]. HWEP test allows to measure the 

degree to which observed genotype frequencies differ from those expected based on the allele 

frequencies for a given population study cohort, assuming that this studied population is suitably 

large (e.g. N~100 study subjects) and experiences random mating [776]. In a Hardy–Weinberg 

test, observed genotype counts are compared to those expected under HWEP, as calculated by 

generating a table of all possible genotypes, using an appropriate statistical method. The 

relationship between the allele and genotype frequencies under HWEP is given as (as it is 

described in [771]): 

 

and 
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Where pi is the allele frequency of Ai․ and pj is the allele frequency of Aj․ When a population 

is in HWE, there will not be a significant departure from these allele and genotype frequencies 

and there will be no change in allele frequencies between generations. 

Thus, Hardy–Weinberg (HW) principle provides a useful model for primary quality control 

(QC) verification of the integrity of genotype data, as genotyping errors may result in both 

individual genotype deviations and overall deviations from HW equilibrium (HWE) [771]. 

Generally, departure from HWEP may occur most frequently due to genotyping errors (e.g., 

failure to detect a specific allele, resulting in an excess of homozygotes). Another common 

reason is the presence of an unknown allele which is not considered in the genotyping scheme 

(null allele). This happens when a variant is considered to be bi-allelic while it is actually 

multiallelic. Secondarily, operation of selection, admixture, or nonrandom mating could also 

cause deviation from HWEP. In a case-control association study, it is of paramount importance 

that the control group does not show deviations from HWEP in order to rule out any technical 

errors and to avoid false-positive associations [777]. PyPop (Python for Population genomics) 

version 0.7.0 software was used for carrying out these HWEP tests [778]. PyPop is a framework 

for performing large-scale population genetic analyses on multilocus genotype data. It contains 

several programs and an Application Programming Interface (API) implemented in the 

programming language Python [778]. 

3.2 HLA Allele Frequencies Calculation  

HLA allele frequencies (or distributions) per locus for HLA genotyping data were obtained via 

direct counting, where the number of observations for a given allele is divided by the number 
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of chromosomes (2N, where N = sample size) under study [771]. PyPop version 0.7.0 software 

was also used to calculate allele frequencies in this manner [778].  

3.3 Pairwise Linkage Disequilibrium Estimation  

As it is described in [771] and also very well applied as an example in [772]: 

Measurement of linkage disequilibrium (LD) provides a means to assess the degree to which 

pairs of alleles are likely to be observed on the same haplotype and has important implications 

in analyzing immunogenetic data for population and disease association studies. Two different 

categories of LD estimations were performed in the present study: 

• Haplotype-Level LD statistics: 

The normalized (because in order to account for differing allele frequencies at the loci, a 

normalized disequilibrium value is commonly used) allele-pair-level LD measure, D’ij, is the 

disequilibrium coefficient (D) divided by the upper and lower bounds of D for the particular 

alleles at each locus (as described in [779-782]), and ranges from +1 to −1. A D’ij value of 0 

indicates linkage equilibrium, whereas a value of +1 indicates the complete association of a 

given pair of alleles in a single haplotype, and, thus, a value of exactly −1 indicates the 

complete absence of an haplotype comprised by those alleles. As a note, the complete absence 

of a particular haplotype can be inferred from a D’ij value of −1 when none of the reported 

alleles has a frequency greater than 0.5. In the present study, pairwise LD estimate or the 

locus-pair-level measure, termed as D′ was calculated according to Hedrick´s D’ statistic 

[98][780][787], based on the products of the allele frequencies at each locus to weight the LD 

contribution of specific allele pairs, using PyPop version 0.7.0 software [778]. 

• Global LD statistics: 
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For loci with more than two alleles, global LD statistics extend the haplotype-level statistics 

to account for all possible combinations of alleles at each locus [783]. Two different types of 

parameters were calculated here: 

(a) Wn (Cramer’s V statistic): is a multiallelic extension of the correlation measure r 

(correlation coefficient (r) between the alleles at the p and q loci) [784]. The chi-square 

value for testing the significance of LD can be written as W/(2 N) where: 

 

Where pi and qj are the observed allele frequencies at each of the two loci having k and l 

alleles, respectively. Wn, or Cramer’s V statistic, is a normalized value that addresses 

differing numbers of alleles at the two loci [785][786].  

 

The values of Wn fall between 0 and 1, and the significance of the overall disequilibrium is 

assessed using the above mentioned chi-square test. It should be noted that the Wn measure 

is always symmetric with respect to two loci, whereas the number of alleles reported at each 

locus can differ considerably. It is therefore important not to overinterpret values of Wn for 

locus pairs with highly asymmetric numbers of alleles. Finally, for biallelic loci, Wn is 

equivalent to r parameter. 

(b) D′: this parameter is a second global disequilibrium statistic, which sums the absolute 

value of normalized Dij values over all haplotypes, weighted by the frequencies of the 

alleles in each haplotype [787]. As with Wn, D′ values fall between 0 (equilibrium) and 1 

(linkage). This is defined as: 
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In the present study, PyPop version 0.7.0 software [778] was also used to calculate all these 

parameters’ (Dij, D′ij, D′ and Wn) values. 

More recently, although out of the scope of the present thesis work, Thomson and Single 

described a new asymmetric pair of LD measures (ALD) that give a more complete description 

of LD [788]. The ALD measures are symmetric and equivalent to the correlation coefficient r 

when both loci are bi-allelic. When the numbers of alleles at the two loci differ, the ALD 

measures capture this asymmetry and provide additional detail about the LD structure. In 

disease association studies the ALD measures are useful for identifying additional disease genes 

in a genetic region, by conditioning on known effects. In evolutionary genetic studies ALD 

measures provide insight into selection acting on individual amino acids of specific genes, or 

other loci in high LD [788][789]. 

3.4 Ewens-Waterson Homozygosity (EWH) Test  

In the present study, using PyPop version 0.7.0 software [778], the Ewens-Watterson 

Homozygosity (EWH) test of neutrality was carried out with Slatkin’s implementation of the 

Monte-Carlo approximation using a two-tailed test (p < 0.05) of the null hypothesis of 

neutrality. This EWH test allows the measurement of selection operating on studied HLA loci. 

In detail, as it is described in [771] and also very well applied in [772]: 

• Firstly, in this test the expected proportion of homozygotes under HWEP, for an observed 

value of k (number of distinct alleles (k) for each given HLA locus) and a given sample size 

(N), is used as a measure of the allele-frequency distribution and compared to the distribution 

expected under the neutral model for the same values of k and N [790]. Allele-frequency 
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distributions are used to calculate Watterson’s homozygosity F statistic [791]. This is given 

by: 

 

Where pi is the frequency of the i-th allele at a locus. The homozygosity test can be 

accomplished using the exact test described by Slatkin’s Monte-Carlo implementation 

[792][793]. For given values of N (sample size) and k (number of distinct alleles for a given 

HLA locus), all possible configurations of alleles are listed (each configuration is a distinct 

way of distributing the N sampled genes into k allelic categories). The probability of obtaining 

a particular configuration can be computed under the null hypothesis of neutrality using the 

Ewens sampling formula [790]. The homozygosity value of each configuration along with its 

probability gives the sampling distribution for F under neutrality. This distribution is used to 

find the probability of obtaining homozygosity values equal to or larger than that observed, 

for a test of positive selection, by examining how many configurations result in 

homozygosities greater than this observed value [792]. Similarly, a test of balancing selection 

is based on the probability of obtaining a homozygosity value as small as or smaller than the 

observed value. Significant p-values of F reject the null hypothesis that the sample came from 

a population that is undergoing neutral evolution. 

• At the same time, homozygosity values calculated for different values of N (sample size) 

and k (number of distinct alleles for a given HLA locus), can be directly compared by 

calculating the normalized deviate of homozygosity (Fnd) [794]. This is given by (the 

difference between the observed and expected values of F, divided by the square root of the 

variance of the expected F): 
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Where Fobs (or Fo) is the homozygosity value calculated for an observed frequency 

distribution, Fexp (or Fe) is the mean homozygosity expected under the neutral model. While 

Fnd is a normalized deviate, the sampling distribution for Fnd is not normally distributed, so 

that p-values of F cannot be inferred from a given Fnd value using traditional parametric 

methods. Statistical significance for an Fnd value is given by the significance of the 

corresponding Fobs value. The normalized deviate of homozygosity (Fnd) can also be used 

to characterize homozygosity values that deviate significantly from the null hypothesis in 

terms of modes of evolution. Fnd values significantly lower than 0 result from allele-

frequency distributions that are more “even” than expected and are consistent with the action 

of balancing selection (commonly found in the HLA system). Fnd values significantly higher 

than 0 result from allele-frequency distributions that are more skewed than expected toward 

specific alleles and are consistent with either directional selection and/or an extreme 

demographic effect. Because the null-hypothesis of the EWH test is neutral evolution (Fnd = 

0), we used a paired sign test [795] to compare the signs of the Fnd values for each locus 

against the expectation of neutrality. To correct for the number of comparisons, the results of 

these tests were considered significant if the associated p-values were lower than 0.05 

(indicating a statistical significance at the 5% level) or 0.01 (indicating a statistical 

significance at the 1% level). 

3.5 Extended HLA Haplotype Frequencies Inference via Expectation-Maximization (EM) 

Algorithm  

Due to the nature and design of the population cohorts (healthy controls and MS disease group) 

of the present study, HLA haplotypes were phased-unknown since were coming from unrelated 

individuals. Thus, extended haplotype (encompassing different number of HLA loci (n-locus) 
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in each case) frequencies were estimated using the iterative expectation-maximization (EM) 

algorithm [333][334]. In detail: 

• Here, population-level haplotype frequencies are estimated via EM using simultaneous 

maximum-likelihood estimation of n-locus haplotype frequencies. The expectation step 

determines the expected number of copies for each haplotype contributing to a given 

genotype. As an example, for a three locus (3-locus) haplotype, this is calculated as: 

 

Where S is the number of ambiguous haplotypes in Pi, E [nabc | Pi] is the expected number 

of copies of haplotype Habc within Pi, and fabc is the frequency of each other possible 

haplotype Habc to form the genotype of frequency Pi. The maximization step determines new 

estimates for fabc for the next iteration of the algorithm. Thus, at each new iteration the 

estimations globally improve. 

• The open-source software Hapl-o-Mat version 1.1 [342] was used to estimate these extended 

haplotype frequencies from the HLA genotyping datasets of the present study. This software 

uses a maximum likelihood estimation via an EM algorithm. Its key features are the 

processing of different HLA genotyping dataset resolutions and n-locus haplotypes within a 

given population sample and the handling of ambiguities recorded via multiple allele codes 

or genotype list strings. Implemented in C++, Hapl-o-Mat facilitates efficient haplotype 

frequency estimation from large amounts of genotype data. Its accuracy and performance has 

been previously tested and reported [342]. 
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• As previously mentioned, estimated haplotype frequencies from the HLA genotyping 

datasets of unrelated population cohorts via an EM algorithm present inaccuracies since the 

performance of haplotype frequency estimation algorithms is sensitive to various aspects of 

the population under study, which are important to be considered when analyzing the 

respective output results [771][772]: 

(a) Estimated frequencies for rare haplotypes (e.g. n = 1 or 2 in a dataset), which incorporate 

low-frequency alleles, are often incorrect, even when the EM algorithm finds the global 

maximum likelihood. Thus, analytical inferences should not be made on the basis of these 

rare haplotypes. 

(b) Diversity and complexity of HLA genotyping data poses additional challenges for 

haplotype estimation, such as: heterogeneity of typing resolution, heterogeneity of typing 

techniques, heterogeneity of allele nomenclatures, incessant discovery of new alleles, large 

numbers of allele per locus and high allele/haplotype diversity among human populations 

and regional groups (geographical diversity in HLA allele/haplotype frequency 

distributions). Furthermore, population substructure and/or regional variation are 

commonly found in HLA population-level studies owing to the fact that HLA 

allele/haplotype frequency distributions (and, thus, corresponding LD patterns) can reflect 

both the selective pressures and demographic events (which, in turn, cannot be always and 

totally distinguished) over human populations (even within sub-regions/sub-groups of the 

same considered population/region/ethnic group). Taking this into account is of critical 

importance, as some examples, in HLA case-control or anthropological studies. Since these 

HLA population singularities may be confounding in the investigation of HLA-disease 

association or of populations relatedness (based on these HLA allele/haplotype frequency 

distributions), leading erroneously to HLA susceptible/protective allele/haplotypes for a 
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given disease-phenotype [383][402] or mistakenly to close relations between populations 

respectively [542][543]. 

3.6 Genetic Distances and Dendograms 

In order to study Spanish regional relatedness by comparison of allele frequencies (computing 

the HLA-A, -B, -C, -DQB1 and -DRB1 loci) between the 3 different geographical Spanish 

regions established for this study (Northern-Central, Eastern- and Southern-Spain) as well as 

between the 10 Spanish locations studied in the present work, a population dendogram (or 

phylogenetic trees) was constructed using POPTREEW (web version of POPTREE software) 

[796]. A total of 1000 dendrogram replicates based on the matrices of Nei genetic distances 

(DA) [797] were generated using the neighbor-joining (NJ) method [798]. The root of the NJ 

method was calculated by the mid-point rooting method, in which the root is placed in the mid-

point of the longest path of two taxa. 

Nei genetic distance (DA) [797] is defined by: 

 

Where xij and yij are the frequencies of the i-th allele at the j-th locus in populations X and Y, 

respectively, mj is the number of alleles at the j-th locus, and r is the number of loci used. 

3.7 Case-Control Analyses for HLA-disease Association Study 

Statistical analyses for the case-control studies were performed using R language for statistical 

computing with the BIGDAWG v.2.1 R package [799][800]. Bridging ImmunoGenomic Data-

Analysis Workflow Gaps (BIGDAWG), developed by Pappas et al. [799], is an automated 

software pipeline that performs a suite of common case-control analyses of multi-locus highly 
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polymorphic genetic data (e.g. HLA genes and KIR genes). BIGDAWG is integrated in the 

framework of the R statistical environment (http://www.r-project.org). As described in [799], 

BIGDAWG is able to accept unambiguous genotype data for case-control groups as input, and 

to estimate allele/haplotype frequencies to be used for chi-square (χ2) testing. Thus, it also 

calculates odds ratios (ORs), confidence intervals (typically, 95%CI) and p-values (associated 

probability (p) values derived from a two-tailed Fischer’s exact test; where p≤0.05 (specific 

criteria applied in this thesis work) or p≤0.01 are considered in general statistically significant) 

for each allele/haplotype, whose effect sizes are measured here to evaluate HLA-disease 

association (both susceptibility and protection). At the end of the analysis run, BIGDAWG 

generates respective output tables for each of these comparisons. More in detail, BIGDAWG 

performs overall locus-level (k × 2) tests of significance, followed by a series of allele-level (2 

× 2) tests of significance for each locus. In addition, the designated healthy control group is 

tested for deviations from expected Hardy–Weinberg Equilibrium Proportions (HWEP) at the 

allele level. When multi-locus genotype data is available, BIGDAWG can estimate user-

designated haplotypes and performs the same statistical calculations for each haplotype [k × 2 

tests at the multi-locus level (e.g. HLA-A–HLA-B or HLA-DRB1–HLA-DQA1–HLA-DQB1) 

followed by 2 × 2 tests at the haplotype level]. 

It is noteworthy that an important consideration has to be applied for rare HLA 

alleles/haplotypes found within the HLA genotyping data of the study cohort of interest. Since 

the χ
2
 test can lead to false acceptance or rejection of the null hypothesis when the expected 

genotype counts in a contingency table are small (sparse cells) as Hollenbach et al. described 

[773]. Thus, the χ2 test is inappropriate if any of the expected counts are less than one or if the 

expected counts are less than five in more than 20% of all cells in a contingency table [774]. 

Consequently, BIGDAWG combines (as the statistical strategy employed in this case) rare 

http://www.r-project.org/
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alleles/haplotypes into a common class (a process called “binning”) being thus included as well 

for testing. 

 In relation to the statistical methods (and formulas) and the R statistical environment specifics 

used by this BIGDAWG program, it is of note the following points: 

• The χ
2
 statistic for a contingency table analysis of case-control data for a given genetic 

association is calculated as (being fully described in [773]): 

 

Where 

Oi = the observed count of allele/haplotype i 

Ei = the expected count of allele/haplotype i 

And the derived values are summed over all cells in the tables. The expected count for 

each cell in the r × c table is calculated as 

 

Where, in this formula shown right above, 

Column total = sum of the counts in the column 

Row total = number observations of allele i in all subjects 

n = number individuals (cases + controls) 

2n = number chromosomes (cases + controls) 
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The degrees of freedom (df) for the goodness of fit χ2 analysis are calculated from the 

number of alleles/haplotypes with expected values in cases and controls of five or greater, 

plus the combined category, −1 (i.e., k − 1). A p-value is obtained by comparing the test 

statistic to the χ2 distribution for the appropriate degrees of freedom. 

Overall, the main and basic steps for contingency table analysis in case-control studies with 

immunogenetic data are: 

a) Construct a 2 × k table of allele (or genotype or haplotype) counts for cases and controls. 

b) Combine all alleles/haplotypes with expected values of four or less in cases or controls 

into a common “binned” category. 

c) Calculate the χ2 test statistic for the table and assess significance. 

d) If results are significant at the overall locus/haplotype level, perform additional testing 

using 2 × 2 contingency tables for each allele/haplotype (expected counts of five or more 

only) against all other alleles/haplotypes. 

Analysis based on a series of 2 × 2 tests commonly requires corrections for multiple 

comparisons (usually utilizing the Bonferroni’s method for correction for multiple 

comparisons (multiplying the value of p obtained in the statistical test by the total number 

of alleles tested or clinical characteristics)), with a correction factor minimally equivalent 

to the number of alleles tested. However, when significance of the association of all 

individual alleles is assessed with the a priori knowledge of overall heterogeneity at the 

locus, it is not necessary to correct for multiple comparisons in subsequent 2 × 2 tests 

intended to identify the allele(s)/haplotype(s) with significant contributions to the overall 
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deviation at the locus/haplotype (as it was considered for the case of the present thesis work 

and related case-control analyses). 

• All HWEP and phenotype association (haplotype and locus) analyses are currently based on 

a traditional χ2 test. For HWEP deviation testing, BIGDAWG combines rare genotypes into 

a single common class (binning) for analysis and performs a goodness-of-fit test. The degrees 

of freedom (dof) are calculated as: 

 

Where g is the number of unique non-binned genotypes and a is the number of unique non-

binned alleles. 

•For testing phenotype associations, BIGDAWG runs a test-of-independence, automatically 

tabulating the k × 2 contingency tables, where k is the number of unique haplotypes or alleles. 

For either testing scenario, rare cells (with expected counts less than five) are combined into 

a common class (binned) prior to computing the χ2 statistic, except in cases of the test-of-

independence where all cells of a given k × 2 contingency table are ⩾1 and fewer than 20% 

of the cells have expected counts less than five. BIGDAWG’s haplotype frequency estimation 

function requires the R haplo.stats package, whereas calculation of the individual 

haplotype/allele confidence intervals (95%CI), odds ratios (ORs), and p-values requires the 

R epicalc package. For the HLA loci, BIGDAWG performs the same analyses at the 

individual amino-acid/residue level. However, this residue analysis was beyond the scope of 

the present thesis work. 
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I. NGS-BASED HLA STUDY IN 17TH-IHIW SPANISH POPULATION 

COHORT (HEALTHY CONTROL GROUP)  

 

1. EVALUATION OF CONCORDANCE OF HLA GENOTYPING RESULTS IN 17TH-

IHIW SPANISH POPULATION COHORT (HEALTHY CONTROL GROUP) 
 

Samples of this cohort were tested in parallel with several available methods (SBT, SSO, 

SSP or NGS) to confirm the respective genotyping results and to identify possible causes of 

discrepancies. HLA genotyping results obtained for all 282 samples by using this 

aforementioned commercially available NGS-based HLA genotyping method [187] at 

Stanford Blood Center HLA Histocompatibility and Immunogenetics Laboratory were 100% 

concordant with those available HLA typing results (e.g. HLA-DPA1 locus was not tested locally 

in the Spanish institutions) obtained by using other HLA molecular typing techniques (either using 

an in-house NGS platform or commercial/in-house SSO, SSP or SBT technologies) respectively 

at the 11 local participating clinical laboratories from Spain (see Table R-1). Therefore, it was 

confirmed that all samples were tested correctly by all the participating laboratories without any 

sample-switching error, allele dropout (for the HLA loci tested respectively) and neither 

contamination. 
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Table R-1. Concordance rates* of HLA genotyping results of this 17th-IHIW Spanish population cohort 

(n=282 subjects) when comparing HLA genotyping results obtained by using this commercially available 

NGS-based typing method [187] performed at the Stanford Blood Center HLA Histocompatibility and 

Immunogenetics Laboratory with those available HLA typing results (with a variable range of allele 

resolution level and number of HLA genes tested) obtained by using other HLA molecular typing techniques 

(either an in-house NGS platform or commercial/in-house SSO, SSP or SBT technologies) respectively at 

the 11 local participating clinical laboratory groups from Spain (de-identified and coded here A through K). 

 

 

Locus/ 

Group 

 

 

 

HLA- 

A 

 

 

HLA- 

B 

 

 

HLA- 

C 

 

 

HLA- 

DPA1 

 

 

HLA- 

DPB1 

 

 

HLA- 

DQA1 

 

 

HLA- 

DQB1 

 

 

HLA- 

DRB1 

 

 

HLA- 

DRB3 

 

 

HLA- 

DRB4 

 

 

HLA- 

DRB5 

 

 

A 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

B 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

C 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

NT 

 

100 

 

100 

 

100 

 

100 

 

D 

 

100 100 100 NT NT 100 100 100 100 100 100 

 

E 

 

100 100 100 NT 100 NT 100 100 100 100 100 

 

F 

 

100 100 100 NT NT NT 100 100 NT NT NT 

 

G 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

H 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

I 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

NT 

 

100 

 

NT 

 

NT 

 

NT 

 

J 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

 

NT 

 

100 

 

NT 

 

NT 

 

NT 

 

K 

 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

100 

 

100 

 

100 

 

NT 

 

NT 

 

NT 

NT = Not tested at the Spanish local participating clinical laboratory group 

100 = 100% concordance 

*Concordance rates criteria is based on how identical the HLA genotyping results are in this comparison and it is based 

on the maximum available allele resolution level (either 2-field, 3-field or 4-field) obtained by the respective HLA 

molecular typing method performed at each participating Spanish local institution group. 
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2. EVALUATION OF DEVIATIONS FROM EXPECTED HARDY-WEINBERG 

EQULIBRIUM PROPORTIONS (HWEP) IN 17TH-IHIW SPANISH POPULATION 

COHORT (HEALTHY CONTROL GROUP) 
 

At the 3-/4-field allele resolution level, no overall deviations from expected Hardy-Weinberg 

Equilibrium Proportions (HWEP) are observed in any of the HLA loci analyzed with the exception 

of a minor but significant departure at the HLA-DPA1 locus (p-value = 0.0104) (Table R-2). To 

further investigate this HLA-DPA1 departure, “collapsed” or “trimmed” (i.e. observed alleles in 

the present study were reduced to 2- and 3-field allele resolution level respectively for comparative 

analysis purposes) 2-field and 3-field HLA genotyping datasets of this same Spanish population 

cohort (n=282) were evaluated (HLA-DPA1 locus 2-field p value of HWE = 0.1513; HLA-DPA1 

locus 3-field p value of HWE = 0.1141) and no HWE deviation was observed at any of the HLA 

loci. Furthermore, estimated homozygosity (Ewens-Waterson’s homozygosity F statistic (F)) in 

HLA-DPA1 locus at the 4-field allele resolution level shows a much lower value (F=0.164) in 

comparison to collapsed 2-field (F=0.649) and collapsed 3-field (F=0.635) HLA genotyping 

datasets. Altogether, this can be interpreted as estimated deviations from HWE may not be 

corrected properly for multiple comparisons including low number counts of alleles or genotypes 

when they are present at the 4-field allele resolution level. Thus, this observed deviation may be 

explained by the fact that HLA alleles presenting low frequencies (e.g. HLA-DPA1 alleles) would 

not be considered properly when evaluating HWE proportions and their contribution to HWE 

deviation would be being estimated higher than it should be at this 4-field allele resolution level. 

Overall, the HLA dataset of the present study was considered valid for proceeding with the rest of 

statistical analyses. 
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Table R-2. Hardy-Weinberg Equilibrium (HWE) p-values of each HLA locus based on 4-field allele resolution level HLA 

genotyping data of this 17th-IHIW Spanish population cohort study (n=282 subjects). 

 

Locus p-value  

 

HLA-A 

 

0.5230 

 

HLA-B 

 

0.1151 

 

HLA-C 
0.9906 

 

HLA-DPA1 

 

0.0104* 

 

HLA-DPB1 

 

0.9133 

 

HLA-DQA1 
0.3015 

 

HLA-DQB1 

 

0.7955 

 

HLA-DRB1 

 

0.8920 

 

(*) Guo and Thompson test p-values (overall) lower than 0.05 (p < 0.05) indicate a significant (at the 5% level) deviation from expected 

Hardy-Weinberg Equilibrium proportions (HWEP). 

 

When performing HWEP test, HLA-DRB3/4/5 loci were not included as they represent a particular virtual single “locus”. Where these 

HLA-DRB3/4/5 genes characteristically behave as alleles of a single locus as the presence of one of these genes at the haplotype level 

excludes the presence of the other two genes. This is based on the linkage constraints that exist between the HLA-DRB3/4/5 loci and the 

HLA-DRB1 locus, in which several HLA-DRB1 allele families can be differentiated. Thus, the haplotype organization of the region 

encompassing HLA-DRB1–DRB3/4/5 has been shown to be correlated with the allele present on the HLA-DRB1 locus [344]. 

 

 

3. HLA ALLELE FREQUENCIES IN 17TH-IHIW SPANISH POPULATION COHORT 

(HEALTHY CONTROL GROUP) 

The frequency distribution of HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -

DRB3/4/5 alleles at the 4-field allele resolution level are summarized in Table R-3. Respectively, 

36 HLA-A, 53 HLA-B, 40 HLA-C, 14 HLA-DPA1, 29 HLA-DPB1, 23 HLA-DQA1, 24 HLA-DQB1, 

37 HLA-DRB1, 5 HLA-DRB3, 5 HLA-DRB4 and 3 HLA-DRB5 distinct alleles (k) were identified. 
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It can be observed how the most predominant HLA alleles (frequency higher than 5%) represent 

in the case of each locus: 6 HLA-A alleles (66 %), 6 HLA-B alleles (42%), 7 HLA-C alleles (55%), 

7 HLA-DPA1 alleles (91%), 4 HLA-DPB1 alleles (66%), 9 HLA-DQA1 alleles (81%), 7 HLA-

DQB1 alleles (73%), 6 HLA-DRB1 alleles (58%). In the case of HLA-DRB3/4/5 alleles: HLA-

DRB3*02:02:01:02 (15%), -DRB4*01:03:01:01 (16%) and -DRB5*01:01:01 (10%) are the most 

common. 

 

 

Table R-3.  HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, -DRB5 allele 

frequencies (at the 3-/4-field allele resolution level and according to IPD-IMGT/HLA database version 

3.25.0) in this 17th-IHIW Spanish population cohort (n=282 subjects). HLA alleles per locus are sorted 

by frequency (AF expressed in decimals) in descending order. 

 

                  Locus 

 

 

Allele counts (2n) 

 

        Allele Frequency (AF) 

HLA-A 

A*02:01:01:01 

A*01:01:01:01 

A*03:01:01:01 

A*11:01:01:01 

A*29:02:01:01 

A*24:02:01:01 

A*32:01:01 

A*30:02:01:01 

A*23:01:01 

A*26:01:01:01 

A*25:01:01 

A*33:01:01 

A*31:01:02:01 

A*68:02:01:01 

A*02:05:01 

A*30:01:01 

A*68:01:01:02 

A*68:01:02:02 

A*03:01:01:05 

A*03:01:01:03 

A*29:02:01:02 

A*66:01:01 

A*03:02:01 

 

129 

52 

48 

47 

46 

42 

23 

20 

17 

13 

12 

12 

11 

9 

8 

8 

7 

6 

5 

4 

4 

4 

3 

 

0.23370 

0.09420 

0.08696 

0.08514 

0.08333 

0.07609 

0.04167 

0.03623 

0.03080 

0.02355 

0.02174 

0.02174 

0.01993 

0.01630 

0.01449 

0.01449 

0.01268 

0.01087 

0.00906 

0.00725 

0.00725 

0.00725 

0.00543 
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A*69:01 

A*01:02 

A*02:17:02 

A*24:02:01:04 

A*24:02:01:05 

A*30:02:01:02 

A*33:03:01 

A*68:01:02:01 

A*29:01:01:01 

A*30:04:01 

A*30:10 

A*34:02:01 

A*68:17 

 

HLA-B 

B*07:02:01 

B*44:03:01:01 

B*08:01:01:01 

B*51:01:01:01 

B*44:02:01:01 

B*35:01:01:02 

B*18:01:01:01 

B*49:01:01 

B*14:02:01:01 

B*15:01:01:01 

B*35:03:01 

B*27:05:02 

B*38:01:01 

B*18:01:01:02 

B*37:01:01 

B*50:01:01 

B*40:01:02 

B*58:01:01:01 

B*40:02:01 

B*35:02:01 

B*14:01:01 

B*35:08:01 

B*55:01:01 

B*13:02:01 

B*50:02 

B*39:01:01:03 

B*52:01:01:02 

B*53:01:01 

B*57:01:01 

3 

2 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

 

 

53 

47 

36 

34 

33 

27 

22 

22 

21 

21 

18 

17 

17 

16 

12 

12 

11 

11 

10 

9 

8 

8 

8 

7 

7 

6 

6 

6 

6 

0.00543 

0.00362 

0.00362 

0.00362 

0.00362 

0.00362 

0.00362 

0.00362 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

 

 

0.09601 

0.08514 

0.06522 

0.06159 

0.05978 

0.04891 

0.03986 

0.03986 

0.03804 

0.03804 

0.03261 

0.0308 

0.0308 

0.02899 

0.02174 

0.02174 

0.01993 

0.01993 

0.01812 

0.01630 

0.01449 

0.01449 

0.01449 

0.01268 

0.01268 

0.01087 

0.01087 

0.01087 

0.01087 
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B*40:06:01:02 

B*45:01:01 

B*15:03:01:02 

B*41:01:01 

B*47:01:01:03 

B*07:05:01:01 

B*07:06:01 

B*15:01:01:04 

B*15:220 

B*27:02:01 

B*15:09 

B*18:01:01:03 

B*27:03 

B*35:01:01:01 

B*38:20 

B*39:06:02 

B*40:12 

B*41:02:01 

B*44:04 

B*44:05:01 

B*51:08:01 

B*52:01:02 

B*57:03:01:02 

B*73:01 

 

HLA-C 

C*07:01:01:01 

C*04:01:01:01 

C*07:02:01:03 

C*12:03:01:01 

C*16:01:01:01 

C*02:02:02:01 

C*05:01:01:02 

C*06:02:01:01 

C*03:03:01:01 

C*04:01:01:06 

C*05:01:01:01 

C*08:02:01:01 

C*01:02:01 

C*03:04:01:01 

C*06:02:01:02 

C*14:02:01:01 

C*15:02:01:01 

C*07:18 

4 

4 

3 

3 

3 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

    
 

64 

59 

54 

44 

30 

28 

27 

26 

24 

23 

22 

22 

16 

16 

14 

11 

11 

8 

0.00725 

0.00725 

0.00543 

0.00543 

0.00543 

0.00362 

0.00362 

0.00362 

0.00362 

0.00362 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

 

 
0.11594 

0.10688 

0.09783 

0.07971 

0.05435 

0.05072 

0.04891 

0.04710 

0.04348 

0.04167 

0.03986 

0.03986 

0.02899 

0.02899 

0.02536 

0.01993 

0.01993 

0.01449 
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C*08:02:01:02 

C*06:02:01:03 

C*07:02:01:01 

C*12:02:02 

C*15:05:02 

C*07:04:01:01 

C*16:02:01 

C*02:10:01:01 

C*03:02:02:01 

C*04:01:01:05 

C*04:09N 

C*17:01:01:05 

C*02:10:01:02 

C*03:04:01:02 

C*03:07 

C*05:09:01 

C*07:01:02 

C*08:25 

C*12:166 

C*15:05:01 

C*15:05:03 

C*17:03 

                 

HLA-DPA1 

DPA1*01:03:01:02 

DPA1*01:03:01:04 

DPA1*01:03:01:01 

DPA1*01:03:01:05 

DPA1*02:01:01:01 

DPA1*01:03:01:03 

DPA1*02:01:01:02 

DPA1*02:01:02 

DPA1*02:02:02 

DPA1*02:02:01 (*) 

DPA1*02:01:08 

DPA1*03:01 

DPA1*01:03:05 

DPA1*04:01 

 

HLA-DPB1 

DPB1*04:01:01:01 

DPB1*02:01:02 

DPB1*04:02:01:02 

DPB1*01:01:01 

8 

5 

5 

5 

4 

3 

3 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

 

161 

98 

76 

62 

43 

35 

25 

20 

17 

5 

4 

2 

1 

1 

 

 

198 

94 

37 

30 

0.01449 

0.00906 

0.00906 

0.00906 

0.00725 

0.00543 

0.00543 

0.00362 

0.00362 

0.00362 

0.00362 

0.00362 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

0.00181 

 

 

0.29273 

0.17818   

0.13818 

0.11273 

0.07818 

0.06364 

0.04545 

0.03636 

0.03091 

0.00909 

0.00727 

0.00364 

0.00182 

0.00182 

 

 

0.36131 

0.17153 

0.06752 

0.05474 
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DPB1*03:01:01 

DPB1*04:02:01:01 

DPB1*104:01 

DPB1*11:01:01 

DPB1*02:02 

DPB1*10:01:01 

DPB1*17:01 

DPB1*06:01:01 

DPB1*05:01:01 

DPB1*13:01:01 

DPB1*14:01:01 

DPB1*09:01:01 

DPB1*105:01 

DPB1*19:01 

DPB1*16:01:01 

DPB1*15:01:01 

DPB1*20:01:01 

DPB1*23:01:01 

DPB1*01:01:02 

DPB1*04:01:01:02 

DPB1*131:01 

DPB1*138:01 

DPB1*26:01:02 

DPB1*296:01 

DPB1*59:01 

 

HLA-DQA1 

DQA1*02:01:01:01 

DQA1*05:05:01:01 

DQA1*01:02:01:01 

DQA1*01:01:01:02 

DQA1*01:03:01:02 

DQA1*03:01:01 

DQA1*05:01:01:02 

DQA1*03:03:01:01 

DQA1*05:01:01:01 

DQA1*01:02:02 

DQA1*01:01:02 

DQA1*01:02:01:04 

DQA1*04:01:01 

DQA1*01:04:01:01 

DQA1*01:05:01 

DQA1*01:03:01:01 

DQA1*05:05:01:03 

24 

22 

21 

19 

14 

13 

13 

12 

10 

8 

5 

4 

4 

4 

3 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

 

 

88 

73 

56 

46 

40 

39 

39 

31 

29 

14 

13 

12 

12 

10 

10 

8 

6 

0.04380 

0.04015 

0.03832 

0.03467 

0.02555 

0.02372 

0.02372 

0.02190 

0.01825 

0.0146 

0.00912 

0.00730 

0.00730 

0.00730 

0.00547 

0.00365 

0.00365 

0.00365 

0.00182 

0.00182 

0.00182 

0.00182 

0.00182 

0.00182 

0.00182 

 

 
 

0.16176 

0.13419 

0.10294 

0.08456 

0.07353 

0.07169 

0.07169 

0.05699 

0.05331 

0.02574 

0.02390 

0.02206 

0.02206 

0.01838 

0.01838 

0.01471 

0.01103 



____________________________________________________________Results 
 

Page | 419  

   © Gonzalo Montero Martin  

DQA1*03:02 

DQA1*05:01:01:03 

DQA1*01:04:01:03 

DQA1*01:05:02 

DQA1*01:04:02 

DQA1*05:03 

 

 

HLA-DQB1 
 

DQB1*02:02:01:01 

DQB1*02:01:01 

DQB1*03:01:01:03 

DQB1*03:02:01 

DQB1*06:02:01 

DQB1*05:01:01:03 

DQB1*06:03:01 

DQB1*03:01:01:01 

DQB1*04:02:01 

DQB1*05:02:01 

DQB1*05:03:01:01 

DQB1*05:01:01:01 

DQB1*03:01:01:02 

DQB1*05:01:01:02 

DQB1*06:01:01 

DQB1*03:03:02:01 

DQB1*06:04:01 

DQB1*03:03:02:02 

DQB1*06:09:01 

DQB1*02:02:01:02 

DQB1*03:19:01 

DQB1*03:04:01 

DQB1*03:02:03 

DQB1*06:39 

 

HLA-DRB1 

DRB1*07:01:01:01 

DRB1*03:01:01:01 

DRB1*15:01:01:01 

DRB1*13:01:01:01 

DRB1*01:01:01 

DRB1*11:04:01 

DRB1*11:01:01:01 

DRB1*04:05:01 

DRB1*04:01:01:01 

5 

5 

4 

2 

1 

1 
 

 

 

 

78 

73 

59 

50 

47 

46 

42 

16 

16 

16 

15 

13 

10 

10 

9 

8 

8 

5 

5 

4 

4 

2 

1 

1 

 

 

87 

73 

50 

42 

35 

26 

21 

16 

15 

0.00919 

0.00919 

0.00735 

0.00368 

0.00184 

0.00184 

 

 

 

0.14498 

0.13569 

0.10967 

0.09294 

0.08736 

0.08550 

0.07807 

0.02974 

0.02974 

0.02974 

0.02788 

0.02416 

0.01859 

0.01859 

0.01673 

0.01487 

0.01487 

0.00929 

0.00929 

0.00743 

0.00743 

0.00372 

0.00186 

0.00186 

 

 

0.15993 

0.13419 

0.09191 

0.07721 

0.06434 

0.04779 

0.0386 

0.02941 

0.02757 
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DRB1*14:54:01 

DRB1*01:02:01 

DRB1*04:04:01 

DRB1*13:02:01 

DRB1*04:02:01 

DRB1*08:01:01 

DRB1*01:03 

DRB1*13:03:01 

DRB1*10:01:01:01 

DRB1*15:02:01:02 

DRB1*16:01:01 

DRB1*04:03:01 

DRB1*11:03:01 

DRB1*11:02:01 

DRB1*16:02:01:02 

DRB1*12:01:01:03 

DRB1*04:07:01 

DRB1*09:01:02 

DRB1*04:08:01 

DRB1*13:05:01 

DRB1*04:06:02 

DRB1*14:01:01 

DRB1*08:06 

DRB1*10:01:01:02 

DRB1*11:01:02 

DRB1*13:04 

DRB1*14:04:01 

DRB1*15:06:01 
 

 

HLA-DRB3 

DRB3*00:00 (**) 

DRB3*02:02:01:02 

DRB3*01:01:02:01 

DRB3*02:02:01:01 

DRB3*03:01:01 

DRB3*02:24 

 

HLA-DRB4 

DRB4*00:00 (***) 

DRB4*01:03:01:01 

DRB4*01:01:01:01 

DRB4*01:03:01:02N 

DRB4*01:03:02 

DRB4*01:03:03 

14 

13 

13 

13 

12 

12 

11 

11 

9 

8 

8 

7 

7 

6 

6 

5 

4 

4 

3 

3 

2 

2 

1 

1 

1 

1 

1 

1 

 

 

319 

79 

73 

57 

15 

3 

 

 

383 

88 

59 

10 

5 

1 

0.02574 

0.02390 

0.02390 

0.02390 

0.02206 

0.02206 

0.02022 

0.02022 

0.01654 

0.01471 

0.01471 

0.01287 

0.01287 

0.01103 

0.01103 

0.00919 

0.00735 

0.00735 

0.00551 

0.00551 

0.00368 

0.00368 

0.00184 

0.00184 

0.00184 

0.00184 

0.00184 

0.00184 

 

 

0.58425 

0.14469 

0.13370 

0.10440 

0.02747 

0.00549 

 

 

0.70147 

0.16117 

0.10806 

0.01832 

0.00916 

0.00183 
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HLA-DRB5 

DRB5*00:00 (****) 

DRB5*01:01:01 

DRB5*02:02 

DRB5*01:02 
       

 

 

472 

52 

14 

8 
      

 

 

0.86447 

0.09524 

0.02564 

0.01465 
        

 

Notes: 

(*) In March 2017, posterior to release of IPD-IMGT/HLA database version 3.25.0, the HLA-DPA1*02:02:01 

allele was deleted from the official WHO HLA Nomenclature as its sequence has now been shown to be in error 

and is identical to HLA-DPA1*02:07:01 allele (https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi). 

(**) HLA-DRB3*00:00 (indicating DRB3 absence) frequency of 58.4%. 

(***) HLA-DRB4*00:00 (indicating DRB4 absence) frequency of 70.2%. 

(****) HLA-DRB5*00:00 (indicating DRB5 absence) frequency of 86.5%. 

 

4. IDENTIFICATION OF TWO NOVEL HLA ALLELES IN 17TH-IHIW SPANISH 

POPULATION COHORT (HEALTHY CONTROL GROUP) 

Two novel HLA alleles were identified (according to IPD-IMGT/HLA database version 3.25.0, 

used at the time of this study) during this Spanish population study using this aforementioned 

NGS-based HLA genotyping method [187] (Figure R-1a-1f). One individual (17th IHIW sample 

ID no. H00035F6, from Barcelona, Spain) presents a single base mismatch with HLA-B*38:20 

reference allele sequence in exon 3 (codon 99), which leads to a synonymous substitution (Tyr or 

Y (TAC) to Tyr or Y (TAT)) (Figure R-1a-1c). Complete HLA genotyping result of this individual 

including the novel allele is:  

HLA-A*29:02:01:01, HLA-A*25:01:01; HLA-C*12:03:01:01, HLA-C*03:03:01:01; HLA-

B*38:20:02, HLA-B*15:01:01:01; HLA-DRB4*01:03:01:01, HLA-DRB3*02:02:01:02; HLA-

DRB1*07:01:01:01, HLA-DRB1*13:01:01:01; HLA-DQA1*02:01:01:01, HLA-

DQA1*01:03:01:02; HLA-DQB1*02:02:01:01, HLA-DQB1*06:03:01; HLA-DPA1*02:02:01, 

HLA-DPA1*01:03:01:01; HLA-DPB1*19:01, HLA-DPB1*02:01:02.  

https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi
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Also in another different subject (17th IHIW sample ID no. H00036D1, from Málaga, Spain), a 

single base mismatch with HLA-DRB3*02:02:01:01 reference allele sequence is detected in exon 

3 (codon 166), which leads in this case to a non-synonymous substitution and, therefore, to an 

amino acid (aa) change (Arg or R (CGG) to Gln or Q (CAG)) (Figure R-1d-1f). Complete HLA 

genotyping result of this other subject including the novel allele is:                          

HLA-A*11:01:01:01, HLA-A*11:01:01:01; HLA-C*05:01:01:02, HLA-C*15:02:01:01; HLA-

B*44:02:01:01, HLA-B*51:01:01:01; HLA-DRB5*01:01:01, HLA-DRB3*02:71; HLA-

DRB1*15:01:01:01, HLA-DRB1*03:01:01:01; HLA-DQA1*01:02:01:01, HLA-

DQA1*05:01:01:01; HLA-DQB1*06:02:01, HLA-DQB1*02:01:01; HLA-DPA1*01:03:01:01, 

HLA-DPA1*01:03:01:02; HLA-DPB1*04:01:01:01, HLA-DPB1*02:01:02.  

To confirm these findings, as a second HLA sequencing test performed in parallel, sequence-

based typing (SBT) was performed using respective SBTexcellerator kits (GenDx, Utrecht, The 

Netherlands) on a 3130xL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) and 

SBTengine HLA typing software version 3.14.0.2783 (GenDx, Utrecht, The Netherlands) at the 

corresponding local Spanish clinical laboratories of origin for these two samples. 

Reported sequences of both identified exon variants were submitted to GenBank [801] and to 

the IPD-IMGT/HLA Database [295]. These two new alleles have been officially assigned by the 

WHO Nomenclature Committee for Factors of the HLA system [74]. In the case of the new HLA-

B*38:20 allele, the official name given is HLA-B*38:20:02 (GenBank accession no. MG76848 

and IPD-IMGT/HLA submission no. HWS10051845). Regarding the new HLA-

DRB3*02:02:01:01 allele, the official name given is HLA-DRB3*02:71 (GenBank accession no. 

MG922498 and IPD-IMGT/HLA submission no. HWS10051607). 
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Figure R-1a-c. Novel allele with one base mismatch in exon 3 of HLA-B*38:20 allele reference allele sequence. 
 

 

a) Coverage cDNA plots of HLA-B*38:20 (Blue colored coverage graph), as well as of HLA-B*38:01:01 (Red colored coverage 

graph), and HLA-B*15:01:01:01 (Green colored coverage graph). 

 

 
 

 

 
b) Consensus cDNA alignment in exon 3 of both contig 2 sequence versus reference sequence HLA-B*38:20 (as well as 

reference sequence HLA-B*38:01:01) (above image) and contig 1 sequence versus reference sequence HLA-B*15:01:01:01 

(bottom image). 
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c) Consensus cDNA contig alignment browser indicates the presence of nucleotide “C” (Cytosine) and nucleotide “T“ 

(Thymine) at position 395. Where “C” predominantly belongs to contig 1 sequence (colored in orange) for HLA-B*15:01:01:01 

allele and “T” predominantly belongs to contig 2 sequence (colored in grey), which is a novel allele with one base mismatch in 

exon 3 in HLA-B*38:20 as the closest allele reference sequence. 

 
 
 

17th IHIW Sample H00035F6 has one base mismatch at codon 99 in exon 3 of HLA-B*38:20 reference allele sequence that 

results in a synonymous substitution of Tyr or Y (TAC) to Tyr or Y (TAT). (a) The coverage cDNA plot of HLA-B*38:20 
(represented here together with HLA-B*38:01:01) shows a dip to the baseline (indicated by a blue arrow) in exon 3. (b) Firstly, 

consensus cDNA alignment allows us to confirm that the best assignment of contig 2 sequence is with HLA-B*38:20 reference 

sequence instead of HLA-B*38:01:01 reference sequence (shown by a green circle in the above image of (b)). Also this 

alignment tool detects one base mismatch (“T” instead of  ”C”) at codon 99 in exon 3 between this contig 2 sequence and the 

HLA-B*38:20 reference sequence (shown by the colored blue highlight box indicated by a blue circle in the above image of (b)). 

(c) When looking at the same position but in the consensus cDNA browser it can be detected (position 395) the presence of both 

nucleotide “C” (78%, predominantly belonging to contig 1 assigned to HLA-B*15:01:01:01) and nucleotide “T” (22%, 

identifying this novel allele in contig 2 assigned to the closest reference allele HLA-B*38:20) (indicated by a red circle).  

Therefore, all evidences show this is a novel allele closest to HLA-B*38:20 reference allele sequence with a single base 

mismatch in exon 3.In terms of plausible functional implications (i.e. antigen-presentation, related peptide specificity, protein 

stability/integration into the cell membrane or interaction with respective T cell co-receptor) of this novel HLA-B allele (named 

as HLA-B*38:20:02): Since this detected single base mismatch with HLA-B*38:20 reference allele sequence in codon 99 within 

exon 3 {which encodes extracellular α2 domain, that together with α1 domain make up the peptide-binding cleft consisting of 

two α-helices overlying a floor comprised of eight antiparallel β-stranded sheets of the respective expressed HLA class-I 

molecule [553]} leads only into a synonymous substitution [Tyr or Y (TAC) to Tyr or Y (TAT), thus remaining the identical aa 

or residue]. Therefore, it should not mean any alteration from the original antigen-presentation features/peptide specificity 

shown by HLA-B*38:20 allele reference. 
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Figure R-1d-f. Novel allele with one base mismatch in exon 3 of HLA-DRB3*02:02:01:01 reference allele sequence. 
 

 

d) Coverage cDNA plot of HLA-DRB3*02:02:01:01 (Green colored coverage graph). 

 

 

 
 

 

 

 

e) Consensus cDNA alignment in exon 3 of both contig 1 sequence (for HLA-DRB3) of one allele versus reference sequence 

HLA-DRB3*02:02:01:01 (above image); and on the other allele contig 1 sequence (for HLA-DRB5) versus reference sequence 

HLA-DRB5*01:01:01v1 (cloned and sequenced allele from internal database MIA FORA™ NGS FLEX HLA Genotyping 

Software) (bottom image). 

 

 

 
 

f) Consensus cDNA contig alignment browser indicates a major presence of nucleotide “A” (Adenine) and a very low 

proportion of nucleotide “G“ (Guanine) at position 583. Where “A” belongs to contig 1 sequence in HLA-DRB3, which defines 

a novel allele with one base mismatch in exon 3 with HLA-DRB3*02:02:01:01 reference allele sequence. On the other hand, 

nucleotide “G” most probably comes from either contig 1 of HLA-DRB5 locus (HLA-DRB5*01:01:01v1) or from contig 1 

(HLA-DRB1*03:01:01:01) or contig 2 (HLA-DRB1*15:01:01:01)) of HLA-DRB1 locus, in an event known as “cross-mapping 

reads” between homologous sequences. Since there is a high similarity of certain DNA sequence regions found between HLA-

DRB1 alleles and the respective HLA-DRB3/4/5 alleles. Thus, it is not possible to establish a clear distinction in the alignment 

and mapping of NGS raw reads, when attempting to define sequence and allele calling of HLA-DRB1 gen and their respective 

association with HLA-DRB3/4/5 genes [202]. 
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17th IHIW Sample H00036D1 shows one base mismatch in exon 3 of HLA-DRB3*02:02:01:01 reference allele sequence that 

results in a non-synonymous substitution of residue and, therefore, in an amino acid change (Arg (CGG) to Gln (CAG)). (d) 

The coverage cDNA plot of HLA-DRB3*02:02:01:01 shows a dip to the baseline (indicated by a blue arrow) in exon 3. (e) 

Consensus cDNA alignment shows one base mismatch (“A” instead of ”G”) at codon 166 in exon 3 (indicated by a colored 

yellow highlight box in the above image of (e)). (f) When looking at the same position but in the consensus cDNA browser 

(position 583) it can be detected a dominant presence of nucleotide “A” (98%, belonging to contig 1 in HLA-DRB3 and 

identifying this novel allele) and nucleotide “G” (2%, coming probably either from contig 1 of HLA-DRB5 locus or from contig 

1 or contig 2 of HLA-DRB1 locus) (indicated by a red circle).  

Therefore, all evidences show this is a novel allele closest to HLA-DRB3*02:02:01:01 reference allele sequence with a single 

base mismatch in exon 3. 

In terms of plausible functional implications (i.e. antigen-presentation, related peptide specificity, protein stability/integration 

into the cell membrane or interaction with respective T cell co-receptor) of this novel HLA-DRB3 allele (named as HLA-
DRB3*02:71):  

In this instance, the detected single base mismatch with HLA-DRB3*02:02:01:01 reference allele sequence in codon 166 

within exon 3 {which encodes the Ig-like β2 domain proximal to the cell membrane of APCs, and that is part of the 

extracellular portion of β chain of the respective expressed HLA class-II molecule [553]} leads to a non-synonymous 

substitution and, consequently, to an amino acid (aa) change. In which, an aa with a positively charged side chain (Arg or R 

(CGG), that is able to specifically form ionic bonds) is replaced, in this new HLA allele and respective encoded HLA protein, 

by an aa with a polar but uncharged side chain (Gln or Q (CAG) that, differently, is capable of forming hydrogen bonds). As it 

is well-documented, the chemistry of amino acid side chains is critical to protein structure because these side chains can 

differently and specifically bond with one another to hold a length of protein in a certain shape or conformation [802]. Thus, 

this observed amino acid change (with a plausible associated alteration of aa side chains interactions and corresponding bonds) 

could potentially mean, in turn, a certain level of variation of protein folding and configuration within this particular above 

mentioned β2 domain. Moreover, both the α2 (encoded by exon 3 of the respective given HLA-DRA allele pair) and β2 

domains of HLA class II heterodimer molecules, proximal to the cell membrane of APCs, contribute to a concavity which 

accommodates a protrusion from the CD4 co-receptor in the T cell [803]. Consequently, the conformation (and spatial 

geometry) of respective HLA class II α2/β2 domain for binding this CD4 T cell co-receptor may be partially or minimally 

conditioned by this amino acid change and, thus, ultimately it may have its effect on αβTCR T cell development and respective 

effector function [804]. Therefore, a clear functional relevance (and also even allogeneic from the perspective of the 

transplantation setting) could be potentially attributed to this new HLA-DRB3 allele. Nevertheless, further functional studies 

will be necessary in order to confirm this speculative conclusion.  
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Figure R-2. Molecular structure of amino acid side chains 

discussed above. 

 

 

 

a) Molecular structure and charge differences observed between 

amino acid side chains of Arg (presented by HLA-
DRB3*02:02:01:01 reference allele sequence) and Gln 

(presented by novel HLA-DRB3*02:71 described here) encoded 

respectively by codon 166 within exon 3 of HLA-DRB3 locus. 

 

 

 

b) Molecular structure of amino acid side chain of Tyr 

(presented by HLA-B*38:20 reference allele sequence and also 

by HLA-B*38:20:02 described here) encoded by codon 99 

within exon 3 of HLA-B locus. 
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5. EWENS-WATERSON HOMOZYGOSITY (EWH) TEST OF NEUTRALITY IN 17TH-

IHIW SPANISH POPULATION COHORT (HEALTHY CONTROL GROUP) 
 

Just as an initial and tentative analysis, Ewens-Waterson Homozygosity (EWH) test of neutrality 

was used for analysis of selective processes based on HLA allelic diversity at the 3-/4-field allele 

resolution level of this Spanish population cohort. All HLA loci analyzed show levels of observed 

homozygosity (Fo) that are below the expected homozygosity under neutrality (Fe) with the 

exception of HLA-DPB1 locus (Table R-4). Furthermore, HLA-B, -DQA1 and -DQB1 are the only 

loci that show statistically significant deviation from neutrality and, therefore, are consistent with 

a more pronounced balancing selection (Fnd << 0). As previously described across human 

populations [134][805] we also observed for this Spanish population cohort (in spite of presenting 

a relatively small sample size) an overall direction towards balancing selection for most of the 

classical HLA class I and II loci with the striking exception of HLA-DP genes. These latter 

(especially HLA-DPB1 locus, based on our results at the 4-field allele resolution level) seem to be 

more under directional selection, in which only a set of few alleles become selected (e.g. HLA-

DPB1*04:01:01:01), as similarly observed in other previous studies [806][807]. These 

interpretations, however, need to be further confirmed on a larger Spanish population cohort, 

considering also the diverse nature of the regional subpopulations included in this study. 
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Table R-4. Ewens-Watterson Homozygosity (EWH) test of neutrality at the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -

DRB1 loci based on the 3-/4-field allele resolution level HLA genotyping data (and according to IPD-IMGT/HLA database version 

3.25.0) of this 17th-IHIW Spanish population cohort (n=282 subjects). 

 

Locus 
 Number of subjects 

typed (N) 

 

k Fo Fe  Fnd 
p-value of 

F 

 

HLA-A 

 

 

276 

 

 

36 

 

0.0983 

 

0.1048 

 

-0.1924 

 

0.5208 

 

HLA-B 
 

276 

 

 

53 

 

0.0444 

 

0.0661 

 

-1.2197 

 

0.0331* 

 

HLA-C 
 

276 
 

40 
 

0.0617 

 

0.0934 

 

-1.0858 

 

0.0577 

 

HLA-DPA1 

 

 

275 

 

 

14 

 

 

0.1639 

 

0.2766  

 

 -1.0498 

 

0.0806 

 

HLA-DPB1 

 

 

274 

 

 

29 

 

 

0.1769 

 

0.1336 

 

0.9376 

 

0.8572 

 

HLA-DQA1 

 

 

272 

 

 

23 

 

 

0.0872 

 

0.1708 

 

-1.3322 

 

0.0094** 

 

HLA-DQB1 

 

 

269 

 

 

24 

 

 

0.0869 

 

0.1630 

 

-1.2857 

 

0.0120* 

 

HLA-DRB1 
 

272 
 

37 
 

0.0733 

 

0.1015 

 

-0.8761 

 

0.1443 

 

The normalized deviate of the Ewens-Watterson homozygosity statistic (Fnd) was calculated based on the observed allele frequencies at 

each HLA locus and it is used to infer the action of balancing (Fnd << 0) or directional selection/extreme demographic effect (Fnd >> 0) at 

each HLA locus. The results of the Ewens-Watterson Homozygosity Test are shown above. Number of unique alleles (k); Observed F (Fo); 

Expected F (Fe); Normalized deviate of F (Fnd). 

 

(*) p-value of F lower than 0.05 (p < 0.05) indicates a statistical significance at the 5% level.  

(**) p-value of F lower than 0.01 (p < 0.01) indicates a statistical significance at the 1% level. 

 

 

Also when performing EWH test, HLA-DRB3/4/5 loci were not included as they represent a particular virtual single “locus”. Where these 

HLA-DRB3/4/5 genes characteristically behave as alleles of a single locus as the presence of one of these genes at the haplotype level 

excludes the presence of the other two genes. This is based on the linkage constraints that exist between the HLA-DRB3/4/5 loci and the 

HLA-DRB1 locus, in which several HLA-DRB1 allele families can be differentiated [344]. 
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6. 2-LOCUS HAPLOTYPE LINKAGE DISEQUILIBRIUM (LD) ANALYSIS IN 17TH-

IHIW SPANISH POPULATION COHORT (HEALTHY CONTROL GROUP) 
 

Estimated 2-locus haplotype frequencies and measure of overall LD (Hedrick´s D’ statistic) of 

pairs of neighboring genetic HLA loci (B~C, DPA1~DPB1, DQA1~DQB1, DQB1~DRB1 and even 

(although more distant) B~DRB1) at the 3-/4-field allele resolution level are shown in Table R-5. 

Interestingly, it can be observed unique 2-locus haplotype associations in non-coding regions at 

the 4-field allele resolution level that are not apparent when testing at the 2-field level. For instance, 

alleles of the HLA-B*35 allele group show very distinctive associations with HLA-C alleles at the 

4-field level. On one hand, at the 2-field level, HLA-B*35:01, HLA-B*35:02, HLA-B*35:03 and 

HLA-B*35:08 alleles show a strong and common association with HLA-C*04:01 allele. 

Nevertheless, at the 4-field level it can be observed that in the case of the non-coding variant HLA-

B*35:01:01:01, it displays a specific and conserved association with HLA-C*04:01:01:01. 

Whereas, HLA-B*35:01:01:02 non-coding variant presents associations with not only HLA-

C*04:01:01:01 allele but also with HLA-C*04:01:01:05 and HLA-C*04:01:01:06 alleles. In the 

case of HLA-B*35:02:01, it may seem to display a specific and conserved association with HLA-

C*04:01:01:06 in Spanish population. As for HLA-B*35:03:01, it presents association with HLA-

C*04:01:01:01. Finally, HLA-B*35:08:01 shows association with HLA-C*04:01:01:06. 

Furthermore, we also found distinctive haplotypic associations at the non-coding level in several 

other HLA class I and class II loci pairs (e.g. non-coding HLA-DQA1*05:01:01 variants, HLA-

B*18:01:01 variants, HLA-C*05:01:01 variants or HLA-C*06:02:01 variants). In contrast, HLA 

loci pairs as B*07:02:01~C*07:02:01:03, DQA1*01:01:01:02~DQB1*05:01:01:03 and 

DQB1*02:02:01:01~DRB1*07:01:01:01 are some examples of 4-field highly conserved 

associations found in this Spanish population cohort. 
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Table R-5. HLA loci pair B~C, DPA1~DPB1, DQA1~DQB1, DQB1~DRB1 and B~DRB1 haplotypes estimated frequencies (at the 

3-/4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0) sorted from the lowest to the highest 

numbered first allele of the pair are shown for this 17th-IHIW Spanish population cohort (n=282 subjects). 

 

 

                                  Haplotype 

 

Frequency (in decimals) 

 

                 LD (Hedrick´s D’ statistic) 

 

Locus Pair B~C   
   

B*07:02:01~C*07:02:01:03 0.09601 1 

B*07:05:01:01~C*15:05:02 0.00362 1 

B*07:06:01~C*15:05:02 0.00362 1 

B*08:01:01:01~C*06:02:01:03 0.00181 0.14419 

B*08:01:01:01~C*07:01:01:01 0.05978 0.90574 

B*08:01:01:01~C*07:02:01:01 0.00362 0.35814 

B*13:02:01~C*06:02:01:01 0.01268 1 

B*14:01:01~C*08:02:01:02 0.01449 1 

B*14:02:01:01~C*08:02:01:01 0.03804 1 

B*15:01:01:01~C*03:03:01:01 0.0308 0.80087 

B*15:01:01:01~C*03:04:01:01 0.00543 0.15537 

B*15:01:01:01~C*03:07 0.00181 1 

B*15:01:01:04~C*04:01:01:06 0.00362 1 

B*15:03:01:02~C*02:10:01:01 0.00362 1 

B*15:03:01:02~C*16:01:01:01 0.00181 0.29502 

B*15:09~C*07:04:01:01 0.00181 1 

B*15:220~C*12:03:01:01 0.00362 1 

B*18:01:01:01~C*03:03:01:01 0.00181 0.00207 

B*18:01:01:01~C*05:01:01:01 0.03804 0.95266 

B*18:01:01:02~C*07:01:01:01 0.01087 0.29303 

B*18:01:01:02~C*12:03:01:01 0.01812 0.59252 

B*18:01:01:03~C*02:10:01:02 0.00181 1 

B*27:02:01~C*02:02:02:01 0.00362 1 

B*27:03~C*07:01:02 0.00181 1 

B*27:05:02~C*01:02:01 0.0163 0.5486 

B*27:05:02~C*02:02:02:01 0.01449 0.4423 

B*35:01:01:01~C*04:01:01:01 0.00181 1 

B*35:01:01:02~C*04:01:01:01 0.03623 0.70971 

B*35:01:01:02~C*04:01:01:05 0.00362 1 

B*35:01:01:02~C*04:01:01:06 0.00906 0.17714 

B*35:02:01~C*04:01:01:06 0.0163 1 

B*35:03:01~C*04:01:01:01 0.01993 0.56457 

B*35:03:01~C*08:25 0.00181 1 

B*35:03:01~C*12:03:01:01 0.01087 0.27559 
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B*35:08:01~C*04:01:01:06 0.01087 0.73913 

B*35:08:01~C*12:03:01:01 0.00362 0.18504 

B*37:01:01~C*06:02:01:01 0.02174 1 

B*38:01:01~C*07:02:01:03 0.00181 -0.39869 

B*38:01:01~C*12:03:01:01 0.02899 0.93608 

B*38:20~C*12:03:01:01 0.00181 1 

B*39:01:01:03~C*07:02:01:01 0.00181 0.19121 

B*39:01:01:03~C*12:03:01:01 0.00906 0.8189 

B*39:06:02~C*07:02:01:01 0.00181 1 

B*40:01:02~C*03:04:01:01 0.01993 1 

B*40:02:01~C*02:02:02:01 0.01449 0.78931 

B*40:02:01~C*03:04:01:02 0.00181 1 

B*40:02:01~C*07:01:01:01 0.00181 -0.1375 

B*40:06:01:02~C*15:02:01:01 0.00725 1 

B*40:12~C*15:05:03 0.00181 1 

B*41:01:01~C*07:01:01:01 0.00181 0.2459 

B*41:01:01~C*17:01:01:05 0.00362 1 

B*41:02:01~C*17:03 0.00181 1 

B*44:02:01:01~C*02:02:02:01 0.00362 0.01239 

B*44:02:01:01~C*05:01:01:02 0.0471 0.96061 

B*44:02:01:01~C*05:09:01 0.00181 1 

B*44:02:01:01~C*07:04:01:01 0.00362 0.64547 

B*44:02:01:01~C*12:03:01:01 0.00362 -0.23967 

B*44:03:01:01~C*04:01:01:01 0.02355 0.19002 

B*44:03:01:01~C*04:09N 0.00362 1 

B*44:03:01:01~C*05:01:01:02 0.00181 -0.56501 

B*44:03:01:01~C*15:02:01:01 0.00181 0.0063 

B*44:03:01:01~C*16:01:01:01 0.05072 0.92713 

B*44:03:01:01~C*16:02:01 0.00362 0.63564 

B*44:04~C*16:01:01:01 0.00181 1 

B*44:05:01~C*02:02:02:01 0.00181 1 

B*45:01:01~C*06:02:01:03 0.00725 1 

B*47:01:01:03~C*06:02:01:01 0.00362 0.65019 

B*47:01:01:03~C*07:18 0.00181 0.32353 

B*49:01:01~C*02:02:02:01 0.00181 -0.1039 

B*49:01:01~C*07:01:01:01 0.03804 0.94858 

B*50:01:01~C*04:01:01:01 0.00543 0.16024 

B*50:01:01~C*06:02:01:02 0.0163 0.74349 

B*50:02~C*04:01:01:01 0.00362 0.20023 

B*50:02~C*06:02:01:02 0.00906 0.70685 

B*51:01:01:01~C*01:02:01 0.00906 0.26737 

B*51:01:01:01~C*02:02:02:01 0.01087 0.16271 

B*51:01:01:01~C*03:03:01:01 0.00362 0.02317 

B*51:01:01:01~C*04:01:01:01 0.00543 -0.17448 
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B*51:01:01:01~C*04:01:01:06 0.00181 -0.29412 

B*51:01:01:01~C*14:02:01:01 0.01993 1 

B*51:01:01:01~C*15:02:01:01 0.01087 0.51562 

B*51:08:01~C*16:02:01 0.00181 1 

B*52:01:01:02~C*12:02:02 0.00906 1 

B*52:01:01:02~C*12:166 0.00181 1 

B*52:01:02~C*07:02:01:01 0.00181 1 

B*53:01:01~C*04:01:01:01 0.01087 1 

B*55:01:01~C*01:02:01 0.00362 0.22761 

B*55:01:01~C*03:03:01:01 0.00725 0.47727 

B*55:01:01~C*03:04:01:01 0.00362 0.22761 

B*57:01:01~C*06:02:01:01 0.00725 0.65019 

B*57:01:01~C*07:01:01:01 0.00362 0.2459 

B*57:03:01:02~C*08:02:01:01 0.00181 1 

B*58:01:01:01~C*03:02:02:01 0.00362 1 

B*58:01:01:01~C*05:01:01:01 0.00181 0.05317 

B*58:01:01:01~C*06:02:01:01 0.00181 0.04597 

B*58:01:01:01~C*07:18 0.01268 0.87246 

B*73:01~C*15:05:01 0.00181 1 

 

 

Locus Pair DPA1~DPB1 (*)   

   

DPA1*01:03:01:01~DPB1*02:01:02 0.11182 0.76617 

DPA1*01:03:01:01~DPB1*02:02 0.01457 0.50095 

DPA1*01:03:01:01~DPB1*03:01:01 0.0018 -0.70321 

DPA1*01:03:01:01~DPB1*04:01:01:01 0.00244 -0.9514 

DPA1*01:03:01:01~DPB1*104:01 0.00149 -0.7196 

DPA1*01:03:01:01~DPB1*15:01:01 0.00292 0.76886 

DPA1*01:03:01:01~DPB1*16:01:01 0.00365 0.61299 

DPA1*01:03:01:02~DPB1*02:01:02 0.04254 -0.15065 

DPA1*01:03:01:02~DPB1*02:02 0.00721 -0.03317 

DPA1*01:03:01:02~DPB1*03:01:01 0.00185 -0.85556 

DPA1*01:03:01:02~DPB1*04:01:01:01 0.20282 0.52191 

DPA1*01:03:01:02~DPB1*104:01 0.03683 0.94508 

DPA1*01:03:01:02~DPB1*15:01:01 0.00073 -0.31812 

DPA1*01:03:01:03~DPB1*03:01:01 0.03832 0.86647 

DPA1*01:03:01:03~DPB1*06:01:01 0.0219 1 

DPA1*01:03:01:03~DPB1*20:01:01 0.00365 1 

DPA1*01:03:01:04~DPB1*02:01:02 0.01353 -0.5545 

DPA1*01:03:01:04~DPB1*02:02 0.00377 -0.16641 

DPA1*01:03:01:04~DPB1*04:01:01:01 0.15059 0.7663 

DPA1*01:03:01:04~DPB1*04:01:01:02 0.00182 1 

DPA1*01:03:01:04~DPB1*105:01 0.00182 0.08869 
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DPA1*01:03:01:04~DPB1*16:01:01 0.00182 0.18995 

DPA1*01:03:01:04~DPB1*23:01:01 0.00365 1 

DPA1*01:03:01:05~DPB1*04:02:01:01 0.04015 1 

DPA1*01:03:01:05~DPB1*04:02:01:02 0.06569 0.96953 

DPA1*01:03:01:05~DPB1*105:01 0.00182 0.15432 

DPA1*01:03:01:05~DPB1*138:01 0.00182 1 

DPA1*01:03:01:05~DPB1*14:01:01 0.00182 0.09794 

DPA1*01:03:01:05~DPB1*59:01 0.00182 1 

DPA1*01:03:05~DPB1*02:01:02 0.00182 1 

DPA1*02:01:01:01~DPB1*04:01:01:01 0.00182 -0.93564 

DPA1*02:01:01:01~DPB1*04:02:01:02 0.00182 -0.65556 

DPA1*02:01:01:01~DPB1*10:01:01 0.00182 -0.01968 

DPA1*02:01:01:01~DPB1*11:01:01 0.03285 0.94289 

DPA1*02:01:01:01~DPB1*13:01:01 0.01277 0.86436 

DPA1*02:01:01:01~DPB1*131:01 0.00182 1 

DPA1*02:01:01:01~DPB1*14:01:01 0.00182 0.13188 

DPA1*02:01:01:01~DPB1*17:01 0.02372 1 

DPA1*02:01:01:02~DPB1*01:01:02 0.00182 1 

DPA1*02:01:01:02~DPB1*02:01:02 0.00182 -0.76681 

DPA1*02:01:01:02~DPB1*03:01:01 0.00182 -0.08667 

DPA1*02:01:01:02~DPB1*05:01:01 0.00547 0.26654 

DPA1*02:01:01:02~DPB1*09:01:01 0.0073 1 

DPA1*02:01:01:02~DPB1*10:01:01 0.02007 0.8388 

DPA1*02:01:01:02~DPB1*14:01:01 0.00547 0.58088 

DPA1*02:01:01:02~DPB1*26:01:02 0.00182 1 

DPA1*02:01:02~DPB1*01:01:01 0.0365 1 

DPA1*02:01:08~DPB1*01:01:01 0.0073 1 

DPA1*02:02:01~DPB1*04:01:01:01 0.00182 -0.44646 

DPA1*02:02:01~DPB1*19:01 0.0073 1 

DPA1*02:02:02~DPB1*01:01:01 0.01095 0.31547 

DPA1*02:02:02~DPB1*04:01:01:01 0.00182 -0.8372 

DPA1*02:02:02~DPB1*05:01:01 0.01277 0.6904 

DPA1*02:02:02~DPB1*10:01:01 0.00182 0.04737 

DPA1*02:02:02~DPB1*11:01:01 0.00182 0.02502 

DPA1*02:02:02~DPB1*296:01 0.00182 1 

DPA1*03:01~DPB1*105:01 0.00365 1 

DPA1*04:01~DPB1*13:01:01 0.00182 1 
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Locus Pair DQA1~DQB1 

   

DQA1*01:01:01:02~DQB1*05:01:01:03 0.08396 1 

DQA1*01:01:02~DQB1*05:01:01:01 0.02425 1 

DQA1*01:02:01:01~DQB1*05:02:01 0.00373 0.02697 

DQA1*01:02:01:01~DQB1*06:01:01 0.00187 0.01153 

DQA1*01:02:01:01~DQB1*06:02:01 0.08582 0.97634 

DQA1*01:02:01:01~DQB1*06:03:01 0.0056 -0.29101 

DQA1*01:02:01:01~DQB1*06:04:01 0.00187 0.02697 

DQA1*01:02:01:01~DQB1*06:09:01 0.00187 0.11037 

DQA1*01:02:01:04~DQB1*05:01:01:03 0.00187 -0.02899 

DQA1*01:02:01:04~DQB1*06:04:01 0.01306 0.87214 

DQA1*01:02:01:04~DQB1*06:09:01 0.00746 0.79542 

DQA1*01:02:02~DQB1*05:02:01 0.02612 1 

DQA1*01:03:01:01~DQB1*06:01:01 0.01493 1 

DQA1*01:03:01:02~DQB1*06:03:01 0.07276 0.97287 

DQA1*01:03:01:02~DQB1*06:39 0.00187 1 

DQA1*01:04:01:01~DQB1*05:03:01:01 0.01866 1 

DQA1*01:04:01:03~DQB1*05:03:01:01 0.0056 1 

DQA1*01:04:02~DQB1*05:03:01:01 0.00187 1 

DQA1*01:05:01~DQB1*05:01:01:02 0.01866 1 

DQA1*01:05:02~DQB1*05:03:01:01 0.00187 0.4856 

DQA1*01:05:02~DQB1*06:02:01 0.00187 0.45194 

DQA1*02:01:01:01~DQB1*02:02:01:01 0.14552 1 

DQA1*02:01:01:01~DQB1*03:03:02:01 0.01493 1 

DQA1*03:01:01~DQB1*03:02:01 0.0709 0.97178 

DQA1*03:01:01~DQB1*03:04:01 0.00187 0.46076 

DQA1*03:02~DQB1*03:03:02:02 0.00933 1 

DQA1*03:03:01:01~DQB1*02:02:01:02 0.00746 1 

DQA1*03:03:01:01~DQB1*03:01:01:01 0.01866 0.60277 

DQA1*03:03:01:01~DQB1*03:02:01 0.02052 0.30294 

DQA1*03:03:01:01~DQB1*03:02:03 0.00187 1 

DQA1*03:03:01:01~DQB1*03:04:01 0.00187 0.47036 

DQA1*03:03:01:01~DQB1*04:02:01 0.0056 0.15257 

DQA1*04:01:01~DQB1*04:02:01 0.02239 1 

DQA1*05:01:01:01~DQB1*02:01:01 0.0541 1 

DQA1*05:01:01:02~DQB1*02:01:01 0.07276 1 

DQA1*05:01:01:03~DQB1*02:01:01 0.00933 1 

DQA1*05:03~DQB1*03:01:01:01 0.00187 1 

DQA1*05:05:01:01~DQB1*03:01:01:02 0.01866 1 

DQA1*05:05:01:01~DQB1*03:01:01:03 0.11007 1 

DQA1*05:05:01:01~DQB1*03:19:01 0.0056 0.71121 

DQA1*05:05:01:03~DQB1*03:01:01:01 0.00933 0.82821 
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DQA1*05:05:01:03~DQB1*03:19:01 0.00187 0.24151 

 

 

Locus Pair DQB1~DRB1   

   

DQB1*02:01:01~DRB1*03:01:01:01 0.13534 1 

DQB1*02:02:01:01~DRB1*07:01:01:01 0.14474 1 

DQB1*02:02:01:02~DRB1*04:05:01 0.00752 1 

DQB1*03:01:01:01~DRB1*04:01:01:01 0.00752 0.26357 

DQB1*03:01:01:01~DRB1*04:07:01 0.00752 1 

DQB1*03:01:01:01~DRB1*04:08:01 0.00376 0.65633 

DQB1*03:01:01:01~DRB1*11:01:01:01 0.00188 0.02397 

DQB1*03:01:01:01~DRB1*12:01:01:03 0.0094 1 

DQB1*03:01:01:02~DRB1*11:04:01 0.0188 1 

DQB1*03:01:01:03~DRB1*04:05:01 0.00188 -0.41667 

DQB1*03:01:01:03~DRB1*11:01:01:01 0.03759 0.94667 

DQB1*03:01:01:03~DRB1*11:02:01 0.00564 0.44 

DQB1*03:01:01:03~DRB1*11:03:01 0.0094 1 

DQB1*03:01:01:03~DRB1*11:04:01 0.0282 0.52615 

DQB1*03:01:01:03~DRB1*13:03:01 0.0188 0.89818 

DQB1*03:01:01:03~DRB1*13:05:01 0.00564 1 

DQB1*03:02:01~DRB1*04:01:01:01 0.0188 0.68465 

DQB1*03:02:01~DRB1*04:02:01 0.02256 1 

DQB1*03:02:01~DRB1*04:03:01 0.0094 0.68465 

DQB1*03:02:01~DRB1*04:04:01 0.02444 1 

DQB1*03:02:01~DRB1*04:05:01 0.0188 0.5861 

DQB1*03:02:03~DRB1*04:05:01 0.00188 1 

DQB1*03:03:02:01~DRB1*07:01:01:01 0.01504 1 

DQB1*03:03:02:02~DRB1*09:01:02 0.00752 1 

DQB1*03:03:02:02~DRB1*13:01:01:01 0.00188 0.13496 

DQB1*03:04:01~DRB1*04:03:01 0.00188 0.49333 

DQB1*03:04:01~DRB1*04:08:01 0.00188 0.49716 

DQB1*03:19:01~DRB1*11:02:01 0.00564 0.74715 

DQB1*03:19:01~DRB1*13:04 0.00188 1 

DQB1*04:02:01~DRB1*04:03:01 0.00188 0.11628 

DQB1*04:02:01~DRB1*04:06:02 0.00376 1 

DQB1*04:02:01~DRB1*08:01:01 0.02256 1 

DQB1*04:02:01~DRB1*13:03:01 0.00188 0.06272 

DQB1*05:01:01:01~DRB1*01:02:01 0.02444 1 

DQB1*05:01:01:02~DRB1*10:01:01:01 0.01692 1 

DQB1*05:01:01:02~DRB1*10:01:01:02 0.00188 1 

DQB1*05:01:01:03~DRB1*01:01:01 0.06391 1 

DQB1*05:01:01:03~DRB1*01:03 0.02068 1 

DQB1*05:01:01:03~DRB1*13:02:01 0.00188 -0.11037 
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DQB1*05:02:01~DRB1*11:01:02 0.00188 1 

DQB1*05:02:01~DRB1*15:06:01 0.00188 1 

DQB1*05:02:01~DRB1*16:01:01 0.01504 1 

DQB1*05:02:01~DRB1*16:02:01:02 0.01128 1 

DQB1*05:03:01:01~DRB1*14:01:01 0.00376 1 

DQB1*05:03:01:01~DRB1*14:04:01 0.00188 1 

DQB1*05:03:01:01~DRB1*14:54:01 0.02256 0.92085 

DQB1*06:01:01~DRB1*15:01:01:01 0.00188 0.02296 

DQB1*06:01:01~DRB1*15:02:01:02 0.01504 1 

DQB1*06:02:01~DRB1*08:06 0.00188 1 

DQB1*06:02:01~DRB1*14:54:01 0.00188 -0.0906 

DQB1*06:02:01~DRB1*15:01:01:01 0.08083 0.95115 

DQB1*06:03:01~DRB1*11:04:01 0.00188 -0.51282 

DQB1*06:03:01~DRB1*13:01:01:01 0.07143 0.94571 

DQB1*06:03:01~DRB1*15:01:01:01 0.00564 -0.20833 

DQB1*06:04:01~DRB1*13:02:01 0.01504 1 

DQB1*06:09:01~DRB1*13:02:01 0.00752 0.79499 

DQB1*06:09:01~DRB1*15:01:01:01 0.00188 0.12066 

DQB1*06:39~DRB1*13:01:01:01 0.00188 1 

 
 

               Locus Pair B~DRB1 

 

B*07:02:01~DRB1*01:01:01 0.00702 0.0149 

B*07:02:01~DRB1*01:03 0.01454 0.68915 

B*07:02:01~DRB1*03:01:01:01 0.00356 -0.72234 

B*07:02:01~DRB1*04:02:01 0.00368 0.07859 

B*07:02:01~DRB1*04:04:01 0.00184 -0.19527 

B*07:02:01~DRB1*04:05:01 0.00197 -0.29879 

B*07:02:01~DRB1*07:01:01:01 0.00747 -0.5115 

B*07:02:01~DRB1*10:01:01:01 0.00184 0.01716 

B*07:02:01~DRB1*11:04:01 0.00187 -0.59012 

B*07:02:01~DRB1*13:01:01:01 0.00223 -0.69838 

B*07:02:01~DRB1*15:01:01:01 0.04958 0.49079 

B*07:05:01:01~DRB1*04:01:01:01 0.00184 0.48582 

B*07:05:01:01~DRB1*04:05:01 0.00184 0.48485 

B*07:06:01~DRB1*10:01:01:01 0.00184 0.49159 

B*07:06:01~DRB1*11:01:01:01 0.00184 0.47992 

B*08:01:01:01~DRB1*03:01:01:01 0.04503 0.65346 

B*08:01:01:01~DRB1*04:02:01 0.00184 0.0203 

B*08:01:01:01~DRB1*08:01:01 0.00184 0.0203 

B*08:01:01:01~DRB1*13:01:01:01 0.00527 0.00505 

B*08:01:01:01~DRB1*13:03:01 0.00184 0.0284 

B*08:01:01:01~DRB1*14:54:01 0.00651 0.20145 
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B*08:01:01:01~DRB1*15:01:01:01 0.00202 -0.65914 

B*13:02:01~DRB1*03:01:01:01 0.00184 0.01001 

B*13:02:01~DRB1*07:01:01:01 0.00919 0.65989 

B*13:02:01~DRB1*08:01:01 0.00184 0.12352 

B*14:01:01~DRB1*04:07:01 0.00368 0.49254 

B*14:01:01~DRB1*07:01:01:01 0.00919 0.55361 

B*14:01:01~DRB1*10:01:01:01 0.00184 0.11028 

B*14:02:01:01~DRB1*01:02:01 0.01287 0.52085 

B*14:02:01:01~DRB1*03:01:01:01 0.00686 0.06067 

B*14:02:01:01~DRB1*04:05:01 0.00184 0.02672 

B*14:02:01:01~DRB1*07:01:01:01 0.00551 -0.06207 

B*14:02:01:01~DRB1*11:04:01 0.00368 0.05483 

B*14:02:01:01~DRB1*13:01:01:01 0.00332 0.01415 

B*14:02:01:01~DRB1*13:03:01 0.00184 0.05621 

B*14:02:01:01~DRB1*14:54:01 0.00085 -0.10538 

B*15:01:01:01~DRB1*01:01:01 0.00194 -0.18152 

B*15:01:01:01~DRB1*04:01:01:01 0.00735 0.23868 

B*15:01:01:01~DRB1*04:05:01 0.00184 0.02672 

B*15:01:01:01~DRB1*07:01:01:01 0.00368 -0.37471 

B*15:01:01:01~DRB1*08:01:01 0.00184 0.04835 

B*15:01:01:01~DRB1*11:03:01 0.00551 0.40676 

B*15:01:01:01~DRB1*13:01:01:01 0.01093 0.23855 

B*15:01:01:01~DRB1*15:06:01 0.00184 1 

B*15:01:01:01~DRB1*16:01:01 0.00184 0.0916 

B*15:01:01:04~DRB1*08:01:01 0.00184 0.48872 

B*15:01:01:04~DRB1*13:01:01:01 0.00184 0.45817 

B*15:03:01:02~DRB1*07:01:01:01 0.00184 0.20642 

B*15:03:01:02~DRB1*13:01:01:01 0.00184 0.27756 

B*15:03:01:02~DRB1*14:04:01 0.00184 1 

B*15:09~DRB1*13:02:01 0.00184 1 

B*15:220~DRB1*07:01:01:01 0.00184 0.40481 

B*15:220~DRB1*11:01:01:01 0.00184 0.47992 

B*18:01:01:01~DRB1*03:01:01:01 0.03421 0.82204 

B*18:01:01:01~DRB1*07:01:01:01 0.00184 -0.71578 

B*18:01:01:01~DRB1*13:01:01:01 0.00255 -0.18184 

B*18:01:01:01~DRB1*16:02:01:02 0.00184 0.13155 

B*18:01:01:02~DRB1*08:01:01 0.00184 0.05556 

B*18:01:01:02~DRB1*11:04:01 0.01467 0.47368 

B*18:01:01:02~DRB1*12:01:01:03 0.00184 0.17576 

B*18:01:01:02~DRB1*14:54:01 0.00184 0.04329 

B*18:01:01:02~DRB1*15:01:01:01 0.00739 0.17537 

B*18:01:01:02~DRB1*15:02:01:02 0.00184 0.09848 

B*18:01:01:03~DRB1*11:01:02 0.00184 1 

B*27:02:01~DRB1*01:01:01 0.00184 0.46562 
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B*27:02:01~DRB1*07:01:01:01 0.00184 0.40481 

B*27:03~DRB1*04:03:01 0.00184 1 

B*27:05:02~DRB1*01:01:01 0.01027 0.30448 

B*27:05:02~DRB1*04:01:01:01 0.00225 0.05369 

B*27:05:02~DRB1*04:03:01 0.00184 0.11688 

B*27:05:02~DRB1*04:04:01 0.00184 0.04895 

B*27:05:02~DRB1*04:08:01 0.00184 0.31313 

B*27:05:02~DRB1*11:02:01 0.00551 0.48485 

B*27:05:02~DRB1*13:01:01:01 0.00184 -0.19048 

B*27:05:02~DRB1*14:54:01 0.00219 0.05724 

B*27:05:02~DRB1*16:02:01:02 0.00184 0.14141 

B*35:01:01:01~DRB1*13:01:01:01 0.00184 1 

B*35:01:01:02~DRB1*01:01:01 0.01821 0.35479 

B*35:01:01:02~DRB1*01:02:01 0.00184 0.03246 

B*35:01:01:02~DRB1*01:03 0.00385 0.15122 

B*35:01:01:02~DRB1*03:01:01:01 0.00396 -0.35713 

B*35:01:01:02~DRB1*04:01:01:01 0.00184 0.02171 

B*35:01:01:02~DRB1*11:01:01:01 0.00184 0.00174 

B*35:01:01:02~DRB1*13:01:01:01 0.00724 0.08711 

B*35:01:01:02~DRB1*14:01:01 0.00368 1 

B*35:01:01:02~DRB1*15:01:01:01 0.00166 -0.60681 

B*35:01:01:02~DRB1*15:02:01:02 0.00184 0.08285 

B*35:02:01~DRB1*11:01:01:01 0.00224 0.10076 

B*35:02:01~DRB1*11:04:01 0.01246 0.74104 

B*35:02:01~DRB1*13:01:01:01 0.00184 0.03674 

B*35:03:01~DRB1*01:01:01 0.0077 0.1798 

B*35:03:01~DRB1*03:01:01:01 0.0029 -0.3461 

B*35:03:01~DRB1*04:03:01 0.00184 0.11353 

B*35:03:01~DRB1*04:08:01 0.00184 0.31052 

B*35:03:01~DRB1*07:01:01:01 0.00078 -0.85278 

B*35:03:01~DRB1*09:01:02 0.00368 0.48289 

B*35:03:01~DRB1*11:01:01:01 0.00184 0.01763 

B*35:03:01~DRB1*12:01:01:03 0.00184 0.17262 

B*35:03:01~DRB1*14:54:01 0.007 0.24727 

B*35:03:01~DRB1*15:01:01:01 0.00368 0.02114 

B*35:08:01~DRB1*03:01:01:01 0.0022 0.01784 

B*35:08:01~DRB1*04:01:01:01 0.00184 0.10019 

B*35:08:01~DRB1*04:02:01 0.00184 0.10526 

B*35:08:01~DRB1*04:03:01 0.00184 0.13006 

B*35:08:01~DRB1*07:01:01:01 0.00331 0.07789 

B*35:08:01~DRB1*13:02:01 0.00184 0.10358 

B*35:08:01~DRB1*15:01:01:01 0.00184 0.03644 

B*37:01:01~DRB1*01:01:01 0.00184 0.0203 

B*37:01:01~DRB1*01:02:01 0.00184 0.06089 
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B*37:01:01~DRB1*11:01:01:01 0.00184 0.04653 

B*37:01:01~DRB1*11:03:01 0.00368 0.2696 

B*37:01:01~DRB1*13:01:01:01 0.00285 0.05656 

B*37:01:01~DRB1*13:02:01 0.00368 0.14626 

B*37:01:01~DRB1*15:01:01:01 0.0045 0.12336 

B*37:01:01~DRB1*15:02:01:02 0.00184 0.10526 

B*38:01:01~DRB1*04:02:01 0.00551 0.22581 

B*38:01:01~DRB1*04:04:01 0.00184 0.04715 

B*38:01:01~DRB1*07:01:01:01 0.00196 -0.60824 

B*38:01:01~DRB1*08:06 0.00184 1 

B*38:01:01~DRB1*10:01:01:01 0.00184 0.08244 

B*38:01:01~DRB1*11:01:01:01 0.00172 0.01705 

B*38:01:01~DRB1*11:04:01 0.00368 0.07336 

B*38:01:01~DRB1*13:01:01:01 0.00919 0.23506 

B*38:01:01~DRB1*13:03:01 0.00368 0.15543 

B*38:20~DRB1*07:01:01:01 0.00184 1 

B*39:01:01:03~DRB1*03:01:01:01 0.00368 0.23001 

B*39:01:01:03~DRB1*13:01:01:01 0.00184 0.09695 

B*39:01:01:03~DRB1*16:01:01 0.00368 0.32338 

B*39:01:01:03~DRB1*16:02:01:02 0.00184 0.15737 

B*39:06:02~DRB1*08:01:01 0.00184 1 

B*40:01:02~DRB1*01:02:01 0.00184 0.06865 

B*40:01:02~DRB1*04:01:01:01 0.00184 0.06513 

B*40:01:02~DRB1*04:04:01 0.01103 0.53433 

B*40:01:02~DRB1*07:01:01:01 0.00184 -0.43156 

B*40:01:02~DRB1*15:01:01:01 0.00368 0.09901 

B*40:02:01~DRB1*04:05:01 0.00184 0.07273 

B*40:02:01~DRB1*04:07:01 0.00368 0.49064 

B*40:02:01~DRB1*11:04:01 0.00368 0.15985 

B*40:02:01~DRB1*13:01:01:01 0.00551 0.24143 

B*40:02:01~DRB1*16:01:01 0.00368 0.23596 

B*40:06:01:02~DRB1*03:01:01:01 0.00184 0.13376 

B*40:06:01:02~DRB1*15:01:01:01 0.00184 0.17409 

B*40:06:01:02~DRB1*16:01:01 0.00184 0.23881 

B*40:06:01:02~DRB1*16:02:01:02 0.00184 0.24164 

B*40:12~DRB1*07:01:01:01 0.00184 1 

B*41:01:01~DRB1*03:01:01:01 0.00184 0.23001 

B*41:01:01~DRB1*07:01:01:01 0.00184 0.20642 

B*41:01:01~DRB1*13:05:01 0.00184 0.32964 

B*41:02:01~DRB1*13:03:01 0.00184 1 

B*44:02:01:01~DRB1*01:01:01 0.00669 0.04909 

B*44:02:01:01~DRB1*03:01:01:01 0.00924 0.02103 

B*44:02:01:01~DRB1*04:01:01:01 0.00511 0.13252 

B*44:02:01:01~DRB1*04:02:01 0.00358 0.10798 
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B*44:02:01:01~DRB1*04:03:01 0.00184 0.0875 

B*44:02:01:01~DRB1*07:01:01:01 0.00342 -0.64769 

B*44:02:01:01~DRB1*08:01:01 0.00368 0.11285 

B*44:02:01:01~DRB1*09:01:02 0.00184 0.20157 

B*44:02:01:01~DRB1*10:01:01:01 0.00184 0.05371 

B*44:02:01:01~DRB1*11:01:01:01 0.00184 -0.21501 

B*44:02:01:01~DRB1*11:03:01 0.00184 0.0875 

B*44:02:01:01~DRB1*12:01:01:03 0.00368 0.36125 

B*44:02:01:01~DRB1*13:01:01:01 0.01206 0.13174 

B*44:02:01:01~DRB1*13:02:01 0.00184 0.01731 

B*44:02:01:01~DRB1*15:01:01:01 0.00219 -0.60738 

B*44:03:01:01~DRB1*01:01:01 0.00201 -0.63104 

B*44:03:01:01~DRB1*03:01:01:01 0.00197 -0.82599 

B*44:03:01:01~DRB1*04:02:01 0.00378 0.09469 

B*44:03:01:01~DRB1*04:05:01 0.00722 0.1758 

B*44:03:01:01~DRB1*07:01:01:01 0.06211 0.68394 

B*44:03:01:01~DRB1*11:01:01:01 0.0038 0.01503 

B*44:03:01:01~DRB1*15:01:01:01 0.00368 -0.52696 

B*44:04~DRB1*11:01:01:01 0.00184 1 

B*44:05:01~DRB1*16:01:01 0.00184 1 

B*45:01:01~DRB1*03:01:01:01 0.00184 0.13376 

B*45:01:01~DRB1*11:01:01:01 0.00144 0.16288 

B*45:01:01~DRB1*11:04:01 0.00224 0.26991 

B*45:01:01~DRB1*16:02:01:02 0.00184 0.24164 

B*47:01:01:03~DRB1*04:05:01 0.00368 0.65644 

B*47:01:01:03~DRB1*12:01:01:03 0.00184 0.32715 

B*49:01:01~DRB1*01:01:01 0.00236 -0.09423 

B*49:01:01~DRB1*01:03 0.00184 0.05259 

B*49:01:01~DRB1*04:03:01 0.00368 0.25561 

B*49:01:01~DRB1*04:04:01 0.00184 0.03802 

B*49:01:01~DRB1*04:05:01 0.00316 0.06975 

B*49:01:01~DRB1*07:01:01:01 0.00551 -0.14734 

B*49:01:01~DRB1*10:01:01:01 0.00184 0.07365 

B*49:01:01~DRB1*10:01:01:02 0.00184 1 

B*49:01:01~DRB1*11:01:01:01 0.00368 0.05711 

B*49:01:01~DRB1*11:02:01 0.00551 0.47893 

B*49:01:01~DRB1*13:02:01 0.00551 0.19835 

B*49:01:01~DRB1*13:05:01 0.00368 0.65262 

B*50:01:01~DRB1*03:01:01:01 0.00551 0.13376 

B*50:01:01~DRB1*07:01:01:01 0.00735 0.20642 

B*50:01:01~DRB1*10:01:01:01 0.00184 0.09106 

B*50:01:01~DRB1*11:03:01 0.00184 0.12352 

B*50:01:01~DRB1*13:03:01 0.00551 0.25632 

B*50:02~DRB1*01:02:01 0.00184 0.12187 
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B*50:02~DRB1*04:06:02 0.00368 1 

B*50:02~DRB1*08:01:01 0.00184 0.12352 

B*50:02~DRB1*13:01:01:01 0.00184 0.07114 

B*50:02~DRB1*13:03:01 0.00368 0.27097 

B*51:01:01:01~DRB1*01:01:01 0.00448 0.00779 

B*51:01:01:01~DRB1*03:01:01:01 0.00585 -0.30241 

B*51:01:01:01~DRB1*04:01:01:01 0.00231 0.02287 

B*51:01:01:01~DRB1*04:04:01 0.00368 0.09744 

B*51:01:01:01~DRB1*04:05:01 0.00236 0.0188 

B*51:01:01:01~DRB1*04:08:01 0.00184 0.28889 

B*51:01:01:01~DRB1*07:01:01:01 0.01239 0.04563 

B*51:01:01:01~DRB1*08:01:01 0.00551 0.2 

B*51:01:01:01~DRB1*09:01:02 0.00184 0.2 

B*51:01:01:01~DRB1*11:01:01:01 0.00919 0.1873 

B*51:01:01:01~DRB1*11:04:01 0.00184 -0.38462 

B*51:01:01:01~DRB1*13:01:01:01 0.00318 -0.341 

B*51:01:01:01~DRB1*14:54:01 0.00184 0.00952 

B*51:01:01:01~DRB1*15:01:01:01 0.00619 0.00794 

B*51:08:01~DRB1*16:02:01:02 0.00184 1 

B*52:01:01:02~DRB1*11:04:01 0.00184 0.12484 

B*52:01:01:02~DRB1*15:02:01:02 0.00919 0.83085 

B*52:01:02~DRB1*15:01:01:01 0.00184 1 

B*53:01:01~DRB1*01:02:01 0.00368 0.31701 

B*53:01:01~DRB1*04:05:01 0.00184 0.14141 

B*53:01:01~DRB1*13:02:01 0.00551 0.48776 

B*55:01:01~DRB1*04:04:01 0.00184 0.10358 

B*55:01:01~DRB1*07:01:01:01 0.00184 -0.21839 

B*55:01:01~DRB1*11:01:01:01 0.00184 0.08987 

B*55:01:01~DRB1*13:02:01 0.00184 0.10358 

B*55:01:01~DRB1*13:03:01 0.00184 0.10694 

B*55:01:01~DRB1*14:54:01 0.00184 0.10189 

B*55:01:01~DRB1*15:01:01:01 0.00184 0.03644 

B*55:01:01~DRB1*16:01:01 0.00184 0.11194 

B*57:01:01~DRB1*04:01:01:01 0.0032 0.27003 

B*57:01:01~DRB1*07:01:01:01 0.00599 0.45621 

B*57:01:01~DRB1*11:04:01 0.00184 0.12484 

B*57:03:01:02~DRB1*14:54:01 0.00184 1 

B*58:01:01:01~DRB1*03:01:01:01 0.00184 -0.32254 

B*58:01:01:01~DRB1*04:02:01 0.00184 0.0704 

B*58:01:01:01~DRB1*07:01:01:01 0.00551 0.13427 

B*58:01:01:01~DRB1*10:01:01:01 0.00368 0.20617 

B*58:01:01:01~DRB1*11:01:01:01 0.00184 0.05441 

B*58:01:01:01~DRB1*13:02:01 0.00184 0.06865 

B*58:01:01:01~DRB1*13:04 0.00184 1 
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B*58:01:01:01~DRB1*14:54:01 0.00184 0.0669 

B*73:01~DRB1*04:05:01 0.00184 1 

 

 

 
 

Notes: 

(*) In March 2017, posterior to release of IPD-IMGT/HLA database version 3.25.0, the HLA-DPA1*02:02:01 allele was 

deleted from the official WHO HLA Nomenclature as its sequence has now been shown to be in error and is identical to HLA-

DPA1*02:07:01 allele (https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/deleted.cgi). 
 

7. GLOBAL MEASURES OF PAIRWISE LINKAGE DISEQUILIBRIUM (LD) FOR HLA-

A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 AND -DRB3/4/5 LOCI IN 17TH-IHIW 

SPANISH POPULATION COHORT (HEALTHY CONTROL GROUP) 
 

To evaluate the overall linkage disequilibrium (LD) we considered (Table R-6) two different 

locus-pair level measures. The D’ (normalized Hedrick’s D’ statistic) parameter, expressed as the 

normalization of the product of allele frequencies at each locus, weights the LD contribution of 

specific allele pairs [98][780][787]. Whereas the second parameter, Wn (Cramer’s V statistic), 

calculates also a normalization in this case of the chi-square statistic for deviations between 

observed and expected haplotype frequencies [785]. As expected, the strongest associations are 

observed for the contiguous and/or physically close HLA loci pairs including DRB1~DRB5/4/3, 

DRB1~DQA1, DQA1~DQB1 and DRB1~DQB1 followed by B~C. HLA-DPA1~DPB1 pair appears 

associated with less strength. Interestingly, in spite of HLA-A~C pair being physically closer than 

HLA-A~B the strength of the LD in the latter loci pair is higher, suggesting that differences in 

diversity between HLA-B and -C loci may play a role in determining this measurement. 

Associations between HLA-A~B and HLA-B~DRB1 appear in similar ranges. HLA-DP loci show 

weaker LD associations than any of the other pairwise comparisons. As previously reported 

[92][806][807], LD patterns of HLA-DP loci seem to be driven primarily in a different manner 
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compared to the other HLA loci (e.g. relatively higher rate of recombination and combined 

DPA1~DPB1 amino acid epitope have been suggested to contribute on this distinctive selection). 

 

Table R-6. Global measures of pairwise linkage disequilibrium (LD) for HLA-A, -B, -C, -DPA1, -DPB1, -

DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci at the 3-/4-field resolution level (and according to IPD-

IMGT/HLA database version 3.25.0) in this 17th-IHIW Spanish population cohort (n=282 subjects). 

 

 

Locus Pair 

HLA- 

 

D’ 

 

Wn 
 

 

 

B~C 

 

 

0.93630 

 

0.77226   

 

A~C 

 

0.59490 0.43926  

A~B 

 

0.64088 0.45530  

DPA1~DPB1 

 

0.82896    0.71883    

DQA1~DQB1 

 

0.97854  0.78901  

DQA1~DRB1 

 

0.98990 0.86147  

DQB1~DRB1 

 

0.97446 0.80953  

DPB1~DRB1 

 

0.47923 0.37854  

DPB1~DQB1 

 

0.43446 0.38512  

B~DRB1 

 

0.70620 0.46705  

B~DQA1 

 

0.66583 0.49954  

B~DQB1 

 

0.65365 0.49127  

DRB1~DRB3 

 

0.96724 0.86672  

DRB1~DRB4 

 

0.97158 0.69772  

DRB1~DRB5 1 1  

 

 

 

 



____________________________________________________________Results 
 

Page | 445  

   © Gonzalo Montero Martin  

8. ESTIMATION OF EXTENDED HLA HAPLOTYPE FREQUENCIES IN 17TH-IHIW 

SPANISH POPULATION COHORT (HEALTHY CONTROL GROUP) 
 

Maximum likelihood estimation via an expectation-maximization (EM) algorithm is a statistical 

method commonly used for HLA haplotype inference and estimation of haplotype frequency 

distributions in unrelated individuals from a population-specific genotype data as in the present 

study. Moreover, this statistical method serves as an alternate approach when it is not possible to 

rely on family segregation studies [342]. Inferred extended HLA haplotypes (encompassing 6-

locus, 7-locus and 9-locus respectively) were evaluated for the estimation of haplotype frequencies 

in this Spanish population cohort (see also data on 17th-IHIWS database [297] for further details):   

HLA~A~C~B~DRB3/4/5~DRB1~DQB1 (Table R-7);  

HLA~A~C~B~DRB3/4/5~DRB1~DQA1~DQB1 (Table R-8); and 

HLA~A~C~B~DRB3/4/5~DRB1~DQA1~DQB1~DPA1~DPB1 (Table R-9).  

Similarly to what it was found in 2-locus haplotypes, it can be observed very distinctive extended 

haplotype associations in non-coding regions at the 4-field level that are not apparent, and indeed 

unattainable, at lower allele resolution level (2-field or 3-field) results that are obtained when using 

legacy methodologies (e.g. SSP or SSO, or even SBT depending on the given HLA gene sequence 

coverage) with important limitations in sequence coverage and phasing in comparison to NGS-

based HLA genotyping [137][178]. Just to be noted, in the present Spanish population cohort, 3-

/4-field HLA data of most common extended haplotype frequency distributions is generally shown 

in the present thesis work document (see RESULTS section (Tables R-5, R-7, R-8, R-9)). 

Whereas all respective collapsed 2-field HLA data of most common extended haplotype frequency 

distributions is mostly not shown in the present thesis work document with some exceptions that 

are later highlighted in some parts of the DISCUSSION section. 
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Table R-7. HLA-A~C~B~DRB3/4/5~DRB1~DQB1 extended haplotypes with estimated frequencies (HF, in decimals) of 0.020 or 

more (at the 3-/4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0) of the 17th-IHIW Spanish 

population cohort (n=282 subjects). HLA haplotypes are sorted by frequency in descending order. 
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Table R-8. HLA-A~C~B~DRB3/4/5~DRB1~DQA1~DQB1 extended haplotypes with estimated frequencies (HF, in decimals) of 

0.020 or more (at the 3-/4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0) of the 17th-IHIW 

Spanish population cohort (n=282 subjects). HLA haplotypes are sorted by frequency in descending order. 
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Table R-9. HLA-A~C~B~DRB3/4/5~DRB1~DQA1~DQB1~DPA1~DPB1 extended haplotypes with estimated frequencies (HF, 

in decimals) of 0.020 or more (at the 3-/4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0) 

of the 17th-IHIW Spanish population cohort (n=282 subjects). HLA haplotypes are sorted by frequency in descending order. 
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HF: Haplotype frequencies 

 

Haplotype frequencies were estimated using a maximum likelihood estimation via an expectation-maximization (EM) algorithm with 

Hapl-o-Mat version 1.1 software [342]. Only haplotypes with frequencies higher than 0.020 are shown and haplotypes are sorted from 

the highest to the lowest frequency. 

 

For estimation of extended haplotype frequencies, HLA-DRB3, -DRB4, and -DRB5 genes are considered alleles of a single locus as the 

presence of one of these genes excludes the presence of the other two genes at the haplotype level [344]. Thus, extended haplotype 

frequencies results are in accordance with linkage constraints that exist respectively between the HLA-DRB3/4/5 loci and the HLA-

DRB1 locus, in which several HLA-DRB1 allele families are defined [344]. 

 
 

9. EVALUATION OF 3-/4-FIELD EXTENDED HAPLOTYPE DIVERSITY GIVEN BY 

INCLUSION OF HLA-DPA1 AND -DPB1 LOCI, IN 17TH-IHIW SPANISH POPULATION 

COHORT (HEALTHY CONTROL GROUP) 
 

The patterns of population distribution of HLA haplotypes estimated at three different HLA 

haplotype extension degrees ((1, orange colored graph) HLA-A~C~B~DRB3/4/5~DRB1~DQB1; 

(2, green colored graph) HLA-A~C~B ~DRB3/4/5~DRB1~DQA1~DQB1; and (3, blue colored 

graph) complete extended haplotype HLA-A~C~B 

~DRB3/4/5~DRB1~DQA1~DQB1~DPA1~DPB1  of this Spanish population reference cohort 

were evaluated by comparing their respective cumulative haplotypes frequencies (sorted from the 

most frequent to the least frequent) as it is shown through Figure R-3. It can be observed how the 

two less extended types of HLA haplotypes [(1) HLA-A~C~B~DRB3/4/5~DRB1~DQB1 and (2) 

HLA-A~C~B ~DRB3/4/5~DRB1~DQA1~DQB1] present a similar distribution and they virtually 

overlap. However, in the case of the complete extended 9-locus haplotype (when including HLA-

DPA1 and HLA-DPB1 loci) (3) its cumulative frequencies distribution is shifted to the right in 

comparison to the other two haplotype distributions (1) and (2). This points out that more 

haplotypes (number of distinct haplotypes~50) are required, in the case of this complete extended 

haplotype distribution (3), to cover the same combined cumulative frequency presented by the 

other two type of haplotypes distributions (number of distinct haplotypes~25-30) (1)(2). Therefore, 
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the haplotype diversity is dramatically increased when including HLA-DPA1 and -DPB1 loci and, 

consequently, the linkage disequilibrium (LD) decreases at this maximum level of haplotype 

extension (9-locus). As previously mentioned and reported in other recent studies, many identical 

haplotypes across 7 loci (comprising HLA-A-~B~C~DRB3/4/5~DRB1~DQA1~DQB1, and 

excluding HLA-DPA1 and -DPB1) become extremely divergent in terms of the multiplicity of 

HLA-DP alleles with which they associate [268][286][287][331]. This seems to be especially due 

to the weak LD between HLA-DP and the rest of the class II haplotype since existing hotspot of 

recombination is present between HLA-DQ and -DP loci [92]. Therefore, this effect has direct 

implications and consequences, for example, in relation to the lesser likelihood of finding unrelated 

donors (URD) in HSCT when evaluating 3-/4-field resolution in addition to include HLA-DP loci 

in the given URD search process [233]; or, also, in the very high sample size that may be required 

for study cohorts in order to be representative and meaningful for evaluating anthropological 

aspects based on these 3-/4-field extended HLA 9-locus haplotype frequency distributions. 
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Figure R-3. Graph of cumulative frequencies (in decimals) of several different extended 4-field (or 8-digits) HLA haplotypes plotted 

against respective number of haplotypes defined in each given distribution. 

 

 
 

(ORANGE graph) Cumulative frequencies of the HLA-A~C~B~DRB3/4/5~DRB1~DQB1 extended haplotypes (8-digits or 4-field allele 

resolution level) sorted from the most frequent to the least frequent were plotted against the respective number of haplotypes. 

 

(GREEN graph) Cumulative frequencies of the HLA-A~C~B~DRB3/4/5~DRB1~DQA1~DQB1 extended haplotypes (8-digits or 4-field 

allele resolution level) sorted from the most frequent to the least frequent were plotted against the respective number of haplotypes. 

 

(BLUE graph) Cumulative frequencies of the HLA-A~C~B~DRB3/4/5~DRB1~DQA1~DQB1~DPA1~DPB1 extended haplotypes (8-

digits or 4-field allele resolution level) sorted from the most frequent to the least frequent were plotted against the respective number of 

haplotypes. 
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10. HLA ALLELE FREQUENCY DISTRIBUTIONS AND RELATEDNESS WITHIN 

SPANISH REGIONAL GROUPS FROM 17TH-IHIW SPANISH POPULATION COHORT 

(HEALTHY CONTROL GROUP) 
 

Disparity/similarity of allelic distributions were evaluated within this Spanish population cohort 

based on the results (at the 3-/4-field allele resolution level) of the current study. In this sense, a 

comparison of HLA allele distributions was carried out (specifically based on allele frequencies 

found at HLA-A, -B, -C, -DQB1 and -DRB1 loci) between the 3 different geographical Spanish 

regions established (Northern-Central, Eastern and Southern Spain) as well as between the 10 

Spanish locations included in the present study (see Table R-10.a-d).  
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Table R-10. Common HLA alleles and level of allele sharing found between Spanish regions 

 

Table R-10.a) Spanish regions and locations established for this study (all Spanish region/location HLA datasets at the 3- up to 

the 4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0 are from this same present study) 
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Table R-10.b) Common HLA alleles. Relative comparison of the top 10 HLA-A, -B, -C, -DQB1 and -DRB1 allele frequencies 

(AF, in decimals) (at the 3- up to the 4-field allele resolution level and according to IPD-IMGT/HLA database version 3.25.0) of 

the present entire 17th-IHIW Spanish population cohort (n=282 subjects) with respective defined Spanish region/site population 

groups. 
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Abbreviations: 

ESP = Spain (ESP); E-ESP = Eastern Spain (EastESP); NC-ESP= Northern-Central Spain (NorthCentralESP); S-ESP= Southern 

Spain (SouthESP); Bar. = Barcelona; Val. = Valencia;  

Sant.= Santander; Sal.= Salamanca; Mur.= Murcia; Mad.= Madrid; Sev.= Sevilla; Cord. = Cordoba; Mal. = Malaga; GranCan. = 

Gran Canaria 
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Table R-10.c) Distance matrix of respective Nei genetic distances (DA) between present entire 17th-IHIW Spanish population 

cohort (n=282 subjects) and the different region/site population groups that were estimated by using the distribution of HLA-A, -

B, -C, -DQB1 and -DRB1 alleles (based on Spanish HLA dataset at the 3- up to the 4-field allele resolution level and according 

to IPD-IMGT/HLA database version 3.25.0 from the present study). 

 

 

Abbreviations: 

ESP = Spain (ESP); E-ESP = Eastern Spain (EastESP); NC-ESP= Northern-Central Spain (NorthCentralESP); S-ESP= Southern 

Spain (SouthESP); Bar. = Barcelona; Val. = Valencia;  

Sant.= Santander; Sal.= Salamanca; Mur.= Murcia; Mad.= Madrid; Sev.= Sevilla; Cord. = Cordoba; Mal. = Malaga; GranCan. = 

Gran Canaria 
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Table R-10.d) Neighbor-joining (NJ) dendogram illustrates relatedness between the present entire 17th-IHIW Spanish population 

cohort (n=282 subjects) and the 3 different geographical regions as well as the 10 different specific sites of origin of samples of 

the present Spanish population study. Nei genetic distances (DA) between these population sub-groups were estimated by using 

HLA-A, -B, -C, -DQB1 and -DRB1 allele frequencies (based on Spanish HLA dataset at the 3- up to the 4-field allele resolution 

level and according to IPD-IMGT/HLA database version 3.25.0 from the present study). Bootstrap values from 1000 replicates 

are depicted. The root of the NJ method is calculated by the mid-point rooting method, in which the root is placed in the mid-

point of the longest path of two taxa. 
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In general, these major Spanish population regions and different individual local sub-groups, 

which were compared according to these HLA-A, -B, -C, -DQB1 and -DRB1 allele distributions 

in this NJ relatedness analysis, are also clustered according to their geographical location, thus 

illustrating the existing HLA regional variation within Spanish general population [260]. 

Despite of limitations in the sample size shown by these different Spanish population sub-

groups in the present study. At the HLA allele level, it can be observed that most frequent alleles 

at a national level (considering entire Spanish population, termed as “ESP”, n=282) are fairly 

evenly distributed and well represented among the different Spanish regions and locations 

evaluated here, with some minor exceptions (specifically found at the different 10 Spanish 

locations level presenting a limited and small sample size comparatively) that need to be further 

analyze by future larger-scale population studies (see Table R-10.b)). Taking into account genetic 

distances evaluated here (see Tables R-10.c) and R-10.d)), the present entire Spanish population 

cohort shows a Mediterranean genetic substrate that seems to be represented more predominantly 

by Eastern and Central regions/locations situated within the Central Plateau (i.e. Meseta Central 

or Central Castilian Plateau) as previously described [221][260][545][546][558-

561][563][564][571][600][608][624-630][757]. Whereas the most Northern and Southern 

regions/locations (which are mountainous areas that are more isolated geographically unlike this 

Central Castilian Plateau region in mainland Spain; or even being very unique island areas such as 

Canary Islands) diverge from this aforementioned Mediterranean Spanish HLA genetic 

background as reported in previous works [221][260][545][546][558-

561][563][564][571][600][608][624-630][757].  For instance, although we considered Barcelona 

location as part of the Eastern region of Spain (representing the Mediterranean Spanish Basin) for 

this study, we clearly observed how this Catalan location seems to be more related to other 

Northern locations than to Mediterranean sites such as Valencia or Murcia. Interestingly, 
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Salamanca location population group (situated very close to the frontier that separates Spain from 

Portugal) describes a pronounced distinctive HLA distribution in comparison to other Northern-

Central locations in Spain as previously described and it also exemplifies the extensive HLA 

diversity found within the Iberian Peninsula [221][260][628]. Furthermore, the striking divergence 

observed in Malaga and Gran Canaria locations (see R-10.d)) may be explained by the reported 

historical genetic contribution from North African Berber and Muslim Arab population ancestries 

[563-568][578][612][613][808].  

We also attempted to do this regional study at the extended HLA haplotype level (data not shown). 

However, due to these limited small sample sizes found at the different Spanish regions and 

locations it was not possible to estimate accurately haplotype frequencies via an expectation-

maximization (EM) algorithm [342] to evaluate haplotype sharing between local regions/sites. 

Overall, in spite of presenting a relatively small sample size, the present Spanish population study 

has allowed us to see the great potential of NGS-based HLA population studies in order to identify 

3-/4-field HLA allele signatures at a regional level as a consequence of both differential regional 

historic events and the characteristic regional orography that favors more isolation of certain local 

populations [136][260]. Nonetheless, future studies of larger population sample size at a wider 

geographic scale will be needed to assess more accurately the HLA diversity in Spanish population 

in order to confirm these observations and findings of our study as well as to reveal other unknown 

but significant polymorphism within the HLA genes system. 
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II. NGS-BASED HLA CASE-CONTROL STUDY OF MULTIPLE SCLEROSIS 

IN SPANISH POPULATION  
 

In the scope of the present thesis work: 

• A first case-control study (Study 1) was carried out to examine HLA-disease associations with 

MS in these Spanish population cohorts: 17th IHIW Spanish population healthy control (N=282) 

versus a cohort of multiple sclerosis (MS) patients in the Spanish population (N=238, recruited 

at the Department of Neurology, Hospital Clínic, Barcelona, Catalonia, Spain). In this sense, 

the initial main goal was to attempt a fine-mapping of these allele and haplotype associations 

by full gene resolution level via NGS.  

• In addition, a second exercise or test case (Study 2) of this case-control study was carried out 

using the same MS Spanish group but, in this second case, using an alternative healthy control 

group dataset (N=196) specifically from the Spanish northeastern region of Catalonia, and thus 

to evaluate possible differences in the findings of HLA-disease association with MS due to 

plausible regional HLA genetic variation within mainland Spain as a statistical approach to try 

controlling for any possible existing population stratification (i.e. differences in genetic 

structure between disease and control groups) as a confounding factor that may affect the results 

obtained in the first study. 

Although data is not shown here, in relation to all Spanish population 3-/4-field and 2-field (either 

“trimmed” or generated) datasets (from both healthy controls and MS cases) used to conduct this 

case-control analysis, no overall deviations from expected Hardy-Weinberg Equilibrium 

Proportions (HWEP) were observed in any of the HLA loci analyzed with the exception of the 

following:  
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-A minor but significant departure from HWEP at the HLA-DPA1 locus (see Table R-2) 

previously mentioned and explained in the case of 17th IHIW Spanish population healthy control 

dataset at 3-/4-field resolution.  

-As for the MS cases dataset (regardless of the allele resolution level analyzed), and as expected, 

deviations from HWEP at loci strongly associated with disease (such as HLA-DRB3/4/5, HLA-

DRB1, HLA-DQA1 and HLA-DQB1) were observed not because of genotyping or genotype 

calling error, but due to an existing selective pattern linked with disease in this case. In this 

sense, it would have been obviously counter-productive to remove these loci from further 

investigation. Thus, when testing for deviations for HWEP we only took into consideration the 

respective healthy control datasets used in the present study which all passed this quality data 

test [949]. 

 

11. HLA ALLELE LEVEL ANALYSES ON FIRST CASE-CONTROL STUDY  
 

• Firstly, in the corresponding Study 1, associations of HLA alleles with MS risk (see Table R-

11 and Figure R-4) and protection (see Table R-11 and Figure R-5) were respectively evaluated 

at the 3-/4-field of resolution obtained via NGS-based HLA genotyping method. In accordance 

with previous and extensively documented findings, especially in populations of European descent 

(reviewed in [650][651]), in the initial nominal analysis (i.e. when the overall cohort was analyzed) 

(see Table R-11a and Figure R-4a) the most significant risk association was identified for the 

allele HLA-DRB1*15:01:01:01 (OR=2.46; p=4.10E−07) and additionally for the corresponding 

HLA-DRB5*01:01:01 allele (OR=2.44; p=4.31E−07), since both HLA loci are physically located 

in very close proximity and thus presenting a very high LD [344]. At the same time, still within 

HLA class II region other significant risk signals were identified in the present Spanish MS cohort, 

being also in consonance with previous findings (reviewed in [650][651]): on one hand, the 
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characteristic allele HLA-DQB1*06:02:01 (OR=2.24; p=1.08E−05) and the respective tightly 

associated allele HLA-DQA1*01:02:01:01 (OR=2.21; p=6.11E−06) (forming the respective HLA-

DQ heterodimer), which both are known to be also in strong linkage disequilibrium with HLA-

DRB1*15:01:01:01; whereas, on the other hand, a tentatively independent and more moderate risk 

signal linked to HLA-DPB1*03:01:01 allele (OR=1.85; p=2.20E−02) was detected as well in this 

Spanish HLA-MS association study. In relation to HLA class I region, alleles HLA-A*03:01:01:01 

(OR=1.51; p=4.14E−02), -C*07:02:01:03 (OR=1.31; p=1.75E−01) and -B*07:02:01 (OR=1.33; 

p=1.47E−01) were moderately associated with MS; however, it is also known these observed 

associations are again due to a most likely haplotype effect since they reflect the strong LD 

between these class I alleles and the highly predisposing HLA-DRB1*15:01:01:01 allele as 

previously described in other studies (e.g. [292][727]). As a next step in the present HLA-MS 

association analysis, and in order to confirm or discard these suspected haplotype effects on many 

of these observed risk signals as well as the possible independent association with HLA-DPB1, a 

conditional analysis was carried out with respect to the major risk HLA allele found (HLA-

DRB1*15:01:01:01) controlling for potential confounding. This conditional analysis on HLA-

DRB1*15:01:01:01 (i.e. when considering the stratum lacking HLA-DRB1*15:01:01:01) (see 

Table R-11b and Figure R-4b) revealed and confirmed the statistically independent and 

significant association (where the risk association was even stronger) with HLA-DPB1*03:01:01 

(OR=2.23; p=8.90E−03), while the rest of abovementioned risk allelic signals (at HLA-DQA1, -

DQB1, -DRB5 loci) previously detected (and as it is confirmed here to be under a strong haplotype 

effect reliant on HLA-DRB1*15:01:01:01) were either not statistically measurable (i.e. “binned” 

category in the χ2 statistic for a contingency table analysis of case-control data) or not significant 

at all in this DRB1*15:01:01:01-negative stratum.  
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Table R-11a. Study 1: Significant HLA allele-level (at the 3-/4-field resolution) associations with multiple sclerosis (MS) 

in the nominal analysis of the Spanish population cohort. 

HLA alleles associated with risk (RED colored) or protection (GREEN colored) to MS susceptibility are depicted based on the respective most common 

-bearing haplotypes in which they are embedded. OR, Odds ratio; 95% CI, 95% confidence interval. P values derived from a two-tailed Fischer’s exact 

test. A P value of 0.05 (α) or less was considered statistically significant (in bold). 
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Table R-11b. Study 1: Significant HLA allele-level (at the 3-/4-field resolution) associations with multiple sclerosis (MS) 

in the stratified analysis by conditioning on HLA-DRB1*15:01:01:01 of the Spanish population cohort. 

 
HLA alleles associated with risk (RED colored) or protection (GREEN colored) to MS susceptibility are depicted based on the respective most common 

-bearing haplotypes in which they are embedded. OR, Odds ratio; 95% CI, 95% confidence interval. P values derived from a two-tailed Fischer’s exact 

test. A P value of 0.05 (α) or less was considered statistically significant (in bold). 
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Figure R-4a. Study 1: Bar chart representation of odds ratio (OR) values (Y axis) and main HLA alleles associated (X 

axis) with risk to multiple sclerosis (MS) susceptibility in the nominal analysis of the Spanish population cohort.                    -

log (p-value) values are displayed in the squares above each respective bar. 

OR 

 HLA allele signal 

HLA alleles associated with risk (RED colored) to MS susceptibility are depicted based on the respective most common -bearing haplotypes in which 

they are embedded. OR, Odds ratio; P values derived from a two-tailed Fischer’s exact test are shown as the -log (p-value) (values displayed in the 

squares above each respective bar). A -log (p-value) of 1.3 or higher (equivalent to p-value≤0.05) was considered statistically significant (in red bold). 
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Figure R-4b. Study 1: Study 1: Bar chart representation of odds ratio (OR) values (Y axis) and main HLA alleles associated 

(X axis) with risk to multiple sclerosis (MS) susceptibility in the stratified analysis by conditioning on HLA-

DRB1*15:01:01:01 of the Spanish population cohort. -log (p-value) values are displayed in the squares above each 

respective bar. 

OR 

HLA allele signal 

HLA alleles associated with risk (RED colored) to MS susceptibility are depicted based on the respective most common -bearing haplotypes in which 

they are embedded. OR, Odds ratio; P values derived from a two-tailed Fischer’s exact test are shown as the -log (p-value) (values displayed in the 

squares above each respective bar). A -log (p-value) of 1.3 or higher (equivalent to p-value≤0.05) was considered statistically significant (in red bold). 

“Binned” category in the χ2 statistic for a contingency table analysis of case-control data due to low allele frequency values. 
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Figure R-5a. Study 1: Bar chart representation of the inverse of odds ratio (OR) values (Y axis) and main HLA alleles 

associated (X axis) with protection to multiple sclerosis (MS) susceptibility in the nominal analysis of the Spanish 

population cohort. -log (p-value) values are displayed in the squares above each respective bar. 

1/OR 

  HLA allele signal 

HLA alleles associated with protection (GREEN colored) to MS susceptibility are depicted based on the respective most common -bearing haplotypes 

in which they are embedded. OR, Odds ratio; P values derived from a two-tailed Fischer’s exact test are shown as the -log (p-value) (values displayed 

in the squares above each respective bar). A -log (p-value) of 1.3 or higher (equivalent to p-value≤0.05) was considered statistically significant (in 

green bold). 
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Figure R-5b. Study 1: Bar chart representation of the inverse of odds ratio (OR) values (Y axis) and main HLA alleles 

associated (X axis) with protection to multiple sclerosis (MS) susceptibility in the stratified analysis by conditioning on 

HLA-DRB1*15:01:01:01 of the Spanish population cohort. -log (p-value) values are displayed in the squares above each 

respective bar. 

1/OR 

  HLA allele signal 

HLA alleles associated with protection (GREEN colored) to MS susceptibility are depicted based on the respective most common -bearing haplotypes 

in which they are embedded. OR, Odds ratio; P values derived from a two-tailed Fischer’s exact test are shown as the -log (p-value) (values displayed 

in the squares above each respective bar). A -log (p-value) of 1.3 or higher (equivalent to p-value≤0.05) was considered statistically significant (in 

green bold). “Binned” category in the χ2 statistic for a contingency table analysis of case-control data due to low allele frequency values.
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Referring now to protective effects for MS identified at the 3-/4-field allele level in the present 

Spanish population study, three main observations can be remarked in relation to the initial 

nominal analysis (see Table R-11a and Figure R-5a):  

-Firstly, HLA class II alleles DRB1*04:02:01 (OR=0.30; p=5.08E−02) and DRB1*04:01:01:01 

(OR=0.26; p=2.27E−02), as well as the respective associated DRB4*01:03:01:01 (OR=0.59; 

p=6.76E−03) in a very tight LD with these HLA-DRB1 alleles, were certainly protective for 

MS in the current Spanish dataset. Strikingly, this finding is in line with formerly reported 

studies in African American [669][683] but not with the large majority of previous studies in 

populations of European descent (which, conversely, even showed that certain different HLA-

DRB1*04 alleles exhibit a predisposing effect), and with the only exception of this same result 

recently described in two different NGS studies of non-Hispanic European American cohorts 

[292][293] (although with certain nuances that are later commented in the DISCUSSION 

section and in the context of the present thesis work). Furthermore, in the present dataset, 

another important protective signal for MS detected within the HLA class II region was 

tentatively coming from the haplotype HLA-DRB5*01:02~HLA-DRB1*15:02:01:02~HLA-

DQB1*06:01:01. Nonetheless, at the HLA allele level only HLA-DRB5*01:02 (OR=0.13; 

p=2.58E−02) and -DQB1*06:01:01 (OR=0.24; p=4.79E−02) alleles were statistically 

significant in their protective effect to MS susceptibility. Whereas either HLA-

DRB1*15:02:01:02 allele (AF=0.0137, in healthy controls; AF=0.0000, in cases) or its other 

intronic variant DRB1*15:02:01:01 (AF=0.0017, in healthy controls; AF= 0.0021, in cases) 

were not statistically measurable since they fall in the “binned” category in the χ2 statistic for a 

contingency table analysis of case-control data due to their allele frequencies are very low in 

the present cohort.  
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-Secondly, within the HLA class I region, three different protective signals were detected. HLA-

B*38:01:01 allele (OR=0.13; p=1.53E−03) showed a statistically significant and strong 

protective effect, being this finding consistent with previous reports in population cohorts of 

European ancestry [658][677]. Moreover, in the present dataset HLA-B*58:01:01:01 

(OR=0.09; p=2.71E−03) was a new class I identified strongly protective allele and statistically 

significant that, to the best of our knowledge, it has not been previously reported in the literature 

(reviewed in [650][651]). Since this represented a novel finding, interpretation of this result was 

taken even with more caution and it was also further evaluated for trying to detect any possible 

not apparent LD effect or a plausible confounding result due to population substructure. At the 

same time, a third protective (although more modest comparatively) HLA class I signal was 

also observed in relation to alleles HLA-B*44:02:01:01 (OR=0.56; p=6.02E−02) and -

C*05:01:01:02 (OR=0.47; p=3.26E−02). In this case, as it has been also well-documented in 

the literature, HLA-B*44:02 allele (presenting the motif Bw4-80T) is in extremely tight LD 

with HLA-C*05:01 allele and thus it is still difficult to discriminate between their tentative 

individual contributions to protection for MS; yet, and at first, it appears to be relying more on 

the HLA-C*05:01 allele variant [292][650][714][715][727]. It is also noteworthy that the 

counterpart HLA-B*44:03:01:01 allele (OR=0.92; p=6.87E−01) is clearly not protective in the 

present dataset.  

-Thirdly, and once again in the context of HLA class I region, it was also of interest to assess 

the association with MS susceptibility/protection for HLA-B alleles (as a clarification, for this 

particular analysis other HLA-A and -C alleles were not considered here) that present either 

serological Bw6 epitope (SLRNLRG motif in amino acid positions 77-83) or Bw4 epitope 

(here, evaluating only three main Bw4 motif subgroups according to the specific series of amino 

acids found in positions 77-83: Bw4 (DLRTLLR); Bw4 (NLRIALR); and Bw4 (NLRTALR)) 
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(see Figure I-27 [728]). Thus, according to the present Spanish population dataset, it can be 

observed that all three main Bw4 motif subgroups evaluated [Bw4 (DLRTLLR), (OR=0.62; 

p=1.45E-01); Bw4 (NLRIALR), (OR=0.78; p=1.14E-01); and Bw4 (NLRTALR), (OR=0.83; 

p=2.73E-01)] were not clearly protective (i.e. at least not statistically significant) in contrast to 

what has been described in previous studies for both European and African American cohorts 

[724-727][947]. Conversely, in our dataset Bw6 epitope (SLRNLRG) (that has not been 

described to interact with any KIR [720]) showed a statistically significant predisposing effect 

to MS susceptibility (OR=1.45; p=3.70E−03), which has not been previously described either 

(at least directly referring to the specific group of HLA-B alleles encoding Bw6 epitope) in the 

literature as far as our knowledge. 

In addition to this initial nominal analysis, we then conducted a stratification or conditional 

analysis in a model adjusting, once again, for the major risk HLA allele found (HLA-

DRB1*15:01:01:01) to further evaluate these nominally observed protective effects for MS in the 

present Spanish dataset. Thus, our aim was to assess whether these protective associations were 

simply reflecting LD patterns (thus, dependent in this case of the presence of highly predisposing 

HLA-DRB1*15:01:01:01 allele) or were indeed statistically (and thus functionally, at least in 

theory) independent since they remained nominally significant even in the DRB1*15:01:01:01-

negative stratum (see Table R-11b and Figure R-5b). In detail: 

-On one hand, conditional analysis revealed that the nominally observed protective effect of 

both class II signals (across different alleles in tight LD respectively) abovementioned 

[DRB1*04:02:01 (OR=”binned”; p=”binned”) with DRB1*04:01:01:01 (OR=0.37; 

p=1.06E−01) and with DRB4*01:03:01:01 (OR=0.82; p=3.39E−01); and also the HLA-

DRB5*01:02 (OR=”binned”; p=”binned”) with -DQB1*06:01:01 (OR=”binned”; 
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p=”binned”)] can be certainly attributed to negative LD with the highly predisposing HLA-

DRB1*15:01:01:01 allele. Because when the data are stratified on the presence of 

DRB1*15:01:01:01, the statistical significance and the protective effect of these HLA class II 

allele signals are clearly diminished (i.e. resulted in loss of the statistical significance associated 

with protection) in the stratum missing DRB1*15:01:01:01. This interpretation suggests that 

these observed protective associations in class II alleles with MS in the present dataset may not 

be necessarily due to their functional protective role (i.e. impairing or avoiding at some level 

the immunopathogenesis of MS) but may simply reflect related LD patterns and 

allele/haplotype frequency distributions. Similarly, as it is also shown and explained later in the 

haplotype level analyses section, alleles HLA-B*44:02:01:01 (OR=0.61.; p=1.87E−01) and -

C*05:01:01:02 (OR=0.45.; p=8.19E−02) were also dependent of DRB1*15:01:01:01 allele and 

their protective effect relies as well on negative LD with this highly predisposing allele 

DRB1*15:01:01:01. 

-On the other hand, HLA-B*38:01:01 allele (OR=0.09; p=3.92E−03) as well as HLA-

B*58:01:01:01 (OR=0.12; p=1.58E−02) remained nominally significant even in the 

DRB1*15:01:01:01-negative stratum, so the protective association cannot be simply attributed 

to negative LD with the highly predisposing DRB1*15:01:01:01. Interestingly, HLA-

B*38:01:01 and B*58:01:01:01 have in common that they both encode the Bw4 motif subgroup 

NLRIALR (Bw4-80I). However, this Bw4 motif subgroup NLRIALR (OR=0.85; p=3.64E-01) 

as well as the other two Bw4 motif subgroups [Bw4 (DLRTLLR), (OR=0.80 p=5.05E-01) and 

Bw4 (NLRTALR), (OR=0.73; p=1.38E-01)] were not associated in either stratum. Thus, in the 

present dataset we did not find a clear Bw4 protective association with MS susceptibility that 

could reflect either LD pattern (i.e. negative LD with the highly predisposing HLA-

DRB1*15:01:01:01 allele.) or ligand mediated KIR3DL1 signaling (indirectly evaluated here). 
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-Moreover, as for Bw6 epitope (SLRNLRG) encoded by the respective group of HLA-B alleles 

analyzed here. In this case, its risk association also stayed relatively strong and statistically 

significant (OR=1.39; p=2.72E-02) in the stratum lacking DRB1*15:01:01:01. Thus, this given 

risk association cannot be attributed simply to LD patterns in relation to the highly predisposing 

allele DRB1*15:01:01:01 and, consequently, it appears to be independent and tentatively 

conferring a synergic effect, although this would need to be further evaluated in future studies. 

 

• As part of this Study 1 shown here and also in relation to allele level analyses, taking 

advantage of the very high-resolution HLA genotyping data (up to the 4-field with minimum 

ambiguities) obtained via NGS it was also of interest to assess the degree of risk association with 

MS in relation to a particular intronic variant of HLA-DRB5*01:01:01 allele recently described 

[308] and termed as HLA-DRB5*01:01:01v1 (with a single substitution of A to G in Intron 2 at 

Position 7312) (see Table R-12). Which was indeed positively associated with MS in a previously 

reported NGS study of a non-Hispanic European American cohort [293]. So, at the time when our 

study was conducted, there were available two HLA-DRB5*01:01:01 allele genomic reference 

sequences included in the MIA FORA™ NGS FLEX HLA Genotyping Software version 3.0, via 

VNC viewer, with reference to IPD‐IMGT/HLA database release 3.25.0 (Immucor, Inc. Norcross, 

GA, USA): HLA-DRB5*01:01:01 allele sequence (GenBank accession number AL713966); and, 

in addition, an intronic variant of this HLA-DRB5*01:01:01 allele sequence (although without 

complete gene coverage, lacking intron-1 sequence) denoted as HLA-DRB5*01:01:01v1 

(GenBank accession number KU593576) that was described by cloning and sequencing 

experiments in a previous work [308]. In the present Spanish dataset, and in contrast to this other 

large European American cohort MS study [293], this very rare intronic variant HLA-

DRB5*01:01:01v1 occurred at similar frequencies in both MS cases and controls (0.4% cases 
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versus 0.3% controls, OR=1.23; p=1.00). Whereas, as previously commented, the much more 

common, comparatively, HLA-DRB5*01:01:01 variant occurred at higher frequencies in MS cases 

than controls (20.0% cases versus 9.2% controls, OR=2.44; p=4.31E-07). Thus, the present 

Spanish HLA-MS study, with a modest and still limited sample size, was therefore not sufficiently 

powered to detect this tentative association for this infrequent intronic variant HLA-

DRB5*01:01:01v1.  

 

 Table R-12. Study 1:  Significant associations of HLA-DRB1*15:01:01:01, HLA-

DRB5*01:01:01 and HLA-DRB5*01:01:01v1 (intron variant) alleles in Spanish MS cases and 

controls. 

 
 

12. HLA HAPLOTYPE LEVEL ANALYSES ON FIRST CASE-CONTROL STUDY   

• Subsequently, in the corresponding Study 1, we also evaluated these abovementioned 

risk/protection allelic associations to MS susceptibility in the context of HLA class II haplotype 

blocks (see Table R-13) as well as in regards to the fully extended HLA class I and class II 

haplotypes (see Table R-14) at the 3-/4-field of resolution. In detail: 

-On one hand (see Table R-13), the distribution of class II HLA-

DQB1~DQA1~DRB1~DRB3/4/5 haplotype blocks in MS cases and controls was compared. 

Based on the risk/protective HLA allele signals previously detected (and even though we still 

analyzed and reviewed the haplotype distribution data entirely), we particularly assessed (being 
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of special interest in the scope of the present study) which HLA-DRB1*15:01:01:01-, HLA-

DRB1*15:02:01:01/:02-, HLA-DRB1*04:01:01:01-, HLA-DRB1*07:01:01:01- and HLA-

DRB1*04:04:01-bearing haplotypes are associated with risk/protection to MS susceptibility. 

Overall, there is a clear correlation of the MS risk/protection associations found between the 

individual allele signals previously identified and the corresponding associated HLA class II 

haplotypes shown here, in which these alleles are embedded displaying specific and distinctive 

LD patterns.  

Firstly, and as it was expected, the HLA-

DQB1*06:02:01~DQA1*01:02:01:01~DRB1*15:01:01:01~DRB5*01:01:01 haplotype shows 

a strong association, being statistically very significant (OR=2.39; p=3.45E-06), by conferring 

risk to MS susceptibility. In addition, it is worth noting that this prototypic or “classic” HLA-

DRB1*15:01:01:01-bearing class II haplotype representing the major MS risk signal is the most 

frequent of its kind in Spanish general population, as it has been also described in other 

populations of European ancestry [130][292][293][464][727]. Whereas other positively 

associated HLA-DRB1*15:01:01:01-bearing haplotypes with MS evaluated here exhibit low or 

very low haplotype frequencies, being more difficult to deduce with certainty any plausible and 

suitably clear interpretation of these association results obtained at the haplotype level (i.e. since 

these haplotype frequencies fall into the “binned” category in the χ2 statistic for a contingency 

table analysis of case-control data due to their low haplotype frequencies; yet, their statistical 

parameters were manually calculated and shown here only for purposes of comparison). For 

instance, even though found at low haplotype frequencies, it is worth pointing out that the HLA-

DRB1*15:01:01:01-bearing haplotype lacking HLA-DQB1*06:02:01 and containing HLA-

DQB1*06:03:01 allele instead has still a noticeable higher frequency in MS cases than in 

healthy controls. Consequently, this could be suggesting that specific presence of HLA-
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DQB1*06:02:01 allele within this prototypic HLA-DRB1*15:01:01:01-bearing class II 

haplotype may not be as pivotal on the major observed associated risk to MS susceptibility 

(observed here for Spanish population); and also as previously described in other case-control 

population studies such as in the case of African Americans [669]. Alternatively, both HLA-

DQB1*06:02:01 and HLA-DQB1*06:03:01 (but not HLA-DQB1*06:01:01, with a protective 

role identified in the present study, at first, due to related LD patterns and allele/haplotype 

frequency distributions) could be potentially playing a similar secondary role on MS risk at the 

HLA haplotype level. Nevertheless, this preliminary observation would need to be further 

investigated in larger NGS studies for Spanish population.  

Moreover, although statistically speaking it was not sufficiently measurable either (once again, 

due to low haplotype frequency values found in the present Spanish population cohort), in 

regards to HLA-DRB1*15:02:01-bearing haplotypes it was possible to confirm those protective 

allele signals previously detected for HLA-DQB1*06:01:01 and - DRB5*01:02 embedded in 

this haplotype. Particularly, evaluated here at the 3-/4-field haplotype level, it was striking to 

find a (tentatively) clear difference in distribution found between haplotypes comprising 

distinctive 4-field intron variants HLA-DRB1*15:02:01:01 and HLA-DRB1*15:02:01:02 

regarding association with MS susceptibility. These two variants cannot be distinguished at an 

unsequenced region of Intron 1 2146 bp G-->C SNP, and from a STR (dinucleotide) in Intron 

2 (positions 5693 to 5748 bp) with repeats of GT; however, on the other hand, these two 4-field 

variants differed in Intron 2 at the position 6272 Deletion(.)-->T SNP according to v.3.25.0 

IPD-IMGT/HLA database (released July 2016) [87][295][297][362]. Thus, in the present study, 

the former haplotype was similarly present in both cases and healthy control groups (OR=1.23; 

p=1.00), while the latter HLA-DRB1*15:02:01:02-bearing haplotype clearly shows a strong 

association, being statistically very significant (OR=0.08; p=9.91E-03), by conferring 
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protection to MS susceptibility. Therefore, this nicely exemplifies how NGS HLA genotyping 

allowed us to detect a relevant 4-field difference at the haplotype level in relation to the 

association of MS, in this case, for protection.  

Also, referring now to other protective effects observed at the HLA class II haplotype level 

(although again found at relatively low haplotype frequency values, with the only exception of 

DQB1*02:02:01:01~DQA1*02:01:01:01~DRB1*07:01:01:01~DRB4*01:01:01:01 

haplotype, which is commonly found in the present Spanish general population dataset; 

however both MS cases (AF=11.6%) and healthy controls (AF=11.8%) show quite similar 

frequency distributions (slightly higher in controls but not statistically significant at all)). It is 

noteworthy the protective association found in several different HLA-DRB1*04:01/04:04- and 

-DRB1*07:01:01:01-bearing haplotypes, presenting a diverse set of encoded HLA-DQ 

heterodimers within the corresponding haplotype and containing HLA-DRB4*01:03:01:01 or -

DRB4*01:01:01:01/-DRB4*01:03:01:02N alleles, respectively, as the secondary DRB loci. As 

previously commented at the HLA allele-level analyses, these protective signals may not be 

necessarily due to their functional protective role (i.e. impairing or avoiding at some level the 

immunopathogenesis of MS), but may simply reflect related LD patterns and allele/haplotype 

frequency distributions relative to the counterpart HLA-DRB1*15:01:01:01-bearing class II 

haplotypes. Strikingly, the protective role found for HLA-DRB1*04:01/04:04-bearing 

haplotypes in the present Spanish population study is clearly in contrast to what it had been 

previously reported in singular Spanish population groups such as Basques [742] and Canary 

Islanders [738], where these allele groups (and corresponding bearing haplotypes) were more 

prevalent in MS patients. These discrepancies found between studies in Spanish population may 

be indicative most likely of existing population stratification which may be causing these 

notably different observed HLA allele/haplotype distributions; or alternatively, but less likely 
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at first, the possibility that within the Spanish MS patient general population there could be 

different MS sub-cohorts that may be defined according to distinctive HLA markers [689][709]. 

Yet, these admittedly speculative interpretations would need to be further investigated in larger 

NGS studies with sufficient and adequate clinical data available for Spanish population. 

Interestingly, this observed heterogeneity has been also found in relation to other HLA-

DRB1*04 subtypes (and respective carrying haplotypes) and their risk/protective association to 

MS susceptibility across worldwide populations so far studied [650][651]. Thus, for example, 

a relevant positive association of the other allele group HLA-DRB1*04:05 with MS has been 

widely described in Japanese and Asian populations [294][678-681] as well as in the unique 

Sardinian islander population (tentatively influenced by diverse founder populations) 

[650][662][670][686][687][688]. Also, in a recent NGS HLA study on a large European 

American cohort, analyses of the HLA-DRB1*04 in the absence of HLA-DRB1*15:01 

haplotypes revealed that the HLA-DQB1*03:01:01:01~HLA-DQA1*03:03:01:01~HLA-

DRB1*04:01:01:01~HLA-DRB4*01:03:01:01 haplotype was protective, whereas the HLA-

DQB1*03:02:01~HLA-DQA1*03:01:01~HLA-DRB1*04:01:01:01~HLA-DRB4*01:03:01:01 

haplotype was associated with disease susceptibility [293]. However this pattern was not found 

in the present Spanish population cohort, where both HLA class II haplotypes are clearly 

protective (see Table R-13). Altogether, these findings may suggest complex interactions 

between HLA loci (in the context of HLA haplotypes as the fundamental unit of genetic control 

of their immune role), which may also implicate epistasis (in cis- and trans-) among HLA class 

II loci conferring specific susceptibility and resistance effects respectively 

[672][674][677][952]. At the same time, these findings raise questions about disease 

mechanisms that certainly require further examination in functional studies [677]. Moreover, 

large trans-ethnic NGS HLA studies may contribute to better interrogate and shed light to this 
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observed HLA-DRB1 heterogeneity and the respective association patterns to MS 

susceptibility, even within populations of European ancestry [650][651]. 

Finally, as another important remark to be mentioned in this HLA class II haplotype-level 

analysis of the present Spanish population NGS HLA-MS study and similarly to the limitations 

found in other previous studies on populations of European ancestry 

[292][293][650][651][727]; identification of the true predisposing gene of MS susceptibility 

within the prototypic susceptibility HLA-DR15 (HLA-DRB1*15:01:01:01~DRB5*01:01:01) 

haplotype is handicapped by the intense and exceptionally tight linkage disequilibrium (LD) 

across these given individual alleles at HLA-DRB1 and HLA-DRB5 loci. Consequently, in the 

majority of populations of European descent all common HLA-DRB1*15:01~DQB1*06:02 

haplotypes carry the HLA-DRB5*01:01 allele, while all frequent HLA-

DRB1*16:01~DQB1*05:02 haplotypes carry the HLA-DRB5*02:02 allele, thus the role of 

allelic variation at HLA-DRB5 cannot be suitably assessed [292][293][668][727][743][944]. 

Nevertheless, on the other hand, the role of allelic variation at HLA-DRB5 with risk to MS 

susceptibility may be better elucidated in Asian populations (primarily in Southeast Asia and 

Oceania) [697]. In which, in contrast to populations of European ancestry [696] and even though 

incidence of MS appears to be much lower [697], common HLA-DRB1*15:02-bearing 

haplotypes (such as HLA-DRB5*01:02~DRB1*15:02:01:01~DQA1*01:03:01:01~ 

DQB1*06:01:01 (HF=10.7%) and HLA-DRB5*01:01:01~DRB1*15:02:01:01~ 

DQA1*01:02:01:01~DQB1*05:02:01 (HF=8.9%) [297]) may allow to discern the individual 

contributions of these HLA-DRB5 alleles in MS disease susceptibility, thus taking advantage 

of the particular LD patterns commonly found in these specific ethnic groups.
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Table R-13. Study 1: Significant HLA class II haplotype-level (at the 3-/4-field resolution) associations with multiple 

sclerosis (MS) in the nominal analysis of the Spanish population cohort. 

 

Main HLA class II haplotypes associated with risk (OR>1) or protection (OR<1) to MS susceptibility are depicted. OR, Odds ratio; 95% CI, 95% 

confidence interval. P values derived from a two-tailed Fischer’s exact test. A P value of 0.05 (α) or less was considered statistically significant (in 

bold). *Haldane-Anscombe correction was applied in those situations with zero counts (i.e. just adding 0.5 to each of the cells and then calculate the 

odds ratio (OR) over these adjusted cell counts).  
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Table R-14. Study 1: Significant extended HLA haplotype-level (at the 3-/4-field resolution) associations with multiple 

sclerosis (MS) in the nominal analysis of the Spanish population cohort (Controls 2n=564; MS cases 2n=476). 

 

Main extended HLA haplotypes associated with risk (OR>1) or protection (OR<1) to MS susceptibility are depicted. OR, Odds ratio.                   

*Haldane-Anscombe correction was applied in those situations with zero counts (i.e. just adding 0.5 to each of the cells and then calculate the odds 

ratio (OR) over these adjusted cell counts).
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-The clonal nature of NGS also allowed us to conduct a very detailed analysis of each of the 

previously detected HLA allelic risk/protection signals to MS susceptibility in the context of 

the corresponding completely extended HLA class I and class II haplotype blocks at the 3-/4-

field of resolution (even though estimated via EM in the current Spanish unrelated dataset 

available) (see Table R-14). Thus, this analysis helped us to put into perspective the given 

characteristic LD patterns and also to map precisely the respective individual allele associations. 

Once again, based on the HLA MS-risk and -protective allelic signals initially identified (and 

even though we still analyzed and reviewed the extended haplotype distribution data entirely), 

we particularly assessed (being of special interest in the scope of the present study) those 

distinctive HLA-DRB1*15:01:01:01~DQB1*06:02:01-bearing haplotypes; other HLA-

DRB1*15:01:01:01-bearing haplotypes observed in the present Spanish population cohort; as 

well as HLA-DRB1*15:02:01:02, HLA-DRB1*04:01:01:01-, HLA-DRB1*04:02:01- and HLA-

DRB1*04:04:01-bearing haplotypes associated with protection to MS susceptibility; in addition 

to the extended haplotypes comprising the also protective HLA class I HLA-B*38:01:01 and 

HLA-B*58:01:01:01 alleles respectively. Overall, all these observed extended HLA haplotype 

associations are in line with those HLA allele and class II haplotype risk/protection signals 

previously shown and commented in detail. However, once again, due to the pronounced 

haplotypic diversity and distinct patterns of LD observed at the 3-/4-field of resolution, most of 

these extended haplotype associations were not statistically measurable (i.e. larger number of 

haplotypes relative to alleles at individual loci tends to decrease power due to the additional 

degrees of freedom required for the analysis [711]) since they fall in the “binned” category in 

the χ2 statistic for a contingency table analysis of case-control data due to their haplotype 

frequencies are very low in the present Spanish population cohort (presenting still a modest 

sample size). Yet, their statistical parameters (odds ratio, OR) were manually calculated and are 
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shown here only for purposes of comparison. Thus, the purpose of this analysis was merely to 

have a relative comparison of estimated risk/protection across these different extended 

haplotypes. 

Interestingly, in contrast to other studies on populations of North-/Central-European ancestry 

(in which the prototypic susceptibility HLA-A*03:01:01:01~B*07:02:01~C*07:02:01:03~ 

DQA1*01:02:01:01~DQB1*06:02:01~DRB1*15:01:01:01~DRB5*01:01:01 extended 

haplotype is considerably more prevalent in MS patients) [292][293][650][651][727], the 

present Spanish population cohort shows a (tentatively) greater diversity of extended HLA-

DRB1*15:01:01:01~DQB1*06:02:01-bearing haplotypes positively associated to MS, which 

encompass different sets of HLA class I alleles commonly found in populations from 

Mediterranean regions [130][297][464]. Thus, this observation suggests that extended 

susceptible HLA-DRB1*15:01-bearing haplotypes are heterogeneous and, in turn, these 

different haplotype-based functional cassettes can be associated with MS susceptibility to some 

extent and varying across populations, even within populations of European ancestry 

[650][651][711]. Still, testing whether the point estimates for these ORs are significantly 

different will require a larger sample set. It is also noteworthy that according to the extended 

haplotype distributions the risk association of HLA-DQB1*06:03:01-bearing haplotypes 

appears to be much weaker than in the case of HLA-DQB1*06:02:01-bearing haplotypes on this 

secondary role of MS risk. 

Moreover, the relatively strong protective association of HLA-A*02:01 allele in LD with the 

HLA-C*03:04~B*40:01 haplotype previously reported in other studies in European American 

cohorts [292][658][712][727] was not clearly detected in the present Spanish population study 

since at the individual allele level none of those protective signals were statistically significant 
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(data not shown). In fact, one of the HLA-DRB1*15:01:01:01~DQB1*06:02:01-bearing 

haplotypes found here comprises this HLA class I haplotype. On other hand, it can be seen that 

the protective HLA-DRB1*04:04:01-bearing haplotype also contains this same HLA class I 

haplotype and, thus, this may explain their associated protective effect, not necessarily due to 

their functional protective role but simply attributed to negative LD with the highly predisposing 

HLA-DRB1*15:01:01:01. Similarly, HLA-B*44:02:01:01 and -C*05:01:01:02 allelic 

protective signals may be driven by allele HLA-DRB1*04:01:01:01 at HLA-DRB1 locus since 

all these are embedded in this same extended haplotype. 

Furthermore, we confirmed the presence of statistically independent HLA-B effects (i.e. 

displaying HLA-DRB1*15:01:01:01-independent associations). Our analysis fine-mapped 

these to HLA-B*58:01:01:01 and HLA-B*38:01 again at the extended haplotype-level.  

Lastly, since the haplotype diversity dramatically increases when including HLA-DPA1 and -

DPB1 loci due to existing hotspot of recombination between HLA-DQ and -DP loci [92]. 

Consequently, extended haplotype associations relative to the risk signal found in HLA-

DPB1*03:01:01 (going beyond its well-known strong LD with HLA-DPA1*01:03:01:03, for 

encoding the respective heterodimer) cannot be suitably assessed in the present study. Future 

studies on the HLA-DP structure-function may provide further evidence to improve our 

understanding of the exact function of HLA-DP in the pathogenesis of MS. 

In summary, knowledge of related extended haplotypic associations up to the 3-/4-field contribute 

to better elucidate the role of HLA class I and class II genes in MS susceptibility as well as detect 

and disentangle possible hitchhiking effects due to existing extended LD between neighboring 

genes. At the same time, it is also possible that different loci and alleles may act in synergy to 

confer susceptibility or protection to MS risk. 
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13. HLA ALLELE LEVEL ANALYSES ON SECOND CASE-CONTROL STUDY   

• Firstly, in the other so-called Study 2, we evaluated the associations of HLA alleles with MS 

risk and protection (see Table R-15) respectively at the 2-field of resolution. The analysis of alleles 

grouped by this 2-field of resolution led to similar conclusions as in the previous analysis based 

on 3-/4-field alleles, replicating also these results in associated risk/protection with similar 

statistical significance. 

Moreover, it was of interest to evaluate possible existing differences in the findings of HLA-

disease association with MS as a consequence of not being real causative variants but due to 

plausible regional HLA genetic variation within mainland Spain in the previous Study 1. Thus, as 

a statistical approach to try controlling for any possible existing population stratification (i.e. 

differences in genetic structure between disease and control groups) as a confounding factor that 

may affect the results obtained in the first study (Study 1), a second control group (not only 

ethnically- but also regionally-matched as it was from Catalonia) was used here in Study 2. In this 

sense, no major differences are observed between Study 1 and Study 2 at the HLA allele-level 

analyses. Only, as minor exceptions: 

-It is noteworthy that in those associations related to protection for MS susceptibility, the 

statistical significance was slightly diminished in the case of HLA-DQB1*06:01 and - 

DRB5*01:02 alleles. Yet, this was not indicative of existing population stratification effect. 

-Whereas relative to risk signals, in Study 2 HLA-DPB1*03:01 allelic signal was not as 

statistically significant as in Study 1. Nevertheless, this was still based on a very minor 

difference in regards to allele frequency distribution, thus, not being suggestive either of 

existing population substructure effect that might be conditioning this association found in both 

Spanish and Catalan population. 
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Table R-15. Study 1&2: Significant HLA allele-level (at the 2-field resolution) 

associations with multiple sclerosis (MS) in the nominal analysis of the Spanish 

population cohort and in comparison to the second healthy control group (Cat-Controls 

from Catalonia). 

 

HLA alleles associated with risk (RED colored) or protection (GREEN colored) to MS susceptibility are depicted 

based on the respective most common -bearing haplotypes in which they are embedded. OR, Odds ratio; 95% CI, 

95% confidence interval. P values derived from a two-tailed Fischer’s exact test. A P value of 0.05 (α) or less was 

considered statistically significant (in bold). 
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14. HLA HAPLOTYPE LEVEL ANALYSES ON SECOND CASE-CONTROL STUDY   

• Secondly, in the corresponding Study 2, we also evaluated these abovementioned 

risk/protection allelic associations to MS susceptibility in the context of HLA class II haplotype 

blocks (see Table R-16) as well as in regards to the fully extended HLA class I and class II 

haplotypes (see Table R-17) at the 2-field of resolution. In detail: 

-The analysis of HLA class II haplotype blocks grouped by this 2-field of resolution (see Table 

R-16) led to similar conclusions as in the previous analysis based on 3-/4-field data in Study 1, 

replicating also those results in associated risk/protection with (for the most part) similar 

statistical significance. Nevertheless, the LD displayed between specific non-coding 

polymorphisms was undetected at this 2-field allele resolution level (either “trimmed” or 

generated). Consequently, when these haplotypes are reduced to 2-field haplotypes this results 

in loss of specificity of the haplotype frequency distribution, lowering also the apparent LD 

between these class II loci. For instance, here it was not possible to identify the specifically 

protective HLA-DRB1*15:02:01:02-bearing haplotype association above described. This 

demonstrates the importance of characterizing HLA alleles from full-length HLA gene 

sequences including UTRs and all intronic regions, allowing assignment of specific haplotypes. 

Moreover, in some cases (e.g. HLA-DQB1*05:02~DRB1*15:01~DRB5*01:01) the grouping or 

combination of the 3-/4-field allelic variants into a single 2-field variant may lead to a more 

statistical power or significance. However, this may not be biologically appropriate since these 

non-coding regions contain relevant sites (establishing also a specific LD pattern) for 

transcription promoters, inhibitors, alternative splice sites, methylation sites, binding sites for 

post‐translational miRNA degradation and many other functions as yet undetermined [951]. 

Therefore, statistical significance at the 2-field should not generally take precedence over
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Table R-16. Study 1&2: Significant HLA class II haplotype-level (at the 2-field resolution) associations with multiple 

sclerosis (MS) in the nominal analysis of the Spanish population cohort and in comparison to the second healthy control 

group (Controls Cat from Catalonia). 

 
Main HLA class II haplotypes associated with risk (OR>1) or protection (OR<1) to MS susceptibility are depicted. OR, Odds ratio; 95% CI, 95% 

confidence interval. P values derived from a two-tailed Fischer’s exact test. A P value of 0.05 (α) or less was considered statistically significant (in 

bold). *Haldane-Anscombe correction was applied in those situations with zero counts (i.e. just adding 0.5 to each of the cells and then calculate the 

odds ratio (OR) over these adjusted cell counts).  
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Table R-17. Study 1&2: Significant extended HLA haplotype-level (at the 2-field resolution) associations with multiple 

sclerosis (MS) in the nominal analysis of the Spanish population cohort (HC 2n=564; MS 2n=476) and in comparison to 

the second healthy control (HC) group (Controls from Catalonia (Cat), 2n=392). 

 

Main extended HLA haplotypes associated with risk (OR>1) or protection (OR<1) to MS susceptibility are depicted. OR, Odds ratio.                   

*Haldane-Anscombe correction was applied in those situations with zero counts (i.e. just adding 0.5 to each of the cells and then calculate the odds 

ratio (OR) over these adjusted cell counts)
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biological relevance (and respective LD patterns associated to it) found at the HLA genomic 

level.  

On the other hand (see also Table R-16), when comparing HLA class II haplotype blocks 

results obtained between Study 1 and Study 2 (even though with the limitation that HLA-

DQA1 locus was not characterized in this second case), no confounding factors (due to 

population stratification), which may affect the results of the study, appear to be detected. The 

only minor exceptions are observed in relation to HLA-

DQB1*06:03~DRB1*15:01~DRB5*01:01 (conferring risk) and HLA-

DQB1*03:03~DRB1*07:01~DRB4*01:03 (conferring protection) haplotypes, which seem to 

be statistically more significant in their corresponding associations in Study 2. Nonetheless, 

since their haplotype frequencies are, overall, very low in both the present Spanish and 

Catalan population cohorts (presenting still modest sample sizes respectively), interpretation 

of these results will need to be further investigated and confirmed in future larger studies. 

 

-Finally, relative to the analysis in the context of the corresponding completely extended HLA 

class I and class II haplotype blocks at the 2-field of resolution (see Table R-17), similar 

conclusions can be taken as from the previous analysis based on 3-/4-field data as part of 

Study 1, replicating also those results in associated risk/protection with very similar OR 

values shown here. Whereas comparison of Study 1 and Study 2 OR results may have 

revealed certain possible existing population substructure (although not significant) reflected 

in the different level of association observed to MS susceptibility between these two studies, 

though being only the case for some of the haplotypes shown here: 

-In relation to risk: where those risk extended HLA-DRB1*15:01~DQB1*06:02-bearing 

haplotypes containing, respectively, HLA-B*18:01 (much stronger risk effect detected in 
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Study 2 than in Study 1) and HLA-B*44:03 (much weaker risk effect found in Study 2 

versus Study 1) show opposite trends of association to MS susceptibility between these two 

studies. 

-Regarding protection: where the protective effect (still attributed to negative LD with the 

highly predisposing HLA-DRB1*15:01:01:01) of all those associated extended haplotypes 

may not be as strong (i.e. ORs higher in Study 2 versus Study 1). 

Therefore, when evaluating association to MS susceptibility relative to completely extended 

HLA class I and class II haplotype blocks (here observed at least at the 2-field of resolution) 

this level of analyses could be more sensitive to possible existing underlying population 

substructure (even though no significant) in the given study cohort of interest. Yet, since 

haplotype frequencies are, overall, very low in both Spanish and Catalan population cohorts 

(presenting still modest sample sizes respectively) of the present study, interpretation of these 

results will need to be further corroborated in future larger studies. 
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I. NGS-BASED HLA STUDY IN 17TH-IHIW SPANISH POPULATION 

COHORT (HEALTHY CONTROL GROUP)  

In the present study, HLA allelic sequences of 11 major classical HLA genes were characterized 

(according to the IPD-IMGT/HLA released version 3.25.0 (July 2016), available at the moment of 

the study) with extensive HLA genomic sequence coverage and phased-alleles with minimum 

allelic and heterozygous ambiguity per tested locus at the 3-/4-field for a fairly representative 

Spanish population cohort (N=282) by applying this novel high-throughput and high-resolution 

NGS-based HLA typing method [187][763-766]. Also, allelic and haplotypic HLA frequency 

distributions were examined at the 3-/4-field allele resolution level in this Spanish population 

cohort (denominated as 17th-IHIW Spanish population cohort as a healthy control reference 

group) [269].  

The exceptional advantage offered by NGS technology (over all previous legacy HLA 

molecular typing methods) for HLA allele characterization is the ability to produce (almost) 

unambiguous allele level genotypes from full-length and (mostly) phased nucleotide sequences. 

The technique used here represents the current industry standard for these NGS-based HLA 

genotyping commercially available methods/kits for both clinical and research applications. Most 

of these current NGS approaches, as the one used here, enable full-length (mainly in the case of 

HLA class I loci) or almost full-length (mainly in the case of HLA class II loci) gene typing for 

HLA loci: HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-

DPA1, and HLA-DPB1 using amplification with long-range PCR and shotgun deep-sequencing 

approach relying on short-read sequencing platforms (and particularly those that present a paired-

end sequencing mode) [554]. At the same time, and as previously described in detail in the 

INTRODUCTION section, it is important to underscore that unknown level of underlying HLA 

diversity at the 4-field remains still unrevealed due to (among other factors): limitations of current 
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NGS-based (both 2nd and 3rd generations) HLA genotyping approaches (including the one NGS 

method used in the present study) [152][158][161][184][202][204][296][368] as well as current 

IPD-IMGT/HLA database limitations (i.e. where only 10% of known HLA class I and class II 

alleles have been fully sequenced (full genomic sequences) [146][463]). Yet, the introduction of 

NGS-based approaches (both 2nd and 3rd generations of sequencing technologies) for HLA 

genomic characterization has enabled to start analyzing in-depth (at both very high allele resolution 

(4-field) level and in terms of high-throughput mode with high number of HLA genes interrogated 

at a large sample scale) the almost full-length of coding and non-coding sequence regions of this 

very complex and highly polymorphic human genomic region. Which had not been possible for 

many decades until very recently (~since 2010 year) due to the many limitations shown by legacy 

HLA genotyping methods (e.g. SSP, SSO, RT-PCR and SBT) [137]. 

1. HLA ALLELE LEVEL ANALYSES 

At the HLA allele level, NGS-based HLA genotyping data at the 3- and 4-field allele resolution 

allows a further and in-depth description of the HLA allelic diversity given by silent substitutions 

and non-coding segments. 

Focusing on HLA class I loci, it can be observed that HLA-B locus presents the highest allele 

diversity in comparison to HLA-A and -C loci in relation to the number of distinct alleles (k) (i.e. 

when looking at the collapsed 2-field allele resolution level, which defines a given specific HLA 

allele with a unique protein sequence) found in this Spanish population cohort. Nevertheless, the 

4-field allele resolution level has allowed us (as it can be also generally observed in other NGS 

HLA population-level studies [267-287]) to reveal a significant diversity at the nucleotide level 

for HLA-A and -C loci in contrast to HLA-B locus (in which, in general terms, less 4-field allelic 

variants are found for a given HLA-B*XX:XX:XX generic allele group). This can be illustrated, for 
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instance, when comparing the respective k (number of distinct alleles per locus) values in each 

case of allele resolution level (collapsed 2-field versus 4-field):  

• HLA-A locus [collapsed 2-field (k=28) versus 4-field (k=36)];  

• HLA-C locus [collapsed 2-field (k=28) versus 4-field (k=40)];  

• HLA-B locus [collapsed 2-field (k=48) versus 4-field (k=53)]. 

Thus, this may suggest plausible existing distinct functional roles and modes of evolution between 

these classical HLA class I loci as previously discussed in the literature [104][809]. 

In relation to HLA class II loci, both HLA-DPA1 (heterozygosity index at 4-field = 0.84; 

whereas heterozygosity index at collapsed 2-field = 0.35) and HLA-DQA1 (heterozygosity index 

at 4-field = 0.91; whereas heterozygosity index at collapsed 2-field = 0.88) loci exemplify the 

higher level of heterozygosity found at the 4-field level (molecular variation in non-coding regions 

in both introns and 5’/3’UTR regions) in comparison to the 2-field level (specific HLA protein-

coding alleles). For instance, the only observed variant HLA-DQA1*05:01 at the collapsed 2-field 

level shows, in contrast, a total of three different variants at the 4-field level (HLA-

DQA1*05:01:01:01, HLA-DQA1*05:01:01:02 and HLA-DQA1*05:01:01:03; representing 

39.7%, 53.4% and 6.8% respectively inside this HLA-DQA1*05:01 allele group). Conversely, it 

can be also noted how certain loci (especially focusing our attention now on the HLA class II “B” 

(encoding beta chain) genes counterpart) such as HLA-DPB1 (estimated homozygosity F=0.184 

at collapsed 2-field in contrast to F=0.177 at 4-field), HLA-DQB1 (F=0.110 at collapsed 2-field in 

contrast to F=0.087 at 4-field) and HLA-DRB1 (F=0.074 at collapsed  2-field in contrast to 

F=0.073 at 4-field) loci show less differences regarding the allelic diversity found between the 

collapsed 2-field level variants and the 4-field level variants as described in the present study and 

likewise in other NGS HLA population-level studies [267-287]. In this respect (and as previously 

and more extensively commented in the INTRODUCTION section, ref. [27][35][56] 
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[104][178][268][273][288][301][309][428]), based on these observed differences of relative 

diversity either at the protein- or nucleotide level respectively, one could conjecture that classical 

HLA class II “A” (DPA1, DQA1, DRA) loci, despite worldwide human population diversity, 

appear to be under high selective pressure in which synonymous and non-coding allele variants 

(which, indeed, may be involved in defining regulatory functions related to cell surface expression 

and/or the stability of the respective peptide binding groove of these HLA class II heterodimers) 

are predominantly generated over protein-coding allele variants. Thus, from a functional 

perspective, allele diversification at the protein level (defining contact positions of these alpha 

subunits for the binding with the respective beta subunits forming heterodimer molecules) of HLA 

class II “A” loci may be restrained and relatively conserved (similarly to the case of the non-

polymorphic β2 microglobulin associated to the given heavy polymorphic α chain encoded by 

HLA-A,-B, -C class I genes respectively, establishing classical MHC class I molecules) in order to 

facilitate and ensure the pairing with the respective wide allele range of classical HLA class II “B” 

loci (DPB1, DQB1, DRB1/3/4/5), which, in turn, define extensive peptide binding repertoire that 

is intimately related with their key immunobiological role for antigen presentation on these HLA 

class II heterodimers [810]. At the same time, certain specific and mutually exclusive pairing 

patterns have been described in this heterodimerization process, thus defining differentiated allelic 

pair groups. As an example, in the case of HLA-DQA1 and -DQB1 alleles two distinct allele pair 

groups forming heterodimers have been described, where these different groups also appear to 

have divergent evolutionary origins and sequences [810]. 

Also, within HLA class I alleles described in the present study and as a very distinctive and 

characteristic HLA allele “signature” or “feature” found in Spanish population, it needs to be 

remarked a very intriguing relative HLA allele frequency distribution and respective ratio found 

within the HLA-B*44 allotype group (also known as HLA-B*44 supertype). In particular, regarding 
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both HLA-B*44:02 and HLA-B*44:03 subtypes, which only differ by one single residue (defined 

as a micropolymorphism) located on the α2 helix of the HLA-B molecule: HLA-B*44:02 Asp 

(codon 156 (GAC), exon 3) and, in contrast, HLA-B*44:03 Leu (codon 156 (CTG), exon 3) [811]. 

It has been widely reported how these two HLA-B*44 subtypes induce strong T cell responses 

[811][812] and, thus, how critical it is their functional impact considering mismatches for clinical 

transplantation [813][814]. In addition, it has been described that this HLA polymorphism found 

inside this HLA-B*44 allotype group critically influences on TCR recognition, and, furthermore, 

specifically being involved and defining related peptide specificity based on peptide-binding 

preferential engagement events, where several molecular characteristics (presented by both HLA 

molecules and the corresponding antigenic peptide to be loaded) play a key role (e.g. even 

including the given antigenic peptide flexibility, for its accommodation within a certain HLA 

molecule peptide-binding groove, can be a major parameter) [815].  

 

Figure D-1. Schematic representation of the structure of HLA-B44 binding-peptide groove. The positions of 

polymorphic residue 156 (small black circle indicated by the black arrow) and pockets D and E are indicated. 

Figure and respective footnote are obtained and adapted from [816].  
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Furthermore, more recent studies evaluating the influence of position 156 polymorphisms on both 

the requirement of tapasin for efficient surface expression of different HLA-B44 subtypes and 

their peptide nature and binding features have shown that B*44/Pos.156 variants are highly 

tapasin-dependent (where tapasin chaperoning seems to be especially needed to acquire peptides 

of unusual length) [817]. Indeed, also recent studies have postulated that tapasin may modulate 

MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I 

allosterically, resulting in enhanced peptide selector function [818]. 

In relation to observed HLA allele frequency distributions at the HLA-B locus, these two HLA-

B*44:02 and HLA-B*44:03 subtypes respectively present relatively high frequencies (thus, being 

generally defined as common allele groups) in most human worldwide populations (and across a 

wide range of different ethnic backgrounds) so far studied, and are followed (among other HLA-

B*44 subtypes) by the less frequent HLA-B*44:05, HLA-B*44:04 and HLA-B*44:06 subtypes 

(e.g. [130][221][223-227][259][260]][267-287][297][299][328][339][464][466][467][474][476] 

[481][496][547][558-561][563][564][571][600][602][603][608][611][614][621][624-

630][772][808][819-851][943]). Interestingly, and at the same time, it has been also widely 

reported a high diversity found in the HLA-B*44:02 / HLA-B*44:03 ratio of allele frequency 

distributions among many human populations even within those considered broadly common 

ethnic groups (e.g. broad population group that comprises those populations of 

European/Caucasoid ancestry). Thus, it has been observed that HLA-B*44:02 subtype appears 

more prevalent than HLA-B*44:03 subtype in the majority of North, Central and East European as 

well as European American (from North America) populations (e.g. [223][225-

227][259][268][474][476][943] (including Polish, Russian, Romanian, Kazakhstani, Bosnian-

Herzegovinian, Greek and Turkish ethnic groups in German HSCT donor registry) [481])[819-

830]), and in addition to some Near-Eastern (including both Jewish and Arabs population groups 
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of the Levant [466][614][621][832]) and few reported Middle-Eastern [831] populations. 

Whereas, conversely, Mediterranean and South European populations (e.g. 

[221][260][269][545][546][558-561][563][564][571][600][602][603][608][624-630][833-835]), 

in addition to both North and sub-Saharan African and African descent (in which, as an example 

in some cases, even HLA-B*44:10 is one of the most common alleles found [273]) (e.g. 

[272][275][276][821][496][836-838]), Asian (e.g. [270][278][839-845]), Hispanic (people 

originally or descent from Central and South America) (e.g. [224][267][277][547][772][821]) and 

some populations from the Arabian Peninsula [271][285][821], exhibit an inverted ratio where 

HLA-B*44:03 subtype is more notably frequent than its counterpart the HLA-B*44:02 subtype.  

Therefore, in comparison to many other populations of European ancestry, the most striking fact 

is this stark difference uniquely found in Spanish population, as originally reported in [834][835], 

where the HLA-B*44:03  / HLA-B*44:02 is almost 2:1 ratio. In fact, for rest of neighboring/nearby 

European countries in relation to Spain:  

i) Mainland Portugal [602], also located in the Iberian Peninsula, shows this same clear HLA-

B*44:03 / HLA-B*44:02 predominant ratio as Spain being almost the only two exceptions 

within the European continent. 

ii) Whereas in the French Bone Marrow Donor Registry (FBMDR) population, frequencies of 

these two HLA-B*44 subtypes are almost evenly distributed with a ~1:1 ratio (with HLA-

B*44:03 subtype frequency being slightly higher) [846];  

iii) Interestingly, in the case of Italy there are conflicting results. On one hand, some HLA 

studies in several Italian population cohorts [297][833] show that HLA-B*44:03 is 

comparatively more prevalent. Nevertheless, on the other hand, the most recent and largest 

study from the Italian Bone Marrow Donor Registry (IBMDR) population shows a clear 

prevalence of HLA-B*44:02 instead [847]. These contradictory observations may be explained 
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by the fact of the existing, and possibly significant, HLA regional variation (observed North-

South gradient) found within Italy, as previously described [848], and/or in addition to a 

plausible predominance of Italian donors, in this given national registry, who may be more 

closely related (people originally or descent from) with North/Central European populations 

(that also present this prevalence of HLA-B*44:02), as also observed, for instance, in Italian 

American population attending to this HLA-B*44:03  / HLA-B*44:02  ratio [772]. 

In this regard, it is also noticeable the observed (and still remaining, despite population admixture 

events over time [852][853]) Spanish genetic influence in Hispanic populations not only based on 

the similarities of the most common HLA haplotypes found between both these populations (as it 

is later commented with more detail in the respective DISCUSSION sub-section about haplotype 

analyses, including respective HLA-B*44:02 and -B*44:03 carrying haplotypes and their 

frequency distributions at 2- and 4-field in the present Spanish population and related foreign 

populations), but also according to this characteristic and singular HLA-B*44:03/HLA-B*44:02 

allele frequency ratio [221][224][260][267][269][277][545-547][558-

561][563][564][571][600][602][603][608][624-630][772][821][834][835]. 

Also here, it was further investigated, as part of the present thesis work and by doing a thorough 

revision of the currently available scientific literature (https://www.ncbi.nlm.nih.gov/pubmed/ and 

AFND [130][464]), an initial postulate suggested, for instance, by Santos et al. [834]. Where it 

was evaluated whether the HLA-B*44:03 / HLA-B*44:02 ratio presented by those neighboring 

North African Arab populations (Moroccan [611-613], Algerian [854], Tunisian 

[850][851][855][856] and Libyan [849]), that are found geographically close to Spain, did follow 

or not this same ratio pattern found in Spanish population (and, indeed, in the entire Iberian 

Peninsula [602]). After reviewing HLA North African population studies in the literature (even 

though high-resolution HLA typing data reported for these populations was limited; for instance, 

https://www.ncbi.nlm.nih.gov/pubmed/
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there was not 2-field HLA-B locus resolved typing data available for any Algerian population 

cohort [130][464][854]), a clear predominance of HLA-B*44:03 over HLA-B*44:02 has been 

reported in Cyrenaica population from Libya [849] and Moroccan populations (showing a 

significant genetic substrate of Berber ethnic group) [611-613]. Whereas studies on Tunisian 

general population group have shown that it does not seem to follow this same trend (i.e. 

predominance of HLA-B*44:03). Nevertheless, it has not been fully investigated yet at the required 

high-resolution level in Tunisian population groups [851]. In addition, Tunisian population groups 

may present a highly complex genetic diversity (in the context of a complex demographic history 

of migrations from some regions of Africa, Europe, and the Middle East (particularly from the 

Arabian Peninsula)) [857-859] with a remarkable regional genetic variation (establishing also here 

a North-South gradient, where ancient Berber component is relatively more substantial in the 

North and Center regions than in the South) as previously reported examining other genetic 

markers (Alu/STR) [860]. Based on reported HLA allele/haplotype frequency distributions, some 

studies focused on Southern Tunisian population groups [850][856] described a HLA-B*44:02 

predominance over its counterpart HLA-B*44:03. In contrast, an earlier study carried out in Tunis 

population (located in Northern region of Tunisia) did show that HLA-B*44:03 was the most 

common subtype [855]. At the same time, and in consonance with a key demographic historical 

event such as the one defined by the Islamic conquest period along the North African region 

between 7th–9th centuries, Arabian Peninsula populations also show this predominance of HLA-

B*44:03 over HLA-B*44:02 subtype distribution [271][285][821]. In summary, from the point of 

view of this HLA-B*44:03 / HLA-B*44:02 allele frequency ratio, these results additionally confirm 

the observed strong genetic influence (and thus a relative level of shared genetic substrate and 

relatedness) of North African Berbers (autochthonous) and Muslim Arabs (settlers originally from 

the Arabian Peninsula) population ancestries on modern-day Spanish (and, indeed Iberian) gene 
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pool population as it has been also widely described by different genetic markers, including HLA 

genes, [563-566][602][611-613][620][808][851][861] and also extensively supported by well-

documented historical and demographic facts [555][556][558][578][613][808][851]. In fact, two 

major historical demographic events may have critically contributed to this observed considerable 

genetic (including HLA) relatedness between Iberians and North Africans: i) a main pre-Neolithic 

contribution (i.e. involving gene exchange) from northward Saharan migration, which occurred in 

10,000–4,000 BC, when the Berbers relocated to the Northern Mediterranean coast during hyper-

arid conditions [563]; ii) both Iberian and North African territories were similarly invaded by 

Phoenicians, Romans, Germans (Visigoths in Iberia, Vandals in North Africa) and Muslim Eastern 

Arabs (where these latter may have contributed with a lower but conserved gene flow (due to low 

admixture rate but establishing a very long period of settlement (8-10 centuries), in addition to a 

deep social and cultural imprint in both Iberian and North African population groups) [808][851]. 

Nonetheless, future larger-scale studies across North African and Muslim Eastern Arab (Arabian 

Peninsula) populations have the potential to increase our understanding of the historical 

demographic factors influencing the region [858]. 

At the 4-field allele level, in relation to non-coding (i.e. intron/untranslated regions) variation 

found within these two HLA-B*44 subtypes, it is noteworthy how NGS-based HLA genotyping 

approach has enabled to reveal this significant underlying level of allelic diversity. In the present 

Spanish population study, HLA-B*44:02:01:01 (AF=5.9%), HLA-B*44:03:01:01 (AF=8.5%); in 

addition to HLA-B*44:05:01 (AF=0.2%) and HLA-B*44:04 (AF=0.2%) allele variants were 

found. Moreover, in comparison to other NGS 4-field HLA population studies of very large sample 

size, and just as some examples: 

 • In the Argentinian registry population study (N=1,472) [224], detected HLA-B*44:02 variants 

were: HLA-B*44:02:01:01 (AF=4.35%), HLA-B*44:02:01:03 (AF=0.24%), HLA-B*44:02:06 
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(AF=0.07%) and HLA-B*44:02:46 (AF=0.03%)); whereas HLA-B*44:03 variants included: 

HLA-B*44:03:01:01 (AF=5.81%), HLA-B*44:03:01:02 (AF=0.03%), HLA-B*44:03:01:09 

(AF=0.03%) and HLA-B*44:03:02 (AF=0.17%). In this respect, several similarities can be 

observed with the Spanish population cohort in addition to other 4-field HLA-B*44:03 and 

HLA-B*44:02 variants that may be presumably more frequent in Amerindian related ethnic 

groups. 

 • In a recently described large European American U.S. cohort (N=2,248) [268], detected HLA-

B*44:02 variants were: HLA-B*44:02:01:01 (AF=7.03%) and HLA-B*44:02:01:03 

(AF=0.86%); whereas HLA-B*44:03 variants included: HLA-B*44:03:01:01 (AF=4.84%) and 

HLA-B*44:03:02 (AF=0.06%). Here, this European American population group may represent 

the prototypic North-Central European substrate in regards to this HLA-B*44:02 / HLA-

B*44:03 allele frequency ratio. 

Interestingly, this much higher level of 4-field allele diversity found in this pair of HLA-B*44 allele 

groups for both Argentinian and European American population cohorts may reflect how these 

broad population groups from Latin America and the U.S. have been under constant and highly 

complex population admixture processes where different migration waves (with ebbs and flows of 

immigrants from all over the world especially during the last two-five centuries) have been shaping 

ancestral population proportions, which have been also fluctuating through time 

[852][853][862][863]. 

Overall, in accordance with other HLA Spanish population studies [221][260][545][546][558-

561][563][564][571][600][608][624-630][834][835], the present NGS HLA Spanish population 

study [269] shows that HLA-B*44:03 subtype is predominant (almost twice as frequent) over HLA-

B*44:02 subtype in Spanish population. In addition, very infrequent (thus, so far, considered rare 

alleles) HLA-B*44:05 and HLA-B*44:04 subtypes are also found, whereas other subtypes such as 



__________________________________________________________Discussion 
 

Page | 507  

   © Gonzalo Montero Martin  

HLA-B*44:06, -B*44:07 or -B*44:10 are almost or apparently absent in Spanish population. At 

the allelic level, the mutual prevalence of this pair of subtypes HLA-B*44:02 and HLA-B*44:03 

as well as their respective differences in their allele frequency distribution among diverse 

worldwide human populations make these two allele groups very singular. Based on findings from 

previous studies [811][815], a combination of natural selection mechanisms (e.g. differential 

selection of peptide ligands, differential peptide flexibility determined by the respective peptide-

MHC molecule complex (pMHC) structure and, consequently, differential determination of T cell 

repertoire at different possible stages (as thymic positive selection and/or peripheral clonal 

diversification during immune response)) may explain the functional basis of the maintenance of 

this pair of allele groups, which appear to be independent in relation to the selective advantage in 

immunity, among worldwide populations through time. At the same time, distinguishable HLA-

B*44:02 / HLA-B*44:03 ratios (with either predominance of HLA-B*44:03, or predominance of 

HLA-B*44:02 or both subtypes being evenly distributed in a certain group of populations) are 

found in different groups of populations (even between populations within the same considered 

broad ethnic group). This may be also indicating the effect of natural selection advantages and/or 

differential demographic events in populations throughout history (e.g. a population bottleneck, 

population expansions, migration waves (ebbs and flows), population admixture or founder effect). 

In the case of Iberian (Spanish and Portuguese) populations, and as far as our knowledge (and 

based on currently available scientific literature), it still needs to be further investigated the specific 

series of selective pressure and/or demographic events (e.g. both North African Berber and Muslim 

Eastern Arab genetic influence) which may have determined this singular predominance of HLA-

B*44:03 over HLA-B*44:02 in comparison to the vast majority of European populations. An 

additional and very interesting consideration that has been also commented in previous studies 

[819][823][864], it is how linkage disequilibrium, involving both MHC-linked HLA and non-HLA 
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polymorphisms that segregate with different HLA-B*44 haplotypes, may have also contributed on 

sustaining the selective advantage that seems to be associated/represented within this pair of HLA-

B*44 subtypes. However, this supposition of plausible influence by other elements of conserved 

HLA-B*44 haplotypes seems less likely since these HLA and non-HLA polymorphisms are 

apparently not well-preserved (well-defined) within the given haplotypes described so far in 

different human populations. 

As an additional striking observation also regarding to HLA-B locus, the HLA-B*73:01 allele 

(AF=0.2%) was found in the present Spanish population cohort. As a matter of fact, this 

exceptionally diverged (i.e. structurally divergent from other HLA-B alleles) HLA-B*73:01 allele 

[865], despite it has been more recently debated [866], has been presumably identified (based on 

simulations of whole genome comparisons which showed that introgression from archaic hominins 

provides a better fit to the data than a model in which the allele arose in Africa before the out-of-

Africa event) as a representative example of how certain HLA alleles in present-day human 

populations would have been originally acquired by admixture with archaic humans (i.e. the so-

called adaptive introgression of archaic HLA alleles originally from primitive ancient hominids) 

[867]. In this specific case it has been postulated that HLA-B*73:01 allele would have been 

introgressed from Denisovans into early modern humans (thus adaptive introgression of archaic 

alleles may have been significantly shaped modern human immune systems) [104][867]. In 

modern populations, HLA-B*73:01 allele has been found in relatively high frequency (AF=1.7%) 

in Near Eastern regions such as in Lebanese population [104][132][621], in which HLA-B*73:01 

allele associates with HLA-C*15:05:01 and -C*12:02:02 alleles. In the present Spanish population 

cohort, it was observed that HLA-B*73:01 allele displays a specific association with HLA-

C*15:05:01. 
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Moreover, from an epidemiological standpoint and as previously commented, large NGS-based 

HLA studies can be very informative [121] on populations presenting a high correlated prevalence 

of certain HLA allele/haplotype subtypes (which have been also found to be ethnic-specific in 

many instances) associated with a given infectious/autoimmune disease [109][513] or drug-

induced hypersensitivity reaction [126][127]. In Spanish population, common allele groups such 

as HLA-B27 (HLA-B*27:05:02 (AF=3.1%); HLA-B*27:02:01 (AF=0.4%); HLA-B*27:03 

(AF=0.2%) in the present study [269]) and HLA-B51 (HLA-B*51:01:01:01 (AF=6.2%); HLA-

B*51:08:01 (AF=0.2%) in the present study [269]) have been previously investigated (mostly 

based on single-locus screening studies) due to their very well-documented associations with the 

clinical entities of spondyloarthritis (SpA) [123] and Behçet's disease (BD) [633] respectively. 

However, despite previous studies have described possible related specific polymorphisms located 

within the MHC region between HLA and non-HLA genes (intrinsically related with inflammation 

and the immune response) in the disease phenotype and severity, it has not been well-defined yet 

both the impact of diversity found in these HLA-associated allele subtypes and the plausible 

implication of the existing diversity found at the bearing extended haplotypes. Furthermore, many 

of these differential polymorphisms may play a pivotal role mechanistically speaking. In this sense, 

several hypotheses of the involvement of these respective HLA allele subtypes have been 

proposed, for example: different or common specificities of peptide binding; correspondence 

between HLA protein folding and assembly features and association with disease phenotype; or 

epistatic interactions with neighboring genes. Thus, allele and haplotype frequency distributions 

data shown in the present thesis work may be useful as a reference source for future epidemiology 

studies and, thus, to screen more accurately the prevalence of these HLA allele variants and their 

main LD patterns within the HLA system in both healthy controls and ethnically matched patients 

in Spain. 
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Out of the HLA class II alleles, it is very outstanding the high HLA-DPB1*04:01:01:01 allele 

frequency observed in the present Spanish population (AF=36.1%) similarly to what have been 

described in most of worldwide human populations (e.g. [297]). In fact, a recent study in Japanese 

population has suggested that HLA-DPB1*04∶01 allele (presenting high allele frequency and high 

haplotype homozygosity (HH) parameter values) has recently undergone very strong positive 

selection [868]. In this sense, this observation may exemplify how certain level of HLA diversity 

shown by some modern populations may have been founded recently, in part, due to major 

demographic events (e.g. a population bottleneck, population expansions, migration waves, 

population admixture or founder effect). 

In comparison to legacy molecular HLA genotyping approaches (e.g. SSO, SSP, RT-PCR or 

even SBT), extensive genomic sequence coverage provided by NGS technology clearly facilitates 

(in a very timely and cost-effective manner) the almost unambiguous identification of novel alleles 

[172][179][211], possible null or expression variant alleles [210][458][523][869-871] 

(http://hla.alleles.org/alleles/nulls.html) and also the detection of rare alleles [208][209].  

In regards to the two identified and confirmed new alleles (being both exon variants: HLA-

B*38:20:02 and HLA-DRB3*02:71) in this Spanish population cohort. These findings exemplify 

(even though our current Spanish population cohort did not have a large sample size (N=282 

subjects)) how NGS-based HLA genotyping approach allows the almost thorough interrogation of 

the entire coding region of classical HLA class I and class II genes (extending beyond those exons 

that encode the antigen recognition domain (ARD): exons 2 and 3 for the HLA class I genes; and 

exon 2 for HLA class II) and, consequently, it enables the assessment of both non-synonymous 

(change of amino acid coding) and synonymous (maintaining the same amino acid residue) 

nucleotide exchange. Thus, being this information available, it is possible even to interpret and to 

speculate with more certainty possible molecular implications and effects of those given amino 

http://hla.alleles.org/alleles/nulls.html
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acid changes on the HLA protein structure itself, antigen-presentation functionality, related peptide 

specificity, protein stability/integration into the cell membrane or interaction with respective T cell 

co-receptors [265][266][553].  

On the other hand, it is important to remark that while current NGS methods together with their 

related HLA genotyping software programs are able to describe and report (e.g. [353][354]) the 

detection of coding (exon) variants with a relatively high level of accuracy [172][179][211], 

detection and characterization of non-coding variants as well as new alleles that are hybrids of two 

or more known alleles are still major challenges for the currently available bioinformatics tools 

and related algorithmic strategies [296]. This is because in many instances it is quite challenging 

and complex to do this type of assessment due to low or inadequate genomic sequence coverage, 

lack of phasing and, thus, related ambiguities found, especially, in some of these intronic and 

untranslated regions. At the same time, and even more importantly, analysis of the data generated 

by current NGS approaches (either using short-read or long-read platforms) still critically relies on 

accurate reference database in order to assess the quality of the raw NGS sequences (reads) 

generated and to perform their subsequent alignment and construction of phased consensus 

sequences per HLA allele tested [76][87][184][295][296][362]. Thus, the hyper-polymorphic 

nature of HLA system can represent a very considerable burden to accurately phase and implement 

sequencing analysis when a reference sequence is either unavailable (although it is expected that 

massive input of NGS data will be completing all unsequenced segments of HLA reference alleles 

of the IPD-IMGT/HLA database) or highly variable [87][146][295][362][463]. Where the main 

concern is that without precise phasing the inferred full-length sequences given by assembling 

fragments may be still not 100% accurate and reliable. Since assemblies (which, in turn, critically 

depend upon not just coverage but depth of coverage) produced, if they are based on HLA genomic 

regions that miss information or present low coverage in the reference database, may be of low 
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accuracy or incorrectly phased. Consequently, certain given SNPs that could be key in order to 

assemble full-length sequences may not be available from the database. In fact, it is known that 

the IPD-IMGT/HLA database [87][295][362] contains genomic sequences for most of the main 

serological groups for class I (HLA-A, -B and -C), however the coverage for HLA class II genes is 

much lower, which may affect the accuracy of any assembled HLA class II allele sequence 

[87][146][295][296][362][463]. 

Furthermore, despite current NGS-related HLA genotyping software programs may be able to 

report coding (exon) variants, the own user needs to consider the IPD-IMGT/HLA database 

released version being used at the time of analysis and how updated it is [87], in order to see              

if a further evaluation of the validity of this tentative novel allele detected is necessary                                

and in addition to perform a second parallel sequencing test as well as meeting rest of              

requirements established for submission and official reporting of novel HLA alleles 

(https://www.ebi.ac.uk/ipd/imgt/hla/subs/submit.html). On this task of validating novel HLA 

coding variants (as it was also done for the present study), BLAST (Basic Local Alignment Search 

Tool) libraries (provided by European Bioinformatic Institute (EBI) and integrated in the IPD-

IMGT/HLA Database) are commonly used [872]. This BLAST tool 

(https://www.ebi.ac.uk/ipd/imgt/hla/blast.html) searches against the nucleotide and protein 

sequences of HLA alleles and related sequences included in the database, although currently the 

nucleotide library only includes the coding sequences but not the non-coding reference sequences 

[87][295][362]. Lastly, and as also previously commented in [356], it should be noted that there 

are instances when current NGS-related HLA genotyping software programs (due to inherent 

limitations of the given NGS-based HLA targeting and related analysis software strategies 

[202][204][296] as well as due to a particular poor performance of either the sequencing or during 

DNA library preparation steps or even due to initial status of a given DNA sample) automatically 

https://www.ebi.ac.uk/ipd/imgt/hla/subs/submit.html
https://www.ebi.ac.uk/ipd/imgt/hla/blast.html
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(and in some instances systematically and by default) report incorrect HLA alleles for a given 

locus or set of loci tested. In this context, unless the user does an exhaustive manual review of the 

automatic HLA genotype assignments generated by the respective NGS HLA software analysis 

program and user also interrogates the associated sequencing data, those reported HLA genotypes 

and alleles (especially at the 4-field) may be inconsistent and inaccurate. At the same time, the 

user also needs to be aware of that while many current HLA genotyping software programs may 

allow the user to review/edit automatically initial generated HLA genotype assignments, the 

respective consensus sequences may not be updated according to the final assigned/corrected HLA 

allele call made by the user (representing another important limitation when investigating 

associated sequencing data). 

The identification of null alleles (in both donor and recipient) is clinically relevant, especially 

in the HSCT setting, since nonidentification (being misdiagnosed as normally expressed variants) 

or misidentification can lead to serious clinical complications for the recipient such as poor 

engraftment or GvHD [210][869]. Because the initially estimated prevalence of HLA null alleles 

may be around 0.3% or, most likely, even higher across worldwide human populations 

[210][523][871], the historical need for a consistent screening strategy for HLA null alleles has 

been just now covered by the recent implementation of NGS-based HLA genotyping methods in 

the clinical histocompatibility and immunogenetics (H&I) laboratories. By using this novel 

sequencing technology, the vast majority of HLA genomic regions are sequenced to ensure 

detection of all possible existing null alleles. In the present study, two distinct null (or non-

expressed) alleles were found with relatively (within the given HLA locus and also in relation to 

other populations previously studied) intermediate-high frequency in this Spanish population 

cohort:  
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• HLA-C*04:09N allele (AF=0.4%), initially described and characterized in [640][873] 

(Deletion; Exon 7, 1095delA, in codon 341, causes frameshift and loss of stop codon in exon 8, 

resulting in the peptide containing an additional 32 amino acids). 

• And HLA-DRB4*01:03:01:02N allele (AF=1.8%; considering also the particularity that the 

absence (represented as “HLA-DRB4*00:00”) of HLA-DRB4 locus accounts here for 

AF=70.2%; see RESULTS section), initially described and characterized in [874-876] (Point 

Mutation; this HLA-DRB4*01:03:01:02N allele contains an aberrant splice site, located 

between the end of intron 1 and beginning of exon 2 segments, that causes incorrect splicing 

and it results in lack of protein sequence (e.g. no protein product has been detected 

serologically)).  

Moreover, in comparison to other reported HLA genotyping population (mostly made up of 

unrelated subjects) datasets (which many of these correspond to BM/UCB donor registry 

populations) of both Spanish origin and of European ancestry, it can be observed for these 

particular two distinct null alleles the following: 

• HLA-C*04:09N: relatively similar but still smaller frequencies have been previously reported 

for this null allele in other comparatively larger cohorts within Spanish population (e.g. 

Catalonia (N=2,895; AF=0.14%) [221]), European populations (such as England (N=519; 

AF=0.2%); Germany (N~1,000,000; AF=0.05-0.14%); and the Netherlands (N=1,305; 

AF=0.1%)) [130][464][480][525][526][554][943], Argentinian registry population (N=1,472; 

AF=0.14%) [224] and an European American population cohort in the U.S (N=2,248; 

AF=0.14%) [268] and being AF=0.09% according to the NMDP registry database (presenting 

a 59.9% of European White component) [523], which is also in the estimated range (0.1–0.25%) 

of HLA-C*04:09N allele frequency distribution originally calculated by Pinto et al. [877] for 

individuals of European American (Caucasoid) origin. Whereas, in other group of studies 
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mostly from Northern (Wales (N=8,412; AF=0.0654%)) [878] and Eastern (Hungary (N=7,345; 

AF=0.0136%) [879]; Poland (N=23,595; AF=0.0021%) [474]) regions of Europe this null HLA-

C allele appears to be even much less frequent. In light of all of the above reported results, and 

as previously underscored in [879], it can be noted a plausible but considerable descending 

South-North and West-East gradient in the European continent in regards to the HLA-C*04:09N 

allele frequency distribution. Once more, this exemplifies the high level of regional HLA 

diversity found within the European continent [136] and among populations of European 

ancestry (e.g. [297]). Lastly and most strikingly, this relatively high value of HLA-C*04:09N 

allele frequency described in our current Spanish population cohort (despite being limited by 

its relatively small sample size (N=282)) may be explained by the solid and well-documented 

fact that generally Spanish population distinctly presents a high allele frequency distribution for 

the HLA-B*44:03 allele group which, in turn, displays a very tight association with this given 

null allele HLA-C*04:09N (e.g. typical extended haplotype HLA-

A*23:01~C*04:09N~B*44:03~DRB1*07:01~DQB1*02:02) [130][297][464][877][880]. In 

the present Spanish population study, 2-locus HLA-B~C presents high D’ value (D’=1) and 

intermediate high 2-locus (HLA-B*44:03:01:01~C*04:09N) frequency (HF=0.4%)). 

• HLA-DRB4*01:03:01:02N: this HLA null allele appears to be relatively less frequent 

(especially in comparison to other populations of European ancestry; e.g. see [297]) in the 

present Spanish population cohort. However, it is important to take into consideration that its 

AF value (1.8%) shown here is in the context of considering not only allele frequency 

distributions of given HLA-DRB4 alleles but also the frequency distribution of the absence of 

HLA-DRB4 alleles according to the association/exclusion patterns described for respective 

HLA-DRB1~HLA-DRB3/4/5 allele families [344]. Taking a closer look to the populations 

reported in [297], it can be observed how populations of Northern-Central European ancestry 
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show the highest allele frequency value (AF~3.4%-4.3%) for this HLA-DRB4*01:03:01:02N 

null allele. Whereas populations of Spanish, Hispanic or Asian-Pacific Islanders origins show 

values around AF~1.2%-1.9% and, in turn, these are followed by Middle-Eastern (AF=1.0%) 

and African-descent (AF=0.4%) populations. At the same time, it should be noted that, in 

general, null HLA class II alleles have not been extensively described yet at the population-

level (neither at the donor registry-level) due to the still existing limited genomic (even at the 

exon level and especially beyond describing ARD-coding exons) coverage offered by 

commercial/in-house HLA molecular typing methods (including many of the available NGS 

approaches) routinely used by clinical H&I laboratories. Nevertheless, some first significant 

efforts in some populations have been dedicated to describe the frequency distribution of this 

null allele as well as to define in which most frequent haplotypes this null allele is embedded. 

In this sense, as an example, a HLA Croatian population study (as a fairly good representation 

of Eastern European population) has revealed a significant relative allele frequency value for 

this null allele (6.35% in the context of among HLA-DRB1*04 positive samples; and 98.21% in 

the context of among HLA-DRB1*07:01~DQB1*03:03 positive samples) [881]. Moreover, in 

the German donor registry Zentrales Knochenmarkspender-Register Deutschland 

(encompassing a broad HLA diversity mostly representative of Northern-Central European 

populations) [480][525][526][554], the allele frequency value found is also relatively noticeable 

(AF=3.6%). At the HLA haplotype level, this type of studies [297][881][882] have reported 

how HLA-DRB4*01:03:01:02N null allele is most commonly (and almost exclusively) 

associated with the HLA-DRB1*07:01:01~DQA1*02:01:01~DQB1*03:03:02 class II 

haplotype group. Although it has been also described to be carried, but relatively less frequently, 

within HLA class II haplotypes containing mainly HLA-DRB1*04:02 (HLA-
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DRB4*01:03:01:02N~DRB1*04:02~DQB1*03:02) and also, but in a lesser extent, -

DRB4*04:03 (HLA-DRB4*01:03:01:02N~DRB1*04:03~DQB1*03:02) alleles [881]. 

In summary, since null alleles generally show relatively low frequency distributions, it is essential 

to carry out much larger NGS HLA population studies (at the highest allele resolution level, with 

extensive genomic sequence coverage and considering always the most updated IPD-IMGT/HLA 

database released version available at the time of the study) and at a wider geographic scale in 

order to assess more accurately the prevalence of HLA null alleles at the population-level and, 

thus, acquiring precise local population-specific HLA genotype data, that will definitely contribute 

to better determine their clinical relevance especially in the transplantation setting as well as 

improving significantly the donor search process and registry planning strategies (e.g. improved 

matching strategies and identifying suitably matched donors in a timely and a cost-effective 

manner) [869][881]. Moreover, as previously and extensively commented in the 

INTRODUCTION section, it will be also important to dedicate efforts on improving the 

assessment of expression variant alleles [e.g. including encoded soluble proteins (S); low 

expression levels (L); and questionable expression status (Q))] [458], where NGS-based HLA 

genotyping approaches may critically contribute to the in-depth description of regulatory non-

coding variants defining HLA expression patterns. At the same time, this approach may need to 

be combined with other techniques (e.g. RNA-seq (applying also here novel NGS technology) or 

flow-cytometry) that may allow the evaluation of surface HLA expression differences which can 

also arise due to, among other factors, variations in HLA-bound peptide repertoires, modes of 

peptide binding, or certain level of specificity related to the respective loading-peptide intracellular 

machinery in a cell-type-dependent manner [450][883][884]. 

Previously considered rare alleles, HLA-C*12:166 (AF=0.2%), initially described and 

characterized in [885], and HLA-B*15:220 (AF=0.4%), initially described and characterized in 
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[886][887], were detected in the present Spanish population cohort in several instances. In the case 

of HLA-B*15:220, this allele has been commonly found in African-descent/related populations 

[130][464]. Whereas, HLA-C*12:166 appears to be, as far as it has been reported up to date 

[130][464], a rare allele quite characteristic of Spanish population. As previously described in 

detail in the INTRODUCTION section, in-depth characterization of HLA nucleotide diversity by 

NGS technologies at the population-level and at a very broad geographic scale may allow an 

accurate designation (also identifying thus under- and overrepresentation situations) of rare and 

common alleles specific for each given population/region/ethnic group, being this information 

very invaluable for many clinical applications.  

In relation to the latter and moving now to definition of common and well-documented (CWD) 

HLA alleles [147][148][149][150][479][480], as also previously described in recent NGS-related 

HLA population studies [137][146][224][300], the 4-field allele resolution level reveals how in 

certain allele groups, an allele considered rare initially it actually presents a common occurrence 

while the lowest numbered allele is not the most frequent. For instance, in HLA-B locus (e.g. HLA-

B*35:01:01:01 allele represents only 3.6% of this allele group whereas HLA-B*35:01:01:02 allele 

represents 96.4% of this allele group found in this Spanish population cohort) and HLA-DRB1 

locus (e.g. HLA-DRB1*12:01:01:03 allele represents 100% of this allele group whereas HLA-

DRB1*12:01:01:01 allele is absent in this Spanish population cohort). Thus, NGS technology 

enables the identification of possible several common alleles that are associated with the same 

HLA protein. In addition, application of NGS technology for HLA genotyping can significantly 

contribute for a better characterization of the entire genomic sequence in these critical CWD alleles 

for many relevant clinical and research purposes [146]. In light of these facts, NGS technology 

may contribute to create an updated and more comprehensive catalogue of CWD HLA alleles. In 
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addition, future larger NGS HLA Spanish population studies will allow a more accurate and 

updated definition of CWD and rare alleles specific for this population. 

In comparison to all previously reported studies (that were available in the scientific literature 

(https://www.ncbi.nlm.nih.gov/pubmed/) at the moment of the present study) that have attempted 

the description of HLA allele and haplotype diversity in Spanish population (including both 

Spanish general population cohorts [221][260][546][624] and Spanish regional cohorts [545][558-

561][563][564][571][600][608][625-630]). The present HLA Spanish population study 

(comprising a fairly representative cohort of 282 unrelated healthy subjects) signifies the very first 

evaluation ever done in Spanish population describing HLA allele and (extended) haplotype 

diversity with very minimum ambiguities (at a very high-resolution, resolving at the 3-/4-field 

allele resolution level) and with a very extensive level of HLA genomic characterization (i.e. 

inclusion of additional classical HLA class II genes not well-documented previously such as HLA-

DRB3/4/5, HLA-DQA1, HLA-DPA1 and HLA-DPB1; as well as typifying the full-length and/or 

spanning to the most possible extended sequence of all HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -

DQB1, -DRB1 and -DRB3/4/5 loci tested), which are based on full-length and (mostly) phased 

nucleotide sequences generated via NGS (using a short-read sequencing platform with a paired-

end sequencing mode). Despite the current Spanish population cohort here shows a relatively 

discrete sample size (covering 10 different Spanish Autonomous Communities/Regions (out of a 

total of 17 in Spain) across the country (and more or less evenly distributed geographically) which 

are described by 25-26 individuals per region), application of NGS technology for HLA 

genotyping has enabled to still reveal a great level of HLA allelic nucleotide diversity within the 

Spanish population as well as to identify singular and specific 4-field extended haplotype 

associations (later commented with more detail  in the respective DISCUSSION sub-section about 

haplotype analyses). In the next pages, there is a first discussion where observed HLA allele 

https://www.ncbi.nlm.nih.gov/pubmed/
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frequency distributions for tested loci in the present Spanish population cohort are compared with 

respective HLA allele frequency distribution datasets previously reported by other main and 

considered here the most representative HLA studies in Spanish population previously reported 

[221][260][564][624]: 

i) Firstly, referring to a more in-depth and detailed discussion on those observed HLA alleles, 

at this 3-/4-field allele resolution level described here, which have been found within each tested 

HLA locus for the present Spanish population cohort, as well as considering the aforementioned 

(see INTRODUCTION section) Balas et al. study [624] as a very comparable Spanish 

population (despite being made up of HSC transplant patients) reference HLA allele and 

haplotype (defined by family segregation analysis) frequency distributions dataset (being one 

(if not the most) of the most representative for Spanish population) in relation to our current 

study. Even though corresponding allele resolution level in Balas et al. HLA Spanish population 

(cohort made up of N=253 Spanish hematopoietic patients) study is referenced by older released 

versions (between 1998-2010 years) of IPD-IMGT/HLA database and it presents limited HLA 

genomic sequence coverage (especially in the case of HLA class II genes) for tested HLA loci 

HLA-A, -B, -C, -DQB1, -DRB1 and -DRB3/4/5 by using a SBT method [624]. In detail, main 

findings of this comparative analysis with Balas et al. study [624] are described as follows:  

• For HLA-A locus, both the present 3-/4-field dataset of Spanish population and Balas et al. 

study [624] show the same set of 7 most frequent HLA-A alleles (HLA-A*02:01:01:01, -

A*01:01:01:01, -A*03:01:01:01, -A*11:01:01:01, -A*29:02:01:01, -A*24:02:01:01 and -

A*32:01:01 with allele resolution level as described in the present study), and with similar 

allele frequency values for each respective allele (most of them higher or close to 5%) in 

Spanish population. Also in both studies this group of 7 HLA-A alleles represents 70-75% 

interval of all HLA-A alleles that have been described in respective Spanish population 
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cohorts. On the other hand, those considered rare HLA-A alleles (in this particular case, when 

considering those alleles that show values of allele frequency that are less than 1%) more 

differences than similarities can be observed in relation to which specific rare HLA-A alleles 

are found in each of these two cohorts, despite both studies show a same number of rare alleles 

at this locus (18 alleles). One of the most plausible explanations of these differences could be 

due to the present Spanish population study included samples from some Spanish regions 

(such as Salamanca, Santander, Gran Canaria and some regions of Andalusia) that are not as 

well represented as in Balas et al. study [624] (where the vast majority of studied subjects 

were Spanish patients with indication for allogeneic HSCT who, most likely, were originally 

from Madrid and/or the central region of Spain where the respective HLA clinical H&I 

laboratory and transplantation institutions are physically located). Referring to the high allelic 

diversity (especially at the 4-field allele resolution level) revealed in the present Spanish 

population cohort by application of NGS technology for HLA genotyping. An illustrating 

example is the HLA-A*03:01 allele group that would have been described as a single variant 

by legacy HLA molecular typing methods. Whereas, in the present NGS HLA study, there 

are up to three variants (HLA-A*03:01:01:01, HLA-A*03:01:01:03 and HLA-A*03:01:01:05; 

representing 84.2%, 7.0% and 8.8% respectively inside this HLA-A*03:01 allele group).  

• For HLA-B locus, similarly to HLA-A locus, the present Spanish population study and Balas 

et al. study [624] show the same set of 7 most frequent HLA-B alleles (HLA-B*07:02:01, -

B*44:03:01:01, -B*08:01:01:01, -B*51:01:01:01, -B*44:02:01:01, -B*35:01:01:02 and -

B*18:01:01:01 with allele resolution level as described in the present study), which present 

an allele frequency value higher or close to 4%. Also in both studies this group of 7 HLA-B 

alleles represents 45-60% range of all defined HLA-B alleles in Spanish population. In 

contrast, within the respective groups that comprise those considered HLA-B rare alleles 
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(presenting less than 1% of allele frequency value) more variability is found when comparing 

these two study cohorts due to the same aforementioned explanation for HLA-A locus (i.e. as 

there are some differences in which Spanish regions were sampled in each study). In the case 

of HLA-B locus, an example of remarkable allelic diversity found at the 4-field in the present 

study is the HLA-B*18:01 allele group. Which presents just one variant (HLA-B*18:01) at the 

2-field whereas there are up to three different variants (HLA-B*18:01:01:01, HLA-

B*18:01:01:02 and HLA-B*18:01:01:03; representing 56.4%, 41.0% and 2.6% respectively 

inside this HLA-B*18:01 allele group) found in Spanish population. 

• In relation to HLA-C locus, similar observations can be made as those above mentioned for 

both HLA-A and -B loci, when comparing the 3-/4-field HLA dataset of present Spanish 

population study (that includes a Spanish population sample cohort made up of several 25-26 

sample sets from main regions across the country) with Balas et al. study (which mostly covers 

a Spanish population cohort representative of the central region of mainland Spain) [624]. In 

this case, a similar set of 8 most frequent HLA-C variants (HLA-C*07:01:01:01, -

C*04:01:01:01, -C*07:02:01:03, -C*12:03:01:01, -C*16:01:01:01, -C*02:02:02:01, -

C*05:01:01:02 and -C*06:02:01:01 with allele resolution level as described in the present 

study) is found, which all show an allele frequency value higher or close to 5%. Nevertheless, 

it is quite striking that a much higher allele diversity is found comparatively at the 4-field in 

the present Spanish population study. For instance, HLA-C*05:01:01 (HLA-C*05:01:01:01 

(AF=4.0%) and HLA-C*05:01:01:02 (AF=4.9%)) and HLA-C*08:02:01 allele groups (HLA-

C*08:02:01:01 (AF=4.0%) and HLA-C*08:02:01:02 (AF=1.5%)) present a more diverse 

distribution at the non-coding region level in the present study in comparison to Balas et al. 

study (in which HLA-C*05:01:01 (8.9%) and HLA-C*08:02:01 (5.1%) are only described) 

[624]. This noted difference of allelic diversity found between these two studies can be 
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illustrated as, on one hand, the group of high frequency HLA-C alleles (showing an allele 

frequency value higher than 5%) accounts for 78% of all defined HLA-C variants in the 

Spanish population cohort from Balas et al. study [624]. Whereas the same group of high 

frequency alleles accounts only for 60% of all defined HLA-C variants in the case of the 

present HLA Spanish population study. Moreover, as another example of high allele diversity 

detected at the 4-field in the present study, it is also noteworthy three different variants that 

are identified within the HLA-C*04:01:01 allele group (HLA-C*04:01:01:01, HLA-

C*04:01:01:05 and HLA-C*04:01:01:06; representing 70.2%, 2.4% and 27.4% respectively 

within this allele group). At the same time, similar rare HLA-C allele variants (presenting less 

than 1% of allele frequency value) can be seen when comparing these two studies. Some 

examples of these infrequent variants are HLA-C*07:04:01:01 or HLA-C*17:01:01:05 found 

in the present study. Lastly, in relation to null alleles detected at the HLA-C locus. Strikingly, 

and conversely to the present study, in Balas et al. study only HLA-C*07:32N (Insertion; Exon 

3, 560-561 InsCGCAGAT, in codon 163, causes frameshift and premature stop at codon 198) 

was detected but not HLA-C*04:09N allele. Understanding that HLA-C*04:09N allele is 

relatively quite frequent in Spanish population (and observing that both studies describe high 

allele frequency values for HLA-B*44:03 allele group), a conceivable explanation could be 

that, presumably, in this specific Balas et al. study (since it is not specified in the written 

article) it would have not been possible to determine presence or absence of HLA-C*04:09N 

allele assuming that this null allele would have been embedded in certain given ambiguities 

(e.g. as it is explained in [221]). 

• The case of HLA-DPA1 locus clearly exemplifies the higher level of heterozygosity found 

at the 4-field in comparison to the 2-field level, thanks to the high-resolution capacity and 

very low ambiguity that can be obtained by the application of NGS-based HLA genotyping 
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methods as it was performed in the present study. As an example, in the present Spanish 

population study only two respective variants HLA-DPA1*01:03 (78.7%) and HLA-

DPA1*02:01 (16.7%) are described when just looking at the 2-field. Whereas at the 4-field, 

up to 6 variants of the HLA-DPA1*01:03 allele group (HLA-DPA1*01:03:01:01, HLA-

DPA1*01:03:01:02, HLA-DPA1*01:03:01:03, HLA-DPA1*01:03:01:04, HLA-

DPA1*01:03:01:05 and HLA-DPA1*01:03:05; representing 15.7%, 39.0%, 8.1%, 22.6%, 

14.3% and 0.2% respectively inside this allele group) are detected; and up to 4 variants of the 

HLA-DPA1*02:01 allele group (HLA-DPA1*02:01:01:01, HLA-DPA1*02:01:01:02, HLA-

DPA1*02:01:02 and HLA-DPA1*02:01:08; representing 47.8%, 26.1%, 21.7% and 4.3% 

respectively inside this allele group) were found. The 6 most prevalent HLA-DPA1 alleles 

(presenting allele frequency values higher to 5%) found in the present Spanish population 

cohort, which represent the 87% of all detected HLA-DPA1 variants here, are HLA-

DPA1*01:03:01:02, -DPA1*01:03:01:04, -DPA1*01:03:01:01, -DPA1*01:03:01:05, -

DPA1*02:01:01:01 and -DPA1*01:03:01:03. Whereas HLA-DPA1*03:01, HLA-

DPA1*01:03:05 and HLA-DPA1*04:01 seem to be very infrequent (considered as rare alleles 

presenting less than 1% of allele frequency value) in Spanish population. Moreover, in 

comparison to other previous studies at both 2-field and 4-field allele resolution levels, the 

distribution of HLA-DPA1 alleles described in the present Spanish population study is in 

consonance with what has been reported for other populations of both European ancestry 

[130][297][464][806][888][889] and Spanish ancestry [627][630]. 

• As it has been previously mentioned (see INTRODUCTION section), phasing ambiguities 

are very common in genotype results for HLA-DPB1 locus making its molecular 

characterization at high-resolution quite challenging and with important limitations. Unlike 

previous HLA studies based on legacy methodologies (e.g. SBT, SSO, RT-PCR or SSP),  in 
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the present study it was possible to characterize the HLA-DPB1 allele diversity in Spanish 

population minimizing (although not completely eliminating) considerably this type of 

ambiguity by the application of the aforementioned NGS-based HLA typing methodology. A 

representative example of allelic diversity found at the 4-field in this locus is the HLA-

DPB1*04:02 allele group. Which only presents one single variant (HLA-DPB1*04:02) at 2-

field level, whereas there are 2 variants (HLA-DPB1*04:02:01:01 and HLA-

DPB1*04:02:01:02; representing 37.3% and 62.7% respectively inside this allele group) 

found in Spanish population. Moreover, HLA-DPB1*04:01:01:01, -DPB1*02:01:02, -

DPB1*04:02:01:02 and -DPB1*01:01:01 were found as the most common variants (all of 

them showing an allele frequency value greater than 5%) representing 66% of the defined 

HLA-DPB1 alleles in Spanish population. In contrast, HLA-DPB1*105:01, HLA-

DPB1*19:01 and HLA-DPB1*59:01 are some examples of rare HLA-DPB1 allele variants 

(presenting less than 1% of allele frequency value) in Spanish population. Furthermore, the 

distribution of HLA-DPB1 alleles described in the present Spanish population study is also 

similar with what has been observed for other populations of European ancestry at both the 

2-field and 4-field allele resolution levels [130][297][464][627][630][806][888][889]. 

Nevertheless, a striking exception is the case of the allele group HLA-DPB1*03:01. As this 

allele group appears to be more frequent in European American (Caucasoid) ethnic group in 

the U.S. population (about 10%) [806][889] and Northern European populations (about 13%) 

[888] than in the present Spanish population cohort (about 4%). Which, in turn, seems to be 

more similar to the respective Hispanic ethnic group in the U.S population (about 6%) in 

relation to the frequency of this allele group HLA-DPB1*03:01 [889]. It is also noteworthy 

the very high prevalence of HLA-DPB1*04:01:01:01 allele found in the present Spanish 

population cohort, as well as at the worldwide population-level, and as it has been previously 



__________________________________________________________Discussion 
 

Page | 526  

   © Gonzalo Montero Martin  

discussed in the present thesis work. Thus, this example may illustrate how certain level of 

HLA diversity shown by some modern populations may have been founded recently, in part, 

due to major demographic events (e.g. a population bottleneck, population expansions, 

migration waves, population admixture or founder effect). 

• For HLA-DQA1 locus, similarly to what has been observed for HLA-DPA1 locus, a striking 

allelic diversity is found at the 4-field level in the present study. As an example, the only 

observed variant HLA-DQA1*05:01 at 2-field level shows a total of 3 different variants at 4-

field level (HLA-DQA1*05:01:01:01, HLA-DQA1*05:01:01:02 and HLA-

DQA1*05:01:01:03; representing 39.7%, 53.4% and 6.8% respectively within this allele 

group). Due to this high allelic diversity observed at 4-field level, up to 9 most frequent 

different HLA-DQA1 allele variants (HLA-DQA1*02:01:01:01, -DQA1*05:05:01:01, -

DQA1*01:02:01:01, -DQA1*01:01:01:02, -DQA1*01:03:01:02, -DQA1*03:01:01, -

DQA1*05:01:01:02, -DQA1*03:03:01:01 and -DQA1*05:01:01:01 in this present study) 

were found to present an allele frequency value greater than 5% in Spanish population. In 

fact, these above mentioned common variants account for 81% of all defined HLA-DQA1 

allele variants in the present study. On the other hand, infrequent variants as HLA-

DQA1*01:05:02, HLA-DQA1*01:04:02 and HLA-DQA1*05:03 can be considered as rare 

HLA-DQA1 alleles (presenting less than 1% of allele frequency value) in this Spanish 

population study. In addition, the distribution of HLA-DQA1 alleles described here it is in 

consonance with what has been reported for other populations of European ancestry at 2-field 

and 4-field allele resolution levels [130][297][464][890][891]. 

• In relation to HLA-DQB1 locus, and in comparison to Balas et al. study (in which only exon 

2 was interrogated) [624], it is noticeable the higher level of resolution, much less level of 

ambiguity and, thus, more detailed characterization of the allelic diversity that was obtained 
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in the present study (using NGS-based HLA typing method [187] for sequencing almost the 

complete sequence of this given locus (targeting by long-range PCR and sequencing exons 

1–5 and introns 1–4) in comparison. Nevertheless, both studies still present a comparable set 

of 7 most frequent HLA-DQB1 alleles (HLA-DQB1*02:02:01:01, -DQB1*02:01:01, -

DQB1*03:01:01:03, -DQB1*03:02:01, -DQB1*06:02:01, -DQB1*05:01:01:03 and -

DQB1*06:03:01 with allele resolution level as described in the present study) that show allele 

frequency values higher than 5% in Spanish population. In the present study, these common 

HLA-DQB1 allele variants represent about 73% of all defined alleles at this locus in Spanish 

population. Considered rare variants (presenting less than 1% of allele frequency value) in 

Spanish population such as HLA-DQB1*02:02:01:02, HLA-DQB1*03:04:01 and HLA-

DQB1*03:02:03 are observed in the present study. Furthermore, an example of certain level 

of diversity found at the 4-field in this locus, it is the HLA-DQB1*03:01 allele group. Which 

only presents one variant (HLA-DQB1*03:01) at the 2-field level, whereas there are up to 3 

variants (HLA-DQB1*03:01:01:01, HLA-DQB1*03:01:01:02 and HLA-DQB1*03:01:01:03; 

representing 18.8%, 11.8% and 69.4% respectively within this allele group) found in Spanish 

population. Also, in this case, the distribution of HLA-DQB1 alleles described in the present 

Spanish population study is most generally in line with what has been observed for other 

populations of European ancestry at both 2-field and 4-field allele resolution levels 

[130][297][464].  

• For HLA-DRB1 locus, similar observations can be made as it has been above mentioned for 

HLA-DQB1 locus. Once again, both studies show a comparable group of most common HLA-

DRB1 variants (HLA-DRB1*07:01:01:01, -DRB1*03:01:01:01, -DRB1*15:01:01:01, -

DRB1*13:01:01:01, -DRB1*01:01:01 and -DRB1*11:04:01 with allele resolution level as 

described in the present study) that present an allele frequency value higher than 5%. This 
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group of most frequent HLA-DRB1 variants in Spanish population accounts for 58% in the 

present study. In contrast, HLA-DRB1*04:07:01, HLA-DRB1*11:01:02, HLA-

DRB1*14:04:01 and HLA-DRB1*15:06:01 are some examples of rare HLA-DRB1 allele 

variants (presenting less than 1% of allele frequency value) in Spanish population. In 

comparison to other HLA loci described in the present study, it is noteworthy that the diversity 

found at the 4-field allele resolution level at this HLA-DRB1 locus appears to be less. As an 

exception, two variants HLA-DRB1*10:01:01:01 (representing 90% inside this HLA-

DRB1*10:01 allele group) and HLA-DRB1*10:01:01:02 (representing 10% inside this HLA-

DRB1*10:01 allele group) were detected in the present Spanish population study. Likewise, 

HLA-DRB3, -DRB4, -DRB5 loci also seem to present a more relatively restricted non-coding 

diversity. Nevertheless, it is important to underscore (as it has been previously noted and 

explained at both the INTRODUCTION section and at the beginning of this DISCUSSION 

section [146][152][158][161][184][202][204][296][368][463]) how all these HLA-DRB loci 

present: 

-Long intron sequences and abundant presence of DNA regions (mostly non-coding 

regions) with repetitive and extensive low-complexity and imbalanced sequence 

composition, such as: homopolymer repeats poly(dA), poly(dT), poly(dG) and poly(dC) 

(composed of eight or more nucleotides); regions of short-tandem repeats (STRs; comprised 

of 1–6 bp per repeating unit); or high AT- or GC-rich regions (that often contain 

mononucleotide repeats of 10 or more bases). 

-Thus, many unsequenced regions in the IPD-IMGT/HLA reference allele database for these 

HLA-DRB loci. 
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 Therefore, due to the impossibility to still unambiguously characterize the full-length of these 

HLA-DRB loci [368], there is definitely an underlying diversity at the 4-field level which 

remains unrevealed. 

• Lastly, regarding HLA-DRB3, -DRB4, -DRB5 loci, similar results can be observed between 

both studies. Although, there is a much higher allele resolution level at the 2nd, 3rd and 4th 

field, especially for HLA-DRB4 locus, described in the present study and in comparison to 

Balas et al. study [624]. These HLA-DRB3/4/5 genes characteristically behave as alleles of a 

single locus (the so-called “HLA-DRB3/4/5 superlocus”) as the presence of one of these genes 

at the haplotype level generally excludes the presence of the other two genes. This is based 

on the linkage constraints that exist between the HLA-DRB3/4/5 loci and the given present 

HLA-DRB1 locus, where several HLA-DRB1 allele families can be differentiated  [344]. Thus, 

these genes seem to present relatively low diversity. On the other hand, we observed certain 

cases of striking diversity at the 4-field level in the present Spanish population study. For 

instance, HLA-DRB3*02:02 allele group presents two distinct allele variants (HLA-

DRB3*02:02:01:01 and HLA-DRB3*02:02:01:02; representing 41.9% and 58.1% 

respectively inside this allele group). Furthermore, in the case of HLA-DRB4 locus we 

observed up to four different variants for the HLA-DRB4*01:03 allele group (HLA-

DRB4*01:03:01:01, the null allele HLA-DRB4*01:03:01:02N, HLA-DRB4*01:03:02 and 

HLA-DRB4*01:03:03; representing 84.6%, 9.6%, 4.8% and 1.0% respectively inside this 

HLA-DRB4*01:03 allele group). In contrast, no such diversity was observed for HLA-DRB5 

locus in the present study. Moreover, the respective allele frequency distributions of HLA-

DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 alleles described in this Spanish population 

study are in consonance with what has been reported for other populations of 
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European/Mediterranean ancestry at both 2-field and 4-field allele resolution levels 

[130][297][464]. 

ii) Secondly, also at the HLA allele level, referring now to other representative and descriptive 

HLA Spanish population studies previously reported apart from Balas et al. study [624]. Here, 

most of these selected studies from the scientific literature have in common that they describe 

relatively high-resolution (2-field or higher allele resolution level) HLA diversity of, generally, 

main classical HLA class I (HLA-A, -B, -C) and class II (HLA-DQB1 and -DRB1 at least) genes; 

present a significant sample size of a given Spanish general population cohort or otherwise of 

a certain Spanish major region; and that show both allele and, also in most of the cases, 2-locus 

and even extended haplotype estimated frequency distributions. Thus, it is noteworthy, relative 

to the present study, the following findings and noticeable relative similarities/differences 

observed in each respective comparison with these other reference HLA studies carried out in 

Spanish population (as well as those closely related foreign populations showing Spanish 

ancestry):  

• Romòn et al. study [260] describes (comprising the largest reported sample size up to date) 

the HLA diversity found within the Iberian Peninsula although only based on: 1-field very 

low-resolution (generic level of resolution) HLA genotyping data (of a reduced set of loci: 

HLA-A, -B, -C, -DQB1, -DRB1) obtained from a very large cohort (N=63,484) of the Spanish 

BM donor registry (Registro Español de Donantes de Médula Ósea, REDMO) in addition to 

a 1-field HLA genotyping dataset (including only HLA-A, -B and -DRB1 loci) from a very 

large Portuguese regional panel registry (N=59,443). Thus, Romòn et al. [260] mapped HLA 

variation in the majority of Iberian Peninsula by combining classical population genetic 

analyses with geographic information approaches (i.e. evaluating the correlation between 

variation of HLA allele/haplotype frequency distributions and latitude/longitude as 
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geographical parameters). Conversely, the current NGS HLA study comprises a very high-

resolution (3-/4-field) HLA genotyping dataset of all major 11 classical HLA class I and class 

II genes though, in this case, based on a much more discrete Spanish general population 

sample size (N=282, covering only 10 out of the 17 Spanish Autonomous 

Communities/Regions) and even to a more discrete extent at the regional level (n=25-26 per 

Spanish Autonomous Community/Region). Nonetheless, there are still some commonalities 

in the main findings of both studies: 

- Romòn et al. study [260] has revealed HLA genetic similarities and specific genetic 

signatures within certain given geographical regions (e.g. on one hand, the Atlantic/Celtic-

Galician-North Portuguese Domain; whereas Central Castilian Plateau, Mediterranean 

Basin and Andalusian regions are genetically close; and another differentiated group is the 

Higher Ebro Valley area which encompasses Basque Country, Navarre and La Rioja 

regions) of Spain. These HLA Spanish regional-specific signatures, as previously 

mentioned in the INTRODUCTION section, may have been shaped (among other factors 

(e.g. natural selection) and at least to a certain extent) due to the singular orography found 

across the Iberian Peninsula along with well-documented historical facts that determined 

major demographic events of significant impact and imprint [555][556][558][578], and thus 

it has made of Spain a country that currently shows an extensive cultural and social diversity 

within its entire population, which is also reflected at the genetic level (in this given case as 

for HLA genes). In the current NGS HLA study in Spanish population, although at a much 

smaller scale (that will certainly need to be further extended and evaluated to be adequately 

representative), similar general findings to those from Romòn et al. study [260] can be 

observed especially based on the results shown in Table R-10.  
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-Importantly, as an aspect that had been hardly evaluated before and in particular based on 

HLA genetic data, Romòn et al. study [260] has also initially described (as also, for instance, 

it has been previously detected at the European continental level [136][137]) a broad and 

complex regional variation of the HLA diversity across the Spanish territory where 

frequency distributions of many HLA alleles (and similarly observed in respective 2-locus 

HLA haplotypes) vary continuously across the Iberian Peninsula, either increasing or 

decreasing from the Mediterranean coast (South-East) to the Atlantic domain (North-West) 

or from the Strait of Gibraltar (South) to the Pyrenees and Bay of Biscay (North). Thus, in 

the present study (once again, with all due caution because of the very limited Spanish 

population sample size that was evaluated here) some similar (although some others were 

opposite to those observations made in Romòn et al. study) observations can be noted, in 

some cases being more evident than others (when looking at results shown in Table R-10; 

and similarly in respective 2-locus HLA haplotypes (data not shown per Spanish region 

evaluated in the present thesis work)), such as:  

1) Allele frequency distribution of HLA-DRB1*07 (but not in the case of HLA-B*44) 

slightly decreases from the Mediterranean coast (in our current study based on the broader 

Eastern-Spain sub-group) to the Atlantic domain (in our current study based on the 

broader Northern-Central Spain sub-group). Whereas, in this same geographical 

longitude-latitude direction, HLA-B*51 and -DRB1*13 allele frequency distributions 

appear to be increased. The latter finding in regards to the HLA-B*51 allele group it may 

be also of significance with very important clinical implications in Spanish population (as 

well as in other populations of European ancestry), as this HLA-B allele has been 

considered (as it is also later commented with more detail in the respective DISCUSSION 

sub-section about haplotype analyses in the present thesis work) as a relevant negative 
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predictive factor in order to find a suitable unrelated donor (i.e. full-matched donor 

(typically 10/10), especially in the HSCT setting) in both Spanish [624] and European 

(e.g. Swiss) [892] populations. Since it has been widely reported how this very common 

HLA-B allele, especially in populations of European ancestry, is associated with a high 

rate of HLA-C allele disparities (i.e. HLA-B*51 displays a very broad distribution with 

regard to its HLA-C association; and thus it does not follow the typical pattern shown by 

most of the HLA-B alleles where they tend to show a preferential association with one or 

two HLA-C allele variants). 

2) Allele frequency distribution of HLA-DRB1*07 slightly increases from the Strait of 

Gibraltar (in our current study based on the broader Southern-Spain subgroup) to the Bay 

of Biscay and the Pyrenees (in our current study based on the broader Northern-Central 

Spain sub-group). Whereas, in this same geographical longitude-latitude direction, HLA-

DRB1*11 allele frequency distribution does not appear to be decreased neither 

significantly increased in our current study unlike Romòn et al. study (where it appears to 

be decreased) [260]. 

-HLA allele frequency distributions estimated on the Spanish REDMO donors cohort 

described in Romòn et al. study [260] were found to be very similar to those obtained on 

different Spanish population cohorts analyzed in other main studies (for example, such as 

those coming from Castilla-Leon (N=1,940) [628]; Girona (Catalonia) (N=88) and 

Guipuzcoa (Basque Country) (N=100) [627]; or Murcia (N=173) [560]. Likewise, results 

of most common HLA allele frequency distributions shown in the present study are in 

consonance with reported results by all these main studies previously carried out in Spanish 

population [221][260][545][546][558-561][563][564][571][600][608][624-630][757]. 
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-In Spanish population [based on findings not exclusively described in this Romòn et al. 

study [260] but additionally reported in other low-resolution (1-/2-field  allele resolution 

level) HLA studies that also present important and representative sample sizes (e.g. 

N=5,458 cord blood units at the Umbilical Cord Blood Bank in Barcelona, Catalonia 

(located in North-East Spain) [221])], it is also noteworthy the singularity detected in the 

case of HLA-DQB1 locus, at least when analyzing at lower-resolution levels. Thus, it has 

been observed how at the 1-/2-fields of resolution the HLA-DQB1 locus shows a relatively 

low allelic diversity in most of those Spanish population study cohorts so far evaluated. In 

fact, this “excess of allele homozygosity” (or ”unexpected reduction of observed 

heterozygosity”) detected at this given locus (e.g. overcount of the genotype HLA-

DQB1*03:02 (allele belonging to one chromosome), -DQB1*03:03 (allele belonging to the 

other second chromosome) observed in Spanish population) could be explained (in what is 

the so-called “Wahlund effect” [340][341][777][893], which is a possible causative factor 

in certain instances of detected significant deviation from HWEP) by an existing, and 

apparently substantial, population genetic stratification or substructure previously described 

in other Spanish population cohorts [221][260], as well as similarly reported in other 

populations (e.g. [268]). Therefore, based on all these initial evidences as well as in line 

with well-documented geographical and historical facts [556][578], a large portion of 

modern-day Spanish population may presumably consist of several subpopulations that 

show important different HLA allele frequency distributions, and being thus especially in 

relation to allele frequency distributions displayed at the HLA-DQB1 locus. Interestingly, 

in our current NGS HLA study if collapsed 2-field HLA genotype data is only considered, 

HLA-DQB1 locus shows, indeed, this aforementioned low allele diversity (illustrated by its 

k value (k=17) and, comparatively, being lower than in other HLA loci tested at the same 
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collapsed 2-field resolution, for example: HLA-A (k=28), -B (k=48), -C (k=28), -DPB1 

(k=26) or -DRB1 (k=35)). Nevertheless, when looking at 3-/4-field allele resolution level 

(as it is enabled by application of a NGS-based HLA genotyping method in the present 

study) the initially unexpected, but indeed noticeable, non-coding variation detected within 

this HLA-DQB1 locus clearly increases its k value (up to k=24) and, consequently, its allele 

diversity described. Which, in turn, it becomes more equivalent to that one observed in other 

HLA loci tested at this higher 3-/4-field resolution, for example: HLA-A (k=36), -B (k=53), 

-C (k=40), -DPB1 (k=29) or -DRB1 (k=37)). In summary, this discussion may exemplify 

how assessment of HLA diversity considering, on one hand, the nucleotide level (up to the 

4-field) or, on the other hand, at the protein level (represented by 2-field) may lead into 

concurred interpretations in some instances, whereas in some other cases not equivalent 

elucidations may be concluded instead [104][137]. Thus, at this very high allele resolution 

level (3-/4-field), this plausible population genetic substructure detected in Spain could be 

more reflected and evident in the specific 4-field differences found inside the haplotype 

associations (i.e. LD patterns) as well as at the 4-field allele frequency distribution level for 

certain HLA locus/loci. Unfortunately, the very restricted Spanish population sample size 

that was evaluated at the regional level (n=25-26 per region) in the present study did not 

allow us to investigate these considerations accurately. In this sense, it is expected that future 

studies of both considerably larger sample size, (being thus of higher associated statistical 

power) and at a wider geographic scale of the Spanish territory will considerably contribute 

to better understand this population genetic substructure initially detected in Spain. 

-In the SOT setting, it is well-known that Spain holds a privileged and leading position 

worldwide in providing transplant services to its patient population (e.g. with 40 donors and 

more than 100 transplant procedures per million population in 2015) [642]. Nevertheless, 
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in the HSCT setting, it is important to remark (as it is mentioned in the Romòn et al. study 

[260]) that the REDMO Spanish BM and UCB donor national registry currently shows an 

overrepresentation of donors from major but very few Spanish regions (such as Madrid, 

Andalusia or just Barcelona, out of the total region of Catalonia (comprising up to the 60% 

of total donors)) as well as an important paucity of donors from other certain local sparsely 

populated regions in Spain (e.g. Zamora, Soria, Huesca or Teruel). In addition, there is an 

important level of variability in the REDMO database in regards to the number of HLA loci 

and allele resolution level consistently tested and reported per donor, critically limiting the 

current characterization of Spanish donor registry population. Thus, results of most common 

HLA allele and extended haplotype frequency distributions of all 11 major HLA classical 

genes obtained from future larger NGS studies and at a wider geographic scale of the 

Spanish territory will provide an invaluable refined information for the potential 

improvement of the current registry in terms of population coverage as well as strategies of 

the organization/prioritization of donors recruitment. Moreover, development of local donor 

registries, in addition to improvements of the most national main registry, may contribute 

to better cover the diverse HLA genetic background found in Spain, which actually presents 

remarkable geographical (regional) HLA signatures. 

• Another important group of previously reported HLA studies (i.e. in terms of sample size 

and higher allele resolution level) in Spanish population, which should be noted, includes: 

-A recent study has characterized most common HLA allele and 5-locus haplotype 

frequency distributions at HLA-A, -B, -C, -DRB1 and -DQB1 loci for N=5,458 cord blood 

units at the Barcelona Umbilical Cord Blood (UCB) Bank (which covers 6 Spanish regions 

and Andorra) in Barcelona, Catalonia (located in North-East Spain) [130][221][464], and 

with similar results as shown in the Roura et al. NGS-HLA study on heart failure patients 
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[545]. As expected and overall, results from that study are in consonance with those results 

observed within the Eastern-Spain group of the current study (N=78, comprising all subjects 

from Barcelona, Valencia and Murcia regions). 

-It is also noteworthy other recent study that has described HLA allele and haplotype 

frequencies for HLA-A, -B, -C, -DRB1 and -DQB1 loci in N=215 unrelated individuals from 

Gran Canaria Island (belonging in this particular case to the kidney transplant patient 

waiting list) [564]. Here, although with all due caution (because of the very restricted sample 

size evaluated in the respective Spanish population subsets of the present study, as for the 

one subset originally from Gran Canaria Island (n=25)), similar findings in relation to the 

most common HLA allele frequencies are observed between both studies (results of the 

current study are shown in Table R-10). 

• In addition, referring to other group of HLA studies that have been focus on foreign 

population cohorts but that either culturally, geographically and/or historically are relatively 

close or related to original Spanish population [555][556][578][894][895]. It is important to 

remark how many (if not most) of the high frequency allelic and haplotypic distributions 

reported for each of these foreign populations are similar or at least very in line with the group 

of most common HLA allele and haplotype frequency distributions reported in the present 

Spanish population study (which are shown here at much higher allele resolution level in 

comparison to these other previous reported studies) having all this very important 

implications from both H&I clinical and research viewpoints. For instance, in the 

transplantation setting these similarities on HLA allele and haplotype frequency distributions 

definitely maximize the likelihood of finding compatible (even full-matched) donors at the 

worldwide scale (e.g. donor search via Bone Marrow Donor Worldwide (BMDW) database) 

[215][220][896]. At the same time, as some other examples, current and future data from 
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HLA-disease association studies, pharmacogenetics studies and/or HLA-restricted epitope-

based vaccine related immunotherapies as well as respective epidemiology studies on all these 

(relatively) genetically (from the HLA genes standpoint) close populations can evidently 

contribute and facilitate development of common diagnostic and therapeutic strategies. Thus, 

as some main examples of HLA population studies that have shown important level of 

relatedness with the general population from mainland Spain: 

-In relation to the Iberian Portuguese population, Spínola et al. [602] examined HLA 

polymorphism of HLA-A, -B and -DRB1 loci in N=145 individuals across Portugal and 

described the respective allele and haplotype frequency distributions which are found to be 

very similar to those described in Spanish population, as observed in the present study (e.g. 

including the characteristic HLA-B*44:03/-B*44:02 ratio previously discussed and the 

relatively high allele frequency prevalence of HLA-B*51:01:01 allele which, in turn, 

strikingly displays a very broad pattern of haplotype association distributions with HLA-C 

alleles) and as expected based on obvious geographical proximity (without important 

restricting orographic barriers between both territories) and well-documented historical 

facts for many centuries (where even Portugal was under the rule of the Spanish Kingdom 

during an important period of time, between 1580 and 1640 in the so-called dynastic 

“Iberian Union”) [555][556][578]. Also it can be observed [602], based on similarities 

found in HLA allele/haplotype distributions between different populations, how the original 

ancestry that has led to modern-day Portuguese population (very similar to what occurs in 

the case of Spanish population) has been genetically influenced by important North-Central 

Europeans’ (e.g. Germanic tribes/Christian Visigoths) [558] as well as North Africans’ (e.g. 

North African Berbers newcomers integrated with the Muslim Eastern Arab settlers) 

[808][851] gene flows throughout the history (especially during these last centuries). 
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Spínola et al. study detected slight (due to the respective limited sample sized studied) but 

relevant differences in North–South allele frequency distribution within mainland Portugal 

[602] as also recently reported in Romòn et al. study [260] and tentatively here as well in 

our present study. 

-Another reference study that should be noted it is the Pingel et al. study [481], which has 

described the most common allele and haplotype frequency distributions found in the donors 

pool of the DKMS German Bone Marrow Donor Center but specifically with foreign 

parentage from different countries, including Spain. Here, once again, characteristic 

common HLA alleles (e.g. prevalence of HLA-B*44:03 allele) and extended haplotypes 

(e.g. HLA-A*01:01~B*08:01~C*07:01~DRB1*03:01; see Table R-7 in the present study) 

of these reported “German DKMS” donors with Spanish (foreign) parentage are very similar 

to those observed in the Spanish general population (as shown in the present study). 

Therefore, Pingel et al. study [481] underscores the importance of two main aspects. First, 

development of local donor registries in each country significantly contributes to increase 

the likelihood of finding a compatible donor since the probability of identifying a matched 

donor is higher when both patient and donor are of the same ethnic background [897]. And 

second, large and diverse pool of donors in each given registry population/country may 

increase the likelihood of finding a matched donor for a given patient who resides in another 

country and, if especially, belongs to an ethnic group that is importantly underrepresented 

within the total given BM registry (e.g. African American or Hispanic individuals in the 

U.S., that show lower registration rates for becoming potential bone marrow donors) 

[898][899]. As illustrated in Pingel et al. study [481], the presence of Spanish ancestry in 

modern-day German donor registry population may be essentially explained by those most 

recent emigration waves that occurred from Spain to rest of Europe during the XX century 



__________________________________________________________Discussion 
 

Page | 540  

   © Gonzalo Montero Martin  

(and that still continues nowadays but in a lesser extent). Spanish emigration to the rest of 

Europe mostly started after the end of World War II, where Western European countries 

were in high need of migrant workers to maintain their high levels of economic growth as 

well as due to the important economic and political constraints in the historical context that 

Spain was experiencing during those first decades after its Civil War, which had been 

recently taken place (1936-1939) [895]. 

-Another remarkable Spanish emigration and demographic event from the past, which is 

also relatively reflected in the observed HLA allele and haplotype frequency distributions 

of modern-day populations in spite of population admixture events and ebbs and flows that 

may have occurred between neighboring and distant worldwide populations (e.g. [852]). It 

is the one that extensively occurred between Spain and Latin American countries (located 

in both Central and South America regions) and to a lesser extent between Spain and the 

U.S. [862][863], during two main periods of time of the considered recent human history 

[894][895]: 

1) The first and largest period of time is mostly related to the vast and sustained extension 

of the Spanish Kingdom into the New World (i.e. the Americas) between XV and XIX 

centuries.  

2) Whereas a second period, much more recently, can be also identified and assigned 

during the XX century due to similar socioeconomic and political factors as above 

mentioned in the case of Spanish emigration to economically stronger European countries. 

Thus, several HLA population studies {such as those reported by Mack et al. (Spanish 

American group in the U.S. (N=279 individuals of Spanish ancestry)) [772]; also those 

denominated Hispanic ethnic groups (mostly of Cuban (CARHIS-Caribbean Hispanic, 

N=115,374 unrelated donors) and Mexican (MSWHIS-Mexican or Chicano, N=276,235 
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unrelated donors) ancestries) in the U.S., which are reported in the NMDP BM U.S. registry 

[259][299]; the Hurley et al. study on Argentinian donor registry population [224]); or 

studies on the Mexican Admixed (Mestizo) population [267][547]} relatively show many 

similarities with original Spanish general (mainland) population (as described in the present 

study) in regards to those most common HLA allele and haplotype frequency distributions 

described. Thus, despite more recent and incessant events of population admixture and 

ongoing migration waves, the Spanish genetic (including HLA genes and as similarly shown 

for other genetic markers such as Y-chromosome or mtDNA) [224][852][853] imprint and 

influence still remains in these foreign countries and regions as it is evident based on these 

relatively high frequency HLA (both allelic and haplotypic) distributions. This fact may also 

have important clinical implications such as the donor search process when relying on 

foreign registries in the transplantation setting. Where the likelihood to find a given donor 

will be higher in those foreign countries and ethnic groups which at some point in the past 

history (but that can be considered relatively recent) and for considerably long periods of 

time (i.e. several centuries) were closely related to original Spanish population (i.e. many 

former colonies and extended territories around the world which were under the rule of the 

Spanish Kingdom, between XV and XIX centuries in the CE approximately) as they 

experienced very important immigration waves from mainland Spain [894]. 

 • Lastly, it should be noted that due to the paucity of precedent HLA Spanish population (and 

other closely related foreign populations) studies (being, at the same time, representative 

enough of the respective general population group) that may have evaluated 3-/4-field of allele 

resolution level and all 11 major classical HLA class I and class II loci and related allele and 

haplotype frequency distributions. This current comparative review of HLA Spanish 

population reports from the scientific literature still remains limited (at both the HLA allele 
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and haplotype frequency distribution levels). Moreover, the comparability between HLA data 

of the present study and HLA data from other studies is also restricted due to major differences 

found on the IPD-IMGT/HLA database used in each given past study and also on the HLA 

genomic coverage and level of ambiguities resolved or not resolved that may ultimately 

create, in some instances, overestimation/underestimation of certain HLA allele/haplotype 

frequency distributions [104][137]. Therefore, future NGS high-resolution HLA population 

studies presenting much larger sample sizes and carried out at a wider geographical scale (in 

this case for Spanish population) may overcome these current above mentioned 

limitations/misinterpretations [301]. 

2. HLA HAPLOTYPE LEVEL ANALYSES 

The HLA system is known (as it has been more extensively explained in the INTRODUCTION 

section of the present thesis work) for presenting a singularly strong and extensive linkage 

disequilibrium (LD) along its genomic region, although with some important exceptions due to 

existing recombination hotspots (e.g. there is no strong LD between HLA-DP and the rest of the 

class II haplotype because of existing hotspot of recombination between HLA-DQ and -DP loci). 

Thus, it has been widely described the existence of blocks (for example, HLA-B~C block and HLA-

DR~DQ block, where these particular neighboring loci especially show a very close physical 

proximity) of conserved DNA sequence defined by a given associated pattern of specific single 

nucleotide polymorphisms (SNPs) [97][100][900]. Moreover, these nonrandom associations (as 

long as in the absence of recombination events) of linked HLA alleles at several loci, for a given 

chromosome, establish the inheritable unit defined as haplotype. At the population-level it has 

been also widely reported how HLA haplotype frequency distributions and specific HLA loci 

combinations within a certain haplotype significantly vary between different worldwide 
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populations and ethnic groups. In fact, these haplotype frequency distributions can be highly 

informative and, indeed, they have important clinical implications (e.g. determining 

negative/positive predictive factors for respective matching assessment and donor search process 

in the transplantation setting) [215] as well as an important meaning and use in research fields 

related to anthropology, evolutionary biology of HLA diversity or HLA-disease/drug 

hypersensitivity associations (e.g. [268][287][293][809]), just as some broad examples.  

Application of most widely used NGS technologies (especially referring here to 2nd generation 

sequencing approaches using short-read sequencing platforms; and since 3rd generation systems 

based on long-read sequencing platforms still do not present enough accuracy rate particularly in 

the base-calling process [158]) on HLA genotyping methods has allowed to overcome important 

limitations presented by the legacy SBT methodology (considered the gold-standard technique for 

providing high-resolution up to the 3-/4- field of HLA genotypes) due to the impossibility to 

resolve heterozygous (i.e. cis/trans or phasing) ambiguities between the two given different alleles 

of a corresponding HLA locus. Concerning the scope of the present study, most of the current 

NGS-based HLA genotyping methods rely on initial long-range PCR per HLA gene tested 

(providing an extensive genomic sequence coverage) and paired-end short-read deep-sequencing 

platforms (on a high-throughput fashion) as it is the case of the respective protocol and NGS 

technology employed in the present study [187][763-766]. Thus, this current type of NGS-based 

HLA typing methods enables assignment of phased allele calls per HLA locus. However, phasing 

determination is not methodologically possible at the extended HLA haplotype level. 

Consequently, the assignment of alleles along each same chromosome defining each given 

haplotype is not resolved by current NGS-based HLA genotyping methodologies in diploid (2n) 

individual’s DNA (i.e. HLA haplotypes are phased-unknown). Therefore, HLA 2-locus and 

extended haplotypes of Spanish population cohorts (made up of unrelated Spanish healthy 
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individuals and unrelated MS patients respectively) shown in the present thesis work are phased-

unknown. Thus, it was only possible to infer extended HLA haplotypes (and respective frequency 

distributions) by application of EM algorithm with its inherent limitations previously mentioned 

[101][332-336][342]. Where, basically, EM estimated haplotypes are known to have a certain level 

of associated inaccuracy which is especially significant for those rare haplotypes that present very 

low frequencies (n=1 or 2 counts). In addition, it has been detected an overestimation of LD values 

of EM estimated haplotypes [331] in comparison to LD estimates from phased HLA haplotype 

data that can be built (and accurately phased) by nuclear family-based allele segregation analysis 

[101][337-339]. 

Yet, and especially in comparison to legacy HLA genotyping methods, this current type of 

NGS-based methods enables a much higher precision and robustness in the characterization of 

HLA allele nucleotide diversity as it has been previously mentioned (see INTRODUCTION 

section) [161][178]. Where (almost) full-length and phased HLA allele sequence data with 

minimum ambiguities, including non-coding regions, significantly contribute to reveal invaluable 

information (previously almost unknown and not ostensible) relative to specific (in spite of being 

inferred via EM algorithm) haplotype associations (defined by given LD constraints and patterns) 

at the 3-/4-field allele resolution level. Thus, as an example, it is possible to detect more easily and 

more accurately specific HLA haplotype ethnic/population/regional background signatures, which 

had been hardly described in Spanish population until now, with Balas et al. study [624] as one of 

the very few studies reported up to date (at the moment of preparing the present study) in the 

scientific literature). Moreover, haplotype estimates and their distributions, from NGS-based HLA 

genotyping data in this case (as exemplified in the present MS HLA Spanish population case-

control study carried out here), can be very informative for studying association of candidate gene 

studies and fine-mapping of disease genes. In fact, NGS HLA genotype data (in combination with 
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statistical analyses approaches such as conditional analysis and, if applicable/feasible, evaluation 

of that same given disease phenotype of interest in a sufficiently diverse range of ethnic groups 

(which may display different HLA allele/haplotype associations that may be informative)) may 

allow a better assessment in order to dissect (i.e. uncouple or deconstruct haplotype associations 

in order to separate allelic from haplotypic associations) given identified associated HLA 

haplotypes, which may present strong LD, in order to actually discern those real and distinctive 

causative HLA variation patterns relative to a given disease phenotype [401][412]. Furthermore, 

variation in those exons not commonly characterized by previous legacy HLA typing methods and 

variation in the non-coding regions of the HLA genes may have (although it has not been 

extensively described and well-defined yet) important functional consequences resulting in 

abrogation of expression, alternative splicing, altered levels of expression, post-translational 

regulatory molecule binding, aberrant tissue-specific expression and/or stability at the cell surface 

which may be of importance for deconvoluting the causative aspects of HLA-associated diseases 

[207][309]. 

Referring now in detail to the present study, application of this NGS-based methodology has 

allowed the assessment of distinctive 3-/4-field HLA haplotype associations (that had not been 

apparent before as they were unattainable by previous legacy HLA typing methods (e.g. SSO, SSP, 

SBT or RT-PCR)) especially when evaluating non-coding region variation at both 2-locus and 

extended HLA haplotype (encompassing 6-locus, 7-locus and 9-locus respectively) distributions. 

3-/4-field HLA data of most common extended haplotype frequency distributions is generally 

shown in the present thesis work document (see RESULTS section (Tables R-5, R-7, R-8, R-9)). 

Whereas all respective collapsed 2-field HLA data of most common extended haplotype frequency 

distributions is mostly not shown in the present thesis work document, with some exceptions that 

are highlighted in some parts of this DISCUSSION section. Thus, in the present Spanish 
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population cohort, the following observations and findings are noteworthy, which are also 

compared with results reported by previous studies on other singular HLA Spanish population 

cohorts and other related foreign populations cohorts as well: 

• Firstly, several different sets of 2-locus haplotypes were estimated for the present Spanish 

population cohort (see Table R-5). Worthy of special mention and of interest are some of the 

frequency distribution results shown in regards to HLA-B~C and HLA-DRB1~DQB1 allele 

pairs, since it has been extensively reported that these respective allele pairs commonly present 

some of the strongest LD values, as expected owing to their genomic chromosomal physical 

proximity [29]. Furthermore, refined characterization up to the 4-field resolution of these 

specific above mentioned 2-locus association distributions (as well as in respective extended 

haplotype associations) may have important implications in the transplantation setting (e.g. 

matching assessment and donor search) [215][220], for anthropological studies 

[131][132][496][497] and also in the context of evaluating HLA-disease associations 

[401][412] and, ultimately, possible related diagnostic/risk assessment value of this information 

(e.g. celiac disease or narcolepsy) [121]. In detail: 

1) Some of the most common HLA 2-locus haplotypes observed for these particular allele 

pair combinations in the present Spanish population study were the following:  

-Most common HLA-B~C allele pairs: 

HLA-B*07:02:01~C*07:02:01:03 (HF=9.6%); 

HLA- B*08:01:01:01~C*07:01:01:01 (HF=5.9%); 

HLA-B*44:03:01:01~C*16:01:01:01 (HF=5.1%); 

HLA-B*44:02:01:01~C*05:01:01:02 (HF=4.7%); 

-Most common HLA-DRB1~DQB1 allele pairs: 

HLA-DRB1*07:01:01:01~DQB1*02:02:01:01 (HF=14.5%); 
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HLA-DRB1*03:01:01:01~DQB1*02:01:01 (HF=13.5%); 

HLA-DRB1*15:01:01:01~DQB1*06:02:01 (HF=8.1%); 

HLA-DRB1*13:01:01:01~DQB1*06:03:01 (HF=7.1%); 

and also, although not as frequent, to be noted the  

HLA-DRB1*14:54:01~DQB1*05:03:01:01 (HF=2.3%); 

These above listed allele pairs have been also generally found in relatively high frequencies 

in other Spanish, Portuguese, Mediterranean-European, Latin American and Hispanic 

populations previously reported (e.g. 

[130][221][224][259][260][267][297][299][464][522][546-548][558-

561][563][564][571][600][602][603][608][624-630][772]). 

2) Interestingly, application of NGS technology for HLA genotyping in the present Spanish 

population study has allowed to describe specific 3-/4-field haplotype associations that were 

not apparent at the collapsed 2-field allele resolution level that would be typically obtained 

by legacy HLA typing methods (e.g. SSO, SSP, RT-PCR or SBT). Furthermore, even some 

of these 3-/4-field haplotype associations were not apparent or not totally explained either in 

some cases in Balas et al. study [264], due to limitations of that study in regards to the genomic 

sequence coverage of HLA genes tested and since that study was also referenced by older 

released versions (between 1998-2010 years) of IPD-IMGT/HLA database. As some main 

examples of striking 3-/4-field haplotype associations found in the present study for HLA 2-

locus haplotypes: 

-Within the HLA-B~C allele pairs, for example: 

HLA-B*18:01:01:01 non-coding variant appears to present specific associations with -

C*03:03:01:01 (HF=0.2%) and, predominantly, -C*05:01:01:01 (HF=3.8%); whereas 

HLA-B*18:01:01:02 non-coding variant appears to display specific associations with 
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totally different HLA-C alleles comparatively, as -C*07:01:01:01 (HF=1.1%) and -

C*12:03:01:01 (HF=1.8%); finally, in the case of HLA-B*18:01:01:03 non-coding 

variant, only one specific association was found with -C*02:10:01:02 (HF=0.2%). 

-Within the HLA-DRB1~DQB1 allele pairs, for instance, one of the most striking cases is 

the very distinctive 2-locus haplotype groups defined respectively by the different HLA-

DQB1*03:01:01:01/:02/:03 non-coding allele variants (in fact, its presence in a given 

recipient/patient to be transplanted could be considered as a possible (although perhaps 

minor) negative predictive value in order to find a respective highly 

matched/histocompatible donor): 

Where HLA-DQB1*03:01:01:01 variant is linked with some specific HLA-DRB1*04 

allele groups (HLA-DRB1*04:01:01:01 (HF=0.8%); -DRB1*04:07:01 (HF=0.8%); and -

DRB1*04:08:01 (HF=0.4%)), in addition to HLA-DRB1*11:01:01:01 (HF=0.2%) and -

DRB1*12:01:01:03 (HF=0.9%) alleles; in contrast, the HLA-DQB1*03:01:01:02 variant 

shows a highly conserved association with HLA-DRB1*11:04:01 (HF=1.9%); lastly, 

HLA-DQB1*03:01:01:03 variant displays a very broad distribution in relation to its 

association with HLA-DRB1 alleles (7 different associated HLA-DRB1 alleles (inside 

HLA-DRB1*04, -DRB1*11 (predominantly) and -DRB1*13 allele groups) were observed 

in the present study) (see Table R-5 for more details and information relative to respective 

HF values found in this case). 

-In addition, it is also noteworthy within the HLA-DPA1~DPB1 allele pairs (that had not 

been well-described in most of the previous studies carried out in Spanish population 

[221][260][545][546][558-561][563][564][571][600][608][624-626][628][629], with the 

exception of very few preliminary studies that were quite limited in allele resolution level 

[627][630]), which encode the respective HLA-DP heterodimers, for instance: 
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The different 4-field or non-coding allele variants found inside the HLA-DPA1*01:03:01 

allele group display singular and specific associations with respective differentiated HLA-

DPB1 alleles (see Table R-5 for more details and information relative to respective HF 

values found in this case). These specific 2-locus association distributions found, in turn, 

may be indicative of certain plausible functional implications for the given HLA-DP 

heterodimer formed especially in regards, as some tentative examples, to cell-surface 

expression of HLA molecule, as well as to antigen presentation and definition of its related 

specificities [806][807]. Thus, in the present study, it can be observed (as similarly 

described in other initial NGS HLA worldwide population studies [297]) that HLA-

DPA1*01:03:01:01 variant is preferentially (although not exclusively) linked with HLA-

DPB1*02:01:02 (HF=11.2%). Whereas the HLA-DPA1*01:03:01:02 variant is mostly 

(although, once again, not exclusively) associated with HLA-DPB1*04:01:01:01 

(HF=20.3%). In the cases of HLA-DPA1*01:03:01:03 and HLA-DPA1*01:03:01:04 

variants, they appear to show strong associations with HLA-DPB1*03:01:01 (HF=3.8%) 

and HLA-DPB1*04:01:01:01 (HF=15.1%) alleles respectively. As for HLA-

DPA1*01:03:01:05 variant, it presents two main associations more or less equally 

distributed with HLA-DPB1*04:02:01:01 allele (HF=4.0%) and HLA-

DPB1*04:02:01:02 allele (HF=6.6%) respectively. Another very striking case that should 

be noted is relative to the denominated HLA-DP3, a common antigen relevant for 

functional matching algorithms of unrelated HSCT that can be encoded by two 

differentiated transmembrane (TM) region variants, HLA-DPB1*03:01:01 and -

DPB1*104:01 (defined in the present study according to v.3.25.0 of respective IPD-

IMGT/HLA database) [901]. Strikingly, at the coding region level, these two TM HLA-

DPB1 variants only differ (even though, with the most currently exceptions of HLA-
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DPB1*104:01:02/:03/:04 alleles according to latest v.3.39.0 of IPD-IMGT/HLA database 

[295]) by one single residue located on the TM domain of this encoded HLA-DPB1 beta 

chain molecule: HLA-DPB1*03:01:01 Val (codon 205 (GTG), exon 4) and, in contrast, 

HLA-DPB1*104:01:01 Met (codon 205 (ATG), exon 4). Precisely, this differential 

residue positon is contained within the denominated GxxxG dimerization (i.e. pairing) 

motif in the TM domain of this given HLA-DPB1 beta chain, which, indeed, has been 

described to (at least partially) determine its molecular association to the respective TM 

domain (presenting a dual GxxxGxxGxxxG motif in this case) of the given HLA-DPA1 

alpha chain molecule (and as it occurs with other HLA class II heterodimers that are 

formed) [901-905]. Thus, despite limited functional role of this observed TM region 

polymorphism has been described until now, it is expected that refined description [e.g. 

via NGS technology, since HLA-DPB1 alleles, such as HLA-DPB1*104:01, have not been 

routinely characterized by legacy HLA typing methods (i.e. only covering exon 2); and 

consequently they have been considered and included under a respective broad, non-

specific and ambiguous allele group (e.g. HLA-DPB1*03:01:01 allele group in this same 

example)] of this type of coding and non-coding HLA polymorphism (especially at the 

population-level) may shed more light to better understand: its plausible effect on cell-

surface stability/regulation of expression of HLA molecule or HLA class II heterodimer 

structural assembly process and related specificity/molecular restriction, among other 

possible relevant features. In the present Spanish population study, and in relation to these 

estimated 2-locus association distributions, it can be observed that HLA-DPB1*03:01:01 

allele is mostly linked with HLA-DPA1*01:03:01:03 non-coding variant (HF=3.8%). 

Whereas HLA-DPB1*104:01 allele is predominantly associated with HLA-

DPA1*01:03:01:02 non-coding variant (HF=3.7%). 
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3) Out of these HLA-B~C allele pairs described in the present Spanish population study. It 

was also of special interest to see in detail the 2-locus association distributions, and possible 

substantial similarities/differences, shown by respective HLA-B*44:02 and -B*44:03 

common subtypes in the present Spanish population. Which both (as previously discussed in 

the above sub-section) establish this singular dimorphism within the HLA-B*44 broad allele 

family [811], and where there is this distinctive observed prevalence allele frequency ratio 

HLA-B*44:03 / HLA-B*44:02 that seems specific of Iberian (Spanish and Portuguese) 

populations out of the wide group of European populations so far described 

[130][464][819][834][835]. Thus, as for the present study where it is reported up to the 4-

field of allele resolution level (see Table R-5):  

-HLA-B*44:03:01:01 segregates with the following HLA-C alleles:  

Most commonly with HLA-C*16:01:01:01 variant (HF=5.1%) and secondarily with -

C*04:01:01:01 (HF=2.4%). Moreover, much less frequent associations are also found with 

(presenting in this particular case a highly conserved linkage) null allele HLA-C*04:09N 

(HF=0.4%) and -C*16:02:01 (HF=0.4%). In addition, being even much less frequent, it is 

also associated with HLA-C*05:01:01:02 (HF=0.2%) and -C*15:02:01:01 (HF=0.2%) 

alleles.  

-In contrast, HLA-B*44:02:01:01, comparatively, shows quite different 2-locus association 

distributions, since it segregates with the following HLA-C alleles: 

Most commonly and primarily with HLA-C*05:01:01:02 variant (HF=4.7%). At the same 

time, but much less frequently, other associations are found as well with HLA-

C*02:02:02:01 (HF=0.4%), -C*07:04:01:01 (HF=0.4%), -C*12:03:01:01 (HF=0.4%) and 

-C*05:09:01 (HF=0.2%) alleles. 
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4) Moreover, when evaluating HLA-B~C haplotype frequency distributions in the present 

Spanish population study, there is also a very distinctive case to be noted discretely (and as 

initially described by Balas et al. [624]). Which has been also briefly discussed before (i.e. 

commented findings relative to the geographical variation detected for HLA-B*51 allele 

frequency distribution in the present study as well as in Romòn et al. study [260] within the 

Iberian Peninsula). Where it has been detected that HLA-B*51:01:01:01 allele displays a very 

broad distribution in relation to its association with HLA-C alleles (e.g. 7 different associated 

HLA-C alleles were observed in the present study; see Table R-5). In the present study, and 

in detail, HLA-B*51:01:01:01 allele (which presents a high allele frequency value in this 

Spanish population cohort described (AF=6.2%)) displays 2-locus HLA-B~C association 

distributions as follows:  

-In high frequencies with HLA-C*14:02:01:01 allele (HF=2.0%). 

-In more intermediate frequencies with HLA-C*02:02:02:01 (HF=1.1%), HLA-

C*15:02:01:01 (HF=1.1%) and HLA-C*01:02:01 alleles (HF=0.9%). 

And in lower frequencies with HLA-C*04:01:01:01 (HF=0.5%), HLA-C*03:03:01:01 

(HF=0.4%) and HLA-C*04:01:01:06 alleles (HF=0.2%). 

Interestingly, in Balas et al. study [624] this number of observed linked HLA-C alleles is even 

larger, where HLA-B*51:01:01:01 allele additionally segregates with alleles:  

-HLA-Cw*16:02 (HF=10%); whereas in the present study these are the only observed 

associations: HLA-B*44:03:01:01~HLA-C*16:02:01 (HF=0.4%) and HLA-

B*51:08:01~HLA-C*16:02:01 (HF=0.2%). 

-HLA-Cw*16:01:01 (HF=5%); whereas in the present study these are the only observed 

associations: HLA-B*44:03:01:01~HLA-C*16:01:01:01 (HF=5.1%), HLA-B*44:04~HLA-

C*16:01:01:01 (HF=0.2%) and HLA-B*15:03:01:02~HLA-C*16:01:01:01 (HF=0.2%). 
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 -HLA-Cw*05:01:01 (HF=2.5%); whereas in the present study these are the only observed 

associations: HLA-B*44:02:01:01~HLA-C*05:01:01:02 (HF=4.7%), HLA-

B*18:01:01:01~HLA-C*05:01:01:01 (HF=3.8%), HLA-B*44:03:01:01~HLA-

C*05:01:01:02 (HF=0.2%) and HLA-B*58:01:01:01~HLA-C*05:01:01:01 (HF=0.2%). 

-And HLA-Cw*07:01:01 (HF=2.5%); whereas in the present study these are the only 

observed associations: HLA-B*08:01:01:01~HLA-C*07:01:01:01 (HF=6.0%), HLA-

B*49:01:01~HLA-C*07:01:01:01 (HF=3.8%), HLA-B*18:01:01:02~HLA-C*07:01:01:01 

(HF=1.1%), HLA-B*57:01:01~HLA-C*07:01:01:01 (HF=0.4%), HLA-B*40:02:01~HLA-

C*07:01:01:01 (HF=0.2%) and HLA-B*41:01:01~HLA-C*07:01:01:01 (HF=0.2%). 

At the same time, although both studies have many of these HLA-C alleles in common (within 

these HLA-B*51:01:01:01~C allele pairs described), some of these HLA-B*51:01:01:01~C 

allele pairs show noticeable different haplotype frequency distribution values. For instance, 

in Balas et al. study [624] the most frequent allele pair found is HLA-

B*51:01:01:01~Cw*15:02:01 (HF=24.5%), whereas in the present study this same allele pair 

only shows an HF=1.1%, and where the given association with HLA-C*14:02:01:01 allele is 

the most frequent found here (HF=2.0%). In this sense, future and larger NGS HLA Spanish 

population studies may allow an in-depth assessment on this matter to clarify these currently 

observed differences between these studies. Yet, this comparative analysis between these two 

studies provides an insight into the very extensive and uniquely broad distribution of HLA-

B~C segregation patterns presented by this HLA-B*51:01:01:01 allele, which may be 

explained by the strong selection given for HLA-B~C haplotype diversity, maximizing thus 

the available peptide-binding repertoire and, in turn, allowing a fundamental survival 

advantage against pathogens’ diversity [132]. Conversely, as for the transplantation setting 

and based on all these findings from the present and previous studies, HLA-B*51:01:01:01 
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allele is considered a primary negative predictive value in order to find a full-match unrelated 

donor (URD) for a given Spanish hematopoietic patient [624], and as it has been similarly 

observed in other populations of European ancestry [892]. 

5) As another example that can illustrate how useful and informative may be the depiction of 

3-/4-field HLA haplotypic associations. Previously, during the past decades, it has been 

extensively reported the role and relevance of single HLA allele/locus in association with 

diseases (and even in some cases signifying one of the strongest predisposing genetic factor), 

such as HLA-B27 in spondyloarthritis, HLA-B51 in Behçet's disease, HLA-DQ2/DQ8 

heterodimers in celiac disease or HLA-DRB1 locus in rheumatoid arthritis [906]. Nonetheless, 

in addition to obtain HLA allelic characterization up to the 4-field of these corresponding 

associated alleles by NGS-based typing methods. Knowledge of related haplotypic 

associations up to the 4-field may also contribute to better elucidate the role of HLA genes in 

each given pathogenesis as well as detect and dissect possible hitchhiking effects due to 

existing extended LD between neighboring genes. Thus, in the scope of Spanish population 

and as an example, description of segregation patterns of the HLA-B*27 allele group with 

corresponding HLA-C alleles (see Table R-5 for more details and information relative to 

respective HF values found in this case) may be informative as a reference source for future 

epidemiology studies and, thus, to screen more accurately the prevalence of HLA-B27 allele 

variants and their main LD patterns within the HLA system in both healthy controls and 

patients with spondyloarthritis. Also, in addition to better define these haplotype associations, 

characterization of HLA class II genes “A” and “B” (encoding respective alpha and beta 

chains of heterodimeric HLA class II molecules) by application of NGS technology will 

definitely provide insight into the epitope formed (by the assembly of these encoded alpha 

and beta chains) and its relevance and effect in the given studied HLA-disease association 



__________________________________________________________Discussion 
 

Page | 555  

   © Gonzalo Montero Martin  

(e.g. characterization of both HLA-DQA1 and HLA-DQB1 genes to delineate the known HLA-

DQ allele competition in narcolepsy) [907]. 

6) Finally, 3-/4-field HLA genotyping data can be also very informative even at the 2-locus 

haplotype level (especially in those allele pairs (e.g. HLA-B~C and HLA-DRB1~DQB1) that 

show strong LD and that, consequently, have remained tightly conserved throughout 

generations and long periods of time in human history) to define (at least until certain extent 

[542][543]) genetic relatedness between populations with plausible common shared historical 

demographic events and/or ancestries, which may be also supported by other genetic markers 

[542][543] as well as by anthropological, archaeological and linguistical evidences. As an 

important and striking example observed in the present Spanish population study:  

Relatively high frequency (especially in comparison to other populations of European 

ancestry [130][297][464]) of the HLA-DQB1*03:19:01 allele (AF=0.7%) [908] and its 

more common LD patterns displayed with HLA-DRB1*13:04 (HF=0.2%) and -

DRB1*11:02:01 (HF=0.6%) are found in Iberian populations of Spanish (as in the present 

study and as also observed in [221]) and Portuguese backgrounds [823]. Moreover, and 

strikingly, these same HLA remarks are also quite commonly found in populations 

originally from North Africa and also of sub-Saharan African ancestry 

[130][297][464][823][909]. Furthermore, and also intriguingly, same HLA-

DQB1*03:19:01 allele related remarks have been described and observed frequently in 

reported populations from across the Arabian Peninsula as well [130][271][285][464][910]. 

Altogether, these HLA findings (also supported at the extended haplotype level, which is 

discussed later in the present thesis work) exemplify the relative significant genetic 

influence and relatedness between Iberian populations (being thus distinctive from the rest 

of populations of European ancestry so far described (e.g. [474])) and North African 



__________________________________________________________Discussion 
 

Page | 556  

   © Gonzalo Montero Martin  

populations as well as other populations of sub-Saharan African descent. In addition, these 

findings (relative to the common presence and prevalence of this HLA-DQB1*03:19:01 

allele in all these Iberian, African and Arab population groups) may also suggest the relevant 

past Muslim Eastern Arab genetic contribution (at least until certain extent) in the present-

day HLA gene pools of both Iberian and North African populations. Based on major 

historical demographic events (which, in turn, caused a relevant HLA gene flow episode), 

this interpretation would be strongly supported by the well-documented Muslim Arab (i.e. 

people originally from Eastern and Southern Syria as well as from the North and Central 

regions of the Arabian Peninsula, under the suzerainty of the Arab Umayyad Caliphate of 

Damascus [569]) invasion that took place in most regions of North Africa and, subsequently, 

of the Iberian Peninsula during the 7th-15th centuries period in the CE 

[555][556][558][578][613][808][851].  

• Secondly, when considering associations between class I and class II regions in extended 

haplotypes (i.e. extended HLA haplotypes encompassing 6-locus, 7-locus and 9-locus 

respectively) and their corresponding frequency distributions that were inferred via EM 

algorithm in the present NGS HLA Spanish population study, the main remarks found are 

discussed in the following points: 

1) In comparison to traditional typing methods (e.g. SSO, SSP, SBT and RT-PCR),  NGS-

based HLA genotyping methods have enabled high-throughput testing at a very high-

resolution (up to the 3-/4-field with minimum ambiguities owing to both high genomic 

coverage and phasing per locus) of all 11 major HLA class I and class II genes. Moreover, in 

the case of unrelated subject-based NGS HLA population studies (as in the present study), 

extended 3-/4-field haplotypes can be inferred (being more accurate at high frequencies than 

very low frequencies) via EM algorithm. Thus, just as an illustrative example, when 
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comparing HLA haplotype frequency distributions of 6-locus extended HLA haplotypes at 

different allele resolution levels, it can be noted:  

-Collapsed 2-field HLA genotyping data (that would be typically obtained by legacy HLA 

typing methods (e.g. SSO, SSP, RT-PCR or SBT)) (data not shown in the present thesis 

work document) displays a relative limited haplotypic diversity where many of the 

respective haplotypes are embedded inside broader and less specific haplotypic 

distributions. Consequently, certain stratums of haplotype diversity are not apparent and are 

unattainable to be described. For example, relatively frequent extended haplotypes                   

found in the present study at this collapsed 2-field such as:  

HLA-A*30:02~C*05:01~B*18:01~DRB3*02:02~DRB1*03:01~DQB1*02:01 (HF=1.9%); 

and HLA-A*25:01~C*12:03~B*18:01~DRB5*01:01~DRB1*15:01~DQB1*06:02 

(HF=0.8%); appear to share both the same identical carried HLA-B*18:01 allele variant. 

-Whereas, as described in the present Spanish population study, 3-/4-field haplotype 

distributions, in this given case of 6-locus extended HLA haplotypes, clearly allow to 

breakdown and, thus, discern a much higher haplotypic variety (e.g. following previous 

example above mentioned: at the 3-/4-field it can be now distinguished two distinctive non-

coding variants of this HLA-B*18:01:01 allele that segregate specifically with: HLA-

A*30:02:01:01~C*05:01:01:01~B*18:01:01:01~DRB3*02:02:01:01~ 

DRB1*03:01:01:01~DQB1*02:01:01 (HF=5.0%);  

in contrast, HLA-A*25:01:01~C*12:03:01:01~B*18:01:01:02~DRB5*01:01:01~ 

DRB1*15:01:01:01~DQB1*06:02:01 (HF=2.0%)). Thus, inferred combinations of alleles 

per parental chromosome are very diverse in terms of allele content per locus as well as very 

diverse and distinctive at the 3-/4-field allele resolution level for certain given loci which 

differ depending on the LD pattern described in each case. 



__________________________________________________________Discussion 
 

Page | 558  

   © Gonzalo Montero Martin  

-In addition (as previously shown in Figure R-3 of the present study, and as recently 

reported in other NGS HLA studies [268][286][287][331]), haplotype distributions also 

become extremely divergent in terms of the multiplicity of HLA-DP alleles with which they 

associate [268][286][287][331]. This seems to be especially owing to the weak LD between 

HLA-DP and the rest of the class II haplotype since existing hotspot of recombination is 

present between HLA-DQ and -DP loci [92].  

Therefore, these observed prominently increased multiplicity and haplotype diversity when 

evaluating 3-/4-field allele resolution and, even more, when including HLA-DP loci (which, 

as an example, critically contribute to the increase of mismatches in the donor-recipient 

transplantation setting) inside haplotype distributions may have direct implications, for 

example, in relation to the lesser likelihood of finding unrelated donors (URD) in HSCT [233]. 

At the same time, as already reported in past HSCT donor-recipient pairs retrospective studies 

that were carried out even prior to the NGS era and at lower allele resolution levels [911]. In 

spite of common HLA alleles may be found in respective HSCT donor-recipient pairs, these 

may still show substantial haplotypic diversity and, thus, important level of disparity. 

Therefore, although, on one hand, it is expected that full-matching up to the 4-field may 

improve HSCT outcome (which is still under evaluation [215-218]). On the other hand (in 

this “double-edged sword” situation), it may be more unlikely to locate a corresponding HLA 

matched donor, especially in the context of a patient presenting a less frequent HLA genotype 

for a given local/national/foreign donor registry population. Altogether, this evidences and 

underlines the importance, in order to minimize the detrimental effects of HLA mismatching, 

to continue developing and optimizing different (as some main examples): HSCT protocols 

(e.g. considering the use of BM (stem cells directly from the marrow or when they are induced 

to migrate to the peripheral blood and thus to be collected) and/or the use UCB units); 
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conditioning regimens; co-infusion approaches; alternatively, performing haploidentical 

transplantation with a specific conditioning regimen; even possible novel therapeutic 

strategies; and where it is also fundamental to identify and extend, if it is feasible, permissive 

HLA mismatches [624][911]. 

 

2) As a very noteworthy example of these distinctive 3-/4-field HLA haplotype associations 

revealed by application of NGS technology. The HLA-DRB1*11:04:01 allele (which presents 

a relatively high frequency in the present Spanish population cohort, AF=4.8%) was found 

embedded in one extended haplotype (shown here below as extended HLA haplotype 

encompassing 9-locus) that differs strikingly at the 3-/4-field in several HLA loci with its 

counterpart extended haplotype (more commonly found in South-East European populations), 

and where both haplotypes show similar haplotype frequencies in the present Spanish 

population cohort. In detail (see also [297]):  

HLA-A*24:02:01:01~C*04:01:01:06~B*35:02:01~DRB3*02:02:01:02~DRB1*11:04:01~ 

DQA1*05:05:01:01~DQB1*03:01:01:02~DPA1*01:03:01:04~DPB1*04:01:01:01 

(HF=3.0%, in the present study), which is actually highly conserved and relatively common 

in some modern-day Near-Eastern populations [614][621]; and, on the other hand,  

HLA-

A*01:01:01:01~C*07:01:01:01~B*18:01:01:02~DRB3*02:02:01:02~DRB1*11:04:01 

~DQA1*05:05:01:01~DQB1*03:01:01:03~DPA1*01:03:01:05~DPB1*04:02:01:01 

(HF=2.0%, in the present study), which appears to be more commonly present in modern-day 

populations originally from the Balkans and Adriatic-Ionian areas situated in South-East 

Europe (according at least to currently reported HLA genotype datasets at the population-

level [130][464][847]). Therefore, non-coding variation (in the latter example according to 

both HLA-DPA1 and -DQB1 loci) shows haplotype-specific patterns where these 
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arrangements also can define distinctive population-specific HLA signatures/profiles 

[131][132][137]. 

 

3) As previously mentioned, Balas et al. study [624] can be considered as one of the most 

recently reported and representative works evaluating the distribution of both HLA alleles 

(HLA-A, -B, -C, -DQB1, -DRB1 and -DRB3/4/5 loci) and significantly extended haplotypes 

(defined in Balas et al. study by family segregation analysis) at a relatively high-resolution 

level in Spanish population [624]. Results of most common HLA allele and top-ranking 

extended haplotype frequency distributions described in our present study are (until certain 

extent, and despite several important differences found in terms of study sample size; allele 

resolution level (i.e. HLA genomic coverage per locus); or released reference version of IPD-

IMGT/HLA database used in each study and number of HLA loci tested; which altogether do 

not allow a completely fair comparison between studies, being thus limited) in accordance 

with those observed in Balas et al. study [624] as well as with other main studies in Spanish 

population reported so far such as:  

UCB Bank in Barcelona (Catalonia) [221]; 2-locus haplotype frequency distributions of the 

Iberian Peninsula shown in Romòn et al. study [260]; also, those previous studies from 

Castilla-Leon [628], Girona (Catalonia) and Guipuzcoa (Basque Country) [627] as well as 

Murcia  [560]; moreover, Arnaiz-Villena, A. et al. study that summarizes main initial HLA 

findings of Iberian populations as well as other European, Near-/Middle-Eastern and North 

African populations [558]; other Spanish population cohorts reported in the AFND database 

[130][464]; and even singular (i.e. for being populations in territories geographically isolated, 

which cut off from the Iberian Peninsula) HLA datasets concretely reported in Balearic 

Islands populations [571] and a Gran Canaria Island kidney transplant patient population 

cohort [564] respectively. Yet, paucity of extensive previous studies covering both all major 
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HLA class I and class II loci and respective high-resolution 3-/4-field allelic/haplotypic data 

in other Spanish population cohorts has precluded an in-depth comparison of our results to 

existing literature. 

 

4) Moreover, it is also of significance the fact that Balas et al. study [624] (where haplotypes 

and their respective frequency distributions were based on family segregation analysis from 

a study cohort of patients and respective direct relatives) and our current study (which was 

made up of unrelated healthy individuals) show analogous results describing the most 

common HLA alleles and especially regarding the respective most common extended HLA 

haplotypes found in Spanish population. Thus, this substantial concordance between both 

studies may allow to confirm more confidently that despite HLA 2-locus and extended 

haplotypes have been inferred via EM algorithm (i.e. phased-unknown) in the present study, 

this statistical algorithmic inference seems to be accurate enough as it is quite in line with 

those phased HLA haplotypes (and corresponding frequency distributions) determined by 

family segregation analysis (being, indeed, the real HLA haplotype inheritance analysis) in 

respective Balas et al. study [624].  

 

5) The majority of the previously reported HLA studies in Spanish population have been 

conducted using lower resolution (e.g. either 1-field or 2-field or by P, G groups) typing 

methods with an important level of both allelic and phasing ambiguities, covering just a few 

HLA loci and/or are restricted to small sample size cohorts (and even not quite representative 

or where even only considering a cohort of patients but not considering a group of healthy 

individuals) of some population groups and regions [558-

561][563][564][571][600][608][625-630]. Just very recently, a few studies, including the 

present thesis work, [221][260][269][297][545][546][564][624] have overcome many of 
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these past limitations and have achieved (although still with certain important downsides 

(mainly, in relation to incomplete coverage of HLA gene sequence), especially in some cases) 

to gain a better insight of the existing genetic complexity of the Spanish general population 

and thus of the HLA diversity (both at the allele and haplotypes levels) across the Iberian 

Peninsula. Within this latter group of studies, it is worthy of note certain important 

resemblances, but also some other striking differences, regarding main HLA haplotype 

signatures which have been described in Spanish population. 

*As significant commonalities between these very recent studies, it is noteworthy the 

following instances: 

-Firstly, the top most common extended haplotypes that have been reported comprise HLA-

A*29:02~C*16:01~B*44:03~DRB1*07:01~DQB1*02:02 (frequently found in Western 

European Mediterranean populations, and in particular very characteristic of Iberian 

populations) as well as HLA-A*01:01~C*07:01~B*08:01~DRB1*03:01~DQB1*02:01 

(which is found at high frequencies especially in populations of Northern-Central European 

ancestry). 

-Secondly, haplotype frequency distributions usually over 1% have been also 

characteristically observed in Spanish population for extended haplotypes such as: 

HLA-A*30:02~C*05:01~B*18:01~DRB1*03:01~DQB1*02:01 (frequently found in 

Western European Mediterranean populations);             

or HLA-A*03:01~C*07:02~B*07:02~DRB1*15:01~DQB1*06:02 (found at high 

frequencies especially in populations of Northern-Central European ancestry). 

-Thirdly, when comparing (or searching) this top list of extended haplotypes described in 

high frequencies for Spanish population with the respective haplotype rankings described 

on major European and North American population datasets and HSCT donor registry 
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populations (e.g. [130][223][225-227][259][268][297][299][464][474][481][943]). It can 

be observed that the majority of most common Spanish (and Iberian [602]) extended 

haplotypes are also relevant haplotypes in registries and population datasets of predominant 

European ancestry. Nevertheless, there are also certain common extended haplotypes in 

Spanish population, which are not as frequent as in other foreign (mostly of predominant 

European ancestry) registries or reported populations datasets. Thus, these seem to be 

definitely specific Spanish (Iberian) HLA haplotype signatures (as they show restricted high 

frequency distributions in comparison to other reported foreign populations), where, in 

detail: 

This occurs with HLA-A*30:02:01:01~C*05:01:01:01~B*18:01:01:01~ 

DRB1*03:01:01:01~DQB1*02:01:01 (HF=5.0%, in the present Spanish population study 

(ranked #3 in Table R-7) (data also shown in [297]);  

and even more steeply in the case of HLA-A*25:01:01~C*12:03:01:01~B*18:01:01:02~ 

DRB1*15:01:01:01~DQB1*06:02:01 (HF=2.0%, in the present Spanish population study 

(ranked #7 in Table R-7) (data also shown in [297])) and also for HLA-

A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQB1*02:02:01:01 haplotype (HF=7.5%, in the present Spanish 

population study (ranked #2 in Table R-7) (data also shown in [297])). 

Therefore, this remark illustrates the importance of development of local donor registries 

(thus, reducing also the dependence on foreign registries, which may be a more complicated 

option logistically, costly and timely speaking), in addition to improvements (e.g.  refined 

and more permissible matching strategies for unrelated donor search in HSCT) of the most 

national main donor registry, with the final goal of optimizing donor search by covering 

better the different HLA genetic substrates found in Spain, which actually presents 
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remarkable geographical (regional) HLA diversity [260]. Moreover, this increased 

knowledge and its application in development of local donor registries may be applicable 

in the SOT setting as well, which presents important challenges due to time constrictions 

related to donor organ quality (i.e. ischemia time) and suitability for optimal transplantation 

in addition to the existing most relevant problem of organ shortage. Current strategies to 

overcome these burdens are limited to desensitization protocols and the recently created 

kidney exchange programs under the coordination of well-established international 

networks especially between neighboring countries [912]. 

-At the same time and as it was initially described in Balas et al. study of a very 

representative Spanish population patient cohort [624], this other following observation was 

also found in our current NGS HLA Spanish healthy population cohort study [269]. In 

contrast to many of those very frequent HLA class I haplotypes that display fairly conserved 

and strong associations with specific HLA class II haplotypes as previously shown (e.g. 

most common extended haplotypes carrying HLA-B*44:03:01:01~C*16:01:01:01 or HLA-

B*18:01:01:01~C*05:01:01:01). Interestingly, as some striking examples, two relatively 

frequent HLA class I haplotypes in Spanish population, such as HLA-

B*07:02:01~C*07:02:01:03 and HLA-B*44:02:01:01~C*05:01:01:02, showed a much 

higher variability in relation to number of associated HLA class II haplotypes (where these 

may represent negative predictive factors for finding a suitable donor in the HSCT setting 

[220]). Thus, in the case of the present study, they were found together with five and four 

different HLA class II haplotypes respectively (data shown in [297]). Therefore, the present 

NGS HLA genotype data described here for a representative Spanish population cohort 

allows an in-depth assessment of the given diversity of HLA bi-locus associations 

embedded in these described extended haplotypes. Which, as previously mentioned, implies 
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a greater level of difficulty in donor searches, since the presence of, as an example, 

uncommon HLA-C~B or -DRB1~DQB1 linkages for a given registry population decreases 

the likelihood of success in finding a full-matched donor [897]. Moreover, the present NGS 

HLA work in Spanish population [269] (as well as shown in few other recent HLA studies 

at very high-resolution (3-, 4-field) [221][624]) has allowed a very comprehensive 

description of the haplotype organization (not very well defined until now) of the region 

encompassing HLA-DRB1~DRB3/4/5 loci. In fact, although the expected linkages in this 

particular HLA-DR class II region may be observed in most cases, as it has been well-

documented in past large multi-ethnic studies (by reference studies such as Robbins et al., 

Holdsworth et al., Bontrop et al. and Andersson [75][86][344][536]), current application of 

NGS HLA genotyping has allowed a very reliable and accurate determination of 

presence/absence of these HLA-DRB3/4/5 loci and, thus, the association displayed by 

respective HLA-DRB1 alleles within the genotypes (for instance, as reported in the most 

recent 17th-IHIW Reference B-Lymphoblastoid Cell Lines component [356]). Even though 

exceptions to those expected LD patterns in HLA-DRB1~DRB3/4/5 loci associations do not 

seem to be fairly common in Spanish population, there are preceding HLA studies which 

have described certain striking outliers of these expected HLA-DR class II linkage patterns 

such as:  

The HLA-DRB1*15:03:01:01~DRB5*Absent haplotype, mainly reported in African 

American populations [75][668]; while the DRB1*15:01:01:01~DRB5*Absent haplotype 

has been mostly detected in some U.S. population groups of European (EUR) and Asian-

Pacific Islander (API) descents respectively [259]; finally, another unusual haplotype, the 

HLA-DRB1*10:01:01~DRB5*01:01:01 has been observed in a recent HLA NGS study 

carried out in South African population [272]. 
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-As previously remarked at the HLA-B allele and 2-locus HLA-B~C haplotype levels, the 

HLA-B*51:01:01:01 carrying extended haplotypes represent a very noteworthy and 

singular case which has been commonly described in main previously (and even more 

comprehensively in those most recent works [221][269][564][624]) reported HLA Spanish 

population studies and other Iberian populations [602][603]. In the present NGS HLA study, 

it can be observed that despite HLA-B*51:01:01:01 allele is relatively frequent in our 

healthy donor Spanish population cohort (AF=6.2%  in the present study, ranked #4), there 

is also a very broad range of evenly distributed haplotypic associations that HLA-

B*51:01:01:01 allele displays with HLA-C (where up to 6 different associations were 

detected in the present study) and, subsequently, with other HLA loci as well. Consequently, 

its broad LD pattern shown in displayed extended haplotype associations makes HLA-

B*51:01:01:01 allele to be classified as a very relevant negative predictive factor in Spanish 

population (i.e. where a larger, and in a longer period of time, search of donors will be 

always required to find a 10/10 matched with the same extended haplotype association), as 

also reported in other previous studies in Swiss and Spanish population cohorts [624][892]. 

Thus, this pronounced haplotype association diversity that HLA-B*51:01:01:01 displays 

with HLA-C alleles is also reflected at the extended haplotype level. In the present study, 

these are the most likely HLA-B*51:01:01:01 carrying extended haplotypes detected (data 

shown in [297]): 

HLA-A*02:01:01:01~C*02:02:02:01~B*51:01:01:01~DRB1*11:01:01:01~ 

DQB1*03:01:01:03 (HF=1.0%); 

HLA-A*02:01:01:01~C*14:02:01:01~B*51:01:01:01~DRB1*08:01:01~ 

DQB1*04:02:01 (HF=1.0%); 
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HLA-A*11:01:01:01~C*04:01:01:01~B*51:01:01:01~DRB1*04:07:01~ 

DQB1*03:01:01:01 (HF=1.0%); and 

HLA-A*24:02:01:01~C*02:02:02:01~B*51:01:01:01~DRB1*07:01:01:01~ 

DQB1*02:02:01:01 (HF=1.0%). 

In comparison to other HLA studies (also at high levels of allele resolution) in Spanish 

population [221][564], very similar HLA-B*51:01 carrying extended haplotypes are 

observed. However, in contrast to the present study (presenting HLA data at the 3-, 4-field), 

it is striking a slightly (since all related HLA-B*51:01 haplotype distributions are still evenly 

spread) but notable predominance of:  

HLA-A*02:01~C*14:02~B*51:01~DRB1*08:01~DQB1*04:02 haplotype according to the 

HLA dataset reported from Barcelona Umbilical Cord Blood (UCB) Bank (which covers 6 

Spanish regions and Andorra) in Barcelona, Catalonia (located in North-East Spain) 

[130][221][464];  

whereas, in the singular Gran Canaria Island kidney transplant patient population cohort 

[564] this other HLA-A*02:01:01~C*12:03:01~B*51:01:01~ 

DRB1*11:01:01~DQB1*03:01:01 haplotype appears to be one of the most relatively 

frequent. 

At the worldwide population level and in relation to global allele frequency distribution 

found for HLA-B*51:01:01:01, populations with high HLA-B51 prevalence lie 

predominantly north of the equator and overlie the ancient trading routes (e.g. the so-called 

“Silk Road” between the Mediterranean and the Orient regions), spanning Western Europe 

and even as far East as Japan [913]. In the European continent, Mediterranean populations 

(Italian and Greek) and in particular Iberian populations [131][221][269][297][464][602] 

show a relatively significant high frequency for HLA-B*51:01 and those same most 
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common extended haplotypes just described above. Interestingly, similar to the previously 

mentioned HLA-DQB1*03:19:01 case, same HLA-B*51:01 allele/haplotype signatures 

have been characteristically identified in North African Berber and Muslim Eastern Arab 

descent populations [130][271][285][464][611-613][808][849][855] where their genetic 

substrates show high level of relatedness and historical demographic influence on Iberian 

populations’ genetic pool [555][556][558][578][602]. Moreover, from an epidemiological 

standpoint and as previously commented, studies on populations (such as those described 

in Spanish population [633][914]) presenting a high correlated prevalence of HLA-B51 

subtypes and Behçet's disease (BD) have been of relevance in the immunogenetics field 

[913]. However, despite some studies have described possible related specific 

polymorphisms between HLA and non-HLA genes (intrinsically related with inflammation 

and the immune response) in the disease phenotype and severity [915], it has not been well-

defined yet both the impact of diversity found in HLA-B51 subtypes and the plausible 

implication of the existing diversity found at the HLA-B*51:01:01:01 carrying extended 

haplotype level. As a matter of fact, there are two main intriguing observations not fully 

explained yet [913]: 

-One is the existing wide spectrum in the relative risk of HLA-B51 for BD across different 

ethnic groups, where a contributory, if not primary, role of genetic loci centromeric to 

HLA-B51 is likely.  

-In addition, there is a striking lack of disease occurrence in Amerindian populations 

despite some of them show high HLA-B51 allele frequency distributions [130][464]. The 

main proposed hypothesis has been that this may indicate that in these New World 

populations either linkage patterns along or in the proximity of the HLA region are unusual 

(i.e. due to differential recombination events and/or rates in respective haplotype pools 



__________________________________________________________Discussion 
 

Page | 569  

   © Gonzalo Montero Martin  

between American continent and Eurasian continent populations) and/or that certain 

external (e.g. environmental/demographic) risk factors importantly present in Eurasia are 

absent or significantly different from the Americas.  

Therefore, future multi-ethnic NGS HLA studies at large scale in BD may shed light to 

resolve this matter by contributing to the fine-mapping of BD associated risk factors that 

need to be disentangled. 

-Finally, another very similar case to the previous one just shown on HLA-B*51:01:01:01 

allele/carrying extended haplotype signature, it is the HLA-B*49:01:01 allele/carrying 

extended haplotype signature almost uniquely found in Mediterranean populations (Italian 

and Greek) and especially in the Iberian Peninsula [130][221][269][464][602][624], and, in 

turn, being of special significance in the Canarias Islands [563][564] archipelago, in 

comparison to other neighboring populations of North-Central European ancestry. Where, 

once again, a relatively frequent HLA-B*49:01:01 allele (AF=4.0%) in Spanish general 

population displays an evenly broad set of haplotypic frequency distributions (HF=1.0%; 

data shown in [297]):  

HLA-A*01:02~C*07:01:01:01~B*49:01:01~DRB1*13:05:01~DQB1*03:01:01:03; 

HLA-A*11:01:01:01~C*07:01:01:01~B*49:01:01~DRB1*13:02:01~DQB1*06:09:01; 

HLA-A*23:01:01~C*07:01:01:01~B*49:01:01~DRB1*03:01:01:01~DQB1*02:01:01. 

Furthermore, this HLA-B*49:01:01 allele/carrying extended haplotype signature serves as 

an evidence of the also relatively notable genetic relatedness and influence, in this case, of 

a main sub-Saharan (probably from Central-East African regions such as Ethiopia) gene 

flow in the Iberian Peninsula as well [130][464]. Most likely, this would have been as a 

result of an ancient pre-Neolithic contribution from northward Saharan migration during 

hyper-arid conditions; and also, in a lesser extent, due to the later Islamic conquest period 
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along the North African region between 7th–9th centuries before arriving to the Iberian 

Peninsula [555][556][558][578][613][808][851]. 

 

*On the other hand, among the most remarkable dissimilarities found in the reported results 

between these most recent studies (including the present thesis work) in Spanish population 

[221][260][269][564][624], it is worth mentioning the following cases: 

-As one first striking example, it is in relation to the differently reported frequency 

distributions of both most common HLA-B*35:02:01 and HLA-B*38:01:01 carrying 

extended haplotypes. Which, indeed, may reflect the relevant Sephardic Jewish genetic 

substrate that is still present in modern-day Spanish general population, mainly as a 

historical demographic consequence of those notably numerous population groups that 

remained in the Iberian Peninsula as Crypto-Jews (maintaining a relatively high inbreeding 

rate (by living in closed communities with minimum mixed marriages) throughout the 

history) during these last centuries [558][571][572][574][578]. Thus, in the current NGS 

HLA Spanish population study and at the allele level, HLA-B*38:01:01 allele (AF=3.0%) 

is more frequently found than HLA-B*35:02:01 (AF=1.6%). Which, in turn, is in 

consonance with what has been described in some other most representative HLA Spanish 

population studies up to date, such as the ones from Barcelona Umbilical Cord Blood (UCB) 

Bank [221] and Balas et al. [624]. Nevertheless, in contrast to these other studies [221][624] 

and even in the case of respective Gran Canaria Island [564] and Balearic Islands [571] 

reported populations, this current Spanish healthy population cohort [269][297] curiously 

shows a salient predominance of the extended haplotype   

HLA-

A*24:02:01:01~C*04:01:01:06~B*35:02:01~DRB3*02:02:01:02~DRB1*11:04:01~ 
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DQB1*03:01:01:02 (HF=2.0%) (in comparison to HF=0.34% in [221]; HF=0.23% in [564]; 

or HF=1.7% in Majorcan Jewish descents (“Chuetas”) [571]); 

over its counterpart extended haplotype  

HLA-

A*02:01:01:01~C*12:03:01:01~B*38:01:01~DRB3*01:01:02:01~DRB1*13:01:01:01~ 

DQB1*06:03:01 (HF=1.0%; and whose association to HLA-A*26:01:01:01 was not 

detected in current study [269][297]) (in comparison to HF=0.10% (and even being 

HF=0.68%, when associated to HLA-A*26:01 instead) in [221]; HF=0.23% (and even being 

HF=0.70%, when associated to HLA-A*26:01 instead) in [564]; or HF=2.6%, when 

associated to HLA-A*24 in Majorcan Jewish descents (“Chuetas”) [571], whereas HF=1.7% 

when associated to HLA-A*26 instead). 

One plausible explanation behind these observed unusual extended haplotype distributions 

in the current study may rely on the fact that it can be observed how HLA-B*38:01:01 

displays a much broader range of HLA-B~DRB1 haplotypic associations (nine different 

types detected here) in contrast to the relatively more conserved HLA-B~DRB1 haplotypic 

associations shown by HLA-B*35:02:01 (only three different types observed in the present 

study) (see Table R-5). Yet, it would be necessary to further investigate these particular 

haplotype distributions in future larger scale NGS HLA Spanish population studies in order 

to completely assess their prevalence and regional variation as well as to reveal possible 

links according to specific historical demographic events of the Jewish (including both 

Ashkenazi and non-Ashkenazi (specifically Sephardic) backgrounds) genetic imprint in 

Spanish general population. 

-As a second example of main dissimilarities (although here in a lesser extent) found 

between some of these most recent and representative HLA Spanish population studies, it 
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is also noteworthy the case of HLA-B*13:02:01 carrying extended haplotypes. It has been 

well-documented that HLA-B*13:02 allele can be considered as a fairly almost worldwide 

(or global) positive predictive factor in transplant donor search due to its strong linkage 

(almost exclusively) displayed with HLA-C*06:02 allele and, principally, as it is embedded 

in a highly conserved extended HLA-A*30:01~C*06:02~B*13:02~DRB1*07:01~ 

DQB1*02:02 haplotype that shows relatively high frequency distributions across different 

ethnic groups (especially in Asian, Middle Eastern, European and Hispanic backgrounds, 

but being much less common in African ancestry) and geographical regions 

[130][259][299][460][464][492]. Thus, this may be illustrating a plausible extensive 

convergent HLA evolution case at the population-level and/or, as an alternative, it could 

represent a very common haplotype bearing a significant ancestral nature (at least according 

to the Eurasian continental landmass) [104][131][132]. In the present NGS HLA study, as 

well as in Balas et al. study [624], the only extended haplotype detected has been HLA-

A*30:01:01~C*06:02:01:01~B*13:02:01~DRB4*01:03:01:01~DRB1*07:01:01:01~ 

DQB1*02:02:01:01 (HF=1.5%, in the present study, data shown in [297]). Nonetheless, in 

Barcelona UCB Bank sample cohort study [221] and even in the case of respective Gran 

Canaria Island kidney transplant patient cohort [564] additional HLA-B*13:02 carrying 

haplotypic associations, although not as frequent, have been identified as well, thus 

revealing a supplementary level of diversity. As some main examples [130][464]: 

HLA-A*02:01~C*06:02~B*13:02~DRB1*07:01~DQB1*02:02, presenting HF=0.31% in 

[221], and HF=0.47% in [564]; 

HLA-A*68:01~C*07:01~B*13:02~DRB1*07:01~DQB1*02:02, presenting HF=0.03% in 

[221], whereas not being detected in [564]; 
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and HLA-A*02:02~B*13:02~C*08:04~DRB1*09:01~DQB1*02:02, presenting HF=0.03% 

in [221], whereas not being detected in [564]. 

Another haplotypic association carrying HLA-B*13:02 allele, although so far it has not been 

detected in Spanish population, it has been described in populations of North-East European 

descent: 

HLA-A*02:01:01~B*13:02:01~C*02:02:02~DRB1*07:01:01~DQB1*02:02:01, 

presenting, as an example, a value of HF=0.01% in the Polish BMDR [474]. 

-Lastly, there are two other extended haplotypes that should be noted as relevant examples 

of these dissimilarities found between HLA Spanish population studies most recently 

described [221][260][269][564][624]: 

-One of them is the HLA-A*02:01:01:01~C*07:02:01:03~B*07:02:01 

~DRB1*01:03~DQB1*05:01:01:03 haplotype. Which in the current study [269][297] 

shows a value of HF=3.0% (extended haplotype ranked #5 in Table R-7, including 

respective HLA-DRB3/4/5 allele), whereas in other HLA Spanish population studies 

(although at a lower allele resolution level) the frequency distribution of this same extended 

haplotype appears to be much lesser comparatively: for instance, HF=0.38% in Barcelona 

Umbilical Cord Blood (UCB) Bank [221] and HF=0.47% in Canarias patient population 

[564]. Moreover, this haplotype (characteristically found here in Spanish population) may 

be also indicative, once again, of the already discussed historical genetic contribution from 

North African Berber and Muslim Arab population ancestries in the Iberian Peninsula 

[558][563-568][578][612][808]. In this sense, it is particularly noteworthy the relatively 

high haplotype frequency distribution of the bilocus HLA-DRB1*01:03~DQB1*05:01 

(HF=4.50%) reported in the Tunisian Berber population of Djerba Island, which is 

strikingly divergent from other North African populations but closely related with Eastern 
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Mediterranean population groups [916]. At the same time, it is also striking the relatively 

common presence of this fairly conserved same extended haplotype in Latin American 

populations [130][464], illustrating also here those Mediterranean and North African (of 

both Berber and Muslim Arab backgrounds) genetic components originally coming from 

the Iberian Peninsula and that were brought mainly by the Spanish colonialism between 

the 15th and 19th centuries [267][522][547-552]. 

-Whereas the other case is related with the extended haplotype group encompassing HLA- 

C*05:01~B*18:01~DRB1*03:01~DQB1*02:01 alleles and that displays different 

associations with certain HLA-A alleles. In the present Spanish population cohort studied 

[269][297], HLA-A*30:02~C*05:01~B*18:01~DRB1*03:01~DQB1*02:01 was the most 

frequent haplotype (HF=4.8%; data shown in [297]) detected within this group, which, in 

turn, is typically found in Western European Mediterranean populations [130][464]. 

Nonetheless, in some other recent HLA Spanish population studies it has been observed to 

carry HLA-A*02:01 instead (although not as frequently observed), as some main examples, 

in Barcelona Umbilical Cord Blood (UCB) Bank (HF=0.48%) [221] and in Canarias 

patient population (HF=0.23%) [564]. 

 

6) As previously and widely discussed at the HLA allele level analysis, certain null, rare and 

novel alleles were identified in the present NGS HLA Spanish population study. Identification 

of this type of generally infrequent alleles (particularly if they are non-expressed alleles (i.e. 

resulting in lack of a functional HLA protein) or if they present any non-synonymous mutation 

across the coding region (and most importantly when affecting the PBR or ARD)) is very 

relevant in the clinical setting and particularly for assessment of donor-recipient matching in 

HSCT. Since misidentification of these type of alleles can have a negative impact on graft 

outcome and lead to a variety of transplant-related outcomes including: overall survival, 
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disease-free survival, graft rejection, acute and chronic graft-vs-host disease (GvHD), relapse 

and transplant-related mortality [208-210][458][523][524][869-871]. Furthermore, presence 

of a given null or rare allele (according to certain population/regional/ethnic group) may be a 

significant negative predictive value when searching for a full-match URD [208][209]. 

Therefore, accurate and unambiguous characterization and rapid detection of these null, rare 

and even novel HLA alleles by NGS high-throughput technologies is significantly 

contributing to minimize the potential for overlooked (especially when using limited and 

lower resolution typing methods (SSP, SSO, SBT or RT-PCR)) HLA mismatching on 

transplant outcome [302][523]. Nevertheless, traditional screening recommendations as well 

as testing guidelines for typing clinical-based decisions and accrediting regulations in URD 

registries (and, subsequently, their respective historical datasets) across the world have been 

mostly focused and delimited to the matching at 8/8 2-field high-resolution of HLA-A, -B, -C 

and -DRB1 loci and have been also based on the sequencing of only those DNA encoding 

segments for their respective ARDs as the minimum standard in allogeneic HCT 

[214][479][523]. Mainly because, up to date, there have not been yet enough large-scale 

studies (with also an enough number of strong evidences) able to define how clinically 

relevant is the mismatching between alleles showing polymorphisms located outside the ARD 

region in the HSCT setting [217][218][527][529] as well as due to the predominance (until 

very recently with the implementation of NGS-based typing methods) of more cost-effective 

legacy molecular HLA typing methods (primarily SSO and/or SBT) [144][152]. Furthermore, 

both overrepresentation of European descent population groups and underrepresentation of 

other ethnic groups (African, Asian and Hispanic broad groups as well as considering the 

large list of respective regional sub-groups) in the majority of, if not all, URD registries is still 

a major limitation as well [179][221][223-227][474][476][480][523][525][526][554][943]. 
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More representative large NGS HLA typing URD datasets (even though not phased at the 

haplotype level) may also facilitate assessment of not very well known LD patterns (due to 

the paucity of worldwide and multi-ethnic population studies until very recently) [101][523] 

displayed by these rare/null/novel alleles as well as to infer the most common extended 

bearing 3-/4-field haplotypes respectively. In fact, this current and future available NGS HLA 

information across worldwide URD registries (e.g. prevalence of null/rare/novel alleles (thus, 

defining CWD/CWID categories), most common coding positions/regions presenting these 

mutations and LD patterns data by ethnic group) in relation to a given population/region may 

be very instrumental for those H&I laboratories still with limited access or logistics for 

implementation of NGS-based HLA typing methods. As these H&I laboratories may be able 

to predict (or at least to suspect) presence of these null/rare/novel alleles based on these better 

documented LD patterns and also to have improved resources for guiding testing decisions 

and laboratory typing practices (e.g. permanently include exon 4 as part of the screening 

regimen for HLA class I alleles since this exon region has been defined as a common site 

outside of the ARD for a mutation resulting in a null allele to occur [523]). 

In the present NGS HLA Spanish population study of a healthy cohort, these were the most 

likely or tentative (i.e. inferred via iterative EM algorithm and/or based on common LD 

described in large datasets [297]) extended bearing haplotypes respectively found: 

-Novel allele-carrying haplotypes identified in the present study:  

HLA-

A*29:02:01:01~C*12:03:01:01~B*38:20:02~DRB4*01:03:01:01~DRB1*07:01:01:01~

DQB1*02:02:01:01 (HF=0.19%);  

and 
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HLA-

A*11:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB3*02:71~DRB1*03:01:01:01~ 

DQB1*02:01:01 (HF=0.19%). 

 

-Null allele-carrying haplotypes detected in the present study:  

HLA-A*23:01:01~C*04:09N~B*44:03:01:01~DRB4*01:01:01:01~DRB1*07:01:01:01~ 

DQB1*02:02:01:01 (HF=0.38%), as similarly described for other European descent 

population groups in previous studies [523][871][877][880]. As an additional remark, it is 

worth to mention that, firstly, given the predominance and relatively high allele frequency 

distribution of HLA-B*44:03:01:01 over its counterpart -B*44:02:01:01 in Spanish (and 

Iberian [602]) population (e.g. [221][260][269][564][624]) and, conversely, significantly 

differing from other European ancestry populations across the world (e.g. [130][223][225-

227][259][268][297][299][464][474][481][917]). And, secondly, also considering the very 

strong association displayed by HLA-B*44:03:01:01 allele with the null HLA-C*04:09N 

allele (D’= 1.0, see Table R-5). Thus, the Iberian population could be potentially 

considered as a plausible good URD European population pool in order to find 

CWD/CWID HLA-C*04:09N-bearing haplotypes and in contrast to other European 

populations presenting much lower occurrences of this null HLA-C*04:09N allele 

[523][879]. 

Whereas HLA-A*02:01:01:01~C*06:02:01:01~B*57:01:01~ 

DRB4*01:03:01:02N~DRB1*07:01:01:01~DQB1*03:03:02:01 (HF=0.38%) and  

HLA-A*29:02:01:01~C*04:01:01:01~B*44:03:01:01~DRB4*01:03:01:02N~ 

DRB1*07:01:01:01~DQB1*03:03:02:01 (HF=0.38%), were the most common haplotypes 

observed in the present Spanish population cohort encompassing this other null HLA-DRB4 
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allele. In this case, similar trends have been also observed for some other European 

ancestry populations [876][881][882]. Future and larger population studies focused on 

HLA-DRB3/4/5 genes may also shed more light on the clinical relevance of these genes in 

transplantation setting [118]. 

 

-Rare allele-carrying haplotypes considered in the present study: 

HLA-A*02:01:01:01~C*12:166~B*52:01:01:02~DRB5*01:02~DRB1*15:02:01:02~ 

DQB1*06:01:01 (HF=0.19%), and as previously found in other Spanish individual [885]; 

and 

HLA-A*02:05:01~C*12:03:01:01~B*15:220~DRB4*01:03:01:01~DRB1*07:01:01:01~ 

DQB1*02:02:01:01 (HF=0.19%), as also similarly described in African descent 

individuals [886][887].  

Certainly, future NGS HLA studies of larger population sample sizes at a wider geographic 

scale across the Iberian Peninsula will be needed to accurately detect and also to grasp the 

real prevalence of novel/null/rare alleles as well as to fully describe respective most common 

bearing haplotypes and segregation patterns in Spanish general population. In-depth 

knowledge of this population-specific HLA data will improve current local HLA-typing 

practices and criteria. 

7) As mentioned before, assessment of extended HLA haplotypes diversity (and 

corresponding LD patterns) across worldwide populations and its geographical/regional 

variation significantly contributes in the analysis of tracking migrations of modern 

populations as well as gaining a better insight in anthropological studies [131-133]. NGS HLA 

data from the current Spanish unrelated population study (in combination with estimation of 

extended haplotypes via iterative EM algorithm) has also allowed us to identify certain 
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singular genetic traces [131-133] at very high-resolution and coverage across the HLA region 

that are present in modern-day Spanish population. These observed and distinctive genetic 

remnants correspond to unique HLA genetic signatures of particular ethnic backgrounds that, 

in turn, share similar parallel patterns in relation to their respective demographic history and 

anthropological influence in the Iberian Peninsula throughout its history and still at the present 

time. As previously described in the INTRODUCTION section of the present thesis work, 

there are two specific demographically non-negligible minorities that arrived to the Iberian 

Peninsula several centuries ago (starting from the Middle Ages or even prior to that period of 

time (e.g. written documents mentioning the presence of Jewish communities in Iberia 

accumulate from the beginning of the Visigoth period onward in the 4th century CE)) and are 

worth to be highlighted in this section of the discussion of the present thesis work: 

-Sephardic Jews, where the majority of them as Crypto-Jews had embraced conversion to 

Catholic faith in order to avoid the 1492 Edict of Expulsion and who were socially well 

integrated and highly involved mainly in trading and banking economic activities (with a very 

heterogeneous social status) of the Iberian society [572][574]. 

-And Spanish Romani Gypsies, who, although with an important nomadic way of life, were 

mostly settled in Southern regions of the Iberian Peninsula where they were more socially 

accepted, being highly involved in the development of regional folkloric culture and who 

generally adopted and practiced Christian traditions [580][581]. Altogether, this facilitated 

their integration also in the Iberian society differing from other regions of Europe where these 

Romani itinerant communities were either persecuted and expulsed or even enslaved in some 

instances along history [590][591]. 
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Thus, these two communities (being both part of their respective historical Diasporas: Jewish 

Diaspora starting from Near-/Middle-East [918]; and Romani Diaspora tentatively starting 

from North India [594]) retained their continuity within the Iberian general population over 

past centuries, with a history characterized by geographical isolation and/or religious and 

sociocultural constraints against intermarriage but still with an important level of integration 

within the Iberian society and conversely, as a relevant example, to the case of “moriscos” (as 

North African Arab-Berber descendants), who were mostly (if not completely) expulsed from 

the Iberian Peninsula starting in 1609 under the reign of Philip III of Spain [555]. Nonetheless, 

and at the same time, as it is described with further detail in the following points, due to the 

long period of time of their settlement in the Iberian Peninsula (about 8-10 centuries) there is 

a very significant series of genetic imprints and overall genetic substrate left by North African 

Arab-Berber background that also remains in modern-day Iberian populations 

[130][271][285][464][558][563-568][578][611-613][808][849][851][855].  

In consonance with results and trends described in genetic studies based on genome-wide 

analyses and using different uniparental and/or biparental genetic markers (e.g. single 

nucleotide polymorphisms (SNPs), mitochondrial markers (mtDNA), Y-haplogroup or 

microsatellite markers) [582][585-588][592-594][918][919]. Previously reported low-

resolution and limited sample size/gene coverage HLA studies have initially revealed some 

of these unique signatures (and plausible origins), although not completely still, for each of 

these two genetic backgrounds respectively: Sephardic/North African/Ashkenazi/Eastern 

Jewish (and also shared with those culturally non-Jewish but genetically related populations 

such as Arab populations originally from the Levant) [571][614-621][808][832]; and 

Spanish/European Romani Gypsies (and tentative founder population from North India) 

[589][757][758][920-925]. To the best of our knowledge, the present NGS HLA Spanish 
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population study has enabled the depiction at a very high-resolution 3-/4-field level for the 

first time of certain characteristic Sephardic Jewish and Spanish Romani Gypsies extended 

HLA haplotype signatures (and moreover, including the characterization of all 11 major HLA 

loci). In summary: 

-Distinctive Sephardic Jewish, and in general Middle-Eastern (e.g. [621]),   

HLA-B*35:02:01                                         

(HLA-A*24:02:01:01~C*04:01:01:06~B*35:02:01~DRB3*02:02:01:02~ 

DRB1*11:04:01~ DQB1*03:01:01:02 (HF=2.0%; in the present study [269][297])); and  

HLA-B*38:01:01  

(HLA-A*02:01:01:01~C*12:03:01:01~B*38:01:01~DRB3*01:01:02:01~ 

DRB1*13:01:01:01~DQB1*06:03:01 (HF=1.0%; in the present study [269][297]))  

bearing extended haplotypes (that are previously and later discussed in more detail in the 

present thesis work) were found in this studied Spanish population cohort. These haplotypes 

and their singular LD patterns shown are very common in other populations of historical 

Jewish origin [614][615] as well as in highly admixed populations such those from the 

Americas, which present a relevant and complex Mediterranean/Middle-East substrate 

brought by Spaniards during the colonial period (15th -19th centuries) and that includes both 

Arab and Sephardic Jewish components [224][267][522][547]. Thus, in line with previous 

HLA studies, different main Jewish population groups (Sephardic/North 

African/Ashkenazi/Eastern Jewish among others) throughout the history and still currently 

share a common ancestral gene pool (dating back to their common origins more than 5700 

years ago) but there are also dissimilarities (observed as genetic heterogeneity and diversity) 



__________________________________________________________Discussion 
 

Page | 582  

   © Gonzalo Montero Martin  

found between these Jewish populations due to their isolation for long periods of time at 

that given geographical location and a gene flow from local neighboring populations 

enriching that genetic variety [130][464][558][571][572][574-577][614-621][926][927]. 

-Secondly, the very distinctive Spanish Romani Gypsy (and most likely inferred via EM) 

full haplotype (9-locus) HLA-A*01:01:01:01~C*15:02:01:01~B*40:06:01:02 

~DRB3*02:02:01:01~DRB1*14:04:01~DQA1*01:04:02~DQB1*05:03:01:01~ 

DPA1*01:03:01:02~DPB1*02:01:02) (HF=0.19%; in the present study) [757] was 

detected in the present Spanish population cohort, and described (as far as our knowledge) 

for the first time at this very high-resolution allele level. HLA data from previous studies in 

European Romani Gypsy population groups (e.g. high frequency distributions of HLA 

lineage alleles (and respective bearing haplotypes) underscored and highlighted in bold 

above in addition to other commonly found alleles such as HLA-DRB1*15:02, -

DRB1*16:01 or -DRB1*10:01 in Romani Gypsy populations and also different far related 

East Asian populations) [130][464][589][757][758][920-925] also supports the hypothesis 

of a common ancestral origin (from Northwestern India) of different nomadic European 

Romani Gypsy population groups, which maintained a relatively reduced polymorphism 

most likely due to the given founder effect and as a consequence of a high degree of 

endogamy and intramarriage throughout their itinerant history. At the same time, in a similar 

way to what it is observed with the Jewish Diaspora, also these different European Romani 

Gypsy population groups (e.g. from Andalusia (Southern Spain), Madrid (Central Spain), 

Czech Republic and Hungary) show certain level of HLA disparity due to the very likely 

genetic flow contribution from respective local neighboring populations although in a small 

extent.  
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These aforementioned examples illustrate, once again, how informative HLA polymorphism 

at the population-level can be to detect signals of human peopling and demographic history 

in modern populations [131-133]. Increased and more accurate knowledge of HLA 

allele/haplotype diversity and prevalence in these two specific demographically non-

negligible minorities and genetic backgrounds within present-day Iberian general population 

may also have important clinical implications such as in the HSCT setting. Furthermore, 

future larger (both in sample size and at a wider geographical scale) NGS HLA 

anthropological studies will be also fundamental for subsequent epidemiological work aimed 

to elucidating the prevalence and association between HLA genes and related diseases as well 

as drug-induced hypersensitivity reactions more commonly found in these relatively closed 

and isolated population groups/genetic backgrounds (at least historically for many centuries) 

[577][758][922][926-929]. Thus, genetic screening in this kind of historically isolated 

population groups may be very informative, since there may be specific inherited disorders 

(relatively conserved due to high degree of endogamy and intramarriage practiced) that tend 

to be observed more frequently within that respective particular group than in the general 

population. As this clustering of disorders also reflects the common ancestral gene pool of the 

individuals within these peculiar population groups. At the same time, by studying such 

diseases within populations in which they are most common, it has been possible to better 

disentangle and identify the genes responsible for some of these disorders [927]. 

Finally, in addition to their relevant genetic, cultural and socioeconomic impact in the Iberian 

Peninsula throughout history and nowadays, it is also noteworthy that there has been recently 

also a remarkable institutional recognition of all these ethnic communities in Spain [930-932]. 

 

8) Another set of singular Spanish population groups, which also need to be remarked, are 

those related with territories geographically isolated, cutting off from the main landmass of 
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the Iberian Peninsula. These particular Spanish population groups are found respectively in 

the Balearic Islands (Majorca, Minorca, and Ibiza islands situated in the Mediterranean Sea) 

and in the Canary Islands (Santa Cruz de Tenerife, Fuerteventura, Gran Canaria, Lanzarote, 

La Palma, La Gomera, El Hierro and La Graciosa islands located off the North African 

Atlantic coast). Which, in turn, have experienced certain unique demographic events (and 

even, hypothetically, some indistinguishable natural selection events) and specific gene flows 

(also observed at the HLA system level) over the centuries that in some cases clearly differ 

(or are observed in a greater manner) from those identified across the Iberian Peninsula. 

Firstly, in the case of Balearic Islands, their strategic geographical location was from ancient 

times of great importance for the many maritime trading routes that crisscrossed the 

Mediterranean Sea. Consequently, important Jewish (Majorcan Jewish community known 

locally as “Chuetas”) and other related Near-/Middle-Eastern communities settled for 

relatively long periods of time and have left their genetic imprint in addition to the gene flow 

coming from main Iberian populations throughout the history 

[558][571][574][577][620][622][623]. Similarly, the Canary Islands show a parallel 

demographic history given their also unique geographical location. Here, despite the relatively 

predominant genetic resemblance of modern-day Canary Islanders to other Southern 

European and Mediterranean populations. Historical demographic events (which are reflected 

in the several genetic population backgrounds and substrates that have been detected) 

importantly comprise initial settlement and posterior complex admixture of first local 

indigenous people (who are though to come originally from North African regions as they 

share a common ancestral gene pool with those autochthonous Berber North African 

populations) with sub-Saharan Africans and Europeans which, overall, have shaped a very 

distinctive genetic makeup [563-568][610-613]. Thus, this characteristic genetic landscape 
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across the Canary Islands has also relevant medical implications related to disease 

susceptibility and specifically in the context of allergy, where around 20% of the population 

presents allergy-related diseases [566][933]. 

Regarding the depiction of the HLA system and its diversity on these peculiar Balearic and 

Canary islander population groups respectively, it is noteworthy these previously reported 

largest HLA datasets in a main Balearic Islands population cohort [571] and, on the other 

hand, a Gran Canaria Island kidney transplant patient population cohort [564]. In summary: 

-As for Balearic Islands population cohort from Crespí et al. study [571] (including 

Majorcan (N=407), Minorcan (N=94), Ibizan (N=88) populations, and also Majorcan 

“Chuetas” group of Jewish ancestry (N=103)). In general, the most common extended 

haplotypes (e.g. HLA-A*02:01~C*07:01~B*08:01~DRB1*03:01~DQB1*02:01 or HLA-

A*29:02~C*16:01~B*44:03~DRB1*07:01~DQB1*02:02) show a very similar frequency 

distribution to those observed in Spanish mainland (within the Iberian Peninsula) population 

[221][260][269][558][624]. Interestingly, it is also evident the significant Jewish 

(“Chuetas”) substratum present in modern-day Balearic Islands population with the 

presence of common HLA-B*35:02:01 and HLA-B*38:01:01 bearing extended haplotypes 

of Jewish background previously described [130][464][558][571][574][614-621]. 

-In the case of the Gran Canaria Island kidney transplant patient population cohort (n=215 

unrelated subjects) [564], and in addition to the most typical Spanish Iberian HLA 

haplotypes that are jointly shared and have been already explained 

[221][260][269][558][624]. Strikingly, the most frequent extended haplotype HLA-

A*33:01~C*08:02~B*14:02~DRB1*03:01~DQB1*02:01 (HF=3.50%) described in [564] 

it is not found as frequent in general Spanish population (e.g. in the present study 

(HF=0.98%; (data shown in [297])); or in Barcelona UCB Bank study [221] (HF=0.24%)). 
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In contrast, this haplotype (at least at the HLA-B~C association level) appears to be 

relatively common in Berber North African populations [130][464][611-613] (e.g. HLA-

A*11:01~Cw*08:02~B*14:02~DRB1*14:01; (HF=1.6%) in [611]; even though it does not 

carry the same exact HLA-A and -DRB1 alleles). Moreover, it is also interesting to remark 

an observed inverted or dissimilar ratio of haplotype frequency distribution in relation to 

three main HLA-C*08:02~B*14:02 bearing haplotypes found between different Spanish 

population cohorts [221][269][297][564] due to plausible population substructure or 

stratification and regional variation previously reported [260]. Where: 

-HLA-A*33:01~C*08:02~B*14:02~DRB1*03:01~DQB1*02:01; with a value of 

HF=3.50% in Gran Canaria patient population cohort [564]; whereas HF=0.98% in the 

present study (data shown in [297]); and HF=0.24% in Barcelona UCB Bank study [221]. 

-HLA-A*33:01~C*08:02~B*14:02~DRB1*01:02~DQB1*05:01; with a value of HF=1.9% 

in Gran Canaria patient population cohort [564]; whereas HF=1.96% in the present study 

(data shown in [297]); and HF=0.92% in Barcelona UCB Bank study [221]. 

-And HLA-A*02:01~C*08:02~B*14:02~DRB1*03:01~DQB1*02:01; with a value of 

HF=0.47% in Gran Canaria patient population cohort [564]; whereas HF=0.98% in the 

present study (data shown in [297]); and HF=0.14% in Barcelona UCB Bank study [221]. 

Nevertheless, at the present thesis work these two peculiar insular Spanish population groups 

were not covered or not sufficiently (where only a very small sample size (n~25) from Gran 

Canaria island was tested). Therefore, future larger NGS HLA studies of these respective 

Balearic and Canary Islander populations, where considering each and every of their 

corresponding islands, will shed more light on the HLA genetic backgrounds and diversity as 

well as the level of relatedness and demographic history events (e.g. migration patterns and 

the peopling in each case) that shaped their modern-day genetic population makeup. 
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9) Referring now, more in detail, to the main similarities and common HLA haplotype 

signatures found between the current NGS HLA Spanish population study and related (as 

earlier explained: historically, culturally, geographically, and thus also genetically linked to 

Spanish population) foreign populations (previously reported), relative to the description of 

extended HLA haplotype frequency distributions (mainly focusing on extended haplotypes 

encompassing some of these loci or all HLA-A~C~B~DRB3/4/5~DRB1~DQB1 (see Table R-

7 for results of the present Spanish population cohort)). The following points are particularly 

worth to be mentioned: 

-In Spanish Americans cohort from Mack et al. study [772], Hispanic ethnic groups (mostly 

of Cuban and Mexican ancestries) in the U.S., which are reported in the NMDP BM U.S. 

registry [259][299], and other related studies of these same ethnic groups found in the U.S. 

also described in the AFND database [130][464]: common Spanish haplotypes, described 

in the present study, such as HLA-A*29:02~C*16:01~B*44:03~DRB1*07:01 (e.g. 

(HF=2.3%) in [772]; (CARHIS-Caribbean Hispanic group, with HF=2.9%); (MSWHIS-

Mexican or Chicano group, with HF=1.4%) [259][299]) or  

HLA-A*01:01~C*07:01~B*08:01~DRB1*03:01 (e.g. (HF=2.1%) in [772]; (CARHIS-

Caribbean Hispanic group, with HF=1.7%); (MSWHIS-Mexican or Chicano group, with 

HF=1.8%) [259][299])  

are frequently found. Thus, the most common haplotypes in individuals of Latin American 

descent currently living in the United States (as similarly observed in other Latin American 

countries [132]) also present similar high frequencies in populations of European and, 

especially, of Spanish ancestry. 

-With many similarities to the first above mentioned group, and as a representative example 

of what may be generally observed in the majority of South American populations (e.g. 
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registry populations) that show important and still current Spanish HLA genetic influence 

and background [130][464]; Argentinian donor registry population from Hurley et al. NGS 

HLA study [224] reported the following four most frequent haplotypes at the 3-/4-field 

allele resolution level: 

 HLA-

A*01:01:01:01~C*07:01:01:01~B*08:01:01:01/02~DRB1*03:01:01~DQB1*02:01:01 

(HF=2.8%), which presents an HF=8.0% (ranked #1) in the present study (including 

respective HLA-DRB3/4/5 allele see Table R-7); 

HLA-A*29:02:01:01~C*16:01:01~B*44:03:01:01~DRB1*07:01:01~DQB1*02:02:01 

(HF=1.9%), which presents an HF=7.5% (ranked #2) in the present study (including 

respective HLA-DRB3/4/5 allele see Table R-7); 

 HLA-

A*03:01:01:01~C*07:02:01:03~B*07:02:01:01/03~DRB1*15:01:01~DQB1*06:02:01 

(HF=1.3%), which presents an HF=4.5% (ranked #4) in the present study (including 

respective HLA-DRB3/4/5 allele see Table R-7); 

and HLA- 

A*33:01:01:01~C*08:02:01:01~B*14:02:01:01~DRB1*01:02:01~DQB1*05:01:01 

(HF=1.2%), which presents an HF=2.0% (ranked #7) in the present study (including 

respective HLA-DRB3/4/5 allele see Table R-7). 

When comparing extended HLA haplotype results of these two NGS HLA studies 

(Argentinian population) [224] (original Spanish population) [269], it is noteworthy and 

striking not only that they both share the same most common (in high frequency) extended 

HLA haplotypes but also how these distinctive 3-/4-field HLA haplotype associations 

(revealed by application of NGS technology) are highly conserved between both 
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populations. Thus, this exemplifies the strength of LD established and retained at the non-

coding variation level as well as at the coding level within the HLA system and at the 

population-level, even in spite of, for instance, the incessant both recent and past extensive 

demographic events of population admixture and ongoing migration waves in Latin 

American countries [852][853]. 

-In addition to these two previous U.S. Hispanic and South American groups of HLA 

population studies. It is also of note the relatively high level of relatedness (based on the 

observed most common extended HLA haplotype distributions) between original Spanish 

general (mainland) population [269] and reported Mexican Admixed (Mestizo) populations 

(especially in regards to their genetic component of European (Caucasoid) descent) 

[130][267][464][522][547-552]. Where it is well-known that the complex and 

heterogeneous genetic background of modern-day Mexican Admixed (Mestizo) populations 

is a result of the recent past (i.e. mainly between XV and XX centuries) admixture of 

predominantly Native Indian (mainly Amerindian) and European (mainly Spanish) as well 

as, in a lesser extent, Black (mainly sub-Saharan African) and, even, Asian (mainly from 

South East Asia) genetic substrates where their contribution appear to vary according to the 

geographic location [130][267][464][522][547-522]. These genetic singularities are also 

observed in rest of Latin American populations [852][853]. Thus, considering Zúñiga et al. 

HLA study in N=234 non-related admixed Mexican individuals [547] as a very adequate 

representative example, some of the most common extended HLA haplotypes of European 

ancestry (which are found in high frequencies especially in original Spanish general 

(mainland) population [269] (see Table R-7, including respective HLA-DRB3/4/5 allele)) 

are as follows: 

HLA-A*02:01~C*07:02~B*07:02~DRB1*15:01~DQB1*06:02, (HF=0.9%); 
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HLA-A*30:02~C*05:01~B*18:01~DRB1*03:01~DQB1*02:01, (HF=0.6%); 

HLA-A*01:01~C*07:01~B*08:01~DRB1*03:01~DQB1*02:01, (HF~0.3%); 

and, HLA-A*29:02~C*16:01~B*44:03~DRB1*07:01~DQB1*02:02, (HF=0.4%). 

Thus, in the case of Mexican Admixed populations (and as it similarly occurred in other 

Latin American countries), it is widely accepted that this currently observed (in the context 

of HLA here) genetic European (Caucasoid) ancestral component originally came 

principally from Spain. Where the Spaniards (i.e. mainly Spanish conquerors and colonizers 

from Spanish regions such as Andalucía, Leon, Extremadura, and the two Castillas), in 

addition to other minor European groups mainly from Portugal and Genoa (Italy), initially 

arrived to Mexico early in the 16th century and they rapidly and extensively settled all over 

this Central American territory (the so-called, at that time, Viceroyalty of the New Spain). 

Then, this initial arrival was continued by several massive migration waves of more 

colonizers (although not only Spanish but also, in a lesser extent, French, German, and 

English groups as well) during the 17th century and it prevailed through the next two 

centuries[130][132][267][464][522][547-552]. 

At the same time, still in relation to this genetic component of European (Caucasoid) 

ancestry, there are also striking Near-/Middle-Eastern HLA genetic signatures or features 

(e.g. typically found, as some examples, in Lebanese population [621] as well as in both 

Ashkenazi and non-Ashkenazi (e.g. Sephardic) Jewish communities/regions 

[130][132][464][614]) also presented by modern-day Mexican Admixed populations (that, 

indeed, are also shown by modern-day Hispanic ethnic groups in the U.S. [259][299] as 

well as by original Spanish general population [269]) which are defined by the presence of, 

as some main examples, these three relatively frequent and distinctive (fairly conserved 

across worldwide populations) HLA haplotypes: 
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Firstly,   

HLA-A*24:02~C*04:01~B*35:02~DRB3*02:02~DRB1*11:04~DQB1*03:01, where: 

HF=2.5%, in Lebanese population cohort (N=426) [621]; 

HF=1.7%, in Hadassah donor registry in Jerusalem (Israel) (N= 55,801) [614]; 

HF=0.8%, in CARHIS-Caribbean Hispanic group in the U.S. donor registry [259][299]; 

HF=0.5%, in MSWHIS-Mexican or Chicano group in the U.S. donor registry [259][299]; 

HF=0.4%, in Mexican Admixed (Mestizo) cohort study [547]; 

HF=2.0%, in the present Spanish population study, (ranked #7) (see Table R-7, including 

respective HLA-DRB3/4/5 allele). 

This haplotype is also present in other populations of European ancestry but it is found, 

in general and comparatively, even less frequently [130][297][464][481][621]. Whereas, 

comparatively, low or very low frequencies of this haplotype are found in populations of 

African and Asian ancestries [130][297][464][481][621]. 

Secondly, this other (although not as conserved and frequent) haplotype 

HLA-A*02:01~C*12:03~B*38:01~DRB3*01:01~DRB1*13:01~DQB1*06:03, where: 

HF=0.2%, in Hadassah donor registry in Jerusalem (Israel) (N= 55,801) [614]; 

HF=0.05%, in Hispanic group, as a whole, (including both CARHIS-Caribbean and 

MSWHIS-Mexican or Chicano ethnic groups) from the U.S. donor registry [259][299]; 

HF=1.0%, in the present Spanish population study, (ranked #9) (data not shown, see 

[297]); 

whereas, this specific extended haplotypic association has not been reported in Lebanese 

population cohort (N=426) [621]; instead, the singular HLA-B*38:01 allele is found 

displaying these other more frequent haplotype associations: HLA-

A*26:01~C*12:03~B*38:01~DRB4*01:03~DRB1*04:02~DQB1*03:02 (HF < 0.01%) 
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and HLA-A*26:01~C*12:03~B*38:01~DRB3*02:02~DRB1*11:04~DQB1*03:01 

(HF=1.3%); and similarly, the haplotype association trends observed in the case of 

reported Mexican Admixed (Mestizo) cohort study [547] are the following: HLA-

B*38:01~C*12:03~DRB1*04:02~DQB1*03:02 (HF=0.4%) and HLA-

B*38:01~C*12:03~DRB1*07:01~DQB1*02:02 (HF=0.4%). As a matter of fact, these 

HLA-B*38:01 carrying extended haplotypes are also present and are relatively common 

in Jewish population HLA dataset from the Israeli Hadassah donor registry [614], 

containing respectively HLA-: “DRB1*04:02” (HF=2.9%); “DRB1*11:04” (HF=0.1%); 

and “DRB1*07:01” (HF=0.3%). 

In addition, the 

HLA-A*33:01~C*08:02~B*14:02~DRB3/4/5*Absent~DRB1*01:02~DQB1*05:01 

haplotype, where: 

 HF=1.6%, in Lebanese population cohort [621]; 

HF=1.0%, in Hadassah donor registry in Jerusalem (Israel) [614]; 

HF=0.6%, in CARHIS-Caribbean Hispanic group in the U.S. donor registry [259][299]; 

HF=0.8%, in MSWHIS-Mexican or Chicano group in the U.S. donor registry [259][299]; 

HF=0.4%, in Mexican Admixed (Mestizo) cohort study [547]; 

HF=2.0%, in the present Spanish population study, (also ranked #7) (see Table R-7, 

including respective HLA-DRB3/4/5 allele and [297] for further details). 

In this case, this haplotype is similarly common in other populations of European ancestry 

[130][297][464][481][621]. In contrast, comparatively, low or very low frequencies of 

this haplotype are found in populations of African and, especially, Asian origins 

[130][297][464][481][621]. 
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Hence, the relatively common presence of these Near-/Middle-Eastern haplotypes in 

modern-day Mexican Admixed populations could be identifying (at least partially) the 

original contribution of the Sephardic Jewish (e.g. coming from the Iberian Peninsula, the 

Near/Middle East, and North Africa) migration waves to the New World (i.e. the Americas) 

due to relevant historical facts such as the Edict of Expulsion (issued by the joint Catholic 

Monarchs of Spain) of (Sephardic) Jews from Spain at the end of the 15th century 

[132][572][575][576]. 

Furthermore, another distinctive and interesting Eurasian-Mediterranean group of 

haplotypes is the one that carries the allele pair HLA-DRB1*14:54~DQB1*05:03, where 

one of the most typical and most common extended haplotype distribution detected is the 

following: 

HLA-A*02:01:01:01~C*12:03:01:01~B*35:03:01~DRB3*02:02:01:01~ 

DRB1*14:54:01~DQB1*05:03:01:01, with HF=1.5% and here shown at the allele 

resolution level (according to released version 3.25.0 of IPD-IMGT/HLA database) as 

obtained in the present Spanish population study. Where, as some other examples, 

alternative allele pairs such as HLA-C*01:02:01~B*27:05:02 or HLA-

C*07:01:01:01~B*18:01:01:02 may be also found, but in a lesser frequency, within this 

same extended haplotype. Thus, despite this above mentioned extended haplotype is not 

very commonly detected, it has been also more frequently observed in other Spanish 

population cohorts as well as in Mediterranean-European, Near-/Middle-Eastern, Mexican 

Admixed, Latin American and Hispanic population groups reported so far (e.g. 

[130][221][224][297][464][522][547-552]). Nevertheless, it should be noted that the 

relative allele prevalence and frequency (and, thus, associated haplotype frequency 

distributions at the population-level) of HLA-DRB1*14:54:01 may be still underestimated 
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and not well-defined since it has not been routinely characterized by legacy HLA typing 

methods (i.e. only covering exon 2) in the majority of previous studies (and with very few 

exceptions [823]). Consequently, it may have been usually considered and included under 

the respective broad, non-specific and ambiguous HLA-DRB1*14:01:01 allele group. 

Where, HLA-DRB1*14:01:01 (Tyr (codon 112 (TAC), exon 3)) and HLA-DRB1*14:54:01 

(His (codon 112 (CAC), exon 3)) alleles only differ in one single position in exon 3 as 

indicated here. Thus, as previously commented, a more widespread application of NGS 

technology for HLA genotyping may allow a much more accurate assessment of allele 

prevalence and frequency (and, thus, of associated haplotype frequency distributions and at 

the population-level as well) of all possible HLA coding (as well as non-coding) variants as 

the given example here for HLA-DRB1*14:54:01 allele (which, in fact, appears to be more 

prevalent than the respective HLA-DRB1*14:01:01 allele in reported worldwide 

populations (e.g. [297])). 

Lastly, as part of this discussion sub-section relative to Mexican Admixed (Mestizo) 

populations and its HLA genetic relatedness with original Spanish general population (as 

the examined cohort of the present study). It is also noteworthy that an important portion of 

the most common haplotypes described in Mexican Admixed (Mestizo) populations 

[130][132][267][464][522][547-552] (as it is also observed in South American populations 

[130][224][464] and other Hispanic ethnic groups [130][259][299][464] respectively) 

contain alleles uniquely found (considered “quasi-specific”) in corresponding regional and 

characteristic indigenous/native American (mainly Amerindian) ethnic groups. Therefore, 

overall, modern-day Latin American populations present a complex, stratified and highly 

variable HLA allele and haplotype frequency distribution. Firstly, owing to modern and 

incessant population admixture between neighboring regions/countries but also with 



__________________________________________________________Discussion 
 

Page | 595  

   © Gonzalo Montero Martin  

important immigrant foreign groups (in large and several migration waves that have been 

occurring in Latin American countries during these last centuries) from distant regions of 

the world (thus including European, African and Asian migrant groups) that have been 

shaping and influencing on Amerindian ancestral population genetic proportions, which 

have been also fluctuating through time. And secondly, due to the heterogeneous and still 

not well-defined origin of this just mentioned intricate cluster of ancestral Native American 

populations/groups (and their respective genetic substrates) that originally comprised and 

described all the different North and South American Indian groups [852][853]. Where the 

main and most accepted theories (supported by different genetic markers, including HLA, 

as well as extensive anthropological evidences) about their origins and the peopling of the 

Americas are based on: 1) classical three-waves theory from Asia through the Bering land 

bridge (Amerindians (most North and South American Indians; 12,000 years BCE), Na-

Dene (Athabascans, Navajo, Apache; 8,000 years BCE) and Eskimo-Aleuts (6,000 years 

BCE)); and also 2) Trans-Pacific route (even considered two-way) of American peopling 

from Asia and Polynesia, where even prehistoric contacts between Amerindians and Pacific 

Islanders are also (as in the case of the 1) classical three-waves theory) strongly suggested 

by genetic data (including HLA) as well as anthropological, archaeological, linguistic, and 

other cultural traits [934-938]. Thus, these singular HLA haplotypes of diverse Native 

American backgrounds are not only found in respective original isolated (some of them still 

nowadays) indigenous ethnic groups but these haplotypes are also importantly and 

commonly (i.e. found in relative high frequencies) present in modern-day admixed Latin 

American general populations. In this sense, this has important implications on health-

related issues (e.g. transplantation, pharmacogenetics or immunotherapies depending on 

HLA profiling) at the population-level, where it needs to be considered not only the given 
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major local and original Latin American population groups but also those respective 

emigrant Latin American population communities around the world [600][852][939]. 

Nevertheless, the paucity of high resolution HLA typing data is still, and especially, 

manifest in all those present-day descendant groups of the originally indigenous Native 

(North and South) American groups (with very few exceptions; e.g. 

[130][224][267][464][471][504][938]). In this regard, and in the context of Spanish 

population, it is well-known the recent (i.e. especially for the past ~20-30 years) and 

significant series of demographic events of Latin American population groups emigrating 

to Europe, mainly due to socioeconomic factors, and especially to Spain because of evident 

cultural and linguistic resemblances. Where, out of the 13% of the most current Spanish 

population census (from last 2019 publication) which comprises the percentage of 

immigrant population (including main components such as European (4.7%) and African 

(2.1%) immigrant groups), approximately 5.1% corresponds to the Central, Caribbean and 

Southern American group, and thus it represents the largest immigrant population group in 

Spain [260][595][600]. Therefore, this important demographic factor in the current Spanish 

general population has led, as previously reported [600], to further evaluate and to attempt 

the development of virtual transplantation waiting lists (by carrying out HLA profiling 

(where future studies using NGS technology may have a great positive impact) of 

representative cohorts of these Central, Caribbean and Southern American immigrants 

subgroups across Spain) which may be useful especially in the HSCT setting for therapeutic 

uses and as part of plausible worldwide transplantation programs. In addition, this may also 

serve for specific epidemiology programs on HLA-linked diseases and drug 

hypersensitivities in Latin American (including both migrant as well as original) population 

groups. Interestingly, in the present study (although it has not been previously discussed in 
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the previous DISCUSSION sub-section regarding HLA allele distributions analyses of the 

present Spanish population cohort, since it was better described at the haplotype level) it 

can be noted that two haplotypes carrying characteristic Native American alleles (and also 

distinctive allele pairs in strong LD) were also identified (yet at very low (and probably not 

very accurate) estimated frequencies). The most likely extended haplotypes (defined here at 

the 3-/4-field) are as follows: 

HLA-A*68:17~C*03:04:01:02~B*40:02:01~DRB4*01:03:01:01~DRB1*04:04:01~ 

DQA1*03:01:01~DQB1*03:02:01; (HF=0.2%, in the present Spanish population study). 

Where HLA-A*68:17 allele was firstly identified in Kolla Amerindians of North-West 

Argentina [940][941]. Moreover, presence of alleles (and respective carrying haplotypes) 

such as HLA-B*40:02:01 and -DRB1*04:04:01 (very typically linked to -

DQB1*03:02:01 allele) have been also commonly found in many different original 

Amerindian populations from Mexico, Mesoamerica and South America 

[130][464][504][600][934-938] as well as reported on previous studies of Amerindian 

immigrants in Spain [600]. 

And also, HLA-A*03:01:01:01~C*04:01:01:01~B*40:02:01~DRB4*01:03:01:01~ 

DRB1*04:07:01~DQA1*05:01:01:02~DQB1*03:01:01:01; (HF=0.2%, in the present 

Spanish population study). Where, once again, presence of alleles (and respective carrying 

haplotypes) such as HLA-B*40:02:01 and -DRB1*04:07:01 (also linked to -

DQB1*03:01:01:01 allele) have been commonly found in many different original 

Amerindian populations from Mexico, Mesoamerica and South America 

[130][464][504][934-938] as well as reported on previous studies of Amerindian 

immigrants in Spain [600]. 
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Consequently, this illustrates (despite of the discrete sample size examined in the current 

study) the relatively significant (although in low frequencies) HLA genetic contribution and 

presence of this Native American genetic substrate within current modern-day Spanish 

general population, which adds to the observed significant HLA diversity in this population 

and to the complexity of population stratification (being even more clear the evidence of the 

diverse sub-populations that inhabit Spain today) and regional variation within the Iberian 

Peninsula previously mentioned [260]. 

-Referring now to the also relevant and distinctive HLA genetic relatedness (previously 

commented at the HLA allelic and 2-locus haplotype levels, and now here based on the 

observed common extended HLA haplotype distributions) shown between original Spanish 

general population and some specific neighboring foreign populations from countries that 

are geographically situated very close to the Spanish territory. It is noteworthy the particular 

case of both modern-day Portuguese and North African populations. Where, in contrast to 

other neighboring populations to Spain (such as the French population, which is more 

genetically related to other North-Central European populations), Portuguese and North 

African Berber (which, in turn, are also partially related with original Muslim Eastern Arab 

populations) populations share with the Spaniards a unique series of well-documented major 

demographic history events [555][556][569][578][808][851] which might have contributed 

and shaped (at least until certain extent) the currently observed similar HLA gene pools of 

these populations [130][221][269][464][558][823]. Thus, as previously discussed, the 

striking example of this singular HLA-DQB1*03:19:01 allele (and the characteristic LD 

patterns that displays) [908] may illustrate the distinctive relatedness (at least to some 

relative extent) of Iberian populations (clearly differing from other populations of European 

ancestry so far described (e.g. [474])) [221][269][558][602][823] with African descent and 
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local populations (in this case from both North and sub-Saharan regions) 

[130][297][464][823][909] and, in turn, also Muslim Eastern Arab (originally from the 

Arabian Peninsula) [130][271][285][464][910] descent and native population groups. In the 

present study, these are the tentative (i.e. EM estimated) HLA-DQB1*03:19:01 carrying 

extended haplotypes detected in Spanish population: 

Firstly, according to the more frequently observed association with the HLA-

DRB1*11:02:01 allele:  

HLA-A*02:05:01~C*07:01:01:01~B*49:01:01~DRB3*02:24~DRB1*11:02:01~ 

DQA1*05:01:01:02~DQB1*03:19:01; (HF=0.2%, in the present Spanish population 

study). 

HLA-

A*24:02:01:01~C*07:01:01:01~B*49:01:01~DRB3*02:02:01:01~DRB1*11:02:01~ 

DQA1*05:05:01:01~DQB1*03:19:01; (HF=0.2%, in the present Spanish population 

study). 

HLA-

A*26:01:01:01~C*07:01:01:01~B*49:01:01~DRB3*02:02:01:01~DRB1*11:02:01~ 

DQA1*05:05:01:01~DQB1*03:19:01; (HF=0.2%, in the present Spanish population 

study). 

Secondly, according in this case to the more rare (not as frequent) association with HLA-

DRB1*13:04 allele: 

HLA-

A*02:01:01:01~C*12:03:01:01~B*18:01:01:02~DRB3*02:02:01:01~DRB1*13:04~ 

DQA1*05:05:01:01~DQB1*03:19:01; (HF=0.2%, in the present Spanish population 

study). 
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Hence, this may exemplify (despite of the discrete sample size examined in the current 

Spanish population study) the relatively significant and conserved (although in low 

frequencies) HLA genetic contribution of these North African Berber (indigenous) and 

Muslim Eastern Arab (settlers, originally coming from the Arabian Peninsula) genetic 

substrates within present-day Spanish general population and in consonance with very well-

documented historical facts (most likely as a result of an ancient pre-Neolithic contribution 

from northward Saharan migration during hyper-arid conditions; and also due to the later 

Islamic conquest period along the North African region between 7th–9th centuries before 

arriving to the Iberian Peninsula) [555][556][558][578][613][808][851]. At the same time, 

it should be noted that (as previously mentioned for other examples such as HLA-

DPB1*03:01:01/-DPB1*104:01 or HLA-DRB1*14:01:01/-DRB1*14:54:01): HLA-

DQB1*03:01:01 (Thr (codon 185 (ACC), exon 3)) and HLA-DQB1*03:19:01  (Ile (codon 

185 (ATC), exon 3)) alleles only differ in one single position in exon 3 (which is not 

routinely characterized by legacy HLA typing methods). Thus, future population studies 

with a more widespread application of NGS technology for HLA genotyping may also allow 

a much more accurate assessment of allele prevalence and frequency of this singular HLA-

DQB1*03:19:01 allele. 

-Lastly, in relation to the present Spanish population cohort shown here [269] and in 

comparison to foreign populations concretely of European ancestry (where Pingel et al. 

study [481], certain main European/North American population groups reported in the 

AFND database [130][464], the U.S. NMDP registry database (EURCAU-European 

Caucasian unrelated donors group; N=1,242,890) [259][299] and also a recent NGS HLA 

study in a large European American population cohort of the U.S. [268][297] can be 

considered as some main representative references that show the most common extended 
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HLA haplotypes found in this case). These are the three main remarks that are worth to be 

mentioned:  

• Firstly, some of the most common extended HLA haplotype distributions (at the 3-/4-

field) described in the present Spanish population cohort study (as well as in other 

previously reported lower resolution HLA studies carried out in Spanish population (e.g. 

[221][624])) such  as: 

HLA-A*01:01:01:01~C*07:01:01:01~B*08:01:01:01~DRB3*01:01:02:01~ 

DRB1*03:01:01:01~DQB1*02:01:01; (HF=8.0%, in the present Spanish population 

study (ranked #1) (see Table R-7); and, as a representative example: HF=9.3%, ranked 

#1 in the respective NGS HLA study of a large European American population cohort 

in the U.S. [268][297]); 

HLA-

A*03:01:01:01~C*07:02:01:03~B*07:02:01~DRB5*01:01:01~DRB1*15:01:01:01~

DQB1*06:02:01; (HF=4.5%, in the present Spanish population study (ranked #4) (see 

Table R-7); and, as a representative example: HF=5.2%, ranked #2 in the respective 

NGS HLA study of a large European American population cohort in the U.S. 

[268][297]); 

and, also 

HLA-

A*02:01:01:01~C*07:02:01:03~B*07:02:01~DRB5*01:01:01~DRB1*15:01:01:01~

DQB1*06:02:01; (HF=5.0%, in the present Spanish population study (ranked #3) (see 

Table R-7); and, as a representative example: HF=2.5%, ranked #4 in the respective 

NGS HLA study of a large European American population cohort in the U.S. 

[268][297]); 
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are also very common (i.e. found in high frequencies) in main European and North 

American (as part of the very broad and diverse Caucasoid ethnic group of populations) 

unrelated donor registries and various related large population datasets/studies reported 

so far. Thus, this could be illustrating (tentatively and at least to some extent) the relevant 

and specific HLA gene flow episodes that occurred from North-Central Europe to the 

Iberian Peninsula due to major demographic history events in the past. Initially, with the 

presence of Germanic tribes in the Iberian Peninsula starting from the 5th century in the 

CE after the collapse of the (Western) Roman Empire. And subsequently, with the 

presence of respective descendant Christian Visigoth population groups, especially after 

the completion of the “Reconquista” (against the North African Muslim Arab-Berber 

populations groups for ruling the entire territory of the Iberian Peninsula) at the end of the 

15th century. Consequently, these descendant Christian Visigoth population groups 

became the main genetic substrate of the more modern Iberian general population [555] 

[556][558][578][602].  

• Secondly, as one of the main dissimilarities observed between reported Iberian 

populations (including both Spanish (e.g. [130][221][269][464][624]) and Portuguese 

populations [602]) and other populations of (Northern-Central-Eastern) European descent 

(e.g. [130][223][225-227][259][268][297][299][464][474][481][917]), it should be noted 

the very striking findings that are particularly related to the respective HLA-

B*44:02:01:01/HLA-B*44:03:01:01 carrying extended HLA haplotype frequency 

distributions detected. Where, following the same previous main comparison example 

between the present NGS HLA Spanish population cohort study [269][297] and the 

corresponding NGS HLA European American cohort study in the U.S. [268][297] as well 
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as when considering other reported main worldwide populations 

[130][464][614][466][831][832]: 

-Relative to HLA-B*44:02:01:01 carrying extended HLA haplotype frequency 

distributions. In Spanish population these specific extended haplotypes are found in 

much lower relative frequencies and in a more spread distribution than in other reported 

populations of European ancestry (e.g. [130][223][225-

227][259][268][297][299][464][474][481][917]) and also, as far as our knowledge after 

reviewing reported studies in the literature, than in some Near-Eastern (Jewish and Arab 

populations of the Levant) [466][614][621][832] and Middle-Eastern [831] population 

cohorts. In detail, these are the main and the most likely (i.e. EM estimated) HLA-

B*44:02:01:01 carrying extended haplotypes found in the present Spanish population 

study: 

HLA-A*02:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB5*01:01:01~ 

DRB1*15:01:01:01~DQB1*06:02:01 haplotype (HF=1.0%, in the present Spanish 

population study (ranked #9) (data shown in [297]); and, as a representative example: 

HF=0.3%, ranked #28 in the respective NGS HLA study of a large European 

American population cohort in the U.S. [268][297]). 

HLA-A*02:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB3*02:02:01:02~ 

DRB1*12:01:01:03~DQB1*03:01:01:01 haplotype (HF=1.0%, in the present 

Spanish population study (ranked #9) (data shown in [297]); and, as a representative 

example: HF=0.2%, ranked #30 in the respective NGS HLA study of a large European 

American population cohort in the U.S. [268][297]). 

And HLA-A*02:01:01:01~C*12:03:01:01~B*44:02:01:01~DRB3*01:01:02:01~ 

DRB1*03:01:01:01~DQB1*02:01:01 haplotype (HF=1.0%, in the present Spanish 
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population study (ranked #9) (data shown in [297]); whereas this haplotype, as far as 

our knowledge and based on our review of certain main HLA references of reported 

populations of European ancestry [130][223][225-

227][259][268][297][299][464][474][481][917], does not seem to be as frequently 

present in populations of European descent).  

Conversely, among the HLA-B*44:02:01:01 carrying extended HLA haplotypes that 

are most commonly found, the extended haplotype HLA-

A*02:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB4*01:03:01:01~ 

DRB1*04:01:01:01~DQB1*03:01:01:01 shows a predominant frequency distribution 

(HF=3.5%, ranked #3) in the respective NGS HLA study of a large European 

American population cohort in the U.S. [268][297] (as a representative example of 

populations of European ancestry). Whereas, this same HLA-B*44:02:01:01 carrying 

extended haplotype seems to be hardly present (with very low HF values described so 

far) in Spanish population. For instance, it is not detected in the present Spanish 

population cohort study (data shown in [297]) while in a different recent Spanish 

population study (“Barcelona UCB Bank sample cohort”) [130][221][464] shows a 

very low HF value of 0.45%. 

-Referring now to HLA-B*44:03:01:01 carrying extended HLA haplotype frequency 

distributions, an inverse situation is found in this case. In the present Spanish population 

study, and as similarly reported in other previous studies on populations of the Iberian 

Peninsula (e.g. [130][221][269][464][602][624]), HLA-B*44:03:01:01 carrying 

extended HLA haplotypes are found in much higher relative frequencies in comparison 

to those frequency distributions described in other reported populations of European 

ancestry (e.g. [130][223][225-227][259][268][297][299][464][474][481][917]). In 
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closer detail, these are the main and most likely (i.e. EM estimated) HLA-B*44:03:01:01 

bearing extended haplotypes found in the present Spanish population study: 

HLA-A*29:02:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQB1*02:02:01:01 haplotype (HF=7.5%, in the present 

Spanish population study (ranked #2) (data also shown in [297]); and, as a 

representative example: HF=1.8%, ranked #5 in the respective NGS HLA study of a 

large European American population cohort in the U.S. [268][297]). 

HLA-A*23:01:01~C*04:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQB1*02:02:01:01 haplotype (HF=2.0%, in the present 

Spanish population study (ranked #7) (data also shown in [297]); and, as a 

representative example: HF=0.6%, ranked #18 in the respective NGS HLA study of a 

large European American population cohort in the U.S. [268][297]). 

HLA-A*02:01:01:01~C*16:01:01:01~B*44:03:01:01~DRB4*01:01:01:01~ 

DRB1*07:01:01:01~DQB1*02:02:01:01 haplotype (HF=1.0%, in the present 

Spanish population study (ranked #9) (data also shown in [297]); and, as a 

representative example: HF=0.2%, ranked #30 in the respective NGS HLA study of a 

large European American population cohort in the U.S. [268][297]). 

Interestingly, some additional striking and representative examples are also noteworthy 

in relation to these distinctive dissimilarities found in HLA-B*44:02:01:01/HLA-

B*44:03:01:01 carrying extended HLA haplotype frequency distributions that are 

observed when comparing Iberian populations and the rest of populations of European 

ancestry: 

-As a first example, and as an additional evidence of the significant genetic imprint 

left by the Spanish settlers in modern-day Latin American populations and Hispanic 
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ethnic groups. The extended haplotype frequency distributions shown on Hurley et al. 

NGS HLA study of the Argentinian donor registry population [224] exemplifies this 

characteristic trend of HLA-B*44:03/HLA-B*44:02 carrying extended haplotype 

frequency ratio same as the one found in the populations from the Iberian Peninsula. 

Where, as an illustrative example, it can be observed a considerably higher HF value 

for HLA- 

A*29:02:01:01~C*16:01:01~B*44:03:01:01~DRB1*07:01:01~DQB1*02:02:01 

haplotype (HF=1.9%) than its counterparts HLA- 

A*02:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB1*13:01:01~DQB1*06:03:01 

haplotype (HF=0.5%) or HLA- 

A*02:01:01:01~C*05:01:01:02~B*44:02:01:01~DRB1*07:01:01~DQB1*02:02:01 

haplotype (HF=0.4%). 

-As a second remarkable example, in consonance with what has been already 

described at the allele level and 2-locus HLA-B~C haplotype frequency distribution, 

reported extended HLA-B*44:02:01:01/HLA-B*44:03:01:01 carrying extended HLA 

haplotype frequency distributions in worldwide populations (and in addition to the 

aforementioned HLA-B*51:01:01:01, HLA-B*49:01:01, HLA-DQB1*03:19:01, 

HLA-DRB1*01:03~DQB1*05:01:01:03 genetic allele/carrying haplotype signatures) 

also point to the very plausible genetic influence (and, thus, relatively significant 

genetic relatedness) of both North African Berber (indigenous) [130][464][611-

613][849][855] and Muslim Eastern Arab (settlers, originally coming from the 

Arabian Peninsula) [130][271][285][464][808] genetic substrates in Iberian 

populations’ genetic pool (e.g. [221][269][602][624][834][835]). For instance, 

characteristic Iberian extended haplotypes HLA-A*29:02~C*16:01~B*44:03 either 
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typically associated with DRB1*15:01~DQB1*06:02 or DRB1*07:01~DQB1*02:02 

class II haplotypes are found in relatively high frequencies in Tunisian and Moroccan 

population groups from North Africa as well as studied population cohorts of Saudi 

Arabian or Kuwaiti descent from the Arabian Peninsula. It is also noteworthy another 

haplotype HLA-A*30:02~C*05:01~B*18:01~DRB1*03:01~DQB1*02:01 which is 

also commonly found in North African and in Mediterranean populations (particularly 

in the Iberian Peninsula). In parallel, and interestingly, it can be also observed a clear 

distinction and lower level of HLA relatedness (also according to this HLA-

B*44:02:01:01/HLA-B*44:03:01:01 ratio of distributions) between North African 

Berber/Muslim Arabian Peninsula groups and Arabs of the Levant [808][851]; 

similarly to what it is observed on how Iberian populations show distinctive and 

unique HLA genetic signatures not commonly found in other populations of European 

ancestry in Northern and Central regions of Europe (e.g. [130][223][225-

227][259][268][297][299][464][474][481]). 

Therefore, in accordance with previously reported HLA population studies (in spite of 

presenting lower HLA resolution and small limited sample sizes describing only few 

different population cohorts) [819][822][823][834][835], the comparison and analysis 

made and discussed in this section of the present thesis work have led us to three main 

conclusions to be noted: 

1) In line with the previous observations remarked at the HLA-B*44:02/B*44:03 allele 

frequency ratio level and also regarding respective 2-locus haplotype distributions, there 

is a notably diverse and differentiated distribution of these corresponding HLA-

B*44:02/B*44:03 carrying extended haplotypes found across worldwide human 

populations. Moreover, there are also significant and striking differences observed within 



__________________________________________________________Discussion 
 

Page | 608  

   © Gonzalo Montero Martin  

the Caucasoid (i.e. European ancestry) ethnic group of populations, where two main 

population groups can be distinguished: Iberian populations (presenting HLA-B*44:03 

prevalence over HLA-B*44:02) and rest of populations of European descent (showing the 

opposite trend). Thus, this exemplifies the evident and significant regional variation of the 

extended HLA haplotype diversity and, in turn, of the respective haplotypic distributions 

observed within the European (Caucasoid) populations, as described (attending to other 

HLA characteristics) in other previous studies [136]. 

2) At the same time, and as previously remarked in Santos et al study [834], despite these 

existing differentiated HLA-B*44:02/B*44:03 carrying extended haplotype distributions 

within Caucasoid ethnic group of populations, the respective observed haplotype 

associations (i.e. respective LD patterns) given for HLA-B*44:02 and -B*44:03 are 

relatively well-conserved and similar among these different Caucasoid populations so far 

studied. Whereas at the worldwide population level, when main general European 

(Caucasoid), African, Asian, Hispanic and Near-/Middle-Eastern ethnic groups 

(ancestries) of populations are compared, some additional levels of diversity and 

unique/specific HLA haplotype associations can be found in each given broad ethnic 

group and, at the same time, also defining sets of certain more related ethnic groups of 

populations. 

3) Finally, in this particular case evaluated, this detected existence of differential HLA-

B*44:02/B*44:03 carrying extended haplotype distributions among worldwide 

populations (and even observed within sub-regions/sub-groups of the same considered 

broad ethnic group, as described here in the case of Caucasoid populations) may be 

originated by both natural selective pressures (taking also into account the particularly 

distinctive functional micropolymorphism shown by these HLA-B*44:02/B*44:03 
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subtypes [811]) and stochastic demographic events (e.g. migrations that may be associated 

with either HLA gene flows/drifts, founder effects or bottlenecks). Which, in turn, cannot 

be always and totally distinguished owing to the unique functional nature, complex 

genetic features and particular inheritance patterns presented by the HLA system 

[104][132][542][543]. 

• Thirdly, it is particularly striking that the most common haplotype in North European 

and European American populations (extended haplotype at the 4-field level, 

HLA-A*01:01:01:01~C*07:01:01:01~B*08:01:01:01~DRB3*01:01:02:01~ 

DRB1*03:01:01:01~DQB1*02:01:01) (e.g. (HF=9.3%), [268]), although commonly 

found, it is not as highly frequent in Spanish population (e.g. (HF=8.0%) [269]. In fact, 

Spanish population (and, overall, Iberian populations [260][602][603]) seems to show a 

HLA haplotypic diversity with a distinctive and more spread haplotype frequency 

distribution (i.e. presenting other different haplotypes almost equally prevalent as this one) 

in contrast to these other populations of European ancestry (e.g. [130][223][225-

227][259][268][297][299][464][474][481][917]). This may be also reflecting a singular 

combination of natural selective pressures and historical demographic events that took 

place in the Iberian Peninsula different from the ones that may have shaped HLA 

haplotype diversity in other populations of European descent.  

In summary, and as previously mentioned, all these described similarities found between 

original Spanish general population and other foreign related major populations (e.g. 

originally from Latin American countries, North African/Muslim Eastern Arab descent or of 

European ancestry) regarding HLA allele and haplotype frequency distributions definitely 

maximize the likelihood of finding compatible and highly matched unrelated donors (URD) 

for given Spanish patients (and vice versa) in the HSCT setting [215][220][529][896]. At the 
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same time, these HLA haplotype similarities may be of importance, and applicable to all those 

related populations as described here with a common Spanish/Iberian HLA genetic substrate, 

in current and future pharmacogenetics investigations, HLA-disease association and related 

epidemiology studies as well as discovery of novel HLA-based immunotherapies and 

development of haplo-banks of iPSCs [137][207][221][222][488-495][545][546]. 

3. FINAL REMARKS 

In the present study, 3-/4-field (obtaining the highest allele resolution level with minimum allele 

and phase ambiguities) HLA allele and extended haplotype frequencies for a relatively 

representative Spanish population healthy cohort (N=282 subjects, denominated 17th-IHIW 

Spanish population cohort) have been described. To date, and at an unprecedented scale, this can 

be also considered the largest study ever done in Spanish healthy population involving 3-/4-field 

HLA genotype data for all the 11 major classical HLA class I and class II loci (HLA-A, -B, -C, -

DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5) as well as respective allele and full 

extended haplotype frequency distributions. The current NGS HLA genotype dataset (including 

both allele and extended haplotype frequency distributions) may serve as a significant and useful 

reference source for multiple clinical and research applications in the histocompatibility and 

immunogenetics field and, in particular, in the context of Spanish population. In summary: 

• In the SOT setting and as previously mentioned in [252][256-258][260][829], this very high-

resolution allele and haplotype frequencies dataset may be instrumental and greatly informative 

as a first reference source for improved virtual panel reactive antibody (vPRA) calculations in 

Spanish population as well as for performing respective virtual crossmatching (VXM) analyses 

(to reliably predict recipient and donor compatibility assessment in a timely manner, especially 

for SOT involving deceased donors [512][516][519]), which could significantly contribute in 
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refining the organ allocation and assignment for patients in the waiting list (especially for those 

hypersensitized patients). Furthermore, as another example, description of both “A” (encoding 

respective alpha chain) and “B” (encoding respective beta chain) genes within classical HLA 

class II loci may allow a more precise definition (where differences particularly found within 

the ARD-coding exons of these genes may be relevant) of the epitope formed by the assembly 

of these encoded alpha and beta chains [262][263][554]. 

• This current 3-/4-field HLA allele and haplotype frequencies data may also provide invaluable 

information (once again, only as a first initial reference source) for improving bone marrow 

(BM) and umbilical cord blood (UCB) strategic donor recruitment and planning in Spanish 

registries as well as future matching criteria strategies for HSCT [215][554]. Since larger 

acquisition of high-resolution local population-specific HLA genotype data will definitely 

improve donor searches for individual patients using also updated HLA matching algorithms 

(e.g., haplotype frequency-based matching algorithms which can be designed to predict 

matched donors based on this type of large NGS HLA datasets from registries). In addition, 

NGS technology allows to identify suitably matched donors in a timely and a cost-effective 

manner and, importantly, to also achieve the almost unambiguous and highly reliable 

identification of novel alleles [172][179][211], possible null or expression variant alleles 

[210][458][523][869-871] and rare alleles [208][209], and thus the possibility of taking them 

into account for HSCT donor search purposes. In the context of Spanish population, presence 

of rare HLA class I or II allele/s, presence of the HLA-B*51:01:01:01 allele, presence of HLA-

DQB1*03:01:01:01/:02/:03 allele variants and/or certain observed infrequent HLA-B~C or 

HLA-DRB1~DQB1 associations in a given hematopoietic (HSCT) patient may represent some 

of the main negative predictive factors when considering the respective search and selection 

process of the most possible full-matched donor likely to be found [215][220][624][892][896]. 
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• Other immunogenetics fields that will definitely and significantly benefit from the present 

NGS HLA Spanish dataset are those which imply anthropological studies (i.e. drawing more 

precise demographic and/or selection signatures within the genetic pool of Spanish population) 

[131][132][137]. Where fine ultra-high allele resolution by NGS and determination of 3-/4-field 

haplotypic associations have allowed us to identify more accurately specific patterns displayed 

within Spanish population and to better detect genetic imprints and substrates of either more 

ancient demographic events or some other more recent or stable throughout history. Main 

novelties brought by the present HLA NGS study have also enabled us to confirm and to further 

describe some of the previously reported HLA trends/signatures in Spanish population and 

certain specific ethnic groups/regions across the country [555][556][558][563][564][578]. In 

summary, 3-/4-field haplotypic associations and specific patterns displayed within the present 

Spanish population cohort have permitted the detection and description of genetic imprints from 

both: 

-Early ancestral contributions throughout the history, where it is found a complex European-

Mediterranean overall genetic substrate made up of North-Central European, North African 

Berber, Muslim Eastern Arab and Sephardic Jew genetic components, in addition to a 

remarkable presence of still relatively isolated Romani (“Gypsy”) genetic ancestry in a portion 

of the Spanish general population (especially across the Southern region of Spain 

(Andalusia)).  

-And also from some other more recent and current demographic events, mainly Latin 

American (bearing Amerindian genetic background) and Eastern European-Mediterranean 

(especially from Romania) ethnic groups migrating to Spain.  

-Furthermore, the present NGS HLA study (although with a limited sample size) may also 

contribute (until certain extent) to obtain a better depiction of the underlying population 
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substructure (i.e. stratification) and regional variation of the HLA genetic system diversity 

(regarding the detected differential distribution of certain allele groups and haplotypes) in 

modern-day Spanish population existing sub-groups across the country [260][604-606]. Thus, 

the current presented data complement and refine the existing estimates of HLA diversity in 

the Spanish population, increase population and geographic coverage by NGS data, and add 

granularity to clinically and genetically relevant HLA data.  

• Moreover, NGS HLA studies describing HLA diversity in Spanish population may 

significantly contribute to the fine-mapping of risk/protection factors in HLA-disease 

association studies by defining associations of HLA alleles/haplotypes with certain diseases, 

particularly those with an autoimmune, inflammatory and/or neurological component (such as 

MS illustrated here); as well as in the design of epidemiology programs (i.e. evaluating 

prevalence of HLA-associated diseases in Spanish and related populations) and 

pharmacogenetics investigations (i.e. defining associations of HLA alleles/haplotypes with 

certain drug-induced hypersensitivity reactions) [120][121][126][127][142][170][207][288-

294]. Also certain epidemic events and outbreaks worldwide or in given populations or regions 

may be better clinically understood, evaluated and monitored at least partially based on large-

scale and comprehensive NGS HLA population data (from both healthy and patient cohorts) 

[513][514]. In the present thesis work, and as an exercise (i.e. test case) to exemplify and put in 

practice these aforementioned potential applications, we made use of this useful healthy control 

Spanish population HLA dataset to further evaluate the role of HLA in relation to MS genetic 

determinants and specifically for Spanish population in this given case. 

• At the same time, it is also expected that all this knowledge (provided by this current Spanish 

HLA dataset as well as additional future larger HLA datasets, and not only at the Spanish 

population-level but also at the worldwide population-level) can contribute to establish 
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strategies for improving the efficacy of both current and novel immunotherapies and selection 

criteria of personalized therapeutic approaches [488-490]. Where, in detail:  

1) Updated and extended Spanish panel of the most common HLA alleles (in order to reach 

the majority of targeted patients from the corresponding population) as potential novel targets 

for development of more efficient peptide/epitope-based vaccines in therapies for treating 

cancer and infectious diseases, and in particular for those patients presenting a highly resistant 

and/or refractory profile.  

2) Updated and extended Spanish panel of the most common full (i.e. encompassing at least 

the 11 major classical HLA class I and class II loci) extended HLA haplotypes, in this case, 

may serve to define and construct the most suitable (in terms of histocompatibility barriers 

to be considered) and representative (considering an adequate size and comprised diversity 

of the given therapeutic cell registry/bank) Spanish HLA haplo-homozygous allo-donors 

pool (in terms of both general population and regionally) of cell-based therapy products 

(therapeutic allogeneic genetically engineered T cells). 

• In the regenerative medicine field, and similarly to the above mentioned application, moderate 

sized banks of iPSCs lines, once again, exclusively selected from HLA haplo-homozygous allo-

donors can be constructed. Where a diverse set of these HLA haplo-homozygous iPSCs lines 

respectively carrying the most common HLA haplotypes of Spanish population can be 

constructed starting from a respective existing UCB registry population which has already been 

characterized for HLA genotypes [221][222][491-495][545][546] as well as based on the NGS 

HLA data from the present study. 

• On the other hand, current limited sample size of the present Spanish population study cohort 

still inevitably restricts the description of the vast genomic diversity found within the non-

coding and untranslated regions of HLA genes as well as the regional variation of HLA allele 
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and haplotype frequency distributions found within Spain. As mentioned in [260], future studies 

of both considerably larger sample size, (being thus of higher associated statistical power) and 

at a wider geographical scale of the Spanish territory will continue shed light and will allow a 

much more accurate and meticulous description of HLA allele and haplotype diversity and their 

specific frequency distributions in Spanish population. In addition, future larger (and at a wider 

scale geographically speaking) NGS HLA Spanish population studies will certainly allow a 

more accurate and updated definition of distinctive CWD/CWID (including serological 

equivalents) as well as relevant null and rare (and novel) alleles (and their respective LD 

patterns and characteristic bearing haplotypes) for this population. 

 

II. NGS-BASED HLA CASE-CONTROL STUDY OF MULTIPLE 

SCLEROSIS IN SPANISH POPULATION 
 

Case-control studies are an essential analysis tool for genetic association studies. As described 

in the present thesis work, these case-control studies generally involve samples of unrelated 

individuals with the (disease) phenotype of interest and a corresponding control sample of 

unrelated, unaffected/healthy (or randomly ascertained) individuals obtained from the same (ethnic 

and, highly recommended, geographic/regional) population [773]. Moreover, at the moment of 

designing this type of studies (being especially critical due to the ultra-high diversity found in the 

HLA system and, in fact, at the population-level), it is very important to aim sufficient statistical 

power based on a substantial sample size for the given study (and thus to avoid misleading HLA-

disease association results (susceptibility/protection)) [773]. Originally and as a general 

recommendation in traditional immunogenetic (e.g. HLA and KIR genes) studies, it has been 

established a minimum of 2N=200 chromosomes (N=100 study subjects) for each of the case and 
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control cohorts [773]. However, much larger sample sizes (N~ at the scale of thousands study 

subjects) for both are not only preferable but highly needed, and now even more due to the very 

high allele resolution level provided by NGS-based HLA genotyping methods (i.e. 4-field data 

with minimum genotyping ambiguity and maximum coverage of HLA loci sequences) [137][301]. 

Among the advantages of case-control studies it is elimination of the necessity to collect data from 

family members, which is often logistically difficult and costly. Moreover, immunogenetic studies 

based on unrelated subjects may facilitate reaching to a statistically significant sample size that, at 

the same time, can also be representative (encompassing most of the main genetic diversity and 

characteristic features) of the given population/s of study. Nevertheless, case-control studies can 

be very sensitive to population stratification within the sample cohorts. In fact, this is a particularly 

important issue in immunogenetic data (e.g. HLA and KIR systems), where allele/haplotype 

frequency distributions vary considerably between human ethnic groups and even at the regional 

level within the same (considered “ genetically homogenous”) population [136][137][260]. Thus, 

if samples are not collected with meticulous attention to homogeneity of ethnic/ancestry 

background, there is a very likely risk of misinterpreting genetic difference between cases and 

controls (and thus corresponding HLA-disease association results (susceptibility/protection)). 

Since, heterogeneity between cases and controls due to allele/haplotype frequency differences 

related to population stratification may be mistaken for disease association with a particular locus. 

In the scope of the present thesis work: 

• A first case-control study was carried out to examine HLA-disease associations with MS in 

these Spanish population cohorts: 17th IHIW Spanish population healthy control versus cohort of 

multiple sclerosis (MS) patients in the Spanish population (recruited at the Department of 

Neurology, Hospital Clínic, Barcelona, Catalonia, Spain). In this sense, the initial main goal was 
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to attempt a fine-mapping of these 3-/4-field allele and haplotype associations by full gene 

resolution level via NGS.  

• In addition, a second exercise (i.e. test case) of this case-control study was carried out using 

the same MS Spanish group but, in this second case, using an alternative healthy control group 

dataset specifically from the Spanish northeastern region of Catalonia, and thus to evaluate 

(although limited to the 2-field allele resolution level) possible differences in the findings of HLA-

disease association with MS due to plausible regional HLA genetic variation within mainland 

Spain as a statistical approach to try controlling for any possible existing population stratification 

(i.e. differences in genetic structure between disease and control groups). Therefore, this example 

has shown the relevance of defining the composition, especially in relation to the level of 

representability and possible population substructure, of the respective population healthy and 

diseased cohorts (ideally to be ethnically and regionally matched) selected for case-control studies. 

4. HLA ALLELE LEVEL ANALYSES 

At the HLA allele level, NGS-based HLA genotyping data at the 3-/4-field allele resolution 

enables an in-depth description of the HLA allelic diversity (practically unambiguous) given by 

silent substitutions and non-coding segments.  In the scope of the present NGS HLA-MS study, 

our results have allowed us to depict a very high-resolution map of HLA risk and protection for 

multiple sclerosis (MS) reported here for the first time in Spanish population. 

On one hand, we found that the architecture of HLA genetic risk for MS in the present Spanish 

population cohort (as a prototypic European-Mediterranean population clearly distinctive from 

other North-/Central European populations) was outstandingly dominated by the well-

characterized HLA-DRB1*15:01:01:01 allele and its most common and classically associated 

bearing haplotype HLA-A*03:01:01:01~B*07:02:01~C*07:02:01:03~ 
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DQA1*01:02:01:01~DQB1*06:02:01~DRB1*15:01:01:01~DRB5*01:01:01. At the same time, 

and conversely to other Northern/Central European population MS groups 

[292][650][651][658][677][727], the present Spanish population cohort also shows a striking 

diversity of extended HLA-DRB1*15:01:01:01~DQB1*06:02:01-bearing haplotypes positively 

associated to MS, which encompass different sets of HLA class I alleles more commonly found in 

populations from Mediterranean regions [130][297][464]. Consequently, this finding underscores 

that HLA-MS associations (and especially at the haplotype level) may also vary between each 

given population group even within groups of European ancestry. Moreover, in contrast to other 

previous studies on European [650][651][658][670][677] and certain Spanish population 

[738][742] MS cohorts, the present Spanish population dataset examined via NGS was not 

dominated in its association to MS risk by additional series of class II alleles (consistent, as 

previously reported [650][651][658][670][677], with most risk signals being supposedly driven by 

alleles at HLA-DRB1 locus such as HLA-DRB1*04:05, -DRB1*08:01, -DRB1*03:01, and -

DRB1*13:03). Thus, a relatively simple landscape of HLA association with MS risk was revealed 

in our NGS HLA Spanish population study. In this sense, a plausible explanation to this would be 

that previous HLA studies (either based on not completely accurate and still limited imputation of 

HLA alleles [658][677] and/or with, tentatively, possible existing population stratification not well 

detected or not suitably controlled [650][651][658][670][677][738][742]) might have incorrectly 

identified this heterogeneous HLA-DRB1 picture of association to MS risk, not being truly 

causative of MS pathogenesis in the majority of instances. Furthermore, our findings underscore 

the importance of evaluating variants at the highest possible resolution to identify with certainty 

the primary associations. Yet, increasing study sample sizes across different both regional and 

ethnic groups (where considering also different but more uniform MS clinical sub-groups of 

patients) as well as subsequent functional studies will be needed to completely unravel the causal 
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variants and genes and for definitely confirming (and, if so, better understand their role) or ruling 

out these primary and tentative secondary HLA-DRB1 risk signals.  

As an additional statistical approach of the assessment of HLA genetic risk for MS in the present 

Spanish population cohort, we applied stratification or conditioning analysis on the highly 

predisposing HLA-DRB1*15:01:01:01 allele to adjust for LD in order to dissect and interpret these 

nominal risk associations abovementioned. Thus, contrasting and supporting our interpretation of 

nominal and stratified results based also on the fully characterized class II and extended HLA 

haplotypes data generated thanks to the clonal nature of NGS, we were able to fine-mapped the 

following two main factors: 

i) HLA-DRB5*01:01:01~HLA-DRB1*15:01:01:01 was significantly associated with 

predisposition. Nevertheless, as previously mentioned, identification of the true predisposing 

gene of MS susceptibility within this prototypic susceptibility HLA-DR15 (HLA-

DRB1*15:01:01:01~DRB5*01:01:01) haplotype is handicapped by the intense and 

exceptionally tight LD across these given individual alleles at HLA-DRB1 and HLA-DRB5 loci. 

Consequently, in the majority of populations of European descent (including the present 

Spanish population cohort) the role of allelic variation at HLA-DRB5 in MS risk cannot be 

suitably assessed [292][293][668][727][743][944], where large trans-ethnic (especially from 

Asian-Pacific population groups) NGS HLA studies may contribute to better interrogate and 

shed light to this. Moreover, the present Spanish HLA-MS study, with a modest and still limited 

sample size, was also not sufficiently powered to detect the tentative association for the 

infrequent intronic variant HLA-DRB5*01:01:01v1, which has been previously described in a 

much larger European American cohort [293]. Still, as it has been initially reported mostly from 

a functional standpoint (e.g. in relation to peptide repertoires or expression levels) 

[668][743][944], to separately delineate the specific genomic variation and resulting functional 
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implications and, thus, plausible disease causing mechanisms (e.g. disease-associated variants 

influencing via epistasis, defining the structural characteristics of the peptide-binding groove or 

shaping the T cell repertoire in the thymus leading to an inflammatory demyelinating process) 

of both HLA-DRB1 and HLA-DRB5 loci is a fundamental future step in the definite elucidation 

and decryption of the role of HLA in MS pathogenesis. 

ii) At the same time, nominal and stratified analyses in our study identified a significant MS 

risk signal relative to HLA-DPB1*03:01:01 allele being, remarkably, independent from the 

highly predisposing HLA-DRB1*15:01:01:01 factor. However, apart from its well-known 

strong LD with HLA-DPA1*01:03:01:03 allele (thus, encoding the respective HLA-DP 

heterodimer), it was difficult to assess its respective and specific extended haplotypic 

association (when using the present NGS HLA dataset) given the fact of the dramatic increase 

of haplotype diversity displayed when including HLA-DPA1 and -DPB1 loci due to existing 

hotspot of recombination between HLA-DQ and -DP loci [92], causing here a great loss of 

statistical power for the HLA-MS association analyses at the haplotype level. Consequently, 

LD is low between HLA-DP genes and all -DRB1, -DQA1 and -DQB1 loci. Indeed, this low LD 

may also explain that the HLA-DPB1*03:01:01 risk association to MS susceptibility is unlikely 

to be caused by complex interactions between HLA-DRB1 alleles [945]. Associated MS risk to 

HLA-DP region, and to HLA-DPB1*03:01 allele in particular (especially for populations of 

European descent), as an independent signal from HLA-DRB1*15:01 factor has been also 

previously reported in several both HLA-imputation [652][658][945] and direct DNA 

sequencing for HLA genotyping [684][686][948] studies as well as in some functional studies 

[954]. In this sense, effect of HLA-DP on MS susceptibility has been postulated by various 

plausible disease causing mechanisms. Mainly: 
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-In relation to the binding and presentation of peptide antigens to CD4+ T helper cells, for 

instance, one GWAS study explained this HLA-DPB1*03:01 positive independent association 

based on a particular SNP rs9277489 where the most statistically significant amino acid 

mapped to Leu65 of HLA-DPβ1 located in the peptide-binding groove [658]. Also, another 

HLA genotyping and functional study suggested that HLA-DPB1*03:01 allele may be 

implicated in epitope spreading (i.e. neo-autoreactivity) in MS, in which HLA-DP may play 

an important role in the development, spread, and propagation of self-recognition during the 

clinical progression of MS (particularly in the early stages of self-recognition when 

autoreactivity is characterized by extensive plasticity) [954]. Moreover, other HLA 

genotyping study in Australian Caucasoid MS patients and Cantonese MS patients identified 

alleles HLA-DPB1*03:01 and HLA-DPB1*13:01, respectively, as independent risk factors 

for MS in non-HLA-DQB1*06:02 patients [684]. As explained by the authors, this finding 

may reflect communality in a particular nucleotide motif corresponding to a particular 

peptide-binding or T-cell recognition epitope, since both HLA-DPB1*03:01 and -

DPB1*13:01 share amino acid residues 1-34 in the HLA-DPβ1 molecule within a 

polymorphic region responsible in part for T-cell recognition [684]. 

-On the other hand, the effect of HLA-DP on MS may be due to differences in levels of 

expression rather than differences in peptide presentation. From several GWAS studies a 

particular associated SNP rs9277535 (550A/G variant) to MS susceptibility (as well as to 

other autoimmune diseases such as systemic lupus erythematosus (SLE) in a Chinese 

population [953]) has been previously identified [652][945]. This SNP rs9277535 lies in the 

3’ untranslated (3’-UTR) region of this class II gene HLA-DPB1, in which transcriptional 

factors (such as microRNAs) may bind to regulate expression [416]. Furthermore, together 

with the SNP variant rs3077 corresponding to the paired HLA-DPA1, rs9277535 allele G has 
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been correlated with the down-regulated level of HLA-DP mRNA, while allele A has been 

associated with the increased level of HLA-DP mRNA [953]. Thus, allele G has been found 

predisposing to MS (i.e. MS patients carrying the HLA-DPB1*03:01 allele also carry the 

rs9277535G allele) [945], as similarly observed in the predisposition to chronic hepatitis B 

(HBV) infection [322] and SLE [953]. Nevertheless, these detected SNP associations (SNPs 

in the 3′UTR of HLA-DPB1 (rs9277535) and -DPA1 (rs3077)) appear to be stronger in Asians 

than in other European and African-American populations, at least according to chronic 

hepatitis B and outcomes study [322]. So far, these consistent results suggest that though in 

different diseases, the role of expression variants of HLA-DP might be the same.  

Our present data indicates that HLA-DPB1*03:01:01 allele is positively associated with MS 

risk and independent of other MS associations in the HLA complex evaluated here, confirming 

previous reports [652][658][684][686][945][948]. Still, future studies on the HLA-DP 

structure-function (i.e. revealing how exactly the gene variants influence the gene expression 

like HLA-DP mRNA regulation and the gene function like antigen presentation to CD4+ T 

cells) may provide further evidence to improve our understanding of the exact function of HLA-

DP in the pathogenesis of MS. In addition, application of long-read sequencing approaches for 

the characterization of fully phased HLA haplotypes may also contribute to better dissect any 

possible HLA-DPB1*03:01:01-linked loci potentially involved in MS susceptibility [159]. 

Lastly, in addition to standard case-control association analyses (using both nominal and stratified 

approaches), we also validated our risk association findings using a second healthy control group 

(both ethnically and regionally matched) in order to control for population stratification (as a 

confounding factor that may affect the HLA-MS association results) at the HLA allele level. 

Overall, no population substructure was detected in the present study. 
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A relatively more complex association landscape can be observed in relation to the protective 

HLA effects to MS susceptibility detected in the present Spanish population dataset. Resultant 

association analysis at the 3-/4-field of resolution, following stratification, also proved to be 

effective at identifying the independent protective effects of specific HLA alleles and haplotypes. 

Our findings also underscore here the importance of evaluating variants at the highest possible 

resolution, as well as attending to the LD patterns displayed at the haplotype level, to identify with 

certainty the primary associations. In summary, two main HLA-MS protective association patterns 

can be observed in the present study:  

i) Those corresponding to HLA class II DRB1 signals: HLA-DRB1*04:01:01:01 (where HLA-

B*44:02:01:01 and -C*05:01:01:02 allelic protective signals seem to be also driven by this 

same HLA-DRB1 signal), -DRB1*04:02:01 and -DRB1*04:04:01  which all are tightly 

associated with the secondary DRB HLA-DRB4*01:03:01:01 and, thus, it was not possible to 

be disentangled (given also the high haplotype diversity found and the relatively low frequency 

of each haplotype “variant” in the present study presenting a modest sample size); and, 

separately, HLA-DRB5*01:02~DQB1*06:01:01 signal (without the HLA-DRB1*15:02:01 

signal, not statistically associated at the allelic level). In both cases, these protective effects can 

be certainly attributed to negative LD with the highly predisposing HLA-DRB1*15:01:01:01 

allele.  

ii) A series of protective signals driven by HLA class I alleles and, in this case, being all 

independent from the highly predisposing HLA-DRB1*15:01:01:01 factor. On one hand, the 

HLA-B*38:01:01 allele signal being consistent with previous reports in population cohorts of 

European ancestry [658][677]. Nevertheless, no amino acid position in HLA-B has been mapped 

yet explaining the HLA-B*38:01 protective effect at least in these previous SNP-based studies 

[658]. Moreover, in the present dataset HLA-B*58:01:01:01 was found as a novel class I 
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protective allele signal. To the best of our knowledge, this protective association has not been 

previously reported in the literature (reviewed in [650][651]).  Based on our stratified analysis, 

the functional protective role of these two independent HLA-B effects detected here, at least in 

part, may not simply reflect related LD patterns and allele/haplotype frequency distributions 

but, indeed, some kind of underlying mechanism impairing or avoiding at some level the 

immunopathogenesis of MS. Interestingly, although limited to the interrogation of HLA-B 

alleles without evaluating other Bw4/Bw6-bearing alleles at the HLA-A and -C loci, in the 

present study we found that Bw4 motif subgroups NLRIALR, DLRTLLR and NLRTALR were 

not associated in either nominal or stratified analysis. Thus, in the present dataset we did not 

find a clear Bw4 protective association with MS susceptibility that could reflect either LD 

pattern (i.e. negative LD with the highly predisposing HLA-DRB1*15:01:01:01 allele.) or 

ligand mediated KIR3DL1 signaling (indirectly evaluated here), being this in clear contrast to 

what has been described in previous studies for both European and African American cohorts 

[724-727][947]. On the other hand, we described that the Bw6 epitope (SLRNLRG), encoded 

by the respective group of HLA-B alleles analyzed here, shows a risk association that cannot 

be attributed simply to LD patterns in relation to the highly predisposing allele 

DRB1*15:01:01:01 and, consequently, it appears to be independent and tentatively conferring 

a synergic effect, although this would need to be further evaluated in future studies. 

Altogether, these findings are not perfectly in line with other previous studies on European 

[650][651][658][670][677] and certain Spanish population [738][742] MS cohorts (e.g. in the 

present study, previously reported allele signals such as HLA-A*02:01 or HLA-DRB1*01:01 did 

not show a statistically significant protective effect). Nonetheless, as aforementioned, inaccurate 

imputation of HLA alleles in SNP-based studies, limited HLA allelic resolution in genotyping 

studies and/or possible existing population stratification may be potential factors that might have 
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confound these previous results in other studies. Yet, future increasing study sample sizes across 

different both regional and ethnic groups (where considering also different but more uniform MS 

clinical sub-groups of patients) as well as subsequent functional studies will be needed to 

completely unravel the protective variants and genes and their roles. 

Once again, in addition to standard case-control association analyses (using both nominal and 

stratified approaches), we also validated our protective association findings using a second healthy 

control group (both ethnically and regionally matched) in order to control for population 

stratification (as a confounding factor that may affect the HLA-MS association results) at the HLA 

allele level. Overall, no population substructure was detected in the present study. 

Finally, it is noteworthy that our present study did also have certain limitations which are 

important to be considered and that can be summarized as the following: 

i) Many immune-related genes in the MHC were not analyzed in this study; given the complex 

LD known for the MHC, our analyses do not exclude these genes (e.g. complement C4A/C4B, 

MICA/MICB and other cytokine-related genes) as potentially playing roles in MS susceptibility, 

as previously well noted in the literature [292][652][653][727]. 

ii) Some intronic and 5’/3’-untranslated variants (especially in HLA class II loci) were not fully 

resolved and identified (e.g. HLA-DRB1*15:01:01:01/:02/:03) due to current limitations from 

short-read sequencing platforms on characterizing repetitive and extensive low-complexity and 

imbalanced genomic sequence composition, such as: homopolymer repeats poly(dA), poly(dT), 

poly(dG) and poly(dC); regions of short-tandem repeats (STRs); or high AT- or GC-rich regions 

[296]. In this sense, application of long-read sequencing approaches for the characterization of 

fully phased HLA haplotypes may also contribute to better dissect any possible HLA-linked 

loci potentially involved in MS susceptibility [159].  
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iii) We described here, replicating previous studies, that the extended haplotype of the HLA 

class II region (HLA-DRB5*01:01~DRB1*15:01~DQA1*01:02~DQB1*06:02), which has 

been further refined to HLA-DRB5*01:01~DRB1*15:01, confers the strongest risk for 

developing MS. However, we did not interrogate in the present study the previously 

underestimated genomic variation in certain HLA genes considered to be monomorphic or 

highly conserved (at least at the protein level) such as HLA-DRA locus. In this sense, some 

recent studies (mostly based on long-read sequencing platforms) have shown how SNPs and 

polymorphism clusters within the introns and 3’UTR region of HLA-DRA locus (in spite of 

being not as polymorphic as the other class II alpha genes (HLA-DQA1 and HLA-DPA1)) define 

distinct gene lineages, which, in turn, facilitate the identification and definition of HLA-

DRA~DRB3/4/5~DRB1~DQB1 haplotype patterns [429] as well as to fully understand the 

DRα~DRβ antigen presenting heterodimer genomic structure and variation. Moreover, another 

recent study has also shown that a splice acceptor variant in HLA‐DRA (as a result of an 

alternative splicing event driven by the single nucleotide polymorphism (SNP) rs8084) affects 

the conformation and cellular localization of the class II DR alpha‐chain [946]. In addition, this 

short HLA‐DRA isoform can be loaded into the peptide‐binding site of canonical HLA class II 

heterodimers, functioning itself as a putative full‐length antigen. In that study, authors also 

experimentally showed that short HLA‐DRA expression is up‐regulated by IFN‐α stimulation, 

supporting a possible functional link between short HLA‐DRA presentation and diseases 

characterized by inflammatory responses [946]. 

iv) In the present study, we did not attempt association analyses of individual amino acids in 

the HLA class I and class II genes studied here. Even though this analysis step can potentially 

reveal functionally important aspects of MS disease association (as previously shown in other 

studies [292][658][727]), still the picture, as an example, at HLA-DRB1 however appears to be 
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more complex as there has not been yet a single model based on amino acids that could explain 

the entire locus effect. Moreover, some disease associated amino acid residues simply “tag” an 

allele, recapitulating an already well-established allele association [292][727]. Also, the peptide 

binding properties of HLA molecules are obviously determined by multiple amino acid 

residues. Consequently, a given strong association detected in one single amino acid may not 

be biologically meaningful in terms of HLA functionality and its potential impact on MS 

pathogenesis. In general, the potential role of individual amino acids in disease associations can 

be best evaluated by comparing alleles that differ in disease risk, and differ in only one amino 

acid position (e.g. HLA-DRB1*15:01 versus HLA-DRB1*15:02, ideally in trans-ethnic studies). 

In this sense, amino acids may allow new hypotheses to be formulated and necessarily further 

evaluated in future corresponding functional studies. Thus, this association analysis of 

individual amino acids fell out of the scope of the present thesis work. 

5. HLA HAPLOTYPE LEVEL ANALYSES  

At the HLA haplotype level, NGS-based HLA genotyping data at the 3-/4-field allele resolution 

allowed a further and in-depth description of specific LD patterns (even in fully extended HLA 

class I and class II haplotypes) to better dissect those HLA allele signals initially detected with 

risk/protection to MS susceptibility in the present study. Thus, differences found in non-coding 

polymorphisms were clearly advantageous for breaking down HLA LD patterns, which, in turn, 

were very pertinent for mapping with more precision MS causative variants by eliminating at the 

same time false signals resulting from ‘hitchhiking’ alleles. Moreover, NGS-based HLA 

genotyping studies (as the one presented here) may overcome limitations encountered in previous 

studies (either based on lower resolution HLA genotyping techniques or HLA-imputation 

approaches using SNPs panels), in which certain questionable or inconsistent findings in relation 
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to some given HLA allele association signals might have been tagging in reality to untested or not 

fully resolved HLA loci in the past. 

From the HLA class II haplotype analyses at the 3-/4-field of the present study, our findings led 

to the conclusion, as one main example, that the major MS risk is attributed to HLA-

DRB5*01:01:01~DRB1*15:01:01:01 signal but not to HLA-DQB1*06:02:01 allele (as found in 

other MS population studies [669]). Thus, when trans-ethnic studies may be not feasible to be 

conducted, NGS-based HLA haplotype level analyses may contribute, at least to some extent, to 

dissect class II signals even when these are displaying a strong LD. Another very interesting 

finding, which indeed illustrates how informative it is the description of specific haplotype LD 

patterns at the 3-/4-field of resolution, is relative to the HLA-DRB1*15:02:01:02-bearing 

haplotype that clearly shows a strong association by conferring protection to MS susceptibility, 

being in contrast to the neutral signal from the counterpart HLA-DRB1*15:02:01:01-bearing 

haplotype. This finding is also in line with the results from the Finn et al. study [698], where they 

showed that the difference in risk association with MS of HLA-DRB1*15:01 versus -DRB1*15:02 

is not due to a lack of antigen presentation by DRβ1*15:02, at least in the context of putative 

myelin peptides, and suggested that other mechanisms involving HLA-DRB1*15:01 may account 

for increased susceptibility to MS and vice versa. In this sense, distinctive haplotypic variants 

indeed bear a series of antigen specificities corresponding to the encoded HLA molecules, which 

are comprising by those respective haplotype blocks, establishing also, in turn, disease-associated 

variants that define the structural characteristics of the peptide-binding groove and/or shaping the 

T cell repertoire in the thymus leading to an inflammatory demyelinating process [668]. 

In relation to the fully extended HLA haplotype analyses at the 3-/4-field in the present study, 

the current extended haplotype distribution data enabled to clearly identify which risk/protective 

HLA class I signals were indeed independent or otherwise were associated as a consequence of 
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their respective LD pattern with HLA class II (mainly HLA-DRB1) causative variants. At the same 

time, in addition to the most common associated bearing haplotype HLA-

A*03:01:01:01~B*07:02:01~C*07:02:01:03~DQA1*01:02:01:01~DQB1*06:02:01~ 

DRB1*15:01:01:01~DRB5*01:01:01 found conferring risk to MS susceptibility 

[292][650][651][658][677][727], the present Spanish population cohort shows a striking diversity 

of extended HLA-DRB1*15:01:01:01~DQB1*06:02:01-bearing haplotypes positively associated 

to MS, which encompass different sets of HLA class I alleles commonly found in populations from 

Mediterranean regions [130][297][464]. This finding confirms the existing heterogeneity among 

risk extended HLA-DRB1*15:01-bearing haplotypes as previously described [711]. Moreover, 

these distinctive extended HLA-DRB1*15:01-bearing haplotypes (stratified by HLA class I 

tagging) appear to differ for risk to MS susceptibility. Yet, future increasing study sample sizes 

across different both regional and ethnic groups (where considering also different but more 

uniform MS clinical sub-groups of patients) as well as subsequent functional studies will furnish 

the basis for MHC-associated susceptibility in MS, in which the entire MHC haplotype is certainly 

the fundamental unit of genetic control of immune response in health and disease [711]. Moreover, 

based on these haplotypic associations shown in the present study, our findings also arise the 

importance of evaluating in future functional studies not only the autoantigen presentation to T 

cells in the context of HLA-DRA~DRB1/DRB5 or HLA-DQA1~DQB1 [743][944][946] but also in 

the context of HLA-DPA1~DPB1 [948],  where there may be a plausible synergism between HLA-

DP and -DR gene products playing a role in the genetic susceptibility to MS. 

Once again, in addition to standard case-control association analyses (using both nominal and 

stratified approaches), we also validated our risk and protective haplotype association findings 

using a second healthy control group (both ethnically and regionally matched) in order to control 

for population stratification (as a confounding factor that may affect the HLA-MS association 
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results) at the HLA haplotype level. Overall, no significant population substructure was detected 

in the present study, although at the extended HLA haplotype level the distribution of haplotypic 

variants seems to be more sensitive to this possible existing underlying factor. 

Finally, as a noteworthy limitation, since the present Spanish NGS HLA-MS study shows a 

modest and still limited sample size it was therefore not sufficiently powered to entirely detect and 

depict the 3-/4-field haplotypic MS associations and, critically, their totally real statistical 

significance. Consequently, many positively and negatively associated class II and fully extended 

haplotypes with MS evaluated in the present study exhibit low or very low haplotype frequencies, 

being more difficult to deduce with certainty any plausible and suitably clear interpretation of these 

association results obtained at the haplotype level (i.e. since these haplotype frequencies fall into 

the “binned” category in the χ2 statistic for a contingency table analysis of case-control data due 

to their low haplotype frequencies; yet, their statistical parameters were manually calculated and 

shown here only for purposes of comparison). Thus, the difference between common and rare 

HLA haplotype frequency distributions was too excessive in this case. An additional challenge 

corresponded to those HLA regions (particularly for HLA-DP) presenting too low LD due to, in 

most cases, being separated by a recombination hotspot with a high recombination rate [92]. This 

particular current limitation may be overcome in future NGS studies using long-read sequencing 

approaches to characterize fully phased haplotypes [159]. Yet, altogether, this represents a serious 

difficulty for the majority of NGS HLA-disease association studies where the vast HLA haplotypic 

diversity found in a still insufficient study sample size generally mean the loss or, better said, the 

non-achievement of statistical power for those HLA allele/haplotype variants of interest to be 

examined. In this sense, notably increasing study sample sizes across different both regional and 

ethnic groups (where considering also different but more uniform MS clinical sub-groups of 

patients) may be a plausible solution to this statistical limitation inherently related to HLA 
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diversity. Nevertheless, selecting a suitable control group both ethically and regionally matched as 

well as conducting a fine control approach for population stratification in the given NGS study are 

absolutely required. Another statistical strategy that may be attempted is the grouping of HLA 

diversity from 3-/4-field to 2-field resolution in order to achieve the necessary power. However, 

this may not be biologically appropriate since these non-coding regions contain relevant sites 

(establishing also a specific LD pattern) for transcription promoters, inhibitors, alternative splice 

sites, methylation sites, binding sites for post‐translational miRNA degradation and many other 

functions as yet undetermined [951]. Therefore, statistical significance at the 2-field should not 

generally take precedence over biological relevance (and respective LD patterns associated to it) 

found at the very HLA genomic level. Lastly, although the present Spanish NGS study was based 

on EM-estimated haplotype data obtained from an unrelated population cohort, alternative 

sufficiently large family-based NGS studies may be able to use this HLA haplotype frequency 

distribution data by exploring HLA haplotype/allele associations with MS using transmission 

disequilibrium test (TDT) and multiallelic TDT (mTDT), which simultaneously assesses linkage 

and association. Thus, taking advantage since haplotypes produce more definitive transmissions 

than do the alleles encompassing them, and this tends to increase power. Nonetheless, the larger 

number of haplotypes relative to alleles at individual loci tends to decrease power due to the 

additional degrees of freedom required for the corresponding analysis [711].  

6. FINAL REMARKS  

The combination of a relatively large sample size with NGS-based HLA genotyping allowed us 

to obtain an enhanced dissection of the critical role of the HLA in MS susceptibility. In summary, 

the refined HLA-DRB5*01:01:01~DRB1*15:01:01:01 signal was significantly associated with 

predisposition as expected. A second independent risk allele HLA-DPB1*03:01:01 was also 
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identified, being in consonance with previous studies in populations of European descent. 

Protective effects from several distinctive HLA class II signals (including HLA-

DRB1*04:01:01:01, -DRB1*04:02:01 and -DRB1*04:04:01, which all are tightly associated with 

the secondary DRB HLA-DRB4*01:03:01:01; and, separately, HLA-

DRB5*01:02~DRB1*15:02:01:02~DQB1*06:01:01 signal) were attributed to negative LD with 

the highly predisposing HLA-DRB1*15:01:01:01 allele. While the HLA class I alleles HLA-

B*38:01:01, previously identified in other studies, and newly HLA-B*58:01:01:01 showed 

moderately protective effects independently from each other and from the HLA class II associated 

factors. Altogether, the present study demonstrates the effectiveness of very high resolution 

extended coverage genotyping for dissecting HLA alleles/haplotypes associated with MS disease 

susceptibility using both nominal and stratified analyses. To the best of our knowledge, this is the 

first HLA-MS unrelated study using NGS in Spanish population. In this study, both susceptible 

and protective candidate HLA alleles/haplotypes were mapped with more precision by eliminating 

at the same time false signals resulting from ‘hitchhiking’ alleles. The mapping to specific HLA 

allele and respective haplotype structures may allow to design future research focused in their 

functional features facilitating the understanding of the mechanisms involved in MS pathogenesis.  
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I. NGS-BASED HLA STUDY IN 17TH-IHIW SPANISH POPULATION 

COHORT (HEALTHY CONTROL GROUP)  

1) To the best of our knowledge, this is the first and largest study performed using NGS for the 

genomic characterization of HLA diversity found in Spanish population. In the present NGS study, 

we were able to describe allelic diversity at the 3-/4-field resolution of major HLA genes HLA-A, 

-B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 (enabling full sequencing of class 

I loci and extended coverage of class II loci) with minimum level of ambiguities and also to 

estimate extended haplotype frequencies. 

2) NGS HLA sequencing in the present Spanish population cohort has shown striking and highly 

informative 3-/4-field genotyping results including the description of previously unknown 

haplotype associations in non-coding regions up to the 4-field allele resolution level, the detection 

of rare, null and novel polymorphisms as well as the more accurate evaluation of allele and 

haplotype distributions and prevalence in Spanish population. 

3) Overall, results of the present study may contribute as a useful and first reference source for 

future population studies, for HLA-disease association and pharmacogenetics studies as a healthy 

control group dataset, for improved virtual panel reactive antibody (vPRA) calculations in Spanish 

population and for improving donor recruitment strategies of bone marrow and umbilical cord 

blood registries. Moreover, fine ultra-high allele resolution by NGS and determination of 3-/4-

field haplotypic associations have allowed us to identify more accurately specific patterns 

displayed within Spanish population (including a significant regional variation and population 

substructure) and to better detect genetic imprints and substrates of either more ancient 

demographic events or some other more recent or stable throughout history. Data from the present 

and from future larger NGS studies may also contribute to establish strategies for improving the 
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efficacy of both current and novel immunotherapies and selection criteria of personalized 

therapeutic approaches. Lastly, knowledge of the most common extended HLA haplotypes at the 

3-/4-field resolution in Spanish population may also serve to construct the most representative 

Spanish HLA haplo-homozygous bank for allogeneic transplantation of induced pluripotent stem 

cells (iPSC) derived cell therapies such as novel cellular adoptive therapies based on genetically 

engineered T cells. 

II. NGS-BASED HLA CASE-CONTROL STUDY OF MULTIPLE SCLEROSIS IN 

SPANISH POPULATION 

 At the same time, the present thesis work also allowed to interrogate allele and haplotype 

associations of 11 major classical HLA genes with multiple sclerosis disease in Spanish population 

based on a very comprehensive analysis using 3-/4-field HLA genotype data for the first time.  

These are the main conclusions of the present NGS HLA-MS study in Spanish population: 

1) Overall, very high-resolution HLA genotyping data allows fine-mapping of susceptibility 

and protective factors and exclusion of bystander (“hitchhiking”) alleles from contiguous loci. 

2) The refined HLA-DRB5*01:01:01~DRB1*15:01:01:01 signal was significantly associated 

with predisposition. 

3) Nominal and stratified analyses identified a second significant MS risk signal relative to 

HLA-DPB1*03:01:01 allele, being independent from the highly predisposing HLA-

DRB1*15:01:01:01 factor. 

4) Protective effects from several distinctive HLA class II signals (several HLA-DRB1*04- 

and the HLA-DRB1*15:02:01:02-bearing haplotypes) were attributed to negative LD with the 

highly predisposing HLA-DRB1*15:01:01:01 allele. 
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5) HLA-B*38:01:01 and -B*58:01:01:01 alleles confer protection and operate independently 

of the presence of HLA-DRB1*15:01:01:01 risk factor. 

6) In the present dataset, we did not find a clear Bw4 (relative to only HLA-B alleles and 

according to motif subgroups NLRIALR, DLRTLLR and NLRTALR, respectively) 

protective association by itself with MS susceptibility. On the other hand, we described that 

the Bw6 epitope (SLRNLRG), encoded by the respective group of HLA-B alleles analyzed 

here, shows a risk association that cannot be attributed simply to LD patterns in relation to the 

highly predisposing allele DRB1*15:01:01:01. 

Finally, the lesson from the study of HLA polymorphism over the last several decades has been 

that each incremental technological advance that leads to higher resolution has yielded further 

insights into the cause or mechanisms of disease. With the advent of highest-resolution NGS 

technologies, there is an opportunity to more comprehensively define the role of HLA in health 

and disease. 
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APPENDIX 1: 
 

RÉSUMÉ/CURRICULUM VITAE, GONZALO MONTERO MARTIN 
 

 

EDUCATION  

 
▪ 10/2014 - Present: Programa de Doctorado en Investigación Biomédica R.D. 99/2011 (Biomedical Research 

Doctorate Ph.D. Program R.D. 99/2011), Facultad de Medicina (School of Medicine), Universidad Complutense 

de Madrid (UCM) (Complutense University of Madrid), Madrid (Spain).                                                                    

Doctoral Thesis Title: “Investigation of the distribution of HLA alleles in healthy and diseased populations by 

the application of novel sequencing methodologies”. This Doctoral Thesis is included in the research field #9 

called “Immunology and Immunopathology” of this Biomedical Research Doctorate program.                                                                                                                                                                 

Co-Directors of this Doctoral Thesis:                                                                                                                                                

Marcelo Fernández Viña, Ph.D., D (ABHI), Stanford Blood Center, Stanford University-School of Medicine, 

Palo Alto, CA (USA).(Email contact: marcelof@stanford.edu)                                                                                                                                                  

Jorge Martinez Laso, Ph.D., Immunogenetics Unit, Microbiology National Center-Instituto de Salud Carlos 

III, Madrid (Spain) and Immunology Unit, Complejo Hospitalario Universitario Insular Materno-Infantil, 

Las Palmas de Gran Canaria (Spain). (Email contact: jmlaso12@gmail.com) 

 

▪ 09/2013 - 07/2014: Master en Investigación en Inmunología (Immunology Research Master of Science 

Degree), Facultad de Medicina (School of Medicine), Universidad Complutense de Madrid (UCM) 

(Complutense University of Madrid), Madrid (Spain). Spanish Universities grade system: 2.55 out of 4.00; and 

9.09 out of 10.00. 
 

▪ 09/2007 - 09/2013: Licenciatura en Bioquímica (Biochemistry Bachelor of Science Degree), Facultad de 

Ciencias Químicas (School of Chemistry), Universidad Complutense de Madrid (UCM) (Complutense 

University of Madrid), Madrid (Spain). Spanish Universities grade system: 2.03 out of 4.00; and 7.48 out 

of 10.00. 

 
 

ADDITIONAL ACADEMIC-PROFESSIONAL ACHIEVEMENTS  
 

▪ 09/2017-Present: American Board of Histocompatibility and Immunogenetics (ABHI) 

Certified Histocompatibility Technologist license (CHT # 1955) (Total Score 99 out of 150; 72 scaled-score 

units) (1.General Laboratory Skills: 6/12; 2.Histocompatibility and Immunogenetics Testing 35/58; 3.Test 

Interpretation and Reporting 30/45; 4.Histocompatibility and Immunogenetics Testing Principles and Theory 

15/16, 5.Quality Systems 12/15; 6.Supervisory Functions and Management 01/04). This certificate permits to work 

as a Clinical Histocompatibility Technologist (CHT) in all areas of Clinical Histocompatibility Laboratories 

anywhere in United States of America as long as other additional specific state requirements are met.  

 

▪ 06/2016-Present: California Clinical Histocompatibility Scientist Trainee license, Laboratory Field 

Services, California Department of Public Health (TRL01005232). This license permits to be trained in all 

areas of Clinical Histocompatibility in Department-approved training programs. 
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▪ 04/2014: GRE General Revised Test (ETS). Test Score: Verbal Reasoning (146) (28%),               

Quantitative Reasoning (149) (37%), Analytical Writing (3.0) (14%). 

 

▪ 02/2013: iBT TOEFL Test (ETS). Test Score: 94 out of 120. 

 

 

PROFESSIONAL TRAINING  

 
▪ 09/2020: XXXIX and XXXV Cursos Teóricos de Actualización en Inmunogenética y Genética 

Molecular 2020. The period of time of this course was 38.10 hours in total: 38.10 hours of theory classes. 

This virtual course took place at the Fundacion Comparte Vida, A.C., Mexico D.F. (Mexico). Course 

Organizer: Fundacion Comparte Vida, A.C. This course is ABHI (American Board of Histocompatibility 

and Immunogenetics) certified. 

 

▪ 08/2020: ASHI Virtual Regional Education Workshop 2020. The period of time of this course was 10.5 

hours in total: 10.5 hours of theory classes. This virtual course took place online. Course Organizer: 

American Society for Histocompatibility and Immunogenetics (ASHI). This course is ABHI (American Board 

of Histocompatibility and Immunogenetics) certified. 

 

▪ 03/2017: Basic Histocompatibility Course 2017. The period of time of this course was 15.5 hours in 

total: 15.5 hours of theory classes. This course took place at the Orlando Marriot World Center Hotel. 

Course Organizer: AFDT (American Foundation for Donation and Transplantation). This course is 

ABHI (American Board of Histocompatibility and Immunogenetics) certified. 

 

▪ 03/2015: IV Curso de Histocompatibilidad: del Laboratorio a la Clínica 2015 (4th Course of 

Histocompatibility: from the Lab to the Clinic 2015). The period of time of this course was               30 

hours in total: 24 hours of theory classes and 6 hours of practical classes. Both theory and lab training 

sections of this course took place in the Immunology Department (CDB), Hospital Clinic of Barcelona 

(Spain). Course Organizer: Aula Clinic (Immunology Department (CDB), Hospital Clinic of Barcelona). 

This course is officially recognized by the European Federation for Immunogenetics (EFI). 

 

▪ 02/2015-09/2015: Curso de Postgrado en Técnicas de Diagnóstico Genético-2ª Edición- (Course of 

Diagnostic Techniques in Genetics-2nd Edition-). The period of time of this course was                 430 hours 

in total: 30 hours of theory classes and 400 hours of diagnostic techniques in genetics lab training. The 

theory section of this course took place in University-Enterprise Foundation (ADEIT), Valencia (Spain). The 

lab training section of this course was part of my thesis work at the Immunogenetics Unit in Microbiology 

National Center-Instituto de Salud Carlos III, Madrid (Spain). Course Organizer: Department of Genetics 

from University of Valencia (UV) and University-Enterprise Foundation (ADEIT). This course is accredited 

by University of Valencia (UV) and University-Enterprise Foundation (ADEIT). 

 

▪ 02/2014: Curso en Experimentación Animal (Categoría B) para Investigadores (Course of Laboratory 

Animal Science (Category B) for Researchers). The period of time of this course was 40 hours in total: 20 

hours of theory classes and 20 hours of training with animals at the lab. This course took place in Hospital 
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Universitario La Paz, Madrid (Spain). Course Organizer: Animalaria S.L. Test Score: 8.6 out of 10.0. This 

course is accredited by the respective Spanish Authorities according to the Directive 63/2010/EU and the 

Spanish Royal Decree 53/2013. 

 

 

RESEARCH EXPERIENCE  

 
03/2016-09/2017 Predoctoral Researcher. Peter Parham Lab, Department of Structural Biology,                       

School of Medicine, Stanford University, Palo Alto, CA, USA. 
 

▪Next Generation Sequencing platforms for high-throughput and high-resolution KIR molecular allele 

typing and gene content. KIR-disease association studies and KIR population studies.  

 

Being part of United States National Institutes of Health (NIH) multi-center U19 project 

(NIH/NINDSU19NS095774) on behalf of the Immunogenetics of Neurological Diseases working GrOup 

(INDIGO) (leaded by Stanford Univeristy-Marcelo Fernández Viña, Ph.D., D (ABHI) and University 

California of San Francisco-Jorge Oksenberg, Ph.D.), which has as its primary goal to identify and 

characterize the repertoire of HLA and KIR genes and alleles that predispose to neurological diseases. 

 

*Project responsible and Supervisor: Paul Norman, Ph.D. (Senior Research Scientist). 

(Email contact: paul.norman@ucdenver.edu)                                                                                                                                                   

 

*Training responsible: Neda Nemat-Gorgani, MSc. (Research Assistant). 

(Email contact: gorganin@stanford.edu)                                                                                                                                                   

 
12/2015-Present Predoctoral Researcher. HLA Histocompatibility and Immunogenetics Laboratory, 

Stanford Blood Center, Department of Pathology, Stanford University, Palo Alto, CA, USA. 
                               

▪Next Generation Sequencing platforms for high-throughput and high-resolution HLA molecular typing. 

HLA-disease association studies and HLA population studies. 

 

Being part of United States National Institutes of Health (NIH) multi-center U19 project 

(NIH/NINDSU19NS095774) on behalf of the Immunogenetics of Neurological Diseases working GrOup 

(INDIGO) (leaded by Stanford Univeristy-Marcelo Fernández Viña, Ph.D., D (ABHI) and University 

California of San Francisco-Jorge Oksenberg, Ph.D.), which has as its primary goal to identify and 

characterize the repertoire of HLA and KIR genes and alleles that predispose to neurological diseases. 

 

*Lab responsible and Supervisor: Marcelo Fernández Viña, Ph.D., D (ABHI). (Co-Director of the 

Histocompatibility, Immunogenetics and Disease Profiling Laboratory). 

(Email contact: marcelof@stanford.edu)                                                                                                                                                   

 

*Training responsible: Lisa Creary, Ph.D. (Senior Research Scientist) and Kazutoyo Osoegawa, Ph.D. 

(Senior Research Scientist) (Email contact: lcreary@stanford.edu) (Email contact: kazutoyo@stanford.edu)                                                                                                                                                   
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12/2014 - 09/2015   Predoctoral Researcher. Immunogenetics Unit, Microbiology National Center-

Instituto de Salud Carlos III, Madrid (Spain). 
                               

▪ Refinement of a HLA Sequence Based Typing protocol and HLA typing analysis using IMGT/HLA 

database.  

 

▪ Refinement of a Triplet Primed PCR protocol as a diagnostic tool for certain diseases with trinucleotide 

repeat expansion disorders as fragile X syndrome, Huntington’s disease and Friederich’s Ataxia.   

 

▪ Refinement of a PCR protocol for sequencing all different 27 exons in CFTR gene to detect mutations as 

a diagnostic tool for cystic fibrosis. 

 
     ▪ Refinement of a PCR protocol in order to develop a diagnostic tool for Duchenne muscular dystrophy. 

In which, we are developing specific amplifications with fluorescent-labeled primers and a later Fragment 

Analysis as well as sequencing the respective obtained DNA fragments. At the same time, this PCR 

protocol strategy is being optimized for sequencing KIR genes. 

 

▪ Refinement of a PCR protocol for sequencing all different exons in beta globin (HBB) gene to detect 

mutations as a diagnostic tool for beta thalassemia. 

 

▪ Refinement of a Real Time PCR protocol to determinate HLA allele association in autoimmune diseases 

as diabetes, celiac disease and ankylosing spondylitis.  

 

▪ Development of a Real Time PCR protocol to detect the presence or lack of GSTT-1 locus in healthy 

female individuals versus pre-eclampsia patients. At the same time, related to this last, development of 

ELISA assay for detection of anti-GSTT1 antibodies in human sera comparing these same two groups of 

individuals.  

 

*Lab responsible and Supervisor: Jorge Martinez Laso, Ph.D., D (ABHI).  (Director of Immunogenetics 

Unit).(Email contact: jmlaso12@gmail.com)                                                                                                                                                   

 

*Training responsible: Isabel Cervera Hernández (Research Assistant).  

(Email contact: icervera@isciii.es)        

                                                                                                                                           

08/2014 - 10/2014    Predoctoral Researcher. Vaccine Discovery-1 Lab, La Jolla Institute for aa       a                               

Allergy and Immunology, La Jolla, California (United States of America). 
                               

▪ Analysis of PBMCs responses to the major allergens from German cockroach: development of 

ELISPOT assays. This research project belongs to the Inner-City Asthma Consortium (ICAC).   

 

▪ Development of HLA Restriction assays as part of the project: “T cell determinants of risk of TB in 

adolescents”. This research project belongs to the Global Health Program against Tuberculosis (TB), 

which is funded and promoted by Bill & Melinda Gates Foundation.  

 

*Lab responsible: Alessandro Sette, Ph.D. (Head of the Division of Vaccine Discovery). 
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(Email contact: alex@lji.org)                                                                                                                                                   

 

*Training responsible and Supervisor: Carla Oseroff, Ph.D. (Postdoctoral Researcher) (in the ICAC project) 

and Cecilia Lindestam Arlehamn, Ph.D. (Postdoctoral Researcher) (in the TB Gates project).(Emails 

contacts: coseroff@lji.org; cecilia@lji.org)       

                                                                                                       
 

09/2013 - 07/2014    Predoctoral Researcher. Immunology Unit, Hospital Clínico San Carlos (IdISSC), 

Madrid (Spain). 

 

▪ Academic research project (as my Immunology Research Master of Science Degree project) 

about the extraction, purification and characterization of a murine tumor cell (Ehrlich tumor) 

surface carbohydrate (called “A10”). 

 

*Lab responsible and Supervisor: José Luis Subiza, Ph.D. (Director of Immunology Unit). 

(Email contact: jlsubiza@inmunotek.com)                                                                                                                                                   

 

*Training responsible: Carmen Diez Rivero, Ph.D. (Postdoctoral Researcher). 

(Email contact: cmdiezri@med.ucm.es)           

 
 

11/2011 - 07/2013    Student Internship. Department of Cell Biology, School of Medicine, Complutense 

University of Madrid, Madrid (Spain): 
                               

▪ Academic research project (as my Biochemistry Bachelor of Science Degree research project) 

about the in vitro effect of the morphogen Wnt5a in human naïve CD4+T cell activation. 

 

*Lab responsible and Supervisor: Rosa Sacedón Ayuso, Ph.D. (Professor of Department of Cell Biology). 

(Email contact: rosasacedon@med.ucm.es)                                                                                                                                                   

 

*Training responsible: Jaris Valencia, Ph.D. (Postdoctoral Researcher). 

(Email contact: jarisval@ucm.es)                      

                                                                                          

                

RESEARCH COMPETENCIES AND INTERESTS  
 

Molecular biology:  

RNA and DNA isolation, reverse transcription polymerase chain reaction (rt-PCR), polymerase chain 

reaction (PCR), quantitative polymerase chain reaction (qPCR), HLA typing PCR-SSOP-Luminex 

technique, HLA Sequence Based Typing (SBT) by Sanger method, Real Time PCR, and Triplet Primed 

PCR. Next-Generation Sequencing (NGS) platforms for KIR and HLA genotyping. 
 

Cell biology:  



_________________________________________________________Appendixes 
 

Page | 715  

   © Gonzalo Montero Martin  

Processing blood, spleen and thymus from human tissue samples for cell isolation, Cell lines/primary cell 

culture, cell apoptosis assays, cell functionality assays, cell differentiation assays, cell proliferation assays, 

immunofluorescent double/triple staining, cell surface carbohydrate extraction and purification.  

 

Microscopy:  

Light microscopy, fluorescent microscopy.  

 

Immunology:  

Primary T cell isolation, PBMCs isolation, ELISA, ELISPOT, HLA restriction assays, Western blotting, 

immunocytochemistry, immunohistochemistry, flow cytometry. 

 

Tumor biology:  

Animal models (Mice strains: Swiss and C57BL/6J) of tumor metastasis (handling, restraint, 

anesthesia, analgesia, injections (intracardiac, subcutaneous, intraperitoneal), blood and ascites 

collection, animal dissection and euthanasia), primary tumor cell cultures (Ehrlich murine tumor cell 

line and lung, prostate and colon human tumor cell lines), purification (tangential flow filtration 

system with cassette) and characterization (Lectins binding assay and NMR) of carbohydrates. 

Automation/Robotics skills: 

Experience performing automated NGS DNA library preparation protocols with Beckman Coulter 

Biomek laboratory automation equipment (NxP, FxP, 4000 models). Maintain, troubleshoot, and 

improve automation and controls systems. 

Computer skills:  

Microsoft Word, Microsoft Excel, Power Point, FCS Express 3 (flow cytometry data analysis computer 

software), Derive, BLAST, Pymol, RasWin, IMGT/HLA database (sequence alignment tool), KIR (PING 

software, Norman. PJ.et al. Am. J. Hum. Genet. 2016) and HLA (MiaFora software, Immucor) genotyping 

analysis software programs, R language big data analysis, Pypop (Python for Population genomics, for 

performing HLA statistical analyses), Hapl-o-Mat (analysis software for haplotype inference via an 

expectation-maximization algorithm) and BIGDAWG (performs tests of Hardy-Weinberg equilibrium, and 

carries out case-control association analyses for haplotypes, individual loci, and HLA amino-acid positions 

on unambiguous genotype data). 

 

Research interests:  

T cell biology and vaccine discovery for treating cancer or allergic diseases are very promising fields. Apart 

from that, I consider NGS HLA/KIR genotyping studies a very high potential tool for clinical applications as 

it is in the transplantation clinical field or to contribute to decode the etiology of many complex human 

diseases such as narcolepsy, MS, NMO, MG, PD, SCZD, Diabetes, etc. 

 

Personal Statement: 

I have the knowledge, skills, training, experience and motivation necessary to successfully contribute in any 

immunogenetics related research project.  I have a broad and rich background in cell biology, physiology, 

biochemistry and immunology with specific training and expertise in molecular genotyping methods, next-

generation sequencing (NGS) technologies using automated platforms and analysis pipelines in the field of 
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immunogenetics, particularly for both HLA and KIR genes.  My research background includes HLA- and 

KIR-disease association studies in neurological diseases.  As a junior co-Investigator at Stanford University- 

and NIH-funded grants, I laid the groundwork for the proposed research by getting highly trained and later 

optimizing HLA and KIR NGS high-throughput genotyping protocols (including genotyping data analysis 

and application of statistical methods for case-control analyses), and by establishing significant 

collaborations with other international/national prestigious clinical and research groups on the field that will 

make possible to collect samples/clinical phenotypic data of different populations/ethnic groups/patient 

cohorts as documented in the following publications. In addition, I have produced several peer-reviewed 

publications from these different projects. As a result of these previous experiences, in addition to the 

increased level of knowledge and skills obtained in many aspects on the immunogenetics field, I am also 

aware of the importance of clear communication among project members and of designing a realistic and 

optimized research plan, defined timeline and sustainable budget.   

 

 

SCIENTIFIC ASSOCIATIONS MEMBERSHIPS  

 
▪ 03/2017-Present: Member of Sociedad Española de Inmunología-SEI (Spanish Society for Immunology) 

(SEI). 

 

▪ 12/2016- Present: Student/Fellow Member of American Society for Histocompatibility and 

Immunogenetics (ASHI). 

 

▪ 12/2018- Present: Student/Fellow Member of European Federation for Immunogenetics (EFI). 

 
▪ 07/2014-07/2015: Academic Trainee Member of American Association of Immunologists (AAI). 

 

 

RESEARCH-CLINICAL MEETINGS ATTENDANCE  

 
▪ Federation of Clinical Immunology Societies (FOCIS) 2020 Virtual Annual Meeting. Organizer: 

Federation of Clinical Immunology Societies (FOCIS). October 28th-31st, 2020. 

 

▪ ASHI 2020 Virtual Annual Meeting. Organizer: American Society for Histocompatibility and 

Immunogenetics (ASHI). October 19th-21st, 2020. 

 

▪ Federation of Clinical Immunology Societies (FOCIS) 2018 Meeting. Organizer: Federation of 

Clinical Immunology Societies (FOCIS). San Francisco Marriott Marquis, San Francisco, California 

(USA). June 20th-23rd, 2018. 

 

▪ 43rd American Society for Histocompatibility and Immunogenetics (ASHI). Organizer: American 

Society for Histocompatibility and Immunogenetics (ASHI). Hilton San Francisco Union Square, San 

Francisco, California (USA). September 11th-15th, 2017. 
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▪ 17th International HLA and Immunogenetics Workshop (IHIW). Organizer: Stanford Blood 

Center (SBC). Asilomar Conference Grounds, Pacific Grove, California (USA). September 6th-

10th, 2017. 

 

▪ International Day of Immunology at the ISCIII. Organizer: Immunology Department, Microbiology 

National Center (CNM)-Instituto de Salud Carlos III (ISCIII), Madrid (Spain). April 24th, 2015. 

 

▪ 2014 AAI Introductory Course in Immunology. Organizer: American Association of Immunologists 

(AAI). Long Beach Convention Center, Long Beach, California (USA). July 12th-17th, 2014. 

 

▪ 38th National Spanish Congress of Immunology. Organizer: Spanish Society of Immunology (SEI). 

Edificio Badajoz Siglo XXI, Badajoz (Spain). May 8th-10th, 2014. 

 

▪ 1st Inmunothercan Symposium. From Inflammation to Cell Plasticity: The New Hallmarks of 

Cancer. Centro Nacional de Biotecnología (CNB-CSIC), Madrid (Spain). November 27th-28th, 

2013. 

 

 

RESEARCH MEETINGS ORAL/POSTER PRESENTATIONS 

 

▪ Federation of Clinical Immunology Societies (FOCIS) 2020 Virtual Annual 

Meeting. Organizer: Federation of Clinical Immunology Societies (FOCIS). 

October 28th-31st, 2020. 

 

Poster Session – Autoimmunity 
 

F185. The Killer Immunoglobulin-like Receptor KIR3DL1 in Combination with HLA-Bw4 

is Associated with Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) 

Gonzalo Montero-Martin1, Avis Chan2, Margo Thienemann3, Bahare Farhadian4, Theresa Willett2, 

Alicia Madden5, Elizabeth Mellins2, Tanya Murphy6, Susan Swedo7, Marcelo Fernández-Viña1, Jill A 

Hollenbach8, Jennifer Frankovich2 and Kirsten M. Anderson8 

1Department of Pathology, Stanford University School of Medicine, Stanford, California, USA., Palo Alto, CA, 

2Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of 

Medicine, California, USA, Stanford, CA, 3Division of Child and Adolescent Psychiatry and Child Development, 

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, California, USA, 

Stanford, CA, 4Stanford Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard 

Children’s Hospital, California, USA, Menlo Park, CA, 5Stanford Blood Center, Stanford University School of 

Medicine, Palo Alto, California, USA., Palo Alto, CA, 6Rothman Center for Pediatric Neuropsychiatry, Pediatrics 

and Psychiatry, University of South Florida, Florida, USA, St Petersburg, FL, 7Pediatrics and Developmental 

Neuroscience Branch (PDN) in the Intramural Research Program (IRP) of the National Institute of Mental Health 

(NIMH), Bethesda, Maryland, USA, Bethesda, MD, 8Department of Neurology, University of California San 

Francisco, San Francisco, California, USA, San Francisco, CA 
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TH38. Refining the HLA-Disease Association Landscape in Neuromyelitis Optica Spectrum 

Disorders (NMOSD)  

Gonzalo Montero-Martin1, Kalyan C. Mallempati2, Sridevi Gangavarapu2, Stacy Caillier3, Lisa E. 

Creary1, Kazutoyo Osoegawa2, Danillo Augusto3, Kirsten M. Anderson3, Thais Armangue4, Maria 

Sepulveda4, Sara Llufriu4, Nathalie Dufay5, Guillaume Fiard5, Maria-Luiza Petzl-Erler6, Valérie 

Dubois7, Jose Luis Caro-Oleas8, Marius Ringelstein9, Romain Marignier10, Jun-ichi Kira11, Pablo 

Villoslada4, Albert Saiz4, Jill A Hollenbach3, Marcelo Fernández-Viña1 and Jorge R Oksenberg3  

1Department of Pathology, Stanford University School of Medicine, Stanford, California, USA., Palo Alto, CA, 

2Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA, Palo Alto, CA, 

3Department of Neurology, University of California San Francisco, San Francisco, California, USA, San Francisco, 

CA, 4Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d'Investigació Biomèdica 

August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain., Barcelona, Catalonia, Spain, 

5NeuroBioTec, Groupement Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Lyon, France., Lyon, Rhone-

Alpes, France, 6Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do 

Paraná, Curitiba, PR, Brazil., Curitiba, Parana, Brazil, 7Etablissement Français du Sang, Lyon, France., Lyon, 

Rhone-Alpes, France, 8Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain., 

Barcelona, Catalonia, Spain, 9Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-

Klinikum Düsseldorf, Düsseldorf, Germany., Düsseldorf, Nordrhein-Westfalen, Germany, 10Service de Neurologie, 

Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer 

Hospices Civils de Lyon, Lyon, France, Lyon, Rhone-Alpes, France, 11Department of Neurology, Neurological 

Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan., Fukuoka, Fukuoka, 

Japan. 

 

▪ ASHI 2020 Virtual Annual Meeting. Organizer: American Society for 

Histocompatibility and Immunogenetics (ASHI). October 19th-21st, 2020. 
 

Workshop and Oral Abstract Session II: Immunogenetics 
 
HIGH-RESOLUTION KIR ALLELIC CHARACTERIZATION IN AMERINDIANS AND 

BRAZILIAN URBAN POPULATIONS (Presented by Luciana B. Vargas) 

Luciana B. Vargas 1, Brenda Ho 2 , Gonzalo Montero-Martin 3, Wesley M. Marin 2 , Marcia H. Beltrame 

1 , Marcelo Fernandez-Vina 3, Maria Luiza Petzl-Erler 1 , Jill A. Hollenbach 2 , Danillo G. Augusto 2 ,  

1 Universidade Federal do Paraná, Curitiba, BRAZIL, 2 University of California San Francisco, San Francisco, CA. 

3 Stanford University Blood Center, Palo Alto, CA, 

 

Workshop and Oral Abstract Session VI: New Applications and 

Characterizations 

 
THE UNPRECEDENTED HIGH-RESOLUTION CHARACTERIZATION OF ALL KIR GENES 

IN A LARGE NORTH AMERICAN COHORT IDENTIFIES A SUBSTANTIAL PROPORTION 

OF NEW VARIANTS (Presented by Leonardo M. Amorim) 

Leonardo M. Amorim 1 , Danillo G. Augusto 2 , Neda Nemat-Gorgani 3 , Gonzalo Montero-Martin 4 , 

Wesley M. Marin 2 , Ravi Dandekar 2 , Hengameh Shams 2 , Peter Parham 5 , Marcelo Fernandez-Vina 

4, Jorge R. Oksenberg 2 , Paul J. Norman 6 , Jill A. Hollenbach 2,  
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1 Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, BRAZIL, 2 Department of 

Neurology, University of California San Francisco, San Francisco, CA, 3 Department of Structural Biology, 

Stanford University, Stanford, CA, 4 Stanford University Blood Center, Palo Alto, CA, 5 Department of Structural 

Biology, Stanford University, Palo Alto, CA, 6 Division of Personalized Medicine, University of Colorado, Aurora, 

CO. 

 

▪ 41st National Spanish Congress of Immunology. Organizer: Spanish Society of 

Immunology (SEI). Hotel Meliá Sevilla, Sevilla (Spain). May 30th to June 1st, 

2019. 

 

Oral Session – Immunogenetics  
 
Oral Communication # 38 “HIGH-RESOLUTION HLA ALLELIC AND HAPLOTYPIC 

ASSOCIATION WITH MULTIPLE SCLEROSIS IN SPANISH POPULATION USING NEXT-

GENERATION SEQUENCING” (Presented by M. Fernandez-Vina) 

GONZALO MONTERO-MARTIN
1
, SARA LLUFRIU

2
, MARIA SEPULVEDA

2
, THAIS ARMANGUE

2
, JOSE 

LUIS CARO-OLEAS
2
, JORGE OKSENBERG

2
, PABLO VILLOSLADA

2
, ALBERT SAIZ

2
, MARCELO 

FERNANDEZ-VINA
1
. 

 1. STANFORD UNIVERSITY, SCHOOL OF MEDICINE DEPARTMENT OF PATHOLOGY. 

 2. HOSPITAL CLINIC, SERVICE OF NEUROLOGY. 

 

 

▪ 33rd European Federation for Immunogenetics (EFI) Meeting. Organizer: 

Portuguese Society of Transplantation (SPT) and Portuguese Institute for 

Blood and Transplantation (IPST). Centro Cultural de Belém (CCB), Lisbon 

(Portugal). May 8th -11th, 2019. 

 

Oral Presentations–Reproduction, Autoimmunity, Infection & Cancer 
 
O-18 “THE SHARED EPITOPE OF HLA-DRB1 MEDIATES RISK AND INTERACTS WITH 

SMOKING HISTORY IN PARKINSON'S DISEASE” (Presented by J.A. Hollenbach) 

Jill A. Hollenbach1, Paul J. Norman2, Lisa E. Creary3, Vincent Damotte1, Gonzalo Montero Martin4, 

Stacy Caillier5, Kirsten Anderson6, Maneesh K. Misra1, Neda Nemat- Gorgani7, Kazutoyo Osoegawa8, 

Wesley M. Marino9, Ravi Dandekar1, Marcelo A. Fernandez-Vina10, Jorge Oksenberg11.  
 

1. University of California, San Francisco, San Francisco, United States of America. 

2. University of Colorado Anschutz Medical Campus, Aurora, United States of America. 

3. Stanford University School of Medicine, Department of Pathology, Palo Alto, United States of 

America.  

4. Stanford University School of Medicine, Stanford, United States of America. 
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5. Department of Neurology, University of California San Francisco, San Francisco, United States of 

America. 

6. University of California San Francisco, San Francisco, United States of America.  

7. Stanford University, Stanford, United States of America. 

8. Stanford Blood Center, Palo Alto, United States of America. 

9. University of California, San Francisco School of Medicine, San Francisco, United States of America.  

10. Stanford University School of Medicine, Palo Alto, United States of America.  

11. UCSF, San Francisco, United States of America. 

 
O-21 “HIGH RESOLUTION HAPLOTYPE ANALYSES OF CLASSICAL HLA GENES IN 

FAMILIES WITH MULTIPLE SCLEROSIS” (Presented by K. Osoegawa) 

Kazutoyo Osoegawa1, Lisa E. Creary2, Kalyan C. Mallempati1, Sridevi Gangavarapu1, Gonzalo Montero-

Martin3, Stacy J. Caillier4, Jill A. Hollenbach5, Jorge R. Oksenberg4, Marcelo A. Fernandez Vina3. 

1. Stanford Blood Center, Palo Alto, United States of America.                                                                   

2. Stanford University School of Medicine, Department of Pathology, Palo Alto, United States of 

America.                                                                                                                                                          

3. Stanford University School of Medicine, Palo Alto, United States of America.                                           

4. University of California, San Francisco, San Francisco, United States of America.                                 

5. University of California, San Francisco School of Medicine, San Francisco, United States of America. 

Oral Presentations–New Technologies 
 

O-63 “DEEP ANALYSIS OF KIR2DL1 AND KIR3DL1S1 BY NEXT GENERATION 

SEQUENCING IN 3,695 INDIVIDUALS IDENTIFIES NOVEL VARIANTS WITH POSSIBLE 

FUNCTIONAL RELEVANCE”. (Presented by D.G. Augusto) 

 

Danillo G. Augusto1, Neda Nemat-Gorgani2, Gonzalo Montero-Martin3, Wesley Marin1, Ravi Dendekar4, Peter 

Parham2, Marcelo A. Fernandez-Vina3, Jorge R. Oksenberg1, Paul J. Norman2, Jill A. Hollenbach5
. 

 

1. University of California San Francisco, San Francisco, United States of America.  

2. Stanford University, Stanford, United States of America.  

3. Stanford University School of Medicine, Stanford, United States of America.  

4. Department of Structural Biology, San Francisco, United States of America. 

5. University of California, San Francisco, San Francisco, United States of America. 

 

 

Poster Session–Evolution, Anthropology & Population Genetics 

 
P-106 “HIGH-RESOLUTION HLA ALLELIC AND HAPLOTYPIC ASSOCIATION WITH 

MULTIPLE SCLEROSIS IN SPANISH POPULATION USING NEXT-GENERATION 

SEQUENCING” 

Gonzalo Montero-Martin1, Sara Llufriu2, Maria Sepulveda2, Thais Armangue2, Kazutoyo Osoegawa3, 

Kalyan C. Mallempati3, Sridevi Gangavarapu3, Lisa E. Creary1, Stacy Caillier4, Jorge R. Oksenberg4, 

Pablo Villoslada2, Albert Saiz2, Marcelo A. Fernandez-Vina1. 

 

1. Stanford University School of Medicine, Department of Pathology, Palo Alto, United States of 

America.  

2. Service of Neurology, Hospital Clinic, University of Barcelona, Spain Neuroimmunology Program, 

Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain, 
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3. Stanford Blood Center, Palo Alto, United States of America. 

4. Department of Neurology, University of California San Francisco, San Francisco, United States of 

America. 

 

 

▪ Childhood Arthritis and Rheumatology Research Alliance (CARRA) 15th 

Annual Scientific Meeting. Organizer: Childhood Arthritis and Rheumatology 

Research Alliance. Louisville, Kentucky, (USA). April 10th-14th, 2019. 

 

Poster Session  
 
Abstract # 614399 “HLA Findings in Youth with Pediatric Acute-onset Neuropsychiatric Syndrome (PANS)”.  

 

Jennifer Frankovich1, Jill Hollenbach2, Gonzalo Montero-Martin1*, Avis Chan1, Margo Thienemann1, 

Bahare Farhadian1, Theresa Willett1, David Lewis1, Elizabeth Mellins1, Tanya Murphy3, Marcelo 

Fernandez-Vina1. 

 

1. Stanford University, California, USA. 

 

2. University of California San Francisco, California, USA. 

 

3. University of South Florida, Tampa, Florida, USA. 

 

 

▪ The Guthy-Jackson Charitable Foundation’s (GJCF) 2019 11th 

International NMO Roundtable Conference. UCLA Luskin Conference Center, 

UCLA, Los Angeles, California (USA). March 31st, 2019. 

 

Oral Session III – Uniting the World to Solve NMOSD 
 
O-3 “Next-Gen HLA Class I & II Genotyping in NMOSD” 

Montero-Martín, G.1, Mallempati, K.2, Gangavarapu, S.2, Caillier, S.3, Creary, L.E.1, Osoegawa K.2, 

Augusto, D.3,4, Anderson, K3, Armangue, T.5, Sepulveda, M.5, Llufriu, S.5, Dufay, N. 6, Fiard, G. 6, Petzl-

Erler, M.L.4, Dubois, V.7, Caro-Oleas, J.L.8, Marignier, R.9, Kira, J.I10, Villoslada, P.5, Saiz, A.5, 

Hollenbach, J.A.3, ,Fernández-Viña, M.A.1 and Oksenberg, J.R.3 

 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. 

2. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

3. Department of Neurology, University of California San Francisco, San Francisco, California, USA 

4. Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, 

PR, Brazil. 

5. Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d'Investigació Biomèdica August 

Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. 

6. NeuroBioTec, Groupement Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Lyon, France. 

7. Etablissement Français du Sang, Lyon, France. 
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8. Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain. 

9. Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital 

Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.  

10. Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-

1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. 

 

 

▪ HLA and KIR Region Genomics in immune-mediated diseases Consortium 

(HLARGC), National Institute of Heath (NIH) Steering Committee (National 

Institute of Allergy and Infectious Diseases (NIAID) and National Institute of 

Neurological Disorders and Stroke (NINDS)). Li Ka Shing Building, Stanford 

University, Stanford, California (USA). March 20th, 2019. 

 

Oral Session 4 – Immunogenetic Determinants of Disease in Neurological Disease (U19), 

HLA Class I and Class II in neurological diseases (U19) 
 
O-1 “Refining the HLA-disease association landscape in Neuromyelitis Optica” 

Montero-Martín, G.1, Mallempati, K.2, Gangavarapu, S.2, Caillier, S.3, Creary, L.E.1, Osoegawa K.2, 

Augusto, D.3,4, Anderson, K3, Armangue, T.5, Sepulveda, M.5, Llufriu, S.5, Dufay, N. 6, Fiard, G. 6, Petzl-

Erler, M.L.4, Dubois, V.7, Caro-Oleas, J.L.8, Marignier, R.9, Kira, J.I10, Villoslada, P.5, Saiz, A.5, 

Hollenbach, J.A. 3, Fernández-Viña, M.A.1and Oksenberg, J.R.3 

 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. 

2. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

3. Department of Neurology, University of California San Francisco, San Francisco, California, USA 

4. Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, 

PR, Brazil. 

5. Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d'Investigació Biomèdica August 

Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. 

6. NeuroBioTec, Groupement Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Lyon, France. 

7. Etablissement Français du Sang, Lyon, France. 

8. Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain. 

9. Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital 

Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.  

10. Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-

1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. 

 

 

▪ 11th KIR WORKSHOP 2018. Organizer: Italian Society for Immunogenetics 

and Transplantation Biology (AIBT). Camogli, Genoa (Italy). October 25th-27th, 

2018. 

 

Oral Session - KIR sequencing and typing 
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“Novel variants of KIR2DL1 and KIR3DL1/S1 identified in 3,695 individuals analyzed by next generation 

sequencing”. (Presented by D.G. Augusto) 

 

Danillo G. Augusto1, Neda Nemat-Gorgani2, Gonzalo Montero-Martin3, Wesley Marin1, Ravi Dendekar4, Peter 

Parham2, Marcelo A. Fernandez-Vina3, Jorge R. Oksenberg1, Paul J. Norman2, Jill A. Hollenbach5
. 

 

1. University of California San Francisco, San Francisco, United States of America.  

2. Stanford University, Stanford, United States of America.  

3. Stanford University School of Medicine, Stanford, United States of America.  

4. Department of Structural Biology, San Francisco, United States of America. 

5. University of California, San Francisco, San Francisco, United States of America. 

 

 

▪ 2018 American College of Rheumatology (ACR/ARHP) Annual Meeting. 

Organizer: American College of Rheumatology. Chicago, Illinois (USA). October 

19th-24th, 2018. 

 

Poster Session - Genetics, Genomics and Proteomics 
 
Abstract # 1975 “Behcet’s Disease Lies in the “B” Holder. New Associations in Disease Susceptibility and 

Manifestations”.  

 

Mohanad Elfishawi1,2, Sally Elfishawi3, Ghada Mossallam3, Paul Norman4, Jill Hollenbach5, Maneesh 

Misra5, Gonzalo Montero Martin6, Helma de Bruin7, Leos Van de Pasch7, Erik Rozemuller7, Marcelo 

Fernandiz-Vina6, Adriana Abrudescu8 and Khaled Zaky9. 

 

1. Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, NY, 

USA. 

2. Rheumatology, Kasr Alainy Hospital, Cairo University, Cairo, Egypt. 

3. Clinical Pathology and Immunology Laboratory, National Cancer Institute, Cairo University, Cairo, 

Egypt.  

4. Division of Personalized Medicine and Department of Immunology, University of Colorado School of 

Medicine, Denver, Colorado, USA. 

5. Department of Neurology, University of California San Francisco, San Francisco, California, USA.  

6. Department of Pathology, Stanford University, School of Medicine, Stanford, California, USA. 

7. GenDx, Utrecht, Netherlands. 

8. Internal Medicine and Rheumatology, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, 

NYC, NY, USA.  

9. Rheumatology and Rehabilitation, Faculty of medicine, Al-Azhar University, Cairo, Egypt. 
 

 

▪ 44th American Society for Histocompatibility and Immunogenetics (ASHI). 

Organizer: American Society for Histocompatibility and Immunogenetics 

(ASHI). Baltimore Marriott Waterfront, Baltimore, Maryland (USA). October 1st-5th, 

2018. 
 

Oral Presentations  
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OR24 “HLA allele and haplotype frequencies characterized using next-generation sequencing 

methods in unrelated world-wide populations: Summary from the 17th International HLA and 

Immunogenetics Workshop” (Presented by L.E. Creary) 

Lisa E. Creary1, Chia-Jung Chang2, Gonzalo Montero-Martin1, Kalyan C. Mallempati3, Sridevi Gangavarapu3, 

Kazutoyo Osoegawa3, Tamara Vayntrub3, Marcelo A. Fernandez-Vina1.  
 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.                                            

2. Stanford Genome Technology Center, Palo Alto, California, USA. 

3. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

 

 

▪ Federation of Clinical Immunology Societies (FOCIS) 2018 Meeting. 

Organizer: Federation of Clinical Immunology Societies (FOCIS). San Francisco 

Marriott Marquis, San Francisco, California (USA). June 20th-23rd, 2018. 

 

Poster Session – Immunogenetics, Immunology of the eye 
 
P-T.56 “Association Study between HLA genes and Climatic Droplet Keratopathy (CDK) in a 

cohort from the Patagonian region of Argentina” 

Montero-Martin, G.1, Súarez, M.F.2, Mallempati, K.3,Fernández-Viña, M.A. 1, Urrets-Zavalía, J.A.4, and 

Serra, H.M.2. 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. 

2.CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de 

Cordoba, Cordoba, Argentina. 

3. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

4. Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Católica de Córdoba, Córdoba, 

Argentina. 

 

 
▪ XII Congress of the Latin American Association of Immunology (ALAI) and 

XXIII Congress of the Mexican Society of Immunology (SMI). Organizer: 

Mexican Society of Immunology (SMI)., Cancun, Quintana Roo (Mexico). May 

14th-18th, 2018. 

 

Poster Session I – Clinical Immunology 
 
P-125 “Association Study between HLA genes and Climatic Droplet Keratopathy (CDK) in a 

cohort from the Patagonian region of Argentina” 

Montero-Martin, G.1, Súarez, M.F.2, Mallempati, K.3,Fernández-Viña, M.A. 1, Urrets-Zavalía, J.A.4, and 

Serra, H.M.2. 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. 



_________________________________________________________Appendixes 
 

Page | 725  

   © Gonzalo Montero Martin  

2.CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de 

Cordoba, Cordoba, Argentina. 

3. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

4. Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Católica de Córdoba, Córdoba, 

Argentina. 

 

 

▪ 32nd European Federation for Immunogenetics (EFI) and 25th Italian Society for 

Immunogenetics and Transplantation Biology (AIBT) Joint Meeting. Organizer: 

Italian Society for Immunogenetics and Transplantation Biology (AIBT). 

Palazzo del Cinema and Palazzo del Casinò, Venice (Italy). May 9th-12th, 2018. 
 

Oral Presentations–MHC Evolution, Anthropology & Population Genetics 
 
O-11 “HLA allele and haplotype frequencies characterized using next-generation sequencing 

methods in unrelated world-wide populations: Summary from the 17th International HLA and 

Immunogenetics Workshop” (Presented by L.E. Creary) 

Lisa E. Creary1, Chia-Jung Chang2, Gonzalo Montero-Martin1, Kalyan C. Mallempati3, Sridevi Gangavarapu3, 

Kazutoyo Osoegawa3, Tamara Vayntrub3, Marcelo A. Fernandez-Vina1.  
 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.                                            

2. Stanford Genome Technology Center, Palo Alto, California, USA. 

3. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

 

 

Poster Group No. 6 – MHC Evolution, Anthropology & Population Genetics 

 
P-155 “High-Resolution Characterization of Allelic and Haplotypic HLA Frequencies Distribution in a 

Spanish Population using High-Throughput Next-Generation Sequencing” 

Montero-Martín, G.1, Creary, L.E.1, Mallempati, K.2, Gangavarapu, S.2, Vayntrub, T.2, Planelles, D.3, 

Vilches, C.4, Caro-Oleas, J.L.5, Herrero-Mata, M. J.5, Sánchez-Gordo, F.6,  González-Escribano, F.7, Muro, 

M.8, Moya-Quiles, M.R.8, González-Fernández, R.9, Sánchez-García, F.10, Ocejo-Vinyals, J.G.11, Balas, 

A.12, Vicario, J.L.12, Marín, L.13 and Fernández-Viña, M.A.1. 

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.                                           

2. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

3. Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain.  

4. Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain. 

5. Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain. 

6. Histocompatibility, Centro de Transfusión de Málaga, Málaga, Spain. 

7. Immunology, Hospital Universitario Virgen del Rocío, Sevilla, Spain.  

8. Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.  

9. Immunology, Hospital Universitario Reina Sofía, Córdoba, Spain. 

10. Immunology, Hospital Universitario de Gran Canaria Dr Negrín, Las Palmas de Gran Canaria, Spain. 

11. Immunology, Hospital Universitario Marqués de Valdecilla, Santander, Spain.  

12. Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain.  

13. Molecular Biology-Hematology, Hospital Clínico Universitario, Salamanca, Spain. 
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▪ 17th International HLA and Immunogenetics Workshop (IHIW). Organizer: 

Stanford Blood Center (SBC). Asilomar Conference Grounds, Pacific Grove, 

California (USA). September 6th-10th, 2017. 
 

Oral Session – Workshop-Activities: NGS HLA Projects, Population Genetics, 

IHIWS Unrelated project contributors, individual brief reports 

 
O-1 “HLA-NGS Spain Population Study” 

Montero-Martín, G.1, Creary, L.E.1, Mallempati, K.2, Gangavarapu, S.2, Vayntrub, T.2, Planelles, D.3, 

Vilches, C.4, Caro-Oleas, J.L.5, Herrero-Mata, M. J.5, Sánchez-Gordo, F.6,  González-Escribano, F.7, Muro, 

M.8, Moya-Quiles, M.R.8, González-Fernández, R.9, Sánchez-García, F.10, Ocejo-Vinyals, J.G.11, Balas, 

A.12, Vicario, J.L.12, Marín, L.13 and Fernández-Viña, M.A.1. 

1.Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.                                           

2. Stanford Blood Center, Stanford University School of Medicine, Palo Alto, California, USA. 

3. Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain.  

4. Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain. 

5. Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain. 

6. Histocompatibility, Centro de Transfusión de Málaga, Málaga, Spain. 

7. Immunology, Hospital Universitario Virgen del Rocío, Sevilla, Spain.  

8. Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.  

9. Immunology, Hospital Universitario Reina Sofía, Córdoba, Spain. 

10.  Immunology, Hospital Universitario de Gran Canaria Dr Negrín, Las Palmas de Gran Canaria, Spain. 

11. Immunology, Hospital Universitario Marqués de Valdecilla, Santander, Spain.  

12. Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain.  

13. Molecular Biology-Hematology, Hospital Clínico Universitario, Salamanca, Spain. 

 

 

Oral Session – Workshop-Activities: 17th Workshop, KIR component population 

reports 

 
O-3 “KIR diversity in a Spanish Population” 

Montero-Martín, G.1, Misra, M.K. 2, Nemat-Gorgani, N. 3, Balas, A. 4, Cisneros, E. 5, González-Fernández, 

R. 6, Herrero-Mata, M.J. 7, Moreno-Hidalgo, M.A. 4, Sánchez-Gordo, F. 8, Vicario, J.L. 4, Sánchez-García, 

F.9, Fernández-Viña, M.A. 1, Oksenberg, J.R.2, Parham, P.3, Caro-Oleas, J.L.7, Planelles, D.10, Vilches, C.5, 

Norman, P.J.11 and Hollenbach, J.A.2 . 
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