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Resumen en español  

En este trabajo, realizamos un análisis de la interacción entre la ferroelectricidad, 

las paredes de dominio ferroeléctrico cargadas y el memristor en las dimensiones 

reducidas de una unión túnel. Para alcanzar este objetivo, crecemos bicapas de 

heteroestructuras epitaxiales de manganitas ferromagnéticas 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3 

(LCMO), 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 (LSMO) a fin de ser utilizadas como electrodo inferior; 

el aislante de Mott/Anderson 𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7−𝛿  (PBCO) y el titanato de bario 

ferroeléctrico 𝐵𝑎𝑇𝑖𝑂3−𝛿   para su uso como barrera túnel; así como distintos 

metales (Ag, Co, Ta, Pt) con la finalidad de ser depositados como electrodo 

superior. Hemos encontrado curvas de histéresis de la intensidad de corriente y la 

Resistencia de lectura en función del voltaje de escritura aplicado que podrían no 

ser fácilmente explicadas con el modelo de Schottky porque la ferroelectricidad y 

la barrera de Schottky interactúa con otros defectos interfaciales como las vacantes 

de oxígeno entre otros muchos. A fin de esclarecer el comportamiento histerético 

memristivo, se han empleado técnicas experimentales de diversa índole; así como 

cálculos con la teoría del funcional de densidad por el software VASP, aportando 

resultados relevantes que pueden ser enumerados a continuación para abordar el 

problema fundamental: 

 El comportamiento histerético resistivo de la union túnel 

LCMO/PBCO/Ag sondea directamente las rutas de conducción túnel a 

través de los planos 𝐶𝑢𝑂2 proporcionando una conexión directa al modelo 

de Fehrenbacher y Rice para los cupratos. Hemos encontrado pruebas de 

un gap aislante de 4 eV anteriormente mencionado entre los estados 𝑃𝑟𝐼𝑉 

y 𝐶𝑢𝐼𝐼𝐼. Esto concuerda con el modelo de Fehrenbacher y Rice para los 

cupratos, el cual afirma que la ausencia de conductividad de las cadenas 

Cu–O es debida a las vacantes de oxígeno excluyendo la posibilidad de 

sortear los planos 𝐶𝑢𝑂2 mediante el túnel de los portadores de carga a 

través de las cadenas Cu–O. 

 El mecanismo de conducción de las uniones túnel LCMO/PBCO/Ag es 

preferentemente el efecto túnel de los electrones asistido por las trampas 

localizadas en las cadenas Cu–O de la barrera de cuprato PBCO. El estado 

de baja resistencia de la unión túnel LCMO/PBCO/Ag ha sido examinado 

por el ajuste de las curvas IV a la ley de Child-Langmuir (análogo a la 

conducción de electrones en régimen balístico en un diodo de vacío plano-

paralelo) y la conducción túnel por campo eléctrico intenso (régimen de 

Fowler-Nordheim). 

 Encontramos un gas de electrons libres en las paredes de dominio cargadas 

enfrentadas (Head-to-Head) 180º en la barrera de 𝐵𝑎𝑇𝑖𝑂3 de las uniones 
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túnel LSMO/BTO/LSMO. Obtenemos evidencias de estados electrónicos 

confinados, que habilitan el transporte túnel resonante entre los electrodos. 

La conductancia túnel a baja temperatura muestra pronunciadas 

oscilaciones indicando transporte resonante a través de niveles discretos 

desocupados del gas de electrones confinados, los cuales están modulados 

por el fuerte campo eléctrico desarrollado en una barrera ultra-delgada a 

voltajes moderados en un experimento de transporte.  

 Encontramos un débil comportamiento Mem-Capacitivo en las uniones 

túnel memristor LSMO/BTO/Ag que ocurren como consecuencia de una 

reacción química interfacial reversible controlada por un campo eléctrico. 

En el caso del memristor LSMO/BTO/Ag, el campo eléctrico crea 

intersticiales de oxígeno en el electrodo de plata dejando vacantes de 

oxígeno en la barrera de titanato de bario. La diferencia en la movilidad 

de ambos portadores de carga, las vacantes y los intersticiales de oxígeno, 

da origen a defectos localmente cargados, que garantiza el efecto Mem-

Capacitivo. 

 Encontramos pruebas de un acoplamiento de las vacantes de oxígeno a la 

polarización ferroléctrica en las uniones túnel memristor LSMO/BTO/Co. 

Esto da origen a un estado electrónico localizado t2g resultado del 

apantallamiento de la polarización ferroeléctrica por el Bloqueo de 

Coulomb. Las evidencias experimentales son obtenidas de la altamente 

anómala disminución de la capacidad al aumentar la temperatura 

correlacionada con el aumento de la conductancia al aumentar la 

temperatura. Además, la curva plana de la tangente del ángulo de pérdidas 

con la frecuencia a baja temperatura respaldan el mecanismo puramente 

electrónico del régimen del Bloqueo de Coulomb (T = 50K). 

 Las uniones túnel LSMO/BTO/Co muestran cambio de signo en la 

magneto-resistencia túnel, impulsado por el cambio de la polarización 

ferroeléctrica. Esto refleja el cambio de signo en la polarización de spin 

(en el nivel de Fermi) de la interfaz BTO/Co desencadenada por la 

polarización ferroeléctrica y la distribución de defectos. Los cálculos de 

DFT enseñan que dicho cambio de signo es fruto de la competición entre 

la interacción de canje de los átomos de Co suprimida por la monocapa de 

óxido CoO (𝑈 − 𝐽 = 6.0 𝑒𝑉) y la interacción de canje de los centros de 

color de las vacantes de oxígeno mediadas por los iones 𝑇𝑖3+ (𝑈 − 𝐽 =
4.4 𝑒𝑉). El transporte túnel mediado por centros de vacantes de oxígeno 

parece una interacción de doble canje extrapolada a una barrera 

ferroeléctrica aislante de BTO. 
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 Los experimentos llevados a cabo utilizando distintos electrodos 

superiores con diferentes funciones de trabajo no mostraban una relación 

lineal entre la altura de la barrera y la función de trabajo de los metales 

implicados (Ag, Co, Ta y Pt). La barrera Schottky detectada en las curvas 

IV se encuentra en la intercara BTO/LSMO y está causada por efectos de 

dopado asociados a la acumulación de vacantes de oxígeno. La formación 

de vacantes de oxígeno está controlada por la oxidación del electrodo 

impulsada por el campo eléctrico aplicado. Las uniones túnel memristor 

LSMO/BTO/Ta acoplan la ferroelectricidad y la formación de vacantes de 

oxígeno a las reacciones químicas de Ta metálico a sus óxidos nativos 

𝑇𝑎𝑂2 y 𝑇𝑎2𝑂5. La heterogeneidad debida a las capas de óxido formadas 

causa que el memristor muestre el efecto de relajación de Maxwell-

Wagner-Sillars. Finalmente, encontramos que el campo eléctrico 

necesario para aniquilar las vacantes de oxígeno (coercitividad positiva de 

los ciclos de histéresis de la conductancia) escala con la entalpía de 

oxidación del electrodo superior, indicando que el proceso está limitado 

por la reducción inducida por campo eléctrico del óxido del electrodo 

interfacial. 

 Como pronóstico final a experimentos futuros, sería altamente interesante 

trabajar con el recientemente desarrollados porta-muestras para 

microscopios de transmisión y barrido (STEM) que permiten aplicar 

pulsos de campo eléctrico in situ además de tomar imágenes de campo 

claro (ABF) y medidas de espectroscopia de pérdida de energía de los 

electrones (EELS) combinadas para examinar los cambios de valencia en 

tiempo real y eventualmente también las consiguientes modificaciones 

estructurales las reacciones químicas REDOX asociadas, las cuales 

controlan la histéresis resistiva. 
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SUMMARY 

The main findings of this dissertation are summarized here. We performed an analysis of the 

interplay between ferroelectricity, ferromagnetism, domain structure and memristive response in 

magnetic tunnel junctions. In order to reach this objective, we grew epitaxial heterostructures 

combining ferromagnetic manganites 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3 (LCMO), 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 (LSMO) to 

be used as bottom electrode; the Mott/Anderson insulator 𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7−𝛿 (PBCO) and 

ferroelectric barium titanate 𝐵𝑎𝑇𝑖𝑂3−𝛿 for use as a tunnel barrier and different metals (Ag, Co, 

Ta, Pt) to be deposited as top electrodes. We found hysteretic response in transport properties 

which may not be explained with the Schottky model in simple terms because the 

ferroelectricity interacts with interface defects such as oxygen vacancies modifying their 

ionization and changing and the Schottky barrier. To gain more insight into the understanding of 

the hysteretic memristive behaviour, several experimental techniques were combined with 

density functional theory simulations by VASP. The main findings of this work can be 

summarized as follows: 

 The LCMO/PBCO/Ag tunnel junction resistive switching behaviour directly probe the 

tunneling routes across the 𝐶𝑢𝑂2 planes providing a direct connection to the 

Fehrenbacher and Rice model for cuprates.  We have found evidence for the presence of 

the insulating gap of 4 eV mentioned above between the 𝑃𝑟𝐼𝑉 states and the  𝐶𝑢𝐼𝐼𝐼 

states. This is in agreement with the Fehrenbacher and Rice model stating that the 

absence of conductivity of the Cu–O chains is due to the O vacancies excluding the 

possibility to circumvent the 𝐶𝑢𝑂2 planes via the tunneling of charge carriers through 

the Cu–O chains.  

 

 The conduction mechanism of the LCMO/PBCO/Ag tunnel junctions is predominantly 

the tunneling of electrons assisted by traps localized in the CuO chains in the PBCO 

barrier. The Low Resistance State of the LSMO/PBCO/Ag tunnel junction was 

examined by fitting IV curves to  the Child-Langmuir law (analogous to the electron 

conduction in a plane parallel vacuum diode in the ballistic conduction regime) and to 

the Fowler-Nordheim quantum tunneling. 

 

 We found a free-electron gas in 180º Head-to-Head charged domain walls (CDW) in 

𝐵𝑎𝑇𝑖𝑂3barriers in LSMO/BTO/LSMO tunnel junctions. We obtained evidence for 

confined electronic states which enable resonant tunnelling transport between the 

electrodes. Low temperature tunnelling conductance (measured using a dc current set 

up) exhibits pronounced oscillations indicating resonant transport through discrete 

unoccupied states of the confined electron gas, which is modulated by the strong 

electric field developing in an ultrathin barrier at moderated voltages in a transport 

experiment.  

 

 We found a weak Mem-Capacitor behavior in LSMO/BTO/Ag memristor tunnel 

junctions occurring as a consequence of reversible interfacial chemical reaction 

controlled by an electric field. In the particular LSMO/BTO/Ag memristor, the electric 

field create interstitial oxygen atoms in the face-centered cubic silver electrode leaving 

behind oxygen vacancies in the Barium Titanate barrier. The different charge carrier 
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mobilities of the interstitial oxygen atoms and the oxygen vacancies, give rise to locally 

charged defects giving rise to the mem-capacitor effect.  

 

 We found evidence of the coupling of oxygen vacancies to ferroelectric polarization in 

LSMO/BTO/Co memristor tunnel juntions. This gives rise to a t2g localized electronic 

state resulting from the Coulomb-Blockade-like screening of the ferroelectric 

polarization.  Experimental evidence is obtained from the highly anomalous decrease of 

the capacitance while increasing temperature which correlates with the increase of 

conductance when temperature is increased. Furthermore, the flat shape of the loss 

tangent vs frequency further support the purely electronic Coulomb-Blockade-like 

regime (T = 50K). 

 

 The LSMO/BTO/Co memristor tunnel junction exhibits sign change in the tunnel 

magneto-resistance (TMR) driven by the switching of the ferroelectric polarization. 

This reflects the sign change in the spin polarization (at the Fermi level) in the BTO/Co 

interface triggered by the ferroelectric polarization and the defect distribution. DFT 

calculations show that the sign change in BTO/Co interface stems from the competition 

between the Co atoms exchange interaction suppressed by the CoO monolayer (U − J =
6.0 eV) and the oxygen vacancies colour centres exchange interaction mediated by Ti3+ 

ions (U − J = 4.4 eV). Tunnel transport mediated by the oxygen vacancy centers 

resemble a double exchange interaction in an insulator ferroelectric BTO barrier. 

 

 Experiments conducted using top electrodes with different work functions did not show 

not a linear relationship between the barrier height and the work function of the 

transition metals involved (Ag, Co, Ta and Pt).  The Schottky barrier detected in IV 

curves is at the BTO/LSMO interface and it is caused by doping effects associated to 

the accumulation of oxygen vacancies.  Oxygen vacancy formation is controlled by the 

oxidation of the electrode driven by the applied electric field. The LSMO/BTO/Ta 

memristor tunnel junction couple ferroelectricity and oxygen vacancy formation to two 

consecutive REDOX chemical reactions of metallic Ta to 𝑇𝑎𝑂2 oxide and 𝑇𝑎2𝑂5 

oxide. Heterogeneity due to the formed oxide layers caused the memristor to display 

Maxwell-Wagner-Sillars relaxation effect. Finally, we found the electric field necessary 

to annihilate oxygen vacancies (positive coercivity of conductance hysteresis loops) 

scales with the (absolute value of the) oxidation enthalpy of the top electrode, indicating 

that the process is limited by the electric field induced reduction of the interfacial 

electrode oxide. This constitutes a first evidence of memristive response governed by 

electric field controlled electrochemical reactions at the interface with the electrode.  

 

As a final outlook into future experiments, it would be highly interesting to work with the 

recently developed scanning transmission electron microscope (STEM) sample holders which 

allow applying electric field pulses in situ and take annular bright field (ABF) images and 

electron energy loss spectroscopy (EELS) measurements combined to examine real time 

valence changes and eventually also ensuing structural modifications associated to the REDOX 

chemical reactions controlling resistive switching. 



Motivation and Outline 

The discovery of the conducting state at the interface between LaAlO3 and SrTiO3, 

two band insulators, [1, 2] has generated a lot of interest aimed at exploring new 

electronic states at oxide interfaces but also driven to functionalize them into novel 

device concepts. The technological opportunities can be dramatically expanded if 

instead of the (in principle) relative inert band insulators one combines transition 

metal oxides with correlated electrons. Complex transition metal oxides are a wide 

family of materials which contain elements with incomplete d shells. The localized 

d bands poorly screen the Coulomb interaction and give rise to electron 

correlations responsible for a strong entanglement between the various electronic 

and lattice degrees of freedom. This is at the origin of the rich phase diagrams of 

these compounds where the different electronic states with similar characteristic 

energies compete fiercely.  Materials of this family can be found in almost every 

electronic or lattice ground state of the solid matter including superconductivity, 

ferromagnetism, antiferromagnetism, ferroelectricity, multiferroicity, etc , [3–5] 

and thus display a wide variety of properties and responses. 

Many complex oxides share a common perovskite structure with similar lattice 

parameters which allows the growth of heterostructures which grow cube on cube 

preserving a high degree of crystalline perfection. Oxygen octahedra surrounding 

the transition metal ion arranged in the cubic sites are the basic building block of 

the structure. Distortions and rotations of the octahedra determine the degree of 

hybridization between 3d and oxygen bands and modify the hierarchy of the crystal 

field eg and t2g levels which result from the Coulomb interaction with the oxygen 

ions. Moreover, distortions can be artificially manipulated through strain 

engineering, opening a path for the design of the electronic states happening at the 

interfaces [6, 7]. 

The fabrication techniques have reached a level of control comparable to the 

semiconductor technology and interfaces can be engineered with atomic precision 

allowing to combine the lattices of dissimilar materials with very good crystalline 

matching. In analogy to the (relative inert) semiconductor interfaces where 

interesting phenomena and even novel states of matter have been found, the 

delicate entanglement between the various degrees of freedom across the oxide 

interfaces, along with the possibility of coupling different order parameters is 

entitled to be the source of emergent electronic states with exciting properties. 
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Orbital reconstruction resulting from structural (lattice distortions) and electronic 

processes occurring at interfaces stabilize novel electronic phases. Emergent 

electronic states may nucleate at the interface between dissimilar oxides [9, 10] as 

the result of the broken symmetry and of the discontinuity in important quantities 

such as charge density n, repulsion energy U, and band width W, which govern the 

correlated electronic states [4, 13, 14]. In addition charge is known to leak across 

the interfaces due to the difference in the electrochemical potentials [15], what in 

the case of correlated electron systems may have deeper consequences on the 

electronic states than in the case of conventional semiconductors which admit a 

description in terms of single electron schemes [11]. New forms of couplings 

between different long range orders with high technological potential for new 

device concepts [9–11] thus appear. This is the arena of the emerging “oxide 

electronics”, an actively pursued strategy based on exploiting the technological 

opportunities offered by devices based on correlated oxides [9–12]. This is in fact 

one of the alternative routes being sought to enable a higher density of information 

storage or capable of more efficient computation speed that the current 2-bits based 

von Neumann architectures, which is having difficulties to maintain Moore´s law 

pace of increase of the computing speed.  However, the challenge of oxide 

electronics has so far not been fulfilled, partly due to the incomplete understanding 

of the complex physics involved but also to the lack of simple device concepts with 

externally tunable responses. In addition, the complexity of the electronic 

interactions has prevented the possibility of designing oxide interfaces with the 

same ease as for semiconductor interfaces [11]. 

The electronic and orbital reconstructions occurring at oxide interfaces offer highly 

efficient avenues to tailor their magnetic states. In perovskite oxides with the 

orbital moment quenched by the octahedral crystal field, magnetism is largely 

determined by the spin-spin interaction [1, 2]. Spin interaction is governed by 

charge transfer processes which can be real as in double exchange or virtual as in 

superexchange. The sign (ferromagnetic or antiferromagnetic) of the 

superexchange interaction is captured by the Goodenough Kanamori rule [16], as 

a function of filling and overlap in a way determined by Pauli exclusion principle. 

Thus, charge transfer processes, structural distortions (Jahn Teller) and rotations 

of the oxygen octahedra, with a direct effect on band filling and orbital polarization, 

provide direct access to the magnetic interactions [8, 17]. Furthermore, the bond 

reconstruction occurring at the atomically sharp oxide interfaces may draw new 

superexchange paths (B-O-B’) between different B-site cations at a ABO3 / 

A’B’O3 interface, which may trigger magnetic interactions not existing in either of 
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the original compounds. This magnetic interaction can in turn be manipulated 

through the control of the bond angle by strain engineering.  

This project is focused in the study of emergent phenomena at the interfaces of 

magnetic tunnel junctions. The aim is to manipulate these states externally to in 

the tunnel junction device scale, by means of which it is possible to tailor the tunnel 

barrier oxide characteristic. By generating point defects (oxygen vacancies) and 

controlling their concentration profile we will modify the height and the width of 

the tunnelling barrier. Furthermore, the effect of oxygen vacancies on doping will 

allow modifying doping of the electrodes thus providing access to the spin degree 

of freedom and consequently to the spin polarization of the tunnelling current. One 

of the main objectives to cover in this project is to study the impact of oxygen 

vacancies in the emergent quantum phases aforementioned because this issue has 

been ignored for many decades. Thus, the memristive tunnel junction is the most 

suitable device to achieve this aim. 

This PhD dissertation, has a unique physical approach combining experimental 

and first principles simulation techniques to explore the subtle mechanisms playing 

in the electronic reconstruction at oxide interfaces. Pioneer work of M. Bibes et al. 

[17, 18] open relevant questions about the real nature of the ferroelectric 

polarization and the role of oxygen vacancies in memristive tunnel junctions. In 

response, direct current (DC) perpendicular measurements, impedance 

spectroscopy (AC) measurements combined with density functional theory (DFT) 

calculations were combined to gain insight on the interplay between the 

ferroelectricity, the ferromagnetism and the oxygen vacancies and its influence on 

the metal-insulator transition. We will examine memristive effects with potential 

applications in analogue memory devices and emulation of neuron activity as well 

as its integration in neuromorphic computing networks [19]. Motivated by these 

potential applications, we will examine the singular memristive response to electric 

and magnetic fields [20, 21] of tunneling devices based on correlated oxides.  

The manuscript is organized as follows.  

Chapter 1 is a review of the state-of-the-art in the field of strongly correlated 

electronic materials such as manganites, doped cobaltites and cuprates, 

emphasizing the spintronic effects inherent to this family of materials. 

Chapter 2 describes the experimental techniques to produce and characterize the 

different tunnel junctions as well as the simulation methods to elucidate the subtle 
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physical mechanisms underlying the complex phenomena studied in this PhD 

dissertation. 

Chapter 3 describes the experiment in the tunnel junctions LCMO/PBCO/Ag 

intending to understand the interfacial magneto-electric coupling in the 

LCMO/PBCO interface. 

Chapter 4 describes the preliminary density functional theory (DFT) calculations 

performed by VASP software package in order to address the interfacial 

implications of structural properties (ferroelectric distortions) into electronic 

properties (DOS) in LSMO/BTO/LSMO heterostructures. Also, BTO/Ag and 

BTO/Co interfaces will be simulated using first principles tools. 

Chapter 5 addresses the problem of resonant tunnelling through charged domain 

walls and the role of the oxygen vacancies in the compensation of the charged 

domain wall. 

Chapter 6 tackles the memristive tunnel junction problem displaying the hysteretic 

experimental measurements of the tunnel junctions LSMO/BTO/Metal. The 

metals deposited in this tunnel junctions were Ag, Co, Ta and Pt. In addition, for 

each metal, the interplay between ferroelectricity and oxygen vacancies is 

examined. New scenarios on interplay between ferroelectricity and the defect 

concentration profile will be examined, such as the Coulomb Blockade and 

Maxwell-Wagner polarization effect. 

Chapter 7 summarises the main conclusions of this work. 
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Chapter 1: Introduction 

Over the last decades, one of the most interesting areas of research in condensed-

matter physics is the field of correlated electronic materials [1, 2]. However the 

great complexity of strongly correlated materials in cases leaves the experimental 

results non-conclusive against the entanglement between competing mechanisms. 

In this PhD Thesis, we will apply state-of-the-art experimental and simulation 

characterization to understand, tune, and predict the emergent complexity of 

correlated electron systems at it is one of the most foremost challenges in 

condensed-matter physics at present [3]. 

The fundamental parameters for tuning the behaviour of correlated electrons are 

the tunnelling electron hopping amplitude t and the band filling [4]. The hopping 

amplitude t competes with the on-site electron–electron Coulomb repulsion energy 

U and the outcome of this competition is the Mott transition, namely, an insulator–

metal transition that occurs in correlated-electron systems. As a function of U/t, 

the system undergoes several changes in spin and charge dynamics. In the limit of 

large U/t, every electron localizes on an atomic site when the number of electrons 

precisely equals the number of atomic sites. Another route to the Mott transition is 

by changing the filling (charge doping) of the correlated Mott insulator. Ideally, a 

minute deviation from half- filling (or from an integer number of conduction 

electrons per atomic site in the d-electron system) leads to a paramagnetic metallic 

state with a divergently large effective mass of conduction electrons. In most actual 

cases, however, a finite amount of filling change (doped charge) is necessary to 

realize the metallic state, which is free of the self-localization of conduction 

carriers caused by the interactions with the lattice, spins, and so on.  

These fundamental parameters, and other related quantities, in correlated-electron 

oxides can be well controlled typically by the crystal engineering of a perovskite 

with the formula (𝑅𝐸, 𝐴𝐸)𝑀𝑂3, where RE, AE, and M represent the trivalent rare-

earth and divalent alkaline-earth ions, which can be in solid solution, and the 

transition-metal element, respectively. The ideal perovskite (𝐴𝑀𝑂3) exhibits a 

simple cubic structure, but the lattice distortions, usually referred to as 𝐺𝑑𝐹𝑒𝑂3-

type distortions (Figure 1.1 (b)), are governed by the size mismatch of the ionic 

radii of A and M, or by the so-called tolerance factor f, defined as 

𝑓 =
(𝑟𝐴 + 𝑟𝑂)

√2(𝑟𝑀 + 𝑟𝑂)
 

Where 𝑟𝑖 (i = A, M, or O) represents the ionic size of each element i. When f is 

close to 1, the cubic perovskite structure is realized. As 𝑟𝐴 , or equivalently f, 
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decreases, the lattice structure transforms first to the rhombohedral and then to the 

orthorhombic (𝐺𝑑𝐹𝑒𝑂3-type) structure, in which the M–O–M bond is bent and the 

angle deviates from 180°. This bond-angle distortion decreases the one-electron 

bandwidth W, because the effective d-electron transfer amplitude t between the 

neighbouring M sites is ruled by the d-electron hybridization with the intervening 

O 2p state. If the tolerance factor is close to unity [5], a metallic paramagnetic 

behaviour is displayed. Otherwise, smaller f values (or decreasing RE ionic size) 

exhibit antiferromagnetic insulating ground states and undergo a thermally 

induced insulator–metal transition (IMT) with increasing temperature. 

  
Figure 1.1 (a) Perovskite structure, (𝑅𝐸, 𝐴𝐸)𝑀𝑂3 , with trivalent (3+) rare-earth (RE) ions and 

divalent (2+) alkaline-earth (AE) ions at the perovskite A site and the transition-metal element on the 

perovskite B site. (b) Orthorhombically distorted (GdFeO3-type) structure of perovskites. E. Dagotto 

and Y. Tokura. “Strongly Correlated Electronic Materials: Present and Future”. MRS Bull. 33 (2008) 

[3]. 

Another important advantage of perovskites or related structures is the ease of 

chemical control of the band filling. Using the solid solution 𝑅𝐸1−𝑥𝐴𝐸𝑥  at the 

perovskite A site 𝐴𝑀𝑂3, see Figure 1.1 (a), the effective valence of the transition 

metal (M) becomes 3 + x. In analogy to doped semiconductors, the increase 

(decrease) of x is typically called “hole doping” (“electron doping”). In fact, this 

change in x reflects a decrease (increase) of the band filling or the chemical 

potential. As a result, we tune the metallic or insulating character of the perovskite 
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by the chemical doping. At this stage, explanations about the most representative 

doped transition metal oxides will be developed: 

 

1.1 Colossal Magneto Resistance (CMR) manganites 
 

Doped manganites 𝑅1−𝑥𝐴𝑥𝑀𝑛𝑂3 (being 𝑅3+ a rare earth such as La, Pr, etc… and 

𝐴2+  Ca or Sr) with the perovskite structure exhibit varied properties, mainly 

colossal magnetoresistance (CMR). They display an astonishing wide ranging of 

different types of ordering: orbital, spin and charge ordering; they have insulating 

and metallic phases, they are very sensitive to external influences such as electric 

and magnetic fields, irradiation, etc. [6]  

These systems have very complicated and rich phase diagrams, for instance, the 

detailed phase diagram for 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3  [7]. Undoped 𝐿𝑎𝑀𝑛𝑂3 , containing 

Jahn–Teller ions 𝑀𝑛3+ (𝑡2𝑔
3 𝑒𝑔

1) with 𝑆 = 2 is a Mott insulator which undergoes 

the cooperative Jahn–Teller transition at the critical temperature 𝑇𝑂.𝑂.~800𝐾 and 

a much lower critical Néel temperature 𝑇𝑁 ≈ 140𝐾, 𝐿𝑎𝑀𝑛𝑂3 turns into type A 

antiferromagnetic. 

With hole doping by cations 𝐶𝑎2+ or 𝑆𝑟2+, we introduce ions 𝑀𝑛4+ (𝑡2𝑔
3 𝑒𝑔

0) with 

𝑆 =
3

2
 which makes orbital ordering temperature 𝑇𝑂.𝑂.  and Néel temperature 𝑇𝑁 

decreases. Nevertheless, the magnetic ordering change into a spin-glass-like state, 

which is also rather spatially inhomogeneous, there may be a phase separation. 

Likely, the most interesting phase is reached in both 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3  and 

𝐿𝑎1−𝑥𝐶𝑎𝑥𝑀𝑛𝑂3  at concentrations ranging between 0.2 < 𝑥 ≤ 0.5 ; this is the 

ferromagnetic phase in which the phenomenon of colossal magnetoresistance 

arises. In other words, ferromagnetism ordering makes electron hopping easier, 

and this electron hopping, in turn, promotes ferromagnetism. 

The formation of inhomogeneous states due to phase separation in low doped 

manganites, might exist at higher doping too. There are relevant arguments, see 

[8], to discuss the phenomenon of colossal magnetoresistance in these systems. 

For higher doping, the phase of 𝐿𝑎1−𝑥𝐶𝑎𝑥𝑀𝑛𝑂3 change again. At 𝑥 = 0.5 there 

is checkerboard type charge ordering in the system. In the over-doped regime, the 

charge ordering is incommensurate, in the form of Charge Density Waves (CDW) 

or stripes of zigzag type. Every phases for 𝑥 ≥ 0.5 are insulating because the 

transition to a charge-ordered state is usually accompanied by an enhanced 

resistivity. 

Nevertheless, 𝑃𝑟1−𝑥𝐶𝑎𝑥𝑀𝑛𝑂3  remains insulating at all x. In particular, at 

concentrations ranging between 0.3 < 𝑥 ≤ 0.5 ; this system display the 
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checkerboard pattern charge ordering with extra 𝑀𝑛3+ occupying random sites or 

with a larger-scale phase separation. 

The system 𝑁𝑑1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 displays an exotic novel phase, for 𝑥 ≥ 0.5 it turns 

the charge-ordered insulating phase into metallic phase endowed with A-type 

magnetic ordering. The mentioned metallic behaviour is due to the partially filled 

two-dimensional band constructed of 𝑥2 − 𝑦2 orbitals. 

Thus we show that CMR manganites display a wide variety of different phases, all 

this diversity being based on the interplay between different degrees of freedom: 

charge, spin, and orbital. In many such phases one also observes phase separation, 

especially close to (usually quite sharp) transitions between charge ordered 

insulating antiferromagnets and ferromagnetic metallic states which lie close in 

energy; these transitions can be triggered by temperature, by magnetic field, and 

even by isotope substitution [9]. 

There are also layered manganite perovskites of Ruddlesden-Popper series 

presenting a wide spectrum of properties. For instance, the bilayer “327” 

manganite 𝐿𝑎2−2𝑥𝑆𝑟1+2𝑥𝑀𝑛2𝑂7 has a very rich phase diagram, endowed with a 

ferromagnetic (CMR) metallic phase, an A-type antiferromagnetic ordering which 

is also metallic, a phase with charge ordering, etc. Note that a similar layered “214” 

perovskite 𝐿𝑎2−𝑥𝑆𝑟𝑥𝑀𝑛𝑂4 remains insulating at all x concentration values. This 

could be generalized for many other systems: for example single layer compounds 

(with Mn, Co, Fe) have a stronger tendency to remain insulating even when doped 

in comparison with double layer perovskite structures. 

 

1.2 Doped Cobaltites 
 

The system 𝐿𝑎1−𝑥𝑆𝑟𝑥𝐶𝑜𝑂3 exhibits possible effects of doping. It is well known 

that 𝐶𝑜3+ (𝑑6) can exist in different spin configurations: the high spin (HS), the 

intermediate spin (IS), and low spin (LS) states. At low temperatures, the undoped 

𝐿𝑎𝐶𝑜𝑂3  presents the LS state as the most stable state, being an nonmagnetic 

insulator because the LS state of 𝐶𝑜3+  has spin 𝑆 = 0. Whenever temperature 

increases, both magnetic states (HS and IS) are thermally populated, leading to the 

appearance of magnetic states with 𝑆 = 2 (HS) or 𝑆 = 1 (IS). 

Separately the temperature-induced transition, the transition to magnetic and 

metallic state can be triggered by hole doping. Replacing 𝐿𝑎3+ by 𝑆𝑟2+ gives rise 

to such a transition. 

By analogy with doped manganites, phase separation also takes place [10] 

enhancing x concentration of cation dopants. Thus, the system undergoes transition 

to ferromagnetic metallic state through inhomogeneous states. Their presence was 
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observed by different experimental techniques, including local probes such as 

NMR and ESR, and is confirmed by neutron scattering [11–13]. 

 

 

1.3 Cuprates 
 

After the discovery of high–𝑇𝐶 superconductors in 1986 [14], the doped cuprates 

attracted huge interest and have been investigated with various experimental 

techniques, accumulating a lot of information about them. However, relevant open 

questions still remain. For instance, there is a lack of understanding of the detailed 

microscopic mechanism of superconductivity; but there are a wide variety of  

theoretical explanations [15–17]. We will introduce the main ideas because the 

whole detailed theoretical ideas are beyond the scope of this dissertation. 

The first material discovered for high– 𝑇𝐶  cuprates was the “214” layered 

perovskite 𝐿𝑎2−𝑥𝑆𝑟𝑥𝐶𝑢𝑂4 , composed of 𝐶𝑢𝑂2  layers as building blocks, also 

characteristic in other high– 𝑇𝐶 materials of the same class. 

Undoped 𝐿𝑎2𝐶𝑢𝑂4 (𝑥 = 0) is a Mott insulator provided with 𝐶𝑢2+ (𝑡2𝑔
6 𝑒𝑔

3) ions, 

whose d-shell hole has spin (𝑆 =
1

2
), set in 𝐶𝑢𝑂2 layers in a simple square lattice; 

endowed with G-type antiferromagnetic ordering (checkerboard alternations of 

spin ↑ and ↓) and Néel temperature 𝑇𝑁 = 317𝐾. Thus, 𝐶𝑢2+ is a Jahn–Teller ion 

with one hole in the doubly degenerate 𝑒𝑔 orbitals. It triggers strong tetragonal 

distortion (elongation of the surrounding ligand octahedral), which sets two 𝑒𝑔 

electrons on the 𝑧2 orbital, leaving a hole in the (𝑥2 − 𝑦2) orbital. The splitting of 

𝑒𝑔 levels is quite large, on the order of ≥ 1𝑒𝑉. In the process of this JT distortion, 

the two apical oxygens move away from the basal plane. In the “infinity limit”, 

𝐶𝑢2+ may be left in a fivefold coordination. If both apex oxygens are distorted to 

the “infinity limit” regime, 𝐶𝑢2+ will remain square–coordinated. Particularly, the 

high–𝑇𝐶 superconductor 𝑌𝐵𝑎2𝐶𝑢3𝑂7−𝛿 (𝑇𝐶 = 90𝐾) has the Cu ions belonging to 

𝐶𝑢𝑂2 planes arranged in square pyramids (provided with fivefold coordination and 

𝐶𝑢1+ ions in linear chains). Furthermore, there are also superconductors endowed 

with square coordination, such as electron-doped superconductors 

𝑁𝑑2−𝑥𝐶𝑒𝑥𝐶𝑢𝑂4. 

Despite the common trend of hole occupation in the (𝑥2 − 𝑦2) orbital, the axis of 

the distorted 𝐶𝑢𝑂6 octahedra (pyramid or square coordinaton) is not necessarily 

along the z–direction. For instance, 𝐾𝐶𝑢𝐹3, whose “cross-shaped ” hole orbitals 

alternate in such a way that local tetragonal axes lie in x- and y- directions. 
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However, the situation in this sense is simpler in the oxide 𝐿𝑎2𝐶𝑢𝑂4 because this 

material has its distorted axis of the 𝐶𝑢𝑂6 octahedra parallel along the z- axis. 

Therefore, the hole orbitals belong to the (𝑥2 − 𝑦2) type. In addition, the Jahn–

Teller splitting between (𝑥2 − 𝑦2)  and 𝑧2  orbitals is very large, and we can 

consider 𝑧2  bands contribution negligible. Thus, the holes are located in 

nondegenerate (𝑥2 − 𝑦2) levels or bands, and the later kind of cuprates may be 

described approximately by the simple nondegenerate Hubbard model, or more 

precisely, including also the oxygen p orbitals, by the three-band (or d-p) model, 

only for nondegenerate d-electrons. 

One can discuss [18] that it is plausible to reduce the three-band or d-p model to 

the nondegenerate Hubbard model; but the state 𝐶𝑢3+, which is obtained formally 

by hole doping, corresponds to a very small charge-transfer gap. As a result, the 

doped holes would occupy the p orbitals of oxygen. Thus, instead of the state 𝐶𝑢3+ 

(𝑑8), we would rather have 𝐶𝑢2+(𝑑9)𝐿̅, where 𝐿̅ is the ligand (oxygen) hole. The 

“core” state 𝐶𝑢2+(𝑑9) has spin (𝑆 =
1

2
) and the ligand hole surrounding it has also 

unpaired spin (𝑆 =
1

2
) . Therefore, the strong d–p hybridization results in the 

creation of a bound singlet state between 𝐶𝑢2+ and the aforementioned ligand hole. 

This state is known as the Zhang–Rice singlet. In other words, when we set a hole 

into 𝐿𝑎2𝐶𝑢𝑂4 the hole would create a singlet state at a given Cu site (in analogy 

with the hole doping or electron removing in the Hubbard model). At this stage we 

take into consideration that Zhang–Rice singlets have its holes delocalized over 

four oxygens around the Cu ion belonging to its basal plane. This approximation 

is approximately valid in the theoretical description of high–𝑇𝐶 cuprates, although 

there are some arguments [19] that this approximation can sometimes fails.  

When doping the Mott insulator 𝐿𝑎2𝐶𝑢𝑂4  using Sr ion, the antiferromagnetic 

order is quenched swiftly, turning the material into metallic and also a high–𝑇𝐶 

superconductor. The characteristic function of the critical temperature 𝑇𝐶 with the 

concentration of hole dopants x, is a dome-shaped function: First at all, the critical 

temperature 𝑇𝐶 enhances initially with x doping, reaches a maximum value, and 

then begins to decrease until quenching in the overdoped regime. Regarding the 

quantum states above the critical temperature 𝑇𝐶, the overdoped regime is well 

described by the Fermi-liquid theory. But, for the moderate concentration range, 

there is another exotic state, the so-called pseudogap phase, whose transport and 

magnetic properties exhibit anomalous behaviour. At present, there is an open 

controversy about the true nature of this pseudogap phase (it might be a precursor 
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to the superconducting phase, maybe it could be triggered by charge ordering, 

which competes with superconductivity). 

The other high–𝑇𝐶  cuprates, such as 𝑌𝐵𝑎2𝐶𝑢3𝑂7 , 𝐵𝑖2𝑆𝑟2𝐶𝑎𝐶𝑢2𝑂8+𝑥 , or other 

materials in the same family provided with Hg or Tl, whose maximum 

superconducting transition temperatures are higher than 150K, share in common 

the 𝐶𝑢𝑂2 basal planes endowed with (𝑥2 − 𝑦2) hole orbitals. The main difference 

is based on the nature of the “charge reservoirs” which supply dopant charge 

carriers in these 𝐶𝑢𝑂2 basal planes. 

 

1.4 Ferroelectrics 
 

The Goldschmidt´s tolerance factor might be a useful parameter to find perovskite 

structures prone to ferroelectricity. If tolerance factor is smaller than 𝑓 ≤ 0.71, the 

octahedral-rotation-like distortions inhibits the ferroelectric distortion, easier to 

fulfill in cubic perovskite structures. 

Over the last decades, there have been an increasing interest to the electrical 

measurement of the ferroelectric distortion contribution in thin film ferroelectrics 

(in spite of the spurious contributions unrelated to ferroelectricity due to electrical 

measurement “artifacts” [20]) in order to patent Ferroelectric Random Access 

Memories (FRAMs) [85]. Furthermore, the domain walls in ferroelectric and 

multiferroic materials have gained relevance [21] due to the experimental 

observation of charged domain walls [22]: which are subsequently classified as 

Head-to-Head domain walls and Tail-to-Tail domain walls, depending on the 

electrostatic repulsion to be between the cations or the anions, respectively.  

 

1.5 Memristor 
 

At this stage, a fundamental question arises if the electronic correlations involves 

ionic transport. The memristance behaviour stems naturally from nanoscale 

systems in which solid-state electronic and ionic transport are coupled under an 

external bias voltage [23]. The concept of memristor was coined by Leon Chua in 

1971 [24] based on six mathematical relations between the electric current, voltage, 

charge and magnetic flux. Nevertheless, the memristance effect was not 

experimentally observed until 2008 by Dr. Stanley Williams et al. [23] in 10 nm 

thick 𝑇𝑖𝑂2−𝑥 between Pt metal electrodes. Furthermore, there are several efforts 

to accommodate the Hodgkin-Huxley model for spike voltage signal of biological 

neurons [25] to inorganic memristor devices [26]. The memristor device is based 



13 
 

on a reversible REDOX reaction controlled by electric fields [27]. Because of this, 

there were several attempts to extend the traditional memristor concept to 

nanobatteries [28]. 

 

1.6 Tunnel Junction and other Spintronics Devices 
 

The necessity of miniaturization of electronic components last decades lead to take 

into consideration the quantum tunnelling effect in the design of electronic devices 

[29, 30]. The electron tunnelling is a quantum mechanical effect by which an 

electrical current may flow from one metallic electrode, across a thin insulating 

barrier, into another metallic electrode. The easiest way to understand how 

tunnelling is possible is by considering an electron wave that encounters a potential 

step. For enough thin barriers (customarily a few nanometers thick), some intensity 

remains on the other side of the potential step, and therefore, the electron will have 

a finite probability of being found on the other side of the tunnel barrier [31]. The 

current across the structure is given by the product of the density of states (𝜂) in 

the electrodes, multiplied by the square of the tunnelling matrix elements M (being 

M related to the transmission coefficient 𝑇 ≡ |𝑀|2) and the thermal occupation 

probability of the quantum states involved in the process: 

𝐼1→2(𝑉) = ∫ 𝜂1(𝐸)𝜂2(𝐸 + 𝑒𝑉)|𝑀|2𝑓(𝐸)[1 − 𝑓(𝐸 + 𝑒𝑉)]𝑑𝐸
+∞

−∞

       (1) 

Specifically, for non-magnetic identical electrodes, and a diamagnetic insulating 

barrier, the current density J can be expressed as given by Simmons [32], who 

determined the tunneling matrix elements in the Wentzel–Kramers–Brillouin 

(WKB) approximation: 

𝐽(𝑉) =
𝐽0
𝑑2

(𝜙 −
𝑒𝑉

2
) 𝑒𝑥𝑝 [−𝐴𝑑√𝜙 −

𝑒𝑉

2
] −

𝐽0
𝑑2

(𝜙 +
𝑒𝑉

2
) 𝑒𝑥𝑝 [−𝐴𝑑√𝜙 +

𝑒𝑉

2
]  

Where 𝐴 = 4𝜋√2𝑚∗ℏ and 𝐽0 =
𝑒

2𝜋ℏ
 are characteristic constants with 𝑚∗ being the 

electron effective mass, 𝑑  the dielectric tunnel barrier thickness, 𝜙  the barrier 

height and eV the applied voltage bias. 

In fact, the tunnel current has an exponential dependency on the barrier thickness, 

the square root of the effective mass and the square root of the barrier height. The 

most direct and natural consequence consists that the smallest perturbation in any 

of these three parameters will trigger a strong influence on the tunnel current. 

Amongst other relevant traits, the tunnel current, at moderate voltage regime, 

adopts the general form: 
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𝐽 ∝ 𝛼𝑉 + 𝛽𝑉3        (2) 

If the applied voltage bias is larger than 𝜙 𝑒⁄ , the tunnelling effect is no longer 

direct; adopting the Fowler–Nordheim tunnelling regime whose current density 

may be approximated by: 

𝐽 =
𝑒3𝑉2

16𝜋2𝑑2ℏ𝜙
𝑒𝑥𝑝(−

𝜋𝑑√𝑚∗𝜙
3
2

2√2𝑒ℏ𝑉
)        (3) 

In the direct (elastic) tunnelling case of Equation (1), the final state of an electron 

tunnelling from the Fermi level in the first electrode is a state at an energy eV 

above the Fermi level in the second electrode. Nevertheless, in non-idealized cases, 

the electron may be able to interact with phonons or, when the ultrathin dielectric 

barrier separating the electrodes is not perfect, with defect states within the 

bandgap of the insulator. The physics of defect-assisted tunnelling is very rich, 

especially when spin-dependent processes come into play. See model of Glazman 

and Matveev [33, 34] for assisted tunnelling through several localized states whose 

prediction is a 𝑉
4

3⁄  trend of the tunnelling conductance G. when tunnelling is 

assisted by defects, the conductance of the junction strongly decreases as 

temperature decreases. For more details, the reader may consult [35]. 

In the original description of direct tunnelling by Simmons, the effects of the 

density of states (DOS) on the tunnel current was neglected. However, the research 

of tunnel junctions provided with superconducting electrodes (Al, Pb or Sn at very 

low temperatures), showed that the superconductor density of states (DOS) is 

significantly relevant. Below the critical temperature, the opening of a 

quasiparticle gap bring about strong variations in the density of states (DOS) close 

to the Fermi level as demonstrated in 𝐼(𝑉) and 𝐺(𝑉) curves [36].  

The use of ferromagnetic metals as electrodes create non-equivalent density of 

states (DOS) for spin-up and spin-down electron states. According to the 

assumption that the spin is conserved during the tunnel process so that the total 

tunnel current is the superposition of spin-up and spin-down currents. Then, the 

conductance of a magnetic tunnel junction (MTJ, a trilayer in which two 

ferromagnetic electrodes sandwich a diamagnetic-dielectric tunnel barrier) in the 

parallel (P) and antiparallel (AP) configurations of the electrodes’ magnetization 

is given by the product of the density of states (DOS) of the electrodes: 

𝐺𝑃 ∝ 𝐺↑↑ + 𝐺↓↓ ∝ 𝑁1↑𝑁2↑ + 𝑁1↓𝑁2↓        (4) 

𝐺𝐴𝑃 ∝ 𝐺↑↓ + 𝐺↓↑ ∝ 𝑁1↑𝑁2↓ + 𝑁1↓𝑁2↑        (5) 

Being 𝑁1↑(↓)  and 𝑁2↑(↓)  the density of states (DOS) of both ferromagnetic 

electrodes at the Fermi level energy for majority (↑)  and minority (↓)  spin 
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electrons. Therefore, the tunnel resistance adopts different values in function of the 

relative orientation of the ferromagnetic electrodes magnetization: Parallel (P) or 

Antiparallel (AP) magnetization states (see Figure 1.2). Consequently, the tunnel 

magnetoresistance effect (TMR) is defined by virtue of the Jullière’s equation for 

the TMR ratio [29]: 

𝑇𝑀𝑅 =
𝑅𝐴𝑃 − 𝑅𝑃

𝑅𝑃
=

𝐺𝑃 − 𝐺𝐴𝑃

𝐺𝐴𝑃
=

2𝑃𝑠𝑝𝑖𝑛
1 𝑃𝑠𝑝𝑖𝑛

2

1 − 𝑃𝑠𝑝𝑖𝑛
1 𝑃𝑠𝑝𝑖𝑛

2         (6) 

Being 𝑃𝑠𝑝𝑖𝑛 the spin polarization of the electrodes whose equation is given as 

𝑃𝑠𝑝𝑖𝑛
𝑖 =

𝑁𝑖↑ − 𝑁𝑖↓

𝑁𝑖↑ + 𝑁𝑖↓
        (8) 

 
Figure 1.2 Schematic of the spin-dependent tunnelling process through an insulating barrier when 

the magnetizations of the ferromagnetic electrodes are aligned parallel (left) and antiparallel (right) 

to one another. In this case the tunnelling current is larger in the parallel state. J. Tornos, “Spin-

dependent transport in oxide multiferroic tunnel junctions”, Ph. D. Thesis, Universidad Complutense 

de Madrid (2014) [98]. 

 

The first TMR experiment (at low temperature) dates back to 1975 [29]; but only 

until 1995 [37, 38] this research restarted to blast off because of the observation of 

large and reproducible tunnel magnetoresistance (TMR) effect at room 

temperature in 𝐹𝑒/𝐴𝑙2𝑂3/𝐹𝑒 and 𝐶𝑜/𝐴𝑙2𝑂3/𝐶𝑜𝐹𝑒 (depicted in Figure 1.3). Non-

volatile magnetic random access memories (MRAMs) [39] based on the TMR 

effect. For instance, arrays of MTJs, have been commercialized since 2007 [40]. 
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Figure 1.3 Field dependence of the resistance of a Co/Al2O3/CoFe tunnel junction, defining a TMR 

effect of about 10%. The intrinsic magnetoresistance of each electrode (anisotropic 

magnetoresistance) is also shown for comparison. J.S. Moodera et al., Physical Review Letters, 74, 

p. 3273, 1995 [38]. 

 

In order to increase the TMR ratio, it is necessary to find materials endowed with 

the highest 𝑃𝑠𝑝𝑖𝑛, which are called half-metals [41], whose DOS is metallic for one 

spin direction and almost zero for the other. The most successful example are the 

tunnel junctions based on manganite electrodes such as 𝐿𝑎2
3⁄
𝑆𝑟1

3⁄
𝑀𝑛𝑂3 (LSMO) 

or 𝐿𝑎2
3⁄
𝐶𝑎1

3⁄
𝑀𝑛𝑂3 (LCMO), displaying TMR values of several hundred per cent 

[42–46]. However, the TMR of manganite-based MTJs is only large at low 

temperature and vanishingly small at 300K [47]. More detailed references could 

be provided [48]. Several tunnel dielectric barriers will be explained in subsequent 

sections. 

 

1.6.1 𝑴𝒈𝑶 dielectric tunnel barrier 

𝑀𝑔𝑂 adopts the rocksalt crystalline structure with a lattice constant 𝑎 = 4.203Å 

and a bulk optical bandgap of 7.8 eV. In 2001, ab initio calculations on tunnel 

junctions with 𝑀𝑔𝑂 dielectric barriers that a deeper determination of the band 

structures of both electrodes and dielectric barrier would be necessary to shed more 
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light over the true nature of spin-polarized tunnelling in the case of epitaxial tunnel 

junctions [49, 50]. An intuitive description of these theoretical results [51], in the 

case of large tunnel barrier thicknesses, for instance, when the tunnel current is 

primarily carried by states with wave-vector perpendicular to the interface 

(𝑘|| = 0), considering the band structure of 𝑏. 𝑐. 𝑐. 𝐹𝑒 in the ΓΗ direction depicted 

in Figure 1.4 (a) (associated to electrons propagating perpendicularly to the 

interface), one can see that at the Fermi level states of Δ1, (spd-like character), Δ5 

(pd), and Δ2´ (d) symmetries coexist for the majority spin electrons. Opposite to 

this, Δ1 is absent in the minority spin band structure. The Bloch state of electrons 

of Δ symmetry stemming from a Fe electrode will decay with different rates in the 

epitaxially grown 𝑀𝑔𝑂 barrier. In fact, the ab initio calculations of the complex 

band structure of 𝑀𝑔𝑂 (see Figure 1.4 (b)), it is worth noting that the decay rate 

Δ1 is much smaller than Δ5 which is in turn smaller than Δ2´ at the Fermi level. 

 
Figure 1.4 (a) Band structure of b.c.c. Fe in the H direction corresponding to electron propagating 

perpendicularly to the interface for majority spin and minority spin states. Due to the exchange 

interaction, the spin-up and spin-down bands are shifted in energy. S. Yuasa et al. Applied Physics 

Letters, 89, P. 042505, 2006 [52]. (b) Complex band structure of MgO in the vicinity of the gap along 

(100) Negative values of 𝑘2 = −𝜅 determine the exponential decay rates for various Bloch states. 

𝐸𝑣  is the top of the valence band. 𝐸𝐶  is the bottom of the conduction band. W.H. Buttler et al., 

Physical Review B 63, p. 054416, 2001 [49].  
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In fine, given the different symmetries of the Bloch states in the electrodes, the 

transmission coefficient at the interface, and the different decay rates of the 

evanescent charge density waves inside the barrier in Fe-b.c.c.(001)/MgO/Fe-

b.c.c.(001) tunnel junctions, Butler et al. [49] estimated the tunnelling DOS in the 

parallel and antiparallel configuration of the magnetizations in the large thickness 

regime (see Figure 1.5). Thus, in the parallel configuration, the tunnelling is 

regulated by Δ1 states of majority spin endowed with small decay rate that gives 

rise to a high conductance state. In the antiparallel configuration, the tunnelling is 

regulated by Δ5 and Δ2´ states endowed with large decay rates and giving rise to a 

small conductance state. 

 
Figure 1.5 Tunnelling DOS for 𝑘|| = 0 for Fe(100)/MgO(8ML)/Fe(100). The four panels show the 

tunnelling DOS for majority spins (upper left) and minority spins (upper right) in the parallel 

configuration, and antiparallel alignment of the moments in the two electrodes (lower panels). W.H. 

Butter et al., Physical Review B 63, p. 054416, 2001 [49]. 

 

Experimentally, tunnel magnetoresistance (TMR) values more than 200% were 

reported by Parkin et al. [53] and Yuasa et al. [54]. Several researchers have 

published very large TMR results in Co/MgO/Co (410%) [52], CoFe/MgO/CoFe 

(290%) [53] and CoFeB/MgO/CoFeB (1144% at low temperature and 604% at 

room temperature [55]). This last result is reported in Figure 1.6 (c). 
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In Co/MgO/Co tunnel junctions, we can assert the TMR varies weakly with 

temperature but more strongly with voltage bias compared to case of Fe/MgO/Fe. 

This has been attributed to the influence of the band structure of b.c.c. Co [52, 56]. 

In Fe/MgO/Fe MTJs, Yuasa et al. [57] reported oscillations of the TMR as a 

function of the MgO thickness (Figure 1.6 (b)) and ascribed them as the signature 

of interferences between evanescent waves of different symmetry (different metal-

induced gap states), required in a coherent tunnel regime. 

 
Figure 1.6 (a) Magnetoresistance curves at bias voltage of 10 mV for the 

Co(001)/MgO(001)/Co(001) MTJ with MgO thickness of 2.2 nm. The red and blue curves represent 

magnetoresistance curves at 290 and 20 K, respectively. Arrows represent magnetization alignments. 

(b) MR ratio at T = 293 and 20K (measured at a bias voltage of 10 mV) versus 𝑡𝑀𝑔𝑂 (a) and (b). 

Nature Materials 3, p. 868, 2004. [54] (c) R(H) curve of a CoFeB/MgO/CoFeB tunnel junction, 

showing a TMR of 600% at room temperature. S. Ikeda et al., Applied Physics Letters 93 (2008), 

082508 [55]. 

 

1.6.2 𝑺𝒓𝑻𝒊𝑶𝟑 dielectric tunnel barrier 

 

𝑆𝑟𝑇𝑖𝑂3 adopts the perovskite structure 𝐴𝐵𝑂3 with a lattice constant 𝑎 = 3.905 Å 

and a bandgap of 3.2 eV [58, 59]. The valence band is formed by 𝑂 2𝑝 states and 

the conduction band by 𝑇𝑖 𝑡2𝑔 (as depicted in Figure 1.7 (a)). Opposite to the case 

of 𝑀𝑔𝑂, the quantum states at the top of the valence band do not share the same 

symmetry as those of the bottom of the conduction band [60], which consequently 

affects tunnelling effects. The complex band structure of 𝑆𝑟𝑇𝑖𝑂3  has been 

estimated by Bowen et al. [61] and Velev et al. [62] as depicted in Figure 1.7 (b). 

Opposite to 𝑀𝑔𝑂, the hierarchy of decaying states has a nontrivial dependency on 

energy. For instance, Δ2 and Δ2´ decay faster than both Δ1 and Δ5, and note the 

intersection between Δ1 and Δ5 symmetry 𝜅 loops at the Fermi level and therefore 

accessible in tunnelling experiments. 



20 
 

 
Figure 1.7 (a) Band structure of SrTiO3. L.F. Mattheiss, Physical ReviewB, 6, p. 4718, 1972 [60].  

(b) Complex band structure of 𝑆𝑟𝑇𝑖𝑂3 at the Γ̅ point. J.P. Velev et al., Physical Review Letters, 95, 

p. 216601, 2005 [62]. 

 

In order to gain deeper insights into the role of the barrier on the tunnelling process, 

transport experiments were carried out in 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 /𝑆𝑟𝑇𝑖𝑂3 /𝐶𝑜  tunnel 

junctions [63–66]. The mentioned results are depicted in Figure 1.8. In particular, 

LSMO/𝐴𝑙2𝑂3/Co junctions (Figure 1.8 (b)) have a positive TMR (the resistance is 

larger in the antiparallel state than in the parallel one) which indicates a positive 

spin polarization for Co at the interface with 𝐴𝑙2𝑂3, as always found with 𝐴𝑙2𝑂3 

barriers and transition metal electrodes [67]. Conversely, LSMO/ 𝑆𝑟𝑇𝑖𝑂3 /Co 

junctions have a negative TMR (Figure 1.8 (a)) which indicates a negative spin 

polarization for Co at the interface with 𝑆𝑟𝑇𝑖𝑂3. The aforementioned results give 

evidences about the role played by the barrier [63]. 

Furthermore, by inserting an ultrathin 𝐴𝑙2𝑂3  layer at the interface between 

 𝑆𝑟𝑇𝑖𝑂3 and Co in LSMO/ 𝑆𝑟𝑇𝑖𝑂3/Co tunnel junctions, De Teresa et al. [64] have 

demonstrated that a positive TMR is restored (Figure 1.8 (d)).  
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Figure 1.8 TMR curves recorded at 40K and 10mV for (a) Co/SrTiO3/LSMO, (b) 

Co/(Ce,La)O2/LSMO, (c) Co/Al2O3/LSMO and (d) Co/Al2O3/SrTiO3/LSMO junctions. J.M. De 

Teresa et al., Science, 286, p. 507, 1999 [64]. 

 

This last result shows that interfacial bonding nature is a critical parameter in the 

determination of spin polarization, in agreement with the theoretical work of 

Tsymbal and Pettifor [68]. The different bias dependences of the TMR found in 

𝑆𝑟𝑇𝑖𝑂3  or 𝐴𝑙2𝑂3  is understood in terms of the d-character, or s-character 

respectively, of the tunnelling electrons through the barrier. The TMR maximum 

absolute value in LSMO/𝑆𝑟𝑇𝑖𝑂3/Co tunnel junctions at negative bias, (for example, 

when electrons are injected into the Co electrode) is ascribed to the DOS of d 

character of the Co electrodes. First-principles density functional studies of the 

Co/𝐴𝑙2𝑂3 and Co/ 𝑆𝑟𝑇𝑖𝑂3 interface by Oleinik and coworkers [69–71] suggested 

the same interpretation, i.e. the inversion of the Co spin polarization for  𝑆𝑟𝑇𝑖𝑂3 

(depicted in Figure 1.9) or thick 𝐴𝑙2𝑂3 tunnel barriers. Furthermore, they predicted 

a moment of 0.25𝜇𝐵 on the Ti atom at the interface due to an antiferromagnetic 
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exchange coupling between Co and Ti mediated by oxygen atoms. Results in the 

case of SrTiO3 barriers are presented in Figure 1.8 [70]. 

 
Figure 1.9 Local densities of states for the majority-(top panels) and minority-(bottom panels) spin 

electrons for the TiO2-terminated Co/SrTiO3/Co tunnel junctions: (a) Ti and (b) O in the third TiO2 

layer from the interface; (c) Ti and (d) O in the interfacial TiO2 layer, (e) Co at the interface. The 

vertical line indicates the position of the Fermi level. I.I. Oleinik et al., Physical Review B, 65, p. 

020401, 2001 [70]. 

Note also that Bibes et al. and Garcia et al. also found a negative spin polarization 

for Co at the interface with epitaxial 𝑇𝑖𝑂2  [72] and 𝐿𝑎𝐴𝑙𝑂3  [73] barriers, 

respectively.  

As a parenthetical remark, we are going to explain the spin filtering effect [74]. 
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1.7 Spin Filtering Effect 
 

Spin filtering effect consists on the spin-dependent tunnelling through a 

ferromagnetic or ferromagnetic insulating barrier. Because of the exchange 

splitting, the bottom of the conduction band in the barrier material divides in two 

different energies for spin-up and spin-down electrons, yielding two different 

tunnel barrier heights for spin-up and spin-down electrons. According to the free 

electron model, the tunnel transmission has an exponential dependence with the 

tunnel barrier height. As a result, electrons from a non-magnetic electrode will be 

transmitted differently depending on their spin. If the bottom of the conduction 

band is at a lower energy for spin-up than for spin-down, therefore a large positive 

spin polarization is expected for the current emerging from the barrier. The spin 

polarization of this current, or spin filtering efficiency of the barrier, follows the 

equation: 

𝑃𝐹
𝑠𝑝𝑖𝑛

=
𝐽↑ − 𝐽↓
𝐽↑ + 𝐽↓

        (9) 

Where 𝐽↑ (𝐽↓) is the spin-up (spin-down) current that satisfies the Simmons model 

at small voltage bias [32]: 

𝐽↑ = √𝜙0 −
Δ𝜙

2
𝑒𝑥𝑝(−𝐴√𝜙0 −

Δ𝜙

2
𝑑)        (10) 

𝐽↓ = √𝜙0 +
Δ𝜙

2
𝑒𝑥𝑝(−𝐴√𝜙0 +

Δ𝜙

2
𝑑)        (11) 

Being 𝜙 the averaged barrier height, Δ𝜙 the spin-splitting of the bottom of the 

conduction bands and 𝑑 the thickness of the tunnel barrier. If the spin-splitting Δ𝜙 

and the thickness of the barrier are risen, the spin filtering efficiency 𝑃𝐹
𝑠𝑝𝑖𝑛

 will 

clearly rise. For the purpose of measuring the spin filtering efficiency, a 

ferromagnetic counter-electrode is used, defining a spin-filter tunnel junction. The 

relative orientations of the magnetizations of the barrier and the counter-electrode 

will determine the current intensity. As an extrapolation of the Jullière model, the 

TMR of a spin filter satisfies the equation: 

𝑇𝑀𝑅 =
2𝑃1

𝑠𝑝𝑖𝑛
𝑃𝐹

𝑠𝑝𝑖𝑛

1 − 𝑃1
𝑠𝑝𝑖𝑛

𝑃𝐹
𝑠𝑝𝑖𝑛

        (12) 

The dependence of the TMR on the thickness of the barrier and with the bias 

applied to the junction has been calculated by Saffarzadeh [75]. In general, the 

TMR is expected to increase with bias voltage, which is a typical signature of spin-
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filtering. Nevertheless, the problem is more complex for an epitaxial spin filter and 

the role of wave-function symmetry has to be considered [76]. There have been 

several estimations of spin filtering in europium chalcogenides. 

 

1.7.1 Europium chalcogenides 

EuS and EuO are ferromagnetic semiconductors with Curie temperatures of 16 and 

69 K, respectively [77]. Moodera et al. [78, 79] performed spin-polarization 

measurements at 400mK using the Meservey–Tedrow technique in tunnel 

junctions with EuS barriers, a normal metal electrode (typically Ag or Au) and a 

superconducting Al counter-electrode (Figure 1.10). This technique consists in 

measuring the bias dependence of the tunnel conductance in tunnel junctions in 

which one electrode is superconducting, in a large magnetic field [80]. The field 

spin splits the DOS of the superconductor by Zeeman effect, which in turn 

selectively collects tunneling electrons according to their spin orientation. Fitting 

the obtained G(V) curves with Maki equations [81] yields the value of the tunnel 

current spin polarization. By virtue of this technique, very large spin-polarization 

values were found with Eu chalcogenide barriers, e.g. 𝑃𝐹
𝑠𝑝𝑖𝑛

= 0.85 for EuS (see 

Figure 1.10 (d)). By applying a large magnetic field on Ag/EuSe/Al junctions, 

turning the EuSe into ferromagnetic, an even larger value of 97% was found [82]. 

The fabrication of high-quality EuO tunnel barriers is more complicated than that 

of EuS and EuSe, because Eu2O3 is more stable than EuO. Nevertheless, 𝑃𝐹
𝑠𝑝𝑖𝑛

=

0.29 was reported in Al/EuO/Y junctions [83] (see Figure 1.10 (e)). 

An intricate analysis of the bias dependence of the TMR (see Figure 1.10 (d)) 

demonstrated that after a decrease at low bias, the TMR increased again in the high 

bias range, as expected for spin-filter junctions from a simple tunnelling model 

(see e.g. [75] or the model included in [84]). 



25 
 

 
Figure 1.10 Meservey–Tedrow method. (a) Conductance (dI /dV) versus bias at zero field for a 

superconductor/insulator/metal tunnel junction. The superconducting energy gap is centred at V =0. 

There are two peaks at finite bias, corresponding to the quasiparticle DOS. (b) dI /dV in an applied 

field, showing Zeeman splitting of the DOS. The deconvolved spin-up (blue) and spin-down (red) 

DOS are shown, as well as the resulting measured curve (green), which is completely symmetric 

when P = 0, for a non-magnetic metal counter-electrode. (c) dI /dV in an applied field with P = 50%, 

when the counter-electrode is a ferromagnet. The spin-up DOS is greater than the spin-down DOS, 

resulting in an asymmetric curve. Meservey–Tedrow mesaurements on (d) Au/EuS/Al junctions and 

(e) Y/EuS/Al junctions. J.S. Moodera et al., Journal of Physics: Condensed matter, 19, p. 165202, 

2007 [74]. 

 

At this stage, we will explain the physics concerning tunnelling through 

ferroelectric insulator barriers. 
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1.8 Tunnelling through Ferroelectric Barriers 
 

The main potential applications expected for ferroelectric barriers are the 

following, namely: Ferroelectric random access memories (FRAMs) [85] (whose 

information readout is destructive, and consequently, the initial orientation of 

ferroelectric polarization must be restored after reading, being time- and power-

consuming) and ferroelectric tunnel junctions (FTJ), which is expected to yield 

exotic physical phenomena because of the interplay/coupling between tunnelling 

and ferroelectricity at the nanoscale. 

Tsymbal and Kohlstedt [86] have proposed several possible theoretical 

mechanisms by means of which the tunnel current would be tuned by the reversal 

of polarization in the ferroelectric barrier (Figure 1.11). 

The first theoretical mechanism proposes that the charges built up at the 

ferroelectric/electrode interface are only partially compensated by the electrodes 

in the order of the Thomas–Fermi screening length of the two different metals 

involved, causing an asymmetric variation of the electrostatic potential along the 

ferroelectric tunnel barrier (`1´ in Figure 1.11). Thereby, the screening and 

electrostatic variation are different at the two interfaces owing to the different 

metals employed as electrodes. The aforementioned situation can be modelled as 

a shift of the average barrier height in the order of 𝜙 ± Δ𝜙 due to the ferroelectric 

polarization switching [87–89], satisfying the equation: 

Δ𝜙 =
𝑑𝑃(𝛿1 − 𝛿2)

2𝜖0𝜖(𝛿1 + 𝛿2)
        (13) 

Being P the remanent ferroelectric polarization, 𝛿1,2 the Thomas–Fermi screening 

lengths of the different metallic electrodes, 𝜖0 the vacuum permittivity and 𝜖 the 

relative dielectric permittivity of the ferroelectric. 

The second theoretical mechanism states that the interfacial density of states 

(DOS) is altered corresponding to the position of the ions situated in the last atomic 

layer in the ferroelectric, which in turn changes the tunnel current [90]. 

The third theoretical mechanism refers to the converse piezoelectric effect by 

means of the effective tunnel barrier width would be modified upon flipping the 

polarization vector direction. Due to the fact that the tunnel current has an 

exponential dependency on the barrier thickness, a significant change of the tunnel 

current is assumed [87–89, 91]. 
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Figure 1.11 Schematic diagram of a tunnel junction, which consists of two electrodes separated by a 

nanometer-thick ferroelectric barrier (𝐸𝑔𝑎𝑝 is the energy gap, 𝐸𝐹 is the Fermi level, V is the applied 

voltage, 𝑉𝐶 is the coercive voltage, t is the barrier thickness and Δ𝑡 is the thickness variation under 

an applied electric field). E.Y. Tsymbal and H. Kohlstedt, Science, 313, p. 181, 2006 [86]. 

 

 

1.9 Magneto-electric Effects at Interfaces 
 

Over the last decades, there have been theoretical predictions about the huge 

variations of magnetic properties which would take place at interfaces between 

ferroelectric and ferromagnetic materials. In other words, the ferroelectric 

polarization flipping can produce modifications of the spin polarization [92] 

(Figure 1.12). Extrapolated to tunnel junctions, ferroelectric controllable variations 

in the spin-dependent density of states (DOS) is supposed to tune the TMR or the 

spin injection efficiency [93]. 

In order to gain experimental insights in this interfacial magneto-electric coupling, 

professor Garcia et al. [94] made multiferroic tunnel junctions based on 

LSMO/BTO (1nm)/Fe. At temperatures of 4K, they measured huge negative TMR, 

corresponding to a negative spin polarization for the BTO/Fe interface. By 

performing short voltage pulses of ±1𝑉, they measured reversible changes of the 

tunnel resistance provided with a TER of approximately 30%, showing a change 

of the tunnel current by the switch of the ferroelectric polarization of BTO. In 

addition, the TMR magnitude strongly varies in function of the direction of the 

ferroelectric polarization. Since the half-metallic LSMO/BTO spin-polarization is 
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hardly sensitive to the ferroelectric polarization switching [95], it is natural to think 

that only the BTO/Fe spin polarization is sensitive enough to the ferroelectric 

polarization switching. In order to quantify the aforementioned magneto-electric 

interplay, the researchers defined a term called “tunnel electro-magneto-resistance 

(TEMR)” with the following expression: 

𝑇𝐸𝑀𝑅 =
𝑇𝑀𝑅ℎ𝑖𝑔ℎ − 𝑇𝑀𝑅𝑙𝑜𝑤

𝑇𝑀𝑅𝑙𝑜𝑤
        (14) 

Being 𝑇𝑀𝑅ℎ𝑖𝑔ℎ and 𝑇𝑀𝑅𝑙𝑜𝑤 the high and low absolute values of the TMR. To 

sum up, this interfacial magneto-electric coupling offers a low-power approach to 

control spintronic sources. 

 

 

Figure 1.12 (a) Orbital-resolved DOS for interfacial atoms in a Fe = BaTiO3 multilayer for m = 4: 

(top) Ti 3d, (middle) Fe 3d and (bottom) O 2p. Majority- and minority-spin DOS are shown in the 

upper and lower panels, respectively. The solid and dashed curves correspond to the DOS of atoms 

at the top and bottom interfaces, respectively, with the ferroelectric polarization in the BTO pointing 

to the top. C.G. Duan et al., Physical Review Letter, 97, p. 047201, 2006 [92]. (b) Main panels on 

the left: electronic structure at the surface of Fe/BaTiO3(001): spin-resolved DOS of Fe in layer S + 

1 (top) as well as of Ti (second from top) and O (third from top) in layer S for ferroelectric 

polarization pointing up (lines) and down (gray). Bottom: total and partial DOS of bulk BaTiO3, with 

the bottom of the conduction band taken as energy reference. The small panels on the right show the 

spin-resolved difference of the DOS for ferroelectric polarization pointing up and down of Fe, Ti and 

O (majority: dotted; minority: solid). M. Fechuer et al., Physical Review B, 78, p. 212406, 2008 [96]. 



29 
 

Updating to nowadays, one of the most successful attainments was realized by 

professor Bibes et al. [97], the so-called “Ferroelectric Memristor”, which relies 

on the correlation between junction resistance and ferroelectric domain structure. 

Due to this fact, they were able to model the resistive switching behaviour using a 

simple model of domain nucleation and growth in a heterogeneous medium, 

qualifying the ferroelectric tunnel junctions (FTJ) as memristive devices. 

 

The foremost motivation of this research is the possibility of integration given by 

the interplay between the electronic correlations, the ferroelectricity and the 

memristance effect in the tunnel junction device scale. This will bring about 

emergent chemical and physical properties which are not present in the above 

mentioned effects separately. The coupling regimes of the above mentioned effects 

(electronic correlations, ferroelectricity, memristance and tunnelling effects) will 

be discussed below in this PhD dissertation.  
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Chapter 2: Experimental and 

Simulation Techniques 

 

2.1 Sample growth: Sputtering 

Samples are prepared by sputter deposition in high 𝑂2 pressure. This method is 

based on the ballistic impact of atoms against a substrate after being removed from 

a material source. The sputtered ions come from targets made of the stoichiometric 

compound while the oxygen plays the role of the sputtering element. In our case 

the substrate is placed on a heater plate below the targets. The growth takes place 

inside a chamber in which a high vacuum of about 10−6  mbar is previously 

realized. The chamber, shown in Fig. 2.1, is connected to a turbo-molecular pump 

supported by a membrane pump. A constant oxygen flow is injected and controlled 

by a system of needle valves. Since the sputter yield depends on the energy of the 

incoming O2 ion and the source atom species, the material removed from the target 

will deposit on the substrate in a manner, which strongly depends on several 

controllable parameters such as the temperature of the substrate, the applied radio 

frequency power and the pressure inside the chamber. In order to grow epitaxial 

oxide heterostructures, high temperature and pressure are usually required. All the 

samples studied in this work have been grown on SrTiO3 substrate (100)-oriented. 

The high oxygen pressure (3.2 mbar) applied during the deposition, favours a 

complete thermalization of the extracted species and at the same time prevents 

them from back-sputtering and loss of oxygen in the final crystal structure. The 

substrate temperature is kept at 900º C. Under these conditions the deposition rate 

is slow (0.3nm/min) and ensures the epitaxial growth of the sample. To preserve 

the optimal oxygen content of the structure an in-situ annealing at 900 mbar 𝑂2 

pressure is necessary. The chamber is oxygenated at 800º C and the annealing is 

made at 750º C during 1 hour. 
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Fig. 2.1 (Left) View of the sputtering chamber. The targets are mounted on a remote controlled arm 

to switch between the different materials. (Right) Enlarged view of the powered target on the 

substrate. 

 

2.2 Structural characterization: XRR, XRD 

X-ray reflectivity (XRR) and diffraction (XRD) patterns allowed determining the 

thickness and the structural quality of our samples. XRR and XRD measurements 

have been carried out at CAI de Difracción de Rayos-X (UCM), with a Philips 

X’pert MRD diffractometer, using a Cu tube as X-ray source (λx = 0.15418 nm) 

operating at 45 kV and 40 mA. All the measurements of XRR and XRD were 

performed by Fernando Gallego and Javier Tornos. 

 

2.2.1 X-ray reflectivity 

 

The coherent and collimated radiation coming from an X-ray source is reflected at 

the interface between layers with different electronic densities (the substrate, the 

film). The different refractive indexes induce a change in the path length of the X-

ray and consequently a constructive/destructive interference of the different 

reflected beams. In an analogous way, the interference resulting from a layered 

structure produces oscillation in the reflectivity pattern. This pattern is obtained by 

measuring the reflected intensity as a function of the incident angle (2θ) through a 

detector which is set in θ-2θ (Bragg) geometry with respect to the source (See 

Figures 2.2 and 2.3).  
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Fig. 2.2 Schematic diagram of the θ-2θ geometry 

 

 

Fig. 2.3 Information collected by X ray reflectivity 

Reflectivity scans showed in this work are usually taken up to an angle of 2𝜃~10 

degrees. In this range of angle we are able to see finite size oscillations (2𝜃 < 7º), 

related to the total thickness of the sample, and the first order Bragg (diffraction) 

peak of the YBCO, centered around  2𝜃 = 7.5º , accompanied by satellite 

diffraction peaks, as shown in Fig. 4. The period of the finite size oscillations is 

inversely related to the thickness d of the whole sample. By indexing the position 

of the maxima and minima (n = 1, 2, ...) we can calculate the total thickness using 

the formula: 
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(𝑠𝑖𝑛𝜃)2 = [
(𝑛 − 𝑘)𝜆𝑋

2𝑑
]

2

+ 2𝛿 

Where k=0 correspond to a minimum and k=1/2 to a maximum. 𝛿 is the real part 

of the refraction index: 

𝑛 = 1 −
𝜌𝑛𝑟𝑒𝜆𝑋

2𝜋
(𝑓0 + Δ𝑓′ − 𝑖Δ𝑓′′) = 1 − 𝛿 + 𝑖𝛽 

Where 𝜌𝑛  is the electronic density, 𝑟𝑒  is the electron radius, 𝑓0  is the atomic 

dispersion factor, Δ𝑓′ and Δ𝑓′′ are corrections due to the anomalous dispersion [1, 

2]. In Fig. 2.4 we show some representative curves of thin films. The width of the 

diffraction peak is inversely proportional to its thickness, so thinner sample will 

show a wide less intense peak. The thickness can be calculated using the Scherrer´s 

formula: 

𝜉 =
0.9𝜆𝑋

𝑏 cos 𝜃
 

Where 𝜆𝑋 is the X-ray wavelength, b is the peak width at half maximum (FWHM) 

and 𝜃 the corresponding angle. 
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Fig. 2.4 XRD and XRR representative curves of thin films. 

 

 

 

2.3 Scanning Transmission Electron Microscopy 
Scanning transmission electron microscopy (STEM) is a powerful technique 

which can map the atomic and electronic structure of complex oxides with sub-

Ångstrom spatial resolution and sub-eV energy resolution. All the STEM 

measurements in this thesis were done at the S.J. Pennycook group (STEM Group) 
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of the Oak Ridge National Laboratory by Gabriel Sánchez-Santolino, Mariona 

Cabero and Maria Varela, using an aberration corrected Nion UltraSTEM100 and 

a Nion UltraSTEM200 equipped with GatanEnfina and Enfinium spectrometers, 

respectively.  

In the scanning-transmission electron microscope (see Figure 2.5), a field-

emission source and strong electromagnetic lenses are used to form a small probe 

that can be raster-scanned across the specimen [5]. Images are obtained serially as 

the probe is scanned pixel-by-pixel using a number of detectors with different 

geometries. The key advantage of STEM is the ability to detect multiple signals 

simultaneously. 

 

 
 
Figure 2.5 Schematic of a scanning-transmission electron microscopy system. From ref [3]. 
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A high angle annular dark field (HAADF) detector is normally used for Z-contrast 

imaging. A dark-field image, representing transmitted electrons scattered through 

relatively large angles, is formed by feeding the signal from a ring-shaped 

(annular) detector to a display device scanned in synchronism with the probe scan 

(Figure 2.6). Simultaneously, electron energy-loss spectra (EELS) can be read out 

at each probe position (pixel), resulting in a large spectrum-image data set that can 

be processed off-line [7]. The dark field images, collected over a wide range of 

scattering angles, show strong atomic number contrast. The fact that the Z-contrast 

images are directly interpretable makes this technique very appealing. 

 

 
Fig. 2.6 High magnification HAADF image of a LSMO/BTO heterostructure. 

 

The STEM geometry can also provide atomic resolution EELS [4-5]. In many 

ways, EELS is formally equivalent to X-ray absorption spectroscopy. Electrons 

scattered through smaller angles enter a single prism spectrometer, which produces 

an energy-loss spectrum (EEL spectrum) for any given position of the probe on the 

specimen [6]. With modern microscopes it is possible to obtain an EEL spectrum 

from each atomic column (Figure 2.7); this makes this technique a powerful tool 

to investigate the chemical composition of interfaces. EELS provides a tool to map 

terminations or inter-diffusion between different interfaces of an oxide thin-film 

or multilayer. The high energy resolution of this technique (0.3 eV for a cold field 

emission gun) also allows the study of the fine structure of the absorption edges. 

This way, we can investigate electronic properties. EELS edges are a result of the 

excitations of inner shell electrons into occupied levels above the Fermi level. 

Therefore, the EELS fine structure ensues from the material’s unoccupied density 

of states and it can be used to probe electronic properties. In complex oxides, 

properties such as the transition metal oxidation state can be measured from the 

EELS fine structure of the transition metal L2,3 edge and the O K edge [7-9]. 
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Figure 2.7 (from left to the right) Atomic elemental maps corresponding to the La M4,5, Mn L2,3, 

Ba M4,5, Ti L2,3 signal, and false color image where three atomic resolution images have been 

overlayed: a Ti L2,3 image in red, a La M4,5 image in blue, and Ba M4,5,image in green (RGB). 

 

2.4 Tunnel junction patterning 
 

Thin-films must be geometrically defined laterally or patterned in the layer plane 

in order to obtain tunnel junction devices. 

 

2.4.1 Optical Lithography 
 

Photolithography is a technique used to produce high precision two-dimensional 

patterns in the microscopic scale on a photoresist material [10], it is the equivalent 

to the negative used in photography. These patterns are optically projected from a 

master pattern in a photo-mask, which are generally made of a thin chromium or 

ferrite layer on a glass or quartz plate. Masks patterns commonly fabricated using 

high resolution lithography process using electron beam lithography. Printing of 

this negative mask requires physical transference of the pattern to the film surface 

in question through the use of a photo-resist which is sensible to the UV radiation. 

Two types of photo-resist are available and their behaviours are distinguished in 

the effect of the light. The positive photoresist faithfully reproduces the opaque 
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mask pattern; in this case light exposure causes scission of polymerized chains 

rendering the resist soluble in the developer. Alternatively, negative resists 

reproduce the transparent portion of the mask pattern because photon-induced 

polymerization leaves a chemically inert resist layer behind [11]. The resist layer 

deposited on the sample surface must be thin enough to obtain high lateral 

resolution. This thickness should be near few microns or less. To obtain these 

thicknesses a spinner system, which achieves high speeds near 6000 rpm, is used. 

 

 
Figure 2.8 Photograph of a Karl Suss alignment equipment. 

 

The core of the microlithography process is the exposure system. Figure 2.8 shows 

the alignment and exposure system, it consists of a lithographic lens system to 

collimate UV light from a Hg lamp, a mask holder, an optical microscope, and a 

sample positioning system with micrometers screws. 

 

2.4.2 From bilayer to tunnel junction device 
 

In order to increase the number of measureable tunnel junction per sample we have 

reduced the number of technological steps comparing with previous work in our 
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group [12]. It also reduces the time of patterning process allowing us to measure 

more samples. 

 

First at all, we clean the sample surface with subsequent ultrasonic baths of acetone 

and propanol, after that, we deposit SPR-700 Photo-Resist to cover the sample 

surface. Then, we spin the sample to near 6000 rpm in a spinner system in order to 

distribute the SPR-700 Photo-Resist homogeneusly and expose the sample to UV 

radiation protected with the mask where the junction patterns are to be transferred 

to the sample. Finally, we develop the sample with the junction pattern using 

“MF319 Developer” solvent. 

 

2.5 Resistance Measurements 
 

For our low temperature resistance measurements we used a closed-cycle 

Cryophysics helium refrigerator which works with the expansion of highly-pure 

He-gas compressed in a Gifford McMahon cycle. The expansion through the 

capillaries undergoes two steps at 50 K and at 8.5 K. The sample is mounted onto 

a cooled copper piece in contact with the second cooling step. The system is 

evacuated by a rotary pump capable of a pressure down to 10 mTorr, measured 

with a Pirani vacuum sensor. The best temperature was 14 K. A silicon diode 

thermometer is in contact with the sample holder calibrated for measuring between 

10 and 325 K. The system is also equipped with a heater controlled by a Lake 

Shore 330-11 temperature controller which permits to control the sample’s 

temperature between room temperature and 14 K with 10 mK accuracy. 

Microcoaxial wires connect the different parts for low noise measurements. For 

magnetoresistance measurements we used an electromagnet (with a 10cm 

separation between the magnetic cores) which provided a magnetic field in the 

range of ± 4200Oe. 

 

2.5.1 Direct Current 
 
In the case of tunnel junctions (current perpendicular to plane) measurement we 

use a 2-points method because the junction resistance are much higher than the 

electrode, and the silver/manganite is an ohmic contact. The main instrument used 

was a Keithley 2400 sourcemeter, capable of apply voltage between 5μV and 210V 

and measure current from 10pA to 1.055A. 
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2.5.2 Impedance Spectroscopy. Alternating Current 

 
The impedance analyser [13] used in these experiments is HP 4284 model (Figure 

2.9). The measurement principle of the electrical impedance is the following:  

First of all, we apply to the sample a sinusoid ( 𝑓 frequency) voltage input signal, 

whose amplitude is 𝑉𝑜𝑠𝑐 . Afterwards, we measure the intensity current output 

signal whose amplitude is 𝐼𝑜𝑠𝑐 . Considering the linear response and neglecting 

superior harmonics, the output signal is a sinusoid (𝑓 frequency) current endowed 

with a phase difference 𝜃  angle respect to the sinusoid voltage. The electrical 

impedance is a complex number whose module is the amplitude ratio and angle 

the phase difference voltage-current: 

|𝑍| =
𝑉𝑜𝑠𝑐

𝐼𝑜𝑠𝑐
 ;   

𝑍′′

𝑍′
= 𝑡𝑎𝑛𝜃 

 

 
Figure 2.9 Impedance Analyser.  

 

The derivative of the current and the charge respect to the voltage gives the 

differential conductance and differential capacitance in our samples, which are 

tunnel junctions endowed with memristive properties. 

In particular, the memristor measurements consists of DC voltage bias hysteresis 

with a sweep in frequencies (20 Hz to 1 MHz) and temperatures (50 K to 260 K) 

in addition to the oscillation voltage 𝑉𝑜𝑠𝑐  required to measure the electrical 

impedance. 
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2.6 Density Functional Theory 
 

2.6.1 Introduction 

The electron correlation phenomena that occur when two dissimilar materials are 

brought into contact in an interface, result in emergent electronic properties that 

are not present in the separated bulk materials, such as tunnel conduction and spin 

filtering to name a few. This involves processes at the atomic length scale which 

are ruled by quantum mechanics laws. The Schrödinger equation is the simplest 

expression that compiles all the relevant interactions, and even in this simplest case, 

the solution may be extraordinarily complex when a large number of atoms need 

to be considered [14]. 

Although Schrödinger equation was formulated early in the 20
th 

century, at 

present there is still a large effort to obtain new solutions. One of the most extended 

and successful solutions of the Schrödinger equation was developed in 1964 when 

Hohenberg and Kohn postulated the two theorems [15] which constitute the basis 

of the Density Functional Theory (DFT) [16]. Despite DFT has been a very popular 

method for calculations in solid state physics since the 1970s, it was not 

increasingly employed until the 1990s when it started to be applied in quantum 

chemistry, mainly due to the refinements introduced to better model the exchange-

correlation interactions.  

The calculations presented here are based on DFT. In the following the state 

of art of DFT calculations is discussed and explained in terms of the 

approximations that are considered. 

2.6.2 Quantum mechanical Many-Body problem 

The Schrödinger equation expresses within a Quantum Mechanics framework the 

solution of the Hamiltonian (H) of a system formed by electrons and ionic nuclei 

mutually interacting. This equation has the following expression [17]: 

𝐻Ψ = 𝐸Ψ 

Where the wave function (WF) Ψ = Ψ(𝑥1, … , 𝑥𝑁; 𝑅1, … , 𝑅𝑀)  depends on the 

coordinates of the N electrons 𝑥𝑖 (𝑖 < 𝑁) and M ions 𝑥𝑗  (𝑗 < 𝑀), and E is the 
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system energy, Ψ and 𝐸 are the solutions of the Schrödinger equation, while 𝐻 

contains both electronic and ionic terms, satisfying the equation: 

𝐻 = 𝑇𝑒 + 𝑇𝐼 + 𝐶𝐼 + 𝐶𝑒 + 𝑉

= −
1

2
∑∇𝑖

2

𝑁

𝑖=1

−
1

2
∑

∇𝐴
2

𝑀𝐴

𝑀

𝐴=1

+ ∑
(𝑍𝐴𝑍𝐵)

𝑅𝐴𝐵
𝐴,𝐵

+ ∑
1

𝑟𝑖𝑗
𝑖,𝑗

− ∑
𝑍𝐴

𝑟𝑖𝐴
𝑖,𝐴

 

Where the first two terms are the kinetic energies of the electrons and the ions, 

respectively, the third and fourth terms are the Coulomb repulsions between ions 

and between electrons respectively and the fifth term is the Coulomb attraction 

between electrons and ions. 

The situation, as described above, express a many body problem that was 

simplified by Born and Oppenheimer [18], considering the nucleus stationary, so 

that the nuclear contributions can be solved by classical expressions, while the 

electrons are mobile and treated quantum-mechanically. This is justified by the big 

difference of mass and mobility between them. Thus, the quantum mechanical 

problem of nuclei and electrons is reduced from 3N+3M to 3N coordinate variables 

describing the stationary electronic state.  

Thus, the Schrödinger equation can be written as a set of electronic terms in the 

following way: 

𝐻Ψ = [𝑇 + 𝑉 + 𝑈]Ψ = −
1

2
∑∇𝑖

2

𝑁

𝑖=1

+ ∑𝑉(𝑟𝑖)

𝑁

𝑖=1

+ ∑𝑈(𝑟𝑖, 𝑟𝑗)

𝑖,𝑗

= 𝐸Ψ 

Where T and U are the kinetic and e-e interaction universal operators, while V is 

system dependent or non-universal term. 

2.6.3 Density Functional Theory 

DFT provided a way to systematically map the many-body problem, with U, onto 

a single-body problem without U, which was based on the introduction of the 

density variable: 

𝑛 = |Ψ ∗ Ψ∗| = 𝑁 ∫𝑑3𝑟2 ∫𝑑3𝑟3 ∫𝑑3𝑟𝑁 Ψ(𝑟1, … , 𝑟𝑁) ∗ Ψ∗(𝑟1, … , 𝑟𝑁) 
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Hohenberg and Kohn proved in 1964 [15] with their first DFT theorem, by virtue 

of which the former expression can be reversed and write Ψ as a functional of the 

electronic density Ψ(𝑛). In consequence, any other observable is also a functional 

of n. In particular, Hohenberg and Kohn's second theorem states that the total 

energy of an electronic system is an universal functional of the density 𝐸{𝑛(𝑟)}, 

and that the global energy minimum 𝐸0 corresponds to the ground state charge 

density n0(r) [19]. 

This new theory was just previous to what Kohn and Sham (1965) [20] proposed, 

in order to change from a many-body electron interacting problem, with an external 

potential, onto a non-interacting electron problem with an effective potential. The 

Kohn-Sham equation is a density functional expression of a non-interacting system 

with the same solutions than the Schrödinger equation only when the energy is 

minimized. The Kohn-Sham equation is written as [19]: 

[𝑇𝑆 + 𝑉𝑆]Ψ = 𝐸Ψ = V + ∫
𝑛𝑆(𝑟′)

|𝑟 − 𝑟′|
𝑑3𝑟′ − 𝑉𝑋𝐶[𝑛𝑆(𝑟)]

= 𝑉 + 𝑈 + 𝑈𝑁𝐶𝐿 − (𝑇𝑆 − 𝑇) = 𝑇 + 𝑈 + 𝑉𝑋𝐶 

Where 𝑉𝑆 is the effective potential constituted by the nucleus-electron potential 𝑉, 

the classical Coulomb term of the e-e interaction (Hartree term) 𝑈, and 𝑉𝑋𝐶 is the 

sum of the non-classical Coulomb term (𝑈𝑁𝐶𝐿) plus the residual factor of the 

kinetic energy (-𝑇𝑆 + 𝑇), which supplies information about the kinetic interaction 

between electrons. The exchange-correlation (XC) term 𝑉𝑋𝐶 , is the sum of all 

unknown terms and must be treated generally by some approximation [19]. This 

treatment is exact only in the simplest systems, like the free electron gas case. 

2.6.4 Exchange and correlation 

By defining the XC energy density per electron 𝜀𝑋𝐶[𝑛(𝑟)], 𝐸𝑋𝐶  can be analytically 

defined as: 

𝐸𝑋𝐶 = ∫𝜀𝑋𝐶[𝑛−, 𝑛+]𝑑3𝑟 

If, with this linear density dependence of the EXC, we use the 𝜀𝑋𝐶[𝑛(𝑟)] value from 

the free electron gas, we are considering the local (spin) density approximation 

[19] for the XC term. By virtue of this approximation, the electron density is 
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constant so the XC effects stem predominantly from the immediate vicinity and 

are not dependent on inhomogeneities of the electron density away from the 

reference point “r”. The calculations we have performed with L(S)DA are based 

on parameterizations [21] of exact many-body calculations performed by Ceperley 

and Alder (CA) [22]. 

If we consider L(S)DA, and its linear density dependence, as the first term of a 

Taylor series expansion of the energy density, we can go one step further in the 

XC approximation including also some gradient corrections of the density. This is 

the generalized gradient approximation (GGA), introduced by Becke [23], Perdew 

[24] and Perdew and Wang [25] which adopts a gradient expansion from the LDA 

to account the inhomogeneities of the electron density, leading to the following 

equation: 

𝐸𝐺𝐺𝐴(𝑛) = ∫𝜀𝑋𝐶(𝑛−, 𝑛+; ∇𝑛−, ∇𝑛+)𝑑3𝑟 

Nevertheless, the GGA functional generally offered improved accuracy over the 

LDA, they are prone to underestimate binding energies and failed in those cases 

where the electrons are delocalized in the uniform gas, such as metal oxides. To 

account for these failures Perdew, Burke and Ernzenhof constructed from first 

principles a numerical GGA functional called PBE [26], which constitutes the 

scheme we are using in our GGA calculations [26-29]. This functional involves a 

second-order density gradient expansion for the XC hole surrounding the electron 

in a system of slowly varying density. In condensed matter calculations, the GGA 

is known to provide an improved description of cohesive energies and magnetic 

properties over LDA [30]. In our calculations, GGA approximation have been used 

to describe bulk and interface properties. 

 

 

2.6.5 Method of solving: self-consistency 

Even though 𝑈 and 𝑉𝑋𝐶 depends on the electronic density, they are also solution 

dependent, which entails that we have to proceed in a self-consistent (SCF) way to 

solve the Kohn–Sham equations [19, 20]. First, an initial guess for the density is 
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used to obtain H, and the resulting solution of this H provides the next guess for 

the density in an iterative way until the solution for the density is close, measured 

by some tolerance parameter, to the last guess density used [31]. The whole process, 

including SCF, to obtain the ground state of a quantum mechanical system is 

schematically depicted in the flux diagram: 

 

Figure 2.10 Computational process in DFT calculations from the electronic density guess and initial 

ionic geometry to the electronic density self consistently calculated and the equilibrium geometry. 

The procedure employed to calculate the equilibrium atomic distances has been 

performed with the Hellmann-Feynmann theorem [32, 33]. The theorem states that 

in the ground state, the partial derivatives of the total energy with respect to the 

ionic positions result into the force experienced by the ions. 

The search for the minimum energy state is achieved in an iterative way as depicted 

in figure 2.10. First we consider the initial ionic geometry, and start the self-

consistent procedure to calculate the electronic density, and then we calculate the 
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forces and use them to determine the next trial for the ionic geometry by means of 

the conjugate-gradient algorithm [34]. After an iterative process on the ionic forces, 

we reach the final situation when the forces on every atom are less than certain 

tolerance parameter. 

2.6.6 Basis sets 

There are several types of basis sets in DFT calculations, but mainly two are mostly 

employed: Plane Waves (PW) and atomic orbitals [19]. The construction of the 

wave function (WF), and then the density, for different choices of the basis set 

involves different computational procedures that we describe subsequently. 

A plane wave expansion is the most straightforward extension of Bloch theorem 

with Periodic Boundary Conditions (PBC) [35]. Considering these assumptions, 

we can model an infinite crystal by the repetition of a periodic cell along the three 

space directions. This allows us to determine the crystal properties by evaluating 

them at a finite number of points inside the periodic cell [36, 37]. The Plane Wave 

(PW) expression of the Wave Function (WF) in a periodic cell satisfies: 

Ψ𝑘𝑛(𝑟) = 𝑒(𝑖𝑘𝑟)𝑈𝑘𝑛(𝑟) = ∑𝐶𝐺(𝑘𝑛)

𝐺

𝑒(𝑖(𝑘+𝐺)𝑟) 

Where k is the point in reciprocal space within the Brillouin Zone (BZ) and 𝑈𝑘𝑛(𝑟) 

is the Wave Function (WF) periodic part on the Brillouin Zone (BZ), which can be 

expressed as a plane waves expansion using the reciprocal lattice vectors (G) as 

the wave vectors.  

The main advantages of PW are: they are simple to implement, the PW basis is an 

orthonormal and complete set, and the accuracy of the basis set can be 

systematically improved by simply increasing the number of basis functions; by 

that means, making it easy to perform convergence checks. However, the main 

drawback arises from the non-local nature of the PW. PW's basis put weight in 

regions devoid of charge where no basis is needed (for example the vacuum region 

in a surface calculation). 

There are two main classes of atomic orbitals: Gaussian-type-orbitals (GTO) [38], 

and Slater-type-orbitals (STO) [39, 40]. GTO are commonly used in calculations 

involving multicentre integrals because they are less computational expensive [41]. 
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STO orbitals are the most natural choice as they are the closest to the exact wave 

function (WF) of a solid state problem. In order to have the same accuracy for 

GTOs than for STOs, three times more functions need to be employed. As STO is 

one of the basis set type we will use in our calculations, we will briefly discuss 

their general properties.  

The general expression of STOs satisfies: 

𝑋[𝑛,𝑚,𝑙,𝜉](𝑟, 𝜃) = 𝑁𝑌(𝑙,𝑚)𝑟
(𝑛−1)𝑒(−𝜉𝑟) 

Where the parameters n, l and m are quantum numbers, 𝑌𝑙,𝑚  are the spherical 

harmonics and characterizes the size of the basis function [41]. 

2.6.7 Pseudo-Potentials 

The pseudopotential (PP) formalism is an attempt to replace the complicated 

interactions of the nucleus and the core electrons with the valence electrons by an 

effective potential [42] or PP, so that the Schrödinger equation contains a modified 

potential term instead of true Coulomb potential terms.  

Thus the core electrons and nucleus potentials are replaced by an equivalent PP, 

which generates a set of modified valence WF, or “pseudo wave functions” (pWF). 

Figure 2.11 represents the different spatial dependences derived from the PP with 

respect to the original potential. The Pseudo-Potential (PP) approach is justified by 

the fact that most chemical properties are governed by the valence electrons. Thus 

the tightly bound core electrons are usually shielded from interactions with other 

species, and they do not change with different atomic environments. 
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Figure 2.11 Comparison between the wave functions and potentials of the all electron calculations 

and those of the pseudopotentials we have employed for a transition metal. 

The use of Pseudo-Potential (PP) reduces the number of terms required in the 

calculations and hence, the computational cost [43]. The major drawback is that it 

introduces another approximation to the solution of the Schrödinger equation 

which can reduce the accuracy of the results [44]. 

The construction of the more accurate “norm-conserving” PP is based on four 

conditions due to Troullier and Martins [45]. The first is that the pWF originated 

from the PP contains no nodes in order to reach maximum smoothness. The second 

is that the pWF must be the same that the all-electron-WF beyond certain radius 

cut off, rCL, when both radial parts are normalized. The third is that the charge 

enclosed within rCL for these two WFs must be equal. And the last is that the 
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eingenvalues of both potentials (all-electron and that related with the pWF) must 

be the same.  

A Pseudo-Potential (PP) is called “local” when there is no distinction among its 

angular momentum components. But in order to obtain more accurate 

approximations we can use non-local ones with different scattering behavior for 

each angular momentum [45]. 

These concepts have been employed for the pseudopotential generation in codes 

that employ linear combination of atomic orbitals as the basis set. Nevertheless, 

when plane waves are used some modifications are required because the 

calculation of pseudopotentials for first row, transition and rare-earth elements are 

computationally demanding.  

By virtue of the ultrasoft Pseudo-Potential (PP) concept developed by Vanderbilt 

[46] and combining it with the ideas of the linearized augmented-plane-wave 

(LAPW) method proposed by Blöchl [47] a so called projected augmented wave 

(PAW) method was created [48]. These PAW potentials are more accurate that the 

ultrasoft PP as they deserve smaller radial cutoffs and also provide the solution to 

the exact valence wave function with all nodes in the core region. 

2.6.8 Density of States 

The density of states (DOS) provides the number of electronic states as a function 

of the energy. It is intimately related to the band structure defined as the band 

energy dispersion along high-symmetry directions in reciprocal space 𝐸(𝑘). In 

general, the DOS is proportional to the inverse of the slope of 𝐸(𝑘) [49]. Usually 

the results are analysed in terms of the partial DOS, which is the projection of the 

DOS either on selected atoms, angular momentum, spins... etc.  

The expression of the DOS satisfies the following equation: 

𝐷(𝐸, 𝑟𝛼) = ∑∫𝑑𝑟Θ(𝑅𝛼 − |𝑟 − 𝑟𝛼|)Ψ𝑛𝑘
∗ (𝑟)Ψ𝑛𝑘(𝑟)𝑓(𝐸 − 𝐸𝑛𝑘)

𝑛𝑘

 

where rα is the position of the atom α, Rα is the chosen atomic radius, Θ(x) is the 

Heaviside function, and f(E-Enk) is the occupancy of the state with energy Enk. 
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In this PhD dissertation, we will make use of the total and partial density of states 

(DOS) projected on atomic planes to study electronic properties variations per 

atomic plane. 

2.6.9 Hubbard correction 

The Hubbard correction involves an on-site Coulomb interaction U-J [50] because 

the semi-local functional, such as the GGA, usually underestimates the energy 

band gap. Within the VASP code we will use the Hubbard correction within the 

Dudarev approximation where only the effective parameter 𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽 

influences the results. The expresion of the additional term which is included in 

VASP code using Hubbard correction is the following: 

 

Being the first term the energy obtained by the pure Linear Spin Density 

Approximation while the second term depicts the effective Hubbard correction; 

written in terms of the electron density matrix: 

𝐸𝐿𝑆𝐷𝐴+𝑈 = 𝐸𝐿𝑆𝐷𝐴 +
(𝑈̅ − 𝐽)̅

2
∑[𝑇𝑟𝜌𝜎 − 𝑇𝑟(𝜌𝜎𝜌𝜎)]

𝜎

 

Where 𝜌𝜎 is the density matrix of d electrons.  

The above expression penalizes the energy of local/semilocal functional, such as 

the local spin density approximation (LSDA), and forces the on-site occupancy 

density matrix is fully occupied or unoccupied by electrons. 

 

2.6.10 VASP code 

The Vienna Ab initio Simulation Package (VASP) is a computer program for 

atomic scale materials modelling, e.g. electronic structure calculations and 

quantum-mechanical molecular dynamics, from first principles [51]. 
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For our interests, VASP computes an approximate solution to the many-body 

Schrödinger equation, either within density functional theory (DFT), solving the 

Kohn-Sham equations [52], or within the Hartree-Fock (HF) approximation, 

solving the Roothaan equations. 

In VASP, central quantities, like the one-electron orbitals, the electronic charge 

density, and the local potential are expressed in plane wave basis sets. The 

interactions between the electrons and ions are described using norm-conserving 

or ultrasoft pseudopotentials, or the projector-augmented-wave method. 

To determine the electronic groundstate, VASP makes use of efficient iterative 

matrix diagonalisation techniques, and a series of algorithms that have allow us to 

satisfy the required electronic convergence and force tolerance criteria. The 

tolerance parameters employed for the electronic and ionic convergence are XX 

and YY respectively. The used values for the k-point mesh and energy cuttoff will 

be detailed for each of the calculations, in chapter 4. 

 

Our calculations are performed using Generalized Gradient Approximation (GGA) 

as proposed by Perdew, Burke and Ernzerhof (PBE approximation) [53]. 

Whenever required an appropriate usage of the Hubbard correction will be 

performed in order to mimic the bulk properties either from previous experimental 

or theoretical works. 

 

2.7 References 
 

[1] O. Nakamura, E. Fullerton, J. Guimpel, I. K. Schuller. Appl.Phys.Lett. 60,120, 

(1992).  

[2] D. Kelly, E. Fullerton, J. Santamaría, I. K. Schuller. “A simple closed-form 

expression for the X-ray reflectivity from multilayers with cumulative roughness”.  

Scripta Metallurgica et Materiala 33, 1603 (1995).  

[3] R. Egerton, “Electron energy-loss spectroscopy in the TEM”. Rep. Prog. 

Phys.72, 016502 (2009). 



59 
 

[4] N. D. Browing, M. F. Chisholm, and S. J. Pennycook. “Atomic-resolution 

chemical analysis using a scanning transmission electron microscope”. Nature 366, 

143 (1993). 

[5] P. E. Batson. “Simultaneous STEM imaging and electron energy-loss 

spectroscopy with atomic-column sensitivity”. Nature 366, 727 (1993). 

[6] N. Browning, D. Wallis, P. Nellist, and S. Pennycook. “EELS in the STEM: 

Determination of materials properties on the atomic scale”. Micron 28, 333 

(1997). 

[7] O. L. Krivanek, and J. H. Paterson. “Elnes of 3d transition-metal oxides: I. 

Variations across the periodic table”. Ultramicroscopy 32, 313 (1990). 

[8] H. Kurata, and C. Colliex. “Electron-energy-loss core-edge structures in 

manganese oxides”. Phys. Rev. B 48, 2102 (1993). 

[9] J. H. Rask, B. A. Miner, and P. R. Buseck. “Determination of manganese 

oxidation states in solids by electron energy-loss spectroscopy”. Ultramicroscopy 

21, 321(1987). 

[10] I. Brodie, and J. J. Muray, “The Physics of Micro/Nano-Fabrication”, (Plenum 

Press, 1992) 

[11] M. Ohring, “The Materials Science of Thin-films” (Academic Press, 1992). 

[12] J. Tornos, “Spin-dependent transport in oxide multiferroic tunnel junctions”, 

Ph. D. Thesis, Universidad Complutense de Madrid (2014). 

[13] A. Rivera, “Movilidad iónica en conductores superiónicos: movilidad local, 

percolación y relajación vibracional”, Ph. D. Thesis, Universidad Complutense de 

Madrid (2003). 

[14] JUAN IGNACIO BELTRÁN FÍNEZ. “FIRST-PRINCIPLES STUDY OF 

THE ATOMIC PROPERTIES AND ADHESION AT METAL-CERAMIC 

INTERFACES.” Ph. D. Thesis, Universidad Autónoma de Madrid (2006). 

[15] P. Hohenberg and W. Kohn, “Inhomogeneus electron gas”. Phys. Rev., 1964. 

136(3B): p. B864. 

[16] http://en.wikipedia.org/wiki/Density_functional_theory 

[17] C. Cohen-Tannoudji, B. Diu and F. Laloe, “Quantum Mechanics”. ed. Wiley-

VCH. 1976. 

[18] M. Born and R. Oppenheimer, “Quantum theory of the molecules”. Ann. 

Physik., 1927.  84: p. 457. 

http://en.wikipedia.org/wiki/Density_functional_theory


60 
 

[19] W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional 

Theory. ed. W. Wiley-VCH. 2001. 

[20] W. Kohn and J. Sham, Self-consistent equations including exchange an 

correlation effects. Phys. Rev., 1965. 140(4A): p. A1133. 

[21] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional 

approximations for many-electron systems.” Phys. Rev. B, 1980. 23(10): p. 5048. 

[22] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a 

stochastic method.” Phys. Rev. Lett., 1980. 45: p. 566. 

[23] A. D. Becke, “Density functional calculations of molecular bond energies.” J. 

Chem. Phys., 1986. 84: p. 4524. 

[24] J. P. Perdew, “Density-functional approximation for the correlation energy of 

the inhomogeneous electron gas.” Phys. Rev. B, 1986. 33 (12): p. 8822 

[25] J. P. Perdew and Y. Wang, “Accurate and simple density funcional for the 

electronic exchange energy: Generalized gradient approximation”. Phys. Rev. B, 

1986. 33(12): p. 8800. 

[26] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient 

approximation made simple.” Phys. Rev. Lett., 1996. 77(18): p. 3865.   

[27] J. P. Perdew, K. Burke and Y. Wang, “Generalized gradient approximation 

for the exchange-correlation hole of a many-electron system.” Phys. Rev. B, 1996. 

54 (23): p. 16533.  

[28] J. P. Perdew, K. Burke and M. Ernzerhof, “Local and gradient-corrected 

density functionals”. Chemical Applications of Density-Functional Theory, 1996. 

629: p. 453. 

[29] K. Burke, J. P. Perdew and M. Ernhof, “Why semilocal functional work: 

accuracy of the on-top pair density and importance of system averaging.” J. Chem. 

Phys., 1998. 109 (10): p. 3760. 

[30] J. P. Perdew and K. Burke, Comparison shopping for a gradient-corrected 

density functional. Int. J. Quantum Chem, 1996. 57: p. 309. 

[31] P. Pulay, Ab initio calculation of force constants and equilibrium geometries 

in polyatomic molecules. I. Theory. Mol. Phys., 1969. 17(2): p. 197. 

[32] H. Hellmann, “Einfuhrung in die Quantumchemie”, Deuticke. Leipzig (1937). 

[33] R. P. Feynmann, “Forces in molecules”. Phys. Rev. B, 1939. 56: p. 340. 

[34] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, 

“Iterative minimization techniques for ab initio total-energy calculations: 

molecular dynamics and conjugate gradients”. Review of Modern Physics, 1992. 

64 (4): p. 1045. 

[35] N. W. Ashcroft and N. D. Mermin, “Solid State Physics”. Ed. Saunders. 1976 



61 
 

[36] H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone 

integrations”. Phys. Rev. B, 1976. 13: p. 5188. 

[37] P. E. Blöchl, O. Jepsen and O. K. Andersen, “Improved tetrahedron method 

for brillouin-zone integrations”. Phys. Rev. B, 1994. 49: p. 16223. 

[38] S. F. Boys, “Electronic wave functions I. A general method for calculation of 

the stationary states or any molecular system”. Proceedings Royal Society London,  

1950. A200: p. 542. 

[39] J. C. Slater, “Atomic shielding constants”. Phys. Rev. 1930. 36: p. 57. 

[40] J. C. Slater, “Note on Hartree's method”. Phys. Rev., 1930. 35: p. 210. 

[41] J. Simons, “An experimental chemist’s guide to ab initio quantum Chem”. J. 

Phys. Chem., 1991. 95: p. 1017. 

[42] D. R. Hamman, M. Schlüter and C. Chiang, “Norm-conserving 

pseudopotentials”. Phys. Rev. Lett., 1979. 43 (20): p. 1494. 

[43] A. R. Leach, Molecular Modelling: Principles and applications. ed. L. 2ed 

Prentice Hall, Harlow. 2000, London. 

[44] D. Porezag, M. R. Pederson and A. Y. Liu, The accuracy of the 

pseudopotential approximation within density functional theory. Phys. Status 

Solidi B, 2000. 217: p. 219. 

[45] N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave 

calculations. Phys. Rev. B, 1991. 43 (3): p. 1993. 

[46] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized 

eigenvalue formalism. Phys. Rev. B, 1990. 41: p. 7892. 

[47] P. E. Blöchl, “Projector augmented-wave method”. Phys. Rev. B, 1994. 50 

(24): p. 17953. 

[48] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector 

augmented-wave method”. Phys. Rev. B, 1999. 59: p. 1758. 

[49] R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended 

Structures. ed. W. VCH. 1988. 

[50] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. 

Sutton. “Electron-energy-loss spectra and the structural stability of nickel oxide: 

An LSDA+U study”. Phys. Rev. B 57, 1505 – Published 15 January 1998. 

https://cms.mpi.univie.ac.at/vasp/vasp/On_site_Coulomb_interaction_L_S_DA_

U.html 

[51] https://www.vasp.at/index.php/about-vasp/59-about-vasp 

[52] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and 

Correlation Effects”. Phys. Rev. 140, A1133 (1965). 

https://www.vasp.at/index.php/about-vasp/59-about-vasp


62 
 

[53] “Electronic Structure. Basic Theory and Pratical Methods.” Richard M. 

Martin (2008). 

 

Chapter 3: High On/Off Ratio 

Memristive Switching of 

Manganite/Cuprate Bilayer by 

Interfacial Magnetoelectricity 

 

3.1 Methods 

The samples were grown on top of 𝑆𝑟𝑇𝑖𝑂3 (001) substrates using a high pressure 

(3.2 mbar) pure oxygen sputtering deposition system at high temperature (900ºC) 

[19, 20]. The junctions are fabricated from [PBCO (8 nm)/LCMO (50 nm)] 

bilayers using standard UV optical lithography and ion milling. Then, the samples 

are patterned into micron size (9 × 18𝜇𝑚2  and 5 × 10𝜇𝑚2 ) rectangle shape 

pillars and measured their magnetotransport properties. For transport properties, 

Ag top contacts were deposited on the PBCO. Typically 40% of patterned 

junctions were not shunted and could be measured, which represents a large 

success ratio of the patterning process. IV curves were measured using current 

source and voltmeter. For all measurements the top contact was grounded such that 

negative (positive) voltages correspond to electric fields pointing downwards 

(upwards). 

High-angle annular dark field (HAADF) imaging was performed on Nion 

UltraSTEM 100 and UltraSTEM 200 instruments operated at 100 and 200 kV 

respectively. Both microscopes use cold field emission electron sources and 

aberration correctors capable of neutralizing up to fifth order aberrations. Electron 

energy loss spectroscopy was performed on the Nion UltraSTEM 100 using a 

Gatan Enfina EEL spectrometer. 
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For the DFT simulations, Perdew-Burke-Ernzerhof (PBE) [43] flavour of the 

generalized-gradient approximation (GGA) has used the exchange-correlation 

functional. Using projector-augmented-wave (PAW) potentials [44] and a plane-

wave basis as implemented in the Vienna Ab-initio Simulation Package (VASP) 

code [45]. The kinetic energy cutoff of the plane wave basis is set to be 368.6 eV. 

The electronic self-consistent calculations are converged to 10−5 eV between two 

self-consistent steps. The structural relaxations are converged to 10−4 eV for the 

total energy difference between two ionic steps. The simulation cell consists of a 

layer of 𝐿𝑎0.67𝑆𝑟0.33𝑀𝑛𝑂3 of 23 Å and a 𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7 layer of 19 Å, with a total 

of 104 atoms. Brillouin zone sampling is performed by using the 2x2x1 k-point-

mesh. To account for the electron correlations, it is used an implementation [46] 

of DFT+U methods [47] and apply 𝑈 = 2 𝑒𝑉 on Mn 3d orbitals. The 4f electrons 

on Pr atoms are kept frozen at the core. 

 

3.2 Experimental Results 

The transistor, a three-terminal device, is the basis unit in modern electronics, 

which powers information technology. Driven by the approaching limits of 

transistor scaling, interest in exploring memristors as an alternative has recently 

surged. Memristors are devices in which the passage of current is controlled by 

exploiting the defining property of memristive materials, namely a pinched 

current-voltage hysteresis loop [1, 2]. In a transistor, the different conducting states 

are achieved by altering the gate voltage that externally modulates the carrier 

density in the semiconductor. In a memristor, one uses external electric and 

magnetic fields to generate different conducting states by inducing reversible 

atomic displacements. Memristors often have the additional property of being 

continuously tunable, which emulates biological synapses [3, 4]. 

Many materials have been explored for their memristive behaviour. The most 

widely studied types are based on the dynamics of defects such as oxygen 

vacancies or metal ions [5, 6, 7]. Different resistances states are generated by either 

causing the formation and rupture of a conductive filament or modifying the 

Schottky barrier at the contacts. High On/Off ratios (> 103) are often achieved [8, 

9]. Memristors based on other switching mechanisms have also been demonstrated, 

including molecular memristors [10], ferroelectric memristors [11], and spin-

transfer torques (STTs) [12]. These memristors typically have On/Off ratio smaller 
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than  102  with the exception of ferroelectric memristors, which can reach  104 

[13]. Several recent papers demonstrated that the magnetic polarization in 

magnetic tunnel junctions (MTJs) [14] and magnetic-metal/ferroelectric junctions 

[15-17] can be modified by external electric fields, effectively producing 

memristive behaviour, but the On/Off ratio is typically smaller than 10. 

In this PhD dissertation, it is reported that memristive switching with high On/Off 

ratio in transition-metal-oxide (TMO) interfaces and show that it is unlikely to 

involve defect motion. Instead, it is more likely that the phenomenon arises from 

a new type of interfacial magnetoelectricity. It is demonstrated experimentally that 

the resistance of  𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7  bilayers can be changed  103 –

fold by an external electric field. The switching can happen at temperatures as low 

as 50 K, whereby the underlying mechanism is unlikely to be oxygen-vacancy 

diffusion. Although other explanations may be possible, results of density 

functional-theory calculations in terms of which is concluded that the memristive 

behaviour originates from the switching of a “magnetic dead layer” (MDL) at the 

LCMO/PBCO interface by the external electric field. A MDL can exist at the 

interface of ferromagnetic (FM) and non-ferromagnetic TMOs such as 

𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑌𝐵𝑎2𝐶𝑢3𝑂7 , where the first layer of the FM TMO can be  

antiferromagnetically (AFM) coupled to bulk FM TMO [18]. Furthermore, first-

principles calculations show that the external electric field induces subtle 

displacements of the interfacial Mn atoms and such displacements control the 

presence or absence of an MDL, which causes the memristive behaviour for the 

transport of spin-polarized electrons. The subtle nature of the switching makes the 

system very energy efficient (~0.1 attoJoule to write/erase a bit). The high On/Off 

ratio, non-defect based mechanism, and the low switching energy make the 

LCMO/PBCO bilayer and similar manganite/cuprate systems particularly 

attractive for memristive devices. 

𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7 bilayers were grown using a high pressure (3.4 

mbar) pure oxygen sputtering technique at elevated temperature (900º C), which 

is known to yield good epitaxial properties [19]. Standard optical lithography and 

ion milling by a plasma source or electrically  𝑆𝑖𝑂2  isolated mesas were used to 

define square micron size (4𝑥4 𝜇𝑚2) pillars to measure perpendicular transport. 

The top electrode was evaporated with silver. Transport (resistance versus field 

loops and I-V curves) was measured in a closed-cycle He cryostat equipped with 

an electromagnet that supplies a magnetic field up to 4000 Oe. For all 

measurements, the top contact was grounded. 
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Aberration-corrected scanning transmission electron microscopy (STEM) was 

employed to determine the atomic scale structure and composition of the 

LCMO/PBCO bilayer. High-angle annular dark field (HAADF) imaging shows 

that the layers grow coherently on the 𝑆𝑟𝑇𝑖𝑂3 (STO) substrate as seen in Figure 

1b. The atomic-number contrast (Z contrast) of HAADF imaging allows the STO, 

LCMO and PBCO layers to be easily identified. However, because La, Pr and Ba 

are similarly heavy elements compared to the similarly light Cu and Mn elements 

the termination of the interface is not clear from the HAADF images alone. 

Electron-energy-loss spectroscopy (EELS) imaging was therefore performed.  

 

Figure 3.1 (a) Zoomed-in view of the HAADF image of the LCMO/PBCO sample. (b) Atomic-scale 

model obtained by DFT calculations. It is the same as Figure 3.3, but rotated by 45 degrees and 

projected along the [110] direction of the underlying perovskite lattice. (c-f) Chemical maps of La, 

Mn, Ba, and Pr/Cu from EELS measurements 

 

The maps show that the interface consists of a Mn-rich plane terminating the 

LCMO, adjacent to a single Ba-rich plane terminating the PBCO. Hence, the 

atomistic model assumes a 𝑀𝑛𝑂2 − 𝐵𝑎𝑂 termination at the interface. 

Electrical measurements in the current-perpendicular-to-plane geometry reveal a 

memristive hysteresis of the LCMO/PBCO bilayer, as shown in the current-

voltage relation in Figure 3.1 (c). Additionally, Figure 3.1 (d) shows the resistance 

hysteresis of the junction that was read with a voltage of 200 mV at 100 K. Under 

an external magnetic field of 4 kOe, the resistance (R) of the as-fabricated bilayer 

junction is about 3 × 105Ω. By applying negative biases greater than -0.5 V, the 

measured resistance can be increased by more than 3 orders of magnitude, with 

larger maximum biases resulting in greater R values. Applying a reverse positive 
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bias switches the bilayer back to the initial low-resistance state. Such a large 

magnitude of resistance change is not observed in LCMO/PBCO/LCMO trilayer 

samples, which instead show a smaller factor-two change in resistance [20]. The 

resistance hysteresis in the LCMO/PBCO bilayers varies with both temperature 

and magnetic field. The hysteresis window narrows as the temperature increases 

and vanishes when the temperature is raised to 180 K, which is above the Curie 

temperature of LCMO films (155 K), as shown in Fig. 3.1 (e). It is noticeable that 

the critical temperature (𝑇𝐶) of the thin film is lower than the bulk value of 240 K, 

which probably is due to the strain effect on the very thin film, X-ray magnetic 

circular dichroism (XMCD) measurements were carried out, showing that there is 

exchange coupling between the interfacial Cu and Mn moments. The results 

included in oxygen vacancies in the switching cannot be ruled out. However, there 

are several factors that suggest a different mechanism may be at play. First, we 

observe memristive hysteresis when the temperature is far below room temperature, 

meaning there may not be sufficient thermal energy to enable the vacancy motion 

despite the barrier being lowered by the external electric field [4, 5, 7, 25]. More 

specifically, the diffusion barrier for oxygen-vacancy migration in LCMO is 1.3 

eV [26] and the estimated maximum electric field during the experiment is 

0.04 𝑉/Å  for a 1V bias. For a hopping distance of 2 Å, the barrier lowering effect 

due to the electric field is 0.04 eV. For such an amount of barrier lowering, the 

diffusivity increases non-linearly with the electric field [4, 25]. However the 

overall diffusivity is still too low for vacancy migration. Even if we use a 

generously overestimated value of 0.1 eV for the diffusion barrier lowering, the 

resulting diffusion barrier is still 1.2 eV. 

Although a diffusion barrier around 1 eV allows detectable vacancy motion at 

room temperature, [27] such a barrier is quite large for diffusion at 100 K, as a 1 

eV at 100 K is equivalent to a 3 eV barrier at 300 K for diffusivity. Furthermore, 

if the motion of oxygen vacancies is causing the switching, the switching voltage 

should decrease as the temperature increases. The data do not show any such effect. 

In Figure 3.1 (e) we see that, on the left, all three temperatures show a switch 

occurring at about -0.6 V and on the right is at about +0.9 V for all temperatures. 

The possibility that Joule heating might raise the temperature of the device to allow 

vacancy migration can be ruled out. First, junctions with different areas carved out 

of the sample showed current levels that scale approximately with junction area. 

Nevertheless, these data indicate that the current flow is homogeneous and exclude 

Joule heating at filaments.  
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Fig. 3.2 The scaling of current level with the junction area. The current approximately scales with 

the junction area in both ON and OFF state, which proves a homogeneous current flow and exclude 

Joule heating at filament. 

 

The possibility that Joule heating in the entire device causes vacancy migration is 

also not very likely for the following reasons: If Joule heating were sufficient for 

oxygen vacancies to move by overcoming a barrier of 1.3 eV, the temperature in 

the active region would be at or above room temperature, which is much higher 

than Curie temperature of LCMO. As a result, the LCMO would undergo a phase 

transition and lose its magnetization, and the resistance hysteresis would not occur 

at all, contrary to observations, which find hysteresis, but only up to the Curie 

temperature. The lack of hysteresis above Curie temperature suggest that hysteresis 

is related to the spin-polarization of the current. Meanwhile, the hysteresis window 

widens as the magnetic field increases, with stronger magnetic fields yielding 

greater resistance at the high-resistance state (Figure 3.3 (f)). This feature 

distinguishes the LCMO/PBCO system from other heterostructure systems that use 
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the spin-filtering effect, such as quasi-magnetic tunnel junctions (QMTJ), which 

are switched by magnetic fields [21]. 

 

 

Figure 3.3 (a) The layout of the bilayer structure, where the top electrode (grounded) is shown in the 

right. (b) HAADF image of the LCMO/PBCO sample. (c) I-V hysteresis of the LCMO /PBCO bilayer 

recorded at 100 K. (d) Resistance hysteresis at 100 K. The different colors correspond to 

measurements with different maximum negative voltages. (e) Temperature dependence of the 

resistance hysteresis. (f) Magnetic field dependence of the resistance hysteresis.  

The memristive behaviour of TMO thin films is often attributed to the diffusion of 

oxygen vacancies [4, 5, 7, 22, 23]. This mechanism has also been invoked in the 

case of TMO bilayer and trilayer structures such as PCMO/YBCO junctions [24]. 

A role of quick cool down only happens in cases of very fast switching when the 

current reaches a compliance value. In spite of using current compliance, the 

current never reaches compliance value in the experiments. Furthermore, the SET 

and RESET of the bilayer junction happens at similar voltages but the initial 

current can differ by 3 orders of magnitude. If Joule heating is moving the defects 



69 
 

then the SET and RESET should occur at similar power, i.e., very different 

switching voltages, which is contradictory to the experimental observations. 

Other mechanism for vacancy diffusion are also likely absent in the bilayers. In a 

good conductor with high current, electron wind can transfer energy to defects and 

cause their migration. However this mechanism may be absent as the LCMO is a 

poor conductor and the PBCO barrier limits the current, which is further reduced 

when the bilayer is at the high resistance state. Recombination-enhanced diffusion 

[28, 29] can enable the diffusion at low temperature and also can cause memristive 

behaviour of oxides, [22, 23] but this effect is also unlikely present in the 

manganite/cuprate bilayers as there is no non-equilibrium concentration of 

electrons and holes and thus no carrier recombination. 

Besides the vacancy migration mechanism, in some  ferromagnet-oxide-

ferromagnet MTJs, spin-orbit coupling can rotate the direction of the magnetic 

moment of one of the ferromagnetic layers through voltage-controlled magnetic 

anisotropy (VCMA) [30] and cause memristive switching [14] with on/off ratio no 

greater than 10 [31]. This mechanism, however, does not explain the present 

observations, as only one magnetic layer is present in the bilayer samples. The 

diffusion of Ag into the oxide, which is commonly observed in programmable 

metallization cells (PCMs), is also not likely at-play in the current system. In the 

Phase Change Memory (PCMs) devices, the host materials are amorphous or 

polycrystalline, which contain voids or low density regions (amorphous) or grain 

boundaries (polycrystalline), which act as paths for Ag incorporation from the 

electrode. In contrast, here we are switching a single-crystalline epitaxial film that 

contains no voids or grain boundaries for Ag incorporation. Therefore, although 

we cannot definitively rule out the possible role of oxygen vacancies, a new 

mechanism may be at play. 

It has been shown that at the perovskite manganite/cuprate interface, the magnetic 

moments on the interfacial Mn layer are significantly different from those in bulk 

manganite. More specifically, at the LCMO/YBCO interface, a Magnetic Dead 

Layer (MDL) can form [18] resulting from the interfacial Mn layer being coupled 

anti-ferromagnetically (AFM) to the ferromagnetic (FM) LCMO bulk (strongly 

suppressing double exchange transport through the interface). If such a Magnetic 

Dead Layer (MDL) can be switched on and off in our manganite/cuprate bilayer 

by an electric field and the states are metastable (metastability in the magnetic 

states is known to exist in manganites [32]), the junction should also exhibit 

memristive hysteresis. Figure 3.2 shows schematically how the magnetic dead 
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layer (MDL) would affect the transport, where the details of the heterostructure, 

such as band bending and the transport in PBCO, are neglected, as they do not 

affect the discussion below. In the low resistance state (LRS) the MDL is absent. 

The spin of the interfacial layer is ferro-magnetically (FM) coupled to the 

ferromagnetic LCMO bulk as in Figure 3.4a, allowing the majority-spin electrons 

in the LCMO to tunnel through the PBCO, as shown in Figure 3.4 (b) (the light 

red area shows the additional barrier from the Magnetic Dead Layer). In this case, 

the current is large and R is small. In the high resistance state (HRS), the spin of 

the interfacial layer is anti-ferro-magnetically (AFM) coupled with the LCMO 

bulk (Figure 3.4c), giving rise to a magnetic dead layer (MDL). This magnetic 

dead layer (MDL) adds an additional tunnelling barrier to the transport of majority-

spin electrons (Figure 3.4d), causing lower current and higher R.  

 

Figure 3.4 The mechanism of memristive switching at LCMO/PBCO interface. (a) The magnetic 

polarization at LRS, the arrow shows the direction of the magnetic moment. The potential “magnetic 

dead layer” is marked in green. (b) The band diagram of majority (black) and minority (white) spins 

at LRS. The light red area is the potential additional tunneling barrier if MDL is present. (c) The 

magnetic polarization at HRS. (d) The band diagram of majority and minority spins at HRS. 
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To demonstrate that the above mechanism is in fact active in our LCMO/PBCO 

bilayers, first-principles density-functional-theory (DFT) calculations are 

performed by Professor Sokrates Pantelides. In Figure 3.5 (a), it is shown the 

relaxed structure of the LCMO/PBCO interface and highlighted the position of the 

interfacial 𝑀𝑛𝑂2 layer. It can be seen that the layer is polarized, with the Mn atoms 

displaced towards the PBCO. External biases (as illustrated in Figures 3.5 (b), 3.5 

(c)) are able to alter the displacements of positively charged Mn atoms. 

Quantitative results from density functional theory (DFT) calculations are 

presented below in the discussion of the switching mechanism. As will be shown 

below, density functional theory (DFT) calculations confirm that such structural 

changes are indeed coupled to the change of magnetic ground state of the 

interfacial Mn layer and thus can switch the magnetic dead layer (MDL) on or off 

and cause the observed memristive hysteresis. 

 

Figure 3.5 (a) The relaxed structure of the LCMO/PBCO interface. The position of possible 

“magnetic dead layer” is marked in dotted lines. (b, c) The polarities of the applied bias and the 

directions of the electric field inside the bilayer during the memristive switching. (d) The interface 

layer at optimized geometry when the interfacial Mn atoms are FM-coupled to bulk LCMO. This is 

also a zoomed-in view of Fig. 3.5a. The double-head arrow in black marks the distance between 

interface Mn layer the adjacent Mn layer as described in the text. (e) An exaggerated illustration of 

the interface layer at optimized geometry when the interfacial Mn atoms are AFM-coupled to bulk 
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LCMO.  It also illustrates the change of Mn displacement from (d) under a negative bias. The change 

of Mn displacement is magnified by 20 times to 0.2 A for demonstration.  The actual change from 

DFT relaxation is only 0.01 Å as discussed in the text, which is not distinguishable from (d) to the 

eyes. 

Using density functional theory (DFT) calculations (performed by Professor 

Sokrates Pantelides), structural relaxations were performed for the PBCO/LCMO 

bilayer with fixed magnetic coupling between the interfacial Mn layer and the bulk 

in both the AFM and FM configurations. To capture the subtle structural difference, 

it is used a very tight convergence setting that ensures the electronic self-

consistency converges to 10−6 eV and the forces converge to 10−5 𝑒𝑉/Å. The 

relaxed structure with FM coupling has an energy 0.5 meV lower than the relaxed 

structure with AFM coupling, meaning the FM state is the ground state of the 

bilayer. Therefore, in the resting state, the magnetic dead layer (MDL) is not 

present and the bilayer is at LRS, as shown in Figure 3.4 (a, b), consistent with 

electrical results shown in Figure 3.3 (c). 

The most important result from the calculations is that the displacements of 

interfacial Mn atoms are different in the cases of FM and AFM coupled states. In 

the FM coupled case, the distance between the interfacial Mn layer and the 

adjacent Mn layer (see Figure 3.5 (d)) is 3.946 Å; in the AFM coupled case, the 

value is 3.937 Å. Although the change of 0.01 Å from FM to AFM coupling seems 

quite small, it is significant when compared to the change of distances between 

bulk Mn layers from FM to AFM couplings, which do not exceed 0.002 Å . 

Multiple structural optimizations with different starting geometries were 

performed to ensure that these results are consistent and are not from artifacts of 

structural relaxation. Testing structural relaxations was also repeated at different 

doping levels and with different numerical setups (k-points, plane-wave cutoff) for 

the DFT calculations. The ~0.01 Å change in the distance between interfacial and 

adjacent bulk Mn layers that is much larger than the changes of distances between 

bulk Mn layers upon changing from FM to AFM coupled states are consistently 

obtained. 

Although the LCMO bulk in the bilayer is nominally metallic at 30% Ca doping 

[33], an electric field can be sustained at the interfacial 𝑀𝑛𝑂2 layer because the 

Thomas-Fermi screening length corresponds to one to two units cells of LCMO 

[34]. Furthermore, as discussed below, the properties of the interface LCMO layer 

differ from those of the bulk and might be viewed as an insulator. A negative bias 
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(Figure 3.5 (b)) pulls the interfacial Mn towards the LCMO (Figure 3.5 (e)) and 

reduces the distance from the adjacent Mn layer. A change of 0.01 Å  in the 

displacements of interfacial Mn layer preconditions the lattice structure to the 

optimized geometry of the antiferromagnetic (AFM) state. Density Functional 

Theory (DFT) calculations were performed to obtain the electronic ground states 

of the FM and AFM coupled states at the displaced configuration.  

The results show that the AFM-coupled state has an energy 0.3 meV lower than 

the FM coupled state. The magnetic moments on the interfacial Mn atoms relax 

into the AFM coupling state, activating the “magnetic dead layer” (MDL) and 

switching the bilayer to the HRS. A follow-up positive bias (Figure 3.5c) pushes 

the interfacial Mn ions back towards the PBCO. Again, a 0.01 Å change in the 

displacement preconditions the structure to the optimized geometry of the FM state 

(Figure 3.5d). The magnetic moments on the interfacial Mn atoms then relax into 

the FM coupling state, deactivating the magnetic dead layer (MDL) and switching 

the bilayer back to the low resistance state (LRS). The behaviour of “magnetic 

dead layer” (MDL) in the 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7  system and the 

𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑌𝐵𝑎2𝐶𝑢3𝑂7 system [18] show that the Magnetic Dead Layer 

(MDL) is a very subtle effect that comes from very small energy difference (around 

the order of meV) between FM- and AFM-coupled states. In the reported 

𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑌𝐵𝑎2𝐶𝑢3𝑂7 system, the AFM state is the ground state and the 

FM state is metastable, while in the present 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3/𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7 

system, the FM state is the ground state and the AFM state is metastable. 

As mentioned above, a 0.01 Å  displacement of the interfacial Mn atoms 

“preconditions” the geometry of the lattice and facilitate the transition between the 

magnetic states. The remaining question is whether such displacement can be 

created by the electric field used in the experiment? Direct calculation of the 

displacement under the electric field is not feasible due to the complications (doing 

so would require using a saw-tooth electrostatic potential and periodic replicas of 

a large supercell containing a bilayer and a vacuum layer, which inevitably has 

PBCO and LCMO surfaces that would lead to spurious effects). Therefore, an 

alternative method was adopted: first DFT is used to calculate how much force is 

needed to create the 0.01 Å displacement, and then compare it to the estimated 

force from the external electric field. Starting from the relaxed structure of the FM-

coupled state and displacing interface Mn ions towards LCMO by 0.01 Å is a good 

strategy to estimate the forces (and field) required to generate the mentioned 

displacements. Density Functional Theory (DFT) calculations were performed for 
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this geometry while keeping the magnetic configuration and other atoms frozen. 

The calculations show that the forces on the displaced Mn atoms are 0.25 𝑒𝑉/Å, 

which is the magnitude of the opposite force that needs to be generated by the 

applied electric field. 

Now we estimate the forces exerted on the interfacial Mn ions in the experiment 

and compare them with those calculated with DFT results. Depending on the level 

of Ca doping, 𝐿𝑎1−𝑥𝐶𝑎𝑥𝑀𝑛𝑂3  can be a ferromagnetic insulator (x<0.2), a 

ferromagnetic metal (0.2<x<0.5), or an antiferromagnetic insulator (0.5>x) [33]. 

While the LCMO in our experiment has 30% Ca doping and therefore should be a 

ferromagnetic metal, the electron density around the Mn atoms at the interfacial 

Mn atoms is slightly different from the bulk, as illustrated in Figure 3a. For the 

interfacial Mn atoms, the calculated average electron density within the Wigner-

Seitz cell is 11.574 𝑒, which is greater than the value of 11.546 𝑒 for the Mn 

atoms inside de LCMO part of the bilayer and is close to the calculated value of 

11.579 𝑒 for pure  𝐿𝑎𝑀𝑛𝑂3. Therefore, it is assumed that the interfacial 𝑀𝑛𝑂2 

layer is similar to lightly doped 𝐿𝑎𝑀𝑛𝑂3  and thus could be viewed as a 

ferromagnetic insulator. As a result, when an external bias is applied, the voltage 

drop is across both the interfacial 𝑀𝑛𝑂2 layer and the PBCO layer. By assigning 

a thickness of 2 Å to the interface 𝑀𝑛𝑂2 layer (half the spacing between the Mn 

layers) and combining it with the thickness of the PBCO layer (~ 8𝑛𝑚) and the 

dielectric constants of lightly doped 𝐿𝑎𝑀𝑛𝑂3  (𝜀 = 18) [32] for the interfacial 

layer and 𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7  (𝜀 = 80) [33], the estimation of the electric field at the 

interface 𝑀𝑛𝑂2 layer to be about 0.02 𝑉/Å. Moreover, the Born effective charge 

of interfacial Mn atoms from density functional theory (DFT) calculation is 11. If 

these values are combined together, the conclusion is that an external voltage of 

0.5 V generates a force of 0.22 𝑒𝑉/Å on an interfacial Mn atom. Although this 

estimation is relatively crude, it is in good agreement with the DFT result that a 

force of 0.25 𝑒𝑉/Å is needed to displace the interfacial Mn atom by 0.01 Å and 

create a “Magnetic Dead Layer” (MDL). 

The On/Off resistance ratio of the bilayer is the inverse of the transmission 

coefficient T across the magnetic dead layer (MDL). Using the WKB 

approximation for a rectangular barrier, the transmission coefficient (T) is given 

by the expression, 𝑇 ≅ 𝑒𝑥𝑝 (−2√
2𝑚∗𝑉0

ℏ2 𝑑), where 𝑚∗  is the effective mass of 

electrons in LCMO, 𝑉0 is the barrier height that equals the splitting between spin-

up and spin-down electrons, and 𝑑 is the barrier width. Making use of 𝑚∗ = 𝑚𝑒 
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[37], 𝑉0 = 3.3 𝑒𝑉 [38], and 𝑑 = 3.9 Å (𝑀𝑛𝑂2  layer thickness), the transmission 

coefficient of 𝑇 = 7.5 × 10−4 is obtained. Thus, it is obtained an On/Off ratio of  
𝑅𝑜𝑓𝑓

𝑅𝑜𝑛
= 1.3 × 103, which is in good agreement with the experimental results shown 

in Figures 1d and 1e. The large splitting energy between majority and minority 

spins in LCMO is an important factor in achieving the high On/Off ratio. Other 

TMO systems would show different On/Off ratios upon the creation and 

elimination of magnetic dead layer (MDL) depending on the splitting energy 

between the majority and minority spins. 

In addition to the high On/Off ratio, the mechanism described above is in good 

agreement with several other experimental observations. (1) The density functional 

density (DFT) calculations are independent of the electrical measurements and 

predict that negative bias switches the bilayer from the Low Resistance State 

(LRS) to the High Resistance State (HRS) and that positive bias switches it from 

the High Resistance State (HRS) to the Low Resistance State (LRS), consistent 

with the experimental switching directions. (2) Stronger negative bias can cause a 

more complete formation of the MDL (convert larger portions of the interfacial 

plane to AFM domains) or make the MDL grow thicker, by propagating it beyond 

the first interfacial layer, thereby increasing the resistance in the High Resistance 

State (HRS), as shown in experiments. (3) Meanwhile, once the Magnetic Dead 

Layer (MDL) is destroyed, the bilayer has only one state, thus the resistance in the 

Low Resistance State (LRS) is the same regardless of the applied positive bias, 

which is also observed experimentally. (4) The higher external magnetic field can 

enhance the degree of spin-polarization of injected current, being “analyzed” by 

the antiferromagnetic (AFM) aligned interface plane in the “Magnetic Dead Layer” 

(MDL), therefore causing larger resistance in the High Resistance State  (HRS), as 

the experiment shows. (5) The lack of a high On/Off ratio in LCMO/PBCO/LCMO 

trilayer in Reference 20 can be understood as the trilayer has two opposing 

interfacial Mn layers which are coupled by the magnetic moments in PBCO 

through the antiferromagnetic interaction between Cu and Mn spins at the 

interfaces [20]. The calculations performed confirm the experimental observations 

that Cu and Mn at the interface are always antiferromagnetically (AFM) coupled, 

regardless of whether Mn atoms at the interface are ferromagnetically (FM) or 

antiferromagnetically (AFM) coupled to Mn in bulk LCMO. In other words, 

flipping the magnetization of interfacial Mn atoms would cause the flipping of the 

magnetization of Cu in PBCO. As the two interfacial Mn layers are opposing each 

other, they cannot be both switched from ferromagnetic (FM) to antiferromagnetic 
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(AFM) simultaneously by an electric field that produces displacements in the same 

direction, because the direction of the displacement that favours antiferromagnetic 

(AFM) coupling in one interface would be “wrong” for the other interface. 

Therefore, the switching of one side can be suppressed by its coupling to the 

opposite side through PBCO. The net result is that it is much harder to switch the 

trilayer and a different mechanism is at play (Reference 20). Indeed, the On/Off 

ratio in a trilayer is only ~2 while in the bilayer it is about ~103, which signals 

different switching mechanisms. 

As already mentioned, alternative explanations of the observed switching may be 

possible. The mechanism described above, however, explains the experimental 

data and is backed up by first-principles calculations. The physical phenomenon 

that underlies the memristive switching mechanism shown here is a new type of 

interfacial magnetoelectricity. It relies on the dependence of the magnetic coupling 

on the atomic positions, according to the fact that the magnetic properties in 

transition metal oxides can be very sensitive to the atomic structures [39]. It bears 

similarity to the recently observed interfacial magnetoelectricity in magnetic 

metal/ferroelectric oxide junctions [15-17] where the magnetism at the interface 

can be controlled by electrically reversing the polarization direction of the 

ferroelectric. First-principles calculations revealed that in those systems, the 

change of atomic displacements at the interface upon the switching of the 

ferroelectric plays the key role in altering the interfacial magnetism [40]. However, 

even though the magnetic switching in metal/ferroelectric systems only involves 

the interface, it is necessary to electrically switch the bulk of the ferroelectric. On 

the contrary, in the LCMO/PBCO bilayer, both magnetic switching and electrical 

switching are limited to the interface, which potentially offers faster switching and 

lower energy cost. Using the maximum force around 0.25 𝑒𝑉/Å  and the 

displacement of  0.01 Å, the energy cost estimated to switch one Mn atom is about 

1.3 𝑚𝑒𝑉. Therefore, the switching energy of a 10 nm by 10 nm area of the bilayer 

that represents a “bit” is only 0.8 𝑒𝑉 , in other words, 0.13 𝑎𝑡𝑡𝑜 𝐽𝑜𝑢𝑙𝑒 . In 

comparison, switching a 𝐵𝑖𝐹𝑒𝑂3 ferroelectric memristor [13] with the same area 

and a thickness of 4.6 nm would require 470 𝑎𝑡𝑡𝑜 𝐽𝑜𝑢𝑙𝑒 at the theoretical limit. 

Indeed, it takes 0.427 𝑒𝑉 to switch one 𝐵𝑖𝐹𝑒𝑂3 formula unit [41]. Furthermore, 

while the switching in magnetic metal/ferroelectric interfaces involves the change 

of the in-plane magnetic ordering that has a small effect on spin-current, the 

switching in LCMO/PBCO bilayer involves the activation of a magnetic “dead” 

layer, which allows high On/Off ratios for applications. 
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The key factors that enable the type of interfacial magnetoelectricity found in this 

system are the existence of a polarizable 𝑀𝑛𝑂2  layer at the PBCO/LCMO 

interface and the modification of the magnetic properties of the Mn atoms by their 

displacement. As both factors are intrinsic to the perovskite manganite/cuprate 

interface, these findings should be applicable to other perovskite 

manganite/cuprate materials systems and possibly other transition metal oxides 

junctions as well. Further optimization of the materials might result in bilayer 

junctions with desired electrical properties to be used in a range of applications of 

memristive devices [4]. One key step would be realizing devices that operate at 

room temperature. This may be achievable by replacing 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3  with 

𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3, whose Curie temperature can be higher than 300 K [42]. 
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3.3 Impedance Spectroscopy Measurements 

At this stage, it is necessary to gain deeper insight into the conduction mechanisms 

in the resistive switching of the LCMO/PBCO/Ag tunnel junction. In order to 

achieve this goal, additional impedance measurements have been performed. 

If a very high negative voltage bias is applied (-8V approximately), Ag electrode 

creates oxygen vacancies whose electrons left behind are transferred into LCMO 

electrode, making it more insulator. Thus, conduction is blocked, giving rise to the 

High Resistance State (HRS).  

Conversely, If a very high positive voltage bias is applied (+8V approximately), 

Ag electrode removes oxygen vacancies, (this leads to the formation of Cu-O 

chains) collecting electrons from LCMO electrode, making it more conductive. 

Thus, tunnel conduction is enhanced, giving rise to the Low Resistance State 

(LRS).  

In order to shed more light on the hypothesis mentioned above; we have performed 

differential conductance measurements applying a wide range of frequencies and 

voltage bias, showing a clear resistive switching, see figure 3.6 
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Figure 3.6 Differential conductance hysteresis curve at 19K ranging from 1kHz to 1MHz. 

As can be seen from a closer inspection of the figure 3.6, a conductance resonance 

peak appear at 1 eV in the Low Resistance State (LRS) owing to the energy of the 
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𝐶𝑢 − 𝑂 chains required to tunnel electrons between 1D t-J band 𝐶𝑢 − 𝑂 Chain 

(located in the 𝑂 2𝑝𝑧  orbitals hybridized with the 𝐶𝑢 3𝑑3𝑧2−𝑟2  orbitals) and  

𝑂 2𝑝𝜋 orbitals located in the Pr–O coordination. 

Furthermore, an energy gap of 4 eV appear in the High Resistance State (HRS) 

due to the forbidden gap between  𝑃𝑟𝐼𝑉 states (strong hybridization of  4𝑓2𝐿 and 

4𝑓1 configurations, where 𝐿 denotes a ligand hole on the O neighbors, in other 

words, a low-energy hole state as a result of a superposition of 𝑂 2𝑝𝜋 orbitals with 

the 4𝑓2𝐿 orbitals of the 𝑃𝑟4+ ion) and  𝐶𝑢𝐼𝐼𝐼  states (the last ones located in the  

𝑂 2𝑝𝜎 orbitals hybridized with the  𝐶𝑢 3𝑑𝑥2−𝑦2 orbitals in the 𝐶𝑢𝑂2 planes). 

Therefore, the data depicted in figure 3.6 validates the Fehrenbacher and Rice 

model for cuprates, whose hypothesis states that the absence of conductivity of the 

Cu–O chains is due to the O vacancies and the possibility to circumvent and 

oxygen vacancy via the tunneling of charge carriers through the 𝐶𝑢𝑂2 planes is 

excluded by the insulating gap of 4 eV mentioned above between the 𝑃𝑟𝐼𝑉 states 

and the  𝐶𝑢𝐼𝐼𝐼 states [48]. 

Another interesting feature in figure 3.6 is the convergence of the conductance at 

zero voltage bias for both resistance states while increasing the frequency [49]. To 

gain insight in this effect, we have depicted for the High and Low Resistance States 

the calculated tan 𝛿  based on the conductance and capacitance measurements 

performed previously. 
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Figure 3.7 tan 𝛿 vs frequency in LCMO/PBCO/Ag tunnel junction. 

As shown in figure 3.7, the loss tangent converges to the same value at the 

frequency of 1 MHz for the High Resistance State (HRS) and for the Low 

Resistance State (LRS). This fact stems from the inertial effects owing to 

ionization-deionization of the oxygen vacancies acting as interfacial states traps, 

in other words, at low frequencies the LCMO surface interfacial defects induced 

in the LCMO/PBCO interface are not relevant for the resistive switching and thus 

the conduction is dominated by the quantum tunneling through the defects (oxygen 

vacancies) inside the “bulk” PBCO barrier. Nevertheless, at high enough 

frequency (around 1 MHz), the LCMO surface states induced by the oxygen 

vacancies at the LCMO/PBCO interface may play a part in the partial frustration 

of the resistive switching effect, because of the ionization-deionization of the 

oxygen vacancies, which are very strong-frequency dependent, which mean to be 

the main mechanism of this resistive switching phenomenon [49].  

Finally, we have performed I-V curves measurements at different temperatures in 

the range from 30 K to 100 K, depicted in figure 3.8: 
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Figure 3.8 I vs V curves at temperatures ranging from 30K to 100K. 

As revealed from a deeper inspection of figure 3.8, the Low Resistance State (High 

Conductive State) data can be fitted to the Child-Langmuir law [50, 51, 52] 

analogous to the electrons in a plane parallel vacuum diode [53] (ballistic 

conduction regime), which is a particular case of the Space-Charge Limited 

Currents (SCLC), whose carrier injection from the electrode is limited by the 

electric field of the accumulated space charges and the Fowler-Nordheim quantum 

tunneling in the tunnel junctions LCMO/PBCO/Ag. The Child–Langmuir Law 

fitting is depicted in figure 3.9:  
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Equation 1. Child-Langmuir Law in analogy to electrons in a plane parallel vacuum diode [53] 

(ballistic conduction regime). 

3.4 Appendix. Derivation of Child–Langmuir Law 

When thermionic electrons are emitted from the metal surface (cathode), setting 

an anode at a distance 𝑥 = 𝑏  at a potential difference 𝑉𝐴 in vacuum. This potential 

attracts electrons from the cathode to the anode and electric current  𝐼𝐴  flows from 

the anode to the cathode and the same holds for the current density  𝐽𝐴 [𝐴 𝑚2⁄ ].  A 

cloud of thermally escaped electrons is formed on the surface of metal, so that the 

space around is non-uniformly filled with electrons. Thus, space charge density of 

electrons 𝑛(𝑥) [𝑚−3]  vary with x. Positive potential on 𝑥 = 𝑏  pulls these 

electrons towards the anode. Electric current density of electrons is the following 

equation: 
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𝐽 = −𝑒𝑛(𝑥)𝑣(𝑥) = −𝐽𝐴 

Kinetic energy of electrons equals to: 

1

2
𝑚𝑣2 = 𝑒𝑉(𝑥) 

Knowing the potential 𝑉(𝑥), the velocity of electrons is calculated as the function 

of distance x: 

𝑣 = 𝑣(𝑥) = √
2

𝑚
𝑉(𝑥) 

Accelerating electrons constitute a steady current 𝐽𝐴 so that 𝑛(𝑥) is decreasing and  

𝑣(𝑥)  is increasing towards anode. Thus, space charge density affects electric 

potential between cathode and anode, using Poisson´s equation: 

𝜕2𝑉

𝜕𝑥2
= −

𝜌(𝑥)

𝜀0
 

Substituting the previous equations: 

𝜕2𝑉

𝜕𝑥2
= −

𝑒𝑛(𝑥)

𝜀0
=

𝐽𝐴
𝜀0𝑣(𝑥)

=
𝐽𝐴

𝜀0√
2
𝑚 𝑉(𝑥)

 

The initial boundary conditions are the following: 

(
𝜕𝑉

𝜕𝑥
)
𝑥=0

= 0 

𝑉(0) = 0 

Solving differential equation, potential 𝑉(𝑥) is obtained: 

𝑉(𝑥) =

[
 
 
 

9𝐽𝐴

4𝜀0√
2𝑒
𝑚]

 
 
 

2
3

∙ 𝑥
4
3 
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Substituting the boundary conditions  𝑉(𝑏) = 𝑉𝐴 :  

𝐽𝐴 = [
4𝜀0

9𝑏2
√

2𝑒

𝑚
]𝑉𝐴

3
2 

Equation describes the relation between the current density  𝐽𝐴 at any given voltage 

𝑉𝐴. This result is known as Child's law or Child-Langmuir law.  Extrapolating the 

Child-Langmuir law to the tunnel junction, the equation is given by: 

𝐼 =
9

8
𝜀𝑟𝜀0𝜃𝜇

𝑉
3
2

𝑑2
 

Where 𝜀𝑟 is the relative dielectric constant, 𝜀0 is the vacuum permittivity, 𝜇 is the 

charge mobility, 𝜃 is the ratio between free and trapped carriers, V is the voltage 

applied between the electrodes, d is the thickness of the dielectric. The Child-

Langmuir law is, in turn, a particular case (𝑛 =
1

2
) of the more general Space 

Charge Limited Currents (SCLC) [54] where n is a parameter which varies 

between 0 and 3 depending on charge energy distribution: 

𝐼 =
9

8
𝜀𝑟𝜀0𝜃𝜇

𝑉𝑛+1

𝑑2𝑛+1
 

 

To sum up, the conduction mechanism of the LCMO/PBCO/Ag tunnel junctions 

is predominantly the tunnelling of electrons hindered by traps localized in the CuO 

chains in the PBCO barrier. Could orbitronics be involved in the conduction 

through the CuO chains in the PBCO barrier? 

In order to gain deeper insight in this kind of issue, it would be highly 

recommended to perform Ultraviolet Photoelectron Spectroscopy (UPS) and Near 

Edge X-Ray Absorption Fine Structure (NEXAFS) [55]. Nevertheless, the 

measurement of the Franz-Keldysh effect [56, 57] would clarify the electrostatic 

and chemical doping process.  

The Franz-Keldysh effect consists of the redshift of the absorption edge in a Mott 

insulator induced by an electric field.  

To start, an electrostatic-doping is induced in the Mott insulator due to the applied 

electric field. Consequently, the hole doping gives rise to the emergence of new 
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states within the Charge Transfer gap and the suppression of the spectral weight in 

the high energy region. 

In other words,  the  Franz-Keldysh  effect  is  the  result  of  wavefunctions  

"leaking"  into  the  Charge  Transfer  gap.  Owing to the applied electric field, the 

free electron wavefunction associated to Ag and the free hole wavefunction 

associated to LCMO  become  Airy functions whose tails extends into the Charge 

Transfer gap, the more overlap there is between the free electron and hole 

wavefunctions, the stronger the optical absorption will be owing to the electron-

hole recombination and the higher the tunneling current will be. 

In conclusion, if a strong positive bias voltage is applied to our tunnel junction 

LCMO/PBCO bilayer.  The  dopants  and  traps associated with PBCO barrier will 

be de-ionized (electroforming),  increasing the probability of overlap between the 

free electron and hole wavefunction because the recombined dopants and traps 

provide empty quantum interface states to make easier the delocalization of free 

electron and hole wavefunctions "tails" to overlap. So, the electron-hole 

recombination in the Schottky model framework is no longer necessary. 
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Chapter 4. Density functional 

theory calculations of BTO-metal 

interfaces, and parent compounds 
 

One of the aims in this PhD. thesis is to unravel the complex but rich interactions 

between 𝐵𝑎𝑇𝑖𝑂3 (BTO) and metals (M). These systems bring novel phenomena 

into play such as resistive switching, inversion of TMR sign, existence of very 

unstable ferroelectric charged domain walls, etc. There is an inherent complexity 

in these phenomena since they involve the interplay of different degrees of freedom 

at different levels such as atomic, electronic, orbital and spin. In order to unravel 

the mechanisms behind those properties we are going to take advantage of the 

predicting properties of first principle calculations. In this chapter we compile a 

systematic density functional theory (DFT) study of BTO-M interfaces for a 

diverse set of metals: 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 (LSMO), Cobalt (Co) and Silver (Ag). First 

we will describe the structural and electronic properties of ideal bulk crystal of the 

three metals and the BTO. At this point we will discuss our results at the light of 

previous works in the literature to quantify the prediction potential of density 

functional theory (DFT) and characterize about its limitations [1]. Some of them, 

related to the local or semi-local functionals range, will be partially amended using 

the Hubbard (U) correction providing the theoretical tools required to study more 

complex systems, such as moderately correlated oxides [2]. Afterwards we will 

consider the most frequently observed defects that modify key properties on each 

bulk system. Then, we will proceed to study low dimensional BTO [001] surfaces 

which will highlight the type of models we will have to build up when studying 

the BTO-M [001] heterostructures. Finally we will take advantage of all the 

knowledge acquired in previous sections of this chapter to describe the main 

features involved in the phenomena observed in BTO-M complex interfaces with 

defects, whose experiments will later be discussed in chapters 5 and 6. 

 

Density functional calculations were performed using the Vienna ab-initio 

simulations package (VASP) [3-5], within the GGA semi-local exchange 

correlation functional. Additionally for the purpose of correcting the band gap 

problem due to correlation deficiencies of DFT we use the Hubbard U correction 

in the Dudarev implementation [6]. In this rotationally invariant approach Dudarev 
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perform corrections to the L(S)DA energy only through the effective correction 

parameter 𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽 and not independently on the U and J. The used 𝑈𝑒𝑓𝑓 

value will be discussed throughout the text and abbreviated as U. All calculations 

were relaxed for both atomic positions and lattice parameters, unless otherwise 

specified, till the Hellmann–Feynman forces on the ions were less than 15 meV/Å. 

In all the DOS plots, the "a.u." units stands for arbitrary units. Since we are finally 

interested in performing heterostructures calculations with 𝑆𝑟𝑇𝑖𝑂3  (STO) as 

substrate. The in-plane parameters of related calculations will be constrained to the 

3.905 Å bulk STO value. More details about this will be given. 

4.1 Bulk Properties: 

 

Unless specified otherwise, for the unit cell bulk calculations of the relaxed 

structure, we have used 350 eV energy cut off (𝐸𝑐𝑢𝑡) and a k-mesh of 8x8x8 in the 

Monkhorst–Pack grid notation or similar mesh densities for large cells, which have 

been confirmed to be converged performing calculations with 𝐸𝑐𝑢𝑡 of 450 eV and 

18x18x18 meshes. For the electronic properties calculations, such as the density 

of states, we have used a larger 12x12x12 k-mesh for the unit cell or similarly 

scaled for larger cells. The calculation size and atom number per unit cell will be 

specific and clarified for each study performed.  

 

4.1.1 Metals: 

 

4.1.1.1 Ag:  

Silver is a noble metal with the electronic configuration given by [Kr] 4d10 

5s1, therefore its properties mostly dependent on the s-orbital. Ag has a face 

centered cubic (FCC) structure with lattice parameter of of 4.07 Å [7], see figure 

4.1 for an atomic structure sketch. Due to the fact of its large lattice parameter and 

a relatively low interaction Ag is a catalytic oxidation reactive which tends to 

adsorb or oxidize very easily in the closest monolayers to the surface [8]. Such 

exposed surface provides to the BTO-Ag interfaces a drain of oxygen and therefore 

in this interface Ag behaves as an oxygen vacancy source. This characteristic of 

the BTO-Ag interface will be taken into account in our interface models by means 

of introducing oxygen atoms in the Ag close by the interface. They are the well-

known oxygen interstitials which are the most frequent defects one may observe 

in low dimensional Ag structures [9]. 
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Figure 4.1 Atomic structure sketch of the Ag face centered cubic (fcc) structure. 

 

In the bulk Ag calculation the lattice parameter we obtain is 4.15 Å, which is in 

agreement with similar DFT calculations [7]. The electronic structure is depicted 

in figure 4.2 in the form of density of states (DOS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Total DOS of fcc Ag bulk. 
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Notice in figure 4.2 the d-orbitals are fully filled up and they are at -2.5 eV, 

approximately, below the Fermi level and above the s-orbital extends and 

influences the Ag properties. 

 

4.1.1.2 Co:  

Cobalt’s electronic structure is [Ar] 3d7 4s2 and then its electronic 

properties will be mostly given by the d orbitals. Co is one of the few natural 

ferromagnets which have the largest Curie temperature, 1388 K [10]. This confers 

the Co with great potential in magnetic applications such as spintronics, spin-

valves, magnets… etc. Co crystallizes in the hexagonal closed packet (HCP) 

structure. Co is also a catalytic oxidation reactive, therefore attracting the oxygen 

in the surroundings and generating oxygen vacancies. With large enough 

acquisition of oxygen Co may generate one or several oxide layers which can 

critically impact the performance of its electronic and magnetic properties as it will 

be discussed in the final subsection of chapter 6. Besides the occurrence of 

reaction-related processes the Co properties depend on the values of the Hubbard 

(U) parameter. 

 

The experimental lattice parameters of the Co are 𝑎 = 2.50 Å, 𝑐 = 4.07 Å, 

with a c/a ratio equal to 1.628  [11], very close to the highest density HCP stacking 

(1.633). The lattice parameters we obtain as a function of the U parameter can be 

seen in figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Lattice parameters a (black) and c/1.633 (red) as a function of the U value compared to 

the experimental values (in dashed lines). 
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From figure 4.3 we can observe that the a parameter increases when 

increasing the U value reaching the experimental one around 𝑈 = 5 𝑒𝑉. The c/a 

ratio is around 3% larger than the ideal 1.633 factor which is expected from GGA 

calculations [12]. The value we choose for future calculations is 𝑈 = 2.0 𝑒𝑉 based 

on a compromise agreement with the experimental a and c/a values. 

 

The electronic structure for the ground state with 𝑈 = 2 𝑒𝑉 is depicted in figure 

4.4. 

 

Figure 4.4: Total DOS of Co hcp bulk for U = 2 eV. 

 

The main structural modification which may happen for Co in an oxygen 

environment is that the outer surface layer(s) becomes CoO, as it was commented 

and which will be discussed in the next section. 
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4.1.1.3 LSMO:  

The manganites (𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3)  are perovskites compounds (𝐴𝐵𝑂3) 

which two cations: La and Sr present in the A position. They are well known 

compounds used in spintronics since they have a very complex phase diagram 

which includes diverse magnetic phases accessible either by varying the La/Sr ratio 

or the temperature [13]. We will be particularly interested in 𝑥 = 0.3 

𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3  (LSMO) since this compound is a half-metal with only the 

majority spin contributing to the electronic properties at the Fermi level. The Curie 

temperature is 378.1 K and its most stable crystal structure (for T<425 K) in bulk 

is the rhombohedral with space group R3c. However, when grown in thin films 

and heterostructures on cubic substrates such as 𝑆𝑟𝑇𝑖𝑂3 (STO) the LSMO adopts 

a tetragonal or pseudocubic phase [14].  

For the sake of comparison we have computed the rhombohedral and cubic 

structures and compare their electronic structure to obtain an idea of the electronic 

variation when structurally constraining the LSMO in-plane. 

 

Pseudo-cubic structure 𝐿𝑎0.75𝑆𝑟0.25𝑀𝑛𝑂3 calculations are performed with 8 units 

cells (2x2x2) and rhombohedral structure with 6 units cells and 𝐿𝑎0.67𝑆𝑟0.33𝑀𝑛𝑂3  

stoichoimetry, which are large enough supercells that allows for full degrees of 

freedom in the relaxation and therefore access to realistic ground state properties. 

We obtain for the rhombohedral structure the lattice parameters 𝑎 = 5.54 Å and 

𝑐 = 13.41 Å while for the pseudo-cubic structure 𝑎 = 3.87 Å and 𝑎 𝑐⁄ = 0.976. 

The density of states comparing the pseudo-cubic 𝐿𝑎0.75𝑆𝑟0.25𝑀𝑛𝑂3  and 

rhombohedral 𝐿𝑎0.67𝑆𝑟0.33𝑀𝑛𝑂3 stoichiometries is depicted in figure 4.5.  
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Figure 4.5 DOS for the cubic (red) and rhombohedral (black) phase of LSMO. 

 

From figure 4.5 we can observe that the two structures show very similar 

electronic features with the rhombohedral structure shifted towards positive 

energies due to the fact that the La/Sr ratio is larger. This fact is addressed in section 

4.2.3 where the role of the La/Sr will be discussed more extensively. The slight 

electronic differences between both phases support the fact that under epitaxial 

strains the LSMO adopts the tetragonal or pseudocubic phase.  

 

4.1.2 Bulk BTO: 

We have performed DFT calculations in bulk 𝐵𝑎𝑇𝑖𝑂3 (BTO) in order to 

study the relation between the atomic and electronic structure at different 

configurations such as elastic strain, electronic correlations and structural defects, 

for that we have varied the in-plane lattice parameter, the U values and the presence 

of oxygen vacancies. 

 

BTO crystallizes in a cubic structure, which show isotropic properties along x,y 

and z directions. The Ti-O-Ti bonds orientate along each of the three directions 
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showing equal atomic distances and so structural and electronic properties [15]. At 

lower temperature (104 ºC) the most stable symmetry of BTO becomes tetragonal 

with an elongated c lattice vector versus the a value. For the tetragonal structure 

the Ti-O-Ti distances along z are larger than along x or y. The degree of 

tetragonality (c/a) is larger for larger differences between the z (c) and the x, y (a) 

cartesian axes (lattice parameters). The tetragonal structure can be characterized 

by the a, c lattice parameters and a ferroelectric distortion (𝛿)  which is the z 

displacement between the oxygen and Ti in the 𝑇𝑖𝑂2 plane (also to be referred as 

O-B distance). Besides those parameters, specially c and d, we will pay particular 

attention to the role of each of the planes along the (001) which are the 𝐵𝑎𝑂 and 

𝑇𝑖𝑂2 planes. We obtain after BTO relaxation in a 2x2x2 supercell that the crystal 

structure is tetragonal with 𝑎 = 3.99 Å  and 𝑐 = 4.14 Å , which agrees well with 

other theoretical simulations as well as experimental values [16]. For bulk we 

obtain that  𝛿  is approximately 0.17 Å, which compare well with similar 

calculations [17] but it is slightly overestimated, as expected using GGA functional 

for the exchange-correlation, with respect to the bulk value of 0.12 Å [18]. 

Similarly for thin films of BTO deposited on STO, the 𝛿 value is 0.12 Å [19]. In 

figure 4.6 we can observe the crystal structure together with a, c and the 𝛿 

parameter for the tetragonal phase. 
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Figure 4.6 Lattice parameters (c, a) and 𝛿 ferroelectric displacement in the tetragonal unit cell of 

BTO. Green, blue and red circles corresponds to Ba, Ti and oxygen atoms. This colour coding will 

be employed throughout the text. 

 

For latter comparison to the relaxation trend observed in surfaces and 

interfaces we have also considered to set a compressive strain to the BTO 

corresponding to the structural constraint generated due to the 𝑆𝑟𝑇𝑖𝑂3  (STO) 

substrate, whose experimental cubic lattice parameter is 𝑎 = 3.905 Å [20]. This 

case will be mostly relevant for the discussion of epitaxial growth of BTO on STO 

substrate. However the elastic response of the BTO material, e.g. c and 𝛿 

parameters, depends on the describing theory, which we will focus on the evolution 

with U values. Such dependency of c and 𝛿 vs U is illustrated in figure 4.7. 
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Figure 4.7 c (left) and δ (right graph) of the BTO bulk as a function of the U correction for strain 

conditions of either BTO or STO in-plane parameters.  

 

The two types of in-plane settings for the calculations, BTO relaxed 

(𝑎 = 3.94 Å)  or in-plane compressed to the STO value (𝑎 = 3.905 Å)  will be 

considered and referred thought-out the text as with BTO or STO lattice 

parameters, respectively. When setting different a values (either BTO or STO), we 

observe that for higher U values, the parameters c and 𝛿 are reduced except for an 

overcorrection at large U values for BTO lattice parameter which show no 

meaningful results. δ displacement is on the other hand progressively reduced to 

zero, which occurs at U = 4.4 or 7.0 for the BTO or STO in-plane respectively. We 

can observe that the closest δ value to experiments  (𝛿 = 0.12 Å) result at U = 2.0 

or 4.4 for the BTO or STO in-plane, respectively. Therefore depending on the type 

of calculation we perform, either bulk, surface or interface, we should choose the 

U value accordingly. For the STO in-plane constraints, such as in surfaces and 

interfaces, the employed U value is 4.4 eV for Ti 3d electrons, choice which has 

also been employed in previous works [21] [22]. 

 

Although the U parameter also exerts an effect on the atomic structure of 

the BTO lattices, originally U is included to correct the underestimation of the band 

gap through increasing the electronic correlation in one-body simulations (such as 

DFT). In figure 4.8 we include the projected density of states to the BaO and TiO2 

plane, which is further decomposed into orbitals. 
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Figure 4.8: Projected DOS to the 𝐵𝑎𝑂 plane (upper brown curve) and 𝑇𝑖𝑂2 plane (lower curves) 

which include the total, s, p and d orbitals in black, red, green and blue respectively. 

 

As we observe in figure 4.8, BTO is an insulator with the Fermi level quite 

centered in the middle of the gap which is just a convention within the calculation. 

Both 𝐵𝑎𝑂 and 𝑇𝑖𝑂2 planes have contribution to the valence band while the bottom 

of the conduction band is mostly located at the Ti-d orbital, with some 

hybridization to the O-p orbital, specifically in the 𝑇𝑖𝑂2 plane (green curve) and 

the 𝐵𝑎𝑂 plane (grey curve).  If we apply a correction with U = 0.0, 2.0, 4.4 and 7 

eV, we can observe the evolution of the total density of states and band gap in 

figure 4.9. 
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Figure 4.9 Total DOS for the U = 0.0, 2.0, 4.4, and 7 eV, depicted in black, red, blue and green 

respectively. 

 

As can be observed from figure 4.9 both the valence and conduction band 

are shifted to larger energy values upon increasing the U value from 0 to 7 eV, 

however the conduction shift is much larger which efficiently increases the BTO 

band gap from 1.7 to 2.4 eV respectively. 

 

4.1.2.1 Born Charges: 

We have also computed the BaTiO3 Born effective charges [19] in the ferroelectric 

tetragonal phase at the equilibrium STO in-plane unit cell parameter by relaxing 

both, the atomic positions and out of plane unit cell parameter. The Born charge 

components along the ferroelectric direction are 2.74 𝑒− for Ba, 5.27 𝑒− for Ti and 

−1.91 𝑒−  and −4.17 𝑒−  for O ions in the 𝑇𝑖𝑂2  (O⊥) and 𝐵𝑎𝑂  (O∥) planes 

respectively, close to the values reported previously [23]. We have also calculated 

the Born charges corresponding to the tetragonal phase at two different 

experimental unit cell parameters for a Cartesian axis with the z axis pointing in 



103 
 

the ferroelectric direction. For this choice, all the charge tensors are diagonal. The 

calculated values, which agree reasonably with those previously reported, are 

supplied in Table 1. As discussed by Ghosez et al., 𝐵𝑎𝑇𝑖𝑂3  Born charges are 

strongly dependent on the structural features [27]. The charges of Ba and O (at the 

𝑇𝑖𝑂2  planes) remain almost unchanged in both structures while strong 

modifications are observed for Ti and O (at the 𝐵𝑎𝑂 planes). Similar behavior was 

reported in the orthorhombic and rhombohedral ferroelectric phases of 𝐵𝑎𝑇𝑖𝑂3 

[24].  

Table 4.1 Calculated Born effective charges and Polarization in C/m2, in the tetragonal ferroelectric 

phase of bulk 𝐵𝑎𝑇𝑖𝑂3 , for different structural parameters; Exp1 and Exp2 correspond to the 

experimental parameters of references [25] and [26], respectively and Theor. to previously reported 

theoretical calculations [27]. Tensors are given in Cartesian coordinates, with the z axis along the 

ferroelectric direction. For all the atoms the tensors are diagonal. O|| and O⊥ stands for oxygen in the  

𝐵𝑎𝑂, and 𝑇𝑖𝑂2 planes, respectively. 

Local polarization P(z) can be obtained from the atomic displacements measured 

from annular bright-field images (figure 5.3) and Born charges: 

𝑃(𝑧) =
𝑒

𝑉
∑ 𝑍𝑚𝛿𝑧𝑚

𝑁

𝑚=1

 

Where 𝑍𝑚 denotes the Born effective charge whose index m runs over the 

different atoms of the unit cell and 𝛿𝑧𝑚 is the displacement of the mth atom respect 

its centrosymmetric position; z is the position of the Ba-centered unit cell, V is 

volume and e the electronic charge. Using the effective Born charges obtained 

from the calculations (Fig. 5.3), resulting in 𝑃 = 24 𝐶𝑚−2, which is very close to 

the bulk polarization of barium titanate (BTO), 𝑃 = 26 𝐶𝑚−2. 

4.2 Most typical chemical modifications. 

While the bulk materials Ag, Co and LSMO exhibit well defined metallic 

nature, the bulk BTO exhibits well defined dielectric nature. The inclusion of 

structural defects/dopants makes the parent compound properties may change in 
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such a way that structural and electronic modifications take place. In this sub-

section, we consider the most relevant atomic and electronic perturbations to the 

parent compounds that may be responsible for specific effects at the more complex 

interface calculations. 

4.2.1 Ag: Oxygen interstitials. 

As previously explained, silver is a well known catalytic oxidation reactive 

which tends to incorporate oxygen within its structure in surfaces and interfaces. 

We have considered interstitial oxygens in a c(1x1) 9 monolayers (ML) surface 

calculation by including an oxygen atom between the first and second outermost 

ML and compared the electronic structure to that of the ideal oxygen-free surface, 

see figure 4.10. 

 

Figure 4.10 d-orbital PDOS projected along the 9 ML of the surface (bottom and top are the most 

surfacial) for the ideal oxygen-free surface (left) compared to a incorporation of one oxygen atom 

between the first and the second outermost planes (right).      

 

From Figure 4.10 (left graph) we observe that there are no d-states near the EF for 

the pristine Ag surface. However, when one oxygen interstitial is included (bottom 

plane at the right graph), the hybridization with the O p-orbitals makes the Ag d-

orbitals (eg type) populates states at and near the Fermi level. This affects the 

conduction and excitation properties due to the available states (throughout few 

hundreds of meV) with a different orbital nature than the s-orbital observed for 

defect free configurations (left figure 4.10). 

 

4.2.2 Co: Oxidation of the outer monolayer. 

 

When the metal has a strong affinity to the oxygen, as it is the case for 
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Cobalt, often one can find that the metal layers closest to the surface or interface 

are structurally modified to accommodate the abundant presence of the oxygen 

which may end forming the corresponding monoxide (CoO). Cobalt monoxide is 

a Mott-insulator with a band gap of approximately 2.4 eV [28] showing 

antiferromagnetic order with a Neel Temperature of 291 K [29]. 

We calculate the CoO bulk phase to account for the oxidation of Co at the 

BTO interface. We enforce the STO in-plane lattice parameter, allowing full 

relaxation of the atomic positions and the out-of-plane direction. We use a U 

correction of 6 eV obtaining an AFM order with a band gap of 1.0 eV and a Co 

spin moment of 2.9𝜇𝐵 which reasonably compares well with previous calculations 

performed within the VASP code [30] where even higher U values are considered. 

 

4.2.3 LSMO: Sr/La ratio. 

 

𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 is a disordered alloy pertaining the La/Sr location. While 

the size of both cations is very similar, Sr being a slightly larger, the oxidation state 

varies which consequently alters the Mn oxidation state ranging from +3 to +4 

from a Sr-poor (𝑥 = 0)  to Sr-rich (𝑥 = 1)  concentrations. Using the above 

mentioned pseudo-cubic structure we can study how the La/Sr ratio influences the 

electronic and magnetic properties of the 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3, ranging from x = 0 to 

0.75. It is beyond the scope of this section to investigate the antiferromagnetic 

orthorhombic phase of 𝐿𝑎𝑀𝑛𝑂3  (𝑥 = 0) , but just get an insight about how the 

La/Sr ratio modifies the DOS and the spin polarization of the Mn in the 

ferromagnetic pseudo-cubic 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 phase. 
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Figure 4.11 DOS for pseudo-cubic La1-xSrxMnO3 with different Sr concentrations (x values): a) 0.75, 

b) 0.50, c) 0.25 and d) 0.0.  

 

In figure 4.11, the most important orbital contributing to the electronic 

structure around the Fermi level is the Mn 3d-orbital. It can be observed that 

increasing the La (Sr) concentration increases the number of electrons (holes) in 

the system, as expected from the lower 𝑆𝑟2+ oxidation state compared to 𝐿𝑎3+, 

populating mostly the majority spin channel. Between x = 0.25 and 0.5, figure 4.11 

b and c, notice that the system is half-metal with only the majority spin channel 

contributing to the conduction. This agree well with the phase diagram of   

𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 which show a half metallic phase around x = 0.33 approximately 

[31]. We can also observe that since both spin channels are not equivalently 

populated the value of the Mn spin polarization varies with Sr concentration, which 

we have depicted in figure 4.12. 
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Figure 4.12: Mn spin polarization in pseudo-cubic 𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 versus the Sr concentration (x). 

 

In figure 4.12 there is a clear relation between the Mn spin polarization 

and the cation La/Sr ratio. For x between 0.25 and 0.5 there is only Mn spin 

majoritary contribution so the cation variation implies Mn oxidation state 

modification that efficiently alters its spin polarization (large negative slope in 

figure 4.12). For lower and higher values that this interval the minoritary 

contribution becomes comparable to the majoritary therefore considerably 

reducing the slope. 

 

4.2.4 BTO: Oxygen vacancies. 

 

It is well known that 𝐵𝑎𝑇𝑖𝑂3 properties strongly depends on the growth 

conditions, in particular to the oxygen partial pressures which generate oxygen 

vacancies in the dielectric [32]. Realistic vacancy concentrations in 𝐵𝑎𝑇𝑖𝑂3 are 

diluted (around 1022 𝑣𝑎𝑐𝑎𝑛𝑐𝑖𝑒𝑠/𝑐𝑚3  [33]) so the periodic simulation cell to 

model oxygen vacancies on BTO have to be large enough for two first neighbours 

vacancies not to interact with each other, avoiding overlapped structural and 

electronic effects. We have considered 2x2x2 or 3x3x3 times the primitive cell 
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resulting in 40 or 135 atoms respectively. Generally the 2x2x2 exhibits qualitative 

agreement with the 3x3x3 however there are some quantitative differences. If not 

mentioned otherwise the 3x3x3 cell will be the one discussed for the BTO with 

vacancies. The oxygen vacancy (OVac) can reside either at the 𝐵𝑎𝑂 plane or 𝑇𝑖𝑂2  

plane, 𝐵𝑎𝑂 or 𝑇𝑖𝑂2 respectively from now on. The OVac at the 𝑇𝑖𝑂2 (𝐵𝑎𝑂) plane 

detach the Ti-O-Ti bond line along the x, y (z) directions which are different only 

due to the tetragonality of the structure, compared to the isotropic cubic structure. 

We include in figure 4.13 the c and δ as a function of the U value for the two 

oxygen vacancy location, both the 𝐵𝑎𝑂 and 𝑇𝑖𝑂2 plane. 

 

Figure 4.13 c (left) and δ (right graph) of the BTO bulk with OVac as a function of the U correction 

for strain conditions of either BTO or STO in-plane parameters. 

 

We observe that increasing the U value gradually decreases the c lattice parameter 

similar to the pristine BTO. However, for large values (𝑈 ≥ 4.4 𝑒𝑉) and BTO in-

plane conditions, there is an overcorrection indicating that these are non-realistic 

results. The δ value continuously decreases to zero at U= 2.0 or 7.0 for the BTO or 

STO in-plane lattice parameters respectively. These same trends were exhibited by 

the BTO in the case without vacancies, showing the overcorrection and zero δ 

value at higher U, where we again evidence the different appropriate value for BTO 

or STO constrained calculations. The appropriate value for STO-constrained 

calculations is U = 4.4 eV, as it was without the oxygen vacancies (see figure 4.7). 

Besides, the role of the OVac location (either at the Ti or Ba plane) is not relevant 

for BTO in-plane configurations (bulk calculations) while it is for STO in-plane 

configurations (surfaces and heterostructures calculations) especially in the low U 

range, see differences between green and blue curves in figure 4.13. An insight of 
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how the atoms relax around the vacancy can be gained from figure 4.14. 

 

 

 

 

Figure 4.14: Atom relaxation around the oxygen vacancy (grey circle) located at the a) Ba plane, b) 

Ti plane. Blue, red, green and grey circle corresponds to Ti, oxygen, Ba atoms and OVac respectively. 

 

Besides, we include in figure 4.15 the total energy of the OVac at the 𝑇𝑖𝑂2 

plane minus the total energy at the 𝐵𝑎𝑂 plane as a function of the U value for the 

BTO and STO in-plane which can be related to the most stable location of the 

OVac in the bulk or thin film configurations respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: BTO energy difference between the OVac located at the 𝑇𝑖𝑂2 minus the 𝐵𝑎𝑂 location 

for the BTO in-plane (black curve) or STO-constrained in-plane (red curve) as a function of the U in 
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the Ti 3d-orbitals. 

 

In figure 4.15, we observe that the most stable location is at the 𝐵𝑎𝑂 plane 

being the value almost constant and close to 100 meV in the STO in-plane 

constraint. For the BTO there is an appreciable stabilization of the oxygen vacancy 

at the 𝐵𝑎𝑂  when increasing the U beyond 2.0 eV, however for U = 2.0 eV 

(reasonable value) is around 150 meV. For the BTO in-plane at the U = 0 eV case 

the most stable OVac location is the Ba plane by 73 meV over the Ti plane. This 

compares well with the results from Nieminen et al. but is slightly lower than its 

110 meV value [34]. As we saw in figure 4.7 increasing the U values reduces the 

tetragonality (c and 𝛿) but still do not approach the cubic situation in which both 

the δ value is zero and c is either 12.0 or 11.7 Å for the BTO or STO in-plane lattice 

configurations respectively. While the U is effectively reducing the δ value to zero, 

the c lattice parameter is far from the value 12 and 11.7 Å as we can see in figure 

4.7. The persistence of certain tetragonality through the c lattice implies an 

anisotropy between z out-of-plane and x, y in-plane directions which makes that 

the OVac is always more stable at the 𝐵𝑎𝑂 plane than at the 𝑇𝑖𝑂2 plane. The two 

are equally stable on the perfectly cubic isotropic symmetry. 

 

Inclusion of the oxygen vacancies generates an off-stoichiometry relation 

which shows up as an electron doping at the bottom of the conduction band, as can 

be seen in figure 4.16 for both the OVac location at the 𝐵𝑎𝑂 or 𝑇𝑖𝑂2 plane. 

 

Figure 4.16: Total DOS for the oxygen vacancy at the Ba and Ti plane. 
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In figure 4.16 we observe, in contrast to the case without vacancies, the 

appearance of a contribution at the Fermi level associated mostly to the Ti d orbital 

and coming from the conduction band.  

Therefore, we conclude that while U value effectively reduces the δ value 

although the c value is not reduced. Such anisotropy creates a situation in which 

the oxygen vacancy is always more stable located at the Ba plane although the 

electronic structure is not altered and the DOS in both locations are very similar. 

This suggests that the energy imbalance is mostly due to the atomic structure and 

strain conditions. 

 

4.3 BTO-Metal super-lattices: 

In this section we study the BTO-metal (001) heterostructures 

distinguishing two kinds of metals: one is the pseudo-cubic LSMO and the second 

are Co and Ag due to their high oxidation tendencies. All interfaces will be 

modeled as super-lattices (SLs) with the minimum number of planes in each 

compound required to observe the relevant phenomena. The mechanisms at the 

interface will partially rely on the bulk and on the surface properties of the BTO 

as well as on its interaction with the metal. This among other magnitudes will 

depend on its electronic affinity and elastic strain due to the structure 

commensurability between both constituents. The BTO-LSMO interface grows 

epitaxially and it has been microscopically characterized, see figure 5.3, to be 

TiO2/La(Sr)O terminated in both interfaces so a symmetric configuration will be 

considered. This termination agrees with the first principles calculations of other 

groups in similar conditions [35]. However Co and Ag do not grow epitaxially but 

as polycrystals on the BTO so the plane termination may vary depending on the 

interface region. For a STEM micrography of BTO-Ag highlighting the non-

epitaxial growth see figure A5. Such degree of inhomogenity will be taken into 

account in the simulations by calculating the asymmetric BTO cell, highlighting 

that the real interface may contain n- and p-type interfaces, and not only one kind 

as for BTO-LSMO. 

For both the symmetric and asymmetric BTO-metal interface terminations 

the metal is on-top to the oxygen of the 𝑇𝑖𝑂2  plane, since metal-oxygen bond 

distance is typically lower than the Ti-metal bond. This configuration where the 

Ti-metal distance is not first neighbour typically offers more degrees of freedom 
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to the BTO since the oxygen can be accommodated depending on the interaction 

strength to the metal rather than influencing the oxygen-metal distances and so its 

interactions. Unless stated otherwise, the employed 𝑈𝑒𝑓𝑓 for the 3d orbitals of Ti 

is 4.4 eV. 

 

4.3.1 BTO/𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3 super-lattices: 

The BTO/La1-xSrxMnO3 calculations are performed in a c(1x1) in-plane 

u.c., using 350 eV cut-of-energy and 4x4x1 kpoint mesh for ionic relaxation and 

6x6x1 for electronic structure calculations, respectively. However, results 

convergence has been checked against larger 450 eV and 8x8x1 k-meshes 

obtaining the same results. The SLs contains 8 units cells + 1 TiO2 layer (8.5 u.c.) 

and 6 units cells + 1 La(Sr)O layer (6.5 u.c.) of BTO and La1-xSrxMnO3 

respectively to impose a symmetric supercell, see figure 4.17. Besides, as 

commented above, the most frequently found defects in La1-xSrxMnO3 may be the 

chemical modification La/Sr ratio near by the interface. We will calculate the effect 

of La/Sr concentration (ranging from x = [0, 0.56]) and its localization over the 7 

La(Sr)O focusing on experimental concentrations of 𝑥 = 0.3 which provides the 

interesting half-metal properties to the manganite. This is best obtained with 2 Sr 

and 5 La, out of the 7 La(Sr)O planes, which corresponds to a simulated x = 0.28.  

Figure 4.17: Atomic sketch of the c(1x1) 𝐿𝑎𝑆𝑟𝑥𝑀𝑛𝑂3/BTO calculation, where the La(Sr)O planes 

of the manganite are labeled from 1 to 7 to help describe the concentration and distribution models 

of La/Sr ratio. E.g. the depicted BTO-LSMO interface corresponds to 2 Sr planes at the position 2 

and 6. 

Similarly to the BTO surfaces at the La1-xSrxMnO3/BTO calculations the 

interface chemical configurations sets an electrostatic boundary which ultimately 

influence the electronic and structural properties of the calculations. We will 

discuss in the BTO the electric polarization O-B, distance between the oxygen and 

the Ti atom in the TiO2 plane, similarly to the 𝛿 parameter for the BTO bulk and 



113 
 

surface properties, in order to analyse also the role of the La/Sr ratio in the La1-

xSrxMnO3/BTO interfaces. 

The O-Ti values for La1-xSrxMnO3/BTO interface for varying La/Sr ratios 

in the [0, 0.56] range are shown in figure 4.18.  

 

Figure 4.18 O-B distance within the BTO when interfaced to LSMO with Sr atom number (location) 

in each calculation 0, 2 (at positions 3, 5), 3 (2,4,6) and 4 (1,3,5,7) respectively out of the 7 La(Sr)O 

planes in the  La1-xSrxMnO3/BTO interfaces, see figure 21. The symbols and curves denoting each 

case corresponds to x=0 (black circles), 0.28 (red square), 0.42 (green diamond) and 0.56 (blue 

triangle). 

In figure 4.18, we can observe that for all x values the calculation is 

perfectly symmetric at the TiO2 central plane, as imposed by the interfaces, 

indicating that the oxygen atoms are moving towards the La1-xSrxMnO3 side; while 

the Ti is moving opposite to it. The displacement follows almost a linear relation 

as we go from the central plane to the interface plane and it also varies with x. The 

larger the x (Sr concentration), the smaller the O-Ti distance till the case of 𝑥 =

0.56 where there is no TiO2 electric polarization but only a minor value at the most 

interfacial TiO2 plane. This suggest that the there is a clear and almost linear 
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relation between the number of electron/holes (Sr concentration) in the system vary 

and the system structural properties. 

Beside the role of the Sr/La ratio we have also found that for the closest Sr 

concentration to the experiments (x = 0.28), the location of the Sr also influences 

the ferroelectric distortion of the system, again depicted as O-B in figure 4.19. 

Figure 4.19 O-B within the BTO for x=0.28 in La1-xSrxMnO3/BTO interfaces, with the Sr located at 

the planes 1-7 (black) 2-6 (red) and 3-5 (green). See figure 4.21 for an atomic sketch of the interface 

and Sr location configurations. 

The dependence of the BTO ferroelectric distortion as a function of the Sr 

location in figure 4.19 indicates a similar variation of the O-B values than that 

obtained in figure 4.18 for the Sr concentration. While in this case the amount of 

electron/holes in the system is preserved we modify the electrostatic interface 

configuration increasing/reducing the polar discontinuity at the LSMO/BTO 

interfase. The polar discontinuity occurs at the interface when the nominal 

oxidation states of one compound do not follow the value sequence of the other 

compound therefore developing an electrostatic potential which eventually makes 

the system unstable when the polar compound is thick enough. The polar 

discontinuity is a well-known mechanism in oxide based heterostructures in which 

the alteration from the bulk coordination generates an exotic phenomenon such as 
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the two-dimensional electron gas (2DEG) at the interface environment [38]. The 

first system in which this 2DEG was observed was LAO-STO (100) 

heterostructure residing in the Ti d-orbitals [37]. This 2DEG appears as a 

stabilizing mechanism to compensate the polar discontinuity when the LAO is 

larger than 4 ML [38], thickness at which the electrostatic potential would be too 

high for the heterostructure to form without 2DEG. 

However Stengel et al. have discussed that certain oxide-metal 

heterostructures are wrongly described using DFT-based methods due to the band 

gap problem, which induce fictitious interactions between the metal and the oxide 

[39]. A structural feature they claim it evidences the problem is a linear ramp in 

the electric polarization, such as that we obtain in figure 4.18 for high La 

concentrations and in figure 4.19 for LaO-terminated interface configurations. To 

be on the safe side from this parasitic effect we will consider from now on the SrO 

termination of the LSMO-BTO heterostructure with 28% Sr concentration, case a) 

from figure 4.19, which shows a flat O-B value with a slight modification at the 

interface. In order to show the influence of two different Sr location at the interface 

on the electronic properties, the PDOS for SrO- and LaO-terminated BTO are 

included in figure 4.20 
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Figure 4.20 Calculated layer-resolved density of states in the BTO region and the two first LSMO 

planes at each interface for the SrO- (left) and LaO-terminated (right) configurations. Black curves 

in the density-of-states plots indicate the majority spin and red curves indicate the minority spin. 

In figure 4.20 for the SrO-termination the BTO conduction band show a 

dielectric barrier of around 0.5 eV while for the LaO-termination the conduction 

band aligns along the Fermi level contributing slightly at the central plane and in 

the rest just on a verge to become metallic. As stated before the largest difference 

between the two configurations is structural and corresponds in figure 4.19 to a 

paraelectric O-B distribution (black curve) and a head-to-head charged domain 

wall (H-to-H DW) (red curve) corresponding to the left and right cases of figure 

4.20 respectively. However BTO is a ferroelectric with an electric O-Ti 

displacement of around 0.12 Å which will not result in our BTO/LSMO 

calculations as a consequence of the symmetric super-lattice of our model. Still 

one relevant interface configuration is a constant 0.12 Å O-Ti displacement at each 
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half of the super-lattice meeting a charged ferroelectric domain wall, the so called 

H-to-H DW forced configuration at the center, see figure 4.21 for an atomic sketch.  

 

Figure 4.21: (a) Atomic sketch H-t-H DW forced configuration of the BTO/LSMO calculation with 

0.12 Å (bulk) BTO constant ferroelectric displacement at each BTO half-side meeting a H-to-H DW 

wall at the center. (b) Step-like electric polarization profile along the BTO. 

The electronic properties of the unrelaxed configuration of figure 4.21 

depicted as PDOS are shown in figure 4.22. 
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Figure 4.22: Left. Calculated layer-resolved density of states in the BTO region and the two first 

LSMO planes at each interface for the H-to-H DW forced-configuration. Black curves in the density-

of-states plots indicate the majority spin and red curves indicate the minority spin. Right: Sketch for 

the band bending of the LSMO/BTO calculations. 

In figure 4.22, we can observe that the dielectric barrier that forms at the 

interface with the LSMO (almost 1 eV) is continuously reduced due to a band 

bending throughout the BTO till a localized metallic region by the center where it 

resides the H-to-H DW. The conduction band is characterized by Ti 3d-orbitals 

whose region lay below the Fermi level forming a free electron gas confined to 

one or two BTO unit cells from the domain wall. In figure 4.22, it is shown a sketch 

for the band bending which gradually makes that the band offset at the interface 

become a metallic dip at the center of the BTO. 

However the total energy of this configuration is 1100 erg/cm2 less stable 

than the paraelectric configuration. This energy difference compare to 10 erg/cm2 

for non-charged ferroelectric domain walls. Therefore, the charged ferroelectric 

domain wall configuration is very unstable and unlikely to be observed in ideal 

BTO/LSMO heterostructures.  

We extend the study of atomically relevant configurations in BTO/LSMO 

heterostructures by including the most common defects present in BTO, these are 

oxygen vacancies. We consider the previous paraelectric interface calculation with 

oxygen vacancies in the BTO at the third most interfacial plane and we let the 
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system relax. The corresponding PDOS of its ground state is depicted in figure 

4.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Calculated layer-resolved density of states in the BTO region and the two first LSMO 

planes at each interface for the H-to-H DW configuration promoted by oxygen vacancies. Black 

curves in the density-of-states plots indicate the majority spin and red curves indicate the minority 

spin. 

In figure 4.23, we can clearly observe a great similarity to figure 4.22 

where there is an accumulation of free electron density near the central BTO to 

screen the polarization charges of a H-to-H DW. However, the great difference is 

that for the presence of oxygen vacancies we access to the most stable 

configuration through atomic relaxation, unlike the case without oxygen vacancies 

which was unstable by 1100 erg/cm2. So, in both cases, we essentially obtain the 

same phenomena in which the band bending at the dielectric allows for the 

population of the conduction band in the center of the BTO. The integration of the 

electrons from the Ti 3d-orbitals till the Fermi level provides a clearer picture of 



120 
 

the free electron confinement and density associated to the charged ferroelectric 

domain wall, see figure 4.24. 

 

Figure 4.24 Screening charge density profiles for the LSMO/BTO SLs containing a H-to-H domain 

wall. The screening charge arises from a) the LSMO metallic electrodes (H-t-H forced-configuration), 

b) the oxygen vacancies which are located at the two Ba planes next-nearest neighbours to the BTO 

central plane. 

In figure 4.24, we can observe that while the region with the highest 

electron density is the BTO centre, the extension varies from around 1 unit cell in 

the forced configuration to around 5 units cell when the source of free electrons 

are the oxygen vacancies. The qualitative picture is clear however the amount of 

electrons is not precise since it involves approximating the electron integration into 

spheres centered at atomic positions. 

The picture of the H-to-H DW formation and stability due to oxygen 

vacancies within the BTO is robust against the only parameter we employed in our 

ab-initio calculations which is the U value. Varying the U of the Ti-3d from 4.4 to 

1.45 eV give us the PDOS of figure 4.25, which show similar electronic 

distribution validating the relevance of the oxygen vacancies in the structure and 

stability of the DW, and the electronic properties of the confined electron gas. 
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Figure 4.25 Similar to figure 4.23 for 𝑈 = 1.45 𝑒𝑉 instead of 𝑈 = 4.4 𝑒𝑉 

In order to study the confinement and the orbital nature of the free electron 

charge we depict in figure 4.26 a similar plot to figure 4.23 but only calculated at 

the gamma point of the reciprocal lattice. 
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Figure 4.26 Layer-resolved density of states of the 𝑑𝑥𝑧 , 𝑑𝑦𝑧  and 𝑑3𝑧2−𝑟2  3d-Ti orbitals for the 

oxygen vacancy structure at the gamma point of the BTO conduction band minimum. Black (red) 

curves in the density-of-states plots indicate the majority (minority) spin. 

Figure 4.26 depicts the layer-resolved density of states for the 𝑑𝑥𝑧, 𝑑𝑦𝑧 

and 𝑑3𝑧2−𝑟2 3d-Ti orbitals at the gamma point of the two-dimensional Brillouin 

zone, for the vacancy configuration. The degenerate 𝑑𝑥𝑧 and 𝑑𝑦𝑧 conduction band 

states quantized by the confining potential of the domain wall show an energy 

separation in the range of several tens of meV (and thus they should correspond to 

the resonant levels yielding the conductance oscillations because of resonant 

tunnelling, whose experiments are explained in chapter 5). These 𝑑𝑥𝑧  and 𝑑𝑦𝑧 

states have the lowest energy, a low effective mass and hence a high mobility. 𝑑𝑥𝑦, 

𝑑𝑥2−𝑦2 (mostly localized in a single 𝑇𝑖𝑂2 layer) and 𝑑3𝑧2−𝑟2 orbitals with a higher 

effective mass are located at higher energies (and therefore they should contribute 

to the confining potential). The actual energy of the different orbitals and thus their 

energy separation will depend on the exact shape of the confining potential and in 
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turn on the actual configuration of the oxygen vacancies. Nevertheless, for the 

several different oxygen vacancy configurations analysed, the degenerate 𝑑𝑥𝑦 and 

𝑑𝑦𝑧  states have always the lowest energy, and the energy separation between 

quantized states is in the range of several tens of meV and close to a constant value. 

Consequently, tunnelling across the BTO would be assisted by the confined 

electron states, which would be responsible for the conductance quantization 

observed in the transport measurements (see sketch in Fig. 4.22). Notice, finally, 

that DFT calculations show a clear spin polarization (0.3 𝜇𝐵 at the Ti central 

plane) of the confined electronic states (Fig. 4.23), which accounts for the 

differences in the measured tunnelling conductance in both configurations 

corresponding to parallel or antiparallel alignment of the electrode magnetic 

moments.  

All these calculations have been employed to publish a collaborative work 

[19] whose experimental part is included in chapter 5. In that section references to 

the theoretical results just discussed will be frequently performed. 

4.3.2 BTO/Ag (001) super-lattices: 

In contrast to the BTO/LSMO (001), Ag does not grow epitaxially on the 

BTO but it has polycrystalline structure, see figure A5 for STEM micrography, 

therefore the crystallographic orientation and/or the termination plane may vary, 

for which we calculate asymmetric supercells containing both 𝑇𝑖𝑂2  and 𝐵𝑎𝑂 

terminations. To check the variability of the properties against crystallographic 

directions we have calculated symmetric BTO/Ag heterostructures for both the 

[111] and [001] orientations obtaining qualitatively similar results. Therefore we 

extrapolate that to the study we will present in asymmetric super-lattices to say we 

expect no major differences between low indexes BTO/Ag heterostructures. We 

will consider a BTO/Ag [001] interface model calculation with an asymmetric 

supercell, with both 𝑇𝑖𝑂2 and 𝐵𝑎𝑂 terminations of BTO, so we implicitly take 

into account the variability of interface interactions due to the lack of epitaxial 

growth of Ag on BTO. 

We have performed a c(2x2) in-plane u.c. BTO/Ag [001] SL calculation 

with the super-lattice containing 5 BTO and 4 Ag unit cells, see figure 4.31 for an 

atomic sketch. The in-plane lattice parameter is constrained to the experimental 

STO value 3.905 Å value so both the BTO and Ag are under tensile stress to fit 

that value by compressing along the out-of-plane direction. We employed 350 eV 

energy cut off and 3x3x1 k-mesh which is well converged to 450 eV and 5x5x1 k-
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mesh respectively. The atomic positions and out-of-plane lattice vectors are 

allowed to relax till the atomic forces are lower than 15 meV/Å. The employed 

Hubbard U corrections, as discussed throughout the text, are 4.4 for the Ti unless 

otherwise specified. 

 

Figure 4.27 c(2x2) supercell of the [001] interface of BTO (left side) and Ag (right side). In order to 

highlight the atomic displacements the bonds between the oxygen and cations are included. Green, 

red, blue and grey circles corresponds to Ba, oxygen, Ti and Ag atoms respectively. 

After relaxation the ideal BTO/Ag calculation the most important 

structural features are the appearance of an almost constant ferroelectric 

displacement of 0.16 Å along the BTO and elongated interfaces distances. The 

minimum distance between the metal and BTO planes at the TiO2 and BaO 

terminated interfaces are 2.44 and 2.37 Å respectively. These distances values 

compare to 2.10 Ag-oxygen distance in the AgO compound therefore indicating 

that at the interface is not very strongly bound. These long out-of-plane distances 

were also relevant in the Ag side to the point that we had to freeze the distance 

between the two intermediate planes in order to keep it under reasonable values. 

Similarly the relatively weak interface can also be observed in the PDOS for the 

ideal BTO/Ag [001], see figure 4.28. 
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Figure 4.28 PDOS for the ideal BTO/Ag [001] interface along the 4 Ag planes (at the top) and the 

BTO 5 𝑇𝑖𝑂2 planes with the 𝐵𝑎𝑂 termination at the bottom. 

In figure 4.28, the BTO show mostly the same electronic feature as in bulk 

including the interfacial planes, with no occupied valence band BTO states so there 

is no charge transfer with the Ag. The only slight contribution is some 

hybridization with the Ag s-orbitals in the energy range [-2, 0] eV below the Fermi 

level. 

We now study the influence of the most relevant defects in each material: 

oxygen vacancies in the BTO and interstitials in Ag. The PDOS for the same 

structure including one oxygen vacancy at the third 𝐵𝑎𝑂  plane is depicted in 

Figure 4.29. 
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Figure 4.29 Similar PDOS to figure 32 but including oxygen vacancies at the third 𝐵𝑎𝑂 plane. 

We observe that the TiO2 3d-orbital levels near the vacancy displace 

towards lower energies till the conduction band slightly populates. The energy 

location of these levels varies with the theoretical U parameter, being on averaged 

0.25 eV for U = 4.4 eV and 0.15 eV for U = 0.0 eV. By virtue of this particular 

configuration, we can firmly suggest that the existence of oxygen vacancies at the 

middle plane develops in the BTO occupied electronic states around 0.2 eV below 

Fermi energy. 

Besides the oxygen vacancy in the BTO we have included an insterstitial 

oxygen between the first and second layer of the Ag, and plot its PDOS in figure 

4.30. 
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Figure 4.30 Similar PDOS to figure 4.29 but also including oxygen interstitials between the first and 

second Ag plane respect to the TiO2 terminated interface. 

While the presence of the interstitial produces a buckled atomic structure 

which alters the packing of the Ag the only modification to the electronic states is 

local to the Silver and it does not differentiates to the interface with only oxygen 

vacancies in the BTO. While the most important electronic variation is due to the 

oxygen vacancies at the BTO the interstitials resulting from the oxide catalyst 

properties of the Ag are essential to allow the reduction of the BTO. As we will 

see in the experiments explained in chapter 6, the interplay between the oxygen 

vacancy and ferroelectricity gives rise to a pinning level ascribed to an interface 

dipole due to a ferroelectricity driven oxygen vacancy ionization; which is thought 

to be connected with the existence of electronic states near the Fermi level in the 

BTO obtained in the present DFT calculation. 

4.3.3 BTO/Co (0001) super-lattices: 

For the BTO/Co (0001) super-lattices the employed Hubbard U 

corrections, as discussed thought the text, is 4.4 for the Ti and 2.0 eV for the 

metallic Co. Similarly to the Ag the Co is a polycrystal at the interface with the 

BTO [001] so we expect to have a variety of termination planes and orientations 

depending on the interface region. We have employed an asymmetric super-lattice 
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to account for that variability with √2𝑥√2R45º in-plane cell and containing 5 BTO 

and 5 Co units cells. Again the in-plane u.c. is constrained to the STO value. This 

interface involves the lowest degree of commensurability due to the fact that the 

Co show a hcp structure in bulk, as commented in chapter 6, while the BTO and 

STO have in-plane squared symmetry. This result into a strong relaxation pattern 

specifically in the Co in order to accommodate not only to the substrate size but 

also to its symmetry, see figure 4.31. 

 

Figure 4.31 Atomic sketch of the asymmetric √2𝑥√2R45º ideal BTO/Co [0001] model viewed from 

the a) [010], b) only Co [001] orientation. The depicted bonds correspond to oxygen bonds. Green, 

red, light blue and corresponds to Ba, oxygen, Ti respectively. Co atoms are depicted in a colour 

gradation from dark blue to pink to illustrate the depth effect. 

In figure 4.31, we observe that the Co strongly relax specially along the in-plane 

directions changing the equilateral triangle shape into a scalene one or rectangle. 

The oxygen at the BTO instead of showing a constant ferroelectric displacement 

to the cation plane, as for the BTO-Ag interface, it moves away from the Co 

interfaces, see figure 4.31 near the Co 1º and 5º planes. 

The PDOS for such model of the BTO-Co [001] heterostructure is 

presented in figure 4.32 where we again find that the interface interaction with the 

BTO is mostly due to the hybridization of the Co d-orbitals, but no charge transfer 

or mechanism evidencing a strong link between both materials. 
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Figure 4.32 PDOS for the ideal BTO-Co [001] interface, illustrated in figure 4.31, along the 5 Co 

planes (at the top), then the 𝑇𝑖𝑂2 termination (6th curve from the top) and the 5 BTO with the 𝐵𝑎𝑂 

termination at the bottom. 

We have then included one oxygen vacancy in the middle of the BTO 

(third Ba plane) and plot the corresponding PDOS in figure 4.33, depicting the 

negative transfer magnetoresistance displayed in figure 6.19. 
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Figure 4.33 Similar PDOS to figure 4.32 but including an oxygen vacancy at the 3rd Ba plane. 

Besides we have considered the Co high oxygen affinity and its high reactivity to 

form Cobalt oxides at the interface with the BTO, as discussed in chapter 6. CoO 

is strongly correlated material and high enough Hubbard U is required to describe 

the system in its correct AFM insulator phase. We have employed U = 6 eV as 

discussed in section 4.2.2. This interface involves the lowest degree of 

commensurability due to the fact that the Co show a hcp structure in bulk, while 

the BTO and CoO have in-plane squared symmetry constrained to the STO lattice. 

This result into a strong relaxation pattern specifically in the Co and CoO in order 

to accommodate substrate sizes in BTO, Co and CoO and symmetries in CoO, see 

figure 4.34. 

Figure 4.34 Atomic sketch of the asymmetric√2𝑥√2R45º BTO/Co [0001] model viewed from the a) 

[010], b) only Co and CoO along [001]. The depicted bonds correspond to a) oxygen bonds, b) Co-
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Co bonds. Green, red, light blue and corresponds to Ba, oxygen, Ti respectively. Co atoms are 

depicted in a colour gradation from dark blue to pink to illustrate the depth effect. 

In figure 4.34, we observe that the Co strongly relax specially along the 

in-plane directions changing the equilateral triangle shape into a scalene one or 

rectangle. The oxygen at the BTO instead of showing a constant ferroelectric 

displacement to the cation plane, as for the BTO-Ag interface, it moves away from 

the Co interfaces, see figure 4.34 near the 1 and 5 planes. 

The PDOS corresponding to the oxygen vacancy at the BTO and the CoO 

layer at the interface is depicted in Figure 4.35, showing the positive transfer 

magnetoresistance displayed in figure 6.20. 

Figure 4.35 Similar PDOS to figure 4.36 but including an oxygen vacancy at the 3rd Ba plane and a 

full CoO layer at the 5th Co plane, as depicted in figure 4.34.  

Notice in figure 4.35 that the CoO plane (fifth plane from the top) show larger 

population from the majority spin in comparison to the CoO AFM insulator phase 

and to the larger population from the minority spin in metallic Co, see figure 4.4. 

The formation of the oxidized Co phase at the interface with BTO will therefore 

strongly impact the transport properties of the BTO-Co based heterostructures as 
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will be discussed in chapter 6. Besides, notice the development of a state associated 

to the oxygen vacancy, by the middle BTO planes, which occur at around 100 meV, 

as shown in figures 6.13 and 6.14. This state will also grant specific properties to 

the systems, particularly regarding the activation barrier dependency on the 

temperature. In figure 6.11, impedance spectroscopy measurements will be 

performed to highlight the Coulomb Blockade effect [40, 41] in the 

LSMO/BTO/Co tunnel junctions devices. 

Furthermore, the 𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜  interface depicts the negative Tunnel Magneto 

Resistance (𝑇𝑀𝑅 < 0)  measured in direct current (DC) in figure 6.19; which 

stems from the negative spin polarization in the Fermi level of the hcp Co atomic 

layers.  

The 𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜  interface with the added CoO monolayer depicts the positive 

Tunnel Magneto Resistance (𝑇𝑀𝑅 > 0) measured in direct current in (DC) in 

figure 6.20; which stems from the positive spin polarization in the Fermi level of 

the hcp CoO and the close-oxygen-vacancy 𝑇𝑖𝑂2 atomic planes. 

The oxygen vacancy induced positive spin polarization is due to the 

(𝑈 − 𝐽 = 4.4 𝑒𝑉) Hubbard correction energy value for Ti; given in order to take 

implicitly into consideration the bottom electrode 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3  energy 

correlations transferred to oxygen vacancies through Ti atoms [42]. In other words, 

oxygen vacancies could mediate exchange coupling by tunnelling their charge and 

spin through 𝑇𝑖3+ cation [43], resembling a double exchange extrapolated to a 

ferroelectric insulator barrier because the electrons trapped in oxygen vacancies 

colour centres are able to localize its charge and spin. Similarly, it is of common 

knowledge that chemical doping [44, 45] induces changes in bonding angle and 

thus, triggering variations in the Exchange Energy J magnitude, which gives rise 

to wide magnetic behaviour; more specifically antiferromagnetism, positive and 

negative spin polarization in the Fermi level and so on. 

To sum up, the LSMO/BTO/Co memristor tunnel junction exhibits sign change in 

the transfer magneto-resistance (TMR), reflecting the sign change in the spin 

polarization (at the Fermi level) in the BTO/Co interface because this interface is 

sensitive enough to the ferroelectric polarization and defect distribution. DFT 

calculations show that the sign change in BTO/Co interface stems from the 

competition between the Co atoms exchange interaction suppressed by the 𝐶𝑜𝑂 

monolayer (𝑈 − 𝐽 = 6.0 𝑒𝑉) and the oxygen vacancies colour centres exchange 
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interaction mediated by 𝑇𝑖3+ (𝑈 − 𝐽 = 4.4 𝑒𝑉) ions, resembling double exchange 

interaction in an insulator ferroelectric BTO barrier. 

Nevertheless, our current VASP simulations could not account for the difference 

in the coercive magnetic fields in the Tunnel Magneto Resistance (TMR) 

measurements at the High and Low Resistance States. All things considered, our 

current VASP simulations could give an explanation to the sign change of the 

Tunnel Magneto Resistance after switching between the Low and the High 

Resistance Sates. In conclusion, more accurate density functional theory (DFT) 

calculations will be needed. 
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Chapter 5: Resonant Tunnelling 

across Ferroelectric Quantum 

Wells in Charged Domain Walls 

 

5.1 Methods 

The samples are ultrathin epitaxial 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3/𝐵𝑎𝑇𝑖𝑂3  (15/11) unit cells 

super-lattices grown on top of 𝑆𝑟𝑇𝑖𝑂3 (100) substrates using a high pressure (3.2 

mbar) and high temperature (750º C) sputtering deposition system [34]. 

Aberration-corrected scanning transmission electron microscopy (STEM) annular 

bright field (ABF) images were obtained in an aberration corrected Nion 

UltraSTEM200 equipped with a 5th-order corrector operated at 200KV and a Gatan 

Quantum Electron Energy-Loss Spectrometer (EELS). Spectrum images were also 

obtained using a Nion UltraSTEM100 [35] equipped with a 5th-order corrector and 

a GatanEnfina EEL Spectrometer, operated at 60KV. For spectrum imaging, the 

electron beam is scanned along the region of interest and an EEL Spectrum is 

acquired in every pixel, along with the simultaneous Annular Dark Field (ADF) 

signal. The probe forming aperture was approximately 30 mrad while the EELS 

collection semi-angle was 48 mrad. Random noise in the EEL Spectrum images 

was removed using principal-component analysis [36]. The specimens were 

prepared by conventional mechanical grinding and polishing and Ar ion milling. 

Magnetic tunnel junctions (MTJs) are fabricated from [LSMO (25 nm) / BTO (4.4 

nm) / LSMO (25 nm)] tri-layers using standard UV optical lithography and ion 

milling. The samples are patterned into micron size (9 × 18𝜇𝑚2 and   5 × 10𝜇𝑚2) 

rectangle shape pillars and measured their magneto-transport properties. Typically, 

40% of junctions per sample could be measured, which represents a large success 

ratio of the patterning process. 

Aberration corrected STEM-EELS is used in order to study the ferroelectric 

polarization and the electronic properties in Multiferroic complex oxide 

heterostructures. Using the Annular Bright Field (ABF) imaging mode, which is 
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sensitive to light atoms as oxygen, the atomic column position have been measured 

for all species in the ferroelectric layer and the relative displacement between Ti 

and O have been quantified, which is related to the ferroelectric polarization. The 

fine structure of Ti 𝐿2,3 edge, have been also studied, quantifying the oxidation 

state, and as a result, the occupation level of Ti 3d band. 

The formation of a free-electron gas at charged domain walls (CDW) in 𝐵𝑎𝑇𝑖𝑂3 

(BTO) [37]. It has also been reported an improvement of ferroelectric properties 

as electromechanical response [38] due to the presence of charge domain walls 

(CDW). 

 

5.2 Experimental Results 

Magnetic tunnel junctions with active ferroelectric barriers [1] have shown novel 

technological opportunities related to the separate control of polarization and 

magnetization. The four resistance states resulting from the (in plane) parallel or 

antiparallel relative alignment of magnetization vectors of the electrodes for each 

(out of plane) direction of the polarization vector could expand the possibilities for 

data storage or enable complex logic operations [2]-[4]. Large changes of the 

tunnelling electro-resistance occur upon polarization switching [5]-[7] of small 

ferroelectric domains with polarization vectors parallel to the (uncharged) domain 

walls. This allows continuously tuning the resistance of the barrier in a multiplicity 

of domain-controlled memresistance states [8]. In this PhD dissertation, 

multiferroic tunnel junctions, whose ferroelectric barriers show a completely 

different domain state with charged domain walls, were examined. 

The breakdown of the space inversion symmetry in polar ferroelectrics allows for 

180º domain walls with oppositely directed polarization vectors, which tend to be 

parallel to the polar axis to avoid the build-up of bound charge. Although rare, 180º 

head-to-head (or tail-to-tail) charged domain are possible, yet at a higher energy 

cost due to the polarization charges at the wall. In proper ferroelectrics, the 

existence of charged domain walls (DWs) depends on the availability of free 

carriers to screen the bound charge, which sets a length scale of the order of 10 nm 

for the width of the wall (as opposed to 1 nm for a neutral DW). Charged domain 

walls have been recently shown in bulk samples as the result of poling fields 

directed at an angle with the stable polarization direction [37, 38]. There are 

evidences of charged domain walls in ultrathin 𝐵𝑎𝑇𝑖𝑂3  (BTO) layers in 
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multiferroic tunnel junctions. In order to reach this goal, advanced electron 

microscopy techniques are used to measure the ferroelectric polarization unit cell 

by unit cell and reveal the real structure and complexity of domain walls in these 

multiferroic heterojunctions [12]. Charged domain walls are enabled by the 

presence of oxygen vacancies, which nucleate at the 𝐵𝑎𝑇𝑖𝑂3   (BTO) layer to 

accommodate the large epitaxial mismatch strain, and have a donor character 

supplying the charge carriers necessary to screen the polarization charges at the 

domain wall. Furthermore, there are evidences of the domain wall itself providing 

confined electronic states which enable resonant tunnelling transport between the 

electrodes, which is modulated by the strong electric field developing in an 

ultrathin barrier at moderated voltages in a transport experiment. 

 

5.3 Quantum oscillations in tunnelling conductance.  

Multiferroic tunnel junctions were obtained by combining ferromagnetic 

manganite 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 (LSMO) electrodes with ferroelectric 𝐵𝑎𝑇𝑖𝑂3 (BTO) 

barriers in LSMO (10 nm)/BTO (4.4 nm)/LSMO (25nm) tri-layers grown by high 

pressure oxygen sputtering. BTO layers of this thickness were checked to be 

ferroelectric by the piezo-force-microscopy (PFM). This system is known to be 

epitaxial with atomically sharp interfaces. Optical lithography is used to pattern 

micron size (9 × 18𝜇𝑚2 and 5 × 10𝜇𝑚2) rectangle shape pillars using standard 

UV optical lithography and ion milling. Silver electrodes were evaporated to 

measure perpendicular transport. Intensity-Voltage (I-V) curves (Figure 1) showed 

the strongly non-linear behaviour characteristic of tunnelling transport. The 

different thickness of the ferromagnetic electrodes enabled stablishing well 

defined parallel and antiparallel states of the magnetic electrodes in magnetic field 

scans due to their different coercitivities (coercive magnetic fields). Surprisingly, 

the low temperature tunnelling conductance (measured using a dc current set up) 

exhibits pronounced oscillations indicating resonant transport through discrete 

unoccupied states of the confined electron gas (see figure 5.1).  
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Figure 5.1 Tunnelling transport measurements. A Tunneling current as a function of applied bias at 

parallel (blue curve) and antiparallel (red curve) magnetic state at 14 K. The inset shows the junction 

resistance versus applied magnetic field sweeping from 4200 Oe to -4200 Oe (black) and from -4200 

Oe to 4200 Oe (red) at 14 K measured at 800 mV. B Differential conductance obtained as the 

numerical derivative of current vs. voltage at parallel (blue curve) and antiparallel (red curve) 

magnetic state at 14 K. C The inset shows the oscillations maxima, identified by subtracting a 

parabolic envelop from the experimental differential conductance curves. D Energy levels and band 

bending scheme. 

These quantum oscillations fade out when temperature is increased (Figure 5.1 

BIS) and they also disappear when a large voltage is used to switch the ferroelectric 

polarization (Figure 5.2), indicating that the feature responsible for the presence of 

confined electronic states in the barrier can be removed by a strong polarizing 

electric field.  
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Figure 5.1 BIS Temperature dependence of the conductance oscillations. Differential conductance 

obtained as the numerical derivative of current vs. voltage at parallel (blue curve) and antiparallel 

(red curve) magnetic state at  40 K (a), 60 K (b), 80 K (c) and 100 K (d). 
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Figure 5.2 Ferroelectric switching of the barrier. Differential conductance obtained as the numerical 

derivative of current vs. voltage at parallel (blue curves) and antiparallel (red curves) at 40 K. 

Different curves in each panel correspond to ferroelectric polarization pointing up (dark colour) and 

pointing down (light colour). Notice that the application of a strong electric field to switch the 

polarization erases the conductance oscillations. 

This feature could consist of mobile defects or structural distortions affecting the 

local electronic properties or perhaps a domain wall. It is reasonable to think that 

the energy separations of the conductance oscillations at low temperatures, Δ𝐸 =

(70 − 90)𝑚𝑒𝑉 , reflects the possibility of the presence of a two-dimensional 

electron gas (2DEG) confined within extremely narrow regions within the 

ferroelectric layer. In order to get further insights into the nature of this resonant 

tunnelling rate in the ferroelectric barrier, techniques capable of studying structure, 

chemistry and electronic properties with atomic resolution in real space are 

essential. 
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5.4 Fitting of tunnelling conductance peaks 

The method to obtain the fitting of tunnelling conductance peaks will be explained 

in detail. According to references [39], the resonant tunnelling transmission 

coefficient presents a Lorentzian shape peak, as it will be detailed below: 

 

𝑇(𝐸) ≈ 𝑇𝑝𝑘 [1 + (
𝐸 − 𝐸𝑝𝑘

1
2 Γ

)

2

]

−1

 

Where the resonance is centred on 𝐸𝑝𝑘 . Γ  is the full width at half-maximum 

(FWHM), given by the expression: 

Γ =
𝑑𝐸

𝑑𝑘

𝑑𝑘

𝑑𝜙
𝜙0 =

ℏ𝑣

2𝑎
(𝑇𝐿 + 𝑇𝑅) 

Being 𝜙 the phase of the interference pattern within the well. The condition for 

resonance, in other words, the requirement for constructive interference within the 

quantum well: 

𝜙 = 2𝑘𝑎 + 𝜌𝐿 + 𝜌𝑅 = 2𝑛𝜋 

 

Through the program Origin Lab, the parabolic envelope of the curves of Figure 

5.2 was subtracted, and making use of the Origin Tool Multiple Peak Fit, it is 

possible to fit the curve choosing the Lorentzian Peak, the curves in the Figure 

S5.1 are obtained:  
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Figure S5.1 Resonant quantum discrete levels lorentzian fitting after subtracting parabolic envelope. 

 

Collecting maxima positions in function of n – 0.5 index, the linear fit in figure 

S5.2 is obtained 
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Figure S5.2 Resonant quantum discrete levels parabolic well fitting. 

 

5.5 Measurement of ferroelectric polarization.  

To measure the local ferroelectric polarization with atomic resolution, Annular 

Bright Field (ABF) imaging on a number of LSMO/BTO tri-layers and super-

lattices. Atomic resolution imaging in the aberration corrected transmission 

electron microscope (TEM) provides a path to image light atoms such as oxygen 

[13], specially by annular bright field (ABF) imaging in the scanning transmission 

electron microscope (STEM) [14] [15]. Combining ABF images with electron 

energy-loss spectroscopy (EELS), allow to study not only the structural distortions, 

but also the chemical and electronic properties of these systems. Here is an 

example of a super-lattice consisting of a stacking of 17 unit cells of 

𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 and 11 unit cells of  𝐵𝑎𝑇𝑖𝑂3 (two repetitions) grown on top of a 

𝑆𝑟𝑇𝑖𝑂3  (STO) substrate. Figure 3a shows cross-sectional ABF images of this 

sample. The growth is epitaxial and coherent, and the different layers are fully 

strained to the 𝑆𝑟𝑇𝑖𝑂3 (STO) in-plane lattice parameter. Such strain will impose a 

constraint for the ferroelectric polarization in the 𝐵𝑎𝑇𝑖𝑂3 (BTO) layer; while the 
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𝐵𝑎𝑇𝑖𝑂3 bulk lattice parameter is 4.04 Å, the 𝑆𝑟𝑇𝑖𝑂3 value is 3.905 Å. Hence, the 

𝐵𝑎𝑇𝑖𝑂3 (BTO) suffers a 3.34% in-plane compressive strain that makes the unit 

cell to expand in the out-of-plane direction, forcing the ferroelectric polarization 

to align preferentially along this axis [16]. Figure 5.3 (b) shows a magnified view 

of the area highlighted in Figure 5.3 (a). The interfaces between the LSMO and 

BTO layers are marked by blue dashed lines. Oxygen atoms are visible in this 

image. In order to reduce random noise and be able to quantify the Oxygen atom 

positions, a Fourier filter mask is used [17]. From the analysis of such filtered 

images (Figure 5.3 (c)), it is possible to obtain the atomic column coordinates. Any 

displacements can be quantified by using an iterative process, looking for the 

maximum intensity for each column in Annular Bright Field (ABF) images with 

reversed contrast [18], [19].  

 

Figure 5.3 Cross-sectional STEM images of a La0.7Sr0.3MnO3 / BaTiO3 super-lattice. a Annular 

Bright Field (ABF) image of the different layers in the super-lattice. b Amplified image from the area 

highlighted with a blue rectangle in a. The blue dashed lines denote the interfacial planes. c FFT 

filtered image obtained from b where the oxygen atoms are clearly visible. The inset shows a unit 

cell scheme in the [1 1 0] orientation with Ba, Ti and O atoms (blue, green, red respectively).  

On the one hand, it is noticeable that the oxygen columns in the first planes of the 

BTO layer are displaced downwards relative to the Ti columns (i.e., towards the 

bottom LSMO/BTO interface). On the other hand, in the last atomic planes near 

the top BTO/LSMO interface, the oxygen columns are displaced upwards relative 

to the Ti columns. The arrows mark the local polarization resulting from this 

structural configuration. This finding implies that, somewhere through the layer, 
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there is an inversion of the polarization direction and, hence, a head-to-head 

domain wall. 

 

5.6 Revealing the presence of a charged H-to-H DW 

Having obtained the atomic column coordinates for all atomic species in the image, 

it is possible to calculate the relative displacement along the out-of-plane axis of 

oxygen and titanium columns related to the barium sub-lattice, which is used as a 

reference. This relative displacement (𝛿𝑧)  is proportional to the ferroelectric 

polarization [20]. Figure 5.4 (a) depicts a schematic of a BTO unit cell in the 110 

direction, where the relative displacement between oxygen and titanium is 

indicated. Figure 5.4 (b) shows a false colour map of (𝛿𝑧) for the BTO layer 

superimposed to the image in Figure 5.3 (c), where each pixel correspond to the 

(𝛿𝑧) value measured in every unit cell. 

 

Figure 5.4 Unit cell mapping of the ferroelectric polarization displacements in the BTO layer. A 

Scheme of a BTO unit cell in the [110] orientation showing the relative displacement (z) between 

Ti and O for a polarization down configuration. The horizontal dashed line represents the middle of 

the unit cell. B z map from the BTO layer in image 1c, each pixel correspond to one unit cell. 

Superimposed is the averaged z Ti-O relative displacement obtained from image b. The error bars 

represent the standard deviation. The origin in the y axis corresponds to the bottom LSMO/BTO 

interface. 

The absolute values of the displacements measured on the order of (0.1 − 0.2) Å, 

consistent with previous studies [12], [21], [22]. By mapping these 𝛿𝑧 values, it is 

possible to track the local polarization in a quantitative manner unit cell by unit 
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cell. The trend is an inhomogeneous polarization along the ferroelectric layer, with 

positive values near the bottom interface and negative values close to the top 

interface. The graph superimposed in figure 5.4 (b) exhibits the laterally averaged 

values (along the interface), which clearly demonstrates the sign change in the 

local polarization. Additionally, the measurements indicate that there is a Head-to-

Head (H-to-H) Domain Wall within the ultrathin (11 unit cells) ferroelectric layer, 

with a polarization vector which changes from positive at the bottom interface, to 

negative at the top interface. The smooth polarization gradient would in principle 

suggest that the width of the wall may be of the order of 2 nm. Notice, however, 

that this polarization is averaged over the thickness of the cross-section sample and 

also over the size of the spectrum image. Looking at line scans in polarization maps 

in Figure 5.4, regions where a negative-to-positive change in the value of 

polarization occurs within nearest neighbours are found; suggesting that, in fact, 

the domain wall is rough locally (Figure 5.4 (b)). 

Notwithstanding such local inhomogeneity, average values of the local 

polarization across the ferroelectric layer are estimated. Since a Head-to-Head 

Domain Wall is detected approximately at the centre of the ferroelectric layer and 

a relative displacement between Titanium and Oxygen atoms of 𝛿𝑂−𝑇𝑖 = 0.012 ±

0.002 𝑛𝑚 at the edges of the ferroelectric barrier, the local polarization can be 

calculated in terms of the ionic displacements within the unit cell using the Born 

effective charges: 

𝑃(𝑧) =
𝑒

𝑉
∑ 𝑍𝑚

∗

𝑁

𝑚=1

𝛿𝑧𝑚 

Where V is the volume of the unit cell, 𝛿𝑧𝑚 is the displacement of the 𝑚𝑡ℎ atom 

respect to its position in the centrosymmetric cell. The Born charges, 𝑍𝑚
∗  reported 

for 𝐵𝑎𝑇𝑖𝑂3 [23] are 2.83 and 5.81 for Ba and Ti cations, respectively, and -1.95 

and -4.73 for O anions in the 𝑇𝑖𝑂2 and 𝐵𝑎𝑂 planes respectively. Making use of an 

average oxygen charge defined as 𝑍𝑚
∗̅̅ ̅̅ = −

4.73+2  1.95

3
= −4.3 , the local 

polarization can be determined in terms of the Ti-O relative displacement 

measured from the Annular Bright Field (ABF) images as P= 22 C/(m2 nm)* 𝛿𝑂−𝑇𝑖 

(nm). For a displacement 𝛿𝑂−𝑇𝑖= 0.012 nm (see Figure 5.3). This calculation yields 

a value of P= 0.27 C/m2 very close to the bulk polarization of 𝐵𝑎𝑇𝑖𝑂3 (0.26 C/m2). 

Such a Head-to-Head Domain Wall implies the build-up of polarization charge at 

the domain wall which must be screened by free charges. The electronic thickness 
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of a charged domain wall is essentially determined by the availability of free 

carriers to screen its bound charge. In un-doped semiconductor ferroelectrics, the 

screening charge results from charge activation over the forbidden energy gap, 

𝐸𝑔𝑎𝑝 of the ferroelectric, which requires strong band bending until the bottom of 

the conduction band falls below the Fermi level. The creation of a Charged Domain 

Wall thus involves an energy of 𝐸𝐶𝐷𝑊 ≅ 2
𝑃0𝐸𝑔𝑎𝑝

𝑒
  , where P is the equilibrium 

polarization at both sides of the domain wall (DW). For 𝐵𝑎𝑇𝑖𝑂3, endowed with a 

𝑃0 = 0.26 𝐶
𝑚2⁄ , and an energy gap of 𝐸𝑔𝑎𝑝 = 3.2 𝑒𝑉. Then, charged domain 

walls have a large energy cost 𝐸𝐶𝐷𝑊 ≅ 1600 
𝑒𝑟𝑔

𝑐𝑚2⁄ , in comparison with 

𝐸𝑁𝐷𝑊 ≅ 2.5 
𝑒𝑟𝑔

𝑐𝑚2⁄   typically needed for the neutral domain walls (NDW) in 

𝐵𝑎𝑇𝑖𝑂3. Thus, screening sets a length scale for the width of the barrier which can 

be estimated to be of the order of the Thomas – Fermi screening length (the length 

scale for charge in-homogeneities). For intrinsic 𝐵𝑎𝑇𝑖𝑂3, with an effective density 

of states at the conduction band of   𝑛𝑖 = 1018 𝑐𝑚−3, the width of the charged 

domain wall can be calculated to be in the range 10 – 20 nm. Thus, it is particularly 

puzzling that a 2 nanometres thick, Head – to – Head, energetically expensive, 

Charged Domain Wall (CDW) is found in the 4.4 nanometres thick 𝐵𝑎𝑇𝑖𝑂3 tunnel 

barrier with a polarization vector directed in the (001) crystalline direction (which 

typically yields neutral domain walls). Furthermore, the very narrow width of the 

Head – to – Head domain wall implies that free charges are available to screen the 

polarization charges.  

 

5.7 Screening of the DW charges by oxygen vacancies. 

In the following it is high time to argue that oxygen vacancies at the 𝐵𝑎𝑇𝑖𝑂3 layer 

are the source of the screening charges. In virtue of this assumption, it is necessary 

to make use of Electron Energy Loss Spectroscopy (EELS) in order to search for 

free charges whose signature are the changes in the Ti oxidation state. From the 

study of the occupation of the 3d band of titanium, which affects the crystal field 

splitting in the 𝐿2 and 𝐿3 edges Electron Energy Loss Spectroscopy (EELS) fine 

structure [24], evidences suggesting the presence of large amounts of oxygen 

vacancies in the ferroelectric barrier are found. Then, analysing the fine structure 

of titanium 𝐿2,3 edges, it is possible to quantify the titanium oxidation state using 

a multiple linear least – square (MLLS) fit to two reference spectra for bulk 
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𝐿𝑎𝑇𝑖𝑂3 (𝑇𝑖3+) and 𝐵𝑎𝑇𝑖𝑂3 (𝑇𝑖4+) [25]. The fitting results provide the statistical 

weights for each reference spectra, which help calculate the relative proportion of 

𝑇𝑖3+ to 𝑇𝑖4+. Then, the Ti oxidation state was obtained for each measured spectra, 

producing 2D maps of the Ti oxidation state through the 𝐵𝑎𝑇𝑖𝑂3  layers [26]. 

Figure 5a shows a Z-contrast image of the super-lattice with the Ti oxidation state 

map for the 𝐵𝑎𝑇𝑖𝑂3 layer, obtained through the Multiple Linear Least – Square 

(MLLS) fit method, superimposed in the image. A slight, but significant, reduction 

in the oxidation state can be noticed well into the 𝐵𝑎𝑇𝑖𝑂3  layer. In order to 

appreciate this kind of behaviour with more detail, the values have been laterally 

averaged for each pixel in the map, and the resulting profile is depicted in Figure 

5.5 (B). 
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Figure 5.5 Titanium oxidation state quantification in the BTO layer by EELS. A Z-contrast image of 

the La0.7Sr0.3MnO3 / BaTiO3 super-lattice. The inset shows the titanium oxidation state map from the 

BTO layer. B Averaged titanium oxidation state value from the inset in image A (red squares). The 

error bars represent the standard deviation. The blue curve represents the energy loss value for the Ti 

L3 edge. The origin in the y axis corresponds to the bottom LSMO/BTO interface. 

Notice that in both interfaces the Ti oxidation state is near the nominal +4 value, 

while inside the layer, as light reduction to ≈ +3.95 is observed. The error bars in 

Figure 5.5 (B) correspond to the statistical deviation of the measurement. In 

addition, a chemical shift (blue curve in Figure 5.5 (B)) of the Ti 𝐿2,3 edges is also 

measured, which demonstrates a slight reduction in the Ti oxidation state [27]. 
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Since Ti has a 4+ nominal oxidation state in 𝐵𝑎𝑇𝑖𝑂3, the average Ti oxidation state 

of 3.95+ at the center of the layer results from 5% of Ti atoms with a 3+ oxidation 

state, which corresponds to a maximum concentration of charge carriers supplied 

by oxygen vacancies of 𝑛 = 8 × 1020 𝑐𝑚−3. Single ionized oxygen vacancies are 

known are known to produce a level in the semiconducting gap at 0.4 eV below 

the conduction band edge. Assuming that each vacancy supplies one electron 

(doubly ionized states have a larger energy cost) and that free electrons are 

uniformly distributed across the barrier as the Electron Energy Loss Spectroscopy 

(EELS) image suggests, an estimate of the electronic thickness of the domain wall 

of 2 – 3 nm can be made. Notice also that for this electron doping, the Thomas – 

Fermi screening length is in the range of 1 nm [28], which again provides the 

correct length scale for the width of the Domain Wall (1 nm at each side of the 

Domain Wall). It is important also to notice that, although these levels of doping 

may appear high, 𝐵𝑎𝑇𝑖𝑂3 is known to retain its ferroelectric ground-state with 

charge densities in excess of 𝑛 = 2 × 1021 𝑐𝑚−3 [28], [29]. 

A subject of great interest is on the origin of this large density of oxygen vacancies. 

The large expansion of the lattice and strong strain gradients occurring at the 

𝐵𝑎𝑇𝑖𝑂3  interfaces provide a clue to the origin of the large density of oxygen 

vacancies found in the 𝐵𝑎𝑇𝑖𝑂3  [30]. Uniformly strained layers, with in-plane 

lattice parameters clamped to the square lattice of the 𝑆𝑟𝑇𝑖𝑂3  substrate, cell 

volume conservation (Poisson effect) imposes severe constraints to lattice 

deformations. Since typically the lattice expands around oxygen vacancies due to 

the enhanced repulsion between B site cations, nucleation of oxygen vacancies are 

a mechanism to release the large amount of elastic energy stored in uniformly 

strained structures and is thus likely to occur at compressively strained interfaces. 

 

5.8 Discussion 

The presence of a Head-to-Head Domain Wall in the ferroelectric barrier is 

connected to pinning of the ferroelectric polarization by interface dipoles due to 

symmetrical 𝐿𝑎𝑂+ termination of both manganite layers (evidenced by EELS). 

Both, symmetrical interface terminations [31] together with the donor character of 

the 𝐿𝑎𝑂 plane at both interfaces conspire to stabilize a Head-to-Head Domain Wall 

as theoretically proposed earlier. 
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The ionization of oxygen vacancies at the 𝐵𝑎𝑇𝑖𝑂3 layer contributes stabilizing the 

Charged Domain Wall by screening the polarization charges. Negative 

polarization charges at the interfaces are screened by (positive) ionized oxygen 

vacancies, while the electrons transferred to the core of the Domain Wall (DW) 

screen the build-up of positive bound charge. The ionized oxygen vacancies gives 

rise to a band bending at the 𝐵𝑎𝑇𝑖𝑂3, which can be approximated by a parabolic 

(or triangular) potential well by assuming that the oxygen vacancies are uniformly 

distributed. This fact would result in an electric field inside the 𝐵𝑎𝑇𝑖𝑂3 layer with 

a roughly linear dependence from zero at the centre towards its maximum value 

close to the interfaces. The band bending necessary to have the oxygen vacancies 

ionized at 𝐸𝐷 = 0.4 𝑒𝑉  below the conduction band in the 𝐵𝑎𝑇𝑖𝑂3 , allows 

calculate this electric field to be of the order of 𝐸𝑐𝑜𝑛𝑓 =
𝐸𝐷

𝑒𝑤
= 2 × 106  𝑉 𝑐𝑚⁄  . 

Back to the explanation of the quantum resonant tunnelling, the data proof that a 

2D Electron Gas (2DEG) is formed at the 4.4 nm thick 𝐵𝑎𝑇𝑖𝑂3 layer. The charge 

transferred from the ionized oxygen vacancies is about 0.05 electrons per unit cell, 

and therefore to a carrier density of about  𝑛2𝐷 ≅ 3 × 1018 𝑚−2 , which is in fact 

the electronic charge needed to compensate the polarization charge  2𝑃 ≈

0.5 𝐶
𝑚2⁄  . The discrete energy spectrum stems from the splitting of the two 

degenerate  𝑑𝑥𝑧 , 𝑑𝑦𝑧 bands while the 𝑑𝑥𝑦 band (with a negligible energy splitting) 

will be pushed below the Fermi level due to its large effective mass along the z 

direction. This electron gas is similar to those reported at the surface of 𝑆𝑟𝑇𝑖𝑂3 

single crystals and also at the 𝐿𝑎𝐴𝑙𝑂3/𝑆𝑟𝑇𝑖𝑂3  interface [33]. The main 

assumption made in this physical system is that the ferroelectric charged domain 

wall (CDW) can be assimilated to a triangular (or parabolic) confining potential 

(see sketch in Figure 1d) which arises from the band bending which uncovers the 

screening charges from the oxygen vacancies. Maxima were identified by 

subtracting a parabolic envelope from the experimental differential conductance 

curves. Figure 1c shows the voltage positions of the conductance maxima at 

different temperatures obtained experimentally from the conductance plots of 

Figure 1 in front of the positions expected from a triangular well. Positions of the 

maxima are quite equally separated and thus fit very well into the theoretical 

expression corresponding to a triangular (parabolic) well potential, what allows 

obtain an estimate of the confining electric field. From the experimental energy 

separation of about Δ𝐸 ≈ 80 𝑚𝑒𝑉  between the conductance oscillations, the 

electric field E can be estimated using the relation: 
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 𝐸𝑛 = [
3

2
𝜋 (𝑛 −

1

4
)]

2
3⁄

[
(𝑒𝐸ℏ)2

2𝑚∗𝑚0
]
1

3⁄

            𝐸𝑛 = ℏ𝜔0 (𝑛 +
1

2
) = Δ𝐸 (𝑛 +

1

2
)     

Where E is the confining electric field and 𝑚∗  is the effective mass for the 

electrons in the 𝐵𝑎𝑇𝑖𝑂3  ferroelectric tunnelling barrier. Imposing an effective 

mass 𝑚∗ = 1, a value of 𝐸 ≈ 1.7 × 106  𝑉 𝑐𝑚⁄   is calculated close to the 𝐵𝑎𝑇𝑖𝑂3 

interfaces (at a distance z = 2nm from the potential minima), which is in good 

agreement with our qualitative estimate. 

Notice finally that the intensity of the conductance oscillations changes for the 

magnetic alignment (parallel or antiparallel) of the electrodes suggesting a certain 

degree of spin polarization of the screening charges. This fact can be understood 

if one realizes that the donor electron nature of oxygen vacancies at the interface 

with the 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 may be in fact spin-polarized.  

In summary, it is shown that the electronic confinement of the ferroelectric 

quantum well of the Head-to-Head domain wall (DW) completely determines the 

tunnelling transport in the magnetic tunnel junctions. This milestone traces a new 

avenue for future devices concepts in oxide electronics exploiting the electronic 

structure of ferroelectric Head-to-Head charged domain walls (CDW). 
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Chapter 6: Oxygen Vacancy 

Control of a Ferroelectric 

Memristor 

6.1 Introduction 

The study of the novel electronic states appearing in (both) structurally and 

chemically sharp interfaces between correlated oxides has become one of the 

paradigms of an emerging field [5]. Oxygen vacancies, however, are defects 

difficult to detect and in many cases also to avoid in these perovskite oxides [6], 

and have drastic effects on materials properties through their associated strain and 

doping fields [3]. In this paper we make use of the generation and transport of 

oxygen vacancies through electrochemical interface reactions at electrochemically 

inert contacts to modify the electric response of the ultrathin barrier of a 

ferroelectric tunnel junction. Our approach breaks the current paradigm of 

nominally perfect (“power point”) oxide interfaces [5] and exploits the 

unavoidable defects at interfaces [6] to tailor electronic states. Novel 

functionalities result from the merging of two well-known phenomena, namely 

resistive switching driven by the generation and transport of oxygen vacancies and 

tunnelling electroresistance, due to the switching of the ferroelectric polarization.  

 

In many oxides, resistive switching relies on valence changes associated with the 

generation and transport of oxygen vacancies across a layer of a 

semiconducting/insulating transition metal oxide [2, 7- 9]. An electroforming 

process is required which involves the generation of oxygen vacancies at the anode 

(typically an inert electrode such as Pt, Ag, Au, etc.) through the reduction process 

driven by the migration of O2- ions [2, 8- 11] and positively charged vacancies drift 

towards the cathode where are neutralized by electrons supplied by the cathode 

modify the conducting properties over a layer termed virtual cathode. Resistive 

switching is attributed to the growth of this virtual cathode which eventually shorts 

cathode and anode (as in the Valence Change Model (VCM) [12 - 15]); or to the 

modification of the contact (Schottky) barrier (Contact Resistance Model (CRM) 

[16 - 19]).  
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Although resistive switching is a relatively well-known phenomenon, its 

incorporation to the ultrathin tunneling barriers of a ferroelectric tunnel junction is 

shown here to be the source of exciting behaviors. Magnetic tunnel junctions with 

ferroelectric barriers have focused much interest in recent years due to the 

possibility of modulating the tunneling resistance by the orientation (up or down) 

of the ferroelectric polarization in what is called tunneling electroresistance (TER) 

[4]. Notably, a giant electroresistance has been theoretically predicted [4, 20] and 

experimentally observed [21–29] for ferroelectric capacitors with metal electrodes 

with different screening lengths. Some works have shown that electroresistance is 

solely determined by the domain structure of the ferroelectric (defining multiple 

memresistance states) [21]. Typically this approach relies on the use of narrow 

(100 ns or less) pulse sequences to switch ferroelectric polarization and avoid the 

drift of oxygen vacancies. Other authors have shown large hysteretic resistance 

changes in ferroelectric tunnel junctions resulting from the drift of oxygen 

vacancies, [30]. Furthermore, samples produced with high intentional 

concentration of oxygen vacancies display reversed polarity (resistive) switching 

to the ferroelectric switching found in similar samples with low vacancy 

concentration [31]. Both type of switchings have even been found in the same 

sample, but appearing independently at different voltage ranges [32, 33]. There is 

an interesting open question on the possible interplay between both phenomena as 

it could be the source of novel electroresistance effects resulting from the coupling 

between ferroelectric polarization and charged defects.  

Here we explore the interplay between ferroelectric (electroresistance) and 

oxygen vacancy (resistive) switching by using a radically new approach. By 

applying strong continuous dc fields, electrochemical reactions are promoted in a 

ferroelectric ultrathin layer we are able to control the generation and transport of 

oxygen vacancies across it and explore their effect on the switching of the 

ferroelectric polarization. We demonstrate a strong coupling between ferroelectric 

polarization and ionized oxygen vacancies. The manipulation of the oxygen 

vacancies profile at the interfaces of the ferroelectric barrier modifies the screening 

mechanism of ferroelectric polarization, and vice versa, ferroelectric polarization 

triggers a strong modulation of the ionized vacancies concentration at the 

oxide/ferroelectric interface.  
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6.2 Experimental Results 

We have grown ferroelectric BaTiO3 (BTO) on Sr doped La manganite 

La0.7Sr0.3MnO3 (LSMO) epitaxially deposited onto (001) SrTiO3 (STO) substrates 

using a high (3.2 mbar pure oxygen) pressure and high-temperature (750 °C) 

sputtering deposition system [38]. Target to substrate distance was set to 1.5 cm 

such that the highly confined oxygen plasma was tangent to the substrate.  

These LSMO/BTO interfaces are sharp both structurally and chemically as shown 

by scanning transmission electron microscopy (STEM) high angle annular dark 

field (HAADF) imaging combined with electron energy-loss spectroscopy (EELS) 

elemental maps (see Figures 6.1 (a-c)).  

Aberration-corrected scanning transmission electron microscopy (STEM) high 

angle annular dark field (HAADF) and annular bright field (ABF) images were 

obtained in an aberration-corrected Nion UltraSTEM 200 equipped with a 5th-

order aberration corrector and a Gatan Enfinium EEL spectrometer operated at 200 

kV. The specimens were prepared by conventional mechanical grinding and 

polishing and Ar ion milling.  

The bilayers are flat and continuous over lateral distances of the order of hundreds 

of nm, as displayed in the low magnification HAADF image. Figure 6.1(a) exhibits 

a contrast reversed atomic resolution annular bright field (ABF) image of a 

LSMO/BTO interface from a SrTiO3(100)//25 nm La0.7Sra0.3MnO3 (LSMO) / 10 

nm BaTiO3 bilayer, prepared in cross section down the [110] projection. Since this 

imaging mode is sensitive to light species [34], O columns can be imaged, and 

their coordinates can be quantified by looking for the center of mass of intensities 

for each column [35]. This way, the relative displacement (δz) along the out-of-

plane direction for the O/Ti atomic columns can be measured, as described 

previously [31]. Local polarization P(z) was obtained from the atomic 

displacements measured from annular bright field images using the Born charges, 

as described previously [35]. By tracking the local values of the δz parameter, 

which are in the 0.1-0.2 Å range, the local polarization can be estimated and 

mapped in a cell-by-cell fashion (as shown in Fig. 6.1(b)).  

 The polarization of as-grown samples take values close to the bulk polarization of 

BTO and shows preferred down- orientation, probably due to the accumulation of 

oxygen vacancies at the surface [36, 37]. 
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Atomic force microscopy imaging shows that the surface topography reproduces 

the one unit cell thick substrate terraces evidencing a 2D growth (see Figure 1 (d)). 

Piezoelectric force microscopy (PFM) using amplitude and phase contrast indicate 

a ferroelectric groundstate and the possibility to ‘write’ up or down polarization 

states using few volts tip bias (see Figures 6.1 (e-h)). 

      

Figure 6.1 Interface structure. High resolution electron microscopy of a SrTiO3(100)//25 nm 

La0.7Sra0.3MnO3 (LSMO) / 10 nm BaTiO3 sample. a) Contrast reversed ABF image of a cross section 

sample down the [110] direction which allows measuring the Ti-O displacements to estimate 

polarization. b) δz map from the region within the red square. c) Low magnification HAADF image 

showing flat layers and interfaces over large lateral distances. d) AFM image showing atomically flat 

surfaces displaying STO surface terraces. Piezoresponse (amplitude (e) and phase (f)) hysteresis loop 

measured on a selected location of the sample. Amplitude (g) and phase (h) PFM images showing 

that stable polarization states can be written with the PFM tip using small voltages.  
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Metal (Ag) / BaTiO3 (4nm) / La0.7Sr0.3MnO3 (25 nm) micron-size pillars were 

fabricated by using conventional optical lithography techniques and ion milling. 

With such a small barrier thickness electron transport is governed by tunneling 

through the oxide barrier as previously shown in symmetric La0.7Sr0.3MnO3 (10 

nm) / BaTiO3 (4nm) / La0.7Sr0.3MnO3 (25 nm) magnetic tunnel junctions [35]. Ag 

and LSMO have very similar work functions (4.7 eV and 4.8 eV respectively), and 

thus both are expected to build up similar contact barriers given by the energy 

difference between the work function of the metal and the electron affinity of the 

BTO insulator (3.8 eV), see sketch in figure 6.2 (a). The selection of the Ag 

electrode serves the purpose of generating oxygen vacancies [38]. Ag is an inert 

electrode known to promote anodic reduction of BTO as described by the 

following reaction: 

O2- ½ O2 (gas) + 2e- + VO
.. 

where VO
.. denotes a doubly ionized oxygen vacancy in Kröger-Vink notation. This 

reaction governs the forming process by which charged oxygen vacancies are 

generated under the anode and are driven by the electric field to the cathode where 

they accumulate. Electrons to compensate charge neutrality are supplied by the 

LSMO cathode. Oxygen vacancies have thus a doping effect associated with their 

donor character and their accumulation forms a virtual cathode at the LSMO 

surface with deeply modified conducting properties (see sketch in figure 2 (b)).  
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Figure 6.2 Resistive and ferroelectric switching of Ag/BTO/LSMO bilayers. a) Sketch illustrating 

ideal Schottky contact barriers at the interfaces of an Ag/BTO/LSMO sample. b) Sketch of a virtual 

cathode formed at the LSMO due to the accumulation of oxygen vacancies generated at the Ag 

interface and transported across the BTO. Electrons supplied by the LSMO to restore charge 

neutrality dope the BTO at the interface and depress the tunneling barrier at the Schottky contact 

with the LSMO (see lower sketch illustrating the conduction band profile). d) IV curves of an 

Ag/BTO/LSMO sample measured at 100 K. Positive (negative) voltages correspond to electric fields 

pointing up (down), see device connection scheme in panel c). Blue curves after applying a strong -

6 V negative voltage (electric field pointing down). Red curves have been measured after applying 

strong +6 V positive voltages e). Larger amplitude sweeps cyan curve (with negative starting voltage) 

and light magenta curve (with positive starting voltage) switch between the two families of curves 

(blue and red).  

 

We have measured IV curves at temperatures comprised between 20 and 100 K 

after forming processes in -6 to -8 V negative voltages. We will describe the 

behavior of the 100 K data as representative of the whole data set (see Figure 6.2). 

Since transport is dominated by tunneling through the BTO barrier, little changes 

were observed (as shown later) when temperature is decreased. The top Ag 

electrode was grounded (see sketch in figure 6.2 (c)), so that positive (negative) 

voltages correspond to electric fields pointing up (down). Red (blue) curves in 

figure 6.2 (d) correspond to an initial resistance state written by electric fields 

pointing up (down) applied after forming. Electric field sweeps from both initial 

states show two sequential switching fields (voltages). Strong irreversibilities in 

the IV curves (see figure 6.2 (d)) result from reverse voltage sweeps after crossing 

the first switching field. On the other hand larger voltage amplitude sweeps across 

the second switching field allow switching between curves families (red and blue) 

with different initial resistance states (written in up or down fields). See for an 

example the light blue curve in figure 6.2 (d), which starts in the blue curve at 

negative voltages and switches into the red curve. Conversely, the light magenta 

curve starts in the red curve at positive voltages and switches into the blue curve 

at sufficiently negative voltages.  
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Notably, the presence of two different sequential switching fields is a unique 

feature which evidences the independent switching of oxygen vacancies and of the 

ferroelectric polarization. For clarity, Supplementary Figure S6.1 shows Figure 6.2 

(d) replotted in a linear scale in to better identify the switches at positive voltages. 

As it will become apparent below, both processes can be distinguished since the 

switching of oxygen vacancies involves their generation or annihilation, a process 

which is slowed down at low temperature yielding more gradual switching than 

the ferroelectric polarization which is typically more abrupt. Moreover, as 

described below both phenomena produce resistance switches of different signs, 

yielding eight-like (blue curves) and counter-eight-like (red curves) IV loops. 

 
Figure S6.1 Resistive and ferroelectric switching of Ag/BTO/LSMO bilayers. IV curves of an 

Ag/BTO/LSMO sample measured at 100 K as in Figure 6.2 (c) but displayed in a linear scale to have 

a better perspective of the resistance switches at positive voltages.  

 

Strong initial electric fields pointing down (blue curves in Figure 6.2 (d) at large 

negative voltages) force ferroelectric polarization to point down and drive oxygen 

vacancies generated at the Ag electrode towards the (bottom) LSMO interface. IV 
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curves (blue curves in Figure 6.2) are tunnel-like for this initial write field. The 

abrupt switch to a higher resistance state occurring at 2V corresponds to the 

switching of the ferroelectric polarization to point up (see the enlarged view of the 

positive voltage region in Figure 6.2 (e)). The resistance increase can be 

understood within the interface polarization model [20], as a result of the increase 

of the average barrier height when polarization points away from the LSMO 

electrode with the longest screening length. Analysis of IV curves at low voltages 

with the Brinkman model for a trapezoidal tunnel barrier [39] yielded barrier 

heights of 0.2 and 0.36 eV for down and up polarization respectively. The height 

of the tunnel barrier is determined by the distance from the Fermi level to the edge 

of the BTO conduction band. The Fermi level lies above the relatively deep donor 

level of the oxygen vacancies (0.4 eV below conduction band edge) which are 

weakly ionized at the low temperatures of the experiment. At large voltages current 

is limited by a series resistance due to the doping of the LSMO electrode due to 

the transfer of oxygen vacancies (which are shallow donors for LSMO). For initial 

electric fields pointing down, the large series resistance results from the 

compensation of manganite holes by the electrons supplied by oxygen vacancies 

and transferred across the interface. Further increasing voltage (see light blue curve 

in figures 6.2 (d) and 6.2 (e)) produces a gradual switch into the red curve which 

as discussed below is associated with the switching of oxygen vacancies towards 

the top (Ag) interface.  

Electroresistance loops measured by recording the resistance at low voltages (10 

mV) after writing in high voltage loops of figure 6.2 (d) show a positive 

electroresistance at positive voltages which supports the assignment of the low 

field switches to the inversion of the ferroelectric polarization (see figure 6.3 (a)). 

Large values of the electroresistance were obtained in the range 104 – 105 % as 

expected from the large interface asymmetry due to the different contacts, in 

agreement with the giant electroresistance effects previously discussed in 

ferroelectric capacitors with metal electrodes with different screening lengths [20]. 

The sketches in Figure 6.3 (a) illustrate the increase of the tunnel barrier for 

polarization pointing up (away from the LSMO electrode with longer screening 

length than Ag due to its lower carrier density).  
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Figure 6.3 Oxygen vacancy driven change of the sign of the electroresistance. Electroresistance loops 

of an Ag/BTO/LSMO bilayer with initial state ‘written’ with electric field pointing down (vacancies 

down) (a), and with electric fields pointing up (vacancies up) (b). Upper and lower sketches in panel 

(a) illustrate the modulation of the tunnel barrier due to the asymmetric screening at the interfaces 

according to the interface polarization model [23]. 

On the other hand, initial electric fields pointing up force ferroelectric polarization 

to point up and push oxygen vacancies towards the Ag metal (top) interface (red 

curves in Figure 6.2 (d) at large positive voltages). IV curves between positive 

voltages down to -2 V are tunnel like with larger barrier heights close to 0.7 eV (as 

obtained from the analysis with the Simmons model) indicating the depletion of 

the BTO barrier from oxygen vacancies. Furthermore, notice that in this 

configuration, the series resistance is the smallest indicating stronger hole doping 

of the LSMO. The picture emerges that the positive write voltages annihilate 

oxygen vacancies.  

Sweeps towards more negative voltages (V < -2 V) result first in a gradual cross 

over from tunnel- into Schottky-like IV curves denounced by a strong suppression 

of the current at negative voltages. See also Figure 6.2 (d) reproduced in linear 

scale as Supplementary Figure S6.1. This process occurs over a very wide voltage 

range (marked with a pink shaded rectangle in Figure 6.2 (d)) and its very gradual 

nature is a strong indication that it is due to the electrochemical generation of 

oxygen vacancies, slowed down at the low temperatures of the experiment, and 
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not to the reversal of the ferroelectric polarization which typically occurs with 

sharper coercive fields. The Schottky barrier builds up at the bottom interface 

(reversed biased for negative voltages) and results from the accumulation of 

oxygen vacancies there. If voltage is now reversed, diode–like IV curves are found 

until at positive voltages resistance switches back to the initial tunnel-like curve. 

This switching is also gradual and coincides with the high voltage switch of the 

light blue curves into the red curves (oxygen vacancies drift towards top Ag 

electrode). Notice also that its level is well above the positive switch which we 

have ascribed to the switching of the ferroelectric polarization in the blue curves 

(see enlarged view of Figure 6.2 (e)). It is thus natural to conclude that in the red 

curves ferroelectric polarization remains always pointing up and to ascribe the high 

voltage switch to the (partial) annihilation of oxygen vacancies at the top Ag 

electrode.  

The onset of the Schottky regime produces a strong resistance increase at negative 

voltages. This increase is so large that hysteretic electroresistance loops cannot be 

measured at low voltage. The resistance loops corresponding to switching of 

oxygen vacancies (red curves in Figure 6.2 (d)) were measured at a level of 0.7 V 

necessary to achieve a measurable resistance in the high resistance state (see Figure 

6.3 (b)). Oxygen vacancy hysteretic resistance loops measured at low voltage are 

clock-wise compared to ferroelectric electroresistance loops which are anti-clock-

wise, indicating a different underlying mechanism. We can thus define an oxygen-

vacancy-electroresistace driven by the generation and accumulation of oxygen 

vacancies at the bottom interface. Its sign (negative in this system) is opposite to 

the (positive) ferroelectric electroresistance, and its size can also be very large due 

to the build-up of a Schottky barrier, yielding near “infinite” electroresistance at 

low voltage due to the reversed bias conduction of a 0.5 eV barrier building up. 

Such “negative” electroresistance is not expected from ferroelectric switching 

further supporting our interpretation in terms of the switching of oxygen vacancies. 

Comparing the switching behavior of (Ag)BTO/LSMO bilayers with symmetric 

LSMO/BTO/LSMO trilayers provides further support to the role of oxygen 

vacancy generation at the Ag/BTO interface. Symmetric LSMO/BTO/LSMO 

tunnel junctions from [LSMO 25 nm)/BTO (4.4 nm)/LSMO 10 nm] trilayers using 

standard UV optical lithography and ion milling. Samples are patterned into 

micron size (9x18 µm2 and 5x10 µm2) rectangle shape pillars with silver electrodes 

evaporated to measure perpendicular transport whose geometry and thickness are 

equal to the bottom LSMO and BTO layers of the bilayers showed nearly 
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symmetric IV curves displaying very weak irreversibility (see Supplementary 

Figure S6.2). This finding indicates that although the mixed valence of the 

manganite allows for redox processes at the interface and structural vacancies may 

exist at the interfaces there is not significant oxygen vacancy generation in this 

voltage range. The small electroresistance observed in the low voltage resistance 

loops is ascribed to the reversal of the ferroelectric polarization, possible 

accompanied by the drifting of (native) oxygen vacancies (see inset to figure S6.2).  

Figure S6.2 Electroresistance of LSMO/BTO/LSMO trilayers. IV curves cycling the voltage between 

-5 and +5 V of a symmetric LSMO/BTO/LSMO trilayer (see sketch in upper inset). The lower inset 

shows the electroresistance loop using a 10 mV reading voltage after applying the ‘write’ voltages 

of the loop of the main panel.  

Measurements at different temperatures in the range 20-100 K produced very small 

changes in the IV curves and in the electroresistance loops. Figure 6.4 shows a 

series of IV curves at different temperatures in separate plots for initial up and 
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down write fields as well as low voltage electroresistance loops. The weak 

temperature dependence can be understood on the basis of the transport being 

dominated by tunnelling across the ultrathin ferroelectric and allows ruling out 

interpretations in terms of filamentary Ag conduction which would render the low 

resistance state metallic [40, 41]. The small differences observed in the crossover 

into the Schottky regime indicate that temperature plays a role in the kinetics of 

the vacancy generation reaction.  

Figure 6.4 Temperature dependence of the IV curves (4(a) and 4(b)) and of electroresistance loops 

(panels (b) and (c)). For initial fields pointing down (panels (a) and (c)) temperatures are: red (20 K), 

green, magenta (80 K) and blue (100 K). For initial fields pointing up (panels (b) and (d)) measured 

temperatures are (red (30 K), green (45 K), cyan (75 K), magenta (80 K), orange (85 K), olive (90 

K) and blue (100 K). To better illustrate the temperature dependence of the high resistance level in 

panel (d) data at 35 K (small green symbols) and 55 K (small yellow symbols) have been added.  

Notice that the resistance switches at the onset of the Schottky barrier (negative 

voltage flank of the resistance loops in Figure 6.4 (d)) are very gradual and extend 

over a wide voltage range (also marked with a pink shaded rectangle in the figure 

6.3 (b)). This gives rise naturally to a memristive response with multiple high-
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resistance states controlled by the maximum bias (before sweep direction is 

reversed) of the minor loops along its negative flank. See figure 5. The high 

resistance level is controlled by the gradual built up of space charge giving rise to 

the Schottky barrier, and in fact, the voltage asymmetry of the loop can be used to 

estimate the voltage drop (height) in the barrier, of the order of 0.7 volts after 

inspection of figure 6.5.   

Figure 6.5 Memristive resistance loops. Resistance loops measured at 15 K. Resistance was recorded 

at 0.7 volts after different bias (´write´) voltages as shown in the x axis. The different high resistance 

states result from different maximum voltages along the negative voltage flank of the hysteresis loop.   

6.3 Discussion 

We now discuss the formation of the Schottky barrier. Notice that it starts building 

up in a state where, after application of large positive voltages, the barrier has been 
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depleted from oxygen vacancies and ferroelectric polarization has been driven to 

point in the up direction. The depletion of oxygen vacancies causes the observed 

increase of the tunnel barrier as illustrated in the lower sketch of Figure 6.3 (b). 

The Schottky barrier forms at the onset of oxygen vacancy generation at negative 

voltages. Its very formation indicates a high level of ionization of the oxygen 

vacancy levels. Moreover, the stabilization of the polarization-up state in high 

negative voltages constitutes an evidence of the screening of polarization charges 

by oxygen vacancies. I.e., the positive charges of the ionized oxygen vacancies 

compensate the negative polarization charges at the bottom interface 

corresponding to the ferroelectric polarization pointing up. This high level of 

ionization is caused by the interplay between vacancy generation and 

compensation of polarization charges. Oxygen vacancies generated at the Ag 

electrode enter the BTO layer in a charged state, and driven by the electric field, 

they reach the interface where they are trapped by the negative polarization charges. 

Neutralizing electrons supplied by the bottom LSMO electrode accumulate at the 

LSMO side of the interface building up the Schottky barrier (and annihilating the 

screening holes of the negative polarization charges in the tunnel regime prior to 

vacancy generation). See upper sketch in Figure 3 (b). Assuming that oxygen 

vacancies accumulate in a narrow 𝛿 = 1𝑛𝑚 thick layer at the BTO interface to 

screen the 𝜎𝑃 = 1.6 × 1014 𝑐𝑚−2 sheet carrier density corresponding to the bulk 

polarization of the BTO and using 𝜀𝑟 = 100 for the relative permittivity of the 

BTO the height of the barrier Vb can be estimated from 
𝜎𝑝

𝜀𝑟
=

𝑉𝑏

𝑑
 to be Vb =1 V. The 

picture emerges that, the formation of the Schottky barrier is the signature of the 

screening of ferroelectric polarization by charged oxygen vacancies. This 

mechanism stabilizes the up-polarization up to relatively large negative fields of -

4V, above which the Schottky barrier collapses and polarization switches. It can 

be observed from the IV curves that once the Schottky barrier has been formed, 

further increasing negative voltage (see magenta curve) produces an abrupt switch 

of the resistance to reach the state (blue curves at negative voltages) corresponding 

to the ferroelectric polarization pointing down and non-blocked weakly ionized 

oxygen vacancies. I.e. the switch occurring at large negative voltage involves a) 

the switching of ferroelectric polarization and b) a sudden change in the ionization 

of oxygen vacancies accompanied with a redistribution (as evidenced by the large 

series resistance).  

This result evidences a strong interplay between oxygen vacancies and 

ferroelectric polarization which couples their switching. Notice that the 

accumulation of oxygen vacancies at the bottom interface stabilizes the up 
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polarization which now switches at a voltage of nearly -4 V instead of the -1 V 

coercive voltage. Conversely, the polarization pointing down triggers the 

accumulation of ionized oxygen vacancies which give rise to the Schottky barrier.  

A direct confirmation of this scenario is obtained from the measurements of low 

voltage capacitance. Frequency dependent capacitance and conductance were 

measured using a HP 4285 impedance analyzer in the frequency range 1 kHz – 100 

kHz on samples patterned in the form of micron size pillars using low voltage (20 

mV) excitation ac signals. Voltage was swept in a hysteresis loop sequence (see 

Figure 6.6) after applying a positive initial ‘write’ voltage (polarization pointing 

up and barrier depleted from oxygen vacancies). A hysteretic capacitance was 

measured whose switching is dominated by the accumulation of oxygen vacancies 

at the BTO/LSMO interface. The increase of the capacitance (and the decrease of 

the conductance) observed at moderate negative (write) voltages, results from the 

accumulation of the charged vacancies to compensate the negative polarization 

charges at one side of the interface and the accumulation of electrons at the LSMO 

side in the same amount to restore charge neutrality, building an interface dipole. 

The size of the dipole can be estimated from the capacitance hysteresis as Δ𝐶 =
Δ𝑄

Δ𝜙
 which relates the increment of the capacitance (5 10-11 pF) to the barrier height 

and the charge stored at one side of the interface. Δ𝜙 =
𝑒𝛿𝜎𝑝

𝜀
. Using 40 for the high 

field value of the relative permittivity, an effective value of the barrier of 0.5 V is 

estimated using the charge density 1.6 1014 cm-2 corresponding to the polarization 

charges of the BTO. For positive voltages the reversed electric field (now pointing 

up) eventually sweeps the oxygen vacancies out of the Schottky barrier restoring 

the tunneling regime, and giving rise to a conductance increase and a decrease of 

the capacitance. 
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Figure 6.6 Hysteretic capacitance in the Schottky regime. (a) Capacitance and conductance (b) 

recorded at 100 K at various frequencies: of 1 kHz (green symbols), 10kHz (red symbols) and 100 

kHz (blue symbols) read at low voltages (20 mV) after sweeping the ‘write’ voltage in an hysteresis 

loops sequence.  

Physically, this result can be understood in the framework of models where 

ferroelectric polarization is compensated / screened at interfacial Schottky barriers 

building at interfaces due to the accumulation of defects [42 -43]. These models 

rely on the existence of an ultrathin dead layer of thickness 𝛿 inside the space 

charge region at the ferroelectric side [43] where potential drops bending the bands 

of the ferroelectric. This dead layer is always present due to incomplete screening 

of polarization charges although it may result also from the presence of defects 

[43].  

 

In summary, we have shown the interplay between electric field driven oxygen 

vacancy generation and polarization switching in a ferroelectric tunnel barrier with 

a redox active electrode. We have demonstrated that the screening of polarization 

by charged oxygen vacancies, increases the ionization of the donor level associated 

with oxygen vacancies well above the level set by thermodynamic equilibrium. 

Ferroelectric driven ionization builds up an interface dipole which controls tunnel 

transport yielding a nearly infinite electroresistance. Moreover, the interplay 

between electrochemical processes involving ion motion and electronic processes 

in a single device opens interesting new avenues not only for novel memory 

applications but eventually for emulation of neuron activity and its integration in 

neuromorphic computing networks.  
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As a parenthetical remark, it is noted a weak Mem-Capacitor behavior in Figure 

6.6. According to reference [42], the necessary condition to obtain a memory 

capacitor is a reversible chemical reaction controlled by an electric field. In the 

proposed particular case, the electric field create interstitial oxygen atoms in the 

face-centered cubic silver electrode leaving behind oxygen vacancies in the 

Barium Titanate barrier, because of the different charge carrier mobilities between 

the interstitial oxygen atoms and the oxygen vacancies, the mem-capacitor effect 

is warranted. Thus, an additional electric field is needed to remove the interstitial 

oxygen atoms from the fcc silver electrode in order to recombine them with the 

oxygen vacancies in the Barium Titanate tunnel barrier. The border traps can be 

estimated using this expression [43]: 

Δ𝑁2𝐷~
1

𝑞𝐴
∫ |𝐶𝐵 − 𝐶𝐹|𝑑𝑉

𝑉2

𝑉1

 

Using Figure 6.6, and dividing Δ𝑁2𝐷  by 𝐵𝑎𝑇𝑖𝑂3  barrier thickness, the volume 

concentration of oxygen vacancies is obtained: 

Δ𝑁3𝐷 = 7.5 × 1020𝑐𝑚−3 

The electric field associated with the interface dipole from the interplay between 

the ferroelectric polarization and the oxygen vacancy ionization is the following: 

𝐸𝐹−𝑃 =
𝑃

𝜀0𝜒
≅ 3.7 × 107 𝑉

𝑚⁄  

Multiplying this electric field by the tunnel barrier thickness of approximately 4 

nm: 

Δ𝑈 ≅ 0.15 𝑒𝑉 

Obtaining the change in the barrier height due to the change of the ferroelectric 

polarization. 

Figures 4.29 and 4.30, the density of states (DOS) depicts a localized state 150 

meV on the left of the Fermi energy possibly ascribed to an interface pinning dipole 

level as a result of the interplay between the ferroelectricity and the oxygen 

interstitial-vacancy pair. 
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6.4 Ferroelectric Memristor with transition metal top 

Electrodes  
 

We have performed memristor hysteresis and impedance spectroscopy 

measurements using other metals as top electrodes: Cobalt, Tantalum, and Nickel. 

The idea behind this experiment is tailoring the generation of oxygen vacancies 

through the oxidation threshold of the metal which changes between -1,8eV for Co 

to -3eV for Pt (see table 6.1 for work functions and redox/absorb thresholds for the 

selected electrodes).  

 

Metal Schottky 

Voltage 

TER 

1kHz 50K 

REDOX/Absorb 

Threshold Voltage 

Work 

Function 

𝐴𝑔 +0,8V 14,35 -2V 4,73eV 

𝐶𝑜 +1,0V 189,55 -1,8V 5eV 

𝑇𝑎 +1,2V 742,82 -3,8V 4,2 eV (TaSi2) 

𝑃𝑡 +0,8V 214,07 -3V 6,35eV 
Table 6.1. Values of Schottky voltage, TER Ratio, Oxidation threshold and Work function for Ag, 

Co, Ta [66] and Pt. 

 

6.4.1 LSMO/BTO/Cobalt 
Cobalt has a very low oxidation enthalpy and it is very prone to be oxidized to 

form the CoO native oxide generating oxygen vacancies in 𝐵𝑎𝑇𝑖𝑂3−𝛿 ferroelectric 

barrier. The switching of oxygen vacancies gives rise to the hysteretic conductance 

curves displayed in figures 6.7 and 6.8 which depends strongly on frequency. 

Hysteretic conductance curves are associated to the switching of oxygen vacancies 

as inferred from the anticlock-wise sense of the loops (see discussion in preceding 

paragraphs). Recent literature [40, 41] has discussed that surface interfacial defect 

states and the pinning of the domain walls by the ionization-deionization of oxygen 

vacancies could play a relevant role in the frequency dependence of the Write and 

Read Conductance Measurements. 
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Figure 6.7 ‘Write’ differential Conductance measurements LSMO/BTO/Co at 20, 50, 75 and 100 K.  
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Figure 6.8 ‘Read’ differential Conductance measurements LSMO/BTO/Co at 20, 50, 75 and 100 K. 
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Figure 6.9 Write differential Capacitance measurements LSMO/BTO/Co at 20, 50, 75 and 100 K. 
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Figure 6.10 Read differential Capacitance measurements LSMO/BTO/Co at 20, 50, 75 and 100 K. 

 

Note the decrease of the memristive hysteresis behaviour while increasing the 

temperature and also the strong dispersion of the Write and Read differential 

Conductance with the change of frequency. The low amplitude hysteretic 

capacitance (memcapacitor) behavior [42] displayed in figure 6.10 is analogous to 
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the one found in LSMO/BTO/Ag junctions and described in the previous section. 

In order to get information on the energy scales involved in charge trapping-

detrapping mechanisms (interfacial defect states energy), impedance spectroscopy 

measurements have been performed. 
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Figure 6.11 G vs f curves at temperature ranged from 50K to 260K at 5K interval (Top Left Hand 

Corner). C/A vs f curves at temperatures in the same range (Top Right Hand Corner). tan 𝛿 vs f 

curves at different temperatures (Bottom Left Hand Corner).  

Figure 6.11 shows the frequency dependence of conductance curves at different 

temperatures. A conductivity plateau is found at low frequency which increases 

with temperature. At the same time capacitance decreases with temperature in a 

way that the loss tangent remains constant at low temperature. This behavior has 

been ascribed to Coulomb-Blockade of electrons trapped at oxygen vacancy 

centers.  Note the flat shape of the tan 𝛿 vs frequency curves at T = 50K displayed 

in the lower panel of figure 6.11. To examine the temperature dependence of the 

low frequency conductance, conductance values at 100𝐻𝑧  extracted from the 

upper panel of figure 6.11 have been plot as a function of temperature in an 

Arrhenius fashion. See Figure 6.12.  
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Figure 6.12 Conductance at 100 Hz as a function of temperature of a tunnel junction LSMO/BTO/Co 
polarized to low conductance state (-5V LOW G green and yellow symbols), and to high conductance 
state (+9V HIGH G light blue and magenta symbols) and intermediate conductance state (-2.1V 
INTERMEDIATE olive and royal blue symbols).  

 
Notice that there are two clearly separated regimes. At high temperatures there is 

a temperature activated regime which crosses over to a temperature independent 

regime at low temperatures. Linear fits to the activated portions (see Figure 6.13). 

In the range from 100K until 220K, G vs 1000/T curve was fitted to obtain the 

thermal activation energy: 
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Figure 6.13 Conductance activated behaviour in the high temperature regime (see Figure 6.12). The 

thermal activation energy is 116meV. 

The thermal activation energy was calculated through the equation: 

𝐺 = 𝐺0𝑒𝑥𝑝 (−
Δ𝐸𝑇𝐴𝐸

𝑘𝐵𝑇
) 

Where Δ𝐸𝑇𝐴𝐸 is the thermal activation energy Δ𝐸𝑇𝐴𝐸 = (115.7 ± 1.3)𝑚𝑒𝑉 

The thermal activation energy of the impedance measurements is in the order of 

100 meV. This value is one order of magnitude below the values characteristic of 

the ionic diffusion process by oxygen vacancies (1 eV). The thermal activation 

energy in the order of 100 meV found is thus ascribed to an electronic process. A 

possibility is an electron-electron Coulomb repulsion (𝐸𝐶 =
𝑒2

𝐶0
)  energy. A 

measure of the screening Coulomb energy per electron is obtained by dividing this 

energy by 2 (repulsion is a cooperative effect involving 2 electrons). Thus, 

Charging Energy (𝐸𝐶 =
𝑒2

2𝐶0
) in the order of 50 meV, in good agreement with the 

estimates by Maekawa [44, 45]. Further interesting information is obtained from 

the crossover frequency from a frequency independent to power law dependent 

conductance behaviour (obtained from figure 6.11). Cross over frequencies were 

obtained from the values at which conductance was doubles respect to the plateau 
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values. Cross over frequencies displayed an activated behaviour as shown in 

Figure 6.14. 

5 6 7 8 9 10 11 12
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Figure 6.14 Temperature dependence of the cross over frequency (see text). The thermal activation 

energy is 58 meV. 

In this particular case, the thermal activation energy was obtained from the 

expression: 

𝑓 = 𝑓0𝑒𝑥𝑝 (−
Δ𝐸𝑇𝐴𝐸

2𝑘𝐵𝑇
) 

Where Δ𝐸𝑇𝐴𝐸 is the thermal activation energy  
Δ𝐸𝑇𝐴𝐸

2
= (57.8 ± 0.7)𝑚𝑒𝑉 

These values are the same as the activation energies obtained for the low frequency 

plateaus. And can thus be identified with  
Δ𝐸𝑇𝐴𝐸

2
 the Charging Energy (𝐸𝐶 =

𝑒2

2𝐶0
), 

the screening Coulomb repulsion energy per electron. I.e., the energy scale found 

from first principles simulations which we have ascribed to the localized level of 

the density of states 100 meV below the fermi energy, and may reflect the 

hindering of electron transfer across the tunnel barrier. (See figure 6.25).  𝐶0 , the 

capacitance associated to an oxygen vacancy hosting a localized electron can be 

thus estimated from the charging energy to be: 

𝐶0 = 1.38 × 10−18 𝐹 
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The total oxygen vacancy concentration N can then be inferred from the following 

expression [44]: 

𝐶 = 𝑁𝐶0 

where 𝑁3𝐷 =
𝑁

𝑉
  is the volume concentration of oxygen vacancies:  

𝑁3𝐷 = 3.27 × 1020𝑐𝑚−3 

This doping concentration, slightly below 1%, yields a sheet carrier density of 

1.44 × 1014𝑐𝑚−2 is at the level necessary to screen the bulk polarization of the 

BTO (0.26C/m2). The interesting possibility can be inferred that the oxygen 

vacancies can be generated precisely to screen the ferroelectric polarization of the 

BTO.  

This issue brings about a natural question, if it is possible to estimate with 

reasonable precision the REDOX potential in this solid state device. In order to 

address this problem, differential conductance measurements in increasing voltage 

bias amplitude were performed (see figure 6.15). Figure 6.15 displays conductance 

changes by cycling (and gradually increasing) voltage in the memresistance state. 

Conductance changes are ultimately caused by the electric field control of the 

oxidation of the Co electrode and the formation of oxygen vacancies in the BTO. 

We are thus indirectly probing the REDOX potential of our system.  
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Figure 6.15 Gread vs Vbias Hysteresis Half Loop. Are the oxygen vacancy formation 
voltage/tension controlled by?   

 

Figure 6.16 After each hysteresis half loop, differential conductance measurements were performed 

at 10mV oscillation varying the frequency. Are these measurements activated by previous bias 

voltage? 
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Figure 6.17 Fitting the 100Hz conductance measurements in function of the inverse of previous bias 

voltage applied. The REDOX potential is estimated in 13.90 eV. This value is very similar to the 

hydrogenic-like binding energy associated with oxygen vacancy formation. 

To sum up, after fitting the 100Hz conductance data, the REDOX potential (the 

energetic cost of produce an oxygen vacancy in 𝐵𝑎𝑇𝑖𝑂3 and an oxygen interstitial 

in Co) is estimated in 13.90 eV. This value is a measure of the needed to 

remove/ionize an electron from a hydrogen atom. In other words, the energy 

calculated by this fitting could be ascribed to the hydrogenic-like binding energy 

associated with oxygen vacancy formation in this solid state device. According to 

reference [50], an electron associated with a particular defect will be confined in a 

hydrogenic orbital (such as an exciton) whose energy is given by the following 

equation:  

𝐸𝐵 = (
𝑚∗

𝑚𝜀2
)𝑅∞ 

Being 𝑅∞ = 13.6 𝑒𝑉 the Rydberg constant, 𝑚∗ is the effective mass of electrons 

and 𝜀 is the high-frequency dielectric constant. 

Despite the Co work function, approximately 5 eV, the surface states associated to 

interfacial defects induced by the REDOX reaction play a relevant role by which 

Bardeen [51] proposed that the Fermi level of the semiconductor (in our case the 

𝐵𝑎𝑇𝑖𝑂3 ferroelectric tunnel barrier) is “pinned” by surface states to the originally 
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charge neutrality level. These states are not only real surface states but also 

localized states induced in the band gap of the ferroelectric tunnel barrier by 

metallic cobalt in our case.  

 

Hysteretic conductance was also obtained from DC measurements (see figure 6.19 

displaying the ‘read’ resistance values measured at an excitation voltage of 10 mV). 

These loops displayed the same anti clockwise conductance change found in the 

ac measurements. The cross over from the tunnel –like to Schottky –like behaviour 

is responsible for the very large amplitude of the memresistance loops. The Low 

Resistance State (LRS) is governed by the recombination (annihilation) of oxygen 

vacancies in the BaTiO3/Co interface by disolving the CoO layer which turns into 

metallic Co and reduces the resistance. On the other hand the high Resistance state 

(HRS) is driven by the oxidation of the Co and the accumulation of oxygen 

vacancies at the BTO/LSMO interface.  

 

Figure 6.18 ‘Read’ resistance loop of a LSMO/𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜 junction at low temperature (6 K).  

Additionally, magnetotransport properties of tunnel junction were measured to 

obtain the tunnelling magnetoresistance, TMR. Low voltage resistance was 
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measured while sweeping a magnetic field in the plane of the layers in an hysteresis 

loop sequence. Two markedly different behaviors where obtained for the low 

(LRS) and high (HRS) resistance levels. While TMR in the LRS was negative (see 

Figure 6.19), positive TMR was measured in the HRS (see Figure 6.20). Also a 

significant increase of the coercivity was found in the HRS indicating a 

modification of the magnetic state of the interface triggered by resistance switching. 

The negative TMR in the low resistance state can be discussed in terms of the 

negative spin polarization in the Fermi level of Co and the competition with the 

Hubbard U and Exchange interaction J induced in the electron trapped in oxygen 

vacancies.  

 

 

 

Figure 6.19 Negative Tunnel MagnetoResistance (TMR) in the Low Resistance State (LRS). 
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Figure 6.20 Positive Tunnel Magnetoresistance (TMR) in the High Resistance State (HRS) in the 

order of 105Ω. 

By means of Density Functional Theory (DFT), we will gain insight about the role 

played by the switching oxygen vacancies in the spin polarization of the Fermi 

level. To clarify this, atomistic model of 𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜  interface have been 

performed in VASP simulations, whose associated density of states (DOS) is 

attached in figure 6.21. 

This calculations capture the negative spin polarization at the 𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜 

interface, which gives rise to the negative Tunnel Magneto Resistance (𝑇𝑀𝑅 < 0) 

measured in direct current (DC). I.e., we conclude that the negative 

magnetoresistance stems from the negative spin polarization in the Fermi level of 

the hcp Co atomic layers.  

On the other hand, when oxygen ions are driven towards the Co interface by the 

strong external electric field, a 𝐶𝑜𝑂 oxide layer is formed, which affects deeply 

the magnetic state of the interface. A CoO monolayer was added to the 

𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜 interface and a DFT simulation was performed, whose density of 

states (DOS) is attached in figure 6.23. To clarify the role of electronic correlations 

in oxygen vacancies through Ti and interstitial oxygens through Co in the spin 
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polarization of the Fermi level, we assumed 𝑈 − 𝐽 = 4.4 𝑒𝑉 in Ti and  𝑈 − 𝐽 =

6.0 𝑒𝑉 in the 𝐶𝑜𝑂 oxide monolayer. 

The 𝐵𝑎𝑇𝑖𝑂3/𝐶𝑜 interface with the added CoO monolayer displays a positive spin 

polarization in the Fermi level due to the hcp CoO and the close-oxygen-vacancy 

𝑇𝑖𝑂2  atomic planes. Also we found a positive spin polarization of the oxygen 

vacancy induced by the (𝑈 − 𝐽 = 4.4 𝑒𝑉) Hubbard correction energy value for Ti. 

An interesting possibility is that the origin of Ti induced correlations and 

magnetism is driven by the bottom electrode 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 energy correlations 

transferred to oxygen vacancies through Ti atoms [46]. In other words, oxygen 

vacancies could mediate exchange coupling by charge and spin tunnelling through 

𝑇𝑖3+  cation [47], resembling a double exchange scenario in a ferroelectric 

insulator barrier driven by tunnelling, in which electrons trapped in oxygen 

vacancies are able to localize its charge and spin but transmit magnetic interactions 

to their neighbours by tunnelling processes. In addition, it is well known that 

chemical doping [48, 49] induces changes in bonding angle and may thus trigger 

variations in the Exchange Energy J magnitude and give rise to deep changes in 

magnetic states, (ferro- vs antiferromagnetism, or positive vs negative spin 

polarization). 

The positive spin polarization at the Fermi Level in presence of the CoO layer is 

thus responsible for the positive Tunnel Magneto Resistance (𝑇𝑀𝑅 > 0) 

measured in direct current (DC), however, our current VASP simulations could 

not account for the difference in the coercive magnetic fields in the Tunnel 

Magneto Resistance (TMR) measurements at the High and Low Resistance States.  
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Figure 6.21 Total DOS BTO/Co interface with an oxygen vacancy in the 3º BaO plane. 

-6 -4 -2 0 2 4

D
O

S
 (

a
rb

. 
u

)

E - Ef

 1º Co SPIN UP

 1º Co SPIN DOWN

 

Figure 6.22 Enlarged view of the spin polarized DOS at the first Co plane showing negative spin 

polarization. 



192 
 

 

Figure 6.23 Total DOS BTO/Co interface with a CoO layer and an oxygen vacancy in the 3º BaO 

plane. 
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Figure 6.24 Enlarged view of the spin polarized DOS at the first CoO plane showing positive spin 

polarization. 

. 
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Figure 6.25 Total DOS enlargement in the 2º TiO2 plane. Note the positively spin-polarised localised 

level at 130 meV below the Fermi level. It corresponds to the thermal activation energy of the 

differential conductance and ascribed to the Coulomb charging energy.    

Comparing figures 6.22 and 6.24, it is noted the sign change in the spin-polarized 

density of states (DOS) at the Fermi level from the negative spin polarization of 

metallic Co at the Fermi level to the positive spin polarization of the CoO 

monolayer at the Fermi level.  

This problem has been tackled in recent literature [52–55]. Specifically, J. 

Moodera´s [56] research group was the first who measured a positive spin 

polarization in Co with 𝑆𝑟𝑇𝑖𝑂3 barriers, attributing to a 𝑆𝑟𝑇𝑖𝑂3 amorphous layer. 

Previously, E. Tsymbal et al. [57] made surface DFT calculations in bcc iron 

displaying a positive spin polarization at the Fermi energy induced by an oxygen 

over-layer; which was ascribed to hybridization of the iron 3d orbitals with the 

oxygen 2p orbitals, jointly to the strong exchange splitting of the former results in 

exchange-split bonding and antibonding oxygen states. These antibonding states 

are partially occupied for the majority spins but are almost unoccupied for the 

minority spins, leading to the aforementioned behaviour. Recently, M. Alexe´s 

[58] research group measured tunnel magnetoresistance (TMR) electrically 

modulated by ferroelectric domains in a magnetic FeRAM hybrid tunnel junction. 
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Our DFT calculations show that oxygen vacancies are a necessary ingredient for 

the inversion of the spin polarization. I.e., if we calculate the effect of a CoO over-

layer in absence of oxygen vacancies, the spin polarization at the Fermi level drops 

to zero and a gap opens, but no inversion of the spin polarization is observed. Our 

research studies of the sign change of tunnel magnetoresistance ascribed to the 

combined action of the cobalt oxidation in CoO (Mott insulator) and the formation 

of oxygen vacancies in the 𝐵𝑎𝑇𝑖𝑂3  ferroelectric barrier with trapped electrons 

which localises spin and charge. Localized spins screen partially the ferroelectric 

dipole moment and transmit the magnetic interaction to the CoO layer by 

tunnelling, and thus give rise to magnetoelectric coupling.  

In summary, our current VASP DFT simulations provide a feasible explanation to 

the sign change of the Tunnel Magneto Resistance upon switching between the 

Low and the High Resistance Sates.  

 

To address the possible role of the oxidation enthalpy of the metal electrode in the 

process of oxygen vacancy formation, we have conducted a series of test 

experiments with different metals.  

 

6.4.2 LSMO/BTO/Ta 

Tantalum has a very low oxidation enthalpy and it is very prone to be oxidized 

forming two native oxides ( 𝑇𝑎𝑂2  and 𝑇𝑎2𝑂5 ) leaving oxygen vacancies in 

𝐵𝑎𝑇𝑖𝑂3−𝛿 ferroelectric barrier. Direct evidence for the formation of this oxides 

has been obtained by photoemission spectroscopy [59]. The dynamics of oxygen 

vacancy formation gives rise to hysteretic conductance curves as shown in figures 

6.26 and 6.27. 
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Figure 6.26 Write differential Conductance measurements LSMO/BTO/Ta; 50, 100, 150 and 200K. 
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Figure 6.27 Read differential Conductance measurements LSMO/BTO/Ta; 50, 100, 150 and 200K 

. 
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Figure 6.28 Write differential Capacitance measurements LSMO/BTO/Ta; 50, 100, 150 and 200K. 
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Figure 6.29 Read differential Capacitance measurements LSMO/BTO/Ta; 50, 100, 150 and 200K. 

Despite the low work function of Tantalum (4.22 eV), a wide voltage range of ±10 

V was used to warrant saturation of the conductance states. Oxidation of the Ta 
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electrode occurs probably owing through two consecutive coupled REDOX 

chemical reactions: 

 

 𝑇𝑎 + 𝑂2 ↔ 𝑇𝑎𝑂2                 (1) 

2𝑇𝑎𝑂2 +
1

2
𝑂2 ↔ 𝑇𝑎2𝑂5        (2) 

 

Notice that the positive flank of the conductance hysteresis loops of figure 6.27 

exhibits an intermediate plateau indicating the annihilation of oxygen vacancies 

from two different Ta oxides. We conjecture that both REDOX chemical reactions 

are coupled or controlled by 𝐵𝑎𝑇𝑖𝑂3  barrier ferroelectricity. In other words, 

oxygen vacancies associated to REDOX reaction (1) are generated, and 

ferroelectric dipoles “partially switch” to saturate in the first plateau. After, new 

oxygen vacancies associated to REDOX reaction (2) are generated for negative 

voltages, and consequently ferroelectric dipoles “switch again” to saturate 

completely to the extreme low conductance state. The same reasoning could be 

followed conversely for positive voltages recombining the oxygen vacancies in 

𝐵𝑎𝑇𝑖𝑂3−𝛿  with the oxidized tantalum in order to recover the 𝐵𝑎𝑇𝑖𝑂3  without 

oxygen vacancies and the metallic Tantalum. 

 

The write differential capacitance exhibited pronounced maxima at voltage values 

corresponding to the coercivity observed in conductance loops. Capacitance at the 

maxima reached very large values in the nF range. These large values of the 

capacitance are typically ascribed to electrochemical reactions. The presence of 

two consecutive capacitance peaks at each voltage flank supports the formation / 

annihilation of two different oxides. 
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Figure 6.30 G vs f curves at temperatures ranged from 50K to 260K at 5K interval (Top Left Hand 

Corner). C/A vs f curves at temperatures in the same range (Top Right Hand Corner). Note the 

Maxwell-Wagner-like trend in the sense of increasing the capacitance in very low frequencies while 

increasing temperature correlated with the increasing of conductance while increasing temperature. 

tan 𝛿  peak maxima shift different temperatures (Bottom Left Hand Corner). When 𝜔 → 0 ⇒

 𝑡𝑎𝑛𝛿 → ∞ and constitutes the foremost signature of Maxwell-Wagner-Sillars Relaxation. 

Further support to the formation of an oxide interlayer resulting from the 

generation of oxygen vacancies we have measured the frequency dependence of 

the conductance and the capacitance in the low conductance state where oxygen 

vacancies and thus the interfacial oxide have been created. As depicted in figure 

6.30, when temperature increases, the differential conductance increases in the 

whole frequency measured range while the differential capacitance steeply 

increases only in the low frequency range (from 20Hz until 1kHz). We can 

understand the enhancement of the differential capacitance as a Maxwell-Wagner-

Sillars polarization effect characteristic of heterogeneous media. Note also that the 

loss tangent exhibits a low frequency increase which does not occur in the Debye 

relaxation. The main difference between Debye relaxation and the Maxwell-

Wagner-Sillars relaxation is based on the loss tangent dispersion with the 

frequency: 

In the former, when 𝜔 → 0 ⇒ 𝑡𝑎𝑛𝛿 → 0 
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In the latter, when 𝜔 → 0 ⇒ 𝑡𝑎𝑛𝛿 → ∞ 

In the present system, the Maxwell-Wagner-Sillars polarization coexists with the 

memristive behaviour in the high frequency limit. Thus, the impedance 

spectroscopy is the result of the combined effects between Maxwell-Wagner-

Sillars polarization and the memristive effect and should be taken into 

consideration upon determining the Maxwell-Wagner-Sillars frequency 𝑓𝑀𝑊𝑆 

starting the conductance plateau. 

The Maxwell-Wagner-Sillars polarization effect was quoted in recent scientific 

literature [60 - 64] and associated with interfacial effects and heterogeneity in 

composite materials. In the present case, the aforementioned effect is probably due 

to the heterogeneity of the 𝐵𝑎𝑇𝑖𝑂3/𝑇𝑎 interface; whose space charge layer is 

prone to have formed segregated oxides in the tantalum grain boundaries (𝑇𝑎𝑂2 

and 𝑇𝑎2𝑂5, whose contributions in dielectric permittivity are given by 𝜀𝑇𝑎𝑂2
 and 

𝜀𝑇𝑎2𝑂5
 ), which seems to interact with the ferroelectric dipoles in 𝐵𝑎𝑇𝑖𝑂3 tunnel 

barrier, as discussed in the analysis of the write differential capacitance maxima in 

function of voltage bias.  

Analogous to the previous subsection, we select the differential conductance curve 

in function of temperature extracting only the 𝑓 = 100𝐻𝑧 from the impedance 

spectroscopy data: 

In the range from 100K until 220K, G vs 1000/T curve was fitted to obtain the 

thermal activation energy: 
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Figure 6.31 The thermally activated behaviour of the conductance measured at 100 Hz. Activation 

energy is 88 meV. 

In order to estimate the REDOX potential, differential conductance measurements 

in increasing voltage bias amplitude were performed. 
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Figure 6.32 Gread vs Vbias Hysteresis Half Loop (Top). Conductance measured at 100 Hz as a 

function of the inverse write bias voltage (Bottom). The line is a linear fit. The REDOX potential is 

estimated to be 13.66 eV.  

After fitting the 0Vbias data points, the REDOX potential (the average energetic 

cost of produce the oxygen vacancies in 𝐵𝑎𝑇𝑖𝑂3 and oxygen interstitial atoms in 

Ta forming 𝑇𝑎𝑂2  and 𝑇𝑎2𝑂5) is estimated to be 13.67 eV. This value is very 

similar to the 13.6 eV needed to remove/ionize an electron from a hydrogen atom. 

In other words, the energy calculated by this fitting could be ascribed to the 

hydrogenic-like binding energy associated with oxygen vacancy formation in this 

solid state device. 

 

6.4.3 LSMO/BTO/Pt 

Despite its large work function (6.36 eV), Pt is catalytic oxide able to adsorb a 

monolayer of oxygen at its surface [65] as discussed by Stanley Williams and col. 

using a sandwich of Pt/𝑇𝑖𝑂2(12𝑛𝑚)/𝑃𝑡 . In our case, Pt oxygen adsorption leaves 

an oxygen vacancy in  𝐵𝑎𝑇𝑖𝑂3−𝛿  ferroelectric barrier. These induced oxygen 

vacancies give rise to behaviors similar to those observed previously with low 

work function oxides as Co or Ta. Hysteretic write and read conductance and 
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capacitance curves are displayed in figures 6.33 and 6.34 and 6.35 and 6.36 

respectively. 
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Figure 6.33 Write differential Conductance measurements LSMO/BTO/Pt; 20K, 60K, 100K and 

140K. 
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Figure 6.34 Read differential Conductance measurements LSMO/BTO/Pt; 20K, 60K, 100K and 

140K. 
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Figure 6.35 Write differential Capacitance measurements LSMO/BTO/Pt; 20K, 60K, 100K and 

140K. 
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Figure 6.36 Read differential Capacitance measurements LSMO/BTO/Pt at 20K, 60K and 100K. 

An interesting observation is that conductance loops are symmetric with both 

flanks of the differential conductance loop occurring in the same voltage range. On 

the other hand, notice that the conductance loops sample with an oxidizing 
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electrode are strongly asymmetric mostly in the positive voltage range. The 

process occurring at positive voltage range is the annihilation of oxygen vacancies 

by the reduction of the oxide. The picture emerges that the generation of oxygen 

vacancies in our BTO tunnel barrier is controlled by the oxidation kinetics of the 

electrode. When the vacancy annihilation process is limited by the reduction of the 

oxide, this process requires larger voltages the more stable are the oxides as it is in 

fact observed for the case of Ta with the lowest oxidation enthalpy of the series of 

electrodes analysed.  
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Chapter 7: Final Conclusions and 

Prospective Research Lines 

 

The main findings of this dissertation are summarized here. We performed an 

analysis of the interplay between ferroelectricity, ferromagnetism, domain 

structure and memristive response in magnetic tunnel junctions. In order to reach 

this objective, we grew epitaxial heterostructures combining ferromagnetic 

manganites 𝐿𝑎0.7𝐶𝑎0.3𝑀𝑛𝑂3  (LCMO), 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3  (LSMO) to be used as 

bottom electrode; the Mott/Anderson insulator 𝑃𝑟𝐵𝑎2𝐶𝑢3𝑂7−𝛿  (PBCO) and 

ferroelectric barium titanate 𝐵𝑎𝑇𝑖𝑂3−𝛿  for use as a tunnel barrier and different 

metals (Ag, Co, Ta, Pt) to be deposited as top electrodes. We found hysteretic 

response in transport properties which may not be explained with the Schottky 

model in simple terms because the ferroelectricity interacts with interface defects 
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such as oxygen vacancies modifying their ionization and changing and the 

Schottky barrier. To gain more insight into the understanding of the hysteretic 

memristive behaviour, several experimental techniques were combined with 

density functional theory simulations by VASP. The main findings of this work 

can be summarized as follows: 

 The LCMO/PBCO/Ag tunnel junction resistive switching behaviour 

directly probe the tunneling routes across the 𝐶𝑢𝑂2  planes providing a 

direct connection to the Fehrenbacher and Rice model for cuprates.  We 

have found evidence for the presence of the insulating gap of 4 eV 

mentioned above between the 𝑃𝑟𝐼𝑉 states and the  𝐶𝑢𝐼𝐼𝐼 states. This is in 

agreement with the Fehrenbacher and Rice model stating that the absence 

of conductivity of the Cu–O chains is due to the O vacancies excluding the 

possibility to circumvent the 𝐶𝑢𝑂2  planes via the tunneling of charge 

carriers through the Cu–O chains.  

 

 The conduction mechanism of the LCMO/PBCO/Ag tunnel junctions is 

predominantly the tunneling of electrons assisted by traps localized in the 

CuO chains in the PBCO barrier. The Low Resistance State of the 

LSMO/PBCO/Ag tunnel junction was examined by fitting IV curves to  

the Child-Langmuir law (analogous to the electron conduction in a plane 

parallel vacuum diode in the ballistic conduction regime) and to the 

Fowler-Nordheim quantum tunneling. 

 

 We found a free-electron gas in 180º Head-to-Head charged domain walls 

(CDW) in 𝐵𝑎𝑇𝑖𝑂3barriers in LSMO/BTO/LSMO tunnel junctions. We 

obtained evidence for confined electronic states which enable resonant 

tunnelling transport between the electrodes. Low temperature tunnelling 

conductance (measured using a dc current set up) exhibits pronounced 

oscillations indicating resonant transport through discrete unoccupied 

states of the confined electron gas, which is modulated by the strong 

electric field developing in an ultrathin barrier at moderated voltages in a 

transport experiment.  

 

 We found a weak Mem-Capacitor behavior in LSMO/BTO/Ag memristor 

tunnel junctions occurring as a consequence of reversible interfacial 

chemical reaction controlled by an electric field. In the particular 

LSMO/BTO/Ag memristor, the electric field create interstitial oxygen 
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atoms in the face-centered cubic silver electrode leaving behind oxygen 

vacancies in the Barium Titanate barrier. The different charge carrier 

mobilities of the interstitial oxygen atoms and the oxygen vacancies, give 

rise to locally charged defects giving rise to the mem-capacitor effect.  

 

 We found evidence of the coupling of oxygen vacancies to ferroelectric 

polarization in LSMO/BTO/Co memristor tunnel juntions. This gives rise 

to a t2g localized electronic state resulting from the Coulomb-Blockade-

like screening of the ferroelectric polarization.  Experimental evidence is 

obtained from the highly anomalous decrease of the capacitance while 

increasing temperature which correlates with the increase of conductance 

when temperature is increased. Furthermore, the flat shape of the loss 

tangent vs frequency further support the purely electronic Coulomb-

Blockade-like regime (T = 50K). 

 

 The LSMO/BTO/Co memristor tunnel junction exhibits sign change in the 

tunnel magneto-resistance (TMR) driven by the switching of the 

ferroelectric polarization. This reflects the sign change in the spin 

polarization (at the Fermi level) in the BTO/Co interface triggered by the 

ferroelectric polarization and the defect distribution. DFT calculations 

show that the sign change in BTO/Co interface stems from the competition 

between the Co atoms exchange interaction suppressed by the CoO 

monolayer (U − J = 6.0 eV)  and the oxygen vacancies colour centres 

exchange interaction mediated by Ti3+  ions (U − J = 4.4 eV) . Tunnel 

transport mediated by the oxygen vacancy centers resemble a double 

exchange interaction in an insulator ferroelectric BTO barrier. 

 

 Experiments conducted using top electrodes with different work functions 

did not show not a linear relationship between the barrier height and the 

work function of the transition metals involved (Ag, Co, Ta and Pt).  The 

Schottky barrier detected in IV curves is at the BTO/LSMO interface and 

it is caused by doping effects associated to the accumulation of oxygen 

vacancies.  Oxygen vacancy formation is controlled by the oxidation of 

the electrode driven by the applied electric field. The LSMO/BTO/Ta 

memristor tunnel junction couple ferroelectricity and oxygen vacancy 

formation to two consecutive REDOX chemical reactions of metallic Ta 

to 𝑇𝑎𝑂2 oxide and 𝑇𝑎2𝑂5 oxide. Heterogeneity due to the formed oxide 

layers caused the memristor to display Maxwell-Wagner-Sillars relaxation 

effect. Finally, we found the electric field necessary to annihilate oxygen 



212 
 

vacancies (positive coercivity of conductance hysteresis loops) scales with 

the (absolute value of the) oxidation enthalpy of the top electrode, 

indicating that the process is limited by the electric field induced reduction 

of the interfacial electrode oxide. This constitutes a first evidence of 

memristive response governed by electric field controlled electrochemical 

reactions at the interface with the electrode.  

 

 As a final outlook into future experiments, it would be highly interesting 

to work with the recently developed scanning transmission electron 

microscope (STEM) sample holders which allow applying electric field 

pulses in situ and take annular bright field (ABF) images and electron 

energy loss spectroscopy (EELS) measurements combined to examine real 

time valence changes and eventually also ensuing structural modifications 

associated to the REDOX chemical reactions controlling resistive 

switching.  
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Appendix 1. Surfaces: 

The most simple system in which the strain conditions of a substrate place 

a decisive role are thin film surfaces. After discussing the BTO bulk properties in 

this sub-section we study the electronic and structural properties of the BTO 

surface under the strain condition of the STO in-plane. BTO surface can be 

considered as an intermediate step towards the BTO-metal interfaces, which we 

will address in the next section, and will give us the opportunity to introduce the 

different supercell models we will use in both STO-constrained calculations. In 

parthicular we will discuss the role of the U correction and surface plane 

termination on the structural and electronic properties.  

A.1.1 BTO-surfaces: 

As mentioned for the bulk 𝑈 = 4.4 𝑒𝑉  value is suitable to exhibit a 

ferroelectric distortion value similar to the experimental results under the STO in-

plane constrain (see figure 4.7). In order to study the effect of oxygen vacancies 

we will perform different calculation in-plane unit cells (u.c.) as c(1x1) and c(2x2) 

to see the effect of the oxygen vacancies concentration. All calculated cells contain 

7 TiO2 planes along the [001] direction, which is the 𝛿 distortion direction, and the 

number of BaO planes will be either 6, 7 or 8 for the symmetric 𝑇𝑖𝑂2 termination 

(TiO2-symm), stoichiometric (Stoich) or symmetric BaO (BaO-symm) termination 

respectively, see figure 17. The vacuum space we included to avoid interaction 

from one side of the slab to the other is at least 10 Å. Since the conduction bands 

mainly comes from the TiO2 planes while the BaO planes mostly contribute to the 

valence band each termination will exhibit different electronic and structural 

properties. Besides, for the Stoich calculation (one termination is TiO2 while the 
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other is BaO) we have checked that the corrections to the formation of the electric 

dipole moment are reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 c(1x1) Relaxed surface cells for different atomic terminations: a) symmetric TiO2 (symm-

TiO2), b) stoichiometric (stoich), c) symmetric BaO termination (symm-BaO). No U was applied. 

A first inspection to figure A1 show that the relaxation of the TiO2 

terminated surfaces, such as symm-TiO2 slab, is different from BaO terminated, 

symm-BaO. For the former the oxygens (Ti) tend to displace towards (away from) 

the surface, which can be considered as a region (1 or 2 TiO2 planes) where there 

is an intrinsic formation of a ferroelectric distortion (𝛿). Similar results have been 

obtain by Pruneda el at. for the La1-xSrxMnO3 surface, and which have been 

explained by Tsymbal as related to the surface oxidation states due to unsaturated 
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bonds. Contrary to the TiO2 termination the BaO termination does not induce any 

ferroelectric distortion near by the surface. 

Another feature that affects the structural distortions are the oxygen 

vacancies. But to account for a diluted concentration we have to go beyond c(1x1) 

in-plane calculations to c(2x2). This allows including more degrees of freedom, 

and more adequately describe the atomic relaxations near the oxygen vacancies 

when they are located either at the TiO2 or at the BaO most superficial plane, see 

figure A2. 

 

Figure A2 Atomic sketch of the U = 0.0 calculation for the TiO2 symmetric slab with oxygen 

vacancies (grey circles) in the BaO surface plane (left) or TiO2 surface plane (right). 
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We observe in figure A2 that while the relaxation pattern away from the 

oxygen vacancy denotes high in-plane symmetries, such as c(1x1) or large √2𝑥√2 

R45º near the vacancy the relaxation is more complex and require a c(2x2) in-plane 

cell. The presence of the vacancy triggers strong relaxations, which extends around 

2 unit cells for the cations while 4-5 u.c. for the oxygen network. 

In order to rationalize the depth effect in the different simulations we 

depict in figure A3 the 𝛿 displacements as a function of the 7 TiO2 planes for 

different values of the U correction and various c(1x1) surface models: TiO2-symm, 

stoich and BaO-symm. 

 

 

Figure A3 𝛿 displacements as a function of the TiO2 planes for two oxygen vacancy locations (dashed 

in 𝐵𝑎𝑂 and dotted in 𝑇𝑖𝑂2 planes with constant U = 4.4 eV) and different U values for non-vacancy 

cases (continuous black, red and green lines corresponds to 0.0, 2.0 and 4.4). This is depicted for 

c(1x1) calculations: a) TiO2-symm, b) Stoich, c) BaO-symm. In the Stoich case the right interface 

corresponds to TiO2 termination while the left to the BaO termination. 

We observe in figure A3 that for the non-OVac cases, the U corrections 

(continuous lines) do not influence on the 𝛿 displacement which only differs from 

zero within 1 uc of a 𝑇𝑖𝑂2  terminated surface. The values, 0.1 in the right surface 

and -0.1 in the left surface indicates that the oxygen moves towards the surface 

while the Ti move away from it. The 𝐵𝑎𝑂 termination shows no 𝛿 displacement 

(right figure A3). However when including the oxygen vacancies the 𝛿 

displacement profile is deeply modified. On averaged the oxygen moves toward 

the surface by almost 0.3 Å, except for the vacancy location at the BaO plane in 

the TiO2 termination for which it moves 0.2 Å away from the surface. The most 

stable oxygen vacancy location is at the TiO2 plane by 52, 256 and 38 meV for the 

TiO2-symm, Stoich and BaO-symm for U=4.4 eV, respectively. The large value 



218 
 

for the Stoich calculation is reduced around 93 meV when taking into 

consideration the dipole correction. The larger stability of the OVac at the TiO2 

plane, regardless of the surface termination, contrast to the most stable case in bulk 

of the BaO plane. A more realistic model than a c(1x1) in-plane may be required. 

We now consider the c(2x2) calculations which allows for an oxygen 

vacancy concentration 4 times lower than at the c(1x1) and more relaxation 

degrees of freedom. See figure A2 for an atomic sketch of the TiO2 surface 

termination, which is closer to the real defect configurations. In figure A4, we 

depict the 𝛿  for the different c(2x2) surface terminations, oxygen vacancy 

locations and U values. 

 

 

Figure A4 𝛿 values for oxygen vacancies in c(2x2) surface models: a) TiO-symm (left), b) Stoich 

(middle) and c) BaO-symm (right) including oxygen vacancies at the BaO or TiO2 plane respectively 

in dashed or dotted lines at the leftmost surface. U values for 0.0, 2.0 and 4.4 are included as black, 

red and green lines. In the Stoich case the right interface corresponds to TiO2 terminations while the 

left to the BaO termination. 

In figure A4 the location of the oxygen vacancy is at the leftmost surface for each 

calculation: TiO2-symm (left), Stoich (middle) and BaO-symm (right). Contrary to 

the surface calculations without vacancies, in the vacancy calculations of figure 

A3 the U value influences the 𝛿 displacement magnitude, which gradually flattens 

as the U is increased. This occurs throughout the inner planes of the slab while the 

most superficial ones tends to be pinned, spatially at the TiO2-terminations. The 

flattening agrees with the trend observed for the bulk since increasing the U very 

effectively reduces the 𝛿 value. Besides the 𝛿 trend is kept with the U.  Notice 

that OVac at BaO planes induce larger 𝛿 distortions than at 𝑇𝑖𝑂2 planes. 

These latter planes when at the surface most location (numbers 1 and 7) pin 
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the delta value which do not change altering U. Additionally, comparing the 𝛿 

results between c(1x1) versus the c(2x2) in-plane u.c. sizes we conclude that they 

are very similar but for two features. Near the oxygen vacancy (left size in figure 

4.19 and 4.20) the value is different and the convergence to the distortion 𝛿 

thought-out the slab is more gradual in the c(2x2) case. This evidences that it is 

not required very big in-plane cell size to obtain a correct description of the oxygen 

vacancies and the role of its location in different surface models. 

From the energetics point of view, particularizing for the c(2x2) in-plane 

all the most stable oxygen vacancy location is at the 𝐵𝑎𝑂 plane, as in bulk, except 

for the TiO2-symm calculation which stabilizes the oxygen vacancy at the 𝑇𝑖𝑂2 

plane, see table A1. 

 

 

 

 

 

 

Table A1 Total energy of a c(2x2) calculations of oxygen vacancies at the interfacial 𝑇𝑖𝑂2 plane, 

minus the total energy at the 𝐵𝑎𝑂 plane, as a function of the U value and surface termination. 

In table A1 increasing the U value do not alter the most stable oxygen 

vacancy position for a surface model but it only reduces the energy difference. This 

can be understood as due to the fact that the 𝛿 displacements difference between 

the two oxygen vacancy locations is reduced as U is increased, see figure A4, again 

reducing the tetragonality towards the cubic symmetry.  

These results show that there are structural features, some are intrinsic to 

the surface and other are related to the oxygen vacancy, that can be reasonably 

studied in c(2x2) models and both persist when varying the U values and oxygen 

vacancy locations. These do not affect qualitatively but only quantitatively in the 

form the 𝛿 curves approach to the boundary surface conditions where the surface 

termination and/or oxygen vacancy positions impose the structural and 

electrostatic constrains. 
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Appendix 2. ABF BaTiO3/Ag interface: 

We attach an Annular Bright Field (ABF) Transmission Electron Microscopy 

(TEM) image of BaTiO3/Ag interface. Notice that silver grows polycrystalline and 

an amorphous layer is observed between the silver and barium titanate regions.    

Figure A5. ABF TEM images BTO/Ag interface. 
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