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a b s t r a c t

Cyanobacterial Harmful Algal Blooms (CyanoHABs) in lakes and reservoirs have increased substantially
in recent decades due to different environmental factors. Its early detection is a crucial issue to
minimize health effects, particularly in potential drinking and recreational water bodies. The use
of Autonomous Surface Vehicles (ASVs) equipped with machine vision systems (cameras) onboard,
represents a useful alternative at this time. In this regard, we propose an image Semantic Segmentation
approach based on Deep Learning with Convolutional Neural Networks (CNNs) for the early detection
of CyanoHABs considering an ASV perspective. The use of these models is justified by the fact that
with their convolutional architecture, it is possible to capture both, spectral and textural information
considering the context of a pixel and its neighbors. To train these models it is necessary to have data,
but the acquisition of real images is a difficult task, due to the capricious appearance of the algae
on water surfaces sporadically and intermittently over time and after long periods of time, requiring
even years and the permanent installation of the image capture system. This justifies the generation of
synthetic data so that sufficiently trained models are required to detect CyanoHABs patches when they
emerge on the water surface. The data generation for training and the use of the semantic segmentation
models to capture contextual information determine the need for the proposal, as well as its novelty
and contribution.

Three datasets of images containing CyanoHABs patches are generated: (a) the first contains real
patches of CyanoHABs as foreground and images of lakes and reservoirs as background, but with a
limited number of examples; (b) the second, contains synthetic patches of CyanoHABs generated with
state-of-the-art Style-based Generative Adversarial Network Adaptive Discriminator Augmentation
(StyleGAN2-ADA) and Neural Style Transfer as foreground and images of lakes and reservoirs as
background, and (c) the third set, is the combination of the previous two. Four model architectures
for semantic segmentation (UNet++, FPN, PSPNet, and DeepLabV3+), with two encoders as backbone
(ResNet50 and EfficientNet-b6), are evaluated from each dataset on real test images and different
distributions. The results show the feasibility of the approach and that the UNet++ model with
EfficientNet-b6, trained on the third dataset, achieves good generalization and performance for the
real test images.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years, Cyanobacterial Harmful Algal Blooms
CyanoHABs) have become a worldwide concern since they pose
threat to human health, animals, and aquatic ecosystems [1,2],
ausing also economic damages [3]. The occurrence of CyanoHABs
s due to different environmental factors, such as cyanobacte-
ial and cyanotoxin diversity, nutrient concentration, buoyancy
egulation, light level, water temperature, and hydrological and
eteorological conditions [1]. In recent decades CyanoHABs have

apidly increased in tropical/subtropical lakes and worldwide
eservoirs [4].

Currently, there are different approaches and techniques for
onitoring CyanoHABs, such as microscopy-based technique,
hemistry, flow cytometry, enzyme-based assays (ELISA), DNA,
nd remote detection [5,6]. Each of these methods differs in its
bility to monitor different targets (e.g., cell vs. toxin detection,
r detection vs. identification) and also possesses different limita-
ions during the detection phase [5]. Indeed, they are expensive,
equiring a lot of time, labor, and knowledgeable professionals
n the field, and with the proliferation of CyanoHABs in lakes
nd reservoirs around the world, they are no longer sufficient for
onitoring.
Vision-based remote-sensing monitoring studies of CyanoHABs

se satellite with hyperspectral imagery [7–11]. The study in [12]
entions that the most commonly used remote sensing spectral

ndices to identify CyanoHABs are: band ratio index, normalized
ifference vegetation index (NDVI), maximum chlorophyll index
MCI), and floating algae index (FAI). However, these types of
ethods present certain problems: satellite data are not easily
ccessible, they are expensive and only historical data can be
btained. Added to this is the problem that CyanoHABs emerge
t the water surface unpredictably, depending on many out-of-
ontrol factors, as well as its capability to emerge and submerge
everal times a day. Therefore, there is a need to develop new
ccessible and inexpensive approaches for efficient monitoring of
yanoHABs that are adapted to the dynamic nature of these algae,
nd that are capable of detecting them when they appear on the
ater surface.
The use of Autonomous Surface Vehicles (ASVs) to measure

ater quality and track the proliferation of CyanoHABs in lakes
nd reservoirs is increasing. They can collect spatio-temporal dy-
amic information and allow a better understanding of CyanoHABs
13–15]. In addition, their detection helps ASVs to navigate to-
ard Regions of Interest (RoIs) where blooms are located. This

eads to unnecessary energy consumption and runs the risk
f discharging the ASVs batteries (with a limited capability)
ery fast, before having completed the mission of tracking the
yanoHABs [16]. Machine Vision Systems (MVSs), onboard ASVs,
re excellent tools to analyze images from the scene and to
etermine the presence of harmful algae or not. Images of RoIs
ith algae exhibit both, spectral and textural information, which

s extracted by considering the spatial context of each pixel

nd its neighbors. Deep learning-based semantic segmentation

2

methods, due to their convolutional nature, can simultaneously
capture both types of information, which together with their high
performance in multiple domains, make them good candidates
to detect possible CyanoHABs patches in images from the ASV
perspective. Textural differentiation represents a substantial con-
tribution to the exclusive use of the chromatic indices mentioned
above, representing an important contribution and novelty in this
domain.

To validate the proposed semantic segmentation models, a
powerful and representative dataset is always required. Two
problems arise in this regard. On one hand, to the best of our
knowledge, there is no publicly available dataset of images with
CyanoHABs captured with MVSs onboard ASVs. On the other
hand, collecting sufficient images using ASVs in reasonable time
periods is a very difficult task. This is due to the unforeseen
dynamic behavior of the algae. Indeed, their occurrence on the
water surface over time and in certain time periods cannot be
guaranteed. Therefore, even if ASVs equipped with MSVs are
available, it is not possible to obtain sufficient data to train
and validate semantic segmentation models in reasonable time
periods, and it is even necessary to wait several years, with no
guarantee of being able to do so.

In order to have as many CyanoHABs patches in images as pos-
sible, without needing to wait for them to appear in a more or less
capricious fashion and for years, we got inspired by [17], which
indicates that carefully artificially created data can provide results
that are almost comparable to real data, and by applications of
data augmentation in medical imaging [18–21] to propose the
creation of several datasets of synthetic images in a suitably
structured way to have deep-learning models available without
having to wait for blooms to appear on the water surface.

The main contribution and innovation are the generation and
comparison of three types of synthetic image datasets for eval-
uating semantic segmentation models based on Convolutional
Neural Networks (CNNs):

(a) R-CyanoHABs, which is built by assembling real patches
(foreground) on real lake and reservoir images (background),
from aquatic environments. The real patches are extracted from
real images, which are not part of this dataset or of real test
images, containing CyanoHABs and manipulated by image aug-
mentation strategies, including rotation and translation, before
fusing them to the background images.

(b) S-CyanoHABs, which is built by assembling synthetic
patches (foreground) on real lake and reservoir images (back-
ground) coming from aquatic environments. The synthetic
patches are generated with Style-based Generative Adversar-
ial Network Adaptive Discriminator Augmentation (StyleGAN2-
ADA) [22] and refined with Neural Style Transfer [23,24]. We
evaluate the quality of the synthetic patches using two different
approaches: the Fréchet Inception Distance (FID, [25]) for quanti-
tative analysis and the best-performing model on real test images
for qualitative analysis.

(c) RS-CyanoHABs, which is inspired by [19,20,26,27] and con-
sists of the combination of the whole previous two datasets

obtaining a greater variety of data.
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Fig. 1. Summary of the CyanoHABs detection approach from the ASV perspective using deep learning-based semantic segmentation methods.
Fig. 1 outlines this dataset generation process. In the middle
art, the three datasets are shown, while in the upper and
ower left-hand parts the extraction of real and synthetic patches
espectively is represented. The background images, for the com-
osition of new images with real and synthetic patches are
isplayed in the central part on the left, coming from two dif-
erent lakes (Catalonia-Verona and Symphony) and a reservoir
Monfragüe).

Once the three datasets have been built, they are supplied to
hree different segmentation models for training and validation.
n Encoder–Decoder approach is the strategy applied, where
ifferent specific models, based on CNNs, are defined as the
ackbone for the down-sampling Encoder and specific segmen-
ation networks for the up-sampling Decoder, including mask
rediction. The convolutional approach captures both, spectral
nd textural spatial contextual information, existing between a
ixel and its neighbors in images with CyanoHABs patches and
ransmits and propagates it over the different resolution levels of
ncoder–Decoder models, as indicated later in the description of
ethods, Section 2.3. This is the second innovation for the pro-
osed approach. Which, together with the synthetic generation
f data, constitute the heart and reason for the proposal.
Methods such as K -Means [28] or Fuzzy c-Means [29] are

lustering techniques in which a data set is grouped into K or c
clusters with every pixel in the dataset. They try to minimize vari-
ances or distances from points to the center of clusters assuming
equal or similar significance of the spectral information (color)
in the involved variables, which is too strong an assumption in
the case of CyanoHABs, as can be seen in the illustrative example
shown in Fig. 3(c) below, where the bloom is only identified
considering at least two clusters, instead of one, as would be
desirable. This represents another handicap since both methods
require several clusters to be set, and this number is different
depending on the incoming image to be segmented. In this regard,
we want to obtain the widest possible generalization of the
spatial–spectral and contextual characteristics of pixels in the
patches, at the expense, obviously, of increasing the number of
training samples considerably, which is the main objective of
3

this work. These considerations can be extended to clustering
methods other than the above, but which also essentially do
not capture the above-mentioned spatial–spectral and contextual
information. The best-performing model in each dataset has been
evaluated on real test images.

In addition to the proposed strategy for the generation of the
three datasets, which is the main contribution and novelty, the
following additional contributions are also noteworthy:

• CyanoHABs detection from the ASV perspective using deep
learning-based semantic segmentation methods in lakes and
reservoirs.

• We demonstrate the feasibility of generating sufficiently re-
alistic, diverse, and high-quality synthetic CyanoHABs
patches using StyleGAN2-ADA and refined with Neural Style
Transfer.

• We use the synthetic patches to obtain composite images
and then train model architectures for semantic segmenta-
tion on these images, where, thanks to the convolutional
concept, they can extract spatial spectral and contextual
information. The generalization ability on real test images
of the best model is almost comparable to that of the best
model trained on images containing real patches.

• We compare the effect of two data augmentation tech-
niques (basic augmentation and advanced augmentation
based on StyleGAN2-ADA and Neural Style Transfer), where
StyleGAN2-ADA and Neural Style Transfer show remarkable
improvements in generalization performance.

• We perform the comparative analysis of state-of-the-art
semantic segmentation model architectures with encoders
on the three validation datasets. In addition, we evaluate the
best-performing model from each validation set on real test
images coming from different distributions.

The rest of the sections are mainly organized as follows. Section 2
presents the process for data generation, and the methods used
for training and evaluation of the semantic segmentation mod-
els. Section 3 describes and discusses the experimental results
obtained by the data generation and detection methods. Finally,
Section 4 draws the main conclusions of this study.
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Fig. 2. Images of lakes and reservoirs (background images), (a) Verona Lake (top) and Catalonia lake (bottom), (b) Symphony lake, (c) Monfragüe reservoir, shore
(top), and open water (bottom).
Fig. 3. Computing clusters centers and standard deviations, (a-b) RGB and HSV images, and (c) four clusters obtained with K-Means.
. Data and methods

The full image segmentation process consists of two phases,
hich are described below, namely: (a) data preparation, where
he three synthetic image datasets are generated and (b) defini-
ion of the semantic network models, including training, valida-
ion, and testing.

.1. Data preparation

The generation of new images is based on the insertion of
atches of CyanoHABs, which constitute what we call foreground
mages, on other real base images, which we call background
mages. Thus, the background images are real, and the foreground
mages are either real or synthetic. Real images, background, and
oreground patches are conveniently selected and processed, and
ynthetic images (synthetic patches) are built with the generative
odel StyleGAN2-ADA and refined with Neural Style Transfer.
oreground and background images are conveniently combined
o obtain new composite images.

a) Background images
They are real images of lakes and reservoirs captured by

onsidering the image perspective projection and field of view
f a camera onboard the ASV. These images serve as the basis
or inserting CyanoHABs patches. They contain a broad variety of
ifferent scenes of aquatic environments coming from three lakes
nd one reservoir, collected at different times.
The IntCatch Vision dataset [30] is the first subset of back-

round images. It contains several video sequences and sensor
4

data from different lakes and rivers captured from an ASV. The
IntCatch Vision project drives a paradigm shift in surface water
quality monitoring and management. We select two video se-
quences belonging to Catalonia and Verona lakes respectively.
The selected video sequences were captured at 60 Frames Per
Second (FPS) and each frame has a width and height of 1920 ×

1080 pixels. We extract randomly 200 frames, in their original
sizes, from each video sequence. Fig. 2(a) shows two representa-
tive images from the first subset of background images.

The Symphony dataset [31] is the second subset of background
images. It contains images of the shore of Symphony Lake, in
Metz France. These images were captured by an ASV for more
than three years between 2014 to 2017. We chose 400 images
dated between January and December 2017, 32 images from
each month approximately. The selected images contain different
aquatic scenes of the shore during the four seasons of the year.
Fig. 2(b) shows two representative images from the second subset
of background images.

The third subset of background images comes from a reser-
voir located inside the national park of Monfragüe, Province of
Cáceres, Spain (UTM 39◦ 49′03.0035′′ N, 5◦ 56′, 14.3223′′ W). We
mounted a camera on an ASV to capture two video sequences
from the shore and the open water respectively. Then, we ran-
domly extract 200 frames from each video sequence. Finally, we
crop the bottom part to exclude irrelevant information, such as
the date and time of capture. The final size of the images is
2494 × 1410 pixels. Fig. 2(c) shows two representative images

of this subset.
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Fig. 4. Real patch extraction, (a) image mask, and (b) cropped patch.
Table 1
Color boundaries in HSV space to obtain binary masks and patches from real images.
Parameter Hue (H) (mH ± σH ) Saturation (S) (mS ± σS ) Value (V) (mV ± σV )

Lower 30 5 10
Upper 92 255 255
The final dataset of real background images is built by putting
ogether the three subsets of background images, obtaining a total
f 1200 images from different aquatic environments.

b) Foreground images
The foreground images are the CyanoHABs patches and belong

o two groups: real and synthetic patches. In the following, we
etail the generation process of each type of patches.

b.1) Real patch extraction
They are obtained from real images (one per image) containing

ccumulation of CyanoHABs located on the water surface of lakes
r reservoirs. Fig. 3(a) displays a bloom that emerged and was
ushed by the wind toward the shore. The extraction process is
utlined as follows:

(1) Transform the original RGB (Red, Green, Blue) images to the
HSV (Hue, Saturation, Value) color space, Fig. 3(a–b).

(2) Use the K-Means++ clustering method [28] to obtain four
(K = 4) clusters on the HSV images, Fig. 3(c), and their
corresponding cluster centers.

(3) Select all cluster centers associated with CyanoHABs
patches. Compute the average value (mH ,mS,mV ) of these
centers and the standard deviations (σH , σS, σV ) per chan-
nel (H, S, V ) in the HSV images. Determine lower and upper
limits for each channel by subtracting (lower) and adding
(upper) two times the corresponding standard deviations
for each channel, Table 1.

(4) Binarize each HSV image, so that a logical value of 1 (white)
is assigned to pixels with values within the interval defined
by lower and upper limits, and logical values of 0 (black)
otherwise. Apply the morphological operations of opening,
closing, and erosion (with kernel size 5 × 5) to remove
undesired small holes and spots in the binarized areas.

(5) From each binarized image, extract the black binary region
with the largest area, Fig. 4(a). This region is cropped by
considering its bounding box (mask), Fig. 4(b).

(6) With each mask and its location, extract the real patch
from the corresponding original RGB image. A total of 92
real patches are obtained, which are to be inserted into the
background images.

It is worth mentioning that although K -Means is ineffective for
egmenting bloom clusters in images globally, as explained above,
t is sufficiently valid, with the relaxation of boundaries (lower,
5

upper) for patch extraction, which are those that are inserted into
the background images.

(b.2) Synthetic patch generation
The need to generate synthetic patches arises from the lim-

ited number of real patches of CyanoHABs available. Inspired
in [21,32], we develop a data advanced augmentation technique
supported by Generative Adversarial Networks (GANs) and Neu-
ral Style Transfer to generate realistic, diverse, and high-quality
synthetic patches.

GANs [33] were derived from the game theory in 2014 to
generate synthetic images from real images, used as training. This
generative model consists of two networks that are trained to-
gether: the first network is a generator that creates false images,
and the second network is a discriminator to classify between
real and false images. Based on this approach, several networks
have emerged with impressive performances, including the style-
based Generative Adversarial Networks (StyleGANs) that improve
image quality, training speed, and network model stability [34].

Despite their performance, the images generated by StyleGANs
contain undesired artifacts. In [35] StyleGAN2 is proposed to
improve image quality. Its training requires large data sets to
avoid overfitting in the discriminator, and this lack of images is
an important problem. StyleGAN2-ADA model is proposed in [22],
with an adaptive discriminator augmentation mechanism that
stabilizes the training with a limited dataset, which justifies its
use in this approach. The process is as follows:

(1) Split the real patches into tiles (small patches) of size
256 × 256 pixels as shown in Fig. 5. Tiles that do not con-
tain CyanoHABs are ignored. The reason for splitting into
mosaics is because the number of real patches extracted
and available is low (92 in total), as indicated above, and
the generative model needs thousands of images for train-
ing. The size chosen for these tiles considers that they will
be inserted in the background images to find a trade-off be-
tween the following two facts: larger patches will produce
less data, while smaller patches will not have enough pixels
to be later inserted within the high-resolution background
images.

(2) Train StyleGAN2-ADA with a total of 3114 small real
patches by applying transfer learning from a model previ-
ously trained with the Flickr-Faces-HQ (FFHQ) dataset (a
high-quality human face dataset) [34]. During the train-
ing process, the momentum parameters β and β of the
1 2
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Fig. 5. Splitting real patches into tiles of 256 × 256 pixels, (a) original real patch, and (b) real patch split to tiles.
Fig. 6. Small synthetic patch generation process using StyleGAN2-ADA and Neural Style Transfer.
Fig. 7. Small synthetic patch created on the base of content and style patches: (a) small patch generated by StyleGAN2-ADA (content patch); (b) small real patch
(style patch); (c) final synthetic patch.
generator and discriminator network are set to 0 and 0.99,
respectively, while the initial learning rate is set to 0.0025
and the R1 regularization weight γ to 0.5, after trial and
error. The training phase was completed in approximately
72 h since after that time there were no noticeable im-
provements, achieving a performance of 42.56 FID (Fréchet
Inception Distance).

(3) Once the model is trained, generates 800 small synthetic
patches of size 256 × 256 pixels. By visual inspection,
chose the best 515 small patches, the most realistic and
without black background according to their best FID
values. These patches are refined with Neural Style Trans-
fer [23,24]. Neural Style Transfer in GANs uses deep
learning-based algorithms, by applying a process consisting
of separating and recombining the content of one im-
age with the style of another to produce a new image.
In [23] firstly a deep learning-based algorithm is used to
create high-quality artistic images, which was late im-
proved by the authors of [24] by varying some hyper-
parameters in the original model. This improvement has
inspired our approach. The full process of small synthetic
patches generation is shown in Fig. 6.

(4) Use Neural Style Transfer with VGG-16 [36] to refine the
small synthetic patches generated by StyleGAN2-ADA, us-
ing the generated patches as content patches, and the
tiled real patches as style patches. 75% of the resulting
6

refined patches received texture and color transfer, and
the remaining 25% received texture with color preservation
(following the strategy presented in [37]). Fig. 7 displays
a representative example of refinement with Neural Style
Transfer. The final synthetic patch of size 256 × 256 pixels
has no black parts, the CyanoHABs cover the full image
patch, Fig. 7(c). So, it does not need delimitation and is
inserted as it is on the water surface of the background
image, specifically 3 synthetic patches are inserted.

(c) Image generation: background and foreground composition
The composition process to insert the foreground patches (real

and synthetic) into the background images is summarized as
follows and sketched in Fig. 8 as an illustrative example:

• Apply random augmentation to the foreground image with
the transformation operations listed in Table 2. We use these
transformations under the assumption that their application
generally involves interpolation operations that modify the
spectral characteristics to increase the spectral variability
of the original patches. Moreover, as these patches are to
be fused with the background images, different orientations
and sizes are suitable to cover the widest possible range
of poses and orientations on different parts of the water
surface, on which different spectral shades also appear.
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Fig. 8. Synthesis of the image creation process.
Fig. 9. Annotation example: (a) composite image; (b) annotated regions of interest.
Table 2
Transformations apply to the foreground image.
Transformation Parameters

Rotation An angle of 10◦ to 20◦

Zoom In the range of 0.8 to 1.2
Translation 10 pixels offset along the x and y-axis
Horizontal flip Horizontal flip around the y-axis

• Extract the segmentation mask from the augmented fore-
ground image.

• Resize the augmented foreground image and the mask with-
out distortion if its heights are greater than 900 pixels, as is
the case for some real patches.

• For each subset of background images, a representative im-
age is chosen in order to determine the boundary values of
the X and Y coordinates that correspond exclusively to the
water class, and then intermediate values are set, e.g., for
X every 200 pixels. A random selection of these X and Y
coordinates is then made to insert the foreground patch on
the water surface in the background images.

• Apply a general weighted average, i.e. a fusion-based ap-
proach [38] between the foreground area and the corre-
sponding overlapped area in the background image, so that
spectral features of both are mixed (fused). This operation is
carried out for each spectral channel separately. The weights
assigned to the foreground channels range between [0.80,
0.90], and for each pixel position they are randomly selected.
7

With the image creation process described above, the follow-
ing datasets for training and validation of the segmentation mod-
els are obtained, all with real images from lakes and reservoirs as
background.

• R-CyanoHABs with 1200 images with real patches.
• S-CyanoHABs contain 1200 images with synthetic patches.
• RS-CyanoHABs, a combination of the above two, with a total

of 2400 images. This dataset finally represents the data
augmentation based on StyleGAN2-ADA and refined with
Neural Style Transfer.

2.2. Data preparation for semantic segmentation

Once the three datasets are available, they are conveniently
arranged to be used in the semantic segmentation models. In
this section, we describe the layout of the data for training,
validation, and testing, which are then made available for the
different models described in Section 2.3.

We manually annotate each image, including the ones for
testing, using the Labelme tool [39]. It is an open-source tool
that allows the drawing of polygons, circles, rectangles, and lines
by dragging. Four different regions of interest are annotated, to
distinguish between Blooms, Water, Landscape, and Sky at the
pixel level, as displayed in Fig. 9. It should be noted that the labels
corresponding to the patches are verified taking into account that
they have been previously generated and fused and therefore
their size and position after fusion is known.

The three datasets are randomly split to contain the distribu-
tion summarized in Table 3.
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Fig. 10. Some examples after data augmentation, (a) RGB images, and (b) annotated images.
Table 3
Datasets for training and validation.
Dataset Training set (80%) Validation set (20%)

R-CyanoHABs 960 images 240
S-CyanoHABs 960 images 240
RS-CyanoHABs 1920 images 480

For testing, a set of real test images is selected, not used for
raining nor in validation [40]. With such purpose, 12 have been
aptured with a mobile device Galaxy A5 from real environments
quatic scenarios and 6 are selected from the all-public-accessible
eb images. There is not information available on how these

mages were captured, although they come from conventional,
on-remote sensing, capturing devices, and all of them contain
egions with cyanobacterial blooms.

A common and useful practice in deep learning applications is
he application of image augmentation [40], to increase perfor-
ance during training [41]. The more diverse the data, the better

esults [42], avoiding overfitting and facilitating convergence.
his is particularly advantageous when data are not abundant
nough, as in the case of the R-CyanoHABs and S-CyanoHABs
ets that contain only 1200 images each, thus we apply the
asic augmentation consisting of the application of geometric
nd radiometric operations to the input images. While the set
S-CyanoHABs, which is the combination of the other two sets,
ontains 2400 images already augmented based on StyleGAN2-
DA and Neural Style Transfer (advanced augmentation), no other
ype of augmentation is applied.

We apply different image transformations from Albumenta-
ions [43], a fast and flexible open-source library for classical data
ugmentation. The transformations applied to the two training
atasets (R-CyanoHABS y S-CyanoHABs) in the training process
re controlled by an augmentation parameter p defined by each
rocess as displayed in Table 4. This parameter indicates the
ossibility that the process will actually be applied, expressed
n terms of percentage (i.e., p = 0.3 expresses a possibility
f 30%). Importantly, all augmented images, obtained are nor-
alized as part of the training process because the encoder
odels are pre-trained with the ImageNet dataset [44]. The first

our transformations in Table 4 are geometric and the remaining
8

radiometric operations. All the transformations modify the spec-
tral components through the parameter values. The first group
through the applied interpolation process, in the same way as
in the generation of the synthetic patches, explained above, and
the second ones by direct modifications of the specified modi-
fications. The normalization applies re-centering and re-scaling
so that for each pixel, and in each spectral channel, the mean
value (µ) of the dataset of images used for training is subtracted
and divided by the standard deviation (σ). These values are the
ones displayed at entry 9 in Table 4 and are limited to the range
[0,1]. According to [45] this kind of normalization speeds up con-
vergence during training even when data are decorrelated. The
data augmentation process described here is called basic, which
also includes the fusion of foreground and background images,
to distinguish it from what we call advanced data augmentation
based on StyleGAN2-ADA.

Some representative examples after data augmentation are
displayed in Fig. 10.

An important issue concerning all outdoor aquatic images and
specifically the ones containing cyanobacterial blooms, is the
reflection effect on the water surface causing intensity saturation.
In this regard, the Brightness Contrast operation is responsible of
its minimization.

In summary, due to the small number of images available in
the datasets, we apply basic data augmentation, with the opera-
tions displayed in Table 4, to the training set R-CyanoHABs and
S-CyanoHABs. The number of images generated by the augmen-
tation process is controlled by the parameter p, so this number is
not known a priori. While advanced data augmentation is based
on StyleGAN2-ADA and Neural Style Transfer we apply it to the
RS-CyanoHABs dataset.

2.3. Methods for semantic segmentation

Most model architectures based on Deep Learning for semantic
segmentation in common use are based on end-to-end trainable
encoder–decoder structures. Essentially, the encoder gradually
reduces the feature maps and captures higher semantic informa-
tion, and the decoder gradually recovers the spatial information.
The deep of such architectures requires a good selection of images

for training to achieve acceptable performances. This justifies
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Table 4
Transformations applied to the training sets R-CyanoHABs and S-CyanoHABs.
Nº Transformation/operations Parameters

1 Horizontal flip p = 0.5
2 Shift scale rotate p = 0.5, scale limit = 0.5, rotate limit = 0, shift limit = 0.1,

border_mode = 0
3 Resize p = 1, height = 256, width = 256.
4 Perspective p = 0.5
5 Gauss noise p = 0.2
6 Random brightness contrast p = 0.9
7 Random gamma p = 0.9
8 Blur p = 0.5 blur limit = 3
9 Normalize p = 1, µ = [0.485, 0.456, 0.406]; σ = [0.229, 0.224, 0.225]
the data generation/augmentation as an essential part of the
evaluation process of these models in the domain of CyanoHABs
detection. The Encoder–Decoder structures chosen in this study
are: UNet++, PSPNet, DeepLabV3+, and FPN. On the other hand,
he encoders of these models can be built with convolutional
rchitectures (i.e. (CNN)) used specifically for image classification
uch as ResNet and EfficientNet variants, used in this work, acting
s the backbone. All these models are evaluated with the metrics
efined below.
In recent years, these encoder–decoder based models have

eceived much attention because of their performance against
onventional models in terms of speed, accuracy, and conver-
ence during training and inference [46]. In this regard, K-Means
nd Fuzzy c-Means, introduced previously, do not achieve enough
fficient performance in the context of CyanoHABs detection, as
xpressed above. Moreover, the application domains of encoder–
ecoder structures are very diverse, such as autonomous driving,
obotic navigation, industrial inspection, remote sensing, cogni-
ive and computational sciences, medical sciences, agriculture,
nd many others, so its application in the field of CyanoHABs
ooks promising.

a) Encoder–Decoder based models: UNet++, PSPNet, DeepLabV3+
nd FPN
In [47] a comparison between UNet [48] and UNet++ [49] ar-

chitectures is highlighted, concluding that UNet++ outperforms
UNet. Also, in [49] is reported that UNet++ outperforms UNet
with an average IoU of 3.9. The Encoder part evolves towards
a compressed representation of the information, from the input
image, so that through different convolutional layers, combined
with ReLU and max-pooling operations, feature maps with de-
creasing resolutions are obtained. On the other hand, the Decoder
part gradually up-samples the previous layers, achieving high-
resolution feature maps, where the information embedded in
these maps is combined with the spatial–spectral and contextual
information coming from the Encoder, at the same level of res-
olution, via skip connections. In UNet++ the skip connections
consist of a dense convolution block with concatenated convo-
lution layers where the information flows in the feature maps
until it is fused with the corresponding up-sampled block of the
same resolution in the decoder. Such dense connections have the
advantage of propagating the semantic information of the feature
maps from the encoder to the decoder at the levels the decoder is
awaiting, with high efficiency in recovering fine-grained details,
as the ones existing in the CyanoHABs patches.

PSPNet (pyramid scene parsing network) [50] took first place in
the competition for ImageNet Scene Parsing Challenge 2016 [51].
It is a model designed as a pyramid parsing approach that exploits
global contextual information by different region-based context
aggregation. This model contains a pyramid pooling module that
separates the information into feature maps of different scales to
capture different contextual levels in the original image. These
levels are up-sampled according to their resolution and merged

with the first feature map obtained after a first convolution to

9

form the high-level feature map, on which another convolution
is applied to generate the final per-pixel classification.

DeepLabV3+ [52] outperforms PSPNet and its predecessor
DeepLabV3 [53], being an extension of this last one. The Encoder
module in DeepLabV3+ applies atrous convolution to extract and
package the information at different levels of resolution (scales)
into the corresponding feature maps. The Decoder refines the
segmentation results along object boundaries, and consequently
on the boundaries separating the different categories of pixels in
the images, including those defined by the cyanoHABs patches.

The Feature Pyramid Network (FPN) [54] is an extension for
lighter segmentation (in terms of compute and memory) and pro-
duces higher resolution features [55]. FPN consists of a top-down
(encoder–decoder) architecture, with convolutional feature maps
obtained at different pyramidal levels of resolution (hierarchy),
on both encoder and decoder and skip connections joining levels
of the same scale. The model’s predictions are made at all levels
of the pyramid by exploiting the semantic information existing at
those levels.

(b) Encoder architectures: ResNet and EfficientNet
CNNs have become popular in different computer vision tasks,

such as image classification, object detection, image generation,
semantic segmentation, and so on. To increase the efficiency
and accuracy of these networks, scaling methods were devel-
oped, by arbitrarily increasing the depth or width of the CNN
or using a larger input image resolution for training and evalua-
tion [56]. ResNet (ResNet-18 to ResNet-150) [57] applies this type
of scaling, increasing the number of layers and making the model
become very deep with relevant results (it won first place in the
ILSVRC 2015 classification task [44]).

On the other hand, there are methods based on uniform scal-
ing of the network dimensions, such as depth, width, and image
resolution. The EfficientNet family of architectures (EfficientNet-
b0 to EfficientNet-b7) performs this type of scaling achieving
state-of-the-art performances in 2020 in both, ImageNet and
other tasks [56]. Moreover, this model is considered one of the
most efficient models, as it requires fewer FLOPS (FLoating point
Operations Per Second) for inference than other existing mod-
els [56].

Therefore, the weights involved in the encoders (backbone)
of ResNet50 and EfficientNet-b6 in UNet++, FPN, PSPNet, and
DeepLabV3+ segmentation models are initialized with the re-
sults obtained after a pre-training process with the ImageNet
dataset. More specifically, ResNet50 is used by applying arbi-
trary scaling and EfficientNet-b6 with uniform scaling. These
encoders with pre-trained weights allow better results in terms
of accuracy and faster convergence. Results coming from com-
binations of encoders, based on ResNet50 and EfficientNet-b6,
with the above-mentioned segmentation models, are displayed
in Tables 7 to 9.

Pre-training is carried out with the well-known ImageNet
dataset [44], taking advantage of the knowledge embedded in this
dataset. Thus, the initialization exploits the information of this
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Table 5
Summary of methods with references, description, and use.

Method Description Use

1 Image augmentation [40] New images from the existing R-CyanoHABs generation
2 StyleGAN2-ADA [22] Generative model-discriminator S-CyanoHABs generation
3 Neural style transfer [23,24] Combine contrast with style S-CyanoHABs generation
4 Fréchet Inception Distance (FID), [25] Similarity measurement S-CyanoHABs generation
4 K-Means [28], Fuzzy c-Means [29] Clustering methods Justification for semantic methods
5 Albumentations [43] Library for data augmentation R-CyanoHABs and S-CyanoHABs generation
6 Imagenet [44] Dataset Pre-train CNN models
7 UNet++ [49], PSPNet [50], DeepLabV3+ [52], FPN [54] Encoder-Decoder models Semantic segmentation
8 ResNet [57], EfficientNet [56] CNN-based models Encoder backbone architecture
9 Overall Accuracy (OA) [46] Evaluation metric Assessment of semantic models
10 Intersection over Union (IoU) [46,59] Evaluation metric Assessment of semantic models
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dataset in the first part of the network where relevant features
are to be extracted, at least in the first layers, such as boundaries.
Because the domain represented by ImageNet and the aquatic
where CyanoHABs are to be detected are very different, a re-
training is required to achieve a fine-tuning of the weights valid
for CyanoHABs identification, improving the convergence, as ex-
pressed above. On the other hand, the initialization of the decoder
part is based on the initializer proposed in [58], which uses
samples weights from the normal distribution with zero mean
and variance 2/N where N is the number of nodes in the previous
layer. Unlike the encoder, this random initialization is justified
on the basis that the decoder captures more global information
from the images in the dataset, and therefore it does not need
initialization with the underlying information.

(c) Evaluation metrics
Quantitative evaluation of semantic segmentation models can

be performed using pixel-based and overlap-based measures [46].
From the confusion matrix, the number of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN)
pixels are obtained to calculate metrics such as Overall Accuracy
(OA), Precision, Recall (also known as sensitivity) and F1 Score.
Alternatively, commonly used overlap-based metrics are the Dice
coefficient and Intersection over Union (IoU) [46,59], the latter
also known as Jaccard Index. Both metrics can also be calculated
from the confusion matrix, as shown in Eq. (2).

In this study, we choose overall accuracy and IoU to measure
the performance of semantic segmentation models. These metrics
are defined as follows:

Overall Accuracy (OA) = (TP + TN)/(TP + TN + FP + FN) (1)

oU = TP/(TP + FP + FN) (2)

Regarding this choice, it is worth mentioning that OAmeasures
he percentage of pixels correctly classified averaged across all
lasses (four in this approach). It evaluates both, pixels correctly
lassified as belonging to the correct class (TP) and pixels cor-
ectly identified as not belonging to a selected class (TN) against
ll pixels. Although OA is a global metric, when the representation
f a given class is small or relatively small compared to the overall
ize of the image and the rest of the classes, it is possible that
his measure may lead to certain biases as it is including in the
easure how well negative cases (TN) are identified (along with

he positive ones). This is sometimes the case with the identifica-
ion of the class to which cyanobacteria belong. For this reason,
t was thought appropriate to try to consider this bias by using
he IoU measurement coefficient, which excludes TN. Under this
onsideration, these two metrics cover the expectations for the
valuation of the classes present in the images, while the other
etrics, mentioned above, do not contribute anything relevant in

his respect.
10
. Experimental results and discussion

For clarity and better tracking the process and experimental
esults, Table 5 summarizes the different methods applied, to-
ether with a brief description and their use in the different parts
f the proposed approach.
In the following, we present the experimental results and

iscussion. Firstly, the training and evaluation performance of
odel architectures for semantic segmentation with pre-trained
ncoders is introduced. Secondly, the best-performing model is
valuated from each dataset on real test images. Finally, the
esults are discussed.

.1. Training and evaluation

The training process is critical in semantic segmentation in-
olving deep learning. It requires a special analysis to establish
pecific conditions and settings, as a preliminary step to select
he best model (i.e. UNet++, PSPNet, DeepLabV3+, FPN). After
raining, the next step is the performance analysis for each model,
specially considering the use of CNN-based encoders (ResNet,
fficientNet) with their ability to take advantage of transfer learn-
ng. First, we provide the details of the training prior (to find the
ppropriate loss function and optimizer) and of the training itself.
hen, we show the performance results of the selected models
nd architectures for semantic segmentation with pre-trained
ncoders on the three validation sets.

a) Previous considerations and parameter settings
A major issue arising from the three datasets (R-CyanoHABs,

-CyanoHABs, and RS-CyanoHABs) is the well-known class im-
alance, deriving from the inherent nature of the problem. This
appens because the CyanoHABs patches are at a numerical dis-
dvantage concerning the other textures present in the images.
ig. 11 displays the lower number of pixels in that class con-
erning the rest, computed over the images in the three training
ets. Training with such images often leads to the trained network
eing biased towards the larger regions and trapped in local
inima [60]. Therefore, to address this problem, and to minimize

ts effect for better performance, some preliminary experiments
re required. We train FPN with Efficient-b6 considering the 80%
f the R-CyanoHABs dataset (and the remaining 20% for valida-
ion) varying the loss function (to mitigate class imbalance), the
ptimizer, and the number of epochs while keeping the batch size
bs = 4) and the learning rate (α = 0.001). The choice of this
etting is because in other studies, such as in [61], it achieves an
ntermediate performance compared to other models and values.
able 6 provides details about the different settings with six
xperiments and Fig. 12 displays the optimization learning curves
alculated on the loss.
Experiments 1 to 3 show that the loss value is high for both

he training and validation curves displayed in Fig. 12, which
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Fig. 11. Distribution of pixels per class in the three training sets, (a) R-CyanoHABs, (b) S-CyanoHABs, and (c) RS-CyanoHABs.
Fig. 12. Optimization learning curves from the loss function, (a) training, and (b) validation.
Table 6
Results of previous training to find a suitable configuration (α = 0.001, bs = 4).
Nº Loss function Optimizer # Epochs Training loss (%) Validation loss (%)

1 Dice focal Adam 20 11.28 21.50
2 Dice Adam 20 32.82 43.70
3 Tversky Adam 20 6.37 13.61
4 Soft BCE with logits Adam 20 2.27 1.85
5 Dice focal SGD (momentum = 0.9) 50 23.28 30.79
6 Soft BCE with logits SGD (momentum = 0.9) 50 10.10 5.54
Table 7
Performance comparison of model architectures for semantic segmentation (UNet++, FPN, PSPNet, and DeepLabV3+) with encoders
(ResNet50 and EfficientNet-b6) without data augmentation on the two validation sets (R-CyanoHABs and S-CyanoHABs) using the
OA and IoU metrics.
Encoder Architecture R-CyanoHABs S-CyanoHABs

OA (%) IoU (%) OA (%) IoU (%)

ResNet50

UNet++ 97.33 93.80 98.17 95.21
FPN 96.98 92.29 97.87 94.30
PSPNet 95.82 89.61 97.34 93.18
DeepLabV3+ 97.27 92.81 98.01 94.48

EfficientNet-b6

UNet++ 97.66 94.71 98.47 95.75
FPN 97.60 94.28 98.27 95.26
PSPNet 97.12 92.79 97.81 93.71
DeepLabV3+ 97.56 94.17 98.20 94.90
indicates that the model is biased and does not capture relevant
information, leading to underfitting. Furthermore, they all con-
verge to roughly stationary value, achieving a certain stabilization
once a certain number of iterations has been reached. Ideally,
they should all follow the downward tendency until they are
close the ideal value of zero, but this does not happen, which
is why these configurations are discarded. Note that as the dif-
ferent loss functions measure different aspects of the training
and validation phase of each model, they are not directly com-
parable. Nevertheless, their tendencies allow to determine the
performance of each model and reject those that do not have
overall good behavior.
11
In experiment 4, the loss value is minimal for both training
and validation curves, Fig. 12, and this indicates that the learning
algorithm captures all the richness from the data and models
properly in both, the training data, and the new data well.

Softmax Binary Cross-Entropy (BCE) With Logits Loss, is the
replacement of BCE With Logits Loss with some extra additions,
numerically more stable, is also the variation of the original BCE
loss function [62] and it works correctly for unbalanced datasets.

In experiments 5 and 6, which use some of the same loss
functions, optimized with SGD instead of Adam, the training
and validation loss functions decay slowly, Fig. 12, requiring a
larger number of epochs to reach a convergence point. Thus, the
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Table 8
Performance comparison of model architectures for semantic segmentation (UNet++, FPN, PSPNet, and DeepLabV3+) with encoders (ResNet50 and EfficientNet-b6)
ith data augmentation on the three validation sets (R-CyanoHABs, S-CyanoHABs, and RS-CyanoHABs) using the OA and IoU metrics.
Encoder Architecture R-CyanoHABs S-CyanoHABs RS-CyanoHABs

OA (%) IoU (%) OA (%) IoU (%) OA (%) IoU (%)

ResNet50

UNet++ 98.02 94.76 98.33 96.45 98.90 97.44
FPN 97.28 92.84 98.08 95.57 98.36 96.26
PSPNet 97.17 92.41 97.65 94.35 98.47 95.95
DeepLabV3+ 97.70 93.87 98.21 96.00 98.71 96.71

EfficientNet-b6

UNet++ 98.47 95.95 98.62 97.02 99.09 97.97
FPN 98.13 94.89 98.47 96.56 98.80 96.97
PSPNet 97.81 93.87 98.06 95.30 98.62 96.32
DeepLabV3+ 98.13 94.99 98.39 96.38 98.89 97.22
Table 9
Performance comparison of model architectures for semantic segmentation (UNet++, FPN, PSPNet, and DeepLabV3+) with encoders (ResNet50 and EfficientNet-b6)
ithout (WO) and with (W) data augmentation on the three validation sets (R-CyanoHABs, S-CyanoHABs, and RS-CyanoHABs) using the IoU averaged metric per
lass.
Encoder Architecture Blooms (%) Water (%) Landscape (%) Sky (%)

WOa Wb WOa Wb WOa Wb WOa Wb

Results on the validation set R-CyanoHABs

ResNet50

UNet++ 91.30 92.11 96.32 97.39 94.38 95.15 93.20 94.39
FPN 87.56 88.10 95.90 96.36 92.92 93.65 92.79 93.23
PSPNet 81.37 87.36 94.29 96.40 91.98 93.51 90.81 92.38
DeepLabV3+ 89.48 90.50 96.18 97.05 93.31 94.53 92.27 93.38

EfficientNet-b6

UNet++ 93.27 94.72 96.76 98.03 95.00 96.06 93.81 95.00
FPN 91.61 92.07 96.62 97.62 94.85 95.51 94.02 94.35
PSPNet 88.23 89.95 96.10 97.36 94.06 94.92 92.76 93.23
DeepLabV3+ 91.59 92.75 96.58 97.65 94.73 95.39 93.76 94.15

Results on the validation set S-CyanoHABs

ResNet50

UNet++ 94.45 96.61 97.11 98.25 95.27 96.03 93.99 94.91
FPN 91.37 94.07 96.78 97.94 94.87 95.78 94.16 94.50
PSPNet 89.05 91.39 96.49 97.44 94.20 95.10 92.96 93.46
DeepLabV3+ 91.84 95.22 96.80 98.09 94.90 95.93 94.37 94.74

EfficientNet-b6

UNet++ 95.53 97.02 97.46 98.61 95.05 96.74 94.94 95.70
FPN 93.54 95.73 97.16 98.41 95.43 96.60 94.90 95.48
PSPNet 90.08 92.80 96.64 97.96 94.55 95.98 93.57 94.47
DeepLabV3+ 92.27 95.64 97.01 98.32 95.42 96.37 94.91 95.20

Results on the validation set RS-CyanoHABs

ResNet50

UNet++ 96.63 98.88 97.42 96.81
FPN 94.52 98.21 96.60 95.72
PSPNet 93.09 98.44 96.70 95.57
DeepLabV3+ 94.77 98.67 97.12 96.26

EfficientNet-b6

UNet++ 97.57 99.11 97.89 97.32
FPN 95.13 98.79 97.39 96.55
PSPNet 93.66 98.61 97.05 95.95
DeepLabV3+ 95.77 98.88 97.49 96.74

aWithout data augmentation.
bWith data augmentation.
best results are obtained in experiment 4, i.e., it determines the
hyperparameters and settings used for the experiments reported
below.

(b) Performance evaluation
In this section, we report the quantitative results of the perfor-

ance of model architectures for semantic segmentation on the
hree validation sets, and of course, identify the best-performing
odel on each set.
The model architectures used in the experiments are sum-

arized in Tables 7 and 8 and implemented with the Segmen-
ation Models Pytorch (SMP) library presented in [63], which is
high-level API built over PyTorch, an open-source framework

or machine learning projects. Besides, the training, validation,
nd testing of all these model architectures for semantic seg-
entation, including those carried out during the preliminary
xperiment, are performed independently, using the Google Colab
ervice that provides an NVIDIA Tesla P100 GPU and 16 GB of
emory. Table 7 shows the results without data augmentation
n the two validation sets R-CyanoHABs and S-CyanoHABs, and
12
Table 8 shows the results with data augmentation on the three
validation sets R-CyanoHABs, S-CyanoHABs, and RS-CyanoHABs,
indicating: (1) the backbone CNN-based used in the encoder, (2)
the full architecture, and (3) results on the validation sets. The
results are based on the overall pixel accuracy (OA, percentage
of correctly labeled pixels in the validation set) and the mean
IoU score (i.e., the mean of the class-wise intersection-over-union
score). The IoU is selected because it excludes the TN to avoid
the negative effect of relatively small CyanoHABs patches, as
described above.

In Table 7, all model architectures for semantic segmenta-
tion obtain acceptable but not sufficient performance, e.g., in
the R-CyanoHABs set the difference between the model with a
high mean IoU score and the worst one is 5.10%, and in the
S-CyanoHABs set 2.57%. The results of the models in the S-
CyanoHABs set are slightly better than in the R-CyanoHABs set,
e.g., the difference between the best model in each set is 1.04%.
UNet++ with EfficientNet-b6 achieves a high mean IoU score in
the two validation sets.
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In the following, we highlight the remarkable points of the
results presented in Table 8.

• The performance of all model architectures for semantic
segmentation on the R-CyanoHABs and S-CyanoHABs vali-
dation sets is slightly better than that presented in Table 7,
and on the RS-CyanoHABs validation set the improvement
is noticeable.

• In the three validation sets, all the model architectures for
semantic segmentation combined with different encoders
perform well, the difference between the best and the worst
mean IoU score is 5.56%. This indicates that all models
generalize very well on the validation data, thanks to the
data augmentation (basic augmentation in the R-CyanoHABs
and S-CyanoHABs sets, and advanced augmentation based
on StyleGAN2-ADA and Neural Style Transfer in the RS-
CyanoHABs set) and the strength of the pre-trained weights.

• UNet++ in combination with EfficientNet-b6 and ResNet50
outperforms other architectures, followed by DeepLabV3+,
FPN, and PSPNet. However, the EfficienteNet-b6 encoder
allows UNet++ to score high on the mean IoU in all three
validation sets. Furthermore, the margin between the two
encoders is relatively small (e.g., in the RS-CyanoHABs set,
it is 0.53%). It is clear that UNet++ with its dense skip
connections, along with the encoder depth (EfficientNet-
b6) outperforms in terms of accuracy (OA, IoU) the other
models and architectures, i.e., this extracts conveniently the
underlying information in the images.

• All the architectures combined with EfficientNet-b6 perform
better than with the ResNet50 encoder. ResNet50 contains
48 convolutional layers, one max pool, and one average pool
and EfficientNet-b6 has 668 layers, including 139 convo-
lutional layers. The difference in the number of layers is
significant. It is well known that deeper CNNs can capture
richer and more complex features and generalize better
(an advance over the limited number of images available
for training). This greatly enhances the capture of spatial–
spectral and contextual information embedded in both real
(R-CyanoHABs) and synthetic (S-CyanoHABs) images and
especially when both are used (RS-CyanoHABs). In terms of
accuracy, this demonstrates the great ability of EfficientNet-
b6 to extract features from any data set. This confirms the
use of EfficientNet-b6 in different applications to improve
accuracy and efficiency as it can scale all dimensions of
CNN width and depth. Deeper can capture richer and more
complex features with good generalization and wider can
capture well fine-grained features. All these properties are
present on images containing CyanoHABs patches.

• UNet++ with EfficientNet-b6 has the higher score in mean
IoU on the RS-CyanoHABs set concerning other sets, fol-
lowed by S-CyanoHABs and R-CyanoHABs. The difference
with the second is 0.95%, and with the third 2.02%. More-
over, the other architectures (FPN, PSPNet, and DeepLabV3+)
regardless of the encoder, obtain better results on the RS-
CyanoHABs set, followed by S-CyanoHABs and R-CyanoHABs.
Thus, it is proved that model architectures for semantic seg-
mentation trained with advanced data augmentation based
on StyleGAN2-ADA and Neural Style Transfer outperform
basic augmentation, as they bring more variability to the
dataset to further improve the training process. In addition
to the better performance of EfficientNet, it is clear that
the structure of UNet++ with its dense skip connections,
at all levels of resolution, contributes to the better perfor-
mance of this architecture as a whole, and therefore, the
capture of spectral and contextual information in relation
to the CyanoHABs patches is guaranteed. Although there
13
are not enough real data available, which has motivated the
approach of generating synthetic data and combining them
with real data, the results obtained allow the prediction that
the proposed scheme will provide satisfactory results when
real data are used exclusively.

The results without (WO) and with (W) data augmentation re-
garding the comparison of averaged IoU scores per class in the
three validation sets are shown in Table 9, indicating in the first
two columns the encoder and model architecture for semantic
segmentation, and in the last four columns the classes of interest.

In Table 9, the UNet++ model with EfficientNet-b6 trained
with data augmentation (basic or advanced) obtains the best
results for the four classes (Blooms, Water, Landscape, and Sky)
in all three validation sets. Moreover, all the classes obtain their
highest score in the RS-CyanoHABs set (advanced augmenta-
tion), followed by S-CyanoHABs (basic augmentation) and R-
CyanoHABs (basic augmentation). For example, for the Blooms
class, the difference with the second one is 0.55% and with the
third one 2.85%.

To further study the effect of water reflections, which cause
intensity saturation in the images, several experiments have been
carried out by varying the parameter p in the basic augmentation
operation corresponding to Brightness Contrast, Table 4. In some,
we have left the possibility of applying this operation to the
maximum (p = 1), in others without the possibility of applying
it (p = 0), and in the rest with an intermediate possibility
(p = 0.5). With respect to the results of the previous table, no
noteworthy improvements have been observed, since the best
case has meant an improvement of 0.05% in the Water class with
p = 1, always with the architecture UNet++ and EffcienteNet-b6.
In other classes, such as Blooms, the results have worsened. With
p = 0 and 0.5 the results have also worsened. This leads to the
conclusion that the value of p = 0.9 (Table 4) is appropriate for
such models.

The highest scoring class of the UNet++ model with
EfficientNet-b6 in the RS-CyanoHABs validation set is for the
Water class, followed by Landscape, Blooms, and Sky. While
in the S-CyanoHABs set the Blooms class ranks second (only
surpassed by Water), followed by Landscape and Sky, and in the
R-CyanoHABs set, the highest scoring class is Water, followed
by Landscape, Sky, and Blooms. Again, as previously indicated,
the use of very deep models in conjunction with skip dense
connections achieves good results. This allows us to hypothesize
that it is very likely that the behavior of these architectures with
any real data will be equally efficient. The following section is a
confirmatory test of this hypothesis, verified with the real data
available at this moment.

The benefits of using synthetic imagery to validate models are
further discussed in Section 3.3.

3.2. Testing

In this section, we report the quantitative and qualitative
results of the best-performing model from each dataset on real
test images, always with the encoder EfficientNet-b6 as backbone
and the UNet++ architecture, as the best-performing model from
each dataset, as indicated above.

Table 10 shows the quantitative results without and with data
augmentation (basic and advanced depending on the augmented
dataset) for each dataset, indicating in the first four columns the
classes of interest, and in the last two columns, the mean IoU and
the averaged OA.

Table 10 shows the poor generalization performance on real
test images of the model trained without data augmentation
and improved generalization performance on the same images
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Table 10
Quantitative results without and with data augmentation of the best-performing model from each dataset on real test images.

Blooms (%) Water (%) Landscape (%) Sky (%) Mean IoU (%) OA (%)

Without data augmentation

R-CyanoHABs
40.54 52.69 68.47 98.68 65.10 71.55
S-CyanoHABs
39.40 53.02 66.34 97.21 63.99 69.07

With data augmentation

R-CyanoHABs
82.94 79.69 86.83 99.84 87.33 90.19
S-CyanoHABs
84.12 78.32 85.72 98.28 86.61 89.53
RS-CyanoHABs
90.81 79.91 88.07 98.65 89.36 92.76
of the models trained with data augmentation. In particular,
the best-performing model in R-CyanoHABs without data aug-
mentation barely reaches 40.54% in predicting the Blooms class,
while the best-performing model in S-CyanoHABs without data
augmentation only reaches 39.40% for the Blooms class.

Regarding the results with data augmentation, the most in-
eresting results for analysis are those concerning the Blooms,
s it is the region (foreground image) of the fused image that
eceived the augmentation based on StyleGAN2-ADA and Neu-
al Style Transfer in the S-CyanoHABs and RS-CyanoHABs sets.
egarding the other regions corresponding to the background
mage, (i.e. water, landscape, and sky) only minor modifications
ere made concerning data augmentation (e.g., horizontal flip-
ing to the background image at the time of construction of the
-CyanoHABs dataset). In this regard, we can infer that the best-
erforming model in the RS-CyanoHABs set for the Blooms class
btains a high score against other models, for example, the differ-
nce with the best-performing model in the R-CyanoHABs set is
.87%, and with the best-performing model in the S-CyanoHABs
et is 6.69%. These results indicate that data augmentation based
n StyleGAN2-ADA and Neural Style Transfer is a promising
ethod that improves model performance significantly over basic
ata augmentation.
On the other hand, in relation to the effect of reflection, the

ame experiments as in the case of the validation, mentioned
n the previous section, have been repeated for the case of the
asic augmentation Brightness Contrast operation. The conclusion
s the same, i.e. no substantial improvement has been found
hen the saturation is corrected. Only in the Water class, a
light improvement appears with the UNet++ and EfficientNet-
b6 architecture.

Continuing with the results with data augmentation, the dif-
ference between the best-performing model on the R-CyanoHABs
set and the best-performing model on the S-CyanoHABs set is
not much, only 0.72% (mean IoU), indicating that the best model
trained on images containing synthetic patches obtains results
almost comparable to those of the best model trained on images
containing real patches. It is easy to infer, from this reasoning,
that if the number of real images is (considerably) increased,
when sufficient images are available, the best performance is
guaranteed with the models with dense connections (UNet++)
and high depth (EfficentNet-b6).

For illustrative purposes, Fig. 13 shows qualitative results of
the segmentation performed on four representative images of
the real test dataset with the best-performing model obtained
for each dataset (Table 8). Note that we have not applied any
preprocessing to these test images.

The original images in rows 1 to 3 are images from the internet
and are licensed under Creative Commons. The one in row 1 [64]
is licensed under CCO Public Domain, and those in rows 2 [65]
and 3 [66] under CC BY-SA 3.0. The input image in row four
is an image captured in its natural form with a mobile device,

Samsung Galaxy A5. The regions that compose them are similar
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(at least to the human eye) to those of images used for training
and validation.

The model (UNet++ with EfficientNet-b6) with the best per-
formance in R-CyanoHABs predicts cyanobacterial blooms quite
well in terms of density and area coverage, especially in im-
ages one, two, and four. Similarly, the model (UNet++ with
EfficientNet-b6) with the best performance on S-CyanoHABs pre-
dicts almost in a similar way to the previous model and even
manages to outperform in image number 3. On the other hand,
the model (UNet++ with EfficientNet-b6) with better perfor-
mance on RS-CyanoHAB predicts overall better than the previous
two, indicating that the data augmentation based on StyleGAN2-
ADA and Neural Style Transfer has been beneficial. This also
allows indirectly to infer that the generation of real and syn-
thetic patch data is in turn beneficial with this approach, as
RS-CyanoHABs contain both types of images. The use of more real
data clearly guarantees the best performance.

3.3. Discussion

We have been hypothesizing about how to detect CyanoHABs
from a machine vision system onboard an ASV using state-of-the-
art deep learning-based semantic segmentation methods. In the
absence of public or own available data, we have generated syn-
thetic data which allows the validation of the proposed models
for use in real-life scenarios, to have the models trained and ready
for the moment when the cyanobacterial blooms occur. This is
the core of this research, and the results show that the creation
of datasets with this kind of images is an effective alternative
when lacking of enough real-world images. More specifically, the
following facts can be derived.

(1) Results in Tables 8 and 9 show the feasibility of the pro-
posed strategy (data augmentation based on StyleGAN2-
ADA and Neural Style Transfer), especially in the best-
performing model (UNet++ with EfficientNet-b6) trained
on the RS-CyanoHABs set (images with real and synthetic
patches). Moreover, Table 10 (with data augmentation)
and Fig. 13(d) show how well it can detect cyanobacterial
blooms on images coming from two datasets with different
data distributions (change of dataset [67]). This is im-
portant because generally real-world data are moderately
different, i.e., from the ASV perspective, the colorations of
water bodies vary depending on what the sky is like (clear,
cloudy, etc.), the time of day, how polluted it is, the season,
etc. Therefore, with these approaches, lakes, and reservoirs
are characterized as non-stationary environments.

(2) Tables 7 and 8 display that the best-performing model
(UNet++ with EfficientNet-b6) trained on S-CyanoHABs
set (images with synthetic patches generated by StyleGAN2-
ADA and refined with Neural Style Transfer) get a better re-
sult than the best model trained on R-CyanoHABs (images

with real patches). Again, Table 10 and Fig. 13(c) show that



F. Barrientos-Espillco, E. Gascó, C.I. López-González et al. Applied Soft Computing 141 (2023) 110315

w

Fig. 13. Qualitative results with data augmentation of the best-performing model from each dataset on real test images, (a) original images, (b) UNet++

ith EfficientNet-b6 (best-performing model on R-CyanoHABs), (c) UNet++ with EfficientNet-b6 (best-performing model on S-CyanoHABs), (d) UNet++ with
EfficientNet-b6 (best-performing model on RS-CyanoHABs).
-

its generalization ability on real test images was almost
similar to that of this model. From this result we can infer
that the StyleGAN2-ADA model in conjunction with Neural
Style Transfer has succeeded in generating cyanobacterial
patches that are sufficiently realistic in terms of texture,
color, variety, and quality.

(3) Table 10 and Fig. 13(d) show that data augmentation, based
on StyleGAN2-ADA and Neural Style Transfer, provided the
model with a remarkable improvement in generalization
ability on real test images coming from an independent
set. This indicates that the augmentation based on ad-
vanced techniques provides the model with a wider vari-
ety of data than basic data augmentation (horizontal flip,
rotation, etc.).

(4) Tables 8 and 9 show that the models trained on dataset S-
CyanoHABs (images with synthetic patches) have managed
to obtain a high score against other models trained on
R-CyanoHABs (images with real blooms). This makes us un-
derstand that models learn better from virtually generated
data by a computer. It is worth keeping in mind, that a
model trained on a simulated (not very realistic) dataset
that scores high on a validation set does not necessarily
15
will have good generalization on moderately different real-
world data. Evidence of this assertion can be seen in Table 7
where UNet++ with EfficienteNet-b6 trained on the S-
CyanoHABs set without data augmentation obtains on the
validation set an acceptable value of 95.75% mean IoU, but
the same configuration does not generalize well on real test
images obtaining a value of 63.99% mean IoU, Table 10.

(5) Finally, it is worth mentioning, that models with dense
connections (UNet++) and high depth encoder (EfficentNet
b6) are jointly able to properly handle and represent the
underlying spectral and contextual information in images
containing CyanoHABs, which provides sufficient clues to
address this issue with deep models and dense intercon-
nections.

4. Conclusions

Our findings show the viability of the approach of detecting
CyanoHABs from the ASV perspective using deep learning-based
semantic segmentation methods with synthetic images.

In the absence of sufficient real data, we have generated three
synthetic image datasets using the image compositing technique.
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his allows us to have validated models already available for
hen blooms appear on the water surface.
We trained and evaluated four semantic segmentation model

rchitectures (UNet++, FPN, PSPNet, and DeepLabV3+) with two
ncoders as backbone (ResNet50 and EfficientNet-b6), both pre-
rained on ImageNet. We apply basic data augmentation to two
raining sets (R-CyanoHABs and S-CyanoHABs) and data augmen-
ation based on StyleGAN2-ADA and Neural Style Transfer to
he RS-CyanoHABs set. In addition, we use transfer learning and
ine-tuning for better and faster convergence.

StyleGAN2-ADA together with Neural Style Transfer (the latter
as been used for refinement) have succeeded in generating
yanobacterial patches sufficiently realistic in terms of texture,
olor, variety, and quality. Augmentation based on these ad-
anced methods provided the model with a remarkable improve-
ent in terms of generalization performance in the validation set
nd on real test images.
The proposed approach can be applied in different domains

nvolving outdoor images. The most obvious is in the use of ASVs
or the detection of oil spills at sea. As in the case of cyanobacte-
ia, there are not enough images to train semantic segmentation
odels for oil slicks or refined products, as it is necessary to wait

or leaks of this nature to occur. Moreover, these slicks also ex-
ibit similar characteristics as the cyanobacteria patches, in terms
f spatial–spectral and textural information. Another clear area
f application is in precision agriculture for detecting weeds in
aize and cereal fields for site-specific treatments. Weed patches
an be obtained to train the models before the weeds appear so
hat the MVS on board a tractor is ready when the patches appear.
gain, weed patches exhibit spectral and textural information.
In all these scenarios, in general, and particularly in the aquatic

nes, appears the surface reflection effect. In this study, different
xperiments have been carried out to analyze its influence, trying
o minimize the intensity saturation caused by it. The conclusion
s that the proposed network models achieve satisfactory results.
his does not prevent, that in the future the use of polarizing
ilters can be considered as a physical component added to the
VS. Also, and without needing to exclude one from the other,
dditional image radiometric processes, such as homomorphic
iltering, to reduce the lighting component while preserving the
patial textural characteristics, can be very useful. In any case,
he UNet++ with EfficientNet, as backbone, remain as the most
romising models.
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