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Abstract 

Introduction 

The heterodimeric complex, formed by Toll-Like Receptor 4 (TLR4) and its accessory 

protein Myeloid Differentiation factor 2 (MD-2) is responsible of activating the innate 

immune system when sensing the presence of particular pathogen-associated molecular 

patterns (PAMPs) from bacteria. The outer membrane of Gram-negative bacteria is 

primarily populated by lipopolysaccharides (LPS) which are essential for their growth 

and survival. These LPSs are specifically recognized by the TLR4/MD-2 complex as 

follows: an LPS binds to MD-2 inside a deep molecular hydrophobic pocket causing 

molecular rearrangements of the receptorial complex resulting in the dimerization of 

another TLR4/MD-2 unit. TLR4 ectodomains dimerization event brings together the 

TLR4 intercellular domains initiating the activation of innate immune system signaling 

pathways. Interestingly, this activation is not only modulated by naturally occurring 

LPSs from many different Gram-negative bacteria but also by non-naturally occurring 

glycolipids and other non-LPS like molecules. 

Objectives  

TLR4 attracted lots of attention for the finding of new modulators with important 

applications in biomedicine. Several new compounds modulating TLR4 are undergoing 

preclinical and clinical evaluation, for the treatment of sepsis, inflammatory diseases, 

rheumatoid arthritis, and as vaccines and cancer immunotherapeutic agents. However, a 

TLR4 modulator to effectively treat septic shock is yet to be discovered and approved 

for commercialization. Also, TLR4 agonists are sought to develop co-adjuvants for 

antitumoral treatments. Elucidating the molecular determinants that make a given 

molecule to be an agonist or an antagonist of TLR4, and understanding the mechanism 

of the TLR4/MD-2 system, would greatly help the design of new TLR4 modulators.  

The relatively recent elucidation of the X-ray crystallographic structure of the 

extracellular domain of TLR4 in complex with MD-2 has opened new perspectives for 

the research around this challenging receptor. Towards that end, this thesis can be 

divided into three major parts. 

The first one is to assist, by computational techniques, the design of synthetic LPS-like 

and non LPS-like TLR4 modulators by fine-tuning their relative agonist or antagonist 



Abstract 

 

VI 
 

potency through subtle molecular changes. An important effort is made to predict their 

effect on TLR4 and to assess their mode of action. 

A second part is to computationally explain the effect of natural compounds (LPSs) by 

understanding how they interact selectively with some component of the TLR4 

activation pathways, most relevantly MD-2 in complex with TLR4, MD-2 alone, and 

CD14. To unravel atomic details about the molecular recognition mechanism of the 

receptor and about the ligand-receptor interactions of these natural modulators by 

applying molecular modeling and computational chemistry techniques. 

A third part is dedicated to gaining a deeper understanding on the molecular aspects of 

TLR4 activation and signaling by computational approaches. To clarify how minute 

molecular rearrangements on the ectodomain of TLR4 in complex with MD-2 is 

translated into intracellular signaling. This part includes the transmembrane domain of 

TLR4 and its intracellular domain as they both play an important role in the signal 

transmission. Apart from the fundamental knowledge they provide, these findings can 

guide the future development of novel agonists and antagonists of the TLR4/MD-2 

system with promising biomedical applications in sepsis, inflammation, vaccines and 

cancer immunotherapy, among others. 

Results and conclusions 

Regarding naturally occurring modulators, we studied the LPS from Bradyrhizobium 

species. Rhizobia are Gram-negative bacteria able to establish symbiotic relationship 

with legumes and to reduce atmospheric nitrogen into ammonium, thus providing 

nitrogen nutrition for the host plants. Bacteria belonging to the Bradyrhizobium genus 

promote nitrogen-fixing nodules development on roots and stems of both wild-growing 

and cultivated Aeschynomene legumes. It was previously demonstrated that the 

lipopolysaccharide (LPS) macromolecule in Rhizobia plays a key role throughout the 

symbiotic process and that its structural features are altered in response to plant signals. 

Different lipid A structures from Bradyrhizobium were recently elucidated. They are 

highly heterogeneous regarding the number, length and nature of their acyl chains. 

Some contained very long-chains fatty acids and, more surprisingly, a covalently linked 

hopanoid molecule. That novelty prompted us to evaluate the activity these 

Bradyrhizobium lipid As may have on the innate immune system. Experimental studies, 

including cell assays on both murine and human bone marrow-derived macrophages and 
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HEK 293-TLR4/MD-2/CD14 cells, revealed an extremely low capability to elicit an 

immune response. More intriguingly, a potent antagonistic activity towards the toxic E. 

coli LPS was observed. Our computational studies allowed the proposal of plausible 

binding modes of two of these Bradyrhizobium lipid As to the TLR4/MD-2 system. 

These binding modes account for the potent activity antagonizing the binding of E. coli 

LPS to the MD-2/TLR4 complex thus inhibiting its toxic effects. It is likely that the 

TLR4 signaling modulation occurs by direct interaction with the TLR4/MD-2 complex, 

both in its hopanoid-containing and hopanoid-free forms. Our studies do not point 

toward a primary role of the hopanoid moiety in the biological activity regarding TLR4 

signaling. 

With respect to LPS-like synthesis modulators, we studied a group of glucosamine 

derivative. FP7, a glucosamine derivative with two phosphate groups and two myristic 

(C14) FA chains, is active in inhibiting in a dose-dependent way human and murine 

TLR4 activation by LPS. NMR experiments suggest that FP7 interact with MD-2, 

probably inserting its FA chains into hydrophobic binding cavity. We designed new 

TLR4 modulators, based on FP7, and performed structure-activity relationship (SAR) 

studies to understand how their FA chains length determine their potency as TLR4 

modulators. These FP7 variants differ only in FA chains lengths (10, 12, 14 and 16 

carbon atoms). In this study we took into account both the interaction with MD-2 and 

the aggregation properties of the molecules. We reported structural and functional 

biological data demonstrating the ability of novel FP variants to negatively regulate 

TLR4 signaling in different cell model systems. Our computational studies were 

relevant in the context of the SAR study and to propose the rationale for the mechanism 

of binding. Our models suggest that there is an optimum length for the FA chains for an 

appropriate TLR4 antagonist activity related to the binding mode and to the physical-

chemical properties of the FP variants. 

On the subject of non LPS-like modulators we studied amphiphilic 

guanidinocalixarenes. To block abnormal TLR4 signaling in bacterial sepsis, two 

different strategies have been developed. The first one is based on LPS neutralization by 

the formation of noncovalent adducts with cationic compounds thus preventing LPS 

from interacting with the receptors. The second strategy is based on the use of 

molecules that compete with endotoxic LPS in binding to the same site on CD14 and 
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MD-2, thereby inhibiting the induction of signal transduction by impairing LPS-

initiated receptor dimerization. Among the amphiphilic guanidinocalixarenes studied, 

we included one whose activity in this biological context had previously been reported 

as reference compound. Its biological activity was associated with its capacity to bind 

and neutralize LPS as topomimetic of LPS-binding peptides. Our computational studies 

challenged this view. We hypothesized that calixarene-based facial amphiphiles could 

also be suitable as scaffolds to obtain TLR4 ligands with antagonist activity. In a 

biological context, amphiphilic calixarenes showed remarkable properties significantly 

related to their amphiphilicity. Since we hypothesized that calixarene derivatives could 

directly bind to human and murine MD-2 and CD14 in a similar fashion than LPS, we 

preliminarily performed docking calculations to support this mode of interaction. In 

addition, we studied whereas the TLR4 antagonist activity is a rather general property of 

positively charged amphiphilic calixarenes and if this antagonist effect also derives 

from the direct interaction of calixarenes with the receptors and not exclusively from 

LPS neutralizing action, as it was suggested. Experimental evidences showed that some 

of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-

stimulated TLR4 activation and TLR4-dependent cytokine production in human and 

mouse cells. Moreover, guanidinocalixarenes also inhibited TLR4 signaling when TLR4 

was activated by a non-LPS stimulus, the plant lectin PHA. These results point at the 

calixarene moiety as a potential scaffold for the development of new TLR4-directed 

therapeutics. 

As for the activation of TLR4, computational studies of the different domains 

composing the TLR4 were undertaken aiming at uncovering details of the mechanism of 

activation of the receptor. Understanding, at the atomic scale, the dimerization of both 

the transmembrane domain and the intracellular domain of TLR4 permitted to favor 

certain binding modes and specific secondary structures, increasing the knowledge 

available regarding the activation. 
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Resumen 

Introducción 

El complejo heterodimérico, formado por el receptor Toll-like 4 (Toll-like receptor 4, 

TLR4) y su proteína accesoria, el Myeloid Differentiation factor 2 (MD-2), es 

responsable de activar la respuesta del sistema inmune innato cuando detecta la 

presencia de patrones moleculares asociados a patógenos (pathogen associated 

molecular patterns, PAMPs), que provienen de bacterias y virus. En concreto, la 

membrana externa de bacterias Gram-negativas está poblada principalmente por 

lipopolisacáridos (lipopolisaccharides, LPS), compuestos que son esenciales para su 

crecimiento y supervivencia. Estos LPS son reconocidos de forma específica por el 

complejo TLR4/MD-2 de la siguiente manera: una molécula de LPS se une a la proteína 

MD-2 dentro de un profundo bolsillo hidrofóbico dando lugar al reordenamiento 

molecular del complejo resultando en la dimerización de otra unidad de TLR4/MD-2. El 

evento de dimerización de los ectodominios del TLR4 hace que se acercan los dominios 

intracelulares que inician la activación de las vías de señalización del sistema inmune 

innato. Curiosamente, esta activación no sólo está modulada por LPS naturales de 

muchas bacterias Gram-negativas distintas, sino también por glicolípidos no naturales y 

otras moléculas de estructura química diferente a los  LPS. 

Objetivos 

El TLR4 es una diana terapéutica de gran interés para la búsqueda de nuevos 

moduladores con aplicaciones importantes en biomedicina. Varios compuestos 

moduladores del TLR4 se encuentran en proceso de evaluación preclínica y clínica, para 

el tratamiento de sepsis, enfermedades inflamatorias, artritis reumatoide, y también 

como vacunas y agentes inmunoterapéuticos contra el cáncer. Sin embargo, hasta el 

momento no hay ningún modulador del TLR4 aprobado para tratar eficazmente el shock 

séptico. Además, se buscan agonistas del TLR4 para desarrollar coadyuvantes de 

tratamientos antitumorales. Elucidar los factores moleculares que hacen que una 

molécula determinada sea un agonista o un antagonista del TLR4, y comprender el 

mecanismo del sistema TLR4/MD-2, sería de gran ayuda para el diseño de nuevos 

moduladores del TLR4. 
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La elucidación, relativamente reciente, de la estructura tridimensional del dominio 

extracelular del TLR4 en complejo con MD-2 por cristalografía de rayos X ha abierto 

nuevas perspectivas para la investigación en torno a este receptor. Con ese fin, esta tesis 

se puede dividir en tres partes principales. 

La primera es llevar a cabo, mediante técnicas computacionales, el diseño de 

moduladores sintéticos del TLR4 con estructura, bien similar a los LPSs por un lado, y 

también con otro tipo de estructuras químicas, ajustando sus propiedades como agonista 

o antagonista por medio de la modificación molecular. Se proporcionan los estudios 

computacionales realizados para predecir su efecto sobre el TLR4 y proponer su 

mecanismo de acción. 

En una segunda parte, se trata de explicar la actividad de compuestos naturales (LPS) 

por medio de estudios del modo de unión a algunas de las proteínas implicadas en las 

vías de activación del TLR4: MD-2 en complejo con TLR4, la proteína MD-2 sola, y la 

proteína CD14. El objetivo es desentrañar los detalles atómicos del mecanismo de 

reconocimiento molecular de estos receptores y de las interacciones ligando-receptor de 

estos moduladores naturales mediante la aplicación de técnicas de modelado molecular 

y química computacional. 

La tercera parte está dedicada a obtener una comprensión más profunda de los aspectos 

moleculares de la activación y señalización del TLR4 mediante enfoques 

computacionales. Hemos analizado cómo pequeños reordenamientos moleculares en el 

ectodominio del TLR4 en complejo con MD-2 se traducen en señalización intracelular. 

Esta parte incluye el estudio del dominio de transmembrana del TLR4 y su dominio 

intracelular, ya que ambos son importantes en la transmisión de la señal. Además del 

conocimiento fundamental que proporcionan, estos descubrimientos pueden guiar el 

desarrollo futuro de nuevos agonistas y antagonistas del sistema TLR4/MD-2 con 

aplicaciones biomédicas prometedoras en sepsis, inflamación, vacunas e inmunoterapia 

contra el cáncer, entre otras. 

Resultados y conclusiones 

Respecto a los moduladores naturales, hemos estudiado los LPS de las especies de 

Bradyrhizobium. Los rizobios son bacterias Gram-negativas capaces de establecer una 

relación simbiótica con las leguminosas y reducir el nitrógeno atmosférico generando 
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amonio, proporcionando así nutrición nitrogenada a la planta huésped. Las bacterias 

pertenecientes al género Bradyrhizobium promueven el desarrollo de nódulos fijadores 

de nitrógeno en las raíces y tallos de las leguminosas de Aeschynomene, tanto  de 

crecimiento silvestre como cultivado. Se ha demostadro que el LPS de Rhizobia juega 

un papel clave en todo el proceso simbiótico y que sus características estructurales se 

alteran en respuesta a las señales de la planta. Recientemente, se ha elucidado la 

estructura de diferentes lípidos A de Bradyrhizobium, mostrando ser muy heterogéneos 

con respecto al número, la longitud y la naturaleza de sus cadenas de acilo. Algunos 

contenían ácidos grasos de cadena muy larga y, más sorprendentemente, una molécula 

de hopanoide unida covalentemente. Esa novedad nos llevó a evaluar la actividad que 

estos lípidos de Bradyrhizobium pueden tener en el sistema inmune innato. Los estudios 

experimentales, que incluyen ensayos celulares en macrófagos derivados de médula 

ósea de ratón y humanos, y células HEK 293-TLR4/MD-2/CD14, revelaron una 

capacidad extremadamente baja para provocar una respuesta inmune. Más 

curiosamente, se observó una actividad potente como antagonista del LPS tóxico de E. 

coli. Nuestros estudios computacionales permitieron la propuesta de modos de unión 

plausibles de dos de estos lípidos A de Bradyrhizobium hacia el sistema TLR4/MD-2. 

Estos modos de unión pueden explicar la potente actividad como antagonistas de la 

unión del LPS de E. coli al complejo MD-2/TLR4, inhibiendo así sus efectos tóxicos. 

Es probable que la modulación de la señalización del TLR4 se produzca por interacción 

directa de los lípidos A de Bradyrhizobium con el complejo TLR4/MD-2, tanto en su 

forma hopanoidea como sin hopanoide. Además, nuestros estudios indican que el anillo 

de hopanoide no juega un papel primordial en la actividad biológica con respecto a la 

señalización del TLR4. 

Con respecto a los moduladores sintéticos de tipo LPS, estudiamos un grupo de 

derivados de glucosamina. El FP7, un derivado de glucosamina con dos grupos fosfatos 

y dos cadenas de ácido mirístico (C14), es activo en la inhibición de manera dosis-

dependiente de la activación por LPS del TLR4 humano y de ratón. Los experimentos 

de RMN sugieren que el FP7 interacciona con MD-2, probablemente insertando sus 

cadenas de ácido graso en la cavidad de unión hidrofóbica. Hemos diseñado nuevos 

moduladores del TLR4, basados en la estructura química del FP7, y hemos realizado 

estudios de relación estructura-actividad (structure-activity relationship, SAR) para 

comprender cómo la longitud de las cadenas de los ácidos grasos determina su potencia 
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como moduladores del TLR4. Estos derivados del FP7 difieren solo en las longitudes de 

las cadenas del ácido graso (10, 12, 14 y 16 átomos de carbono). En este estudio, hemos 

tenido en cuenta, tanto la interacción con MD-2, como las propiedades de agregación de 

las moléculas. Los datos biológicos estructurales y funcionales demuestran la capacidad 

de estos análogos nuevos de FP7 para regular negativamente la señalización de TLR4 

en diferentes sistemas de modelos celulares. Nuestros estudios computacionales han 

sido de gran relevancia en el contexto del estudio SAR y para proponer la justificación 

del mecanismo de unión. Nuestros modelos sugieren que existe una longitud óptima 

para las cadenas de ácido graso para una actividad antagonista de TLR4 apropiada, 

relacionada con el modo de unión y con las propiedades físico-químicas de los 

derivados de FP7. 

En cuanto a los moduladores con estructuras de tipo no lipopolisacarídica, hemos 

estudiado guanidino-calixarenos anfifílicos. Para bloquear la señalización anormal del 

TLR4 en la sepsis bacteriana, se han desarrollado dos estrategias distintas. La primera 

se basa en la neutralización del LPS mediante la formación de aductos no covalentes 

con compuestos catiónicos, lo que impide que los LPS interaccionen con los receptores. 

La segunda estrategia se basa en el uso de moléculas que compiten con el LPS 

endotóxico en la unión al mismo sitio en CD14 y MD-2, inhibiendo así la inducción de 

la transducción de señal al alterar la dimerización del receptor iniciado por LPS. Entre 

los guanidino-calixarenos anfifílicos estudiados, como compuesto de referencia, se 

incluyó uno cuya actividad en este contexto biológico había sido publicada 

anteriormente. Su actividad biológica se asoció con su capacidad de unirse y neutralizar 

LPS como topomimético de péptidos de unión a LPS. Nuestros estudios 

computacionales nos han permitido proponer una alternativa a esta propuesta de 

mecanismo. Nuestra hipótesis se basa en que los anfífilos faciales basados en 

calixarenos también pueden ser andamios apropiados para obtener ligandos de TLR4 

con actividad antagonista. En un contexto biológico, los calixarenos anfifílicos 

mostraron propiedades notables relacionadas con su anfifilicidad. Dado que la hipótesis 

de que los derivados de calixareno podrían unirse directamente a los receptores MD-2 y 

CD14 de una manera similar a LPS, hemos realizado cálculos de docking para apoyar 

este modo de interacción. Además, hemos estudiado si la actividad antagonista de TLR4 

es una propiedad general de los calixarenos anfifílicos cargados positivamente y si este 

efecto antagonista también se podría derivar de la interacción directa de calixarenos con 



Resumen 

 

XIII 
 

los receptores y no exclusivamente de la acción neutralizante de LPS, como se sugirió. 

Las evidencias experimentales mostraron que algunos de estos calixarenos eran activos 

en la inhibición, de una manera dependiente de la dosis, de la activación del TLR4 

estimulada por LPS y de la producción de citoquina dependiente de TLR4 en células 

humanas y de ratón. Además, estos guanidino-calixarenos también inhibieron la 

señalización del TLR4 cuando el TLR4 se activó mediante un estímulo que no era de 

LPS, sino la lectina de planta PHA. Estos resultados apuntan a que el esqueleto de 

calixareno puede ser un andamio estructural potencial para el desarrollo de nuevos 

moduladores dirigidos al TLR4. 

En cuanto a la activación del TLR4, se han realizado estudios computacionales de los 

diferentes dominios que componen el TLR4 con el objetivo de descubrir detalles del 

mecanismo de activación del receptor insertado en la membrana celular. La 

comprensión a escala atómica del proceso de dimerización, tanto del dominio de 

transmembrana como del dominio intracelular del TLR4, nos puede permitir el diseño 

de nuevos moduladores que favorezcan ciertos modos de unión que modulen su 

activación. 
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1.1 Scientific background about TLR4 

1.1.1 Historical background 

The lipopolysaccharide-binding protein (LBP) was the first important component of the 

LPS-sensing bimolecular machinery to be discovered; it was reported as early as 1986, 

isolated from rabbit serum1. Three years later, in 1989, the same research team 

performed a number of binding assays using LPS from various origins providing the 

first insights into the propensity of lipid A-containing molecules to bind to LBP.2 A 

year later, Schumann et al. reported the structure and function of LBP.3 Recently, in 

2013, the crystal structure of mouse LPB was reported and deposited in the Protein Data 

Bank (PDB) under the accession code 4M4D.4 

The cluster of differentiation 14 (CD14) was the second component of the LPS receptor 

complex to be found and characterized. The mouse and human CD14 primary structure 

were reported in a 1989 paper, revealing its leucine-rich nature.5 The mouse crystal 

structure of CD14 was reported in 2005 and deposited in the PDB under the accession 

code 1WWL and the human crystal structure in 2012 (accession code 4GLP).6-7 

From a mechanistic point of view, the missing piece of the puzzle, and arguably the 

most important one, was discovered only at the end of the last century. In a 1996 study, 

Lemaitre et al. observed that particular Drosophila mutants reacted differently to fungal 

infection and traced this difference down to a single gene, leading to the understanding 

that the Toll protein of Drosophila is indispensable to the activation of its immune 

system.8 Two years later, Poltorak et al. studied several sub-strains of mice and noted 

that the ones presenting mutation in a gene resembling the Toll gene of Drosophila, had 

lost their LPS responsiveness. Due to its high resemblance and providing that TLR1, 2 

and 3 had already been reported, the gene and the protein it codes were dubbed Toll-

like-receptor 4 (TLR4).9 Together these discoveries revealed that mammals and fruit 

flies are equipped with similar tools to detect the presence of pathogens. The evasive 

protein that activates the innate immunity was finally discovered. Bruce A. Beutler and 

Jules A. Hoffmann were awarded the Nobel Prize in Physiology or Medicine of 2011 

for their findings.10 In 2009, a crystal structure of the TLR4/MD-2/LPS dimer complex 

was reported, known as the active, or agonist, conformation of TLR4. This achievement 

constituted the structural basis for TLR4 activation.11 A more in-depth review of the 

history of the TLRs and their associated adaptors can be found here.12 
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1.1.2 Biological role 

Toll-like receptors (TLRs) are classified as pattern recognition receptors (PRRs) and 

have a primordial role in the activation of the innate immunity. TLRs are trans-

membrane proteins located extra and intracellularly and are specialized in the 

recognition of pathogen-associated molecular patterns (PAMPs).13 TLR4 is the 

mammalian endotoxin sensor.14  

TLR4 represents an interesting case study for several reasons: (i) it is the only TLR that 

requires the presence of an accessory protein (MD-2) to function; (ii) it can activate the 

immune response through two different signaling pathways (cf. 1.1.3 TLR4 activation 

pathways); and (iii) it reacts differently to specific PAMP lipopolysaccharides (LPS), a 

component of the outer membrane of Gram-negative bacteria, that are either agonist or 

antagonist of this receptor depending on minute variation in their structures.15  

Early in the LPS recognition, lipopolysaccharide binding protein (LPB) binds to LPS 

and brings it to cell surface PRR CD14, which delivers it to MD-2 inducing the 

formation of the TLR4/MD-2/TLR4*/MD-2* heterodimer. Both LPB and CD14 are 

essential for detecting small amount of circulating LPS,16 however, greater amount of 

LPS can activate TLR4 in the absence of both LPB and CD14.3, 17 The dimerization of 

two TLR4 ectodomains induces the dimerization of their associated intracellular 

domains, which leads to the recruitment of downstream adaptors and to the activation of 

the intracellular signaling events triggering the immune response (Figure 1.1). The 

binding of an antagonist ligand to the extracellular domain prevents the formation of the 

dimer, and consequently, the intracellular signaling events to occur. 

 
Figure 1.1. Schematic representation of the LPS-induced dimerization of the 
TLR4/MD-2 complex leading to immune system activation. Red arrows indicate motion 
and mutual recognition. (A) Two LPSs are engaged by two distinct TLR4/MD-2 
systems; (B) two TLR4/MD-2/LPS complexes dimerize by protein-protein interactions; 
(C) dimerization brings together the two intracellular TIR-containing domains providing 
a suitable molecular surface for recruiting downstream adaptors. 
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1.1.3 TLR4 activation pathways  

Activation of the Toll-like receptor 4 by lipopolysaccharide or other TLR4 ligands, 

triggers the release of pro-inflammatory cytokines that provoke strong immune 

responses through induction of dendritic cell (DC) maturation and expression of type-1 

interferon genes and of IFN-regulated genes.18 At least two known distinct intracellular 

signaling pathways lead to this immune response, namely the MyD88-dependent 

pathway and the TRIF-dependent pathway. Intracellular TLR4 signaling is mainly 

governed by the Toll/interleukin-1 receptor (TIR) homology domain that is conserved 

in the four major adaptors involved in the signaling (further mentioned by their 

abbreviations in bold):  

- Myeloid differentiation factor 88 (MyD88) 

- MyD88-adapter-like (Mal) protein, also known as TIR-domain-containing 

adapter protein (TIRAP) 

- TIR-domain-containing adapter-inducing interferon-β (TRIF) also called TIR-

domain-containing adapter molecule-1 (TICAM-1) 

- TRIF-related adapter molecule (TRAM), also called TIR-containing protein 

(TIRP), or TIR-containing adapter molecule-2 (TICAM-2) 

The MyD88-dependent pathway is known to regulate early NF-κB activation and 

related inflammatory cytokine production.19 In this pathway, MAL and MyD88 are 

immediately recruited on the molecular surface newly created from the dimerization of 

two TLR4 intracellular domains.  

The TRIF-dependent pathway triggers the secretion of TNF-α which then binds to their 

receptor activating NF-κB, known as late phase NF-κB activation. This second 

activation pathway requires endocytosis of the activated dimer of the TLR4/MD-

2/ligand complex. TRAM and TRIF are recruited by the intracellular domain of TLR4.  

A lot more adaptors are involved in these two pathways; their roles have been 

extensively reviewed.20-21 

1.1.4 Natural LPSs 

Lipopolysaccharides (LPSs) naturally occur as a primary constituent of the outer 

membrane (OM) of Gram-negative bacteria playing an important role toward its 

physicochemical properties. These properties depend on the self-aggregating behavior 
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of LPSs, which is in turn finely tuned by the LPSs molecular structures. The occurrence 

of negatively charged phosphate groups, decorating most LPS, contributes to the 

structure and the low fluidity of the LPS monolayer, because they engage in 

electrostatic interactions with divalent cations such as calcium (Ca2+) and magnesium 

(Mg2+) normally present on the surface of the OM.22-23 This is reflected in bacterial 

resistance to harsh conditions both in the case of extremophiles and in the case of 

bacteria exposed to dangerous external compounds such as antibiotics.24 A plethora of 

other features characterizing the LPS structure have been demonstrated to be involved 

in the capability of the bacteria to resist stress factors.22-23 Given the wide structural 

heterogeneity of LPS structures, it is reasonable to assume that the external environment 

is one of the key drivers in promoting such high structural diversity. This was further 

corroborated by the observation of bacteria belonging to the same species producing 

diverse LPS compounds under different growth conditions.23 

Despite the structural heterogeneity, in general, three different structural domains can be 

identified in most LPSs: a lipid moiety, known as lipid A, and a polysaccharide 

composed of a core oligosaccharide (outer and inner part) and an O-specific 

polysaccharide (Figure 1.2). 

 
Figure 1.2. Schematic representation of the general chemical structure of LPSs 
possessing phosphorylated core regions. S-type LPSs are built up of three distinct 
moieties, termed lipid A, core OS, and the O-chain. Lipid A is embedded in the 
bacterial OM and is the most conservative part of the LPS, whereas the core OS and O-
chain regions are more exposed to the environment and structurally variable. In cases of 
absent or truncated O-chains, the terminology employed is R-type LPS or LOS. 

In the case of absence of the polysaccharide portion, the terminology currently used to 

designate the LPS is lipooligosaccharide (LOS) or rough-type LPS (R-LPS), whereas 

the complete form with all three domains is termed smooth-type LPS (S-LPS).22-23, 25 

The lipid A is the most conserved part of the LPS.26 Despite the general conservative 
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structure, microheterogeneity has also been observed both in the acylation and 

phosphorylation pattern of the lipid A moiety. Briefly, it is worth underlining that fatty 

acids (FAs) can be attached to the glucosamine disaccharide backbone either in an 

“asymmetric” (4+2 e.g. as in E. coli lipid A, Figure 1.4 and Figure 1.7) or a 

“symmetric” (3+3 e.g. as in Neisseria meninigitidis lipid A) fashion. With regard to the 

phosphorylation pattern a plethora of different substituents directly linked to the 

phosphate groups have been detected including a further phosphate unit or additional 

sugar residues, such as aminoarabinose or uronic acid units, as well as a 2-aminoethanol 

group (EtN).26 

1.1.5 TLR4 activation by LPS/lipid A and structural insights 

The quest to find novel TLR4 modulators for clinical applications, especially 

modulators with known LPS-like structure, has been going on for a while and is still 

ongoing. The techniques computational approaches used toward that aim include virtual 

screening (VS) techniques following drug design methodologies.27-28 There are several 

X-ray crystallographic structures of TLR4 from various species and in particular for 

human, several structures are reported in complex with different ligands, details are 

given in Table 1.1. These structures provide many insights into the structural variation 

between the agonist and antagonist conformations, helping us to understand the changes 

taking places at the atomic scale.15 

In the X-ray crystallographic structure of TLR4/MD-2 in complex with the most potent 

agonist known to date, E. coli LPS (PDB ID 3FXI), MD-2 large hydrophobic cavity 

accommodates five fatty acid (FA) chains (Figure 1.3 and Figure 1.4). The sixth FA 

chain, the one in magenta in Figure 1.4b, protrudes from the MD-2 hydrophobic pocket 

toward the partner TLR4 (TLR4*) completing the dimerization interface. The phosphate 

groups of the LPS are anchored to Arg90, Lys91, Ser118 and Lys122 (Figure 1.5) from 

the polar rim of MD-2, and the polysaccharide moiety establishes a network of polar 

interactions with TLR4. Two distinct protein-protein interaction regions have been 

defined between TLR4 and MD-2, termed patches A and B (Figure 1.3), which 

respectively contain residues close to the N-terminal, and to the central domain of 

TLR4. Therefore, all the structural components of the LPS molecule are important for 

binding to, and recognition by, the TLR4/MD-2 complex.29 
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Figure 1.3. Representation of the 3D structure of TLR4/MD-2/LPS. On the left: large-
scale representation showing the intracellular, transmembrane and extracellular domains 
of TLR4/MD-2 in complex with E. coli LPS. 3D Structures correspond to the X-ray 
crystallographic structure for the extracellular domain (PDB ID 3FXI) and homology 
modeling for the transmembrane and intracellular domains. On the right: a close-up 
look at the TLR4 extracellular domain (purple) along with MD-2 (yellow) and LPS 
(CPK colors with C atoms in green) from PDB ID 3FXI. 

 
Figure 1.4. Representation of the LPS in complex with TLR4/MD-2. (a) Detail of the 
3D structure of the complex between TLR4/MD-2 and E. coli LPS (CPK colors with C 
atoms in green and R2 C atoms in magenta) from the X-ray crystallographic structure 
(PDB ID 3FXI); (b) chemical structure of E. coli lipid A. The R2 FA chain (magenta) 
placed at the channel of MD-2 completes the dimerization interface. 

Lipid A is composed of FA chains of different lengths attached to a 1,4-β-

diphosphorylated diglucosamine backbone.26 The agonistic activity of lipid A has been 

mainly attributed to the number, length and chemical structure of its FA chains, as well 

as to its phosphorylation degree and the number and types of substituted groups 
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attached to the phosphates.26 Recent findings have questioned this paradigm as an 

occurrence of immunostimulatory LPSs bearing penta-acylated lipid As and positively-

charged residues decorating their lipid As have been reported.30-31 These data suggest 

that subtle changes in lipid A structure may profoundly impact the innate immune 

response. 

Regarding LPS recognition by MD-2, the placement of the sixth FA chain into a 

specific hydrophobic channel of MD-2 assists the binding with TLR4* (Figure 1.4).32-33 

The general assumption is that Phe126 is the “molecular switch” in endotoxic signaling. 

Upon lipid A/LPS binding, the flexible MD-2 protein experiences a local 

conformational change involving the side chain of Phe126 and the surrounding residues: 

the loop formed by residues 123-129 (Figure 1.5).34 

 
Figure 1.5. Superimposition of the X-ray crystallographic structures of the agonist 
(magenta) and the antagonist (green) conformations of MD-2 from PDB ID 3FXI and 
2E56, respectively. Bound ligands have been hidden for clarity (E. coli LPS in 3FXI; 
three myristic acids in 2E56). Conformational change of the molecular switch Phe126 is 
marked by an orange double arrow. 

Interestingly, tetraacylated lipid IVa, a lipid A precursor, binds in an antagonistic 

manner to human MD-2, whereas it binds in an agonist manner to mouse MD-2.35 This 

causes a proinflammatory effect in mouse cells (agonism), but no effect in human. This 

behavior was also studied in other mammalian species. For instance, lipid IVa is a weak 

agonist of equine cells, while it antagonizes lipid A-induced activation in dogs. X-ray 

crystallographic structures of hMD-2/lipid IVa (PDB ID 2E59) and mMD-2/lipid IVa 

(PDB ID 3VQ1) complexes, reveal that four FA chains of lipid IVa are inserted into the 
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MD-2 pocket, occupying a similar volume in both human and mouse TLR4/MD-2, 

although with different consequences: exerting an agonist activity in human and an 

antagonist activity in mouse. From the crystal structures, one can see that the orientation 

of the lipid IVa is rotated by 180° in the di-saccharide plan thus lipid IVa presents two 

different molecular patterns of interaction for human and mouse (Figure 1.6).34, 36-37 

These different binding modes of lipid IVa, which determine how the phosphate groups 

interact with the TLR4/MD-2 complex, may be crucial to explaining its distinct 

behavior in different species. This illustrates the importance of scrutinizing the key 

ligand/receptor interaction to rationalize the mechanism for TLR4 modulation. 

 
Figure 1.6. Representation of type A (antagonist-like) binding mode as known from 
lipid IVa in PDB ID 2E59 (on the left) and type B (agonist-like) binding mode as for E. 
coli lipid A in PDB ID 3FXI (on the right). 
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Table 1.1. X-Ray crystallographic structures of TLR4 deposited in the Protein Data 
Bank. (a) The structures are noted as multimer when two TLR4/MD-2 heterodimers are 
found in the structure. (b) Non-natural complexes. (c) Escherichia coli LPS. (d) Re-
chemotype of Escherichia coli LPS. (e) Human TLR4 polymorphism D299G and 
T399I. (f) Human TLR4 decoy receptors constructed by combining LRR modules from 
TLR4 ectodomain and variable lymphocyte receptors (VLR) from jawless fish. (g) 
Three units of myristic acid. 

PDB ID Organism Proteins Ligands Structurea MD-2 
conformation 

Resolution (Å) 

3FXI11 Human TLR4/MD-2 LPSc Multimer agonist 3.10 

4G8A38 Human TLR4/MD-2e Re-LPSd Multimer agonist 2.40 

3ULA39 Human-inshore 
hagfish hybridf 

TLR4 fragment/ 
MD-2 E55 Heterodimer

b antagonist 3.60 

3UL7, 
3UL8, 
3UL939 

Human-inshore 
hagfish hybridf TLR4 fragment None monomer - 2.37, 2.50, 2.45 

2Z6536 Human-inshore 
hagfish hybrid 

TLR4 fragment/ 
MD-2 E55 heterodimer

b antagonist 2.70 

2Z6336 Human-inshore 
hagfish hybrid TLR4 - monomer - 2.00 

2Z6236 Human-inshore 
hagfish hybrid TLR4 fragment - monomer - 1.70 

2Z6636 Human-inshore 
hagfish hybrid TLR4 fragment - tetramerb - 1.90 

2E5634 Human MD-2 Myristic 
acidg monomer antagonist 2.00 

2E5934 Human MD-2 Lipid 
IVa monomer antagonist 2.21 
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1.2 Computational studies about TLR4: ligand recognition 

1.2.1 Natural LPSs  

Rhodobacter sphaeroides lipid A (RsLA, Figure 1.7)40 has five acyl chains, with one 

unsaturated and two shorter chains than E. coli lipid A. The penta-acyl chain-containing 

RsLA is midway between the agonist (six FA chains) and the antagonist (four FA 

chains) structures. It activates the TLR4 pathway in horses and hamsters while 

inhibiting it in humans and mice, raising questions about the molecular recognition 

process as the horse TLR4/MD-2 sequence is more closely related to the human 

sequence than to the mouse one.  

To clarify the species-specific response, a computational-aided study of the 3D 

structures from the three species was undertaken. Homology models were built for 

horse and hamster TLR4/MD-2 with MODELLER41 using human and murine X-ray 

crystallographic structures as templates (PDB ID 3FXI and 2Z64). This study showed 

that Arg385 plays an important role in horse TLR4 complex activation by lipid IVa 

through polar interactions between the guanidinium moiety and the phosphate group of 

lipid IVa.42 In human and hamster TLR4 this residue is substituted by a glycine and by 

an alanine in murine. Autodock Vina generated a docked structure of the horse 

TLR4/MD-2/RsLa complex that closely resembles the pose of lipid IVa in the murine 

crystal structure of TLR4/MD-2. On the contrary, the binding pose calculated for 

hamster MD-2 was similar to the one of lipid IVa in the crystal structure of chicken 

(PDB ID 3MU3) and human MD-2. The difference noticed over the species was mainly 

attributed to the compositional variation of their corresponding proteins. Autodock 

docking studies on hMD-2 revealed that the longest chain of RsLPS could be 

accommodated in MD-2 by undergoing a fold like in the case of Eritoran. The 

diglucosamine polar head is always exposed to the solvent. 

Through molecular modeling, Irvine et al. showed that the different human/horse TLR4 

responses towards RsLA can be attributed to two different amino acids, Gly384 and 

Ser441 in human TLR4 that are Arg385 and Pro442 in horse.43 TLR4 Arg385 in horse, 

although located at around 9 Å from the docked RsLA, is shown to establish a critical 

long-range electrostatic interaction with a phosphate group of RsLA, while Pro442, 

situated near the TLR4* dimerization interface, interacts with a FA chain of RsLA 

through van der Waals interactions. This hypothesis was confirmed by experimental 
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assays using HEK293 cells transfected with G384R/S441P hTLR4 and eqMD-2, and 

R385G/P442S eqTLR4 and hMD-2. It was observed that the R385G/P442S mutations 

in horse caused a complete loss of activity, and that in human the double mutant 

G384R/P441S TLR4 was unable to activate the signaling event. Since the double 

mutation did not restore the activity, other residues must be required. The docking of 

RsLA in human TLR4/MD-2 shares some similarity with the Eritoran crystal structure, 

such as the folding of the longest acyl chain and the polar interaction with charged 

residues of MD-2. RsLPS can adopt two orientations depending on the position of 1-

PO4 (primarily oriented towards TLR4 in horse and towards TLR4* in human). 

Superimposition of docked RsLA with X-ray crystallography structures of lipid A and 

lipid IVa showed that RsLA and lipid A acyl chains occupy more volume than lipid 

IVa. More importantly, the R2 chain of RsLA and lipid A protrudes from MD-2 

establishing interactions with TLR4* unlike the R2 chain of lipid IVa that is folded into 

the MD-2 pocket (Figure 1.4). 

The severe pathogen B. cenocepacia LPS (Figure 1.7) was reported by Di Lorenzo et al. 

to strongly activate human TLR4/MD-2 despite that its lipid A has only five acyl 

chains.30 LPS-induced endotoxic shock experiments in mouse confirmed the 

proinflammatory B. cenocepacia lipid A activity. A combination of docking 

calculations and MD simulations, backed-up by evidence from an experimental study 

involving mutations in the TLR4/MD-2 protein-protein interface, suggested that the 

longer acyl chains allow reaching deeper regions inside the MD-2 pocket, thus 

compensating for the absence of a sixth FA chain and permitting the fifth FA chain to 

be exposed on the MD-2 surface where it interacts with TLR4* to promote 

dimerization. The replacement of Val82 by a phenylalanine enhanced the inflammatory 

response. This was explained by the conversion of Van der Waals interactions into 

stronger CH-π interactions with B. cenocepacia lipid A FA chain, longer than its E. coli 

lipid A counterpart. The molecular model also showed that Ara4N residues provide 

additional polar interactions affecting B. cenocepacia LPS binding to TLR4/MD-2, and 

contribute to the anchoring of the lipid A into the receptor complex through interactions 

with both TLR4 and TLR4*. Interestingly, the presence of the positively-charged 

ammonium groups in the Ara4N seems to favor the electrostatic interactions and, 

consequently, the binding, whereas uncharged amino acids are critical for responses to 

B. pertussis lipid A.31 This TLR4/MD-2/LPSBC model was used to generate a 
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computational mutant, D294A, R322A, S415A* and S416A*, which was submitted to 

MD simulations and energy analysis for quantification of the per-residue contributions 

to the final binding energy using a method called MM-ISMSA.44 This study permitted 

the identification of the mutated residues as major contributors to the total binding 

energy of B. cenocepacia LPS and suggested that the ammonium groups of Ara4N 

stabilize the complex by providing additional anchorage interactions. Altogether, these 

results provide a molecular explanation for the activation of the human TLR4/MD-2 

complex by a penta-acylated lipid A. 

1.2.2 Synthetic LPS mimetics 

TLR4 ligands, inspired by the LPS structure, have been designed and synthesized. 

Eritoran was one of the first LPS-derivative to enter clinical trials and to reach phase III 

as an antisepsis agent (TLR4 antagonist), but failed to reach approval as the eritoran-

treated group did not outperform the group that received a placebo.45 Eritoran is a 

tetraacylated lipid A derived from the structure of R. sphaeroides Lipid A, although 

antagonist of human TLR4, it is an agonist of mouse and horse TLR4. The species-

dependent activity of Eritoran was investigated in a series of docking calculations, with 

Autodock, in human, mouse and horse TLR4. Homology models based on crystal 

structures were built with the SCWRL4 program46 for the TLR4 of species lacking 

experimentally resolved structure.37 This study revealed non-conserved amino acids that 

are important for the binding of Eritoran: Lys58 in human, which corresponds to an 

asparagine in mouse and a glutamic acid in horse, Lys388, a serine in mouse and a 

lysine in horse, and Gln436, an arginine in mouse and a glutamine in horse. These 

residues are part of non-conserved interaction patterns that are primordial for the ligand 

TLR4-TLR4* bridging role, permitting the dimerization thus determinant in the agonist 

activity of the ligand. 
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Figure 1.7. Lipid A and synthetic lipid A analogues with activity as TLR4 modulators. 
Activity is referred to hTMR4/MD-2. 

In another study by Cighetti et al. new modulators were proposed based on a 

diphosphorylazed lipid X (Figure 1.7), a biosynthetic precursor of lipid A, scaffold 

leading to Compound 1 (Figure 1.8).47 This molecule turned out to be an antagonist of 

both human and mouse TLR4 and was also shown to stimulate CD14 internalization in 

bone-marrow-derived murine macrophages. These findings indicate that Compound 1 

targets CD14 in a TLR4-independent manner. The authors proposed models of 

interactions for Compound 1 with both CD14 and MD-2, derived from docking 

calculation. These models were backed-up by NMR experiments that clearly showed 

FA chain-protein interactions. Due to its favorable solubility properties and its lack of 

toxicity, according to MTT tests, Compound 1 was described as a promising TLR4 

modulator. 
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Figure 1.8. Synthetic LPS mimetics studied by computational approaches. 

Another approach to developing lipid A-based modulator consisted in replacing the 

flexible three-bond β(1→6) diglucosamine linkage by a two-bond β,α(1↔1) glycosidic 

linkage conferring rigidity to the molecule.48 Compound DA193 (Figure 1.8), designed 

out of this new βGlcN(1↔1)αGlcN scaffold, proved to be a dose-dependent antagonist 

of human and mouse TLR4, according to assays performed in HEK293 cells transiently 

transfected with membrane CD14 (mCD14)/hMD-2TLR4, HEK293 cells transfected 

with hMD-2/TLR4 only and assays on human macrophage-like cell line (THP-1). To 
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propose an atomistic understanding of the interactions between the ligand and the 

receptor, MD simulations of 11 ns were run starting from two possible binding 

orientations of the ligand into the MD-2 protein: one with the α-GlcN ring facing the 

Phe126 loop and a second one with the β-GlcN ring facing the Phe126 loop with an 

energy difference similar to the one found for orientations of E. coli lipid A in the 

binding site of hMD-2. Dissociation constants of the MD-2/DA193 complex, calculated 

from MD simulations, gave a binding to MD-2 twenty-fold and three-fold stronger than 

E. coli lipid A and lipid IVa, respectively. It was concluded that the conformational 

rigidity of the βα(1↔1) diglucosamine backbone of the tetraacylated lipid A mimetics 

ensures strong binding to MD-2, in two possible binding poses. 

The commercial TLR4 antagonist IAXO-102 (Figure 1.8) also inspired the rational 

design of TLR4 modulators and probes.49 In a study reported by Ciaramelli et al.50 the 

design was based on a previous docked binding mode of IAXO-102 into MD-2 that 

revealed its capacity to host two ligands simultaneously. A dimeric scaffold with two 

glycolipid units was designed by connecting both units through C4 di-amino and di-

ammonium linkers (Figure 1.8; Compounds 2 and 3). Both compounds were confirmed 

to inhibit TLR4 activation and signaling, in a concentration-dependent manner, in HEK-

Blue™ cells expressing hTLR4. However, these compounds were reported to have a 

very poor solubility in aqueous solution. 

The same IAXO-102 scaffold was used to design fluorescent probes (Figure 1.8; 

Compounds 4 and 5).50 The fluorescein moiety was chosen as the chromophore, and 

two thiourea-based linkers with different lengths attached to the C6 position of the 

glucose moiety were considered. Following a normal mode analysis, Compounds 4 and 

5 were docked in three different conformations of CD14. Calculations predicted binding 

poses in which the fatty acid chains are buried inside both human and mouse CD14 

binding site with the sugar located outside. The thiourea linker and the fluorescein 

moiety establish polar interactions with the hydrophilic rim but no preferred pose was 

reported. The best complexes were submitted to MD simulations and MM-GBSA 

analysis. A hybrid hTLR4/MD-2 model featuring MD-2 in its antagonist conformation 

was built to perform docking calculation. Predicted binding poses were similar to those 

found for CD-14 as the FA chains were inserted in the hydrophobic pocket of MD-2, 

additionally, the fluorescein moiety reached TLR4 in the case of the longer probe. 
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Calculations of the solvent-accessible surface area (SASA) with CASTp51 in both CD14 

and MD-2 showed that both pockets have similar topologies and volumes. The presence 

of a lower number of polar residues at the rim of the CD-14 pocket allows for 

recognition of a wide range of microbial and cellular molecular components, e.g. 

lipopeptides to be transferred to TLR2. In contrast, the selectivity of MD-2 towards LPS 

arises from the polarity of its rim. 

1.2.3 Non-LPS-Like TLR4 Modulators  

The species-specific discrimination of TLR4 ligands by MD-2 is exemplified by 

taxanes, in particular paclitaxel (PTX; Figure 1.9), a proinflammatory murine 

TLR4/MD-2 ligand, which activates the subsequent inflammatory cytokine response.52-

54 Zimmer et al. HEK293 transfected cells to demonstrate that the activation of TLR4 

by PTX requires the presence mMD-2 and either hTLR4 or mTLR4.55 They explained 

the need for mMD-2 to be due to the electrostatic potential surfaces, the hydrophobicity, 

the binding pocket size and the conformation of the loop formed by amino acids 123 to 

130. hMD-2 and mMD-2 have a very large cavity volume that in principle allows either 

lipid IVa, PTX or Eritoran to fit inside. The study of the electrostatic surfaces of 

mMD-2 (PDB ID 2Z64) and hMD-2 (PDB ID 2Z65) with the SYBYL software56 shows 

that the cavities for both structures are close to electroneutral, with mMD-2 being more 

electronegative than hMD-2, especially at the Cys95-Cys105 loop critical for 

MD-2/TLR4 interaction. The electrostatic surface of hMD-2 has three electropositive 

patches corresponding to Lys58, Lys122 and Lys125, which are absent of the mMD-2 

surface. Docking studies were performed with Glide57 using the crystal structure of 

hMD-2 and mMD-2. In the best predicted MD-2/PTX binding poses, the benzamido 

group of PTX is very close to Phe126, suggesting that a π-stacking interaction may exist 

between the two aromatic groups. In addition, Lys125 side chain establishes 

hydrophobic interaction with the phenyl ring. Another key interaction, cation-π, is 

formed between the phenyl group of PTX and Lys122, which is the only different 

amino acid in the MD-2 species-conserved sequence Phe119-Gly123. In MD-2, 

multiple interactions attract the Gly123-Lys130 loop that thus forms a concave surface 

facing the docked PTX. The same loop in the mouse protein is oriented in the opposite 

direction. The presence of a glutamic acid in lieu of Lys122 in mMD-2 leads to a 

completely different binding pose, possibly due to the absence of the cation-π 

interaction.55 Another work by Resman et al. suggests a similar binding mode for 
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paclitaxel and the analogue docetaxel, on the basis of docking performed with Autodock 

in hMD-2 (PDB ID 2E59).54 In this case also, the most favorable docked binding poses 

of both taxanes had the benzoyl group towards the nearby region formed by Ile61, 

Phe76, Leu78, Phe119 and Phe151 of hMD-2. 

 
Figure 1.9. Non-LPS-like TLR4/MD-2 modulators studied by computational 
approaches. 

A Glide-calculated docked binding mode for a prenylated chalcone-type (Xanthohumol; 

Figure 1.9) into the antagonist conformation of hMD-2 (PDB ID 2E59) was reported by 

Fu et al.58 The results highlighted the importance of the H-bonds between OH groups 

from xanthohumol and residues Arg90 and Tyr102. Another H-bond between the OH 

group of the phenolic group and Glu92 was identified. However, this interaction rapidly 

broke during the 50-ns subsequent MD simulation, leading to a final 
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MD-2/xanthohumol complex stabilized by the above-mentioned interactions. An analog 

behavior was found for curcumin (Figure 1.9) from Autodock docking calculations in 

the same crystal structure of hMD-2. The hMD-2/curcumin complex obtained from the 

docking was subjected to MD simulations leading to a pose stabilized by interactions 

with Arg90 and Tyr102. Accordingly, experimental studies of R90A and Y102A MD-2 

mutants pointed toward a direct binding of curcumin to MD-2 in the same binding site 

as LPS. In their model, curcumin occupies a large part of the hydrophobic pocket and 

forms H-bonds with residues Arg90 and Tyr102, stable along the simulation trajectory. 

Once again, the H-bond with Gly92 was broken during the simulation. MD simulations 

revealed that the presence of the ligand stabilizes the complex. Indeed, apo MD-2 

suffers an important conformational change that reduces the volume of its hydrophobic 

cavity entrance. This finding is in agreement with other similar MD simulations 

performed on apo MD-2.59-60 On the contrary, bond MD-2 displayed good stability 

along the simulations.61 

Novel TLR4 selective ligands and potent NF-κB activators were identified through cell-

based high throughput screening (HTS), namely substituted pyrimido[5-4-b]indole 

derivatives62 and 4-amino-quinazolines10. From the former family, one hit compound 

was selected (Figure 1.9; R1 = phenyl, R2 = cyclohexyl, R3 = H). A series of 

pyrimido[5,4-b]indole rings with carboxamides substituted with various alkyl, 

cycloalkyl, aromatic and heteroaromatic groups were synthesized and biologically 

tested in order to perform SAR analysis. One of the most active compounds (Figure 1.9; 

R1 = phenyl, R2 = 3,3-dimethylbutyl, R3 = H) was docked in mouse TLR4/MD-2. The 

ligand was predicted to bind within the LPS-binding pocket forming H-bonds with 

residues TLR4 Glu439 and MD-2 Arg90, and multiple hydrophobic interactions with 

the side chains of Leu87, Phe126, Ile124, Phe121, and Phe119 from MD-2.  

A 4-amino-quinazoline (Figure 1.9; R = COOEt, X = H) was identified from the second 

HTS with selective agonist activity on human over mouse TLR4/MD-2.10 The docking 

calculations of this 4-amino-quinazoline with TLR4/MD-2 showed that it establishes 

hydrophobic interactions with Phe119, 121, 126 and Leu87 and makes H-bonds with 

residues Gln436 and Glu439 of TLR4 and Arg90 of MD-2. Two polar nitro oxygens 

from the compound were reported to interact with the nitrogen backbone of Ile124 and 

Lys122 of MD-2. The results from the computational study underlined the importance 
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of Lys122, which is a glutamic acid in mouse that could produce electrostatic repulsion 

with the nitro group. This could account for the decreased activity measured in 

mTLR4/MD-2.10 Several analogs were synthesized for a SAR analysis, to confirm the 

relevant role of the nitro group for the binding and to guide further optimization of the 

lead compound. 

Liquid chromatography-mass spectrometry analysis permitted to unveil that 

sulforaphane (SFN; Figure 1.9) forms a covalent bond with residue Cys133 of hMD-2. 

Covalent docking methods were applied in an attempt to explain the propensity of SFN 

to impair LPS engagement with the MD-2 hydrophobic pocket. The authors proposed a 

model in which SFN, once covalently linked to Cys133, occupies the same position as 

the R3” lipid chain of LPS (cf. PDB ID 3FXI; Figure 1.4b) and XA2 lipid chain of lipid 

IVa (cf. PDB ID 2E59). In their model, SFN is found in close proximity with residues 

Ile46, Phe76, Phe147, Phe151, Val135 and Leu149 of MD-2. This model suggests that 

SFN sterically prevents other LPS/lipid A from approaching and settling inside MD-2 

hydrophobic pocket.63 The same mechanism was reported for caffeic acid phenethyl 

ester through experimental methods.64 

A series of compounds built by functionalizing pyrazole rings was reported by Bevan et 

al. to inhibit TLR4 activation.65 Experimental studies promoted compounds 6 and 7 

(Figure 1.9) to lead inhibitors. These compounds were used for docking studies against 

TLR4 (using the 3D coordinates extracted from the PDB ID 2Z65). The results indicate 

that both compounds independently bind at the surface of TLR4 where a protruding 

loop of MD-2 is normally found in the crystal structure. These predicted binding modes 

suggest that these compounds compete with MD-2 for binding TLR4, thus preventing 

or impairing the formation of the TLR4/MD-2 complex, resulting in a TLR4 unable to 

carry out its innate immunity role. 

Polyphenol procyanidin B1 (Figure 1.9) is able to regulate innate and adaptive 

immunity by, inter alia, impairing LPS-induced inflammatory responses in human 

monocytes.66-68 An attempt to explain its mode of action, combining experimental and 

docking studies, was reported.69 The predicted binding pose presents similar 

interactions between the ligand and TLR4/MD-2 that the ones LPS establishes with 

TLR4/MD-2 in the crystal structure (PDB ID 3FXI). For instance, one of the phosphate 

groups of LPS forms a H-bond with Ser118 of MD-2 where procyanidin B1 is predicted 
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to form a hydrogen bond with Ser120, which is in close proximity of Ser118. In turn, 

the binding mode proposed by the authors suggests that procyanidin B1 impairs TLR4 

signaling by successfully competing with LPS at binding inside the hydrophobic pocket 

of MD-2. 
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1.3 Computational studies of TLR4 mechanism 

1.3.1 Computational studies of the TLR4/MD-2 ectodomain 

Several studies in the literature are focused on the extracellular domain of TLR4 in 

complex with MD-2, investigating both its ability to recognize lipid A and lipid IVa and 

its dimerization/activation mechanism. 

Garate et al. reported short MD simulations of apo-MD-2, TLR4/MD-2 dimer, 

MD-2/lipid A, MD-2/lipid IVa and TLR4/MD-2/lipid A complexes.70 Their results 

highlight the hydrophobicity of the MD-2 pocket and its ability to close promptly in an 

aqueous environment. The H1 region, the helix connecting MD-2 with TLR4, was 

reported as a major actor of this event. From these results, the authors suggest a possible 

equilibrium between the open and the closed states of MD-2. Additionally, they noted 

that although the presence of TLR4 reduces the fluctuation of MD-2 it does not prevent 

its hydrophobic pocket to close. Charged phosphates were shown to play a key role in 

the early recognition of lipids impacting the formation of the heterotetramer. The MD 

simulations performed on the TLR4/MD-2/lipid A complex also showed that the 

presence of the ligand energetically stabilizes the complex, indicating cooperation in the 

binding process. 

Evidence of the plasticity of MD-2 has also been observed by DeMarco et al. over 

several MD simulations performed in complex with variably-acylated lipid A molecules 

from E. coli and N. meningitides gram-negative bacteria.71 The information gained from 

these 50-ns simulations led to the conclusion that the level of acylation of these ligands 

greatly influences the final architecture of the dimerization interface, shaping the 

conformation of the TLR4/MD-2 system into an agonist or an antagonist. 

Paramo et al. performed MD simulations of at least 100 ns on the TLR4/MD-2 system 

in complex with different ligands, in which Phe126 was observed to transition from a 

closed (agonist/active conformation) to an open (antagonist/inactive conformation) state 

in the presence of lipid IVa, Eritoran and in the apo-form of the receptor.59 The 

dimerization interface between the two heterodimers (TLR4/MD-2/TLR4*/MD-2*) was 

destabilized in agonist-free systems, due to the opening of Phe126, which disrupts the 

arrangement of nearby side chains containing Val82, Met85 and Leu87 of MD-2. These 
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simulations are in agreement with NMR studies pointing at the re-orientation of the 

Phe126 aromatic side chain induced by the binding of hexa-acylated endotoxin.72 

MD simulations of TLR4 alone, MD-2 alone, TLR4/MD-2 complex and TLR4/MD-

2/TLR4*/MD-2* complex were reported by de Aguiar et al.73 The simulations of the 

TLR4 ectodomain revealed pronounced conformation and structural alterations in the 

N- and C-terminal domains, showing higher RMSD values compared to the overall 

protein RMSD values. Furthermore, over 100 ns of MD simulation, the distance 

between the N-terminal and the C-terminal regions increased from 5.7 Å to -10.9 Å, 

suggesting a straightening of the TLR4 curvature. In the MD simulations of the 

TLR4/MD-2 complex, these fluctuations and deformations were lessened, indicating a 

stabilizing role of MD-2. MD simulations of MD-2 alone showed high mobility of the 

loops, especially the one containing Lys109 and the region comprising residues Lys55 

and Lys58. Interestingly, the Lys55-Lys58 region does not interact directly with TLR4, 

as one can observed in the crystal structure of the TLR4/MD-2 complex (PDB ID 

3FXI). However, throughout the MD simulation of the TLR4/MD-2/TLR4*/MD-2* 

complex, MD-2 underwent structural rearrangements and interacted with TLR4 and 

TLR4*, reinforcing the idea of a stabilizing role of MD-2 for the TLR4 complexation. 

As already reported in section 1.2.1 Natural LPSs, Anwar et al. performed 

computational studies of the TLR4 signaling mechanism by studying the species-

specific behavior of TLR4/MD-2 in the recognition of RsLA (Figure 1.7).40 In addition 

to the docking, the authors also reported 25-ns MD simulations of the docked 

complexes. Over the simulation, they monitored the local and global mobility, the 

surface accessible solvent area of the ligand and the surface charge distributions of 

TLR4 and MD-2. The GlcN1-GlcN2 backbone was shown to adopt an agonist-like 

conformation in horse and hamster TLR4/MD-2 and an antagonist-like conformation in 

human and murine TLR4/MD-2. Additionally, the Phe126 MD-2 loop, from residue 

123 to residue 129, containing the on/off switch Phe126, proved to be less stable in the 

human and the murine complex, than in the horse and the hamster ones. The RMSD of 

the MD-2 loop from residue 81 to residue 89, which interact with TLR4* thus 

mediating the dimerization event, showed greater variations in humans and mice than in 

horses and hamsters. These data suggest a relationship between the flexibility of both 

loops (residues 81-89 and residues 123-129) and the agonist/antagonist activity of the 
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ligand and provide a plausible explanation for the species-specific behavior of RsLA 

regarding TLR4 activation. 

Computational strategies were also applied to study TLR4 and MD-2 mutants. In a 2009 

study, Slivka et al. used the Rosetta software74 to compare the binding energy of a 

truncated MD-2 with the original one.75 MD-2 was truncated (termed MD-2-I) to keep 

only the residues identified as playing a major role in maintaining the TLR4/MD-2 

heterodimer stability. The docking experiment was performed targeting both a partial 

human TLR4 retrieved from the Protein Data Bank (PDB ID 2Z65) and a full-length 

TLR4 humanized model built by mutating the residues at the TLR4/MD-2 heterodimer 

interface in the mouse crystal structure (PDB ID 2Z64) into their human counterparts 

(TLR4: F160L, G234N, K263R, D264N, T290A; MD-2: H96R, H98R). In the first 

case, the affinity of MD-2-I was found higher than the one of the full-length MD-2. 

When docked against the human TLR4 model, MD-2-I exhibited a lower affinity than 

the full-length MD-2. Altogether, these results indicate that MD-2-I is theoretically able 

to bind TLR4 and might even compete with the full-length MD-2. This was confirmed 

by cell assay experiments showing that the addition of MD-2-I abolishes cell 

responsiveness to LPS stimulation. Flow cytometry analyses on HEK293 cells 

transfected with all proteins involved in the TLR4 activation pathway incubated with 

LPS covalently linked to fluorescein isothiocyanate indicate that MD-2-I impedes 

TLR4/MD-2 dimerization. The SEAP assay shows that MD-2-I also alters downstream 

signaling. 

Recently, the critical role of residue Val135 of MD-2, located deeply inside the 

hydrophobic pocket, was reported by Vasl et al.60 hMD-2 has the ability to bind LPS in 

the absence of TLR4, while mMD-2 is responsive to LPS only when engaged in a 

complex with TLR4. Site-directed mutagenesis was applied to hMD-2 to mutate Val135 

to its murine alanine counterpart. This single point mutation led to a mutant 

V135A hMD-2 lacking the ability to bind LPS. A series of 50-ns MD simulations of the 

WT hMD-2 and the V135A mutant hMD-2 in solution and in complex with TLR4 was 

performed to study the conformational changes. In the case of the WT hMD-2, the 

authors reported an abrupt decrease of the SASA and volume in the first nanoseconds of 

the simulation, describing it as a hydrophobic collapse. This phenomenon was not 

observed in the V135A systems, suggesting that Val135 is primordial to confer 
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plasticity to MD-2. This tendency was confirmed by another simulation of MD-2 in 

complex with three myristic acids (as reported in PDB ID 2E26). The V135A 

mutant hMD-2 needed a much longer simulation time to adapt its shape to the three 

myristic acids than the wild type. The authors concluded that this loss of plasticity could 

incapacitate hMD-2 from binding LPS.60 

1.3.2 Computational studies on the intracellular domain of TLR4 

The intracellular domain of the TLR4 transmembrane protein contains a TIR homology 

domain, which is a common feature of all adaptors involved in the initiation of TLR4 

signaling, mediating protein-protein interactions between the TLR4 and the signal 

transduction components. TLR4 has two distinguished signaling pathways involving 

primarily four TIR-domain-containing adaptors. In the first pathway, the MyD88 

adapter-like (Mal) acts as a “sorting” adaptor by recruiting the myeloid differentiation 

primary response gene 88 (MyD88), the “signaling” adaptor, to the plasma membrane. 

In the second pathway, the TRIF-related adaptor molecule (TRAM) plays the role of 

“sorting” adaptor, which recruits the TIR-domain-containing adapter-inducing 

interferon-β (TRIF), the “signaling” adaptor, to the membrane to initiate the signal. As a 

major component of these adaptors, the TIR domain is believed to play a central role in 

the recruitment processes.76-77 

The crystal structures of human TLR1 (PDB ID 1FYV) and TLR2 (PDB ID 1FYW) 

revealed the structural basis of the TIR domain78 followed by the crystal structure of 

TLR10 TIR domain (PDB ID 2J67)79 and the solution structure of MyD88 TIR 

domain resolved by NMR (PDB ID 2JS7 and 2Z5V).80 Prior to that release, two 

homology models of the TIR domain of MyD88 were reported. Both were built based 

on the TLR2 TIR domain crystal structure (PDB ID 1FYW) resolved by X-ray 

crystallography.81-82 In 2012, the crystal structure of Mal was also resolved by X-ray 

crystallography (PDB ID 3UB2).83 

The lack of structural information for the TIR domain of TLR4 has driven the creation 

of models to clarify the recruitment of adaptors from a structural perspective. Dunne et 

al. built monomer models of TLR4, Mal and MyD88 using comparative modeling and 

loop refining techniques.84 They noted differences in the electrostatic surface potentials 

suggesting that adaptor binding is driven by electrostatic complementarity. This point 

was also emphasized in a study by Kubarenko et al. in which they compared the surface 
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charges of TIR domains of the crystal structure of hTLR2 and of the models of hTLR3 

and hTLR4 and noted that the surface charge distribution of the BB loop and the αC-

helix (Figure 1.10) present similarities in TLR2 and TLR4 and differ between TLR3 

and TLR4.85 The authors considered that these findings could explain why TLR2 and 

TLR4 recruit MyD88, whereas TLR3 does not. In their computational study Gong et al. 

highlighted that, whereas the BB-loop is highly conserved among TIR-domains, the 

APBS electrostatic surfaces differ.86 The authors hypothesized that this finding might 

explain the specificity and selectivity of adaptors recruitment. An experimental study 

showed that a single point mutation in the TIR domain of murine TLR4 (P712H) 

renders the system hypo-responsive to LPS stimulation. The authors noted that their 

data does not suggest a direct role for this residue.  

 
Figure 1.10. Intracellular TIR domain of TLR4. (a) 3D representation of the homology 
model with details on its structural composition; (b) FASTA sequence divided by its 
secondary structure elements.  

Dunne et al. used a docking procedure based on hydrophobicity and geometry.84 Their 

results suggest that Mal and MyD88 bind at two distinct, non-overlapping, binding 

sites: the DD- and DE-loops of Mal forming interactions with the BB-loop and αC helix 

of TLR4-TIR domain and the AA- and DD-loop of MyD88 with the CD-loop of TLR4 

(Figure 1.10). The biological relevance of this binding mode was later questioned, as it 

was discovered that TLR4 activation required homodimerization. In line with that, in 

2007, Miguel et al. reported the first 3D model of the dimer of the TIR domain of 

TLR4; a dimer composed of two identical subunits, arranged in a two-fold axis of 

symmetry (Figure 1.11a).87 Despite the observation that some loops are differently 

oriented, the overall monomeric fold and the secondary structure of each subunit are 

very similar to the monomer model reviewed above.84 This dimer model outlines 

significant interactions between the BB-loops of each monomer; for instance, residues 

Phe712 are engaged in homotypic aromatic interactions. A flat, but slightly curved 
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surface, was observed and attributed to the side facing the membrane. The authors also 

reported a docking study of TRAM and Mal with the TLR4 dimeric model in which the 

two adaptors bind at either sides of the dimer interface formed by the union of the two 

TLR4-TIR domains, which are identical due to the symmetry. They noted that both 

adaptors are forming strong interactions with TLR4 Trp757. Mal is also interacting with 

His728, Arg763 and Lys819, whereas TRAM interacts with Glu684, Arg780 and 

Glu824. The residues of the adaptors found at the TLR4 interface are mostly located on 

the BB-loop suggesting that the BB-loop of all three TIR-containing structures is of 

critical importance for binding specificity and selectivity. 

Gong et al. performed a docking study based on the geometry, hydrophobicity and 

electrostatic complementarity of the molecular surface reporting a dimeric model 

different from the model described above.86 The interface is formed by residues Pro714 

to Ala717 from the BB-loop of one monomer protruding into a groove formed by 

residues Cys747 to Ile748 from the αC of the other monomer, and vice versa (Figure 

1.11b). In another study Basith et al. used in silico approaches (homology modeling, 

protein-protein docking and 5.5-ns MD simulations) to investigate the inhibitory effect 

of ST2L toward TLR4 activation. ST2L (IL-33r) is a member of the Toll-like/IL-1 

receptor superfamily known to negatively regulate MyD88-dependent signaling 

pathway.88 The authors reported a TLR4-TLR4 homodimer model very similar to the 

first one reported here87 (as shown in Figure 1.11a), and their docking study also gave a 

similar binding mode for Mal (at each side of the dimer). Their results indicate that 

MyD88 is recruited by Mal, and that ST2L prevents the recruitment of MyD88 by 

binding at the Mal interface. Thus, according to these results, ST2L successfully 

competes with MyD88 to bind at the Mal interface. 
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Figure 1.11. Representation of the different ways the dimer is proposed by published 
computational strategies to be assembled in the literature by computational strategies. 
(a) First reported by Miguel et al.87; (b) reported by Gong et al.86; (c-e) reported by 
Guven-Maiorov et al.56. The monomer has been built by homology modeling, and the 
secondary structure representation has been altered to resemble the other models. The 
dimers have been assembled manually, fitting as best as possible the schemes present in 
each paper, to provide an overview of the variety of binding poses reported so far. The 
dimmers shown do not have the pretention of being as precise as those shown in the 
original papers and should be considered schematic. 

In a later study, Bovijn et al. reported a homology model constructed based on the 

crystal structure of the dimeric TLR10 TIR domain.57 This model is also in agreement 

with the first model reported.87 The authors proposed that Mal and TRAM adaptors are 

competing for binding an extended site formed by the reunion of two TLR4 intracellular 

domains. An experimental mutation study showed that all mutations that impaired Mal 

binding also impaired TRAM binding, strengthening the idea that Mal and TRAM bind 

to the same molecular surface. They define the TLR4/TLR4* dimer interface as binding 

site II, composed of residues from the BB-loop, DD-loop and αC (Figure 1.10). Then, 

they describe that the binding site for TRAM and Mal is formed by the reunion of two 

sites I (as defined in the study: residues from αA αB BB and BC), which is in 

disagreement with the binding site proposed by Miguel et al.87. The authors thus argue 

that their model is supported by experimental data and residue conservation analysis. 

The binding site III is defined as being located at the opposite direction of the binding 

site I and might be implicated in the interferon regulatory factor 3 (IRF-3) activation. 

Singh et al. studied the importance of the highly conserved β-sheets among TLRs’ TIR 

domain and revealed their primordial implications in the communication network. MD 

simulations of 100 ns of models based on sequence similarity were performed.89 MD 

simulations were used to study the long-range interactions between residues separated 

by at least 20 residues in the sequence. They reported interactions between the 

backbone atoms of the first β-sheet with the BB-loop and the third β-sheet. The authors 
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identified four interacting hubs mainly constituted of hydrophobic residues. Among 

them, three are in the β-sheets just before the BB-loop, the αC helix and the DD-loops, 

stressing their role in TIR/TIR interaction. This hypothesis was further supported by 

analyzing the mutations known to completely abrogate signaling. They show that 

mutants IFI767-769AAA and L815A disturb the interacting network, thus explaining 

the impaired TIR domain homodimerization capacity. In a very recent paper by Guven-

Maiorov et al., the authors used computational techniques to describe the architecture of 

the signalosome of TLR4.56 They built three models of the intracellular part of the 

TLR4 protein (Figure 1.11c-e). These three dimer models are all unprecedented despite 

that the secondary structure of the monomer is in great agreement with all of the 

published models. Furthermore, the authors used two of their models (Figure 1.11c-d) 

to propose different binding modes for Mal.  
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1.4 Objectives 
TLR4 attracted lots of attention for the finding of new modulators with important 

applications in biomedicine. Several new compounds modulating TLR4 are undergoing 

preclinical and clinical evaluation, for the treatment of sepsis, inflammatory diseases, 

rheumatoid arthritis, and as vaccines and cancer immunotherapeutic. However, a TLR4 

modulator to effectively treat septic shock is still yet to be discovered and approved for 

commercialization. Also, TLR4 agonists are sought to develop co-adjuvants for 

antitumoral treatments. Elucidating the molecular determinants that make a given 

molecule to be an agonist or an antagonist of TLR4, and understanding the mechanism 

of the TLR4/MD-2 system, would greatly help the design of new TLR4 modulators.  

The relatively recent elucidation of the X-ray crystallographic structure of the 

extracellular domain of TLR4/MD-2 has opened new perspectives for the research 

around this challenging receptor. Towards that end, this thesis can be divided into three 

major parts. 

The first one is to assist, by computational techniques, the design of synthetic LPS-like 

and non LPS-like TLR4 modulators by fine-tuning their relative agonist or antagonist 

potency through subtle molecular changes. An important effort is made to predict their 

effect on TLR4 and to assess their mode of action. 

A second part is to computationally explain the effect of natural compounds (LPSs) by 

understanding how they interact selectively with some component of the TLR4 

activation pathways, most relevantly MD-2 in complex with TLR4, MD-2 alone, and 

CD14. To unravel atomic details about the molecular recognition mechanism of the 

receptor and about the ligand-receptor interactions of these natural modulators by 

applying molecular modeling and computational chemistry techniques. 

A third part is dedicated to gaining a deeper understanding on the molecular aspects of 

TLR4 activation and signaling by computational approaches. To clarify how minute 

molecular rearrangements on the ectodomain of TLR4 in complex with MD-2 is 

translated into intracellular signaling. This part includes the transmembrane domain of 

TLR4 and its intracellular domain as they both play an important role in the signal 

transmission. Apart from the fundamental knowledge they provide, these findings can 

guide the future development of novel agonists and antagonists of the TLR4/MD-2 
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system with promising biomedical applications in sepsis, inflammation, vaccines and 

cancer immunotherapy, among others. 

As a side note, this work took place within an interdisciplinary European consortium 

(http://www.tollerant.eu) of 13 laboratories and industrial partners spanning 6 countries 

and cumulating a broad expertise in chemistry, biology, biophysics, biochemistry, and 

pharmacology.  
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2.1 Simulation of biomolecules 

2.1.1 General introduction about computation of biomolecules. 

Predicting and understanding biological processes and complex chemical reactions was 

one of the great challenges in the 1970s. While classical Newtonian physics was limited 

to analyzing molecules in their ground state, quantum physics was able to simulate the 

excited states of molecules in chemical reactions. However, the limitation of the latter 

was the absence of powerful computers capable of integrating the vast amount of data 

any larger protein would require.1 Advances in this field, which resulted in the 

development of novel theoretical methods and more accurate algorithms, along with the 

increase of computer power, allowed accelerating the time-scale accessible by 

simulation techniques. Computational techniques can now provide an atomistic 

description of the molecular mechanisms for ligand recognition by biomolecules, 

enzymatic processes, solvation, folding events, conformational and allosteric 

transitions, among others.2 Many of these algorithms combine classical and quantum 

physics principles to get a proper description of the (bio)chemical problem. These 

efforts have been acknowledged by the awarding of the Nobel Prize in Chemistry in 

1998 to Kohn (for his development of the density-functional theory) and Pople (for his 

development of computational methods in quantum chemistry),3 and in 2013 to 

Karplus, Levitt and Warshel for the development of multiscale models for complex 

chemical systems.1, 4 In particular, the development of multiscale models of 

macromolecules has allowed the study of a wide variety of biological problems, such as 

protein folding and packing, prediction of macromolecular structures, protein-ligand 

interactions, protein energetics and theories of enzymatic mechanisms.1 Various 

computational techniques are currently available to describe and predict the behavior of 

molecular biosystems on a wide distribution of length and time scales (Figure 2.1). 

Each method is appropriate for a particular range of length and time scales. 
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Figure 2.1. Different computational techniques for a variety of length and time scales 
(illustration retrieved from reference5). 

2.1.2 Quantum mechanics methods: Hartree–Fock and DFT 

Quantum mechanics (QM) is the fundamental theory of physics explaining the behavior 

of atoms and subatomic particles. Mathematically, the changes over time of such a 

system are described by the Schrödinger equations (eq. [2-1]). 

𝑖𝑖ħ
∂
𝜕𝜕𝜕𝜕

|ψ(𝐫𝐫,𝑡𝑡)⟩ = 𝐻𝐻�|ψ(𝐫𝐫,𝑡𝑡)⟩ [2-1] 

In this equation, i is the imaginary unit, ħ is the reduced Planck constant, ∂
𝜕𝜕𝜕𝜕

 indicates a 

partial derivative with respect to t, the time, Ψ is the wave function of the quantum 

system, r is the position vector, and 𝐻𝐻� is the Hamiltonian operator, it characterizes the 

total energy of the system. 

Hartree–Fock (HF) method is a method of approximation for the determination of the 

wave function and the energy of a quantum many-body system in a stationary state. The 

Schrödinger equation (eq. [2-1]) describes the quantum state in an exact way.  

In analogy to classical systems, the Hamiltonian, 𝐻𝐻�, can be seen as the sum of the 

kinetic and the potential energy operators (eq. [2-2]). 

𝐻𝐻� = 𝑇𝑇� + 𝑉𝑉�  [2-2] 

The hardest part in electronic structure calculations is to deal with electron correlation 

i.e. the repulsion between pairs of electrons. In the HF method, the electron correlation 

is not treated exactly but in an average way. The Hamiltonian and the wave function are 

thus divided into one electron contribution and the electron interaction is then added 
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with an integral. This method is simpler but does not provide exact solutions to the 

Schrödinger equation.  

Density functional theory (DFT) as developed by Kohn and Sham in 19656-7, is a 

computational QM modeling method to investigate the electronic structure principally 

the ground state of atomic systems. In the Kohn-Sham formulation, DFT can be viewed 

as a variant of HF theory in which the fundamental variable is the ground state electron 

density rather than the molecular orbitals. The density is then decomposed into Kohn-

Sham orbitals which the only restriction is to provide a density that when integrated 

over all space should generate the appropriate number of electrons. For most practical 

purposes, the same basis set as in ab initio theory can be applied. From the DFT 

equations, we essentially obtain the electronic energy of the system (as in HF theory) 

corrected for the correlated interaction between electrons. This ingredient is missing at 

the HF level. In order to describe electronic interactions corrected for electron 

correlation, an extra potential term arises in DFT compared to HF, referred to as the 

exchange-correlation potential. The exact form of this is not known, but many 

derivations exist based on theoretical physics, chemical parametrization, and other 

approaches. The mathematical entities are termed exchange-correlation functionals, and 

a plethora of different DFT functionals of varying complexity and accuracy exist. An 

important choice is thus which functional to use. When it comes to the study of organic 

molecules, the B3LYP8 functional is the most used. There is an extension of DFT to 

describe properties and dynamics of particles in presence of time-dependent potentials 

(termed TDDFT)9, but that is beyond the scope of this thesis. 

2.1.3 Molecular mechanics and molecular dynamics simulations 

Atomic knowledge of biological structure can be obtained through a number of methods 

among which X-ray crystallography is the prevalent one. A crystallographic structure of 

a given protein brings excellent information about the spatial organization of each of the 

atoms (hydrogen excluded) of the amino acids sequence composing this protein at a 

given crystallized state.10 From this three-dimensional atomic description, one can 

derive structural features such as the secondary structure of its different subdomains, 

their spatial relation one to another, known as the tertiary structure of the protein, and 

the possible arrangement of multiple folded proteins, known as the quaternary structure. 

In addition, a binding sites along with ligand binding mode can be revealed. Other 

experimental methods to gain insights into the spatial organization of the atoms 
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composing a protein are nuclear magnetic resonance spectroscopy (NMR) and 

cryogenic electron microscopy (Cryo-EM).11-12 Atomic information can also be 

predicted through computational techniques such as fold prediction and comparative 

modeling. However, the majority of these methods only give a static picture of a 

protein, highly dependent on the experimental conditions, which often fails to 

thoroughly explain the function of the protein and the way this function is carried out.  

Nowadays, to overcome this limitation, internal motions and conformational transitions, 

key for understanding protein functional mechanism, can be modeled by molecular 

dynamics methods. 

At the atomic scale, particle’s behavior can be accurately described by the law of 

quantum chemistry considering molecular orbitals and the electron occupying them, 

from which one can derive important chemical properties (cf. 2.1.1 Quantum mechanics 

methods: Hartree–Fock and DFT). However, such a precise description of an atomic 

system is very costly to be computed in systems the size of a protein. Interestingly, the 

apparent motion of the atoms governed by forces that arise from the quantum world can 

be rather accurately described through classical physics combining mechanical tools 

(springs, tensors, rotators) and electrostatics (Coulomb's law). The use of classical 

mechanics to model molecular system is called molecular mechanics. In this classical 

description, the atoms are represented as charged spheres, which size is usually 

proportional to the Van der Waals radius of the atom they describe. These spheres are 

connected both by direct linkage, representing chemical bonds, and by non-bonded 

interactions, comprising van der Waals and electrostatics interactions. 

𝑉𝑉(𝑟𝑟) = � 𝑘𝑘𝑙𝑙
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[2-3] 

 

 

In molecular mechanics, the potential energy of the system is given by equation [2-3]. 

This equation takes into account two main contributions, the covalent components, 

comprising bonds, angles, and torsions, and the noncovalent components containing the 

electrostatic and the van der Waals interactions, sometimes an extra term is added for 

the hydrogen bonds. In more details, the first term of Equation [2-3] addresses bond 
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stretching (i.e. intramolecular motion between two covalently bonded atoms), in which 

kl is the force constant enclosing the energy cost relative to the displacement from the 

equilibrium value, l is the instantaneous bond length and l0 the bond length at 

equilibrium. The second term describes bond angle vibrations (i.e. geometric distortions 

between three covalently bonded atoms A-B-C) written as a harmonic potential, with 𝑘𝑘𝜃𝜃 

the force constant, θ the instantaneous angle and θ0 the equilibrium angle. The third 

term represents the dihedral angle potential (i.e. the rotation around the central bond B-

C in a covalently bonded sequence A-B-C-D). In case rotation needs to be restricted, 

e.g. to ensure planarity or to maintain the chirality of a certain group, improper torsion 

can be introduced, which is defined between atoms not connected in sequence. Vn is the 

dihedral constant, n the periodicity parameter, ω the instantaneous dihedral angle and γ 

the phase. The fourth term represents non-bonded or ’through-space’ interactions 

between atom pairs, which can be decomposed into Lennard-Jones and Coulomb 

interactions, qi and qj being the respective charges of atoms i and j, rij the distance 

between the two atoms and Aij and Bij parameters for the repulsive and attractive 

components of the Lennard-Jones potential (Figure 2.2). A graphical representation of 

these components is given in Figure 2.3. 

 
 

Figure 2.2. On the left: graph of the Lennard-Jones potential function in which regions 
of repulsion, on the left side of the graph, and attraction, on the right side of the graph 
are explicitly described. At lowest temperature distances between atoms tend toward the 
energy minimum. On the right: the born ionic-model describing the energy between two 
non-bonded charged partners (e.g. ions) in function of the distance separating them. 
Both the attraction of opposite charges and repulsion of like charges are shown 
(illustrations retrieved here13). 
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bond stretching angle bending torsional rotation non-bonded interactions 
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Figure 2.3. Schematic representation of the molecular mechanics potential function 
components. Atoms are symbolized by black, white, and red spheres and covalent bonds 
by white sticks. 

In molecular dynamics, successive configurations of the system are generated by 

integrating Newton’s equation of motion (equation [2-4]). The result is a trajectory that 

specifies how the positions and velocities of the particles in the system vary with time.  

𝐅𝐅 = 𝑚𝑚𝐚𝐚 = 𝑚𝑚
d𝐯𝐯
d𝑡𝑡

= 𝑚𝑚
d2𝐪𝐪
d𝑡𝑡2

 [2-4] 

The force F acted upon an atom is equal to the mass m of that atom multiplied by the 

acceleration a of the atom. The acceleration is also the first derivative of the velocity 

with respect to time �d𝐯𝐯
d𝑡𝑡
� and the second derivative of the position with respect to time 

�d
2𝐪𝐪
d𝑡𝑡2
�. 

In a molecular dynamics simulation, these forces are calculated at a given time over a 

very short period, called the time step (∆t), and the atoms are moved accordingly, then 

the forces are calculated for those new coordinates and so on until reaching the desired 

simulated time. ∆t is computed using a simple Taylor expansion (equation [2-5]). 

𝐪𝐪(𝑡𝑡 + ∆𝑡𝑡) = 𝐪𝐪(𝑡𝑡) +
d𝐪𝐪(t)

d𝑡𝑡
∆t +

d2𝐪𝐪
d𝑡𝑡2

∆𝑡𝑡2

2
+ ⋯ [2-5] 

One can see that the position q(t), velocity d𝐪𝐪(t)
d𝑡𝑡

 and acceleration d
2𝐪𝐪
d𝑡𝑡2

, are sufficient for 

the propagation of the molecular system. The acceleration can be computed from 

equation [2-4] in which the force F is obtained by differentiating the energy of the 

system.14 

An MD simulation is set up by assigning initial velocities and positions to all atoms in 

the system. The velocities are usually randomly assigned, whereas the positions are 
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typically resolved by one of the methods mentioned above. Thereafter, the force acting 

on each atom is calculated, giving the direction of movement. The atoms are moved in 

this direction, giving news forces on each atom, and the procedure is then repeated. 

Practically, this integration of motion can be treated by several methods such as 

leapfrog, Verlet or velocity-Verlet.14-16 

A major limitation to an efficient sampling with MD simulations is the discrete time 

step, ∆t. It is desirable to choose a longer time step, which would give longer 

simulations with less computational resources. However, ∆t is limited by the fastest 

motion in the simulated system. For an all-atom system, the fastest motion is the bond 

vibration between a hydrogen and a carbon atom, which limits ∆t to about 1fs. 

Therefore, these bonds are typically constrained in the simulations, allowing a 2 fs time 

step.14 

Calculating long-range interactions is very costly and was usually stopped after a given 

cut-off distance introducing important approximation in the calculations. This problem 

is now overcome by the introduction of Ewald summation and particle mesh Ewald 

(PME) methods rendering long-range electrostatic interactions significantly more 

accurate.17 

The temperature of a simulated system is controlled by implementing a thermostat 

within the equation of motions that creates modifications, the common ones being 

modifying velocities (e.g. weak-coupling18), introducing fictitious particles in an 

extended system (e.g. Nosé-Hoover19) and introducing friction (e.g. Langevin 

dynamics). Similarly, the pressure can be controlled by the introduction of a barostat 

which also introduces modifications such as scaling the box dimension (e.g. weak-

coupling), introducing fictitious particles (e.g. Parrinello-Rahman20-21) and introducing a 

piston.14 In addition, the pressure regulation of a simulation needs to be handled 

accordingly to the system under simulation. In a system comprising a solute dissolved 

in a solvent, an isotropic pressure coupling is usually the most representative of the 

reality it aims to describe. In the case of simulation comprising a membrane, anisotropic 

pressure scaling is required to account for the non-isotropic nature of such a system due 

to the fact that the surface tension is not the same in all the directions. 

The LEaP software, designed to construct simulations of molecules in solution, will 

overlay a pre-equilibrated solvent mask over the (biomolecular) solute, tile that mask 
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throughout the simulation cell, and then prune solvent residues which clash with the 

solute. The result of this procedure is a system which will likely contract under constant 

pressure dynamics as the pruning process has left vacuum bubbles at the solute:solvent 

interface.22 We address this issue by using a MD multi-step protocol that takes care of 

relaxing the solvent before simulating the system (cf. 2.2.2 Molecular dynamics 

simulations protocols). 

2.1.4 Molecular dynamics force fields 

Molecular mechanics can be a great tool to understand the behavior of biological 

molecules at atomic scale at the one condition that the force field it uses is accurate 

toward the residues it describes the motion. In summary, the trajectory of a molecular 

dynamics simulation is as representative of the reality as the input parameters are 

accurate. All force fields used throughout this thesis are briefly described in this section. 

An overview and the history of the development of the Amber force fields, the 

CHARMM force fields, the OPLS force fields and other protein force fields can be 

found at reference 23. 

Amber ff14SB is the reference Amber force field for proteins. The Amber ff99SB 

force field24 improved protein secondary structure balance and dynamics from earlier 

force fields like ff99,25 but weaknesses in side chain rotamer and backbone secondary 

structure preferences have been identified. For the ff14SB force field, the authors 

performed a complete refit of all amino acid side chain dihedral parameters, which had 

been carried over from ff94.26 The training set of conformations included 

multidimensional dihedral scans designed to improve transferability of the parameters. 

Improvement in all amino acids was obtained as compared to ff99SB. Parameters were 

also generated for alternate protonation states of ionizable side chains. Average errors in 

relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, 

reduced 35% from ff99SB.27 Additionally, empirical adjustments were made to the 

protein backbone dihedral parameters as compared to ff99SB. Multiple small 

adjustments of φ and ψ parameters were tested against NMR scalar coupling data and 

secondary structure content for short peptides. The best results were obtained from a 

physically motivated adjustment to the φ rotational profile that compensates for lack of 

ff99SB QM training data in the β-ppII transition region. Together, these backbone and 

side chain modifications not only better reproduced their benchmarks, but also 



Chapter 2 – Computational methodology 

 

47 
 

improved secondary structure content in small peptides and reproduction of NMR χ1 

scalar coupling measurements for proteins in solution.27 

Lipid14, the Amber lipid force field. In 2014, Lipid1428 was released as the latest 

Amber lipid force field. Lipid14 represents a major advancement over the previous 

Amber compatible lipid force fields for lipid bilayer simulations in the NPT ensemble 

without the need for an artificial constant surface tension term. Lipid14 combines the 

modular framework of Lipid1129 with a number of refinements inspired by 

GAFFlipid30. The modular nature of the force field allows for many combinations of 

lipid head groups and tail groups as well as rapid parameterization of further lipid types. 

In summary, several van der Waals and dihedral angle parameters have been refined to 

fit experimental data and quantum energies and new partial charges have been derived 

for the head and tail groups. The force field was validated on six principle lipid bilayer 

types for a total of 0.5 microseconds each without applying a surface tension or constant 

area term. The lipid bilayer structural features compare favorably with experimental 

measures such as area per lipid, bilayer thickness, NMR order parameters, scattering 

data, and lipid lateral diffusion. In addition, further validation of the Lipid14 parameters 

has been provided through extensive self-assembly simulations31-32.22 Furthermore, 

Lipid14 was recently expanded to include cholesterol parameters33. Lipid14 has been 

designed to be fully compatible with the other pairwise-additive protein, nucleic acid, 

carbohydrate, and small molecule Amber force fields22, such as ff14SB mentioned 

above.  

GLYCAM06, the Amber carbohydrates force field. It was originally developed as a set 

of parameters for MD simulation of carbohydrates in addition to the AMBER force 

field, later the force field was extended to other classes of molecules and its AMBER-

dependency removed.34 GLYCAM06 is a consistent and transferable parameter set for 

modeling carbohydrates,34 and glycoconjugates.35-36 When combining GLYCAM06 

with AMBER parameters for other biomolecules, parameter orthogonality is ensured by 

assigning unique atom types for GLYCAM. In order to facilitate combining 

GLYCAM06 with other AMBER parameter sets for other biomolecules, a variation on 

the GLYCAM atom types has been introduced in which the new name consists of an 

uppercase letter followed by a second character, either a number or lowercase letter.22 

The GLYCAM force field family, especially, GLYCAM06, has been extensively 

employed in simulations of biomolecules by the larger scientific community.37-40 The 
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updated GLYCAM parameters and documentation are available for download at the 

GLYCAM website (www.glycam.org). Also available on the website are tools for 

simplifying the generation of structure and topology files for performing simulations of 

oligosaccharides, glycoconjugates and glycoproteins.22 

GAFF is a general Amber force field for organic molecules. GAFF is designed to be 

compatible with existing Amber force fields for proteins and nucleic acids, and has 

parameters for most organic and pharmaceutical molecules that are composed of H, C, 

N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom 

types, but incorporates both empirical and heuristic models to estimate force constants 

and partial atomic charges. The performance of GAFF in test cases was considered 

encouraging with data comparable to results from Parm99/RESP. GAFF can be applied 

to wide range of molecules in an automatic fashion, making it suitable for rational drug 

design and database searching.41  

2.2.4 Coarse-grained modeling and simulations   

In the two previous sections emphasize was given on MD simulations at the atomic 

scale (cf. 2.1.2 Molecular mechanics and molecular dynamics simulations and 2.1.3 

Molecular dynamics force fields), which has proven to be a powerful tool to study the 

structure and dynamics of model biological systems. However, studying a system with 

that degree of precision on the individual components has a high computational cost that 

limits the time and length scales for which such a system can be simulated dictated by 

computational power capabilities. Thus, some systems of biological relevance, such as 

protein folding, ion channel gating, signal transduction, and membrane remodeling, are 

difficult to investigate using atomistic simulations. To overcome this limitation, less 

detailed systems have been developed, among which coarse-graining (CG) is a very 

popular one.42 

A coarse-grained model is a model in which a certain number of atoms are grouped 

together into a so-called grain. The computational cost of calculations is reduced as the 

number of degrees of freedom is lessened, permitting simulations of larger systems for 

longer times. The model is as accurate as the physical properties carried by the grains 

are representative of the properties of the atoms in regroups. The apparent geometry of 

the molecule is kept, as much as possible, by appropriately choosing which atoms to 

regroup. This CG approach has the huge advantage of greatly reducing the number of 
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forces that need to be computed and thus the computational power required for a 

simulation. Indeed a coarse-grained model contains fewer particles that its all-atom 

counterparts greatly reducing the computational load at every iteration resulting in faster 

simulation allowing a greater exploration of the energy landscape of a system in a 

shorter time (Figure 2.4). Several coarse-grained models were developed for simulation 

of proteins, the Martini CG force field being one of the most widely used. In the Martini 

force field43-46, one grain usually accounts for four atoms and is parameterized based on 

experimentally measured values, ab initio calculations and molecular dynamics 

simulations derived values. An in-depth description of the Martini CG FF is given in 

section 2.2.3 Procedures and tools for Martini CG simulations. 

 

Figure 2.4. Schematic comparison of the structures and the energy landscape between a 
AA and a CG system (illustration retrieved here47). 
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2.2 Protocols and analysis 

2.2.1 Basic data analysis 

Here are presented some tools that are often used to perform a primary analysis of 

molecular dynamics trajectories. These tools are used to ensure the correctness of a 

simulation and to understand the evolution of the overall simulated system, as well as to 

catch subtler molecular behavior. 

Root-mean-square deviation (RMSD) of atomic positions is the measure of the 

average distance of the same atom between any time step of a simulation and a similar 

reference structure or between two different simulation time steps (one being the 

reference) of a simulation, as given in equation [2-6], where N represents the number of 

atoms and ri(t) the position of atom i at time t.  

RMSD = �
1
𝑁𝑁
�(𝐫𝐫𝑖𝑖(𝑡𝑡0) − 𝐫𝐫𝑖𝑖(𝑡𝑡))2
𝑁𝑁

 [2-6] 

Usually, to obtain more meaningful and easily interpretable results, the overall 

translation and rotation are first removed by performing a rigid superposition of the 

structure to its reference that minimizes the RMSD. Although it is a straightforward 

analysis and gives an indication of local equilibrium, it is a far too simple method to 

assess the global convergence of the simulation.14 

Whereas the RMSD provides an overall estimate for the entire protein, an approach to 

assess the degree of motion of individual residues is to compute the root mean squared 

fluctuation (RMSF), which is simply the variance of the position of an atom.14 

RMSF = �
1
𝑇𝑇
�(𝐫𝐫(𝑡𝑡) − 𝐫̅𝐫)2
𝑇𝑇

 [2-7] 

RMSF is calculated by equation [2-7] in which T is the number of frames to be 

considered and 𝐫̅𝐫 the average position. The analysis can also be done on a per-residue 

basis, where all the atoms of a residue are included in the average and can for instance 

be used to assess the movement of side chains. Alternatively one can include only Cα 

atoms in the analysis to assess the backbone movement.14 

Distances are straightforward to be calculated since all the atoms are defined in three-

dimensional coordinates along with their trajectories. However, a special care needs to 

be addressed toward imaging since it is important to ensure that the two atoms, between 
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which the distance is measured, are staying in the same simulation box along the 

analyzed time. 

Angles between specific atoms in MD trajectories are calculated by first defining two 

vectors between these sets of atoms, and then the angle can straightforwardly be 

retrieved, as the dot product of these two vectors is equal to the cosine of the angle 

between the vectors. 

In the context of simulating membranes, it can be interesting to evaluate the average 

area per lipid (APL). This is achieved by first printing out the two dimensions of the 

simulation box parallel to the membrane plane over time. Then these two lengths are 

multiplied to obtain the total membrane area. This area is then divided by the number of 

lipids occupying the layer from which one wants to know the APL of the lipids 

populating it. 

2.2.2 Molecular dynamics simulations protocols 

The simulations reported here are mainly performed following two different protocols 

that are chosen based on the type of system being simulated. The two types of system 

investigated throughout this thesis are: a system composed of at least one protein, alone 

or in complex, with at least one ligand, named protein protocol and a system composed 

of a bilayer and eventually one or more proteins and/or ligands, dubbed membrane 

protocol. 

Protein protocol. Before being submitted to the production run, the system undergoes a 

height steps preparation. The first one consists of 1000 steps of steepest descent 

algorithm followed by 7000 steps of conjugate gradient algorithm under a 100 kcal.mol-

1.A-2 harmonic potential constraint applied on the non-solvent component of the system. 

The conjugate gradient algorithm minimization continues while the harmonic potential 

is progressively lowered to 10, 5, 2.5 and 0 kcal.mol-1A-1 every 600 steps. The system is 

then heated from 0 K to 100 K using the Langevin thermostat in the canonical ensemble 

(NVT, number of particles, volume and temperature, respectively) while a 20 kcal.mol-

1.A-2 harmonic potential restraint is applied on the protein. Finally, the system is heated 

up, from 100 K to 300 K, in the isothermal–isobaric ensemble (NPT, number of 

particles, pressure and temperature, respectively) under the same restraint conditions 

than the previous step, followed by a simulation for 100 ps under no harmonic restraint. 
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At this point, the system is ready for the production run, which is performed using the 

Langevin thermostat under NPT ensemble, at a 2 fs time step. 

Membrane protocol. Steepest descent gradient algorithm is iterated for 5000 steps 

followed by 5000 iterations of conjugate gradient algorithm under no constraint. The 

system is then heated from 0 to 100K for 2500 steps in the NVT ensemble while the 

proteins and the lipids are held by a 10 kcal.mol-1A-1 harmonic potential. In the 

subsequent step the system is heated from 100K to 303K for 50000 steps. In membrane 

system the dimension of the box can change considerably during the first nanoseconds 

of simulation (due to intermolecular empty spaces left by the membrane building 

process), thus, to allow the program to recalculate them frequently, the first 10 steps of 

the production run are performed for a maximum of 500 ps. In all the steps the 

temperature is controlled by a Langevin thermostat. The warming up phase and the 

production run are performed under an anisotropic NPT ensemble to account for 

different physical properties along the dimensions tangential to the membrane than the 

one normal to it. 

2.2.3 Procedures and tools for Martini CG simulations 

MARTINIZE.py is a script to create Coarse Grain Martini input files of proteins, ready 

for use in the molecular dynamics simulations package Gromacs. More information can 

be found in the force field webpage and in related papers.48-50 

Martinate and Gromit are auxiliary tools for automated atomistic and coarse-grained 

molecular dynamics simulations using Gromacs. Molecular dynamics simulations have 

complex workflows, including the generation of a model, setting up the environment, 

relaxation of the system and finally the production simulation. Despite the intrinsic 

complexity, the steps of the process are well-defined. For simulations of protein and/or 

DNA in solution, with or without ligand and with or without ions standard protocols are 

available. Gromit and martinate are versatile wrappers providing such protocols for 

atomistic (gromit) and coarse-grain (martinate) simulations, using the molecular 

simulation package Gromacs and, for martinate, the coarse grain Martini force field.51 

Backward. The conversion of coarse-grained to atomistic models is an important step 

in obtaining insight about atomistic scale processes from coarse-grained simulations. 

Backward is a method, consisting of geometric projection and subsequent force field 

based relaxation. The method is designed to be simple and flexible, and offers a generic 
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solution for resolution transformation. For simple systems, the conversion only requires 

a list of particle correspondences on the two levels of resolution. For special cases, such 

as non-default protonation states of amino acids and virtual sites, a target particle list 

can be specified. The mapping uses simple building blocks, which list the particles on 

the different levels of resolution. For conversion to higher resolution, the initial model 

is relaxed with several short cycles of energy minimization and position-restrained MD. 

The reconstruction of an atomistic backbone from a coarse-grained model is done using 

a new dedicated algorithm. The method is generic and can be used to map between any 

two particle based representations, provided that a mapping can be written.48 

DAFT (Docking Assay For Transmembrane components).49 One example of the use of 

the coarse grain scale is to study protein-protein interactions. Transmembrane protein-

protein interactions are particularly challenging to study experimentally and 

computationally. Experimentally the lipid environment is difficult to reproduce and 

once reproduced, difficult to resolve at atomic resolution. Computationally the size of 

these systems and the simulated time needed to obtain relevant information are usually 

the limiting factors. Coarse grain simulations have alleviated the later issue, but the 

slow movement through the bilayer, coupled to the long life times of non-optimal 

dimers, still stands in the way of characterizing binding distributions. DAFT, was 

developed to identify preferred binding orientations. The key feature of DAFT is the 

setup of starting structures, for which optimal periodic boundary conditions are devised. 

The purpose of DAFT is to perform a large number of simulations with different 

components, starting from unbiased non-interacting initial states, such that the 

simulations evolve collectively, in a manner reflecting the underlying energy landscape 

of interaction.49 DAFT and its auxiliary programs are available from http://cgmartini.nl, 

together with a working example. 
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2.3 Protein-ligand docking  
Molecular docking is a computational procedure that aims to predict the preferred 

orientation of a ligand with a macromolecular target (the receptor) in which they are 

bound to each other to form a stable complex. Docking is a handy tool to predict 

bioactive conformations, identify binding sites in a given receptor, unveil essential 

ligand-receptor interactions, or to screen vast databases of potential ligands. These 

applications are useful in the context of hit identification and lead optimization.52-53 

The associations between biologically relevant molecules such as proteins, nucleic 

acids, carbohydrates, or lipids play a central role in signal transduction. Furthermore, 

the relative orientation of the two interacting partners may affect the type of signal 

produced (e.g., agonism or antagonism). Therefore, docking is useful for predicting 

both the strength and type of signal produced. 

Several docking programs are available in the context of molecular recognition and 

drug design, we can cite AutoDock54, AutoDock Vina55, DOCK56, FlexX57,  GLIDE58,  

ICM59, PhDOCK60, and Surflex61). They have been extensively tested and compared.62-

63 Although each docking program operates slightly differently, protein-ligand docking 

calculations are usually performed in two steps: conformational sampling and scoring. 

Conformational sampling consists in generating a database of conformers of the ligand 

to be used in ligand docking. Conformational search can be performed as a separate step 

before docking or it can be implemented as an integrated part of the docking process. 

Scoring functions widely vary across the different programs, but often fold under one of 

the following categories: force field-based, empirical, knowledge-based, clustering and 

entropy-based, or consensus scoring methods.64 

Docking calculations are widely used throughout this thesis with the main goal of 

predicting plausible binding modes to understand how a given, naturally occurring or 

not, ligand interacts with a receptor. The main receptors studied in this thesis are CD14 

and the TLR4/MD-2 dimer (cf. chapter I section 1.1 Scientific background about TLR4). 

Docking was often performed independently with AutoDock 4.2 and AutoDock Vina, 

both are described hereafter. 

2.3.1 AutoDock 4.2 

AutoDock51, 54 is an automated procedure for predicting the interaction of ligands with 

bio-macromolecular targets. It works with AutoGrid, an accessory program that pre-
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calculates grid maps of interaction energies for various atom types with the receptor. 

These maps are used by AutoDock during the docking calculation to estimate the total 

energy of binding between the ligand with the macromolecule. This pre-calculation 

greatly reduce the time needed for the calculation as it increases the efficiency of the 

program from a O(N2) complexity to a O(N) (big O notation), with N the number of 

atoms interacting.51 

AutoDock 4.2 uses a semi-empirical free energy force field to evaluate conformations 

during docking simulations. The force field was parameterized using a large number of 

protein-inhibitor complexes for which both structure and inhibition constants, or Ki, are 

known.65 The force field evaluates binding in two steps. The ligand and protein start in 

an unbound conformation. In the first step, the intramolecular energetics are estimated 

for the transition from these unbound states to the conformation of the ligand and 

protein in the bound state. The second step then evaluates the intermolecular energetics 

of combining the ligand and protein in their bound conformation. The force field 

includes six pair-wise evaluations (V) and an estimate of the conformational entropy 

lost upon binding (ΔSconf): 

∆𝐺𝐺 = (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿 − 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿−𝐿𝐿 ) + (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃−𝑃𝑃 − 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃−𝑃𝑃 ) + �𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃−𝐿𝐿 − 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃−𝐿𝐿 + ∆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� [2.4] 

where L refers to the ligand and P refers to the protein in a ligand-protein docking 

calculation.65 

Each of the pair-wise energetic terms includes evaluations for dispersion/repulsion, 

hydrogen bonding, electrostatics, and desolvation: 
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2.5] 

The weighting constants W have been optimized to calibrate the empirical free energy 

based on a set of experimentally determined binding constants. The first term is a 

typical 6/12 potential for dispersion/repulsion interactions. The parameters are based on 

the Amber force field. The second term is a directional H-bond term based on a 10/12 

potential. The parameters C and D are assigned to give a maximal well depth of 5 

kcal/mol at 1.9 Å for hydrogen bonds with oxygen and nitrogen, and a well depth of 1 

kcal/mol at 2.5 Å for hydrogen bonds with sulfur. The function E(t) provides 
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directionality based on the angle t from ideal H-bonding geometry. The third term is a 

screened Coulomb potential for electrostatics. The final term is a desolvation potential 

based on the volume of atoms (V) that surround a given atom and shelters it from the 

solvent, weighted by a solvation parameter (S) and an exponential term with distance-

weighting factor σ=3.5 Å.65 

By default AutoDock 4.2 estimates the contribution of the unbound state by assuming 

that the unbound form of the ligand (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿  in the equation [2-6]) is the same as the 

final docked conformation of the ligand (𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿−𝐿𝐿 ), yielding a final contribution 

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿 −  𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿−𝐿𝐿  = 0.65 

In all the docking performed with AutoDock 4.2 throughout this thesis, the Lamarckian 

evolutionary algorithm was chosen and all parameters were kept default except for the 

number of genetic algorithm (GA) runs which was set to 200 to enhance the sampling. 

AutoDockTools 1.5.6 was used to assign the Gasteiger-Marsili empirical atomic partial 

charges to the atoms of both the ligands and the receptors. The structure of the receptors 

was always kept rigid, whereas the structure of the ligand was set partially flexible by 

providing freedom to some appropriately selected dihedral angles. 

2.3.2 AutoDock Vina 

AutoDock Vina is an open-source program for doing molecular docking. It was 

designed and implemented by Dr. Oleg Trott in the Molecular Graphics Lab at The 

Scripps Research Institute.51, 55 The authors describe the Vina scoring function as more 

of “machine learning” than directly physics-based in its nature, which they justify by its 

performance on test problems rather than by theoretical considerations following some, 

possibly too strong, approximating assumptions.55 

Vina scoring function was mostly inspired by X-score, and, like X-score, was tuned 

using the PDBbind.66-68 However, some terms are different from X-score, and, in tuning 

the scoring function, Vina’s developers went beyond linear regression.55 As 

optimization algorithm, Vina uses the Iterated Local Search global optimizer69-70 similar 

to that by Abagyan et al.59 In this algorithm, a succession of steps consisting of a 

mutation and a local optimization are taken, with each step being accepted according to 

the Metropolis criterion. Vina uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS)71 

method for the local optimization, which is described as an efficient quasi-Newton 

method.55  
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BFGS, like other quasi-Newton optimization methods, uses not only the value of the 

scoring function but also its gradient, i.e., the derivatives of the scoring function with 

respect to its arguments. The arguments, in Vina’s case, are the position and orientation 

of the ligand, as well as the values of the torsions for the active rotatable bonds in the 

ligand and flexible residues, if any. Vina can concurrently perform several runs starting 

from random conformations allow it to take advantage of multithreading.55 AutoDock 

Vina tends to be faster than AutoDock 4 by orders of magnitude.51  
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2.4 Other computational methods and software programs 

2.4.1 Homology modeling  

Amongst protein structure prediction techniques, homology modeling (or comparative 

modeling) aims at unraveling the secondary, tertiary and eventually quaternary structure 

of a protein given a primary amino acids sequence by comparing it to already existing 

structures of proteins with similar amino acid sequences. This approach is justified by 

the evolutionary driven fact that similar protein sequences encode similar three-

dimensional structures.72 A usual homology modeling workflow goes through template 

selection and sequence alignment, target-template alignment, model construction, and 

finally model assessment. An in-depth explanation of these steps can be found 

elsewhere14. Ultimately, protein structure prediction aims at bridging primary amino 

acids sequence to the function of the protein it represents. 

In this thesis, protein prediction needs were addressed with the homology modeling 

feature of YASARA,73 a program for molecular visualizing, modeling, and dynamics. 

First, the program collects several templates, based on sequence similarities, then the 

algorithm attempts to construct three-dimensional models that it ranks according to 

alignment score and structural quality. The loops are optimized by conformational 

sampling with side-chains re-optimization. Ultimately, the program seeks to improve 

the final result by building a hybrid model in which bad regions of the top-ranked 

model are iteratively swapped with corresponding fragments from other models. 

2.4.2 PyMOL 

In the context of parameters derivation PyMOL molecular graphics and modeling 

package74 was used to construct and modify ligands. Additionally, PyMOL was used for 

visual analysis of the docking outputs, of molecular dynamics trajectories, and to render 

all molecules pictures present in this thesis. 

2.4.3 Maestro 

Maestro75 is a molecular modeling and visualizing program for drug design and 

materials science. Here it was mainly used for structure visualization and restrained 

minimization procedure under the OPLS3 force field. Additionally, the software was 

used for AlogP calculation when evaluating ligand solubility. 
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2.4.4 Antechamber 

Antechamber76 regroups a set of auxiliary programs for MD simulation. Its main 

application in this thesis is to greatly facilitate the creation of new force field entry of 

novel molecules or residues of interest and to support their parameterization. Parameters 

for molecular dynamics simulations were set up with the standard Antechamber 

procedure. Briefly, charges were calculated with Gaussian at the Hartree-Fock level 

(HF/6-31G* Pop=MK iop(6/33=2) iop(6/42=6)) from the solvated DFT B3LYP 

optimized structure (cf. 2.1.1 Quantum mechanics methods: Hartree–Fock and DFT), 

then derived and formatted for Ambertools15 and Amber 14 with Antechamber 

assigning the general AMBER force field (GAFF)41 atom types. Subsequent 

modifications to the atom types were made when thought necessary, e.g. to take 

advantage of the GLYCAM0634 force field should a saccharide fragment of a bigger 

molecule be already described by the force field. 

2.4.5 LEaP 

LEaP77, under both its command line format, known as teLeap (run by the tleap shell 

script), and its X-windows graphical user interface enhanced format, known as xaLeap 

(xleap) is the primary program to create a new system in Amber, or to modify existing 

systems. It combines the functionality of prep, link, edit and parm from much earlier 

versions of Amber.22 LEaP serves the major purpose of connecting a coordinate file, 

which contains a spatial description of all the atoms contained in a system, with a 

desired force field, to create a new amber-compatible coordinate file and a topology file. 

The force field file contains all the parameters required by the potential function, such 

as molecule and residue information, atom names, atom types, atomic charges, atomics 

connectivities, atomic coordinates, atomic masses, bonded parameters (bond, angle, 

dihedral) and non-bonded parameters (electrostatic and van der Waals). 

LEaP is also a powerful tool for force field modifications and adaptations. For instance, 

when using more than one force field within a unique molecule, such as GAFF and 

GLYCAM06 in the case of many LPS-like ligands presented in this thesis, one needs to 

define the parameters necessary to describe the interface between the two force fields. 

Toward that end, modifications were introduced within GAFF, GLYCAM06, and 

AMBERff14. LEaP was used to create force field template for new residues. All 

modifications used in the work reported herein have been attached in annex within their 
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relevant sections. Additionally, LEaP, in a classical pdb to MD simulations workflow, is 

used to define simulation box, solvate the system and add ions, among other things. 
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3.1 Naturally occurring modulators 

3.1.1 Bradyrhizobium LPS 

Rhizobia are Gram-negative bacteria able to establish symbiotic relationship with 

legumes and to reduce atmospheric nitrogen into ammonium, thus providing nitrogen 

nutrition for the host plants.1-2 Bacteria belonging to the Bradyrhizobium genus promote 

nitrogen-fixing nodules development on roots and stems of both wild-growing and 

cultivated Aeschynomene legumes.3-4 It was previously demonstrated that the 

lipopolysaccharide (LPS) macromolecule in Rhizobia plays a key role throughout the 

symbiotic process and that its structural features are altered in response to plant 

signals.5-7 

Our collaborators within the MSCA-ITN TOLLerant project, Profs. Molinaro and Silipo 

from the University of Naples Federico II, Italy, recently elucidated the structure of the 

lipid A from Bradyrhizobium strains (Figure 3.1). These bacteria produce a mixture of 

lipid A species differing by the number, length and nature of the acyl chains.8-10 All are 

made up of a pentasaccharide sugar backbone formed by a skeleton of β(1→6) linked 

2,3-diamino-2,3-dideoxy-glucose (DAG) substituted by an α-galacturonic acid on the 

vicinal DAG and by an α-mannose disaccharide linked to the distal β-DAG unit. They 

detected the presence of very long-chain fatty acids (VLCFA), which are known to be 

pivotal in the bacterium adaptation to the intracellular life.8, 11-13 More intriguingly, a 

hopanoid molecule linked to the VLCFA, was also present in a non-stoichiometric 

fashion (Figure 3.1). Such a highly heterogeneous lipid A was also identified in other 

Bradyrhizobium strains, as ORS278 and ORS285 strains10. 

It is widely accepted that the LPS structure and, in particular, the lipid A part, 

predisposes the macromolecule to act as a elicitor of the host innate immune system.14-16 

Rhizobial lipid A remarkably differ from enterobacterial analogs in the fatty acid 

pattern, carbohydrate backbone and phosphate content. This prompted us to investigate 

a potential antagonistic action of rhizobial lipid A compounds that might be applied as 

therapeutic agents for the prevention of Gram-negative-induced sepsis. Indeed, several 

studies have reported the weak endotoxic activity of rhizobial lipid A, as well as the 

antagonistic properties towards the toxic effects of enterobacterial LPS17-20 with the 

single exception of S. meliloti21. Knowing that Bradyrhizobia strains express a very 
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unusual lipid A structure prompted us to evaluate the impact of Bradyrhizobium 

LPS/lipid A on the innate immune system. 
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Figure 3.1. Representation of the HOLA and HF-LA structures used as representative 
species of the sample for the computational studies. 

Experimental studies, including cell assays on both murine and human bone marrow-

derived macrophages and HEK 293-TLR4/MD-2/CD14 cells, performed by Prof. Silipo 

and collaborators, revealed an extremely low capability to elicit an immune response. 

More intriguingly, a potent antagonistic activity towards the toxic E. coli LPS was 

observed (data not shown).22 Only the computational study is reported herein. 

Molecular Modeling of Bradyhrizobium lipid A binding to MD-2/TLR4 

We performed computational studies to discover the possible binding modes and 

understand the dynamic behavior of Bradyhrizobium lipid A (HOLA, Figure 3.1) in 

complex with human MD-2/TLR4. Since the experimental samples contain different 

derivatives, we also studied hopanoid-free Bradyrhizobium lipid A (HF-LA, Figure 

3.1). Docking results were evaluated based on the predicted binding score and on the 

apparent degree of similarity with E. coli LPS and lipid IVa as known from their 
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crystallographic structures accessible under the accession codes 3FXI and 2E59, 

respectively, considering both the insertion of the fatty acid chains into the MD-2 

pocket and the positioning of the disaccharide core. In addition, we systematically 

discarded the poses in which at least one of the saccharide bearing acyl chains was 

rotated such as that the amide groups connecting the saccharide to the lipid chains were 

facing the opposite direction of the binding pocket. This orientation causes a large 

portion of the lipid chains to be exposed to the solvent, which we consider unlikely.  

We started by carrying out docking calculations of HF-LA and HOLA in MD-2. 

Plausible binding modes were obtained with most of the FA chains inserted inside the 

MD-2 pocket, while the sugar moieties interacted at its rim. HOLA and HF-LA were 

first docked against MD-2 alone, in both its agonist and antagonist conformations. The 

predicted binding energy for HOLA in the agonist conformation ranges from -5.9 to -

4.2 kcal mol-1 and from -5.5 to -4.3 kcal mol-1 in the antagonist conformation. In the 

case of HF-LA the energy ranges from -6.0 to -4.3 kcal mol-1 in the agonist 

conformation and from -5.6 to -4.5 kcal mol-1 in the antagonist conformation of MD-2. 

These results, being of similar magnitude, do not permit to determine a preferential 

binding toward the agonist or the antagonist conformation of MD-2.  

As for the interactions, in the case of HF-LA, the two VLCFA are often fully 

accommodated inside the MD-2 cavity where they are surrounded with hydrophobic 

residues such as Val24, Ile32, 46, 63, 94, 117, 153 and Leu61, 78, leaving space for 

only two shorter lipid chains to enter the pocket. One of the two remaining shorter chain 

is often directed toward Phe126. The other one is placed in a small corridor pointing at 

Ser103 (Figure 3.2). 
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Figure 3.2. Best poses for HF-LA, represented in green sticks (on the left), and HOLA, 
in yellow sticks with its hopanoid residue in orange (on the right) in MD-2 only. Lipid 
IVa, added for comparison purposes, is depicted in violet carbon CPK colored semi-
transparent sticks. MD-2 is in semi-transparent cartoon. The residues mentioned in the 
text are in sticks with their corresponding individual labelling. 

In the case of HOLA the hopanoid moiety lies at the rim of the MD-2 pocket close to 

the residues Asp101, Tyr102 and Ser118 (Figure 3.2) or at a completely distinct 

location close to residue Lys125 and Phe126. In many docked poses, the hopanoid 

moiety remains on a surface outside or at the rim of the MD-2 pocket. Some low-score 

docking poses feature the hopanoid moiety in the hydrophobic pocket, proving that in 

theory it can sterically be accommodated inside MD-2. However, in these poses, the 

penta-saccharide backbone is accommodated further away from the binding pocket, on 

a loop followed by a β-sheet formed by residues 87 to 91 (Figure 3.3). This is likely due 

to the steric constraints inherent to the hopanoid moiety being inserted in the pocket. 

Additionally, it occupies a consequent volume and seems to obstruct the passage for the 

lipids chains, resulting in poses in which at least three acyls chains are left outside the 

pocket. These results suggest that the hopanoid moiety may not play an important role 

in the effective binding of HOLA to MD-2, and thus its presence might not be necessary 

for Bradyrhizobium to exert its antagonist activity. 



Chapter 3 – TLR4 Modulators 

70 
 

 
 

Figure 3.3. Example of a docked pose in which the hopanoid moiety (in orange sticks) 
is inserted inside the hydrophobic pocket. MD-2 (from PDB ID 2E59) is represented in 
semi-transparent grey cartoon and HOLA in yellow carbon and CPK colored sticks. On 
the left: the residues of the loop and β-sheet mentioned in the text are shown in sticks 
and are individually labelled. On the right: the three shorter acyl chains exposed to the 
solvent are indicated by black arrows. 

In a second approach, docking calculations were performed in the TLR4/MD-2 system 

in the antagonist conformation. We used a computational model optimized by us (see 

section 3.3.1 Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and 

Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling for details).23 Interestingly, 

when compared with the agonist structure of the TLR4/MD-2 complex (PDB ID 3FXI), 

among the non-bonded interaction between the two proteins, a loop of TLR4, composed 

of amino acids 263 to 266, protrudes into a MD-2 channel (Figure 3.4), located 

approximately between Asp161 and Tyr118. This protrusion is further amplified by the 

side chain of Arg264 that goes as far as to hover over the MD-2 hydrophobic pocket. 

This impingement of TLR4 over MD-2 diminishes the space available for ligand 

interactions in the TLR4/MD-2 complex, both agonist and antagonist conformations, 

compared with MD-2 alone. We superimposed TLR4, based on the crystal structure, to 

the docking results from the MD-2-only study, and noted a steric incompatibility 

between the TLR4 protruding loop, and either, a lipid chain, or the hopanoid moiety 

from the docked ligand (Figure 3.4). This observation could point to the fact that HOLA 

and HF-LA carry on their antagonist activities by preventing or impairing the formation 

of a proper TLR4/MD-2 dimer essential for TLR4 activation. 
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Figure 3.4. Representation of the steric clash observed over the addition of TLR4 to the 
docked poses calculated in MD-2 only. TLR4, MD-2 and HOPA are respectively 
represented in grey cartoon, blue cartoon and yellow sticks. The TLR4 protruding loop 
mentioned in the text is colored in green and Arg264 is in green sticks. A general view 
of the TLR4/MD-2/HOPA complex (on the left) and two examples of steric clashes are 
given (on the right). These involve Arg264 and, respectively, the hopanoid moiety (on 
the top) and one of the short acyl chains of HOPA (on the bottom). 

The score attributed to the poses by AutoDockVina ranges from -6.8 to -4.9 kcal mol-1 

for HOLA and from -6.6 to -5.1 kcal mol-1 for HF-LA in the TLR4/MD-2 system. The 

hydrophobic interactions taking place inside the hydrophobic pocket were essentially 

the same as the one described in the case of MD-2 alone. However, in the case of the 

docking in the TLR4/MD-2 system, the presence of TLR4, reducing the space available 

for ligand binding, resulted in very few poses that abide the sugar orientation criterion 

mentioned above. Two poses of HOLA, in good agreement with lipid IVa, were 

selected for MD simulations to further investigate interactions with the receptor and 

overall stability of the TLR4/MD-2/ligand complex. These two poses are 180o rotated 

one to the other: in the first one, the HOLA lipid A is oriented as lipid IVa (PDB ID 

3E59) and, in the second one, it is oriented as E. coli LPS (PDB ID 3FXI, cf. Figure 1.6 

in Introduction chapter). 
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Figure 3.5. Representation of the two poses, E. coli lipid A-like (on the left) and lipid 
IVa-like (on the right), selected for MD simulations. 

In the E. coli lipid A-like pose the hopanoid moiety, the VLCFA linked to it, and the 

C12 acyl chain from the same ramification, are folded in a narrow region between a 

TLR4 loop formed by residues from 381 to 386 and a MD-2 β-sheet formed by residues 

90 to 95 (Figure 3.5). The second VLCFA and two shorter acyl chains are 

accommodated inside the MD-2 pocket and the last shorter chain follow the same 

corridor toward Phe126 as one acyl chain of E. coli LPS. The two mannoses are 

forming polar interactions with TLR4 residues Arg264, Asn339 and Lys362. In the lipid 

IVa-like pose, the hopanoid moiety is in close proximity of Phe126 and its VLCFA is 

partially inserted in the MD-2 pocket along with the other VLCFA and 3 shorter acyl 

chains. The remaining acyl chain lies outside the pocket next to the TLR4 protruding 

loop mentioned earlier. As for the saccharides, the galacturonic acid establishes polar 

interactions with TLR4 residues Arg264, Asn339 and Lys362. The two mannoses are 

packed at the same position where the hopanoid moiety is found in the E. coli LPS-like 

pose (Figure 3.5). 

Both docked complexes of HOLA/TLR4/MD-2 (with the lipid IVa-like and the E. coli 

lipid A-like poses) were submitted to MD simulations. TLR4 presents important 

deviation compared to the crystal structure in relation with MD-2, as shown in the 

RMSD plot (Figure 3.6, left panel). TLR4 displays a tendency to break apart from 

MD-2 indicating that the presence of the ligand destabilizes the TLR4/MD-2 complex 

(Figure 3.7). It distorts the relative TLR4 vs MD-2 disposition in disagreement with the 

agonist geometry. This observation backs-up the hypothesis that HOPA and HF-LA act 

as antagonists by either preventing complex formation (cf. protruding loop mentioned in 

the docking study above) or by disturbing the complex stability. In addition, Phe126 
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remains in its open conformation all along the simulation (Figure 3.6, right panel), this 

stability was previously associated with antagonist ligands23. 

  

Figure 3.6. On the left: RMSD of TLR4 in relation to the first frame in comparison 
with MD-2 as the minimum fit of the system is performed on the backbone of MD-2. 
On the right: angle over simulation time between two arbitrarily selected vectors 
starting both from the α-carbon of residue Phe126 to, respectively, the zeta-carbon of 
the same residue and the α-carbon of residue Ser21 (Figure 3.14A). The angle plotted 
over time shows the stability of residue Phe126 during the MD simulation associated 
with antagonist activity of the ligand23. 

 

 
 

Figure 3.7. Evolution of the TLR4/MD-2/HOPA complex over the MD simulation. 
TLR4/MD-2 from PDB ID 3FXI, represented in semi-transparent cartoon, was 
superimposed for comparison purposes. TLR4, MD-2 and HOLA from the simulation 
are depicted in blue cartoon, green cartoon and yellow sticks, respectively. On the left: 
system at t=0 ns, from the docking calculation. On the right: system at t=100 ns of MD 
simulation. 

Conclusion 

Our computational studies have allowed the proposal of plausible binding modes of the 

recently characterized Bradyrhizobium LPS to the TLR4/MD-2 system. These binding 

modes account for the potent activity antagonizing the binding of E. coli LPS to the 

MD-2/TLR4 complex thus inhibiting its toxic effects.22 It is likely that the TLR4 
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signaling modulation occurs by direct interaction with the TLR4/MD-2 complex, both 

in its hopanoid-containing and hopanoid-free forms. Our studies do not point toward a 

primary role of the hopanoid moiety in the biological activity regarding TLR4 signaling. 

Materials and methods 

Structure construction. The 3D structures of both the hopanoid-containing and HOLA 

and HF-LA were built with PyMOL molecular graphics and modeling package24 based 

on the saccharide backbone of E. coli LPS retrieved from the PDB ID 3FXI. Atoms 

were modified and added accordingly and bond type and length were carefully selected 

and revised. The geometry of these two structures was further optimized with Maestro 

under the OPLS3 force field.25 The antagonist conformation of the human TLR4/MD-2 

complex was assembled by merging the ectodomain of TLR4 from RCSB 

(www.rcsb.org) PDB ID 3FXI and MD-2 from PDB ID 2E59. The latter was aligned to 

the spatial coordinates of the MD-2 present in 3FXI and solvent, ligands, and ions were 

removed. 

Structure optimization. Hydrogen atoms were added to the X-ray structures using the 

preprocessing tool of the Protein Preparation Wizard of the Maestro package, and then 

the structures went through a restrained minimization under the OPLS3 force field with 

a convergence parameter to RMSD for heavy atoms kept default at 0.3Å. 

Docking procedure. Gasteiger charges were computed and assigned with 

AutoDockTools 1.5.6 to both the proteins and the ligands. Both HOLA and HF-LA 

were left flexible by allowing some appropriately selected dihedral angles to rotate 

whereas the receptor was always kept completely rigid. The docking was performed 

with AutoDock Vina26. A cubic docking box of 60 Å in size and 1 Å in spacing was 

defined. The box was centered equidistant to the geometric center of residues Arg90 

(MD-2), Arg96 (MD-2), and Arg264 (TLR4). 

Parametrization. HOPA and HF-LA structures were split into residues to facilitate and 

homogenize the parametrization process. The partial charges and atom types of the 

4-substituted and the 6-substituted 2,3-diamino-2,3-dideoxy-glucose monosaccharides 

composing the oligosaccharide backbone were established based respectively on 

residues 4YB (4-substituted GlcNac) and 6YA (6-substituted GlcNac) of the GLYCAM 

force field27. The partial charges and parameters for the two mannose (Man) residues 

and the galacturonic acid (GalA) were retrieved from the GLYCAM force field 
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respectively under the name 0MA, 6MA and 1OA. Partial charges for the primary and 

secondary acylation as well as for the hopanoid residue were derived, with the help of 

antechamber28, following the standard GAFF procedure described in the AMBER 

manual and the parameters were assigned by the GAFF force field. 

MD simulations. All MD simulations were performed with Amber1429, the protein was 

described by the ff14SB all-atom force field30, the pentasaccharide backbone of the 

BTAi1 lipid A by the GLYCAM_06j-1 force field27 and the other constituents of the 

lipid A (the lipid chains and the hopanoid moiety) were parametrized with the GAFF 

force field.31 The simulation box was designed such as the edges are distant of at least 

10 Å of any atoms. The system was solvated with the TIP3P water molecules model. 

One Na+ ion was added to counterbalance the negative charge of the galacturonate 

group. All the simulations were performed with the same equilibration and production 

protocol. First, the system was submitted to 1000 steps of steepest descent algorithm 

followed by 7000 steps of conjugate gradient algorithm. A 100 kcal mol-1 A-2 harmonic 

potential constraint was applied on the proteins and the ligand. In the subsequent steps, 

the harmonic potential was progressively lowered (respectively to 10, 5, 2.5 and 0 kcal 

mol-1 A-2) for 600 steps of conjugate gradient algorithm each time. Next, the system was 

heated from 0 K to 100 K by a Langevin thermostat in the canonical ensemble (NVT) 

under a 20 kcal mol-1 A-2 harmonic potential restraint on the proteins and the ligand. 

Finally, the system was heated up from 100 K to 300 K in the Isothermal-isobaric 

ensemble (NPT) under the same restraint condition than the previous step, followed by 

a simulation of 100 ps in which all harmonic restraints were removed. At this point the 

system was ready for the production run, which was performed using the Langevin 

thermostat in the NPT ensemble, at a 2 fs time step. 
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3.2 LPS-like synthetic modulators 

3.2.1 Structure-activity relationship (SAR) in monosaccharide-based Toll-like 

receptor 4 (TLR4) antagonists 

The content of this subsection was reported in a multidisciplinary article published in 

the Journal of Medicinal Chemistry.32 The content was restructured to give the 

emphasis on the computational approach, relevant to this thesis. This work was 

performed in collaboration with Prof. Peri (University Milano-Bicocca, Italy), Prof. 

Beyaert (VIB-UGent, Belgium) and Prof. Jerala (National Institute of Chemistry, 

Slovenia) within the MSCA-ITN TOLLerant project. 

Our group developed the lipid X mimetic FP7,33 a glucosamine derivative with two 

phosphate groups and two myristic (C14) FA chains, whose design was inspired by other 

glucosamine-based TLR4 modulators (Figure 3.8).34-35 FP7 is active in inhibiting in a 

dose-dependent way human33 and murine36 TLR4 activation by LPS. Some preliminary 

observations from NMR experiments suggest that FP7 interact with MD-2, probably 

inserting FA chains into the hydrophobic binding cavity.33 This direct competition with 

LPS for MD-2 binding is probably reinforced by the capacity of FP7 to induce 

endocytosis of CD14, thus causing the absence of this receptor on the plasma 

membrane.33 FP7 is active in blocking PR8 virus lethality that is mainly due to TLR4 

over-stimulation by endogenous DAMPs (mainly oxidized phospholipids and HMGB-1 

protein) derived from viral damage to lung tissue.36 In a proof-of-concept experiment in 

support of the proposed activation mechanism, FP7 was shown to inhibit HMGB-1 

activation of dendritic cells.36 Other monosaccharide-based TLR4 modulators were 

developed and structure-activity relationship (SAR) studies showed that the length of 

FA chain is a critical factor determining the potency of TLR4 antagonism or agonism.34, 

37 The biological activity and the agonist/antagonist behavior on TLR4 of lipid A 

variants and other amphiphilic glycolipids including FP7 is not only determined by the 

interaction with MD-2 but also by the aggregation state in solution. As LPS and lipid A, 

FP7 is an anionic amphiphile with a low value of CMC (9 µM).33 Even though the 

CMC value of FP7 is higher than its IC50 (about 2 µM in HEK cells assays), 

equilibrium between aggregates and single molecules in solution is present in the 

concentration range in which FP7 is active. 



Chapter 3 – TLR4 Modulators 

77 
 

It has been proposed for lipid A derivatives that the size and the 3D shape of aggregates 

influences the TLR4 activity, with lamellar aggregates being associated to antagonism 

and aggregates with non-lamellar cubic symmetry to agonism.38-39 While the last step of 

ligand presentation to TLR4 and formation of the activated heterodimer 

(TLR4/MD-2/ligand)2 are dominated by single molecule interactions between the ligand 

and CD14 and MD-2 receptors40, the early phases of endotoxin (ligand) recognition by 

LPS-binding proteins are very likely influenced by the aggregation state of the ligand.  

We performed the structure-activity relationship (SAR) study on synthetic FP7 variants 

differing only for FA chains lengths (10, 12, 14 and 16 carbon atoms, Figure 3.8). In 

this study we took into account both the interaction with MD-2 and the aggregation 

properties of the molecules. Additionally, we showed the relationship between the 

chemical structure of FP7 variants with different fatty acid chains lengths and their 

effect on functional activity of TLR4 in different in vitro cell models. 

 

Figure 3.8. Chemical structures of lipid X and FP7 variants 

Computational design of FP7 variants as ligands of human MD-2 and CD14. 

Given our previous studies on the lipid X mimetic FP7 as ligand of TLR4/MD-2 and 

CD14 proteins, with TLR4/MD-2 antagonist activity,33 we were prompted to investigate 

the influence of acyl chain length on the antagonist activity. To address this point, we 

designed three new FP7 derivatives with different FA lengths: FP10 (C10), FP12 (C12), 

FP7 (C14), and FP116 (C16). The ability of these ligands to bind to the TLR4/MD-2 

complex and to CD14, compared with FP7, was initially assessed through various 

computational techniques. 
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We first docked the ligands in the binding site of CD14 using AutoDock Vina. For all 

the four ligands, docked poses inside the hydrophobic pocket were found. The obtained 

binding poses were very similar for all the ligands (Figure 3.9A) with also very close 

favorable predicted binding energies for the top poses (range from -6.5 kcal mol-1 to -

5.9 kcal mol-1). Therefore, the docking calculation showed that all four ligands are 

theoretically able to interact with CD14 inside its hydrophobic pocket and to engage in 

favorable interactions. In the most populated and most favorable docked poses, one 

phosphate group is interacting with the NH groups of Arg72 and Val73, and with the 

OH group of Tyr82 (Figure 3.9B), while the other phosphate group is exposed to the 

solvent. The FA chains are accommodated inside the hydrophobic pocket of CD14 

interacting with aliphatic residues, mainly Ala, Val, Leu, and Ile, and aromatic Phe49 

(details are depicted in Figure 3.9C). The results were in agreement with previous 

docking studies of FP7 reported by us.41 

We performed the docking calculations of ligands FP7, FP10, FP12 and FP116 inside 

the TLR4/MD-2 complex in the antagonist conformation (Figure 3.10). For all the 

compounds, favorable docked poses were found, with predicted binding energies, for 

the best ones, ranging from -7.8 to -6.5 kcal mol-1. The polar head groups are placed at 

the rim of MD-2 and the FA chains deep inside the hydrophobic pocket interacting with 

many hydrophobic residues, namely Val24, Ala30, Ile32, Ile44, Ile46, Val48, Ile52, 

Leu54, Leu61, Ile63, Tyr65, Phe76, Leu78, Ile80, Phe104, Val113, Ile117, Phe119, 

Phe121, Ile124, Tyr131, Val135, Phe147, Leu149, Phe151, and Ile153 (Figure 3.10B).  

In addition, we observed more diversity in the predicted binding poses in TLR4/MD-2 

than in CD14. Results for FP7 were in agreement with those previously reported in 

MD-2 protein.33 In many poses, one of the phosphate groups was close to the hydroxyl 

group of MD-2 Tyr102 where it establishes hydrogen bonds, and the other one was 

often close to MD-2 Arg90 establishing hydrogen bonds and electrostatic interactions 

(Figure 3.10C). In some docked poses, the phosphate groups were observed to interact 

with the backbone of residues Phe119, Ser120, and Phe121. Both phosphate groups 

were often placed at the rim of MD-2 where they are exposed to the solvent, in 

agreement with the reported X-ray crystallographic complexes of TLR4/MD-2 with 

glycolipids (for example, complex with eritoran, PDB ID 2Z65, or with lipid IVa, PDB 

ID 2E59). Two different orientations were also found: type A (antagonist-like binding 

mode), similar to that found for lipid IVa in PDB ID 2E59; and type B (agonist-like 
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binding mode), similar to that found for E. coli lipid A in PDB ID 3FXI (Figure 1.6 in 

Introduction chapter). It is well known that these two ligands, lipid IVa and E. coli lipid 

A, bind to TLR4/MD-2 in a different manner, one being rotated 180° compared to the 

other one, leading to opposed biological activities. 

 

Figure 3.9. (A) Full view of CD14 (in light blue). Superimposed best-score docked 
poses of FP10 (in orange), FP12 (in yellow), FP7 (in green), and FP116 (in violet) are 
shown in sticks. (B) Close-up of the binding pocket of CD14, showing the major 
interactions of the head groups of the ligands docked within the protein. (C) Top view 
of the binding pocket of CD14. CD14 residues that form the hydrophobic pocket and 
whose side chains are close to the FA chains of the docked ligands are displayed in 
sticks and partially transparent spheres. 

Selected binding poses were used as starting structures for re-docking with AutoDock4 

resulting in predicted binding energies ranging from -4.6 kcal mol-1 to +4.3 kcal mol-1. 

Among the docked solutions, the best poses (from -4.6 kcal mol-1 to -2.5 kcal mol-1) 

corresponded to binding poses very similar to those obtained with AutoDock Vina (data 

not shown). The narrow binding energy range did not permit to rank the ligands by 

predicted affinity, showing that the four ligands are putative binders of the TLR4/MD-2 

system. Given that the main interactions (the polar ones) are common to the four 

ligands, and that the MD-2 pocket is big enough to host two longer FA chains, from the 
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docking calculations it was not possible to clearly correlate the subtle differences in FA 

chain length with preferred ligand binding. 

 

Figure 3.10. (A) General view of FP10 (in orange), FP12 (in yellow), FP7 (in green), 
and FP116 (in violet) docked inside TLR4/MD-2 (TLR4 is shown in black and MD-2 in 
grey). (B) Details of the MD-2 hydrophobic pocket occupied by all the best docked 
poses for each ligand (represented as lines). Hydrophobic residues mentioned in the text 
as interacting with the FA chains of the ligands are represented in spheres. (C) Details 
of the polar interactions of the ligands inside the TLR4/MD-2 system. Phosphate groups 
of the best docked poses of each ligand and the MD-2 residues with which they interact 
are represented in sticks. 

Stability of the predicted TLR4/MD-2/ligand complexes was further studied by MD 

simulations. We selected two of the best binding poses for each ligand (Figure 3.11): 

one type A (antagonist-like binding pose), and one type B (agonist-like binding pose). 

Therefore, a total of eight 50-ns MD simulation were run. 
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A. Type A binding (antagonist-like) B. Type B binding (agonist-like) 

  

Figure 3.11. Selected docked poses of each ligand for MD simulations. (A) Type A 
antagonist-like binding pose. (B) Type B agonist-like binding pose. Ligands are 
depicted following the CPK coloring scheme, excepting the carbon atoms that are 
shown in orange for FP10, in yellow for FP12, in green for FP7, and in violet for 
FP116. TLR4 is colored dark, MD-2 is shown in light grey and Phe126 side chain is 
represented in sticks. 

We monitored the motion of MD-2 over time and examined the RMSD and RMS 

fluctuation per residues, as well as the motion of Phe126 side chain over time (Figure 

3.12). All the complexes showed stable ligand-receptor interactions along the MD 

simulation as predicted by the docking calculations. In particular, in the MD simulation 

of the TLR4/MD-2/FP7 complex in the type A (antagonist-like) binding pose, the 

Phe126 side chain moves around its initial position staying largely exposed to the 

solvent in a conformation in agreement with the X-ray crystallographic antagonist 

conformation of MD-2 (Figure 3.15B). 

  

Figure 3.12. Molecular dynamics simulations of the TLR4/MD-2 system in complex 
with ligands FP10, FP12, FP7, and FP116. On the left: RMSD of the MD-2 backbone 
over time. On the right: RMS fluctuations per residues of MD-2. 
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A) 

 

B) 

 

Figure 3.13. (A) Angle between two vectors along the MD simulation projected over 
time. First vector was defined between the amide α-carbon atom and the ester α-carbon 
atom of the ligand, and the second vector between the α-carbon atoms of residues Pro78 
and Thr105 of MD-2 (Figure 3.14). Angle between 0 and 90 degrees is characteristic of 
the type B binding (agonist-like) as observed in the PDB ID 3FXI (TLR4/MD-2/lipid-A 
complex); angle between 90 and 180 degrees is characteristic of the type A binding 
mode (antagonist-like) as observed in the PDB ID 2E59 (TLR4/MD-2/lipid-IVa 
complex). (B) Percentage of time frames along the MD simulation projected over angle. 

To evaluate the relative orientation between the ligands and MD-2, we arbitrarily 

defined two vectors, one from the amide α-carbon atom to the ester α-carbon atom of 

the ligand, and another one from the α-carbon of residues Pro78 to Thr105 of MD-2 

(Figure 3.14A). The angle between these two vectors was plotted both over time and as 

a percentage of frames per 0.1 degree angle range (Figure 3.13). It was observed that 

none of the ligands undergoes orientation flip during the 50-ns simulations, all 

remaining in the orientation obtained from the docking process. Interestingly, only in 

the case of the TLR4/MD-2/FP116 complex with FP116 in the type A (antagonist-like) 

binding pose, the orientation of Phe126 side chain flips over (Figure 3.15C). We 

monitored this flipping behavior along the MD simulations, for all the ligands, by 

arbitrary choosing two vectors, within MD-2, both starting from the α-carbon of residue 

Phe126 to, respectively, the phenyl C-4 atom of the same residue and the α-carbon of 

residue Ser21 (data shown in Figure 3.14 and Figure 3.15). This observation could 

suggest that FP116 is not able to efficiently retain an antagonist conformation of MD-2, 

thus pointing to a poor antagonist capacity. 
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Figure 3.14. (A) Representation of the vector from the α-carbon (CA) of Pro78 to the 
α-carbon of Thr105, and the vector from amide α-carbon atom (C11) and the ester α-
carbon atom (C21) of FP7, used to follow the orientation of the ligands along the MD 
simulations (cf. S4). FP7 is used as an example; the same applies for the other ligands. 
MD-2 is represented in grey an FP7 is depicted in CPK coloring at the exception of the 
carbon atoms that are in green. (B) Representation of two vectors, within MD-2, starting 
both from the α-carbon (CA) of residue Phe126 to, respectively, the phenyl C-4 atom 
(CZ) of the same residue and the α-carbon (CA) of residue Ser21. Agonist MD-2 from 
PDB ID 2E59 and antagonist MD-2 from PDB ID 3FXI are represented in semi-
transparent blue and pink cartoons, respectively. 

 

Figure 3.15. (A) Angle between two vectors defined in Figure 3.14. The angle between 
these two arbitrarily selected vectors, plotted over time, illustrates the flip that residue 
Phe126 undergoes during the MD simulation when MD-2 is engaged by FP116 in the 
type A binding mode. (B-C) Superimposition of snapshots (one for each simulated 
nanosecond), from the MD simulations, colored from blue, t=0 ns, to red, t=50 ns. From 
these snapshots only ligands (as lines) and residue Phe126 (as sticks) are made visible. 
(B) TLR4/MD-2/FP7 complex starting from the type A binding pose (antagonist-like). 
(C) TLR4/MD-2/FP116 complex starting from the type A binding pose (antagonist-
like). 
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In addition, logP values of compounds FP10, FP12, FP7 and FP116 were 

computationally calculated, ranging from approximately 4 to 10 with a linear 

distribution (Figure 3.16). The highest logP value was obtained for FP116 indicating a 

high lipophilicity that might result in low water solubility. This was in agreement with 

the lower acyl chain mobility as analyzed by FT-IR spectroscopy (Figure A3.1). In any 

case, this did not interfere with the performance of the cell assays. Summarizing, the 

computational studies assessed the ability of ligands FP7, FP10, FP12, and FP116 to 

bind both CD14 and TLR4/MD-2, pointing to the long FP116 acyl chain (C16) as the 

maximum length bordering good (predicted) binding properties. 

 

Figure 3.16. Computed logP values for compounds FP10, FP12, FP7 and FP116. 

The compounds were therefore synthesized and tested. Details for the synthesis and the 

biological assays can be found in the article reported by us.32 Below, the discussion 

based on the biological activity studies is provided. 

Biological activity studies and discussion 

The homologous series of FP glycolipids with fatty acid chain lengths varying from 10 

to 16 carbon atoms were rationally designed as MD-2 ligands and synthesized. In a first 

set of in vitro experiments we aimed at studying the SAR of these molecules in binding 

experiments with functional hMD-2. For this purpose, hMD-2 expressed in yeast (P. 

pastoris), was used because it showed higher activity in responding to LPS stimulus 

than bacterial (E. coli) MD-2 and was produced with higher yields than MD-2 from 

mammalian (HEK) cells (Figure A3.2). Four different binding experiments between 

synthetic compounds and hMD-2 were carried out. These were competition 

(displacement) experiments in which the synthetic glycolipids compete with biotin-LPS, 

with the fluorescent MD-2 ligand bis-ANS and with anti-MD-2 antibody for MD-2 

binding (Figure A3.3). SPR measurements allowed to analyze directly the binding 
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between synthetic glycolipids and MD-2. All binding experiments consistently provided 

the same order of affinity among hMD-2 and synthetic molecules: FP12(C12)>FP7(C14) 

>FP10(C10)>FP116(C16).  

The biological activity was then assessed on cells: when provided alone, the synthetic 

FP compounds did not display any TLR4 agonist activity in human and murine cells. 

On the contrary, when administrated with LPS, the molecules with 10, 12 and 14 carbon 

chains (respectively, FP10, FP12 and FP7) were active in blocking LPS/TLR4 signal 

(antagonism) in human and murine cells, while the molecule with 16 carbons (FP116) 

showed very weak, or no activity. The order of activity of FP variants as TLR4 

antagonists was confirmed in human HEK-TLR4 (Figure A3.4) and THP-1 (Figure 

A3.6 and Figure A3.7), and murine RAW macrophages cells (Figure A3.5). The 

molecules with 10, 12 and 14 carbon chains seem to be non-species specific TLR4 

antagonists, because these compounds are active in both human (HEK and THP-1) and 

murine cells, with higher potency in human ones. The compound with higher biological 

activity was FP12, with 12 carbons, followed by FP7 and FP10 with 14 and 10 carbons, 

while FP116 with 16 carbons showed very weak or no activity in cell models.  

The variation of compounds’ functional activity was related to the number of carbon 

atoms of the aliphatic chains which could be described by a bell-shaped curve with a 

maximum at C12. This is a common structure-activity trend that is found in a number of 

series of homologous compounds in medicinal chemistry and can be explained in terms 

of docking within the binding pocket of the pharmacological target (as it exists an 

optimal number of carbon atoms that can be accommodated into the pocket) and also in 

terms of variation of solubility and bioavailability (when the chain length is too long the 

solubility decreases and also the biological activity). Thus, the difference of TLR4 

functional activity of FP monosaccharides related to FA chains length can be explained 

in terms of their interaction with MD-2(/TLR4) and/or by their aggregation properties in 

solution (Figure A3.1 and Figure A3.8). 

The docking and MD simulation studies have shown that FP10, FP7 and FP12 would 

accomplish optimal binding properties while FP116 could be bordering the limits of the 

maximum length compatible with a proper MD-2 binding. Although MD-2 pocket is 

able to host up to five FA chains, the highly long and flexible C16 acyl chains present in 

FP116 seem to point to less efficient ability to interact with TLR4/MD-2 in an 
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antagonistic binding mode, given that the required exposed conformation of Phe126 

side chain could be jeopardized. Additionally, calculated logP values for the FP variants 

point to a very high lipophilicity for FP116, maybe affecting the aggregation properties 

in solution (Figure 3.16). Taken together, these data strongly suggest that the 

mechanism of TLR4 antagonism of that class of compounds is mainly based on the 

competition with LPS (or other ligands, as bis-ANS) in the binding to the MD-2/TLR4 

complex. 

Interestingly, an identical order of activity on TLR4 has been found in a series of 

monosaccharide TLR4 agonists, the Gifu Lipid As (GLA), and the following order of 

potency in inducing the production of TNF-α in murine cells was detected: 

C12>C14>C10>>C16.34 Also in the case of GLA compounds, with three FA chains and 

one phosphate in C-4 position, the C12 and C14 variants were the most active ones, C10 

less active and C16 were inactive. Similarly to FP compounds, GLA are more active on 

murine than on human cells.34 However, the authors did not provide any evidences or 

explanation about the link between TLR4 activity of monosaccharide and FA chain 

length. 

Regarding the aggregation properties some important differences among FP compounds 

were detected by FT-IR analysis in solution (Figure A3.1). These measurements showed 

marked variations in acyl chain fluidity of aggregated FP compounds depending on the 

chemical structure. The phase transition temperature Tc exhibits a clear inverse 

correlation with the length of the acyl chains with Tc C16 >> Tc C14 > Tc C12 > Tc C10. 

Of note, this behavior results in marked differences at the biological relevant 

temperature of 37 °C, where FP10, FP12, and FP7 are in a fluid membrane phase, 

whereas FP116 is still in a rigid membrane phase and requires much higher 

temperatures for acyl chain melting to occur. The occurrence of a very broad phase 

transition at temperatures above 37 °C and occurrence of a second phase transition at 

higher temperature as observed for FP116 were also found for inactive glucosamine 

monosaccharide GLA compounds.40 Differences in phase behavior have also been 

shown for the TLR4 ligands lipid A and LPS. The antagonistic tetraacylated synthetic 

compound 406 is highly fluid at 37 °C, whereas the biologically active hexaacylated 

compound 506 and LPS Re have phase transition temperatures above 37 °C.41 The 

fluidity state of the acyl chains in aggregated glycolipids is thus not an exclusive 

determinant of inflammatory or antagonistic activity of chemically different 
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compounds. It is rather a modifying parameter of biological activity by affecting 

aggregate properties such as hydrophobic thickness, packing density, and aggregate 

stability. NMR and SAXS analysis revealed striking differences in aggregate formation 

of FP compounds which are likely to explain differences in their biological activity 

(Figure A3.8). Concentration-dependent NMR analysis of the two most antagonistic 

compounds FP12 and FP7 revealed aggregation of FP7 (C14) at much lower 

concentrations than FP12 (C12), reflecting further differences in the biophysical state 

and bioavailability of these compounds (data not shown). Aggregate structures resolved 

by SAXS analysis provided evidence for lamellar bilayer structures for FP10 and FP12, 

which are associated with antagonistic activity, for FP7 a tendency to for non-lamellar 

structures was determined (Figure A3.8). Considering the crucial role of lipid 

supramolecular aggregate structure for the presentation to LPS receptor molecules, the 

different aggregate structures observed by SAXS might explain the slightly lower 

antagonistic activity of FP7 compared to FP12 in some biological systems. 

Conclusion 

The present study provides structural and functional biological data demonstrating the 

ability of novel FP variants to negatively regulate TLR4 signaling in different cell 

model systems. Having shown the strong potential of FP12 to modulate second 

messengers activation and various end points of TLR4 signaling pathways including its 

lack of toxicity, this study supports the idea of further drug development of FP12 as a 

lead compound in preclinical and clinical studies for pharmacological intervention of 

inflammatory-based diseases. Our computational studies were relevant in the context of 

the SAR study and to propose the rationale for the mechanism of binding. Our models 

suggest that there is an optimum length for the FA chains for an appropriate TLR4 

antagonist activity related to the binding mode and to the physical-chemical properties 

of the FP variants. 

Materials and methods  

Structure construction and refinement. The 3D structures of ligands FP10, FP12, FP7, 

and FP116 were built with PyMOL24 using 6YA monosaccharide found in the 

GLYCAM database42 as a template. The 3D coordinates of human TLR4/MD-2 model 

in the antagonist conformation is reported elsewhere.23 



Chapter 3 – TLR4 Modulators 

88 
 

Parameters Derivation. The parameters needed for MD simulations were obtained 

using the standard Antechamber procedure in Amber14.29 Briefly, ligand structures, 

already refined at the AM1 level of theory, were optimized and their atomic partial 

charges were calculated with Gaussian g09/e143 at the Hartree-Fock level (HF/6-31G* 

Pop=MK iop(6/33=2) iop(6/42=6)), then the partial charges were derived and formatted 

for AmberTools15 and Amber14 with Antechamber, assigning the general AMBER 

force field (GAFF) atom types. Later, the atom types of the atom constituting the 

saccharide ring were changed to the GLYCAM force field atom types.27 The GAFF 

parameters for the phosphate group were modified as shown in SI. 

Docking calculations of ligands FP10, FP12, FP7, and FP116. The Gasteiger charges 

were computed within the AutoDockTools 1.5.6 program,44 and the nonpolar hydrogens 

were merged for all the ligands, the human TLR4/MD-2 antagonist model and human 

CD14 (PDB ID 4GLP). AutoDock Vina 1.1.2 was used for the docking of the ligands 

and AutoDock 4.2 was used to redock the best-predicted binding poses. In AutoDock 

4.2, the Lamarckian evolutionary algorithm was chosen and all parameters were kept 

default except for the number of genetic algorithm runs that was set to 200 to enhance 

the sampling. AutoDockTools 1.5.6 was used to assign the Gasteiger-Marsili empirical 

atomic partial charges to the atoms of both the ligands and the receptors. The structure 

of the receptors was always kept rigid, whereas the structure of the ligand was set 

partially flexible by providing freedom to some appropriately selected dihedral angles. 

Regarding the docking boxes, grid spacing was set to the default value of 1 Å for 

VINA, and 0.375 Å for AutoDock. For human CD14 structure, the size of the box was 

set to 33.00 Å in the x-axis, 33.75Å in the y-axis and 33.75 Å in the z-axis, and the 

center of the box was located equidistant to the center of mass of residues Phe69, Tyr82 

and Leu89. For the human TLR4/MD-2 system, the size of the box was set to 33.00 Å 

in the x-axis, 40.50 Å in the y-axis and 35.25 Å in the z-axis, and the center of the box 

was located equidistant to the center of mass of residues Arg90 (MD-2), Lys122 (MD-

2) and Arg264 (TLR4). 

Molecular dynamics (MD) simulations. Selected docked complexes were submitted to 

MD simulations for 50 ns in the Amber14 suite following the same protocol described 

in section 3.1.1 Bradyrhizobium LPS. 
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LogP calculations. LogP value of FP10, FP12, FP7, and FP116 were calculated within 

the Maestro package.45  
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3.2.2 Annex 1 

 

Figure A3.1. Acyl chain mobility of the aggregated FP compounds in dependence on 
temperature. The infrared absorption around wavenumbers 2850 - 2852 cm-1 
corresponds to the symmetric stretching vibrations νs of the CH2 groups of the acyl 
chains. The wavenumbers indicated were derived from the peak absorption of νs(CH2) 
determined upon constant heating of the samples. Data are representative of two 
independent measurements. 

 

 

Figure A3.2. Activity of hMD-2 expressed in different hosts. The figure shows the 
maximum activation of TLR4 (quantified by IL-8 production) at the lowest 
concentration of hMD-2 under the different expressed conditions (bacteria 245 nM, 
yeast 15 nM, and mammalian 12 nM). Results are mean ± SEM from three parallels 
representative of at least three independent experiments. 
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Figure A3.3. Cell-free binding studies on purified MD-2 receptor. (A) LPS, FP7, 
FP10 and FP12 prevent anti-human MD-2 monoclonal antibody binding in a dose-
dependent manner; (B) LPS, FP7, FP10, FP12 and FP116 activity in competing with 
biotin-LPS for hMD-2 binding; (C) Fluorescence measurements show that LPS, FP7, 
FP10 and FP12 dose-dependently inhibit the binding of bis-ANS to MD-2; (D-H) SPR 
analysis show direct interaction between LPS, FP10, FP12, FP7, and FP116 and MD-2; 
KD values are reported. Results are mean ± SEM from three parallels representative of 
at least three independent experiments.  
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Modulation of LPS-stimulated TLR4 signaling in HEK-Blue cells 

 

Figure A3.4. Dose-dependent inhibition of LPS-triggered TLR4-dependent NF-kB 
activation in HEK-Blue hTLR4 cells by compounds FP7, FP10, FP12 and FP116. (A) 
HEK-Blue hTLR4 cells were pre-incubated with the indicated concentrations of 
compounds FP7, FP10, FP12 and FP116 and stimulated with LPS (100 ng/mL) after 30 
minutes. Data were normalized to stimulation with LPS alone and expressed as the 
mean percentage ± SEM of at least three independent experiments. (B) Dose-response 
curves for compounds FP7, FP10 and FP12 in inducing the TLR4-dependent NF-κB 
reporter activity. Concentration-effect data were fitted to a sigmoidal 4-parameter 
logistic equation to determine IC50 values. Data points represent the mean of percentage 
± SEM of at least 3 independent experiments. 

Modulation of LPS-stimulated TLR4 signaling in murine macrophages  

 

Figure A3.5. Activity of compounds FP10, FP12 and FP116 on RAW-Blue cells. (A) 
RAW-Blue cells were pre-incubated with increasing concentrations of synthetic 
compounds and then stimulated with LPS (10 ng/mL, after 30 minutes). Data were 
normalized to response to LPS and expressed as the mean percentage ± SEM of at least 
three independent experiments. (B) Dose-dependent inhibition curves of compounds 
FP7, FP10 and FP12. IC50 values in the table on the bottom. Concentration-effect data 
were fitted to a sigmoidal 4-parameter logistic equation to determine IC50 values. Data 
points represent the mean of percentage ± SEM of at least 3 independent experiments.  



Chapter 3 – TLR4 Modulators 

93 
 

Effect of FP variants on LPS-induced TLR4 signaling in THP-1 cells. 

 

Figure A3.6. The Effect of FP variants on LPS/TLR4 induced production of IL-8 in 
THP-1 cells. THP-1 cells were pre-treated with FP variants (0 - 10 µM) for 1 h prior to 
LPS exposure. Cells were then left to incubate 16 h further in the presence or absence of 
LPS (100 ng/mL). IL-8 production was measured by ELISA. Results are displayed as 
mean concentration ± SD of three independent experiments. Significant results are 
indicated as *P>0.05 **P>0.01 ***P>0.001 for LPS vs Control and LPS vs FPs treated 
samples (Anova). 

 

Figure A3.7. FP12 negatively regulates p65 NF-κB phosphorylation and production of 
IL-6 and IL-1β in THP-1 cells. THP-1 cells were pre-treated with compound FP12 (0 - 
10 µM) for 1 h prior to LPS exposure. Cells were then left to incubate 1 and 16 h further 
in presence or absence of LPS (100 ng/mL). p65 NF-κB phosphorylation was 
determined in cell lysates using Western Blot analysis and cytokine production was 
measured by ELISA after 16 h of LPS exposure respectively. Results are displayed as 
mean concentration ± SD of three independent experiments. Significant results are 
indicated as *P>0.05 **P>0.01 ***P>0.001 for LPS vs Control and LPS vs FP12 
treated samples (Anova). 
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SAXS studies 

 

Figure A3.8. Small angle X-ray diffraction of aggregates in solution for FP10 (A), 
FP12 (B), FP7 (C), and FP116 (D). Scattering vectors are indicated for temperatures 
between 20 °C and 80 °C. Grey squares show enlargements of the relevant scattering 
vectors. The spacing of the diffraction maxima is indicted as d = 1/s (nm).   
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3.3 Non LPS-like modulators 

3.3.1 Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and 

Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling  

The content of this subsection was reported in a paper published in the Journal of 

Medicinal Chemistry.23 Here the presentation of the results has been reorganized to 

emphasize the computational approach relevant to the thesis. This work was performed 

in collaboration with Prof. Peri (University Milano-Bicocca, Italy) within the MSCA-

ITN TOLLerant project. 

To block abnormal TLR4 signaling in bacterial sepsis, two different strategies have 

been developed. The first one is based on LPS neutralization by the formation of 

noncovalent adducts with cationic compounds: positively charged antimicrobial 

peptides (AMPs)46 including polymixin B,47 and synthetic dendrimeric polyamines48-49 

contain positively charged groups (most frequently amino and guanidinium groups) and 

form noncovalent complexes with negatively charged LPS, thus preventing LPS from 

interacting with the receptors.  

The second strategy is based on the use of molecules that compete with endotoxic LPS 

in binding to the same site on CD14 and MD-2, thereby inhibiting the induction of 

signal transduction by impairing LPS-initiated receptor dimerization. To date, several 

lipid A variants, which specifically block the LPS-binding site on human hMD-2, have 

been identified: natural compounds such as lipid IVa (a biosynthetic precursor of E. coli 

lipid A)50 and a nonpathogenic lipid A from R. sphaeroides,51 and synthetic molecules 

such as the tetraacylated disaccharide eritoran (E5564),52-53 the aminoalkyl 

glucosaminide 4-phosphates (AGPs),54-55 and some phosphorylated monosaccharide 

glycolipids.37 These compounds inhibit TLR4 signaling by accommodating into the 

deep hydrophobic pocket of the co-receptor, MD-2, and blocking ligand-induced 

dimerization.56 Eritoran57 and other small molecules with TLR4 antagonist activity58 

also potently inhibit LPS binding to CD14. While the use of LPS neutralizing agents is 

limited to sepsis and septic shock, TLR4 antagonists that directly bind CD14 and MD-2 

have potential also as therapeutics to treat neuroinflammations59 and viral syndromes60 

caused by DAMP-TLR4 signaling. We recently observed that glycoamphiphiles with a 

sugar core (trehalose or glucose) functionalized with lipid chains and positively charged 

ammonium groups are able to inhibit LPS-stimulated TLR4 signal in vitro with IC50 
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values ranging from about 5 to 0.2 μM and to reduce TLR4-dependent production of 

inflammatory cytokines in vivo.61 The main structural feature of these molecules is their 

“facial” arrangement with positive charges and lipophilic chains disposed in spatially 

well-defined regions.  

Therefore, we hypothesized that calixarene-based facial amphiphiles could also be 

suitable as scaffolds to obtain TLR4 ligands with antagonist activity. Actually, in a 

biological context, amphiphilic calixarenes showed remarkable properties significantly 

related to their amphiphilicity.62 The calixarene scaffold represents a very versatile 

structure to build amphiphilic compounds due to the possibility of variably and 

selectively functionalizing both its upper (aromatic para positions) and lower (phenolic 

oxygens) rim. Moreover, the possibility of linking to the macrocyclic platform several 

binding moieties, resulting in preorganized arrays, gives rise to systems that, exploiting 

a multivalent effect, frequently show improved biological activity with respect to 

corresponding monovalent models.62-63 From this point of view, also the tight 

compaction of hydrophobic chains located at one of the rims can result in the 

enhancement of some properties such as (self)assembling capabilities in an aqueous 

environment.62-65 

We present here a study on the inhibition of TLR4/MD-2 signaling by a series of 

positively and negatively charged calixarene-based amphiphiles (compounds 1-6 and 

7-9 in Figure 3.17, respectively) and the investigation of their mechanism of action. In 

the series we included calixarene 2 as reference compound whose activity in this 

biological context has been previously reported66 and associated with its capacity to 

bind and neutralize LPS as topomimetic of LPS-binding peptides. 

Since we hypothesized that calixarene derivatives could directly bind to human and 

murine MD-2 and CD14 in a similar fashion as LPS, we preliminarily performed 

docking calculations to support this mode of interaction. Moreover, we aimed here to 

verify if the TLR4 antagonist activity is a rather general property of positively charged 

amphiphilic calixarenes and if the antagonist effect also derives from the direct 

interaction of calixarenes with the receptors and not exclusively from LPS neutralizing 

action, as suggested for calixarene 2. 
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Figure 3.17. Positively charged guanidinocalixarenes 1-6 and negatively charged 
carboxy calixarenes 7-9. 

Rational Design of Amphiphilic Calixarenes as CD14/ MD-2 Ligands. 

We were inspired by the hypothesis that the calixarenes could be TLR4 modulators 

similar to lipid A variants and to trehalose or glucose-based glycoamphiphiles 

previously developed by one of the groups involved in the present study.61 Positively 

charged guanidinocalix[4]arenes 1 and 3-6 and negatively charged carboxylate 

calixarenes 7-9 were designed in order to investigate the suitability of this macrocyclic 

scaffold to build CD14 and TLR4/MD-2 ligands (Figure 3.18). These calixarene 

derivatives have an amphiphilic character due to the presence of lipophilic tails on one 

rim and charged polar groups on the other. Only compound 6, having ethoxyethyl 

chains at the lower rim, has a reduced amphiphilicity and was included in the library 

precisely to verify the possible relevance of this property in the biological activity. 

Calixarenes 1 and 266 present lipophilic upper rims bearing four tert-butyl groups and 

polar lower rims with positively charged guanidinium groups linked through, 

respectively, propyl and butyl chains. Calixarenes 3-6 present a reversed arrangement of 

lipophilic and charged groups: guanidinium groups are directly linked to the scaffold on 

the upper rim, and hydrocarbon chains of different length (C3, C6, and C8 for 

compounds 3, 4, and 5, respectively), or an ethoxy ethyl chain in the case of compound 

6, are linked at the lower rim. Finally, anionic calixarenes 7-9 were designed with the 

purpose of studying the influence of negatively charged groups. Thus, these anionic 

calixarenes present carboxylate groups at the upper rim, aiming to mimic the phosphate 

groups of LPS, and hydrocarbon chains of variable length (C6, C8, and C12) at the lower 

rim. 
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Figure 3.18. Left: 3D structure of human TLR4/MD-2/LPS dimer from PDB code 
3FXI. Middle: 3D structure of TLR4/MD-2/lipid-IVa from PDB code 2E56. Right: 
Superimposition of lipid IVa (from PDB code 2E56, magenta) and calixarene 3 
(purple). 

Three-dimensional (3D) structures of compounds 1-9 were built and optimized by 

means of computational techniques (cf. materials and methods below). We 

superimposed the 3D structures of the calixarenes 2 and 3 with that of lipid IVa, a 

natural underacylated MD-2 ligand with activity as hTLR4 antagonist. From a 

comparison of lipid IVa (3D structure from the X-ray crystallography structure) with 

compound 3 (Figure 3.18-right), the oppositely charged groups (phosphate vs 

guanidinium) aligned perfectly, and also did the disaccharide over the aromatic calix 

backbones, and the acyl over the alkoxy chains. This preliminary result regarding the 

geometrical similarity prompted us to further study calixarenes 1-9 as putative 

TLR4/MD-2 and CD14 ligands.  

First, compounds 2, 3, and 4, as representative derivatives, were docked into the binding 

site of the human CD14 protein (PDB code 4GLP). For all these three compounds, 

docking calculations predicted favorable binding poses inside the human CD14 protein 

(Figure 3.19), where the guanidinium moieties are placed at the rim of CD14 and the 

hydrophobic chains are inserted into the hydrophobic pocket. 
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Figure 3.19. Docked pose for compound 3 inside CD14 (PDB code 4GLP). Left: full 
perspective. Middle: side view. Right: top view. 

Docking calculations were also performed with compounds 1-9 into four different 

structures of the TLR4/MD-2 system: human and mouse, in agonist and antagonist 

conformations of MD-2 (cf. Figure 3.20, Figure 3.21, Figure 3.22, and Figure 3.23). 

Overall, all the ligands were predicted to bind inside the different TLR4/MD-2 

structures, with the guanidinium/carboxylate moieties placed at the rim of MD-2, where 

polar interactions predominate, and the lipophilic groups (alkoxy or tert-butyl chains) 

inside the MD-2 pocket. These docked poses are in agreement with calculations 

reported by us of compounds binding both CD14 and MD-2 proteins. Although MD-2 is 

more specific in the ligand recognition, both MD-2 and CD14 binding pockets share 

some similarities regarding volume and accessible surface area.33, 41 

Regarding reported compound 2, in the docked poses in both agonist and antagonist 

conformations of human MD-2, the guanidinium groups establish H-bonds with the side 

chains of Glu92, Tyr102, and Ser118 and the backbone of Lys122 (Figure 3.20, Figure 

3.22, and Figure 3.23 left), while one of the aromatic rings of the macrocycle is engaged 

in a π-π-stacking interaction with the side chain of Phe119.  
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Figure 3.20. Superimposition of the best docked poses for compounds 2 (orange) and 3 
(magenta) in TLR4/MD-2 heterodimer (PDB code 2Z65). A 90° rotated view is shown 
on the right (TLR4/MD-2 has been hidden for clarity).  

  

Figure 3.21. Superimposition of the best docked poses for compounds 3 (magenta) and 
4 (yellow) in hTLR4/MD-2 heterodimer (PDB code 2Z65). A 90° rotated view is shown 
on the right (TLR4/MD-2 has been hidden for clarity). 

  

Figure 3.22. Left: superimposition of the best docked pose of compound 2 (orange) and 
compound 3 (cyan) into human TLR4/MD-2 system (PDB ID 3FXI). Right: details of 
the superimposed docked poses (the TLR4/MD-2 structure is not displayed). 
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Figure 3.23. Superimposition of the best docked poses of compounds 2, 3, and 4, in 
yellow, pink, and green, respectively, (on the left) and compounds 7, 8, and 9, in green, 
blue, and yellow, respectively, (on the right) into mTLR4/MD-2 in the antagonist 
conformation (PDB ID 2Z65). 

In detail, the guanidinium groups at the upper rim of compounds 3-5 establish H-bonds 

with the backbone of Ser120 and with the side chains of Glu92 and Tyr102 (Figure 

3.21). The longer alkyl chains of compounds 4 and 5 occupy deeper regions of the 

MD-2 pocket. Interestingly, when comparing the best predicted docked poses for 

compounds 2 and 3, it was observed that they are half-turn rotated one from another in 

regard to the calixarene moiety (Figure 3.20, and Figure 3.23-left). In both cases, the 

guanidinium moieties are accommodated at the entrance of the pocket while the 

hydrophobic groups (tert-butyl and propyl for compounds 2 and 3, respectively) are 

buried inside the MD-2 hydrophobic pocket. 

Regarding compounds 7-9, they presented similar docked poses where the alkyl chains 

were also buried inside the hydrophobic MD-2 pocket and the carboxylate moieties 

were establishing polar interactions with the residues at the MD-2 rim. Compounds 8 

and 9 presented docked poses protruding slightly more than compound 7, probably due 

to the longer alkyl chains, although the difference was very subtle (Figure 3.23 right). 

To ensure the stability of the docked poses of compound 3 with TLR4/MD-2 and to 

gain insights on the interactions that take place, we performed 90 ns molecular dynamic 

simulations of the hTLR4/MD-2/3 complex starting from the docked geometries for 

both the antagonist and the agonist conformations of hTLR4/MD-2. In the simulation 

starting from the agonist conformation of MD-2 we could observe that compound 3 

rotates of almost 90° around its plane of symmetry (a partial rotation happens at 5 ns of 

simulation and the full rotation at approximately 38 ns) to find a more stable bound 
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conformation that was maintained stable for the rest of the simulation (Figure 3.24 left). 

This rotation forced the MD-2 pocket to adopt an antagonist-like conformation 

(characterized by, inter alia, great motion of residue Phe126). In this new binding mode, 

two guanidinium groups of compound 3 continued to interact through hydrogen bonds 

with the side chains of Glu92 and Ser120, a third guanidinium group formed a new 

hydrogen bond with the CO group of Pro88, and the fourth guanidinium group was 

involved in polar interactions with the solvent. Moreover, later in the simulation 

(starting at 42 ns), the loop made by residues 80-90 undergoes a considerable 

deformation (Figure 3.24-right). In contrast, in the simulation of the TLR4/MD-2/3 

complex starting from the antagonist conformation, the geometries of both compound 3 

and MD-2 were stable during the 90 ns run (Figure 3.24-right), not experiencing 

important conformational changes. These results clearly indicated that the complex of 

calixarene 3 with MD-2 in agonist conformation is less stable than the complex with the 

antagonist one, therefore providing explanations for the antagonist activity later 

observed (3.4.2 Annex 2). Taken together, our computational studies provided plausible 

binding poses for compounds 2-4 into CD14 and for compounds 1-9 into TLR4/MD-2, 

supporting a putative direct binding to these proteins. 
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Figure 3.24. RMSD (left) and RMS fluctuation per residue (right) along the 90 ns MD 
simulation of the two TLR4/MD-2/3 complexes starting from the agonist (green) and 
the antagonist (purple) conformation of MD-2. The RMSD (left) of compound 3 is also 
displayed: in complex with TLR4/MD-2 in the agonist (red) and the antagonist (cyan) 
conformation. 

Experimental section. 

Compounds 1-9 were synthesized through a procedure already reported66 and other 

protocols thoroughly described in the paper of this study.23 The results for all the 
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experiments performed on cells are reported in annex of the present chapter (3.4.2 

Annex 2). 

Discussion 

Calixarenes with guanidinium groups on one rim and hydrocarbon chains on the other 

are facial amphiphiles in which the charged polar face and the hydrophobic apolar one 

are spatially organized. Because of this structural feature, they can be potential 

modulators of the TLR4 activation through direct binding to the receptor or one of the 

co-receptors involved in the signaling process. We designed the series of calixarenes 

1-9 aiming to explore the plausible direct binding to CD14 and MD-2 co-receptors. 

Docking studies demonstrated that compounds 2-4 and 1-9 are in principle able to form 

complexes with CD14 and TLR4/MD-2 heterodimer (human and murine), respectively, 

independently from the relative disposition of the polar and apolar residues and from the 

nature of the charged groups. The lipophilic chains, linked at the upper (1 and 2) or at 

the lower (3-5) rim, were in all cases buried into the CD14 or MD-2 hydrophobic 

pocket, while the charged heads established contacts with polar residues located in 

proximity of the entry of the pockets. Therefore, our computational studies provide 

plausible binding poses into the TLR4 co-receptors for the investigated compounds, and 

this supports our hypothesis of a direct binding of calixarene derivatives to these 

proteins in competition with LPS. These findings thus open the possibility of exploring 

calixarenes as a platform for the design of TLR4/MD-2 modulators. Calculations of the 

stability of the complexes between the guanidinocalixarene 3 and TLR4/MD-2 

suggested that this derivative, and for analogy at least all the other positively charged 

analogues, could act as antagonist. 

The activity of positively charged calixarenes was tested on HEK cells expressing 

hTLR4/MD-2 and human and murine leukocytes. Cationic calixarenes 1-4 inhibited in a 

dosedependent way LPS-stimulated TLR4 activation in both human and murine cells. 

Cells were first stimulated by LPS and then treated with synthetic molecules. In 

agreement with the theoretical studies, compounds 1-4 showed an antagonist activity in 

the low micromolar range on human and murine TLR4. Paradoxically, negatively 

charged amphiphilic calixarenes, which should mimic better the anionic nature of lipid 

A, the natural MD-2 and CD14 ligand, were not active both in inhibiting and 

stimulating TLR4. Compound 6, with more polar ether chains on the lower rim instead 
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of hydrocarbon chains turned out to be substantially inactive as TLR4 inhibitor in both 

cell types. 

In addition, calculations of the log P predicted high values for compounds 7, 8, and 9, 

with calculated log P values above 15, pointing to a high lipophilicity, while compound 

6 was predicted to be extremely hydrophilic having calculated log P value below zero 

(Figure 3.25). These unfavorable log P values could be correlated with poor physical-

chemical properties, thus explaining the lack of activity in the cells assays. 

 

Figure 3.25. Calculated log P for compounds 1 to 9. 

The very close IC50 values (Table A3.1) found for guanidinocalixarenes 2 and 3 indicate 

that the relative disposition of polar and hydrophobic residues with respect to the 

macrocyclic cavity does not have a significant impact on the inhibition activity of these 

ligands. Furthermore, by comparing compounds 3-5, it seems that an increasing 

lipophilicity is detrimental for the inhibition potency, even if the less amphiphilic 

derivative 6 is very poorly active with an IC50 two orders of magnitude higher than that 

of 3. A subtle balance between lipophilic and hydrophilic portions in the ligand 

structure seems then to be the key to obtain activity. 

It is worth noting that lead compounds 3 and 4 show antagonist activity on both human 

and murine TLR4. Several TLR4 modulators resembling lipid A have species-specific 

activity that is generally attributed, among other factors, to the dissimilarities in the 

shape of the hydrophobic binding pocket of human and mouse MD-267 and to the 

variations in the electrostatic potentials at the rim of the binding cavity of MD-2 and at 

the dimerization interface. The most significant example of this is the natural compound 

tetraacylated lipid IVa that acts as an antagonist on human but as an agonist on murine 

TLR4.67 However, several synthetic phosphoglycolipids with a monosaccharide 
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scaffold also showed agonist activity on murine and antagonist activity on human 

TLR4.34 

To understand whether the antagonist activity of calixarenes was due to their interaction 

with receptors or with LPSs we also undertook studies of the TLR4 activation with non-

LPS ligands. We reasoned that if the contribution of calixarenes in inhibiting TLR4 

activation is due to a neutralizing effect on endotoxin, the antagonist effect would be 

lost by stimulating cells with a TLR4 agonist structurally different from LPS. Besides 

the natural agonists LPS, lipid A, lipid A mimetics as monophosphoryl lipid A (MPL),68 

and aminoalkyl glucosaminide 4-phosphates,54 TLR4 can also be activated by small 

molecules, such as the natural compound paclitaxel,69 oxidized phospholipids, and 

synthetic pyrimidoindoles and neoseptins,70-71 and by protein DAMPs such as high 

mobility group box 1 (HMGB1)72 and lectins. Lectins constitute a very large class of 

carbohydrate-binding proteins, and plant lectins have immunostimulating activity that 

recently has been related to TLR agonism. In fact, the activity as potent TLR4 agonists 

of plant lectins KML-C (Korean mistletoe lectin)73 and PHA (phytohemagglutinin from 

Phaseolus vulgaris)74 has been described. Although the experimental data indicate a 

strong TLR4 agonist activity by lectins, the mechanism of action of these proteins is yet 

to be clarified. 

Because lectins recognize and bind sugars, it is possible that lectins promote the 

formation of the (TLR4/MD-2/LPS)2 heterodimer by binding to the sugars attached to 

the surface of glycosylated MD-2 and TLR4 proteins, thus bringing together two 

TLR4/MD-2 complexes. 

Based on these data from the literature, we first validated plant PHA lectin as agonist in 

HEK-Blue cells. A dose-dependent activation of TLR4 signal was observed when cells 

were treated with PHA lectin in the presence of polymixin-B to neutralize the agonist 

effect of any possible LPS contamination. The addition of calixarenes 1-4 followed by 

lectins inhibited in a dose-dependent way the TLR4 signal, showing that cationic 

calixarenes antagonize TLR4 signal also in the case of non-LPS stimulation. This 

suggests a direct interaction of calixarenes with CD14 and MD-2 receptors, in 

agreement with predicted binding poses by docking calculations and MD simulations. 

Calixarenes 3 and 4 showed a potent TLR4 antagonist activity in cells and inhibited the 

production of the inflammatory TNF-α in LPS-stimulated murine splenocytes and in 
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murine animal models. Although solubility and distribution properties of calixarenes 3 

and 4 should be optimized for in vivo studies and preclinical development, the lack of 

toxicity (cf. Supporting Info of the paper23) and the potent TLR4 blocking activity point 

to these compounds as plausible drug hits targeting TLR4. The flexibility of calixarene 

scaffold will allow modulation of the hydrophilicity profile of cationic amphiphiles and 

optimization of their pharmacokinetics. The possibility of the calix cavity to complex 

metal ions or small organic fluorophores could also be exploited to generate labeled 

compounds for diagnostic and therapeutic applications. 

Conclusion 

We here report a series of amphiphilic guanidinocalixarenes whose structure were 

computationally optimized to dock into MD-2 and CD14 binding sites. Some of these 

calixarenes were active in inhibiting, in a dose-dependent way, the LPS-stimulated 

TLR4 activation and TLR4-dependent cytokine production in human and mouse cells. 

Moreover, guanidinocalixarenes also inhibited TLR4 signaling when TLR4 was 

activated by a non-LPS stimulus, the plant lectin PHA. While the activity of 

guanidinocalixarenes in inhibiting LPS toxic action has previously been related to their 

capacity to bind LPS, we suggest a direct antagonist effect of calixarenes on 

TLR4/MD-2 dimerization, supported by molecular modeling calculations and biological 

assays. These results point at the calixarene moiety as a potential scaffold for the 

development of new TLR4-directed therapeutics. 

Materials and methods  

Structure Construction. 3D structures of the ligands were built with PyMOL molecular 

graphics and modeling package24 based on the coordinates of the calixarene scaffold 

retrieved from the PubChem database (CID: 562409). 3D coordinates for the agonist 

hTLR4/MD-2 complex, the antagonist mTLR4/MD-2 complex, the agonist 

mTLR4/MD-2 complex, and hCD14 were retrieved from the PDB database 

(www.rcsb.org) under codes 3FXI, 2Z64, 3VQ2, and 4GLP, respectively. The structures 

went through a restrained minimization procedure with Maestro using the OPLS3 force 

field. Gasteiger charges were computed within the AutoDock Tools program, and all 

nonpolar hydrogens were merged. 

Structure Optimization. All compounds (from 1 to 9) were optimized with ab initio 

calculations, using the density functional theory (DFT) with the hybrid functional 
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B3LYP with the Pople basis set 6-31+g(d,p) using Gaussian g09/e1.43 Water solvation 

(with a dielectric constant of ε = 78.3553) was simulated with the Gaussian default 

SCRF method (i.e., using the polarizable continuum model (PCM) with the integral 

equation formalism variant (IEFPCM)). 

Docking Procedure. Docking was performed independently with both AutoDock 4.2 

and AutoDock Vina 1.1.2.26, 44 In AutoDock 4.2, the Lamarckian evolutionary 

algorithm was chosen and all parameters were kept default except for the number of 

genetic algorithm runs which was set to 200 to enhance the sampling. AutoDockTools 

1.5.6 was used to assign the Gasteiger-Marsili empirical atomic partial charges to the 

atoms of both the ligands and the receptors. The structure of the receptors was always 

kept rigid, whereas the structure of the ligand was set partially flexible by providing 

freedom to some appropriately selected dihedral angles. Concerning the boxes, spacing 

was set to 0.375 Å for AutoDock and is default to 1 Å for Vina. In the case of the 

human and mouse TLR4/MD-2 systems in their agonist and antagonist conformations, 

the size of the box was set to 33.00 Å in the x-axis, 40.50 Å in the yaxis, and 35.25 Å in 

the z-axis. For hCD14 the size of the box was set to 33.00 Å in the x-axis, 33.75 Å in 

the y-axis, and 33.75 Å in the z-axis. For the hTLR4/MD-2 complex the center of the 

box is located equidistant to the center of mass of residues Arg90 (MD-2), Lys122 

(MD-2), and Arg264 (TLR4). For the mTLR4/MD-2 complex the center of the box is 

located equidistant to the center of mass of residues Arg90 (MD-2), Glu122 (MD-2), 

and Lys263 (TLR4). For hCD14 the center of the box is located equidistant to the center 

of mass of residues Phe69, Tyr82, and Leu89. 

Parameters Derivation. Parameters for molecular dynamics simulations were set up 

with the standard Antechamber28 procedure. Briefly, charges were calculated with 

Gaussian at the Hartree-Fock level (HF/6-31G* Pop=MK iop(6/33=2) iop(6/42=6)) 

from the solvated DFT B3LYP optimized structure, then derived and formatted for 

Ambertools15 and AMBER1429 with Antechamber assigning the general AMBER force 

field (GAFF) atom types.31 A new atom type for nitrogen was introduced (nj), within 

GAFF, to properly describe the guanidine moiety, mirroring the parameters of ff14SB30 

used to describe the guanidine fragment present in arginine. Parameters for this new 

atom are provided in annex (3.4.2 Annex 2). 
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Molecular Dynamics (MD) Simulations. All production runs were performed for 90 ns 

and followed the same protocol described in section 3.1.1 Bradyrhizobium LPS. 

Log P calculation. From the optimized 3D structure of compounds 1-9, log P value was 

calculated with the Maestro package.45 

Materials and methods regarding the synthesis and the cell tests is reported in the 

related paper and its Supporting Info document.23 

3.4.2 Annex 2 

Experimental results. 

Inhibition of LPS-Stimulated TLR4 Signal in HEK-Blue Cells. Calixarenes 1-9 were 

first screened for their capacity to interfere with LPS-stimulated TLR4 activation and 

signaling on HEK-Blue cells. HEK-Blue cells are stably transfected with TLR4, MD-2, 

and CD14 genes. In addition, these cells stably express an optimized alkaline 

phosphatase gene engineered to be secreted (sAP), placed under the control of a 

promoter inducible by several transcription factors such as NF-κB and AP-1.75 This 

reporter gene allows monitoring of the activation of TLR4 signal pathway by endotoxin. 

All calixarenes were inactive in stimulating TLR4 signal when provided alone, thus 

indicating the absence of agonist activity, in agreement with the molecular modeling 

studies. On the other hand, compounds 1-5 inhibited in a dose-dependent way the LPS-

stimulated TLR4 signal (Figure A3.9), while calixarene 6 with oxygenated ethylene 

glycol chains instead of hydrocarbon chains showed weak antagonistic activity. 
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Figure A3.9. Dose dependent inhibition of LPS-stimulated HEK-Blue cells activation 
by calixarenes 1-5. Human TLR4 HEK-Blue was treated with increasing concentrations 
of compounds and stimulated with LPS (100 ng/mL). The results represent normalized 
data with positive control (LPS alone) and expressed as the mean of percentage ± SD of 
at least three independent experiments. 

Guanidinocalixarenes 1-5 inhibited TLR4 signal with potencies ranging from 0.2 to 63 

μM (Table A3.1). Compounds 2, 3, and 4 were the most potent antagonists and 

inhibited LPS-stimulated TLR4 signal with IC50 of 0.2, 0.7, and 5.7 μM, respectively. 

In contrast, negatively charged amphiphilic calixarenes 7-9 with carboxylic groups on 

the upper rim showed no or very weak inhibition of LPS-TLR4 signal (data shown in 

the Supporting Info of the paper23). 

Table A3.1. IC50 Values for the Inhibition of LPS-Stimulated TLR4 Signal in HEK 
Cells 

Compound IC50 LPS (µM) 
1 10 
2 0.2 
3 0.7 
4 5.7 
5 63 
6 45 

 

Inhibition of PHA Lectin-Stimulated TLR4 Signal in HEK-Blue Cells. We were 

then interested in knowing if the inhibition of TLR4 signal is due to calixarene 

interaction with LPS or to a direct interaction with the TLR4 receptor system, evidenced 

as possible by calculations. To investigate this point, we stimulated HEK cells with the 
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plant lectin phytohemagglutinin (PHA from Phaseolus vulgaris) whose property to 

potently stimulate TLR4 signal acting as agonist has been recently described.74 We first 

checked if PHA is able to activate TLR4 signal in HEK-Blue cells, and we found that 

the lectin was active in stimulating in a dose-dependent way TLR4-dependent SEAP 

production (cf. Supporting Info of the paper23). To exclude the TLR4 activity that could 

be derived from LPS contamination in the PHA, we performed the experiment in the 

presence of the LPS-neutralizing peptide polymixin-B. We also verified that control 

HEK-null cells, that is, HEK cells transfected with SEAP plasmid and lacking TLR4, 

MD-2, CD14 genes, were not activated by PHA lectin (cf. Supporting Info of the 

paper23). PHA lectin was then used instead of LPS as a TLR4 agonist to stimulate cells. 

The highly potent calixarene-based TLR4 antagonists, compounds 3 and 4, were then 

investigated for their property to inhibit TLR4 activation by PHA lectin (Figure A3.10).  

Guanidinocalixarenes 3 and 4 were indeed active in inhibiting PHA lectin-stimulated 

TLR4 signal in a concentration-dependent way, with potencies similar to those 

measured in the inhibition of LPS-stimulated TLR4 signal (Table A3.1). The fact that 

the antagonist activity was retained by calixarenes also when TLR4 was stimulated by a 

non-LPS agonist strongly suggests that the action of calixarenes is mainly based on 

direct interaction with CD14 and MD-2 receptors. 

Inhibition of LPS-Stimulated TLR4 Signal in Human White Blood Cells. As HEK 

cells are a non-natural system to study TLR4 activation and to perform preliminary 

screening, the capacity of lead compounds 3 and 4 to inhibit LPS-stimulated TLR4 

signaling was further investigated in human white blood cells hWBCs that naturally 

express CD14, MD-2, and TLR4 receptors. We evaluated the production of the main 

NF-κB-dependent proinflammatory cytokines tumor necrosis factor α (TNF-α), 

interleukin-6 (IL-6), and IL-8 by primary human peripheral blood mononuclear cells 

(hPBMCs) as readout for TLR4 pathway activation. hPBMCs isolated from the whole 

blood of healthy volunteers were treated with increasing concentrations (1-10 μM) of 

compounds 3 and 4 and stimulated after 30 min with LPS (100 ng/mL). Compound 3 

reduced the production of all the proinflammatory cytokines monitored, while 

compound 4 showed a lower inhibitory activity, reducing only two of the three 

cytokines evaluated (Figure A3.11). 
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Figure A3.10. (A) Inhibition of TLR4 signaling in HEK-Blue cells stimulated with LPS 
(100 ng/mL) or PHA lectin (25 μM) and treated with calixarenes 3 and 4. The results 
represent normalized data with positive control (LPS or PHA lectin alone). (B) 
Quantification of interleukin-8 (IL-8) in HEKBlue cells stimulated with LPS or PHA 
and treated with compounds 3 and 4 by performing ELISA assay. Data represent the 
mean of percentage ± SD of at least three independent experiments. 

Inhibition of LPS-Stimulated TLR4 Signal in Murine White Blood Cells 

(mWBCs). It is known that human and murine MD-2 have dissimilarities in the LPS 

binding region, and some ligands have different activity on hMD-2 and mMD-2, in 

some cases switching from agonism to antagonism. We therefore aimed to compare the 

activity of calixarene on human and murine cells. The activity of compounds 3 and 4 

was then evaluated in a murine macrophages cell line, RAW-Blue cells. As HEK-Blue 

cells, RAW-Blue cells are transfected to stably express the SEAP reporter gene in order 

to monitor the activation of TLR4 signal pathway. Compounds 3 and 4 inhibited in a 

dose-dependent way the LPS-stimulated TLR4 signal (Figure A3.12A), revealing that 

the two calixarenes were also effective on the murine TLR4 system. 
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Figure A3.11. Inhibitory effect of compounds 3 and 4 on LPS-induced 
proinflammatory cytokines production by PBMCs. PBMCs isolated from whole blood 
were preincubated with synthetic compounds for 30 min and then stimulated with LPS 
(100 ng/mL). TNFα, IL-6, and IL-8 production was quantified after one night’s 
incubation. Data represent the mean ± SEM of at least three independent experiments. 

The abilities of compounds 3 and 4 were further investigated in murine splenocytes. 

TNF-α relative expression was determined from TLR4-MyD88 pathway activation. 

Splenocytes from balb/c mice were treated with two concentrations (1 and 10 μM) of 

compounds 3 and 4 in RPMI and stimulated after 30 min with LPS (100 ng/mL). The 

LPS-induced TNF-α expression after a 5 h incubation was measured by qPCR. The 

lower concentration of compounds 3 and 4 (1 μM) was weakly active in reducing LPS-

induced TNF-α expression, whereas the higher concentration (10 μM) of both 

compounds completely inhibited the expression of TNF-α (Figure A3.12B). 
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Figure A3.12. Effects of compounds 3 and 4 on RAW-Blue cells and on murine 
splenocytes. (A) RAW-Blue cells stably transfected with NF-κB-dependent SEAP 
reporter plasmid were treated with increasing concentrations of compounds 3 and 4 and 
stimulated with LPS (100 ng/mL) after 30 min. Data represent the mean of percentage 
of at least three independent experiments. (B) Murine splenocytes isolated from murine 
spleen were preincubated with two concentrations (1 and 10 μM) of compounds 3 and 4 
for 30 min and then stimulated with LPS (100 ng/mL). Readout was the TNF-α 
expression after 5 h of incubation. Normalized data are representative of three 
independent experiments. 

Parameters for nitrogen atom type “nj”. 

LogFile: 
addAtomTypes { 
{ "nj" "N" "sp2" } 
} 

 
FRCMOD: 
MASS 
nj 14.01 0.530 sp2 N in amino groups (from ff14SB N2) 
BOND 
ca-nj 481.0 1.340 JCC,7,(1986),230; ARG,CYT,GUA (from parm10 CA-N2) 
hn-nj 434.0 1.010 JCC,7,(1986),230; ADE,CYT,GUA,ARG (from parm10 H - 
N2) 
ANGLE 
ca-nj-hn 50.0 120.00 (from parm10 CA-N2-H) 
nj-ca-nj 70.0 120.00 AA arg (from parm10 N2-CA-N2) 
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ca-nj-ca 50.0 123.20 AA arg (from parm10 CA-N2-CT) 
hn-nj-hn 35.0 120.00 (from parm10 H -N2-H) 
ca-ca-nj 70.0 120.00 (from parm10 CA-C -OH) 
DIHE 
hn-nj-ca-nj 1 0.000 0.0 -4. (H -N2-CA-N2 from ff14SB) 
hn-nj-ca-nj 1 2.400 180.0 2. --- 
ca-nj-ca-nj 1 0.000 0.0 -4. Arg Lys copied (C8-N2-CA-N2 from ff14SB) 
ca-nj-ca-nj 1 2.400 180.0 2. --- 
ca-ca-nj-ca 1 0.065 0.0 -4. (CA-C -OH-HO from ff14SB) 
ca-ca-nj-ca 1 0.883 180.0 2. (CA-C -OH-HO from ff14SB) 
ca-ca-ca-nj 1 1.1 180.0 2. (CA-CA-C -OH from ff14SB) 
ca-ca-nj-hn 1 0.065 0.0 -4. (CA-C -OH-HO from ff14SB) 
ca-ca-nj-hn 1 0.883 180.0 2. (CA-C -OH-HO from ff14SB) 
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4.1 Introduction 

Cell membranes, also known as plasma membrane or cytoplasmic membrane, consist of 

a lipid bilayer that separates the cytosol from the extracellular fluid.1 Substances can 

cross the membrane by passive diffusion, active transport or through transport proteins 

(forming protein channels) and information, useful for the survival of the cell, is 

transmitted both ways through embedded proteins. Toll-like receptor 4 (TLR4), as a 

pattern recognition receptor (PRR), perceives the presence of both damage-associated 

and pathogen-associated molecular patterns (DAMPs and PAMPS respectively), e.g. 

bacterial lipopolysaccharides (LPSs), on the outside of the membrane and transmit this 

signal inside the cell initiating the activation of defense mechanisms.2-5 

The nature of the lipids composing biological membranes is important for many 

physiological processes. A number of diseases such as cancers, diabetes, Alzheimer’s 

disease, HIV entry, and atherosclerosis, have been associated to changes in expression 

levels of individual lipid species.6-7 A typical plasma membrane is formed by hundreds 

of amphipathic lipids.8 Phospholipids together with glycolipids are the most abundant 

and the large majority of non-lipid membrane components are sterols.9 The fatty chains 

(FA) in phospholipids and glycolipids may be saturated or unsaturated and usually 

contain an even number of carbon atoms, typically between 16 and 20, with 16- and 18-

carbon FAs the most common ones. The polar head groups are exposed to water and the 

nonpolar lipid tail groups from the upper bilayer interact with the ones from the lower 

bilayer, forming a hydrophobic block.10-12 The presence of unsaturation in the FA chains 

is correlated with liquid-disordered (Ld) phases whereas the absence of unsaturation in 

the FA chains of the lipids and the presence of cholesterol are associated with liquid-

ordered (Lo) phases. Regarding the composition, mammalian membrane contains 

phosphatidylcholine (PC), sphingomyelin (SM), and gangliosides (GM) in the outer 

leaflet and phosphatidylethanolamine (PE), phosphatidylserine (PS), and other charged 

lipids in the inner leaflet; in addition eukaryotic plasma membranes contain between 20 

to 50% sterols.10, 13 

The study of the dynamics of the TLR4/MD-2 complex requires the consideration of 

different membrane environments, since these are directly involved in the dimerization 

processes thus governing the activation process.14-15 We aimed at deepening the 

understanding of this dimerization process at atomic level using various computational 
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techniques. We studied independently each TLR4 subdomains, namely the ectodomain 

(ED), the transmembrane domain (TD), and the intracellular domain (ID), aiming at 

proposing full TLR4/MD-2 models accounting for its mechanism of activation. We here 

report MD simulations of the ED in its dimeric and monomeric forms, in complex with 

MD-2 engaged by E. coli LPS. The TD was simulated in Lo and Ld membrane phases 

to account for the recruitment of TLR4 in lipid-rafts over activation.14-15 Building our 

way up to a more complex model, we performed MD simulations of the TD attached to 

the ID, attempting to explain the reported importance of the long linker joining the two 

domains.16-18 A model for the ID/ID complex has also been addressed. Our final goal is, 

from the information gathered in the previous modelled, to propose a full TLR4/MD-2 

dimer model that explain most of the molecular information known to date regarding 

TLR4 activation. 

4.2 Computational considerations about membrane models. 

To understand the dynamics of the bilayers themselves before including the TLR4 we 

constructed a number of symmetric models: POPC, POPE:POPC [1:1], CHL:POPC 

[1:1], DPPC:POPC [1:1], DPPC:POPE [1:1]. The names and structures corresponding 

to these abbreviations are reported in Table 4.1. Each of these membrane systems were 

simulated for 50 ns under anisotropic pressure coupling conditions at a temperature of 

303 K. The area per lipid over the simulation time is reported in Figure 4.1 left panel, in 

order of decreasing compactness our models can be ranked as follows: DPPC:POPE > 

POPE:POPC > DPPC:POPC > POPC >> CHL:POPC. The electron-density was 

calculated over the last nanosecond of simulation and is shown in Figure 4.1 right panel. 

Based on this analysis we can rank the membrane models based on their thickness in 

ascending order: CHL:POPC < POPC < DPPC:POPC < POPE:POPC < DPPC:POPE. 
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Table 4.1. Different type of lipids and sterols used in this study. 
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Figure 4.1. On the left panel: area per lipids. On the right: total electron density profiles 
of the five membrane types (water excluded). 

The importance of membrane domains, known as rafts, for proteins signaling and 

trafficking has been extensively reported.19-21 The recruitment of TLR4 into lipid rafts 

domain has also been reported.22-24 To better represent the activation of TLR4, and 

based on our previous membranes models, we introduce two new models, namely a 

liquid-ordered (Lo) membrane model, representing a membrane raft, and a liquid-

disordered (Ld) models. Each layer of the Ld model is composed of 64 units of DOPC 

and each layer of the Lo model of a mixture of 38 DPPC and 26 CHL, approximating a 

60:40 ratio. Both membrane models were simulated for 50 ns. The electron density plot 

from the simulations gives a rough membrane thickness estimates of 45 Å for the Lo 

model and of 24 Å for the Ld model, similar to the POPC model previously reported 

(Figure 4.2 right). The area per lipids is around 68 Å2 for the Lo model, also similar 

than the one of the POPC model, and around 70 Å2 for the Ld model (Figure 4.2 left). 

  
Figure 4.2. On the left: area (in Å2) occupied by the membrane models Ld, Lo and 
POPC over time (ns). On the right: total electron density profiles of the five membrane 
types (water excluded). 

In addition to membrane models introduced previously, we considered a more 

physiologically relevant mammalian plasma membrane, by choosing different 
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concentration of lipids and sterols in the upper and the lower bilayer, thus building an 

asymmetric model. The outer leaflet of this membrane is composed by 35% of CHL and 

65% of lipids, among which: 30% of DPPC and DPPE, 10% of POPE and POPC, and 

10% of DOPE and DOPC. The inner leaflet is composed by 30% of cholesterol and 

70% of lipids, among which: 25% of DPPC and DPPE, 10% of POPE and POPC, and 

15% of DOPE and DOPC (Figure 4.3). The lipid fractions of the outer and the inner 

leaflets are thereof respectively composed by 60% and 50% of lipids without 

unsaturation, 20% and 20% of lipids with only one unsaturation, and by 20% and 15% 

of lipids with more than one unsaturation, in agreement with data described in Marrink 

and coworker’s paper.8  

OUTER    for 263 molecules INNER              for 250 moleucles 
65% of lipids: 
0 unsaturation 

DPPC (30%) 
DPPE (30%) 

1 unsaturation 
POPE (10%) 
POPC (10%) 

>1 unsaturation 
DOPE (10%) 
DOPC (10%) 

171 molecules 
 

51 molecules 
52 molecules 

 
17  molecules 
17 molecules 

 
17 molecules 
17 molecules 

70% of lipids: 
0 unsaturation 

DPPC (25%) 
DPPE (25%) 

1 unsaturation 
POPE (10%) 
POPC (10%) 

>1 unsaturation 
DOPE (15%) 
DOPC (15%) 

175 molecules 
 

44 molecules 
44 molecules 

 
17  molecules 
18 molecules 

 
26 molecules 
26 molecules 

35% CHL 92 molecules 30% CHL 75 molecules 
Figure 4.3. Composition of the asymmetric membrane model. 

In our simulations conditions and during the simulated time we do not expect transverse 

diffusion of lipids thus it is important to make sure than both layers, when reaching a 

stable simulation regime, are occupying the same area. To achieve that we simulated 

both layers composition as independent bilayers changing the quantity of lipids, 

accordingly to the fraction defined above, until reaching acceptable similarities in 

simulation boxes sizes after 100 ns of simulations (Figure 4.4, left panel). The final 

model, which the exact composition is given in Figure 4.3, was simulated for 100 ns. 

Decomposed electron density profile of the model was plotted based on the trajectory of 

the last ns of simulation. The difference in unsaturation can be noted in Figure 4.4, right 

panel, in which the alkene group in the outer leaflet (in the negative coordinates range) 

has a higher electron density peak that the one in the inner leaflet (in the positive 

coordinates range).  
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Figure 4.4. On the left: area (in Å2) occupied by the membrane over time (ns). On the right: 
decomposed electron density profile for the asymmetric model. 

4.3 Computational studies on the TLR4/MD-2 receptor complex 

4.3.1 TLR4 ectodomain 

The structure of the agonist form of TLR4 in complex with its accessory protein MD-2 

engaged by the most potent agonist known to date, E. coli LPS, was resolved by X-ray 

crystallography (PDB ID 3FXI).25 We previously reported MD simulations of the 

TLR4/MD-2 complex engaged by ligands of different kind comprising naturally 

occurring modulators (e.g. LPS from Burkholderia cenocepacia),26 LPS-like molecules 

(e.g. fluorescent probes),27 and non-LPS like small molecules (e.g. amphiphilic 

guanidinocalixarenes). 28 We also previously reported the impact of a single point 

mutation on the receptor activity.29 Here we report MD simulations of both the 

inactivated monomeric form and the activated dimeric form of the ED of TLR4, both in 

complex with MD-2 engaged by E. coli LPS. In the simulation of the dimer, both 

TLR4s undergo little deviation from their original locations, in relation to MD-2, at the 

beginning of the simulation and stabilize for the rest of the simulation (Figure 4.5 left 

panel, blue and red lines). In the simulation of the monomer TLR4 keeps deviating from 

its original location, in relation to MD-2, along the entire simulation, indicating that the 

monomeric TLR4/MD-2/E. coli LPS complex is not as stable as the dimeric 

(TLR4/MD-2/E. coli LPS)2 complex (Figure 4.5 left panel, right line). This suggests 

that the presence of a second TLR4/MD-2/E. coli LPS unit stabilizes the first, and vice 

versa, which may be due to the polar interactions taking place at the dimer interface. 

The ligand, E. coli LPS, displays similar deviation pattern in both the simulation of the 

monomer and the dimer, as indicated by the RMSD plot (Figure 4.5 right panel). 

However a subtle loss of symmetry between the two LPSs in the dimer simulation can 

be observed (comparing blue and red lines of Figure 4.5 right panel) due the high 
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flexibility of the OS-core of LPS, which adopts different conformations in both 

monomers. The lipid A moiety, buried in the MD-2 pocket, behave similarly along the 

simulation in both monomers, only a subtle difference in the disposition of the R3’ lipid 

chain can be observed: in one monomer the chain stays within the MD-2 channel, as it 

is in the crystal structure, and in the other monomer the chain moves towards the MD-2 

pocket. Nevertheless, critical interactions of this chains with residues like Phe440* and 

Phe126 are maintained in both cases. MD-2 shows similar amplitude of conformational 

deviation in both simulations (Figure 4.6 left panel). Phe126, known as the switch 

ON/OFF of the receptor complex,30 remains in an agonist-like conformation in both 

simulations characterized by an arbitrarily selected angle (Figure 3.14B in Chapter 3) 

plotted in Figure 4.6 (right panel). 

  
Figure 4.5. In both plots the minimum fit was performed on the αC of MD-2 in 
complex with a given TLR4, giving information of how the different components of the 
simulations deviate from their initial position in relation to MD-2. On the left: RMSD of 
both TLR4 in the simulation of the dimeric model (in blue and red) and TLR4 in the 
simulation of the monomer (in green). On the right: RMSD of each of the LPS. 

  
Figure 4.6. On the left: RMSD of both MD-2 in the simulation of the dimeric model (in 
blue and red) and MD-2 in the simulation of the monomer (in green). On the right: 
angle between two vectors defined in Figure 3.14B in Chapter 3, providing 
conformational information about the critical residue Phe126 along the simulation. 
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4.3.2 TLR4 transmembrane domain 

The transmembrane domain of TLR4 (TD) is predicted to span from Lys631 to Lys653 

and to consist of an α-helix of lipophilic residues, with few polar residues. In addition, 

the amino acid sequence directly following this domain, called hydrophobic region 

(further abbreviated HR), lower delimitated by Lys666, has been largely argue to also 

actively interact with the membrane, either extending the TD α-helix or interacting with 

the head group of the lipids.17-18, 31 Very recently, Mineev et al. reported a NMR study 

of both the TD and the HR of TLR4.16 The interpretation of the NMR data points to a 

helical conformation of the HR in DMPG/DHPC bicelles (PDB ID 5NAM). They 

further performed protein-protein docking experiments and selected a dimeric model 

based on NMR data. However, it is important to keep in mind that membrane protein 

secondary structure and membrane protein-protein interactions are highly dependent of 

the medium in which they are studied. We decided to use computational tools to study 

the TLR4 TD-TD protein interactions and to propose a model for the TD-TD 

dimerization. 

4.3.3 TLR4 transmembrane domain and hydrophobic region 

We performed a 250ns MD simulation of the TD and the HR structured as a long α-

helix, as reported in the NMR study,16 in a POPC membrane. In this simulation the 

entire peptide enters the membrane and adopts a very tilted disposition (around 45o). 

The polar side chain of Lys653, found between the TD and the HR, interacts with the 

head group of the lipids inducing a soft kink in the helix. Lys666 is found outside the 

membrane exposed to the lipids head group and the solvent (Figure 4.7). 

In addition, we performed the same simulation but starting with an extended 

unstructured HR (Figure 4.8A). Along the simulation the HR residues explore the 

surrounding of the membrane and largely interact with the lipid head groups without 

penetrating the membrane. The TD adopts a slightly titled orientation in the POPC 

membrane (Figure 4.8B). Once the HR starts to interact extensively with the membrane 

it stabilizes for the rest of the MD simulation (Figure 4.8C), not experiencing major 

changes during the final 50ns. 



Chapter 4 – TLR4 activation 

 

129 
 

  
Figure 4.7. MD simulations of TLR4 TD and HR (uninterrupted α-helix) domain. At 
t=0ns of the MD simulation (left), the protein is perpendicular to the mambrane plan. At 
t=250ns (right), the protein adopt a titled position in relation with the membrane plan. 

 

 
 

(A) t=0ns (B) t=200ns (C) t=150-200ns 
Figure 4.8. MD simulations of TLR4 TD (α-helix) and HR (extended coil) domain. The 
TD was built as an α-helix and HR, built in an extended conformation, was attached to 
it (A). At the end of the simulation the HR is folded against the membrane (B). (C) 
Superimposition of one frame per nanosecond from the last 50 ns of MD simulation. 
Lys631, Lys653 and Lys666 are represented as sticks; the TD and the HR are 
represented as orange and yellow cartoon, respectively. The membrane is in thin lines 
and the solvent was hidden. 

4.3.4 TLR4 TD-TD dimerization 

We used the DAFT approach32 within the Martini Coarse Grained (CG) force field to 

explore TD-TD interaction in POPC membranes. Among the 550 simulations that were 

run, 487 were successfully performed for 1024ns. We ranked them based on Lennard-

Jones energy of interaction between the two TD (as calculated by the gromacs gmx 

energy command). We selected the top 5% of the successful simulations for closer 

analysis. 13 out of 24 feature very similar protein-protein interactions (Figure 4.9). In 

these models we observed hydrophobic interactions between the two equivalent Val636 

and hydrogen bonds between the two equivalents Ser640. The model with the highest 

score, which belongs to largest cluster, was back-mapped to all atom following the 

standard backmapping protocol described by Wassenaar et al.33 and submitted to a 10 ns 
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all atom MD simulation with AMBER in a DOPC membrane. No major interaction 

changes were observed. 

 

 

Figure 4.9. Superimposition, based on one monomer, of the 13 selected dimirezed TD-
TD poses. Backbone of the pose with the best L-J interactions score is shown in solid 
red sticks, backbone and side chains of the other poses are shown respectively, in grey 
and yellow, semi-transparent sticks. 

4.3.5 TLR4 TD HR-TD HR dimerization 

We performed additional sets of DAFT experiments (4 sets of 120 simulations) to 

investigate the dimerization behavior of the TD and the HR together, exploring 

unstructured and α-helical conformations of the HR in both Ld and Lo membrane types. 

As it was shown in the MD simulations of the monomer of the TD and the HR 

structured as a continuous α-helix (Figure 4.7) in order for the dimer of the TD and the 

HR (from Lys631 to Lys666), structured as an uninterrupted α-helix, to be fully inserted 

in the membrane, it has to adopt a very tilted angle in comparison to the membrane plan. 

In the Ld membrane model, in order to be fully inserted into the membrane, the helix 

must be tilted, either as a tilted dimer, representing 31% of the poses, leading to a 

nonsymmetrical dimer which might be compatible with dimerized ED-ED and ID-ID, 

either as two separated TD domains, representing 32% of the poses, incompatible with a 

dimerized ED (Figure 4.10). The symmetrical TD-TD dimer is observed in a low 

percentage (15%) and requires the HR region to be outside the membrane, where it is 

likely to adopt a non-helical conformation according to our MD simulations (Figure 

4.8). This behavior points toward an inactive architecture of the 
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TLR4/MD-2/TLR4*/MD-2* complex in the Ld membrane. In the case of the Lo 

membrane model, the symmetrical TD-TD dimer is observed in a high percentage of the 

MD simulation (46%) with the HR region outside the membrane. The tilted TD-TD 

dimer is also observed (33%). The HR region not being organized as a α-helix outside 

the membrane would provide flexibility to accommodate the IDs. The presence of an 

unstructured HR would thus allow the dimerization of the IDs and would point to an 

active architecture of the TLR4/MD-2/TLR4*/MD-2* complex in the Ld membrane. 
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Ld 32% 15% 31% 10% 12% 
Lo 12% 46% 33% 3% 0% 
Figure 4.10. TLR4 (TD-HR)2 protein-protein binding mode at the end of the 
simulations in which TD and HR were parametrized as α-helix. 

CG simulations of plausible TD-TD dimers were carried out. The two sets of 

simulations (in Lo and Ld phases) in which only the HR was imposed to be structure as 

a α-helix do not point to a preferantial binding mode as it can be seen in Figure 4.11. A 

deeper analysis of these simulations is in progress. 
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Liquid-ordered membrane Liquid-disordered membrane 

Figure 4.11.  Superimposition, based on one monomer, of all the poses from the CG 
simulations that presented a dimer in the final step of simulation. Backbone of residues 
between Lys631 and Lys653, which are the residues spanning through the membrane, 
are represented in orange sticks. Backbone of other residues are in yellow sticks. 

4.3.6 TLR4 intracellular domain 

The homology modelling algorithm retained 6 templates to base the building process 

on: the TIR domain of human TLR1, TLR2 (P681h mutant), TLR2 (C713s mutant), 

TLR6 and TLR10, which it then retrieved from the PDB under the accession codes 

1FYV, 1FYX, 1O77, 4OM7 and 2J67, respectively. The program produced 17 models 

based on these templates, which were then used to build a final hybrid model that was 

considered best based on its Z-score. The model is a dimer as most of the templates also 

feature a dimer. We compared our model with all the TLR4 ID models reported to date, 

one from Gond et al.,34  three from Guven-Maiorov et al.35 and another from Miguel et 

al.,36 and found that our model present great similarities with the latter one (Figure 1.10 

in the Introduction chapter). 

A monomer was extracted from the HM and submitted to 100 ns of MD simulations. 

The TIR domain proved to be stable along the simulation (Figure 4.13, left panel, red 

line). The TIR domain is highly conserved among TIR-domain-containing proteins and 

is thus likely to have been accurately modelled. The entire ID domain is less stable 



Chapter 4 – TLR4 activation 

 

133 
 

(Figure 4.13, left panel, blue line), due to the high motion of the C- and N- terminal 

linkers that are highly flexible as shown in Figure 4.13, right panel. 

  
Figure 4.12. MD simulation of monomeric TLR4 ID in water. Left: RMSD. RMS 
fluctuation per residues 

The TLR4 ID dimer model was submitted to 200 ns of MD simulations in water. We 

characterized the motion of both TIR domains independently and noted higher motion 

of one of the dimer (Figure 4.14). The higher motions correspond to the CD loop, 

shown in Figure 1.10 in the Introduction chapter (cf. RMSF plot in Figure 4.14, right 

panel). 

  
Figure 4.13. MD simulation of dimeric TLR4 ID in water. Left: RMSD. RMS 
fluctuation per residues 

Regarding protein-protein interactions, in the model (starting point of the MD 

simulation) both the BB loop and the Cys747 are interacting with their counterparts 

(Figure 4.15). During the simulation, the BB loops interactions are discontinued and one 

of the monomer rotates 90º in relation to the other, leaving both BB loops exposed to 

the solvent in a symmetric manner. 
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Figure 4.14. TLR4 ID from 0ns (left) to 200ns (right) of MD simulation in water. The 
dimer is in cartoon representation, Cys747 from both monomer are represented as 
spheres, chain A is in blue, chain B in grey, the BB loops in yellow, and the N-terminal 
linkers in red.  

In our model we assessed the binding sites of the downstream adaptors based on the 

findings of Guven-Maiorov et al. (2015).35 The protein-protein interaction model after 

200 ns of MD simulation is somewhat similar to a model reported by the same authors 

(dubbed FF in the original paper) but the overall mode of interaction greatly differs as 

one monomer is rotated 180 degrees compared to our model. However the interactions 

with downstream adaptors, as described in the paper, can still take place. The Mal 

binding site is widely exposed and accessible as the TRAM binding site as presented in 

the paper.37 Concerning protein-protein interactions and complexation with downstream 

adaptors, both models seem to be possible.  

4.4 Conclusion 

Computational studies of the different independent domains composing the TLR4 were 

undertaken aiming at uncovering details of the precise mechanism of activation of the 

receptor. Understanding, at the atomic scale, the dimerization of both the 

transmembrane domain and the intracellular domain of TLR4 permitted to favor certain 

binding modes and specific secondary structures increasing the knowledge available 

regarding the activation. This work is still in progress. 

4.5 Materials and methods 

Setting up the AA membranes. The lipid bilayers were built using the online CHARMM-

GUI membrane builder.38 Composition of the different system is given in SI. Systems 

were converted to Lipid14 compatible PDB format using the charmmlipid2amber.sh 

script.39 

Full TLR4/MD-2 model construction. The 3D structure of TLR4 and MD-2 were 

retrieved from the protein data bank under the accession code 3FXI. The TD was built 

as an α-helix based on its sequence (Uniprot ID O00206). The 3D structure of the ID 
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was predicted and built through homology modelling as explained in details in the 

homology modelling section. 

Homology modelling. The 3D structure of TLR4 ID was predicted and built within the 

homology modelling feature of the YASARA program.40 TLR4 AA sequence spanning 

from residue 653 to residue 839 was giving as input to the program. Modeling speed 

was set to slow, which yield best results, and other parameters were kept default. 

Molecular dynamics simulations. AA MD simulations were performed with either 

Amber14 or Amber16. The force fields ff14SB,41 Lipid14,42 and a combination of 

GAFF43 and GLYCAM0644 were used to described the proteins, the membrane and E. 

coli LPS, respectively. AA simulations of systems containing membranes went through 

the same simulation protocol. Steepest descent gradient algorithm is iterated for 5000 

steps followed by 5000 iterations of conjugate gradient algorithm under no constraint. 

The system is then heated from 0 to 100K for 2500 steps in the NVT ensemble while 

the proteins and the lipids are held by a 10 kcal.mol-1A-1 harmonic potential. In the 

subsequent step the system is heated from 100K to 303K for 50000 steps. In membrane 

system the dimension of the box can change considerably during the first nanoseconds 

of simulation, thus to allow the program to recalculate them frequently the first 10 steps 

of the production run are performed for a maximum of 500ps. In all the steps the 

temperature is controlled by a Langevin thermostat. The warming up phase and the 

production run are performed under an anisotropic NPT ensemble to account for 

different physical properties along the dimensions tangential to the membrane than the 

one normal to it. The analysis was performed using the cpptraj module of 

AmberTools15.45  
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Conclusions 

Regarding naturally occurring modulators, we studied the LPS from Bradyrhizobium 

species. Rhizobia are Gram-negative bacteria able to establish symbiotic relationship 

with legumes and to reduce atmospheric nitrogen into ammonium, thus providing 

nitrogen nutrition for the host plants. Bacteria belonging to the Bradyrhizobium genus 

promote nitrogen-fixing nodules development on roots and stems of both wild-growing 

and cultivated Aeschynomene legumes. It was previously demonstrated that the 

lipopolysaccharide (LPS) macromolecule in Rhizobia plays a key role throughout the 

symbiotic process and that its structural features are altered in response to plant signals. 

Different lipid A structures from Bradyrhizobium were recently elucidated. They are 

highly heterogeneous regarding the number, length and nature of their acyl chains. 

Some contained very long-chains fatty acids and, more surprisingly, a covalently linked 

hopanoid molecule. That novelty prompted us to evaluate the activity these 

Bradyrhizobium lipid As may have on the innate immune system. Experimental studies, 

including cell assays on both murine and human bone marrow-derived macrophages and 

HEK 293-TLR4/MD-2/CD14 cells, revealed an extremely low capability to elicit an 

immune response. More intriguingly, a potent antagonistic activity towards the toxic E. 

coli LPS was observed. Our computational studies allowed the proposal of plausible 

binding modes of two of these Bradyrhizobium lipid As to the TLR4/MD-2 system. 

These binding modes account for the potent activity antagonizing the binding of E. coli 

LPS to the MD-2/TLR4 complex thus inhibiting its toxic effects. It is likely that the 

TLR4 signaling modulation occurs by direct interaction with the TLR4/MD-2 complex, 

both in its hopanoid-containing and hopanoid-free forms. Our studies do not point 

toward a primary role of the hopanoid moiety in the biological activity regarding TLR4 

signaling. 

With respect to LPS-like synthesis modulators, we studied a group of glucosamine 

derivative. FP7, a glucosamine derivative with two phosphate groups and two myristic 

(C14) FA chains, is active in inhibiting in a dose-dependent way human and murine 

TLR4 activation by LPS. NMR experiments suggest that FP7 interact with MD-2, 

probably inserting its FA chains into hydrophobic binding cavity. We designed new 

TLR4 modulators, based on FP7, and performed structure-activity relationship (SAR) 

studies to understand how their FA chains length determine their potency as TLR4 
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modulators. These FP7 variants differ only in FA chains lengths (10, 12, 14 and 16 

carbon atoms). In this study we took into account both the interaction with MD-2 and 

the aggregation properties of the molecules. We reported structural and functional 

biological data demonstrating the ability of novel FP variants to negatively regulate 

TLR4 signaling in different cell model systems. Our computational studies were 

relevant in the context of the SAR study and to propose the rationale for the mechanism 

of binding. Our models suggest that there is an optimum length for the FA chains for an 

appropriate TLR4 antagonist activity related to the binding mode and to the physical-

chemical properties of the FP variants. 

On the subject on non LPS-like modulators we studied amphiphilic 

guanidinocalixarenes. To block abnormal TLR4 signaling in bacterial sepsis, two 

different strategies have been developed. The first one is based on LPS neutralization by 

the formation of noncovalent adducts with cationic compounds thus preventing LPS 

from interacting with the receptors. The second strategy is based on the use of 

molecules that compete with endotoxic LPS in binding to the same site on CD14 and 

MD-2, thereby inhibiting the induction of signal transduction by impairing LPS-

initiated receptor dimerization. Among the amphiphilic guanidinocalixarenes studied, 

we included one whose activity in this biological context had previously been reported 

as reference compound. Its biological activity was associated with its capacity to bind 

and neutralize LPS as topomimetic of LPS-binding peptides. Our computational studies 

challenged this view. We hypothesized that calixarene-based facial amphiphiles could 

also be suitable as scaffolds to obtain TLR4 ligands with antagonist activity. In a 

biological context, amphiphilic calixarenes showed remarkable properties significantly 

related to their amphiphilicity. Since we hypothesized that calixarene derivatives could 

directly bind to human and murine MD-2 and CD14 in a similar fashion than LPS, we 

preliminarily performed docking calculations to support this mode of interaction. In 

addition, we studied whereas the TLR4 antagonist activity is a rather general property of 

positively charged amphiphilic calixarenes and if this antagonist effect also derives 

from the direct interaction of calixarenes with the receptors and not exclusively from 

LPS neutralizing action, as it was suggested. Experimental evidences showed that some 

of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-

stimulated TLR4 activation and TLR4-dependent cytokine production in human and 

mouse cells. Moreover, guanidinocalixarenes also inhibited TLR4 signaling when TLR4 
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was activated by a non-LPS stimulus, the plant lectin PHA. These results point at the 

calixarene moiety as a potential scaffold for the development of new TLR4-directed 

therapeutics. 

As for the activation of TLR4, computational studies of the different independent 

domains composing the TLR4 were undertaken aiming at uncovering details of the 

precise mechanism of activation of the receptor. Understanding, at the atomic scale, the 

dimerization of both the transmembrane domain and the intracellular domain of TLR4 

permitted to favor certain binding modes and specific secondary structures increasing 

the knowledge available regarding the activation. 
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