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Abstract

This project aims to continue and consolidate the study for the bacteriemia detection
process and its diagnosis carried out by some faculty companions last year. A first glance
through the analysis of numerical variables allowed a deeper understanding and the trace
of an approach for a quick detection model. Now, categorical variables take relevance too
in order to successfully achieve higher results in the classifier models.

The addition of categorical variables in classifier models has been around for at least five
years due to the increase in computational capacity, and the benefits in the classifiers as
direct consequence is clear. Yet, it is proven that, as complex and abstract as language
is, classifiers do struggle when data with slang or abbreviations comes up for prediction,
even if its linguistic register is heavily bounded, i.e. when strictly related to medical
issues data is treated.

Throughout the study we will apply text cleaning and text processing methods to prepare
the variables for use, since their format is heterogeneous and unsuitable to be processed
by Machine Learning tools.

We will also apply the string similarity method to identify all those classes that can
help in the algorithm classification process and we will assess the most suitable types of
encoding for working with these variables.

Finally, we will apply the Random Forest Machine Learning algorithm on the set with
techniques that allow us to avoid data learning bias and we will assess the results in terms
of the success rates and the relevance of the variables in the decision-making process of
the algorithm.
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Chapter 1

Introduction

1.1 Bacteremia
Bacteremia is a concrete case of Bloodstream infections (BSIs) where bacteria enter
the bloodstream. Blood is a sterile environment, so when bacteria is detected the immune
system arises a response to remove the external agent. Bacteria can enter the bloodstream
as a complication of an infection or foreign bodies surpassing the skin as a defensive
barrier, i.e. injuries ,burns or catheters. It is worth mentioning that surgery is a scenario
where bacteria can enter the arteries or veins, thus they are exposed due to the nature
of the procedure. Also, specific bacteria like resistant enterococcal species can cause
bacteremia in patients who have had long hospital stays or frequent antibiotic use in the
past.

Bacteremia is defined as either a primary or secondary process. In primary bacteremia,
bacteria have been directly introduced into the bloodstream. Injection drug use may lead
to primary bacteremia. In the hospital setting, use of blood vessel catheters contaminated
with bacteria may also lead to primary bacteremia. Secondary bacteremia occurs when
bacteria have entered the body at another site, such as the aforementioned cuts in the
skin, or the mucous membranes of the lungs (respiratory tract), mouth or intestines
(gastrointestinal tract), bladder (urinary tract), or genitals.

Bacteremia can be classified as monomicrobial or polymicrobial depending on the pres-
ence of microorganisms in the bloodstream. First is frequently found in patients with
endocarditis or meningitis while the second one usually is diagnosed with necrosis of
skin. Causes of bacteremia can additionally be divided into healthcare-associated (ac-
quired during the process of receiving care in a healthcare facility) or community-acquired
(acquired outside of a health facility, often prior to hospitalization).

The most common way to detect bacteremia is through blood cultures. A typical blood
culture collection involves drawing blood into two bottles, which together form one ”cul-
ture”. One bottle is designed to enhance the growth of aerobic organisms, and the other
is designed to grow anaerobic organisms.

Both bottles contain culture medium, a formula that supports the growth of microorgan-
isms. These samples, named as blood cultures, are placed in an incubator for several days
to allow microorganisms to multiply and form colonies. This new microbial colonies are
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later tested for antimicrobial susceptibility to properly diagnose the bacteremia.

Figure 1.1: Blood culture examples
[1]

Sepsis, or septicemia, is a harmful response from the immune system to bacteria in
the bloodstream that causes injuries to the organs of the patient [2]. Several immune
responses may result in this condition, evolving into a life-threatening, potentially fatal
scenario called septic shock, increasing the mortality rate of the bacteremia.

Usually the bacteria is quickly removed from the blood by means of no harm to the host,
but it is indeed an infection disease which might lead to several important health conse-
quences [3], depending on the bacteremia [4] reaching up to 50% of mortality rate.

Bacteremias are treated with antibiotics. Any patient with signs or symptoms of bac-
teremia or a positive blood culture should be started on intravenous antibiotics. The
source of infection will determine the choice of antibiotics, as well as the symptoms, pa-
tient history with antibiotic use and allergies to antibiotics. The treatment is ought to be
applied as soon as the bacteremia is diagnosed, were it not to be the case, a progression
to sepsis could be produced, involving high mortality rates. However, blood cultures are
not requested until sepsis, fever, or antibiotic resilience is detected, delaying the start of
the treatment when needed.

Over the years the process of bacteremia diagnosis and recognition has improved remark-
ably from 5 to 6 days a few years ago to <24h in a recent study in 2019 [5]. Yet it was
biased only to men and not so precise, the study estimates positive future results with
clinical assessment. Although these are promising conclusions, being able to state and
predict the treatment of the bacteremia before the results would lead to diminishing the
mortality rate, along with the effect of the symptoms in the host.

The prognosis of bacteremia is so poor that it is rated as a high risk disease [6]. That
is why the early diagnosis and the correct application of an effective treatment for bac-
teremia are so important. This leads to the point where the idea of training a prediction
model to fasten the beginning of the treatment or, even the diagnosis, stands out; for it
has been proven that early steps decrease the mortality rate when correctly diagnosed.
Nowadays prediction models do not make a real difference: studies showing promising
results happen to be made with short population samples or over homogeneous sample
groups.

Bacteremia commonly starts in soft tissues which mainly involve organs that take part
in the digestive, genitourinary and even the respiratory system, as it has been already
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mentioned, such as lungs, stomach, or the skin. That is why it would be fair to consider
and evaluate other symptoms when trying to predict bacteremia.

To sum up, bacteremia is a type of bloodstream infection that almost always requires
treatment with antibiotics. It is diagnosed by blood cultures, which may take up to 5
or 6 days. Bacteremia is a process with different causes and a high mortality rate that
benefits from early detection.

1.2 Context
Artificial Intelligence is a branch of computer science, specially influenced by probability
and statistics, that studies, designs and applies algorithms for problem solving, the so-
called Machine Learning algorithms.

Its popularity has been booming over the last decade, driven by the trajectory of the
development of computer architectures and its computational capabilities. The rate at
which computers have been operating recently is the key factor that promoted the im-
provement of Machine Learning algorithms to test models.

The goal of Machine Learning is to minimize the error of the results the models return,
based on the parameters learnt. In order to do so, models are iteratively trained with
sample datasets to improve the results, modifying when needed the values of the functions
parameters.

Machine Learning can be classified into supervised and unsupervised learning. Super-
vised learning receives labeled datasets as input and the model should learn the function
that best approximates the result to the output based on the training input; it usually
weighs the most relevant parameters in the decision making process. On the other hand,
unsupervised learning´s goal is to find patterns or similarities among data within datasets
that allow to label and find the different classes in which the data can be divided. This
learning process cannot validate the result of the output, for it has no labeled data to
compare with.

Machine Learning models are benefited from great datasets with low missing data rates.
The output is ought to be more accurate the more training is put into the model, yet it is
important to avoid the extreme where overfitting is produced due to excess training with
a single dataset, in which case the model loses accuracy with no training data.

1.3 Objectives
This project is the continuation of the study conducted last year about Machine Learning
techniques for healthcare-associated bacteremias by other companions [7]. In such study
categorical, ordinal and boolean variables were the goal, applying different data manipu-
lation techniques; for instance; one-hot classifiers, separate-class methods or imputation
methods.

Although accuracy in the prediction models might seem as the main goal, it is as im-
portant as the transparency of the model and the underlying algorithm. Were it not for
this condition, the previous study might have been concluded, but this is a health related
investigation project that is expected to be applied in real scenarios.
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Thus, the target of this project is to find the most relevant variables for the detection
and diagnosis of bacteremia by means of ML models, including the nominal categorical
variables skipped in the previous study and improving the results of the predictions in
the most explainable models.
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Chapter 2

Work organization

2.1 Workplan
Before approaching the project, a weekly follow-up was agreed through which Óscar
could evaluate the progress made, giving continuity to the work. In this first contact,
the development environment, the tool used for version control, as well as for the work
flow, were approved. Similarly, the use of the Goole Meets tool for communication and
meetings, and the use of a Google Chat room for messages between meetings is set.

In the first instance, Óscar explained that it would be necessary reviewing the work carried
out the previous year; reading of research on machine learning results with different coding
methods applied to sparse matrices and understanding the set was given equal relevance
of data with which to work and the evaluation of the variables marked as pending from
the previous study.

From there, the work plan was established as follows:

(i) Create GitHub directory tree.

(ii) Get access to the previous year repository.

(iii) Reed the articles about Missing Data [8] from Yufen Ding and Jeffrey S. Simonoff,
Encoding High Cardinality Variables [9] and Similarity encoding for learning with
dirty categorical variables [10] from Patricio Cerda.

(iv) Install Jupyter Notebook.

(v) Install Python 3.

(vi) Get familiar with the previous study and the script used to work with the data
features.

(vii) Evaluate the dataset variables.

(viii) Check with the physician the categorical variables to study.

(ix) Find in the resulting DataFrame object all distinct values for the study case vari-
ables.

(x) Modify the script according to the needs of the current features.
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(xi) Create working environment workflow file with pipenv.

(xii) Cleaning accents and strange characters from the study features.

(xiii) Get all distinct values from the study variable Otrascomor.

(xiv) Depth search for text analysis techniques and tools.

(xv) Apply string similarity method to the resulting bag of words.

(xvi) Identify each of the different entities from the bag of words and replace them in the
DataFrame for model evaluation.

(xvii) Check bag of words with 2 and 3 character minimum size abbreviations.

(xviii) Create substitution list for abbreviation replacement.

(xix) Run the script having applied the abbreviation substitution.

(xx) Complete the workflow with the categories obtained from running the script.

(xxi) Apply binary codification to all categories within the DataFrame for the study
feature.

(xxii) Reorganize and clean the script.

(xxiii) Remove all predictor variables from the DataFrame before running Random Forest
model.

(xxiv) Apply Random Forest to the DataFrame with binary codification.

(xxv) Run k-fold cross validation with 80/20 parameters for training and validation sets.

(xxvi) Apply Random Forest to the DataFrame with binary codification.

(xxvii) Retrieve graph with the weighted relevance of the features.

(xxviii) Retrieve ROC graph from the Random Forest execution.

(xxix) Write the project report.

2.1.1 Development environment
The development environment that has been used for this project is Jupyter Notebook,
with the use of Python as programming language. Óscar emphasized the requirement
to maintain a file with the latest stable version of the software and the libraries used
necessary for the execution of the code. The use of pipenv, a production tool that
creates virtual environments and maintains the build used during development, covers
this need.

2.1.2 Version control
For version control, github was used which, in addition to storing the code versions, allows
creating a follow-up by target cards according to the status of their completion, allowing
control over all project tasks apart from development tasks.

Within the project, a folder structure was established to distinguish between documen-
tation, code, patient data and results obtained.
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Chapter 3

The Dataset

3.1 Study of the data
This chapter will develop all the information about the dataset, the treatment it has
received for its correct manipulation, as well as its interpretation and subsequent prepa-
ration for its usage with Machine Learning tools.

The dataset is an anonymized dataset provided by José Manuel Ruiz, physician at the
Hospital Universitario de Fuenlabrada, a 350-bed hospital with the following services:
general surgery, urology, orthopaedic surgery, gynaecology and obstetrics, paediatrics,
intensive care units (ICUs), haematology-oncology, internal medicine and cardiology. The
database was gathered from 2005 to 2015, and it consists of 4357 anonymous patient
records, a.k.a. instances, containing 117 features per patient, 49.3% female with age 65.1
± 19.7, and 56.1% male with age 62.7 ± 20.2. Each instance contains demographic and
medical data (medical history, clinical analysis, comorbidities, etc.) and the result of the
blood culture, the feature to be predicted, which can take one of two values: bacteraemia
and no bacteraemia. The database contains 2123 bacteraemia (51.3%), which includes
aerobic, strict anaerobic and facultative anaerobic bacteria, and 2234 no bacteraemia
(48.7%), including 1844 contaminations.The final classification of true bacteraemia was
done in prospective time by an infectious disease physician, using all the previous data,
including microbiological, clinical and analytical data.

The target variables in this project are those of nominal type from the list of variables,
which result in the following: desmotuci, uci, origin, otrascomor. After a first evaluation,
the origin variable was discarded due to its nature. This variable represents the origin
of the bacteremia, which is a feature from the final diagnosis. Features that can only be
obtained after the drawning of the blood culture should not be included because in the
real process the physicians would not be able to count on that values. This would also
contaminate the results of the Machine Learning models.

Tables 3.1 and 3.2 display the features in the dataset and the selected variables for the
study.
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Table 3.1: Features from the dataset

Features from the dataset
periodo Year of the study case Ordinal
mes Month of the study case Ordinal
dia Day of the study case Scalar
edad Age of the patient Scalar
edada Age per group Ordinal
edada75 Age goe to 75 Scalar
edada85 Age goe to 85 Scalar
Diasdet Detection time in days Scalar
Prifrpos First culture to grow Scalar
microrga Microorganism Scalar
identif Species of the bacteremia Nominal
Microrgagrupo Group of the microorganism Scalar
anhonpol Anaerobes Ordinal
Anaerobio Presence of anaerobes against all other bacteria Ordinal
Hongos Presence of fungs against all other bacteria Ordinal
Stafcoag Staphyloccocus coag Scalar
Polimicr Polimicrobian Ordinal
microbpoli Germs of microbial bacteria Ordinal
gram Gram stain Ordinal
medio True positive growth medium Ordinal
frasae Growth at least in aerobes Scalar
frasanae Growth at least in anaerobic flask Scalar
frasextr Bottles of extracted blood cultures Scalar
contamin Pollutant growth Ordinal
mediocon Growth medium of the pollutant microorganism Ordinal
Antibiograma Microorganism antibiogram Nominal
Antiresist Categorized antibiogram Scalar
glucosa Blood glucose Scalar
Urea Blood urea in mg/l Scalar
creatin Creatinine Scalar
pcrcate Categorical PCR Scalar
pcr PCR value Scalar
leuc Leukocytes Scalar
hgb Hemoglobin Scalar
pmfn PMN percentage Scalar

Jaime del Rey García 8
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Features from the dataset
hbcateg Categorical Hb Scalar
plaqut Platelets Scalar
leucocit Leukocytosis Ordinal
trombope Thrombopenia Ordinal
Coagulación Altered coagulation Ordinal
so Urine system analysis Scalar
sedorina Urine sediment Scalar
diashosp Days in hospital until bloodculture extraction Scalar
lnghosp1m Hospital admissions over the last month Scalar
lnghosp12m Hospital admissions of over 48h in the last year Scalar
comentar Comments Nominal
COMORBIL Comorbidity Scalar
Diabetes Diabetes Scalar
Cardiopatía Heart disease Scalar
Enfresp Chronic respiratory disease Scalar
Neoplasia Active neoplasia Scalar
Insrenal Renal insufficiency Scalar
Hepatopatia Liver disease Scalar
Udvp Parenteral drug addiction Scalar
Alcoholismo Alcoholism Scalar
Otrascomor Other comorbidities Nominal
enfbasWeinst Weinstein’s underlying disease Ordinal
esteroid Steroids Ordinal
drogadic Drug addiction Ordinal
antibiot Antibiotics Ordinal
inmunosu Immunosuppressants Ordinal
neutrope Neutropenia Ordinal
m_genitu Genitourinary manipulations Ordinal
m_respir Respiratory manipulations Ordinal
m_digest Digestive manipulations Ordinal
cirugia Previous surgery Ordinal
diagnost Diagnosis of bacteremia Ordinal
cateter Days of last catheter placement Scalar
cateter1 Type of catheter Ordinal
Especialidad Specialty where the bacteremia is produced Scalar
servicio Service where the bacteremia is produced Scalar
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Features from the dataset
Ordinal
urgencias Blood cultures taken in the emergency room Scalar
adquisic Adquisition Ordinal
durac Days of fever febore blood culture Scalar
tas Systolic blood pressure Scalar
tad Diastolic blood pressure Scalar
fc Heart rate Scalar
primtemp First ER temperature with which blood cultures are

drawn
Scalar

temporal Temperature based on oral and axillary temperatures Scalar
fiebre Fever when blood cultures are drawn Ordinal
fiebrePitt Oral temperature classification in Pitt scale Scalar
hipotens Hypotension Ordinal
Vasopre Use of vasopressor agents at the time of bacteremia Scalar
intubacion Need for intubation at the time of bacteremia Scalar
RCP Cardiac resuscitation at the time of bacteremia Scalar
Alerta Consciousness at the time of bacteremia Scalar
PITT Pitt scale in number of ICU patients Scalar
metastas Metastasis Ordinal
metasta1 Where the metastasis is produed, if any Ordinal
evolucio Evolution Ordinal
muerte Death Ordinal
origen Origin of bacteremia Nominal
dxfinal Final diagnosis Scalar
origensos Suspected origin of bacteremia at the time the blood

cultures are drawn
Scalar

origenf Origin of bacteremia in the final diagnosis Scalar
origenva Vascular origin Scalar
atbempir Empirical antibiotic treatment Scalar
t_empiri Empirical treatment adequate or inadequate Ordinal
ttoesp Specific adequate treatment Scalar
t_especi Specific treatment adequate or inadequate Ordinal
diastto Days of treatment until start of inadequate treatment Scalar
t_quirur Indication or not of surgical treatment Ordinal
uci Bloodcultures drawn in ICU Nominal
ucidiashem Days in ICU to blood culture drawn Scalar
motuci Reason of ICU admission Scalar
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Features from the dataset
desmotuci Reaso of ICU admission as text Nominal
consfieb Consult for fever Scalar
sintomas Fever symptoms Scalar
stlocal Locator syndrome Scalar
dest Destination Scalar
vuelta_a Return to ER Scalar
tratamie Antibiotic treatment Scalar

Table 3.2: Selected features in the study.

Selected features
desmotuci Reason for admission to ICU
uci Blood cultures from ICU
origin Origin of the bacteremia
Otrascomor Other comorbidities

A study of the variables is carried out individually to identify the characteristics of each
variable. Starting with the variable otrascomor that contains the comorbidities with
which each patient was admitted.

Comorbidities are additional disorders that patients present in addition to the disease for
which they are admitted. This variable is characteristic because it can help to identify
under what conditions a patient is more likely to have bacteremia.

This variable contains comorbidities as nouns separated by punctuation marks or other
text characters. Comorbidities are not written in a homogeneous way, that is, some are
written with diminutives, others contractions of different lengths of characters on the
same word. The structure of the variable is itself a series from the pandas library where
each index in the list represents the patient referred and the content within the list is a
string detailing the comorbidities.

11
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[1]: v_nominales['Otrascomor']
[1]:

0 deterioro cognitivo
1
2 CARDIOPATIA. EPILEPSIA
3 valvulopatia
4 bcno, dm, hta, ci

...
5389
5390 Obesidad
5391
5392
5393
Name: Otrascomor, Length: 5394, dtype: object

Figure 3.1: Sample of the feature Otrascomor.

The typo of the variable is not homogeneous either, counting with upper and lower
case indiscriminately. The separators, which indicate the end and the beginning of each
comorbidity in succession, are also heterogeneous in a range from punctuation marks such
as ’,’ or ’.’ to other types of elements such as ’+’ or ’e’.

Another attribute that can be observed is the appearance of spaces as prefixes and suffixes,
in addition to the indexes of the series that have no content. There are also strings
throughout the series that contain accents, apostrophes and other elements that pose
difficulties for the representation of the text according to what formats may be used.

3.1.1 Dirty categorical variables
In the context of Machine Learning with natural language variables, dirty categories
are the definition of non-curated data with high cardinality but redundancy: several
categories reflect the same entity.

One of the main challenges with dirty categorical variables is to identify all the elements
that are related and refer to the same entity or class. Without data cleaning, different
string representations of the same category will lead to completely different results or sub-
categories, not only because the different elements refer to the same category themselves
but also because of errors such as typos that cause morphological variations.

From a data-integration standpoint, these categories may be seen as a data cleaning
problem about entity resolution. Tasks such as deduplication, that tries to merge different
variants of the same entity, seek to recognize different variants of the same entity, which
may be the best case to apply as a preprocessing step. However, data cleaning usually
requires human intervention and major costs in data analysis.

In this dataset almost all the examples are dirty and categorical for the variables of
study. If two examples for the variable Otrascomor are taken, it can be understood that
within this study there is a dirty categorical variable problem. To cater for different ways
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information might appear, several entities are shown in Figures 3.2 and 3.3 for each of
the possible subclasses.

[1]: anemi
anemia,
anemia cronica,
anemica cronica ferr,
anemia ferropenica,
anemia hemolitica,
anemia megaloblastic,
anemia microcitica,
anemia n-n,
anemia nn,
anemia normocitica normocronica,
anemia por deficit b12,
anemia tr cronicos

Figure 3.2: Sample of the elements in the feature Otrascomor refering to anemia as dirty
categories.

[1]: alzheimer
alzheimer avanzado,
alzheimer evolucionado,
alzheimer evolucionado (institucionalizada,
alzheimer terminal,
alzheimer.,
alzheimer. asma,
alzheimer. dm,
alzheimer. enfermedad vascular cerebral,
alzheimer. itus de repeticion.,
ca. prostata. alzheimer avanzado. parkinson,
demencia alzheimer,
dm.alzheimer. tvp. itus de rep.,
dtalzheimer avanzado,
enfermedad de alzheimer,
epoc. neumonia. alzheimer.,
erc estadio 3. alzheimer.,
hemorragia ceebral; e de alzheimer,
hta; alzheimer

Figure 3.3: Sample of the elements in the feature Otrascomor refering to alzheimer as
dirty categories.

In both examples, all the variables contain the word that we might consider as the entity
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they all refer to, but some typos already stand out such as anemi vs anemia, or the
difference between alzheimer avanzado and alzheimer terminal.

The goal, therefore, will be to provide the most faithful approximation to what the main
categories should be, taking into account which of the variables refer as the same category
too in order to replace all the dirty variables with one single entity in order to simplify the
process of data processing and to improve the results for the Machine Learning models
by lowering the amount of classes and attributes to take into account.

3.1.2 Encoding String Categorical Variables
String variables usually require vector representation when inside datasets that are thought
to fit for statistical and Machine Learning models. This is when encoding or numerical
vector representation of the entries takes place.

If we consider string entries as nominal unordered categories, the prediction of the Ma-
chine Learning model can be improved. In such a situation, it is necessary for the cat-
egories to be mutually exclusive and unrelated to each other with a fixed known set of
possibilities.

The classic approach to encode categorical variables for statistical analysis is one-hot
encoding as it creates vectors that agree with the general intuition of nominal categories:
orthogonal and equidistant. However, for high-cardinality categories, one-hot encoding
leads to feature vectors of high dimensionality, which struggles in big datasets increasing
the number of categories and the computational complexity and cost.

In this project, the dataset has too many attributes and, as previously shown, there
are several entries that may refer to the same category. Therefore, new approaches
are introduced: in first place a new type of encoding called similarity encoding [9] and
ultimately, how can it be applied to Machine Learning problems [10].

• Let 𝑠𝑖 ∈ 𝑆, 𝑖 = 1..𝑛, the category corresponding to the 𝑖-th sample of a given
training dataset. Given a string similarity sim(𝑠𝑖, 𝑠𝑗) ∶ 𝑆 × 𝑆 → [0, 1], similarity
encoding builds a feature map 𝑥𝑠𝑖𝑚 ∈ ℝ𝑘 as:

𝑥𝑠𝑖𝑚
𝑖

def= [𝑠𝑖𝑚(𝑠𝑖, 𝑠(1)), 𝑠𝑖𝑚(𝑠𝑖, 𝑠(2)), ..., 𝑠𝑖𝑚(𝑠𝑖, 𝑠(𝑘))] ∈ ℝ𝑘 (3.1)

where 𝑠(𝑙) ⊆ 𝑆, 𝑙 = 1...𝑘, is the set of all unique categories in the training set chosen
heuristically.

• Now, as categorical entities are not numerical, a matrix 𝑋 is needed to build a
feature map. Such table is a set 𝐴𝑗, 𝑗 = 1..𝑚, i.e. the column names. Each attribute
has a domain 𝑑𝑜𝑚(𝐴𝑗 = 𝐷𝑗). A table is defined as a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑟 on the scheme 𝑅
where is specified by a set of tuples 𝑡(𝑖) ∶ 𝑅 → 𝑈𝑚

𝑗=1𝐷𝑗, 𝑖 = 1...𝑛. If 𝐴𝑗 is a numerical
attribute, then dom(𝐴𝑗) = 𝐷𝑗 ⊆ ℝ. If, on the other had, 𝐴𝑗 is a categorical
attribute represented by strings then 𝐷𝑗 ⊆ 𝕊, where 𝕊 is the set of finite-length
strings that can represent a variable.

We define then a feature matrix 𝑋 from the relation 𝑟 that consist of replacing the
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tuple elements 𝑡𝑖(𝐴𝑗), 𝑖 = 1...𝑛 by feature vectors:

𝑋𝑖
𝑗 ∈ ℝ𝑃𝑗 , 𝑝𝑗 ≥ 1 (3.2)

Using the same notation in case of numerical attributes, we can define 𝑥𝑖
𝑗 = 𝑡𝑖(𝐴𝑗) ∈

ℝ𝑃𝑗, 𝑝𝑗 = 1 and write the feature matrix 𝑋 as:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥1
1 ... 𝑥1

𝑚
. . .
. . .
. . .

𝑥𝑛
1 ... 𝑥𝑛

𝑚

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑛𝑥𝑝, 𝑝 =
𝑚

∑
𝑗=1

𝑝𝑗 (3.3)

In standard supervised-learning settings, the observations, represented by the feature
matrix 𝑋, are associated with a target vector 𝑦 ∈ ℝ𝑛 to predict.

3.2 Cleaning the data
Cleaning the data in language manipulation problems is usually a time and resource
consuming task. Trying to get a pristine dataset would not be worth the effort. Yet,
taking into account that we attempt to use Machine Learning and data processing tools
it is important to ensure that at least it is coherent in format and language.

To clean the data, different tools will be used, provided by various python libraries. The
idea is to create a bag of words and be able to define the categories from it using the
string similarity method explained in the previous subsection.

At the beginning, the categorical variables of the dataset were separated from the others,
these being the main objective of this project. Now the feature Otrascomor is selected
for the first preprocessing pace.

The first step is to standardize the text format by eliminating all the characters that
may give reading errors according to the text format, such as accents, diacritical marks
or apostrophes.

The first approach is the use of regular expressions to replace characters that may present
problems for Machine Learning models. The problem with this option is, in addition to
not being able to be applied to series, the fact of having to list all the possible substitution
options.

In a second approach, a library is used, unidecode, which maps the characters found in a
text to ASCII characters, that is, universal format. This library has the drawback of not
producing good results for oriental languages but, taking into account that it works with
Spanish and seeks to eliminate accents (a result that can be obtained with the English
keyboard), aforementioned library provides the solution and the desired result.
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def remove_diacritics(x):
”””
Argumentos clave:
x -- objeto tipo serie de string
Devuelve: todas las cadenas sin tildes diacriticas
”””
return unidecode.unidecode(x)

def espacios_lower(x):
”””
Argumentos clave:
x -- objeto tipo lista de string
Devuelve: lista string en minuscula eliminando los espacios en
prefijo y sufijo de cada elemento
”””
return x.strip(” ”).lower()

Once a homogeneous format is achieved, it is necessary to identify the separators to
be able to isolate the strings that potentially represent a class. To achieve this, a list is
created with each separator identified in the variable and the following process is repeated:
each element of the series is separated by the token that identifies the separator and the
resulting strings are joined in a list object.

Two approaches were used initially: the use of commas as a separator and the use of
commas and periods as separators. The reason is that they are the characters with that
have the most frequency throughout the variable.

It was decided to differentiate between the bag with commas removed and the bag with
commas and dots removed. This is not only because of the frequency of the separators, but
also because some entities include the element ‘.’ as part of the diminutive or contraction
on some of the words embedded on it.

def separa(serie,separador):
serie_separadas=[x.split(separador) for x in serie]
return functools.reduce(operator.add,serie_separadas)

After the first outcome using the comma-separator bag of words, explained in the results
chapter, separators that presented less frequency were included to maximize the potential
categories that could appear in the resulting bag of words. In the example of the class
alzheimer the last two entities share semicolon as the separator between two potential
subclasses.

The next step is to set the variable as all uppercase or lowercase for the training of
Machine Learning models: the sensitivity of these tools is high enough to present different
results between texts with only one type of font size and texts with different type of font
size.
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Having achieved both, removing unnecessary spaces is the next step as Machine Learning
models are sensitive to the characters in strings, including the empty character.

def bolsa_sin_comas(x):
”””
Argumentos clave:
x -- objeto tipo lista de string
Limpia y separa los elementos, genera una bolsa de palabras
Devuelve: lista de string
”””
serie_separadas = list(x.apply(remove_diacritics))
for separador in [',',' ,',', ','y','+',' e ',' de ','-']:

serie_separadas = separa(serie_separadas,separador)
mapa_espacios = list(map(espacios_lower,serie_separadas))
bolsa = list(filter(lambda a: a != '', mapa_espacios))

return bolsa

It is worth to notice that the split function is sensitive enough to need specific positioning
of the separators in case they may appear as prefixes or suffixes.

def bolsa_sin_comas_puntos(x):
”””
Argumentos clave:
x -- objeto tipo lista de string
Limpia y separa los elementos, genera una bolsa de palabras
Devuelve: lista de string
”””
serie_separadas = list(x.apply(remove_diacritics))
for separador in [',',' ,',', ','.',' .','. ','y','+',' e ',' de ','-']:

serie_separadas = separa(serie_separadas,separador)
mapa_espacios = list(map(espacios_lower,serie_separadas))
bolsa = list(filter(lambda a: a != '', mapa_espacios))

return bolsa

These last functions make calls to the text cleaning functions on the initial series and
creates the bag as a result of separating the words, finally returning a series object.
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[1]: 1 con retinopatia
1/2 l/d,
2 stent,
3,
50 paq/ano,
7,
a,
a intervenido,
a los,
a los 5 d se inicia fluco,
aaa,
abandono segui,
abceso anal,
ablacion por radiofrecuencia,
absce,
abscesos,
acalasia,
accidente cerebrovascular,
acv,
acv cardioembolico
[3773 rows x 1 columns]

Figure 3.4: Sample of the elements in the bag of words.

Once the bag of words has been obtained, in order to identify the possible categories
underlying the bag, all the repeated elements must be eliminated. For this reason, a
filter is applied that maintains only one instance of each chain that appears in the list
or bag of words. Another bag of words results from this operation, 20 examples of the
result are shown in Figure 3.4 where commas and dots were taken as separators.

3.3 Processing the data
During the process of cleaning the data, a filter would normally be used to eliminate words
that have no value in the context of study, either because of typing errors or because they
are articles, determiners, connectors or words that do not represent a class themselves.
These last type words are called ’stop words’. In this case this filter cannot be applied
because by containing diminutives or abbreviations that, as we have explained, make up
the dirty categories, the filter could eliminate entities that either identify or refer to a
class.

Following what was stated about the similarity between character strings, for the prepa-
ration of the data the approach is to achieve, through the use of tools that facilitate the
processing, to identify which strings are similar to each other in order to group them with
different methods.
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3.3.1 String similarity
The tool selected for this task is dirty_cat, a repository that has developed classes and
functions to work with non-curated data.

The similarity or distance between chains is measured based on calculations made on
n-grams. An n-gram is a subsequence of 𝑛 elements of a character set. For example, a
3-gram of absceso is abs. In turn, these strings are identified as tokens, elements that
identify a class. This n-gram similarity is based on splitting the two strings to compare
in their character n-grams and calculating the Jaccard coefficient between these two sets
[11]:

𝑠𝑖𝑚𝑛−𝑔𝑟𝑎𝑚(𝑠𝑖, 𝑠𝑗) = 𝐽(𝐺(𝑠𝑖), 𝐺(𝑠𝑗)) = |𝐺𝑠𝑖 ∩ 𝐺𝑠𝑗|
|𝐺𝑠𝑖 ∩ 𝐺𝑠𝑗|

(3.4)

where 𝐺(𝑠), is the set of consecutive character n-grams for the string 𝑠.
To be able to work with variables in natural language processing, the treatment of tokens
by n-grams is relevant. The tokens can identify a class through dictionaries. The creation
of tokens is made by cleaning the input data. These tokens that refer to the same element
but have a different n-gram structure, require a tool or process that allows obtaining the
similarity between any two tokens. The goal is to compute the similarities between each
of the entities in the bag with all the other entities and get the feature matrix explained
in the section Encoding String Categorical Variables.

This tool creates such matrix. In Figure 3.5, a heat map over the feature matrix of an
example containing jobs shows how similar they are. The matrix ought to be read either
above or below the diagonal as it is symmetric. It is because all entities are compared
against each other, therefore we should ignore the main diagonal, for each entity will
always get a 1.0 similarity value with itself, and only read one of the halves as the other
will be mirrored.

The entities Property Manager I and Property Manager II are the closest as their sim-
ilarity reaches up above 0.7. On the other hand Police Cadet and Police Captain do
not share such a high value, yet it is noticed that they share similarities with no other
entities.
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Figure 3.5: Example of a heat map over dirty categories of different works.

The feature matrix in Figure 3.5 is computed using, at first, the bag of words with
commas as separators. The presence of a large number of categories calls for representing
the relationships between them so the heat map is used to that end.

The results are promising after the evaluation of the first example shown in Figure 3.6,
in which the map shows a high relationship value between all the chains that share
the word adenocarcinoma in a heterogeneous way, such as adnocarcinoma, adenoma or
adenocea. Adenocarcinoma is a term that refers to cancer. Although the different types
of cancer affect the body in different ways, the result sets a clear guideline to establish
adenocarcinoma as a class.
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Figure 3.6: Example 1 of a heat map over 25 random dirty categories from the dataset.

However, after evaluating the second example depicted in figure 3.7, a problem appears
that will accompany much of the rest of the project: the map does not show a similar-
ity value not even close to 0.4 between chains such as acv cardioembolico and acv con
hemiparesia, both being a type of stroke. One relationship that is striking is the low sim-
ilarity value of accidente cerebrovascular and acv. Both chains refer to the exact same
concept, being able to form the same class but according to the matrix they show almost
no similarity.

21



Grado en Ingeniería Informática Facultad de Informática

Figure 3.7: Example 2 of a heat map over 25 random dirty categories from the dataset.

3.3.2 K-NN
The K-NN algorithm is a supervised classification method that allows data subsets to be
grouped by distance between the elements of each subset. This algorithm classifies each
new entry in a class, according to the k neighbors closest to a certain group. To do this,
it calculates the distance of the new entry to each data already existing in the model and
orders those distances from lowest to highest to choose the group to which it belongs.
This means that the algorithm will use the similarity between two strings to measure the
distances. The group chosen will be the one that represents the shortest distance, or that
group with the greatest representation in a greater longitudinal spectrum.

The number of neighbors of a given example allows adjusting the noise of a classification,
including in each class the points of the hyperplane that are alike the most. However,
significantly reducing the number of neighbors causes an effect that may not be desired:
creating classes of elements that are not necessarily different.
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Figure 3.8: Example of the classes grouped relative to the number of neighbors
[12]

K-NN is quite sensitive to:

a). The variable k, so that with different values of k we can also obtain very different
results.

b). The similarity metric used, since this will strongly influence the closeness relation-
ships that will be established in the algorithm construction process. The distance
metric can contain weights that will help us calibrate the classification algorithm,
making it, in effect, a custom metric.

Thus, the algorithm is highly benefited by the nature of the dataset with which it is going
to work. The matrix already provides a weighted metric between each pair of elements
of the same.

Fitting a K-NN model

The next step is to fit the model to the dataset and check if there is an estimate that the
algorithm can make based on the values obtained in the similarity metric. The input for
the value k is chosen to be 4. The objective is to have a glance to whether the algorithm is
able to group strings that the heat map did not match but that actually refer to the same
concept, that is why there is no investment of resources in finding the optimal number of
neighbors.

from sklearn.neighbors import NearestNeighbors

nn_c = NearestNeighbors(n_neighbors=4).fit(transformed_values_c)
_, indices_ = nn_c.kneighbors(transformed_values_c[random_points])
indices = np.unique(indices_.squeeze())

Figure 3.9 shows of 20 selected items in the bag of words grouped. It is observed that
chains such as artrosis de columna, artritis reumatoide or posible arteritis de la tem-
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poral are located nearby. This result is promising since the arthritis class is the most
representative element in both cases and they have been classified as similar.

On the other hand, it is observed in the same graph that elements such as poliartrosis or
polinosis appear as similar elements and, although it is true that they share the prefix
poli, they have widely different meanings: the first class, polyarthrosis is the definition
of inflammation of several joints at the same time while polinois is an allergic disease
that affects the eyes, nose and lungs produced as a reaction of the immune system to
pollen.

Figure 3.9: K-NN over the bag of words using k=4 neighbors

Conclusion of the method

The intuition behind this evaluation is that for strings with a low number of characters,
the string similarity algorithm presents more noise, as the n-grams have greater weight
over the total string.
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Chapter 4

Categories

4.1 Category recognition
Despite the conclusion shown in the previous section, the elements of the bag of words
are evaluated, reaching the conclusion that possibly a large number of examples have
similarity values high enough to be able to work with them and obtain a reasonable
number of categories that include the highest number of comorbidities exposed in the
variable.

In order to face the problem from a Machine Learning point of view, the next step is to
be able to identify all the categories using the matrix of values and to be able to merge all
the similar strings into the one that identifies the class by adapting the dataset obtained
up to now to adjust it to the needs of the study.

This process of adapting the dataset to the problem is manually coded as there is no tool
to performs these tasks so customized as it is needed; therefore a series of functions are
defined and developed that will be shown for each specific step. Each of the functions
went through several tests on the dataset, so the process involved a great investment in
time, this section being the bulk of the project

Based on the data obtained so far, the approach that is carried out is the following:

a). Set a relevance threshold for the similarity value.

b). Get rid of as much noise as possible.

c). Identify for each token all those that share a relevant similarity.

d). Set a class for each set of strings.

e). Replace each element in the original variable with its superclass.

4.1.1 Choosing threshold value
The idea of establishing a threshold value for the similarity of the strings is to be able
to eliminate the largest number of candidates that do not present a relationship close to
the identification as an entity with each of the strings of the bag of words.
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This, to begin with, makes it possible to eliminate noise from the dataset by making the
categories obtained represent as reliable a reflection as possible of how a professional in
the field would interpret and group the dataset.

The value taken by this parameter is significantly relevant for the rest of the process,
with the functions and results obtained being sensitive to the increase or decrease of the
threshold.

Based on the first result obtained from evaluating the feature matrix from figure 3.6, a
threshold value greater than 0.5 suggests that the resulting strings will necessarily be
very similar to each other, ensuring a relatively small number of categories and faithful
to the groups that make up each of the subsets of strings.

On the other hand, looking at the results of the second heat map on figure 3.7, the choice
of such a high threshold value would rule out, in this specific example, all the strings that
refer to different types of acv.

After assessing it with Óscar, the decision that seems the most appropriate is to establish
different values for the threshold and test the execution of the entire process for each
of them. Lastly, the results would be evaluated and the most convenient one would be
chosen.

Set of threshold values:
0.2 0.3 0.4 0.5 0.65 (4.1)

4.1.2 Noise removal
The denoising process begins by using the matrix itself with the similarity values as the
structure to work on.

Since the goal is that all those strings that do not respect the threshold are discarded, the
process carried out is similar to applying a binary encoding to the matrix or, analogously,
applying a one-hot encoding to each similarity vector in which the elements that meet
the condition are kept.

Let 𝑥 be the vector representing the first row of the matrix, with 𝑥𝑖, 𝑖 ∈ [0..𝑚] being 𝑚
the total size of the bag of words. We should remember that in each row of the matrix
the token of the bag of words that represents the index of the row is compared with each
of the other strings. We know that, being the first token, the element 𝑥0 has the value
of 1 because it is compared with itself.

Taking into account that the similarity values oscillate in a range of [0..1] we apply,
having 𝑢 as the threshold value and defining a function 𝐹 on the vector such that
𝐹(𝑥𝑖) = 0, ∀𝑥 < 𝑢.
This is the function shown below. Knowing that it is going to work with the elements
that meet the condition, the function returns a list with the indexes of its row that have
not been at 0.
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def corte_valores(lista_categorias,matriz_similitud,corte):
matrix = np.empty([len(matriz_similitud),len(matriz_similitud)])
”””
Argumentos clave:
lista_categorias -- objeto tipo ndarray, contiene
los valores de la bolsa de palabras
matriz_similitud -- objeto tipo ndarray, contiene para
cada valor su valor de similitud con el resto (0..1)
corte -- valor decimal (0..1) para filtrar las palabras
Pone a cero todos los valores en la matriz por debajo del corte
Devuelve: lista => para cada categoría las posiciones de las categorías
cuya similitud es relevante (según corte)
”””

for i, value in enumerate(matriz_similitud):
matrix[i] = list(map((lambda x: 0 if x < corte else x),matriz_similitud[i]))

matriz_indices = []
for i, value in enumerate(matrix):

matriz_indices.append(list(np.nonzero(matrix[i])[0]))

lista_corte = []
for i, value in enumerate(matriz_indices):

lista_corte.append([i,0,[j for j in matriz_indices[i]]])

return lista_corte

It turns out that, as each element of the array has been compared with the rest of the
elements in the same order, the values of the positions for each of the strings share the
same reference, that is, if the element 𝑦 has in the vector of similar tokens the index 37,
this same index will represent the same string regardless of whether it appears in the
vector 𝑥 or 𝑧, where 𝑥, 𝑦, 𝑧 are entities of the word bag and, thus, have a row assigned in
the matrix. This is an advantage because it avoids having to save an object for each of
the strings in the word bag, saving resources in time and memory.

4.1.3 Identifying variants of strings
The next step is to identify all the strings that share similarity and establish a class to
group them all.

Having applied the function 𝐹 over the entire feature matrix, it remains in a state that
can be interpreted as an adjacency matrix, giving the possibility of seeing the problem
from a graph point of view.

If we establish that a graph is a pair of sets 𝐺 = (𝑉 , 𝐴) where 𝑉 is the set of vertices
and 𝐴 is the set of edges as pairs of the form (𝑢, 𝑣) such that 𝑢, 𝑣 ∈ 𝑉 , we define, then,
∀𝑢, 𝑣 ∈ 𝑉 exists a tuple of the form (𝑢, 𝑣) ∈ 𝐴 if and only if 𝑢[𝑣] > 0 or 𝑣[𝑢] > 0.
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The following illustration allows us to see how the matrix would be interpreted, if we
consider that every element greater than 0 can be shown as 1.

Figure 4.1: Example of graph with adjacency matrix
[13]

Taking the vertices and edges, we know that each edge (𝑢, 𝑣) fulfills the condition that
both 𝑢 and 𝑣 have a similarity value greater than or equal to the threshold and, therefore,
they can be identified under the same category.

The function corte_valores returned a list of indices in which the values were not 0 after
applying the 𝐹 function on a string. Considering this list 𝐴′ as an adjacency list, the
process to follow is to go through 𝑣, ∀𝑣 ∈ 𝐴′ and mark the node as visited and changing
the value of the node to that of the node from which the search starts, that is, updating
the index value that heads the adjacency list by the index value that started from.

In the example below, an example adjacency list is considered:

0 → 0 1 4 6 (4.2)

If we follow the algorithm stated above, then we should visit all the nodes until the next
result is achieved.

0 → 1 7 24 146 89 (4.3)

0 → 4 3 (4.4)

0 → 6 11 43 94 159 271 (4.5)

For each of the nodes in the first adjacency list, they have been visited and changed
the head to 0, which is the head of the starting node. It can still be associated to which
element the adjacency list belonged as the first element for each token is always the token
itself.

Initially, an in depth algorithm was run over each of the nodes of the graph, but string
similarity is not a transitive property and it was discarded.

Therefore, if a node has already been visited, its adjacency list is not traversed since it
would relate elements in a transitive way and would lead to an incorrect grouping by
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classes. The following function shows the process, which returns the updated adjacency
lists with the changed list head values. It is noteworthy to note that this process is only
executed for those nodes that have more than one node in their adjacency list, since all
will have at least one node: themselves.

def aplica_categorias(posiciones_equivalencia):
”””
Devuelve las categorías únicas resultantes de aplicar
a la bolsa de palabras los valores de similitud con umbral
”””
for i, lista_similares in enumerate(posiciones_equivalencia):

posiciones_equivalencia[i][1] = 1
if len(lista_similares[2]) > 1:

for pos in lista_similares[2]:
if (posiciones_equivalencia[pos][1] == 0):

posiciones_equivalencia[pos][0] = posiciones_equivalencia[i][0]
posiciones_equivalencia[pos][1] = 1
#print(valores_cp[pos] + ' ' + str(posiciones_equivalencia[pos][1]))

return np.array(posiciones_equivalencia,dtype='object')

4.1.4 Defining the classes
Once the connections between all the tokens have been established, the categories that
will group the rest of the strings are defined, thus dealing with the problem of dirty
categories.

Following the process established at the beginning of the section, it is necessary to define a
map that allows identifying the category that defines or groups it for each class. With the
data structures formed so far, the simplest option to develop is to establish a dictionary
where the key is the index of the element to be consulted and the value is the category
that groups it. This process is the one that is encoded in the following function, returning
said dictionary.
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def merge_categorias(info_posiciones_corte):
”””
Argumentos clave:
posiciones_equivalencia -- lista de listas, contiene para cada categoría
las posiciones de sus equivalentes según umbral
En orden de aparición va etiquetando las categorías que comparten
similitud como una sola
Devuelve: lista => para cada categoría la categoría que es -superclase-
”””
claves = np.arange(len(info_posiciones_corte))
valores = info_posiciones_corte[:,0]
diccionario = dict(zip(claves,valores))

k = list(zip(claves,valores))
lista_borra = []
for i, tupla in enumerate(k):

count = 0
if (i == tupla[1]):

for tupla2 in (k):
if (i == tupla2[1]):

count = count + 1
if count == 1:

lista_borra.append(i)
#borramos las que solo tienen una equivalencia ya que la mayoria
son cadenas mal filtradas

diccionario = dict(k)

for i in lista_borra:
diccionario[i] = -1

return diccionario

In order to correct the process, we use an additional structure in which, for each unique
element of the dictionary, we introduce the string it refers to, encoded in the follow-
ing function, thus facilitating the evaluation of the results prior to substitution in the
DataFrame.

4.1.5 Evaluating the results
In this subsection we will treat the results from the execution of the functions over the
bag of words for the different threshold values.

The amount of tokens is huge for each of them to be compared, in exchange a token from
the bag of words will be evaluated for all the executions. First, the resulting adjacency
lists for the variable acv de repeticion using commas as separator.

Here are listed all the equivalent tokens for a threshold value equals to 0.2. Several tokens

Jaime del Rey García 30



Automatic analysis of high dimensional categorical variables in medical databases for
the prediction of hospital bacteremia UCM

that do not refer to the same concept are included, even tokens like itu de repecition, which
seem to be similar due to sharing the word repeticion.

'acv de repeticion':
abscesos de repeticion en diversas localizaciones,
acv de repeticion,
acv repeticion,
acva repeticion,
alzheimer. itus de repeticion.,
asma. neumonias de repeticion.,
broncoaspiraciones de repeticion,
celulitis de repeticion.hip,
cistitis de repeticion,
colangitis de repeticion,
coledocolitiasis de repeticion,
colicos renoureterales de repeticion,
cru de repeticion,
cru repeticion,
desnutricion,
fa. colangitis de repeticion.,
infecciones urinarias de repeticion,
itu de repeticion,
itu repetic,
itu repeticion,
itu repeticion (2/ano),
itus de repeticion,
itus de repeticion. dan alta sin tto atb.,
leishmaniasis cutanea. cistitis de repeticion.,
nefrolitiasis de repeticion,
neumonias de repeticion. cardiopatia isquemica.,
neumonias repeticion,
no fc. dm. fa. enf tromboembolica. itus de repeticion.,
pancreatitis aguda de repeticion,
pancreatitis de repeticion,
pna repeticio,
portador de svpermanente con itu repeticion,
rao de repeticion,
sepsis de origen urinario de repeticion.,
tetraparesia x acvrepeticion,
trombopenia cronica idiopatica. itus de repeticion.,
tvp de repeticion,
volvulo intestinal de repet

Next, all the equivalent tokens for a threshold value equals to 0.3. We can find less tokens
that do not share meaning but still the majority of the list does not relate to the concept
of acv.
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'acv de repeticion':
acv de repeticion,
acv repeticion,
acva repeticion,
alzheimer. itus de repeticion.,
asma. neumonias de repeticion.,
broncoaspiraciones de repeticion,
celulitis de repeticion.hip,
cistitis de repeticion,
colangitis de repeticion,
coledocolitiasis de repeticion,
colicos renoureterales de repeticion,
cru de repeticion,
cru repeticion,
fa. colangitis de repeticion.,
infecciones urinarias de repeticion,
itu de repeticion,
itu repeticion,
itu repeticion (2/ano),
itus de repeticion,
nefrolitiasis de repeticion,
neumonias repeticion,
pancreatitis aguda de repeticion,
pancreatitis de repeticion,
pna repeticio,
rao de repeticion,
tetraparesia x acvrepeticion,
tvp de repeticion

The following code snippet lists all the equivalent tokens for a threshold value equals to
0.4, 0.5 and 0.65.

The same problem that arised with the heat map still remains. With this token there
is a clear choice to be made: the threshold value equals to 0.65 gets the cleanest set of
tokens similar to the root token.
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'acv de repeticion':
acv de repeticion,
acv repeticion,
acva repeticion,
cistitis de repeticion,
colangitis de repeticion,
cru de repeticion,
cru repeticion,
itu de repeticion,
itu repeticion,
itus de repeticion,
nefrolitiasis de repeticion,
pancreatitis de repeticion,
rao de repeticion,
tvp de repeticion

'acv de repeticion':
acv de repeticion,
acv repeticion,
acva repeticion,
cistitis de repeticion,
cru de repeticion,
itu de repeticion,
itus de repeticion,
rao de repeticion,
tvp de repeticion

'acv repeticion':
acv de repeticion,
acv repeticion,
acva repeticion

However, and as it was explained in previous sections, this problem remains for those
tokens which root is a small set of characters. If we take, for example, the token adeno-
carcinoma de colon we can see how does the result change. This time, for simplicity, the
difference between 0.3 and 0.5 threshold values will be shown.

'adenocarcinma de colon':
adenoca colon mtt,
adenocarcinma de colon,
adenocarcinoma colon,
adenocarcinoma colorectal,
adenocarcinoma con mtx hepaticas,
adenocarcinoma de colon,
adenocarcinoma de colon estadio iv.,
adenocarcinoma de la union esofago-gastrico,
adenocarcinoma de pancreas en 2012,
adenocarcinoma de prostata,
adenocarcinoma de pulmon,
adenocarcinoma de recto con metastasis en lhd.,
adenocarcinoma de recto operado,
adenocarcinoma de sigma,
adnocarcinoma de prostata,
carcinoma de pulmon,
desnutricion. adenocarcinoma de colon con
metastasis hep,
dm. adenocarcinoma de ovario.,
dm. iam. adenoca. de colon.,
no pcr. dm. adenocarcinoma de recto

'adenocarcinoma de colon':
adenocarcinma de colon,
adenocarcinoma colon,
adenocarcinoma colorectal,
adenocarcinoma de colon,
adenocarcinoma de colon estadio
iv.,
adenocarcinoma de prostata,
adenocarcinoma de pulmon,
adenocarcinoma de sigma

Continuing with the execution of the script, the next results to take into account are
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the bags with the categories filtered and grouped. At this moment, the weight of the
choice of the threshold value can be observed in the face of the number of categories that
appear.

For instance, in the case of the execution with the value of 0.65, the final number of
categories resulted in 1295, while the execution with the values of 0.2 and 0.3 resulted
in a total of 307 and 578 categories respectively. The assessment of this result is that
none of the final category bags are eligible to continue due to the large cardinality of the
dataset. Such a large number of categories would make the Machine Learning model very
difficult to work with.

The solution that was carried out was to iterate the entire previous process on the re-
sulting bags, seeking to get a second bag of categories over the first reduced one. This
process was only feasible thanks to the dictionary of equivalences between the index of
the tokens and the categories that grouped them.

4.2 Iterating the process
The only thing left was to repeat the process, so it was only needed to adjust the data
structure of the newest bag of words in order to fit again in the functions defined in the
previous section.

#Form the new bag of words from the resulting of the first process
nuevos_valores_cp_02 = pd.DataFrame(cats_cp_02)[0].unique()
nuevos_valores_cp_02 = pd.DataFrame([i for i in nuevos_valores_cp_02
if len(i)>2])[0].unique()
nuevos_transformed_values_cp_02 = nuevo_similarity_encoder_cp.fit_transform(
nuevos_valores_cp_02.reshape(-1, 1))
#Apply the threshold
n_pos_corte_cp_02 = corte_valores(nuevos_valores_cp_02,
nuevos_transformed_values_cp_02,0.2)
#Work with the adjacency lists
n_info_categorias_cp_02 = aplica_categorias(n_pos_corte_cp_02)
#Get the dictionary
n_mergeado_cp_02 = merge_categorias(n_info_categorias_cp_02)
#Create the new bag of words
n_cats_cp_02 = obtener_categorias(n_mergeado_cp_02,nuevos_valores_cp_02)

The result was not as expected: the bags of words for 0.2 and 0.3 had a number of
categories below 100 but in the case of the second bag, which was the most promising,
there were several tokens that did not fit properly such as a los or aaa; and some others
that were still dirty categories like accidentet cerebrovascular, acv and acv cardioembol-
ico.

On the other hand, the next bag of words which was holding a value of 0.4 for the
threshold had 641 categories. Again, that was not acceptable.
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4.3 Substituting categories
The resulting list of categories did not allow to address the problem that had been
raised from the beginning without worsening the conditions, since these categories do
not suppose reliable information from the point of view of someone who is trying to
understand which comorbidities may be more significant while diagnosing bacteremia.
Óscar then proposed creating a substitution list of all the categories that we knew were
abbreviated from larger strings.

Being aware that the blind spot of the string similarity method was the calculation
between strings of short length, the substitution of elements such as acv with accidente
cerebrovascular or hta with hiper tension arterial was considered as the step to reach a
solution.

After providing Óscar the list of substitutions by regular expressions, it was applied to
the first bag of words prior to the execution of the data processing functions. Once there,
the category recognition process was repeated and the functions were run on the dataset.
The result was a bag of words of 175 categories applying all the separators and with a
threshold value of 0.3 that, although they were numerous, seemed promising as they did
not contain repetitions or a high level of noise.

Once the bag of words was obtained, it was left to perform the substitution of each
token in the original variable by the category that corresponded to it. To do this, it
was necessary to return to the original variable, apply the same separation filters used to
obtain the bag of words and perform the substitution using the dictionary.

4.3.1 Dataset insertion
Machine Learning models work much better with nominal variables. By having replaced
the categories, it was possible to break down each of the comorbidities suffered by each
patient, but the set cannot be used as input to a model and expect reliable results. To
do this, you just have to code the categories under the same criteria and apply it to the
DataFrame.

Taking into account that each patient may have more than one comorbidity, the options
are:

• Categorize the comorbidities and include for each patient those that suffered during
admission.

• Apply one-hot encoding per patient.

• Apply binary coding for comorbidity.

Both the first type and the second are encoding methods that could possibly generate
confusion during the learning process of the model. The use of the first would imply that
for the variable there would be a list of numbers per patient, each number representing a
comorbidity. This list may not be interpreted correctly since learning can be done on the
order of the elements instead of the elements themselves. In the same way, the second
encoding method, although it is more comprehensible for the model than a list of strings,
would generate a vector of 0 and 1 for each category in a patient.
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The third option, on the other hand, significantly increases the number of columns in the
DataFrame but is much easier to understand for both models and people. Each category
will form a new column in which each patient suffering from this comorbidity will have
the row at 1.

def aniade_categorias_por_columnas(columna_categorias,
bolsa_categorias,datFrame):
for i, bar1 in enumerate(bolsa_categorias):

col = [0 for x in range(len(datFrame))]
for j, foo1 in enumerate(columna_categorias):

for foo2 in foo1:
if (bar1 == foo2):

col[j] = 1
datFrame[bolsa_categorias[i]] = col

return datFrame

4.4 Dataset preparation
Finally, before carrying out the tests with the model, the choice of variables remains. In
the study carried out last year, they established which variables were the most relevant
for optimizing the results obtained with the models. This includes the elimination of
unusable variables, as well as those that can serve as predictors for the model and, as
such, must be eliminated.

Table 4.1: Remaining features

Features selected by the algorithm
Clasifica edad sexo Polimicr anhonpol
Anaerobio Hongos periodo mes dia
medio microbpoli frasae frasanae frasextr
COMORBIL so antibiot diashosp Especialid
hgb Inghosp1m plaqut stlocal pmfn
leuc Inghosp12m Neoplasia Hepatopatia Enfresp
Diabetes Cardiopatia Insrenal Udvp Alcoholismo
creatin sedorina enfbasWeinst drogadic inmunosu
esteroid cirugia neutrope glucosa sintomas
m_digest m_respir leucocit trombope m_genitu
m_vascul

Nonetheless there is a modification to be carried out. The feature COMORBIL is a
variable that indicates whether the patient had any comorbidity at the time of hospital-
ization. This feature has already no use, each comorbidity will be checked for each of
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the patients as a binary variable, therefore COMORBIL ⊂ Otrascomor. The feature is
not needed, the information that it brings to the dataset is spread and specified over the
different columns for each of the comorbidities. Leaving the variable COMORBIL in the
dataset would only add redundant data and one more dimension to the dataset features,
so it is removed.
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Chapter 5

Bias and variance

Supervised Machine Learning algorithms require a large volume of data that will be
used during the training and testing or validation phases. The training phase in Machine
Learning algorithms is where the algorithms find relationships or correlations in the data,
depending on the problem and model, among the data or between the data introduced
and the output expected. The testing phase consists on supplying a smaller set of data
to check whether the predictions are accurate for each of the cases. It is used to measure
the accuracy of the model.

The procedure described above is called inductive learning. The induction capacity of
a model determines the level of precision that an algorithm has when trying to solve a
problem similar to those provided as an example. The goal of any Machine Learning
algorithm is to deduct the training data well to any domain of the problem. The purpose
of the technique is to predict future actions on never-before-seen data.

The main causes of a model with unreliable accuracy are called overfitting or high variance
and underfitting or high bias. As the name says, overfitting is produced when, during the
learning phase, the model adjusts the weighs too tight for the training set introduced.
The easiest way to recognize this situation is when a model has very good accuracy levels
with the training data but surprisingly poor accuracy rates with the test data. This is
usually due to the use of small datasets.

On the contrary, underfitting does not achieve high accuracy rates neither with the
training nor the test datasets. This can be produced due to large sets of data during
the training phase and short periods of training. The algorithms then lack of time for
adjusting properly the weighs and results in a generic model where no result is ”too good”
nor ”too bad”.
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Figure 5.1: Bias and Variance
[14]

5.1 Avoiding Bias and Variance
Overfitting and underfitting directly affect the accuracy and reliability of the models we
are working with. It is important to avoid this situations by testing the data we are going
to work with [15].

• Ensure that we have a sufficient number of samples to both train the model and
validate it.

• Subdivide our data set and keep a portion of it to test the model. This will allow us
to evaluate the performance of the algorithm and will also allow us to easily detect
the effects of overfitting or underfitting.

• Make sure that the test set is large enough to yield statistically meaningful results
and is representative of the data set as a whole. In other words, do not pick a test
set with different characteristics than the training set.

• The excessive number of attributes should be avoided, since it would generate a
large number of dimensions in our model. This is because each attribute makes
up one dimension of the model’s sample space. The number of dimensions of the
sample space must be proportional to the number of cases available to carry out
the study, that is, the greater the number of attributes, the greater the number
of case studies, or vice versa, in the case of having few case studies few attributes
should be used.

In this project, we are using the dataset left from the study carried the previous year,
which has the advantages of normalized data, missing data treatment and attribute fil-
tering.

Figure 5.2 illustrates how each of the situations described above influence the decisions
over a set of data and how should a model behave.
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Figure 5.2: Examples of overfitting and underfitting
[16]

5.2 K-Fold Cross Validation
Cross-validation is a resampling procedure used to evaluate Machine Learning models on
a limited data sample. It allows generating different models from the same dataset. The
technique divides into different subsets from the original set and generates a model so
that each subset of data is used for both the training part and the validation part. More
specifically, it randomly mixes the dataframe and subdivides it into equal groups.

Cross-validation is primarily used in applied Machine Learning to estimate the skill of a
Machine Learning model on unseen data. That is, to use a limited sample in order to
estimate how the model is expected to perform in general when used to make predictions
on data not used during the training of the model.

It is a popular method because it is simple to understand and because it generally results
in a less biased or less optimistic estimate of the model skill than other methods, such as
a simple train/test split.

The general procedure is as follows:

• Shuffle the dataset randomly.

• Split the dataset into 𝑘 groups.

• For each unique group:

– Take the group as a hold out or test dataset.

– Take the remaining groups as a training dataset.

– Fit a model on the training set and evaluate it on the test set

– Retain the evaluation score and discard the model

• Summarize the skill of the model using the sample of model evaluation scores
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Importantly, each observation in the data sample is assigned to an individual group and
stays in that group for the duration of the procedure. This means that each sample is
given the opportunity to be used in the hold out set 1 time and used to train the model
k-1 times.

K-Fold Cross validation is one of many processes used to that end, but is what will be
used in this study. Figure 5.3 illustrates the process.

Figure 5.3: Examples of overfitting and underfitting
[17]
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Chapter 6

Random Forest

The Random Forest algorithm is a supervised learning technique that includes different
methods in the training phase.

It is a model frequently used to deal with overfitting and underfitting problems. This
algorithm is used for solving regression and classification problems. It has a correct
operation even without adjusting its own parameters and remains stable when new data
is entered. On the other hand, it requires high processing times, it is difficult to interpret
and small data frames are not processed optimally.

A Random Forest is an ensemble of decision trees combined with bagging. When using
bagging [18], what is actually happening is that different trees see different portions of
the data. The low correlation between models (trees) is the key. The reason for this
effect is that the trees protect each other from their individual errors (as long as they
don’t constantly all err in the same direction). No tree sees all the training data. This
causes each tree to be trained with different data samples for the same problem. In this
way, when combining their results, some errors are compensated for others and we have
a prediction that generalizes better.

When we using bagging, we also combine various Machine Learning models. Unlike other
methods, the way to get errors to compensate for each other is that each model is trained
with subsets of the training set. These subsets are formed by randomly choosing samples
(with repetition) from the training set.

6.1 Fitting a Random Forest
To adjust the model based on this classifier, it is necessary to adjust the n_estimators
parameter. This parameter represents the number of trees that will make up the model
and on which each case study will be evaluated. In addition, the random_state parameter
is set to be able to replicate the accuracy values of the model with the same input
parameters.

This parameter helps to control the randomness of the algorithm when generating the
decision trees. It is important while changing between datasets, parameters on the same
dataset or reevaluating models.
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First, to avoid overfitting and underfitting, we will split the data using 80% of the data
for the training process and the remaining 20% for the model validation. Taking into
account the amount of samples in the dataset and the amount of attributes for each
sample, the 80-20 folding distribution leaves room for a correct fitting process.

from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size=0.2)

Once we have applied K-Fold Cross Validation, we can execute the code that will adjust
the number of estimators to minimize the error. A range between 20 and 90 estimators
is fixed. Now the model has to train using the training data from the Cross Validation
method and then calculate the accuracy with the sets of data used for the test phase.

arrayPred = []
for ind in range(20,90):

print(ind, end = ' ')
RF = RandomForestClassifier(ind, random_state=0)
RF.fit(X_Train, Y_Train)
predicciones = RF.predict(X_Test)
accuracy = accuracy_score(Y_Test, predicciones)
arrayPred.append(accuracy)

if accuracy > maxi_accuracy:
maxi = ind
maxi_accuracy = accuracy
rf_max= RF

In Figure 6.1 we can see that overall there are very decent accuracy values, but the peak
is reached for 54 estimators (the highest value in the record is placed in position 34, as
the sample goes from 20 to 90 the total number of estimators is 34+20), a random_state
value of 0 with an accuracy of over 0.940. For this execution, K-Fold partition with
80% for training and 20% for testing was used. The results are shown for the training
phase.
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Figure 6.1: Study over the number of estimators

Once the returned values are known, we validate the model and the returned accuracy
value in order to detect overfitting or underfitting problems. To do this, the predictions
for a new dataset not used during the training phase and the accuracy of the model on
this dataset are calculated. We use now the validation set.

#run model with optimal parameters
RF = RandomForestClassifier(54, random_state=0)
RF = rf_max
RF.fit(X_Train, Y_Train)

#test
predicciones = RF.predict(X_Test)
report = pd.DataFrame()
reporte_actual = classification_report(Y_Test, predicciones, output_dict=True)
report['1'] = reporte_actual['1'].values()

Model accuracy is: 0.935

In this case, slightly lower accuracy values are obtained than those previously collected,
which indicates that the model does not present overfitting or underfitting problems.

6.2 Evaluation metrics
In order to fully understand the degree of precision of the model in question, there are
various interpretability techniques for Machine Learning models in classification problems
as there can be produced different outcomes. In this example, the predicted value can
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either be true or false, meaning that a patient is diagnosed bacteremia or not. However
that prediction might not be true for all the cases. This falls for hypothesis testing, where
a property is to be evaluated whether is compatible with what is observed in a sample of
that population.

In binary classification a false positive is an error in which a test result incorrectly
indicates the presence of a condition such as a disease when the disease is not present,
while a false negative is the opposite error where the test result incorrectly fails to
indicate the absence of a condition when it is present. Also, the predictor can accurately
label the income data, in this case the labels are true positive if the prediction indicates
the presence of a condition when it is present, or true negative when the predicted value
correctly indicates the absence of the condition. This concept is illustrated in Figure
6.2.

Figure 6.2: Hypothesis testing
[19]

Over the hypothesis testing attributes, we can measure the accuracy of the model by
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some simple calculations. The following four metrics stand out:

• PPV (also called Positive Predictive Value or Precision) is the fraction of relevant
instances among the retrieved instances.

Precision = True Positives
True Positives + False Positives (6.1)

• Recall (also known as Sensitivity) is the fraction of relevant instances that were
retrieved. Both precision and recall are therefore based on relevance.

Recall = True Positives
True Positives + False Negatives (6.2)

• NPV (also known as Negative Predictive Value) is the probability that, in this
example, subjects with a negative predictive result truly do not have the disease.

NPV = True Negative
False Positives + True Negatives (6.3)

• F-score or F-measure is a measure of a test’s accuracy. The F1-score is the har-
monic mean of the precision and recall.

F1 − score = 2 ∗ Recall + Precision
Recall + Precision (6.4)

• Support is the number of entries of each class within the data group intended to
validate the model.

The model provides the next information for each of the predicted classes:

'1': {'precision': 0.9222462203023758, 'recall': 0.963882618510158,
'f1-score': 0.9426048565121412, 'support': 443}

'3': {'precision': 0.960880195599022, 'recall': 0.916083916083916,
'f1-score': 0.9379474940334128, 'support': 429}

6.2.1 Confusion matrix
The confusion matrix is a performance measurement graph for Machine Learning classifi-
cation problem where output can be two or more classes [20]. It is a table with 4 different
combinations of predicted and actual values. Those combinations refer to the hypothe-
sis testing labels explained in Section 6.2. Figure 6.3 illustrates how the the number of
patients detected with bacteremia correctly (upper left quadrant) is much higher than
those detected with bacteremia incorrectly. Patients in whom bacteremia has not been
detected correctly (lower right quadrant) are also superior to those who have not been
detected incorrectly (lower left quadrant), but with a lower success rate.
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Figure 6.3: Confusion matrix

6.2.2 ROC Graph
When we need to check or visualize the performance of the multi-class classification prob-
lem, we use the AUC (Area Under The Curve) ROC (Receiver Operating Characteristics)
curve. It is one of the most important evaluation metrics for checking any classification
model’s performance. It is also written as AUROC (Area Under the Receiver Operating
Characteristics).

AUC - ROC curve is a performance measurement for the classification problems at various
threshold settings. ROC is a probability curve and AUC represents the degree or measure
of separability. It tells how much the model is capable of distinguishing between classes.
Higher the AUC, the better the model is at predicting 0 classes as 0 and 1 classes as
1. By analogy, the Higher the AUC, the better the model is at distinguishing between
patients with the disease and no disease [21].

The performance of a model can, therfore, be speculated based on what the ROC curve
shows. An excellent model has AUC near to the 1 which means it has a good measure
of separability. A poor model has an AUC value close to 0.5, it means the model has no
class separation capacity whatsoever. Let us evaluate some examples.
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Figure 6.4: Ideal AUC scenario
[22]

Figure 6.4 shows a case scenario where the two distributions do not overlap at all.
This means the model will simply be able to distinguish between each of the possible
classes.

Figure 6.5: Worst ROC scenario
[23]

Figure 6.6: Ideal ROC scenario
[24]

Figure 6.5 shows the scenarios for the ROC curve where the AUC value is close to 0.5.
This situation is far from ideal since it would be as if you toss a coin each time you want
to classify a certain sample. On the other hand, Figure 6.6 depicts an scenario where the
model is almost perfectly able to correctly classify all the incoming data. It is the case
where the AUC value approaches 1.

Now if we look at the ROC curve of our model in Figure 6.7, we can speculate that the
model do really identify and classify correctly most of the samples. The AUC value is
0.97 which allows us to know that the two distributions do barely overlap.
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Figure 6.7: ROC curve from Random Forest

6.3 Weighing the features
Finally, it remains to evaluate which variables have the greatest relevance when making
the decision to predict whether a patient suffers from bacteremia or not. In this section
a couple of measurements will be shown to illustrate the most weighed attributes.

Figure 6.8: Estimated weigh per
feature

Figure 6.9: Most weighed features

Figures 6.8 and 6.9 show the features with the most relevance when making the predic-
tions. If we evaluate them we can find adquisic which is the adquisition of the infection,
origensos as the suspected origin of the bacteremia at the time of the blood culture drawn,
medio growth medium of true positive, but also Diabetes or plaqut which measures the
platelets in the bloodstream.

Neither in the top 20 features by relevance, which are shown in Figure 6.9, nor in the
top 50 features are there any of the categories resulting from the process of category
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recognition in Section Category recognition. Stands out that all most relevant features
were also part of the previous study, yet the results have improved notably. This result
does not go unnoticed and we will investigate it in the next section.

Another graph to understand how the features affect in the decission making processs
is the SHAP graph. This value measures the positive and negative relationships of the
predictors with the target variable. In Figure 6.10 the contribution of each of the variables
on the decision making while labeling the variables is painted in red and blue color.

Figure 6.10: SHAP value (impact on model output)

To understand this graph we should know that each of the colors represent one class, as
well as the value for that observation. Let us take, for example, the feature Diabetes,
which is a binary variable. The graph shows that for the records where the patients have
diabetes diagnosed, the majority of them were diagnosed bacteremia too. As it can be
seen, this graph helps understand which features are relevant and how do they interfere
in the classification for each of the classes.

6.4 Feature filtering
After noticing that no class from Otrascomor was part of the most relevant features, we
found out in an article [7] that some features acted as predictors due to their nature.
Those features are origensos that is the suspected origin of the bacteremia and adquisic,
as the acquisition of the bacteremia, therefore a predictor.

We decided to remove those features from the dataset and, before running again the
script and fitting the Random Forest we found out that there were another two features
that belonged to the part of the process of bacteremia diagnosis where the blood cultures
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had already been drawn. The features were frasae and frasanae and were also removed
from the dataset.

In Figure 6.11 we can see the results of the training process of the Random Forest. The
model accuracy value was 0.871 after testing the model with the validation set.

Figure 6.11: Study over the number of estimators with filtered features

This result is far more coherent taking into account the results from the previous study
that scored an accuracy of 0.86 and the list of most relevant variables, now updated in
Figure 6.12, where none of the new features represent a significant decision value and
therefore our model should behave almost the same.
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Figure 6.12: Most relevant features in the second execution
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Chapter 7

Conclusions

Working with such a heterogeneous dataset has been a real challenge for the entire dataset
preparation process. The first conclusion is that the whole study and, in general, any
process that is repeated similar to this, would greatly benefit from a more specific descrip-
tion of the text strings. Although it is a work that remains for the writing of doctors, we
have seen how the substitution of, for example, stroke for cerebrovascular accident, allows
the grouping and identification of categories in a much more reliable and exact way. As
explained in the section on string similarity, misspellings were relevant when comparing
short-length tokens, so another advantage of this situation would be the decrease in the
relevance of misspellings in obtaining of the similarity between two strings.

Using the file provided by Óscar has allowed the convergence of all the cleaning and data
preparation work into a useful result. This file, even so, does not collect all the variants
of abbreviations or spelling mistakes that the set of variables contains. This leads to
the conclusion that the tool alone did not provide sufficient support to carry out the
study.

In short, is noticeable that natural language processing is a task that still has room for
improvement, however the use of this tool has made it possible to reduce a set of more
than 1000 categories to approximately one tenth.

Looking at the final dataset, the amount of attributes initially added by using a binary
encoding to include the categories in the dataset seemed excessive, increasing the total
number of attributes to 247, since it is a perfect example for a case that may suffer high
bias and generalize the weights associated with the parameters in the learning process.
However, since there were more than 4,300 examples, not only has it not produced this
effect, but it has also contributed to an improvement in the success rate compared to the
study carried out last year.

Regarding the model used, the conclusion drawn from the previous study showed a better
success rate with the application of Random Forest on the dataset. The advantage of
using this model over other Machine Learning models is that it is one of the models with
more explanatory power, as it is directly formed by decision trees. The model resulting
from this algorithm trained on the previously mentioned dataset has an accuracy of
approximately 94%.

One of the reasons that the fitness of the first model can be considered successful is the
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result of displaying the ROC curve (6.7) and the confusion matrix (6.3). The conclusion
of the correct classification by the model is supported by the metrics that allow us to
appreciate the clear differentiation between both distributions.

We can not ignore that, after all, the process of cleaning the data, computing the similarity
between all the tokens and finally obtaining the different categories from the feature
Otrascomor, none of them were in the top 50 of the most weighed categories. The
conclusion is that, regarding the result of the second model, with the data provided and
the Machine Learning type of model used, it is rather difficult to make a correct early
diagnosis of bacteremia.

Jaime del Rey García 56



Chapter 8

Future improvements

This project began with the idea of working on all the nominal variables of the dataset
provided by Hospital Universitario de Fuenlabrada. However, the organization and work
that has led to the treatment of a single variable has taken up most of this study.

For this reason, one of the possible branches in which this study can lead is the one in
which the rest of the variables are treated and Machine Learning methods are applied to
the complemented set. Taking into account the dataset resulting from this study, it is
possible that the inclusion of the other variables may overload the number of attributes
for the set provided when coding them for correct treatment by Machine Learning models,
yet it seems the most urgent step to take regarding the results of the last model.

Other possible variants are the application of other Machine Learning models such as
Neural Networks or Support Vector Machines (SVM). These models have the great dis-
advantage of lacking explicability. Therefore, it would require an in-depth study of the
variables and the weights associated with them. However, they are models that can detect
complex relationships between attributes that help improve prediction efficiency. This is
specially relevant in the context of this project, where it would also be interesting to find
possible relationships between the categories obtained and the original variables from the
dataset.

In addition, the study carried out last year and this one that complements it, provide
conclusions and help to recognize bacteremia as a binary class, but in reality there are a
diversity of types of bacteremia and not all share symptoms or treatment. Therefore, the
conclusions drawn during these two years could be applied to the study of the detection of
bacteremia as a multiclass classification problem. This particular study may be the most
laborious, since it may require different datasets for each type of bacteraemia, however,
if the results were successful, it would be a great boost in the prediction of bacteremia
diagnoses.
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