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Departamento de Ingenieŕıa del Software e Inteligencia Artificial

Facultad de Informática
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of the Universidad Complutense de Madrid in Partial Fulfillment of the Requirements
for the Degree of Doctor por la Universidad Complutense de Madrid en el Programa de
Doctorado en Ingenieŕıa Informática.
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Tı́tulo:
Adquisición de Conocimiento para la Gestión Autónoma de
Redes en Arquitecturas Auto-Organizadas Emergentes

Doctorando:
Marco Antonio Sotelo Monge (masotelo@ucm.es)
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Quiero agradecer a mi asesor Luis Javier Garćıa Villalba por su apoyo durante estos años.

Gracias a mi familia, de quienes siempre he obtenido lo mejor.

Un agradecimiento especial a mi amigo Jorge Maestre Vidal. Su gúıa y dedicación

a esta tesis tienen un valor incalculable.

Gracias también al Programa Nacional de Becas y Crédito Educativo (PRONABEC) del

Ministerio de Educación del Perú.
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UCM) como parte de las actividades del proyecto de investigación SELFNET (Framework

for Self-Organized Network Management in Virtualized and Software Defined Networks)

financiado por la Comisión Europea dentro del Programa Marco de Investigación e

Innovación Horizonte 2020 (H2020-ICT-2014-2/671672-SELFNET).

xvii





Contents

List of Figures xxv

List of Tables xxvii

List of Acronyms xxix

Abstract xxxiii

Resumen xxxv

1 Introduction 1

1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 5G: Fifth Generation Mobile Network 11

2.1 Overview to 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 5G Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Key Performance Indicators (KPI) . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 5G Supportive Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Software Defined Networking (SDN) . . . . . . . . . . . . . . . . . . 15

2.4.1.1 SDN base architecture . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.2 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.3 Data Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1.4 OpenFlow Protocol . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1.5 Centralized vs Distributed approach . . . . . . . . . . . . . 17

2.4.2 Self-Organizing Networks (SON) . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Network Function Virtualization (NFV) . . . . . . . . . . . . . . . . 19

2.4.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Research in 5G and Related Open Challenges 25

3.1 5G research projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xix



xx CONTENTS

3.2 The SELFNET project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 SELFNET Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1.1 Infrastructure Layer . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1.2 Virtualized Network Layer . . . . . . . . . . . . . . . . . . 27

3.2.1.3 SON Control Layer . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1.4 SON Autonomic Layer . . . . . . . . . . . . . . . . . . . . 28

3.2.1.5 NFV Orchestration and Management Layer . . . . . . . . . 28

3.2.1.6 Access Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Situational Awareness in SELFNET . . . . . . . . . . . . . . . . . . 29

3.3 Network Incident Management in 5G . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Distributed Denial of Service Attacks . . . . . . . . . . . . . . . . . 31

3.3.2 Economic Denial of Sustainability Attacks . . . . . . . . . . . . . . . 33

3.3.2.1 Characteristics and impact . . . . . . . . . . . . . . . . . . 33

3.3.2.2 Defense against EDoS . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Towards Crypto-ransomware Mitigation in 5G: A Self-organizing

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Prediction Algorithms and Adaptive Thresholding 39

4.1 Network prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Prediction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Cumulative Moving Average . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Simple Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Double Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.4 Weighted Moving Average . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 Simple Exponential Moving Average . . . . . . . . . . . . . . . . . . 43

4.2.6 Double Exponential Moving Average . . . . . . . . . . . . . . . . . . 43

4.2.7 Triple Exponential Moving Average . . . . . . . . . . . . . . . . . . 44

4.2.8 Simple Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . 45

4.2.9 Double Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . 46

4.2.10 Triple Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . 48

4.2.11 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.11.1 Classical Autoregressive Model (AR) . . . . . . . . . . . . 49

4.2.11.2 Moving Averages Model (MA) . . . . . . . . . . . . . . . . 49

4.2.11.3 Autoregressive Integrated Moving Average (ARIMA) Model 50

4.3 Adaptive Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Pattern Recognition 53

5.1 Pattern Recognition in Networking . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Decision Stump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Reducing Error Pruning Tree . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



CONTENTS xxi

5.2.4 Bootstrap Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.5 Adaptive Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.6 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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Abstract

Emerging network scenarios are characterized by intensive access to a wide range of services

and applications that have increased the demands of communication networks. The

traditional network management models have been characterized by a high dependence on

the human factor to carry out network configuration and maintenance tasks. This situation

has become less sustainable in mobile networks not only due to the associated operational

(COPEX) and capital investment costs (CAPEX), but also due to the complexity they

have acquired when facing the exponential immersion of mobile devices. These aspects

have led to the emergence of the fifth generation of mobile networks, characterized by

ambitious performance indicators that must be fulfilled to meet the agreed service levels.

5G networks are grounded on the integration of technological advances promoted by

Software Defined Networks (SDN), Network Functions Virtualization (NFV), artificial

intelligence, among others, that have shifted the traditional network management

paradigms towards a self-organized and software-driven approach. It is therefore essential

to develop analytical methods based on artificial intelligence techniques to obtain

knowledge about the state of the network in order to infer possible situations that might

put the operativity of the network at risk. To this end, this research focuses on the study

of knowledge acquisition methods aimed to introduce self-organization capabilities in 5G

networks. It should be also noted that this thesis has been framed in the SELFNET

project (Framework for Self-organized Network Management in Virtualized and Software

Defined Networks) funded by the Horizon 2020 program of the European Commission,

whose purpose is the design and implementation of an autonomic management framework

for 5G networks. As a result, SELFNET has provided a reference architecture for the

development of the proposals conducted as part of this research.

This thesis also provides a review of the state of the art in 5G networks and their

supportive technologies. Likewise, diverse prediction and pattern recognition methods

have been studied in detail in order to conduct analytical processes focused on the

acquisition of knowledge about the monitored networks.

The performed research proposed also an analytical framework oriented to the

acquisition of knowledge in emerging network scenarios based on the architectural

principles described above. The evaluation of such proposal has shown its effectiveness

in view of the results obtained in the experimentation stage. This evaluation has been

conducted both at individual component level and at use case level.

On the other hand, detection methods for two major threats have been studied from

the perspective of emerging communication scenarios. The first of them focuses on
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the detection of Economic Denial of Sustainability (EDoS) attacks in cloud computing

environments. This approach has been based on the study of anomalous behaviors of the

entropy degree measured on application-level metrics. The effectiveness of the proposal has

led to its study in self-organized network scenarios, where it has been also demonstrated

acceptable levels of precision in the light of the results. The second detection method

has focused on inferring the participation of a network device in a Distributed Denial of

Service (DDoS) attack. The proposed model has been based on the knowledge acquisition

principles established as part of this research, demonstrating also acceptable levels of

accuracy in the evaluated experimental scenarios.

Finally, the conducted research has opened interesting lines of future work described

at the end of this thesis.

Keywords: 5G, cloud computing, DDoS, EDoS, prediction, pattern recognition,

reasoning, Self-Organizing Networks, Software Defined Networking.



Resumen

Los escenarios de red emergentes están caracterizados por el acceso intensivo a una amplia

gama de servicios y aplicaciones que han incrementado las exigencias de las redes de

comunicación. Los modelos de gestión de red tradicionales se han caracterizado a su vez

por una alta dependencia del factor humano para llevar a cabo tareas de configuración y

mantenimiento de la red. Esta situación se ha hecho menos sostenible en las redes móviles

no sólo por los costes operacionales y de inversión de capital asociados, sino también

por la complejidad que estas han adquirido ante la inmersión exponencial de dispositivos

móviles. Tales aspectos han motivado el surgimiento de la quinta generación de redes

móviles, caracterizadas por indicadores de desempeño ambiciosos que deben cumplirse

para satisfacer los niveles de servicio acordados.

Las redes 5G se sustentan en la integración de los avances tecnológicos promovidos

por las redes definidas por software (SDN), la virtualización de funciones de red (NFV),

la inteligencia artificial, entre otras, que han supuesto un cambio en los paradigmas

tradicionales de gestión hacia un enfoque autoorganizado y dirigido por software. Es

imprescindible por lo tanto el desarrollo de métodos de análisis basados en inteligencia

artificial para la obtención de conocimiento acerca del estado de la red con el fin de

inferir posibles situaciones que puedan poner en riesgo la operatividad de la red. Con

este propósito, la presente investigación se enfoca en el estudio de métodos de adquisición

de conocimiento orientados a introducir capacidades de auto organización en redes 5G.

Debe tenerse en cuenta también que esta tesis se ha enmarcado en el proyecto SELFNET

(Framework for Self-organized Network Management in Virtualized and Software Defined

Networks) perteneciente al programa Horizonte 2020 de la Comisión Europea, cuyo

propósito es el diseño e implementación de un marco de gestión autónoma para redes

5G. Como resultado, SELFNET ha proporcionado una arquitectura de referencia para el

desarrollo de las propuestas que conforman esta investigación.

Esta tesis ofrece además una revisión del estado del arte en redes 5G y las tecnoloǵıas en

las que se apoya. Asimismo, diversos métodos de predicción y reconocimiento de patrones

han sido estudiados en detalle con el fin de conducir procesos anaĺıticos enfocados en la

adquisición de conocimiento sobre las redes monitorizadas.

La investigación realizada propone también un marco de análisis orientado a la

adquisición de conocimiento en escenarios de red emergentes sustentado en los principios

arquitectónicos descritos anteriormente. La evaluación de esta propuesta ha demostrado

su efectividad a la vista de los resultados obtenidos en la etapa de experimentación. Esta

evaluación se ha realizado tanto a nivel de componentes individuales como a nivel de casos
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de uso.

Por otra parte, métodos de detección para dos tipos principales de amenazas han sido

estudiados desde la perspectiva de los escenarios de comunicación emergentes. El primero

de ellos se enfoca en la detección de ataques de denegación de la sostenibilidad económica

(EDoS) en entornos de computación en la nube. Dicha aproximación se ha sustentado

en el estudio de comportamientos anómalos del grado de entroṕıa observado en métricas

a nivel de aplicación. La efectividad de esta propuesta ha dado lugar a su estudio en

escenarios de red auto organizados, demostrando también un alto nivel de precisión sobre

la base de los resultados obtenidos. El segundo método de detección, se ha enfocado en

inferir la participación de un dispositivo de red en un ataque de denegación de servicio

distribuido (DDoS). El modelo propuesto se ha sustentado en los principios de adquisición

de conocimiento establecidos como parte de esta investigación, y ha demostrado niveles

aceptables de precisión en los escenarios evaluados.

Finalmente, la investigación realizada ha abierto interesantes ĺıneas de trabajo futuro

descritas al final de esta tesis.

Palabras clave: 5G, computación en la nube, DDoS, EDoS, predicción, razonamiento,

reconocimiento de patrones, redes autoorganizadas, redes definidas por software.



Chapter 1

Introduction

Information technology has brought an unlimited number of opportunities to overcome

a broad range of societal challenges with innovative solutions characterized by higher

productivity and lower response times. This fact was clearly evidenced throughout the last

decades by the emergence of communication networks, which have involved significative

changes motivated by a steady immersion of the Internet in almost every aspect of our lives.

With the rapid proliferation of mobile devices, this immersion has been strengthened since

the higher demand of ubiquitous network services opened new challenges for all technology

providers, but particularly for telecommunication operators.

Network architectures have strained to evolve as the operational context has gained

complexity. Traditional networks have been limited by the rigidity of both physical devices

and telecommunication infrastructures on which standardization processes (e.g. signaling

or protocols) were slow, hence the agile delivery of network solutions has been constrained.

This situation has been worsened by the tight integration of control and data planes in the

network devices, where the limitation of computing and networking resources has raised

restrictiveness when dealing with agility. For instance, throughput or memory capacity

have been critical in the manufacturing of a network device in order to be compliant

with a specific protocol family. Likewise, configuration tasks have also been manually

performed, so that tehy have caused higher network downtimes with less operational

costs efficiency. However, and despite the intrinsic network limitations, significative

technology enhancements have been achieved as network generations have evolved. For

instance, in the overall perceived Quality of Experience (QoE) in 2G mobile networks

compared with 4G. Such enhancements have been fostered by novel trends such as Software

Defined Networking (SDN), Network Function Virtualization (NFV), and other technology

enablers; thus laying the foundations for the fifth generation of mobile networks.

5G networks should provide a sustainable and scalable network infrastructure to

meet the exponentially-increasing demands on mobile broadband access [5G-18], while

leveraging competitiveness, standardization and faster innovation. 5G networks were

designed to meet prominent requirements [NGM15] in system performance, enhanced

services provision, deployment times, as well as operational, energy and management

efficiency. 5G networks should guarantee several outstanding attributes such as faster

recovery times, higher traffic demands, higher Quality of Service (QoS) and Quality of

1



2 Chapter 1. Introduction

Experience (QoE), lower operational (OPEX) and capital (CAPEX) expenditures, among

others. This generational change is driven by economic, societal and operational trends

to conform the global network of the 21st century [Eur09].

Network management poses in turn new challenges for 5G networks to be faced not

only with automation efficiency but also with the development of smart self-organizing

schemas. The inclusion of artificial intelligence is thereby mandatory to shift from

a policy-based configuration and incident response model towards a self-management

approach grounded on reasoning and machine learning capabilities. This paradigm shift

entails the acquisition of knowledge from the managed network in order to timely decide

the most suited actions to be enforced when an incident arises. It should be also noted

that conducting advanced analytical processes requires computational capacity as well as

specialized software elements seamlessly orchestrated to produce real-time responses to

a range of network problems. For this reason, the separation of the data, control and

management planes plays an essential role since the logic for handling network traffic (e.g.

by deploying security measures, adjusting bandwidth consumption, etc.) can be leveraged

to high-level software applications. Even though a software-driven management model

can open an unlimited number of alternatives, network management in 5G is challenging

enough to cope with the requirements of next generation networks. Hence, it also raises

new opportunities for the research community.

Given the complexity of emerging 5G network architectures, incident management

becomes more critical to fulfill the agreed service levels. Timely responses to restore the

normal operational conditions of the network are not straightforward and require a proper

understanding of the monitored context for conducting effective decision-making processes.

Information technology standards (such as ISO or NIST) and best-practices frameworks

(such as COBIT or ITIL) suggest performing incident management processes by means of:

the framing of the observed context, the assessment of its potential risks, the monitoring of

the identified threats and the deployment of timely response actions. This process stresses

the importance of conducting a complex analysis of the monitored data in order to detect

or anticipate the occurrence of situations that might disrupt the agreed service levels.

Because of the heterogeneity of the monitored scenarios, which will be considerably higher

in 5G networks, the enforcement of appropriate countermeasures or preventive responses

should rely on effective knowledge acquisition processes adapted to different use cases.

Thereby, important research lines are posed towards the accomplishment of this goal.

To contribute with the development of advanced self-organizing capabilities adapted to

the autonomic management approach foreseen in 5G networks, the present thesis tackles

the study of knowledge-based analysis methods targeted on inferring potential network

incidents in emmerging communication scenarios. The conducted research takes advantage

of the innovations posed by the supportive technologies of 5G networks when laying out

architectural considerations aligned with the design principles of 5G. Hence, granting

self-organizing capabilities to accomplish their performance indicators. The conducted

research proposed new approaches to tackle with the challenges of network incident

management, and their outcomes have suggested promising results while rasising interest

research lines for future work.
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1.1 Research Problem

This section outlines the main areas taken as the baseline for conducting the present

thesis. They pose the research problem and objectives which rule the development of this

research.

Current technological trends arise complex requirements to be addressed, and the

solutions to cope with them involve a seamless integration of novel concepts applied to

emerging scenarios. In the area of modern communication networks, research efforts have

been committed to deliver innovative solutions for both common and novel problems

related with network management. In particular, the application of data analytics in

network management for achieving self-organizing features has drawn the attention of the

research community, being the main research topic of this thesis as well .

With the emergence of the fifth generation of mobile networks, some research projects

have been undertaken towards the creation of autonomic management models aimed to

fulfill the Key Performance Indicators (KPIs) posed by 5G. They share the common

concern of dealing with massive amounts of data originated at different architectural

levels of the network infrastructure, on which the application of suitable analysis

techniques demands a proper comprehension of the operational context. Therefore, the

enforcement of preventive or reactive countermeasures to mitigate network incidents and

likely service degradation situations depends on the correct modeling of the analyzed

domain driven by cognitive approaches. Since 5G technology is currently under

development, the implementation of such complex networks intended to support millions

of connected devices lay a major challenge in the design of analytical components suited

for such architectures. Likewise, those components should play an essential role in the

accomplishment of self-organizing capabilities through their seamless interaction with

other 5G architectural entities. Both the role of the autonomic management entities

and the architectural design considerations pose important fields of study throughout this

research.

Furthermore, this thesis has been framed into the SELFNET project. SELFNET

(Self-Organized Network Management in Virtualized and Software Defined Networks) is

a research project funded by the European Commission under the H2020 programme,

which is aimed to develop a management framework for achieving self-organizing

capabilities in 5G networks. For this purpose, SELFNET combines leading technologies

such as Software Defined Networking (SDN), cloud computing, Network Function

Virtualization (NFV), Artificial Intelligence (AI), among others, for the designing and

implementation of a multi-tenant aware management framework targeted to address

three use cases: self-optimization, self-healing and self-protection. SELFNET considers

the vast heterogeneity of the operational domains as well, and defines in turn a

multi-layered architecture entailing to distinguish data, control and management planes

for the automatic provision of responses to network incidents. This project has provided

a reference architecture on which the present research has been grounded. There, the

core self-organizing functionalities of SELFNET are conducted by the Autonomic Layer,

where analytical approaches should be explored for the accomplishment of efficient network
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management. Consequently, the Autonomic Layer has been the component of interest of

the present thesis.

The literature review disclosed also that data analysis methods in 5G networks

have been barely addressed by the research community, being this the reason why the

contributions of this thesis have been oriented towards their study. In this landscape,

it has been hypothesized that knowledge-based methods can be suited to conduct data

analysis processes aimed on the inference of situations that might disrupt the normal

operation of the monitored network. It has led to the distinction of two major research

stages: the study of a general-purpose knowledge acquisition approach framed into the 5G

architecture, and an in-depth study of well-defined use cases where the effectiveness of the

proposed approach is validated.

It has been outlined the importance of having a deep understanding about the network

in order to enable effective decision-making processes on the basis of the comprehension of

the current network status and the projected scenarios. In that direction, the Situational

Awareness (SA) model proposed by Endsley has recently drawn the attention of the

research community due to its suitability for understanding the monitored environment.

The SA model also facilitates an effective decision-making oriented towards the mitigation

of common network problems. Hence, the present research has studied existing incident

management approaches grounded in the Endsley’s model, from which the three SA stages

(perception, comprehension and projection) have been analyzed, with special attention on

the comprehension and projection stages.

The aforementioned context has led to pose the research problem of this thesis on the

adaptation of well-known feature extraction techniques, forecasting algorithms, pattern

recognition methods and rule-based reasoning for designing an analysis framework targeted

on granting autonomic management capabilities on self-organizing architectures. This

approach is driven by use cases foreseen in emerging communication networks, which

requirements must be addressed. Such use cases deal with the inference of situations that

represent a likely degradation or disruption of the agreed service levels in the network.

The proper assessment of the proposed knowledge acquisition process poses an

important challenge as well. This situation gains relevance due to the fact that, at the

time of this writing, there are no well-known evaluation methodologies suited for 5G

analytics. Furthermore, the accuracy on inferring network problems should be assessed

on well-defined use cases adapted to 5G networks. For experimental purposes, special

attention has been put on self-protecting capabilities, taking into account the SELFNET

approach. To this end, the accuracy on detecting network incidents has been validated

on two reference use cases related to Economic Denial of Sustainability (EDoS) and

Distributed Denial of Service (DDoS) threats. Nevertheless, it is important to remark

that the knowledge acquisition approach developed throughout this research is not limited

to the self-protection domain, but to any other use case. For instance, and aside from

self-protection, self-optimization, self-healing and self-configuration are the cornerstone

use cases of self-organizing networks. Those could be properly embraced under the same

analytical approach presented in this work, as it was showcased in the SELFNET project.

Novel network threats have also emerged through the last years, which will take another
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nuance from the perspective of 5G networks. This is the case of Economic Denial of

Sustainability (EDoS) attacks originated in cloud computing infrastructures, which has

motivated the definition of the first use case. EDoS attacks are targeted on exploiting

common vulnerabilities of the auto-scaling mechanisms with the aim to deplete the hired

computational resources, thus giving rise to the economic unsustainability of the offered

services. EDoS threats have drawn the attention of the research community, which led

to the definition of detection and mitigation proposals. Since 5G networks are strongly

dependent on virtualization platforms for provisioning services on-demand, the study of

EDoS threats pose a novel research problem. Notwithstanding the importance of these

attacks, the literature review disclosed two open challenges scarcely addressed. Firstly,

their detection approaches are mostly grounded on network traffic metrics, hence missing

the study of behavioral patterns of the auto-scaling policies in the cloud platform itself.

Secondly, and to the best of the author’s knowledge, EDoS detection has not been studied

in the context of self-organizing networks framed in 5G architectures. Because of this, the

present research explores the adaptation of novel EDoS detection methods supported by

self-organizing capabilities. To this end, a formal definition of this threat and a proper

validation of the use case is mandatory. These subjects have been addressed throughout

this research.

Similarly, the detection and mitigation of DDoS attacks remains as an open research

problem, which has lay the grounds of the second use case. DDoS has been largely studied

and several detection and mitigation techniques have been proposed in the literature.

However, they exhibit two aspects that should addressed for enhancing their effectiveness.

On the one hand, the dynamicity of DDoS attacks in 5G networks will be characterized by

the heterogeneity of the connected devices and their ability to conduct more sophisticated

attacks, so raising a new concern for IT administrators. On the other hand, the possibilities

to mitigate such threats are expected to be considerable higher within 5G networks, being

its adaptation to non-stationary environments a distinctive trait. Aside from that, many

users nowadays ask themselves if their devices could be taking part of DDoS attacks, for

which detection methods based on source-side analysis of DDoS traffic plays an essential

role. However, this trait has been scarcely studied by the research community and remains

a research open topic. To this end, the present research explores a source-side DDoS

detection approach based on knowledge acquisition by taking advantage of self-organizing

capabilities. In addition, its adaptability to 5G architectures must be gounded on data

heterogeneity, source traffic-flow analysis and non-stationary forecasting. Those aspects

have been accounted for accomplishing the goals of this use case.

1.2 Motivation

At the time of this writing, the fifth generation of mobile networks is under development

and it is expected to have its first commercial releases by the year 2020. Moreover, most

of the 5G supportive technologies, such as SON, NFV and SDN, rather than reaching

high maturity, are also still under development. A situation that has motivated the

interest of the researchers in the last years. Such technological landscape has led to the
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development of innovative and challenging projects whilst fostering high competitiveness

in the academia and the industry. A fact that has been recently evidenced by the research

literature.

Therefore, the research efforts committed towards the fulfillment of the first

implementation of 5G have specially motivated the development of this thesis. The

immersion of 5G networks is foreseen to drive outstanding changes for the society and the

economy in the forthcoming years, hence relying on their capabilities to provide ubiquitous

access to ultra-dense networks operating at high data rates. It is then expected by the

current society to take part of such technological shift from its roots to their achievement.

From a scientific perspective, conducting research within emerging trends entails a

challenging task since most of them have not reached the maturity achieved by well-known

technologies. It poses a strong incentive to look for open issues where traditional

formulas must be rethought or designed from scratch, which in the meantime brings higher

uncertainty.

On the land of SDN and NFV, the separation of control and data planes has opened

innumerable alternatives for managing complex network architectures from high-level

applications. This fact has facilitated the design of novel solutions based entirely on

software, disregarding low-level network aspects delegated to the data plane. In the

meantime, the ability to provide self-organizing capabilities in 5G scenarios poses an

additional motivation since cognitive approaches must be considerable enhanced. Those

must be capable to conduct advanced analysis methods taking into account that existing

computational limitations will be significantly reduced in 5G networks.

In addition, the study of well-known and novel network incidents contextualized into

the 5G ecosystem embraces the definition of use cases for validation purposes, as is the case

of the detection of EDoS and DDoS threats. Given the lack of existing 5G infrastructures,

the development of experimental testbeds in the management side entails new challenges.

Thereupon, novel 5G management frameworks, like the one provided by the SELFNET

project, brought reference architectures which have inspired the proposal of self-protective

capabilities for the aforementioned threats.

1.3 Objectives

The fifth generation of mobile networks has raised many challenging objectives that

should be addressed in a near future, a situation that is clearly evidenced in the research

landscape. This situation has led to contextualize the scope of this thesis into the area

of autonomic management in 5G networks, with interest on self-organizing approaches.

Therefore, this research lays out a main objective: the study of analytical methods for

providing knowledge acquisition capabilities in self-organizing networks. Bearing this

in mind, this work comprises three fundamental aspects. Firstly, the design of a 5G

reasoning-based framework enabled for the detection of situations that are potential

symptoms of degradation or disruption of the agreed service levels of the network.

Secondly, the instantiation of the proposed framework into a self-organizing architecture.

Thirdly, the evaluation of the detection capabilities on specific use cases framed into
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emerging network environments.

For the accomplishment of the proposed objectives, the following activities shall be

conducted as part of this research:

1. An in-depth study of the state of the art on 5G and supportive technologies.

2. Review of the most relevant prediction and pattern recognition methods.

3. Definition of a reasoning framework based on prediction and pattern recognition

methods for acquiring knowledge in 5G networks.

4. Definition of evaluation use cases based on the analysis of well-known and novel

network threats adapted to 5G self-organized scenarios.

5. Definition of high level metrics for inferring potential situations that might produce

the disruption or degradation of the agreed service levels.

6. Implementation of analytic detection methods suited to self-organizing networks to

address the requirements of each use case.

7. Assessment of the proposed methods when detecting network threats within the

context of the reference use cases.

1.4 Contributions of this Thesis

The contributions of this thesis are illustrated in Figure 1.1. They are arranged in a matrix

where the rows represent the areas of knowledge and the column identifiers stand for the

contribution. The intersections denote the level of degree achieved by each contribution

on the corresponding research area. Therefore, the following are identified as the key areas

of knowledge: Fifth generation mobile networks (5G), Self-Organizing Networks (SON),

Software Defined Networking (SDN), Cloud Computing, Prediction, Pattern Recognition

and Incident Management.

To lay the background on 5G and autonomic management capabilities, contributions

[SRA+16], [BWSMea17], [SMGV17] and [SMMVGV18a] have been considered.

In [SRA+16], the study of the reference SELFNET architecture for providing

self-management capabilities has grounded the design principles of a fully operational

control loop in 5G. This approach has been considered in [BWSMea17] to rise the

situational awareness adaptation for incident management in 5G networks. Bearing the

autonomic control loop management in mind, a theoretical defensive approach towards

crypto-ransomware mitigation has been exemplified in [SMMVGV18a]. In addition,

[SMGV17] addresses the SDN principles for driving a programmable network management.

The inclusion of data analytics for achieving autonomic management in 5G has been

initially studied in [SMMVGV17b] and [SMMVGV17c], leading to the integration of

well-known methods in prediction, pattern recognition and self-organizing capabilities

studied in [SMMVGV17d]. They have contributed for proposing a reasoning framework for

5G networks along with a detailed description of its workflows. A detailed assessment of
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Figure 1.1: Contributions of this thesis.

its capabilities in terms of prediction and pattern recognition accuracy has been provided

as well.

On the other hand, contributions in [SMMVGV17a] have led to the study of Economic

Denial of Sustainability threats, which has provided an updated state of the art on

EDoS attacks in cloud computing environments and the study of a novel Entropy-based

Economic Denial of Sustainability detection method based on predictive capabilities.

Hence, contributions in [SMMVGV18b] and [MVSMGV18] have led to the creation of

a 5G security architecture with intrusion detection capabilities targeted to mitigate EDoS

threats in self-organizing networks. Those contributions have grounded the proposal of

a similar approach for studying the detection of DDoS attacks at source-side, which has

been published in [HGLFMV+18].

1.5 Outline of the Thesis

Chapters 1 to 5 provide the theoretical background that contextualizes the research

problem and related knowledge areas. They are so intended to get the reader familiar

not only with the vast terminology regarding emerging networks, but also with updated

research advances on 5G and their supportive technologies. On the other hand, forecasting

and pattern recognition methods play a key role in the proposals introduced latter on this

thesis. This fact has motivated their inclusion in the state of the art chapters.

Chapters 6 to 10 introduce research proposals aimed to accomplish the objectives

stated in Chapter 1. Chapter 6 starts with the definition of a general-purpose knowledge

acquisition framework contextualized in 5G networks, which constitutes the reference
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architecture for addressing the use cases’ objectives. They, although different in nature,

share the same self-organizing approach when dealing with knowledge generation. Because

of that, an in-depth study of those use cases takes place in the next three chapters. In

them, the emerging network architectures and analytical methods previously introduced

are referenced for sketching out the proposals and experimental validation.

In order to facilitate the reader’s comprehension, this thesis has been structured as

follows:

Chapter 1 introduces the research context of this thesis by examining the general

landscape related with emerging network architectures, innovation fields and challenges.

They allow the definition of the research problem, objectives and knowledge areas where

the publications related to this thesis have contributed.

Chapter 2 reviews the state of the art of the fifth generation of mobile networks.

It remarks the challenging requirements, performance indicators and generational shift

fostered by their supportive technologies.

Chapter 3 introduces some research efforts towards the development of 5G networks,

where the SELFNET project is described in detail. This chapter raises also important

research areas that lay the grounds for the definition of novel use cases to be studied in

the forthcoming chapters.

Chapter 4 reviews the main families of prediction algorithms and the adaptive

thresholding methods widely referenced throughout this research. They are later studied

to generate factual knowledge for prediction-based analytics.

Chapter 5 describes a set of well-known pattern recognition methods for matching,

novelty detection and classification. Their ability to find discordances between samples

and reference data are later applied to enhance the knowledge acquisition process from

the network management perspective.

Chapter 6 focuses on the generation of knowledge about the network considering the

monitored environment. To this end, a reasoning framework is proposed. It combines

prediction, pattern recognition, adaptive thresholding and rule-based analysis capabilities,

thus accommodating an autonomous network management approach.

Chapter 7 addresses the Economic Denial of Sustainability (EDoS) threat by delving

into its definition and characteristics for proposing a detection method suited for

virtualized environments.

Chapter 8 explores the implication of EDoS threats into the context of emerging

self-organizing networks, for which a novel detection strategy is proposed and assessed

in depth.

Chapter 9 delves into the source-side detection of Distributed Denial of Service (DDoS)

threats in self-organizing networks. To this end, a novel detection method to infer the

participation of a device in a DDoS attack is studied.

Finally, Chapter 10 summarizes the contributions derived from this research and raises

some interesting lines of future work.





Chapter 2

5G: Fifth Generation Mobile

Network

This chapter presents a general overview of the fifth generation of mobile networks, their

challenges, requirements, Key Performance Indicators (KPI), and future trends. For a

better understanding of the reader, the chapter is organized in five sections. In Section

2.1, a broad picture of 5G network is presented. Section 2.2 describes requirements pushed

towards the development of 5G networks. Section 2.3 presents the main Key Performance

Indicators related with the accomplishment of 5G requirements. In Section 2.4, the main

5G supportive technologies are introduced. Finally, Section 2.5 provides the final remarks

of this chapter.

2.1 Overview to 5G

The growth of mobile devices connected to Internet has increased the number of user

necessities and, in consequence, the network requirements. Real challenges have raised in

terms of network performance indicators such as faster recovery times, lower latency, higher

transfer rates, less energy consumption, enhanced Quality of Service (QoS)an Quality of

Experience (QoE), among others.

It is expected that in the year 2020 the number of connected devices will exceed

20 billion [Gar17]. Hence, the main telecommunications operators are pushing novel

technologies in order to enhance the current network characteristics torward the fifth

mobile generation. 5G has thus emerged as the promising technology to deal with the

challenging requirements of future generation networks [NGM15]. It empowers a smart

integration of the most innovative advances on Network Function Virtualization (NFV),

cloud computing, Software-Defined Networking (SDN), Artificial Intelligence (AI) and

Self-Organizing Networks (SON). In particular, the synergies between SDN and SON

are addressed as a key research topic [Eur14] to enable the fulfillment of the disruptive

key performance indicators (KPIs) promoted by 5G [GRA16]. On this line, several

research initiatives in 5G have integrated cloud computing, SON and cognitive networks

to design modern and automated management architectures which are able to monitor

heterogeneous network infrastructures. That is achieved by the incorporation of analysis,

11
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decision-making and learning capabilities when inferring the status of complex network

scenarios, so the automatic enforcement of actions to mitigate risks or optimize operations

is possible [ABC+14].

5G will take advantage from the synergy of such technologies in order to provide

autonomic self-management. For this purpose, 5G should grant novel capabilities on

context modeling and network programmability to accomplish higher QoS/QoE levels,

more efficient operational (OPEX) and capital (CAPEX) costs, enhanced network trust

and privacy, and many other distinctive features [SYY+13][PZCG14]. In the mantime, this

mobile generation will be driven by economic, societal and operational trends on which

ensuring the network Service Level Agreements (SLAs) will be even more challenging.

Furthermore, 5G environments will have to face crucial issues related to scalability

[DMR16]. In this context, cloud computing can deal with these concerns by provisioning

unlimited resources (computing, storage and networking) when the service is needed.

On the other hand, Mobile Edge Computing (MEC) allows the deployment of Virtual

Application Functions (VAFs) such as critical applications, location services, data caching,

among others, closer to the edge location for granting the user higher bandwidth and lower

latency when the service is delivered. One of the main advantages of both cloud computing

and MEC is that virtual resources are deployed timely and with minimal effort. In this

way, the telecommunication providers can turn into a more profitable and efficient business

model benefited from a significative reduction on the operational costs.

A key aspect of 5G networks is the introduction of advanced data processing techniques.

In this regard, specialized analysis tasks and artificial intelligence methods should be

properly applied to generate knowledge based on the information gathered from the

network. Such advanced analysis relies on aggregation and correlation techniques applied

on low-level metrics acquired from both traditional monitoring tools and advanced network

sensors.

2.2 5G Requirements

In order to cover the main necessities of modern mobile networks, 5G requirements has

been divided in some application domains [NGM15][5G-16a], as is detailed in Table 2.1.

One of the main concerns is related to the number of devices/sensors connected to 5G

networks, a situation that becomes more complex considering the fact that the Internet

of Things (IoT) poses extra requirements that 5G must be able to cover. Such complexity

is raised by the user expectations on perceived quality, and even more by the business

model focused on agile service delivery. On this line, 5G demands additional efforts to be

undertaken by the research and industrial communities.

In general terms, 5G architectures must provide enhanced functions in order to cover

context life cycle [PZCG14], which can include the following phases:

Context acquisition. This phase gathers information from heterogeneous sources,

including physical and virtual elements. It considers not only the context data source

but also the frequency, interfaces, data processing, formats, and the acquisition

method.
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Table 2.1: Summary of 5G Requirements

Requirement Description

User experience This requirement is related with the enhancement of the quality of
service (QoS) and Quality of Experience (QoE) levels compared with
current networks [TPL+16]. On one hand, this requirement can be
achieved by the combination of MEC and SDN technologies. On the
other hand, the deployment of virtual functions over a virtualized
cloud environment closer to the service location will let a better user
experience.

Device This requirement improves the intrinsic device indicators such as
higher data rates, signal and energy efficiency, among others. An
increase of 1000x times of mobile traffic is expected by 2020 and
higher QoS levels must be reached on 5G infrastructures. Besides
that, it is important to promote advances in device to device
communication (D2D); monitoring, aggregation and processing
capabilities; extend battery lifetime and programmability at both
software and hardware elements [BTAS14].

System
Performance

This requirement aids to cover advanced capabilities to support
higher data transfer speed, more simultaneous connections and ”zero
perceived” latency. An estimated data rate is 10Gbps.

Enhanced
Service

The main idea behind this requirement is to enhance the user
experience by granting higher availability, reliability and accuracy of
the device location. Likewise, transparent connectivity and enhanced
security services will offer seamless connectivity and enhanced
privacy. It includes self-protection and self-healing capabilities in
order to improve network resilience.

Business Model This requirement is intended to introduce new business models in
order to customize the network behavior while reducing operational
and capital cost. 5G will be able to introduce new services (time
to market) in a faster and dynamic way, taking advantage of the
separation between of data and control plane, the deployment of
virtual functions and the possibility of sharing network resources.

Management &
Operation

Current networks require a high degree of manual management and
configuration of network devices, so that increasing the operational
costs. In this regard, the automatic management requirement
will allow the reduction of these expenditures by deploying new
services anytime and anywhere when demanded by the users. A
key characteristic of future 5G networks is the ability to perform
automatic system recovery and self-management in critical situations,
hence minimizing also the Total Cost of Ownership (TCO).

Context modeling. The collected network data is represented in a specific model

which must have a meaning taking into account the context of the situation. That

collected data needs to be characterized in terms of its attributes or characteristics,

using different approaches such as ontology methods, markup schemes, graphical

representations, object or logic oriented modelling.

Context reasoning. This phase obtains high level metrics from the collected data,

thus helping in the creation of new knowledge. For this purpose, the modelled
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data will be analyzed by reasoning methods and event management techniques. The

knowledge inference includes preprocessing, aggregation and analysis of the acquired

data.

Context Distribution. Finally, all information (raw data, aggregated and high-level

metrics) are delivered to stakeholders with the objective to enhance the provisioning

of their services.

2.3 Key Performance Indicators (KPI)

5G networks pose diverse Key Performance Indicators (KPIs) in order to measure the

expected services in comparison with the current mobile technology. Those indicators can

thus be defined in terms of the following metrics [Eur14] [NGM15]:

Latency. 5G expects to provide lower latency compared to current networks. It

takes into account the latency between the source and destination, that is knowing

as end-to-end latency. This KPI expects to enhance the quality of experience of the

user. It is foreseen to reach 5ms.

Capacity. 5G will be able to support higher capacities (volume of information)

not only with normal traffic but also when many users are connected in the same

geographical area. The referential value is expected to reach 10 Tbps/Km2.

Service creation time. One of the main concerns in current networks is the

operational costs when a new service is required. In this regard, 5G expects to

reduce the service creation time from 90 days to 90 minutes.

Number of connected devices. In order to achieve a future network landscape with

any connected devices, this KPI aims on increasing the number of devices in 1000x.

An estimated value is about one million per square kilometer (1M/Km2).

Energy efficiency. 5G will decrease the energy consumed by network infrastructures

in 90% compared with current technologies.

Location accuracy. 5G expects to provide a location accuracy of about one meter

(1m). This value takes importance for industrial infrastructures mostly related with

transportation and positioning systems.

Mobility. This KPI will allow to enhance a continuous access to the services even

in high mobility conditions. To this end, 5G expects to provide mobility speeds of

about 300 to 500Km/h.

Peak Data Rate. This KPI is related to data transfer rate reached by network devices,

with an expected value of 10Gbps.

In Figure 2.1 the expected value or reduction of each KPI is presented. It is important

to note that some of these values are represented taking into account the capacities of

current mobile networks.
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# Connected devices 
(≥ 1M devices/ Km2)

Peak Data Rate 
(100x)

Energy efficiency
(reduction 1/10x)

Latency 
(≤ 5 ms)

Location accuracy 
(≤ 1m)

Mobility 
(≥ 500 Km/h)

Capacity
(≥ 10 Tbps/Km2)

OPEX 
(reduction 1/5x)

Figure 2.1: 5G Key Performance Indicators.

2.4 5G Supportive Technologies

In this section, the most outstanding 5G supportive technologies are revised. SDN,

Self-Organizing networks, Network Function Virtualization and Cloud Computing are

introduced since the thesis contributions are mainly grounded on them.

2.4.1 Software Defined Networking (SDN)

In 2011, a group of network operators, service providers and industry representatives

created the Open Networking Foundation (ONF) [ONF], an organization that promotes

the adoption of SDN in the industry. ONF defines Software Defined Networking (SDN)

as a network architecture where the control is programmable and is separated from the

packet forwarding functions, inherent to lower levels of the OSI model. In a more extended

context, SDN is an architecture that optimizes and simplifies network operations, linking

the applications with network services and devices. For this purpose, a centralized logical

control entity, called the SDN controller, is used to coordinate the communication between

the applications and network elements. The controller exposes network functions and

operations through Application Programming Interfaces (APIs), leading to a suitable

interaction with the SDN applications [NG13].

OpenFlow [MAB+08] is the main protocol that has facilitated the development of SDN,

and has been adopted for the industry and research community. OpenFlow is the first

standard communication interface defined to communicate the control and infrastructure

layers of the SDN architecture. The most widely adopted version is 1.0.0.
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2.4.1.1 SDN base architecture

Figure 2.2 depicts a logical view of the SDN architecture [ONS12], composed by three

layers: infrastructure, control, and application. In the infrastructure layer, network devices

(switches and routers) forward packets according their configured flow tables. The control

plane contains the SDN controllers responsible to configure forwarding rules in the flow

tables of each network device existing in the infrastructure layer. In the upper layer the

different SDN applications are located. The architecture layers are communicated trough

programming interfaces that allow their interaction and information exchange. Network

intelligence is logically centralized in the SDN controller, which is able to maintain a global

view of the network. The separation of network functions, in control and data planes, is a

distinctive characteristic of SDN. The role of each plane is described in the following two

sections.

CONTROL LAYER

INFRASTRUCTURE LAYER

APPLICATION LAYER

API

Network device Network device Network device

Business Applications

SDN
Control 
Software  Network Services

Network device Network device

API API

Control-Data Plane Interface 
(e.g. OpenFlow)

Northbound API

Southbound API

Figure 2.2: SDN Architecture.

2.4.1.2 Control Plane

The control plane is responsible to set up the logic and corresponding data sets

necessary to control the SDN network behavior. Network protocols routing rules (as the

ones of OSPF) or filtering policies in a firewall are some examples of control plane logic in

IP networks [NG13]. The main objective of the control plane in SDN is the management

of flow tables to define forwarding rules. To accomplish this, a global abstraction of the

network is mandatory. This logical abstraction is programmable and is performed through

a Network Operating System (NOS), by the use of any protocol enabled to get information

from the data plane through a software interface [FRZ14] (also called Southbound API),

such as OpenFlow.
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2.4.1.3 Data Plane

The data plane is responsible to process incoming network packets in the network

devices. The packets get into the devices through physical media (cable, optical fiber, and

so on). After being assembled and error-checked, well-formed datagrams are processed

in the data plane through flow table lookups, previously configured by the control plane

[NG13]. The only exception to this procedure arises when a datagram does not match

with any flow table entry. In this case, the packet is sent to the controller, which

processes it according to the SDN applications logic. IP packet routing and layer two

switching functions are some examples of data plane functions in IP networks [FRZ14].

Infrastructure elements include not only network switches, but also terminal devices.

2.4.1.4 OpenFlow Protocol

This interface allows the SDN controller to directly configure the forwarding flow tables

in the network devices, such as routers or switches that support this protocol. ONF is

responsible to standardize this protocol. In OpenFlow, it is mandatory to set matching

rules in the flow table entries that will be examined for every incoming packet in an

OpenFlow switch, in order to decide the corresponding action to take over the packet (i.e.

forward, drop, etc.). Figure 2.3 shows the packet header fields used to define matching

rules, according to OpenFlow version 1.0.0 [OFv].
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Figure 2.3: Packet fields used to match against flow table entries.

2.4.1.5 Centralized vs Distributed approach

IP networks have been built under a distributed scheme in which every network node

has its own instances of the control and data planes. By contrast, SDN consolidates

the whole network control plane and provides a centralized scheme that determines its

behavior. Figure 2.4 depicts a comparisson between the two aforementioned schemes.

The separation of planes in SDN allows a continual evolution of each independently.

On the one hand, the hardware over which SDN is implemented, the embedded data plane

software and interfaces, and, on the other hand, the development of network operating

systems and high-level applications that implement the best software engineering practices.

These advantages give SDN the flexibility that traditional network architectures cannot

offer.

2.4.2 Self-Organizing Networks (SON)

From a functional perspective, a SON network includes three outstanding capabilities:

self-healing, self-optimization and self-configuration [Nom08]. Self-configuration involves
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Figure 2.4: From the distributed scheme in IP to the SDN centralized scheme.

the processes to automatically configure new network nodes deployed in the network

by downloading and parameterizing the required software [PLW+13]. Self-optimization

addresses optimal performance conditions by comparing the current network status with

the target parametrization, which might trigger corrective actions when required [AAA14].

In addition, self-healing entails the detection of network failures, the diagnosis of the

situation, and the enforcement of recovery actions to restore the affected network function

[AIIE13]. The original SON architecture [Nom08] comprises an Operation, Administration

and Maintenance (OAM) subsystem deployed either as a centralized, distributed or

hybrid architectural approaches. The simplest closed-loop network OAM architecture

[HSS12a] entails the presence of sensors deployed along the network to monitor crucial

network elements for Performance Management (PM). The monitored information is

analyzed according with the network policies defined to automate the Configuration

Management (CM) processes. Such policies are planned and enforced through different

network actuators adapted to specific domain managements [SK09]. Figure 2.5 illustrates

a simplified view of a closed-loop architecture.

Furthermore, Glenn et. al. [AIIE13] outline the differences between adaptive,

autonomous and cognitive networks. Adaptive networks change their configuration in

response to environmental changes, whereas autonomous networks are also adaptive, but

with no human intervention. Thus, SON networks are adaptive and autonomous. On the

other hand, cognitive networks are autonomous networks that include learning capabilities

in the management lifecycle; ranging from monitoring, decision-making and action

enforcement processes in order to acquire knowledge about the context [JVDMB+07].

Thereby, SON-cognitive networks have represented an ongoing trend for the management

of modern networks [FM09], in this way adapting the processes related with sensing the

network, planning, decision-making and actuation according to the operational context.

Even though the original SON definition remains suitable, it has adopted new
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characteristics adapted to the evolving mobile network technologies such as LTE, 4G and

5G. In this context, emerging SON networks that include cognitive capabilities cope more

efficiently with the management challenges pushed by the operators. Modern sel-organized

scenarios grant the ability to perform complex network analysis targeted on deploying

smart proactive and reactive actions when mitigating, correcting or optimizing network

services. SON networks are key enablers of 5G, taking advantage of the application of

advanced machine learning techniques to adapt the network for complex self-healing,

self-optimization, self-configuration, self-protection and other use case scenarios. 5G

provides suitable capabilities to evolve more powerful SON architectures relying on the

decoupling of network and data planes promoted by SDN, the advanced on-demand

provisioning fostered by cloud platforms, the immersion of NFV management and

orchestration architectures, and the evolution of self-managed approaches towards the

next generation networks.

2.4.3 Network Function Virtualization (NFV)

The provisioning of efficient network services with higher quality requirements and lower

operational costs has been traditionally a major concern for service providers in the

telecommunications landscape. The bundling of network functions within closed hardware

platforms have limited the ability to extend the capacity of the offered network services

not only by budget constraints, but also for the lack of agility in the deployment

process [NG13]. Moreover, when considering the factors involved in the provisioning of

network services towards an efficient relationship between revenue and CAPEX/OPEX (i.e

skilled network operators, vendors, time-to-market, users demands or hardware/software

updates), higher infrastructure investments are mandatory. However, some studies have

shown that their return rate of such investments is minimal [HSMA14], hence demanding

more innovative business models.
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On the other hand, the concept of virtualization has emerged to allow hardware

resource sharing between software entities that operate independently, as if they were

completely isolated from each other, thus managing the workload more efficiently [MAJ14].

This is why the advantages of virtualization have been adopted on the networking area

for allowing the coexistence of multiple logically separated networks running on the same

physical elements [CB10]. Thus, enabling the abstraction of the hardware infrastructure

by standard software interfaces for a proper network management.

Bearing in mind the restrictiveness of hardware-based solutions, Network Function

Virtualization (NFV) can be defined as the bundling of specialized network applications

such as firewalls, load balancers, DPI servers, among others, into software entities rather

than in hardware devices [HSMA14]. Provided by the flexibility in the management of

software-based solutions, a service provider can deploy customized services adapted to the

monitored network conditions by placing network function instances (VNFs) of the desired

services in different locations of the network. However, to accomplish an on-demand service

provisioning, advanced orchestration processes are mandatory for ensuring the lifecycle of

VNFs across the managed premises.

In 2012, a group of telecommunication operators of the European Telecommunications

Standards Institute (ETSI) proposed the NFV framework [ETS13]. It lays the

architectural vision and design considerations for virtualizing network functions on the

supporting infrastructure, and defines also the communication interfaces for the different

components, as illustrated in Figure 2.6. The framework relies on standard Commercial

off-the-shelf (COTS) hardware to set the architectural baseline for orchestrating the

allocation of network functions throughout a virtualized infrastructure.

Basically, the reference architecture defines three main working domains: The

Network Function Virtualization Infrastructure (NFVI), Virtualized Network Functions

(VNFs), and NFV Management and Orchestration. The framework might also

integrate operational/business support systems (OSS/BSS) used by network operators

for management purposes [ETS13].

NFVI comprises hardware and software elements that lay the virtual platform on which

VNFs are created. NFVI is composed of compute, storage and networking components

abstracted from their counterpart hardware [YZV16]. This level of abstraction is achieved

by the Virtualization Layer, since it can expose the virtual platform as a single entity with

disregard of the physical placement or topology of hardware elements in the managed

domain. Thereby, VNFs can be deployed in different locations of the network, provided

by the proper allocation of compute, network and storage resources [CB10]. On top of

the VNFs, the Element Systems (EMs) are intended to manage the functionality of one

or many controlled VNFs.

In addition, the NFV Management and Orchestration implements the coordination

between the architectural components of the framework in such way that the VNFs

provisioning lifecycle is guaranteed when delivering a network service. It poses a strong

dependence on Virtual Infrastructure Manager as the controller of the abstracted compute,

storage and network resources to meet the deployment requirements of each VNF in the

provisioning process. Even though the NFV framework allows the dynamic allocation
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of network functions, the placement for VNFs chaining in datacenters is a challenging

topic from the network operator point of view, which requires optimization strategies for

dealing with resource consumption, cost evaluation, quality of service levels, and so on,

when managing large infrastructures [XSZ+15].

It is also worth mentioning the tight integration achieved by NFV and SDN in

emerging network scenarios. Even when both technologies can coexist independently, their

synergies have opened a wide range of opportunities for network operators. SDN/NFV

have introduced programmable management approaches in the deployment of network

services suited for challenging use-cases including, for instance, video services or the

”cloudification” of telco infrastructures, which have been largely addressed by the research

community [CRSG+15] [BKH+14].

2.4.4 Cloud Computing

Among the different definitions of cloud computing, the one stated by the National

Institute of Standards and Technology (NIST) has been widely referenced in the literature

[ZCB10]. It defines cloud computing as a model for enabling ubiquitous, convenient and

on-demand access to a shared pool of computing resources that can be timely provisioned

with minimal management effort or service provider intervention [NIS11].

With the rapid evolution of information technology architectures and enterprise
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business models, traditional provisioning of resources (computing, storage and network)

has demanded significative advances to deal with the limitations of hardware computing

elements. In this respect, virtualization has played a major role as it allows sharing

infrastructures transparently from the customer point of view [MAJ14]. In cloud

computing, a particular resource can thus be leased to different users while ensuring a

complete isolation from each managed domain, a concept known as multi-tenancy. This

innovative service-oriented model provides an elastic resource provisioning model, while

decreasing the costs of hardware acquisition. Cloud computing offers in this way different

service models depending on the available resources to be leased [DLNW13]. Zhang et.

al [ZCB10] outlines also some related technologies that led to the emergence of cloud

computing.

Previously, grid computing was aimed to merge computational capacity for achieving

a specific goal. That model was further exploited by the cloud computing paradigm

which provides a general-purpose virtualized infrastructure for resource sharing. Such

enhancement is accomplished by the virtualization engine (hypervisor), capable of

abstracting the underlying hardware elements. On the other hand, concepts like utility

and autonomic computing have grounded the cloud approach. Utility computing aims

on billing customers according to their resource usage; whereas autonomic computing has

the objective to grant self-management capabilities to a system, being this a feature from

which cloud computing and modern technologies, such as 5G, have benefited from.

The NIST has also identified the following five essential characteristics in cloud

computing deployments [NIS11]:

On-demand self-service. The automatic provision of resources as needed by a

particular customer.

Broad network access. Cloud capabilities available over the network for being

accessed by standard mechanism.

Resource pooling. The ability to pool resources for serving multiple tenants for which

the sense of location is abstracted for simplicity (i.e. at country, state or datacenter

level).

Rapid elasticity. It is understood as the elastic provisioning capability achieved by

means of scaling mechanisms. From the customer perspective, resource scaling is

unlimited.

Measured service. The inclusion of a resource metering per service type that let a

cloud provider the abstraction of usage profiles (i.e. for billing purposes).

Aside from their definition and characteristics, the service model is driven by the cloud

multi-layered architecture [ZCB10][DLNW13] illustrated in Figure 2.7. Their architectural

components are explained as follows:

Infrastructure as a Service (IaaS) provisions infrastructure resources on-demand,

which are typically categorized as compute, storage and networking. Datacenter physical
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entities such as servers, routers, power systems, etc. are pooled and abstracted by the

virtualization layer to grant the provider the ability of offering on-demand infrastructure

resources. Commercial IaaS platforms are Microsoft Azure and Amazon EC2.

Platform as a Service (PaaS) is the intermediate level of the architecture. It offers

an integrated environment built on operating systems and application frameworks for

creating, developing and deploying custom applications. PaaS platforms examples are

Google App Engine or Amazon S3.

In the top level, Software as a Service (SaaS) consists of software applications delivered

directly to the end users on the Internet. It allows them a “pay-as-you-go” model derived

from the use of the hired applications. Google Docs is an example of this.

Since most of the cloud providers are private, the research community, industry and

enterprises have also dedicated efforts towards the creation of open source projects aimed to

deploy customized cloud environments with no dependence neither on external parties nor

proprietary hardware/software elements. In particular, Openstack [Ope] has emerged as a

leading open source platform for managing cloud deployments. Openstack orchestrates a

set of services (Nova, Neutron, Keystone, Telemetry, etc.) which could be also integrated

with SDN and NFV deployments.

Hence, in the context of emerging network platforms, cloud computing facilitates the

on-demand network resource provisioning by means of the elastic capacities inherent to

their supportive platforms.

2.5 Final Remarks

In this chapter the principles of 5G networks have been explored. It has started from

a description of their challenging indicators to a later reviewing of their supportive

technologies. One of the most important concepts to remark is the idea behind
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programmable networks, on which the separation of the data and control planes has shifted

the network management paradigm towards a software-driven model with self-organizing

capabilities. Likewise, the scalability and flexibility achieved by the virtualization of

network functions has led to evolve the network infrastructures towards a software-based

service model. As it has been seen, the characteristics of all reviewd technology enablers

will be seamlessly integrated in the 5G ecosystem for fulfilling the emerging connectivity

demands. Hereinafter, and bearing in mind that 5G is currently under development, the

role of those technology enablers has been considered throughout the performed research.



Chapter 3

Research in 5G and Related Open

Challenges

This chapter describes the current state of the research landscape related to 5G

technologies. Challenging directions are also presented by reviewing current research

projects carried out to address a variety of use cases. This chapter focuses also on the study

of network incident management and its adaptation to emerging 5G scenarios. For this

purpose, two types of attacks are reviewed as potential use case scenarios to be addressed

by 5G networks, being them furtherly studied later in this document. The contents of

this chapter are structured in four parts. Section 3.1 presents some initiatives conducted

by the research community to promote the advances on 5G technologies. Section 3.2

introduces the SELFNET project in more detail due to its close relationship with the

research conducted on this thesis. Section 3.3 describes the traditional network incident

management concepts and its relationship with the 5G scenarios. Finally, Section 3.4

provides the concluding remarks of this chapter.

3.1 5G research projects

Research initiatives in 5G have been conducted to cope with the challenges of new

generation mobile networks. These initiatives are worldwide fostered and funded by

different organizations, such as the European Horizon 2020 programme [ECH] (preceded

by FP7), the IMT-2020 group in China [RPI], 5G Americas [R5A], among others.

In the European context, some FP7 projects such as METIS [OBB+14], T-NOVA

[PTn], UNIFY [RPU] and COWD [CrF] have contributed to lay important research

baselines for other initiatives. For instance, the Mobile and wireless communications

Enablers for the Twenty-twenty Information Society (METIS) generated and agreed

an European platform for the development and standardization of mobile and wireless

communication systems. Likewise, T-NOVA takes the advantages of SDN and NFV

thechnologies, being them focused on the automated deployment of Network Functions

as a Service (NFaaS) over virtualized infrastructures. To this end, the projects aims on

the design and implementation of a platform enabled for the provisioning, configuration,

monitorization and optimization of virtual functions.

25
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Complementary, a dynamic platform for automated end-to-end service delivery is

explored by the UNIFY [RPU] project, which targets the dynamic and orchestrated

provision of services in cloud environments with optimal placement of service components

across a novel infrastructure. Unlike T-NOVA and UNIFY, which rely on the potential

of SDN, NFV and cloud technologies, the CROWD project is intended to significantly

increase wireless mobile network density; ensuring user quality of experience, resource

optimization and a reduction on energy consumption.

Promoted under the 5G-PPP Phase 1 projects umbrella, some outstanding H2020

initiativesare METIS II, COGNET, CHARISMA, 5G-ENSURE and SELFNET. They

encompass several research fields and, at the same time, promote collaboration

partnerships to enhance current and future outcomes. The METIS II [RPM] project

aims to develop a seamless integration of 5G radio technologies by the insertion of

a protocol stack architecture addressing regulatory and standardization challenges. It

provides a collaboration framework for 5G as well. A smart management of the Cloud

Radio Access Network (C-RAN) is addressed by CHARISMA [PCM] project, leading

to the efficient deployment of network services through the intelligent management of

C-RAN deployments and the Radio Remote Head (RRH) platforms. CHARISMA targests

on achieving low latency, higher density, increased data rates and spectral efficient and

enhanced energy management. On the other hand, incident management challenges in

5G are targeted by the 5G-ENSURE [R5G] project, which covers a wide range of security

and resilience concerns like those dealing with standardization, privacy and architectural

aspects. 5G-ENSURE has the final goal to provide reliable security services with “zero

perceived” downtime.

Network Functions Virtualization and service chaining are a disruptive capability in

5G. In this regard, the SONATA [RS2] project addresses the challenges related to their

development and deployment. To this end, it enables a Software Development Kit (SDK)

and an orchestration framework to offer a platform for the rapid provisioning of services

and applications. A machine learning approach to allow autonomic network management

is proposed by the COGNET [P5C] project, which attains self-organizing capabilities

based on the monitored information. This approach is conducted by machine learning

algorithms applied to identify network errors, fault conditions, security or other related

issues that led both inferring the network context and predict the user demands. As

a result, the provisioning of services is dynamically adapted to the inferred network

context. A similar approach is conducted by the project SELFNET [P5S], which evolves

the concept of self-organizing networks in 5G by developing a framework for autonomic

network management. SELFNET is further explained in the next section.

Several other research efforts are described with more detail in [BLVCSMGV16] and

[Pir14]. All of them share the common vision to fulfill the proposed 5G KPIs, hence

enabling a feasible adoption of the fifth generation of mobile networks.
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3.2 The SELFNET project

SELFNET (Self-Organized Network Management in Virtualized and Software Defined

Networks) was proposed with the main goal to develop a smart and autonomic network

management framework to provide self-organization capabilities in mobile 5G networks.

This project has been funded by the Horizon 2020 programme.

SELFNET achieves an autonomic management paradigm by the integration of

enhanced monitoring features, prediction algorithms, pattern recognition strategies,

machine learning capabilities, orchestration of virtual functions and service function

chaining to conduct a self-organized approach. Such paradigm is focused on the

identification of the current network behavior, which leds to decide the best mitigation

responses against the inferred network problems. In consequence, the deployment of proper

actuators in the infrastructure takes place.

3.2.1 SELFNET Architecture

SELFNET reference architecture [NCC+16] relies on the principles of SDN and NFV

to allow an intelligent management of different network functions intended to detect and

automatically mitigate a range of common network problems such as network congestion,

transmission delays, link failures, among others. SELFNET defines three major use-cases:

self-protection [NCC+16], self-optimization [NWAC+16] and self-healing [SRA+16]. Each

of them distinguishes several scenarios in which network analysis, decision making and

action enforcement are required.

The architecture (Figure 3.1) is composed by functional layers, each of them described

as follows:

3.2.1.1 Infrastructure Layer

In the bottom part, the Infrastructure Layer holds the physical resources required to deploy

and instantiate virtualized functions. To this end, it is further divided into sublayers for

provisioning physical computing, networking and storage support over bare metal, and

a virtualization sublayer capable to instantiate the required virtual infrastructures for

supporting VNF deployments. Cloud computing platforms play an important role towards

the consecution of advanced network abstraction and elastic resource provisioning.

3.2.1.2 Virtualized Network Layer

The Virtualized Network Layer holds the instantiated network infrastructure that support

the execution of virtualized network functions (VNF) both individually and chained. In the

latter case, being composed as Network Services (NS) deployed along the virtual topology.

3.2.1.3 SON Control Layer

In the next level, the SON Control Layer contains the different SON sensors for data

collection to start the intelligence loop, and the SON actuators for the enforcement of

actions previously decided for closing the control loop in the managed network domain.
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Figure 3.1: The SELFNET Project Architecture.

3.2.1.4 SON Autonomic Layer

The upper level is for the SON Autonomic Layer, which is the core of SELFNET

intelligence and it is committed to monitor relevant data for acquiring knowledge about

the monitored network. The obtained knowledge leads to both diagnose the cause of

potential network failures and take decisions on the best actions to be enforced. Hence,

accomplishing the system goals and the compliance of the agreed service levels.

3.2.1.5 NFV Orchestration and Management Layer

A supportive architectural component is the NFVO Orchestration and Management Layer,

which allows automated and efficient orchestration mechanisms for deploying network

functions in the network infrastructure. The main goal of this supportive module is the

management of the VNFs lifecycle, accommodated to the service provisioning needs.

3.2.1.6 Access Layer

In the highest level, the Access Layer allows the interaction of SELFNET with

external users, network administrators or external systems through suitable Application



3.3. Network Incident Management in 5G 29

Programming Interfaces (APIs) for an efficient management of the system.

3.2.2 Situational Awareness in SELFNET

To facilitate the operational context comprehension based on the Endsley situational

awareness model [End88], a three-step schema of Monitoring, Aggregation and Correlation,

and Analysis is proposed. This, in fact, maps the Monitor and Analysis component of the

SON Autonomic Layer:

Monitoring has the main objective of collecting a wide range of low level metrics and

events from the physical and virtual network infrastructure, and from the deployed

SELFNET sensors.

Aggregation and Correlation methods reduce the amount of the monitored

information, by obtaining aggregated metrics about a specific network domain.

Meanwhile, events are correlated and filtered to avoid redundant or non-sensitive

information.

Analysis is aimed to acquire knowledge about the operational network context

inferred from the analysis of aggregated monitored metrics. This process is carried

on by pattern recognition capabilities, prediction methods, and knowledge inference

procedures to deduce conclusions regarding potential network failure or degradation

scenarios projected from the observations.

3.3 Network Incident Management in 5G

In the last decades a great variety of contributions related with the management of

incidents have been published. Some of them are classified and reviewed in depth in

[SRA+16] [SSABC16], where a marked trend toward the adoption of classical information

security risk management schemes is emphasized. They pose different lines of research,

ranging from the mere definition of the risk management terminology [HA14], to the

proposal of practical guidelines for their mitigation [Dot15].

The first of these incident management groups of publications lies in the foundation

of conceptual security models, as is the case of the well-known CIA-Triad [Smi12], the

Parkerian Hexad [PP98] or the Cube of McCumber [McC91]. On the other hand, several

authors focused on the study of how mitigate potential threats, hence establishing the

basis for standards [Int13] [NSP], guidelines [ReC] or platforms [MMA]. As indicated

by Ben-Asher et al. [BAG15] a greater specialization in this area of research and its

applications representatively improves the effectiveness of defensive deployments, which is

a very important step towards bringing self-organizing capabilities on 5G environments.

But it is important to highlight that in the networking context, an incident does not only

report a risk. In fact, they occur in connection with something else, which may be the

result of a security threat, but also the outcome of the deployment of countermeasures,

or even the variation of certain network management policies, such as enabling additional

bandwidth, the discovery of new devices or the optimization of some resource usage, in
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this way also bringing feedback about the effectiveness of the self-management actions.

Therefore, understanding the nature of an incident and its impact usually requires

a comprehensive overview of the state of the network and the different cause-effects

monitored in them. Because of this, most of the recent proposals for network incident

management combine the conventional risk management schemes with the situational

awareness model proposed by Endsley [End88].

According with Endsley, situational awareness means “to have knowledge of the

current state of a system, understand its dynamics, and be able to predict changes in

its development”. Because of this, the model distinguishes three major steps: perception,

comprehension and projection; where the first of them is related with monitoring the

environment and the discovery of initial facts, comprehension aims on the inference

of knowledge and hence generating new facts from the observations, and projection

is related with the prediction of the environment status. Note that the conventional

model introduces feedback between data processing stages, in this way allowing learning

and improving decision-making. As discussed in [CSD15], the Endsley model proven

effectiveness in complex and dynamic scenarios where the diagnosis of incidents highly

depends on their context. Throughout the bibliography it has been successfully

combined with risk management models [FB14] and adapted to networking environments,

consequently coining the term NSSA (Network Security Situational Awareness) [LM15].

Its adaptation to 5G started with project like 5G-ENSURE [R5G] which were mainly

inspired in the risk assessment and management approaches.

More recently, SELFNET [P5S] adopted the situational awareness paradigm based in

the research of Barona et al. [BLVCMV+17], which described a framework for hybridize

the Endsley model, information security risk management and self-organizing networking.

The perception stage of SELFNET was described in depth in [CV17], and a first

approach toward orchestrating the activities related with comprehension and projection

was published in [LVV17]. Situational awareness is in fact a key research topic related with

information security in 5G networks as stated in the release of the first 5G PPP Phase 1

Security Landscape [BWSMea17], where the cognitive approximation to understand the

network environment is tackled by a cognitive approach driven by contextual analysis.

The research conducted in [BLVCMV+17] proposed an approximation towards the

implementation of the situational awareness stages for conducting autonomic incident

management strategies by taking the SELFNET model as a reference architecture (Figure

3.2). As explained in the previous section; perception, comprehension and projection

are attained by the monitoring, aggregation/correlation and analysis components of the

SELFNET architecture.

Forthcomings chapters of this thesis delve into the procedures, methods and technology

enablers for conducting reasoning processes oriented to achieve contextual analysis, thus

emphasizing the projection stage as the main topic of this research. Thereby, to put in

context the acquaintance of knowledge from the monitored network when dealing with

incident management, two kinds of threats are studied in the following sections. They will

ground the definition of the use cases to be studied.



3.3. Network Incident Management in 5G 31

SON Autonomic Layer

Virtualized Network Layer

Infrastructure Layer

Perception

Comprehension

Projection

S1 S2 S3 A2A1 A3

Monitoring

Aggregation / Correlation

Analysis

Decision Making

N
FV

 O
rc

he
st

ra
ti

o
n

 
an

d
 M

an
ag

em
en

t

SDN/NFV  
Apps 

Repository

Incident Management  

Sensors Actuators

Situational Awareness

Diagnosis

Figure 3.2: A Situational awareness approach for incident management in 5G.

3.3.1 Distributed Denial of Service Attacks

Nowadays there are different procedures that intentionally may lead to deplete the

resources of a network element, thereby denying its service. The performed research

focuses on those based on flooding the victim with malicious requests [ZJT13], which

typically have been categorized in high-rate and low-rate DDoS attacks [WCXJ13]. This

taxonomy considered as classification criterion their request frequency. According to

this classification, the first family of threats gathers the techniques grounded in timely

injecting a large volume of traffic/requests. On the other hand, low-rate DDoS intend to go

unnoticed over the security measures by adopting incremental or activation/deactivation

request injection patterns, that usually are less visible than conventional flooding-based

intrusion attempts [BBK15]. Furthermore, the attacker may take advantage of reflection

[XWY+17] and/or amplification [MSK17] to magnify the impact of the intrusion. A clear

example of this is observed in the Link Flooding Attacks (LFA) [WLJW16], where low rate

request flows from regions with high traffic density are reused aiming on overflowing the

computing capacity of intermediate network elements, thus resembling legitimate traffic

and making the threat difficult to be discovered. Flooding-based denial of service was

originally achieved from a single point of the network, which was commonly referred as

conventional Denial of Service (DoS) attacks. But the trend of the current devices towards

gaining computing capacity, as well as the advances in cloud computing, and the tendency

to implement self-scaling and load balancing mechanisms, entailed that nowadays the

attacker requires a large number of devices (end-points) with traffic injection capabilities

to reach their malicious purpose, this situation being typified as DDoS. Because of this,

intruders usually resort to botnets [MDML17] for acquiring offensive power. Botnets

are increasingly extensive and adapt to the emergent network scenarios [AAB+17]. In
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addition, they have evolved towards robustness and evasion of mitigation techniques

[VZF17], which make them a dangerous shuttle of denial of service attempts. However,

given the great bibliography related to the botnet problem, this thesis does not deeply

cover them, thus suggesting publications like [HBK15] for reviewing their most relevant

features.

Most of the efforts of the research community dedicated to the defense against DDoS

assumed the aforementioned circumstances. But given the complexity of the problem

to be solved, the proposals are often divided into four different challenges [VZF17]:

prevention, detection, mitigation and identification of sources. DDoS prevention focuses

on avoiding the attack from reaching the victim, hence covering measures that range

from applying filtering policies to traffic redistribution. Note that unlike mitigation,

the prior identification of the intrusion with this purpose is not required. According

to the bibliography, prevention approaches typically consider univocal features of the

legitimate traffic [LLZZ13], Turing tests [WMLW18], security protocols [KVF+12] or

reputation-based systems [WCC+17].

The research focused on DDoS detection requires studying features of the intrusion

itself, either through the analysis of the traffic involved and/or the study of network-level

behaviors [ZJT13]. To this end, different analytic techniques were adopted, among them

hidden Markov model [HVV17], artificial neural networks [SOR16], entropy-based analysis

[BBK15] support vector machines [AYON17] or decision trees, the latter discussing the

efficiency of different machine learning methods. As highlighted in [YYGL16], within this

group, the source-side DDoS detection played a minority role in the bibliography. It was

classically addressed by validating the destination hosts of the outgoing traffic [SF00], or

by recognizing discordant traffic patterns at flow-level [ZJT13]. For example, D-WARD

[MPR03] proposed the construction of models that represented the normal usage of the

traffic flowing through the protected system. It was based on classifying metrics extracted

from traffic flows, from which it was possible to distinguish discordant behaviors. Another

interesting contribution is illustrated in [GP01], where the proportionality between

outgoing and incoming traffic is studied. With the advent of the SDN technologies, this

detection paradigm [YYGL16] has been revised, leading to analyze the flow-tables inherent

to the OpenFlow protocol. In this way DDoS attacks originated in groups of compromised

end-points can be detected [MKK11], which usually are IoT or end-user devices [JW13].

But this requires conducting monitorization and feature extraction processes on data

gathered in at least small/medium network regions.

Once the intrusion is recognized, the mitigation measures act. They involve the reactive

and proactive deployment of some of the aforementioned prevention techniques, as well as

the reinforcement of the network perimeters that displayed a higher risk level, which would

lead to define quarantine regions [MVSOGV18]. They can also assume the instantiation

of alternative countermeasures usually related to the active security model, among them

deployment of honeypots and decoys [WDMS17], or the redirection of malicious traffic to

sinkhole servers [JCG+17]. Within this security paradigm are framed the main techniques

for identifying the source of the threats. Their principal objective is to discover the

intruder, for which the adoption of traceback measures, highlighting among them packet
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marking techniques, is frequent. In [Int13] some of the most popular source identification

approaches are reviewed in detail. Note that because they often directly depend on the

network topology [KBP14], and the fact that in real scenarios they suffer restrictions

imposed by the different data protection policies [Den14b], their goal frequently tends to

be simplified as to get as close as possible to the intruder, in this way allowing to extend

the range of action of the instantiated security actuators.

DDoS has been extensively studied in the research literature, hence remaining as

a hot security topic. It has benefited from the advances of modern technologies, thus

sophisticating intrusion and evasion techniques and also gaining complexity in emerging

scenarios. This is a critical aspect to be considered when defining defensive strategies

against them.

3.3.2 Economic Denial of Sustainability Attacks

At November 2008, Hoff [Hof08] [Hof09] firstly hypothesized about the presence of a novel

strain of the denial of service threat, which was termed Economic Denial of Sustainability,

abbreviated EDoS. It described a specific family of attacks against the different cloud

computing platforms, where the intruder aimed on increasing the economic costs derived

from both maintenance and provision of the services offered, hence making their support

less viable, even achieving denial. Interested in this publication, R. Cohen [Coh09]

extended the EDoS definition by highlighting the important role played by exploiting

the self-scaling mechanisms considered by each provider. That is, if the attacker succeeds

in forcing the users to hire additional computing resources by exploiting the self-escalation

policies of the provider, clients will have to pay more, which may lead them to change

to a more competitive service supplier. This implies that the service offered ceases to be

profitable, and that hence the EDoS attack achieved its main purpose.

Although it is a novel concept, inherent to the emergent technologies, EDoS rapidly

drawn the attention of the research community and organizations for information security,

according to them becoming a DDoS variant framed in the categories Reduction of Quality

(RoQ) [BBBS17] and Fraudulent Resource Consumption (FRC) threats [SGSC16]. They

stated that EDoS typically attempt to exploit the ”pay-as-you-go” service model offered by

most of the cloud computing providers [SMR14] [SGS+17], which leads to its adaptation

to different metrics, and self-scaling policies or mechanism [BBBS17]. The following

describes its main characteristics, impact and the defensive strategies raised by the research

community.

3.3.2.1 Characteristics and impact

In general terms, EDoS attacks pose similarities with conventional DDoS threats,

especially those based on flooding [ZJT13]. However, EDoS pose a significantly

different problem that requires a separate solution: assuming the original definition of

Hoff [Hof08][Hof09], EDoS focuses on forcing the increase of the economic cost of a

cloud computing service instead of directly preventing its provision, as occurs in their

predecessors. Therefore, for the sake of effectiveness the number of connections and
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requests involved in their execution may resemble the legitimate activities. Hence network

metrics traditionally studied when detecting flooding-based threats (e.g. number of

requests, number of sessions, total amount of payload, bandwidth consumption, etc.)

display distributions similar to those gathered at normal traffic. Therefore, the attacker

usually exploits vulnerabilities at application layer with the purpose of extend the

computational cost of resolving the received requests [SGSC16]. In this last characteristic

lies the greatest difference between EDoS attacks and massive accumulations of legitimate

requests, the second commonly referred as flash crowds [YZJ+12], in which the processing

cost is similar to those of the requests monitored before the agglomeration.

The computational cost of attending the received requests can be exploited to induce

EDoS in several ways, for example by requesting large files or costly queries [BS15],

HTTP-requests on XML files [VS12], or taking advantage of alternative Application

layer vulnerabilities related with web services [ZJW+14] [SSK17][SC17]. G. Sonami et al.

[SGSC16] studied in-depth the impact of these threats, concluding that it varies depending

on the affected party. In the case of the customers, EDoS directly involves economic losses,

which can lead them to the election of more economical suppliers. This indirectly causes

the providers to lose customers, and therefore their profit is reduced. As discussed in

[SC17], the increase in the computation requirements for addressing the malicious requests

also implies a decrease in the quality of service offered, which is a consequence of the need

for among others, more infrastructure, deployment of additional network virtualization

functions (NFV), multi-tenancy capabilities, etc. It was defined by Bremler-Barr et al.

[BBBS17] as collateral damage, publication in which they demonstrated that by launching

an easy low-rate EDoS attack, it was possible to prompt additional causalities directly

related with enforce auto-scaling and the waste of resources it involves.

3.3.2.2 Defense against EDoS

Despite relevance, the bibliography does not include a large collection of publications

focused on the defense against EDoS threats. The studies that address this problem

usually assume metrics at network-level, usually confusing features for EDoS identification

with those that typically detect flooding-based DDoS attacks. The nature of EDoS threats

poses instead resemblance with normal network traffic behaviors, hence requiring different

defensive approaches to find particular discordances both at network and application level.

In [BS15][BM15][BSB16] some of the most relevant proposals are collected and discussed.

With the purpose of facilitate their understanding, they are classified according to their

scope, as traditionally organized in the research related with the defense against DDoS

[IT11]: detection, prevention/mitigation, and identification of sources.

Detection. The approaches aimed on detection share the main goal of identify the

threats. Therefore, they are often the triggering situation prior to the deployment of

mitigation capabilities or the identification of the attack sources. In the bibliography

there are two types of proposals assuming as classification criteria the scope of

the metrics to be analyzed: those extracted at local, and network monitoring

environments. Publications focused on local metrics traditionally model the
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consumption of resources and study the self-scaling processes [IT11]. Network-based

approaches analyze information provided by the packet headers [AHSS12][JSTD16],

and the browsing habits of the normal clients [KNB13][ITJ12]. Although few

investigations have focused on local traits, they demonstrated greater efficacy,

since they directly assume the definition of EDoS attacks originally posted by Hoff

[Hof08][Hof09]. However, methods based on network traits analysis take advantage

of the state of the art about flooding-based DDoS detection, which in many cases

has led to confusion between both types of attacks.

Mitigation and Prevention. Once the threat has been succesfully identified, the

proposals for mitigation act. They mainly focus on increasing the protected system

restriction level through the deployment of more complex access control techniques,

usually Turing tests based on image recognition [KSK+12] [AAB13] and resolution of

cryptographic puzzles [MARH13][KN09][KSK+12]. It is important to highlight that

most of the publications gathered in the state of the art addressed the mitigation

problem by the aforementioned classical solution for cloud computing security

incidents. On the other hand, publications for preventing EDoS threats aimed

on modeling and optimizing costs related with processing the malicious requests

[YTGW14]. Unlike mitigation approaches, they do not require the prior detection

of the threat. Notwithstanding, most of the proposals categorized in mitigation

could be deployed as prevention measures.

Identification of sources.Finally, the research that aims on identifying the origin

of the attacks attempt to discover the attacker itself. Given the difficulty that

this entails, and the fact that it is often not possible due to the restrictions of

Internet providers, as well as intermediate elements of the backbone, privacy and

data protection policies, etc. from the practical point of view, identifying the origin

is often simplified at reach as close as possible to the attacker. Most of the classic

techniques in the state of the art of the defense against conventional DDoS serve

for this purpose [ITJ12], among them those based on the analysis of error messages

[AR14], deployment of honeypots [WDMS17] or packet marking [YBV15], in all of

them playing the network topology an essential role [JL14].

Unlike DDoS, EDoS has recently drawn the attention of the research community. Thus,

it opens the possibility to evaluate its impact in modern and complex network scenarios

where virtualization plays a critical role. The literature has mostly framed the study of

EDoS threats in cloud deployments, however, and as discussed in Sections 2.4 and 3.2, the

immersion of virtualization technologies in 5G infrastructures arises new security concerns

to be addressed. Therefore, later chapters of this thesis delve into the study of EDoS

threats not only in cloud environments, but also in the contexts of self-organizing network

scenarios.
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3.3.3 Towards Crypto-ransomware Mitigation in 5G: A Self-organizing

Approach

Throughout last decade, crypto-ransomware evolved from a family of malicious software

with scarce repercussion in the research community, to a sophisticated and highly

effective intrusion method positioned in the spotlight of the main organizations for

cyberdefense. Its modus operandi is characterized by fetching the assets to be blocked,

their encryption, and triggering an extortion process that leads the victim to pay

for the key that allows their recovery. In this section, a novel defensive approach

based on the Self-Organizing Network paradigm and the emergent communication

technologies proposed in [SMMVGV18a] is examined. The proposal exemplifies the

smart management of network-based countermeasures against crypto-ransomware without

human supervision, as well as the adaptation of the defensive deployment to the state of

the monitored environment in a context of new generation networks. This is possible

by instantiating/removing sensors and actuators according to their effectiveness and the

risk level of the region they operate; and by establishing regions of quarantine for stronger

monitoring and actuation. They enhance the orchestration of smart defensive deployments

that adapt to the status of the monitoring environment and facilitate the adoption of

previously defined risk management policies. In this way it is possible to efficiently

coordinate the efforts of sensors and actuators distributed throughout the protected

environment without supervision by human operators, resulting in greater protection with

increased viability. Recently, and in parallel with the development of local-level solutions,

the research community studied the impact of the crypto-ransomware on communication

processes. This prompted the publication of the first proposals based on analyzing network

features in emerging scenarios, as is the case of [Zah17] at Internet of Things (IoT) or

[Lee17] at Cloud Computing. Hence, such approaches raises awareness on the importance

of deploying more advanced defensive schememes adapted to emerging networks and, in

particular, to 5G architectures.

According to the standardized framework for SON 3GPP networks, a closed-loop

approach allows a reduction of the operational costs, hence streamlining decision-making

and counteracting. As highlighted in [HSS12b], even the simplest self-organized networks

govern their behavior based on information monitored by sensors. Therefore, the proposed

defense against crypto-ransomware has as starting point data collected by sensors scattered

throughout the protected environment. In order to generate high level metrics and identify

traits of suspicious behaviors, the monitored information is aggregated and analyzed at a

different data processing plane. Note that with the purpose of minimizing the impact of

the sensor at the end-points both aggregation and analysis tasks are launch on dedicated

servers. From the acquired situational knowledge it is decided when to deploy or remove

the additional security measures, which are executed by actuators defined as agents in

charge of closing the loop by enforcing security policies.

The algorithm that manages the situational awareness and dictates the immune

responses per network region is illustrated in Figure 3.3. There three intelligent loops

are described, each of them having a different purpose (see Table 3.1). The first closed



3.3. Network Incident Management in 5G 37

No

Init

End-point analysis

Threats

NIDS Deployment

Flow Traffic 
Monitoring

NIDS removal

Threats

Sinkhole List 
Refresh

Decoy Deployment

Decoy removal

Decoy Aanalysis

Threats

Interrupt/Alert

Interrupt/Alert

Interrupt/Alert

Yes

Yes

No

No

Yes

No

Yes

Yes

No

YesNo

First Loop: 
Threat Discovery

Second Loop:
Quarantine

Third Loop:
Active Shield

Deployed NIDS?

Quarantine 
expired?

Deployed 
Decoys?

Quarantine 
expired?

Figure 3.3: Self-organization per defended region as flowchart

loop is termed Threat Discovery and focuses on recognizing discordant behaviors typical of

cryptomalware at the end-points. This process runs continuously and serves as triggering

for the most basic network-level actuations, which entail the deployment of additional

monitoring elements at regions suspected of having been compromised. During the second

closed loop, referred as Quarantine, they perform as sensors that aim to manage the

passive security countermeasures deployed at the affected regions (areas in quarantine),

hence deciding how long they should remain operational, their configuration, and if it is

required to increase their restriction level. Therefore, each iteration of the second loop

has three possible consequences: leaving the defensive deployment as it stands, recalling

actuators (i.e. dismantle quarantined regions), or incorporating active security measures

[Den14a] (which behave much more restrictive); in particular, the latter is accomplished

by adding decoys and sink servers [Kea16]. If it is decided, the third closed loop is

triggered, which is refereed as Active Shield. This loop is responsible for managing the

active security countermeasures, hence orchestrating a second quarantine layer limited by

their range of action. Its execution can lead to two possible consequences: maintaining

the active defensive deployment or dismantling the second quarantine layer, which occurs

when the level or risk significantly decreases.

The three closed-loops described so far introduced a novel self-organizing defensive

approach which allows the smart coordination and calibration of countermeasures

deployed as sensors and actuators. Such defensive scheme orchestrates their instantiation

considering the acquired situational awareness of the protected environment and risk

level. It has empowered by the adoption of emerging communication technologies inherent

to the progress towards the development of new generation networks (5G). Therefore,

this approximation discloses the applicability of knowledge-based autonomic management

towards the mitigation of crypto-ransomware threats, whilst it opens interesting lines for

future research.
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Table 3.1: Closed-loops for crypto-ransomware defense

Feature First loop Second loop Third loop

Name Threat Discovery Quarantine Active Shield

Quarantine region triggering First-level Second-level

Quarantine region management First-level Second-level

Sensors
HIDS DPI Decoys

Sandboxes Sinkholes

Actuations

Local process
interruption

Custom handshake
interruption

Traffic redirection

Notification Notification Sinkhole configuration

DPI and NFVs
instantiation

Decoy NFVs
instantiation

Data gathering

Sinkhole
configuration

Notification

3.4 Final remarks

Research initiatives are performed worldwide to reach the maturity level expected for 5G

networks bearing in mind the timeline towards the year 2020, when it is expected to find

the first release of this technology. The SELFNET project is aligned to that strategy

tackling with the autonomic network management on self-organized environments. The

accomplishment of this relies on the ability to acquire knowledge to understand the network

context in order to perform efficient decision-making processes. The Situational Awareness

model proposed by Endsley contributes to this purpose by providing a contextual-based

analysis model on which the stage of projection aims to infer the current and future

status of the monitored network. This approximation gains relevance in the incident

management lifecycle to attain cognitive-based defensive approaches. To accomplish the

research objectives of this thesis, the state of the art of two network threats were reviewed

for immersing into knowledge-based detection strategies later in Chapters 7 to 9, where

the proposed use case scenarios and countermeasures suited for self-organizing networks

are studied in detail.



Chapter 4

Prediction Algorithms and

Adaptive Thresholding

This chapter introduces the prediction algorithms and adaptive thresholding methods

applied throughout this research, which provide forecasting capabilities in the knowledge

acquisition process, as part of the autonomic network management. The contents of

this chapter are organized as follows: Section 4.1 describes the prediction landscape

on networking. Section 4.2 describes well-known forecasting algorithms for univariate

analysis. Section 4.3 introduces the adaptive thresholding approach considered to estimate

a prediction interval for analysis purposes. Finally, Section 4.4 remarks the conclusions of

this chapter.

4.1 Network prediction

Anticipating the occurrence of network incidents or events grants the network the

capability to react proactively when dealing with network threats that might produce

a degradation of the service quality or, in the worst case, the unavailability of the service.

Such approach can be conducted by predicting the evolution of monitored network metrics

over time. When sampled, measured or collected on periodic time intervals; those metrics

can be represented as time series, which leads to the application of prediction algorithms

for estimating their behaviour. Given the heterogeneity of the monitored metrics, not all

the algorithms might be suitable for performing prediction since they take into account

different time series attributes such as the trend, seasonality, variance, among others.

Hence, some prediction methods perform better when assessed on a given time series.

5G networks envision heterogeneous scenarios where context-based prediction plays an

essential role in several domains such as geographic, network link, traffic mesurements,

social-type, among other network contexts. The deployment of proactive actions enables

an autonomic approach where the network can take benefit of future conditions for

accomplishing the Key Performance Indicators (KPIs) established by 5G [BCH+17].

Thereby, the prediction algorithms introduced in this chapter are intended to drive the

inference of knowledge related with forecasted data in the detection of network scenarios

that can led to the inference of discordant behaviours. Three main categories of algorithms

39
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are identified to this end: moving average, smoothing, and autorregresive models.

On the other hand; rather than being exact, predicted metrics need a confidence

interval on which its precision can be assessed. To this end, an approach for building

adaptive thresholds taken the forecasted estimation as a baseline is mandatory. As a

result, prediction interval should be estimated for assessing the behaviour of the monitored

metrics, which is introduced at the end of this chapter.

4.2 Prediction Algorithms

The most relevant prediction methods for univariate analysis on time series are described

in this section, which are summarized below.

4.2.1 Cumulative Moving Average

Let a sequence of serialized data x1, x2, . . . , xn, the purpose of the Cumulative Moving

Average (CMA) [Men15] is to calculate the average of the data stream CMAi, 0 < i ≤ n
from the first observation until the element xi. This matches with the following recursive

expression:

CMAn =

∑n
i=0 xi
n

(4.1)

where the CMA at n+ 1 is expressed as follows:

CMAn+1 =
xn+1 + n× CMAn

n+ 1
(4.2)

deduced by assuming x1 + . . .+ xn = n× CMAn.

This approach is also known as running average or long running average. Usually

considered as a smoothing method for time series that equally takes into account all the

registered observations, the CMA provides a good baseline to infer predictions. Figure 4.1

illustrates an example of prediction by CMA estimation on a randomly generated time

series.
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Figure 4.1: Example of prediction by CMA



4.2. Prediction Algorithms 41

4.2.2 Simple Moving Average

The Simple Moving Average (SMA) is another smoothing strategy based on the mean of

the last n observation within a time series [JBMS99]. It can be expressed as a constrained

variation of the CMA, where m is the length of the subsequence to be taken into account.

The SMA is formulated as follows:

SMA =
Pm + Pm−1 + . . .+ Pm−(n−1)

n
=

1

n

n−1∑
i=0

Pm−i (4.3)

and the next SMA is forecasted as expressed below:

SMAt+1 = SMAt +
Pm
n
− Pm−n

n
(4.4)

As is the case of CMA, throw the addition of the previous registered absolute errors

it is possible to infer the future values of the analyzed time series. The higher is m, the

greater is the similarity with the CMA. Hence the smoothing is more relevant, but also the

time consumption of the algorithm. An example of predictions form m = 4 on randomly

generated time series is illustrated in Figure 4.2.
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Figure 4.2: Example of prediction by SMA m = 4

4.2.3 Double Moving Average

The Double Moving Average (DMA), was introduced by Mullony

[KW08][Mul94a][JBMS99] with the purpose of mitigate the time consumption of

the traditional moving average compositions. In the previous bibliography, and especially

at financial domain, it was a common practice to repeat the SMA calculation in order to

highlight specific indicators related with the analysis of stocks and commodities. Given

the following SMA refereed as Mt for a time series of observations:

Mt =
Yt + Yt−1 + . . .+ Pt−(n+1)

n
(4.5)

and the following SMA M
′
t contructed from its smoothing:
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M
′
t =

Mt +Mt−1 + . . .+Mt−(n+1)

n
(4.6)

DEMA is formulated as follows:

DMAt = 2Mt −M
′
t (4.7)

The prediction of future observations is based on the parameter bt expressed as:

bt =
2

n− 1

(
Mt −M

′
t

)
(4.8)

which allows inferring the Ŷ observation in t+ p as follows:

Ŷ = DMAt + btp (4.9)

So as is the case of SMA, DMA inherits the adjustment parameter m for defining the

size of the considered observation window. Figure 4.3 illustrated the prediction calculated

for m = 4.
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Figure 4.3: Example of DMA prediction with m=4

4.2.4 Weighted Moving Average

In contrast with the previous moving averages, the Weighted Moving Average (WMA)

considers different multiplicatively weights to the observed data in different positions of

the time series [FL14]. This allows attaching more importance to recent events, hence

providing more quickly reactions to the recent changes. WMA is widely implemented for

calculate different indicators, such as the trend direction, support and resistance areas

at financial domain and accommodate forecasting. Let the x1, x2, . . . , xn sequence, it is

formulated as follows:

WMAt =
wtxt + wt−1xt−1 + . . .+ wt−(n+1)xt−(n+1)

n+ (n− 1) + . . .+ 2 + 1
=

∑n
t=1wtxt∑n
t=1wt

(4.10)

where wi, 1 ≥ i ≤ n is the weight for the observation at i. The current implementation
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of WMAt assumes the classical wi = i weighting definition. As is the case of SMA,

predictions are obtained through addition of the previous registered absolute error between

the WMA and its corresponding observation, to the last observation (see Figure 4.4).
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Figure 4.4: Example of prediction with WMA

4.2.5 Simple Exponential Moving Average

The Simple Exponential Smoothing (EMA) method [ASMW15], also known as

exponentially weighted moving average (EWMA), is another fast response strategy

that providers grater novelty discovery at the expense of being more prone to abrupt

fluctuations (i.e. false signals). Unlike WMA, the EMA weighting factors decrease

exponentially, so it can be considered a particular case of WMA which satisfied such

feature. It is usually formulated as the following recursive expression:

EMA1 = x1 (4.11)

EMAt = αxt + (1− α)EMAt−1 (4.12)

where α, 0 <= α <= 1 is the adjustment parameter of the degree of the weighted decrease.

The higher α the most relevant are the new observations.

As it is illustrated in Figure 4.5, α = 0.4 provides a smoothed base for infer the next

observations when performing prediction with EMA.

4.2.6 Double Exponential Moving Average

It is typical that the application of EMA in the financial domain results in the requirement

of calculating several variations of EMA for different time periods and degrees of the

weighted decrease, and they contrast. This used to be a very expensive approach in

terms of computational resources, hence motivating the publication of similar methods.

Among them it is important to highlight the Double Exponential Moving Average (DEMA)

proposed by Mulloy. Similarly to DMA, DEMA is calculated for a time series of

observations as follows:
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Figure 4.5: Example of prediction with EMA for α = 0.4

EMA1 = x1 (4.13)

EMAt = αxt + (1− α)EMAt−1 (4.14)

and the following EMA
′
t constructed from its smoothing:

EMA
′
1 = x1 (4.15)

EMA
′
t = αxt + (1− α)EMAt−1 (4.16)

DEMA is formulated as follows:

DEMAt = 2EMAt − EMA
′
t (4.17)

The prediction of future observations is based on the parameter bt expressed as:

bt =
2

n− 1

(
EMAt − EMA

′
t

)
(4.18)

which allows inferring the Ŷ observation in t+ p as follows:

Y = DEMAt + btp (4.19)

An illustrative example of prediction with DEMA for α = 0.4 is illustrated in Figure

4.6.

4.2.7 Triple Exponential Moving Average

As an alternative to DEMA P.G. Mulloy proposed the Triple Exponential Moving Average

(TEMA) [Mul94a]. It provides an additional smoothing level, which is calculated from

the EMA:
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Figure 4.6: Example of prediction with DEMA for α = 0.4

EMA1 = x1 (4.20)

EMAt = αxt + (1− α)EMAt−1 (4.21)

the following EMA
′
t contructed from its smoothing:

EMA
′
1 = x1 (4.22)

EMA
′
t = αxt + (1− α)EMAt−1 (4.23)

and the EMA
′′
t that considers the previous baselines:

EMA
′′
1 = x1 (4.24)

EMA
′′
t = αxt + (1− α)EMA

′
t−1 (4.25)

so TEMA is summarized as follows:

TEMAt = 3EMAt − 3EMA
′
t + EMA

′′
t (4.26)

Figure 4.7 illustrates an example of prediction with TEMA calculated when α = 0.2.

4.2.8 Simple Exponential Smoothing

The Simple Exponential Smoothing (SES) was introduced by R.G. Brown [Bro57] and

extended by C.C. Holt [Hol04] as an extension of an analytical approach attributed to

Poisson. It is a variation of EMA suitable for predict observations on time series with no

trend or seasonal pattern, represented by the following recursive expression:

St = αyt−1 + (1− α)St−1 (4.27)
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Figure 4.7: Example of prediction with TEMA

where 0 < α < 1, t >= 3, yi is the observation at i, and α is the smoothing constant.

There are several approaches to the problem of fix the base case of this expression. Hence,

the prediction approach assumes the classical S2 = y1, postponing the exploration of

alternative strategies for future work. On the other hand, as frequently observed in the

bibliography, the adjustment of the parameter α is obtained by calculating the values

minimizing the function Sum of the Squared Errors of prediction (SSE) at the initialization

observations, defined as:

SSE (α, ) =
N∑
t=1

(
Hα (X)t −Hα (X)t|t−1|

)2
(4.28)

On this basis, the forecasted values are calculated as follows:

St+1 = αyt + (1− α)St (4.29)

which is also expressed as:

St+p = St + αεt (4.30)

where εt is the prediction error observed at t. Figure 4.8 illustrates an example of prediction

with SES. Given that the adjustment parameter is auto-fitted, the forecast demonstrated

a very accurate behavior.

4.2.9 Double Exponential Smoothing

By definition, SES may not operate effectively when there is a trend in the analyzed time

series. In order to mitigate this drawback, the Double Exponential Smoothing (DES)

algorithm was proposed [GJ06]. It introduces an additional constant γ related with the

degree of trend, and a second equation taking it into account. The new recursive ecuations

are detailed below:

St = αyt−1 + (1− α) (St−1 + bt−1) (4.31)
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Figure 4.8: Example of prediction with SES

bt = γ (St − St−1) + (1− γ) bt−1 (4.32)

where 0 <= α >= 1, 0 <= γ <= 1. As is frequent in the bibliography, the case bases are

the initializations St = y1 and b1 may be:

b1 = y2 − y1 (4.33)

b1 =
1

3
[(y2 − y1) + (y3 − y2) + (y4 − y3)] (4.34)

b1 =
yn − y1

n− 1
(4.35)

Predictions based on these methods are then calculated as follows:

yt+1 = St + bt (4.36)

yt+m = St +mbt (4.37)

An example of their implementation is illustrated in Figure 4.9.
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Figure 4.9: Example of prediction with DES
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4.2.10 Triple Exponential Smoothing

Unlike DES, the Triple Exponential Smoothing (TES) algorithm takes into account the

seasonal changes of time series [Win60]. Therefore, it incorporates a new adjustment value

β related with the seasonal degree and an addition recursive expression, so it is calculated

by:

bt = α (yt − St−N ) + (1− α) (bt−1 + Tt−1) (4.38)

Tt = β (bt − bt−1) + (1− β)Tt−1 (4.39)

St = γ (ytt − bt) + (1− γ) bt−N (4.40)

where bt is the base estimation at t, the estimation of the trend is Tt and the estimation

of the seasonal factor is St. The parameters α, β, γ fall in the range 0 < α, β, γ < 1,

and facilitate the adjustment of the smoothing. The prediction prediction yt+m is usually

calculated by additive or multiplicative operations, being additive:

yt+m = mbt + Tt−m + St (4.41)

and multiplicative:

yt+m = (St +mbt)Tt−m (4.42)

The first one is recommended for analyzing time series with significant trend and

additive seasonal component, and the second is best suited for data with multiplicative

seasonal component. Another important aspect to keep in mind is the initialization method

of b0, T0, S0 estimators. It is assumed that when no trend or seasonality is expected on the

time series, the initialization of estimators based on the latest observations is preferable

over the use of global measures. The implemented method is described in [MWH97], which

has proven to behave particularly well in similar use cases. Namely, the last twenty-four

observations are considered. The calculations performed are the following:

b0 = M1 (4.43)

T0 =
M2 −M1

12
(4.44)

St−12 =
pt
M1

(4.45)

where M1 summarizes the first twelve observations and M2 the last dozen. The adjustment

of parameters α, β, γ is obtained by calculating the values minimizing the sum of the

squared errors of the prediction.

Figure 4.10(a) and Figure 4.10(b) illustrated examples of the results of forecasting with

Holt-Winters.



4.2. Prediction Algorithms 49

0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

Observation

V
al

ue

 

 

Time Series
TES Ft +

(a) Additive

0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

Observation

V
al

ue

 

 

Time Series
TES Ft X

(b) Multiplicative

Figure 4.10: Example of prediction with TES.

4.2.11 Autoregressive Models

The Autoregressive Model family, unlike the exponential smoothing approaches, is not

based on decomposing the datum into factors. Instead its output variables depend linearly

on the previous observations and on a stochastic term.

4.2.11.1 Classical Autoregressive Model (AR)

The classical AutoRegressive AR(p) [Aka71] model is defined as:

Yt = µ+ φ1YT−1 + . . .+ φPYT−P + εt = µ+

N∑
i=1

φiYT−i + εt (4.46)

where epsilont is white noise (noise with mean cero), phi1 . . . φp are the parameters of the

model, µ is a constant value, and p is the order (number of time lags) of the autoregression.

The seasonal condition must be satisfied in the autoregressive part, and it is required for

the adjustment of ARMA models.

4.2.11.2 Moving Averages Model (MA)

The Moving-Average MA(q) [SD84] model is a different approach, where the output

variable depends linearly on the current and various past observations, so learn of the past

errors is possible. Note that q is the order of the moving-average model. MA instantiations

are defined by the following expression:

Yt = µφ1YT−1 + . . .+ φPYT−P + at − θ1aT−1 − . . .− θpaT−q (4.47)

equivalent to:

(1− φ1B − . . .− φpBp)Yt = µ+ (1− φ1B − . . .+ φpB
p) at (4.48)

and summarized as:
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φp (B)Yt = µ+ Θ (B) at (4.49)

Unlike AR, they are always seasonal, but must satisfy the invertibility condition.

4.2.11.3 Autoregressive Integrated Moving Average (ARIMA) Model

The combination of AR and MA lead to the definition of the Autoregressive Integrated

Moving Average ARIMA(p, d, q) [HT82] model, also known as Box-Jenkins models, which

is a generalization of ARMA that overcome its inoperability with non-seasonal data,

where d is the degree of differencing (the number of times the data have had past values

subtracted in order to became seasonal). A classical ARIMA model is expressed as follows:

YT−1 − a1YT−1 − . . .− ap′YT−p′ = εt + θ1εt−1 + . . .+ θqεt−q (4.50)

where ai are the parameters of the autoregressive part, θi are the parameters of the

moving average part and εt is the white noise. The adjustment of p, d, q may be the

ARIMA model equal to other forecasting models. For example ARIMA(1,1,0) is simply

random walk, ARIMA(1,0,0) is AR, ARIMA(0,0,1) is MA, ARIMA(0,0,0) is white noise,

ARIMA(0,1,1) is simple exponential smoothing, ARIMA(0,2,2) is double exponential

smoothing, etc. The calibration of the best suited algorithms can be performed by

several strategies, highlighting among them the Akaike Information Criterion (AIC) and

the Gaussian approximation Criterion.

Predictions on ARIMA models are generated by a generalization of the autoregressive

forecasting method where:

Yt = µ+ φ1YT−1 + . . .+ φPYT−P − θ1εt−1 − . . .− θqεt−q (4.51)

Figure 4.11(a) and Figure 4.11(b) illustrate examples of ARIMA based forecast.
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Figure 4.11: Example of prediction with ARIMA.
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4.3 Adaptive Thresholding

For the evaluation of the prediction errors, two adaptive thresholds are constructed: an

upper threshold Athup and a lower threshold Athlow. They establish the Prediction

Interval (PI) of the observation, which is defined in the same way as is usually performed

in the bibliography [MWH97], hence assuming the following expressions:

Athup = x̂n+1 +K
√
σ2(Et) (4.52)

Athdown = x̂n+1 −K
√
σ2(Et) (4.53)

where x̂n+1 is the prediction of x at n+1, Et is the prediction error, and p0 is the prediction

of the last observation. The prediction error is given by the absolute value on the difference

between the forecast and the t observation. The variance σ2(Et) is calculated considering

the prediction error at the prediction period t (i.e. the horizon of the estimation).

In addition, the thresholds include a parameter K, from which use case operators are

able to adjust the sensitivity of the constraint. The default value of K is Zα/2 thus relating

the thresholds with the normal distribution of the series. Note that this is not a wrong

decision considering publications as [HKOS05], where it was shown that when the time

series does not approach the normal distribution, the error is unrepresentative; in the case

of the exponential smoothing algorithms, the margin rate of both intervals is in the order

100(1− α), where α, 0 < α < 1, is the smoothing constant.

Based on these equations it is possible to deduce that the higher the value of K, the

lower the level of restriction of the thresholds; therefore, the system will operate with

greater tolerance to prediction errors (see Figure 4.12(a), where K = 1.5). In the opposite

case, the system tends to infer a greater amount of facts related to the exceedance of

some of the prediction thresholds (see Figure 4.12(b), where K = 0.5). Its configuration

depends on the characteristics of the use case, and it is highly recommended its calibration

by machine learning approaches.
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Figure 4.12: Example of Prediction Intervals and K variations.
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4.4 Final Remarks

This chapter reviewed the prediction and adaptive threshold methods applied on univariate

time series for estimating forecasted observations. To this end, observations are modeled

according to the mathematical approximation conducted by the reference forecasting

method. Because of the importance of dealing with predictive capabilities when projecting

the status of the network, as indicated by the Endsley model, some of these methods are

conveniently applied in the forthcoming chapters of this research with the objective to

perform data forecasting analysis.



Chapter 5

Pattern Recognition

This chapter introduces well-known pattern recognition algorithms that are intended to

infer similarities between samples composed by grouped metrics, and datasets of reference

samples. Because three main pattern recognition actions are distinguished in the literature,

the chapter contents have been organized as follows: Section 5.1 outlines the pattern

recognition landscape in networking. Section 5.2 describes the classification algorithms.

Section 5.3 introduces common matching methods documented in the literature, whereas

novelty detection approaches are presented in Section 5.4. Finally, Section 5.5 provides

the concluding remarks of this chapter.

5.1 Pattern Recognition in Networking

The ability to analyze huge amounts of monitored data in emerging communication

environments is crucial for accomplishing an efficient autonomic management. It strongly

depends on the capability to disclose pattern and common behaviours on the sampled

data, which is achieved by automating the classification of sampled data taken as input

into a finite number of categories.

From the networking perspective, the need of searching patterns in data is fundamental

in emerging contexts, hence gaining relevance in 5G. The patterns to look for are already

available in the reference datasets used when supervised training mode is managed, which

reduces the need to perform costly testing to disclose a particular pattern. This trait poses

a major advantage for accomplishing autonomic management since the timely recognition

of a given pattern can lead to enhance the decision-making process, and the consequent

deployment of countermeasures in the monitored environment.

For instance, in the field of traffic classification, the research community has

investigated classification approaches for inferring application-level usage patterns without

the need to deploy Deep Packet Inspection (DPI) servers. It provides not only faster

response time against pre-defined network threats, but also significantly less processing

overhead in the network. Such approaches classify traffic patterns by identifying

statistical patterns in traffic attributes such as the packet length or inter-packet arrival

for categoryzing applications of interest for management purposes [NA08].

Complementary, matching and novelty detection methods have gained importance in

53
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the analysis of modern network environments. Novelty detection methods determine

wheter an observation belongs to the same distribution as the existing ones (inlier) or

not (outlier), whereas matching aims to evaluate if a sample of observations is equal to

any of the reference samples of a dataset. As is the case of classification, autonomic

network management can take advantage of both novelty detection and matching in the

inference of knowledge about the monitored environment. Thereby, the characteristics of

those pattern recognition actions are described in the forthcoming sections.

5.2 Classification

This section focuses on the Decision Stump, RepTree, Random Forest, Bootstrap

Aggregation, Adaptive Boosting, Bayesian Network and Näıve Bayes classifiers.

5.2.1 Decision Stump

The decision stump is a simple tree classification model that unlike other tree proposals in

the bibliography, only performs one split, hence being commonly considered as a one-level

decision tree [JST+07]. The decision stump approaches regression based on a single

feature, which makes it not the most powerful classification tool but a simple an efficient

solution, usually being adopted as component in machine learning ensemble approaches,

such as bagging or boosting [FI92][SL91]. Figure 5.1 illustrates an example of classification

based on decision stump. The algorithm concludes that the pEntropy feature is the most

relevant, and built a one-level tree for deciding if the analyzed samples belong to the class

“legitimate” or “botnet”. In the example the hit rate was 84

pEntropy<= 0.695
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Figure 5.1: Example of classification by Decision Stump



5.2. Classification 55

5.2.2 Reducing Error Pruning Tree

RepTree is a simple tree-based classification method that lies in the Reducing Error

Pruning for Tree construction (REPT) technique [SL91]. Note that REP is a simple

pruning approach that creates tree-based classifiers by the following procedure: starting

at the leaves, their nodes are replaced with the most relevant classes. If the accuracy of

the resultant classifier is not worsened, the changes prevail. This approach reduces the

size of decision trees by removing sections of the trees that provide little power to classify

instances. RepTree builds decision/regression trees based on the principle of computing

the information gain with entropy and minimizing the error arising from variance, and then

pruning them by applying reduced-error pruning with backfitting [BF85]. The resultant

classifier is a multi-level tree in which each level evaluates conditions of a particular

attribute. Figure 5.2 illustrates an example of RepTree automatically plotted by the

tool WEKA.

1: pEntropy

2: pCounter

4: pCorrelation3: Legitimate (7/0) [3/0]

5: Legitimate (4/0) [1/0] 6: Botnet (22/0) [12/0]

7: Legitimate (33/0) [18/0]

< 0.48 >=0.48

<22 >=22

<0.16 >=0.16

Figure 5.2: RepTree for Botnet detection

5.2.3 Random Forest

According with the random forest scheme proposed by Breiman [Bre01], a random forest

is a classifier consisting of a collection of tree-structured predictors such that each tree

depends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest. In particular, the original approach implemented

the variation of Classification And Regression Trees (CART) [RJPD14a] that choose which

variable to split on using a greedy algorithm that minimizes error. The final classification

of a PRSample container comes from the correlation of the classifications emitted by all

the generate trees; in this way, the likelihood of a sample belonging to a class is the

probability of being emitted as a classification by some of the trees (see Figure 5.3).

Note that this process requires the specification of several adjustment parameters

such as the maximum amount of iterations to be performed, number of trees or their

maximum depth. However, as highlighted by Breiman, the number m of randomly

selected attributes is the only adjustable parameter to which random forests are somewhat

sensitive. This value determines the correlation between each pair of trees and the strength
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Figure 5.3: Random Forest

of each individual tree. By increasing the aforementioned parameter, both correlation and

strength increase. When the correlation grows, the forest error rate increases; in the

opposite, when strength grows the forest error rate decreases, so the level of both features

must be balanced.

5.2.4 Bootstrap Aggregation

Bootstrap Aggregation, also refereed as bagging, is an ensemble algorithm with

classification and regression capabilities. In the implementation of bagging, based in

the proposal of Breiman [Bre96], bootstrap is adopted as statistical estimation technique

where certain statistical indicators (i.e. mean, variance, etc.) are from multiple random

samples within the reference dataset with replacement. Breiman extended this approach

to machine learning models. In this way, different machine learning models are built from

multiple random samples of the training dataset (hence the term bagging) (see Figure 5.4).

When classifying samples, the results of the different classifiers are aggregated in order

to provide a unified solution. Therefore, this is a scheme very similar to Random Forest,

but with a major distinction: in Bootstrap Aggregation all features are considered for

splitting each node. On the opposite, in Random Forests only a subset of the attributes

is selected at random out of the total. Then the best split feature of the subset is applied

to split each node in a tree.

5.2.5 Adaptive Boosting

Adaptive Boosting [ROM01], also refereed as AdaBoost, is a machine learning algorithm

which inherits the idea of combining different classifiers observed in Random Forest or

Bagging, but with the nuance that the results obtained by a classifier are taken into account

when building the next one (boosting). Adaptive Boosting was originally designed to
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Figure 5.4: Training in Bootstrap Aggregation

consider simple decision tree classifiers, each with a single decision point (usually decision

stumps). At training stage, each sample in the training dataset is weighted and the

weights are updated based on the overall accuracy of the model and whether an instance

was classified correctly or not (see Figure 5.5). In particular, a weight wth is assigned

to each sample within a reference dataset equal to the current error E(FT−1(xi)) on that

sample, where FT−1 is the previous classifier and xi the input in position i. This process is

repeated until certain minimum error is achieved or when it is not possible to improve the

obtained results with new training steps. The classification consider the decision made by

every classifier, but weighted according to their weights, so the final output of the system

is obtained as a weighted linear combination of all base classifiers.

5.2.6 Bayesian Network

Bayesian Networks are the graphical representation of sets of random variables and their

relationships by means of acyclic directed graphs, in which the vertices are the observed

data and the edges their conditional probabilities. As indicated by Buczak and Guven

[BG16], these structures can be constructed by experts or algorithms based on inference,

which constitute the modelling stage of the system. An example of a Bayesian Network

is illustrated in Figure 5.6, where vertices are sample features (ex. communication delays,

bandwidth, number of sessions, etc.) and edges are the probability that one observation

involves a dependency with another according to the Bayes theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(5.1)

where A and B are the monitored features. There are different approaches for building

Bayesian Networks with classification capabilities [WkB], distinguishing two major model

building steps: structure learning and probability estimation. The first stage aims on

defining the Beyesian Network structures, being supported the different sets of methods:

local and global score based algorithms, conditional independence tests, or even loading a

predefined structure.
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Figure 5.5: Adaptive Boosting

5.2.7 Näıve Bayes

Näıve Bayes [JL95], is not a simple method, but a family of algorithms based on the

Bayes theorem sharing a common principle: every feature being classified is independent

of the value of any other feature (hence the adjective näıve). Because of this, Näıve Bayes

classifiers are considered Bayesian Networks with a simple structure that has the class

node as the parent node of all the attribute nodes (see Figure 5.7). This characteristic

makes them much simpler and faster than the conventional Bayesian Networks. On the

other hand, if the conditional independence assumption actually holds, the classifier will

converge quicker than Bayesian Networks, hence requiring less training data.

5.3 Matching

Matching has the goal to test if a sample of observations is equal to any of the samples

contained in a reference dataset. Note that unlike classification actions, matching does not

take into account the degree of similarity between the monitored data and the reference

samples or the class they belong; only if the sample appears as it is in any of them. Hence

the class attribute of the ARFF dataset files is ignored.

5.3.1 Dictionaries and Bloom Filters

Bloom filters [RK15] are probabilistic data structures used to determine whether a data

belongs to an impractically large dataset or not. Their main features are enormous
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Figure 5.6: Bayesian Network

efficiency (θ(k)cost), low memory consumption and non-generation of false negatives,

which are achieved at the cost of storing only the information strictly necessary to

determine if an observation was previously observed. Note that when datasets are small,

they are easily managed by conventional data structures (lists, maps, etc.). But when

they are very large, Bloom filters are one of the few structures capable of handling all

the information they contain for their specific purpose. Because of this Bloom Filters are

frequently applied in networking with different purposes, among them pattern matching

and Deep Packet Inspection (DPI) [RL06] [GVSOMV17].

The most common representation of a Bloom filter is an array of m bits with k different

hash functions, each of which maps or hashes some set element to one of the m array

positions, hence generating a uniform random distribution (see Figure 5.8). Given the

probabilistic nature of this data structure, the use of a number of inappropriate hash

functions and operating over a too large sample space may lead the Bloom filter to generate

false positives. This occurs when collisions occur when consulting filter records, i.e. the

dispersion function redirects the search to two or more different positions which have

different values. The collision is due to the fact that the just identified element has not

been observed before, but when previously registering another observation, some of the

positions that represent the new one was modified.

The best Bloom filter setting is approached based on the following probability of issuing

false positives [GA13]:

TFP =
(

1−
(

1− 1

m

)kn)k
≈
(

1− e
−kn
m

)k
(5.2)

where n is the number of elements to classify, m is the number of bits that identify the
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Bloom filter slots, and k is the number of dispersion functions. Bearing this expression in

mind, it is possible to calculate the optimal amount of dispersion functions for a particular

sensor according to its specification. This is summarized as follows:

K =
m

n
× ln2 (5.3)

Alternatively, a simple way to enhance the Bloom filter hashing is considering universal

hash functions. But their implementation often involves the increase of m, in this way

penalizing the size of the representation in memory of the structure.

5.4 Novelty Detection

Novelty detection is usually defined as the task of recognizing that test data differ in some

respect from the data that are available during training, which also can be refereed as

one-class classification [PCCT14]. These methods are usually applied to solve problems

where the analytic system was provided by a long and complete collection of reference
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samples (commonly “normal” observations), and it is required to decide if the observed

data can be tagged as belonging to the population on the reference dataset, or it has

“discordant” nature. For example, let the dataset illustrated in Figure 5.9 which contains

instances characterized by basic IPFIX features (source, destination and nPackets) and

some aggregated metrics calculated from the packets they represent (pEntropy and

NLevenshtein).

% 1. Title: Network traffic flows 

   %  

   % 2. Sources: 

   %      (a) Creator: J. Maestre Vidal 

   %      (b) Institution: UCM 

   %      (c) Date: March, 2017 

   %  

@relation habitualTraffic 

@attribute 'source' string 

@attribute 'destination' string 

@attribute 'nPackets' numeric 

@attribute 'pEntropy' numeric 

@attribute 'NLevenshtein' numeric 

@attribute 'class' {habitual} 

@data 

"192.16.25.13","162.65.30.04",50,0.45,0.48,habitual 

"192.16.25.18","162.65.30.06",115,0.65,0.26,habitual 

"192.16.25.19","162.65.30.20",65,0.71,0.84,habitual 

"192.16.25.20","162.65.30.06",47,0.53,0.89,habitual 

"192.16.25.13","162.65.30.06",260,0.63,0.83,habitual 

"192.16.25.19","162.65.30.04",179,0.65,0.54,habitual 

"192.16.25.13","162.65.30.20",135,0.48,0.61,habitual 

"192.16.25.18","162.65.30.04",78,0.73,0.97,habitual 

"192.16.25.20","162.65.30.31",56,0.71,0.34,habitual 

"192.16.25.13","162.65.30.06",93,0.59,0.61,habitual 

"192.16.25.13","162.65.30.32",165,0.51,0.31,habitual 

"192.16.25.18","162.65.30.04",219,0.53,0.47,habitual 

"192.16.25.19","162.65.30.04",194,0.64,0.44,habitual 

"192.16.25.20","162.65.30.06",188,0.52,0.42,habitual 

"192.16.25.13","162.65.30.20",73,0.71,0.51,habitual 

"192.16.25.19","162.65.30.37",56,0.35,0.53,habitual 

Figure 5.9: Example of one-class dataset

By novelty detection it is possible deduce if the following samples belong to the same

class than the reference data:

Flow1 : {192.16.25.13, 162.65.30.04, 70, 0.5, 0.83}
Flow2 : {192.16.13.13, 162.65.04.04, 48, 0.42, 0.46}
Flow3 : {192.16.19.13, 162.65.06.04, 72, 0.72, 0.71}

If they are tagged as “normal”, it is possible to state that monitored data is similar to

the normal traffic on the network. In the opposite, the flows are anomalous and probably

require in-depth study. The following describes two main methods for novelty detection:

Support Vector Machines and classification generating synthetic data.

5.4.1 Support Vector Machines

The Support Vector Machines (SVM) are a collection of supervised automatic learning

algorithms based on the transformation of the input space into another one of superior

and infinite dimension, where the problem to be dealt with is solved from the calculation

of the optimal hyperplane called support vector [BL02]. Hence, given a reference dataset
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(plane) represented as a p-dimensional sorted vector, Support Vector Machines calculate

the hyperplane that optimally separates the samples into classes, thus defining the sets of

membership (See Figure 5.10).

The ideal hyperplane for class delimitation is a 1-dimensional vector which maximizes

the distance between the members of each class, usually refereed as maximum-margin

hyperplane. However, it is not always possible to find, mainly due to the compensation

of errors registered at training steps or computational limitations. The latter usually

leads to the implementation of predefined kernel functions (ex. homogeneous polynomial

k(~xi, ~xj) = (~xi× ~xj)d, perceptron k(~xi, ~xj) =‖ ~xi− ~xj ‖, etc.), which project the information

to a space of greater dimensionality on which it is possible to operate more efficiently.

Class 1

Class 2

Hyperplane

Figure 5.10: Two class Support Vector Machine

5.4.2 Generation of synthetic data

The novelty detection method for one-class classification, proposed by Hempstalk

[HFW08], combines the application of a density estimator, used to form a reference

distribution, with the induction of a standard model for class probability estimation. As

is common in the bibliography, the reference distribution is used to generate artificial data

that is employed to form a second synthetic class where this artificial class is the basis for

a standard two-class learning problem. According with this publication, the combination

of both density and class probability estimation are merged into the following curve:

P (X|T ) =
(1− P (T ))P (T |X)

P (T )(1− P (T |X))
P (X|A) (5.4)

where T is the class of the sample in the reference dataset, A is the class of the artificial

data to be built, and P (X|A), P (X|T ) are their density distributions. For instance,

the tool WEKA implements 10 iterations of bagged unpruned RepTrees decision trees

with Laplace smoothing as the probability estimator P (X|T ), and a product of mixture

of Gaussian distributions with one mixture per attribute [SG99] as density estimator

where each mixture is fitted to the target data for its corresponding attribute using

the Expectation–Maximization (EM) algorithm [Moo96]. The number of the artificial



5.5. Final Remarks 63

sample matches the size of the reference dataset. Hence the data used to build the bagged

unpruned decision trees was exactly balanced. Once the artificial samples are created, a

two-class classifier is built assuming both sample collections.

5.5 Final Remarks

This chapter reviewed the pattern recognition methods to be applied on samples

of observations as part of the knowledge acquisition process conducted to grant

self-organizing capabilities on the monitored network. The inclusion of patter recognition

capabilities is aligned with the comprehension and projection stages of the Endsley model,

as it is the case of prediction methods. Consequently, the conducted research takes benefit

from both.





Chapter 6

Knowledge Acquisition Framework

for 5G Network Analytics

This chapter proposes a framework aimed on granting analysis capabilities to 5G

networks by the proper instantiation of its components to achieve autonomic management,

thus decoupling data analysis logic from specific data extraction procedures carried on

at the lowest architectural levels of the network. It allows the insertion of several

prediction algorithms, pattern recognition capabilities and production rules to generate

meaningful knowledge that will enhance decision-making processes from the performance

and efficiency perspective. Thereby, the framework provides the advantage to express

metrics gathered by sensors (initial facts) according to a knowledge representation

language in order to deduce conclusions about possible network scenarios driven by the

Endsley approach [BLVCMV+17]. Perception, comprehension and projection steps are

performed to understand the system state. The discovery of initial facts, which corresponds

to previously monitored data, accomplishes the perception step. Reasoning involves both

perception and comprehension, whereas prediction approaches the projection step. The

deduced final facts (conclusions) are described in the form of symptoms related with each

use case. Bearing this in mind, it is possible to assert that this framework provides a

symptom-oriented situational awareness bounded by the configuration defined for each

use case.

The major contributions of this proposal on the advances on knowledge-based

management approaches upon 5G infrastructures are summarized as follows:

A novel reasoning 5G-oriented architecture. A novel framework composed by

functional elements arranged on an orchestrated workflow is proposed to enable

reasoning capabilities in a 5G network. As a result, the framework generates

conclusions about the 5G network status. The introduced architecture distinguishes

two types of knowledge: procedural and factual. Procedural knowledge corresponds

to the use case configuration loaded to the system. Initial factual knowledge is

acquired by discovery methods applied on data previously collected by several sensors

distributed along the 5G network, whereas factual knowledge is generated by the

prediction, pattern recognition and knowledge inference modules introduced in this

65
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proposal. Thereby, the framework approaches the perception, comprehension and

projection steps of the Endsley model.

Instantiation of the framework. An instance of the proposed framework has been

created to enhance the understanding of the proposal. To this end, well-known

multiplatform open source technologies and a battery of prediction and machine

learning algorithms have been integrated in accordance with the framework design.

In addition, publicly available datasets were applied to allow its experimental

replicability. The generation of knowledge was successfully demonstrated in a

datacenter-oriented use case, but the current instance of the framework can be

applied on several use cases just by modifying its configuration.

Comprehensive experimentation on a real use case. To assess the accuracy of the

instantiation, a set of experiments have been conducted. They were oriented either

for the evaluation of the pattern recognition and prediction modules; and for the

evaluation of a real use case. Prediction and pattern recognition features exposed

good accuracy levels when applied over the reference datasets. Likewise, a particular

use case configuration to generate conclusions about traffic behaviour has been

tested. The experiments were conducted on real network traffic samples where the

inference of suspicious network traffic volumes in a datacenter exposed good precision

rates contrasted with the real reference scenario.

To facilitate the understanding of the proposal, this chapter has been divided into

six sections. Section 6.1 describes the design principles and constraints assumed for this

proposal. Section 6.2 introduces the framework architecture and a detailed explanation

of its components. In Section 6.3 an example of the framework instantiation is presented.

Section 6.4 presents the experimentation conducted for validating the proposal. Section

6.5 discusses the results obtained by the experimentation. Finally, Section 6.6 remarks

the conclusions of this chapter.

6.1 Design Principles and Constraints

The following design requirements and assumptions have been kept in mind at both design

and implementation stages of the reasoning and knowledge acquisition framework.

Scalability. The proposed framework must accommodate the 5G design principles,

and in particular, those associated with scalability, such as “Extensibility by design”,

“Expandability by design” or “Multi-level scalability by design” [NCC+16], through

the combination of scalable modular design, open interfaces and APIs to enable third

parties to create their own automatic network management services.

Support of use case onboarding. The knowledge acquisition framework adopts a

use case driven research methodology. Because of this it is required that from

design, it must support the onboarding of new different use case specifications.

Given the heavy reliance of the tasks performed with the characteristics of use
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cases, the basic definition of the observations to be studied (knowledge-base objects,

rules, prediction metrics, etc.) must be provided as factual knowledge by use case

operators, thus being the framework scalable to alternative contexts. In addition,

use case operators must provide procedural knowledge, thus configuring the analytic

tasks to be performed per use case.

Reference datasets. Laskov et al. [LDSR05] realized two essential observations

necessary to understand the different strategies for acquiring reference knowledge

and to decide the most appropriate for each use case: firstly, it must be taken into

account that labeled samples are very difficult to obtain, a situation that can be

aggravated if the sensor operates in real time, and/or on monitoring environments

where is not possible to extract all the data; on the other hand, there is no way

of collecting labeled samples which cover every possible incident, so the system is

potentially vulnerable to unknown situations. To these difficulties it is added the

problem that there are no collections of traffic captures in 5G networks, and that

the existing datasets of current traffic traces often have drawbacks such as lack of

completeness or labeling errors. Because of this, the proposed framework does not

go deep into the issue of the innate knowledge acquisition. The current approach

assumes that the reference datasets are provided by skilled operators or by accurate

machine learning algorithms, which therefore are valid for the specified use cases.

Granularity. 5G environments are complex monitoring scenarios where large

amounts of sensors collect information about the state of the network in real

time. In SELFNET all this information is processed in the Aggregation sub-layer,

which provides the necessary metrics to infer knowledge from them. However, this

information is not raw processed. As described in [LVV17], it is compiled into

Aggregated Data Bundles (ADBs), which summarize all the system information

observed over a time period related with the previously declared uses cases.

The length of the observation period defines the data granularity, which may be

determinant for the proper functioning of certain uses cases. However, the decision

of the best granularity is out of the scope of this proposal.

Stationary monitoring environment. By definition, the features monitored on a

stationary scenario are similar to those considered when building data mining

models. The assumption of operating on a stationary monitoring environment

entails ignoring in terms of learning process any variation in the characteristics of

the information to be studied, such as dimensionality or distribution. The main

disadvantage of this approach is the loss of precision when such changes occur,

in large part because the initially performed calibrations are not adapted to the

current status of the network. On the other hand, their proper accommodation

tends to retain the acquired calibration at the expense of addressing many other

issues, emphasizing among them to discover relevant variations in the data nature,

calibration upgrades based on the new features, or improvement of the original

datasets [DRAP15]. Being aware that the last approach poses important challenges,

and in order to facilitate the understanding of the proposed research, all those aspects
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related to the management of the non-stationary characteristics of the information

are overlooked.

High dimensional data. When the dimensions of the data to be studied are more

extensive than usual, it is possible that some reasoning and knowledge acquisitions

implementations lose effectiveness, either in terms of efficiency or accuracy. Because

of this, the bibliography provides a wide variety of publications focused on the

optimization of this kind of processes, as is discussed in [AY01]. Note that the

battery of algorithms included in the current instantiation of the framework does

not adapt any of these contributions, which does not mean that it is incompatible

with them. However, throughout the document the risks of operating with high

dimensional data are not taken into account, in this way postponing this problem

to future instantiations.

Software Security. Operating in a trusted environment is a challenging task that

should be addressed by the incorporation of the best software development practices

for both design and implementation. Even though the instantiation of this framework

involves the integration of different software components, security considerations in

terms of software development and network communications are overlooked since

experimental validation is prioritized.

6.2 Architecture

The proposed framework is composed by the functional elements illustrated in Figure 6.1.

They are settled down to interact as providers and consumers of facts not only discovered

from monitored data, but also deduced by reasoning procedures. The architectural

elements of the framework are pipelined sequentially as: Onboarding of use cases,

Discovery, Pattern Recognition, Prediction, Adaptive Thresholding, Knowledge Inference

and Notification. These elements are coordinated by the orchestration strategy defined

in [LVV17]. Hence, and assuming the design principles previously stated, the proposed

framework brings analytic capabilities focused on acquiring knowledge from the network

metrics (initial facts), and deduces conclusions (final facts) such as likelihood of the

network being attacked, anomalous congestion levels, among others.

The Discovery component obtains information, represented as facts, gathered by

network sensors in the lower levels of a 5G architecture by monitoring, data aggregation

and correlation procedures. It exempts the framework to the need of dealing with network

technology-dependent protocols or interfaces, and allows assuming that the constraints

inherent in the monitoring environment (for example, ciphering, privacy protection

politics, etc.) have no impact on the effectiveness of the proposal, since they have

been previously managed at lower data processing stages. New knowledge is acquired

by the Inference Engine based on the collected facts stored in the Working Memory, and

permits the inference of conclusions about the network status by applying production rules

configured in the Knowledge Base. Conclusions are expressed as symptoms, reflecting

situations that might affect or compromise network operability or a degradation of the
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agreed service levels. The framework also facilitates a situational awareness projection

of the network through the Prediction and Adaptive Thresholding components, by

calculating predictive metrics and forecasting intervals that allow pro-action responses

over the predicted scenarios. Likewise, the Pattern Recognition component implements

some of the recent paradigms of Artificial Intelligence, among them machine learning, data

mining, classification or novelty detection methods.

To deal with scalability, each analytic component is designed to be run independently,

exchanging only input and output data between them through buffering data structures or

message broker tools (such as Apache Kafka [Akf] or RabbitMQ [RbM]), thus decoupling

processing tasks. The underlying technology to instantiate each component (i.e. Weka,

Drools, among others) must also be able to scalable by design (vertically or horizontally)

to accommodate several deployment strategies when computing resources demands are

variable. In this way, the proposed framework is aligned with the principles of 5G by

developing a scalability solution adapted to the latest trends in the control and data planes

of 5G mobile architectures [EtM], allowing its deployment on the management side. The

role of each framework component is explained in detail in the following subsections.
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Figure 6.1: Knowledge acquisition framework for 5G environments.

6.2.1 Initial knowledge and Notifications

The Knowledge Base is filled from data acquired from the use case definitions at use case

Onboarding. Because of this, use case operators may declare procedural knowledge such

as inference rules Ru, prediction actions Ft, etc. and specify factual knowledge such as

Objects O, Facts Fa, Thresholds Th, etc. in compliance with the use case descriptors

defined in [Bar17]. They also provide the reference datasets required for machine learning

actions. Factual knowledge is gathered by the Discovery component, which periodically

receives ADBs which summarize the acquired observations. From the loaded metrics and

events, the knowledge acquisition framework builds facts (Fa). If they are required for

prediction, pattern recognition or adaptive thresholding, these observations are inserted in



70 Chapter 6. Knowledge Acquisition Framework for 5G Analytics

the temporally stored time series. Note that independent facts are removed at the end of

the ADB processing, as well as the new knowledge acquired from them. It is remarkable

that the abovementioned procedural and factual knowledge represent the inputs of the

proposed framework. However, it is worth mentioning that new factual knowledge is also

internally generated by the Prediction, Pattern Recognition and Adaptive Thresholding

components for the inference of new knowledge.

The set of actions on Notification informs the final facts (conclusions) acquired

by the framework. This step packs the conclusions by inserting or modifying the

related meta-knowledge to accommodate contextual information, such as facts location,

timestamps, output format representation (i.e. JSON), among others. Once an ADB is

fully analyzed, these actions also erase and restart the auxiliary functionalities on the

analytics and several data structures. Only the information and buffers required for

building time series with data to be extracted from future ADBs is temporally persistent.

6.2.2 Prediction Module

This component drives the inference of knowledge related with prediction facts built from

the monitored data. Its main purpose is to insert facts about forecasted metrics in the

Working Memory, and the observation of variations of interest such as discordant values

or relevant decreases or increases on the analyzed data. Although the framework does not

support persistent storage, several data must be temporally preserved to allow registering

time series and information needed for enhancing the decision and calibration of the

prediction algorithms. Then the forecasting strategies must be cautiously selected and

adjusted with the purpose of providing the more accurate results. Once the predictions are

calculated, the system includes the discovered knowledge (facts) into the Working Memory.

Note that this data processing stage depends on synchronous ADB loading where time

series are fed with observations fetched from the ADBs. It requires two types of knowledge:

procedural and factual. Procedural knowledge is provided via use case onboarding in their

data descriptors. Likewise, factual knowledge is acquired by the Discovery component,

when new ADBs are loaded. Once the time series with the required length are built,

several prediction methods are evaluated to decide the most accurate algorithm fitted to

the given time series. The selection of the best forecasting methods entails several steps.

Once data is acquired, a time series of size N , and the forecasting horizon T are taken as

input parameters for a preprocessing task. The last T elements are subtracted from the

original time series and the remaining N − T elements are used for forecasting. In the

meantime, the subtracted T elements are reserved to be used for evaluation. Parameter

calibration takes place for all the forecasting algorithms included in the framework, each

one has a variable number of parameters. Every individual parameter can be tested with

different values, thus allowing a forecasting algorithm to be run with different calibration

coefficients.
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6.2.3 Adaptive Thresholding Module

Throughout the tasks involved in the reasoning process, it is necessary to define under

what circumstances an observation about the monitoring environment must conditionate

the inference of new knowledge. This is a complicated challenge, which must take into

account both the situational awareness of the monitoring scenario and the specific use cases

on which the self-organizing deployment for incident management has been implemented.

Therefore, the instantiated adaptive thresholding strategies must pose dynamic solutions,

subject to the changes in the different features of the scenario on which they operate, and

must be configurable according to the level of constraint that operators decide (note that

the restrictiveness may also be stablished by machine learning approaches). Because of

this, the calculated thresholds act on any source of knowledge of the Knowledge Inference

engine (e.g., Discovery, Prediction, Pattern Recognition, etc.), or may be part of the

production rules. This makes the results they provide considered as factual knowledge

by the knowledge-based of the framework, being Adaptive Thresholding and additional

knowledge acquisition step dependent of the rest of the components of the proposal.

6.2.4 Pattern Recognition Module

The Pattern Recognition component of the proposed framework operate at two different

stages: training and discovery. At training, the knowledge representation to be taken

into account, as well as the description of the pattern recognition actions are included

into the procedural knowledge according to the use case specifications. This step involves

generating/loading reference datasets and construction of the best models in function of

the most relevant data features on the sets of metrics to be analyzed. The training step

may take place in two moments of the analytic process. Firstly, models from reference

data can be built before operating on real monitored samples. On the other hand the

training step may operate at runtime, so the reference samples are gathered from the

first observations on the monitoring environment. At the discovery stage, the knowledge

acquisition framework launches the pattern recognition actions defined by the use case

operators. Samples are constructed from the aggregated metrics observed, and they are

analyzed based on the models built at training stage. The framework at least allows

two pattern recognition actions: classification and novelty detection. When classifying, a

reference dataset is loaded before the monitoring of the protected environment. A battery

of classification algorithms is executed in concurrency, which are properly calibrated and

combined as an ensemble of models [Zim14][Rok10]. Then the most accurate classifier is

identified by cross-validation on the reference sample collection [K+95], and it is applied

at the discovery step. On the other hand, the novelty detection actions are usually

defined as the tasks of recognizing that test data differ in some respect from the data

that are available during training, which also can be generalized as one-class classification

[PCCT14]. These methods are usually applied to solve problems where the analytic system

was provided by a long and complete collection of reference samples (commonly “normal”

observations), and it is required to decide if the observed data can be tagged as belonging

to the population on the reference dataset, or if it has “discordant” nature. The proposed
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framework implements novelty detection similarly to classification, in this way also based

on an ensemble of sensors. However, in this case, the training stage considers data observed

at runtime from the monitoring environment. Particularly, the first monitored metrics

define the reference dataset, and hence are tagged as normal observations. The length of

this collection is previously defined by the use case operators. It can be manually delimited

or decided by the results of the cross-validation scheme; in the second case, if the accuracy

is greater than certain threshold, the model is considered acceptable and there is no need

to process additional samples.

6.2.5 Knowledge Inference Module

The knowledge inference component allows deducing information from previous

observations (facts) based on procedural knowledge represented as rule sets. In order

to align the decision strategy of which rules should be activated and when, with the

previously assumed design principles and requirements, the implemented approach is

driven by production rules. This facilitates the deployment of a modus ponens (forward

chaining) decision scheme where attributes enable the deduction of goals, which are final

facts encapsulated as symptoms before their report to the decision-making layer. It should

be kept in mind that throughout the bibliography, Rete algorithms are the most popular

and proved proposals to address the efficient implementation and execution of forward

chaining on complex monitoring environments. Created by Forgy [For82] , these methods

separate the rule management into two steps: rule compilation and runtime execution.

The first stage describes how the rules in the Working Memory are processed to state

an efficient discriminant network, where upper nodes tend to present many matches, in

contrast with the lower elements (the bottom are termed terminal nodes). The main

reason on building this structure is to optimize the number of triggered rules, while at

runtime, the previously built network allows inferring the new knowledge. Thereby, Rete

algorithms are appropriated to address the knowledge inference purposes of the proposed

framework.

6.3 Instantiation

As an illustrative example of instantiation of the proposed framework, this section

describes how it has been deployed with the aim on contributing with the management

of a real network. Its contribution is focused on the recognition of discordant behaviors

based on analyzing the variations of the traffic volume, which borne in mind the prediction

of their evolution, the construction of adaptive thresholding to decide when they may be

considered unexpected, and novelty detection based on several distances and similarity

measures. It is important to emphasize that the instantiated solution could be replaced

by an alternative implementation and still achieving similar results. Nevertheless, this

instantiation aims to describe a simple, didactic and scalable solution, that provides

a greater understanding of the proposed framework and draft several basic guidelines

for its adaptation to other problems. With this purpose, the following introduces the
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implementation of each reasoning and knowledge acquisition component considered at the

experimentation stage.

6.3.1 Initial Knowledge and Notifications Implementation

The initial knowledge of the instantiated framework is directly provided by the use case

operators, hence postponing auto-calibration and other machine learning approaches for

future work. It includes specific information about what activities must be monitored,

what knowledge acquisition actions should be accomplished and what kind of reasoning

must be carried out; the latter is guided by production rules and the inference of

conclusions about the state of the network. Therefore, it can be said that the initial

knowledge is the configuration of the framework and the strategy of acquiring the initial

facts to be analyzed. These facts arrive to the system compiled as ADBs, which gather

the information monitored in certain time periods. As stated before, the different

sensors deployed on the 5G infrastructure are considered the most important information

providers. For this framework instantiation the initial metric to be studied is the traffic

volume per observation, which is assumed to be already reported by the sensors. With this

collected data, the framework creates the required time series, enabling the possibility to

apply prediction methods, i.e., to estimate the traffic volume at the coming observations

according to a given forecasting horizon. The system is also configured to build adaptive

thresholds based on the forecasts. They allow to identify if the observed traffic volume

differs significantly from the predictions. Herein, those traffic observations are labeled

as unexpected. On the other hand, the pattern recognition component is configured for

novelty detection based in analyzing difference distances and similarity measures between

each monitored observation and that of an immediately preceding monitoring period.

Note that his action requires building one-class classification models, which demand a

reference dataset. It is obtained from the first observations made, so directly loading an

external dataset is not required. The discordant observations are in this stage labeled

as fluctuations. On the other hand, the Knowledge Inference component is configured by

production rules to conclude that an observation marked as unexpected and fluctuation is a

suspicious event, hence being notified as a symptom. The findings are reported through a

message broker software to be consumed by external sources, i.e., to perform more complex

decision-making procedures. Table 6.1 summarizes the initial knowledge and notifications

of the proposed framework instantiation considered at the experimentation.

6.3.2 Prediction Implementation

The current instantiation of the proposed framework does not support objects with

multiples values. Because of this, the adapted battery of forecasting algorithms only

considers univariate time series. This does not mean that this capability cannot be

included in future instantiations, but it has been considered that working with a simpler

instantiation facilitates the comprehension of the prototype, as well as the specification of

new use cases. Two families of well-known forecasting methods are implemented: moving

averages and exponential smoothing, as detailed in Table 6.2. They process the time series



74 Chapter 6. Knowledge Acquisition Framework for 5G Analytics

Table 6.1: Summary of the instantiated initial knowledge and notifications.

Initial Factual Knowledge

Element Description

Object Traffic volume monitored per sensor (Vt).

Acquisition Via ADB.

Procedural Knowledge

Component Behavior

Prediction Forecast traffic volume (Vt) given a certain prediction horizon.

Adaptive thresholding Construction of decision thresholds from forecasted metrics.

Pattern Recognition
Novelty detection based on several distances and similarity

metrics related with Vt and Vt−1.

Knowledge Inference

It is deduced that if Vt observations exceed adaptive thresholds,

they are unexpected.

If Vt observations are considered novelties, it is deduced

that they are fluctuations.

If Vt is unexpected and fluctuation then it is suspicious.

Notification Reports suspicious events are reported via message broker software.

of monitored metrics in concurrency, and the decision of the best algorithm grounds on

considering the minimum Symmetric Mean Absolute Percentage Error (sMAPE) [Mak00]

as the forecasting error measure. sMape considers the set of real subtracted N − T values

X and the T forecasted values as inputs. It is described by the following expression:

sMAPE = 200%

n∑
t=1

|Ft −Xt|
|Ft|+ |Xt|

(6.1)

where X represents the real time series values and F are the forecasted values estimated

for the given observations.

6.3.3 Adaptive Thresholding Implementation

To evaluate the prediction errors, two adaptive thresholds are constructed: an upper

threshold Athup and a lower threshold Athlow. They establish the Prediction Interval

(PI) of the observations, which is defined in the same way as is usually performed in the

bibliography [MWH97], hence assuming the following expressions:

Athup = p0 +K ×
√
var(Et) (6.2)

Athlow = p0 −K ×
√
var(Et) (6.3)

where Et is the prediction error in t and p0 is the prediction of the last observation. The

prediction error is given by the absolute value on the difference between the forecast and
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Table 6.2: Battery of forecasting algorithms.

Method Type

Cumulative Moving Average (CMA) [Men15] Moving Average

Simple Moving Average (SMA) [Mul94a] Moving Average

Double Moving Average (DMA) [Mul94a] Moving Average

Weighted Moving Average (WMA) [FL14] Moving Average

Simple Exponential Smoothing (EMA) [ASMW15] Moving Average

Double Exponential Moving Average (DEMA) [Mul94b] Moving Average

Triple Exponential Moving Average (TEMA) [Mul94a] Moving Average

Simple Exponential Smoothing (SES) [Bro57] Smoothing

Double Exponential Smoothing (DES) [GJ06] Smoothing

Triple Exponential Smoothing (TES) [Win60] Smoothing

the t observation. The variance V ar(Et) is calculated considering the prediction error at

the prediction period t (i.e., the horizon of the estimation). In addition, the thresholds

include a parameter K, from which use case operators can adjust the sensitivity of the

upper and lower limits.

6.3.4 Pattern Recognition Implementation

The instantiation of the framework considered at the performed experimentation assumes

that the use case operators provide the collection of reference samples to be taken into

account throughout the pattern recognition process. This implementation embraces

the Attribute-Relation File Format (ARFF), Comma-Separated Values (CSV) or Packet

Capture (pacp) feature descriptions in order to represent the reference datasets required

for the construction of data mining models [Acw], in this way assuming their advantages,

but also their drawbacks. As is the case on the Prediction component, a battery of pattern

recognition and novelty detection methods is considered, which is summarized in Table

6.3. The decision of the best approach and calibration is driven by the results in terms of

accuracy of a cross-validation test launched at training step.

Table 6.3: Battery of pattern recognition algorithms.

Method Action

Decision Stump [FI92] Classification

Reducing Error Pruning Tree [SL91] Classification

Random Forest [Bre01] Classification

Bootstrap Aggregation [Bre96] Classification

Adaptive Boosting [ROM01] Classification

Bayesian Network [BG16] Classification

Naive Bayes [JL95] Classification and Novelty detection

Support Vector Machines (SVM) [BL02] Classification and Novelty detection

Generation of synthetic data + Bootstrap Aggregation [HFW08] Novelty detection
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6.3.5 Knowledge Inference Implementation

It is well known that one of the classical problems with the software that implements Rete

algorithms is the lack of interoperability with other high-level languages and complex

data structures, such as class hierarchies, complex knowledge representations or abstract

data. Nowadays there are few open source implementations with these capabilities, as

is the case of Drools [SDB]. Given that its effectiveness has been continuously proved

in European projects of different nature [ArP, DC2], Drools was implemented in the

current instantiation of the proposed framework in order to manage the execution of the

rule-based knowledge acquisition at the knowledge inference component. As highlighted

by their authors, Drools is a Business Rules Management System (BRMS) solution that

provides, among others, a core Business Rules Engine (BRE) and a modification of the

original Rete algorithm adapted to Object-oriented scenarios which also bring solutions to

optimization problems, such as rule priorization, concurrency execution of tasks, changes

on rule execution modes, synchronization of events, different forms of metadata or sliding

processing.

6.4 Experiments

The following describes the evaluation scenario, reference datasets and the use cases

considered throughout the performed experimentation.

6.4.1 Evaluation Scenario

Since there are not collections of 5G network traffic, the performed experimentation is

focused on the study of traffic traces gathered as public domain datasets, hence facilitating

the replication of the obtained results. In particular, the evaluation scenario is focused

on the study of real traffic monitored on high-speed Internet backbone links published at

2016 within the CAIDA anonymized Internet Traces Dataset [DSC]. With this purpose

an illustrative use case is defined, which guides the knowledge acquisition framework

to infer new facts related with the variations of the traffic volume monitored. It is

important to highlight that since the dataset only provides raw data, it is not possible to

corroborate the incidents discovered with those identified by their authors. But such

disadvantage is compensated by the fact that CAIDA is a well-known dataset with

realistic information about current networks in the backbone, particularly in a data center.

Throughout the experimentation, this framework has been instantiated according to the

orchestration strategy introduced in [LVV17]. In this way, the analytic components act

sequentially as sets of actions in the following order: pattern recognition, prediction,

adaptive thresholding and knowledge inference. They are instantiated as described in

Section 6.3: pattern recognition includes the battery of algorithms detailed in Table 6.3,

prediction integrated the forecast methods summarized in Table 6.2, adaptive thresholding

adapts the method published in [MWH97], and knowledge inference imports the engine

provided by Drools [SDB]. Both prediction and pattern recognition capabilities have been

evaluated according to functional standardized methodologies. Firstly, the effectiveness
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of the forecast capabilities was tested adopting the M3-Competition scheme [Mak00] , in

this way facilitating the comparison of the obtained results with previous publications.

On the other hand, pattern recognition is validated based on the NSL-KDD dataset and

the evaluation methodology proposed in [TBLG09] . As in the previous test, the results

are contrasted with contributions that introduced similar features. Adaptive thresholding

and knowledge inference implement well-known techniques previously considered in similar

projects, so their effectiveness is assumed prior to the experimentation stage.

6.4.2 Reference Datasets

The performed experimentation applied three collections of reference data: NSL-KDD,

M3-Competition and CAIDA’16. They are described below.

6.4.2.1 NSL-KDD

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD’99

dataset, which were reviewed by Tavallaee et al. in [TBLG09], among them: presence

of redundant records in the training set, record duplication, or imbalance of the number

of samples per group. Note that quoting their authors “this new version of the KDD

data set still suffers from some of the problems discussed by McHugh [McH00] and

may not be a perfect representative of existing real networks, because of the lack of

public data sets for network-based IDSs, we believe it still can be applied as an effective

benchmark data set”. Additionally, NSL-KDD authors analyzed the difficulty level of the

samples in KDD’99, and according to the results, they proposed two different collections:

KDDTrain+ 20Percent KDD’99+) and KDDTest−21 (KDD’99−21), where the second

includes records with difficulty level of 21 out of 21. It is important to note that according

to Bhatia et al. [BSMT14], KDD’99 is one of the most referenced methodologies in

the bibliography, and possibly the only one that presents a dataset of network security

incidents with reliable labeling. The original KDD’99 collection was created for the

competition KDD Cup, and it is based on the captures of traffic provided by the DARPA’98

dataset; in particular, legitimate (class normal, 97,277 (19.69%)) samples and the following

simulated threats:

Denial of Service attack (DoS): classes back, land, neptune, pod, smurf and teardrop;

391,458 (79.24%) instances.

User to Root attack (U2R): classes Buffer overfow, loadmodule, perl and rootkit ; 52

(0.01%) instances.

Remote to Local attack (R2L); classes Guess passwd, ftp write, imap, phf, multihop,

warezmaster, warezclient and spy ; 1126 (0.23%) instances.

Probing attacks: classes satan, ipsweet, nmap and portsweep; 4,107 (0.83%)

instances.

Their samples are characterized by 41 different features usually divided into three

groups: basic features, traffic features and content features. The first group gathers all



78 Chapter 6. Knowledge Acquisition Framework for 5G Analytics

the attributes that can be extracted from a TCP/IP connection (e.g. duration, protocol,

service, src bytes, flag, etc.). On the other hand, the traffic features are computed

with respect to a window interval, and describe host features (e.g. dst host count,

dst host same srv rate, dst host serror rate, etc.) and server features (e.g. srv count,

srv serror rate, diff srv rate, etc.). Finally, a group of features provides information able to

unmask suspicious behaviors in the data portion, i.e., independent of the time period(e.g.

root shell, logged in, hot, urgent, etc.). KDD’99 proposed as evaluation methodology

to split the dataset into two groups: a 20% subset as training samples and the rest

for testing. Note that NSL-KDD sanitized the original collection eliminating 78.05% of

training samples (93.32% attack instances, 16.44% normal instances), and 75.15% of the

test set (88.26% attack instances, 20.92% normal instances). Given that most of the

discards where instances repeated in training and evaluation samples, the evaluation of

classifiers with NSL-KDD displays considerably less precise results than KDD’99, posing

much greater difficulty to the evaluated proposals.

6.4.2.2 M3 Competition

To the best of the author’s knowledge, there are not standardized methodologies to

assess the effectiveness of forecasting algorithms on 5G environments; in fact, there are

also no collections of samples of these monitoring scenarios. In view of this, the most

reliable way of demonstrating the capacity of the SELFNET prediction framework is

to evaluate it from general purpose methodologies adapted to time series prediction.

Among them it is worth considering a well-known scheme such as the M3-Competition

[Mak00]. It provides a collection of 3003 time series categorized as: financial, industry,

macroeconomics, microeconomics, demography and other. In order to ensure that every

prediction method is able to process the proposed data, it was observed that time series

have a minimum length of 14 observations for Yearly series (the median is 19 observations),

16 for Quarterly series (the median is 44 observations), 48 for Monthly time series (the

median is 115 observations), and 60 for other series (the median is 63). Hence three

blocks of data are clearly described: Yearly, Quarterly and Monthly. Note that all the

time series are positive to avoid problems related with the various MAPE measures. If the

original time series has negative values, they are replaced by zero. Table 6.4 displays the

classification of these time series. In the original competition, the participants run their

algorithms considering several prediction horizons (i.e., prediction periods): from t+ 1 to

t + 6 on Yearly data, from t + 1 to t + 8 for Quarterly data and from t + 1 to t + 18 for

Monthly data.

The dataset was evaluated according to five metrics: symmetric Mean Absolute

Percentage Error (MAPE) or sMAPE, Average Ranking, median symmetric APE,

Percentage Better, and median RAE (Relative Absolute Error). Among them, the sMAPE

is the most frequent in the bibliography, bearing in mind both old and recent contributions.

Because of this, sMAPE is the base of the performed experimentation.
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Table 6.4: Time series categories and attributes of the M3 dataset.

Micro Industry Macro Finance Demographic Other Total

Year 146 102 83 58 245 11 645

Quart. 204 83 336 76 57 756

Month 474 334 312 145 111 141 1428

Other 4 29 141 174

Total 828 519 731 308 413 204 3003

6.4.2.3 CAIDA Anonymized Internet Traces 2016

The Center for Applied Internet Data Analysis (CAIDA) has published the Anonymized

Internet Traces 2016 Dataset [DSC], which contains traces obtained through the passive

equinix-chicago monitor located at the Equinix [PEq] datacenter in Chicago. These

traces represent real internet traffic samples used for research purposes. Moreover, it

is important to bear in mind that all traces are anonymized, and their payload has been

removed. Thereby the resultant pcap files store only layer 3 and layer 4 packet headers

to be accounted when gathering network statistics. Traces are, in fact, an hour monitored

traffic captured each month. Even when traffic traces are stored each month, current yearly

CAIDA datasets are a collection of four Internet traffic trace (one per quarter).A one-hour

traffic trace is split in several pcap files, each of them corresponding to a one-minute traffic.

Currently, CAIDA 2016 dataset has published Internet traces captured at 21 January

(Ds-January), 18 February (Ds-February), 17 March (Ds-March), and 6 April (Ds-April).

All of them captured from 14:00:00 to 14:59:59 h.

The first part of the experimentation was conducted using a three-minutes sample of

traffic traces extracted from Ds-Jan. They correspond to network data packets captured

from 14:00:00 to 14:02:59. In order to measure traffic volume, a time series of 180 elements

was constructed by accumulating the total number of bytes per second. At this stage of

the research, it was not feasible to extend the length of the time series due to storage and

parsing time limitations. Henceforth, this sample data is referred as CAIDA’16-sample.

In the second part of the experimentation, network traffic measures were gathered from

the statistics files published by CAIDA. Each statistics file corresponds to a one-minute

traffic observed in a one-hour dataset. Thereby, every dataset has 60 statistics files.

Unlike the described CAIDA’16-sample, there was no need to parse pcap files since every

one-minute statistics file provides the total number of transmitted bytes. This is exactly

the same metric used in the first part of the experimentation, being the only difference the

granularity. Consequently, four time series of 60 elements were constructed from Ds-Jan,

Ds-Feb, Ds-Mar and Ds-Apr, being each element of the time series the observed traffic

volume expressed in bytes per minute. Henceforth, the generated time series are referred

as CAIDA’16-monthly.
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6.4.3 Use Case: Detection of Anomalous Traffic Volume Variations

This use case goal is to infer if the observed network traffic volume presents an

anomalous behavior. For this purpose, the knowledge inference framework components

are instantiated, contributing to the generation of new facts that are used to evaluate

the production rules configured to infer knowledge. The process is triggered once the

novelty detection capabilities of the Pattern Recognition component identify a change in

the network behavior. This task requires building a model of the normal traffic behavior,

which is created by assuming the first observations as reference samples and their following

six attributes: Euclidean, Squared X2, Canberra, Pearson, Bhattacharyya and Divergence

distances between the last two observations. The use of these metrics in network anomaly

detection is detailed reviewed in [BBK14].

Provided by the generated facts about possible anomalous traffic pattern, the

Prediction component calculates the forecasting values for the time series considering 1, 5

and 10 time horizons, and the results are also inserted in the working memory. With the

forecasted metrics, the Adaptive Thresholding component deduces the prediction intervals

(PI) for each observation, registering them in the working memory as new acquired facts.

The upper and lower thresholds are computed upon the forecasting error. Previously

generated facts about abnormal traffic patterns, forecasting values and thresholds allow

the Inference Engine to deduce the existence of anomalous traffic volume variations when

two conditions are met: traffic volume has been labeled as abnormal and the observation

is either exceeding the upper prediction interval or below the lower bound. Note that

combining both of them allows considering the presence of outliers regarding the general

traits of the behavior observed in the monitored environment, as well as unexpected

variations from the latest observations. In this way, the incidents will be reported with

greater certainty about their nature.

6.5 Results

The following describes the results obtained when analyzing the aforementioned datasets.

6.5.1 Prediction Capabilities Evaluation

The M3 dataset described in the previous section led to the evaluation of the framework

under different time series; being Yearly, Monthly, Quarterly and Others the time series

classifications as described in Table 6.4. The results of the evaluated forecasting methods

are shown in Tables 6.5–6.8. For each method, the sMAPE value for a given forecasting

horizon (t+ 1 up to t+ 18) is in fact the mean of the sMAPE values obtained for the same

forecasting horizon in a set of time series (#Obs) with the same data nature.

Yearly data has been evaluated under the proposed framework and their results are

detailed in Table 6.5. The obtained mean sMAPE values computed over 645 time series

range from 6.6 to 9.4, thus, exposing a better accuracy for all the evaluated forecasting

horizons (t + 1 to t + 6) compared to the other forecasting algorithms used in the M3

competition. Consequently, an average sMAPE of 7.1 computed for the 1 to 4 horizons,
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and a 7.7 value for the 1 to 6 horizons, expose also an overall better accuracy in comparison

with the M3 methods, which values range from 13.65 to 21.59.

Quarterly data results are shown in Table 6.6. The mean sMAPE values were computed

by the proposed framework over 756 time series, and they range from 4.4 to 5.2, thus,

exposing a better accuracy for most of the evaluated forecasting horizons (t + 1 to t +

8), being t + 1 the only case where the framework does not show the best performance

compared to the other M3 forecasting algorithms. However, the average sMAPE values

of 6 for the 1 to 4, 4.9 for the 1 to 6, and 4.8 for the 1 to 8 forecasting horizons shown a

better accuracy, particularly when the horizon is incremented. The average sMAPE for

the existing methods are in fact ranging from 7 to 10.96 in any case.

Monthly data has also been evaluated under the framework, presenting their results

in Table 6.7. The obtained mean sMAPE values computed over 1428 time series range

from 9.6 to 12.7, exposing again a better accuracy for most of the evaluated forecasting

horizons (t + 1 to t + 18) with values ranging from 9.6 to 12.7, being t + 2 and t + 4 the

only cases where the framework has a slightly less performance of −0.5 and −0.1 for t+ 2

and t + 4, respectively, compared with the mean SMAPE obtained by other algorithms

with values ranging from 10.7 to 24.3, considering all the forecasting horizons. Hence,

the average sMAPE values also show the best accuracy for the proposed framework, with

values ranging from 11.1 to 11.6, being only the average sMAPE of 11.6 for the 1 to 4

horizons slightly bigger than the lowest one in this category, obtained by Theta (11.54).

The remaining M3 average sMAPE values computed for the 1 to 6, 1 to 8, 1 to 12, 1

to 15 and 1 to 18 forecasting horizons range from 11.54 to 18.4 in any case. Therefore,

this overall results exposed the best accuracy with Monthly data. It is worth mentioning

that this set of time series are the longest used in the competition (with a mean of 115

observations).

Finally, Other data has also been evaluated following the same approach used for

Quarterly data, but with 174 time series (see Table 6.8). As compared to the preceding

time series categories (Yearly, Quarterly and Monthly), in this case the results were

significantly better, except for the t + 1 horizon where the mean sMAPE obtained by

this proposal was 1.8 compared with the minimum value of 1.6 obtained by the Autobox

2 method. The remaining forecasting horizons shown a value ranging from 1.5 to 2.4,

exposing an increasing accuracy as long as the forecasting horizon grows. In consequence,

the average sMAPE values for the 1 to 4, 1 to 6 and 1 to 8 horizons show also better

results when the framework performs the forecasting.

6.5.2 Pattern Recognition Capabilities Evaluation

The results obtained for the different classifiers at pattern recognition actions considering

NSL-KDD’99+ are summarized in Table 6.9, and the results with NSL-KDD’99−21 are

displayed in Table 6.10. On the other hand, Table 6.11 compares the effectiveness of the

SELFNET Pattern Recognition set of actions with some of the most relevant proposals

in the bibliography; in particular, those reviewed by Ashfaq et al. [AWH+17]. This

publication was released at early 2017 and discusses the effectiveness of most of the latest

proposals for intrusion detection that assumed the NSL-KDD’99 evaluation methodology,
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Table 6.5: SMAPE on M3-Competition for Yearly data.

Method
Forecasting Horizon Average

#Obs
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 1 to 4 1 to 6

Naive 8.5 13.2 17.8 19.9 23 24.9 14.85 17.88 645

Single 8.5 13.3 17.6 19.8 22.8 24.8 14.82 17.82 645

Holt 8.3 13.7 19 22 25.2 27.3 15.77 19.27 645

Dampen 8 12.4 17 19.3 22.3 24 14.19 17.18 645

Winter 8.3 13.7 19 20 25.2 27.3 15.77 19.27 645

Comb S-H-D 7.9 12.4 16.9 24.1 22.2 23.7 14.11 17.07 645

B-J automatic 8.6 13 17.5 18.2 22.8 24.5 14.78 17.73 645

Autobox 1 10.1 15.2 20.8 22.5 28.1 31.2 17.57 21.59 645

Autobox 2 8 12.2 16.2 19 21.2 23.3 13.65 16.52 645

Autobox 3 10.7 15.1 20 20.4 25.7 28.1 17.09 20.36 645

Robust-Trend 7.6 11.8 16.6 20.3 22.1 23.5 13.75 16.78 645

ARARMA 9 13.4 17.9 19.1 23.8 25.7 15.17 18.36 645

Automat ANN 9.2 13.2 17.5 19.7 23.2 25.4 15.04 18.13 645

Flores/Pearce 1 8.4 12.5 16.9 19.1 22.2 24.2 14.22 17.21 645

Flores/Peace 2 10.3 13.6 17.6 19.7 21.9 23.9 15.31 17.84 645

PP-autocast 8 12.3 16.9 19.1 22.1 23.9 14.08 17.05 645

ForecastPro 8.3 12.2 16.8 19.3 22.2 24.1 14.15 17.14 645

SmartFcs 9.5 13 17.5 19.9 22.1 24.1 14.95 17.68 645

Theta-sm 8 12.6 17.5 20.2 13.4 25.4 14.6 17.87 645

Theta 8 12.2 16.7 19.2 21.7 23.6 14.02 16.9 645

RBF 8.2 12.1 16.4 18.3 20.8 22.7 13.75 16.42 645

ForecastX 8.6 12.4 16.1 18.2 21 22.7 13.8 16.48 645

This proposal 6.9 6.6 7.6 7.2 8.5 9.4 7.1 7.7 645

in this way assuming as principal classification criterion the accuracy they proved. In the

case of the subset of samples NSL-KDD’99+, the best classifier in SELFNET was Adaptive

Boosting with 82.2% accuracy. This result is close to the best accuracy in the reviewed

bibliography (84.12%), where the clustering approach introduced by Hernández-Pereira

[HPSRFRAB09] was applied on flag and service features of the dataset, combined with

the fuzziness based semi-supervised learning approach proposed by Ashfaq et al. Bearing

in mind that in this experiment the SELFNET Pattern Recognition framework did

not use data preprocessing capabilities (unlike in the aforementioned publication), it is

possible to conclude that SELFNET effectiveness is sufficient for the next experiments,

hence leaving preprocessing for future implementations. In the second test, the subset

of samples NSL-KDD’99−21 was considered. The best configuration of the SELFNET

Pattern Recognition framework achieved 89.9% accuracy when executed with generation of

synthetic samples. The average accuracy on the latest publications is 60.3%; in particular,

the best classifier tested by Ashfaq et al. demonstrated 68.2% accuracy when considering

Adaptive Boosting and the previously described preprocessing. Again, it is possible

consider that the achieved effectiveness is enough to validate its effectiveness.
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Table 6.6: SMAPE on M3-Competition for Quarterly data.

Method
Forecasting Horizon Average

#Obs
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 8 1 to 4 1 to 6 1 to 8

Naive 5.4 7.4 8.1 9.2 10.4 12.4 13.7 7.55 8.82 9.95 756

Single 5.3 7.2 7.8 9.2 10.2 12 13.4 7.38 8.63 9.72 756

Holt 5 6.9 8.3 10.4 11.5 13.1 15.6 7.67 9.21 10.67 756

Dampen 5.1 6.8 7.7 9.1 9.7 11.3 12.8 7.18 8.29 9.33 756

Winter 5 7.1 8.3 10.2 11.4 13.2 15.3 7.65 9.21 10.61 756

Comb S-H-D 5 6.7 7.5 8.9 9.7 11.2 12.8 7.03 8.16 9.22 756

B-J automatic 5.5 7.4 8.4 9.9 10.9 12.5 14.2 7.79 9.1 10.26 756

Autobox 1 5.4 7.3 8.7 10.4 11.6 13.7 15.7 7.95 9.52 10.96 756

Autobox 2 5.7 7.5 8.1 9.6 10.4 12.1 13.4 7.73 8.89 9.9 756

Autobox 3 5.5 7.5 8.8 10.7 11.8 13.4 15.4 8.1 9.6 10.93 756

Robust-Trend 5.7 7.7 8.2 8.9 10.5 12.2 12.7 7.63 8.86 9.79 756

ARARMA 5.7 7.7 8.6 9.8 10.6 12.2 13.5 7.96 9.09 10.12 756

Automat ANN 5.5 7.6 8.3 9.8 10.9 12.5 14.1 7.8 9.1 10.2 756

Flores/Pearce 1 5.3 7 8 9.7 10.6 12.2 13.8 7.48 8.78 9.95 756

Flores/Peace 2 6.7 8.5 9 10 10.8 12.2 13.5 8.57 9.54 10.43 756

PP-autocast 4.8 6.6 7.8 9.3 9.9 11.3 13 7.12 8.28 9.36 756

ForecastPro 4.9 6.8 7.9 9.6 10.5 11.9 13.9 7.28 8.57 9.77 756

SmartFcs 5.9 7.7 8.6 10 10.7 12.2 13.5 8.02 9.16 10.15 756

Theta-sm 7.7 8.9 9.1 9.7 10.2 11.3 12.1 8.86 9.49 10.07 756

Theta 5 6.7 7.4 8.8 9.4 10.9 12 7 8.04 8.96 756

RBF 5.7 7.4 8.3 9.3 9.9 11.4 12.6 7.69 8.67 9.57 756

ForecastX 4.8 6.7 7.7 9.2 10 11.6 13.6 7.12 8.35 9.54 756

AAM1 5.5 7.3 8.4 9.7 10.9 12.5 13.8 7.71 9.05 10.16 756

AAM2 5.5 7.3 8.4 9.9 11.1 12.7 14 7.75 9.13 10.26 756

This proposal 5.3 5.2 4.5 4.7 4.4 4.8 4.9 6.0 4.9 4.8 756
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Table 6.7: SMAPE on M3-Competition for Monthly data.

Method
Forecasting Horizon Average

#Obs
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 8 t + 12 t + 15 t + 18 1 to 4 1 to 6 1 to 8 1 to 12 1 to 15 1 to 18

Naive 15 13.5 15.7 17 14.9 14.7 15.6 15 19.3 20.47 15.3 15.13 15.29 15.57 16.18 16.91 1428

Single 13 12.1 12.1 15.1 13.5 13.1 13.8 14.5 18.3 19.4 13.53 13.44 13.6 13.83 14.51 15.32 1428

Holt 12.2 11.6 13.4 14.6 13.6 13.3 13.7 14.8 18.8 20.2 12.95 13.11 13.33 13.77 15.51 15.36 1428

Dampen 11.9 11.4 13 14.2 12.9 12.6 13 13.9 17.5 18.9 12.63 12.67 12.85 13.1 13.77 14.59 1428

Winter 12.5 11.7 13.7 14.7 13.6 13.4 14.1 14.6 18.9 20.2 13.17 13.28 13.52 13.88 14.62 15.44 1428

Comb S-H-D 12.3 11.5 13.2 14.3 12.9 12.5 13 13.6 17.3 18.3 12.83 12.79 12.92 13.11 13.75 14.48 1428

B-J automatic 12.3 11.4 12.8 14.3 12.7 12.6 13 14.1 17.8 19.3 12.78 12.74 12.89 13.21 13.96 14.81 1428

Autobox 1 13 12.2 13 14.5 14.1 13.4 14.3 15.4 19.1 20.4 13.27 13.42 13.71 14.1 14.93 15.83 1428

Autobox 2 13.1 12.1 13.5 15.3 13.3 13.8 13.9 15.2 18.2 19.9 13.51 13.52 13.76 14.16 14.86 15.69 1428

Autobox 3 12.3 12.3 13 14.4 14.6 14.2 14.8 16.1 19.2 21.2 12.99 13.47 13.89 14.43 15.2 16.18 1428

Robust-Trend 15.3 13.8 15.5 17 15.3 15.6 17.4 17.5 22.2 24.3 15.39 15.42 15.89 16.58 17.47 18.4 1428

ARARMA 13.1 12.4 13.4 14.9 13.7 14.2 15 15.2 18.5 20.3 13.42 13.59 14 14.41 15.08 15.84 1428

Automat ANN 11.6 11.6 12 14.1 12.2 13.9 13.8 14.6 17.3 19.6 12.31 12.55 12.92 13.42 14.13 14.93 1428

Flores/Pearce 1 12.4 12.3 14.2 16.1 14.6 14 14.6 14.4 19.1 20.8 13.74 13.93 14.22 14.29 15.02 15.96 1428

Flores/Peace 2 12.6 12.1 13.7 14.7 13.2 12.9 13.4 14.4 18.2 19.9 13.26 13.21 13.33 13.53 14.31 15.17 1428

PP-autocast 12.7 11.7 13.3 14..3 13.2 13.4 14 14.3 17.7 19.6 13.02 13.11 13.37 13.72 14.36 15.15 1428

ForecastPro 11.5 10.7 11.7 12.9 11.8 12.3 12.6 13.2 16.4 18.3 11.72 11.82 12.06 12.46 13.09 13.86 1428

SmartFcs 11.6 11.2 12.2 13.6 13.1 13.7 13.5 14.9 18 19.4 12.16 12.58 12.9 13.51 14.22 15.03 1428

Theta-sm 12.6 12.9 13.2 13.7 13.4 13.3 13.7 14 16.2 18.3 13.1 13.2 13.44 13.65 14.09 14.66 1428

Theta 11.2 10.7 11.8 12.4 12.2 12.4 12.7 13.2 16.2 18.2 11.54 11.8 12.3 12.5 13.11 13.85 1428

RBF 13.7 12.3 13.7 14.3 12.3 12.8 13.5 14.1 17.3 17.8 13.49 13.18 13.4 13.67 14.21 14.77 1428

ForecastX 11.6 11.2 12.6 14 12.4 12.2 12.8 13.9 17.8 18.7 12.32 12.31 12.46 12.83 13.6 14.45 1428

AAM1 12 12.3 12.7 14.1 14 14 14.3 14.9 18 20.4 12.8 13.2 13.63 14.05 14.78 15.69 1428

AAM2 12.3 12.4 12.9 14.4 14.3 14.2 14.5 15.1 18.4 20.7 13.03 13.45 13.87 14.25 15.01 15.93 1428

This proposal 11.0 11.2 11.7 12.5 11.6 11.4 10.6 9.6 11 12.7 11.6 11.6 11.4 11.1 11.2 11.4 1428
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Table 6.8: SMAPE on M3-Competition for other data.

Method
Forecasting Horizon Average

#Obs
t+1 t+2 t+3 t+4 t+5 t+6 t+8 1 to 4 1 to 6 1 to 8

Naive 2.2 3.6 5.4 6.3 7.8 7.6 9.2 4.38 5.49 6.3 174

Single 2.1 3.6 5.4 6.3 7.8 7.6 9.2 4.36 5.48 6.29 174

Holt 1.9 2.9 3.9 4.7 5.7 5.6 7.2 3.32 4.13 4.81 174

Dampen 1.8 2.7 3.9 4.7 5.8 5.4 6.6 3.28 4.06 4.61 174

Winter 1.9 2.9 3.9 4.7 5.8 5.6 7.2 3.32 4.13 4.81 174

Comb S-H-D 1.8 2.8 4.1 4.7 5.8 5.3 6.2 3.36 4.09 4.56 174

B-J automatic 1.8 3 4.5 4.9 6.1 6.1 7.5 3.52 4.38 5.06 174

Autobox 1 2.4 3.3 4.4 4.9 5.8 5.4 6.9 3.76 4.38 4.93 174

Autobox 2 1.6 2.9 4 4.3 5.3 5.1 6.4 3.19 3.86 4.41 174

Autobox 3 1.9 3.2 4.1 4.4 5.5 5.5 7 3.39 4.09 4.71 174

Robust-Trend 1.9 2.8 3.9 4.7 5.7 5.4 6.4 3.32 4.07 4.58 174

ARARMA 1.7 2.7 4 4.4 5.5 5.1 6 3.17 3.87 4.38 174

Automat ANN 1.7 2.9 4 4.5 5.7 5.7 7.4 3.26 4.07 4.8 174

Flores/Pearce 1 2.1 3.2 4.3 5.2 6.2 5.8 7.3 3.71 4.47 5.09 174

Flores/Peace 2 2.3 2.9 4.3 5.1 6.2 5.7 6.5 3.67 7.73 4.89 174

PP-autocast 1.8 2.7 4 4.7 5.8 5.4 6.6 3.29 4.07 4.62 174

ForecastPro 1.9 3 4 4.4 5.4 5.4 6.7 3.31 4 4.6 174

SmartFcs 2.5 3.3 4.3 4.7 5.8 5.5 6.7 3.68 4.33 4.86 174

Theta-sm 2.3 3.2 4.3 4.8 6 5.6 6.9 3.66 4.37 4.93 174

Theta 1.8 2.7 3.8 4.5 5.6 5.2 6.1 3.2 3.93 4.41 174

RBF 2.7 3.8 5.2 5.8 6.9 6.3 7.3 4.38 5.12 5.6 174

ForecastX 2.1 3.1 4.1 4.4 5.6 5.4 6.5 3.42 4.1 4.64 174

This proposal 1.8 2.3 2.2 2.0 2.3 1.5 2.4 2.1 2.0 2.0 174
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Table 6.9: Results when analyzing NSL-KDD’99+.

Classifier Class TPR FPR Precision Recall F-Measure MCC AUC PRC Area Accuracy

Decision Stump

Normal 0.955 0.731 0.695 0.955 0.804 0.642 0.819 0.683

0.799Anomaly 0.683 0.045 0.952 0.683 0.795 0.642 0.819 0.831

Average 0.8 0.162 0.841 0.8 0.8 0.642 0.819 0.767

RepTree

Normal 0.909 0.256 0.729 0.909 0.809 0.649 0.822 0.721

0.815Anomaly 0.744 0.091 0.915 0.744 0.821 0.649 0.822 0.858

Average 0.815 0.162 0.835 0.815 0.816 0.649 0.822 0.799

Random Forest

Normal 0.973 0.323 0.695 0.973 0.811 0.658 0.959 0.947

0.803Anomaly 0.677 0.027 0.971 0.677 0.798 0.658 0.959 0.961

Average 0.804 0.155 0.852 0.804 0.803 0.658 0.959 0.955

Bootstrap Aggregation

Normal 0.917 0.249 0.736 0.917 0.816 0.663 0.928 0.909

0.822Anomaly 0.751 0.083 0.923 0.751 0.828 0.663 0.928 0.916

Average 0.822 0.155 0.842 0.822 0.823 0.663 0.928 0.913

Adaptive Boosting

Normal 0.968 0.399 0.648 0.968 0.776 0.589 0.935 0.919

0.822Anomaly 0.601 0.032 0.961 0.601 0.74 0.589 0.935 0.941

Average 0.759 0.19 0.826 0.759 0.755 0.589 0.935 0.932

Bayesian Network

Normal 0.973 0.429 0.632 0.973 0.766 0.57 0.945 0.94

0.759Anomaly 0.571 0.027 0.965 0.571 0.718 0.57 0.945 0.955

Average 0.744 0.2 0.822 0.744 0.739 0.57 0.945 0.949

Naive Bayes

Normal 0.931 0.367 0.657 0.931 0.771 0.572 0.895 0.844

0.761Anomaly 0.633 0.69 0.924 0.633 0.751 0.572 0.914 0.911

Average 0.761 0.198 0.809 0.761 0.759 0.572 0.908 0.882

SVM

Normal 0.954 0.355 0.670 0.954 0.787 0.608 0.799 0.659

0.77Anomaly 0.645 0.046 0.948 0.645 0.768 0.608 0.799 0.814

Average 0.778 0.179 0.829 0.778 0.776 0.608 0.799 0.747

Synthetic data

Normal 0.922 0.302 0.698 0.922 0.794 0.620 0.916 0.901

0.794Anomaly 0.698 0.078 0.922 0.698 0.794 0.620 0.918 0.913

Average 0.794 0.175 0.825 0.794 0.794 0.620 0.917 0.908
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Table 6.10: Results when analyzing NSL-KDD’99−21.

Classifier Class TPR FPR Precision Recall F-Measure MCC AUC PRC Area Accuracy

Decision Stump

Normal 0.848 0.416 0.311 0.848 0.456 0.33 0.716 0.292

0.631Anomaly 0.584 0.152 0.945 0.584 0.722 0.33 0.716 0.893

Average 0.632 0.2 0.83 0.632 0.674 0.33 0.716 0.783

RepTree

Normal 0.635 0.342 0.292 0.963 0.4 0.231 0.751 0.372

0.643Anomaly 0.658 0.365 0.89 0.658 0.757 0.231 0.751 0.923

Average 0.654 0.361 0.782 0.654 0.692 0.231 0.751 0.823

Random Forest

Normal 0.875 0.425 0.314 0.875 0.462 0.347 0.794 0.576

0.629Anomaly 0.575 0.125 0.954 0.575 0.718 0.347 0.794 0.935

Average 0.63 0.179 0.838 0.63 0.671 0.347 0.794 0.87

Bootstrap Aggregation

Normal 0.637 0.35 0.281 0.637 0.396 0.225 0.743 0.465

0.647Anomaly 0.65 0.363 0.89 0.65 0.751 0.225 0.743 0.922

Average 0.647 0.361 0.78 0.647 0.687 0.225 0.743 0.839

Adaptive Boosting

Normal 0.866 0.518 0.217 0.866 0.413 0.272 0.724 0.394

0.522Anomaly 0.482 0.134 0.942 0.482 0.638 0.272 0.724 0.901

Average 0.552 0.204 0.82 0.552 0.597 0.272 0.724 0.809

Bayesian Network

Normal 0.878 0.563 0.257 0.878 0.398 0.25 0.744 0.486

0.516Anomaly 0.437 0.122 0.942 0.437 0.597 0.25 0.744 0.928

Average 0.517 0.202 0.817 0.517 0.561 0.25 0.744 0.848

Naive Bayes

Normal 0.678 0.469 0.243 0.678 0.358 0.161 0.648 0.294

0.557Anomaly 0.531 0.322 0.882 0.531 0.663 0.161 0.65 0.876

Average 0.558 0.348 0.766 0.558 0.607 0.161 0.65 0.77

SVM

Normal 0.180 0.001 0.982 0.180 0.304 0.385 0.589 0.325

0.850Anomaly 0.999 0.820 0.846 0.999 0.916 0.385 0.589 0.846

Average 0.851 0.672 0.871 0.851 0.805 0.385 0.589 0.752

Synthetic data

Normal 0.905 0 1 0.095 0.905 N/A N/A N/A

0.899Anomaly 0 0.095 0 0 0 N/A N/A N/A

Average 0.905 0 1 0.095 0.95 N/A N/A N/A
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Table 6.11: Comparison with related works in terms of accuracy.

Method NSL-KDD’99+(%) NSL-KDD’99−21(%)

J48 81.05 63.97

Naive Bayes 76.56 55.77

NB tree 82.02 66.16

Random forests 80.67 63.25

Random tree 81.59 58.51

M-L perceptron 77.41 57.34

SVM 69.52 42.29

Fuzzy 82.41 67.06

Fuzzy D&D 84.12 68.82

This proposal (Classification) 82.2 64.7

6.5.3 Use Case Evaluation

The following sections describe the two experiments carried on upon the CAIDA’16

reference dataset, analyzed under different levels of data granularity for each: per second

and per minute.

6.5.3.1 Experiment 1: CAIDA’16-Sample

The first step on the CAIDA traffic volume analysis according to the aforementioned use

case is novelty detection. With this purpose, the first 35 observations on the monitored

environment are considered as reference samples for building the normal network usage

model. The evaluation of the model demonstrated 91.4894% accuracy when tested via

cross-validation. The best selected pattern recognition setting was the combination of

generating synthetic data as counterexample [HFW08] and its analysis with Bootstrap

Aggregation [Bre96] based on decision stump [FI92]. Discordant traffic volume values were

monitored at observations 86–88 (21 January 2016 14:01:25 to 14:01:29), 113 (21 January

2016 14:01:54), 115 (21 January 2016 14:01:56), 139–141 (21 January 2016 14:02:20 to

14:02:23). Figure 6.2 summarizes the anomalous observations discovered. The impact of

the six attributes taken into account is illustrated in Figure 6.3. As can be observed, each

of them highlights the fact that at the aforementioned observations on the traffic volume,

there is a discordant with the reference data.

The next knowledge acquisition step is to infer new facts from predictions. The

obtained results are summarized in Table 6.12, and Figure 6.4 illustrates the evolution of

the predictions for horizon 1 (Figure 6.4a), horizon 5 (Figure 6.4c) and horizon 10 (Figure

6.4e). From them it is easy deduce that the higher horizon, the higher forecast error.

On the other hand, their different adaptive thresholds are shown in Figure 6.4b,d,f. The

thresholds provide greater margin of error when the forecasting error is higher. Because

of this, the selection of an appropriate horizon plays an essential role in the use case

effectiveness, since it conditions the level of restriction on which operates the knowledge

acquisition framework.
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Figure 6.2: Discordant observations at novelty detection for CAIDA’16-sample.
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Figure 6.3: Metric variations on samples.

Another aspect to keep in mind is the impact of the K adjustment value at the decisions

taken. This parameter regulates the restraint of the adaptive thresholds. Figure 6.5

illustrated the variation of the ratio of observations tagged as normal when modifying

K. Regardless of the prediction horizon, when K shows lower values the number of

observations labeled as unexpected is higher; hence the level of restriction on which the

framework operates is higher. Conversely, as K grows the normal labeling rate increases,

in this way overlooking situations that in the previous cases were considered discordant.

Finally, letting a forecasting horizon of 1 observation and K = 1, Figure 6.6a illustrated

the traffic volume evolution on CAIDA’16-sample and the adaptive thresholds inferred at

the proposed framework. Figure 6.6b summarizes the unexpected observations discovered,

which provide the rest of the information required to produce conclusions (symptoms).

Unexpected traffic volumes occur at observations 86–93 (21 January 2016 14:01:25 to
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14:01:34), 113 (21 January2016 14:01:54), 115 (21 January 2016 14:01:56), 139–143 (21

January 2016 14:02:20 to 14:02:25) and 146 (21 January 2016 14:02:25). By contrasting

Figures 6.2 and 6.6b it is possible deduce when the knowledge acquisition instantiation of

the proposed framework infers symptoms as final facts related with the implemented use

case (i.e., observations tagged as “suspicious”). It takes place each time a novelty behavior

is discovered and the traffic volume is unexpected, which occurs at observations 86–88 (21

January 2016 14:01:25 to 14:01:29), 113 (21 January 2016 14:01:54), 115 (21 January 2016

14:01:56), 139–141 (21 January 2016 14:02:20 to 14:02:23).Suspicious variations on the

volume of the monitored data are reported to the decision-making sub-layer, where the

countermeasures to be deployed are planned and orchestrated.

Table 6.12: Forecasting results for each horizon.

Forecasting Horizon (H) Selected Algorithm Parameter Calibration SMPAPE

1 Multiplicative Holt-Winters alpha = 0.5, beta = 0.1, gamma = 0.9 0.0004

5 Multiplicative Holt-Winters alpha = 0.1, beta = 0.3, gamma = 0.9 0.6972

10 Additive Holt-Winters alpha = 0.1, beta = 0.3, gamma = 0.1 1.7622

6.5.3.2 Experiment 2: CAIDA’16-monthly

This experiment was performed upon CAIDA’16-monthly data, by following the same

approach conducted in the previous section. Since CAIDA’16-monthly is composed by

four time series (traffic traces collected at January, February, March and April), they

are individually analyzed by the framework. Being novelty detection and forecasting

the set of actions in the knowledge acquisition process, the conclusions deduced by the

framework are summarized in Figure 6.7. Observations are shown in Figure 6.7a,c,e,g; and

the comparison between novelty detection and unexpected traffic detected at each monthly

dataset are plotted in Figure 6.7b,d,f,h, which are the required facts to produce symptoms.

When analyzing CAIDA’16 at January and February it can be concluded that even

when discordant observations are detected in the novelty detection stage, unexpected

traffic volumes are not observed in any of the time series. Thereby, there are no anomalous

traffic volume variations reported by the framework. It is explained due to the required

conditions (novelty and unexpected traffic) do not occur simultaneously at any observation.

On the other hand, March and April CAIDA’16 datasets detected both unexpected

and discordant traffic volume observations in the analyzed time series. By contrasting

the traffic labeled as “unexpected” with the novelty detection results at the March

dataset (Figure 6.7f), the inference of anomalous traffic symptoms take place at

observations 29 (17 March 2016 14:28) and 31 (17 March 2016 14:30). Likewise, at

the April dataset (Figure 6.7h), symptoms are inferred at observations 29 (6 April 2016

14:28), 31 (6 April 2016 14:30), and 32 (6 April 2016 14:31); where network traffic is

simultaneously considered “unexpected” and “fluctuant”, so the two required conditions

to trigger the “suspicious” traffic symptoms are met.
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Figure 6.4: Evolution of prediction and adaptive thresholding on CAIDA’16 sample.
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Figure 6.5: Normal observation rate when varying K.
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Figure 6.7: Evolution of observations, thresholding and novelty detection on CAIDA’16
monthly.
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6.6 Final Remarks

This chapter presented a reasoning-based framework for the acquisition of knowledge in 5G

networks, and an instantiation of this framework has been performed. For this purpose,

every component has been equipped with very basic capabilities, which has led to the

implementation of well-known data mining algorithms and machine learning schemes

within each of them. The experimentation has focused on two fundamental aspects:

demonstrating that each component operates properly and testing the potential of the

proposal in a real use case. At the first stage, the functional standards NSL-KDD and

M3-competition have been considered. The obtained results corroborated the efficacy

of the deployed components by comparison with similar proposals. On the other hand,

the defined use case allowed the acquisition of knowledge related to variations of traffic

volume on the monitoring environment. This has been tested with real traffic, in particular

with traces provided by the CAIDA’16 collection. The results effectively demonstrated its

accuracy when generating useful information for the management of the occurred incidents.

In this way, it contributes on the provision of self-management capabilities adapted to

emergent network contexts.



Chapter 7

Entropy-based Economic Denial of

Sustainability (EdoS) detection

In recent years, an important increase in the amount and impact of Distributed Denial of

Service (DDoS) threats has been reported by different information security organizations.

They typically target on the depletion of the computational resources of the victim

system to prevent their operability. Inspired by such methods, Economic Denial of

Sustainability (EDoS) attacks pose a similar motivation, but adapted to cloud computing

environments, where the denial is targeted on damaging the economy of both suppliers and

customers. Therefore, the most common EDoS approach is making the offered services

unsustainable by exploiting their auto-scaling algorithms. In order to contribute to their

mitigation, this chapter introduces a novel EDoS detection method based on the study of

entropy variations related with metrics considered to infer the behavior of the monitored

environment. Through the prediction and definition of adaptive thresholds, unexpected

behaviors capable of fraudulently demand new resources are distinguished. For validating

purposes, an experimental scenario adapted to the singularities of the EDoS threats has

been implemented and the proposal accuracy has been effectively assessed.

With the purpose of cooperate with the research community towards their mitigation,

the following main contributions are accomplished:

A multi-layered architecture for EDoS attack detection, which describes the

management of the acquired information from its monitoring to the notification

of possible threats.

A novel entropy-based EDoS detection approach, which assuming its original

definition, allows to discover unexpected behavior on local-level metrics related with

the auto-scaling capabilities of the victim system.

An evaluation methodology adapted to the singularities of the EDoS threats and the

assumptions driven by their original definition.

Comprehensive experimental studies that validate the proposed detection strategy,

in this way motivating its adaptation to future use cases.
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In order to facilitate the understanding of this chapter, their contents are structured

into seven sections. Section 7.1 summarizes the assumptions and limitations considered in

the EDoS detection architecture. Section 7.2 describes the EDoS detection architecture

proposed in this work. The performed experimentation is described in Section 7.3, and

the obtained results are then discussed in Section 7.4. Finally, Section 7.5 presents the

conclusions of this chapter.

7.1 Assumptions and limitations

With the purpose of establish the basis for defining an appropriate design methodology,

the peculiarities of the conventional Denial of Service attacks, the legitimate mass access

to the protected services (i.e., flash crowds), and their differences with the Denial of

Sustainability threats have been taken into account. They allowed to define the following

assumptions and limitations concerning the proposal described in the rest of this section:

As remarked by Hoff in the original definition of EDoS attacks [Hof08], they pose

threats that do not aim on deny the service of the victim systems, but increase the

economic cost of the services they offer to make them unsustainable.

Hereinafter, Chris H. clarified that at network-level, EDoS threats resemble activities

performed by legitimate users [Hof09]. This implies that the distribution of

the different network metrics (number of request, number of sessions, frequency,

bandwidth computation, etc.) does not vary significantly when these attacks are

launched. This is because in order to ensure their effectiveness, they must go

unnoticed.

It is possible to identify EDoS attacks by analyzing performance metrics at

local-level. Given that at network-level there are no differences between EDoS

and normal traffic, the requests performed by these threats must involve a greater

operational cost.

Requests performed by EDoS attacks have a similar quality to those from legitimate

users (for example, a similar success rate). However, attackers may exploit

vulnerabilities (usually at Application layer) to extend their impact [SGSC16].

DDoS attacks usually originate from a large number of clients, where each of them

performs a huge number of low-quality requests. On the other hand, EDoS attacks

also come from many sources, but each client performs an amount of requests

similar to that of legitimate users. Unlike in flash crowds, EDoS attacks affect

the predictability of the performance metrics related to the costs resulting from

attending the requests served by the victim [ZJW+14].

The security mechanisms implemented on each software component involved in the

enforcement of cloud auto-scaling policies should raise the likelihood of preventing

EDoS attacks. However, such isolated security approach lacks a global detection

strategy for disclosing unnoticed EDoS patterns. Hence, this proposal delves into the
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EDoS detection analytics methods, disregarding the security considerations assumed

on the development and implementation of the different components.

7.2 EDoS Detection Architecture

Based on the assumptions and limitations stated so far, it is possible to assume that,

by studying the predictability of performance metrics at local-level (e.g., processing time,

memory consumption, input and output operations, CPU consumption, etc.), it is possible

successfully identify EDoS attacks. This is taken into account in the following subsections,

where the introduced detection strategy is described. The proposal has the architecture

illustrated in Figure 7.1. Therefore, it must perform three main tasks: (1) monitoring and

aggregation; (2) novelty detection and (3) decision-making. They are described below.

Clients

Server

Requests

Host-side

Monitoring

Aggregation

Prediction

Thresholding

Novelty Detection

Decision-Making

Response

Local metrics

Aggregated metrics

Performance

Outliers

Alerts

Figure 7.1: Architecture for EDoS attack detection.
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7.2.1 Monitoring and Aggregation

At the monitoring stage, the factual knowledge necessary to deduce the nature of the

requests to be analyzed is collected. Therefore, the detection system monitors local metrics

related to the operational cost of responding the received request. Assuming that in order

to success, EDoS attacks attempt to trigger the auto-scaling mechanisms of the victim-side,

the metrics that determine these actions acquire special relevance. Note that they are

widely studied in the bibliography, which vary according to the management services.

Examples of well-known local-level metrics are: CPU utilization, warming time, response

time, number of I/O requests, bandwidth or memory consumption [BBBS17, SGSC16].

Because of its relevance in the recent Cloud computing commercial solutions (e.g., Google

Cloud, Amazon EC2, etc.) the performed experimentation considered the percentage CPU

usage of the victim system.

On the other hand, it is important to borne in mind that the analysis of the

predictability degree of events has played an essential role in the defense against

conventional DDoS threats. Among the most used aggregated metrics, it is worth

mentioning the classical entropy adaptation to the information theory proposed by

Shannon [Sha48]. Note that in approaches like [BBK15] it is demonstrated its effectiveness

when applied to DDoS detection, being a strong element in the discovery of flooding

threats. Recent publications such as [BS15, IT11, JSTD16] tried to adapt this paradigm

to the EDoS problem. However, most of them made the mistake of only considering

information monitored at network-level, hence ignoring part of the information that truly

defines the auto-scaling policies. Because of this, the Aggregation stage of the proposed

method calculates the information entropy H(X) of the {x1, x2, . . . , xn} instances of

the qualitative variable X monitored per observation, as well as their {p1, p2, . . . , pn}
probabilities. The proposed detection scheme defines X as “the response time (rate) to

the different requests performed by each client”. Given that X describes discrete events,

its entropy is expressed as follows:

H(X) =
n∑
i=1

pi loga pi (7.1)

where loga b. logb x = loga x. H(X) is normalized, hence being calculated when dividing

the obtained value by the maximum observable entropy logb n. When the maximum

entropy is reached, all the monitored clients made requests with the same CPU overload;

on the contrary, if the registered entropy is 0 then 1) a single customer carried out all

the requests, or 2) there was no CPU consumption during the observation period. The

sequence of monitored entropies is studied as a time series H(X)Nt=0.

7.2.2 Novelty Detection

The next analytic step is to recognize the observations that significantly vary from

normal behaviors. This is a one-class classification problem where it is assumed that

the normal data compiles the previous H(X)t=1,..., H(X)t=N−1 observations and it is

intended to deduce if H(X)t=N belongs to the same activities. The bibliography provides



7.2. EDoS Detection Architecture 99

a large variety of solutions to this problem [PCCT14]. However, because it was assumed

that EDoS attacks could be identified by discovering discordances at the predictability of

local-level aggregated metrics [ZJW+14], the proposed system implements a forecasting

approach.

7.2.2.1 Detection Criteria

In particular, the entropy for certain horizon h, Ĥ(X)t=N+h, is predicted. Hence,

letting the following Euclidean distance:

dist(o, ô) =

√
(Ĥ(X)t=N+h − (X)t=N+h)2 (7.2)

If (X)t=N+h differs from Ĥ(X)t=N+h, so dist(o, ô) > 0 an unexpected behavior is

detected. The significance of this anomaly is established by two adaptive thresholds:

Upper Threshold (Thsup) and Lower Threshold (Thinf ). A novelty was discovered if any

of the following conditions is met:

dist(o, ô) > 0 and H(X)t=N+h > Thsup

dist(o, ô) > 0 and H(X)t=N+h < Thinf
(7.3)

7.2.2.2 Prediction

The implemented prediction methodology adopted the Autoregressive Integrated

Moving Average ARIMA(p, d, q) paradigm [HT82], which defined by the following

general-purpose forecast model:

Yτ−1 − a1Yτ−1 − · · · − ap′Yτ−p′ = εt + θ1εt−1 + · · ·+ θqεt−q (7.4)

where ai are the parameters of the autoregressive part, θi are the parameters of the

moving average part and εt is white noise. The adjustment of p, d, q may be the

ARIMA model equal to other classical forecasting models. For example simple random

walk (ARIMA(1, 1, 0)), AR(ARIMA(1, 0, 0)), MA(ARIMA(0, 0, 1)), simple exponential

smoothing (ARIMA(0, 1, 1)), double exponential smoothing (ARIMA(0, 2, 2)), etc.

Predictions (ŷt) on ARIMA models are inferred by a generalization of the autoregressive

forecasting method expressed as follows:

ŷt = µ+ φ1Yτ−1 + φpYτ−p − φ1εt−1 − · · · − φqεt−q (7.5)

and the calibration of the adjustment parameters p, d, q considered the Akaike Information

Criterion (AIC) as described in [OHT05].

7.2.2.3 Adaptive Thresholding

On the other hand, the adaptive thresholds define the Prediction Interval (PI) of the

sensor, which is deduced in the same way as it is usually described in the bibliography,

hence assuming the following expressions:
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Thsup = H(X)t=N+h +K
√
σ2var(dist(o, ô))

Thinf = H(X)t=N+h −K
√
σ2var(dist(o, ô))

(7.6)

and being K the confidence interval of the estimation (by default Zα
2
). Note that despite

linking its value to the normal distribution, it was demonstrated that when time series

does not approach such distribution, the obtained error is unrepresentative [HKOS05].

Figure 7.2 illustrates an example of novelty detection. In the first 60 observations non

H(X) exceeds the adaptive thresholds; but at observation 61 an EDoS attack was launch,

and the inferred changes meet the conditions to be considered novel.
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Figure 7.2: Example of novelty detection.

7.2.3 Decision-Making and Response

According to the principles of anomaly-based intrusion detection compiled and

discussed by Chandola et al. [Cha09], once assumed the appropriate premises, the

identification of discordant behaviors may be indicative of malicious activities. As stated at

the beginning of this chapter, the introduced EDoS detection system lies on the original

definitions of C. Hoff and R. Cohen. Therefore, when a local metric directly related

with triggering auto-scaling capabilities on Cloud computing became unpredictable, it

is possible deduce that the protected environment is misused, hence jeopardized. This

occurs when dist(o, ô) > 0 and 1) H(X)t=N+h > Thsup or 2) H(X)t=N+h < Thinf .

Because the performed research focused only on detect the threats, its response is to

notify the detected incident. The report may trigger mitigation measures such as initiate

more restrictive control access [MARH13, KN09, AAB13] or deploy source identification

capabilities [ITJ12] (which decision and development is out of scope). Therefore, it entails

a good complement to many of the proposals in the bibliography.

7.3 Experiments

The following sections describe the Cloud-based testbed and related architectural

components considered throughout the performed experimentation. They are depicted

in Figure 7.3.
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Figure 7.3: Cloud execution environment for experiments.

7.3.1 Execution Environment

The experimental cloud computing environment was built with Openstack [Ope],

a well-known open source cloud platform suitable to deploy public and private cloud

environments of any size. The auto-scaling features of this cloud platform have also been

tested effectively on recent publications. The Openstack deployment for the experimental

testbed was composed by one controller node and one compute node. The controller runs

core Openstack services and it also holds the Networking (Neutron), Compute (Nova)

essentials, Telemetry (Ceilometer) and Message Queue (RabbitMQ) services. In addition,

it runs the Orchestration (Heat) services to allow the configuration of auto-scaling policies.

The compute node runs in a separate server, hosting the Nova core services. A new

Compute instance has been launched to deploy the web service used for experimentation.

This virtual instance runs an Ubuntu 16.04-x64 server with 8 CPU cores and 8 GB of

RAM memory.

On top of the operating system, a REST (Representational State Transfer) web

service written in Flask [SFl] has been implemented. A REST web service has been

chosen due to its simplicity and rapid development. REST is the predominant web API

design model built upon HTTP methods, which accommodates the system to interact

with several entities (i.e., humans, IoT devices). In REST every client request 1) only

generates a single server response (one-shot) and 2) every response must be generated

immediately (one-way). This request-response model is suitable to focus the analysis on

the measurement of CPU processing times, by tracking the connected user and the impact

of its client requests on the CPU consumption.

In addition to the web service, two modules were developed to be run in the

background: The HTTP Usage Monitor module and the Entropy Modeler. The former

logs information regarding the monitoring of client requests processing times, whereas

the latter performs novelty detection methods to trigger anomaly-based alerts to the

Openstack orchestration services.

On the client-side, a set of REST-clients have been deployed to generate traffic

according to several execution scenarios. The implementation details and characteristics
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of the components tested in the experimentation stage are explained in the forthcoming

sections.

7.3.2 Server-Side Components

The following describes the deployed server-side components: RESTful Web Service,

HTTP Usage Monitor and the Entropy Modeler.

7.3.2.1 RESTful Web Service

To facilitate a seamless interaction with HTTP clients, a REST web service has

been implemented on Flask, a Python-based framework for rapid development of web

applications. The REST service exposes four HTTP endpoints that produce the execution

of different list-sorting operations on the server, each of them consumes a different amount

of CPU time which is measured in the background. The endpoints and their average

execution times are summarized in Table 7.1.

Table 7.1: HTTP GET endpoints and CPU average cost.

URI Parameters Avg. CPU Time in Sec. (1000 exec.)

/1 ?id={clientID} 0.02158

/2 ?id={clientID} 0.02781

/3 ?id={clientID} 0.03673

/4 ?id={clientID} 0.33604

7.3.2.2 HTTP Usage Monitor

Once the server receives a client HTTP request, the Usage Monitor module

permanently measures the amount of CPU time consumed to process the request before

sending the response back to the client. The module makes use of Python libraries and

standard Linux utilities to track the CPU consumption per each client request. The

collected data is then aggregated per client in configurable time intervals before being

logged to the system. If more than one client connection is being observed in the given

time interval, only the sum (aggregated metric) of all the processing times is logged. This

allows the creation of a time series, required for the next processing level.

7.3.2.3 Entropy Modeler

This module gathers the time series logged by the HTTP Usage Monitor and computes

the entropy of the CPU time usage of the different requests performed by each client. With

the resultant normalized entropy, the module forecasts the next h observations for the given

time series, in conformance with the ARIMA model. The predicted values are taken to

estimate the forecasting upper and lower thresholds. Whenever the resultant entropy falls

outside the prediction intervals, a Traffic Anomaly alert is reported to the auto-scaling

engine of the corresponding Cloud platform (i.e., Openstack Heat).
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7.3.3 Client-Side Component

On a separate server, several clients have been implemented as Python multi-threading

scripts for HTTP traffic generation, which is sent to the web service hosted in the

Openstack virtual machine instance. The generated number of traffic requests is a

discrete variable that follows a random Poisson distribution, since their similarity with

this distribution is widely assumed by the research community [BTI+03]. It is modeled

according to the traffic load requirements for each evaluation scenario. Every client is

represented by a process thread, which models multiple parallel clients handling their

own sets of requests independently from others. When normal network conditions are

modeled, all the clients send an HTTP GET request to the lower CPU-consuming requests

(endpoints 1–3) described in Table 7.1. When an attacker is modeled, it only calls the

most complex endpoint (4), which has higher CPU demands at server-side. Note that GET

requests can also accept the client ID as a parameter. It facilitates the implementation

of different client connections originated in the same computer since all the thread-based

clients share the same source IP address, but are differentiated by client ID.

7.3.4 Test Scenarios

Five main scenarios have been showcased to validate the proposal. All of them compare

the entropy levels of CPU processing times under normal traffic conditions against the

entropy measured when an EDoS attack is launched. Those attacks target to produce

CPU overhead. Therefore, the attack decrements the server capacities to handle more

connections, and it forces the decision to scale up the current virtual machine instance

when the CPU usage is above a pre-defined CPU limit in the Cloud-platform auto-scaling

engine.

The set of network traffic conditions described in Table 7.2 are assumed throughout

the experiments. There, clients (C) generate the total number of web requests (TR) at the

expected rate (ERS). It is worth remarking that ERS corresponds to the expected number

of occurrences (λ) of the Poisson distribution. Therefore, the generated web requests

represent the sample of connections to be analyzed. The MTR observation number (5000)

is the frontier that divides the TR into two groups of 5000 client requests each. The

first one operates under the normal traffic conditions described in Table 7.2; whereas

a percentage of the second group contains the malicious requests, letting the remaining

connections to operate under the normal conditions. For instance, in the second group a

5% malicious requests rate indicates that 250 malicious requests and 4750 normal requests

were observed. Table 7.3 defines the evaluation scenarios (E1 to E5) considered to deploy

the EDoS attacks.

The experiments performed for each scenario started their execution with the normal

web traffic conditions (first group of connections), with all the participant clients

requesting the endpoints 1–3, as explained before. However, at the time specified by

the MTR connection, the attack was launched. It compromised several normal clients

(C), which sent malicious requests to the endpoint 4, thus increasing the CPU overhead.

It is important to remark that the attackers connect to the server under the same ratio
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Table 7.2: Normal traffic conditions for experiments.

Characteristic Value

Web clients (C) 500

Expected requests per second (ERS) 60

Total web requests (TR) 10,000

Malicious Triggering Request (MTR) 5000

Table 7.3: Network attack conditions and scenarios.

Parameter E1 E2 E3 E4 E5

Malicious Request Rate (MRR) 1% 5% 10% 15% 20%

Attacker Clients (AC) 5 25 50 75 100

Total number of malicious requests (TR−MTR)×MRR 150 250 500 750 1000

(ERS) configured for normal clients, making them unnoticeable since their connection

rate resembled legitimate traffic, but they targeted to exploit the highest time-consuming

endpoint which was exposed as a service vulnerability. To validate the proposal, it has

been considered a Cloud auto-scaling policy, configured to launch a new virtual machine

instance when the CPU consumption ran above 40% in a one minute interval.

7.4 Results

The experiments were performed with the parametrization presented in Table 7.3,

adapted to each evaluation scenario. The first monitored metric was the CPU time

consumption caused to process web requests launched from clients. A summary of the

CPU consumption of the server, measured on one-second intervals, is depicted in Figure

7.4. There, in all scenarios, half of the client connections exposed the same behavior

until the attack was triggered (MTR). From that moment on, the CPU overhead was

influenced by the traffic attack volume described in Table 7.3. Bearing in mind the

defined auto-scaling policy, it is noted that the scenarios E3, E4 and E5 would have

automatically launched a new virtual machine instance if the presence of the attack had

been unnoticed. Hence demonstrating the consequences of the EDoS threats and bringing

the attack detection strategy to play an essential role. On the other hand, besides the

CPU estimation, the entropy of the per-client processing time was constantly measured

by the Entropy Modeler on one-second intervals, as plotted in Figure 7.5. The graph

shows that the overall behavior of the entropy was contrary to the behavior noticed in the

CPU overhead with the higher entropy values before the MTR observation. The slumped

entropy level was slightly noticeable on scenario E1 (Figure 7.5(a)), but became quite

more perceptible on scenarios E2 to E5 (Figure 7.5(b) to 7.5(e)). Thereby, this pattern

was directly influenced by the presence of the compromised devices, decreasing the entropy

as long as more malicious requests were generated.

Only when the entropy was measured for the observed time, the Entropy Modeler
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estimated the prediction thresholds to infer if the observed entropy was running outside

the predicted intervals, thus leading to the decision of triggering an alert if the EDoS

attack was detected.
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Figure 7.4: Average CPU consumption per scenario.

The precision observed at the Receiver Operating Characteristic (ROC) space is

summarized in Figure 7.6. There five curves are illustrated, each one associated with

one of the aforementioned evaluation scenarios (E1, E2, E3, E4, E5). Table 7.4 compiles

several evaluation metrics (True Positive Rate (TPR), False Positive Rate (FPR) and Area

Under Curve (AUC)) and the best calibrations (K) to reach the highest accuracy. Bearing

in mind these results, it is possible to deduce that the proposed method has proven to be

more effective when the attack is originated from a larger number of compromised nodes

(e.g., E5 with 20% of the total number of connected clients). This is because a greater

number of instances of the random variable X represent similar probabilities, which leads to

a more significant decrease in the H(X) entropy, and therefore to display less concordance

with the normal observations.

On the other hand, labeling errors have occurred mainly due to issuing false positives,

in situations where fluctuations of H(X) derived from changes in the behavior of legitimate

clients acquire a similar relevance to those inferred by malicious activities. Note that

the larger is the number of compromised nodes that take part of the attacks, the greater

possibility of forcing auto-escalating reactions. Based on this fact it is possible to state that

the proposed method improves its detection capabilities when facing more harmful threats.

In addition, the existence of a K calibration parameter allows operators to easily configure

the level of restriction in which the system operates: When greater discretion is required, K

must adopt higher values. This considerably reduces the likelihood of issuing false alerts,

hence facilitating to minimize the cost of the countermeasures to be applied. On the

opposite case, when the monitoring environments require greater protection it is advisable

to decrease K, hence improving the possibility of detecting threats, but potentially leading

to deploy more unnecessary countermeasures.
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(a) Entropy evolution in E1
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(b) Entropy evolution in E2
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(c) Entropy evolution in E3
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(d) Entropy evolution in E4
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(e) Entropy evolution in E5

Figure 7.5: Entropy measurements per scenario.
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Figure 7.6: Results in ROC space.

Table 7.4: Summary of results in ROC space.

Scenario AUC (Trapezoidal) TPR FPR K

E1 0.8858 0.7480 0.17 0.160

E2 0.9637 0.9630 0.09 0.163

E3 0.9766 0.9680 0.08 0.160

E4 0.9794 0.9644 0.06 0.160

E5 0.9830 0.9431 0.03 0.167

7.5 Final Remarks

Throughout this chapter, a novel proposal for detecting EDoS attacks has been

introduced. To this end, the state of the art has been reviewed in detail, which has brought

several considerations towards the definition of a detection method suited for virtualized

environments. A distinctive aspect of the performed research on this subject, compared to

other proposals, is the study of behavioral entropy-based patterns analyzed on the deployed

virtual instances. The experimental testbed implemented a client-server architecture

executed on different network scenarios. On the web server, the monitored per-client

CPU times have been evaluated by analyzing the entropy levels, which have exposed

a decrement when malicious requests originated by the compromised nodes have been

processed at server-side. In such scenarios, entropy has behaved indirectly proportional

to the consumed CPU. In addition, the detection method has also demonstrated its

effectiveness when predicting the entropy thresholds to be compared against the real

measured entropy. Thereby, this approach has proven high accuracy by quantifying the

area under the ROC curve, hence demonstrating its applicability on network environments

where virtualization plays a major role.





Chapter 8

Detection of EDoS Threats in

Self-Organizing Networks

In this chapter, the problem of the economic denial of sustainability in Self-Organizing

Networks is discussed. To this end, the characteristics of these threats are identified

and formalized. Thorough the performed research two novel threats were defined:

workload-based EDoS (W-EDoS) and Instantiation-based EDoS (I-EDoS). W-EDoS is

characterized by executing expensive requests in terms of computational resources at

the victim system, hence exhausting its workload and forcing operators to contract

additional resources. On the other hand, I-EDoS occurs when the cloud management

software deploys more instances of virtual network functions than needed as a response to

requests that resemble legitimate, but are malicious, thus increasing the cost of the hired

resources. To contribute towards their mitigation, a security architecture is proposed.

It implements strategies that rely on predicting the behavior of the protected system,

constructing adaptive thresholds, and clustering instances based on productivity. An

extensive experimentation has been successfully conducted, which includes case studies

and the assessment of the accuracy under different scenarios.

For cooperating with the research community towards the detection and mitigation of

EDoS, the following main contributions are presented:

A comprehensive formalization of the distinction between EDoS threats and similar

network incidents, among them normal activities, flash crowds and denial of service.

The definition of a pair of emerging new generation threats: Workload-based EDoS

and Instantiation-based EDoS.

A multi-layered architecture for EDoS attack detection, which describes the

management of the acquired information from its monitoring to the notification

of possible threats.

A novel entropy-based EDoS detection approach that allows to discover unexpected

behaviors on local-level metrics related with the auto-scaling capabilities of the target

system.

109
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An evaluation methodology adapted to the singularities of the EDoS threats and the

assumptions driven by their original definition.

Comprehensive experimental studies that validate the proposed detection method.

To facilitate the reader’s comprehension, this chapter has been divided into nine parts.

Section 8.1 introduces the CRoWN indicators that lay the basis for the formalization of

this proposal. Section 8.2 describes the impact of EDoS attacks. Section 8.3 introduces

the design principles and considerations of the proposed detection method. In Section 8.4

the self-organizing architecture is presented in detail. Sections 8.5 and 8.6 delve into the

details of the detection approaches for dealing with W-EDoS and I-EDoS, respectively.

Section 8.7 describes the experiments and evaluation methodology to assess the proposed

method. Section 8.8 discusses the obtained results. Finally, Section 8.9 provides the

conclusions of this chapter.

8.1 EDoS and CRoWN indicators

The principal disparities between EDoS attacks and the rest of similar network

circumstances are easily understood by considering four essential elements involved at the

information communication processes, under the prior assumption that the relationships

between the sources of the requests and the provision that must to solve them act as a

client-server model. These traits are the clients (C), requests (R), workload that entails

their resolution (W ) and the network functions necessary for their processing (NF ), which

are grouped in the set of characteristics CRoWN : {C,R,W,NF}. From the analytical

point of view, and as deduced from the discussions reviewed in the bibliography, the

quantitative study of their behavior has attracted the interest at most of the researchers.

Therefore, the following CRoWN indicators are considered in the event definitions (see

Table 8.1): with regard to C, the total number of monitored clients that made requests

nC and its distribtuion over time nC(t); with respect to R, the average number of

requests per client nR and its distribution over time nR(t); for W is considered the

average effort towards process the requests nW (bandwidth, computational cost, memory,

etc. depending the use case) and its distribution over time nW (t); and finally, regarding

NF the total number of network functions instantiated nNF , its distribution over time

nNF (t) and the productivity of each of them P (X)nNFi=0 , 0 ≤ i ≤ nNF . Note that the

method for calculating the last indicator depends directly on the functionality of the

instantiated network functions. For example, if they act as Network-based Intrusion

Detection Systems (NIDS), a possible productivity indicator is the number of alerts

that each of them report. On the other hand, if they deploy bandwidth optimization

capabilities, productivity may be the improvement they achieve. It is also important to

highlight that the aforementioned indicators can be further extended in order to define

variations of the threats described throughout this research, introduce alternative network

situations, or enhance the proposed method. But to address these issues in-depth is out of

the scope of this paper, hence focusing on the features that most comprehensively recap
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the problems to be faced. With this purpose, the CRoWN indicators associated to a

monitoring task m are summarized in the following abstract data organization:

CRoWN(m) = [nC, nC(t), nR, nR(t), nW, nW (t), nNF, nNF (t), P (X)nNF
i=0 ] (8.1)

Table 8.1: Summary of CRoWN indicators

Trait Indicator Description

C
nC Total number of clients.

nC(t) Distribution of clients over time.

R
nR Average number of requests per client.

nR(t)
Distribution of average number of requests per

client over time.

W
nW Total workload of processing requests.

nW (t)
Distribution of workload of processing requests

over time.

NF

nNF Total number of instantiated network functions.

nNF (t)
Distribution of number of instantiated network

functions over time.

P (X)nNFi=0 Productivity of network function i.

From them five categories of network situations related with EDoS at Self-Oganizing

Networks are described: normal traffic [Cha09], flash crowds [BSMT14], flooding-based

Denial of Service [ZWHL16], flooding-based Distributed Denial of Service [SGSC16],

Workload-based EDoS and Instantiation-based EDoS (see Table 8.2). Two of them are

legitimate (normal traffic and flash crowds) and the rest are malicious. Unlike Denial of

Service, and Distributed Denial of Service, the EDoS threats satisfy the Network-based

similarity condition. Because of this, the paper focuses on indicators related with

the workload and productivity traits. Note that they are variants of the classical

complexity-based DoS attacks [Afe16] that target the implementation of algorithms at

software-level, but adapted to exploit Self-Organizing Network features. On this basis, let

the network monitorizations A and B expressed bellow and the following situations:

CRoWN(A) = [nCA, nC(t)A, nRA, nR(t)A, nWA, nW (t)A, nNFA, nNF (t)A, P (X)nNF
i=0 A] (8.2)

CRoWN(B) = [nCB , nC(t)B , nRB , nR(t)B , nWB , nW (t)B , nNFB , nNF (t)B , P (X)nNF
i=0 B ] (8.3)

Definition 8.1.1 Flash Crowd characterization.

Assuming that A is the monitorization of the habitual and legitimate network behavior,

B is defined as flash crowd when nCA � nCB and the rest of indicators display similar

values. Hence let the U infinite set of possible network monitorizations according with

CRoWN, and the Fc subset of flash crowd events, they are formalized as:

FcB ↔ {A,B ∈ U : nCA � nCB ,∼ when other indicators} (8.4)



112 Chapter 8. Detection of EDoS Threats in Self-Organizing Networks

Table 8.2: Network situations similar to EDoS attacks in SON

Nature Family Category Description

Legitimate
Normal Habitual traffic.

Flash Crowd Multitudinous agglomeration of legitimate requests.

Malicious

Flooding-based
DoS Basic DoS attack from a simple source.

DDoS DoS attack from multiple sources.

EDoS
Workload-based Enforcing auto-scaling by costly requests.

Instantiation-based Enforcing the instantiation of network functions.

Definition 8.1.2 Flooding-based DoS characterization.

Assuming that A is the monitorization of the habitual and legitimate network behavior,

B is defined as flooding-based Denial of Service (simple) or DoS when nCA ∼ nCB,

nCA(t) ∼ nCB(t), nRA � nRB and nRA(t) � nRB(t), i.e. when the number of clients

is similar to the normal behavior, but a significant increase in the average number of

requests is observed. Let the U infinite set of possible network monitorizations according

with CRoWN, and the DoS subset of Denial of Service events, they are formalized as

follows:

DoSB ↔ {A,B ∈ U : nCA ∼ nCB , nCA(t) ∼ nCB(t), nRA � nRB , nRA(t) � nRB(t)} (8.5)

Definition 8.1.3 Flooding-based DDoS characterization.

Assuming that A is the monitorization of the habitual and legitimate network behavior, B

is defined as flooding-based Distributed Denial of Service or DDoS when nCA � nCB

, nCA(t) � nCB(t), nRA � nRB and nRA(t) � nRB(t), i.e. when the number of

clients and requests significantly increase. Let the U infinite set of possible network

monitorizations according with CRoWN, and the DDoS subset of Distributed Denial of

Service events, they are formalized as follows:

DDoSB ↔ {A,B ∈ U : nCA � nCB , nCA(t) � nCB(t), nRA � nRB , nRA(t) � nRB(t)} (8.6)

Definition 8.1.4 Network-based Similarity.

As stated by Hoff [Hof08, Hof09], EDoS attacks pose great resemblance to the legitimate

traffic. Henceforth, it is reasonable to assume that in this context, the number and

distribution of clients and requests remain similar. So, let the A monitorization of

the habitual and legitimate network behavior, B can only been categorized as Economic

Denial of Sustainability attack if nCA ∼ nCB, nCA(t) ∼ nCB(t) , nRA � nRB and

nRA(t) ∼ nRB(t). Hereinafter this relationship is referred as network-based similarity

(abbreviated as NB), so if it is satisfied, it is possible to state that A and B are

network-based similar. It is expressed as follows:

NB(A,B)↔ {A,B ∈ U : nCA ∼ nCB , nCA(t) ∼ nCB(t), nRA ∼ nRB and nRA(t) ∼ nRB(t)} (8.7)

Note that the variations on W and NF traits reveal if B pose a threat, hence distinguishing
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it from the legitimate observations. From them, EDoS attacks on Self-Organizing Networks

are classified in Workload-based EDoS attempts and Instantiation-based EDoS attempts.

They are defined below.

Definition 8.1.5 Workload-based EDoS characterization.

Assuming that A is the monitorization of the habitual and legitimate network behavior,

B is defined as Workload-based EDoS attack (abbreviated as W-EDoS) when A and B are

network-based similar, nWA � nWB and nWA(t) � nWB(t); i.e. when they pose strong

resemblance at network-level, but the average workload per request significantly increased

in B. In this way, the attacker exploits the auto-scaling capabilities of the protected system.

Hence let the U infinite set of possible network monitorizations according with CRoWN,

and the W-EDoS subset of Workload-based EDoS threats, the second is formalized as

follows:

W -EDoS ↔ {A,B ∈ U : NB(A,B), nWA � nWB , nWA(t) � nWB(t)} (8.8)

Definition 8.1.6 Instantiation-based EDoS characterization.

Assuming that A is the monitorization of the habitual and legitimate network behavior,

B is defined as Instantiation-based EDoS attack (abbreviated as I-EDoS) when A and B

are network-based similar, nNFA � nNFB, nNFA(t) � nNFB(t) and PA(t) � PB(t);

i.e. when they pose strong resemblance at network-level, there is a significant increase

of network function instances in B, but their overall productivity decrease. Hence, the

attacker takes advantage of the actuation capabilities of the Self-Organizing Networks by

deploying useless functionalities. Let the U infinite set of possible network monitorizations

according with CRoWN, and the I-EDoS subset of Instantiation-based EDoS threats, they

are formalized as follows:

I-EDoS ↔ {A,B ∈ U : NB(A,B), nNFA � nNFB , nNFA(t) � nNFB(t), PA(t)� PB(t)} (8.9)

8.2 EDoS Impact

The following subsections describe the distinctive aspects of EDoS attacks from the

perspective of a cloud platform.

8.2.1 Impact of Workload-based EDoS

Following the formalization stated in Definition 8.1.5, a W-EDoS attack is characterized

by the execution of costly operations on servers hosted in a cloud provider. Server-side

operations are produced by client requests that resemble legitimate traffic in terms of

network indicators considering not only the number of clients, requests, workload or

deployed network functions, but also their distribution over time. The effect of W-EDoS

attacks is the need to scale-up or scale-out the deployed cloud instances (typically VNFs),

by adding additional computational resources when the existing ones prove insufficient to

ensure the desired quality of service, in conformance with the configured scaling policies.
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Figure 8.1: Auto-scaling triggered by a W-EDoS.

The major drawback of these auto-scaling enforcements is the associated monetary cost

derived from the allocation of the new resources. Figure 8.1 illustrates the scaling process

of a running an additional VNF enforced by a W-EDoS attack. In the depicted scenario,

the VNF has insufficient resources to process the workload (W), leading to a scale-up

or scale-out strategy which accommodates a proper task processing, balanced in several

instances of the same VNF.

8.2.2 Impact of Instantiation-based EDoS

Assuming the ability of the attacker to exploit a vulnerability that triggers the automatic

deployment of VNF instances in distributed locations of the infrastructure, an I-EDoS

attack occurs when the cloud management software deploys more VNF instances than

needed as a response to one or more requests ostensibly legitimate, thus increasing the cost

of the hired cloud resources due to the rise on the number of instances, with a decrement

on the average service productivity. This scenario fits with the principles described in

Definition 8.1.6. Figure 8.2 illustrates an I-EDoS attack where the cloud platform itself,

or a specific network function, is assumed to have an auto-scaling policy vulnerability

exposed to the attackers, and serves in consequence as an entry point of malicious requests.

They generate the automatic allocation of several virtual instances in different network

locations, but rather than being efficient they show scarce productivity levels. Those

lazy VNF instances are thereby unnecessary by the network operator since they generate

useless expenses without adding real value to the provided service.

8.3 Design Principles

The method described in this section addresses the problem of distinguishing legitimate

monitored situations from those related to attempts of Economic Denial of Sustainability

in Self-Organizing Networks. In order to limit the tasks involved on both design and

development stages, the following capabilities and restrictions have been assumed as design

principles.
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The description of the network situations summarized in Table 8.2 and their

descriptions assuming CRoWN indicators are considered. On this basis, the

proposed method must be capable of successfully identifying W-EDoS and I-EDoS

attacks, as well as distinguishing them from legitimate activities (normal traffic and

flash crowds).

The detection of conventional flooding-based DoS and DDoS attacks is out of the

scope of this publication. Currently there is a large bibliography that facilitates its

recognition [ZJT13, BBK15], hence principally aiming on contributing at the EDoS

threat mitigation.

The introduced approach considers a non-stationary monitoring environment

[DRAP15]. This is feasible as justified in publications like [BTI+03], which are widely

supported by an important part of the research community. Note that during its

development, the importance of the adaptation to changes in the monitored data has

been taken into account, which plays an essential role towards avoiding situations

related with the concept drift [EP11]. However, these capabilities make this proposal

difficult to understand, in this way diverting the attention from the security problem

to be solved (i.e. its main goal).

For reasons like those discussed above, adversarial methods based on imitation or

identity theft [ÖB15, ADAH14] with the purpose of evade the proposed detection

strategy are not considered.

Self-Organizing Networks are complex monitoring scenarios where a large number

of sensors collect information about the state of the network in real time. This

information must be aggregated into observations that can be handled by high-level

analytic tools. Although in the experimentation the impact of the granularity with

which data is extracted is briefly reviewed, the introduction of methods for its

calibration is postponed to future investigations.
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The correlation and management of the alerts discovered [SMFDV13, MAJ13] is out

of the scope of this publication. However, the acquired knowledge must be notified

with all the metadata required for their post-processing.

The proposal aims to illustrate the detection method by focusing on the analytical

approach. The impact of security measures implemented on the developed software

are thus not considered when assessing the EDoS detection accuracy. Hence,it is

postponed for future work.

8.4 Architecture

This section describes the EDoS detection architecture, which is illustrated in Figure 8.3.

It has been designed in conformance with the ETSI-NFV [ETS13] and 5G architectures

[5G-16b], where the decoupling of data and management planes makes it possible to

distinguish the division between functional layers. The Physical sublayer is typically

composed by Commercial-Off-The-Shelf (COTS) hardware on which the Virtualization

Sublayer acts as a core component for the creation of virtual resources such as hosts,

network links, storage elements and so on. On top of that, a Cloud Layer manages the

automatic instantiation of Virtual Network Functions (VNFs) by interfacing with the

Virtualization Sublayer, thus allowing the dynamic provision of resources needed to fulfill

the agreed service levels. The deployed cloud environment interconnects VNFs through the

underlying virtual network, composing in turn a forwarding graph where VNFs can also be

chained with Physical Network Functions (PNFs), thereby creating one or more Network

Services (NS) offered to the users. Cloud deployments are also isolated between customers

to allow the coexistence of different network operators sharing the same physical resources,

which is known as multi-tenancy support. The Cloud Layer gathers also an important

number of metrics (e.g. usage or performance) measured on the instantiated resources

allocated into the existing tenants. Besides that, sensors represent key components in

the process of monitoring SON networks since they target to monitor customized network

metrics, mainly at application-level. In this way, primary information collected by sensors

and the cloud platform itself lies the basis to perform complex analysis at VNF level in the

SON Autonomic Layer, whose subcomponents are described in the forthcoming sections.

8.4.1 Data Collection

In this module, the monitorization of the protected environment is carried out to extract

raw metrics regarding the operational conditions of the virtual cloud. Notwithstanding

the vast number of counters provided by most cloud platforms (i.e. Openstack [Ope], AWS

[AmW], Azure [WMs]), they might be insufficient when more complex analysis tasks are

required. Therefore, a SON-driven approach can facilitate the extraction of more specific

information gathered by sensors, hardly feasible at cloud-management-level, to enhance

the analysis not only for EDoS attacks, but also for several other scenarios. The Data

Collection module comprises the following submodules.
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Figure 8.3: Self-organized EDoS Detection Architecture

Application-level monitoring. VNFs are monitored by sensors at operating system

or application-level to extract specific metrics targeted to enable further analytical

processes in the SON Autonomic layer. For instance; service response time, memory

consumption per process, number of active connections, among other counters.

Virtual Infrastructure Monitoring. Built-in cloud-monitoring services, such as

Openstack Telemetry (Ceilometer) [WOS], produce several metrics related to the

virtual infrastructure (i.e. CPU, memory or network usage). Some of them are

obtained periodically while others are generated when certain events are triggered

(i.e. creation of a new virtual network).

8.4.2 Data Aggregation

The monitorization of cloud deployments generate huge volumes of data, including

counters, events, alerts, among others. To facilitate their analysis, data aggregation

operations are applied to produce a single metric that summarizes a collection of sampled

observations, thus reducing the existing data volume. Different data granularity levels

should be also possible to configure, in accordance with the intended analysis. The Data

Aggregation module comprises the following submodules:

Feature extraction. A batch of raw observations generated by the sensors is grouped

on regular time intervals, when the configured aggregation operation is applied on

those values. This leads to the generation of a time-series of aggregated metrics; for

example, the entropy degree in the W-EDoS analysis.

Virtual Resource Aggregation. The virtual infrastructure metrics collected are also

summarized with aggregation operations. Most of the polled metrics might be easily
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expressed as time series since they can be queried by the associated timestamp

registered on the monitoring database. For instance, average CPU consumption in

Ceilometer.

8.4.3 EDoS detection

This module performs the essential analysis tasks for the detection of EDoS attacks, and

it is composed by the following submodules:

Modeling. With the time series of aggregated metrics, a forecasting model is created

to estimate the next m values of the time series by the application of well-known

prediction algorithms.

Adaptive Thresholding. When compared with real observations, a prediction interval

(PI) is generated based on the forecasting error measured at each observation.

Unexpected behaviors are inferred when the value of an analyzed metric runs outside

the boundaries of the upper or lower prediction thresholds.

Clustering. Clustering methods are intended to separate groups of virtual instances

by analyzing similarities on their productivity indicators. It leads to the distinction

of a suspicious group of instances whose creation does not resemble a legitimate

pattern.

Anomaly detection. Discordant behaviors exposed by the forecasting and clustering

processes are analyzed by a rule-based system to infer conclusions about possible

anomalies. When rule matches are found, they are labeled either as W-EDoS or

I-EDoS attacks depending on the analyzed scenario.

Notification. The inference of anomalies is reported to the cloud-auto-scaling engine.

It aims to prevent the creation of VNF instances that are targeted to overspend the

use of virtual resources, and the operational cost in consequence.

8.5 Workload-based EDoS recognition

The following describes in detail the metrics required for W-EDoS detection, and how they

are analyzed for identifying unexpected behaviors and deciding if they should be tagged

as potential threats.

8.5.1 W-EDOS Metrics

As stated in Section 8.3, the W-EDoS threat satisfies the network-based similarity, but

unleash a significant variation in terms of workload (at both W and W (t)); in particular,

concerning those metrics directly related with the auto-scaling capabilities of the hosts that

support the task involved in solving requests [BBBS17]. Because of this, the proposed

approach considers as W-EDoS detection metrics, the CPU consumption (Xcpu) and

response-time at application-level (Xapp). The first one measures the CPU usage at
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the operating system-level, and the second focuses specifically on each service request

consumption. Although a direct relationship between Xcpu and Xapp is expected, this is

not always the case. The nature of the requests can lead to a different workload in each of

these levels, in this way being able to force self-scaling [SGSC16]. Because the proposed

method lies on the detection of unexpected behaviors by observing the aforementioned

metrics, the first step is to discover the response-time variations. This is carried out by

studying the disorder degree on the application-level metrics reported once the different

tasks are fulfilled. As is commonly approached in the bibliography, this is addressed on

the basis of [JSTD16, ÖB15], where the gathered information is correlated in terms of

entropy. As indicated by Bhuyan et al. [BBK15], among the various proposals, that

defined by Rènyi provides a general-purpose solution, so it was implemented for W-EDoS

detection. Hence Hα(Xcpu) defines the Rènyi entropy and α is the Rènyi entropy order,

α ≥ 0, α 6= 1 . The result is expressed as follows:

Hα(Xapp) =
1

1− α
log

n∑
i=1

Pαi (8.10)

Note that given that Rènyi entropies are in range [0, log n], they are normalized as

Hα(Xapp)/ log n. The implemented method considers the normalized version.

The study of the impact of Xcpu and Xapp can be approached as a classical Statistical

Process Control (SPC), where the metrics monitored over time are modeled as time series.

In this context they are univariate, since it was previously assumed that it is not possible

to state that Xcpu á Xapp. Hence, the Rènyi entropies calculated through the performed

application-level observations relate with each other as Hα(Xapp)
n
t=0 sequences, where:

Hα(xapp)t=0, Hα(xapp)t=1, · · · , Hα(xapp)t=n (8.11)

And the CPU consumption is represented as the following time series:

(xcpu)t=0, (xcpu)t=1, · · · , (xcpu)t=n (8.12)

Note that for simplicity and taking into account that the rest of the analytics for W-EDoS

are similar for both time series, Xcpu and Xapp are refereed as the random variable X,

hence not assuming distinctions.

8.5.2 Workload-based unexpected behaviors

The W-EDoS detection method lies on deciding if the estimation X̂t=m at m horizon,

H > n, significantly differs from Xt=m. Hence it is required to forecast the time series

of the current Xn
t=0 observations until a predefined horizon is reached, then being able to

complete the comparison (see Figure 8.4). Among the several approaches to this problem

[Mak00], the W-EDoS detection implements the Double Exponential Smoothing (DES)

[GJD80]. This decision has taken into account three conditions: firstly, non-seasonality is

assumed as design principle, hence leaving aside more complex models like Holt-Winters

[Gro73], which are capable of adapting to these variations. On the other hand, the system
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Figure 8.4: Workload-based EDoS detection process.

must be efficient and requires short time series for warmup and modeling, which leaves

aside autoregressive approaches such as ARIMA [HT82].

By definition, the Simple Exponential Smoothing (SES) algorithm may not operate

effectively when there is a trend in the analyzed time series [Bro57, Hol04]. In addition

to the smoothing constant α inherited from the SES model (in order to disambiguate this

value with respect to the Rènyi entropy degree, henceforth refereed as A, DES considers

the constant γ related with the trend smoothing factor, so 0 < A), γ < 1. It is calculated

by the following recursive equations:

St = Axt + (1−A)(St−1 + bt−1) (8.13)

bt = γ(St − St−1) + (1− γ)bt−1 (8.14)

where St is the level of the time series at t, and bt is the trend. Note that when A = 0,

DES becomes a näıve forecasting approach, and if A, γ = 1 it acts as SES. As is frequent

in the bibliography, the base cases are the initializations S1 = γ1 and b1, so:

b1 =
xt=n − xt=1

n− 1
(8.15)

and the forecasts are calculated as follows:

X̂t=n+1 = St − bt (8.16)

X̂t=n+m = St −mbt (8.17)

The prediction intervals define the adaptive thresholds considering [MWH97], and as

suggested in [HKOS05]. They are expressed based on the εt prediction error based on the

Mahalanobis distance at t, in particular when t = m.
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εt =
√

(xm − x̂m)2 (8.18)

In this way the following adaptive threshold is built:

PI = xt=n ± η
√
σ2(εt) (8.19)

where the parameter η, η ≥ 0 calibrates the restrictiveness of the prediction interval and

m is the forecast horizon. In the context of the W-EDoS detector, the significance of the

forecasting errors can be assessed according to the Definition 8.5.1.

Definition 8.5.1 Workload-based unexpected behaviors.

Let Xn
t=0 and its forecast X̂t=n+m at horizon m, an observation Xt=n+m is workload-based

unexpected when εt /∈ PI is satisfied, i.e. when x̂t=n+m and xt=n+m differ significantly.

The sequences of unexpected observations are referred as workload-based unexpected

behaviors.

The persistence of observations tagged as workload-based unexpected behaviors

establishes the duration of the possible threats. An example of this situation is illustrated

in Figure 8.5, where Xn
t=0 is analyzed and the prediction intervals are built. At the range of

observations (xt=41, xt=44) they are overtaken, in this way displaying four workload-based

unexpected observations (xt=41, xt=42, xt=43 and xt=44) and the workload-based unexpected

behavior X44
t=41.

Alerts related with W-EDoS are reported when at the same observation t, both

detection metrics (Xcpu and Xapp) are workload-based unexpected. Note that given the not

Xcpu á Xapp relationship, each of them may deduce a suspicious outlier, being Symp(Xcpu)

related with abusive CPU workloads, and Sympt(Xapp) being related with anomalous

time-responses at application-level. The decision of pooling both symptoms lies on filtering

the rebound effect of the adaptive thresholding method, where when a representative

change occurs in the time series, the threshold takes a while to re-calibrate, which may

lead to the emission of false positives as replicas. This is clearly illustrated in Figure 8.6,

where after discovering an outlier (t = 47), the prediction interval is erroneously calculated

at the next monitorizations (t = 48 to t = 65). On the other hand, a Symp(Xcpu) may

be triggered by anomalous decrements on the workload of the monitoring systems, which

leads to an effect contrary to that caused by the W-EDoS. This is illustrated in Figure

8.7(a) where Hα(Xapp) displays a discordant behavior because of changes at the disorder

degree on the application-level; in particular the entropy decreased because most of the

host supporting certain service are removed driven by a decrease of the demanded workload

Figure 8.7(b).

8.6 Instantiation-based EDoS recognition

The subsections below detail the metrics studied by the I-EDoS detection components,

how they are analyzed and the decision-making task.
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Figure 8.5: Example of workload-based unexpected behavior.
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Figure 8.6: Example of rebound effect.
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Figure 8.7: Example of discordant entropy not related with W-EDoS

8.6.1 I-EDOS Metrics

As indicated in Definition 8.1.4, I-EDoS situations are network-based similar with the

normal and legitimate traffic, but entail outliers in terms of nNF , nNF (t) and P (X)nNFi=0 .

It was also stated that the classical instantiation-based attacks are characterized by the

emergence of a significant number of network functions behaving in low-productivity.

Therefore, before labeling a situation as possible threat, there must be observed a direct
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relationship between the new network functions and their low productivity. This leads to

consider a pair of I-EDoS detection metrics: the number of network functions instantiated

per observation Y , and their productivity Z; where Z is the set Z = {z1 · · · zY , Y ≥ 0}
that defines the productivity of the different network functions {z1 · · · zY } at certain t

observation. In analogy to the W-EDoS, they are monitored over time and collected in

the following times series:

Yt=0, Yt=1, · · · , Yt=n; (Y n
t=0) (8.20)

Zt=0, Zt=1, · · · , Zt=n; (Znt=0) (8.21)

On this basis, an observation at t, 0 ≤ t ≤ n, is potentially malicious when Yt has

grown discordantly and Zt = {z1, · · · , zY (t)} displays a group of instances that clearly

behave at low productivity; in particular, the low-productive functions must be those that

triggered the increase of Yt, in this way satisfying Y á Z. These situations are defined

below.

8.6.2 Novelty detection

The anomalous growth of the number of instances are studied similarly to the

workload-based unexpected behaviors, i.e. by observing if their projection at m differ

significantly from the observations at m. With this purpose, and in the grounds stablished

at Section 8.5.2, the Double Exponential Smoothing (DES) [GJD80] is implemented, and

adaptive thresholds are built according with [HKOS05]. Consequently, a novelty in terms

of number of instances Y at t is considered as potential trait of I-EDoS when a significant

growth is observed in Yt, which is formalized according to Definition 8.6.1.

Definition 8.6.1 Significant growth.

Let Y n
t=0 and its forecast Ŷt=n+m at horizon m, an observation Yt=n+m implies a

significant growth when εt /∈ PI is satisfied, i.e. when Yt=n+m and Ŷt=n+m differ

significantly, and Yt=n < Yt=m.

8.6.3 Identification of suspicious network function instances

Once a self-organizing action at t has resulted in the instantiation of Zt = {z1, · · · , zYt}
new network capabilities, it is possible to detect if they are involved in an I-EDoS attack.

According to the threat definitions discussed in Section 8.1, the typical behavior of the

malicious instances is low-productivity. But low-productivity may be the pattern observed

in most of the network functions deployed; therefore, it is assumed that the malicious

instances should register significantly low-productivity with respect to the rest of the

instances that operate on the monitoring environment at t. How to detect this situation

is not a simple question. But despite detecting this situation is not trivial in many of

the network scenarios, it can be addressed from different perspectives. Among them, the

performed research has focused on those based on clustering, thus leaving other possible

approaches for future investigation. At the experimentation, a density-based approach
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was implemented; in particular, the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [EKS+96].

DBSCAN considers groups of observations based on the density of the K-nearest

neighbors. This process distinguishes three kinds of o objects in the space: core objects,

density-reachable and outliers. Let the object p, it is a core object if the ε-neighborhood

of the object contains at least minPts objects; where the ε-neighborhood of p is the space

within a radius epsilon centered at p. Because of this they are considered the pillars of

dense regions. The objects within ε are considered directly density-reachable by p. On

the other hand, a q object is reachable by p if there is a chain of objects p1, · · · , pn, where

p1 = q, pn = q; and each pi+1 is directly density-reachable with respect to ε and minPts,

0 ≤ i ≤ n, pi ∈ D. Each cluster has at least a core point, being the rest of the points

their periphery. Consequently, the objects within a cluster are interconnected, and if p is

density-reachable by other object q, the second also is part of the same group. Observations

non-reachable by objects in clusters are considered outliers [Cha09]. DBSCAN has several

advantages, which played an essential role in its selection as support for deploying an

effective defense against I-EDoS, among them high efficiency, not requirement of previous

estimations of the number of clusters to be defined, and noise tolerance. However, among

other drawbacks it is worth mentioning its efficiency, which highly depends on the distances

and similarity measures adopted. With the purpose of discover I-EDoS threats, DBSCAN

is performed on each Zt = {z1, · · · , zYt} set, where each productivity zi is an object pi, so

Yt = n. The following ε distance based on the Mahalanobis divergence was implemented:

ε =
√

(zi − zj)2 (8.22)

where 0 ≤ i, j ≤ n and i 6= j. The resultant set of K clusters is Ct = {c1, · · · , ck}, K ≥ 0

were ci = {zr, · · · , zs}, 0 ≤ r, j ≤ n, i.e. zr, · · · , zs are network functions with similar

productivities. The members of Ct can be increasingly ordered according to the average

productivity of their members, being each c̄i the mean of zr, · · · , zs. The arranged list is

expressed as s(Ct) = [c1, · · · , cK ], ∀ci : cj 0 ≤ i ≤ j ≤ K is satisfied c̄i ≤ c̄j . The clusters

relevant for the I-EDoS detection are tagged as lazy groups and their members are termed

lazy instances, which are defined in Definition 8.6.2. An example of them is illustrated

in Figure 8.8, where it is possible to observe a subset of instances which productivity is

significantly low.

Definition 8.6.2 Lazy instances and groups.

Let Znt=0, for each Zt = {z1, · · · , zYt} clustered into Ct = {c1, · · · , ck}, K ≥ 0, and

sorted resulting s(Ct) = [c1, · · · , cK ]; c1 is defined as the lazy group of network function

instances, hence ∀cj : cj ∈ s(Ct), 1 < j ≤ K and the inequation c̄1 ≤ c̄j is satisfied. Each

member of c1 is considered a lazy instance, and will play a relevant role when deciding if

the protected environment is suffering an I-EDoS attack.
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Figure 8.8: Example of lazy group of instances.

8.6.4 Instantiation-based unexpected behaviors

Ideally, it is expected that when a I-EDoS attack occurs a discordant increase in the

number of instantiated network functions is observed. Consequently, and assuming that

the attack is launch at the observation registered at t, a significant growth (see Definition

8.6.1) in the number of instances must be detected on Yt. On the other hand, the network

functions triggered by the attacker must behave with low productivity. Thus, most of them

must be part of the lazy group of Zt = {z1, · · · , zYt}, in this way being lazy instances.

When both conditions are satisfied, a potential I-EDoS threat was recognized at t.

But it is important to bear in mind that in real circumstances, these observations may

occur asynchronously. This is because each type of network function taken into account

in Zt may require a different adaptation period, which is usually referred as warm-up

time. Therefore, they are not expected to be productive until the warm-up time expires.

A clear example of this situation can be comprehensively illustrated with the following

example: let a SON configured to deploy intelligent agents for load balancing purposes

similar to those introduced in [CSJN05]. These actuators are triggered once the number

of clients connected to certain service overtake a previously defined static threshold. The

productivity metric considered for I-EDoS detection is the Key Performance Indicator

(KPI) that aggregates the server throughput in terms of GB/s, i.e. the amount of data

transferred to and from the load balancer. These intelligent actuators require a warm-up

time to collect reference data and build prediction models. Now suppose that the intruder

knows the threshold that triggers the generation of new agents, and that by registering

malicious clients, it is able to cause an I-EDoS attack. In the observations that this occurs

a significant growth of the number of instances is registered, but they are not able to report

productivity, since they are initializing their internal network usage models. Because of

this, the definition of the instantiation-based unexpected behaviors related with I-EDoS

threats must take into account the creation date of the instances and from when they are

expected to begin to be productive. This leads to Definition 8.6.3, which stablishes the

condition that must be satisfied prior to report possible I-EDoS incidents (see Figure 8.9).
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Figure 8.9: Instantiation-based EDoS detection process.

Definition 8.6.3 Instantiation-based unexpected behaviors.

Let the set of instances Zt = {z1, · · · , zYt} observed at t, clustered into Ct = {c1, · · · , ck},
K ≥ 0, and sorted resulting s(Ct) = [c1, · · · , cK ]. They are instantiation-based unexpected

when there was registered a significant growth at the creation date of most of the members

of their lazy group c1. The set of instantiation-based unexpected observations over a

monitorization process is referred as instantiation-based unexpected behavior.

Therefore, when some observation in terms of the detection metrics (Y,Z) is tagged as

instantiation-based unexpected, the proposed systems reports a possible I-EDoS situation

Symp(Y,Z). The persistence of events tagged as instantiation-based unexpected behaviors

establishes the duration of the possible threat.

8.7 Experiments

This section describes the SON environment where the Cloud layer is complemented

with the SON Autonomic components, thus extending the analytical capabilities of

Cloud-platforms with more advanced features targeted to mitigate EDoS attacks. In

addition, the performed tests carried out to detect W-EDoS and I-EDoS attacks are

described in detail.

8.7.1 TestBed

The experimentation testbed was deployed to match the architectural layers defined in

Section 8.4. This SON-oriented scheme is illustrated in Figure 8.10. The Cloud Layer

has been implemented with Openstack [Ope], a widely used opensource platform to

manage the lifecycle of small and large-scale cloud environments. Openstack has been

deployed on two nodes: controller and compute (Nova). Each of them runs core Openstack

functionalities in conformance with the NFV infrastructure layer. Moreover, additional
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Figure 8.10: Testbed

features oriented to include auto-scaling mechanisms have been included to showcase

EDoS attacks. The controller node hosts also the networking service (Neutron), Nova

essential features, and RabbitMQ [RbM], the message broker software that allows the

inter-process communication between the Openstack services. The compute node hosts

also the Clustering (Senlin) [OSL] and Orchestration (Heat) services required to configure

scaling policies. In addition, the compute node hosts the Telemetry service, intended

to measure cloud-platform statistics with monitoring, scaling and billing purposes. All

the Openstack services are interconnected through a private management network, in

this way making possible to manage the on-demand instantiation of virtual resources to

conduct the experimental EDoS scenarios. The SON Autonomic Layer is implemented by

a combination of custom and well-known opensource tools matching the modular design.

Data Collection is carried out at application-level by a Python client-server application

composed by the Raw Data Pollster Agent (RDPA) running on each instance (client-side),

and the Central Collector Node (CCN) on the server-side. They are communicated

by means of HTTP REST messages pushed by the RDPA on regular time-intervals.

Apart from that, the virtual infrastructure monitoring is natively supported by Openstack

Ceilometer which gathers an extensive set of meters [Cl1] related to the cloud deployment.

Depending on the type of measurement, notification or polling methods are implemented.

Data Aggregation is performed by two Python modules. On the one hand, the Feature
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Extraction (FE) module fetches from the CCN a batch of client-request processing times

observed on one-second intervals. Then, the FE computes the Rènyi entropy of the

sampled observations, thus creating a time series of measurements. On the other hand, the

Virtual Resource Aggregator (VRA) queries the Ceilometer REST API and extracts CPU

usage counters for each analyzed virtual instance on one-second intervals, thus leading

also to the creation of a time series.

EDoS detection is implemented on two major functional blocks: Analytics and

Decision-Making (DM). The EDoS Analysis (EA) is a Java module implementing the

Double Exponential Smoothing algorithm which results are stored in data structures, and

the forecasted metrics are taken into account to elaborate the adaptive thresholds. In

addition, EA implements the Clustering capabilities of the Weka libraries [Wkl], and the

Decision Maker (DM) is implemented in Drools [SDB] as a rule-based expert system whose

conclusions (alerts) are written in JSON files to match the Notification stage.

Finally, the client-side of the experimentation is performed by Python multi-threading

modules capable to emulate a configurable number of clients. It also allows the possibility

to control the number of requests and their connection rate to generate network traffic

adapted to the experimental W-EDoS and I-EDoS scenarios.

8.7.2 Evaluation Methodology

The methodology used to conduct the experimentation is explained in the forthcoming

sections, which distinguishes tests for assessing the W-EDoS and I-EDoS recognition

capabilities of the proposal.

8.7.2.1 W-EDoS detection evaluation

The evaluation of W-EDoS analyzes the Rènyi entropy degrees measured on the server-side

response times observed in one-second intervals, compared against the CPU consumption

at operating-system-level. To this end, a client-server application has been implemented

as described below.

Server-side software. A RESTful HTTP application was written in Flask [SFl]

due to the simplicity that entails this type of web service, hence exposing eight

endpoints with different computational costs each in terms of processing time. When

requested, each of them performs list-sorting operations with randomly generated

values, varying on the list size and the number of iterations. The HTTP endpoints

and their average execution times measured for 1000 executions are described in

Table 8.3. All the HTTP methods support a GET parameter (id) used to distinguish

client requests when they are generated from the same host (thus with the same IP).

This application is hosted in a server deployed as an Openstack Compute instance

running on a single-tenant private cloud.

Client-side software. A Python application instantiates each client as a standalone

thread, which in turn send HTTP requests to the web service following a random

Poisson distribution being lambda (λ) the expected number of occurrences in a given
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time interval. Such distribution is suitable to generate legitimate web requests as

often assumed by the bibliography [BTI+03]. Thereby, normal traffic conditions and

EDoS attacks can be conducted with multiple clients running in parallel. Taking

advantage of the HTTP GET id parameter of each endpoint, a single node can

impersonate multiple clients. For example, two HTTP requests launched from the IP

192.168.5.48 with URIs /3?id=145 and /3?id=213 would be interpreted as originated

from different clients with ids 145 and 213 respectively. So that, response times

measurements on the server are associated to those client ids.

Cloud Auto-scaling. It has been configured an auto-scaling policy for launching a

new virtual instance of the web service when the average CPU consumption runs

above 60% in a one-minute interval.

W-EDoS attack scenarios. The detection of a W-EDoS attack is carried out by

examining the variation of the threat features in terms of the number of clients,

request rates and percentage of malicious connections triggered from compromised

nodes. Normal traffic conditions were considered when clients launched requests

to endpoints 1 to 8, randomly chosen for each connection; whereas W-EDoS

attack traffic is targeted to execute only endpoint 8 since it produces the costliest

operations at server-side and the maximum CPU overhead in consequence. Table 8.4

summarizes the parameters considered to define the W-EDoS scenarios for normal

network traffic, and Table 8.5 shows the malicious traffic volume determined by the

attack intensity on each scenario (S1 to S4).

SON W-EDoS detection and notification. The SON layer follows the principles of

Definition 8.5.1. If a significative variation between the observed and forecasted

entropy degree of the request processing times (Hα(Xapp)) matches with an

increment of the CPU consumption at operating system-level (Xapp), the autonomic

layer infers a W-EDoS attack in the analyzed web server and triggers an alert

intended to prevent the auto-scaling of a new virtual instance since it does not

resemble a legitimate origin.

Table 8.3: HTTP endpoints and average CPU processing time

URI Avg. CPU time (ms)

/1 18.56

/2 21.58

/3 24.64

/4 27.81

/5 31.06

/6 33.72

/7 36.73

/8 226.04
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Table 8.4: Normal traffic attributes

Feature S1 S2 S3 S4

Number of clients (C) 1000 1000 1000 1000

λ requests per second (px) 50 60 70 80

Number of requests (R) 9000 10800 12600 14400

Table 8.5: Malicious requests per scenario

Intensity S1 S2 S3 S4

1% 90 108 126 144

5% 450 540 630 720

10% 900 1080 1260 1440

8.7.2.2 I-EDoS detection evaluation

The evaluation of I-EDoS aims to evaluate inconsistencies between the number of deployed

VNF instances compared against the productivity measured on them. This is implemented

as follows:

VNF and productivity. A simple Flask REST web server with a single endpoint

of average response-time of 27.89 ms has been implemented and deployed as an

Ubuntu-based Openstack Glance image, used as a template for launching additional

instances in the cluster when scaling-out is performed. The performance of this

VNF has individually evaluated with Httperf [THt], a well-known benchmarking

open-source tool to measure web performance under different workload conditions

whose results are shown in Table 8.6. Therefore, the ideal performance is reached

by Medium and Optimal productivity levels at any time of operation, which are

analyzed individually on each virtual instance.

Cloud environment configuration. To showcase the evaluation scenarios, an

Openstack cluster has been deployed and auto-scaling rules have also been configured

to dynamically scale-out and scale-in the cluster size. It has been considered a

minimum size of 2 instances and a maximum size of 12. A Neutron load balancer

has also been deployed, which implements a round-robin policy to handle the traffic

request to be distributed across the active cluster nodes.

Cloud auto-scaling in and out policy. To scale-out the cluster, a new VNF instance

is launched when the cluster average CPU consumption runs above 80% in a

one-minute interval. Likewise, when the average CPU usage runs below 40% a

virtual machine instance is removed, following the “youngest first” deletion policy.

In addition, a “best effort scaling” is enabled to prevent breaking the size limitations

(minimum and maximum) of the cluster.

Normal traffic conditions. A normal scenario has been defined by modeling a traffic

profile based on a variable number of expected HTTP connection rate (λ), measured

in requests per second (px), in different time slots, elapsing a total time-window
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of three hours. The cloud platform will then determine the right number of VNF

instances based on the auto-scaling rules, ranging from 2 to 12 according to the

cluster configuration. A graphical representation of the traffic workload is illustrated

in Figure 8.11.

I-EDoS attack scenarios. Auto-scaling is configured in Openstack Senlin, which

is also integrated with Heat and Ceilometer to define cluster-related configuration

templates with auto-scaling policies. Ceilometer alarms are thereby configured to

trigger notification when some virtual-infrastructure-related counters run outside

pre-defined thresholds, such as with CPU or memory usage. Based on the

dependance on Ceilometer measurements, the I-EDoS attack is conducted by

poisoning the counters gathered by Ceilometer related with CPU consumption since

scaling policies rely on their values. To this end, it is assumed the ability of the

attacker to gain access to the RabbitMQ message broker, either with legitimate

authentication credentials, such as a valid username and password, or by exploiting a

common Telemetry-related vulnerability, such as the one reported in CVE-2016-9877

[Cv9] where access to the messaging service can be granted only with a legitimate

user regardless of the provided password. Once connected to the message bus, the

attacker fetches legitimate CPU usage counters obtained by Ceilometer (represented

as JSON objects) and injects a manipulated version of the original message with

random CPU usage counters above 90 percent. As a result, and maintaining the

same normal traffic conditions described in the previous section, the Heat engine

performs scaling-out decisions based on unrealistic data, creating in the meantime

more instances (cluster nodes) than needed to process the traffic workload.

SON I-EDoS detection and notification. The SON autonomic layer forecasts the

number of virtual instances in the Openstack cluster with the Double Exponential

Smoothing (DES) algorithm. Meanwhile, the adaptive thresholds are built to look

for situations where the number of existing instances is higher than the predicted

values. The EDoS detection module targets these situations of unexpected growth

to carry out DBSCAN density-based clustering based on the productivity measured

on each virtual instance. It leads to the distinction between productive and lazy

instances, which corresponds with Definition 8.6.3, triggering in consequence an

instantiation-based unexpected behavior alert.

8.8 Results

The effectiveness of the proposal when analyzing EDoS threats and legitimate situations

are described and discussed below.

8.8.1 W-EDoS detection

As indicated in Section 8.7, the evaluation of the W-EDoS detector is based on studying

their behavior when varying the features of the threats and the legitimate environment,
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Table 8.6: VNF performance and metrics
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Figure 8.11: Traffic workload for I-EDoS experimentation.

the impact of the Rènyi entropy degree and the improvement obtained by refining the

analysis of the XApp evolution with the study of XCPU . They are described throughout

the rest of this subsection.

8.8.1.1 Attack distribution and requests

The results obtained when varying the request rate and the intensity of the W-EDoS

threats are summarized in Figure 8.12(a). With the purpose of facilitate their

understanding, the intensity of attacks has been measured at the interval 1%, 5%, 10%,

where the percentage indicates the distribution of malicious requests per observation.

In addition, four different scenarios have been studied based on the number of average

requests per second (px) made by each client: {50, 60, 70, 80}. In Figs. 8.12(a)-8.12(c)

the ROC curve obtained at each experiment is illustrated, where it is assumed the K

value of the prediction interval as the main parameter that adjusts the W-EDoS detection

sensitivity. The obtained effectiveness is summarized in Table 8.7 and Figure 8.12(e). The

worst results are observed when clients perform an average of 60 requests per second, as

well as when the attack is present in at least 1% of the request, being the trapezoidal

approximation to the Area Under the Curve (AUC) 0.901, and in the best case under this

setting, the True Positive Rate (TPR) 0.816 and the False Positive Rate (FPR) 0.15. On
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the opposite, the W-EDoS detector best performs when the sensors submit an average of

at least 80 requests per sensor and the attack poses 10% intensity. In this case the AUC is

0.995, and the best TPR is 1 and FPR is 0.01. From the plots and the summarized data,

it is possible to conclude that, as the number of requests per node grows, the accuracy of

the system improves. This denotes that under such circumstance, the prediction strategy

has a greater capacity to model the characteristics of the monitored traffic, and therefore

to act more accurately. On the other hand, it is possible to affirm that the greater attack

intensity, the higher its visibility, resulting in much more obvious entropy variations and

CPU overload. In general terms, the obtained accuracy demonstrates the ability of the

W-EDoS detection method of operating on scenarios similar to those proposed in the

testbed.

Table 8.7: Summary of results of the W-EDoS detector

Average Requests per Second (px)

50px 60px 70px 80px

Attack AUC TP FP AUC TP FP AUC TP FP AUC TP FP

1% 0.9069 0.8183 0.08 0.9013 0.8161 0.15 0.9175 0.83654474 0.07 0.9345 0.8492 0.05

5% 0.9557 0.9113 0.04 0.9432 0.8195 0.15 0.9631 0.9347 0.05 0.9603 0.9434 0.11

10% 0.991 0.9889 0.01 0.9631 0.9843 0.02 0.9908 0.989 0.01 0.995 1 0.01

8.8.1.2 Entropy degree

In the performed experimentation, the Rènyi entropy degree that configures the W-EDoS

detectors has proven to play an essential role in the quality of the decisions made. With

evaluation purposes, and in view of the results observed in subsection 8.8.1.1, a testing

scenario with average rate of 60 requests per client/second, and attacks originated from

5% of the clients to be served, has been considered. It is worth mentioning that this

configuration represents an intermediate point between the circumstances that provide

greater visibility of the threats, and those that hinder their identification. The results

obtained are illustrated in Figure 8.13, where it is possible to distinguish the impact of

α in the ROC space (Figure 8.13(a)), the summary of the precision obtained in terms of

TPR and FPR (Figure 8.13(b)), and an example of its smoothing effect in the time series

to be analyzed (Figure 8.13(c)). Note that at this study the range 1 ≤ alpha ≤ 5 has

been studied. The minimum value supported by the Rènyi entropy is α = 0, which has not

been taken into account since it coincides with the expression of Hartley (i.e. max-entropy)

Hα(X) = log2 n, which due that normalized values are adopted, always returns 1. From

α = 5, the observed AUC is less than 0.5, so it is inferred that the obtained values

correspond to a random behavior. From Figure 8.13(a) and Table 8.8 it is possible deduce

that the best fit is α = 1, where AUC = 0.955, TPR = 0.911 and FPR = 0.04. Hence, as

the degree increases, the smoothing of the resulting time series decreases, which entails a

greater tendency to report false positives, (see Figure 8.13(c)). Because of this, the worst

measured value has been observed when α = 5, resulting in AUC=0.513, TPR=0.556 and

FPR=0.64, which obviously are far from achieving a desired accuracy. Consequently, it

is possible to conclude that the degree of Rènyi entropy has a direct relationship with

the successfulness of the performed deployment; and that in order to mitigate the false
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Figure 8.12: Results when varying the attack rate and requests

positives problem, it is advisable to select low values, thus reducing the impact of the

temporary outliers inherent to the monitoring tasks on network environments.

8.8.1.3 Simple XApp and refinement by XCPU

In order to evaluate the refinement of the analysis stage based solely on XApp, achieved

by studiying XCPU , a new test has been performed. Firstly, it only attempted to detect

W-EDoS based on XApp, then assuming the combination of both random variables. The
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Table 8.8: Summary of results when varying α

Rènyi entropy degree

Measure α=1 α=2 α=3 α=4 α=5

AUC 0.9557 0.8692 0.7574 0.6072 0.5138

TPR 0.9113 0.8388 0.7147 0.7041 0.5568

FPR 0.0400 0.1600 0.3200 0.6500 0.6400
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Figure 8.13: Analysis of entropy degree variation

obtained effectiveness has been assessed based on the number of average requests per

second (px) made per client: {50, 60, 70, 80}, and by configuring 5% of the clients to

be served as attackers. The results are illustrated in Figure 8.14, where Figure 8.14(a)

indicates the precision obtained to consider only XApp; Figure 8.14(b) displays the results

when combining both random variables; and Figure 8.14(c) plots its comparison, which

contents are summarized in Table 8.9. The best results in the simple XApp tests were

AUC=0.7766, TPR=0.5152 and FPR=0.1, when 80px. On the opposite, the combined

setting provided AUC=0.9633, TPR=0.9346 and FPR=0.05 when 70px. Note that as

discussed in Section 8.8.1.1, the greater numbers of average requests per second tend to

facilitate the detection task. In the light of these results, it is possible to deduce that

the W-EDoS detection when only considering XApp was not feasible, since the AUC fall
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Table 8.9: Summary of results considering XApp and XCPU

Effectiveness measurements

Setting Px AUC TPR FPR

XApp

50 0.6942 0.5152 0.10

60 0.8189 0.7028 0.12

70 0.7319 0.7021 0.32

80 0.7766 0.7541 0.29

XApp and XCPU

50 0.9557 0.8195 0.15

60 0.9432 0.9113 0.04

70 0.9633 0.9346 0.05

80 0.9603 0.9434 0.11
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Figure 8.14: Analysis when considering XApp and XCPU

behind those provided by the combined approach, as well as an alarming false positive

rate was displayed. This is because of the situations previously described in Section 8.5.2,

where it was explained the rebound effect of the forecasting modes, and other legitimate

situations that may lead to false positives.
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8.8.2 I-EDoS detection

This section describes the results observed when evaluating the I-EDoS detection

capabilities of the proposed defensive scheme. In order to facilitate the understanding

of the performed research, an illustrative case of study is detailed, where the differences

between normal activities and I-EDoS are displayed, and the detection process is

demonstrated. In addition, the effectiveness of the approach when dealing with attacks of

different intensity is discussed.

8.8.2.1 Case of study

The testing scenario evaluates the effectiveness of the I-EDoS detection in the experimental

testbed described in Section 8.7. The comparison between the number of VNF instances

deployed as a result of auto-scaling decisions on both normal and attack traffic are

presented in Figure 8.15, where it is noticeable that the deployment of a higher number

of VNF instances has been caused by an I-EDoS attack. Under normal conditions, the

cluster scaled up to a maximum of 10 instances when the highest traffic workload has

been reached; whereas the I-EDoS attack has forced the scaling of the cluster up to the

maximum size of 12 instances. Then, the number of virtual instances have been compared

with the adaptive thresholds estimated for normal (Figure 8.16(a)) and attack conditions

(Figure 8.16(b)) in which deviations between the forecasting and the real measurements

have been found. For instance; at observations 12 or 36 when analyzing normal traffic,

and at observations 14 or 34 when the attack was performed. Besides the identification

of a suspicious growth of the VNF instances, the I-EDoS detection strategy relies on

the productivity measurements, whose dispersion graphs are compared. Under normal

coniditions (Figure 8.17(a)), the lower number of instances leads to a more uniform

distribution of the productivity exposed by the VNFs which in general reach higher

values and less dispersed measurements than its counterpart when the I-EDoS attack

was launched (Figure 8.17(b)). In such attack conditions, the red dots clearly denote

the presence of a subset of instances whose productivity is significantly lower, thus being

referred as lazy nodes. In consequence, the overall productivity is decremented since

this scenario forces the workload distribution into a higher number of VNF instances.

To quantitively validate the distinction of productive and lazy instances, the results of

the DBSCAN density-based clustering are presented for sampled measurements obtained

at t=86 under normal traffic conditions (Figure 8.18(a)). Three gropus of instances are

created (Group A, Group B and lazy), with 80% of instances allocated to Groups A and B

and remaining of 20% allocated to the group of possible lazy instances. Likewise; taking

the productivity measurements observed at t=19 when the attack is performed (Figure

8.18(b)), DBSCAN generates two groups. The lazy group gathers 73% of the allocated

instances, while the latter poses the remaining 27% as productive instances.

8.8.2.2 Attack Intensity

As would seem logical, the intensity of the I-EDoS attacks has directly influenced

the detection capability of the approach. Figure 8.19(a) and Table 8.10 display the
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Figure 8.15: Number of instances deployed in normal and attack scenarios.
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Figure 8.16: Forecasting of the number of VNF instances

effectiveness registered when analyzing threats that lead to increase 10%, 20%, 30% 40%

and 50% the number of instances of the NFV considered at the previous example. In

general terms, the success rate has varied little (see Figure 8.19(c)); at the first four

groups of attacks (10%, 20%, 30%, 40%) a distance of 0.022 (0.025%) was observed

between the minimum hit rate (TPR=0.89, in 10%) and the best hit rate (TPR=0.91

in 40%). When the attacks posed higher intensity (50%) the hit rate slightly improved

(TPR=0.94 in 50%). However, by taking into account the issuing of false positives the

results were more significant (see Figure 8.19(d)); in particular, if the attacks posed lower

intensity, the detection method reached FPR=0.12; but by increasing their capacity to

cause economic losses, the best observation decreased to FPR = 0.07, which represents
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Figure 8.17: Productivity distribution per VNF instance
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Figure 8.18: DBSCAN classification by VNF productivity

an improvement of 58.3% over the worst registration. These situations are reflected in

Figure 8.19(a) and Figure 8.19(b), where the AUC varies according to the attack intensity,

being AUC=0.9483 in the worst case, and AUC=0.9811 in the best case. The effectiveness

variations are mainly due to the clustering stage, where the instantiated NFVs are grouped

based on productivity. The greater is the attack intensity, the greater is the number of

instances created by the intruded that belong to the lazy group. This places a larger
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Figure 8.19: Analysis of the effectiveness at different attack intensities

amount of normal instances in other groups, hence reducing the false positive rate in the

best calibrations despite generally, it remains similar. In view of the results, it is possible

to conclude that the proposed strategy is capable of detecting I-EDoS threats successfully.

However, to maintain a setting that facilitates recognition of low intensity threats may

result in the emission of a greater number of false positives, which should be considered

by the security management strategy. It entails deciding the trade-off between protection

and economic losses that fits better into the monitoring scenario and the security policies.

Table 8.10: Summary of results considering different attack intensities

Effectiveness measurements

Intensity (%) AUC TPR FPR

10 0.9483 0.8936 0.12

20 0.9498 0.9099 0.10

30 0.9654 0.9167 0.08

40 0.9708 0.9155 0.07

50 0.9811 0.9404 0.07
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Bearing the performed experimentation in mind, the following items are highlighted:

1. When analyzing W-EDoS, as the number of requests per node and the intensity of

the attack increase, the accuracy of the system improves. The best results were

observed when the sensors submit an average of at least 80 requests per sensor and

the attack poses 10% intensity (AUC=0.995, TPR=1, FPR=0.01).

2. The W-EDoS detection approach is more effective when the Rènyi entropy degree

is low. The best observation was α = 1 (AUC=0.9557, TPR=0.9113, FPR=0.0400)

with a test setting that assumed an average rate of 60 requests per client/second,

and attacks originated from 5% of the clients to be served

3. The W-EDoS detection when only considering XApp was not recommended because

of the rebound effect of the forecasting and adaptive thresholding methods described

in Section 8.5.1. It leads to a significant increase in the false positive rate.

4. The proposal for I-EDoS detection behaves better when analyzing attacks of greater

intensity. The best results were observed when the attack intensity was 50%

(AUC=0.9811, TPR=0.9404, FPR=0.07).

5. At I-EDoS detection, the greater is the attack intensity, the greater is the number

of instances created by the intruded that belong to the lazy group. This has a

direct impact on the false positive rate resultant of the optimal calibration. Hence

if the attacks posed lower intensity, the detection method reached FPR=0.12; but

by increasing their intensity, the best observation decreased to FPR = 0.07, which

represents an improvement of 58.3% over the worst register

From these facts it is deduced that the main objective of this proposal has been

achieved, i.e. it was able to successfully recognize the different EDoS attacks against the

self-organized network considered during the experimentation. However, the effectiveness

has varied depending on different characteristics of the monitoring scenario, highlighting

among them the heterogeneity of the information to be studied (1) and the intensity of

the attack (1), (2), (4), (5). The first one allows more accurate modeling of the legitimate

behavior by reducing the false positive rate, and the second facilitates the recognition of the

intrusive activities. Finally, it is worth highlighting the impact of the Rènyi entropy degree

at the W-EDoS detection approach (3), where this parameter significantly influenced the

smoothing and noise reduction of the time series to be analyzed. This has resulted in

the fact that α = 1 (Shannon entropy), i.e. the most noise-tolerant setting, entailed

greater accuracy, in a similar way to previous publications related with conventional DDoS

recognition [ÖB15].

From an analytical point of view, a light solution has been proposed, where the most

complex tasks are executed in a dedicated server, thus minimizing operational costs.

Given that the definitions of W-EDoS and I-EDoS attacks lie on CRoWN indicators,

the object of study has been clearly delimited. But certainly, the future will bring new

ways of achieving EDoS, so it is not possible to guarantee the effectiveness of the proposal

in uncharted circumstances. It is also important to bear in mind that the proposed
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solution implements analytic tools well-known by the research community, for example

the DES [GJD80] forecast algorithm or the DBSCAN [EKS+96] clustering method. Their

selection has been conveniently justified throughout the paper, but they pose advantages

and disadvantages that should be considered prior to instantiation in alternative use

cases. Note that if necessary, they can be replaced by similar algorithms. Finally, it

should be highlighted that the proposal inherits the countermeasures related with the

limitations assumed at the design principles (see Section 8.3). Therefore, it does not

incorporate adaptation techniques to non-stationary scenarios [DRAP15] nor robustness

against adversarial attacks [ÖB15, ADAH14]. Neither an advanced information correlation

strategy has been proposed, where data from different sensors could be pooled. These

facilitate the inference of more precise diagnoses [SMFDV13, MAJ13], which serve to risk

assessment and to resolve the trade-off between the cost of countermeasures deployment

and the estimated losses caused by the intrusion. Consequently, many interesting lines of

future work have been raised.

8.9 Final Remarks

This chapter has delved into the analysis of EDoS threats in emergent self-organized

networks. In order to lay a formal definition of EDoS threats, a set of indicators have been

identified that lead to the distinction of two categories of EDoS threats: Workload-based

EDoS and Instantiation-based EDoS. They constitute one of the central contributions of

this work on which the defensive detections strategies have been conducted. The W-EDoS

attack detection considers significant prediction errors terms of CPU consumption and

response-time at application-level of the instantiated VNFs. On the other hand, I-EDoS

attack detection analyzes the relationship between the initialization of unproductive

instances and the suspicious growth of the number of deployed NFVs instances. To validate

the proposal an extensive experimentation has been conducted in a self-organized testbed,

and the obtained results have proven good accuracy on the detection of such threats.

Therefore, it is possible to conclude that the proposal fulfills its main objective at the

deployed scenario.



Chapter 9

Detecting the Participation of a

Device in a DDoS Attack

This chapter introduces a novel approach for detecting the participation of a protected

network device in Distributed Denial of Service attacks. With this purpose, the traffic flows

are inspected at source-side looking for discordant behaviors. To this end, the strategy

has led to delegate the analytic tasks to a dedicated autonomic layer, hence minimizing

the impact on operational efficiency and quality of experience. In particular, the approach

takes advantage of the knowledge acquisition framework implemented in the SELFNET

project, which facilitates its implementation as a self-organizing solution. The proposal

adopts feature extraction, pattern recognition, prediction and adaptive thresholding

capabilities, and facilitates its adaptation to more sophisticated self-protection approaches.

Hence, the main contributions of the performed research are:

An in-depth review of the flooding-based DDoS landscape and the different proposals

for its mitigation from the academic point of view.

The introduction of a novel method for its identification by analyzing source-side

activities, adapted to non-stationary of the emerging networks.

An adaptation of the solution to an advanced architecture for self-protective

purposes.

The collection of a dataset.

The description of an evaluation methodology for proving the effectiveness of the

proposal.

A comprehensively discussion of the obtained results.

This chapter is structured into seven sections. In Section 9.1, the initial considerations

for the proposal are described categorized as design principles, assumptions and

limitations. Section 9.2 defines a multi-layered architecture on which the detection strategy

is implemented. Section 9.3 provides a description of the DDoS indicators considered in the

detection stage. Section 9.4 describes in detail the detection strategy composed by three

143
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major data processing stages. In Section 9.5 the evaluation methodology is presented. In

Section 9.6 the results derived from the experimentation are discussed. Finally, Section

9.7 remarks the conclusions of this chapter.

9.1 Initial Considerations

This section delves into the design principles reviewing its objectives, assumptions and

limitations. It also describes the current architecture and the strategy for acquiring initial

factual knowledge, in this way detailing the procedures for monitoring metric generation

and knowledge inference.

9.1.1 Design principles

The defense against flooding-based DDoS attacks may be approached from different

perspectives, ranging from prevention to identification of sources [VZF17]. In addition,

and given the complexity of the emerging network scenarios, they pose a large number

of challenges, as is the case of deciding the most effective countermeasures and range

of action [ZJT13], to adapt to the nature of the data to be modeled [BBK15] or how

implement previously agreed security management policies [Den14b]. In order to facilitate

the understanding of the performed research, it should be clear that main objective

of this contribution has been the development of a novel flooding-based DDoS attacks

detection strategy at source-side, that must to adapt to non-stationary processes in the

data to be analyzed. Unlike similar proposals, only a single source of information is

monitored, which is the protected device [MKK11]. The most relevant secondary goals

are the evaluation of the approach under different traffic profiles; and its integration as a

self-organizing solution for next generation networks, thus allowing both taking advantage

of its dedicated analytical capabilities and fostering the definition of sophisticated use

cases able to reactively/proactively manage the protected network security. To this end,

the SELFNET project [P5S] has been selected, which aligns with the European 5G PPP

Security Work Group.

9.1.2 Assumptions

In order to restrict and lay the foundations of the performed research the following premises

have been assumed:

The detection of the participation of an end-user or IoT device as source-side of

DDoS attacks based on the study of metrics aggregated from its incoming/outgoing

traffic is possible.

Flooding-based DoS differ from normal activities in traits related with number of

requests observed and traffic volume generated by the suspicious end-points. In the

case of DDoS attacks the number of clients involved also varies [SMMVGV17a].

The analysis of discordant behaviors in aggregated metrics at flow-level enables

recognizing DDoS situations on conventional monitoring scenarios [ÖB15].



9.2. Architecture 145

By extracting and analyzing advanced metrics in a remote dedicated server it is

possible to provide a passive-monitoring detection approach.

As the information provided by incoming/outgoing traffic flows monitored from

network devices largely depends on the traffic profile, its non-stationarity is assumed

(since for not all users this feature can be guaranteed). The non-stationarity is also

inherent to the emergent communication networks landscape.

9.1.3 Limitations

For diverse reasons, the performed research has not taken into account the following

circumstances, most of them being postponed for future work:

The protection of communication channels between monitoring agents and SON

analytical components has not been addressed [LII+15]. Security practices on

software development are not explicitely considered either. Consequently, at the

performed experimentation it was assumed they have not being compromised.

Nowadays there are different adversarial threats able to evade detection methods

similar to those studied during the course of the performed research [ÖB15]. But

given the complexity that their development often entails and aiming on facilitating

the understanding of the main contribution of our research, their adoption is out of

the scope of this publication.

The issues related with data protection inherent in the audition of user behaviors at

communication networks have not been considered. Neither the implementation of

the recent European General Data Protection Regulation (GDPR). Consequently,

it is assumed that the proposed solution have permission to monitor the

incoming/outgoing traffic of their network devices for purely analytic purposes.

The knowledge representation and data models implemented for management and

storage of the factual knowledge acquired by this proposal are not detailly specified

throughout this work.

9.2 Architecture

The proposed SON architecture (Figure 9.1) is grounded in the functional layers defined

for the SELFNET framework [P5S]. At a glance, this 5G oriented architecture takes

advantage of the decoupling of the control and data plane layers, promoted by SDN to

allow a fully software-driven management model, being this a remarkable characteristic of

the next-generation networks [ARS16].

The major benefit of this model is the inclusion of complex data processing tasks

in the SON Autonomic Layer, which encompass advanced data extraction features,

machine learning approaches, anomaly detection strategies, among others, towards

the accomplishment of self-protection capabilities for detecting and mitigating network

threats in complex network contexts [MGC+18]. In the lowest level of this 5G-oriented
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Figure 9.1: Architecture for Source-side DDoS Detection.

architecture, the network physical infrastructure holds heterogeneous network nodes

embracing end-user devices (D2D), such as mobile phones and personal computers, or IoT

devices intended for machine to machine (M2M) communications [PDG+16]. All of them

act as traffic generators, thus increasing the complexity of the monitored environment

as the network grows. On the other hand, the inclusion of virtualization capabilities

driven by the Network Function Virtualization (NFV) architecture leads to overcome

scalability issues of physical infrastructures [HH15] due to its on-demand provisioning

model orchestrated by the Virtual Infrastructure Manager (implemented on Openstack

[Ope]), which allows the instantiation of virtualized network elements easily configurable

by software. This is a distinguishable aspect of 5G network architectures, which is

achieved, for instance, by provisioning a VNF node with the desired protocol stack

[TKJ16]. Thereby, virtualization leads to the creation of configurable forwarding nodes

in the SON Data Plane layer, which are in the meantime compatible with the SDN

paradigm. For this reason, the Open vSwitch (OVS) [POv] instances implement the

OpenFlow [MAB+08] protocol in the southbound interface for handling the configuration

messages with the SDN controller.

In addition, OVS switches provide support for NetFlow, a well-known protocol used

for monitoring flow traffic statistics [HCT+14] built upon the matching of source IP,

destination IP, and protocol; which are analyzed in the autonomic layer. NetFlow

implements flow-sampling methods which have faced some scalability issues [LMKY16]

in large network deployments as other flow monitoring methods, hence remaining as a

traffic engineering open challenge in research literature [ALW+14] [SWXH15] [YHSH17].

Despite its drawbacks, this proposal has opted for NetFlow to prioritize the flow metrics

extraction to validate the detection model, which is grounded on accurate flow statistics
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rather than addressing efficiency and scalability aspects. Notwithstanding, those issues

have been mitigated by provisioning the OVS instances with larger allocation of memory

and computing capacity aimed to enhance its performance. Both OpenFlow and Netflow

interact with the OpenDaylight (ODL) [MVTG14] controller located in the Control Layer.

The OpenFlow interface manages the configuration of the flow-tables for packet forwarding

in the data plane, whereas the Netflow collector gathers flow counters from the virtual

switches. The proposed detection strategy relies on the representation of flow metrics as

time series, being this the reason why the ODL Time Series Data Repository (TSDR)

[ODT] is deployed to transform flow statistics into a time series representation. On

the highest level of the architecture, the SON Autonomic layer is composed by data

processing modules targeted on the core detection strategy implementation, which spans

from the data collection to the notification of network threats. Flow statistics are

gathered by querying the time series database (through the TSDR API) under different

granularity levels, and the resultant sample of metrics are aggregated by means of feature

extraction methods (entropy measurement). Likewise, to conduct a machine learning

approach a Training stage is considered, of which main outcome is the construction of a

classification model fitted for selecting the proper prediction algorithm based on the time

series features included in the reference dataset. This classification model is used in the

Adaptive Prediction stage when the most accurate prediction algorithm is inferred from

the time series characteristics extracted from the monitored observations. Once selected,

it is calibrated for minimizing the forecasting error to enhance its accuracy. Then, the

DDoS detection is carried out by constructing the adaptive thresholds estimated from the

predicted values to detect anomalies when the observations are outside the prediction

boundaries, thus generating DDoS alerts to be notified as the outcome of the SON

self-protection approach.

9.3 DDoS indicators

Throughout the performed research different levels of information processing have been

studied, which entailed the need for extracting very heterogeneous features that facilitate

the analysis of the knowledge acquired from the monitored devices, that being analyzed

as univariant time series. They are summarized in Table 9.1 and described throughout

this section.

9.3.1 Time Series Features

The first analytic stage has focused on the extraction of traits that allow defining usage

models adaptable to changes in the monitoring environment. For the automation of

deciding the best suited modeling and prediction strategies, more than 100 metrics per time

series sample were constructed by the tool TSFRESH, which has been developed under

the iPRODICT [TF1] project. This collection takes into account from basic statistical

attributes (peaks, maximum/minimum observations, mode, etc.) to correlation measures

related with the evolution of the time series (white noise, trend, seasonality, autocorrelation
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Table 9.1: Source-side DDoS detection indicators.

Cumulative

Symbol Description

nPin
Incoming
packets

nPout
Outgoing
packets

nBin
Incoming
bytes

nBout
Outgoing
bytes

Flow Disorder (H)

Symbol Description

H(nPin)
Entropy packets
per incoming flow

H(nPout)
Entorpy packets
per outoging flow

H(nBin)
Entropy bytes per
incoming flow

H(nBout)
Entropy bytes per
outgoing flow

Flow Divergence (nMSE)

Symbol Description

nMSE(nP )
Diff. Input and
output packets

nMSE(nB)
Diff. Input and
output bytes

coefficients, etc.). They were directly applied on the collection M3-Competition [Mak00]

at the training stage of the system.

9.3.2 Basic Metrics

The incoming/outgoing traffic flows from the protected IoT device are monitored and

structured in IPFIX format [HCT+14], according to which each traffic flow being a bunch

of packets captured in certain time interval t that share the following properties: same

source IP address, IP destination and protocol. The timeslots that delimit the traffic

flows establish the granularity of the analytic tasks to be performed, in this way serving as

adjustment parameters that configure the sensitivity level of the detection methods. For

example, when the granularity is high, the information to be processed is hardly filtered

or softened, since it is often acquired from less instances (packets). As a result, these

observations are more likely to pose outliers or noise. However, when the granularity is

too low, it is possible that the analytic tasks overlook relevant situations. The first of

these scenarios results in a more restrictive adjustment, where the detection of threats is

prioritized in opposition to the generation of false positives. In the second case, the quality

of the user experience is prioritized at the expense of decreasing the level of protection

offered. The following pair of measurements is taken per traffic flow: number of transferred

packets nP and total amount of information transferred nB (bytes). From them the

aggregated metrics described in the next subsection are inferred.

9.3.3 Aggregated Metrics

As suggested in the bibliography, the basic flow-level metrics are aggregated based on the

relationship between outgoing and incoming traffic and their dispersion [GP01]. In the

first case, the normalized Mean Squared Error (MSE) is considered, which is expressed as

follows:

nMSE(X) =
1
n

∑n
i=1 (x(a)i − x̂(b)i)

2

σ2
(9.1)

where X is the trait to be analyzed, n is the total number of traffic flows with paired
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IP source and IP destination (i.e. the traffic incoming/outgoing traffic between a and

b), x(a)i is the metric registered at the incoming traffic grouped at the flow a, and x(b)i
is the metric registered at the outgoing traffic at b. A clear example is illustrated in

the relationship Eτ (nP in, nP out) that describes the difference between incoming packets

Xin(a) = nP out(b) and outgoing packets Xout (a) = nP in(b) captured at the time interval

τ .

On the other hand, the disorder degree of the observations is measured based on the

normalized entropy described by Shannon. This decision is supported by previous research

works related with conventional DDoS recognition, which successfully approached similar

problems in the same way [BBK15]. It has been hypothesized about this metric being

also valid for detection at single source-side device monitorization. As is usual in the case

the bibliography, the entropy implemented by this proposal is inferred from the following

expression:

H (X) =
−
∑n

i=1 pi loga pi
loga n

(9.2)

where n is the total number of monitored flows captured at the time interval τ , and

p1, p2, . . . , pn are the probabilities of the instances x1, x2, . . . , xn of the random variable

X, the latest constructed from basic flow-level metrics. Table 9.1 summarizes the DDoS

indicators studied at the performed experimentation.

9.4 Source-side flooding-based DDoS detection

The proposed architecture bases its detection strategy on studying univariate time series

built from aggregated metrics, which are deduced from both traffic monitored at the

protected devices and collections of reference time series with training and validation

purposes (at the performed experimentation, the M3-Competition [Mak00] dataset).

To this end, three major data processing stages are distinguished: Training, Adaptive

Prediction and Classification (see Figure 9.2). At Training stage, the criteria that

facilitates deciding the predictive models that best adapt to the data to be analyzed

are defined from the reference samples. At the Adaptive Prediction stage, the modeling

strategies are calibrated aiming on improving the forecasts to be made from the next

observations. Therefore, the TSFRESH features extracted from the time series to

be analyzed lie the grounds of the forecast models that drive the inference of next

observations. Finally, at Classification stage it is decided the significance of the registered

prediction errors, hence leading to discover unexpected behaviors (discordant) that provide

suspicious activity indicators. The following describes in detail each data processing stage.

9.4.1 Training and forecast method detection

The analytic dedicated server provides a battery of forecasting procedures implemented

in the Section 6.3.2, which gathers among others, models based on moving averages,

autoregression or smoothing. In order to adapt the detection strategy to the

non-stationarity of the monitoring environment, prior to infer the traffic behavior the
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Figure 9.2: SON data processing stages.

best suited prediction method is selected and properly calibrated. Therefore, a collection

of reference samples is required from which it is possible to extract the most relevant

characteristics and build the classifier that stablish the best forecast function from them

[TF1].

At the training stage (Figure 9.3), the classifier that decides the best prediction method

is constructed. The is proposal adopts as classification procedure the Random Forest

approach described by Breiman [Bre01]. According with Breiman, a random forest is a

classifier consisting of a collection of tree-structured predictors such that each tree depends

on the values of a random vector sampled independently and with the same distribution

for all trees in the forest. In particular, the original approach implemented the variation of

Classification And Regression Trees (CART) [RJPD14b] that choose which variable to split

on using a greedy algorithm that minimizes error. This task typically requires specifying

several adjustment parameters, for example, the maximum number of iterations to be

performed as stop condition, the number of trees to construct or their maximum depth.

But, as highlighted by Breiman, the number m of randomly selected attributes is the

only adjustable parameter to which random forests are somewhat sensitive. This value

determines the correlation between each pair of trees and the strength of each individual

tree. By increasing the aforementioned parameter, both correlation and strength increase.

When the correlation grows, the forest error rate increases; in the opposite, when strength

grows the forest error rate decreases, so the level of both features must be balanced. This

problem is addressed by applying the solution proposed by Breiman (i.e. m = logM + 1,
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where M is the number of features of samples within the dataset), hence postponing for

future versions the implementation of alternative calibration strategies.

Each training sample considered for Random Forest definition is represented by the

100 TSFRESH attributes extracted from the reference time series (M3-Competition). The

instance belongs to the class that represents the prediction algorithm that registered less

significant forecasting errors when building its prediction model. The class of each sample

is obtained by analyzing the time series with the complete prediction algorithm battery

provided in Section 6.3.2. The solution that resulted in the lower Symmetric Mean

Absolute Percentage Error (sMAPE) becames the label of the instance. Note that the

sMAPE criterion was previoulsy adopted among others by the M3-Competition [Mak00],

in this way enabling the evaluation of the effectiveness of different forecasting procedures.

Finally, it should be remarked that one of the main disadvantages of the Random Forest

classifiers is their trend towards overfitting. In this proposal, this problem is reduced by

including a pre-selection step conducted by the greedy algorithm for feature discrimination

described in [HLSR18] and its evaluation based on the significance of the prediction errors

[Hal99].

9.4.2 Adaptive Prediction

Holte denoted in [Hol93] that pattern recognition conventionally considered that the

reference datasets applied for training purposes are representative of the expected

observations at the monitored environment. The presence of gradual changes over time in
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the statistical characteristics of the class to which an observation belongs are the result of

non-stationary fluctuations, which leads among others to the concept drift problem (i.e.

the models built at training do no longer represent the situations that they originally

intended depict). From the standpoint of the research community, the stationarity in

communication networks is questionable [Mas09], which only should be assumed in very

specific circumstances [MDB17]. Because of this, and in order to provide an effective

defense against DDoS in any emerging scenario, non-stationarity operation is assumed. It

is important to highlight that O’Reilly et al. [OGIR14] distinguished two major approaches

to this problem: passive and active. The active solutions require the previous recognition

of inflection points that foresee relevant changes on the monitored environment, from

them updating the previously built models. Because of their modus operandi, the active

solutions are usually refereed as detection and response methods. On the other hand,

the passive approach assumes that the monitored feature distribution steadily varies over

time, hence demanding the continuous recalibration of the analytic capabilities. Therefore,

while active solutions focus on punctual drift distinction, the passive approaches proved

greater effectiveness when forecasting gradual drift and recurring concepts [WIY03]. The

existence of stealthy flooding-based DDoS threats based on hiding abrupt variations in the

data volume injected [FR15] leads to hypothesize that with the proper data granularity,

the second paradigm best suites the main objectives of the performed research, so it was

implemented in this work (the development of active/hybrid solutions is postponed for

future work). The detection method introduced in this section adapts to non-stationarity

environments in two steps: forecasting algorithm selection and calibration (see Figure 9.4).

They are described below.

9.4.2.1 Forecasting Algorithm selection

The most suitable forecast algorithm is decided based on studying the TSFRESH features

extracted from the monitored time series, which serve as input of the Random Forest

previously built at Training stage. The resultant class refers to the best forecast method,

on which the expected behavior of the network is estimated. This procedure is repeated on

each observation, so the prediction method will vary as the traffic distribution changes. For

example, let the time series that represent the number of outgoing bytes (nBout) of certain

endpoint. The Random Forest classifier initially decided that the best suited prediction

algorithm is the Simple Exponential Smoothing (SES). But at the next observations, the

time series significantly gains in trend and seasonality, so the likelihood of budging from

SES to Triple Exponential Smoothing (TES) increases, since TES typically behaves more

accurately than SES under the new conditions [Win60].

9.4.2.2 Calibration

Most of the prediction methods in the implemented battery of algorithms required a

previous configuration, where the proper calibration of its adjustment parameters plays

an essential role in the achieved performance. Because of this, once the prediction

method is selected, it is calibrated driven by a basic Genetic Algorithm (GA) [KRG01].
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This solution is inspired by the biological evolutive theories and their genetic-molecular

basis. Consequently, and in contrast to other proposals with similar purposes, the genetic

algorithms are probabilistic algorithms that conduct the evolution of an initial population

of individuals (observations) generated from initial factual knowledge, through actions

with arbitrary results (i.e. genetic mutations and gen recombination) that try to get

closer to the optimal solution in each iteration, hence resembling those of the biological

evolution processes. Its main drawbacks are related with high resource consumption and

not guarantee of finding and optimal solution, both of them extensively discussed in the

bibliography [ESE14]. But their discussion and mitigation are out of the scope of the

principal contributions of this research.

The proposed detection approach implements a GA as solution to the forecasting

algorithm calibration problem after taking into consideration different reasons,

highlighting among them: the fact that GAs already posed solutions to optimization

problems previously proved with calibration purposes [Rui16], they are capable of operate

on vectors of adjustment parameters of different nature, and their operation adapts to the

detail level in which calibrations must be calculated. Note that the latter is especially

valuable when operating in real time scenarios, hence allowing to balance accuracy and

performance to satisfy the implemented security management policies.

In the implemented GA, it is considered as evolving population the set of candidate

adjustments, where each individual raises a possible solution. Their genotype represents

a vector of gens in which each position contains one of the adjustment parameters of the

prediction method. For example, in the case of TES a collection of four characteristics
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Table 9.2: Summary of the GA calibration

Feature Highlights

Individual An individual represents a possible calibration. The genotype is a vector where each
gen is an adjustment parameter of the prediction algorithm.

Initial Population At the first launch, the initial population is generated by assigning randomly values
to gens. The initial population of the next observation is the final population of the
previous execution.

Fitness The sMAPE [Mak00] obtained by a specific calibration.

Selection Fitness Proportionate Selection (FPS) [GD91]

Crossover Swapping gens from an arbitrary pivot.

Mutation Uniform mutation of an arbitrary gen.

Stop Condition Reached a previously defined maximum number of iterations or discovery of an
optimal solution.

would be constituted: data smoothing factor (α), trend smoothing factor (β), seasonal

change smoothing factor (γ) and forecast horizon (τ) [Win60]. The initial population is

randomly calculated and only the most adapted individuals hold possibilities of persisting

at future generations. Note that as in nature, the fitness of an individual ponders its ability

to adapt to the environment, and therefore the probability of procreation. Therefore, the

fitness function of the implemented GA returns the sMAPE calculated when the prediction

algorithm is calibrated according to the genotype of an individual.

In addition, the GA performs simple crossover and uniform mutation per iteration. The

first of them selects a couple of parents per crossover by Fitness Proportionate Selection

(FPS) [GD91], then randomly deciding a swapping point and exchanging their genetical

contents pivoting on such point. Consequently, the descendant individual replaces the

parent with lower fitness. At the mutation stage, an arbitrary gen of the descendant

is replaced by a random value. Because of the gens may present different nature, this

action is constrained by the boundaries stablished by the data range of the adjustment

parameter. For example, the α parameter of the TES prediction function ranges in 0 . . . 1,

so the random uniform mutations on alpha must be restricted to 0 . . . 1. The algorithm

has two stop conditions: a predefined maximum number of iterations (worst case), and

some individual reaching its optimal fitness, i.e. sMAPE=0.

From the prediction algorithm selected by the Random Forest classifier, as well as

from its calibration according to the adjustment indicated by the best individual of the

final population, the next h observations of the time series to be analyzed are estimated.

The final population is temporally stored for serving as initial population for the next

execution of the GA, in this way usually gaining accuracy. Note that this decision is based

on the fact that most of the time series will be similar, so large changes in the adjustment

values are not expected. Table 9.2 summarizes the main steps of the implemented GA.

9.4.3 Classification

At the classification stage, the natures of the time series of aggregated metrics constructed

from the monitored traffic flows are decided. In this context, it is assumed that an

observation is an outlier if it matches with an unexpected behavior, i.e. when the variation
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Figure 9.5: Example of outlier identification.

between a prognosis at certain time horizon and the observed value differ significantly.

Because the projection of continuous values on time tends to yield errors, the main

challenge of this process is to define their relevance, which is addressed by defining adaptive

thresholds. In the aftermath, outliers are tagged as potential malicious behaviors, and

normal situations are classified as legitimate, so the current implementation acts as a binary

classifier. The reference reasoning framework [SMMVGV17d] provides advanced analytical

capabilities related with building prediction intervals, most of them widely accepted by

the research community for network traffic study. Of them, it is integrated the adaptive

thresholding methodology described in [MWH97], which defines the following adaptive

thresholds:

Ath = x̂n+1 ±K
√
σ2(Et) (9.3)

where x̂n+1 is the forecast of certain aggregated metric x at n + 1 horizon, Et is the

Euclidean distance between x̂n+1 and xn+1, and K is the adjustment parameter that

configures the restrictiveness of the sensor. The equations distinguish an upper threshold

Athup and a lower threshold Athlow, both adapted to t. It is expected that the greater

values of K, the higher noise tolerance, since this situation expands the margin of error

between x̂n+1 and xn+1. Figure 9.5 illustrates an example of outlier induced by a DDoS

flooding-based attack, where at T=41 a compromised endpoint injects a large number of

HTTP requests. During the attack the threshold was exceeded, which leads to label the

traffic as malicious.

9.5 Evaluation Methodology

The collection of samples gathered for evaluation includes outgoing traffic captures from

62 different devices. Each sample was created from traffic monitorizations separated

in time periods of 1, 3 and 5 days, comprising a total amount of 50 instances with 3

hours per device, so the dataset contains 3,100 samples of normal traffic (Table 9.3).

At the end of each normal traffic capture, the tools described in [SLo][WcD] launched

DDoS attacks; in particular, traffic injections based on UDP, HTTP or TCP flood with

low, medium and high intensity. Accordingly, the dataset provides 27,900 samples with

malicious contents, 9,300 per intensity (see Table 9.4). Usage profiles comprised daily user

habits (i.e. general-purpose usage), synthetic web navigation with various automatization
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Table 9.3: Monitored activities and endpoint devices at the performed experimentation.

No. No. Samples p-ADF

Daily user habits 20 1,000 0.103

Browser bot A 4 200 0.065

Browser bot B 16 800 0.130

Browser bot C 4 200 0.008

Audio streaming 4 200 0.040

Video streaming 14 700 0.065

Table 9.4: Normal and attack traffic samples per monitored device.

Endpoint No. Normal Attack

Desktop computer 29 1,450 13,050

Notebook 16 800 7,200

Smartphone 8 400 3,600

Tablet computer 6 300 2,700

Smartwatch 2 100 900

Smart TV 1 50 450

tools and multimedia streaming (audio and video). The synthetic web browsing profiles

were separated according to the tool that the endpoint executed; being referred as A for

Internet Noise [SIN], B for Noiszy [NZ1] and C for TrackMeNot [TnS]. Six families of

devices were considered: desktop computers, notebooks, smartphones, tablet computers,

smartwatches and smart TVs. Note that given that in terms of traffic modeling, the type of

the endpoint had less impact than its usage mode, the conducted study primarily focused

on their behavior. Table 9.3 displays the average p-value of the Augmented Dickey-Fuller

test (ADF) that assess the no-stationarity of each traffic profile [CL95]. The p-values

lower than 0.05 resemble stationary processes, which leads us to assume that most of the

endpoints behave as non-stationary data sources.

The effectiveness of the proposed method has been tested by adopting an experimental

evaluation methodology, in which the impact on effectiveness was measured when varying

the following adjustment parameters: granularity, traffic profile and attack. In analogy

with previous publications, this task was addressed by considering a classical binary

classificator based on observing its sensitivity and specificity. The first of them determines

the ability to properly point out anomalies as malicious. On the other hand, the

specificity measures the ability of recognizing normal activities as legitimate. From their

representation in the Receiver Operating Characteristic (ROC) space, several effectiveness

indicators have been extracted, standing out for relevance the Area Under the Curve

(AUC), and the True Positive Rates (TPR) and False Positive Rates (FPR) achieved from

the best sensor adjustment in terms of K. The optimal setting coincides with the position

of the ROC curve that displays the better Youden index [BNR14] (Y ), which ranged from

-1 (worst) to 1 (optimal).
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Table 9.5: AUC registered per observation granularity when varying K.

Indicator
Observation granularity

7.5 Sec. 15 Sec. 30 Sec. 1 Min. 2 Min. 3 Min.

nPin 0.75 0.79 0.72 0.75 0.69 0.69

nPout 0.84 0.95 0.93 0.93 0.83 0.80

nBin 0.61 0.65 0.63 0.67 0.65 0.62

nBout 0.75 0.91 0.87 0.84 0.76 0.72

H(nPin) 0.63 0.71 0.75 0.67 0.69 0.67

H(nPout) 0.65 0.74 0.72 0.69 0.68 0.66

H(nBin) 0.64 0.71 0.75 0.65 0.69 0.65

H(nBout) 0.63 0.73 0.72 0.71 0.69 0.66

nMSE(nP) 0.88 0.96 0.94 0.95 0.85 0.89

nMSE(nB) 0.60 0.68 0.68 0.74 0.68 0.61

9.6 Results

The obtained results are summarized in the following subsections.

9.6.1 Impact of granularity

At this experiment, the accuracy of the sensor was measured when studying traffic flows

captured in time intervals of 7.5 sec., 15 sec., 30 sec., 1 min., 2 min. and 3 min; hence only

focusing on the monitorization interval and the adjustment of theK parameter for adaptive

thresholding calibration. The accuracy achieved per metric and configuration is illustrated

in Table 9.5, where the effectiveness of this proposal is expressed in terms of AUC, and

the corresponding TPR and FPR for the best granularity is shown in Table 9.6. This

performance indicator was calculated via trapezoidal approximation with 0.005 estimated

error. The best studied granularity was 15 seconds per observation, which provides the

most accurate results (AUC=0.96, TPR=0.93 and FPR=0.01). When the granularity is

lower (i.e. the duration of the observation is smaller), the accuracy worsens. For example,

when 7.5 seconds the best registered AUC was 0.88. Similarly, as the level of detail falls,

the effectiveness of the proposal decreases, hence reaching AUC=89.2 when 3 minutes per

observations. This is due to the fact that with small observations the information they

compile tends to be less significant, hence being more likely to infer noise. On the contrary,

when the observation is too large, the first observations of the attack may go unnoticed

among legitimate traffic. In this case, the adaptation to non-stationarity readjusted the

analytic algorithms, so if the attack is not initially detected, it may be considered part of

the normal activity of the network. Finally, it is worth to highlight the accuracy achieved

by metrics directly related to the total incoming (nPin) and outcoming (nPout) packet,

which divergence (nMSE(nP )) behaved as the most accurate DDoS indicator at the

performed experimentation. In contrast with the classical entropy-based DDoS detection

solutions focused on intermediate/victim edge audition, these metrics proved not to be as

effective at single source-side monitorization.
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Table 9.6: Best parameters

Best(15 sec.)

TPR FPR Y

0.56 0.01 0.55

0.92 0.01 0.91

0.74 0.51 0.23

0.83 0.01 0.82

0.81 0.48 0.33

0.87 0.49 0.38

0.80 0.47 0.33

0.85 0.49 0.36

0.93 0.01 0.92

0.76 0.50 0.26

Table 9.7: AUC registered per traffic profile at 15 sec. granularity.

Indicator
Traffic usage profile

P0 P1 P2 P3 P4 P5

nPin 0.86 0.84 0.86 0.94 0.70 0.84

nPout 0.96 0.96 0.96 0.97 0.94 0.96

nBin 0.79 0.71 0.51 0.93 0.81 0.67

nBout 0.92 0.88 0.95 0.93 0.92 0.93

H(nPin) 0.73 0.54 0.80 0.84 0.57 0.67

H(nPout) 0.73 0.76 0.79 0.72 0.63 0.67

H(nBin) 0.70 0.58 0.79 0.83 0.56 0.67

H(nBout) 0.71 0.78 0.80 0.64 0.64 0.66

nMSE(nP) 0.96 0.97 0.97 0.97 0.96 0.96

nMSE(nB) 0.84 0.76 0.36 0.91 0.86 0.72

9.6.2 Impact of traffic profile

With the purpose of facilitating the understanding of the achieved results, the impact

of the device usage mode on the effectiveness has been studied when assuming the best

granularity of the previous experimentation, as it is illustrated in Table 9.7. The six

traffic activity profiles described in Table 9.3 were analyzed, hence leading to the following

best results: user daily habits P0 (AUC=0.96), A synthetic traffic P1 (AUC=0.97), B

synthetic traffic P2 (AUC= 0.97), C synthetic traffic P3 (AUC=0.97), audio streaming P4

(AUC=0.96) and video streaming P5 (AUC=0.96). Note that similarly to the previous

tests, the best metric is often the difference between incoming and outgoing packets

(nMSE(nP )), which is closely followed by the total number of incoming packets (nPin)

and the total number of outgoing packages (nPout). Again entropy-based metrics have

not been effective enough. Since no significant variations have been recorded between

traffic profiles, it is possible to conclude that the proposed detection method was capable

of self-calibrating according to the traffic distribution inherent to each type of endpoint,

in this way posing an effective solution regardless the nature of the device.
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Table 9.8: AUC registered per attack type at 15 sec. granularity.

Indicator
Attack type

Hl Hm Hh Tl Tm Th Ul Um Uh

nPin 0.90 0.87 0.83 0.80 0.94 0.89 0.95 0.76 0.75

nPout 1.00 1.00 1.00 0.86 1.00 1.00 1.00 0.98 0.99

nBin 0.87 0.76 0.73 0.62 0.72 0.61 0.69 0.61 0.61

nBout 1.00 0.99 0.99 0.81 0.97 0.99 0.96 0.96 0.97

H(nPin) 0.65 0.68 0.78 0.75 0.80 0.79 0.61 0.67 0.74

H(nPout) 0.42 0.69 0.92 0.71 0.64 0.79 0.55 0.70 0.84

H(nBin) 0.66 0.65 0.77 0.73 0.83 0.78 0.58 0.65 0.73

H(nBout) 0.44 0.69 0.92 0.73 0.64 0.71 0.57 0.72 0.86

nMSE(nP) 0.99 1.00 1.00 0.89 0.99 1.00 1.00 1.00 1.00

nMSE(nB) 0.79 0.78 0.68 0.66 0.56 0.70 0.80 0.71 0.72

9.6.3 Impact of attack type

Table 9.8 summarizes the accuracy obtained by threat group, which include flooding-based

low-rate attacks on HTTP (H), TCP (T ), UDP (U) protocols. They have been clustered

based on intensity, hence distinguishing three subsets: high intensity (h), medium (m)

and low (l). For example, the symbol Tl refers to the group of TCP attacks of low

intensity. In general terms, the effectiveness was better than at previous tests, where the

metrics nMSE(nP ), (nPin) and (nPout) outstand. The best AUC ranged from 0.99 to 1.0

regardless the intrusion subset. This obvious improvement is empowered by a fundamental

characteristic of the test: the K adjustment factor that was applied for configuring its

restriction level now is set to detect a specific menace; this did not happen at the second

experiment, where the same threshold distance was configured for all the DDoS methods.

In view of these results, it is possible to deduce that the proposed method has been

able to adapt to each attack group. However, as the threat specificity decreases it is

tended to lose precision. This must be taken into account when proposing general-purpose

self-organizing defenses, where it might be advisable to deal with the different intrusion

categories separately.

9.7 Final Remarks

This chapter introduced an autonomic architecture with operability on the emerging

communication networks and a novel intrusion detection approach adaptable to

non-stationary processes. It has posed the most innovative aspects on the analysis of DDoS

attacks on the source side, hence inferring whether a network endpoint is participating in a

DDoS attack. The proposal effectiveness has been proven by an extensive experimentation,

where traffic from 62 devices of different nature has been monitored and analyzed looking

for DDoS traits. The obtained results have demonstrated that it is possible to lay detection

strategies based on predictive analysis on the basis of different flow-level metrics measured

in the network. Nevertheless, not all the metrics have shown equal effectiveness. For
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example, those based on studying the proportionality between incoming and outgoing

traffic yielded promising results, from which it follows that solutions like could be

successfully accommodated for operating on heterogeneous and non-stationary network

environments. In contrast, the classical entropy-based approaches for DDoS detection not

resulted as effective. This fact brings uncertainty about their accuracy when acting at

source-side observations, more particularly at non-stationary contexts. The performed

research on this subject has thereby introduced an innovative approach compared to other

proposals, while proving promising results in the meantime.



Chapter 10

Conclusions and Future Work

The fifth generation of mobile networks has emerged pushed by emerging communication

contexts, where ambitious performance indicators should be addressed to ensure

ubiquitous access to network services. 5G networks are in consequence foreseen as the

technological platform to sustain the economic and societal challenges raised by the modern

communication landscape. Bearing this context in mind, the presented research has been

framed into the study of knowledge acquisition processes aimed to provide analytical

capabilities for conducting a self-organizing management approach in 5G networks.

5G supportive technologies such as SDN, NFV, SON, cloud computing and machine

learning have provided the architectural principles for designing and implementing the

analytical methods introduced throughout this thesis. To accomplish the use cases goals,

the 5G reference architecture provided by the SELFNET project has been considered.

There, particular interest has been set on the Analysis component, where the situational

awareness reasoning has led to conduct strategies for detecting discordant behaviors in the

monitored networks, thus laying the proposal of a reasoning and knowledge acquisition

framework for 5G analytics. On the other hand, the detection of network threats driven by

autonomic incident management approaches have been analyzed in the proposals oriented

to deal with Economic Denial of Sustainability (EDoS) and Distributed Denial of Service

(DDoS). All of them have been widely discussed and effectively assessed throughout this

research.

To deal with the challenge of performing advanced network analysis, a reasoning and

knowledge acquisition framework has been introduced. It has been adapted to support

analytic methods on 5G monitoring environments toward the provision of self-organizing

autonomic capabilities. Because of this, the framework assumes the design principles of

the new generation networks and the technologies they implement. This fact motivated

its instantiation tightly coupled to the SELFNET architecture, which involved the

implementation of different components based on pattern recognition methods, prediction

algorithms, adaptive thresholding approximations and knowledge inference techniques.

Such components were orchestrated as a modular architecture, easily expandable and

scalable, adapted to the large volume of information flowing through the network. A

detailed evaluation of those capabilities has been carried out to validate the effectiveness

of the proposal; both at component level, being assessed against reference datasets, and

161
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at use case level, by analyzing behavioral aspects of the network traffic.

Furthermore, an entropy-based model for the detection of EDoS attacks in cloud

environments has been introduced in this thesis. For this purpose, a comprehensive

revision of the EDoS related research has been covered to elaborate a multi-layered

architecture tackling the detection of EDoS attacks. The proposed work suggested

good detection accuracy, thus preventing the unnecessary consuption of additional cloud

instances if they were issued by auto-scaling policies based on unreal demands. The

experiments conducted to validate the proposed architecture have encompassed all the

stages defined in the architecture, starting from the monitoring and aggregation of

metrics that directly affect the customer’s cost model, implementing the novelty detection

procedures to recognize an EDoS attack, and enabling decision-making and notification

actions to be applied in the system. It is also worth mentioning the distinctive approach

of the proposed model compared to other resource-consuming methods presented in the

literature such as those based on analyzing requests of large files, triggering costly database

queries, exploiting web vulnerabilities, etc. Such detection enhancement is achieved

since this architecture relies on server-side consumption analysis rather than anomalous

network-level metric patterns.

Moving a step further in the analysis of EDoS threats, they have been studied in the

self-organizing network context by highlighting its adaptation to 5G network scenarios.

This study has led to identify two main categories of EDoS threats. The first of them

is W-EDoS, which aims on exploiting vulnerabilities by workload injection in NFV

auto-scaling policies. On the other hand, the I-EDoS threats take advantage of the NFV

auto-instantiation capabilities by thwarting the orchestration processes. Consequently, a

pair of strategies for their mitigation have been proposed. They were based on modeling

the normal behavior of the protected system and discovering discordant activities. Their

effectiveness have been proven at the performed preliminary experimentation, which

considered different adjustment parameters; among them, the attack intensity, the normal

traffic features, and a confidence interval for adaptive thresholding and entropy degree.

Finally, the DDoS use case has been studied by the proposal of a detection approach for

inferring the participation of network endpoint in DDoS attacks. It raised a flooding-based

detection approach of DDoS attacks by analyzing source-side traffic flows from protected

devices, in this way supporting the development of defensive self-organized solutions

grounded on endpoint monitorization. To this end, the detection scheme implemented

predictive analysis considering the non-stationarity of the analyzed traffic, where adaptive

prediction has been implemented by examining time series features that allowed the

selection of the most suited prediction algorithm, and its calibration conducted by a

genetic algorithm. Several flow-level metrics have been analyzed and studied to infer

the participation of a protected device in an orchestrated DDoS attack. The obtained

results demonstrated high accuracy, hence demonstrating that it is possible to raise similar

solutions to the challenges inherent to this type of network threats. Another interesting

finding is that the proposal behaved almost indistinctly on different network usage profiles,

whether they pose legitimate or malicious activities.

In the light of the results obtained by the performed research, it is possible to conclude
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that advanced analytical capabilities in emerging network contexts firmly contribute to

achieve the challenging requirements of network autonomic management introduced at the

begining of this thesis.

Last, but not least, it is also important to bear in mind that 5G is still in research

stage. Thus, various architectural elements of the 5G architecture are foreseen to be

integrated at industry-level by the year 2020 to accomplish the goals of this emerging

platform. Such integration is nowadays being prototyped by the researchers in compliance

with the requirements of 5G networks, as it was explained throughout this thesis. The final

goal is the exploration of innovative approaches for extending the current capabilities of

4G/LTE architectures towards the disruptive technological that 5G supposes. Even though

a primary objective is to perform concept-proof validations, larger industry-level scenarios

have been studied with the use of well-known datasets such as CAIDA, NSL-KDD or M3

competition. Those are widely accepted by the research community, and provide real data

on which the experimental results are validated with more confidence. On the other hand,

the ability to generate large data samples with adjustment to real experimental scenarios

allow a better validation of the proposals. That is the case of the EDoS detection proposals

where data heterogeneity and statistical distribution of the sampled observations have been

addressed, thus dismissing the need of external datasets. Because of the experimental

rigor, the proposals prevent the reader their generalization or biased interpretation by

delimiting their scope. In the same way, the assumptions, limitations and design principles

have been explicitly introduced on each for providing the operational landscape where the

contributions of this thesis have proven their validity.

10.1 Future Work

Bearing in mind the novelty of the introduced proposals and the level of maturity of their

supportive technologies, promising research subjects have been raised as a result of the

conducted research. The knowledge acquisition approach aimed on the development of

5G network analytics have exposed new research lines. The clearest of them is to delve

into how the knowledge acquisition framework can be instantiated in order to face the

challenges posed by the different use cases. These may have very different requirements;

for example, a use case focused on bandwidth optimization may require information that

facilitates deciding proactive actions, and therefore must be primarily based on prediction;

but the reactive responses have greater impact on mitigating threats such as botnets or

DoS attacks. Other interesting topics, such as inclusion of data protection policies or the

communication ways between the proposed framework and the rest of network components

(protocols, interfaces, etc.), have not been detailed throughout the article, in this way

postponing their development for future work.

Regarding the detection of EDoS threats, the presented approach, evaluation

methodology and the conducted experimentation posed also new potential research lines.

On the one hand, experimental scenarios should be extended to couple diverse network

conditions to either enhance the validation or to disclose some evasion techniques.

Moreover, the defined model of measuring the resource consumption and diagnosing its



164 Chapter 10. Conclusions and Future Work

entropy can be accommodated to include additional metrics, thus extending its scope

to wider analysis scenarios. Furthermore, the proposed method might be fitted to

enhance adaptive auto-scaling policies on cloud platforms by incorporating more complex

evaluation criteria. Complementary, the existing decision-making and countermeasures

to EDoS attacks remain far from being evolved, and might effectively complement the

conducted research.

It was also identified when analyzing the impact of EDoS threats in self-organized

networks that in certain circumstances the proposal reported significant false positive

rates, which raised interesting lines of future work. For example, integration of alternative

analytic techniques, granularity optimization or adaptation to non-stationary processes.

In addition, for the better understanding of our contributions several issues have not been

addressed, which were outlined throughout the document. They included among others

robustness against adversarial threats or the assumption of data protection policies, hence

being relegated to forthcoming research.

In addition, one of the main drawbacks noticed when assessing the DDoS detection

proposal was its proven tendency to loss in precision as its specificity grows, i.e. when

it is trained to act against a larger variety of attacks. This feature raises an interesting

line of future research that leads to encourage outlining ensemble learning methods for

providing a general-purpose defensive solution. Throughout the research alternative ways

of improvement have been highlighted, being of special interest those based on expanding

the diversity of metrics, prediction algorithms and adjustment parameters. It is expected

that as a result of these enhancements, a greater effectiveness may be registered. This

also contributes to the clearer understanding of the studied traffic profiles, as well as to

assess their impact on intrusion detection at forthcoming communication networks.

Finally, there are common design and implementation aspects that might enhance

the overall performance and accuracy throughout the proposals presented so far. Such

is the case of secure software development which should guarantee data integrity when

performing analytical tasks. For instance, handling efficient data structures suited for

supporting heterogenous data types should raise the resulting performance of the proposed

solutions. Likewise, the use of authenticated software interfaces will raise the restrictiviness

level that prevent third parties for accessing or manipultaing the acquired data. Thereby,

it should allow a more trusted execution environment on which knowledge generation takes

place. Those aspects represent interesting lines of work that might be addressed on future

implementations.
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Mikel Uriarte Itzazelaia, Ijaz Ahmad, Madhusanka Liyanage, et al. SDN and

NFV integration in generalized mobile network architecture. In Proceedings of

the European Conference on Networks and Communications (EuCNC), pages

154–158, Paris, France, June 2015.

https://docs.openstack.org/ceilometer/pike/admin/telemetry-measurements.html
https://docs.openstack.org/ceilometer/pike/admin/telemetry-measurements.html
http://www.elasticvapor.com/2009/01/cloud-attack-economic-denial-of.html
http://www.elasticvapor.com/2009/01/cloud-attack-economic-denial-of.html
https://www.fp7-unify.eu/
https://www.fp7-unify.eu/


BIBLIOGRAPHY 169

[CSD15] Maria Mikela Chatzimichailidou, Neville A Stanton, and Ioannis M Dokas.

The concept of risk situation awareness provision: towards a new approach

for assessing the DSA about the threats and vulnerabilities of complex

socio-technical systems. Safety science, 79:126–138, November 2015.

[CSJN05] J. Cao, D. P. Spooner, Stephen A. Jarvis, and Graham R. Nudd. Grid

load balancing using intelligent agents. Future generation computer systems,

21(1):135–149, January 2005.
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¿Está mi dispositivo móvil participando en un ataque DDoS? In Proceedings

of the Jornadas Nacionales de Investigación en Ciberseguridad (JNIC), pages

73–80, San Sebastian, Spain, June 2018.

[HH15] Ekram Hossain and Monowar Hasan. 5g cellular: key enabling technologies

and research challenges. IEEE Instrumentation & Measurement Magazine,

18(3):11–21, May 2015.

[HKOS05] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder. Prediction intervals

for exponential smoothing state space models. Technical report, January 2005.



172 BIBLIOGRAPHY

[HLSR18] Bin Hu, Xiaowei Li, Shuting Sun, and Martyn Ratcliffe. Attention recognition

in eeg-based affective learning research using cfs+ knn algorithm. IEEE/ACM

transactions on computational biology and bioinformatics, 15(1):38–45, January

2018.

[Hof08] C. Hoff. Cloud Computing Security: From DDoS (Distributed

Denial Of Service) to EDoS (Economic Denial of Sustainability).

http://rationalsecurity.typepad.com/blog/2008/11/cloud-computing-

security-from-ddos-distributed-denial-of-service-to-edos-

economic-denial-of-sustaina.html, November 2008.

[Hof09] C. Hoff. A Couple of Follow-Ups On The EDoS (Economic Denial Of

Sustainability) Concept... http://rationalsecurity.typepad.com/blog/

edos/, January 2009.

[Hol93] Robert C Holte. Very simple classification rules perform well on most commonly

used datasets. Machine learning, 11(1):63–90, April 1993.

[Hol04] C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving

averages. International journal of forecasting, 20(1):5–10, March 2004.

[HPSRFRAB09] Elena Hernández-Pereira, Juan A Suárez-Romero, Oscar Fontenla-Romero,
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mi dispositivo móvil participando en un ataque DDoS?”, Jornadas Nacionales de

Investigación en Ciberseguridad (JNIC 2018), San Sebastian, Spain, June 13-15,

2018.

8. J. Maestre Vidal, M. A. Sotelo Monge, L. J. Garćıa Villalba, “Detecting
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