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Abstract 

 

 In last decades the study of the Nervous System function has moved gradually from the 

cellular and molecular levels to a more systemic perspective. Due to the recent developments in 

technologies to record and manipulate large populations of cells in behaving animals, the 

available volume of data has rapidly increased. Although this boost in the amount of data 

regarding the function of neural circuits in action opens new and exciting roads to understanding 

information processing in the brain, it also poses new challenges to their analysis and 

interpretation. One variable that can capture the activity of multiple neural populations in 

different brain areas with high spatial and temporal resolution is the local field potential (LFP). 

Despite the potential usefulness of LFPs to read out the computations performed by brain circuits 

during behavior, its study has been hampered by the difficulties in extracting meaningful 

information from it. In the present thesis, we aim to study the biophysical basis of the LFP as a 

way to reach a deeper understanding of it in terms of its underlying physiological mechanisms.  

 We focused on the rodent hippocampus due to the important role that it plays in many 

cognitive functions (such as memory, learning or spatial navigation) and the advantages of its 

simplified layered structure for the study of LFPs. Taking advantage of high-density silicone 

probe recordings in behaving rats, we were able to map the spatiotemporal distribution of LFPs 

along the dorsoventral and transversal axes of the hippocampus. We implemented a novel 

method consisting in the combination of Independent Component Analysis (ICA) and Current 

Source Density (CSD) analysis to separate and identify the synaptic sources of hippocampal 

LFPs. In addition we built a tridimensional model of the rat dorsal hippocampus where the 

spatiotemporal characteristics of those sources were implemented and LFPs were simulated by 

means of Finite Elements Method. Those simulations reproduced the common hippocampal LFP 

patterns and laminar characteristics, thus enabling us to reach a better understanding of the 

generation of LFPs in the hippocampus and verifying the accuracy of the ICA+CSD 

decomposition of experimental data. The simulations also allowed us to test the influence of 

structural and dynamical factors such as tissue geometry, synaptic arrangement and input 

synchrony in the shape and propagation of LFPs. 
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 To prove the relevance of the knowledge gained about the biophysical basis of LFPs in 

the hippocampus we addressed the issue of theta and gamma dynamics in the hippocampal-

entorhinal circuit during different behavioral states. We found three sources of gamma 

oscillations in the CA1 region with different laminar distribution, spectral characteristics and 

theta-phase preference. Slow gamma (30-60 Hz), elicited by the CA3 input to the CA1 pyramidal 

cells, peak on the descending theta phase; while mid-frequency gamma (60-120 Hz), brought 

about by entorhinal layer 3 input to CA1, dominate on the peak of the theta cycle. A third source 

of very fast oscillations (100-180 Hz) peaked on the theta through and was of local origin. Those 

theta-coupled gamma oscillations were present in both exploration and REM sleep albeit with 

different strength. We showed that during different behavioral states and stages of a memory 

task, CA3 and entorhinal gamma inputs could compete or cooperate to modulate CA1 output and 

interregional communication.  

 The results presented in this thesis constitute an advance in our understanding and 

interpretation of LFPs and brain oscillations. They highlight the importance of the employment 

of adequate experimental and analytical methods to interrogate the activity of brain circuits and 

point to the LFP as a useful although complex variable in this purpose.  
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Resumen 

 

 En las últimas décadas el estudio de la función del Sistema Nervioso ha ido 

evolucionando gradualmente desde los niveles celular y molecular hacia una perspectiva más 

sistémica. Debido a los recientes desarrollos en técnicas para registrar y manipular la actividad 

de grandes poblaciones neuronales en animales durante el comportamiento, el volumen de data 

disponible se ha incrementado rápidamente. Aunque este incremento en la cantidad de datos 

funcionales sobre la actividad de los circuitos neuronales abre nuevas y excitantes posibilidades 

para entender el procesamiento de información en el cerebro, también plantea nuevos desafíos 

para su análisis e interpretación. Una variable que permite capturar la actividad de múltiples 

poblaciones neuronales en diferentes aéreas cerebrales con gran resolución tanto espacial como 

temporal es el potencial de campo local (o LFP por sus siglas en inglés). A pesar de la potencial 

utilidad del LFP para desentrañar las computaciones realizadas por los circuitos neuronales 

durante el comportamiento, su empleo se ha visto limitado por las dificultades que se plantean al 

intentar interpretarlos. En esta tesis estudiamos las bases biofísicas de los LFPs como un camino 

para alcanzar un mejor entendimiento de esta señal en términos de sus mecanismos fisiológicos 

subyacentes. 

 En este trabajo nos centramos en el hipocampo de los roedores debido a su importante 

papel en numerosas funciones cognitivas (como la memoria, el aprendizaje o la navegación 

espacial) y las ventajas que supone su estructura laminar simplificada para el estudio de los 

LFPs. Aprovechando la ventaja de los registros de gran densidad con multielectrodos de silicio 

en ratas durante el comportamiento hemos mapeado la distribución espaciotemporal de los LFPs 

a lo largo de los ejes dorsoventral y transversal en el hipocampo. Hemos implementado un 

novedoso método que combina el empleo del Análisis de Componentes Independientes (ICA por 

sus siglas en inglés) y el análisis de fuentes de corriente (CSD) para separar e identificar las 

fuentes sinápticas de los LFPs en el hipocampo. Así mismo hemos construidos un modelo 

tridimensional del hipocampo dorsal de la rata, implementando en él la distribución 

espaciotemporal de dichas fuentes  y simulado los LFPs del hipocampo empleando el Método de 

Elementos Finitos (FEM). Mediante estas simulaciones reproducimos los patrones 
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electrofisiológicos más comunes observados en el hipocampo así como sus características 

laminares. Ello nos ha permitido alcanzar un mejor entendimiento de la generación de 

potenciales extracelulares en el hipocampo así como verificar la validez de la descomposición de 

los LFPs registrados experimentalmente, llevada a cabo mediante la combinación de ICA y CSD 

análisis. Las simulaciones llevadas a cabo con el modelo también nos han permitido estudiar la 

influencia de factores tales como la geometría del tejido, la distribución de los contactos 

sinápticos o la sincronización de los inputs en la generación y propagación de los LFPs. 

 Para probar la relevancia de los conocimientos adquirido a cerca de las bases biofísicas 

de los LFPs en el hipocampo, los hemos aplicado al estudio de las oscilaciones theta y gamma en 

el circuito hipocampo- corteza entorhinal durante distintos estados conductuales.  Hemos 

encontrado tres fuentes de oscilaciones gamma en la región de CA1, cada una con diferente 

distribución laminar, características espectrales y preferencia por una determinada fase del ritmo 

theta. El gamma lento (30-60 Hz), producido por el input de CA3 a CA1, alcanza su máximo en 

la fase descendente del ciclo theta, mientras que el gamma de media frecuencia (60-120 Hz), 

producido por el input de las células de la capa 3 de la corteza entorhinal a CA1, es dominante en 

el pico del ciclo theta. Una tercera fuente de oscilaciones de alta frecuencia (100-180 Hz) alcanza 

su máxima potencia en el valle del ciclo theta y es producida por la actividad de los circuitos 

locales de CA1. Estas oscilaciones gamma moduladas por el ritmo theta estuvieron presentes 

tanto durante la exploración como durante el sueño REM, aunque con diferente potencia. 

Mostramos que durante diferentes estados conductuales y etapas de una tarea de memoria los 

inputs de CA3 y la corteza entorhinal pueden competir o cooperar para modular la salida de CA1 

y su comunicación con otras regiones.  

 Los resultados presentados en esta tesis constituyen un avance en nuestro entendimiento e 

interpretación de los LFPs y oscilaciones neuronales. Subrayan la importancia del empleo de 

métodos adecuados tanto experimentales como de análisis para el estudio de la actividad de los 

circuitos neuronales. Así mismo demuestran la utilidad de los LFPs para extraer información 

relevante a este respecto a pesar de su gran complejidad.  
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1.  Introduction 

 

1.1. Genesis and study of the macroscopic electrical activity in the brain 

 The brain is a complex system, probably the most complex of all. Despite that it is 

formed by relatively simple (only in comparison) elements: neurons and other cell types. Its 

complexity mainly arises from the myriad of intricate ways those elements are interconnected 

forming networks or neural circuits. The dominant paradigm in Systems Neuroscience in last 

decades has been that is the distributed activity of brain circuits the physiological mechanism 

underlying cognitive functions (Bullmore and Sporns, 2009; Tononi et al., 1998; Varela et al., 

2001; Buzsaki and Mizuseki, 2014). There is also a large degree of functional modularity in the 

brain, that is discrete brain regions dedicate to particular functions, in particular in early sensory 

systems. However, most cognitive functions relay on the activity of ―higher‖ cortical associative 

areas that integrate information from different sensory modalities together with emotional and 

motivational content. In addition to the integration of external inputs to conform unified 

percepts, another complementary function of these associative brain areas is to support the 

interaction of external inputs with self-generated internal ones and stored memory engrams 

(Lisman and Idiart, 1995; Buzsáki and Moser, 2014). 

 To perform those functions, brain circuits need to be able to integrate distributed local 

processes or computations into globally organized states and, in turn, route the flow of highly 

processed information to downstream structures both in the brain and effector organs (muscles, 

etc.). For this wide integration and segregation of information brain oscillations, or ―rhythms‖, 

are thought to perform an essential role (Varela et al., 2001; Buzsáki, 2006; Buzsáki et al 2013; 

Lisman and Jensen, 2013). 

 Brain oscillations are present across all animal phyla, from invertebrates to birds, reptiles 

and mammals (Mader and Bucher, 2007; Buzsáki et al., 2013). Although their mechanisms vary 

largely, a common feature is the requirement of synchronized activity in specific circuits of 

interconnected excitatory and inhibitory neurons that generate rhythmic postsynaptic potentials 

(PSPs). Those PSPs synchronized over large populations of cells are the main source of 
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macroscopic oscillations.  These rhythmic synaptic inputs produce in the target neural population 

alternate windows of enhanced and reduced excitability. This mechanism plays a double 

function, on one hand favors the integration of incoming inputs and their plasticity in discrete 

time frames; on the other, it segregates the output of the neurons (the generation of synchronized 

action potentials) into short burst and sequences (Wilson and McNaugthon, 1994; Buzsáki, 

2010).   

 Neural oscillations span several orders of magnitude in frequency, from the very slow (< 

1Hz) to the very fast (200-500 Hz; Figure 1.1A). Among the most studied of them are the slow-

wave-sleep delta waves (0.5-1.5 Hz), the hippocampal theta rhythm (5-10 Hz), the cortical 

gamma rhythms (40-90 Hz) and hippocampal ripples (140-220 Hz). Slow oscillations are 

coherent across wide regions even spanning different structures, generating synchronized 

membrane fluctuations in widespread neuronal networks. On the other hand, faster oscillations 

are usually associated with local computations performed by small numbers of cells and thus are 

only synchronous in a highly restricted volume. 

 

Figure 1.1: A: Main classes of brain oscillations spanning several orders of magnitude. B:  LFP 

trace from rat cortical layer 5 during sleep showing different characteristic oscillations: delta 

waves and spindles.  Below, filtered and rectified LFP from hippocampus CA1 pyramidal layer 

displaying ripples as large amplitude bursts. C: Ripple-triggered power spectrogram of cortical 

LFP showing modulation by spindles (revealed by power increase around 15 Hz). Both events 

are also modulated by the slow oscillation (0-3 Hz). From Buzsáki et al., 2013. 
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 Oscillations of different frequency very often interact with each other both locally and 

across structures. This interaction follows typically a hierarchical fashion, thus the phase of the 

slower oscillations modulates the amplitude and occurrence of the faster ones (Bragin et al., 

1995; Chrobak and Buzsaki, 1998; Schroeder and Lakatos, 2009; Canolty et al., 2006; Fell and 

Axmacher, 2011. Figure 1.1B,C). Cross-frequency coupling has been shown to correlate with 

memory performance in both humans and animals (Canolty et al., 2006; Tort et al., 2009; 

Axmacher et al 2010; Schomburg, Fernández-Ruiz et al., 2014). Cross-frequency coupling in 

cortical circuits has been proposed as a mechanism to integrate local computations across 

modules in a broader time scale, thus allowing the efficient integration of different streams of 

information necessary for most cognitive processes (Lisman and Jensen, 2013). 

 The interest in studying brain oscillations arises also from the fact that particular rhythms 

are altered during different pathological states, including but not limited to epilepsy, Alzheimer’s 

disease, schizophrenia and depression (Ulhaas and Singer, 2006; Pittman-Polletta et al., 2015). 

Thus its study may lead to a better understanding of the mechanisms of those diseases or even 

provide early markers to their detection.  

 To understand the neurophysiological basis of cognitive processes there are many 

different approximations. The most traditional approach has been the recording of individual 

neurons activity to correlate its firing dynamics with specific behaviors. With modern recording 

techniques it is possible to simultaneously record extracellularly a few hundreds of neurons or 

intracellularly identified single cells in behaving animals. In the other extreme of the scale we 

find functional imaging techniques (fMRI, MEG, PET, etc.) that can monitor whole brain 

activity and identify regions that are activated during a particular task. These techniques have 

also the advantage that are non invasive so can be used in humans. Despite the advances in 

recent decades in both extremes, subcellular and global scales, there is still an important gap in 

the middle, that is how individual cells coordinate in neural circuits to orchestrate different 

cognitive functions. This has prevented us to reach a comprehensive explanation of behavior and 

cognitions in terms of its underlying physiological mechanisms. The study of neuronal circuit 

dynamics tries to bridge this gap. 

 One technique that allows the recording of neural activity of intermingled neural 

populations in different brain areas with high spatial and temporal resolution is the recording of 
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the intracranial electroencephalogram (EEG). The EEG is produced by the superposition in the 

extracellular medium of transmembrane currents in adjacent neurons. These currents are mainly 

elicited by the plethora of synaptic inputs generating PSPs, but there are also other non-synaptic 

sources of the EEG (see Buzsáki et al, 2012). The transmembrane currents elicit an electric 

potential that varies dynamically in time and space, giving rise to the recorded EEG (Figure 1.2). 

Thus, the EEG contains all the summed activity of the multiple synaptic inputs and local activity 

in the region where the extracellular electrode is located. For historical reasons and despite the 

physical inaccuracy of the term, the intracranially recorded EEG is always referred in the 

literature as local field potential (LFP).  

 

-V

0

+V

 

Figure 1.2: A simplified simulation of a single neuron receiving an inhibitory somatic input. 

Active outward currents in the soma are compensated by return inward current in the apical and 

basal dendrites resulting in a negative-positive-negative extracellular potential profile. Colors 

indicate extracellular voltage, red lines isopotential surfaces and black current lines.  

 

 Biophysical principles underlying LFP generation are long known (Lorente de Nó 1947; 

Buzsáki et al., 2012; Einevoll et al., 2013). However, there are still many theoretical and 

technical problems that limit the usefulness of LFPs to understand brain function. A long 

standing biophysical problem that has maintained the field at sluggish pace for decades is the 

difficulty to identify the synaptic sources of LFPs so to correlate activity of known neuronal 

populations to ongoing behavior. As the LFP in any point in the brain is produced by the activity 
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of intermingled cellular populations with overlapped synaptic territories, to identify the cellular 

origin of particular LFP patterns, the so called inverse problem, is a complex task. This problem 

can be also reformulated as follows; once given an experimental macroscopic signal the 

amplitude of which varies at different sites (i.e. the LFP), how can the location and extension of 

the generating source be determined? Multiple combinations of independent sources 

(transmembrane currents in discrete dendritic domains of a population of synchronously active 

neurons) may give rise to a recorded signal with the same spatial pattern. There is no unique 

solution and in most cases, it is difficult or impossible to confirm the potential solutions 

experimentally. 

 A common feature of electric fields in the brain is that they vary spatially in a complex 

manner, on account of the shifting activation of neuron generators with irregular morphology and 

distribution. Neurons with dominant axial geometry act as strong current dipoles (Lorente de Nó 

1947; Buzsáki et al., 2012; Einevoll et al., 2013) and as such are the main contributors to field 

potentials. A common afferent input to one or another subcellular domain of the neuron 

population will give rise to different extracellular potential distributions. This fact underlies the 

characteristic laminar profile of LFPs in layered structures.  The problem arises when several 

inputs are co-activated, as is usually the case. In such circumstances, the electric currents mix 

unevenly at different sites, and field potential distributions become complex and variable. Thus, 

only high-density recordings simultaneously performed at several positions can correctly map for 

spatial variations of LFPs. Multisite linear recordings are well-suited to a method that has been 

employed to find the current generators underlying field potentials, known as current source 

density (CSD) analysis (Freeman and Nicholson, 1975). This approach has been very useful to 

determine the contributing cells and the location of synaptic membranes activated by afferent 

stimuli in laminar structures, such as the hippocampus or neocortex (Leung, 1991; Schroeder et 

al., 1998; Bragin et al., 1995). However, while interpreting CSD maps is simple for voltage 

profiles elicited by stimulating only one afferent pathway, their application to ongoing LFPs 

renders complex spatial maps of intermingled inward and outward currents, and in general it is 

not feasible to identify the multiple synaptic generators from them (Figure 1.3).  

http://journal.frontiersin.org/article/10.3389/fncom.2013.00005/full#B19
http://journal.frontiersin.org/article/10.3389/fncom.2013.00005/full#B30
http://journal.frontiersin.org/article/10.3389/fncom.2013.00005/full#B47
http://journal.frontiersin.org/article/10.3389/fncom.2013.00005/full#B47
http://journal.frontiersin.org/article/10.3389/fncom.2013.00005/full#B47


17 
 

 
 

Evoked LFP

10 ms 0
.5

 m
V

sink

0

source

A
Spontaneous LFP

B

50 ms

0
.5

 m
V

 

Figure 1.3: A: LFP profile and CSD map of an evoked potential in the hippocampus resulting 

from the stimulation of the CA3.In the upper part (CA1) a strong sink (in blue) results from the 

depolarization of CA1 pyramidal cell dendrites and is compensated by two sources elicited by 

passive return currents. The recurrent collaterals of CA3 axons also produce a local current 

dipole.  B: During spontaneous activity in the hippocampus of an awake rat, multiple synaptic 

inputs arrive simultaneously to the CA1 and CA3 regions making it very complex to interpret 

CSD distributions.  

 

 An important additional source of complexity and confounding factors when analyzing or 

modeling LFPs or other macroscopic variables of neuronal activity are the electric properties of 

brain tissue. For the sake of simplicity it is commonly assumed that the brain tissue is 

homogeneous, isotropic and has ohmic (linear) properties. The contribution to the recorded LFP 

from a particular neuronal membrane domain (either in a single cell or in a population of 

synchronously active neurons) is usually estimated as follows 

     1
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(1.1) 

The above equation denotes that the contribution of the transmembrane current In in a membrane 

domain n to the LFP recorded at re is inversely proportional to the distance between the electrode 

and the source and to the extracellular conductivity of the tissue σ. The LFP thus would be the 

result of the linear summation of all the transmembrane currents weighted by their distance to the 

recording electrode (Figure 1.4). Here, we are assuming a quasistatic approximation of Maxwell 

equations in which the electric and magnetic fields are decoupled and there are not inductive 
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effects. This seems reasonable giving the characteristic low frequency of brain activity and in 

particular of that contributing to the generation of LFPs (mostly below 300 Hz; Plonsey and 

Heppner, 1967; Nunez and Srinivasan, 2006). The above equation also implies that the medium 

where neuronal currents propagate is an infinite, homogeneous and isotropic conducting volume. 

Although in many cases those assumptions may be reasonable, they are fundamentally 

inadequate. On a large scale, the brain is obviously not homogeneous, for example, the presence 

of the liquid filled ventricles may greatly distort the propagation of electric fields. At a 

microscopic level, the tissue can be considered mainly homogeneous, but even so it has been 

showed that is not completely isotropic due to the presence of dense cellular layers or myelinated 

axonal bundles (Nunez and Srinivasan, 2006). A third assumption made in the above equation is 

that the conductivity is purely ohmic, that is it is no frequency-dependent or has capacitive 

effects. About this last point, there has been a lot of debate in the last years and there is not yet a 

definite answer (Bedard and Destexhe, 2011; Logothetis et al., 2007; Einevoll et al., 2013). It can 

be said that there are probably some frequency dependent properties of brain tissue but those are 

not very influential in most cases and applications.   

 

Figure 1.4: Simplified schematic showing the calculation of the LFP produced by a single 

pyramidal neuron receiving an apical input. Synaptic input elicit inward transmembrane currents 

locally (I1(t), black arrow) that are followed by return outward currents all along the membrane 

of the cell (In(t), grey arrows). Transmembrane currents in each of the cell compartments elicit an 

electric potential at the tip of the recording electrode (re) respect to a distant reference. The 

summation of all the transmembrane currents in each compartment n weighted by their distance 

to the electrode |re-rn| and the conductivity of the tissue is the LFP produced by that neuron.    
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1.2 Anatomy and physiology of the hippocampal formation 

 

1.2.1 Anatomical and functional organization of the hippocampal formation 

 Over decades, the mammalian hippocampal formation (HF) (Figure 1.5A) has attracted 

the attention of neuroscience researchers because its easily recognizable anatomical features 

(Cajal, 1911; Lorente de Nó, 1934), its prominent electrophysiological activity patterns 

(Whishaw and Vanderwolf, 1973; Buzsáki et al., 1983) and its functional implication in learning 

and memory processes. For a comprehensive reading of hippocampal formation anatomy and 

function there are many excellent reviews (Witter, 1993; Bland and Oddie, 2001; Vinogradova, 

2001; Eichenbaum, 2004) and books (Buzsáki, 2006; Andersen et al., 2007). Here we provide a 

brief summary of the most relevant aspects for the present thesis. 

The term hippocampal formation (HP) is used to designate several brain structures 

derived from the medial palium and strongly anatomically and functionally related: the 

hippocampus proper or cornus ammonis, the Dentate Gyrus (DG) and the subiculum (Burwell et 

al., 1995). 

 

Figure 1.5: A: Comparison of rat and human hippocampi. Note the much larger size in 

comparison with the rest of the brain rodent hippocampus. B: Subregions of the rat hippocampal 

formation in a horizontal section. From Hiller-Sturmhőfel and Swartzwelder and Van Strien et 

al., 2009. 
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 In the hippocampus, cellular bodies are densely packed forming one layer. Pyramidal 

cells form the cornus ammonis, divided by Lorente de Nó in 4 sub-regions CA1-4. In the DG, 

granular cells form the U-shaped granular layer (Cajal, 1911; Lorente de Nó, 1934). The 

subiculum has several cellular layers and is divided in three main regions: presubiculum, 

parasubiculum and postsubiculum. The HF is strongly interconnected with the adjacent 

entorhinal cortex (EC), which constitutes the principal source of afferences to it. It possesses a 

more complex cytoarchitectonic structure than the hippocampus with six layers. It is divided in 

two functionally and anatomically distinct regions, the medial (MEC) and the lateral portions 

(LEC; Figure 1.5B). 

 Classically the hippocampal formation has been described as a feedforward circuit of 

excitatory synapses (Figure 1.6A). According to this model, neurons in the layer II (L2) of the 

EC project to the DG through the perforant pathway. L2 axons also innervate CA3 pyramidal 

cells. DG granular cells send their axons (the so called mossy fibers) to CA3. CA3 pyramidal 

cells axons divide to make recurrent connections within CA3 and also innervate a large extent of 

the CA1 region (the Schaffer pathway). CA1 pyramidal cells also receive direct connections 

from EC L3 cells through the temporo-ammonic pathway and in turn project to the subiculum 

and the deep layers of the entorhinal cortex (Figure 1.6B). 

 

Figure 1.6: A: Modified from an original drawing of Cajal, showing the hippocampal 

subdivisions with its main cellular types and axonal pathways. B: Diagram of the classical 

schema of information flow in the hippocampal formation. Modified from Cajal, 2011 and Van 

Strien et al, 2009. 
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 In addition to these excitatory connections, the activity in every node of the network is 

modulated by inhibitory synapses made by the large existing number and types of interneurons. 

In the HP, as well as in most of the other regions of the brain, together with the excitatory 

principal cells there are multiple classes of those inhibitory cells (Figure 1.7). The different types 

of interneurons have very different intrinsic properties, firing patterns and targets. Thus different 

roles and involvement in network activity have been proposed for them (Freund and Buzsáki, 

1996, Klausberger and Somogy, 2008).  

 

Figure 1.7: Subtypes of interneurons in the CA1 region. More than 20 types of interneurons have 

been defined in the hippocampus. Note the variability in synaptic domains of different 

interneurons onto CA1 pyramidal cells. Reproduced from Klausberger and Somogy, 2005. 

 

 One important characteristic of the HP and a big advantage to the study of their LFPs, as 

we will see below, is the stratification of their inputs. Different afferences to all hippocampal 

subregions have well defined dendritic domains. As it will be the focus of subsequent work, we 

will cover the case of DG and CA1. In the DG, MEC L2 axons establish synapses in the middle 

portion of the dendritic arbor of the granular cells while LEC L2 axons arrive in its outer part 

(Figure 1.8A). The inner portion of the dendritic arbor is innervated by commissural and 
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associational fibers. CA1 pyramidal cells have both basal and apical dendrites. The basal 

dendrites form the stratum oriens and the much larger apical ones extend into two sublayers: 

stratum radiatum and stratum lacunosum-moleculare. CA3 axons innervate the stratum radiatum 

and stratum oriens while entorhinal fibers arrive at the stratum lacunosum-moleculare and in 

lesser extent also at the stratum oriens (Figure 1.8B). Thalamic axons are also circumscribed to 

the stratum lacunosum-moleculare. It is worth to mention that both excitatory inputs also 

innervate several interneuron types, which in turn make synapses onto the principal cells and 

other interneurons.  
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Figure 1.8: Diagram depicting the different sub-layers of the DG (A) and CA1 (B) regions of the 

hippocampus and their main afferences. 

 

1.2.2  Hippocampal LFP patterns 

 The hippocampus displays very prominent LFPs that are strongly correlated with the 

behavior of the animal, thus were early used to study hippocampal function (Wishaw and 

Vanderwolf, 1973). During active locomotion and exploration and also during rapid-eye 

movement (REM), sleep hippocampal LFPs are dominated by a strong quasi-sinusoidal 

oscillation with a narrow power spectrum peaking around 7 to 9 Hz, known as theta oscillations 
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(Buzsáki et al., 1983; Figure 1.9A). Theta oscillations are coordinated in all hippocampal 

subregions and along the whole extent of the hippocampus (Buzsáki et al 1986; Patel et al 2012). 

They are also present at the same time and with high coherence in many other regions of the 

brain, mainly in the limbic system: entorhinal cortex, subiculum, piriform cortex, septum, etc. 

(Alonso and García-Austt, 1987). Over the last decades, there has been intense research to 

elucidate the generating mechanism of theta oscillations but the debate is still open (see Buzsáki 

2002 for a comprehensive review). There is a consensus that the main theta rhythm generator is 

in the medial septum-diagonal band of Broca, which imposes its rhythm to the other regions. 

However some of these regions in isolation, even in vitro, can generate their own theta 

oscillations (Goutagny et al., 2009). When it comes to the generator of theta LFPs in the 

hippocampus and other regions, the picture is even more complex. Almost every hippocampal 

sublayer has its own theta current generator, that is current dipoles that contribute to the overall 

theta LFP (Leung 1984; Buzsáki et al., 2002). During different behaviors those theta dipoles are 

coordinated in a variable manner (Montogomery et al., 2009) modulating accordingly the spiking 

of hippocampal neurons. Pharmacological manipulations have been proved useful to dissociate 

and characterize the different synaptic generators of the theta rhythm in the hippocampus and 

other areas (Vanderwolf, 1988; Soltesz and Deschénes, 1993; Benito, Fernández-Ruiz et al., 

2013; Newman et al., 2013) but we are still far from a comprehensive understanding of its 

mechanisms.  

 A rather opposite electrographic state to the one described above is present during 

immobility, consummatory behaviors and slow-wave sleep (SWS) and is characterized by more 

asynchronous activity and the presence of sharp-wave ripples (SWR) complexes. SWR are LFP 

patterns are composed by a large negative ―sharp wave‖ in the stratum radiatum of CA1 

accompanied by very fast (120-180 Hz) oscillations or ―ripples‖ in the CA1 pyramidal layer 

(Bragin et al., 1995. Figure 1.9B). The CA1 sharp-wave is produced by a large depolarizing 

conductance in the apical dendrites of the pyramidal cells elicited by a highly synchronous firing 

of a large population of CA3 pyramidals. It has been proposed that its generation is controlled by 

the CA3 recurrent network and perisomatic-targeting interneurons (Hájos and Paulsen, 2009). 

The generation of CA1 ripples is less understood and several mechanisms ranging from 

inhibitory fast post-synaptic potentials (IPSPs), action potentials or a combination have been 

proposed (Ylinen et al., 1995; Schomburg et al., 2013; Ibarz et al., 2010). What is clear is that a 
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large population of both CA1 pyramidal cells and interneurons are firing synchronously during 

SWR (Csicvari et al., 2000), thus the output of the hippocampus to its target regions is enhanced. 

Much of the interest about SWR comes from the fact that they are strongly related to learning 

and memory consolidation (see Buzsáki, 2015 for a comprehensive review). 

 

Figure 1.9: A: Theta oscillations in the hippocampus during active running and REM sleep 

appear across every subregion. Note the different power and frequency of oscillations in both 

behavioral states. B: SWR complexes are characterized by a strong negative deflection in the 

stratum radiatum(r) and simultaneous fast oscillation in the CA1 pyramidal layer (p). C: Gamma 

oscillations appear in the hippocampus in every layer, are modulated by the concomitant theta 

rhythm and entrain the firing of numerous local neurons. Modified from Montgomery et al., 

2008; Ylinen et al., 1995; Bragin et al., 1995a. 

 

 Another ubiquitous LFP pattern not only in the hippocampus but in almost every brain 

region, mainly in the cortex, is that of gamma oscillations. Gamma oscillations (30-90 Hz) were 

originally studied in the neocortex and are related to different cognitive functions such as 

attention, sensory integration and learning (Signer and Gray 1996; Fries et al., 2007; Lisman and 
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Jensen, 2013). Several mechanisms have been proposed to explain its emergence and 

coordination (Buzsáki and Wang, 2012; Hájos and Paulsen, 2009; Csicvari et al., 2003). Most of 

them imply the interplay between excitation and inhibition in local networks. Of particular 

importance is the role of fast-spiking perisomatic-targeting interneurons that are thought to 

synchronize principal cells spiking in the gamma time scale to form cell-assemblies (Hájos et al., 

2004; Klausberger and Somogy, 2008).  

In the hippocampus gamma oscillations are present concomitantly with other oscillations 

mainly theta, which phase modulates gamma amplitude (Bragin et al., 1995; Chrobak and 

Buzsáki 1998. Figure 1.9C). Although initially gamma oscillations were considered a unitary 

phenomenon, evidence suggests that there is an enormous diversity of mechanisms and functions 

implying different gamma patterns. In every hippocampal subregion, gamma oscillations of 

different frequency, ranging from the slow gamma spectrum (30-50 Hz) to the very fast (100-200 

Hz), can be observed and have different laminar distributions, synaptic mechanisms and 

behavioral correlates (Cscivari et al., 2003; Belluscio et al., 2012; Schomburg, Fernández-Ruiz et 

al., 2014; Zemankovics et al., 2013). 

On the core of the neural computations performed by the hippocampus is the synchronous 

activation of neuronal assemblies whose temporal dynamics may govern the processing and flow 

of information in brain circuits. According to the ―cell assembly‖ hypothesis (Hebb, 1949; 

Harris, 2005), information in the brain is represented by groups of synchronously firing neurons, 

whose membership reflects an interaction between sensory input and internally gen0erated 

patterns. A prominent role in forming these assemblies is ascribed to gamma oscillations. For 

example, place cells representing the same spatial position, fire together in the time window of 

gamma cycles and are often phase-locked to the same gamma frequency (Harris et al., 2003). 

Neuronal assemblies organize in specific temporal sequences, which have been shown to encode 

past (recall) and future (planning) aspects of the behavior of the animal (Dragoi and Buzsáki, 

2006). A postulated mechanism for generating assembly sequences is the interaction among the 

multitude of brain oscillations organized by cross-frequency coupling (Buzsáki and Draguhn, 

2004). In the hippocampus and entorhinal cortex the phase of theta rhythm has been shown to 

modulate the power of gamma oscillations according to behavioral demands, as well as the firing 
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of both principal cells and interneurons. Thus, the function of theta rhythm may be to organize in 

a broader scale the gamma time-scale cell assemblies (Lisman and Jensen, 2013).  

 

1.3  Goals of the Thesis  

 The general aim of the present thesis is to perform an experimental and computational 

study of the biophysical and physiological basis of macroscopic brain signals. For this purpose, 

we will focus on the rodent hippocampal LFPs. 

 The first goal of the thesis will be a methodological one. We will implement a novel 

approach to analyze and interpret the large amount of information contained in large-scale 

recordings of LFPs in behaving rodents. In particular, we will tackle the problem of separate and 

identify the contributing synaptic sources of the LFPs (the "inverse problem"). On a first stage, 

this goal will be addressed by the application of advanced mathematical tools such as the 

Independent Component Analysis (ICA) and the Current Source Density (CSD) analysis. For an 

adequate use of those methods it would be necessary a detailed spatial mapping of LFPs along 

different axis of the structure of interest, the hippocampus. On a second stage, we will build a 

tridimensional model of the rat dorsal hippocampus. In such model the spatiotemporal 

characteristics of hippocampal LFP sources will be implemented and the corresponding electric 

potential distributions solved for the whole structure by means of Finite Elements Method (FEM; 

the "forward problem"). The comparison of the results from the experiments and simulations will 

allow us to reach a better understanding of the generation of LFPs in the hippocampus and the 

accuracy of the solutions found for their inverse problem.  

 The second goal will be to study how different structural (neuron morphology, tissue 

geometry, synaptic arrangement) and dynamical (synaptic synchrony, spatial input correlation) 

factors shape the generation and propagation of LFPs. For this purpose, we will focus on the 

Dentate Gyrus and perform simulations in which those factors are systematically changed and 

comparing the obtained results with those observed in the experimental data.  

 The third goal will be to characterize the oscillatory dynamics of hippocampal LFP 

sources during different behavioral states. We will perform a time-frequency decomposition of 
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the different LFP sources with a special emphasis on the generation of gamma oscillations and 

their coordination by the theta rhythm. This analysis will be performed during sleep, exploration 

and learning to study if theta-gamma dynamics in the hippocampus can shed light on the 

mechanisms of information processing by hippocampal circuits during behavior.  

 We expect that the successful consecution of the aforementioned goals will contribute 

towards a deeper understanding of the generation of macroscopic brain signals and will lead us 

to reach a better interpretation of neural oscillations in terms of their underlying physiological 

mechanisms.   
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2. Methods 

 

2.1.  Experimental procedures 

 Chronic recordings were performed in the Langone Medical Center of the New York 

University and the Department of Physiology of the School of Medicine of the University of 

Szeged. All experiments were performed in accordance with European Union guidelines 

(2003/65/CE) and the National Institutes of Health Guidelines for the Care and Use of Animals 

for Experimental Procedures. The experimental protocols were approved by the Animal Care and 

Use Committee of New York University Medical Center and the Ethical Committee for Animal 

Research at the Albert Szent-György Medical and Pharmaceutical Center of the University of 

Szeged respectively. Animals were anesthetized with isoflurane anesthesia and one or several 

craniotomies were performed with stereotaxical guidance. One or more silicon probes were 

mounted in custom-made micro-drives to allow their precise vertical movement after 

implantation. The probes were inserted over the target region and the micro-drives attached to 

the skull with dental cement. The craniotomies were sealed with sterile wax. Two stainless steel 

screws were drilled over the cerebellum and serve as ground and reference for the recordings. 

Several additional screws were drilled into the skull and covered with dental cement to 

strengthen the implant. Finally a copper mesh was attached to the skull with dental cement and 

connected to the ground screw to act as a Faraday cage and prevent the recording from the 

environmental electric noise (Figure 2.1A. For more details see Vandecasteele et al., 2012). After 

recovery, the probe is moved gradually in 70 to 150 µm steps until the desired target is reached. 

The operated animals were housed in individual cages.  

To record neuronal activity during sleep or waking behaviors the probes were connected 

to a pre-amplifier headstage attached to a long cable pending from the room ceiling that allow 

full movement to the animal (Figure 2.1B). The rats' positions during behavioral sessions were 

estimated using video tracking of two LEDs fixed to the headstage. The wide-band signal was 

low-pass filtered and down sampled to 1250 Hz to generate the LFP and was high-pass filtered 

(>0.8 kHz; 20 kHz) for spike detection.  
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Following the termination of the experiments, the animals were deeply anesthetized, and 

transcardially perfused first with 0.9% saline solution followed by 4% formaldehyde solution. 

The brains were sectioned by a Vibratome (Leica) at 70 µm sections, parallel with the plane of 

the implanted silicon probes. 

For some of the analysis presented here another dataset was also included. It comprised 

recordings form the medial entorhinal cortex and hippocampus performed with high-density 32 

or 64 electrode (Buzsáki-probes, Neuronexus) while the rats performed different maze tasks or 

sleep in their home cages. This dataset is publically available at http://crcns.org (hc-3 dataset, 

Mizuseki et al., 2014). 

The experimental data analyzed for the present thesis were not entirely recorded by me 

but by other researchers from the Buzsáki laboratory (NYU): Antal Berényi, Sean Montgomery, 

Kenji Mizuseki and John Long. 

 

Figure 2.1: A: Implantation of a 256 channels silicone probe (NeuroNeuxus) in the hippocampus 

of a Long Evans rats. Observe the multiplexed pre-amplifier PCB and the microdrive where the 

probe is mounted. B: An animal being recorded during exploration for food reward (cookies) in 

an open field. Two LEDs mounted in the headstage are used for position tracking.   

 

2.2.  LFP source decomposition 

All the LFP pre-processing and analysis were conducted with custom-made functions or 

publically available toolboxes in MATLAB (The MathWorks, Inc.). 

http://crcns.org/
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To address the inverse problem of LFP, that is, to separate the different sources that 

contribute to the mixed signal, we employed a combination of independent component analysis 

(ICA) and current source density (CSD) analysis. 

 

2.2.1.  Independent Component Analysis  

ICA is a blind source-separation technique (Comon, 1994; Bell and Sejnowski, 1995; 

Hyvärinen et al., 2004) that can isolate spatially segregated stable patterns of activity in a mixed 

signal recorded with an array of sensors. Applied to linear profiles of LFPs it can separate 

physiologically meaningful sources that can be attributed to known anatomical pathways. ICA is 

able to find the original sources that are statistically independent in a linear mixture. This can be 

achieved by different ways, thus many different ICA algorithms have been proposed that, 

although numerically different, are equivalent from a theoretical point of view (Hyvärinen and 

Oja, 2000; Choi et al., 2005). We employed the logistic infomax ICA algorithm (Bell and 

Sejnowski, 1995) as implemented in the EEGLAB toolbox (RUNICA; Delorme and Makeig, 

2004) and the fast kernel density ICA algorithm provided by A. Chen (KDICA, http://cm.bell-

labs.com/who//aychen/ica-code.html; Chen, 2006). Both algorithms give very similar results. 

The application of ICA to a blind source separation problem can be formulated as 

follows:  

Given a linear mixture of n sources x1,…,xn that are independent from each other (that is, 

observing the dynamics of one of them does not give any information about the dynamics of the 

others), the problem is to separate the source signals given only the mixture   

    1 1 2 2( ) ( ) ( ) ( )                          (2.1)   j j j jn nx t a s t a s t a s t   
 

For the following explanation we will eliminate the temporal dimension and denote by x 

the column vector whose elements are the mixture signals x1,…,xn and by s the column vector 

whose elements s1,…,sn are the independent sources:       

                                                    (2.2)   x As  

A is the mixing matrix with elements aij. The above equation can also be formulated as: 
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The above equation is called the statistical ICA model. It is a generative model because it 

describes how the observed mixed signal is generated by an iterative process of mixing of the 

independent components si. The components cannot be directly observed, they are latent 

variables. Also the mixing matrix A is a priori unknown. We only observe the mixed signal x and 

have to estimate both A and s. After that we can, just by means of an inverse transform, obtain 

the independent components: 

     
s = Wx                                               (2.4)     

where W  is the inverse matrix of A. 

A common first step in the ICA is to sphere or whiten the mixed signals; that is, to 

remove any existing correlations. If C = E{xx’} is the correlation matrix of the mixed signals, the 

sphering can be accomplished by the linear transformation V = C
-1/2 

                    
1 1

2 2 (2.5)E yy E Vxx V C C C I


         

After sphering the independent components can be estimated by and orthogonal 

transformation of the uncorrelated signals y. This is achieved by a rotation of the joint density 

p(y). The appropriated rotation is sought by maximizing the non-Gaussianity of the marginal 

densities of p(y). This relays on the assumption made by ICA (as stated by the central limit 

theorem) that any linear mixture of independent random variables has necessarily a more 

Gaussian distribution that the original variables. Most ICA algorithms perform this rotation of 

the joint density of the signals in an iterative way until it converges. That is achieved when the 

joint density becomes a product of the marginal densities: 

           1 2( ) ( ) ( ) ( )                           (2.6)   np s p s p s p s  
 

The ICA model makes several assumptions that must be fulfilled for the data in order to 

reach an accurate result (Hyvärinen et al., 2004; Brown et al., 2001): (1) Sources must be 

stationary. In the context of LFPs, the sources are mainly synaptic transmembrane currents in 
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fixed locations as determined by anatomy (Buzsáki et al., 2012). (2) The sources should not have 

Gaussian-distributed activation strengths, which is the case for brain dynamics (Buzsáki and 

Mizuseki, 2014). (3) The mixture of the sources must be linear and instantaneous, which can be 

assumed for electric fields elicited by ionic currents in the extracellular space (Plonsey and 

Heppner, 1967; Nunez and Srinivasan, 2006). (4) The number of sources must be equal or less 

than the number of sensors, which makes high-density electrode recordings particularly suitable 

for application of ICA. (5) It is assumed that the observed variable (in this case the LFP) is a 

mixture of scalar, one dimensional sources. It implies that if the same oscillatory source is 

observed with a phase delay by different electrodes, then ICA will decompose it into two ICs 

with a 90 degree phase delay. The temporal activation of the original source would correspond to 

a linear combination of the time series of those two ICs. Thus, it is important to stress that, 

though spatially distinct sources which are perfectly coherent cannot be properly separated, ICA 

does not find independent components (ICs) with true temporal independence, and temporal 

correlations and coherence measures may still be applied to analyze the temporal relationships 

between the resulting ICs (Bell and Sejnowski, 1995; Hyvärinen et al., 2004; Choi et al., 2005; 

Fernández-Ruiz et al., 2013). 

Our case is that of multiple simultaneous samplings of the mixed signal (the raw LFP 

recorded by every electrode, Figure 2.2A). The time series of the LFP recorded by each electrode 

are the rows of the data matrix D. ICA finds the square matrix W (with dimensions equal to the 

rows of D) such that WD = C. W is the unmixing matrix because it separates the mixture of 

signals that is D into its independent sources. C has the same dimensionality as D, with each of 

its rows being the time series of an independent component (Figure 2.2C, lower panel). Each 

independent component is obtained by multiplying each sampled signal by each row of W (the so 

called unmixing functions or ICA filters). This process can be also view as solving the inverse 

problem of the LFP; that is estimate the sources giving only the potentials distribution.    

The inverse of the mixing matrix W that transforms the LFP data into the ICs gives the 

channel weight of each component that is captured for each sensor. When plotted according to 

the anatomical location of the electrodes, this corresponds to the spatial voltage loadings of each 

IC (Figure 2.2C, upper panel). We ranked the components by the amount of variance they 

explain in the original data (relative power). Once ICs have been extracted from the raw LFP 
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traces, they can be analyzed as if they were active independently from activities at other 

locations. We reconstructed the virtual LFP produced by a single IC by multiplying the IC time 

course by its correspondent voltage loading (Figure 2.2D). For each component a, that is 

achieved by 

                           
1                                      (2.7)   a a aW C D   

That is also known as solving the forward problem, or reconstructing the potentials 

distribution given the current sources.  
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Figure 2.2: A: Raw LFPs along the CA1 and CA3 hippocampal subfields (black and gray traces, 

respectively). B: CSD of the LFPs renders a complex mixture of currents as expected for 

multiple synaptic inputs. C: ICA of LFPs provides four main ICs, each defined by the curve of 

spatial weights (top panel) and a time course (bottom traces). D: Reconstructed (virtual) LFPs for 

IC4. E: CSD of the virtual LFPs provides precise spatiotemporal maps of inward/outward 

currents for unique spatially coherent synaptic input. Modified from Fernández-Ruiz et al., 

2012a. 

 

Before application of the ICA algorithm, we performed several pre-processing steps. For 

hippocampal LFPs, there are only a small number of physiologically meaningful ICs with 

significant amplitude and identifiable spatial loadings (Fernández-Ruiz et al., 2012a, 2012b; 

Fernández-Ruiz et al., 2013; Benito et al., 2014). Before applying ICA, we therefore employed a 

principal component analysis (PCA) reduction maintaining 98.0 % of the original LFP variance. 
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This process aids in the convergence of ICA to stable components, and results in a smaller 

number of ICs. We also whitened the data before applying ICA to reduce the computational 

complexity of the analysis while maintaining its statistical consistency (Hyvärinen and Oja, 

2000; Chen and Bickel, 2005). 

Due to the parallel anatomical arrangement of the principal cells and the stratification of 

afferent axon terminals, the hippocampus is especially well suited for ICA decompositions of its 

LFPs. However, only those synaptic inputs with enough postsynaptic current, synchrony, and 

spatial clustering are suitable for ICA separation; thus, very weak or sparse currents are not 

easily discernible. 

 

2.2.2.  Current Source Density Analysis  

The traditional approach to solve the inverse problem of the LFPs is performing current 

source density (CSD) analysis. CSD analysis (Freeman and Nicholson, 1975; Mitzdorf, 1985) 

determines the magnitude and location of the net transmembrane currents generated by neuronal 

elements within a small volume of tissue.  

In a macroscopic level the transmembrane current density Im per unit length is related 

with the extracellular current density J through the divergence:  

                      
                                                      (2.8)   mI J  

If we assume a quasistatic description of the electric field in the extracellular medium 

(neglecting capacitive and inductive effects), Ohm law can be applied, 

             
                                                      (2.9)    J E  

where σ is in general the conductivity tensor. 

The relation between the electric field E and the extracellular potential Φ 

                                                               (2.10)    E  

allows us to establish a linear dependency between the extracellular current density J and the 
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gradient of the electric potential in the medium 

           
                                                 (2.11)    J  

 Substituting this expression of J into the current conservation equation, we get the 

Poisson equation, which establishes the relation between the electric potential and the volumetric 

current density 

         
                                               (2.12)   mI    

In the simplest approach, we employed a 1D approximation by calculating the second 

spatial derivative of the LFP profiles (Figure 2.2 B), and calculated the CSD according to a 

central differences formula, 

      
 

     
2

2
                   (2.13)   

i i i

i

z z z
CSD z

     
 


 

where δ is the distance between electrodes.  

This approach assumes isotropy and negligible net contributions in the XY-plane 

perpendicular to the cellular axis. That is suitable for laminated structures with parallel 

arrangement of principal cells, as is the case of CA1, if the recording electrodes are placed 

parallel to the main cell axis (z) and an homogeneous population of cells is synchronously active 

(as for example during evoked potentials). In this traditional approach to CSD estimation it is 

also assumed homogeneous resistivity. 

However, the above assumptions are not fulfilled in most real cases. When the cells in a 

small volume of tissue are active only in a given time there can be a significant current spreading 

in the x and y directions. This may result in an underestimation of true sink and sources as well 

as in the occurrence of spurious ones. To address those issues we employed the recently 

developed inverse CSD (iCSD) method (Pettersen et al., 2006). This method consists of first 

define a forward model to describe the potentials that are produced by localized current sources 

and then invert this model by means of a numerical matrix inversion to allow direct calculation 

of localized discrete sources form the measured potentials distribution. The solution of the 

forward model is given by the following equation
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                              (2.14)   
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In most LFP studies the application of CSD analysis does not take into account tissue 

inhomogeneity and anisotropy effects, assuming a negligible contribution of these effects 

(Buzsáki et al., 2012; Einevoll et al., 2013). In the present work we with also adopted this 

approach; however we took advantage of the iCSD method to explicitly incorporate a priori 

knowledge about the geometry of the sources, such as the volume of activated tissue and the 

relative position of the sources to the recording electrodes. 

In addition to the raw LFP we performed CSD analysis of the reconstructed virtual LFP 

produced by a single IC, which renders a map of the current distribution of a single anatomical 

input or LFP source (Fernández-Ruiz et al., 2012a). 

 

2.3. Time-frequency analysis of LFPs 

To characterize the LFP signals in the spectral domain we employ a multi-taper 

implementation of the fast Fourier transform (Mitra and Pesaran, 1999; Chronux toolbox, 

http://www.chronux.org). Continuous data were segmented in 1-5 seconds epochs for all spectral 

analysis. Spectral power was estimated with a Hanning window and averaged across all data 

epochs.  

In the multi-taper power spectrum method employed here a set of independent estimates 

of the power spectrum are computed, by multiplying the signal by orthogonal tapers (windows) 

which are constructed to minimize the spectral leakage due to the finite length of the data set. 

The tapers are the discrete set of eigenfunctions that solve the variational problem of minimizing 

leakage outside of a predefined frequency band. Once the tapers wk(t) are computed for a chosen 

frequency bandwidth, the total power spectrum PX can be estimated by averaging the individual 

spectra given by each tapered version of the time series x(t); the kth eigenspectrum Xk is the 

discrete Fourier Transform of x(t)wk(t) 
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This procedure yields a better and more stable estimate of a signal power spectrum than 

single taper methods.  

 Two basic measures of pairwise synchronization were employed: cross-correlation and 

coherence. The cross-correlation function is a measure of the linear covariance between two 

signals x and y and can be estimated as follows,   
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where x and y are the means of the respective signals.  

This method has the advantages of being a straightforward method that yields a 

normalized value giving a gross indication of the degree of similarity of two signals (i.e. LFPs 

recorded at separate locations). However, for a frequency resolved estimate of the linear 

covariance of two signals we need to employ the coherence.   

          

2

( )
( )                                     (2.17)   

( ) ( )

xy

xy

xx yy

C f
coh f

C f C f



 

where Cxx(f) is the cross-spectral density for the frequency f between x and y, and ...  indicates 

averaging over segments.  

 To assess spectral events at a high resolution in time and frequency, the complex wavelet 

transform (CWT) of the LFP was calculated using complex Morlet wavelets (Torrence and 

Compo, 1998). The CWT gives amplitude and phase measures for each wavelet scale at all time 
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points in the data, obtained by convolving the real and imaginary parts (which are phase shifted 

by 90
o
) of the wavelets with the data vectors.  

 A wavelet is a scalable function with zero mean, well localized in time.    

                 ( ) 0                                                    (2.18)    t dt





   

 A family of wavelets can be constructed from a ―mother‖ function Ψ(t),which is 

confined to a finite interval, translated with a factor u and expanded with a scale parameter s, 

           
,

1
( )                                          (2.19)   u s
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Then the wavelet analysis of a signal x can be performed by 

              
, ,( ), ( ) ( ) ( )                                        (2.20)   u s u sx t t x t t dt    

In our case we employed the Morlet complex waveform, 

                      
 

2 2 2 2
0 0 2 2

( )                                  (2.21)   t ti t r
t e e e

    
     

where ω0 
is the center frequency of the wavelet and σt a bandwidth parameter determining its 

rate of decay. The width or number of cycles of the wavelet is given by ω0 
σt

2
. 

If this complex wavelet is convolved with the signal x we get the CWT of that signal, 

                   
  ( )

( ) ( ) ( 'x (t ') ' = A (t)e              (2.22)   Wi tWW t x t t t dt


      

where ϕW(t) is the phase for each time sample. The Morlet mother waveform has Gaussian 

modulation in both time and frequency, thus offering optimal resolution in both domains.  

The simpler Hilbert transform was also employed in some cases (as when only the theta 

oscillations were considered) to extract the phase or amplitude of LFP signals.  The phase ϕW(t) 
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and amplitude Ax(t) are given respectively by the argument and modulus of the complex 

analytical signal:  

     
( )

( ) ( ) ( ) (t)e                                (2.23)   xi t

H xt x t ix t A


     

where xH(t) is the Hilbert transform of x(t), defined as: 

          

1 ( ')
( ) . . '                                      (2.24)   
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with P.V. denoting the Cauchy principal value. 

Both wavelet and Hilbert transforms give very similar results in all cases. 

 

The phase-amplitude cross-frequency coupling (CFC) during theta oscillations for a given 

LFP recording was assessed using the modulation index (MI) introduced by Tort et al. 

(2008).We took the phase of the LFP recorded at the CA1 pyramidal cell layer and the amplitude 

of either LFP recorded in different layers or the time course of different LFP-generators, in all 

cases the procedure was exactly the same. The raw LFP signal (Figure 2.3A) was band-pass 

filtered in the low frequency band (Figure 2.3B) and the phase of the analytic signal given by the 

Hilbert transform or CWT was calculated (Figure 2.3C). Amplitude of the filtered signal in the 

broad gamma band (30-300 Hz, Figure 2.3D) was also obtained from the CWT. The MI was 

calculated by measuring the divergence of the observed amplitude distribution from the uniform 

distribution (Figure 2.3E). Comodulogram phase-amplitude plots were constructed representing 

in pseudocolor scale the MI values of multiple phase-amplitude frequency pairs (Figure 2.3F). 

The statistical significance of the MI values (P-value) was assessed by a surrogate analysis 

(n=1000 surrogates) with random shifts between the phase and amplitude time series (Canolty et 

al., 2006). 
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Figure 2.3: A: Example of raw LFP signal. After filtering in the theta band (B), the phase is 

calculated using the Hilbert transform. C: The same or other signal is filtered in the frequency 

band of interest and its amplitude (D) is obtained from the CWT. The mean amplitude 

distribution over theta phase is then calculated (E). The phase-amplitude MI is obtained by 

measuring the divergence of the observed amplitude distribution from the uniform distribution. 

A phase-amplitude comodulogram plot is constructed representing in pseudocolor scale the 

obtained MI values for multiple phase-amplitude pairs (in this case the phase was not only 

calculated for the theta filtered signal but for a range of frequencies). Modified from Tort et al., 

2008 and Tort et al., 2011. 

 

2.4.  Single unit analysis  

Neuronal spikes were detected from the digitally high-pass filtered LFP (0.8–5 kHz) by a 

threshold crossing-based algorithm (Spikedetekt2; https://github.com/klusta-team/spikedetekt2). 

Detected spikes were automatically sorted using the masked EM algorithm for Gaussians 
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mixtures implemented in KlustaKwik (Kadir et al., 2014; https://github.com/klusta-

team/klustakwik/), followed by manual adjustment of the clusters using the KlustaViewa 

software (Rossant et al., 2015; https://github.com/klusta-team/klustaviewa/; Figure 2.4) to get 

well-isolated single units. Multiunit or noise clusters where discarded for the analysis. Putative 

pyramidal cells and interneurons were separated on the basis of their autocorrelograms and 

waveforms characteristics (Csiscvari et al., 1998; Stark et al, 2014; Mizuseki et al., 2009), 

assisted by monosynaptic latency excitatory and inhibitory interactions between simultaneously 

recorded, well-isolated units (Bartho et al., 2004; Mizuseki et al., 2009). Most of the unit 

clustering and classification were performed by Kenji Mizuseki at the Buzsáki laboratory. 

 

Figure 2.4: Screen capture from KlustaViewa, an open-source software for manual clustering of 

neuronal spikes. In the central panel two single units with different anatomical location are 

displayed. Observe the different features provided for assisting the process: auto and cross-

correlograms. PCA projections, similarity matrix. From Rossant et al., 2015. 

 

The phase-locking of spikes to the LFP was measured for individual units using the wavelet 

or Hilbert phase at the time of each spike. Modulation indices were calculated using the mean 

resultant length of the phases, and significance was estimated applying the Rayleigh test for non-

uniformity using the circular statistics toolbox provided by P. Berens (Berens, 2009). Unit-LFP 

analyses were implemented by Erik Schomburg at the Buzsáki laboratory.  
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2.5.  Modeling of LFPs with finite elements method 

 Multiple physical problems can be mathematically formulated as a partial derivatives 

differential equation. As a general rule, those differential equations are very hard to solve. Only 

in those cases in which it is possible to make simplifications on the dimensionality and geometry 

of the problem an analytical solution is available. However, in most of the cases analytical 

methods are not feasible or are inexact (as can be the case of a tridimensional electromagnetic 

problem in a complex geometry). For solving this kind of problems numerical models are 

necessary and useful. Those methods discretize the differential equation into a linear system of 

equations, solving it in an iterative way. One of those methods is the analysis by means of finite 

elements (FEM). 

 The basis of FEM is to divide the geometry in which a differential equation of a 

scalar or vector field needs to be solved (i.e. the electric potential) in small elements, typically 

tetrahedral. In each element field equations determined by a variational principle and local 

sources are solved. Boundary conditions are applied and thus it is possible to obtain the algebraic 

system from which a solution of the problem is found. FEM allows explicit models of the 

geometry and electrical properties of the brain to be generated and to solve potential and current 

distributions in such a complex structure over time. In our case, the physical problem that needs 

to be solved with FEM can be described as follows. The initial condition is a certain distribution 

of volumetric current sources in a tridimensional complex structure (i.e. the rat hippocampus). 

Each of the sources is simultaneously activated with different time series. As a result of the 

uneven spatiotemporal varying summation of currents in the volume an electric potential 

distribution arise. Thus our goal is to calculate this potential distribution for each spatial point at 

anytime. 

 As such, we modeled the rat hippocampus establishing the geometry of current 

sources and their temporal activation, and fixed the boundary conditions. Two different models 

were built, one of the whole dorsal hippocampus in its planar section, and another of just the 

dentate gyrus region. The structure was enclosed in a larger volume simulating the extracellular 

space. This outer compartment was sufficiently large so as  not to distort the field lines in the 

central region of interest. We tested different surrounding volumes (up to four times longer in 

each direction) while maintaining boundary conditions. The chosen volume rendered LFPs that 



43 
 

 
 

were at least 90% of the maximum amplitude obtained with the largest volume (>95% in most 

tested points). For the sake of simplicity, the tissue was considered to be purely resistive, 

isotropic and homogeneous (Logothetis et al. 2007; but see Bédard and Destexhe, 2011). The 

volumetric character of FEM current sources allows the electrical currents produced by multiple 

synchronously activated neurons to be compiled in a few block-like current generators that 

jointly obey the principle of charge conservation. This is an important advantage, which makes it 

suitable to reproduce LFPs in a volume generated by activated sections of layered structures 

made up of neurons arranged in parallel as is the case of the hippocampus or cortex. 

Accordingly, the size and geometry of the blocks of current represent the physical extension of 

the synchronously activated neurons, i.e., the portion of the population of cells that elicits 

postsynaptic currents upon coherent activation of a group of axons from homologous afferent 

units (Figure 2.5A).  

 We found that eighth of these blocks with 100 μm thickness in the case of CA1 and 

four 60 μm thickness block for each blade of the DG were sufficient to reproduce the main 

laminar features of hippocampal LFPs. In the case of CA1, one for the basal dendrites, one for 

the pyramidal cell body layer and six for the apical dendrites. For the DG, one block represented 

the granular cell body layer and three the dendrites. These blocks were bent to replicate the 

curved geometry of the hippocampus and divided into approximately 200 μm sections that could 

be independently activated to analyze the effects of the spatial coherence and synchrony of the 

inputs. For simplicity, we used non-overlapping blocks of current, representing inputs with 

imaginary topological projection of varying synaptic territories. 

In the present models we excluded any possible contribution of the extracellular currents 

from other cellular elements apart from pyramidal and granular cells (e.g. interneurons or glia). 

Most of those others types of cells have multipolar dendritic trees (Amaral, 1978) and hence, a 

closed-field extracellular configuration of the electric field is established by their synaptic 

activation (Lorente de Nó, 1947). Consequently, their currents do not (or they only poorly) 

spread beyond their physical limits (Lindén et al., 2011; Einevoll et al., 2013; Buzsáki et al., 

2012). In consequence, these cells do not add their currents in the extracellular space and they 

only negligibly contribute to the LFP (even if some subtypes are strongly synchronized). Indeed, 

the results presented in the experimental section justify their omission from the model. 



44 
 

 
 

A
2 3

MPP

1

B

Experimental data Simulated dataModel

Vload CSDloadLFP + CSD

1 2 3

-1 0 1 -1 0 1
5 ms

2
 m

V

ChargeDensity 
(Ik(z))

-1 0 1

2
 m

V

5 ms -1 0 1 -1 0 1 Time course (s(t))

Vload CSDloadLFP + CSD

-1

1

0

source

sink
-1

1

0

5 ms

a.u. a.u.  

Figure 2.5: A: The gross cytoarchitecture of the granule cell (GC) population (1) was assembled 

as four stacked rectangular blocks each representing a subcellular domain. (2) The blocks were 

given appropriate curvature and dimensions to reproduce a stereotyped U-shaped geometry of 

the dorsal dentate gyrus (DG). A tetrahedron adaptive recording mesh simulating the conductive 

extracellular medium was built in and around the cellular component and was large enough not 

to distort electrical fields. B: The block sources were activated using real time activations. In this 

example we used the excitatory medial perforant pathway (MPP) that makes synaptic contact in 

the middle third of the dendritic tree (see A1). Total charge was balanced across all blocks at 

every instant. Charge was distributed throughout all four compartments according to weights 

obtained in the spatial map of CSD analysis for the electrical activation of this pathway. Vload and 

CSDload represent the spatial weights of voltage and CSD along the GC main axis. The excitatory 

sink (in blue) is surrounded by a strong passive source (warm colors) in cell soma and a weaker 

source in distal dendrites. (2) At all times, the blocks received proportional charge density with 

predefined polarity and identical time course. (3) Example of FEM simulated data. Modified 

from Fernández-Ruiz et al., 2013. 

 

We applied Dirichlet boundary conditions by setting the field to the ground value on the 

external surface of the enclosing volume and imposing charge conservation inside the total 

volume. A tetrahedral adaptive grid of the highest resolution (smallest size, 0.05 μm) was used to 

ensure the correct resolution of field equations in the curved compartments (Figure 2.5A3). 
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The FEM approach is widely used in magnetoencephalography and scalp 

electroencephalography (Chen and Mogul, 2009; Salvador et al., 2011; Thielscher et al., 2011), 

although to the best of our knowledge it has not previously been used in the study of LFPs. We 

used a commercial FEM software tool, COMSOL Multiphysics® (www.comsol.com).  

 

Time-dependent analyses were performed using the AC/DC module of COMSOL for all 

nodes in the extracellular and cellular volume. The spatial and temporal dynamics of LFP and 

CSD distributions were evaluated after activation of individual subcellular domains by different 

inputs (the rationale of the performed simulations is illustrated in Figure 2.5B). The temporal 

activation of a particular synaptic afference, such as the MPP excitatory input, was taken as the 

input signal, s(t). For simplicity, we represent here an MPP-evoked fEPSP. The axons of this 

pathway establish synaptic contact with GCs in the middle third of their dendritic tree (Figure 

2.5B1, green axons). The spatial distribution of the CSD corresponding to this activation (Figure 

2.5B1, contour map) was compartmentalized into four spatial blocks that jointly configured the 

GC population, such that they roughly reproduced the same spatial profile (Figure 2.5B2). The 

sum of charge densities was set to zero, as imposed by current conservation law. The electric 

fields and potentials elicited by these currents were calculated for the entire tissue volume by 

FEM.  

Linear profiles of simulated LFPs comparable to those recorded in vivo were built using 

several linear tracks along the vertical z-axis, which contained up to 40 registration points spaced 

at 50 μm intervals and that were placed in the middle of the structure to produce the most 

homogenous field contribution. LFP profiles were constructed from the instantaneous voltage 

signal recorded at each simulated recording point. 



46 
 

 
 

3.  Results 

 

3.1. Current sources of hippocampal LFPs 

 One of the ultimate goals of the investigations on neural circuit dynamics is to understand 

the input-output transformation of neuronal signals, i.e., how neuronal activity in an upstream 

region affects the firing rate and spike timing in neurons of a downstream region. Unfortunately, 

studying LFP signals recorded from a single or few sites as they are most commonly recorded, 

cannot properly address the problem of input-output transformation because the LFP signal 

recorded at any given site represents a weighted sum of multiple neuronal sources in unknown 

proportions (Buzsaki et al., 2012; Logothetis, 2008; Einevoll et al., 2013). Ideally, one would 

like to decompose this macroscopic signal into its individual sources and relate them to the 

output spiking of neurons to reveal the relative influence of the individual inputs to spike outputs 

during different behaviors. 

Information extracted from LFP signals can be improved significantly by monitoring 

multiple sites at high spatial resolution (Csicsvari et al., 2003; de Cheveigné et al., 2013). Since 

afferents to dendrites in the hippocampus are spatially segregated, their behavior-dependent 

contributions can be separated by sufficiently high density sampling of the LFP (Buzsaki et al., 

1986; Brankack et al., 1993; Montgomery et al. 2009; Fernández-Ruiz and Herreras; 2013).  

In the first part of the present work I characterize the main current sources of 

hippocampal LFPs. For this purpose, LFP recordings were performed with high-density silicone 

linear probes (either single-shank or 8 shanks probes with 32 electrodes spaced 50 μm; Figure 

3.1.1A) covering the full transversal axis of the hippocampus of behaving rats. Such probes 

allow us to record LFPs and unit activity in all hippocampal layers and subregions. The 

electrodes were slowly advanced during the days following the implantation until reaching the 

final position spanning from the CA1 stratum oriens to the DG lower blade or CA3 str. oriens. 

Once finalized the experiment the position of the electrodes was histologically verified and 

compared with the electrophysiological data (Figure3.1B). 
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Figure 3.1: A: Silicon probe employed for hippocampal recordings (Neuronexus). It has 8 shanks 

separated 300 μm each with 32 electrodes spaced 50 μm. Thus it covers 1550 μm in depth and 

2100 μm in extension. B: Final position of the probe was verified histologically after perfusion 

of the animal. Transversal section of the dorsal hippocampus stained with DAPI. Modified from 

Schomburg, Fernández-Ruiz et al., 2014. 

 

3.1.1. Experimental investigation  

3.1.1.1.  CA1 region 

Linear recordings along the vertical axis of the hippocampus clearly show the 

characteristic laminar variations of LFPs (Figure 3.2A). The hippocampus, and specially the 

CA1 region, has a great advantage for the study of LFPs due to the parallel arrangement of their 

cells and the stratification of the synaptic inputs. This anatomical organization results in layer-

specific LFP patterns elicited by the inputs innervating the pyramidal or granular cells in 

restricted dendritic domains (Montgomery et al., 2009; Brankack et al., 1993; Bragin et al., 

1995a,b; Fernández Ruiz et al., 2012; Benito, Fernández-Ruiz et al., 2014).   

ICA discriminates the contributing sources to the LFP based on their distinct spatial 

distribution. When applied to the multi-electrode wide-band LFP signals of the CA1 region, ICA 

found three major pathway-specific independent-components (ICs). By convoluting the LFP 

with the inverse of the mixing matrix estimated by ICA we get the relative voltage weight of 

every IC in each electrode. Projecting those weights to the anatomical space (i.e. the spatial 
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arrangement of the electrodes in the tissue) we obtain the spatial voltage loading in the 

dorsoventral axis (z) of each IC (Figure 3.2B). The second derivative in the z-axis of those 

voltage loadings represents the CSD loading of this particular IC (Figure 3.2C), that is the 

transmembrane currents elicited by this particular input in the target population. 

CA1pyr IC

5

10

15

20

25

30

rad IC lm IC

IC

5

10

15

20

25

e
le

ct
ro

d
e

 #
e

le
ct

ro
d

e
 #

shank # 

LFP

CSD

2 4 61 3 5 7 2 4 61 3 5 7 2 4 61 3 5 7

sink

0

source

- V

0

+ V

B
CA1 ICs

A

C

V loads CSD loads

0.3 0 -0.3 

CA1pyr rad lm

C
A

1
D

G

1 -10 a.u.mV100 ms

1
 m

V

 

Figure 3.2: A: LFP profile along CA1 and DG displaying some characteristic CA1 LFP patterns, 

sharp wave ripples (red arrow).B: Three main ICs were found for CA1 LFPs with largest voltage 

and active currents at different layers: the pyramidal layer (CA1pyr), str. radiatum (rad) and str. 

lacunosum-moleculare (lm). C: 2D voltage and CSD distributions for the 3 ICs highlight their 

layer-specific distributions. Modified from Schomburg, Fernández-Ruiz et al., 2014. 
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The maximal amplitude of the first component (rad) is at the level of the str. radiatum 

and its CSD depth profile matched the source–sink–source distribution of the spontaneously 

occurring sharp-waves during immobility (Figure 3.2A-B green traces; Bragin et al., 1995; 

Montgomery and Buzsáki, 2007; Fernández-Ruiz et al., 2012), corresponding to the apical 

dendritic excitation of CA1 pyramidal neurons (manifested as a strong sink in the str. radiatum) 

by the synchronous CA3 output (Buzsáki et al., 1983). Another IC (lm) peaked below the first 

component, corresponding to the str. lacunosum-moleculare-related current sink (Figure 3.2A-B 

red traces; Brankack et al., 1993; Benito et al., 2013). The peak amplitude of the third component 

(CA1pyr) occurred at the depth of CA1 pyramidal layer (Figure 3.2A-B; blue traces), also 

identified by the large amplitude ripples and unit firing (Mizuseki et al., 2011). This IC is 

characterized by a prominent current source centered at the pyramidal layer. 

The above results were obtained by applying ICA to single-shank recordings but I also 

applied it to the 2D matrix of 256 electrode arrays (8 shanks separated 300 μm). By doing so the 

same 3 main ICs were obtained in the CA1 region. When plotted in two dimensions they display 

clear layer-specific distributions (Figure 3.2 C). The CA1pyr IC shows larger positive voltage 

along the CA1 pyramidal layer and the CSD map reveal a source surrounded by smaller sinks. 

This distribution matches the expected from a perisomatic inhibition and its passive return 

currents in apical and basal dendrites. The radiatum component displays larger negative voltage 

along the CA1 str. radiatum and a polarity reversal in the pyramidal layer. The CSD map reveals 

the expected strong sink in the dendritic domain of the Schaffer collaterals (CA3 to ipsilateral 

CA1 input) flanked by sources in the str. lacunosum-moleculare and pyramidal layer. The lac-

mol IC has larger negative voltage around the hippocampal fissure (the separation between CA1 

and DG) but the CSD analysis reveals a current dipole restricted to CA1 distal dendrites, the 

dendritic domain of the axon terminal from entorhinal cortex layer 3.  

Voltage and CSD spatial distribution were constant for all the animals (n = 7) and 

behavioral states, indicating that they are reflecting the underlying anatomy of inputs to the CA1 

regions. The combination of CSD analysis and ICA decomposition of LFPs is revealed as a 

useful tool to precisely identify the different hippocampal layers and more importantly to 

separate and identify the current sources of the LFP. However this would require more extensive 
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analysis so the next step was to build a model of the rat hippocampus to get a better 

understanding of the relations between source geometry and voltage distribution in the structure.  

 

The present results in freely moving animals confirm and extend our previous work in 

anesthetized rats (Fernández-Ruiz et al., 2012a,b; Benito, Fernández-Ruiz et al., 2014). In the 

next paragraphs it follows a brief summary of previous experimental findings closely related to 

what has been presented in this section.  

In the urethane-anesthetized preparation the radiatum and lm components were also the 

main contributors to CA1 LFPs, however the CA1pyr showed significantly less relative power 

than in the awake animal. This can be explained by a reduced firing rate of CA1 perisomatic-

targeting interneurons under urethane (Ylinen et al., 1995; Klausberger and Somogy, 2008). 

With local pharmacological manipulations we demonstrated that the radiatum component 

activity was selectively decreased by non-NMDA glutamate blockers (DNQX). Targeted 

blockade of the ipsilateral CA3 with lidocaine injections also selectively decreased radiatum IC 

power. Those tests confirmed that the synaptic glutamate currents evoked by the input of the 

Schaffer collateral pathway from CA3 to the str. radiatum dendrites of the CA1 pyramidal cells 

were the underlying cause of the LFP activity captured by the radiatum IC. For this reason we 

also termed it as Schaffer component. Pharmacological manipulations rendered less clear results 

for the lm component. As well as the radiatum IC, lm component activity was impaired by local 

injection of DNQX, indicating its glutamatergic nature. However it was also affected by GABAa 

blockers (bicuculline) pointing towards a contribution from inhibitory currents. This can be 

explained by the activity of several types of interneurons, which target the CA1 pyramidal cell 

dendrites at the str. lacunosum-moleculare, including oriens-lacunosum and neurogliaform cells; 

most of them are strongly feedforward activated by the entorhinal layer 3 axons (Klausberger 

and Somogy, 2008; Leao et al., 2012; Lasztóczi  and Klausberger; Basu et al., 2013).  

To go beyond a mere characterization of the main sources of CA1 LFPs and to show the 

usefulness of studying pathway-specific LFP components instead of the original mixed LFP 

signal, these previous works focused on the analysis of the temporal dynamics of the radiatum 

component and its relation with CA1 and CA3 units. The low firing rate and functional 
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clustering of CA3 pyramidal cells allowed us discriminating elementary synaptic events in the 

radiatum IC, which were termed as micro-field excitatory postsynaptic potentials (µ-fEPSPs; 

Fernández-Ruiz et al., 2012). Radiatum IC activity shows an ordered succession of µ-fEPSPs 

that appear to be generated by functional clusters of CA3 pyramidal neurons, to which individual 

units are recruited variably. Such pattern implies a hierarchical internal operation of the CA3 

region based on sequential activation of pyramidal cell assemblies. A fraction of these excitatory 

packets readily induce firing of CA1 pyramids and interneurons, the so-called Schaffer-driven 

spikes, revealing the synaptic origin in the output code of single units. This finding supports the 

postulate that synchronous activity in cell assemblies is a network language for internal neural 

representation (Buzsáki, 2010; Harris, 2005). 

In a subsequent work (Fernández-Ruiz et al., 2012b), we assessed the plastic changes 

underwent in the CA3-CA1 pathway spontaneous activity following long-term potentiation 

(LTP) and determined how pairs of pre- and postsynaptic neurons modify spike transfer 

compared to the population. We found that the ongoing radiatum IC activity and the share of 

postsynaptic spikes fired by Schaffer input specifically in CA1 units increases after LTP without 

significant change of the mean firing rate. A re-organization of the presynaptic cell assemblies 

synchronously firing to elicit CA1 spikes was also found. Thus the results provided first time 

evidence for pathway-specific ongoing plasticity and its impact over spontaneous network 

activity consisting on the increased spike transfer between nuclei connected by specific 

potentiated channels. This constitutes provides evidence that LTP induction produces a pathway-

specific enhancement of ongoing activity that is effectively propagated to subsequent relays of 

the network. These observations complement and extend on classic LTP properties observed 

with evoked stimuli by showing their ongoing correlates and supports the view of synfire chains 

(Abeles, 1991) as a prominent mechanism for information transfer in neural networks. 

 

3.1.1.2.  Dentate Gyrus 

 Despite the fact that LFPs in dentate gyrus have been much less intensively researched 

than in the CA1 region, it has been know for long time that this structure exhibits a rich variety 

of LFP patterns and oscillations, including theta and gamma rhythms (Bragin et al, 1995a), 
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dentate spikes (Bragin et al, 1995b), slow oscillations (Isomura et al., 2006) and odor-evoked 

beta oscillations (Heale et al., 1994). However, due to the complexity of its local circuits and the 

scarce knowledge regarding the synaptic inputs and firing properties of its different cell types 

during behavior, the mechanisms of generation of the different LFP patters observed in the DG 

remain largely unknown. It has been shown that DG theta and gamma oscillations are strongly 

modulated during exploratory and learning behavior in rodents (Givens, 1996; Skaggs et al., 

2006; Csicsvari et al., 2003; Montgomery et al., 2009), pointing towards an important function of 

these rhythms in cognitive functions involving this structure. DG oscillatory dynamics also has a 

strong impact on its main target region, CA3, (Mori et al., 2004; Akam et al., 2012; Neunuebel 

and Knierim, 2014) and the computations performed in the whole hippocampal circuit 

(Montgomery et al., 2009; Sullivan et al., 2013). 

 There are two main extrinsic afferences to the DG, the medial (MPP) and the lateral 

(LPP) perforant paths originating in layer 2 of medial and lateral entorhinal cortex and 

innervating the distal and middle thirds of granular cell (GC) dendrites. So is to be expected that 

these two inputs are major contributors to DG LFPs. However there are many others inputs that 

can also contribute substantially. On one hand the associational-commissural fibers innervate the 

inner third of GC dendrites and on the other the multitude of GC layer and hilar interneurons 

innervate the soma and dendritic regions of the GCs.  

 Following the same procedure as that previously described for the CA1 LFPs we identify 

three main ICs in the DG. The three ICs have similar voltage loadings, with a plateau-like 

maximum between cell layers throughout the hilus, which declined outwardly and reversed its 

polarity at different points, and characteristics points for each of them (Figure 3.3B). The CSD 

loading shows more differences between ICs. 

The first IC (LPP, Figure 3.3B; blue traces) is the one that reverses its polarity more 

superficially (closer to the fissure) and has a sink in the superficial GC dendrites and a source 

closer to their soma. This current distribution is similar to that obtained in the DG for evoked 

potentials stimulating the LPP (Leung et al., 1995; Benito, Fernández-Ruiz et al., 2014). The 

second component (MPP, Figure 3.1.3B; red traces) has a reversal point around 100 μm below 

the LPP and a sink in the middle third of the GC dendrites surrounded by two smaller sources at 

the distal dendrites and GC soma. This current distribution is similar to that obtained in the DG 
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for evoked potentials stimulating the MPP (Leung et al., 1995; Benito, Fernández-Ruiz et al., 

2014). The third IC (GCsom, Figure 3.3B; green traces) has a source at the GC soma and a sink 

in the middle of the dendritic region and its voltage loading reverse at a similar depth than the 

MPP IC. This current distribution could be produced by a perisomatic inhibition, as it is the case 

of the dentate basket cells (Han et al., 1993; Houser, 2007). 
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Figure 3.3: A: Similar LFP profile as illustrated in Figure 3.1.2 but featuring a characteristic DG 

LFP pattern, dentate spikes (red arrow). B: Three main ICs were found for DG LFPs. All of them 

display large positive voltage across the hilus but reverse polarity at different depths in the str. 

moleculare. Largest currents were restricted to the outer third of the str. moleculare (LPP), 

middle third (MPP) and GC layer (GCsom). C: 2D voltage distributions for the 3 ICs were 

dominated for the positive hilar potentials but the CSD maps illustrated their different laminar 

specificity.  
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 The 2D plots for the three components further illustrate their characteristic spatial 

distributions. The voltage maps of the three of them are characterized by strong positive voltage 

in the hilus that decay toward the GC dendrites. In the three cases it reverts in the str. moleculare 

but only the  MPP  shows strong and localized negative voltage. This can be explained because 

the dipolar configuration of both LPP and  GCsom  favors a passive decay of the negative 

voltage gradient while the quadrupolar configuration of the MPP favors a more closed negative 

field. This is similar to what happened with the radiatum IC in CA1 which has also a 

quadrupolar configuration in contrast to the CA1 lm IC which has a dipolar one (Figure 3.2B,C).   

 The 2D CSD maps confirm the distal sink and inner dendritic source of the LPP IC, the 

source-sink-source configuration of the MPP and the dendritic sink- somatic source of the 

GCsom (Figure 3.3C). It is important to note the lack of any currents for the three components in 

the hilus.  That is to be expected as the axon is the only GC element in this region and it drains 

only a negligible amount of current.  

 

 As was also the case for the CA1 LFP ICs, the present results for the DG LFPs confirm 

and extend our previous results in urethane-anesthetized rats (Fernández-Ruiz et al., 2013; 

Benito, Fernández-Ruiz et al., 2014). In those previous works we showed with local 

pharmacological manipulations that the activity of the MPP and LPP components was 

selectively decreased with the injection of DNQX (a non-NMDA glutamate blocker). On the 

contrary, the GCsom component was affected by both glutamate and GABAa (bicuculline) 

blockers. This result can be explained by two mechanisms. Either the activity captured by the 

GCsom component is contributed by excitatory and inhibitory currents onto the perisomatic 

region of the GC or it is only elicited by inhibitory currents delivered by interneurons relaying 

for its activation on excitatory inputs. The lack of somatic excitatory inputs leads us to think in 

the second alternative as the most plausible.  

 Another test for the pathway-specificity of the LFP ICs was achieved in those previous 

works by the electrical stimulation of afferent pathways to the hippocampus (Fernández-Ruiz et 

al., 2012a; Fernández-Ruiz et al., 2013; Benito, Fernández-Ruiz et al., 2014). When subthreshold 

stimuli (not strong enough to evoked a population spike, i.e. the synchronous discharge of action 
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potentials in the target population) were delivered to the medial and lateral perforant paths and 

the Schaffer collaterals, a field EPSP (fEPSP) was recorded in the DG and CA1 respectively, 

indicating synchronous excitatory synaptic currents onto the target populations of cells (Leung, 

1979; Leung et al., 1995 ). After ICA decomposition of the LFPs, those fEPSPs were selectively 

captured by the MPP, LPP and radiatum components selectively.  This result confirms that the 

currents elicited by both the spontaneous and evoked activity of those pathways are selectively 

captured by specific ICs. Thus ICA decomposition of hippocampal LFPs allows the separation 

and identification of pathway-specific contributors to the LFPs (Fernández-Ruiz and Herreras, 

2013). 

 

3.1.1.3. Characterization of hippocampal LFP sources 

The temporal and spectral dynamics of the LFP ICs during different behavioral states 

contain a large amount of information about the computations performed by the hippocampal 

circuits (Schomburg, Fernández-Ruiz et al., 2014). Although I will extend on this aspect in the 

last section of the Results, some gross quantifications of the ICs activity are provided in Figure 

3.4.  

To quantify the contribution of each IC to the recorded LFPs we calculated the relative 

variance of the LFP matrix that is accounted by each IC. The results in figure 3.1.4A were 

obtained pooling together all the ICs extracted during sleep and behavior in all the recording 

shanks that cover both CA1 and DG regions in 7 animals. The 6 main ICs reported here usually 

account for more than 95% of the total variance of the LFPs in the selected recording tracks, 

once the noise and artifactual activity was removed (see Section 3.1.3). The remaining variance 

was explained by other sources with very small contribution to the LFP. 

The IC with largest variance was the LPP, followed by the lm and MPP components. 

Together the three DG ICs have more variance that the three CA1 ICs, as is expected due to fact 

that DG LFPs are in general larger that CA1 LFPs (Fernández-Ruiz et al., 2013). In the second 

chapter of the Results I will analyze the biophysical factors that explain this phenomenon. The 

IC with lower variance was the CA1pyr, what can be explained by having its current restricted to 

somatic region. An important factor determining the contribution of the different current sources 
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to the LFPs is their dipolar moments. Sources with a larger dipolar moment, as the lm and LPP, 

which have the geometrical configuration of a linear dipole are expected to produce larger fields 

(Nunez et al., 2006; Plomsey, 1993). On the contrary, sources like rad, CA1pyr or MPP ICs have 

the geometry of a linear quadrupole, thus a shorter dipolar moment, and are expected to produce 

closer fields and contribute less to the LFPs.  

In Figure 3.4B averaged power spectrums of the 6 ICs corresponding to times while rats 

are sleeping in his home cage (red traces) or awake performing different navigational tasks (blue 

traces) are compared. Although each IC has different spectral dynamics the averaged spectrums 

during behavior are dominated by the ubiquitous presence of the theta rhythm (note the peak 

around 8 Hz). The spectral theta peak is more prominent in the lm component, as corresponds to 

the largest theta dipole being located in the str. lacunosum-moleculare (Branckack et al., 1993; 

Buzsáki, 2002). During sleep there are two differentiated stages, the slow-wave sleep 

characterized by 1-2Hz oscillations, and the rapid-eye movement sleep, characterized by theta 

oscillations of slightly lower frequency than those present during locomotion. Both oscillations 

are visible with different relative power in the spectrums of the 6 ICs.  
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Figure 3.4: A: Relative power for the six main hippocampal LFP ICs averaged across shanks, 

sessions and animals (n = 7 animals). B: Power spectrum of the 6 ICs for periods where animals 

were sleeping in their home cages (red) or performing different navigational tasks (blue). Data 

averaged across shanks, sessions and animals (n = 7 animals). 
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In this section we have shown that the application of ICA to large-scale recordings of 

hippocampal LFPs is able to disentangle their underlying synaptic sources. We found three main 

sources of CA1 and DG LFPs respectively. Each of them was characterized by a restricted 

laminar distribution of currents that allows their matching with the known synaptic domain of 

main extrinsic and intrinsic inputs to the CA1 pyramidal cells and DG granular cells populations. 

In addition those sources display different spectral characteristics. This suggests the possibility 

that the study of their spectro-temporal dynamics would be informative to understand the 

computations performed by the hippocampal circuits during behavior. This will be extensively 

explored in following sections.  

 

3.1.2. Finite Elements simulations of LFP’s 

 The combination of ICA and CSD analysis allowed us to solve the inverse problem of the 

LFPs; that is, given the recorded LFPs, separate and identify their underlying current sources. As 

a test of the accuracy of the above results we sought to use the extracted LFP sources to solve the 

forward problem of the LFPs, i.e. to reproduce the original LFP distribution. For this purpose we 

built a 3D model of the dorsal hippocampus of the rat with FEM (see Methods).  

 The model simulates a transversal lamella of the dorsal hippocampus similar to that were 

the recording electrode was placed in all the animals (Figure 3.1B). This lamella was extended 4 

mm in depth to simulate a whole block of the dorsal hippocampus. All the simulated recordings 

were performed in the middle of the structure to minimize any possible border effect.  

 In the model each hippocampal layer was represented as a polygonal block. Thus, the 

cellular and dendritic portions were represented as stacked longitudinal blocks of current 

sources, each representing a subcellular ―population‖ domain that when activated act as laminar 

dipoles. In preliminary simulations we found that eighth of these blocks with 100 μm thickness 

in the case of CA1 and four 60 μm thickness blocks for each blade of the DG were sufficient to 

reproduce the main laminar features of hippocampal LFPs. To implement the exact geometry of 

the current sources of the LFP, average CSD loadings from each LFPs ICs were discretized into 

eight or four point curves that were used as weights to implement the sources in CA1 and DG 

region of the model (see Methods). 
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 In the first set of simulations we implement in the model the three main sources of CA1 

and DG LFPs that were identified in the previous section in isolation. We took 100s of activity 

from the six main ICs extracted while the rat was resting in the home cage, and use them as 

inputs to the whole CA1 or DG regions, that were assumed to be simultaneously and 

homogeneously active. 

  LFPs were sampled in a linear track in the middle of the hippocampus, approximately 

perpendicular to the cellular layers (Figure 3.5A and 3.6A). After the independent activation of 

each source, the averaged voltage power along this line was calculated and used to construct 

voltage loading curves for each IC and its second derivative to construct CSD loading curves 

(Figures 3.5B and 3.6B). 
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Figure 3.5: A: FEM model of the rat dorsal hippocampus highlighting the CA1 region (blue). B: 

Voltage and CSD loadings along a vertical profile spanning CA1 and DG (indicated by the 

position of the green linear probe in A) illustrating the simulated CA1 LFP sources (note their 

similarity with the experimentally obtained ICs in Figure 3.1.2B). C: Averaged 2D voltage 

distributions obtained with the activation of the 3 CA1 LFP sources illustrate their layer-specific 

distribution.  
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 For CA1 LFP ICs, voltage and CSD loadings obtained from the activation of the three 

sources were remarkably similar to those obtained experimentally (compare Figure 3.3B and 

Figure 3.2B).TheCA1pyr component displays a sharp peak in its voltage loading at the pyramidal 

layer and the corresponding source surrounded by two sinks in the CSD loading (Figure 3.5B, 

blue traces). The largest amplitude of the rad IC is at the level of the str. radiatum, around 200 

μm below the pyramidal layer, and for the lm IC at the str. lacunosum-moleculare, around 500 

μm below the pyramidal layer. The rad component CSD loading has a larger sink flanked by two 

smaller sources while the lm displays a rather symmetrical current dipole (Figure 3.5B, red and 

green traces).   

 The model also allows us to calculate the voltage distribution in the whole hippocampus 

and surrounding extracellular space. We took a 2D plane parallel to the transversal axis of the 

hippocampus situated in the middle of the structure and plot the voltage distribution resulting 

from the activation of the three sources independently (Figure 3.3C). The 2D maps obtained 

were highly similar to the pseudo 2D voltage maps constructed from the voltage loadings of the 

ICs obtained experimentally (compare Figure 3.5C and Figure 3.2B). In the three cases the 

laminar distribution of the three ICs matches with the corresponding CA1 sublayers.  

 Current source 2D maps were omitted due to the fact that they did not offer any 

additional information given that this was exactly what was introduced in the model initially. 

 We repeat the above procedure for the DG ICs. As for the ICs extracted from the 

recorded LFPs, the three main DG ICs have voltage loadings with large positive amplitudes 

across the whole hilus which decay beyond the GC layers and reverse at different depths in the 

str. moleculare (compare Figure 3.6B and Figure 3.3B). The LPP component has the most 

superficial reversal point, as correspond to its sink in the outer third of the str. moleculare (Figure 

3.6B, blue traces). The MPP IC reverses closer to the GC layer and displays a large sink in the 

middle of the str. moleculare flanked by two smaller sources (Figure 3.6B, blue traces). The 

GCsom has a voltage and CSD loading with reversal point and source location intermediate 

between the LPP and MPP ones.  

 2D voltage maps for the three DG ICs display also similar features with those constructed 

from the experimental data (compare Figure 3.6C and Figure 3.3C), in all the cases dominated by 
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large hilar positive potentials. Note the more restricted negative voltage of the MPP ICs 

compared to the LPP; this can be explained by the more "close-field" configuration of the MPP, 

as will be analyzed in the next section. In comparison the GCsom IC elicits very small negative 

fields.  
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Figure 3.6: A: FEM model of the rat dorsal hippocampus highlighting the DG region (blue). B: 

Voltage and CSD loadings along the same vertical profile as in figure 3.1.5 of the three 

simulated DG LFP sources (note their similarity with the experimentally obtained ICs in Figure 

3.1.3B). C: Averaged 2D voltage distributions obtained with the activation of the 3 DG LFP 

sources are dominated by positive hilar potentials but display different location and spread of 

negative potential in dendritic layers. 

 

 The above results show that the presented model accurately reproduces the voltage 

distributions experimentally obtained for the six main current sources of CA1 and DG LFPs. 

However a question remains about if those sources when activated simultaneously with similar 

dynamics as those observed in the experiments reproduce the observed profile of LFPs. To 
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answer this question we performed another set of simulations in which the six sources were 

activated simultaneously.  

 We performed these simulations feeding the model with the ICs time series extracted in 

either during sleep or during running activity. By doing this we sought to reproduce in the model 

the two main hippocampal LFP patterns: theta oscillations and sharp-wave ripples, SWR (see 

Introduction). To sample LFPs a recording linear probe with electrodes spaced 50 μm was 

simulated in the middle of the hippocampus, spanning the CA1 and DG regions.  
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Figure 3.7: A: Averaged LFP profile of sharp-wave ripples show a large negative LFP deflection 

at str. radiatum and the corresponding dominating power at that layer (histogram). The CSD map 

illustrates the characteristic source-sink-source distribution for the excitatory Schaffer input to 

the CA1 pyramidal cells dendrites. B: LFP, CSD and power profiles were constructed in the 

same way for simulated SWR and display similar laminar profile as the experimental ones. C: 

Averaged LFP and CSD profile for theta oscillation during running. Largest currents and LFP 

power were present in the str. lacunosum-moleculare but phase shifted sink and sources also 

appear at str. radiatum and DG str. moleculare. D: Simultaneous activation of the 6 hippocampal 

LFP sources presented in this section with temporal activations extracted from experimental 

recordings during running result in a similar laminar potential and CSD distribution.  
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 SWR are characterized by a large negative LFP wave, and the corresponding sink, at the 

CA1 str. radiatum which reverse at the pyramidal layer, and it is accompanied by sources at the 

pyramidal layer and str. lacunosum-moleculare (Figure 3.7A). This activity is caused by a 

synchronous input of CA3 pyramidal cells to CA1 eliciting a large depolarization of str. radiatum 

dendrites accompanied by their return passive currents (Bragin et al., 1995; Fernández-Ruiz et 

al., 2012). The averaged power along the CA1-DG during SWR is dominated by a large increase 

at the str. radiatum (Figure 3.7A, histogram). In the simulated LFPs all the main characteristics 

of the LFP and CSD profiles of SWR were replicated, remarkably the large negative LFP 

amplitude at the str. radiatum and the characteristic source-sink-source current distribution 

(Figure 3.7B). 

 The CSD map of theta oscillation is more complex that the one obtained for SWR 

because in the former case is not only one pathway (i.e. source) which is dominating but the 

simultaneous activity of several, if not all, of them (Brackack et al., 1993; Buzsáki, 2002). The 

largest theta currents and fields are present at the str. lacunosum-moleculare but they are 

accompanied by shifted sink/sources at the str. radiatum and str. moleculare of the DG and with 

lower intensity in str. pyramidale and oriens (Figure 3.7C). Along the depth profile theta waves 

gradually shift their polarity displaying a 180° reversal between pyramidal layer and str. 

lacunosum-moleculare. Both the LFP and CSD profile characteristics of theta oscillations were 

replicated in our simulations.  

 

 With the above simulations we were able to prove that our model accurately reproduces 

the laminar characteristics of hippocampal LFPs. This confirms that the six current sources 

identified with ICA are sufficient to account for the main LFP patterns observed in the 

hippocampus. Having settled the fundamental basis of our analytical approach, in the next 

sections we will employ the FEM hippocampal model and the ICA + CSD decomposition of 

LFPs to investigate the biophysical and physiological mechanisms of LFP generation in the 

hippocampus as a tool to interpret the underlying activity of neural circuits.  
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3.2.  Biophysical factors shaping the generation of LFPs in the DG 

As a step forward in the present study we decided to employ the model presented in the 

previous section to analyze the generation of LFPs in the DG. We chose to focus on this 

particular hippocampal region because it has been far less studied than the CA1 or CA3 and 

despite the fact that large oscillation can be observed in the DG during behavior their generating 

mechanisms are largely unknown.  

The amplitude and phase of LFPs in a given brain structure is influenced by spatial 

factors such as cell morphology, synaptic arrangement and geometrical configuration of cellular 

layers (Kajikawa and Schroeder, 2011; Ho et al., 2012; Buzsáki et al., 2012). Although some of 

these factors have been extensively studied in single cell models (Einevoll et al., 2013; 

Schomburg et al., 2014; Linden et al., 2011), others, notably those referring to the macroscopic 

geometry of the cellular populations, have been mostly neglected, in part due to the difficulties 

of modeling those using standard techniques. Here we take advantage of the ability of FEM to 

explicitly model the tridimensional arrangement of a whole brain structure, i.e. the hippocampal 

dentate gyrus, to directly address these factors. For the following simulations we employed a 

reduced version of the hippocampal model reproducing only the dentate gyrus region (see Figure 

2.6). 

 Two assumptions are usually made when interpreting LFPs: (1) the dominant polarity 

(positive or negative) is determined by the inhibitory or excitatory nature of the synaptic inputs; 

and (2) the closer the LFP is to the synaptic domain the larger its amplitude. However, several 

observations in the DG challenge both these assumptions. In this region positively oriented 

spontaneous LFP events can be observed (Bragin et al., 1995a,b), which are rarely observed in 

the brain. Moreover, LFP power reaches a maximum in the hilus (i.e., at a distance from the GC 

layer). 

 

3.2.1. Influence of synaptic domains and cell morphology  

 In the previous section we described three main synaptic sources of DG LFPs that we 

identified as the transmembrane currents on the GC elicited by the lateral perforant path input 

(LPP), the medial perforant path (MPP), and a perisomatic inhibition  (GCsom). Despite their 
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different chemical nature (MPP and LPP glutamatergic, thus excitatory, and GCsom likely 

gabaergic, thus inhibitory) the three of them were characterized by large positive polarity in the 

GC layers and hilus and a reversal in the str. moleculare (Figure 3.3). However there are other 

known inputs to the GCs that apparently do not elicit sizeable contributions to the recorded 

LFPs. We investigated in the model the amplitude and polarity of DG LFP produced for different 

types of synaptic inputs, employing the time series of experimentally obtained ICs and variable 

source configurations (see Methods).    

 Both dendritic excitation (Figure 3.8A) and somatic inhibition (Figure 3.8B) produced 

large positive LFPs in the hilus that reverse in the str. moleculare. Inversion of the polarity of 

current sources, whether simulating distal dendritic inhibition (Figure 3.8C) or somatic excitation 

(not shown), switched the LFP polarity at all sites. Although negative LFPs in the hilus are also 

observed experimentally these were far less frequent than positive LFPs, suggesting that 

anatomical pathways that generate negative hilar LFPs (e.g., dendritic inhibition) do not fulfill 

the spatiotemporal requirements to contribute to LFPs as strongly as others (see below). 

 As we showed in Figure 3.4 the IC with larger contribution to DG LFPs was the LPP 

while the MPP was the smaller. Because the contribution of a given synaptic input to the LFP 

depends on both geometrical and functional factors, and the latter may differ for excitatory and 

inhibitory inputs during ongoing activity, we ran simulations using the same temporal activation 

in all cases. We compared the three experimentally observed source configurations plus two 

others we did not observed but were predicted by the anatomy (Houser, 2007;Amaral et al., 

2007; Han et al., 1993), dendritic inhibition and a proximal commissural-like excitation (see 

colored GC cartoons in Figure 3.8D). The relative power of LFP elicited by simulated inputs was 

similar to those observed in the experiments, the differences could be attributed to the different 

temporal dynamics of the inputs in the latter. The excitatory MPP and LPP inputs and the 

inhibitory GCsom input elicited positive LFPs across the hilus, whereas distal dendritic 

inhibition and proximal excitation elicited negative LFPs. However, we noticed that the 

extension and location of the active synaptic domain produced a clear effect whereby the power 

was stronger the more distal the input and the narrower the active domain, the stronger the 

power. This result can be explained by the increase of dipolar moment in these source 

configurations. 
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Figure 3.8: A: Comparison of LFP elicited by different inputs to the DG. LFPs were obtained 

using the same temporal activation as those recorded in the experiments. The GC drawing on the 

left mark the cellular bands used as excitatory (blue) or inhibitory (red) synaptic domains. A, B, 

sample epochs of dendritic excitatory (MPP) and somatic inhibitory (GCsom) LFPs. Note the 

large, steady and positive potentials across the hilus in both cases. Negative hilar potentials were 

only obtained by modeling imaginary cases of distal dendritic inhibition or proximal excitation 

(D). No such LFP generators were found in the experiments. D: Absolute power and dominant 

polarity of the model LFPs in the hilus for each of the experimental cases plus two imaginary 

cases representing dendritic inhibition and proximal excitatory inputs (commissural like). All the 

simulations used identical input activation to reveal the cytoarchitectonic influences. The 

maximum power was obtained for inputs with stronger dipolar moment (e.g., distal LPP input), 

regardless of the polarity. Modified from Fernández-Ruiz et al., 2013. 

 

 A plausible interpretation of the aforementioned observations is that outward somatic 

currents (either active or passive) add up preferentially in the hilus and they generate positive 

LFPs. However, to comprehensively interpret the way volume-conducted currents sum or cancel 

at sites distant of the generating cells, both the cellular geometry and population architecture 
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must be considered. We first explored a key aspect of the former, the number, and orientation of 

the GC dendritic arbors. 

 The simulations were repeated using the source configuration of a somatic inhibition in 

realistic GCs with a single polarized dendritic tree (Figure 3.9A) or imaginary GCs with two 

dendritic trees, more similar to the morphology of hippocampal and cortical pyramidal cells 

(Figure 3.9B). For simplicity, we sampled the LFPs on the planar section of the GC population. 

Compared with the realistic morphology with only one dendritic tree (Figure 3.9A), a bipolar 

dendritic arbor led to dramatic changes in hilar LFPs, which were smaller in magnitude and 

display negative polarity (Figure 3.9B). Examining the spatial distribution of the current density 

and potential (dashed and continuous lines in the right panels), large potentials were confined to 

a narrow cellular domain containing the active synapses. Whereas in the realistic neuronal 

configuration outward currents exited the cellular compartment through the somatic surface in 

both blades and they entered the hilus (Figure 3.9A, high density of lines of current), in the 

bipolar dendritic configuration they were cancelled out except in a small region at either edge 

(Figure 3.9B). In all cases, the dominant polarity of the LFP in the hilus was determined by the 

direction of the currents in the closer cellular compartment (as long as the distance between 

parallel layers remains constant within certain limits).  

 We next examined the influence of the relative polarity of dipole layer generators on LFP 

magnitude by simulating an imaginary model of the DG in which the GCs were similarly 

oriented in both blades instead of having an inverted disposition (Figure 3.9C). We did this to 

obtain an identical, instead of opposite, source distribution in both blades. This configuration 

yielded hilar LFPs with the smallest amplitude and displayed a polarity reversal half way 

between cell layers, right in the middle of the hilus. 
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Figure 3.9: A: LFP profile along a vertical track crossing the planar section of the DG obtained 

from the activation of GCs with a somatic inhibitory input. Note the large amplitude and positive 

polarity of hilar potentials compared with dendritic sites. The lines of current (black dashed) and 

isopotential lines (solid colored) to the right show the collective behavior of the cell component 

(stacked rectangles) as a laminar dipole in which the soma layer oriented toward the hilus acts as 

the current source and the outer dendritic segment as the current sink. B: Similar plots were 

constructed for the LFPs generated by the same input introduced in a DG formed by hypothetical 

GCs with two polarized dendritic trees. Note very small negative LFPs in the hilus. Only 

perisomatic layers exhibited sizable LFPs with positive polarity. The bulk of the inward currents 

were directed toward inner synaptic sites, spreading weakly through the outer volume. C: When 

the same input was introduced to a hypothetical DG in which GCs had single dendritic arbors but 

same polarity in both blades the simultaneous somatic inhibition in the two blades cancelled out 

the hilar LFPs, while distant sites beyond the cell layers developed weak negative and positive 

potentials. Modified from Fernández-Ruiz et al., 2013. 
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3.2.2. Influence of Dentate Gyrus cytoarchitecture 

 Although the aforementioned simulations explain the polarity of hilar potentials, they do 

not fully clarify why LFPs are larger in this region than near the synaptic domain or how they 

propagated away from the cellular layers. We investigate the influence of the geometry of the 

DG on the generation and propagation of LFP focusing only in one of the identified sources, the 

MPP, as geometrical factors should affect similarly to the fields elicited by each synaptic input.   
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Figure 3.10: A: 2D voltage distribution after the activation of DG by an MPP input. Linear 

recording tracks were placed every 200 μm and averaged voltage profiles plotted (black curves). 

Note positive hilar potentials getting larger closer to the apex (concave part). This voltage 

distribution was very similar to the one obtained experimentally (compare with Figure 3.1.3C). 

B: Mean power of LFP in the middle of the hilus expressed as percentage of track 2 power 

illustrates the same effect. C: The three-dimensional representation of the amplitude and polarity 

helps to visualize the giant positive potentials confined to the hilus. In contrast, smaller negative 

potentials are generated in synaptic and outer sites. Note that the asymmetrical segregation of 

positive and negative LFPs in the volume belongs to a single synaptic input. Modified from 

Fernández-Ruiz et al., 2013. 
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 The 2D voltage distribution of the experimentally recorded MPP input was characterized 

by small negative dendritic potentials and large positive potentials in the hilus whose power 

increased toward the apex (see Figure 3.3C and Fernández-Ruiz et al., 2013a). Identical results 

were obtained in the simulations, when the model was fed with MPP-like  (i.e. medial dendritic 

excitation) current distributions (Figure 3.10B; note that we plotted LFPs in five vertical tracks 

so that one was placed in a zone with a single blade at the open end). Examination of the lines of 

current revealed that the increasing concentration of outward currents toward the apex was 

brought about by the concave structure. The largest spread of volume-conducted currents out of 

the DG was through the open end (asterisk), resulting in positive LFPs of significant amplitude 

(as much as 0.5 mV up to 400 μm from the cell layers). This indicates a possible large 

"contamination" of DG activity in LFPs recorded in proximal CA3. The power of simulated hilar 

LFPs along the midline followed the same spatial trend as that seen in vivo with the apex 

exhibiting an amplitude around 5-fold that of the open end (205.3% and 39.3% the value in 

shank no. 2, respectively). The pseudo-3D representation of the MPP evoked LFPs revealed the 

sharp spatial transition and the relative magnitude of positive and negative LFPs (Figure 3.10C) 

both in and between cell layers. 

 The aforementioned results suggested that the large amplitude of hilar potentials is due to 

simultaneous activation of the GCs in the two blades. We further investigated this by simulating 

an input to only the lower blade of the DG. As only the lower blade remained active, the DG was 

virtually converted into a planar structure, and we found that hilar LFPs were dramatically 

reduced (10.7–24.7 %  of control values in tracks 1–5; Figure 3.11), whereas the negative LFPs 

in the synaptic sites of the lower blade appeared to increase, as the removal of positive hilar 

potentials reduced cancellation (Figure 3.11A-B, red arrows). Notably, with only lower blade 

activation, positive fields propagated across the top blade and above (Figure 3.11A-B, compare 

red ovals), due to the loss of the mutual cancellation of extracellular currents from laminar 

dipoles of opposing polarity. We also calculated the ratio of LFP power in the hilus versus the 

str. moleculare (points were separated by 300 μm; Figure 3.11D) as a measurement of the 

boosting effect produced by layer folding and curvature. In planar structures, this ratio is close to 

one due to the symmetry of the electric field in laminar dipoles. The ratio increased from ~4 to 

~22 toward the apex for homogeneous activation in the two blades, and it fell below 1.5 when 

only the bottom blade was activated (Figure 3.11D, grey bars).  
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Figure 3.11: LFP and CSD profiles after activation of both DG blades (A) or only one (B). Note 

the strong reduction of LFP power in the hilus (histograms), and the modification of the spatial 

distribution of MPP potentials (Vloads), which resembled synaptic activation in a single planar 

layer (linear decay from the active blade). Despite the intact CSDload distribution in the lower 

blade, the local synaptic sites increased in amplitude (small red arrows) due to reduced 

cancellation by the absence of positive potentials from the other layer. Note that LFPs were also 

evident in the deactivated blade (compare red ovals), as the current reached this location volume-

conducted through the hilus from the distant active blade. No reversal of polarity was observed 

for these LFPs.  C: Power of the hilar LFPs inactivation of the top blade expressed as the 

percentage of control (homogeneous activation in the two blades). Inset illustrate sites (in blue) 

used for estimations. D: Hilar to stratum moleculare ratio of LFP amplitude in control and after 

inactivation of the top blade. The pairs of sites used for estimation were 300 μm apart along 

recording tracks (inset). Note the increasing boosting effect toward the apex in control and the 

nearly complete linearization after the inactivation of the top blade, which then reached values 

close to 1. Modified from Fernández-Ruiz et al., 2013. 
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 The results obtained from the simulations and presented in this section were replicated 

also experimentally (Fernández-Ruiz et al., 2013b). In urethane-anesthetized rats we performed 

local injections of DNQX to block all excitatory synaptic activity in one blade of the DG while 

recording its LFPs with a four-shanks silicon probe covering the whole structure. This 

pharmacological manipulation was equivalent to the simulation where only one of the GC layers 

was activated. In those experiments we observed also a dramatic reduction of hilar LFPs and 

very similar LFP and CSD profiles for the MPP elicited LFPs as those presented here.  

 These results confirm the important role of layer folding and curvatures in the boosting of 

hilar potentials and the necessity of incorporating cytoarchitectonic features into simulations for 

correctly interpreting intracranial or even surface EEG recordings. 

 

3.2.3. Influence of spatiotemporal dynamics of synaptic inputs  

 As the simulations performed so far were designed to study the influence of structural 

factors (i.e. cell morphology or tissue geometry) we do not take into account the spatiotemporal 

dynamics of the synaptic inputs. For this reason the activation of the whole GC population was 

always synchronous. As a next step we performed simulations using different synaptic inputs of 

varying spatial coverage and position. To this end, GCs blocks of varying size (200, 400, or 800 

μm in extension) were activated pairwise in both blades with different (uncorrelated) inputs 

obtained from experimental recordings (Figure 3.2.5). To better evaluate the mixing of currents 

from different GC sources the activated blocks were non-overlapping, i.e., only one input was 

injected to each GC block. 

 When we considered a representative simulation is considered that involves four inputs to 

400-μm-wide spatial modules and recording across a shank placed the middle of DG (no. 3, 

located across blue modules; Figure 3.12A), the LFPs contained a mixed contribution by all four 

active strips. The mixture of activities recorded along a given vertical track can be separated by 

ICA from the linear LFPs. In the simulation illustrated here, ICA revealed three components, 

each with distinct spatial distribution and magnitude (Figure 3.12, V loadings).The largest IC 

corresponded to activity from the local (blue) GC population surrounding recording shank 3, 

whereas the other two captured the volume-conducted activity from adjacent modules (green and 
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red blocks). Voltage loadings retrieved for distant sources (red and green traces) were similar to 

that of the local sources but considerably spatially smoothed, while CSD loadings of the ICs 

revealed only large currents for the local component. Importantly, hilar LFPs were smaller than 

those observed during synchronous activation of the whole DG, and the amplitudes approached 

those recorded in the dendritic domains (Figure 3.12A, histogram). The multiple current sources 

contributing to hilar LFPs caused continuous variation of the spatial coherence of LFPs within 

the hilus due to the uneven spatiotemporal contribution of the sources. The spatiotemporal 

distribution of hilar LFPs may become very complex and heterogeneous, as illustrated by sample 

snapshots of the voltage distribution, magnitude, and polarity at different instants (Figure 3.12B). 

The cytoarchitectonic influence of co-active modules and strong curvatures could still be 

examined by comparing the mean power of LFPs in different configurations (Figure 3.12C). 

Together, our simulations revealed a number of effects relevant to the interpretation of LFPs in 

the DG: (1) regardless of the number and spatial coverage of the synaptic inputs, the power of 

hilar LFPs increased toward the apex (Figure 3.12D) and always reached a maximum amplitude 

lower than that induced by a synchronous input to the whole DG; importantly, even the 

narrowest mirrored strips produced larger LFPs than a single blade activation (Figure 3.12C-D 

red bars); (2) the decrease of LFP power was more accentuated in the narrower activation 

modules due to the reduced clustering of volume-conducted currents in smaller modules (86 ± 

14%, 52± 8% and 33 ±  11% of control LFP power - taken during synchronous activation of the 

whole DG-averaged over all five recording tracts in configurations with 800, 400, and 200-μm-

wide modules, respectively; mean ±  SEM;  Figure 3.12C-D); (3) compared with homogeneous 

activation by a single input, the reduction in power in the central tracks was greater for the larger 

modules (Figure 3.12C-D; although the absolute value remained unchanged), whereas the apex 

was less sensitive to module size; and (4) the unbalance of positive and negative relative 

amplitudes in both sides of the GC domains decreased markedly. This heterogeneous spatial 

behavior was a combined function of multiple factors, including the size of spatial modules, 

layer separation at the open end and the radius of DG curvature. 
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Figure 3.12: A: Results obtained for a model configuration using non-overlapping, 400- μm -

wide modules in both blades (left, colored). Activations (top, colored traces) in all the domains 

where uncorrelated. A representative epoch of simulated LFPs and its CSD maps calculated for 

the central track (no. 3). In the histogram of mean LFP power there is a large reduction in power 

in the hilus compared with the uniform activation by a single input. ICA disentangled the local 

activity (blue) from that in adjacent domains that had mixed with LFPs by volume conduction 

(Vloads and CSDloads). B: Snapshots of voltage distribution at four different instants reflect the 

extremely varying spatial distribution of LFPs contributed by multiple sources in A. Note the 

extreme variation and regionalization of hilar potentials. C: Change in the mean LFP power 

along the hilus normalized to the control (i.e., coherent input in the two blades), and the change 

in the absolute power (D) for the different configurations of GC population activation either in 

mirrored modules of different sizes (blue bars) or as a single source extending through one or the 

two blades. Modified from Fernández-Ruiz et al., 2013. 
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 We also calculated the ratio of LFP power in the hilus versus that in the GC dendritic 

domains, as this value is highly sensitive to the size of the spatial coverage of inputs. The hilar/ 

str. moleculare power ratio estimated between points 300 μm apart in the same recording track 

(Figure 3.13A, inset) increased toward the apex due to the shorter distance between the current 

sources in both blades and the proximity to the concave DG section. In any given recording 

track, this ratio decreased in parallel with the size of the activated modules (Figure 3.13A, blue 

bars), confirming that this value serves as an index of the spatial extension of synaptic inputs. In 

all cases, the lowest ratio (close to 1) was observed during activation of a single DG blade (red 

bars), whereas the largest ratio was observed when both blades were activated in total synchrony 

(gray bars). Notably, the contribution of an entire single blade to the hilus was much lower than 

that of the mirrored activation over a reduced GC module (Figure 3.13A, compare one blade 

versus 200 μm module activation).  

 The covariance of LFPs recorded at two sites depends on the distance and the temporal 

dynamics of the active sources whose currents elicit measurable LFP at these points. This was 

estimated by the cross-correlation index of LFPs in pairs of sites that were increasingly far apart 

(Figure 13B). The activation of a single pathway extending throughout the entire GC population 

(two blades) generated correlated temporal dynamics everywhere (Figure 13B, gray line). 

However, when two or more modules were active simultaneously with uncorrelated dynamics, 

the time course of the mixed LFPs varied, hence the correlation decreased. Moreover, the 

correlation of the LFP at a given pair of recording sites was proportional to the size of the 

coherently activated modules. This effect was mediated by the differential contributions of 

volume-conducted currents arising from each of the simultaneously activated sources located at 

different parts of the DG, as demonstrated quantitatively by the correlation between pairs of 

points separated by increasing intervals along the middle of the hilus(Figure 3.13B, blue lines).  

 These simulations results can be compared with the experimentally measured DG ICs. 

The hilar/ str. moleculare power ratio along the DG observed for MPP and LPP inputs was 

similar to the obtained in the model for the synchronous activation of the whole GC population 

(Fernández-Ruiz et al., 2013b). Besides the cross-correlation for the activity of both ICs along 

the DG was markedly higher that the obtained in the model for the activation of small modules 

of the GC population. Those observations suggest that the most likely case for LPP and MPP 
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inputs to the GC population in vivo is that of synchronous activation of extended domains of GCs 

in both blades of the DG simultaneously.   
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Figure 3.13: A: The hilar/GC ratio was measured along the plane of symmetry between hilar and 

synaptic points of the same track, as indicated in the scheme (inset). Largest values for always 

obtained with the synchronous activation of both blades (grey bars) and lower ones for the single 

blade activation (red bars), with intermediate values for the activation of modules of different 

size (blue bars). B: Cross-correlation of LFPs in pairs of sites along the midline in the hilus. 

Color codes as in A. Modified from Fernández-Ruiz et al., 2013. 
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 The simulation data presented here were derived using multiple inputs in non-

overlapping spatial GC domains. Given the complexity of the underlying interactions, we did not 

present data pertaining to spatially overlapped inputs. However, it can be shown that in cases of 

complete overlapping of multiple inputs, the resulting LFPs maintained their spatial coherence. 

Thus, the divergence of hilar LFPs arose from the uneven mixing of the volume-conducted 

currents produced by the differential spatial coverage in a curved structure, as demonstrated here 

for non-overlapping inputs.  

 In the present section we have studied the genesis of LFPs in the DG as a way to 

investigate the influence of tissue geometry on extracellular potentials in curved structures of the 

brain. We have shown that it is the particular U shape of DG with opposite dipoles, activated 

synchronously in both blades, the responsible of the enormous amplitude with positive polarity 

LFPs in the hilus. This particular architecture exerts a boosting effect over extracellular 

potentials, amplifying them and invalidating the established assumptions about LFPs that are 

fulfilled in laminar structures. The accomplishment of a mesoscopic tridimensional model of rat 

DG and the application of FEM to resolve extracellular fields, led us to quantitatively evaluate 

the influence of different geometrical (curvatures, relative polarity of the sources) and dynamical 

(synchrony, spatial correlation) factors in shaping LFPs 
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3.3. Theta-gamma cross-frequency coupling in the hippocampus-entorhinal 

circuit  

The hippocampal-entorhinal system is characterized by the ubiquitous occurrence of 

distinct oscillatory patterns, including the prominent theta and gamma rhythms (Buzsaki et al., 

1983; Leung, 1998; Buzsaki 2002; Fell and Axmacher, 2011, Vanderwolf, 1969). Theta phase 

coordination of gamma rhythms within and across brain regions has been studied extensively, 

however its cellular mechanism and functional relevance remain largely unknown (Bragin et al., 

1995; Lisman and Idiart, 1995; Lisman and Jensen, 2013; Schroeder and Lakatos, 2009; Canolty 

and Knight, 2010; Fell and Axmacher, 2011; Buzsaki and Wang, 2012; Colgin et al., 2009). 

The CA1 region of the hippocampus is under the control of two major upstream regions: 

hippocampal area CA3 and the entorhinal cortex. CA3 axons make synapses with CA1 

pyramidal cells in the stratum radiatum while layer 3 entorhinal cells (EC3) innervate the stratum 

lacunosum-moleculare (Witter et al., 1989; Amaral and Witter, 1989). Their layer-segregated 

inputs mediate both dendritic excitation and feedforward inhibition in CA1 (Buzsáki, 1984). To 

determine the coordination of gamma oscillations by the theta rhythm in CA1, the dynamic 

interactions between the entorhinal and CA3 inputs to the CA1 region, and their impact on the 

CA1 output, we used high-density extracellular recordings, combined with source separation 

techniques, while rats performed different navigational tasks and slept in their home cages. 

Experiments were carried out while animals ran on a linear track (250 cm long), a T-maze 

or open field (Mizuseki et al., 2009; Mizuseki et al., 2012; Pastalkova et al., 2008; Diba and 

Buzsáki, 2008; Montgomery and Buzsáki, 2007; Berényi et al., 2014). Theta epochs during 

behavioral tasks were classified as RUN, while those during sleep were classified as REM. 

 

3.3.1. Sources of gamma oscillations in CA1 

It was already known that the phase of theta rhythm modulates the power of gamma 

oscillations; however, large controversy remains regarding how many independent gamma 

oscillators are present in the CA1 region and how are their exact interactions (Colgin et al., 2009; 
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Belluscio et al., 2012; Scheffer-Teixeira et al., 2013; Lasztoczi and Klausberger, 2014). Thus the 

first goal of this part of our research was to clarify those points.  

We took the times of theta activity during both sleep (REM) and behavior (RUN) and 

concatenate epochs until having acceptable homogeneous samples of 600 s that were used for 

subsequent analyses. RUN/REM comparisons were performed for theta epochs from the same 

session and animal.  

 

Figure 3.14: A: Gamma amplitude-theta frequency comodulogram of LFP in the CA1 pyramidal 

layer (CA1 str. pyr. LFP) showed strong theta phase modulation of three gamma sub-bands 

during RUN (gammaS, gammaM, and gammaF; white arrows). Each IC obtained for CA1 LFPs 

displayed modulation in one dominant sub-band. White arrows indicate the frequency of peak 

power. Note similar gamma frequencies in the rad and CA3pyr ICs, and the lm IC and EC3 LFP, 

respectively. B: Same as in A during REM sleep. C: Group data of peak frequencies (six rats for 

CA1 and CA3 ICs, four rats for EC3 LFP). D and E:  REM/RUN MI ratio (D) and relative 

power (30–300 Hz) in different layers (E). (*/**/***p < 0.05/0.01/0.001; t test). F: Mean ± SEM 

of firing rate (FR) ratios of single units between REM and RUN ([REM - RUN]/[REM + RUN]). 

Reproduced from Schomburg, Fernández-Ruiz et al., 2014.  
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We filtered CA1 pyramidal layer LFP in a broad gamma band, from 30 to 300 Hz, and 

extracted the signal amplitude for every frequency step by means of complex wavelet transform 

(see Methods). I also filtered the LFP between 1 and 20 Hz and by the same procedure extracted 

the phase for every frequency step. Then we calculated the modulation of the high frequency 

amplitude by the phase of the slower frequency employing the modulation index (MI) introduced 

by Tort et al., 2010. With the MI for every amplitude-phase pairs we constructed 2D 

comodulogram plots (Figure 3.2.1A-B). This procedure reveals three distinct but overlapping 

gamma sub-bands during RUN (Figure 3.2.1A, first panel). One of the oscillations occupies the 

slower gamma spectrum (30-60 Hz) so I labeled it as slow gamma or gammaS, another gamma 

oscillations span from 60 to 100 Hz so I termed it as mid-frequency gamma or gammaM. The 

third component spans a wide frequency range of the upper gamma spectrum, from 120 to 250 

Hz, so I named it as fast gamma or gammaF.  

Because underlying currents of gamma LFP in the pyramidal layer reflect a combination 

(in unknown proportions) of active excitatory and inhibitory currents and passive return currents 

from the dendritic layers (Csicsvari et al., 2003; Glickfeld et al, 2009; Schomburg et al, 2012; 

Fernández-Ruiz et al., 2012), we employed ICA to separate the observed gamma oscillations of 

the raw LFP into their pathway-specific synaptic sources (see Methods). For this purpose we 

took the LFPs from all the electrodes located in the CA1 region (thus including the pyramidal 

and dendritic layers), filtered them between 30 and 300 Hz and performed ICA. The same three 

main ICs as shown in the previous chapter were found: CA1pyr, radiatum (rad) and lac-mol 

(lm). Cross-frequency phase-amplitude analysis of the three ICs revealed significantly theta-

modulated gamma bands in all animals (p < 0.001 for each IC, surrogate test; 7 animals in 

total).In the CA1pyr IC, theta oscillations most strongly modulated fast gamma frequencies 

(Figure 3.14A, second panel; mean ± s.e.m., 149.4 ± 4.3 Hz). In the rad IC, the dominant theta-

modulated gamma frequencies were between 30 and 70 Hz (Figure 3.14A, third panel; 47.3 ± 0.6 

Hz). Compared to the rad IC, theta-coupled gamma oscillations in the lm IC were significantly 

faster (p < 0.0001, t-test; Figure 3.14A, fourth panel; 85.7 ± 1.8 Hz). Thus ICA decomposition of 

CA1 gamma LFPs was able to separate the contribution of three independent gamma generators, 

each one with activity in a discrete frequency band.  
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 To clarify the origin of those gamma generators we looked at the CA1 input regions. CA3 

pyramidal cells send their axons to the CA1 stratum radiatum and it was already now that they 

elicit strong slow gamma there (Cscivari et al., 2003, Fernández-Ruiz et al., 2012a; Fernández-

Ruiz et al., 2012b; Zemankovics et al., 2013), so they are the most likely candidates for being 

responsible of radiatum gammaS. When we applied the same procedure as described in this 

section to the LFP recorded in the CA3 pyramidal layer, we found a theta-modulated gamma 

band similar to that in the rad IC (p > 0.05, t-test between frequencies), with a peak frequency of 

47.6 ± 1.2 Hz (Figure 3.14A, fifth panel). These similar gamma oscillations can be attributed to 

the fact that the same CA3 pyramidal cells that send axons to the CA1 also leave collaterals in 

the same CA3 region (Li et al., 1994; Ishikuza et al., 1990). The CA1 stratum lacunosum-

moleculare is densely innervated by axons from the entorhinal cortex layer 3 so we also applied 

the same analysis to the LFPs recorded there. Gamma oscillations there, were similar to those 

displayed by the lm IC (p > 0.05, t-test between frequencies) with a peak frequency of 90.0 ± 4.9 

Hz (Figure 3.14A, sixth panel), pointing also to EC3 projecting cells as the responsible for the lm 

gammaM. The CA1pyr IC is most likely of local origin because the pyramidal layer and 

perisomatic region do not receive extrinsic afferences as the dendritic layers but is innervated by 

multitude of CA1 interneurons. Its peak frequency around 150 Hz suggests that it can be elicited 

by fast GABAA IPSPs onto the CA1 pyramidal cells but the fact that its theta-modulated gamma 

frequency extends up to 250 Hz, suggests that it can capture also contributions from action 

potentials (Schomburg et al., 2012; Ibarz et al., 2013; Scheffer-Teixeira et al., 2013). 

 REM sleep is characterized by prominent theta rhythm in the hippocampus so we sought 

to verify if theta-gamma dynamics described for the RUN state were preserved during sleep. We 

found the same three ICs for CA1 gamma LFPs during sleep. The frequency distribution of the 

theta modulated gamma sub-bands was largely similar to waking for all of them and also for 

CA3pyr and EC3 LFPs (Figure 3.14B,C; p > 0.05, t-test). We employed two different methods to 

quantify the differences between both states. The modulation index (MI, Tort et al., 2008) to 

quantify the strength of theta-gamma coupling and the relative power (or relative variance of the 

IC; Fernández-Ruiz et al., 2012) of the gamma filtered ICs. Both MI and power of gammaS in the 

rad IC were significantly reduced during REM compared to RUN (p <0.0001, t-test; Figure 3.2.1 

B,D,E), whereas theta-gammaM coupling and power in the lm IC were significantly increased (p 

< 0.0001, t-test; Figure 3.2.1 B,D,E). These changes were accompanied by a parallel reduction of 
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theta-gammaS coupling in CA3pyr(p < 0.01, t-test; Figure 3.14 B,D) and increased theta-

gammaM coupling in EC3 LFP during REM (p < 0.01, t-test; Figure 3.14 B,D). 

 We also checked the firing of the neurons in the CA1, CA3 and EC3 to see if their 

changes in firing rate matched with those observed in the LFPs during waking and sleep. 

Individual units were extracted from the high-pass filtered LFPs and were classified into putative 

pyramidal cells and interneurons based on their waveform, autocorrelograms and other 

characteristics (see Methods). For each individual neuron the mean firing rate was calculated for 

both states and a (REM-RUN) / (REM+RUN) ratio used for comparison. Consistent with the 

LFP changes, CA3 and EC3 pyramidal neuron firing rates decreased and increased, respectively, 

during REM compared to RUN (p < 0.05, Kruskal-Wallis ANOVA, followed by Tukey’s 

honestly significant difference test; Figure 3.2.1F). In summary, theta-modulated gamma power 

in the respective dendritic domains of CA1 pyramidal cells mainly reflects the gamma band 

activity in their respective afferent regions and is modulated as a function of brain state and 

network architecture.  

 

3.3.2.  Coherence segregation of layer-specific gamma sources   

 If gamma oscillations in the hippocampal CA1 are layer specific as I proposed in the 

previous section, is to be expected that their within-layer coherence is much larger than their 

cross-layer coherence. As a first step to verify this, coherence maps in the broad gamma 

frequency band (30-100 Hz) were constructed between LFPs at reference sites in different layers 

and the remaining 255 channels. This procedure reliably outlined the anatomical boundaries in 

CA1 for stratum pyramidale (Figure 3.15A, first panel), stratum radiatum (second panel), and 

stratum lacunosum-moleculare (third panel). 

 Then we compared the gamma coherence (30-100 Hz) for all the three main CA1 LFP 

ICs extracted in every shank of the 8-shanks probe were the appropriated layer was recorded. 

The coherence matrix for a single case is displayed in Figure 3.15B. High coherence values 

(warm colors) were only obtained for same ICs in separate shanks but not across shanks. The 

across animals quantification of coherence relative to distance (n = 6 rats; Figure 3.15C) shows 

similar results.  Gamma coherence remained relatively high (> 0.4) for ICs from different shanks 
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in the same layer, even up to 1.8 mm away, whereas gamma coherence between ICs from 

different layers was consistently lower even in the same shank. 

 

Figure 3.15: A: Gamma (30–90 Hz) coherence maps between LFP recorded from a reference site 

(white patch with star) and every other recording site on a 256-channel probe spanning most of a 

transverse plane in the dorsal hippocampus in one example session, for CA1 str. pyramidale 

(top), str. radiatum (middle), and str. lacunosum-moleculare (bottom) references. B: Gamma 

coherence between pathway-specific CA1 ICs (extracted separately for each shank). Similar to 

cross-layer LFP coherence, ICs reflecting different synaptic pathways exhibited low coherence 

with other CA1 ICs across all shanks (numbered 1–7), but high coherence between like ICs from 

different shanks. C: Coherence of gamma ICs decreased monotonically with distance between 

shanks, whereas coherence between different ICs was low, regardless of shank separation. 

Modified from Schomburg, Fernández-Ruiz et al., 2014. 

 

3.3.3. Theta-phase coordination of gamma oscillations in CA1 

Theta-frequency gamma-amplitude coupling analysis was useful to reveal distinct gamma 

oscillations in CA1. We next sought to study how the theta rhythm organizes those gamma 

oscillations in time. We next examined gamma power variation as a function of theta phase of 

the LFP recorded from CA1 str. pyramidale and filtered between 5 and 12 Hz (0° and 180° refer 

to positive polarity peak and negative polarity trough, respectively). LFP and IC's power was 

calculated for each frequency step from 30 to 300 Hz by complex wavelet transform. Z-scored 

gamma power for each frequency was plotted for each bin of theta phase to construct 2D 

comodulograms. Two theta cycles are represented for clarity.     
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Figure 3.16: A: Gamma amplitude-theta phase modulation plots of LFP in CA1 pyramidal layer 

(leftmost panel) and CA1 LFP ICs during RUN. The gammaS (single arrowhead), gammaM 

(double arrowheads), and gammaF (triple arrowhead) dominated the descending phase, peak, and 

trough of the CA1 pyramidal layer theta waves, respectively. Dashed black line, reference theta 

phase of the LFP recorded in CA1 pyramidal layer. B: Same as in (A) during REM. C: Group 

data (six animals for CA1 and CA3, four rats for EC3) for preferred theta phase of each layer’s 

theta-modulated gamma band (30–60, 60–110, and 100–250 Hz for rad, lm, and CA1pyr, 

respectively). D: Z-scored theta-modulated gamma power across animals. (**/***p < 0.01/0.001, 

respectively; t test). Modified from Schomburg, Fernández-Ruiz et al., 2014. 

 

For the LFP recorded from CA1 pyramidal layer we found three gamma sub-bands with 

distinct theta-phase distribution (Figure 3.16A, first panel): gammaS (indicated by one 

arrowhead) at the descending theta phase, gammaM (two arrowheads) at the theta peak, gammaF 

(three arrowheads) at the theta through. Theta-phase gamma-amplitude analysis applied to the 
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ICs confirms this phase separation and clarifies the layer origin of each gamma component. 

GammaF power (>100 Hz) dominated in the CA1pyr IC and was maximal near the trough of the 

theta cycle (174.8 ± 3.3°; Figure 3.16A,C), coincident with the highest probability of spikes of 

the CA1 pyramidal cells and interneurons at this phase (Buzsáki et al., 1983; Csicsvari et al., 

1999; Mizuseki et al., 2009). GammaS (30-60 Hz) was most prominent in the rad IC, occurring 

predominantly on the descending phase of theta (128.3 ± 2.0°; Figure 3.16A,C), which coincides 

with the preferred phase of gamma oscillations in the CA3pyr LFP (138,9 ± 4,5°; Figure 3A,C), 

and most CA3 spiking (Csicsvari et al., 2003; Mizuseki et al., 2009). The gammaM (60-120 Hz) 

that dominated the lm IC was phase-locked to the peak of the reference theta waves (348.8 ± 

5.3°; Figure 3.16A,C), coincident with maximal EC3 gamma LFPs (355,8 ± 14,8°; Figure 

3.16A,C), and pyramidal cell firing in the entorhinal cortex L3 (Mizuseki et al., 2009). 

We also compared the theta phase distribution of gamma power during REM sleep. 

Although in the raw LFP was not evident the presence of the three gamma bands (Figure 3.16B, 

first panel), all the ICs display very similar phase and frequency power distribution as during 

RUN. The theta phase and layer distributions of slow and mid-gamma activity was qualitatively 

similar to RUN (non-significant differences in theta phases of maximal gamma power, p > 0.05, 

t-test; Figure 3.16B,C), but theta-modulated gamma power decreased in the rad and CA3pyr ICs 

(p <0.001, t-test) while it increased in the lm IC and EC3 LFP (p < 0.0001, t-test) during REM 

(Figure 3.16B,D).  

As a next step, we further looked at the modulation of principal cell firing by the theta 

phase. For this purpose, we calculated the preferred theta phase for each excitatory neuron during 

RUN and REM in CA3, EC3 and CA1 (see Methods). The preferred firing phase of most CA3 

pyramidal cells during both RUN and REM is at the descending phase of the theta cycle (Figure 

3.17, first panel), coinciding with the preferred phase of the radiatum gammaS. In the case of the 

EC3 pyramidal cells the preferred firing phase in both states is around the peak of the theta cycle 

(Figure 3.17, second panel), coinciding with the preferred phase of the lac-mol gammaM. During 

RUN CA1 pyramidal cells tend to fire at the theta through or early ascending phase (Figure 3.17, 

second panel), however during REM some cells shift their preferred phase toward the peak, 

reflecting an increased drive by EC3 input during this state (Mizuseki et al., 2010).   
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Figure 3.17: Theta-phase modulation of pyramidal cells in CA3 (A), entorhinal cortex layer 3 (B) 

and CA1 (C) during RUN and REM. Units were sorted according to their z-scored theta-phase 

firing probability (raster plots). Histograms on the top represent the summed probability 

distribution of preferred phases and curves the summed probability distributions of firing rates 

(red for RUN and blue for REM) for all the units that were significantly theta-modulated 

(Rayleigh test p < 0.01). Black curve indicate reference theta phase in the CA1 pyramidal layer 

or entorhinal cortex layer 5. Note that the preferred phase for CA3 and EC3 pyramidal cells is 

similar to that obtained for rad and CA3pyr gammaS and lm and EC3 LFP gammaM (compare 

with figure 3.2.3A,B). 

 

The diagram in Figure 3.18 summarizes the above results and proposed schematics for 

CA1 network function. At the theta peak, projection neurons in entorhinal cortex L3 increase 

their firing eliciting gammaM oscillations locally and in the stratum lacunosum-moleculare. After 

that, during the descending theta phase, CA3 pyramidal cells fire evoking gammaS oscillations 

also locally and in the CA1 stratum radiatum. The same CA3 axons that innervate pyramidal cell 

dendrites in the str. radiatum make abundant synapses onto CA1 interneurons. This feedforward 
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inhibition may be responsible for the gammaF oscillations at the trough of the theta cycle. The 

firing probability of CA1 pyramidal cells is maximal around and after the theta through so it may 

be enhanced by the integration of coincident inputs from EC3 and CA3 and their exact timing 

controlled by the fast perisomatic inhibition, however this hypothesis still need to be 

demonstrated.  

CA3 
St. pyr.

St. rad.

St. lac-mol. EC3 
1

 m
V

50  ms

0
. 2

  m
V

 

Figure 3.18: Diagram summarizing the average ordering of the maximal phases for the gamma 

sub-bands, afferent input, and CA1 spike output over the theta cycle. Reproduced from 

Schomburg, Fernández-Ruiz et al., 2014. 

 

3.3.4. Variation of theta-coupled gamma oscillations along the CA1 transversal axis 

Along its transversal axis the CA1 region can be divided into a proximal region (closer to 

the CA2/CA3 border), an intermediate and a distal region (closer to the subiculum). There are 

important anatomical differences among them, as different entorhinal regions innervate the 

proximal and distal poles (Steward, 1976; Witter et al., 1989). It has also been suggested a 

functional specialization along the transverse axis. Place cells located in proximal sites are better 
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and more spatially informative while those located in more distal sites have multiple place fields 

and less spatial coherence (Henriksen et al., 2010). Less spatially selective cells in distal CA1 

seem to be on the contrary more sensitive to the presence of objects (Burke et al., 2011) and odor 

cues (Igarashi et al., 2014).  

 We studied the variation in theta-gamma dynamics along the CA1 transverse axis to 

check if they can offer a potential mechanism for the observed functional differences. For this 

purpose, we classified all the recording shanks from 6 animals as belonging to the proximal, 

intermediate or distal regions of CA1. Then we applied ICA to the LFPs recorded by each shank 

and performed theta-frequency gamma-amplitude analysis for the three main CA1 ICs, both 

during REM and RUN states.  

 Radiatum gammaS in proximal sites showed a stronger theta-gamma coupling than at 

distal sites, whereas the opposite relationship was observed for the gammaM band in the str. 

lacunosum-moleculare (p< 0,001 and p<, ANOVA tests; n=6 rats; Figure 3.19A). During REM 

sleep, radiatum gammaS power decreased in all sites while lm gammaM increased in all of them. 

However their spatial trends remained constant: gammaS power gradually decreasing from 

proximal to distal and gammaM increasing in the same direction (Figure 3.19B). Conversely, the 

proximodistal distribution of gammaF in the pyramidal layer changes as a function of the brain 

state. During RUN the theta-gamma coupling of the pyramidal layer gammaF is stronger in 

proximal sites while during REM it shifted toward the opposite CA1 border (p< 0,001 and p<, 

ANOVA tests; n=6 rats; Figure 3.19A,B), coinciding with the trend of the predominant 

oscillation in each case, str. radiatum gammaS during RUN and str. lacunosum-moleculare 

gammaM during REM. 

 Changes in CA1pyr theta-gammaF coupling along the proximodistal axis and between 

RUN and REM mostly reflected changes in its theta phase distribution. A bimodal phase 

distribution, exhibiting increased power at both the trough and peak, emerged on the distal end 

during RUN and at all sites during REM (Figure 3.20A). The altered phase distributions were 

limited to the CA1pyr ICs; quantifying the phase distribution with the 'center of mass' of gamma 

power showed significant variation in CA1pyr from proximal to distal ends during both RUN and 

REM (p < 0.001, ANOVA tests; Figure 3.2.7B), but not in the other components (p > 0.05, 

ANOVA tests; Figure 3.20B). 
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Figure 3.19: A: Two-dimensional distribution of the theta coupled gamma oscillations during 

RUN. Each set of three panels was constructed from the gamma-amplitude theta-phase 

comodulograms coupling of the ICs on each recording shank. The rad IC’s gammaS became less 

strongly theta-modulated along the transversal (proximo-distal) axis, whereas lm gammaM 

increased its theta-coupled gamma power. CA1pyr gammaF largely followed the rad IC gradient. 

The bar plot on the right shows group data of MIs, normalized by the average across all shanks 

(six rats). Each comparison showed significant variation from proximal to distal sites (p < 0.001; 

ANOVA). B: Similar display during REM. Note the opposite trend of CA1pyr theta-gammaF 

coupling along the proximo-distal axis compared to RUN. Reproduced from Schomburg, 

Fernández-Ruiz et al., 2014. 
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 Regarding the observed variations in the strength of theta-gamma coupling and theta-

phase distribution along the proximodistal axis, no significant change in the mean frequency of 

theta modulated gamma activity was observed for any of the three ICs in both states (Figure 

3.20C). 
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Figure 3.20: A: Theta phase distribution of CA1pyr gammaF power in RUN and REM at three 

segments along the transversal (proximo-distal) axis of CA1. Note increased bimodality of the 

gammaF power distribution (arrowheads) toward the distal end compared to the CA3 end (p < 

0.001 for mean phases both in RUN and REM, ANOVA tests, six rats) and stronger overall 

bimodality during REM. B: The 'centers of mass' of theta-phase (power-weighted mean phase) of 

rad gammaS and lm gammaM did not show significant changes along the proximo-distal axis in 

both RUN and REM (p> 0.05, t-test; 6 rats). However the CA1pyr gammaF shifts its preferred 

theta-phase from the theta trough at proximal CA1 to closer to the theta peak at distal sites in 

both RUN and REM (*/** p< 0.05/0.01, ANOVA tests; 6 rats). C: Mean frequency of the three 

CA1 ICs (CA1pyr, rad, and lm) did not significantly change along the proximo-distal axis of the 

hippocampus in both RUN and REM states (p> 0.05, t-test; 6 rats). Modified from Schomburg, 

Fernández-Ruiz et al., 2014. 
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 The differences found in the relative strength of the str. radiatum gammaS, elicited by the 

CA3 input to the CA1, and the str. lacunosum-moleculare gammaM ,likely elicited by the EC3 

input to CA1 pointed to a heterogeneous contribution of both inputs along the CA1 axis. CA3 

inputs appear to be predominant in proximal sites and during RUN while EC3 inputs dominate in 

distal sites and during REM. Pyramidal layer gammaF varies along the axis according to the 

brain state, reflecting its variable modulation by both CA3 and EC3 inputs.  

 

3.3.5. Theta-gamma cross-frequency coupling during a memory task 

We have focused here on characterizing theta-gamma dynamics in the entorhino-

hippocampal circuits and found different gamma oscillations organized by the theta rhythm. I 

also found that theta-gamma dynamics in the hippocampus displays strong state-dependent 

modulation during sleep and navigation; however they have also been implied in cognitive 

functions, as memory and learning (Buzsáki and Moser, 2014; Lisman and Jensen, 2013). Thus I 

sought to test if the above characterized gamma oscillations have specific modulation during a 

hippocampus-dependent memory task. For this purpose I choose the delayed-alternation T-maze 

task (Ainge et al., 2007; Montgomery and Buzsáki, 2007; Pastalkova et al., 2008). In this task 

rats learn to run from a starting area through a central arm and then turn left or right, collect a 

water reward a return to the starting area (Figure 3.21A). To increase their motivation for doing 

the task, rats are water deprived and can only drink during the task. After one of such trials they 

are forced to wait for 5-10 seconds and then start over again, but to get the reward animals have 

to turn to the opposite direction as in the previous trial. After a few days of training animals learn 

the task reaching a performance above 80 % (an error is when the animal chose to turn to the 

same direction as the previous trial). It has been shown that rodents with impaired hippocampal 

function cannot successfully perform this task (Aigne et al., 2007). In the central arm the animal 

is recalling the previous memory and uses this information to make a correct choice in the 

juncture of the maze. In the lateral arms the animal is encoding the current direction and has to 

keep this information in the working memory during the delay period (Wood et al., 2000; 

Montgomery and Buzsáki, 2007).  
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Figure 3.21: A: Example running trajectories during one session of a hippocampus-dependent 

delayed alternation T-maze task. Colors indicate sections choose to compare LFP and unit 

activity during center arm running (CENTER, red) to running in side arms (SIDE, blue). B: The 

theta-gamma modulation indices (MI) for CA1 ICs were significantly greater during CENTER 

running compared to SIDE (t-test, n = 3 rats). C: Differences in the theta modulation of the 

gamma power of each IC showed that the strongest changes were at the gamma frequencies 

characteristic of each afferent pathway (compare Figure 3.2.2A). D: Z-score-normalized power 

of each CA1 IC at the frequencies of strongest theta modulation were significantly greater during 

CENTER (red) running compared to SIDE (blue)(t-test; 3 rats). Changes were stronger for rad 

gammaS. E: Mean frequency of the three ICs did not significantly change between CENTER and 

SIDE running (p> 0.05; 3 rats). Modified from Schomburg, Fernández-Ruiz et al., 2014. 
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We compared the spectral activity of each of the three main CA1 LFPs ICs (CA1pyr, 

radiatum and lac-mol) while the rats were running in the central arm versus while they were 

running in the side arms. Only theta periods were included in the analysis and was checked that 

the velocity of the animal was not significantly different (p> 0.5 t-test) for the selected periods in 

each arm. Both theta-gamma coupling (Figure 3.21B) and gamma power (Figure 3.21D) were 

significantly stronger for each CA1 IC during center arm running, compared to the side arm with 

the largest changes present in CA1 str. radiatum (p < 0.001, t-test). These behavior-related 

changes were specific to the gamma sub-bands that dominate the respective ICs during theta: 

gammaF (120-180 Hz) for CA1pyr, gammaS (30-60 Hz) for radiatum and gammaM (60-100 Hz) 

for lac-mol (Figure 3.14C). These results indicate that theta-gamma coupling in the hippocampus 

is selectively enhanced during memory recall.  

Theta-gamma analysis indicates that both CA3 and EC3 inputs are recruited during the 

recall phase of the task, although the CA3 input seems to be preferentially enhanced, as reflected 

by the largest increase in radiatum gammaS. To further investigate if there is a predominance of 

CA3 input over the EC3 we checked the firing of the cells in the input and target regions in three 

additional animals with simultaneous hippocampus and entorhinal recordings, performing the 

same task in a slightly different maze (Figure 3.21A). We aggregated spikes from each neuron 

type within each session to compare overall firing rates, because place-specific firing of 

hippocampal pyramidal cells would confound single unit comparisons of firing rates between 

arms (O’Keefe and Nadel, 1978).CA3 pyramidal cell and CA1interneuron firing rates were 

significantly greater during center arm running compared to side arms (p < 0.01 for CA3 

pyramidal cells, p < 0.05 for CA1 interneurons, t- test on center/side ratios; Figure 3.21B). 

Although CA1 pyramidal cell firing rates were not significantly changed in the side arms 

compared to the center (p > 0.5 t-test, Figure 3.21B) they showed a significantly greater 

probability of firing at the theta peak, the preferred phase of EC3 input (Figure 3.21C, first 

panel). CA3 and EC3 pyramidal cells maintain their theta-phase preference constant in the center 

and side arms, the descending theta phase for the formers and the theta peak for the latter (Figure 

3.21C, second and third panels). Together with the increased firing of CA3 pyramidal cells in the 

central arm, this last result also pointed to an enhanced control of CA1 dynamics by CA3 input 

during memory recall.  
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Figure 3.22: A: Example trajectories during one session of a similar delayed alternation task with 

wheel running during the delay period (Pastalkova et al., 2008), which was performed by the 

animals used in the unit analyses. B: Population firing rate ratios within individual sessions 

revealed that the CA3 pyramidal cells were significantly more active during CENTER running 

compared to SIDE (t-test). CA1 interneurons also fired at significantly greater rates in CENTER. 

Across sessions, the measured CA1 and EC3 pyramidal cell population rates were not 

consistently different in CENTER versus SIDE running (p > 0.05). C: Theta phase (EC3 phase 

reference) distribution of spiking in CA1 (top), CA3 (middle), and EC3 (bottom) pyramidal cell 

populations during CENTER to SIDE running. Lines show the distribution when spike phases 

were summed across all clustered pyramidal cells, dashed lines (shading) show mean (±SEM) 

across single units firing > 30 spikes during CENTER and SIDE epochs. Significance thresholds: 

*/**/***p < 0.05/0.01/0.001. Reproduced from Schomburg, Fernández-Ruiz et al., 2014. 

 

Overall, these experiments demonstrate that the changing balance of CA3 and EC3 inputs 

during different phases of a hippocampus-dependent memory task can affect the theta-

organization of both gamma activity and spiking in CA1. 
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4.  Discussion 

 

4.1. Methodological challenges in the study of brain oscillations 

 The study of brain oscillations is a rapidly expanding field.  In recent years that it has 

been boosted by the development of new technologies to perform large-scale recordings and 

manipulations of brain activity in intact organisms. The increased volume and complexity of data 

typically obtained in a Systems Neuroscience experiment performed with recent methods poses 

an important challenge for their analysis and interpretation. From our point of view, the 

development of novel analytical approaches has been lagging behind the technical development 

in this field. For this reasons one of the main goals of the present work has been to explore new 

methodological approaches to the analysis of neural circuit function and in particular brain 

oscillations.  

Brain oscillations appeared well-suited for application of spectral analysis in order to 

quantify temporal patterns (Fourier analysis and its derivatives; Jenkins and Watts, 1968; 

Oppenheim and Schafer, 1989). Bioelectrical signals are usually filtered in pre- defined 

frequency bands of interest, a process that, it must be remembered, leads to the loss of a 

considerable amount of information. Such a jump from the time to the frequency domain 

summarizes temporal information and makes it handy to associate and compare with other 

measurements of a brain activity. Some paradigmatic cases are the identification of phases in the 

sleep cycle by their spectral content (Dement and Kleitman, 1957), the predictive character of 

hippocampal theta in terms of behavioral performance (Buzsáki et al., 1983; Whishaw and 

Varderwolf, 1973), or the processing of visual stimuli contingent with cortical gamma activity 

(Gray et al., 1989). Importantly, whether oscillatory or irregular, LFPs are complex signals that 

vary not only in time but also in space, as they are raised by uneven summation of currents 

originated in different sites, in many cases even with the contribution of different oscillatory 

generators. All too frequently band-restricted oscillations are thought of and handled as if they 

were independent from each other, under the reductionist assumption that each constitutes a 

separate physiological entity. An increasing number of reports are now appearing in the literature 

challenging, questioning or simply describing inconsistent frequency bands in different or even 

the same brain areas (Florian et al., 1998; Csicsvari et al., 2003; Schmidt et al., 2009; Ray and 
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Maunsell, 2011). One notable example is the open dispute regarding the physiological role of 

gamma activity as a temporal reference frame bringing together different features of a visual 

stimulus (Singer and Gray, 1995; Fries et al., 2007). Recent results challenge this view, arguing 

that visual stimuli generate gamma activity at different frequencies in subregions of the visual 

cortex (Ray and Maunsell, 2010). Others even questioned their very existence, alleging that the 

spectral properties of the activity recorded are indistinguishable from filtered noise (Burns and 

Xing, 2011). We are moving away from the old view of frequency bands as behavioral or 

cognitive flags. We now admit that LFP oscillations are highly variable over time and they have 

a flexible spectrum (Rivas et al., 1996; Bullock et al., 2003; Ray and Maunsell, 2010). However, 

it is uncertain what this means in terms of the afferent and target populations. For instance, 

oscillatory 40–50Hz patterns in the visual cortex (Gray et al., 1989) or the hippocampus 

(Csicsvari et al., 2003; Bragin et al., 1995; Fernández-Ruiz et al., 2012a) are probably unrelated 

phenomena with different cellular mechanisms and having distinct computational meaning 

within their respective networks. On the other hand, the activity of a population of neurons 

undergoes variable frequency modulation, even during the same behavioral state (Reich et al., 

1997; Czurkó et al., 1999; Chang et al., 2012) and hence, the temporal structure of the synaptic 

currents they originate in target neurons would be expected to change accordingly. Indeed, when 

changes of spectral power of LFPs are interpreted, it becomes evident that there is insufficient 

knowledge on the scaling of unitary to macroscopic activities. 

The problems described above are harder to solve for recordings obtained with non-

invasive techniques due to the inherent difficulties in identifying deep generators (Gloor, 1985; 

Baillet et al., 2001; Srinivasan et al., 2006). Even when recording at the physical location of the 

generating sources (e.g. LFP recordings), there is significant uncertainty. We can emphasize the 

dimension of the problem by considering a non-exhaustive list of possible causes that could lead 

to increased gamma power: (1) increased gamma-modulated excitation, (2) inhibition (3), or 

both; (4) the enhanced driving force of an unchanged rhythmic input by sustained changes in 

another input to the same neurons; (5) variations in phase-locking of presynaptic neurons or (6) 

in the number of units recruited to firing; (7) reduction of a concomitant antiphase rhythm near 

the recording electrode; (8) the powering of a different in-phase generator or (9) the addition of 

new ones; (10) variation in resonant intrinsic currents, and so on. The possibilities are many, 

some of a cellular origin and others network based. 
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These issues stress the importance of identifying the population/s contributing to a given 

field potential oscillation as a necessary step to infer on its physiological and computational 

meaning. 

 

The problem of identifying the cellular origin of field oscillations, or the inverse problem 

as it has become known, is a fundamental issue in Systems Neuroscience. In simple terms, given 

an experimental macroscopic signal the amplitude of which varies at different sites (e.g., LFP, 

EEG, MEG), how can the location and extension of the generating source be determined? We 

know from theory that multiple combinations of independent sources (groups of active neurons) 

may give rise to a recorded signal with the same spatial pattern. There is no unique solution and 

in most cases, it is extremely difficult to confirm the potential solutions experimentally. 

 A common feature of electric fields in the brain is that they vary spatially in a complex 

manner, on account of the shifting activation of neuron generators with irregular morphology and 

distribution . The problem arises when several synaptic inputs are co-activated, as is usually the 

case. In such circumstances the electric currents mix unevenly at different sites, and electric 

potential gradients become complex and variable. Thus, only high-density recordings 

simultaneously performed at several depths can correctly map for spatial variations in LFP 

patterns originated by modulations in one or more of the contributing sources. Multisite linear 

recordings are well-suited to a method that has been employed to find the current generators 

underlying field potentials, known as current source density (CSD) analysis (Freeman and 

Nicholson, 1975). This approach has been very useful to determine the contributing cells and the 

location of synaptic membranes activated by afferent stimuli in laminar structures, such as the 

hippocampus or neocortex (Leung, 1979; Schroeder et al., 1998). However, while interpreting 

CSD maps is simple for voltage profiles elicited by stimulating only one afferent pathway their 

application to ongoing LFPs renders complex spatial maps, and in general it is not feasible to 

identify the multiple synaptic generators. Partial success has been obtained in a few stereotypic 

LFP patterns, such as sharp-waves (SPWs: Ylinen et al., 1995), or the theta (Brankack et al., 

1993) and gamma rhythms (Csicsvari et al., 2003) in the hippocampus.  
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4.2. A novel approach to the study of brain oscillations  

Amongst the approaches used to address the mixed contribution of inputs to macroscopic 

patterns, some sought the selective manipulation of parts of a network, such as the activation or 

the silencing of specific pathways or neuron types through electrical, optogenetic, or 

pharmacological intervention (Wu et al., 1998; Happel et al., 2010; Kuki et al., 2012). Other 

approaches pursued the disentanglement of LFPs into their original generators by applying 

statistical tools and algorithms (Di et al., 1990; Kocsis et al., 1999; Montgomery et al., 2009; 

Einevoll et al., 2007). Blind source separation techniques, like the independent component 

analysis (ICA: Comon, 1994; Choi et al., 2005), appear to be the best suited by their capacity to 

find stable groups of sensors picking up a signal whose origin is stationary in the space, a feature 

that can be assumed for electrical fields generated by synaptic currents. We have developed an 

implementation based on the ICA of depth profiles of LFP followed by CSD analysis of the ICs 

to separate the different synaptic pathways converging on hippocampal principal cells on the 

evidence that each produces field potentials of stable and distinct spatial distribution (Fernández-

Ruiz et al., 2012a; Fernández-Ruiz and Herreras, 2013). Applying this method to two-

dimensional LFP recordings in the hippocampus we were able separate their physiologically 

meaningful sources and match them with known anatomical pathways and its dendritic domains. 

Due to the parallel arrangement of principal cells bodies and dendrites in the hippocampus and 

the stratification of the synaptic inputs, the application of ICA and the interpretation of the 

resulting ICs are particularly simple. However it has some limitations like only those synaptic 

inputs with enough postsynaptic current, synchrony, and spatial clustering can be detected and 

separated by ICA; thus, very weak or sparse currents are not easily discernible. 

Temporal and spectral characteristics of the wide-band ICs can be analyzed. We thus can 

detect arbitrary frequency restricted oscillatory patterns without necessary imposing a previous 

narrow- band filter to the LFP. Another advantage is that the use of pathway-specific ICs 

reduced the concern of a particular LFP pattern to be a mixture of several inputs, allowing a 

more accurate interpretation of oscillations in terms of their underlying mechanisms.  

 

 We have also employed in this work an innovative methodology to simulate LFPs at a 

mesoscopic scale. It consists in explicitly modelling the geometry of the tissue, simulating 

neurons as current sources whose weight and temporal activation was taken from experimental 
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measures and solving the electromagnetic differential equations to calculate electric fields and 

potentials with FEM. Despite its simplicity, the model was able to reproduce with high accuracy 

the characteristics of experimentally recorded hippocampal LFPs. The experimental data 

necessary to correctly implement the model was only available by the use multielectrode 

recordings and the ability of ICA to render spatial loadings and temporal activations of LFP 

sources (that is, to solve the inverse problem of LFPs). Previous approaches used realistic 

connectivity and/or membrane electrogenesis to explore the intracellular factors and population 

dynamics that produce significant amount of transmembrane currents (e.g., Pauluis et al., 1999; 

Linden et al, 2011; Schomburg et al., 2013). The advantage of the FEM approach is that explicit 

modeling of the population’s architecture and the conducting volume allows investigating 

whether or not these currents build macroscopic LFPs.The FEM approach is widely used in 

MEG and scalp EEG (Chen and Mogul 2009; Salvador et al., 2011; Thielscher et al. 2011), but 

to our knowledge this has not been used before in LFP studies. In preliminary work we checked 

that FEM performs as efficiently as customary compartmental single-cell models scaled up to the 

population level to reproduce LFPs, while FEM renders important economy of computing 

resources. 

 

The present results call the attention to the widespread notion that LFPs always refer to 

highly localized activity elicited by neurons near the electrode. Despite recent reports 

emphasizing the extremely local reach of LFPs in the cortex (Katzner et al., 2009; Xing et al., 

2009) our results show that volume-conducted fields can reach high amplitude far away of their 

source, in agreement with previous experimental findings (Wang et al., 2005; Kreiman et al., 

2006; Berens et al., 2008; Kajikawa and Schroeder 2011). The present work highlights the 

importance of tissue geometry in the spreading of field potentials. Thus, the question of the 

spatial reach of LFPs will not have a unique answer; it will depend on the particular architecture 

of the region where they are recorded as well as the synchrony of the presynaptic neurons. These 

factors cannot be properly investigated without realistic modelling of spatial factors, which turn 

to be essential to understand and interpret LFPs.  

The conclusion drawn in this work could be potentially applicable to LFPs generated in 

other structures with similar geometrical characteristics. That is the case of cortical sulcus in 

humans and other mammals in which cortical layers bend to form giri and sulci. Inside a cortical 
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sulcus the situation would be similar than in the hilus, with layers of principal cells (the LFP 

generating elements) facing each other. As a consequence we could extrapolate the present 

results to this situation and predict that in the case in which both walls of a cortical sulcus are 

synchronously activated by a common input, or by different ones that elicit opposite polarity 

dipoles in both walls, LFPs generated inside the sulcus will be of very high amplitude. LFPs in 

the cortex are in general of lower amplitude than in the hippocampus due to the dispersion of cell 

bodies in comparison with the densely packed cellular layers in hippocampus, which leads to a 

partial cancellation of extracellular currents. Despite this difference, which will lead to important 

quantitative alterations in LFPs magnitude, it seems plausible that the same geometrical and 

dynamical factors that we have shown, determine the characteristics of hilar LFPs will rule also 

for potentials inside cortical sulci. These considerations may have special importance for MEG, 

due to fact that the principal contributors to MEG signals are the neurons located with their main 

axis perpendicular to the cortical surface, which are mainly those situated in the sulci (Malmivuo 

and Plonsey, 1995; Nunez and Srinivasan, 2006). 

 

 

4.3. Geometric and dynamical factors shape extracellular potentials in the 

Dentate Gyrus 

 Geometrical factors are usually not considered when modelling LFPs despite that their 

importance has been repeatedly highlighted by theoretical studies (Gloor, 1985; Nunez and 

Srinivasan, 2006; Malmivuo and Plonsey, 1995). This assumption seems acceptable in mainly 

laminar structures, as hippocampal CA1, but we have shown here that is not valid in structures 

with strong tissue curvatures, as the DG. We mapped LFPs along the dorsoventral and 

transversal axis of DG, both experimentally in behaving animals and in FEM simulations. We 

showed that the U-shaped spatial configuration of the GC population favors the spatial clustering 

of volume-propagated currents away from their physical origin. This projection of synaptic 

activity to distant sites results in increased activity within highly restricted spatial limits, 

reaching levels several fold higher than those observed at local sites, albeit with notable 

heterogeneity. Moreover, the corresponding anatomical pathways must project to both blades of 

the DG, as even a minimal loss of spatial synchronization leads to a dramatic reduction in LFP 

power. Our experimental data fulfill several predictions generated by our model, helping to 
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explain why large LFPs recorded away from the source arise from spatially extended 

synchronous activation in populations with suitable cytoarchitecture. 

 Activation of only one blade effectively converted the DG into a planar single-layer 

structure. Consequently, the LFP power in the hilus dramatically decreased to values similar to 

those observed in synaptic layers. Coherent activation in mirroring cell layers and/or in a 

strongly curved single layer is therefore necessary and sufficient to produce the abnormally sized 

LFPs observed in the hilus. We also demonstrate that the positive polarity of LFPs can only be 

achieved by somatic inhibition or dendritic excitation. These conditions are only fulfilled by 

some natural inputs, e.g., the excitatory fibers from the medial and lateral entorhinal cortices and 

the basket-cell somatic inhibition (Amaral et al., 2007). In the former case, the bifurcation of 

perforant path axons innervating the GC population in both blades ensures near synchronous 

activation of extended GC regions. The spatial coherence of inhibitory LFPs is most likely 

brought about by the merging of individual synaptic territories into larger spatial modules 

through correlated fluctuations of activity in a homogeneous subpopulation of interneurons 

(Whittington et al., 1995; Ho et al., 2012). Different classes of interneurons project into the GC 

soma (basket cell types) and each of dendritic strata associated with either MPP or LPP inputs 

(hilar interneurons: Han et al., 1995; Houser, 2007). Accordingly, it seems plausible that only the 

former subpopulation fires with sufficient coherence to notably contribute to hilar LFPs, as 

implied by the generation of negative hilar LFPs following dendritic inhibition in our model. 

 The present results shed light on specific parameters that should be considered when 

interpreting LFPs and their association with concomitant spike activity. For instance, because the 

spatial coherence of LFPs may be due to macroscopic blending of non-overlapping synaptic 

territories of functionally coupled neurons (e.g., interneuron networks), it is possible that state-

dependent modulation of network coupling disproportionately reduces the visualization of their 

associated LFPs with respect to individual firing rates, as demonstrated here by reducing the size 

of the activation strips. These observations are relevant to the study of the cellular mechanisms 

underlying LFP phenomena including dentate spikes, sharp waves, ripples, and gamma 

oscillations, which can appear at different hippocampal loci and with varying degrees of spatial 

coverage (Bragin et al., 1995; Csicsvari et al., 2000; Bibbig et al., 2007; Csicsvari et al., 2003; 

Ylinen et al., 1995). 
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4.4.  Theta-gamma dynamics reveals network computations during behaviour 

The results presented in the third section of the Results demonstrate that low frequency 

gamma oscillations link together the CA3-CA1 regions and that the strength of this relationship 

is strongest during memory recall, associated with increased theta coupled gammaS power and a 

shift of preferred spike theta phase from the peak to near the trough in a fraction of CA1 

pyramidal cells. A distinct and higher frequency gamma pattern (gammaM) is dominant near the 

peak of the theta cycle, coincident with increased firing of EC3 pyramidal neurons and their 

excitation of the distal apical dendrites of CA1 pyramidal cells (current sink). Gamma coherence 

is high within the same dendritic layer but low across layers. During REM sleep CA3 spiking 

output and the associated gammaS in CA1 str. radiatum are decreased, accompanied by an 

increased EC3 spiking and elevated gammaM power in str. lacunosum-moleculare. 

 Our findings support previous observations that gammaS oscillations occur on the 

descending phase of theta in the CA1 pyramidal layer, brought about by the gamma-timed 

spiking of CA3 pyramidal cells (Csicsvari et al., 2003; Colgin et al., 2009; Fernández-Ruiz et al., 

2012; Lasztoczy and Klausberger, 2014). However, they are at variance with the postulated theta 

phase assignment of EC3-mediated gamma bursts by Colgin et al. (2009). In the latter study, the 

authors suggested that the CA3-driven gammaS is followed by an EC input-driven faster gamma 

burst in the 65-140 Hz range at the trough of the theta cycle (Colgin et al., 2009). One potential 

source of the conflicting results is the use of single site recordings in the Colgin et al. study, 

which is not sufficient to decompose the spatial origin of the respective gamma generators 

(Buzsaki et al., 2012; Einevoll et al., 2013; Fernández-Ruiz and Herreras, 2013; Lasztóczi and 

Klausberger, 2014). Because the main generators of LFPs are often postsynapic currents, a single 

oscillating population may generate coherent LFPs in distant areas without necessarily entraining 

the downstream population. Although the authors showed phase coupling between entorhinal 

unit firing and the lumped gammaM and gammaF band LFPs in the CA1 pyramidal layer, they did 

not report the theta phase of either spiking or gamma activity in EC3. In contrast to the 

framework put forward by Colgin et al. (2009), we find that the peak firing of EC3 pyramidal 

cells and the associated current sink in the CA1 str. lacunosum-moleculare occurs, on average, at 

the peak of the theta cycle (Buzsaki et al., 1986; Brankack et al., 1993; Kamondi et al., 1998; 

Montgomery et al., 2009; Mizuseki et al., 2009; Benito et al., 2013), coincident with the 

gammaM burst and, thus, before the dominant CA3-mediated gammaS on the descending phase of 



102 
 

 
 

theta.  

 

 The differential firing rate changes of CA3 and EC3 principal cell can account for the 

CA1 firing patterns and gamma oscillations, we observed both across brain states and in the T-

maze task. These two major inputs can either compete or cooperate depending on the nature of 

the task (Dvorak-Carbone and Schuman, 1999a, 1999b; Remondes and Schuman, 2002; Jarsky et 

al., 2005; Leao et al., 2012; Chance, 2012; Basu et al., 2013). The EC3 input may become more 

effective through theta-rhythmic frequency potentiation by suppressing feed-forward inhibition 

(Buzsaki 1995; Yeckel and Berger, 1990; Leao et al., 2012) or facilitating mechanisms for 

overcoming it (Remondes and Schuman, 2002; Jarsky et al., 2005; Takahashi and Magee, 2009). 

Furthermore, during REM sleep, firing rates of CA3 pyramidal neurons decrease (Montgomery 

et al, 2008; Mizuseki and Buzsáki, 2013), paralleled with the reduced power of gammaS in CA1 

str. radiatum and decreased spike-field CA3-CA1 coherence (Schomburg, Fernández-Ruiz et al., 

2014). This reduced CA3 output coincides with an increased firing of EC3 neurons and elevated 

gammaM power in the str. lacunosum-moleculare and the shifting of theta phase preference of a 

significant fraction of CA1 pyramidal neurons from the trough to the peak (Poe et al., 2000; 

Mizuseki et al., 2011). Thus, a weakened CA3 output leads to a relatively stronger control of the 

EC3 input on the discharge of CA1 neurons, as was also observed in the side arms of the T-maze 

task, where demands on memory retrieval are diminished.  

 An increased gain control over CA1 neurons by the direct EC3 input can explain why 

after lesion of the CA3 input, place-related firing of CA1 pyramidal cells can persist (Brun et al., 

2008).The shift in gain control can also explain why spatial information encoded by CA1 

pyramidal cells varies as a function of their position in the proximodistal axis (Henriksen et al., 

2010) and why during recall the CA3 input shows increased control over CA1 activity patterns 

(Montgomery and Buzsaki, 2007). One potential substrate of the CA3-EC3 competition is the O-

LM to bistratified interneuron inhibitory connection. Increased firing of O-LM interneurons near 

the theta trough (Klausberger et al., 2003; Varga et al., 2012) suppresses inputs to the distal 

dendrites,  whereas itindirectly disinhibits dendritic segments in str. oriens and radiatum (Leao et 

al., 2012), thereby facilitating the effectiveness of the CA3 input to CA1 pyramidal cells.  

 During encoding of newly learned information, EC input is expected to boost the efficacy 

of the CA3-CA1 pathway (Hasselmo and Wyble, 1997; Remondes and Schuman, 2002, 2004). 
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Indeed, in vitro experiments have demonstrated that pairing temporo-ammonic (EC3 to CA1) 

and Schaffer collateral excitation to CA1 can multiplicatively induce long-term potentiation and 

CA1 spiking via dendritic plateau potentials and heterosynaptic effects, depending on the relative 

frequency and timing of these inputs (Buzsaki 1995; Dudman et al., 2007; Golding et al., 2002; 

Han and Heinemann, 2013; Levy et al., 1998; Remondes and Schuman, 2002; Takahashi and 

Magee, 2009; Wohrl et al., 2007; Steffenach et al., 2005; Suh et al., 2011; Basu et al., 2013; but 

see Ang et al., 2005). The strongest potentiation is observed when the distal dendrites are excited 

10-30 msec prior to the arrival of the CA3 input, matching the roughly one quarter theta cycle 

delay between the occurrence of gammaM and gammaS in CA1. The heterosynaptic boosting 

effect of the entorhinal input can be selectively suppressed by perisomatic inhibition mediated by 

cholecystokinin (CCK)-expressing interneurons (Basu et al., 2013). Our findings demonstrate 

that the timing of these spike level interactions can be monitored by the mesoscopic changes of 

the LFP theta-gamma oscillations. Additional experiments are required to disentangle the roles 

of the medial and lateral entorhinal cortical inputs (Igarashi et al., 2014) and the thalamic nucleus 

reuniens (Vertes, 2007) in the expression of gamma in the str. lacunosum-moleculare. 

 

 Overall, our experiments demonstrate that layer-specific gamma oscillations in the 

hippocampus reliably identify the temporal dynamics of the afferent inputs and that temporal 

coordination in the entorhinal-hippocampal system is mainly supported by theta and low 

frequency gamma oscillations, but not by high gamma coherence (Schomburg, Fernández-Ruiz 

et al., 2014).  
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Conclusions 

 

 We have implemented a novel method to the study of LFPs and applied it to hippocampal 

recordings from behaving rats. The first important conclusion we get from this work is that for a 

correct analysis and interpretation of LFPs it is necessary an appropriated spatial mapping of the 

structure of interest. Due to the propagation of electric potentials in the brain tissue, single point 

recordings, as traditionally performed with tetrodes or wire electrodes, are not able to discern the 

origin (local, propagated, mixed) of the recorded LFPs. On the contrary, high-density two-

dimensional recordings, as those presented here, are optimal because they account for the spatial 

variations of LFPs in laminated structures such as the hippocampus or neocortex. 

  We employed ICA to decompose hippocampal LFPs recorded along the dorsoventral and 

transversal axes of the hippocampus into six main contributing sources (independent 

components, ICs). Those sources display distinct laminar distribution and their CSD maps reveal 

main currents restricted to particular sub-layers, allowing us to identify their synaptic nature 

comparing with known anatomical synaptic domains. The three main CA1 ICs were identified as 

the ipsilateral CA3 input to the str. radiatum dendrites (rad IC), the entorhinal cortex layer 3 

input to the str. lacunosum-moleculare dendrites (lm IC) and perisomatic currents, likely 

inhibitory, in the CA1 pyramidal cell bodies (CA1pyr IC). In the DG they were identified as the 

lateral perforant path input to the distal GC dendrites (LPP IC), the medial perforant path input 

to the middle GC dendrites (MPP IC), and perisomatic currents in the GC somas, likely 

inhibitory, (GCsom). However, a more rigorous identification of those ICs as strictly pathway-

specific or as a mixture of different inputs with shared dendritic domains would require 

additional tests, like selective optogenetic manipulations in well-defined cellular populations. 

This is especially relevant for the CApyr and GCsom components, which likely capture currents 

elicited by somatic action potentials in addition to postsynaptic currents.  

 Simulations performed with FEM in the tridimensional model of the hippocampus 

reproduce with high fidelity the spatial distribution of the different hippocampal current sources. 

The simultaneous activation of the six sources with time series obtained from experimental 

recordings allows us to reproduce the laminar characteristics of SWR and theta oscillations. 
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These results confirm the accuracy of our solution for the inverse problem of hippocampal LFPs 

and that those six sources are enough to account for most of the variability of the recorded LFPs 

in the CA1 and DG regions. We have decided not to include here other results pertaining to the 

CA3 were another prominent IC can be isolated (Benito, Fernández-Ruiz et al., 2014; 

Schomburg, Fernández-Ruiz et al., 2014). 

 The above results illustrate the usefulness of our novel method to analyze LFPs. It  

consists in first extract and identify the current sources contributing to their generation and then 

implement the obtained solution in a model that allows the forward simulation of LFPs. By 

comparing the original and simulated LFPs we can refine and better interpret our original 

solution.    

 We employed the model and knowledge gained about the spatiotemporal dynamics of 

LFP sources to study the generation of DG potentials. In particular we were interested in 

explaining the apparent paradox that the hilus, which mainly lacks cellular elements capable of 

generating large currents, is where LFPs are larger, plus the fact that they have positive polarity 

even though the main assumption is that they are elicited by the excitatory perforant pathway 

inputs. We found that is the particular U-shaped geometry of the DG which favors the spatial 

clustering of volume propagated currents away from their synaptic origin. We also found that the 

positive polarity in the hilus can only be produced by either somatic inhibition or dendritic 

excitation. The simulations make several predictions that match with our and others experimental 

observations. Only some anatomical inputs (i.e. the MPP and LPP distal dendritic excitations and 

basket-cell type perisomatic inhibition) but not others (i.e. the mossy cells proximal dendritic 

excitation and hilar interneurons distal dendritic inhibition) have significant contribution to DG 

LFP patterns. The type of synaptic activation that best explain the characteristics of recorded 

LFPs according to our simulations is a synchronous input to extended domains of GC in both 

blades. Of particular importance is the fact that the activation of mirror modules in both DG 

blades must be simultaneous in order to elicit large potentials in the hilus due to the activation of 

dipoles with opposite polarity.  

 Those results illustrate the often neglected importance of geometrical and spatial factors 

in the shape of extracellular potentials and highlight the utility of macroscopic models based on 

experimental data to reach a deeper understanding of the underlying mechanism of LFPs. 
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 In the last section of this thesis, we employed the acquired knowledge about the sources 

of hippocampal LFPs to address the study of theta-gamma interactions in the hippocampal-

entorhinal circuit during behaviour. We found that the three main LFP sources characterized in 

the first section of the Results display different spectral profiles in the gamma band and theta-

phase preference. Slow gamma (gammaS, 30-60 Hz) was elicited by the CA3 input to the CA1 

and peaked on the descending theta phase, while mid-frequency gamma (gammaM, 60-120 Hz) 

brought about by entorhinal layer 3 input dominated on the peak of the theta cycle. A third 

source of very fast oscillations (gammaF, 100-180 Hz) peaked on the theta trough  and was of 

local origin. The preferred phase of rad slow gamma was shared by similar frequency 

oscillations in the input region, CA3, and was also the theta-phase with higher probability of 

firing of CA3 pyramidal cells.  Correspondingly, the preferred phase of lm gammaM was shared 

by similar frequency gamma oscillations in the layer 3 of the medial entorhinal cortex and was 

also the theta phase with higher probability of discharge of EC3 pyramidal cells. Those theta-

coupled gamma oscillations were present in both exploration and REM sleep albeit with different 

strength. Theta-coupled gamma oscillations not only vary as a function of behavioral state but 

also with the location along the CA1 transversal axis. CA3 gammaS was stronger during running 

and dominated at proximal sites, while gammaM was stronger during REM and dominated at 

distal CA1 sites. Perisomatic gammaF oscillations varied in their proximodistal distribution and 

theta-phase preference as a function of brain state according to which gammaS or gammaM was 

the dominant pattern. This illustrates a competition of CA3 and entorhinal inputs to control CA1 

local circuits operation.  

 We also checked theta-gamma dynamics in CA1 during memory guided navigation (a 

delayed-alternation T maze task known to relay on the hippocampus). We found that during the 

recall phase of the task (the central arm running) theta-gamma coupling increased for all the ICs 

but especially for the rad gammaS. In addition, during this phase the firing rate of CA3 

pyramidal cells was increased. On the contrary, at the encoding phase of the task (side arms 

running) CA3 firing rates were lower and a subset of CA1 pyramidal cells shift their theta phase 

preference to the theta peak, the phase of the EC3 input. Those results demonstrate that CA3 and 

EC3 inputs can compete or cooperate to control the firing of CA1 cells according to behavioral 

demands.   
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Appendix B: Acronyms  

 

CA1/3   Cornnus Ammoni 1/3 

CFC  Cross Frequency Coupling 

CSD  Current Source Density 

CWT  Complex Wavelet Transform  

DG  Dentate Gyrus 

DNQX  6,7-dinitroquinoxaline-2,3-dione 

EC  Entorhinal Cortex 

EEG  Electroencephalogram 

ESPS  Excitatory post-synaptic potential 

FEM  Finite Elements Method 

GABA  γ-aminobutyric acid 

GC  Granular cell  

IC  Independent Component 

ICA  Independent Component Analysis 

IPSP  Inhibitory post-synaptic potential 

LEC  Lateral entorhinal cortex 

LFP  Local Field Potential 

LPP  Lateral Perforant Path 

MEC   Medial entorhinal cortex 

MI  Modulation index 

MPP  Medial Perforant Path 

NMDA N-Methyl-D-aspartic acid or N-Methyl-D-aspartate 

SEM  Standard Error of the Mean 
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