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Resumen 

El estudio de los plasmas fríos con alto contenido en hidrógeno tiene interés en unagran variedad de campos. La caracterización de linteracción con las superficies tiene aplicaciones tecnológas especies en estos plasmas y sucas, como el crecimiento deiláminas delgadas y el procesado de materiales. Los iones que se pueden observar en estetipo de plasmas tienen un papel importante en la formación de moléculas en el mediointerestelar. En este trabajo se presenta un estudio de las especies neutras e iónicas presentes enlos plasmas de H2 + Ar, H2 + N2, H2 + O2 generados en descargas de cátodo hueco, basadoen el diagnóstico experimental yy el modelado cinético, con el objetivo de determinar losprincipales procesos físico-químicos de cada una de las mezclas. El reactor de cátodo hueco empleado en los experimentos consiste en un cilindro deacero inoxidable  conectado  a  tierra, con un ánodo  central  sometido a una tensión decientos de voltios, donde se genera una corriente de décimas de amperio. Para generar elplasma se emplean mezclas de H2 + Ar, H2 + N2, y H2 + O2 en diferentes proporciones, a bajapresión (~ Pa), en flujo continuo de gas. Las especies neutras del plasma se analizanmediante un espectrómetro de masas cuadrupolar, mientras que lmuestrean mediante un monitor de plasmas que permite analizar susos iones positivos seistribuciones dedenergía.  La temperatura y densidad  electrónica  del  plasma se  determinan usando unasonda de Langmuir doble. Las temperaturas vibracional y rotacional se obtienen medianteespectroscopía visible de emisión. Con el objetivo de reproducir las abundancias de las diferentes especiesdeterminadas experimentalmente en cada  tipo de  mezcla  y determinar los mecanismosque gobiernan la cinética del plasma, se emplea un modelo cinético que tiene en cuenta losprincipales procesos físicoquímicos que tienen lugar en la descarga. Entre ellos,  los  másrelevantes son las reacciones de ionización y disociación por impacto electrónico y lasreacciones ion-molécula, que tienen  lugar en fase  gas, y los procesos heterogéneos queocurren en las paredes de la cámara. 



                                                                                                                                        

2 
El plasma de H2 + Ar se estudió a 1.5 y 8 Pa para todo el rango de proporciones de mezcla entre Ar puro y H2 puro. Este plasma presenta una química neutra simple, dadoque no se forman nuevas moléculas en la descarga. Respecto a los iones positivos, las +distribuciones están dominadas por Ar+, ArH+ y H3 , cuyas concentraciones dependenfuertemente de la presión y la proporción de la mezcla. La región donde predomina el ArH+ cambia drásticamente con la presión, dado que a 1.5 Pa dicho ion es mayoritario para una amplia variedad de mezclas intermedias, mientras que a 8 Pa se reduce a una pequeña región de mezclas con una cantidad muy reducida de H2. Hay dos factores que determinan fundamentalmente la química del plasma: la temperatura electrónica, que depende de lapresión, y el equilibrio de la reacción H3+ + Ar ⇄ ArH+ + H2, que afecta decisivamente a la +relación entre las concentraciones de ArH+ y H3 . La reacción directa es endotérmica, por lo que el  coeficiente  de  velocidad de  la misma depende grandemente de la excitación interna  de los reactivos.  Los  experimentos y simulaciones sugieren que, en los plasmas estudiados, a 1.5 Pa la excitación interna del H3+ es suficiente para superar la barrera depotencial, pero a 8 Pa este ion es desexcitado colisionalmente y predomina la reacción inversa. Las descargas de H2 + N2 se estudiaron a cinco presiones diferentes entre 0.8 y 8 Pa,con mezclas de H2 + ~ 10 % N2. Se detectó amoniaco en cantidades significativas en todaslas descargas, alcanzando concentraciones comparables a las del N2 para las presiones másbajas. Este NH3 se forma en las paredes del reactor en una serie de reacciones heterogéneas incluyendo procesos Langmuir-Hinshelwood y Eley-Rideal. Las distribuciones de iones positivos están determinadas fundamentalmente por latemperatura electrónica de la descarga, que controla el balance entre las reacciones deionización directa y las de  tipo ion-molécula.  A  las  presiones  más bajas, donde la temperatura electrónica es más alta, ambos tipos de procesos tienen una importanciasimilar y la distribución de iones es equilibrada. Sin embargo, a las presiones  mayores  +predominan las reacciones ion-molécula,  y  la carga positiva  se  concentra en el NH4 ,debido a su formación en reacciones de otros iones protonados con NH3, y a la ausencia de reacciones de destrucción en fase gas de dicho ion. Los plasmas de H2 + O2 se estudiaron a una presión de 8 Pa con proporciones de mezcla entre H2 puro  y  O2 puro. Se detectó agua en concentraciones importantes, comparables a las del precursor minoritario en la mezcla. Este H2O se produce en una serie de reacciones heterogéneas de  tipo Eley-Rideal en  las  paredes del reactor. En lasdistribuciones de iones positivos predomina el H3O+, formado en reacciones entre H3+  yH2O, en un amplio rango de mezclas intermedias, mientras que para plasmas con altocontenido en hidrógeno el H3+ es  el ion  mayoritario, y en  las mezclas con más oxígeno predomina el O2+ formado por ionización directa de las moléculas de O2. Los iones H2O+,OH+ y HO2+ presentan concentraciones con escasas variaciones para la mayoría de 



     
                         

      

3 RESUMEN 
proporciones de mezcla intermedias. Las concentraciones de icon el modelo cinético, observando que acumulan hasta un 25 % ones negativos se simularon de la carga negativa, pero presentan un impacto limitado en la química de la descarga.Se realizó también un estudio experimental de descargas de H2 + N2 + O2, utilizandopara ello mezclas de H2 con pequeñas cantidades de aire a 8 Pa. Las concentraciones de NH3 y H2O medidas resultaron ser comparables, a pesar de la diferencia en abundancia de los respectivos precursores, debido  a  que  la formación del agua en  la pared necesitamenos etapas. Los iones protonados dominan la distribución de iones, siendo el NH4+  elion mayoritario seguido por el H3O+. En estos plasmas, con temperaturas electrónicas relativamente bajas, se encontró una fuerte correlación entre la afinidad protónica de las especies y su abundancia en la descarga. 





             
          

                                  
                 
                

Abstract 

The study of cold plasmas with high hydrogen content is relevant in a wide varietyof fields. The characterization  of  the different species in  these plasmas and theirinteraction with surfaces has technological applications, such as thin  film growth  andmaterials processing. The ions present in this type of plasmas play an important role inmolecule formation in the interstellar medium. In this work, a study of the neutral and ionic species present in plasmas of H2 + Ar,H2 + N2, and H2 + O2 generated in hollow cathode discharges is presented. Experimentaldiagnostics in combination with kinetic modeling have been employed in order to determine  the  main processes  behind the physics and chemistry of each of the different mixtures. The hollow cathode reactor used in the experiments consists of a grounded stainless steel cylinder with a central anode. A voltage of hundreds of volts is applied to the anode, generating a current of tenths of an ampere. A steady flow of mixtures of H2 + Ar, H2 + N2,and H2 + O2 with  different mixture ratios  at  low pressures  (~ Pa) is  employed as precursor. The neutral species in the plasma are analyzed with a quadrupole mass spectrometer,  while  positive ions  are sampled using a plasma  monitor that allows themeasurement of their energy distributions. The electron temperature and density of theplasma are determined using a double Langmuir probe. Vibrational and rotational gas temperatures are obtained by optical emission spectroscopy. A kinetic model accounting for the main physico-chemical processes occurring in the discharge is employed in order to simulate the abundances of the different species. Thecomparison  with  the  experimental results allows the determination of the fundamental mechanisms behind the chemistry of the different  mixtures. The  main processes considered are electron impact dissociation and ionization, ion-molecule reactions, and heterogeneous reactions occurring at the reactor walls. H2 + Ar plasmas were studied at 1.5 and 8 Pa for the whole range of mixture ratios.The neutral chemistry in these discharges is simple, since no new molecules are formed in 



                                                                                    
                                          

    
   

6 
+the plasma. The positive ion distributions are dominated by Ar+, ArH+ and H3 , withconcentrations depending strongly  on the pressure  and mixture ratio. The ArH+dominance region greatly varies with pressure, from a wide range of mixture ratios at 1.5Pa to a narrow window close to the pure Ar plasma in the 8 Pa discharge. Two key factors drive the observed ion chemistry: the electron temperature, which depends on the pressure, and the equilibrium of the process H3+ + Ar  ⇄  ArH+ + H2, which ultimately determines the ArH+/H3+ ratio. The forward reaction is endothermic for ground statereactants, so the rate coefficient greatly depends on  the  internal excitation of thereactants.  The experimental  data  and simulations suggest that  at 1.5 Pa the internal +excitation of H3 in the plasmas studied is sufficient to overcome the energetic barrier atthe lower pressure, but is efficiently quenched at 8 Pa and the inverse reaction prevails. The chemistry in H2 + N2 plasmas was studied at five different pressures, from 0.8 to8 Pa, using mixtures of H2 + ~ 10 % N2. Ammonia was found in significant amounts in all the discharges, reaching concentrations comparable to those of N2 for the lowestpressures. This NH3 is formed at the reactor walls in a series of heterogeneous reactions involving both Langmuir-Hinshelwood and Eley-Rideal mechanisms. Ion distributions are mainly determined  by the electron  temperature  of the discharge, which controls thebalance between direct ionization and ion-molecule reactions. At the lower pressures, with higher electron temperatures, both kinds of processes have a similar relevance,leading  to  a balanced  positive ion distribution  in which several ions are found in highconcentrations. Conversely, when the pressure is higher, ion-molecule reactions prevail, +and the positive charge is concentrated in the NH4 ion formed in reactions of NH3  withother protonated ions, due to the lack  of  gas phase destruction reactions involving saidion. The plasmas of H2 + O2 were studied at 8 Pa for the whole range of mixture ratios.Water was detected in substantial concentrations, comparable to those of  the  minor  precursor in the mixture. This H2O is primarily produced in a series of heterogeneousEley-Rideal reactions in the surfaces of the reactor. Experimental positive ionconcentrations were found to be dominated by H3O+ for a wide  variety  of intermediate+mixtures, due to the proton transfer between H3+ and H2O, while H3 is the major ion in thedischarge for H-rich mixtures. For O-rich plasmas, O2+,  formed by the direct ionization ofO2 molecules, is the dominant ion. The mixed ions H2O+, OH+, and HO2+ maintain a roughly stable concentration for intermediate H2/O2simulated with the kinetic model, showing that tratios. Negative ion concentrations wereese species concentrate up to 25 % of the htotal negative charge in the plasma, but have a very limited effect in the global chemistry of the discharge. Experimental measurements were also performed in H2 + N2 + O2 discharges. Inparticular, mixtures of H2 with small concentrations of air were employed as precursors, 



                           

7 ABSTRACT 
with a total pressure  of  8  Pa.  Ammonia  and  water  were detected  in comparable concentrations, despite the differences in the abundance of the precursors N2 and O2, due to the lower number of reactions required for the formation of H2O. Protonated ions were found to be the major species in the positive ion distributions, with NH4+ prevailing in thedischarge followed by H3O+. In these relatively low electron temperature plasmas, a strong correlation was found between the proton affinity of the species and their abundance in the discharge. 
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Chapter 1. 

Introduction 

Plasmas, often referred to as the fourth state of matter, are the subject of intense scientific research in various fields of physics and chemistry. Even though 99 % of theknown matter in the universe is considered to be in this state, the study of  plasmas  isrelatively recent in historical terms.  The first studies of  plasmas possibly date from the end of the 18th century, when four Dutch chemists applied an electrical arc discharge toethylene [1].  Plasmas were identified in Crookes tubes by Sir William Crookes in the lasthalf of the 19th century. Crookes called them “radiant matter” and introduced the conceptof classifying plasma as the fourth state of matter [2]. However, it was not until the 1920sthat the American physicist Irving Langmuir and his coworkers established a solid theoretical  ground for the study  of  plasmas. Langmuir  also coined the term  “plasma”  in1928, using it to “describe this region containing balanced charges of ions and electrons” in a mercury vapor arc discharge [3].Plasmas present an interest in a wide variety of scientific fields, as systems in thestate of plasma can be found in very different environments in nature, from flames and lightning to ionospheres and stars. There are also numerous technological applications ofplasmas. They are employed in controlled fusion, where great efforts have been made in8the last decades to confine these media with very high temperatures (~ 10 K) and charge densities (~ 1014 cm–3)  in order to  obtain a viable  energy  source [4,5].  In aerospace  engineering, plasmas are used for spacecraft propulsion through the use of ion thrusters, which create thrust by accelerating ions with electromagnetic forces [6]. Plasmas are routinely used for industrial applications, including laser ablation, plasma etching, notably in the semiconductor industry, or coatings using plasma enhanced chemical vapor deposition (PECVD). Plasmas are found in devices commonly used in daily life, such  as  plasma displays, fluorescent lamps, or neon signs. 



                     
                             

                                   
                                        

14 CHAPTER 1 
A plasma can be defined as a quasi-neutral medium of charged and neutral particles characterized by a collective behavior [7]. According to the kinetic theory of ideal gases, ina neutral gas, no forces act between the molecules of the gas (disregarding gravitational forces), so the particles travel in straight lines with a varying distribution of velocities, and their motion is controlled by collisions between themselves and with  the  walls of  thecontainer. By contrast,  in a plasma,  the motion of the particles  causes local concentrations ofpositive and negative electric charges, which in turn create electric fields that affect the motion of distant charged particles, inducing the characteristic collective behavior. Local concentrations of charge are confined to volumes of size given by the Debye length,  λD,which is a characteristic dimension of the plasma. If an electric field is  created in  theplasma, the charged particles, and especially the electrons due to  their  higher mobility,will respond to reduce the electric field. The Debye length is a measure of the attenuation caused by this shielding effect. Outside of these small volumes, the charge density of ions is equal to the density of electrons, and as a result the plasma is considered a quasi-neutral gas. For a plasma to be stable, the dimensions of the system must be much greater than the Debye length. A  plasma is  usually obtained  when sufficient  energy,  higher than the ionization threshold, is added to the atoms or molecules of a gas, causing ionization and production of ions and electrons, and the corresponding recombination to form atoms or molecules. Aplasma can  also  be obtained  when sufficient  energy is  provided  to a liquid  or a solid,causing their vaporization and ionization, which is commonly achieved by means of a laser. In a gas, a plasma is usually generated and sustained by providing electromagnetic energy in  some  form, such  as direct  current (dc), radio frequency (rf), or microwave. Plasmas are often referred to as gas discharges because the most common way to produce plasma is by passing an electrical discharge through a gas. Media with very different characteristics fall inside the definition  of plasma, from  star cores and fusion plasmas, to flames and glow discharges. In order to classify thedifferent types of plasmas, two parameters are considered: the mean energy  of the  free  electrons, usually conveyed through the electron temperature, Te, and the electron density, 

Ne. The ionization ratio, the ratio of the positive ion density to the total number density, issometimes used in place of the latter. Glow dc discharges are produced by applying  a high  dc  voltage between an anode and a cathode inserted into a gas at low pressure (typically ~ 1–100 Pa). The neutral gas isan electrical isolator. Once the plasma  is ignited,  the  medium  becomes a good electricconductor. Electrons originating from the cathode by secondary emission, mainly due tion impact, are accelerated by a large electric field, which quickly decreases as the distance o 



                                                             
              

   
   

      

INTRODUCTION 15 
from the cathode increases, and also cause ionizations. The neutralization of positive ionsin collisions with electrons and the subsequent decay of their excitation energy produce luminosity in this region, known as the cathode glow. Most of the voltage drop occurs inthe Crookes dark space, which is a positive space charge plasma sheath, where there is no emission due to the lack of electrons. There is a sharp transition from this dark space tothe  following region, the negative glow. Here, the field reaches a minimum value, thepotential  hardly increases and the light  emitted by  the  negative glow originates from spontaneous emission after excitation by electrons. In the glow, the discharge is practically quasi-neutral, albeit  with a large positive  and  negative charge. Ionizations in this region compensate for the loss of charge carriers to the wall. After the negative glow, a dark space (Faraday dark space) can be observed,  as the electrons have so little energy that neither ionizations nor excitations take place. A positive column will appear after the Faraday dark space if the discharge is long enough, where a quasi-neutral plasma with a reasonably small, constant field strength prevails. The anode glow, which is slightly brighter than the positive column, marks the border of the anode dark space. This sheath, which appears just in front of the anode, is a small region with negative net space charge and increasing potential through which electrons are further accelerated [8]. The various regions are shown in Figure 1.1. 
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Figure 1.1. The different regions of a dc glow discharge. 
Glow discharges are non-thermal plasmas, i.e., they are characterized by a lack ofthermal equilibrium. The gas temperature, Tg, is usually close to the room temperature,whereas the electron temperature, Te, is orders of magnitude higher, typically in the 1–10 4 5eV range (~  10 –10 K). The fraction of energy transferred from electrons to heavy –4particles (neutrals and ions) in elastic collisions is very low (~ 10 ) due to the difference 



                      
   
                            

                                                                                      

16 CHAPTER 1 
in mass  and, given the relatively  low  electron  densities, the gas temperature does not increase substantially. Electrons are energetic enough to break molecular bonds and cause the ionization of atoms and molecules, leading to reactions that would not otherwise occurat such low gas temperatures. This feature makes glow discharges useful for a variety of9applications. Typical electron densities for glow discharges are Ne ~ 10 –1010 cm–3, whichimplies low ionization ratios ~ 10–4–10–6. Due to the relatively low gas temperature compared with the electron temperature, these types of discharges are considered coldplasmas.Low pressure discharges are relevant in a variety of scientific and technological fields. PECVD has been used for thin film deposition and surface treatment since the early 1960’s [9-11]. This technique has been widely used for semiconductor manufacturing [12] and in the development of efficient solar cells [13,14], and is also  employed for thefunctionalization of surfaces with different applications [15,16]. The production andprocessing of nanoscale objects can be more efficient when using plasmas of differenttypes, including low pressure discharges  [17,18].  The conditions  of the edges of  fusion  plasmas  resemble those of  glow discharges  [19] so  the  latter can be used for laboratory studies in fusion research [20,21]. Low pressure plasmas are also of interest in the investigation of catalytic processes, such as the reaction between hydrogen and nitrogen to produce  ammonia  [22-24]. These types of  discharges can also  be used  to conductspectroscopic studies of ions and radicals [25,26], that is, very reactive transient species that are efficiently generated in cold plasmas and cannot be easily found under differentconditions. Since low pressure discharges are cold plasmas, they can be used in applications involving thermally sensitive materials. Hydrogen is present in  most of  thegas mixtures employed in the applications mentioned in this paragraph.Multiple types of geometry can be used to produce a dc glow discharge. The classic example is the planar electrode geometry, in which the anode and cathode are placed facing  each  other  inside the vacuum vessel. This  geometry allows for the easy identification of the different luminous and dark zones of the discharge described above.The interest of this thesis, however, lies in the hollow cathode configuration. In this type ofdischarge, the negative glow, where the majority of energetic electrons can be found, fillsmost of the volume, and the plasma is confined inside the cathode, which is usually cylindrical. The positive column is reduced to a small region close to the anode. There are multiple advantages to this configuration, such as a better confinement and homogeneity of the plasma, which in  turn results in  an  easier  diagnostic  of the discharge.  Hollow  cathode discharges also present the lowest gas temperature of the different types of low pressure discharges, improving the spectral resolution, and the absence of electric field inthe negative glow prevents Stark broadening. For that reason, hollow cathode dischare commercially used as spectroscopic sources (hollow cathode lamps). They can be usearges d 
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to obtain emission lines of different materials that are not easily vaporized, as they can besputtered by the ions of the discharge if they are used as a coating for the cathode or directly as  the  cathode  material [27].  This type  of lamps can also be used to control the wavelength tuning of light sources, usually lasers, to a specific atomic transition by making use of the optogalvanic effect [28,29].There are various advantages to using hollow cathode glow discharges for kinetic studies of mixtures of gases. Since the negative glow fills most of the volume of the reactor, energetic electrons are present in considerable amounts, and, subsequently, gas phase  reactions occur in  great  numbers. These  gas phase processes are  limited to two body reactions, as the densities are too low for three body reactions to take place due to the low pressure. Furthermore, because of the low temperature of the heavy species, reactions with an energetic barrier are essentially absent from the discharge.  This implies thatneutral-neutral reactions are not likely to occur, barring specific cases usually involving metastable species. Due to all this, reactions between neutral species are fundamentally limited to heterogeneous processes occurring at the surfaces of the reactor. The chemistry in hollow cathode discharges is thus simplified, with electron driven processes (ionization,dissociation and excitation) taking place in the gas phase, along with ion-moleculereactions, and neutral chemistry being limited to the reactor walls. A disadvantage of thiskind of  setup, and low  pressure glow discharges in general, is that the electron energy distribution might deviate from the maxwellian shape, as the high energy tail may either be depleted, since those electrons are responsible for most of the reactions in the plasma, or grow as a result of other processes such as secondary emission from the cathode. Thisuncertainty in the shape of the electron energy distribution function can introduce some complications in the kinetic modeling of the discharge. The study of hollow cathode glow discharges with hydrogen content can be useful for the characterization of other types of media, provided they share some fundamentalcharacteristics, as in the already mentioned edges of fusion plasmas. This is also the case of some  extraterrestrial environments, such  as the interstellar  medium and planetary ionospheres. Molecular clouds, the regions where star formation occurs, are mainly composed by molecular hydrogen. In these environments, the degree of ionization is low, and  only  binary collisions take  place  due  to the low pressure.  As  a result, ion-moleculereactions play  an important role  in  the chemistry of  the  molecular cloud, and molecules are formed in heterogeneous reactions in the surface of dust grains [30,31]. These  characteristics are shared with hollow cathode discharges, while the ionization mechanism, through cosmic rays, and the neutralization of ions, in collisions with electrons, are different. The interaction of hydrogenic ions with the different  molecules  present in the medium is of great importance in the chemistry of molecular clouds [32]. A somewhat similar situation is found in planetary atmospheres, where the chemistry  of  



      
                                        

            
         
     
                       
     

     

18 CHAPTER 1 
hydrogenic ions is relevant in photoionization regions where hydrogen is present, such as the uppermost portions of giant planet atmospheres [33,34]. The  aim  of this  work is  to analyze the complex  chemistry  found  in discharges of hydrogen with  other  simple gases,  identify the main  processes  responsible for theobserved concentrations of the different species, and establish, on the one hand, the role ofheterogeneous processes in the production of secondary stable molecules, and, on the other hand, the role of protonated ions in the positive ion chemistry of the discharges, evaluating the  effect  of the proton  affinity of  their  parent molecules. To fulfill these objectives, plasmas of H2 + Ar, H2 + N2,  H2 + O2, and H2 + N2 + O2 and have been producedin a low pressure hollow cathode reactor, at pressures between 0.8 and 8 Pa and with different mixture ratios. Concentrations for the  neutral stable species and positive  ions  have been obtained by quadrupole mass spectrometry. A double Langmuir probe has been employed to obtain the electron temperature and density of the plasmas. Complementaryto the experimental characterization of the discharges, zero order kinetic models havebeen developed in  order  to identify  the  main processes  behind the chemistry of  thedifferent mixtures. The comparison between experimental and theoretical data allows theanalysis of the various physico-chemical processes occurring in the plasma, characterizing their relevance and variation when the conditions of the discharge are changed. The work has been divided into the following chapters: - In Chapter 2, the experimental setup employed in this work is presented, with a detailed description of the different diagnostic techniques.- In Chapter 3, the theoretical modeling of the plasma is described, illustrating thetypes  of processes  considered and including the reactions tables  used for thedifferent mixtures. - In Chapters 4, 5 and 6, the results obtained for the H2 + Ar, H2 + N2, and H2 + O2(including H2 + N2 + O2)  mixtures are respectively  shown. A description  of thestate of the art is given at the beginning of the chapter for each of the differentmixtures. - In Chapter 7, an overview of the results of the different studies and general conclusions are given, and future perspectives are commented on. Chapter 8contains the appendices, including the different programs used in this work. 



  

                 
                                                                           

Chapter 2. 

Experimental setup 

The plasmas studied in this work have been generated in an electric dischargereactor in hollow cathode configuration built in the laboratory. In this setup, with thereactor walls  acting as  the  cathode and the anode located  inside,  the  negative column isuniform and stable, and it  fills  the  whole volume of  the  vessel with the exception of thesheath region close to the walls. A diagram of the experimental setup used in this work canbe found in Figure 2.1, and a photograph is shown in Figure 2.2. The reactor consists of agrounded cylindrical stainless steel vessel (10 cm diameter, 34 cm length) that acts as thecathode, set with its axis in a vertical position. The chamber possesses a total of eight DN40 KF  flanges  on its sides,  which  are  used to  connect the gas inlet, pressure auges,observation windows, Langmuir probes, electron gun and the anode of the dischargge. Theanode consists of a stainless steel cylinder (1 cm diameter, 7 cm  length)  and  is placedroughly in the middle of  the chamber. A glass tube surrounding the anode in the narrowzone of its connecting flange prevents the establishment of a secondary glow in thisregion. The exact placement of the anode does not have an effect in the homogeneity of theplasma glow, as can be seen in the spatially resolved measurements of the electron densityperformed in [35] in the same setup. The lower end of the vessel is connected to a vacuum system through a gate valve.This vacuum system consists of a turbomolecular pump (Leybold Turbovac TMP 361, 300l s–1) in series with a dry pump (Leybold Ecodry M15,  15 m3 h–1) that provides the fore-vacuum. This allows obtaining a background pressure of ~ 10–4  Pa (10–6  mbar)  in thereactor. In the upper end of the reactor a differentially pumped chamber is connectedthrough a ~ 100 µm diameter diaphragm. The two quadrupole mass spectrometers used(Balzers Prisma  QMS 200, and Balzers PPM 421)  are  installed in this chamber, which ispumped  by means of  a vacuum system  comprised  of a turbomolecular pump (Pfeiffer 
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s–1Vacuum D-35614 Asslar TMU 261P with a TC 600 electronic drive unit, 150 l ) backed3 –1by  a dry pump  (Pfeiffer  Vacuum XtraDry  150-2,  7.5  m  h ). The background  pressure  obtained for this chamber is in the 10–5 Pa range.Different pressure gauges are used to monitor the pressure in various parts of the experimental setup. The pressure inside the reactor during plasma operation and diagnostics is determined with a capacitance manometer (Leybold Capacitron CTR90),calibrated for absolute pressures between 10–2 and 100 Pa. Auxiliary pressure gauges are used to control the pressure in the whole range of pressures available. These are a Pirani(Pfeiffer Vacuum TPR 010) and a Penning manometer (Pfeiffer Vacuum IKR 050). For thedifferentially pumped chamber in which the mass spectrometers are located, a 5combination of Pirani (10 –10–1 Pa) and Bayard-Alpert (10–1– 10–6 Pa) gauges in a singlehead (Leybold Ionivac ITR90) is employed. The gas inlet is connected to one of the 40 KF flanges on the side  of the reactor  chamber. The different gases have their own lines with a manometer, two ball valves and a needle valve that allow the regulation of the gas flow. In order  to be  able to  adjust thedischarge pressure in the desired range and to prevent damage to the turbomolecular pump by working above its advisable upper pressure limit (~ 1 Pa), the gate valve beforethe reactor pumping system is throttled and its position is kept fixed during theexperiments, using the aforementioned needle valves  to balance the gas flow and obtain the desired pressure in the discharge chamber. Residence times for each gas inside the reactor were measured by abruptly closing the gas inlet with the ball valve and monitoring the time evolution of the pressure throughthe capacitance manometer by means of a digital oscilloscope. Values between 0.5 and 1 sare typically obtained, corresponding to 2–40 sccm flows for the pressures considered. In order to maintain the discharge, a direct current (DC) high voltage power supply built in the laboratory (JR81) is employed. This voltage source is adjustable and provides up to 0.2 A and 2000 V. A 100 Ω ballast resistor is connected between the power supply and the anode, and the system is grounded through the cathode. Discharge currents of 150mA were maintained during the experiments, with supplied voltages depending on theprecursor gasses, pressure, and mixture ratio. For H2 + Ar mixtures, they were in the 300– 400 V range, 300–450 V for mixtures with N2, and 500–550 V for H2 + O2 mixtures. At the low plasma pressures studied in this work (~ 1–10 Pa), the discharge cannot be ignited by using only the power supply, due to the breakdown voltage being higher  than the supplied voltage, as predicted by Paschen’s Law [7]. To overcome this, an electron gun built in the laboratory (JR121) is used. It consists of a small  spiral formed  by a  tungsten filament  with 0.13  mm  diameter and 1–2  cm  length  connected to a floating 



                                  

    

EXPERIMENTAL SETUP 21 
current source of up to 3 A, which in turn is connected to a negative high voltage of up to – 2000 V. When the filament is heated by Joule effect with a current slightly higher than 2 A,it becomes incandescent (with an intense white-yellowish emission) and thermionicemission of electrons occurs. These electrons are repelled by the negative voltage and flowinto  the  plasma, beginning  the  ionization processes necessary for the plasma ignition.Once  the  discharge has  been  ignited, the power supply is  enough to maintain it and theelectron gun is no longer needed, so it is turned off. 

Figure 2.1. Diagram of the experimental setup. 
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22 CHAPTER 2 

Figure 2.2. Photograph of the experimental setup employed in this work. 
2.1 Diagnostics 

Characterization of the plasma properties is done by means of different experimental techniques. A double  Langmuir probe is  used to  determine the electron temperature and the charge density, the concentrations of the neutral and ionic species are measured by quadrupole mass spectrometry and the vibrational and rotational temperatures of the gas are determined using optical spectroscopy. A detailed description of the techniques employed is given below. 
2.1.1 Double Langmuir probe 

A Langmuir probe is a device which is used to determine plasma parameters like electron temperatures, charge densities and plasma potentials. It consists of a smallmetallic electrode, which is immersed into the plasma and connected to a potential source. Generally the source is connected to a reference electrode, which in  many cases serves  



                           
                 

 
                                            

EXPERIMENTAL SETUP 23 
simultaneously as  the  cathode  or the anode  of the discharge.  In a  Langmuir  probeexperiment a so-called I-V characteristic is measured, i.e. the current density flowing  tothe surface of the probe within the plasma as a function of the voltage drop between the electrode and the reference. The measured currents and potentials in this system allow the determination of the physical properties of the plasma mentioned above. There are different types of Langmuir probes. In this work, the double probe configuration has been employed. The double probe system consists of two parallel electrodes of similar shape and size, which are connected to a floating variable potential source reversible in polarity. Ifthe two electrodes have the same dimensions, the measurement yields a symmetriccharacteristic [36]. The double probe configuration does not need connection to a reference electrode; instead, the potential difference between the two probes is used toobtain the I-V curve. A diagram of the double Langmuir probe is presented in Figure 2.3. 
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Figure 2.3. Schematic of the double Langmuir probe. 
The double Langmuir probe used in the experiments was designed and built in thelaboratory, including the electronic circuits. The two electrodes are tungsten filaments of0.13 mm diameter, and are inserted in glass capillaries so that only  a  small  length,between  5  and  8  mm  depending  on the probe used, is  exposed  to the plasma. Theseparation between the filaments is  about  5  mm. The probe is  placed such that theelectrodes are close to the center of the reactor. The floating electrodes are connected to a dual ramp generator (JR101), which applies a sawtooth voltage between ~ –100 and +100 V, with a period of 3 s. The current and voltage signals pass through an optically isolated 



               

  

 
                             

   
               

24 CHAPTER 2 
double amplifier (JR163) and are displayed in a digital oscilloscope (Yokogawa DL708E) working  in  X-Y mode, where several cycles can be averaged if necessary to increase the signal/noise ratio. An extensive description of the fundamentals of double Langmuir probemeasurements can be found in [8,36,37], and will be briefly described here. The typicalcharacteristic curve obtained in the discharges studied is shown in Figure 2.4.  
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Figure 2.4. Typical double Langmuir probe charac

There are two different regions in the curve. Region (a) is the ion saturation region, in which the potential of one of the electrodes (A2) is very negative with respect to theother (A1), so mainly positive ions flow to the former. In order to balance this current, an equal electron current flows to A1. Taking a pair of I-V values in this region (the saturation voltage, Vsat, and the saturation current, Isat), the charge density of the plasma Nc ≈ Ne ≈ Nican be obtained from: 
+ 

sat −3 13Nc (cm ) = 1.81×10 M (amu) I (A) (2.1)2S(cm ) Vsat (V)Where M+ is the ionic mass and S is  the  total  surface  of the probe.  In the  plasmas  studied, more than one ionic species is present, so the value for M+ is calculated from the 
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EXPERIMENTAL SETUP 25 
average of the ion masses weighted by their relative abundancies,  which  are  obtainedfrom the mass spectrum.In  region (b),  the  difference in  voltage  between the  two  electrodes is lower, andelectrons contribute to the current of electrode A2. Given that  the  probe  is floating, thecurrent equilibrium dictates that [8]:

Id = Ii1 − Ie1 = Ie2 − Ii2 (2.2)
Where Id is the current in the closed circuit of the probe, Ii are the ion currents and Ieare the electron currents. Assuming a Maxwellian distribution for the energy of theelectrons, the electron current flowing to each electrode is given by: 

1 2k T   eV exp (2.3)I = S eN B e  i  
ei i e  4 2π m k Te  B e  Where Si is the area of each electrode in m2, e is the electron charge in coulombs, kBis the Boltzmann constant, Te is the electron temperature in K, me is the electron mass inkg, and Vi is the potential of each electrode in volts. Using the expressions for Ie1  and Ie2 from Eqs. (2.2) and (2.3), assuming S1 = S2 anddividing Ie1  by Ie2 : 

Ie1 Ii1 − Id  eVd  = = exp (2.4) Ie2 Ii2 + Id  k TB e  With Vd = V1  – V2. Differentiating this expression with respect to Vd and taking intoaccount that close to Vd  =  0  ion  currents do  not  change much  compared to electroncurrents, the following analytical expression can be obtained for the electron temperature[36]: 
e  I Ie e  dVd 1 2Te = −  (2.5) k I + I dIB  i1 i2 d Vd =0 A better approximation to the value of Te  (in eV,  with 1 eV =  11605 K) can beobtained using the expression deduced by Johnson and Malter [38]:

IG(A) dVd V Te(eV)= 2 dId

((A)) (2.6) 
 Vd =0 Where [dV / dI ] is the so-called equivalent resistance and I is the value of thed d Vd =0 Gcurrent at point G in the graph. This point is found using the linear extrapolation of the ion 
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saturation region (E–F), where E is the intersection with the vertical axis and F is the pointof separation  from the characteristic. Point G is  defined  such  that the ratio between thedistances EG and GF is 1:4. The presence of negative ions in the discharge can modify the shape of the Langmuir probe characteristic, leading to an error in the determination of the electron temperature. However, this effect is only relevant when the negative ion density is very close (> 99 %)to the charge  density  of the discharge [39],  which  does not  occur in the present experiments. 
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Figure 2.5. Example output of the MATLAB program used to analyze the double Langmuir probe characteristics. 
A  MATLAB  program has been developed during  the  course of  this thesis by itsauthor to  easily obtain  the  charge densities  and electron  temperatures from the data 
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EXPERIMENTAL SETUP 27 
acquired with the double Langmuir probe. A detailed description of the program and thefull  code can be  found  in Appendix  A.1.  The  program  averages the different (I,V) cyclesobtained in a single measurement with the Langmuir probe to produce a single  curve,smooths it, and obtains values for the parameters Vsat, Isat, IG and [dVd / dId ]Vd =0 , using them to calculate Ne and  Te. An example of an output graph from the program is displayed inFigure 2.5., showing two different linear fits of the ion saturation region and four differentF and G points calculated for each branch of the characteristic. 
2.1.2 Mass spectrometry 

Mass  spectrometry is  one  of the most  used techniques  in plasma  diagnostics. It isbased on the generation of positive ions from the neutral species of the plasma and their subsequent separation depending on their charge/mass  ratio. Mass spectrometers are sensitive instruments and are able to provide absolute values of the concentration of thespecies with adequate calibration. 
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Figure 2.6. The different parts of a quadrupole mass spectrometer. The electrical diagram for the quadrupole rods is displayed above. The orange curve represents the trajectory ofan ion hitting the detector. 



                         
                    

                            
                                          

28 CHAPTER 2 
There are different  types  of mass  spectrometers, depending on  the filteringmechanism used  to se arate  the  species. In  this work, the two mass spectrometersemployed  use  quadruppole mass filters.  A  diagram  of a typical quadrupole massspectrometer can be seen in Figure 2.6. A measurement using quadrupole mass spectrometry usually consists of four basicstages. First, neutral species are ionized in the so-called ionizer. This is usually achieved byelectron bombardment, using an incandescent filament to liberate the electrons that arethen accelerated by a potential of several tens of volts, where the ionization efficiency ofmost species is high enough. Next, the ions are extracted from the ionizer and acceleratedby means of a set of electrostatic lenses. These two stages comprise the ion source. Ions then enter the quadrupole, which consists of four parallel  equally  spacedcylinders. A combination of constant and radiofrequency electric fields, whose amplitudescan be varied with time, is applied to these rods, causing the ions passing through them todescribe different trajectories dependfields, in such a way that only those ing on their charge/mass ratio and on the appliedions with a given charge/mass ratio are able to reachthe detector, placed in the central axis of the rods at the end of the quadrupole. Of thedifferent types of detectors available, both spectrometers employed  in this  work areequipped with  Faraday  cups,  which  directly collect  the  ion current,  and  electronmultipliers, where the ion current is transformed into an amplified electron current bysecondary emission effect in a series of collisions with the different regions of the detectorsurface set to different electric potentials. Electron multipliers were  the  preferreddetectors for the experiments described in this work. 

2.1.2.1  Mass spectrometry of neutralsA Balzers Prisma QMS 200 quadrupole mass spectrometer has been employed forthe detection of neutral species. It comprises the analyzer (QMA 200)  and  externalelements for power management and control. The analyzer is fitted to the vacuumchamber and consists of an open ion source with two tungsten filaments, the mass filter,and the two alternative detectors: a Faraday cup and a channel electron multiplier (CEM).The mass filter is formed by four stainless steel bars of 6 mm diameter and 10 cm lengthmounted on a stable structure. The CEM is composed of a curvedwith a semiconducting oxide. Electrons collide with the walls alongglass tube coated insidethe tube producing thesecondary emission and amplifying the signal. The external elements, located outside thevacuum chamber, include the control unit (QMS 200), the mass filter electronics (QME200) with its corresponding power source (SP 200), the DC high voltage source for theCEM (which is polarized to 900 V) and the preamplifiers for the Faraday cup (EP 200) andthe electron multiplier (CP 400). 
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Mass/charge ratios between 1 and 100 amu can be sampled with the spectrometer, with a maximum mass resolution of 0.5 amu. The controlling software (Quadstar 422)allows operation in two different modes. The Scan mode registers the complete spectrum in a particular range of masses, with configurable resolution and sampling time. The MID (Multiple Ion Detect) mode allows to select up to 64 different masses to detect and follow their evolution, choosing the sampling time for each of them. Calibration of the sensitivities for the different mass/charge ratios is performed in a different way depending on whether the species is a precursor gas or not. For precursorgases, the process is relatively simple. Different pressures of the studied gas  are  introduced ifor each o n the reactor and measured with the absolute capacitance manometer, and, f them, the corresponding counts in the spectrometer are acquired. These pairs of values can be fitted to a straight line with a fixed intercept of zero, as shown in Figure 2.7, yielding the calibration for that species.  
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Figure 2.7. Calibration for Ar sensitivity in a mixture with 8 Pa of H2. 

It has been found empirically that the presence of significant amounts of H2  in thereactor can alter the relative sensitivity of the quadrupole mass spectrometer to the rest ofthe species. It might be due to a change in the electron emission coefficient of the filament 
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of the ionizer due to  some kind  of reaction  with this  species.  To account for that,calibrations have  been carried out filling the chamber  with  different backgroundpressures of H2 and then proceeding with the steps described before, since H2 is one of themain components in all of the gas mixtures studied in this work. When the species is  not  a  precursor  gas, the calibration  process is slightly more complex. In that case, a noble gas with a mass close to that of the studied species is chosen.In the experiments presented in this work, this type of calibration has been performed for NH3 and H2O, so in both cases Ne was the noble gas employed, using the signal of mass 20 (20Ne). The  calibration is  performed for this noble gas, obtaining the proportionalityconstant between the spectrometer  signal and the reactor pressure, β (Pa/A). Assuming  that the difference in masses does not affect the sensitivity significantly, the calibration for the studied species X can be obtained from: 

ion 20σ Ne a( Ne)β X = βNe  ion 
(2.7)

σ X Where σion is the electron impact ionization cross section for the species in thesubscript at the energy of the electrons in the spectrometer ionizer, which is 100 eV. Thenatural isotopic abundance of 20Ne, a(20Ne) = 0.905, is also taken into account. 
2.1.2.2  Mass spectrometry of ionsPositive ion abundances  have  been  measured  by  means  of a Balzers PPM 421plasma monitor.  It consists of  an ion focusing  lens system, ITRO (Ionic Transfer OpticalSystem), an ion source allowing its alternative use as a neutral species detector, a cylindrical capacitor ion energy analyzer, CMA (Cylindrical Mirror Analyzer), a QMA 400 mass filter composed of 4 molybdenum bars of 8 mm diameter and 20 cm length mountedon two ceramic brackets, and two alternative detectors: a Faraday cup, and an electron multiplier (SEM 217 with 17 dynodes) which was preferred for the measurements. The spectral range for this  instrument is  1–340 amu, and the resolution can be regulated by tweaking the potentials of the funits include the power source ocusing system, obtaining values below 0.5 amu. Auxiliaryfor the ion source (IS 420), the energy analyzer electronics (PA 421), the radiofrequency source QMH400-5, a preamplifier for the Faraday cup (EP112)  and the SEM (CP  400), the DC  high voltage source  for  the  SEM, which has been usually operated between 2800 and 3200 V and a control unit for the quadrupole filter QMG 421. The same Quadstar software described for the QMS 200 is used with this instrument, and provides some extra operation modes. For the measurements performed in this work, the M-MID, E-cycled option is selected. In this mode, the user can input a list of masses  to sample  and  an energy  range, and the spectrometer  outputs the counts for each mass against the energy of the ion. The instrument allows measurements for energies 
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between 1 and 512 eV. A different mode, E-fixed, M-cycled, has also been employed. In thiscase, a selected range of masses is sampled for a defined ion energy. Ionic species are sampled through the grounded ~ 100 µm diaphragm connecting the two vacuum chambers. Ions in the plasma are accelerated through the sheath towardsthe grounded reactor walls by a potential close to the anode-cathode voltage. The entrance of the ion focusing system is placed directly behind the diaphragm, in order to collect as many ions as possible. Calibration of the relative sensitivity of the instrument for the different ion masses is performed using the noble gases He, Ne and Ar in the neutral detection mode (i.e. with the electron impact ionizer turned on), similarly to [40]. The signal in the plasma monitor is compared to the pressure in the PPM chamber, measured with the Bayard-Alpertmanometer. This  is done  due  to the similarity  between  the  two  instruments, as theBayard-Alpert  manometer  uses  a hot cathode ionizer (with  an  accelerating potential of100 V) and an ion collector to measure the pressure in the chamber. The transmission T ofthe species i is obtained as: 

f C  PPM 
i iTi ∝ (2.8)BA ion P ai i σ i Where CPPM is the signal measured in the spectrometer, PBA is the pressure read in the Bayard-Alpert manometer, f is a correction coefficient for the Bayard-Alpert measurements, a is the natural isotopic abundance of the mass studied, and σion  is theelectron impact ionization cross section at 70 eV, which is the energy of the electrons inthe PPM ionizer. Coefficient f is  related  to the ionization  cross  section  of the  gas  by  theelectrons of the hot cathode, and can be found in tables provided by the manufacturer or calculated from the cross section values. The transmission obtained for the different noblegasses can be represented as a function of the mass, as shown in Figure 2.8. In order toextrapolate for the rest of masses, these points can be fitted to a curve of the form T = AmB,where coefficient B is the relevant parameter, giving the dependence with the mass. Thevalue of B depends on the voltage applied to the SEM. For a voltage of 3200 V, B ~ –0.5 isobtained. 
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Figure 2.8. Transmission of the plasma monitor as a function of the mass. 
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Transm
ission 


ail that is usuall
h
t
 y

e
li
peak corresponding gible excepions [41].  An examp

he plasma potential, with a low energy ere  collisions with molecules in he sheath have t  in cases we o hthe ion energy distributi tl f  ons measuneg 
sect 
 igh cross d with the PPM can bre 
seen in Figure 2.9.The relative ion fluxes for each mass are determined by integrating their respective ion energy distribution. In order to obtain the relative ion densities in the plasma, and taking into account that the velocity of an ion is inversely proportional to the square root ifits mass, these ion fluxes are multiplied by the square root of their mass/charge ratio and divided by their relative transmission. Absolute values for the concentrations can then beobtained by normalizing to the charge density measured with the Langmuir probe. 
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Figure 2.9. Energy distributions obtained with the plasma monitor for the different ionsin a H2 + Ar plasma at 8 Pa. 

Even though  the  instrument  allows the  measurement of  negative ion abundances, the sampling of these species in glow discharges presents some serious difficulties, since negative ions are confined to the glow due to the positive potential of the plasma with respect  to all  surfaces [42,43]. Due to  this,  negative ion abundances have not been experimentally determined in this work. 
2.1.3 Optical spectroscopy 

The rotational, translational and vibrational temperatures of the gas are importantparameters that influence the chemistry of the discharge, and can be determined throughthe analysis of the emission lines from the plasma. An optical fiber is  placed at  the  observation  window,  and  is connected to a Jobin Yvon-Horiba FHR1000 dispersive Czerny-Turner spectrometer to record the emission spectra. The focal distance of the spectrometer is 1 m, and a 1800 mm–1 diffraction grating is employed. Both a photomultiplier and a CCD camera (with a pixel width of 26 μm) can 
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be used as detectors, with the latter being preferred for this kind of measurements due tothe faster acquisition times. With a slit width of 24 μm, the instrumental line width for thisconfiguration was 0.020 nm, as determined from the measurements of  the  Hg line  at546.07 nm from a fluorescent tube. The rotational temperatures of the hydrogen molecules are determined bygenerating a Boltzmann plot using the Q-branch line intensities for  a fixed vibrationallevel, as described in [44]. The rotational temperature of the ground level is often assumed to coincide with the translational temperature [45], providing an estimation  of the  gas  temperature Tg. Typical values of the gas temperature in the experimental setup used are around 400 K [46].The vibrational temperatures of H2 are obtained using a collisional-radiative model based  on [47]  (not presented in  this work),  generating a synthetic spectrum to fit the intensities  of the Q-branch  band heads.  This type  of experimental measurements and analysis has been employed in the same experimental setup [46] and in a different plasma reactor [48] in the laboratory. 



  

           
         

                               
                   

Chapter 3. 

Plasma modeling 

A great variety of physical and chemical processes involving neutral and chargedspecies occur in plasmas. Plasma modeling is a helpful tool to characterize these processesand establish their relevance in the plasma kinetics. The objective of the kinetic modelselaborated in this work is the determination of the fundamental processes responsible forthe chemistry of the different mixtures studied. The main  kinetic  processes  that take  place  in cold  plasmas  are electron impactdissociation, excitation to metastable states and ionization, collisional quenching, gasphase reactions between neutrals (usually including radicals or  excited  species),  ion-molecule reactions, and heterogeneous processes. Only the most relevant processes areincluded  in the kinetic models to  avoid  complexity,  excluding  the  reactions  that do  nothave a noticeable influence in the final results, due to their low rate coefficients or becausethey involve very minor species. For that reason, reactions between two stable molecularspecies are not considered, given that they only become relevant at temperatures muchhigher than the ones in the plasmas studied in this work. Similarly, three body reactionsare not included, as the probability of their occurrence at the pressures studied is verlow. Electron impact excitation to radiative levels is also ignored, since deexcitation byyspontaneous emission, responsible  for  the  characteristic brightness of glow discharges,depopulates these levels quick enough to prevent their collisional energy transfer to otherparticles.To further avoid complexity, only two distinct volumes, the plasma glow and thesheath, are considered in the discharge. In each of these volumes, concentrations of thedifferent species are assumed to be uniform (i.e. no spatial distribution). The thickness ofthe sheath is estimated from spatially resolved measurements of the electron density inthe setup [35] and from the ion energy distributions [41]. It depends on the discharge 
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parameters [8],  so the plasma  volume changes for the different  conditions simulated. Neutral species are assumed to fill the whole volume of the reactor, so theirconcentrations are the same  in both  volumes, whereas charged species (electrons and ions) are considered negligible in the sheath, and are only present in the plasma glow. Thelatter is due to electrons and negative ions being repelled by the negative potential of thesheath with respect to the plasma, while positive ions are accelerated towards the wall by this potential and leave the sheath quickly, thus drastically decreasing their density in thisvolume. The model consists of a set of coupled differential equations describing the time evolution of the concentrations of the different species due to the various physicochemicalprocesses occurring in the plasma from the ignition of the discharge to the attainment ofthe steady state. The differential equation for a given species X takes the form: 

d X[ ]  = Qi
P − QD

j (3.1)
dt i j Where  [X]  is the concentration  of the species X,  and  QP and  QD are the production  and destruction terms respectively. Most of these terms are weighted by the ratio of  thevolume in which the process takes place (usually the glow) and the volume in whichspecies X is found (glow or reactor). The exact form of each of these terms depends on theprocess considered.In this context, a chemical reaction X + Y → XY is characterized by its rate coefficient 

k, so the dependence with time of the concentration of species XY can be written as: 
d XY  [ ] = [ ][  3.2)k X  Y  ] (

dt Electrons are treated differently from the heavy species in the plasma, as there is no differential  equation for the electron density. The electroneutrality condition is imposed, meaning that the total concentration of positively charged species must be equal to thetotal concentration of negatively charged species. The value of this total concentration isthe charge density, Nc, which is used as an input parameter for the model and thus it does not evolve with time. When negative ions are present, the electron density is obtained from: 
−Ne = Nc −N (3.3)

Where N is  the  total  negative ion density.  When negative  ions  are not  present inthe  discharge, −the situation is  much simpler  and the  electron  density is constant throughout the simulation. 
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The electron energy distribution functions (EEDF) in the model are assumed to beMaxwellian. However, the electron energy distribution function is  not known  withprecision in the plasmas studied, as there are mechanisms that can significantly affect themagnitude of the high energy tail of the distribution. On one hand, the tail can be depletedby inelastic and reactive collisions [49-51]. On the other hand, a small amount of non-thermal electrons resulting from secondary electron emission by  the  cathode, withenergies  that extend  to that  corresponding to  the  cathode-anode  voltage, can also  bepresent in  the  discharge  [52,53]. However,  previous works in  the same reactor atcomparable pressures [35,54,55] have  shown  that the Maxwellian assumption for theEEDF is not a bad approximation for the global kinetics. There are however some instances in which the Maxwellian EEDF is not sufficient toexplain some of the processes observed in the plasma. This is the  case of  the  H2  + Armodel, where the observed concentrations of Ar2+  cannot be  justified  with ionization byelectrons with a Maxwellian EEDF at the measured Te. To account for that, a small amountof high energy electrons are included in the model (see section 3.4.1 for more details).A variety of parameters are used as inputs for the kinetic model. To characterize thegas composition and flow, the experimental values for precursor fractions, pressure andresidence time are employed. The geometry of the reactor is described through the radius,surface and volume. Values for the electron density and the electron temperature are usedas  input  but, due to  their  crucial  influence  in the chemistry of the discharge, they areadjusted to better fit the observed concentrations of the different  species  and  thus theyoften differ slightly from the ones obtained experimentally. These adjusted values arecommonly within the experimental errors. The use of these last two parameters as input results in a model that is not self-consistent. In principle, it  would be possible to calculate the electron energy distributionand density by solving the Boltzmann equation, provided that the rate coefficients for allprocesses involving electrons (ionizations and dissociations, diffusion to the anode andwalls, etc.) are known. In a less complex way, the electron density alone could be obtainedby solving a differential equation including these processes, and using the Te  value  as amodel input.  Those  two  methods  would  result in  a more realistic simulation of thedischarge and, in the first case, of the electron energy distribution, and it would benecessary if no experimental data were available. The approach employed  in this  work,where Te and Ne measured values are used as input data, results in a simpler model, withreduced calculation times (of a few seconds), and allows for a very eas variation of thedischarge parameters to observe their separate effect on the chemistryy of  the  differentmixtures, while ensuring that rate coefficients are calculated from the experimental Tevalue. 



               
 

       
 

                     
   

           
      

 

   
     

   

38 CHAPTER 3 
The main mechanisms responsible for the variation of the concentrations of thedifferent  species  in the models developed in this work are homogeneous reactions,heterogeneous reactions, and the changes induced by the precursor  gas  flow and thepumping of the reactor. The modeling of these types of processes is described in thefollowing subsections. 

3.1 Homogeneous reactions 

Reactions in the gas phase can be fundamentally divided in two different categories:reactions with activation energy, which generally involve electrons, and reactions withoutactivation energy. The modeling of these two types of reactions is different. 
3.1.1 Reactions with activation energy 

These types of reactions are dominated by repulsive forces, thus an energy barriermust be overcome to go from reactants to products. The main reactions  of this  typeoccurring in the plasma are electron impact dissociation and ionization. The dependence of the rate coefficient ke with the electron temperature Te  is oftenexpressed by the empirical relationship for kinetic processes with a barrier, the Arrheniusformula [56]: 
ke = Aexp(−EA Te ) (3.4)

Where A is a pre-exponential coefficient assumed to be independent or weaklydependent on  the  temperature, and EA  is the activation  energy.  In many  cases, both  ofthese values can be obtained from bibliographic sources. The rate coefficient as  a function of  the electron temperature can also be obtainedfrom the reaction cross section σ: 
e ( )ke = σ v v (3.5)

Where v is the electron velocity. If a Maxwellian electron energy distribution isassumed, eq. (3.5) becomes: 
∞


k = σ ε( ) 8eTe 
1 2  ε exp − ε  dε (3.6)e  e     

0  πme  Te  Te  Te 
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Where e is the electron charge, me is the electron mass, and ε is the kinetic energy ofthe electron. If σ(ε) is known, ke can be obtained from the integration. Usually, a numerical integration  has  to be  performed, and the resulting data  for  ke(Te)  is then  fitted to  an  Arrhenius-like expression: 

ke = AT  e 
B exp (−C  T  e ) (3.7)

The σ(ε) distributions or the coefficients A, B and  C can also be usually found inbibliographic sources. 
3.1.2 Reactions without activation energy 

Contrary to reactions with activation energy, barrierless reactions are notdominated by repulsion forces. Attractive forces, either strong (neutralization) or weak (ion-molecule reactions), are involved. ion-electron and ion-ion Ion-electron neutralization processes have a weaker dependence on the electron temperature than the ionization and dissociation processes. In the discharges studied, due to the low concentrations of both species involved in the reaction, they do not balance outthe charge formation by ionization reactions and are not the main neutralization mechanism for positive ions. Instead, positive ions are primarily neutralized by collisions with the walls of the reactor. Ion-ion neutralization processes occur when there are positive and negative ions inthe plasma. Similar to ion-electron neutralization, tunimportant in regard to positive ion neutralization due hese processes are relatively low relative concentration to the of both kinds of species, being less prominent than wall neutralization. However, negativeions are trapped in the plasma and do not diffuse to the walls, so this type of reaction isusually a relevant destruction mechanism in their chemistry.In the case  of ion-molecule reactions,  and  specifically  a single-charged ion, the4interaction potential is attractive and proportional to (1/R ), where R is  the  distance  between the molecular nuclei, and it can be shown [57] that the corresponding cross section is given by: 
2 

m( )  = (2 α ε )1 2  (3.8)σ ε  π e 

Where α is the polarizability of the molecule. This expression is known as theLangevin form of the reaction cross section. As shown before, the rate coefficient can beobtained from: 
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 4π e α  (3.9)km = σ m( )v v 

2 2  1 2  
=  μ  Where μ is the reduced mass of the ion-molecule pair. As can be seen, in this case therate coefficient does not depend on the temperature. The Langevin formula is usually taken as an upper bound for the value of the rate coefficient, and more precise values can be determined experimentally. Therefore, the values of the rate coefficients for this type ofreactions used in this work have been obtained from bibliographic sources. The lack of dependence on the temperature coupled with the relatively high values of the rate coefficients make ion-molecule reactions very important processes in cold plasmas, and their primary effect  is  the redistribution  of the  charge created by electron impact ionizations in new ionic species. 

3.2 Heterogeneous reactions 

3.2.1 Neutral species 

Recombination at the reactor walls is the main source of new molecular species in the discharges presented in this work. Heterogeneous reactions can happen in one or various  stages at  the  surface, and their characteristic  times  together with the diffusiontime of the radicals to the wall are what determine the relevance of these processes. The two alternative mechanisms responsible for wall recombination are Eley-Rideal(ER) and Langmuir-Hinshelwood (LH). 
3.2.1.1  Eley-Rideal mechanismIn the  Eley-Rideal mechanism,  a  radical coming from the gas phase reacts withanother radical adsorbed at the surface to form a molecule and return to the gas phase. A scheme of the mechanism is shown in Figure 3.1. The process can be summarized as: 

X + Y(s) → XY 
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Figure 3.1. The Eley-Rideal mechanism. 
The  characteristic time  for  the  process  is the result  of the addition of thecharacteristic time for the diffusion of radical X from the plasma to the wall and the characteristic time of the reaction occurring at the wall. The rate coefficient of the process is given by the inverse of the characteristic time. As shown in [58], the characteristic time of diffusion can be calculated from: 

Λ2 τdiffX = (3.10)
DX Where Λ is the characteristic dimension of the reactor and DX is the diffusivity for the species X. The characteristic time for the reaction at the wall can be expressed as [59]: 
 γ ERXY 4VR 1 −  

τ ERXY =	  2  (3.11)
R ER  XYA γ vt X 

Where VR is the reactor volume, AR is the reactor area, γ ERXY  is the recombination coefficient, and á ñ is t e mean herma d of the radica X. T e ra e coe f cient isvt X h  t l spee l  h t f iobtained as: 1 1kERXY = (3.12)
ST τ diff  X +τ ER  XY  Where ST is the surface saturation concentration, i.e. the total number of possible free sites per unit area. This parameter is usually estimated from the number of atoms ofthe  surface  material per area  unit [60], and so  a  value  of  ST = 1015 cm–2 is assumed. Treaction rate thus depends on the partial surface coverage of species Y at the reactor wa llhes. 
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Adsorptions of radicals to the wall, which are necessary for this mechanism to takeplace, are modeled following the same  formulation. The  adsorption of a radical to thesurface can be expressed as: 

X + Fs → X(s)
Where Fs represents  a  free site  in the surface.  The  probabilities  of all radicaladsorptions (sticking coefficients) are assumed to be equal to 1. In the plasmas studied inthis work, the surface  of  the  reactor  is  almost  fully covered due to  the  high influx  ofradicals to the walls, creating a monolayer of adsorbed species. Deexcitation of neutral species at the wall is also modeled based on these expressions. 

*X  + Wall → X 
In this case, the reaction rate is independent of the concentration of speciesadsorbed  at  the  wall  or the number  of free  sites, and within  this formulation it  is*essentially equivalent to a reaction of the excited species X with a species with a surface concentration of ST. 

3.2.1.2  Langmuir-Hinshelwood mechanismThe Langmuir-Hinshelwood mechanism differs from the Eley-Rideal one in the fact that both  reacting species are adsorbed  at the surface,  which  is shown schematically inFigure 3.2. The reaction can be written as:
X(s) + Y(s) → XY 

X 
Y 

X Y X Y 

Figure 3.2. The Langmuir-Hinshelwood mechanism. 
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Following the formulation in [61], which considers the surface diffusion of theadsorbed species, the rate coefficient for the LH reaction is expressed as: 

AR ν  Ed + E A  
LH  − k = 

VR 4ST 
exp
 k T  B w  

(3.13)
Where Ed is the activation energy for diffusion, EA is the activation energy for thechemical process, kB is the Boltzmann constant and Tw is  the  temperature  of the reactor  walls (~ 300 K). The value of the surface diffusional jump frequency, ν, is assumed to be ~ 1013 s–1 [62]. 

3.2.2 Positive ions 

Heterogeneous reactions are very relevant for the chemistry of the positive ions, as they  are a far more  efficient  neutralization mechanism  than  gas phase reactions.  In  themodel, wall neutralization is used as a means to preserve the quasi-neutrality of thedischarge. Since the charge density of the plasma is constant, it then follows that:
θ + neut w ion =θneut ( )g θ ( ) (3.14)

Where θion represents the net production of charge in the plasma, and θneut(g) and  
θneut(w) represent the net destruction  of charge  in the  gas phase and at the walls, respectively. In other words, the amount of ions generated in the plasma must be equal to the number of ions disappearing in  gas phase reactions plus  the  ones neutralized at thewalls. The quantities θion, θneut(g) and θneut(w) can be written as: 

θion = k Xi [ ]Ni e 
i 

+ −k X  ] Yj ] (θneut ( )g =  j[ j [ 3.15)
j 

θ ( )  =  n[ ]neut w k Xn 
+ 

n In these expressions, the index i represents the ionization reactions, with ki being  the rate coefficient and [Xi] the concentration of the precursor. The same applies for index 
j, which represents gas phase neutralizations, with Yj 

−  being either an anion or an electron. Finally, index n represents the different positive ions in the discharge, and kn are the wall neutralization rate coefficients. The plasma sheath in the setup used  in these  experiments is essentially collisionless, since the mean free  path  for  ions is  much larger  than the Debye length [8]. This is supported by the shape of the experimental ion energy 
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distributions, as shown in [41]. In these conditions, the rate with which an ion reaches thecathode is inversely proportional to the square root of its mass, so it follows that: 

Kkn = (3.16)
mn Where K is a constant that depends on the experimental conditions (dischargecurrent, reactor geometry, etc.), but is the same for all the different ions. From this and theexpressions in (3.14) and (3.15), the rate coefficients can finally be obtained: 

 i [ ]  −k j[X [ jk Xi Ne j ] Y ]
i jkn = +

+ − (3.17)[ ]mn  
Xp 

p mp 

3.3 Gas flow and pumping 

The flow of species entering and exiting the reactor has to be considered in themodel.  A  term ϕin  is added in  the differential equations for  the  precursor  species toaccount for the amount of molecules flowing into the reactor, and all neutral havea term ϕout subtracted due to the pumping of the chamber. The flow of chargedspeciesspecies outof the reactor is not considered since their specific destruction processes (namely wall andgas phase neutralization) are much more efficient. For a precursor species X, theexpression is: 
in( )  ( )d X 	[ ] = φ X − φout X (3.18)

dt VR VR The flow of a precursor species into the reactor can be obtained from the residencetime, τR, which is determined experimentally, and the fraction of that species in theprecursor mixture, fX, determined before the ignition of the discharge. Since the residencetimes measured for the different species are in the 0.5–1 s range, a mean value is taken forthe mixture in order to simplify the formulation. 
f VX = Φf	 X R  (
τR 

φin( )  X in =	 3.19) 
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Where Φin is the total flow of molecules entering the reactor. The flow of molecules out of the reactor is considered to be proportional to the species concentration, so, for any neutral species Xi: 

Xiφ ( )  = Φ  [ ]  (3.20)out Xi out 
[ ]X j 

j Where Φout is  the  total  flow out of  the  reactor.  The total flows in  and  out of the reactor are not necessarily equal, due to the slight increase or decrease in the number ofparticles (and thus the pressure) in the reactor caused by dissociation reactions and wallrecombination respectively. Assuming that Φout is proportional to the pressure in the reactor, it can be expressed as: 
[ ]Xi 

out in [ ] (3.21)Φ = Φ  i 
 Xi0

i Where [Xi0 ]  stands for the concentration of species Xi at the beginning of thesimulation (i.e. before the ignition of the discharge). 
3.4 Specific features and reaction tables 

The general concepts behind the modeling of the low pressure glow discharges have been discussed  in the previous  part of the chapter. This section  deals  with the specificcharacteristics of the model for each of the different mixtures studied, as well as the set ofreactions considered for the simulation of the plasma chemistry. 
3.4.1 H2 + Ar model 

The model employed in this work is based on a previous one developed for the same mixture and experimental setup [63]. Given that the number of species formed in this kind of plasmas is not high, with H2 being the only neutral molecule, the total number ofreactions is fairly low. There is however a feature that differentiates this model from theothers presented in this thesis, and that is the inclusion of a small amount of high energy electrons, with energies ~ 50–300 eV, through a special set of rate coefficients (kB) forsome of the electron impact reactions. The fraction of highof the model, set manually for each condition simulated. energy electrons is a parameter 
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The reason behind this decision is the observation of the Ar2+ ion with  mass  spectrometry. The threshold for the electron impact double ionization of  the  Ar atom,which is the main source of Ar2+ ions, is ~ 48 eV [64]. The threshold for the ionization ofAr+ is somewhat lower (~ 27 eV), but the lower abundance of Ar+ in the plasma comparedto Ar causes it to be a less relevant mechanism. Neither of these two reactions can justifythe amount of Ar2+ observed when only the typical Maxwellian electron temperatures for the plasmas studied (~ 2–8 eV) are taken into account, obtaining simulated concentrations orders of magnitude lower than the experimental ones. The inclusion of  the high energy electron component (which, as explained in the beginning of the chapter, is known to existin glow discharges) accounts for the observed Ar2+ concentration while the chemistry for the rest of the species remains largely unaffected. The  calculation  of the rate  coefficients for high  energy  electrons, kB, is performed using certain simplifications. As seen in eq. (3.5), the rate coefficient for an electron impact reaction can be  obtained from  ke = σe( )v v  .  In the energy  range  of  these electrons,however, the cross section decays with growing energy, so telectron velocity is roughly constant. With this consideration , khat the product with the B values are obtained bytaking an average value of the rate coefficient over energies from 50 to 300 eV. A list of the species included in the model can be found in Table 3.1. The set of gas phase reactions included in the model  is shown in  Table  3.2, along with their rate coefficients and the corresponding reference. In the case of electron impact reactions, thegiven rate coefficients are those  obtained  considering a Maxwellian electron energy distribution (kA). Table 3.3 contains  the  rate coefficients  for  reactions  involving highenergy electrons (kB). 

3Only one excited species is included in the model, the metastable Ar atoms in 4s P2*and 4s3P0 states, represented here  as Ar .  The  reason  for their inclusion is  theircontribution to  the  formation  of atomic  hydrogen through reaction 23, and Ar+ ions  *through Penning ionization (reaction 24). Even though excited H atoms (H ) are included in the table, particularly in reaction 9, these excited states are not metastable and thus they  are  assumed to  decay  to  the ground  state  before any further reaction can occur. Therefore, these H* are  effectively treated in  the  model  as H atoms in  the  ground  state.This assumption is replicated in the models for the other two mixtures. 
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Table 3.1. Species considered in the H2+ Ar model. 

Neutral species Ionic speciesH2  H+H H2+Ar H3+*Ar  ArArArH 
+2++ 

Table 3.2.  Homogeneous reactions considered in the H2 + Ar model. Rate coefficients, kA,are given for Maxwellian electrons at Te (eV). Two alternative values are given for the ratecoefficient of reaction Hk18 and Lk18. The origin of these coefficients and their influence inthe model simulations is discussed in sections 4.2 and 0. 
Process Rate coefficient, kA (cm3 s–1) Ref.1 H + e → H+ + 2e 6.50 × 10–9 Te0.49 exp(–12.89/Te
2 H2 + e → H+ + H + 2e 3.00 × 10–8 Te0.44 exp(–37.73/Te

))
3 H2+ + e → H+ + H + e 1.07 × 10–7 Te0.049 exp(–9.69/Te)
4 H2+ + e → H+ + H+ + 2e 2.12 × 10–9 Te0.31 exp(–23.30/Te) 
[35][35][35][35]
5 H2+ + H → H2 + H+ 6.4 × 10–10 65]
6 H2 + H+ → H2+ + H 1.19 × 10–22 [[35]
7 H2 + e → H2+ + 2e 3.12 × 10–8 Te0.17 exp(–20.08/Te)
–0.08 H3+ + e → H2+ + H + e 4.85 × 10–7 Te 5 exp(–19.17/Te) [35][35]* 2 3 49 H2+ + e → H + H a + b × Te + c × Te  + d × Te  + e × Te  (*) 35]10 H2+ + H2 → H3+ + H 2.0 × 10–9 [[65]11 H3+ + e → 3H 0.5 × K [35]12 H3+ + e → H2 + H 0.5 × K (**)(**) [35]–1.2413 H2 + e → 2H + e 1.75 × 10–7 Te  exp(–12.59/Te) [35]
14 Ar + e → Ar+ + 2e 2.53 × 10–8 Te0.5 exp(–16.3/Te)
15 Ar + e → Ar2+ + 3e 2.58 × 10–9 Te0.5 exp(–47/Te)
16 Ar+ + e → Ar2+ + 2 e 1.9 × 10–8 Te0.5 exp(–27.7/Te) 
[63][63][63]
17 H2+ + Ar → ArH+ + H 2.1 × 10–9 [65]


Hk18 = 3.65 × 10–1018 H3+ + Ar → ArH+ + H2 [65][66]Lk18 = 1 × 10–1119 Ar+ + H2→ H2+ + Ar 0.02 × 8.9 × 10–1020 Ar+ + H2→ ArH+ + H 0.98 × 8.9 × 10–10 [[65]65]21 ArH+ + H2→ H3+ + Ar 6.3 × 10–10 [65] 
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Process Rate coefficient, kA (cm3 s–1) Ref.*22 Ar + e → Ar + e 9.90 × 10–10 Te–0.08 exp(–11.72/Te) [67]*23 Ar  + H2 → 2H + Ar 7.0 × 10–11 * * –1024 Ar  + Ar  → Ar + Ar+ + e 6.4 × 10 [[68]68]–14(*) a = 7.51 × 10–9, b = –1.12 × 10–9, c = 1.03 × 10–10, d = –4.15 × 10–12, e = 5.86 × 10–9 Te –10 Te2 –11 Te3 –13 Te4(**) K = 8.39 × 10–9 + 3.02 × 10 – 3.80 × 10 + 1.31 × 10 + 2.42 × 10 –2.30 × 10–14 Te5 + 3.55 × 10–16 Te6 

Table 3.3. Rate coefficients, kB, for homogeneous reactions with high energy electrons (>50 eV, see text).
Process Rate coefficient, kB (cm3 s–1) Ref.1 H + e → H+ + 2e 4.2 × 10–82 H2 + e → H+ + H + 2e 4.5 × 10–97 H2 + e → H2+ + 2e 5.0 × 10–813 H2 + e → 2H + e 1 × 10–814 Ar + e → Ar+ + 2e 1.6 × 10–7 –815 Ar + e → Ar2+ + 3e 1.1 × 10

63]63]63]63]63]63]*22 Ar + e → Ar + e 2.4 × 10–8 

[[[[[[[68]
H2 molecules in vibrationally excited states,  H2(v),  can be present in  the discharge.Electron impact reactions with these molecules are more efficient than with ground stateH2, as the energy barrier is lowered. Practically, the rate coefficients for reactions withvibrationally excited molecules are usually obtained by considering that the energythreshold of  the  cross section is  reduced  by the value of  the excitation energy [67],resulting in a higher value of the rate coefficient. Vibrational temperatures of ~ 3000 K have been measured in H2 discharges in thesame experimental setup [35], which means that only the lower vibrational levels aresignificantly populated, and most of the molecules are in the ground state (12 % H2(v ≥ 1)).Although vibrational temperatures for each of the specific mixtures have not beenmeasured, they are not expected to vary significantly given the  similar  electrontemperatures and the inefficient quenching of vibrationally excited H2 molecules incollisions with different species. The low abundance of vibrationally excited moleculesneutralizes the increase in the rate coefficient, and so they are not included in the model. 

http:3.02�10�3.80
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Wall reactions are listed in Table 3.4. Only one molecule is formed at the surface, namely H2, and the rest of reactions are wall neutralization of positive ions  or  walldeexcitation of the metastable Ar. 

Table 3.4. Heterogeneous processes and reaction probabilities. 
1 Wall neutralization H+ + Wall → H γ1 1  Heterogeneous reaction H + Wall → ½ H γ0 03234567 

H2+ + Wall → H2H3+ + Wall → H2 + HAr+ + Wall → Ar ArH+ + Wall → Ar + H Ar2+ + Wall → Ar Ar* + Wall → Ar 

111111 

2 .

A simplified model of surface reactions based on previous works [35,63], which doesnot take into account adsorbed species and surface coverage, has been used for this study. In this  model, the Eley-Rideal surface formation of  the  H2 molecule from gas phase hydrogen atoms [55] occurs in one step, and the formulation is similar to the one applied to surface  deexcitations. Due to  this difference, the  γ coefficient for hydrogen recombination  is not directly  comparable to  the  ones used  in the other models, which follow the usual formulation shown in section 3.2.1.1. The reason for this simplification of the surface model is the lack of complexity ofthe heterogeneous chemistry. Only one molecular species can be formed at the walls, so the effective role of the hydrogen surface reaction is to control the dissociation degree ofH2. Adding more depth to the surface model would result in a better simulation of the time evolution of the system, but since the interest of this work lies in the analysis of the steady state, this is not a major concern. 
3.4.2 H2 + N2 model 

This model is significantly more complex than the one for H2 + Ar, due to the higher number of neutral and ionic species present in H2 + N2 plasmas. Given that there are two molecular precursors, there are more ions and radicals in the gas phase, resulting in a significant increase in the number of reactions, as can be seen in Table 3.5. In contrast tothe H2 + Ar model, surface reactions are modeled taking into account the surface coverage, in order to obtain a good simulation of the formation of ammonia at the reactor walls. 
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Table 3.5. Species included in the H2+ N2 model. 

Neutral species Ionic speciesH2  H+
H H2+
N2  H3+
N N+
NH N2+
NH2  NH+
NH3  NH2
NH3+
	NH4++
N2H+
	
The gas phase reactions included in the model are listed in Table 3.6. As the numberof chemical processes is much higher than in the H2 + Ar model, they have been groupedby type for clearer notation. 

Table 3.6. Set of gas phase reactions considered in the H2 + N2 model. 
Process Rate coefficient (cm3 s–1) Ref. 

Electron impact ionization1.26 × 10–10 Te – 1.72 × 10–10 Te2 + 6.51 ×I1 N + e → N+ + 2e 10–11 Te3 – 5.75 × 10–12 Te4 + 1.71 × 10–13 [69]
Te5 – 5.68 × 10–12 Te + 8.57 × 10–12 Te2 – 4.11 ×I2  N2 + e → N+ + N + 2e 10–12 Te3 + 7.26 × 10–13 Te4 – 3.09 × 10–14 [70]
Te51.01 × 10–10 Te – 1.13 × 10–10 Te2 + 3.14 ×I3  N2 + e → N2+ + 2e 10–11 Te3 – 7.52 × 10–13 Te4 – 5.14 × 10–14 [70]
Te5I4 H + e → H+ + 2e 6.50 × 10–9 Te0.49 exp(–12.89/TeI5  H2 + e → H+ + H + 2e 3.00 × 10–8 Te0.44 exp(–37.72/TeI6  H2 + e → H2+ + 2e 3.12 × 10–8 Te0.17 exp(–20.07/Te

))) 
[35][35][35]1.38 × 10–10 Te – 1.85 × 10–10 Te2 + 6.65 ×I7  NH + e → NH+ + 2e 10–11 Te3 – 4.36 × 10–12 Te4 + 3.02 × 10–14 [71]

Te55.66 × 10–11 Te – 6.91 × 10–11 Te2 + 2.33 ×I8  NH + e → N+ + H + 2e 10–11 Te3 – 1.96 × 10–12 Te4 + 4.96 × 10–14 [71]
Te5 
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Process	 Rate coefficient (cm3 s–1) Ref.1.76 × 10–10 Te – 2.70 × 10–10 Te2 + 1.17 ×I9  NH2 + e → NH2+ + 2e 10–10 Te3 – 1.24 × 10–11 Te4 + 4.23 × 10–13 [71]

Te5 
3	 4I10  NH2 + e → NH+ + H + 2e		 1.08 × 1010–11 Te  – 2.91 × 10–10 Te – 1.28 ×–12 T1e0–10+ 5.1Te25+ 4.11 ×× 10–14 [71]

Te51.53 × 10–10 Te – 2.24 × 10–10 Te2 + 9.37 ×I11  NH3 + e → NH3+ + 2e 10–11 Te3 – 9.79 × 10–12 Te4 + 3.33 × 10–13 [71]
Te51.57 × 10–10 Te – 2.02 × 10–10 Te2 + 7.22 ×I12  NH3 + e → NH2+ + H + 2e 10–11 Te3 – 6.69 × 10–12 Te4 + 1.97 × 10–13 [71]
Te5 

Electron impact dissociation 1 2	 –1.24D  H  + e → 2H + e 1.75 × 10–7 Te  exp(–12.59/Te) [35]D2  N2 + e → 2N + e 1.18 × 10–8 Te0.5 exp(–13.3/Te) [72]–8 TeD3 NH + e → N + H + e		 5.0 × 10 0.5 exp(–8.6/Te [73]–8 Te0.5D4  NH2 + e → N + H2 + e 5.0 × 10 Te

)) [74]D5  NH2 + e → NH + H+ e 5.0 × 10–8 Te0.5 exp(–7.6/exp(–7.6/Te [74,75]–8 TeD6  NH3 + e → NH2 + H+ e		 5.0 × 10 0.5 exp(–4.4/Te–8 TeD7  NH3 + e → NH + H2 + e 5.0 × 10 0.5 exp(–5.5/Te

))) [76][76]
Electron impact neutralization 

N  H + + e → H  + H 7.51 × 10–9 –1.12 × 10–9 Te + 1.03 × 10–10 [35]1 2 *
Te2 –4.15 × 10–12 Te3 + 5.86 × 10–14 Te4 N2  H3+ + e → 3H 0.5 × K(*)N3  H3+ + e → H2 + H 0.5 × K(*) [[35]35]0.5N4  N2+ + e → N + N		 2.8 × 10–7 (0.026/Te) 77]0.5N5  NH+ + e → N + H		 4.30 × 10–8 0.02 Te 78]0.40N6  NH2+ + e → NH + H 1.02 × 10–7 0.02 Te 0.40N7  NH2+ + e → N + 2H 1.98 × 10–7

 (((0.02
6/6/6/Te

[) [)) [[79]79]N8  NH3+ + e → NH + 2H 1.55 × 10–7 0.02 Te 0.50 9 3 2 	 0.50N  NH + + e → NH + H 1.55 × 10–7 ((0.026/6/Te

)) 78]78]N10  NH4+ + e → NH3 + H 8.015 × 10–7 Te 0.605 0.605N11  NH4+ + e → NH2 + 2H 	 1.226 × 10–7 (0.02(0.026/6/Te

[[)) [[79]79]0.72N12  N2H+ + e → N2 + H		 7.1 × 10–7 (0.026/Te) [80]
Ion-moleculeT1  H+ + NH3 → NH3+ + H 5.20 × 10–9T2  H2+ + H → H2 + H+ 6.4 × 10–10T3  H2+ + H2 → H3+ + H 2.00 × 10–9T4  H2+ + NH3 → NH3+ + H2 5.70 × 10–9 

[[[[
65]65]65]65] 
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Process Rate coefficient (cm3 s–1) Ref.T5  H2+ + N2 → N2H+ + H 2.00 × 10–9T6  H3+ + N → NH+ + H2 2.6 × 10–10T7  H3+ + N → NH2+ + H 3.9 × 10–10 

[[[T8  H3+ + NH3 → NH4+ + H2 4.40 × 10–9T9  H3+ + N2 → N2H+ + H2 1.86 × 10–9T10  N+ + H2 → NH+ + H 5.00 × 10–10 –10T11  N+ + NH3 → NH2+ + NH 0.20 × 2.35 × 10–9 = 4.7 × 10
[[[[T12  N+ + NH3 → NH3+ + N 0.71 × 2.35 × 10–9 = 1.67 × 10–9T13  N+ + NH3 → N2H+ + H2 0.09 × 2.35 × 10–9 = 2.12 × 10–10T14  NH+ + H2 → H3+ + N 0.15 × 1.23 × 10–9 = 1.85 × 10–10T15  NH+ + H2 → NH2+ + H 0.85 × 1.23 × 10–9 = 1.05 × 10–9 
[[[[T16  NH+ + NH3 → NH3+ + NH 0.75 × 2.40 × 10–9 = 1.8 × 10–9T17  NH+ + NH3 → NH4+ + N 0.25 × 2.40 × 10–9 = 6.0 × 10–10T18  NH+ + N2 → N2H+ + N 6.50 × 10–10T19  NH2+ + H2 → NH3+ + H 1.95 × 10–10 –9T20  NH2+ + NH3 → NH3+ + NH2 0.5 × 2.30 × 10–9 = 1.15 × 10–9T21  NH2+ + NH3→ NH4+ + NH 0.5 × 2.30 × 10–9 = 1.15 × 10T22  NH3+ + NH3 → NH4+ + NH2 2.10 × 10–9T23  N2+ + H2 → N2H+ + H 2.00 × 10–9T24  N2+ + NH3→ NH3+ + N2 1.95 × 10–9 

[[[[[[[[[T25  N2H+ + NH3 → NH4+ + N2 2.30 × 10–9 [

65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]
–9 Te –10 Te2 –11 Te3(*) K = 8.39247 × 10–9 + 3.01631 × 10 – 3.80439 × 10  + 1.31108 × 10  +2.41631 × 10–13 Te4 – 2.29832 × 10–14 Te5 + 3.5472 × 10–16 Te6 

The surface chemistry in this model is the most complex of the three mixturesstudied. It includes both Langmuir-Hinshelwood and Eley-Rideal reactions, which arenecessary to explain the formation of NH3 at the reactor walls. The full set of surfacereactions is shown in Table 3.7, with values of the γ coefficients given for E-R reactions. 
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Table 3.7. Heterogeneous reactions included in the H2 + N2 model. 
K Wall neutralizationH+ + Wall → H γ1 Heterogeneous reactionW H + Fs → H(s) γ11K2K3K4K5K6K7K8K9K10

 H2+ + Wall → H2H3+ + Wall → H2 + HN+ + Wall → NN2+ + Wall → N2NH+ + Wall → NHNH2+ + Wall → NH2NH3+ + Wall → NH3NH4+ + Wall → NH3 + HN2H+ + Wall → N2 + H 

111111111 

1W2 H + H(s) → H2 + FsW3 N + Fs → N(s)W4 N + N(s) → N2 + FsW5  NH + Fs → NH (s)W6  NH2 + Fs → NH2 (s)W7 N + H(s) → NHW8 H + N(s) → NH(s)(s)W9 H + NH(s) → NH2W10 NH + H(s) → NH2(s)(s)W11 NH(s) + H(s) → NH2(s) + FsW12  H + NH2(s) → NH3 + FsW13  NH2 + H(s) → NH3 + FsW14  H2 + NH(s) → NH3 + FsW15  NH2 3 + 2Fs

 1.5×10–316×10–3111×10–28×10–38×10–31×10–2 – 8×10–31×10–28×10–4 –(s) + H(s)→ NH
The parameters  used in  the  model to describe L-H  reactions  (W11  and W15) areshown in Table 3.8. The values of the surface diffusional jump frequency ν and diffusionalactivation energy Ed are those of H(s) and are common for both reactions, as it is assumedthat the lighter species is the one diffusing on the surface. 

Table 3.8. Parameters for the L-H reactions in the H2 + N2 model. 
Parameter Value1.0 × 1013 s–1νH (H) 0.2 eVEd 

EA 11 0.2 eV 
EA 

(W(W15)) 0.2 eV 
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3.4.3 H2 + O2 model 

The model of  the  H2  + O2 discharge includes the most gas phase reactions of thethree mixtures  studied, as  shown  in Table 3.10.  This is  due  to the inclusion of minor1neutral species (HO2 and O3), metastable excited states of atoms and molecules (O( D) andO2(a)), and negative ions (H–, OH– and O–). The full list of species is found in Table 3.9. 
Table 3.9. Species included in the H2+ O2 model. 

Neutral species Ionic speciesH2  H+H H2+O2  H3+O O+OH O2+H2O OH+HO2  H2O+O3  H3O++O(1D) HO2O2(a) H–OH–O– 
Table 3.10. Gas phase reactions included in the H2 + O2 model. 

Process Rate coefficient (cm3 s–1) Ref. 
Electron impact ionizationI1 e + O → O+ + 2e 1.03 × 10–8 Te0.5 exp(–14.3/Te [69]
I2 e + O2 → O+ + O + 2e 4.84 × 10–9 Te0.5 exp(–22.5/Te
I3 e + O2 → O2+ + 2e 7.07 × 10–9 Te0.5 exp(–13.1/Te

))) [81][81]
I4 e + H → H+ + 2e 6.50 × 10–9 Te0.49 exp(–12.89/Te
I5 e + H2 → H+ + H + 2e 3.00 × 10–8 Te0.44 exp(–37.72/Te
I6 e + H2 → H2+ + 2e 3.12 × 10–8 Te0.17 exp(–20.07/Te

))) 
[35][35][35]
I7 e + OH → OH+ + 2e 1.48 × 10–8 Te0.5 exp(–12.6/Te [82]
I8 e + H2O→ H2O+ + 2e 9.87 × 10–9 Te0.5 exp(–13.3/Te
I9 e + H2O→ OH+ + H + 2e 2.88 × 10–9 Te0.5 exp(–17.7/Te
I10 e + H2O → H+ + OH + 2e 1.77 × 10–9 Te0.5 exp(–20.0/Te

))))
I11 e + H2O → O+ + H2 + 2e 3.03 × 10–10 Te0.5 exp(–23.5/Te) 
[83][83][83][83]
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Process Rate coefficient (cm3 s–1) Ref.I12 e + O2(a) → O2+ + 2e 9.0 × 10–10 Te2.0 exp(–11.6/Te) [42]

Electron impact dissociation–1.24D1 e + H2 → 2H + e 1.75 × 10–7 Te  exp(–12.59/Te) [35]D2 e + O2 → 2O + e 4.2 × 10–9 exp(–5.56/Te1D3 e + O2 → O + O D + e 5.0 × 10–8 exp(–8.40/Te

)) [84][84]D4 e + OH→ O + H+ e KD4 a [85]bD5 e + H2O→ OH + H+ e KD5 [83]1 –9D6 e + H2O→ O D + H2 + e 2.0 × 10  Te0.5 exp(–7.0/Te) [83]D7 e + O2(a) → 2O + e 4.2 × 10–9 exp(–4.6/Te) [42]
Electron impact neutralization*N1  H2+ + e → H  + H KN1 c [35]dN2  H3+ + e → 3H 0.5 × KN2 dN3  H3+ + e → H2 + H 0.5 × KN2 35]35]N4  O2+ + e → O + O 4.9 × 10–8 (0.026/Te)N5  O2+ + e → O + O1D 1.06 × 10–7 0.02 Te 

0.70.7 
6 2 1 1 Te 0.7N  O + + e → O D + O D 7.56 × 10–8 0.02 

86]86]86]N7  OH+ + e → O + H 3.75 × 10–8
 (((0.02

6/6/6/Te

))) 78]N8  H2O+ + e → OH + H 8.6 × 10–8 Te 0.5
0.5 
0.5N9  H2O+ + e → O + H2 3.9 × 10–8 (0.02(0.026/6/Te

)) 0.5N10  H2O+ + e → O + H + H 3.05 × 10–7 (0.026/Te)

[[[[[[[[[
87]87]87]0.5N11  H3O+ + e → OH + H +H 2.85 × 10–7 (0.026/Te)N12  H3O+ + e → O + H2 + H 5.6 × 10–9 (0.026/Te)N13  H3O+ + e → OH + H2 6.02 × 10–8 0.02 Te 

0.50.5 0.5N14  H3O+ + e → H2O + H 1.08 × 10–7 ((0.026/6/Te

[[)) [[
88]88]88]88]0.5N15  HO2+ + e → O2 + H 3 × 10–7 (0.026/Te) [89]

Neutral homogeneousG1 H + O3 → O + HO2 7.51 × 10–13 [90]G2 H + HO2 → H2O + O 9.18 × 10–11 exp(–971.9/Tg) [91]1 –16 TgG3 H + HO2 → H2O + O( D) 4.8 × 10 1.55 exp(80.58/Tg) [90]
G4 H + HO2 → O2 + H2 1.1 × 10–12 Tg0.56 exp(–346/Tg)
G5 H + HO2 → 2OH 2.35 × 10–10 exp(–373.7/Tg)
1G6  O( D) + HO2 → OH + O2 2.9 × 10–11 exp(200/Tg) 
[91][91][91]G7  O2(a) + HO2 → OH + O + O2 1.66 × 10–11 92]G8 H + O3 → OH + O2 2.71 × 10–11 (Tg/300)0.75G9  O 11 3 → 2O2 1.2 × 10–10G10  O D) + OD) + O3 → 2O + O2 1.2 × 10–10 
90]90]90]1 –10G11  O

(((1D) + H2 → OH + H 1.1 × 10
[[[[[91]G12  O( D) + O2 → O + O2 4.8 × 10–12 exp(67/Tg) [77] 

http:Tg/300)0.75
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Process Rate coefficient (cm3 s–1) Ref.G13  O 1D) + O2 → O + O2(a) 1.6 × 10–12 exp(67/Tg) [93]1G14  O D) + OH → H + O2 6 × 10–11 Tg–0.186 exp(–154/Tg) [91]1G15  O
((( 2O → 2OH 1.62 × 10–10 exp(64.95/Tg) [90]1 –11G16  O( D) + HD) + H2O → O + H2O 1.2 × 10 [94]

Ion-moleculeT1  H+ + O → O+ + H 3.75 × 10–10T2  H+ + H2O → H2O+ + H 8.20 × 10–9 [[T3  H+ + O2 → O2+ + H 1.17 × 10–9T4  H2+ + H → H2 + H+ 6.40 × 10–10T5  H2+ + H2 → H3+ + H 2.00 × 10–9T6  H2+ + H2O → H2O+ + H2 0.53 × 7.30 × 10–9 = 3.87 × 10–9 
[[[[T7  H2+ + H2O → H3O+ + H 0.47 × 7.30 × 10–9 = 3.43 × 10–9T8  H2+ + O2 → O2+ + H2 0.29 × 2.70 × 10–9 = 7.83 × 10–10T9  H2+ + O2 → HO2+ + H 0.71 × 2.70 × 10–9 = 1.92 × 10–9T10  H3+ + O → OH+ + H2 0.70 × 1.20 × 10–9 = 8.40 × 10–10T11  H3+ + O → H2O+ + H 0.30 × 1.20 × 10–9 = 3.60 × 10–10T12  H3+ + H2O → H3O+ + H2 5.30 × 10–9T13  H3+ + O2 → HO2+ + H2 6.70 × 10–10T14  O+ + H → H+ + O 6.40 × 10–10T15  O+ + H2 → OH+ + H 1.62 × 10–9 

[[[[[[[[[T16  O+ + H2O → H2O+ + O 2.60 × 10–9T17  OH+ + H2 → H2O+ + H 9.70 × 10–10T18  OH+ + H2O → H2O+ + OH 0.55 × 2.89 × 10–9 = 1.59 × 10–9T19  OH+ + H2O→ H3O+ + O 0.45 × 2.89 × 10–9 = 1.30 × 10–9 
[[[[T20  OH+ + O2 → O2+ + OH 3.80 × 10–10T21  H2O+ + H2 → H3O+ + H 7.60 × 10–10T22  H2O+ + H2O → H3O+ + OH 1.85 × 10–9T23  H2O+ + O2 → O2+ + H2O 3.30 × 10–10 
[[[[T24  O2+ + H2 → HO2+ + H 4.00 × 10–11T25  HO2+ + H2 → H3+ + O2 3.30 × 10–10 

65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]65]T26  O– + H2 → OH– + H 3 × 10–11 95]T27  O– + H2O → OH– + OH 1.4 × 10–9 
[[[[96]

Electron impact attachmentA1 e + O2 → O– + O 1.07 × 10–9 Te–1.391 exp(–6.26/Te) [97]A2 e + H2O → OH + H– 3.54 × 10–9 Te–1.5 exp(–6.66/Te) [83]A3 e + H2 → H– + H 5.6 × 10–13 Te0.5 exp(–5.5/Te) [98]A4 e + O2(a) → O + O– 2.28 × 10–10 exp(–2.29/Te) [42]A5 e + H2O → H2 + O– 7.08 × 10–10 Te–1.3 exp(–8.61/Te) [83] 
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Process Rate coefficient (cm3 s–1) Ref.A6 e + H2O → OH– + H 1.24 × 10–10 Te–1.3 exp(–7.32/Te) [83]

DetachmentDt1 e + H– → H + 2e 2.32 × 10–8 Te  exp(–0.13/Te) [99]Dt2  H– + H → H2 + e 1.3 × 10–9 2 10Dt3  H– + O → OH + e 1 × 10–9 100]0]Dt4  H– + O2 → HO2 + e 1.2 × 10–9 101]–9Dt5  OH– + H → H2O + e 1.8 × 10
[[[[102]Dt6  OH– + O → HO2 + e 2 × 10–10 102]Dt7 e + OH– → OH + 2e 9.67 × 10–6 Te–1.9 exp(–12.1/Te) 103]Dt8  O– + O2(a) → O3 + e 1.9 × 10–10 104]Dt9  O– + H → OH + e 5 × 10–10 
[[[[95]Dt10  O– + H2 → H2O + e 6 × 10−10 (Tg/300)−0.24 105]Dt11  O– + O → O2 + e 2.3 × 10−10 [[104]

Electron impact excitation and deexcitationX1 e + O2 → O2(a) + e 1.7 × 10–9 exp(–3.1/Te)1X2 e + O → O( D) + e 4.5 × 10–9 exp(–2.29/Te)
Dx1 e + O2(a) → O2 + e 5.6 × 10–9 exp(–2.2/Te) 
[42][42][42]


Ion-ion neutralizationIN1  H+ + H– → 2H 1.8 × 10–7 (Tg/300)–0.5 [106]–0.5IN2  H2+ + H– → H + H2 2 × 10–7 (Tg [107]IN3  H3+ + H– → 2H2 2 × 10–7 (Tg

/300)/300)–0.5 108]IN4  O+ + H– → H + O 2.3 × 10–7 (Tg/300)–0.5 95]IN5  O2+ + H– → H + O2 2 × 10–7 Tg –0.5 –0.5IN6  OH+ + H– → H2O 2 × 10–7 ((Tg 

[[[[IN7  H2O+ + H– → H + H2O 2 × 10–7 (Tg

/300)/300)/300)–0.5 
77]77]77]–7IN8  H3O+ + H– → H2 + H2O 2.3 × 10  (Tg/300)–0.5 95]–0.5IN9  H+ + O– → H + O 2 × 10–7 Tg –0.5IN10  H2+ + O– → H2O 2 × 10–7 ((Tg 

[[[[–0.5IN11  H3+ + O– → OH + H2 2 × 10–7 Tg 

77]77]77]–1IN12  O+ + O– → 2O 2 × 10–7 Tg 93]IN13  O2+ + O– → O2 + O 2 × 10–7 Tg 109]–0.5IN14  OH+ + O– → HO2 2 × 10–7 Tg 

–0.5 
IN15  H2O+ + O– → O + H2O 2 × 10–7 Tg –0.5IN16  H3O+ + O– → H2O + OH 2 × 10–7

 ((((((Tg

/300)/300)/300)/300)/300)/300)/300)/300)–0.5IN17  H2+ + OH– → H2O + H 1 × 10–7IN18  H3+ + OH– → H2 + H2O 2 × 10–7 Tg –0.5IN19  O+ + OH– → HO2 2 × 10–7 ((Tg –0.5 

[[[[[[[[[IN20  O2+ + OH– → OH + O2 2 × 10–7 (Tg

/300)/300)/300)–0.5 [

77]77]77]77]77]77]77] 

http:Tg/300)�0.24
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Process Rate coefficient (cm3 s–1) Ref.OH+ + OH– → 2OH 2 × 10–7 –0.5IN21 Tg –0.5IN22  H2O+ + OH– → H2O + OH 2 × 10–7 Tg 

77]77]
IN23  H3O+ + OH– → 2H2O 4 × 10–7
 (((Tg

/300)/300)/300)–0.5 
[[[106]
Tg is given in K.
Te is given in eV.
	a KD4 = – 2.82402 × 10–11 Te + 3.38111 × 10–11 Te2 – 7.01504 × 10–12 Te3 + 6.09826 × 10–13
	

Te4 – 1.96671 × 10–14 Te5
	b KD5 = 1.67959 × 10–10 Te – 1.22568 × 10–11 Te2 + 2.19508 × 10–11 Te3 – 3.01892 × 10–12
	
Te4 + 1.2549 × 10–13 Te5
	c KN1 = 7.51 × 10–9 – 1.12 × 10–9 Te + 1.03 × 10–10 Te2 – 4.15 × 10–12 Te3 + 5.86 × 10–14 Te4 
d KN2 = 8.39 × 10–9 + 3.02 × 10–9 Te – 3.80 × 10–10 Te2 + 1.31 × 10–11 Te3 + 2.42 × 10–13 Te4 –
2.30 × 10–14 Te5 + 3.55 × 10–16 Te6 

The neutral species HO2 and O3 are included in the model due to their production indetachment reactions (Dt4, Dt6 and Dt8), which are important to the chemistry of negativeions. These molecules also react with other neutral species in the gas phase (reactions G1– G10) with relatively high rate coefficients. Concerning the two excited species  considered in  the model, the metastable states1 1 1O( D)  and  O2(a Δg) (also referred to as O2(a)), the O( D) metastable plays an importantrole in the neutral chemistry, as it participates in neutral homogeneous reactions in the1gas phase (reactions G6, G9–G16) with high rate coefficients. On the other hand, the O2(a Δgmetastable is involved in the negative ion chemistry, taking part in formation (reaction A4))and destruction (reaction Dt8) processes, while also reacting with neutral molecules in thegas phase (reaction G7).The negative ions H–, OH–  and  O–  are  included in  the model, as  the  prevalence ofanions in oxygen discharges is well known [110]. The modeling of these species has someparticularities, which are detailed below. Negative  ions are charge  carriers,  and  as such  are  subject  to the electroneutralitycondition. As explained at the beginning of the chapter, the charge density of the plasma isconstant during the simulation, and the electron density is obtained by subtracting thetotal negative ion density from it. Thus, when negative ions are formed in the discharge,the electron density decreases. Since negative ions are only produced through electronimpact  detachment,  it is  ensured that chemical equilibrium will be reached and thesimulation will be stable. 
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Opposite  to positive  ions,  negative ions  do not diffuse  to the walls of the reactor,since,  as mentioned in section 2.1.2.2, the plasma potential  causes them to be trapped inthe glow. They are only destroyed by gas phase processes, namely ion-ion neutralizationsand detachment reactions. It can be noticed that the negative ion H– was not included in the previous models,even though it  can be formed through dissociative attachment of  the hydrogen molecule(reaction A3).  The  reason for its absence is  the  low  rate coefficient for this reaction.Assuming typical values for the electron temperature (3 eV) and the dissociation degree ofH2 (0.1), it  can be shown that, in a pure H2 plasma,  the main production and destructionprocesses for H– are reactions A3 and Dt2 respectively. In the steady state: 

d H−
−[ ] = ≈0 A3 e[ 2]− kDt2 [H ][H] (3.22)k N H

dt Then the H– concentration can be obtained as: 
A3 2 −− k H  3[H ] ≈

k 
[ ][ ]  Ne  10 Ne (3.23)

Dt2 H Which is a low value, making its contribution to the plasma chemistry negligible. Inthe H2  +  O2 plasma, however, the main production mechanism for H– is the dissociativeattachment of H2O (reaction A2), which has a much higher rate coefficient than reaction A3,so  this negative  ion  can reach  significant  concentrations and thus should be included inthe model. This can be seen clearly in section 6.2.3. In contrast to the gas phase, surface chemistry is slightly simpler  in this  modelcompared to the one for H2 + N2 for two main reasons. First, the formation of H2O in thereactor walls needs one less step than NH3, reducing the number of intermediate speciesand reactions. Second, only E-R reactions have been included in this model, given that thehigh activation energies of L-H reactions render their contribution negligible. For instance,the L-H water production reactions, OH(s) + H(s), and OH(s) + OH(s), have activationenergies of ~ 1.1 eV and ~ 0.65 eV respectively [111], much higher than the 0.2 eV of theequivalent reaction for NH3  formation  included in  the  H2  + N2 model. The list of surfacereactions for this model is shown in Table 3.11. 
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Table 3.11. Wall reactions for positive ions (neutralization) and neutrals (adsorption andrecombination) in the H2 + O2 model. 

Wall neutralization γK1  H+ + Wall → H 1
K2  H2+ + Wall → H2  1
K3  H3+ + Wall → H2 + H 1
K4  O+ + Wall → O 1
K5  O2+ + Wall → O2  1
K6  OH+ + Wall → OH 1
K7  H2O+ + Wall → H2O 1
K8  H3O+ + Wall → H2O + H 1
K9  HO2+ + Wall → O2 + H 1
	

Heterogeneous reaction γ Ref.W1 H + Fs → H(s) 1 eW2 H(s) + H → H2 + Fs 0.0035 [112]W3 O + Fs → O(s) 1 fW4 O(s) + O → O2 + Fs 0.024 fW5  OH + Fs → O 1 eW6 H(s) + O → O 0.006 fW7 H + O(s) → O
H(s)H(s)H(s) 0.002 fW8 OH(s) + H→ H2O + Fs 0.004 fW9 OH + H(s) → H2O + Fs 0.005 f–5O(s) + H → H O + Fs  5×10 fW11  O( D) + Wall → O 1 [93]W12  O2 2 0.007 [113] 

W10 1 2 2
(a) + Wall → O

e : Adsorption of atoms and radicals is assumed to have a probability of 1
f : Assumed in this work 



  

         
                                                           

                        

Chapter 4. 

H2 + Ar plasmas 

The argonium ion, ArH+,  has  been recently  detected in  space  in the course  of theHerschel mission [114] through emission lines of 36ArH+ observed in spectra from the Crab Nebula. It is the first noble gas compound observed in space. In that article, Barlow et al.suggested that ArH+ is  formed most  likely in  transition zones between fully ionized andmolecular gas and that electron collisions provide the likely excitation mechanism. Shortlyafterwards, Schilke et al. [115] assigned to 36ArH+ a previously unidentified absorption at617.5  GHz  in the diffuse interstellar  medium (ISM),  present  in  spectral line surveys towards many galactic sources. From a careful analysis of the observations using a chemical model for diffuse molecular clouds, the authors concluded that ArH+ should be a very good tracer of gas with very low (10–4–10–3) fractional abundances of H2. ArH+ is usually produced in laboratory plasmas containing Ar and H2. Due to their technical applications such as elemental analysis [116-119], sputtering [120-123], film deposition [10,11], hydrogenation [124,125], or functionalization of nanostructured materials [17,126], the properties of these type of discharges have been studied both experimentally and theoretically by a number of research groups [63,67,68,90,127-137]. In some of these works, the ion chemistry of the discharges has been specifically studied. Bogaerts and co-workers developed theoretical models for different types of glow discharges [68,90,134]. In  their  hybrid Monte Carlo fluid model for dc  discharges [68],Bogaerts and Gijbels simulated the conditions of a typical glow discharge used for analyticmass  spectrometry (Ar +  1  % H2, 70 Pa). The model calculations yielded an ionic distribution dominated by Ar+, with ArH+ and H3+ having also a significant presence, andwith very  small  amounts  of H+ and H2+. Qualitatively similar ion distributions were also obtained in the modeling of a higher pressure (850 Pa) Grimm type dc discharge [134] and of a capacitively coupled radio frequency (rf) discharge [90] at lower pressures (7–33 Pa). 
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These  models helped  identify the  main  processes  in the discharges, but were not compared to experimental data.Similarly, distributions of ion densities in inductively coupled rf discharges were also modeled,  but  not  measured,  in the recent  works  of  Kimura  and Kasugai [135] andHjartarson et al. [67].  They used self-consistent global  models to study Ar/H2 discharges with variable  mixture  proportions  in the pressure ranges  2.7–8  Pa and 0.13–13  Pa,respectively.  In  both  works, they  found that the  major ions  were also Ar+, H3+ and ArH+,with different relative concentrations depending of the pressure and mixture conditions, but in no case was ArH+ the prevalent ion. Sode et al. [136,137]  performed a detailed  comparison of  experimental ion  distributions and model calculations for Ar/H2 inductively coupled rf  plasmas  for  a  pressure of  1  Pa.  In contrast  with  the calculations  mentioned in the previous paragraph [67,135], the measurements of Sode et al. indicated that ArH+ was the dominant ion over a wide range  of  Ar fractions,  where  it accounted  for  roughly  60  % of  the  positive  charge.Their model reproduced the overall trends in the evolution of the ion distributions,  butunderestimated the measured ArH+ concentration and overestimated the densities of thehydrogenic ions. Sode et al. [137] suggested that  their  measurements  and calculations  would be in much better agreement by assuming a zero rate coefficient for the ArH+ + H2 →H3+ + Ar  reaction,  instead  of the large literature  values currently used, which are in the3upper half of the 10–10 cm s–1 range (see ref. [65] and references therein). A comparison of experimental and calculated ion density distributions in Ar/H2plasmas was also reported in a previous study for a dc hollow cathode discharge performed  in the same  experimental setup as  this work  [63].  The  experiments were carried  out at  pressures  of 0.7 and 2  Pa  for  a  fixed  H2 fraction  of 0.85.  Due to  the  low  amount of Ar in the mixture, the discharges were dominated by hydrogenic ions (H3+ at 2 +Pa and H3+ and H2  for 0.7 Pa), but ArH+ ions were second in importance. Small amounts of Ar2+ ions were also measured. The experimental ion distributions could be well accounted for by a kinetic model if a tiny fraction of high energy electrons (> 50 eV) was used in the calculations. Hollow cathodes and other types of dc glow discharges were used for spectroscopicstudies of the ArH+ ion [138-144]. In order to improve detection, the concentration of theion was empirically maximized, and  it was  found that  the  largest ArH+ signals  were  obtained with a small H2 fraction  [139-143], or  even with  no H2 at all [138,144] in theprecursor mixture. This apparent paradox suggests  that molecular hydrogen from small impurities or from the reactor walls would be adequate to produce significant amounts ofArH+ in the plasma. In general, these discharges were run at higher pressures (>  30 Pa)than those commented on the previous paragraphs. 
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In the present work, the details of the ionic chemistry in  Ar/H2 plasmas and,  inparticular, of the processes leading to the production and destruction of ArH+, have beenstudied for different plasma conditions. Hollow cathode discharges, spanning the whole range of mixture proportions for two different pressures,  1.5  and 8 Pa, have beeninvestigated. The relative densities of the various ions have been found to vary markedlybetween these pressures over the range of mixture proportions sampled. The kinetic model  has  provided a  clear picture of  the  chemistry  underlying  the observed ion distributions and has helped identify the main sources and sinks of the major plasma ions +(Ar+, ArH+ and  H3 ). The results are discussed  and  whenever possible  compared toprevious works. 

4.1 Experimental results 

The chemistry of H2 + Ar mixtures has been studied at two different pressures, 1.5Pa and  8 Pa. For each  of them, experiments have  been carried out at several differentmixture ratios, ranging from pure Ar plasma to pure H2 plasma. Concentrations  of thepositive ions, as well as the electron temperatures and densities, have bthe different experimental conditions and are presented below. As there are no neutraeen determined for lstable species formed in this kind of discharges, no experimental results will be shown for neutrals besides initial precursor concentrations (mixture ratios). 
4.1.1 Electron temperatures and densities 

Values of the electron temperature and electron density have been obtained from the measurements with the double Langmuir probe for each of the pressures and mixtures studied. The results for the lowest pressure, 1.5 Pa, are displayed in Figure 4.1, along with the values employed in the kinetic modeling. For this pressure, the electron temperature remains relatively constant (within the experimental error), whereas the electron densitypresents a steady decrease with growing H2 content in the mixture. The situation at  8 Pa is  somewhat different,  as can be seen in Figure 4.2. It can benoted that the measurements are concentrated in the lower H2 concentrations. This was done to increase the number of experimental  points in the narrow window in which the ArH+ ion prevails, as will be seen in the next section. 
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Figure 4.2. Same as Figure 4.1, but for a pressure of 8 Pa. 
The  observed behavior  of the electron  density  can  be associated  with the ionic composition  of the discharge.  The  plasma current is  approximately proportional to thecharge density and inversely proportional to the square root of the mean ion mass, since heavier ionic species leave the discharge at a lower rate than their lighter counterparts. Since  in the  experiments the plasma current is  kept constant, the charge density will beroughly proportional to the square root of the mean ion mass. This is illustrated in Figure 4.3, where the experimental values of the electron density are compared to the squareroot of the mean ion mass, obtained from the PPM measurements (see next section). 
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Figure 4.3. Electron density (black squares) and mean ion mass (red open squares) forthe H2 + Ar  mixtures studied at  1.5  Pa (upper  panel) and  8 Pa  (lower  panel). Some experimental points have been removed for clarity. Lines are only given as guides to the eye. 

When the heavy species dominate the ion distribution, the flow of charged species to the walls is slower. The charge density in a discharge with heavy ions (in this case, Ar-richmixtures) will be higher than in one dominated by lighter species (H2-rich mixtures). 
4.1.2 Ion concentrations 

The abundances of the different positive ions in the discharge have been determined with the plasma monitor. 
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The  relative concentrations  of the ions  in the discharge  at  1.5 Pa  can  be seen  inFigure 4.4. 
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Figure 4.4. Relative concentrations of positive ions in the 1.5 Pa H2 + Ar plasma at various mixture ratios. Lines are only a guide to the eye.
The major ions in this plasma are Ar+, ArH+ and H3+. The shape of the ion distribution +is rather symmetric, with Ar+ dominating at low H2 fractions (~ 0–0.3), H3 dominating at high H2 fractions (~ 0.7–1), and ArH+ being the major ion for the intermediate mixtures,+reaching concentrations  of  ~  40  %. The other  hydrogenic  ions,  H+ and H2 , have lowabundances and are relevant for H2 fractions close to  unity, with H+ concentrations only being  noticeable (>  1  %) for  mixtures  with more  than  50  %  H2. Ar2+ is present in thedischarge with concentrations of ~ 5 % for the majority of the H2/Ar ratios, only disappearing from the discharge when the H2 fraction is close to 1. The  situation  at 8 Pa  is quite different,  as displayed in  Figure  4.5. In  this case, therelevant changes in  ion  composition  are  limited  to the lower H2 fractions (< 0.2). Adetailed representation of the ion composition for Ar-rich mixtures is  given in the lower panel of the figure. 
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Figure 4.5. Upper panel: relative concentrations of positive ions in the 8 Pa  H2 +  Ar  plasma. Lower panel: detail for the lower H2 fractions. Lines are only a guide to the eye. 

Ar+ ions  are  dominant  only  when the  precursor composition is  almost pure Ar. As soon as a  slight amount (~ 0.5 %) of H2 is  present in the discharge,  the concentration ofArH+ grows  and Ar+ disappears. The region where ArH+ ions are dominant is also very narrow, as H3+ grows steadily  with  the H2 fraction, surpassing the  mixed ion when  themixture is just ~ 3 % H2. Towards higher H2 precursor concentrations, ArH+ decreasesquickly and relatively stabilizes at ~ 20 % H2, whereas H3+ quickly increases and stabilizes in the same point. Between ~ 0.2 and 0.9 H2 fractions the situation changes very little, withH2+ and H+ appearing only at the very end of the mixture spectrum. For this pressure, Ar2+ reaches a peak concentration of ~ 10 % for the pure Ar plasma, and constantly declines as the amount of H2 in the discharge is increased. 
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4.2 Model simulations 

In  order  to better  understand the ion distributions determined  experimentally, simulations with the kinetic model described in section 3.4.1 have been carried out. For each of the two pressures studied, a different set of input parameters has been used, and there is also a difference in the value of the rate coefficient for reaction  18 (H3+ + Ar  → ArH+ + H2) of Table 3.2.The values for the electron temperature and density used in the model were shown in Figure 4.1. For the electron density, the experimental values have been used directly inthe model, since the result of the simulation does not depend greatly on them. However, inthe case of the electron temperature, adjustments have been made (mostly within themargins of error) to obtain a better fit for the concentrations of the different species, as a slight variation in  the  temperature  can  induce  major changes in the chemistry  of  thedischarge. For the lowest pressure, a constant Te = 2.8 has been assumed for all mixtures,whereas  in the 8 Pa  case the electron  temperature  values used  in the model are consistently lower than the experimental ones for the lower H2 fractions. 
+The k18 rate coefficient may be dependent on the internal excitation of the H3  ion, as is discussed  in the next  section. Due to  this,  two  different values have  been used  in themodel simulations. A higher value for this coefficient (Hk18 = 3.65 × 10–10 cm3 s–1) is given in the compilation by Anicich [65] as the recommended value. A lower value (Lk18 = 1 × 1011 cm3  s–1) has been taken from the tables of Albritton [66]. Simulations at 1.5 and 8 Pa – using both of these values of the rate coefficient can be seen in Figure 4.6 and Figure 4.7,together with the previously discussed experimental values. For the lower pressure, the best agreement between model and experiment isachieved with the higher value of k18. Using Lk18, the simulated concentrations of ArH+ are globally lower than  the  experimental ones, and conversely  H3+ grows quicker than  observed, crossing the Ar+ curve at a lower H2 fraction than in the experiment. On the other hand, with  Hk18, the ArH+ densities obtained are higher than in theprevious case, with a maximum ArH+ concentration of  ~ 40 % in the range of  0.3–0.5 H2+fraction, which is comparable to the experimental results. The crossing of the Ar+ and H3curves is also well reproduced, both in the concentration of the species and in the mixture ratio  in which it  occurs.  However, the interval  of dominance for ArH+ is narrower in thesimulations, as the H3+ concentration grows quicker with  H2 fraction  than what  isobserved experimentally. 
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Figure 4.6. Model simulations with a low (upper panel) and high (lower panel) value of the k18 rate  coefficient, and experimental  values (middle  panel)  for  the relative ion concentrations in the H2 + Ar plasma at 1.5 Pa. 
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For the 8 Pa discharge, the simulations with Hk18 are much less satisfactory than in the previous case. The global trends are reproduced, as the maximum for ArH+ is displaced+to lower H2 fractions than in the 1.5 Pa plasma, and the growth of H3  is faster than in thelower pressure. Quantitative agreement, however, is poor, with the peak of ArH+concentration occurring at a H2 fraction of ~ 0.1, as opposed to the experimental ~ 0.01.The gradual decrease of ArH+ with growing H2 content is smoother than observed, and, as a consequence, H3+ increases much more slowly than it should. When Lk18 is  used in  the  model, the ion distribution  obtained is  closer  to theexperimental one. The maximum value of the ArH+ density takes place at ~ 0.05 H2 with a +narrower peak, and the growth of H3 is much more similar to the experimental trend.However, the evolution of  the major ions with growing H2 content is still too smooth, as the ion distribution should stabilize around the 0.2 fraction instead of the ~ 0.5 obtained with this simulation. The  minor  ions in  these  distributions  can  be seen in  detail in  the logarithmic representations of Figure 4.8 and Figure 4.9, where only the simulations with the betteragreement (Hk18 for 1.5 Pa and Lk18 for 8 Pa) are used for comparison. In the 1.5 Pa discharge, the agreement is good for most of the minor ions. The growth of H+ and H2+reproduced. In the is accounted for and their concentrations are essentially well 8 Pa discharge, H+ behavior  is very  similar  to the one observed+experimentally, especially for H2-rich mixtures, although H2 is underestimated in the simulations by an order of magnitude The concentration of Ar2+ ions in the simulations isdirectly related to the amount of high energy electrons present in the discharge. A smallfraction (< 5 × 10–4)  of these  electrons is  enough to  justify  the  experimentalconcentrations. Larger high energy electron fractions affect the ionization rates of Ar and H2 noticeably, resulting in a less satisfactory reproduction of the ion concentrations, while lower fractions result in fewer Ar2+ ions in the plasma. 
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Figure 4.8. Ion distributions at 1.5 Pa in logarithmic scale. Upper panel: experiment.Lower panel: model. 
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Figure 4.9. Same as Figure 4.8, but for the 8 Pa discharge. 
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4.3 Discussion 

4.3.1 Main reaction mechanisms 

The  chemistry  of the major ions  in these plasmas is  relatively  simple  and can bereduced to the set of reactions shown in Table 4.1, and their rate coefficients are displayed in Figure 4.10 as a function of the electron temperature. It is worth mentioning that forionizations by electron impact (reactions 7 and 14) the rate coefficients change more than three orders of magnitude for a variation of Te of less than 3 eV. 
Table 4.1. Main processes in the chemistry of the major ionic species Ar+, ArH+, and H3+. 

Process Rate coefficient, kA (cm3 s–1)7 H2 + e → H2+ + 2e 3.12 × 10–8 Te0.17 exp(–20.08/Te)10 H2+ + H2 → H3+ + H 2.0 × 10–9
14 Ar + e → Ar+ + 2e 2.53 × 10–8 Te0.5 exp(–16.3/Te)
17 H2+ + Ar → ArH+ + H 2.1 × 10–9 
Hk18 = 3.65 × 10–1018 H3+ + Ar → ArH+ + H2 Lk18 = 1 × 10–1120 Ar+ + H2→ ArH+ + H 0.98 × 8.9 × 10–1021 ArH+ + H2→ H3+ + Ar 6.3 × 10–10 

The  first  step for the formation of  the  ions is  the  ionization  from the neutralprecursors,  Ar and H2. Given that the rate coefficient for the ionization of Ar (k14) is ~ 5times higher than that of H2 (k7) for all the Te interval considered, Ar+ will be the main ion formed by electron impact ionization for the great majority of mixtures. The rest of the major ions are then formed through ion-molecule reactions that donot depend on the electron temperature. Ar+ reacts  with H2 to form ArH+ (reaction 20)with a high rate coefficient. When the electron temperature is close to 2 eV, which is in therange of values measured at 8 Pa, this rate coefficient is much higher than the one for thedirect ionization of Ar. Given this condition, in a mixture with sufficient H2 content, Ar+ willbe quickly transformed into ArH+.  At ~ 3  eV  (1.5 Pa),  however, the values  of these ratecoefficients are much closer, and thus there is a smoother transition from Ar+ to ArH+ as the H2 content of the discharge grows. Reaction 17 also contributes to the formation of+ArH+,  in this  case from  Ar and H2 ,  but  should  not be  relevant since they  are  not  bothpresent in the discharge in significant amounts for any mixture ratio. 
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+The  last step  of this  ion  chemistry  is the formation of  H3  from  ArH+ throughcollisions with H2 (reaction 21). This is a reversible process, as H3+ can react with Ar atoms to form ArH+ again (reaction 18). Since two different values for the k18 rate coefficient are considered, the equilibrium will be markedly affected by this decision. When Hk18  is +chosen, a greater amount of H3 ions will react to form ArH+, thus delaying the region of H2+ +fractions where H3  is  dominant,  as  happens for 1.5 Pa. Conversely, if  Lk18 is  used,  H3formed in reaction 21 will  be less likely to react  again,  and H3+ will  be the major ion for much lower H2 fractions, which is the case at 8 Pa. Reaction 10, which accounts for the + +formation of H3  from H2 ,  is mainly relevant for the mixtures containing close to 100 %H2, but less important for the other mixture ratios. In conclusion, the chemistry of  themajor ions depends heavily on the electron temperature, which is significantly dependent on the gas pressure and  determines  the  relative relevance of  electron impact reactions versus ion-molecule reactions, and on the value of the rate coefficient for reaction 18. The relevance of internal energy effects in interconversion reactions 18 and 21 has +been studied in  previous works [145-149].  Reaction 21,  forming  H3  from  ArH+, is 
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exothermic by ~ 0.55 eV [148]. This expectedly leads to a high rate coefficient (~ 5–15 × 310–10 cm  s–1), as  has  been determined  in a variety of  works  cited  in the compilation by 3Anicich [65]. The value used in the model, k21  = 6.3  ×  10–10 cm  s–1, which is therecommended value from this compilation, should then be a good assumption. Since the reaction is exothermic, internal excitation of the reactants should not play a major role inthe reaction rate. 

+The  case is  different  for reaction  18,  leading  from H3  to  ArH+.  As the reverse  reaction of the previous one, it is endothermic by 0.55 eV. The recommended value by3 s–1Anicich [65] is k18 = 3.65 × 10–10 cm , which is what has been taken as Hk18. This value,relatively close to the one taken for k21, corresponds to ion-cyclotron resonance (ICR)measurements by  Bowers and Elleman  [150]. Later measurements  by Roche [151] in  a  flow reactor suggested however that the value of the rate coefficient should at least be an order of magnitude lower than that of reaction 21. Following these results, Albritton [66] gave an upper limit for the rate coefficient of k18 =  1  ×  10–11 cm  s–1, which is the value taken for Lk18. 3
This large discrepancy between the two values of the rate coefficient could be due to the different experimental techniques employed by the two groups. In the experiment by+ +Bowers and Elleman, the source of the reacting H3  ions is reaction 10, between H2  ions and H2 molecules.  This reaction  is highly  exoergic (1.72  eV)  [152], and,  as noted by  the+authors, a large part of this energy could be stored as vibrational energy of the formed H3ion. Due to the low pressure of the ICR measurements, this vibrational excitation would not  be significantly deactivated by  collisions, so  the  actual  measurements would+ * +correspond to the reaction [H3 ]  + Ar → ArH+ + H2. If the internal excitation of the H3  ion is greater than  0.55 eV, the reaction  would  be exothermic  and  thus have a high rate coefficient, comparable to reaction 21, as is the case in these measurements. Roche et al.[151]  used a different setup,  performing their  measurements  in  a flow reactor where collisional relaxation of the reacting H3+ ions  is much  more efficient. It  could  then beassumed that their measurements correspond to the actual endothermic reaction.

+ +The high vibrational excitation of H3 ions produced from collisions of H2  ions withH2 (reaction 10) can be quenched through collisions with H2 molecules [145,146,153-155],although there is  no unanimity  on the actual deactivation efficiency. In H2 + Ar  plasmas,reaction 10 is only dominant when the Ar concentration is very low. For the rest of mixtures, H3+ main  production process  is reaction  21,  from  ArH+. If this ArH+  is in  the +ground state, then the resulting H3  ion will  not  have enough  vibrational  excitation to  +overcome the endothermic reaction threshold and will largely remain as H3 . However, if +the ArH+ ion is excited, part of this excitation could be transferred to the formed H3  ion,which in turn could then have enough internal energy to revert to ArH+ through an  exothermic reaction, effectively displacing the equilibrium of reactions 18 and 21 towards 
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+ArH+ [149]. H3  ions could also be vibrationally excited through electron impact reactions [156], resulting in the same effect. As discussed before, ArH+ ions  are  mainly formed  in H2 + Ar plasmas through reaction 20 involving Ar+ and H2.  Studies  of this  reaction have  been performedexperimentally and theoretically (see for instance [157] and [158]), but still some aspectsof the state specific dynamics are not fully known, including energy partitioning between the nascent products. Trajectory calculations by Chapman [159] on a semiempiricalpotential energy surface indicate that a large part of the exothemicity of both reactions 17and 20 should appear initially as vibrational excitation of the ArH+ ion. In the presence ofsufficient Ar, this vibrationally excited ArH+ could be quenched through collisions with Ar atoms. 

+To summarize, although both the degree of vibrational excitation of ArH+ and H3ions produced  in reactions 20  and  21,  and  the  relevance  of the  different relaxation pathways are not precisely known, collisional relaxation, in particular of the H3+ ion, wouldbe expected to have a more important role in the 8 Pa discharge than in the 1.5 Pa one. As a  simplification of  these  mechanisms the lower  coefficient (Lk18) has been used for thehigher pressure discharge, assuming that H3+ is  not vibrationally excited at this pressure and the reaction taking place is endothermic. The upper and lower panels of Figure 4.7show that the lower rate coefficient provides a better agreement to the experimental data.Even better results can be achieved if the electron temperature is lowered to 1.7 or 1.8 eV,but  those  values are  outside the estimated uncertainty for the  Langmuir probe measurements,  and  thus these simulations  are not presented for  consistency. It shouldhowever be noted that the electron temperature is determined experimentally assuming a Maxwellian energy distribution for the electrons, which is not necessarily the actual case in the plasmas studied.  A  selective  depletion  in the high  energy tail of the distribution would not be noticeable in the measurements but affect the chemistry of the discharge. As such, the effective electron temperature could be lower than the one measured and better justify the observed chemistry.The contrary happens in the 1.5 Pa discharge. In this case it is assumed that, given the low pressure, the quenching of the vibrationally excited H3 i+ h rate coefficientreaction 18 becomes effectively exothermic, with a corresponding higs not efficient, and(Hk18). As  before,  the  better results achieved  with this  rate coefficient could be seen in Figure 4.6. The increase in the pressure of the discharge has, as has been shown, two major consequences for the plasma chemistry. On one hand, the electron temperature decreases as the pressure grows, drastically changing the balance between electron impact reactions +and ion-molecule processes. On the other hand, the quenching of vibrationally excited H3
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ions is more effective, as the number of collisions is increased. These factors have an effecton the region of prevalence of  ArH+,  as it  is reduced to  a  narrower range of  H2 fractions and displaced towards Ar-rich mixtures as pressure grows. This explains the results of thespectroscopy experiments mentioned at the beginning of the chapter [138-142,144,160],where the best signals for ArH+ are obtained  in mixtures  with little  or  no  H2. These experiments were performed in conditions either comparable to those of the 8 Padischarge studied here, where the maximum for ArH+ concentration is found for a mixture with ~ 1 % H2, or mostly at higher pressures (> 30 Pa). Furthermore, mass spectrometry measurements in a different hollow cathode discharge cell [144] show that using 40 Pa ofpure Ar as precursor, a tiny amount (~ 0.2 Pa) of H2 is ejected from the cathode when thedischarge is on. This small amount of H2 provided an adequate concentration of ArH+ for spectroscopic measurements. 
4.3.2 Main formation and loss rates 

Model simulations provide the rates of formation and destruction for the different species considered. In particular, the rates for the major ions can be analyzed, as is shown in Figure 4.11 and Figure 4.12 for the two different pressures, using the corresponding k18value giving the best agreement with the experimental measurements. In Figure 4.11, the rates can be seen for the lower pressure discharge. Ar+ ions are produced through electron impact ionization, and destroyed mainly at the wall for Ar-rich mixtures, and by collisions with H2 (reaction 20) when the H2 fraction is high enough (>0.2). ArH+ is in turn produced by reaction 20 but, with high H2 fractions, reaction 18 (H3+ +Ar) is comparable, while reaction 17 (H2+ + Ar) is comparably negligible for all  mixtures.This ion is  mainly destroyed by reactions with H2 except for H2 fractions < 0.2,  in  which +case wall  neutralization  is  the  dominant process. Lastly, H3 ions are produced throughreaction 21 (ArH+ + H2) for almost all plasma compositions, except close to pure H2, where +reaction 10 (H2+ + H2) becomes relevant. The H3 ions are destroyed both atthrough reaction 18, with comparable rates for the whole range of mixtures. the wall and The production and destruction rates for the 8 Pa pressure are shown in Figure 4.12, and some changes can be observed when compared to the 1.5 Pa Figure. The production +of Ar  ions  has  a  maximum for  the  mixture  with ~ 20  %  H2, corresponding to the peak value  of the electron  temperature, and the region  where  wall  neutralization is the dominant destruction mechanism is reduced to H2 fractions < 0.03, while reaction 20 is theprimary mechanism for the rest. ArH+ production is simplified, as reaction 20 is the main source of these ions for all mixture ratios, and, similarly to Ar+, wall neutralization is only dominant for very low H2 fractions, with reaction 21 being responsible for the destruction 
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in the rest. Finally, H3+ ions have a very simple chemistry at this pressure, being formed byreaction 21 and neutralized at the wall for the whole range of mixtures. 
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Figure 4.11. Production rates (solid lines) and destruction rates (dashed lines) for themajor ions in a 1.5 Pa H2 + Ar discharge. 



      

 

 

 

                                       

   
  

      
 

     
 

              

H2 + AR PLASMAS 81 

0 0 0 2 0.4 0.6 0.8 1.0 

40 
1 
2 
3 

8 Pa , k18=1.
Rates (

 x 1015  
cm -3 s -1 )

 
Reaction: 14 (+)20 (−)wall (−)Ar+

 H

H+3  10 (+)18 (−)21 (+)wall (−) 

ArH+  17 (+)18 (+)20 (+)21 (−)wall (−) 

0 x 10-11 cm3 s-1
	4
	
3
	
2
	
1
	
0
4
	

3
	
2
	
1
	
0
	 .
 .
  fracti
2
 on
	
Figure 4.12. Same as Figure 4.11, but for the 8 Pa discharge. 

4.3.3 Comparison with previous works 

As  mentioned  at the beginning of this chapter,  there  are  recent  studies  on thechemistry of H2 + Ar plasmas, and in particular of the ion chemistry, in inductively coupled 
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rf discharges with variable mixture ratios and pressures comparable to the ones reportedhere [67,135,137]. As these discharges have different properties to the ones studied, a direct comparison  between the results is  not  viable,  but  a  qualitative analysis can beperformed since the ionic chemistry is mostly determined by the electron  temperature  and mixture proportion. Kimura and Kasugai [135] studied these plasmas both experimentally and with a model, but  did not  measure ion distributions.  Their  model  does  not include as many production mechanisms for ArH+ as  the  one  in this  work,  leaving  out  reactions  17 and3 s–1specially 18. It also uses a value of 1.5 × 10–9 cm  for the rate coefficient of reaction 21,+which destroys ArH+ to produce H3 ,  a  value  twice  as high  as the one employed  in  this  +work.  As a result, ArH+ is never dominant in their simulations, with Ar+  or H3  being themajor ion depending on the mixture and pressure (2.7 and 8 Pa). ArH+ is the third ion in relevance in most cases and does not reach relative concentrations greater than ~ 20 %. Hjartarson et al. [67] employed a global model to study these plasmas. Again in their case, the concentrations of ArH+ obtained are too low compared with the present work. Their calculations at 1.3 Pa show a dominance of Ar+ ions for H2 fractions below ~ 0.7 and +H3  for the rest, with ArH+ concentration being consistently less than a half than that of Ar+for most of the mixture ratios. Regarding the rate coefficients, these authors also employed3  s–1the higher value of k21 that  Kimura and Kasugai  used, and  took  k18 = 1 × 10–11 cm ,which  is the value used  for  the  8  Pa simulations (Lk18), but found too low for the (comparable) 1.5 Pa  case.  Similarly  to Kimura  and  Kasugai,  they did not compare themodel results to experimental data.The study of Sode et al. [137] provided  both experimental  values  for the ion  concentrations and model simulations at 1.0 Pa, with electron temperatures in the range of  3–5 eV. Model simulations were  performed for  the  whole  range  of mixtures, whereas experimental measurements  were carried out for H2 fractions between 0.28  and  1.Experimentally, ArH+ was determined to be the major ion, followed by Ar+, while H3+ was only dominant for the pure H2 plasma and quickly decreased with growing Ar content, along with the rest of the hydrogenic ions.  For the model, Sode et al. used the set of ratecoefficients recommended by Anicich [65] for the relevant ArH+ reactions.  In particular,–10 cm3 s–1for reaction 18, they took k18 = 3.65 × 10 , which is the same value used in thiswork for the 1.5 Pa simulations (Hk18). Subsequently, their model simulations led to higher+H3 densities than those measured in their experiments, and correspondingly lower ArH+concentrations. The reasons for the disagreement are not clear. The authors noted that arate coefficient close to  zero for  reaction  21 would lead  to simulations in better accordance with their measurements, by drastically reducing the conversion of ArH+ into+ 3H3 , and thus questioned the reliability of the recommended value [65] (6.3 × 10–10 cm  s– 1). However, this rate coefficient has been measured by several groups [65,148,161] 
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through different methods, and, despite some spread in the data, consistently high values have been reported. In the 1.5 Pa simulations presented here, with conditions similar tothose of Sode et al., the use of the recommended rate coefficients leads to a reasonably good agreement with the experimental data, as was seen in Figure 4.6. In fact, the simulations of Sode et al. are also in acceptable agreement with the measurements in thiswork, which is reasonable, given the relative similarities between the two discharges. The chemistry of the positive ions appearing in these plasmas is also studied in the diffuse interstellar cloud model of Schilke et al. [115]. In this medium, ArH+ is  formed incollisions of H2 with Ar+ ions (reaction 20), which are in turn produced through ionization of Ar atoms by cosmic rays or X-rays. These ArH+ ions can then be destroyed throughcollisions with O atoms or with H2 molecules (reaction 21). The authors remark that the unusually low rates for photodissociation and electron impact dissociative recombination of ArH+ increase the lifetime of the ion in the diffuse interstellar medium. When molecular hydrogen is present in sufficient concentrations (2[H2]/[H] > 10–4), reaction 21 is  by  farthe most important mechanism for ArH+ destruction, implying that this ion should not be+abundant in molecular clouds. Reaction 18, converting H3  into Ar+, is also included in this 3model, but with a very low rate coefficient (8 × 10–10exp(–6400 K/T) cm  s–1), which seemsappropriate for the vibrationally relaxed H3+ expected in diffuse cloud sources . In  otherenvironments like  the  knots  and  filaments  of the Crab  Nebula,  where ArH+ was firstidentified [114], internal excitation of H3+ by warm electrons may increase the relevance ofthis reaction. The reactions dominating the interstellar chemistry of ArH+ are thus  very  similar to those found in the plasmas studied in this work, and in  particular  thedisappearance of ArH+ when H2 is present is clearly seen in the 8 Pa discharge (Figure 4.7),where ion-molecule reactions dominate over electron impact ionization. 
4.4 Summary and conclusions 

The ion chemistry in cold Ar/H2 plasmas  has been investigated  in hollow cathodedischarges. The experiments have been carried out for total pressures of 1.5 and 8 Pa, andspanning  the whole range of  [H2]/([H2]+[Ar])  ratios  for each  of the two pressures. Asimple kinetic model, which takes the measured electron temperatures and densities as input parameters, has been used to interpret the experimental data and to identify themain reaction mechanisms. 
+The ion distributions are dominated by three species, Ar+, ArH+ and H3 , but theirrelative densities markedly  vary with  pressure and with  the  Ar/H2 mixture proportion. Special  attention  has  been paid  to the chemistry of  ArH+.  This ion was  prevalent in  the  
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range 0.3 < [H2 2]+[Ar]) < 0.7 in  the 1.5  Pa discharge,  but  its  predominance becamerestricted to [H2]/([H]/([H2]+[Ar]) < 0.05 in the 8 Pa plasma.The kinetic model reveals two key factors for the ion chemistry  in these plasmas:Electron temperature and the equilibrium of  the  process H3+  +  Ar ⇄ ArH+ + H2.  Electrontemperature, which depends on the plasma pressure, determines the rates of formation ofthe primary plasma ions (Ar+  and  H2+) that  start  the  ion-molecule chemistry.  Due  to thelower ionization threshold, the rate of formation of Ar+  is always  6–7  times  larger than +that of H2 , and Ar+  is the dominant  primary  ion  up to  very high  H2  fractions. Electrontemperature decreases roughly from 3 to 2 eV when the discharge pressure is  increasedfrom 1.5 to 8 Pa. As a result, the ionization rates of Ar and H2 drop by a factor of ~ 30 and +the ions  produced through ion-molecule  chemistry  (ArH+  and  H3 ) gain relevance ascompared with those directly formed by electron impact. Collisions of Ar+ with H2 lead to+an efficient production of ArH+. This ion can then give rise to H3 in subsequent collisionswith H2. The ratio between ArH+ and H3+ depends strongly on the rate of  the H3+ + Ar →ArH+ + H2 reaction,  which is endothermic and should be slow for ground state reactants,but becomes exothermic and should be much faster for an internal excitation of H3  largerthan 0.55 eV. +

+The experiments and model simulations presented here strongly suggest that H3has an appreciable degree of internal excitation in the lower pressure (1.5 Pa) plasma andthat this excitation is largely quenched in the higher pressure  (8 Pa) discharge.  Thisinterpretation reconciles conflicting literature values for the rate coefficient of the H3+ + Arreaction and leads to a reasonably good agreement between the measurements and modelsimulations over  the  whole  range  of conditions sampled. On  the other hand, the resultscorroborate  the  comparatively  large  (  > 5  × 10–10  cm3  s–1 ) rate coefficient for the +exothermic reaction ArH+  +  H2  → Ar + H3  ,  currently  accepted in  the  literature, butquestioned in a recent work. In the absence of a mechanism that regenerates ArH+ like the*mentioned [H3+]  +  Ar reaction, the argonium ion  is efficiently removed in  H2 containingmedia, even if H2 is present in very small amounts. This behavior, exemplified in the higherpressure  discharge  in this  work,  was  also reported in previous spectroscopicinvestigations carried out in comparable discharge cells, and is also displayed by theastrochemical models  applied to  the  recent observations  of ArH+ in the interstellarmedium. The results of this study invite further theoretical and experimental work on thedetailed state-specific dynamics of the processes involved in the production,  destruction,excitation and quenching of ArH+ and H3+. 
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Chapter 5. 

H2 + N2 plasmas 

Low pressure H2 and  N2 plasmas have been studied both experimentally [22-24,61,162-168] and theoretically [61,163,165,169,170] in the last decades. The early experimental works focused on the synthesis of ammonia [24,164,166-168]. Although no detailed mechanisms were proposed, there was a general agreement that plasma-surface interactions were responsible for NH3 production. Different  experiments demonstratedthat the NH3 concentration was dependent on the materials of the electrodes [167] or on those employed to cover the walls of the plasma reactor; platinum, stainless steel and ironbeing more efficient than other metals or oxides [24,162,164,166,168]. The experimental characterization of the catalysts showed that NHx radicals  were present at  the  surface  [24,164]. The postulated mechanism involved the adsorption of excited N2 molecules and +N2  ions. After their dissociation  at the surface,  they recombined  with atomic hydrogenfrom the gas phase or on the surface to successively form NHx adsorbed species. Finally, ammonia was produced and desorbed (ref. [164,166] and references therein). From a different perspective, theoretical studies of H2 and N2 plasmas, mainly focused on the modeling of gas-phase volume reactions, were developed in the nineties[169,170]. However, surface processes had to be included subsequently by Gordiets et al.[61] in order to explain the production of ammonia and in connection with iron nitriding[165]. In their model, the authors proposed the direct adsorption  of  atomic N and H(instead of dissociative adsorption of N2 and H2 molecules) and then, the formation of NHxspecies  at the surface by  successive hydrogenation reactions [61]. Recent experiments have supported this reaction scheme [22,163,171]. Nevertheless, the wall material did nothave influence on the ammonia synthesis. This discrepancy with previous publications was explained by the high fluxes of N and H atoms reaching the surface and passivating it.Under these conditions, the formation of ammonia took place in an additional layer on top 
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of Nhe passivated surface [22]. In this sense, the determination of absolute concentrationsof t , H and NHx radicals  in the gas  phase could help  establish  the  mechanism  of theirproduction and their role in the reactions at  the surface [22,162,163]. The interaction ofthese radicals with the surface of different materials was analyzed in ref. [172] andreaction pathways could be hypothesized in spite of the complex phenomena examined some . The characterization of these radicals and atoms in H2/N2 containing plasmas, and their interactions with the surface, are also  of high  relevance  for technologicalapplications, such as thin film growth and materials processing, extended at present to thelevel of the nanoscale [13,18]. As an example, silicon nitride (SiN) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) are widely employed in thesemiconductor industry (as a gate dielectric or passivation layer) [173] and in thephotovoltaic industry [14]. Most of the deposition processes use mixtures of N2-SiH4 andmoreammonia are lower than frequently NH3-SiH4, since the electron energies necessary for the dissociation of for N2. Several groups have tried to identify the main precursorsfor SiN deposition with different results [12,174-176]. These works exemplify thecomplexity of the chemistry involved in film deposition and the necessity of getting further insight into the underlying mechanisms, since the properties of the films are correlatedwith the plasma composition and conditions [175] and have effects on the properties ofthe devices where these films are deposited [177].In nuclear fusion research, the interest is focused on the inhibition of carbon film deposition [19]. High fluxes of hydrogen isotopes produce chemical sputtering of carbon-based materials, which leads to the formation and deposition of hydrogenated amorphous carbon (a:C-H) films in regions not directly exposed to plasma [178]. Under real operation conditions, these films would have high tritium content and pose a major problem for the handling of fusion devices [5]. Laboratory experiments with conditions similar to thosepresent  at these regions in  fusion  reactors  have achieved  the  reduction of a-C:H film deposition by the introduction of N2 in  H2/CH4 plasmas [20]. Studies using  binary  andternary mixtures of H2,  CH4, and N2 [179,180] or NH3 [181], provided some insight onrelevant chemical processes. However, the exact inhibition mechanism is still not wellunderstood.  Nitrogen is  also employed to cool the surfaces of fusion reactors exposed tothe  plasma,  particularly  the divertor. The study  of  the  chemistry of  this species withhydrogen isotopes  is relevant  as it  could  cause  issues for the  correct operation of thereactor [21,182].The importance of surface processes in plasma chemistry is not exclusively limitedto plasmas produced  under  laboratory conditions. Gas-phase reactions alone cannotexplain the abundances of gas phase H2, NH3, some alcohols and other complex species in interstellar clouds, and a combination of gas-phase and surface chemistry on the ice anddust particles has been invoked to account for these abundances and for the variety  of  
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chemical species detected [31]. Research in the field is very active at the moment andtheoretical efforts to improve models (see refs. [183,184] and references therein), as well as advances in experimental studies regarding surface reactions on  cosmic ice and dust[185] and closely related surface processes [186], are growing fast, but a good understanding of the involved chemistry is still a pending issue.On the other hand, ions play an important role in the synthesis of molecules in theinterstellar medium and provide a partial picture of the free-electron abundance necessary to guarantee approximate electroneutrality. The electron density is relevant inastrophysics since it is believed to determine the rate of cloud collapse and star formation[187]. In  addition,  some ionic species can be  used as  tracers  of interstellar neutrals. N2,assumed to be the major reservoir  of nitrogen  in the interstellar medium [188], lacks a permanent dipole moment and, therefore, it has no rotational transitions to be detected byradioastronomy. Then, N2H+ measurements are employed to estimate the concentration ofN2 [187,189]. However, proton transfer from H3+ to N2, which is considered the main routeof N2H+ formation,  is balanced  by the  destruction mechanism  of  dissociative electron recombination. The uncertainty in the concentrations of the charged particles involved, apart from the possible presence of additional sources and sinks of N2H+, results in errors as high as a factor of ten in the N2 concentrations [189].In summary, experimental plasma characterization could help to improve quantitative estimations of gas phase species in H2 and N2 discharges, whose presence issignificant  in different low pressure plasmas.  On the other hand, kinetic calculations can be useful to determine the relevant surface and gas-phase chemical processes and the interrelations between ionic and neutral species. In this work, a combined diagnostics and modeling of low pressure H2/(10 %)N2 plasmas generated in a hollow cathode DC reactor is presented. The basic mechanisms leading to the observed neutral and ion distributions, as well  as their relative  importance in  the  studied  pressure range, are identified and discussed. 
5.1 Experimental results 

Mixtures of H2 (90  %)  + N2 (10 %) have been used for the experiments, at totalpressures  of 0.8,  1, 2,  4  and  8  Pa.  Electron temperatures  and  densities have been determined for each  of these  conditions,  along with  the  relative concentrations of thestable neutral species and positive ions. 
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5.1.1 Electron temperatures and densities 

The values of the electron temperature and density derived from the Langmuirprobe measurements are listed in Table 5.1. The table also includes the values  of these  magnitudes employed in the model simulations to obtain the best fits for the neutral and ion concentrations. Only three of the pressures studied are shown for brevity. 
Table 5.1. Electron temperatures and densities obtained experimentally and adjustedvalues for the simulations. 

Te (eV) Ne (× 1010 cm–3) 

Pressure 
(Pa)0.828 

Experiment

3.8 ± 0.5 3.4 ± 0.53.1 ± 0.5 

 Model 

4.153.12.8 

Experiment

2.6 ± 0.5 3.5 ± 0.52.8 ± 0.5 

 Model 

2.33.63.3 
As expected, higher temperature values are obtained for the lower pressures. The electron density varies non-uniformingly with pressure, with the higher value of 3.5 × 1010 cm–3 corresponding to  the  intermediate pressure of  2  Pa.  The  values employed  in  themodel  are  adjusted to  obtain a better  fit  to the experimental  concentrations, but are nonetheless within the limits of the experimental error. 

5.1.2 Neutral concentrations 

The concentrations of the stable neutrals in the plasma have been determined with mass spectrometry for each of the different pressures employed in the experiment. Theresults of the measurements are displayed in Figure 5.1.Apart  from the precursors, ammonia is  detected in  significant  amounts. Thedistribution  of  neutrals is  fairly stable, with  no large changes  in the range of  pressures  studied. The higher concentration of NH3 is found at the lower pressure, and it decreases towards higher values. Conversely, precursor hydrogen is found in greater amounts  at  8Pa, while the concentration of N2 stays mostly constant within the experimental error. 
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Figure 5.1. Experimental  relative concentrations  of the neutral species  of the H2 + N2discharge at the different pressures studied. 
5.1.3 Ion concentrations 

Relative concentrations of the positive ions present in the plasma were determinedwith the plasma monitor for the different conditions studied, leading to the values shown in Figure 5.2.It is apparent that the pressure of the discharge has a strong effect in the ion distributions. For the lowest  pressure,  0.8  Pa,  a  relatively homogeneous distribution is+obtained, with no ions exceeding 20 % concentration. Five different species (H2+, H3+, NH3 ,NH4+ and N2H+) can be found in significant amounts, with concentrations between 10 and +20 %. When the pressure is  increased to  2  Pa, two of  these ions, H2+ and NH3 , decrease drastically, while a large growth is observed in the NH4+ concentration. This trendcontinues with growing pressure.  At 8 Pa, the concentrations of  all ions decrease except that of NH4+, which accumulates ~ 65 % of the total positive charge. 
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Figure 5.2. Experimental abundances of the positive ions in the H2 + N2 discharge at thedifferent pressures studied. 
5.2 Model simulations and relevant processes 

Model  simulations  have been  used to  identify the key  mechanisms  behind the neutral and ionic chemistry of the H2 + N2 discharges. Special attention has been paid inthis particular case to the surface chemistry, due to its great relevance in the formation of ammonia. The details of the model can be found in section 3.4.2. Reaction numbers given in the text refer to Table 3.6 and Table 3.7 in that section. 
5.2.1 Neutral species 

The relative concentrations of the stable species of the plasma have been calculatedusing  the  kinetic  model, allowing for  a comparison  with the experimental data. Additionally, the model can be used to obtain the concentrations of radicals (H and N atoms, NH and NH2) in the plasma. Although these species have not been experimentally detected, the relatively high atomic H concentrations are consistent with previous results from studies in the same experimental setup [35] and appreciable concentrations of theNH and NH2 radicals  have  also  been  observed  by other groups  in H2/N2 discharges  



                      

  

 
 

 

 

 

 

                

H2 + N2 PLASMAS 91 
[162,163]. In the plasmas studied in this work, gas phase dissociation of ammonia is themain  source of  NH and NH2  radicals.  The  results  are  displa ed  in Figure  5.3. Since themeasurements at 1 and 4 Pa present intermediate results, onlyy three pressures, 0.8, 2 and8 Pa, have been considered for simplicity. 
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Figure 5.3.  Comparison between experimental  and  simulated  concentrations for theneutral species of the discharge. Only three different pressures, 0.8 Pa (a), 2 Pa (b) and 8Pa (c), are considered. 
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The  steady-state concentrations  of the neutral species for  each  pressure are theresult of a complex balance between the electron impact dissociation  of the stablemolecules (both of the H2 and N2 precursors and of ammonia) and radicals, and surface generation of the stable species, predominantly NH3 but also H2 and N2 (see Table 3.7). Theprecursor gases are largely recycled before leaving the reactor due to the relatively long residence times (between ~ 0.45 and 0.75 s). The increase in NH3 concentration at 8 Pa,which  could  be intuitively expected  due  to the higher  residence  time at this pressure, is basically compensated  by  a  slight increase  of the plasma  volume  (i.e., a smaller sheath width that is estimated to change from 2 to 1.5 cm with increasing  pressure due to  thedecrease in the discharge voltage and the increase in the electron density [8,41]), which favors NH3 dissociation. NH3 formation is triggered by the supply of atomic H and N to thesurface, which depends  on  an efficient  dissociation  of H2 and  N2. The efficiency grows substantially with increasing electron temperature, Te,  as can be  observed in  Figure 5.4,where the rate coefficients for electron impact dissociation of the various neutrals presentin the plasma (reactions D1–D7) are displayed over the range of electron temperatures of interest for  the experiments  (note that the rate coefficients for the two possibledissociations of NH2, reactions D4 and D5, are equal).  
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Figure 5.4. Dissociation rate coefficients of the stable molecules (H2, N2 and NH3) as well as radical species (NH and NH2) as a function of the electron temperature, Te. 
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Since the dissociation rate of N2 is the lowest of all neutral species and its proportion in the mixture is  only 10  %, the  adequate  supply  of N atoms to  the reactor walls, dependent on Te, will be an important control parameter for the production of ammonia at the surface. It is worth noting that the dissociation of the NHx species is  very  efficientalready at low electron temperatures but less sensitive than that of H2 and N2 to a change in Te. 
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Further insight into the interconnected gas phase and surface chemistry can begained by analyzing the model steady-state concentrations of the most relevant neutralspecies as a function of electron temperature. Calculated results at  2 Pa are displayed inFigure 5.5 for gas phase molecules and atoms (a),  adsorbed species (except for NH2(s), < 1012 cm–2 anywhere) (b), and the most representative surface production terms (c). The minimum concentration of NH3 is  predicted  at the lowest  Te (2 eV)  due  to  a  limited supply of atomic N; but even for this electron temperature, a significant amount ofNH3 is already produced, mainly through reactions W13 and W15. Reaction W12 represents a minor contribution to ammonia formation at any pressure and is not shown in the figure.Given that H2 constitutes 90  %  of  the precursor mixture  and its dissociation is  more  efficient  than the dissociation  of N2, H is the main atomic or radical species in the gas phase and at the surface. This second circumstance allows not only the formation of NH3but also the formation of H2 via reaction W2. As a consequence, part of the adsorbed H islost for the generation of ammonia and another part is recovered as one of the precursor species. However, between 2.5 and 3 eV, the dissociation of N2 starts to be more efficient, N adsorption is more relevant than before, reaction W8 gains in  importance and,  under  steady-state conditions, an enriched N(s) surface produces NH3 mainly through reactions W14 and W15. At the same time, the formation of H2 via W2 is inhibited and the production of N2 via W4 too, since  most  of the  atomic  N  is  at  the  surface  or takes part in ammonia generation. The most favorable situation for NH3 production corresponds to the conditions in which atomic gas-phase concentrations are drastically reduced and thesurface is preferentially covered with atomic N. These conditions are not fulfilled beyond 3eV, since gas phase dissociation is significant, leading especially to atomic H. The excess ofatomic H reverts to a prevailing H(s) covered surface and the production of H2  at thesurface grows substantially. With growing Te, the dissociation of N2 is also favored and reaction W4 produces also more N2. These processes are responsible for the small upturn in both molecular concentrations near 3.1 eV. At higher Te, the dissociation of molecular species is so efficient that their steady-state concentrations drop in  spite  of the more  efficient surface production.As a consequence of the complex balance between electron impact dissociation and the various surface processes, the concentration  of  NH3 is predicted to be maximized inthe plasma over a given Te range that depends on pressure. Figure 5.6 shows the evolution of the relative  NH3 concentration as a function of Te for the three pressures considered,together with the experimental measurements corresponding to the actual dischargesinvestigated.Only one  experimental  point  can  be measured  at each  pressure with theexperimental set-up, with the corresponding Te value adjusted  for  each pressure.  Themeasured data are certainly consistent with the calculations, but they  should not be  
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viewed as a rigorous proof of the predictions, which are not restricted to a single electronic temperature, but extend over a Te range. In this respect, the figure depicts basically model results. As can be seen, the interval of maximal NH3 concentration isnarrow at the higher pressures, but becomes broad,  with a gentle decline toward higher
Te, for 0.8 Pa. The experimental points for the 2 Pa and 8 Pa discharges turn out to be justbeyond their respective  maxima,  which  end  in  an  abrupt fall. The point for the 0.8 Padischarge is also past the maximum, but its value is not much lower, since it is placed on the gentle down-going slope. In retrospect it is not surprising that the maximum relative concentration of ammonia was measured for the lower pressure, since in  this case, NH3production is favored over a much wider Te range. 

0.08 

(eV)e
Figure 5.6. Relative NH3 concentration as a function of Te for 0.8, 2 and 8 Pa obtained from model simulations. The dots with error bars indicate the experimental values. 

As indicated in section 3.4.2, both Langmuir-Hinshelwood and Eley-Ridealmechanisms have  been  considered  in  a combined  reaction scheme  for the synthesis ofammonia on the metallic surface, in accordance with previous literature works [170,171].However,  given the high  flow of  atoms  to the  wall  characteristic  of the low pressure  plasmas in this work, it is worth investigating whether a scheme based purely on ER reactions could account for the experimental data. To this end, additional simulations with 

2 3 4 50.00 
0.02 
0.04 
0.06 

Relativ
e NH 3 c

oncent
ration 

T

0.8 Pa 

8 Pa 
2 Pa 



                

   

 

 

    
                    

                                        

96 CHAPTER 5 
the  model  have been  performed.  The results for the  0.8 Pa  discharge, the one with t
lowest pressure and most sensitive to surface processes, are represented in Figure 5.7. he
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Figure 5.7. Experimental  and  calculated neutral species (only stable  molecules are shown) by employing exclusively an Eley-Rideal model for surface reactivity (i.e. excluding LH reactions W11 and W15) with the same γER coefficients of the complete model (1),  andwith a ten-fold  increase in  the  value  of  γER for nitrogen recombination and a five-fold increase in the γER values for all reactions involving NHx species (2).  See  text for further  details. 
A direct elimination of the two LH processes included in the model (reactions W11and W15) without changing the γER coefficients leads to  a  low  NH3 production and a distortion in the predicted concentrations of H2 and N2, which are overestimated andunderestimated respectively (green bars). The agreement with the experimental resultscan be recovered by modifying the γER coefficients, as shown by the blue bars in the figure,but they must be raised significantly, with a ten-fold increase in the value of γER  fornitrogen recombination and a five-fold increase in the γER values for all reactions involving NHx species. These values are deemed unrealistically high and are not  suitable for thehigher pressures. The present results support thus  the  prevalent view that LH reactions are also of relevance for the heterogeneous synthesis of ammonia in this type of plasmas. 



                                                 
 

                                                    
                                          

H2 + N2 PLASMAS 97 
The model analysis of the plasma kinetics described thus far outlines the basicprocesses responsible for the observed composition of neutral species and underlines thestrong interconnection between gas-phase and surface chemistry and the crucial influenceof electron temperature. Specifically, the production of NH3 has been found to depend verysensitively on the delicate balance between formation and destruction of the NHxintermediates implied. The model provides in principle a good global picture of the steadystate plasma chemistry, but it also has obvious limitations, since it  relies on  a  series ofassumptions about the number of surface sites or surface reaction parameters. In theabsence of in situ  surface  characterization,  which  is beyond  the capabilities of theexperimental setup, the predictions about coverage by the distinct species cannot bedirectly verified. Apart from wall neutralization, the model neglects ionic interactions withthe surface and it  does not consider  ionic  effects  on the surface chemistry or a possiblesurface modification by electron bombardment. The reproducibility of the experimentssuggests, however, that the surface is not appreciably modified by the studied discharges. 

5.2.2 Positive ions 

Figure  5.8  shows the measured ion distributions at  0.8, 2 and 8 Pa along with thecorresponding model simulations. The global evolution with pressure is satisfactorilyreproduced by the model. As found previously in plasmas of other gas mixtures [190], theoverall ion results can be explained mainly by the decrease of the electron temperature Te+at higher pressures. NH4  together with  H3+ and N2H+  are  formed exclusively by  ion-molecule gas  phase  reactions. In  contrast,  the  rest of  the  ions can also be generated insignificant amounts by direct ionization, and that is the only production mechanism in the+case of H2+ and N2 . This channel tends to be preferential for high Te, since production bysome of the ion-molecule  reactions  T1–T25 is  often compensated by destruction via otherreactions in the group.The rate coefficients of the most relevant ionization reactions (I3, I6, I11 and I12) as afunction of the electron temperature Te  are  displayed  in Fi ure  5.9, together  with somerate coefficients for ion-molecule processes. At 8 Pa, Te is sligghtly lower than 3 eV and therate coefficients for electron impact ionization are smaller than those for the ion-moleculereactions. Under these circumstances, the ion distributions are determined to a largeextent by ion-molecule chemistry, which leads preferentially to  NH4+ as soon as NH3  ispresent in appreciable concentrations, since the ammonium ion does not have destructionchannels in the gas phase and is essentially lost through wall neutralization. However, at0.8 Pa, the electron  temperature  reaches  4  eV and the rate  coefficients for directionization, notably those for NHx  species, approach  those for  ion-molecule reactions. 



         

 

 
 

  

 
 

        

98 CHAPTER 5 
Consequently both types of processes compete and a more uniform distribution of ionicconcentrations is observed. 
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Figure 5.10. Dependence of the ion distribution on the electron temperature for the 2 Padischarge. Note that the NH4+ concentrations are divided by a factor of two. 
Although the model predicts well the global relative experimental ionic concentrations at a given pressure and their behavior as the pressure is modified, thereare some discrepancies between the experimental concentrations of some ions and thecalculated ones. NH2+ and NH3+ are overestimated by  the  model  and  H2+ and H3+ are  underestimated. This happens for all the pressures studied, but it  is more evident at thehigher ones. The reasons for these discrepancies are not clear, especially considering thationic chemistry is strictly restricted to the gas phase and is not plagued by theuncertainties commented on above for surface reactivity. Specifically, consistent values for the relevant electron impact ionization cross sections are available and the rate coefficients for the main gas phase sinks and sources of the various ions seem well established  in the literature  (see bibliographic sources in  Table 3.6 and  the references  cited  in them).  Sheath collisions, leading to  additional reactions or charge transfer, notconsidered  in  the  model, could contribute  to explain the differences between theexperimental data and the model results, but they are very difficult to evaluate due to thescarcity of data on cross sections for molecular ions over the required energy range (up to300–400 eV). The comparatively low pressure of the experiments and the analysis of the ion energy distributions reaching the cathode [41] suggest that the measurements should 
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not  be significantly perturbed by  collisions  in the  plasma  sheath, but some distortion ofthe measurements cannot be entirely ruled out (see references [63,190] for more detailed comments on possible sheath effects). The assumption of a Maxwell distribution ofelectron energies and the neglect of internally excited species in the model calculations may  also contribute  to the observed  discrepancies  between  measurements and simulations.  

+It is worth noting that the efficient transformation of N2H+ into NH4 in the presence of NH3 reflected in the results of this work can have implications for astrophysics, mainly in protostellar regions, where temperatures can be high enough to evaporate NH3 from the dust grains. The evaporated NH3 would then deplete  N2H+ directly, through reaction T25,+and indirectly by destroying its precursors H2+ and H3  through reactions T4 and T8. Under adequate circumstances, this NH3 chemistry could modify  the  balance  between  N2H+formation through proton transfer from H3+ to N2 (T9) and the destruction mechanism ofdissociative electron recombination (N12) assumed in estimates of molecular N2concentrations [189]. 
5.3 Summary and conclusions 

H2 + N2 plasmas with  a  low  (~ 10  %) content  of  N2 in the precursor gas mixture generated in a hollow cathode DC reactor have  been characterized experimentally using mass spectrometry for the measurement of neutral and ion concentrations, and a double Langmuir probe for the estimation of electron temperatures and densities. Apart from the precursors, ammonia is detected in substantial concentrations, comparable to that of N2 atthe lowest pressure. A simple zero order kinetic model, which couples gas-phase and heterogeneous chemistry, reproduces the global composition of the plasmas over  thwhole range of pressure experimentally studied. A detailed analysis based on the results of e the model has allowed for the identification of the main processes determining the observed neutral and ion distributions and their evolution with discharge pressure.Ammonia  is formed  at the surface  of  the  metallic  reactor  walls  by the successive  hydrogenation of adsorbed atomic nitrogen and nitrogen containing radicals. Both Eley-Rideal and Langmuir-Hinshelwood mechanisms are necessary to account for themeasured distributions of  neutrals.  At the lowest  pressure,  the gas phase dissociation of N2, which is determined mainly by the electron temperature, provides an adequate flux ofN  atoms  to  the walls to  favor  ammonia  production.  A  feedback mechanism allows theenrichment of the surface in atomic N which, at the same time, reduces drastically H2formation at the surface via an Eley-Rideal mechanism and guarantees an efficient NH3 
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generation.  As a result, the concentration of  NH3 approaches that  of N2. With growing pressure, the plasma conditions provide a relatively high H atomic  content  in the gas-phase and lead to a preferentially H-covered surface, which forms not only ammonia butalso molecular H2 (and to lesser extent N2). As a consequence, the presence of NH3 in therelative concentrations of neutral species decreases. The positive ion distributions in the discharge are largely influenced by variations in the electron temperature, which controls the balance between ionization processes and ion-molecule reactions. At lower pressures and higher electron temperatures, both kinds of processes  have similar relevance. The resulting ion distribution is relatively uniform,with similar concentrations  of several ions. However,  at higher  pressures and lower electron temperatures, ion-molecule processes control the chemistry and the protonation +reactions result ultimately in a distribution of ionic species with a marked  NH4predominance. The strong prevalence of NH4+ in  the distribution is  a  direct result  of theion molecule chemistry of NH3, leading to the generation of ammonium ions at the expense of H3+ and  N2H+. This intertwined reactivity of the three  protonated  ions should beconsidered in the estimations of molecular N2 densities in astrochemistry, which are mostly based on N2H+ measurements, if ammonia is present in appreciable amounts in the gas phase. 



  

                                                                                                   
                            

Chapter 6. 

H2 + O2 plasmas 

Low  pressure plasmas in  electrical discharges  with H2 and O2 are of  interest in  a  variety of fields. In astrochemistry, the formation of H2O and H3O+ is of great relevance as they have been detected in interstellar environments [30-32,191]. Ions containing oxygen and hydrogen are formed in interstellar clouds [192], and they are assumed to play an important role in gas phase chemical routes leading to the production of H2O. Thehydronium ion, H3O+, has been observed in molecular clouds since the nineties [193]. Therecent Herschel mission has led to the detection of OH+ [194] and H2O+ [195] in the diffuse interstellar  medium and their role  as markers of  regions  with a small  fraction of  H2 has  +been highlighted [196]. The HO2 ion, however, remains unobserved to date. It has beenrepeatedly considered  as a possible  tracer  for  molecular oxygen  [197-199] in a similar way as N2H+ is for N2, but the available thermodynamic and kinetic data suggest that theconcentration of this ion in the ISM should be too small  to be detectable [198]. In fusion research, discharge cleaning is used to eliminate the residual molecules in a vacuum vessel,  of  which  oxygen and  water are major  components  [200,201], and oxygen-containing cold plasmas have been proposed for the removal of co-deposits at the reactor walls [202,203]. Hydrogen and oxygen plasmas are also widely used in surface treatments, like chemical  modification [204-206], decontamination  [207] or  functionalization of carbon nanotubes [208].Previous studies on  this kind  of plasmas have  been carried out  under a variety of conditions and with very different objectives. Atmospheric pressure discharges have beenused in experimental and theoretical studies of H2 + O2 ignition [106], in the simulation ofgas heating processes in H2 + O2 streamers [209],  or in  the  modeling  of  production  mechanisms of different neutral species [210,211]. An extensive global model for mixturesof He with small fractions (< 1 %) of H2O has been elaborated by Liu et al. [212], and the 
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formation  of OH  radicals in  plasma assisted combustion  of H2/air mixtures has been studied experimentally and theoretically by Yin et al. [213]. Low pressure plasmas of H2 +O2, mostly in the mbar range, have been employed by various groups. They have been used in the infrared spectroscopy analysis  of the spectrum of the H3O+ ion [26]. Nevertheless, kinetic studies of these plasmas are limited to the analysis of the neutral species, such as the determination of oxygen atom concentrations in microwave post discharges of He-H2-O2 mixtures using NO tritration [214], the modeling of neutral species in the afterglow of a1H2 + O2 discharge [215],  or the  experimental  study  of the variation  of the O2(a Δg)concentration with the introduction of small amounts of H2 in  an  Ar  +  O2 microwave  discharge [216].In this work, a study of the chemistry of neutral and ionic species in H2/O2 plasmas is presented, based on the experimental diagnostics and kinetic modeling of hollow cathode discharges at a pressure of 8 Pa and mixture proportions ranging from pure H2 topure O2. For the pressure value selected, which lies toward the high pressure limit of thestable operating range of the discharge (1–10 Pa), the ion distributions in the plasma are largely determined by ion-molecule chemistry, which is the goal of the present study. Forthe lowest operating pressures, displaying higher electron temperatures, the ion distributions tend to be dominated by the products of direct electron impact ionization [190]. Langmuir probes provide values for the electron temperatures and densities, and neutral and positive ion concentrations are determined by mass spectrometry. The main surface and gas processes are identified by comparison of experimental  data and modelpredictions, and their relative relevance under the different discharge conditions is analysed. 
6.1 Experimental results 

Discharges of H2 + O2 have been performed at a fixed pressure of 8 Pa for the whole range of mixtures, from pure H2 plasma  to pure  O2 plasma. Electron  temperatures  anddensities have been measured for these different conditions, along with the concentrations of the neutral stable species (H2, O2, H2O) and the positive ions present in these discharges. 
6.1.1 Electron temperatures and densities 

Values of the electron temperature and electron density have been obtained from the measurements with the double Langmuir probe for the whole range of mixtures studied. The results are presented in Figure 6.1. 
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Figure 6.1. Electron temperatures (upper panel) and densities (lower panel) measured with the Langmuir probe for the different H2 + O2 mixtures at 8 Pa. The values used in themodel are the same as the experimental ones except for the pure H2 discharge, where an electron temperature of 2.4 eV is employed (see section 6.2.2 for more details). Lines are only a guide to the eye. 

The  electron temperatures  are  stable through the whole range of mixtures  investigated, with a mean value of 2.4 eV, except for the pure H2 plasma, where a value of1.7 eV is obtained. The pure H2 plasma is also exceptional regarding electron densities, with a higher value (3.6 × 1010 cm–3) than the rest of the mixtures, which stay between 2 ×1010 and 3 × 1010 cm–3. 
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6.1.2 Neutral concentrations 

Neutral stable species were monitored using the PRISMA quadrupole mass spectrometer. The time evolution for the formation of water molecules and the attainmentof the steady state was observed through mass 17, which corresponds to the OH fragment. The values of the steady state concentrations for H2, O2 and H2O are displayed in Figure6.2. 
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Figure 6.2. Experimental relative concentrations of the neutral stable species in the H2 +O2 discharge. Lines are only a guide to the eye.

Water is produced in the discharge in appreciable amounts, reaching a maximum of~ 30 % of the total neutral concentration for a mixture with ~ 40 % O2, close to what would  be expected  from a stoichiometric  point  of  view,  which would correspond to maximum water formation for a fraction of oxygen of 33 %. The oxygen precursor isdepleted at high H2 fractions, as it is mostly dissociated and then recombined at the wall to form H2O. The H2 precursor is  also depleted  at  high  oxygen fractions,  but  in a  smaller proportion. Other neutral stable species, such as O3, were not detected in the discharges. 
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6.1.3 Ion concentrations 

Relative concentrations for the positive ions  present  in the plasma have been determined through PPM measurements. The experimental  results  for the differentmixtures studied are shown in a logarithmic plot in Figure 6.3. 
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Figure 6.3. Relative concentrations for the positive ions in the discharge obtained  from the PPM measurements. Lines are only a guide to the eye. 
+H3  ions are only dominant for mixtures with nearly no oxygen. When the amount ofoxygen is increased, water is formed and as a result H3O+ quickly becomes the major ion,maintaining a stable concentration (~ 50–60 %) for a wide range of mixture proportions.At the same time, H3+ concentration decreases, and at ~ 20 % O2, O2+ surpasses H3+ as thesecond major ion. O2+ concentration keeps growing towards higher O2 concentrations, and at ~ 70  %  O2 it  becomes  the  dominant ion due to  the  decrease in  neutral  H2O in thedischarge. Between ~ 90–100 % O2, hydrogen-containing ions disappear abruptly from the plasma, as could be expected, leaving only O2+ and O+ in a 2:1 ratio as the relevant ions of the discharge. 
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+ +H+ and H2 follow a similar behavior to H3 , appearing with the higher concentration in the close to  pure hydrogen mixture and steadily decreasing as more oxygen is added. However, their decline is more gradual than that of H3+, and as a consequence H2+ becomesthe major hydrogenic ion at  ~ 60 % O2. The mixed ions H2O+, OH+ and HO2+ appear withrelatively stable concentrations when both precursors are present in significant amounts (~ 5–90 % O2). H2O+ has the largest concentration with  about  5  %  of  the total positivecharge, while OH+ and HO2+ stay an order of magnitude lower, with HO2+ growing slightlytowards higher O2 fractions. 

6.2 Model simulations and relevant processes 

As in the previous works, model simulations have been performed to  identify themain mechanisms behind the chemistry of the H2 + O2 plasmas. Details on the model can be found in section 3.4.3. References to reactions in the following text correspond to the identifiers given in Table 3.10 and Table 3.11. The results of the simulations are shown in the following sections. 
6.2.1 Neutral species 

Concentrations of  the  neutral  stable species have  been calculated in order tocompare them with the experimental results. This is shown in Figure 6.4. There is a generally good agreement between the simulations and the experiments.The behavior of the three molecules is well reproduced. Water has a maximum  concentration of ~ 35 %, which is slightly higher than the experimental value, ~ 30 %, andboth happen  for  the  same  mixture (40  % O2). This small overestimation of the H2Oconcentration  occurs for mixture ratios  with less  than  ~ 60  % O2, and as a result the H2and O2 precursors are correspondingly depleted. For O-rich mixtures, the concentration ofO2 is overestimated by the model and H2 is underestimated. Steady state concentrations ofH2O are given by the equilibrium between the dissociation of the precursor gases and the recombination of radicals at the wall. The  model  also allows the simulation  of the concentration of  neutral species that could not be determined experimentally, due to either their unstability or their very lowabundance. These are shown in Figure 6.5. 
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Figure 6.4. Comparison between experimental (symbols) and model (lines) results for the stable neutral species in the H2 + O2 plasma.

As could be expected, the stable species dominate the distribution, but radicalsappear in significant amounts. Hydrogen atoms, produced primarily through electron  impact dissociation of H2 molecules (reaction D1), have stable concentrations of about 5 %for the majority of the mixtures studied, only decreasing when the oxygen content in the 3plasma is  above  90  %.  Oxygen  atoms in  the  ground state,  O( P), have comparable concentrations to those of H atoms for a wide range of mixtures, disappearing when the H2content is high. They reach a maximum concentration of ~ 30 % for the pure O2 discharge,and present a steady growth with increasing O2 fraction. The other major radical  is  OH,which is formed mainly from the dissociation of H2O molecules (D5), consequently following a similar behavior to that species. The maximum concentration of OH is ~ 10 %,and it is found for the mixture with 80 % O2. Ozone and HO2 are found to be very scarce inthe discharge, with concentrations three or four orders of magnitude lower than thepreviously mentioned species. The two matastable excited species included in the model,1 1 1O2(a Δg) and O( D), are present in very different amounts. The concentrations of O2(a Δg)are comparatively high, typically ~ 5 % of the O2 concentration, and as such reach almost 10 % of the total neutral concentration for the pure O2 discharge. On the other hand, the 
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1amounts of O( D) in the discharge are very low, three or four orders of magnitude below3the concentration of O( P). 

0.0 0.2 0.4 0.6 0.8 1.010-4 
10-3 
10-2 
10-1 
100 

0.0 0.2 0.4 0.6 0.8 1.010-6 
10-5 
10-4 
10-3 
10-2 
10-1 
100 

O2(a1Δg) 
H2O O2 

Relativ
e Conc

entrati
on H2 

OH 

HO2 O3 

H 

O(1D)Relativ
e Conc

entrati
on 

O2 fraction 

O(3P) 

Figure 6.5. Simulated relative concentrations for all the neutral species included in the model. They are split in two panels for clarity.
The two excited species have very different effects in the chemistry of the discharge.1Despite the relatively high concentrations of O2(a Δg), the impact  in the chemistry of  thedischarge is limited, its main role being the production of O– ions through dissociative 1attachment (A4). On the other hand, the amounts of O( D) in the discharge are very low,but the role in the neutral chemistry of the discharge is more relevant. The reactions of 
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1O( D) with H2 and H2O (G11 and G15) have high rate coefficients for a homogeneous neutral 1process, and become  a  main source  for  OH radicals  when the concentration of O( D) ishigh enough (80–90 % O2 mixtures). 

6.2.2 Positive ions 

The concentrations obtained  from the model for the  positive  ions  in the discharge  can be compared to the experimental PPM measurements. In this case, the concentrations of all the species included in the model have been determined experimentally. The resultsare shown in Figure 6.6. The global behavior of the major ions is reasonably well  reproduced by the model,although some discrepancies with the experimental observations are found. At the lowest +O2 concentration, H3  is the dominant ion, with an important contribution of H3O+ and H+,which replicates the experimental results. However, the value for the electrontemperature used for this  simulation is  2.4 eV,  as opposed to the 1.7 eV value measuredwith the Langmuir probe (see Figure 6.1). If the experimental value is used as an input for the  model, the concentration of  H3O+ is significantly overestimated. The  use of  a  highervalue for the electron temperature is supported by previous measurements in pure hydrogen plasmas at the same pressure [35,55]. The rest of the model simulations have been carried out  using the experimental  values for the  electron  temperatures and densities. With the  addition of  oxygen to  the  mixture, H3O+ quickly becomes the  major ion.When oxygen is only present in small amounts, the main mechanism for the formation of +this ion is the proton transfer from H3  to H2O (reaction T12), with a high rate coefficient warranted by the difference in proton affinity of the species involved (691.0 kJ/mol forH2O and 422.3 kJ/mol for H2). As the amount of precursor oxygen is increased, H3+declines and other ions  become important in  the  mixture, diversifying the production  processes for H3O+.  For  intermediate mixtures, these include charge  transfer reactions involving H2O+ (T21 and T22) and OH+ (T19), all  of which have high rate  coefficients.  Witheven higher concentrations of O2, the concentration of hydronium decreases and O2+,which is mainly produced from the direct ionization of O2 molecules (I3), becomes themajor  ion.  For the pure  oxygen plasma,  only  this ion  and O+ from the dissociative ionization of O2 remain, but  the ratio between  them  predicted  by the  model (3:1) isdifferent from the experimental one (2:1).  This ratio is  highly dependent on the electron temperature, so a rise in this parameter would help reproduce the experimental results. 
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Figure 6.6. Comparison between the experimental (symbols and dashed lines) andsimulated (solid lines) concentrations of the positive ions present in the discharge. Twopanels with different species are used for clarity.  
+The three mixed ions OH+, H2O+ and HO2 have concentrations of the order of ~ 1– 3  %  for  a  wide range of  the  mixtures studied,  with H2O+ tending to be slightly more abundant. This behavior qualitatively reproduces the experimental observations. H2O+  is 
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produced mainly through the ionization of water molecules (I8), and then  destroyedthrough collisions with H2 (T21) and H2O (T22), which, as mentioned before, produce H3O+.In the case of OH+,  it is produced mainly from the dissociative ionization of H2O (I9), and destroyed  through  collisions  with all  of the major molecular species in the plasma, H2+ +(T17), O2 (T20) and H2O (T18 and T19). For HO2 , the reaction with H2 to form H3  is nearlythermoneutral, with the forward (T25) and backward (T13) rate coefficients being comparable, and this equilibrium determines its concentration for H2-rich mixtures. When oxygen is  the major  component  of the mixture,  reaction T24 becomes the main source of+HO2 , while the destruction mechanism remains the same. It is interesting to observe at this point that the relative concentrations of the H3O+,H2O+ and OH+ ions are similar to those predicted in astrochemical models for the interior of dark clouds [196], where the chemistry leading to the formation of these ions has some similitude with  that  of  this discharge.  It starts  also with  the  ionization of molecular +hydrogen and proceeds through proton transfer reactions involving H3 . In diffuse clouds, where OH+ and  H2O+ have  been detected  [194,195], H2 is scarce, and the abundant +electrons neutralize H3 . In these regions other mechanisms starting with the ionization of atomic hydrogen become prevalent and produce an inverse ordering of the ionic relative +abundances [196] ([OH+] > [H2O+] > [H3O+]).  The concentration of  the  HO2  ion found inthe plasmas studied here is similar to that of OH+, which suggests that this ion might be found, as a minor species, inside dark clouds. Purely hydrogenic ions obviously dominate the discharge for pure H2 conditions but +decrease abruptly with the addition of oxygen to the mixture, especially H3 , falling orders of magnitude from their initial values. This decrease is also observed in the experimental data, but with a smoother slope, with H3+ only going below 1 % concentration for a ~ 60 % O2 mixture, while in the model simulations this occurs for a mere 10 % O2. In the case ofH2+, its concentration is underestimated by almost an order of magnitude through thewhole range of mixtures, and for H+ the behavior is only reproduced for high H2 and highO2 conditions. The concentrations of these ions depend strongly on the electron temperature, as both H+ and H2+ are produced  by  electron  impact ionization  of H2 (reactions  I5 and I6,+ +respectively), and H3  is  subsequently produced  from H2 in a charge transfer reaction with H2 (T5). A higher electron temperature would enhance the production of these ions, leading to a better agreement between the experiment and the model, since all hydrogenicions were underestimated in the simulations. However, for the majority of mixtures studied, rising  the  electron temperature would lead  to an  important increase in certain species, such as H2O+ and OH+, which are already well reproduced by the model, effectivelyaltering the behavior of the major ions in the discharge. This can be observed in Figure 6.7, 
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where the simulated relative concentrations of positive ions for two electron 
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Figure 6.7. Relative concentrations of positive ions obtained from model simulations attwo electron temperatures, 3 eV (upper panel) and 2 eV (lower panel). 
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6.2.3 Negative ions 

The abundances of  negative ions have not been determined experimentally, due to the limitations commented on in section 2.1.2.2. Model simulations provide the concentrations of the three negative ions considered in these discharges, H–, OH– and O–.The results of the simulations for the negative charge carriers can be seen in Figure 6.8. 
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Figure 6.8. Relative concentrations for the negative charge carriers in the discharge. 
Electrons are clearly the dominant species for all mixture ratios, with negative ions making up at most 25 % of the total negative charge. In the pure H2 plasma, negative ions are hardly present, as was expected, with a relative concentration of H– ~ 0.1 %. However, the addition of small amounts of O2 to the mixture makes its concentration rise up to 10 %,due to the high cross section for the dissociative attachment of H2O (reaction A2), which isbeing formed in the discharge. As the oxygen ratio grows, H– ions are lost due to collisionaldetachment with O2  (Dt4), whereas O– and OH– ions increase in concentration. O–  isproduced from the dissociative attachment of water (A5) and then transformed into OH– through collisions with H2 and H2O (T26 and  T27). OH– is the major negative ion formixtures from 40 % to 80 % O2. For higher oxygen concentrations, the amount of H2 andH2O in the discharge is not enough to maintain an efficient formation of OH–, so it 
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decreases quickly. In these conditions, O– is formed from the dissociative attachment of O21(reaction A1) and O2(a Δg) (reaction A4).The relevance of the negative ion processes in the chemistry of the other species inthe  discharge  is low,  as they  are  not  involved in  any main mechanism for production or destruction of positive ions or neutrals. The main gas phase process in which negative ions take part  is the neutralization  of positive ions. However, in the plasmas studied,  ion-ion  neutralization is far less important than the neutralization at the cathode walls for thedestruction of positive ions. The main contribution of negative ions is in fact the reduction of the electron density, which lowers the rate of electron impact processes but, given thattheir concentration never exceeds 25 % of the total negative charge, this effect is not large. 
6.3 H2 + N2 + O2 discharges 

The role that the proton affinities of the major species in the discharge play in thefinal ion distributions has already been highlighted both in the present chapter and in theprevious ones.  In  order  to emphasize this, an  additional experimental study has been carried out in discharges of mixtures of H2 + N2 + O2. In the same way as the H2 + O2 plasmas, the experiments were performed at a total pressure of 8 Pa, to favor the ion-molecule chemistry. The mixtures employed consisted of H2 with varying concentrations of air, from 3 % to 19 %. Electron temperatures were ~ 3eV and electron densities ~ 3 × 1010 cm–3 s–1. The concentrations of the neutral stable molecules in the discharge  are shown inFigure 6.9.  As expected, H2 is the dominant species for all the mixtures studied, as theprecursor H2 is  always above  80  %  of the composition.  N2 is the second most abundant species, with concentrations between 2 % and 13 %. H2O and NH3 follow, both with very similar abundances, around a factor 2 lower than that of N2. Finally, O2 is clearly the less abundant molecule, with a concentration more than an order of magnitude lower than N2,despite the precursor mixture being ~ 1:4 in proportion. This low abundance of  O2 is  related to the relatively high (considering the mixture proportions) concentration of H2O compared to NH3. As was seen in the models of H2 + N2and H2 + O2, NH3 requires an extra step for its formation through heterogeneous reactions,making it  a  slower process  than the formation  of  water  at the reactor walls. The faster formation of H2O leads in turn to a depletion of the O2 precursor. 
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Figure 6.9. Experimental concentrations of the neutral stable species in the H2 + airdischarge.
The focus of this study, however, lies in the protonated ions. Their concentrations are shown in Figure 6.10. The distributions of protonated ions are always dominated byNH4+ except  for  the  lowest air fraction, where the densities of  H3O+ and NH4+ are  +comparable. With growing air content, the proportion of NH4  increases steadily, whereas the relative densities of the other three ions, H3O+, H3+ and N2H+, decrease monotonicallyand only traces of HO2+ are detected. The results can be rationalized in terms of the proton affinities and collision  frequencies  of the various ions  and  molecules involved. Table 6.1 shows the proton affinities for the neutral stable molecules of the discharge.The distributions are largely determined by the ion-molecule reactions leading to the production and destruction of the protonated ions. Most of the relevant processes have already  been discussed  in the present and previous  chapters,  but there are a couple ofimportant reactions specific to these plasmas. 
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Figure 6.10. Relative concentrations of the protonated ions in the H2 + air discharge. 
In particular, the hydronium ion can be formed via reaction T12 (H2 + O2 model) butalso through collisions of N2H+ with water: N2H+ + H2O → H3O+ + N2 k = 2.60 × 10–9 cm3 s–1 The  ammonium ion is  formed through collisions  of ammonia with  H3+, N2H+(reactions T8 and T25 of the H2 + N2 model) and H3O+: H3O+ + NH3 → NH4+ + H2O k = 2.23 × 10–9 cm3 s–1 The direction of the proton transfer in the two written reactions is determined bythe ordering of the proton affinities of the participating molecules, ultimately leading to +the formation of NH4 . This oversimplified set of reactions is sufficient to justify  theobserved ion distributions. When the relative  densities  of the  minor molecules are  high  enough  to allow for  collisions between them and positive ions to be relevant in the plasma chemistry, the restof the protonated  ions can transfer their proton  to ammonia and  contribute to the +production of NH4 . On the other hand, the ammonium ion has no destruction mechanisms 
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other than wall neutralization in the plasmas under consideration and therefore tends toconcentrate in them. The same line of reasoning applies to the rest of the protonated ions in Figure 6.10. Their relative abundances are largely  determined by the number of formation and destruction pathways, which are related to their respective proton affinities, and also by the relative concentration of their neutral precursors. It can be seen that, for the larger air fractions, protonated ions are ordered according  to their proton  affinities, except for H3+ and N2H+, which are interchanged. In spite of the fact that the proton affinity of N2 is  higher than  that  of  H2, the N2H+ ion is  efficiently  destroyed  incollisions with H2O and NH3 and the concentration of  its  neutral  precursor, N2, is always much lower than that of H2. 
Table 6.1. Proton  affinities for the neutral stable  molecules  present  in  H2 +  N2 +  O2discharges. The values are taken from [217]. 

Molecule Proton affinity (kJ mol–1)NH3 853.6H2O 691N2 493.8H2 422.3O2 421 
It should  be  noted that, in  most  cases,  proton transfer  processes like thoseexemplified in the previous paragraphs occur irreversibly on every collision and thus, given  sufficient time, a  very  small  amount of  a  suitable precursor could lead to the predominace of a given protonated ion. In this respect, the present results support thepredictions of astrochemical models [218,219] that indicate that H3O+ and NH4+ might bedominant in warm environments like hot cores, where molecules with high proton affinity like H2O and NH3 are  evaporated  from the  grains. Given the very  high proton  affinity of NH3 as compared with most small molecules, (see Table 6.1 and ref. [217]) the production of NH4+ could represent the final step in the proton transfer chain in many astronomical environments. 
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6.4 Summary and conclusions 

A  combined diagnostics and modeling  of low  pressure H2 + O2 plasmas withdifferent  mixture ratios, generated in  a  hollow  cathode  DC reactor, has been presented. The results of the model simulations have allowed the identification of the main processes determining the observed neutral and ion distributions.  Water formation is observed in the discharge for the whole range of mixtures, up to a maximum of ~ 30 % relative concentration. These results are well reproduced by the kinetic model, which predicts slightly higher concentrations (up to 35 %) of water. Theconcentrations of other neutrals, including radicals and excited species that could not beexperimentally observed, have been also simulated with the model. Atomic oxygen and hydrogen are formed in significant amounts,  with relative concentrations of the order of10  %  when  the presence  of their  molecular precursors  is significant. The OH radical, formed from the dissociation of water, shows a similar behavior over the range of mixtures studied,  with a peak  value  of ~  10  %  of the total  neutral concentration. The1 1metastable excited species O2(a Δg) and O( D) are formed in different proportions in the1discharge, with O2(a Δg)  reaching up to 10 % relative concentration but having a  limited1impact in the chemistry. In contrast, O( D) is produced in smaller amounts (up to ~ 0.1 %of the total concentration) but has a great relevance in the chemistry due to the high cross sections for its reactions with neutrals. The other neutral species considered, O3 and HO2,are hardly formed in the discharge.The experimental ion distributions are dominated by  hydrogenic  ions only for mixtures with nearly no oxygen. As soon as H2O is formed in the plasma, H3O+ becomes themajor ion, remaining as such for mixtures with 4 % < O2 < 70 %. For higher O2 fractions,pure oxygen  ions become  dominant,  with O2+ as the major ion for these mixtures. The concentrations of the mixed minor ions H2O+, OH+, HO2+ are stable through a wide range ofintermediate H2/O2 ratios, only  sinking  for  the  extreme mixtures. A comparison of  therelative abundances of these ions with the predictions of  astrochemical models suggests that HO2+ might be  present  as a minor component in  the  interior of  dark  interstellarclouds. Model simulations reproduce the behavior of the ions reasonably well. For the+pure H2 discharge, H3  is the dominant ion, and when oxygen is added to the mixture, H3O+concentration grows due to proton transfer between H3+ and H2O, becoming the major ion. For high O2 ratios, direct ionization of this precursor causes O2+ to prevail in the plasma. The main discrepancy between measurements and simulations is found for the pure hydrogenic ions, whose predicted decrease upon oxygen addition to the mixture is much more abrupt than experimentally observed. This is due to the low electron temperature, which causes the charge transfer processes to prevail over electron impact. When oxygen 
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is added to the mixture, water is formed and H3+ is destroyed through charge transfer to H2O. A higher  value  for  the  electron temperature would increase  the concentration ofhydrogenic ions through the direct ionization of H2 and subsequent  charge transfer;however, this  would  lead to  a  great  change in  the  concentrations  of other ions. A  non-maxwellian electron energy distribution function could justify a different balance of these processes, by increasing or decreasing the population of the high energy tail. The concentrations of negative charge carriers have been simulated with the model. The distribution is dominated by electrons for all mixture ratios, with negative ion concentrations reaching up to 25 % of the total negative charge. H– and O– are the major negative ions for the H-rich and O-rich discharges, respectively, while OH– prevails for the intermediate mixtures. For the pure H2 plasma, the concentration of negative ions (H–) ismuch lower than for the rest of the conditions. The relevance of negative ions to the global chemistry is limited, as their main role is just decreasing the electron density available for electron impact processes. Plasmas of H2 + N2 +  O2 have also been studied through experimental means. Mixtures of H2 with small amounts (3–19 %) of air have been employed as the precursor gas and mass spectrometry of neutrals and ions was used to determine the concentrations of the relevant species. Concerning the neutrals, NH3 and  H2O appear in comparableamounts in the discharge, despite the 4:1 ratio of N2 to O2 in the precursor mixture, due tothe fewer amount of steps required for the formation of water at the reactor walls. Protonated species dominate the positive ion distributions. In particular, NH4  is thedominant species for most of the mixture ratios, with H3O+ being the major ion only + for the lowest air concentration studied. The efficient ion-molecule chemistry  of the discharge  causes the relative concentrations of these ions to be closely related  to their proton  affinity. Due to this, only negligible concentrations of H2O+ are found in the plasma, and the positive charge tends to accumulate in H3O+ and specially NH4+ ions. 





 

  

 

                
                                                              
         

Chapter 7. 

Concluding remarks 

7.1 Summary 

In this  work,  a  study  of the plasma  kinetics in  low  pressure hollow cathode dc discharges of H2 with  Ar,  N2 and O2 has been  presented. A combination of  experimentaldiagnostics and theoretical modeling has been employed to determine the relevantprocesses in the discharges.The same experimental setup has been employed for the three different mixtures. A double Langmuir probe was used to obtain the plasma parameters (electron temperature and density), and the concentrations of the different neutral and ionic species were  determined by mass spectrometry.A  zero order kinetic model was developed  for each  of the different mixtures. The models consist of a set of time-dependent coupled differential equations for theconcentration  of the different species that  account  for  the  main physico-chemical processes occurring in the plasma, both in the gas phase and at the reactor walls. The H2 + Ar  plasma is  the  simplest  of  the  ones  studied,  due  to the comparatively small number of species present in the discharge. The neutral chemistry of the discharge does not present a great relevance, since no new species are formed in the plasma, and the only significant mechanism is the dissociation and wall recombination of H2 molecules. Thus, the study of these mixtures is focused on the ion chemistry. Positive ion  distributions were  measured at  1.5  and  8  Pa and comprise the wholerange of Ar/H2 mixture ratios. The distributions were dominated by Ar+, ArH+ and H3+ ions, 
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with relative concentrations depending strongly on pressure and  mixture ratio. Inparticular, the region of dominance of ArH+  was  found  to greatly vary between  the  tworessures, from a wide range of mixture ratios at 1.5 Pa to a narrow window close to theppure Ar plasma in the 8 Pa discharge. Two key factors drive the observed ion chemistry:the electron temperature, which depends on the pressure, and the equilibrium of theprocess H3+  +  Ar ⇄ ArH+  +  H2, which ultimately determines the ArH+/H3+  ratio. Theforward reaction is endothermic for ground state reactants, and thus it is slow; however, ifthe internal energy of the reactants is higher than 0.55 eV, it becomes exothermic with amuch higher rate coefficient. The experimental data and simulations  suggest  that the +internal excitation of H3 in the plasmas studied is sufficient to overcome the energeticbarrier at the lower pressure, but is efficiently quenched at 8 Pa and the reaction becomesendothermic. The chemistry in H2  +  N2  plasmas has  been analyzed in  detail for both the  neutraland ionic species. Mixtures of H2 + ~ 10 % N2 at five different pressures, from 0.8 to 8 Pa,have been studied. Ammonia was found in significant amounts in all the discharges, withconcentrations comparable to those of N2 for the lowest pressures. This NH3 is formed atthe reactor walls in a series of heterogeneous reactions involving both Langmuir-Hinshelwood and Eley-Rideal mechanisms. Ion distributions are mainly determined by the electron temperature of thedischarge, which controls the balance between direct ionization  and  ion-moleculereactions. At the lower pressures, with high electron temperatures, both kinds ofprocesses have a similar relevance, leading to a balanced positive ion distribution in whichseveral ions are found in high concentrations. Conversely, when the pressure is high, thelow electron temperature causes ion-molecule reactions to prevail. In these conditions, thechain of protonation reactions leads to a predominance of the ammonium ion, due the lack +of a destruction reaction for NH4  in the gas phase, while being formed from collisions ofother relevant protonated species (H3+, N2H+) with ammonia molecules. The third kind of discharges studied was H2 + O2. Measurements were carried out at8 Pa for  the  whole  range  of mixture ratios. Water was detected in substantialconcentrations, comparable to those of the minor precursor in the mixture. Comparisonwith the kinetic model shows that H2O is primarily produced in a series of heterogeneousEley-Rideal reactions in the surfaces of the reactor. The concentrations of other minor andunstable neutral species (atoms, radicals and metastables) were simulated with the model. Experimental positive ion concentrations were found to be dominated by H3O+ for awide  variety  of intermediate  mixtures,  due  to the proton transfer between H3+  and  H2O,+ +while H3  is the major ion in  the  discharge  for  H-rich mixtures. For O-rich plasmas, O2 ,formed by the direct ionization of O2 molecules, is the dominant ion. The mixed ions (H2O+, 
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OH+, HO2+) maintain a roughly stable concentration for intermediate H2/O2 ratios, and they obviously disappear in the extreme mixtures. These results, along with the predictions ofastrochemical models, suggest that HO2+ might be found in small amounts in the interior of molecular clouds. Negative ion concentrations  were simulated with  the  kinetic  model, showing that these species concentrate up to 25 % of the total negative charge in the plasma. H–, presentin small concentrations in the pure H2 plasma, rises sharply with the addition of O2 to themixture. OH– dominates for intermediate H2/O2 ratios and O– is the major negative ion inO-rich plasmas. Negative ions, however, have a very limited effect in the global chemistry of the discharge. Experimental measurements were also performed in H2 + N2 + O2 discharges. Inparticular, mixtures of H2 with small concentrations of air were employed as precursors, with a total pressure  of  8  Pa.  Ammonia  and  water  were detected  in comparable concentrations, despite the differences in the abundance of the precursors N2 and O2, dueto the lower number of reactions required for the formation of H2O. Protonated ions were found to be the major species in the positive ion distributions, with NH4+ prevailing in thedischarge followed by H3O+. In these low electron temperature plasmas, a strong correlation was found between the proton affinity of  the species and their abundance in the discharge.In all of these studies, protonated ions have been shown to play a key role in the ion chemistry  of the different discharges. In the plasmas studied, a balance is established between the ions produced by direct ionization of stable molecules, a process controlled by the electron temperature of the plasma, and the protonated ions, which are usually themain products  of the ion-molecule  chemistry  of the discharge.  Due to  the  fact that  ion-molecule reactions  are  generally barrierless, their relevance is roughly stable as the plasma conditions  are  changed, while the rate  coefficients for  electron impact reactions are highly dependent on the electron temperature. At low electron temperatures, ion-molecule processes are highly responsible  for the chemistry  of  the positive ions in theplasma.In the discharges presented in this work, carried out at pressures between 0.8 and 8Pa, the high pressure conditions entail an ion chemistry dominated by ion-molecule reactions. In those cases, the ion chemistry in the discharge is comparable up to a certainextent to  the  chemistry  of the interstellar  medium,  and  particularly molecular clouds, where H2 is  abundant.  Therefore, these types  of  plasmas  can  provide  an  adequatelaboratory  equivalent  for the study of  the  chemistry  in these kinds of media. Theexperiments and simulations carried out in this thesis highlight the relevance of 
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protonated ions in the discharges,  analogously to the influential role of these ions in theinterstellar chemistry. 
7.2 Future perspectives 

The experimental and theoretical work performed in hydrogen-rich hollow cathode glow discharges has shown the utility of combining zero order kinetic models with experimental diagnostics to  uncover the fundamental mechanisms determining the kinetics in  said plasmas.  Proposals  for  future works,  relevant  in different fields  such as  astrophysics or fusion research, are listed below.- An extension of the H2 +  N2 experiments presented in  this  work  to the  wholerange of mixtures, and a study of discharges of hydrogen with varying amounts of ammonia, to complement the former. Ammonia contamination on fusion reactors,  due  to the use of  nitrogen  for the cooling  of the divertor, is  an issue  under examination in fusion research, adding significance to this investigation. - The substitution of H2 with D2 in the mixtures investigated in this thesis in order to compare  the resulting neutral and ion distributions,  with interest both infusion and astrophysics.- An investigation of  mixtures of  H2 + CO, since they are the two most abundantmolecules in the interstellar medium. This study presents more obstacles than the other proposals, due to the inclusion of an additional atomic species, greatly increasing the complexity  of the kinetics, and the possible  formation of carbon deposits or  carbon based nanoparticles in  the  discharge, producing a dusty plasma.- The coupling of the kinetic models used in this work with a Boltzmann solver inorder to simulate the electron energy distributions and better understand electron impact chemistry, and at the same time adding the possibility of comparing experimental and simulated electron temperatures and densities for the different conditions studied. 
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Appendices 

A.1. Langmuir probe analyzer 

In this  section, the  MATLAB  program  used to  analyze  the  measurements of thedouble Langmuir probe is described. As mentioned in section 2.1.1, the objective of thisprogram is to calculate the values of Ne  (≈ Nc) and Te in  the  plasma  analyzing the dataacquired with the oscilloscope.  The following is a scheme of the different tasks performedby the program:
•	 Convert voltage values from the oscilloscope to the values of voltage and current measured by the probe. 
•	 Average the different characteristics measured to obtain a single curve toanalyze, and smooth it. 
•	 Cut the extremes of the curve to perform the  analysis  between  an establishedrange of voltages (usually –35 to +35 V).
•	 Differentiate, smooth, and fit the resulting curve to a Gaussian in order to obtainthe position of the maximum, as shown in Figure 7.1. This is done to correct the position of the characteristic to make it as symmetrical as possible with respectto the origin. 
•	 A small  amount of  points close to the origin is  taken to obtain the slope with alinear fit, shown in Figure 7.2. 
•	 Some points from the extreme of the curve (ion saturation region) are used for a linear fit to find points F and G by extrapolation. Two different linear  fits are  performed for each branch of the curve, and two different separation points Fare selected,  so a  total of  eight  values for the G point current (and thus Te) areobtained. 
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•	 The two points in the extreme of the curve and two other points close to each ofthem are used to obtain Vsat and Isat, obtaining four different values for Ne. 
•	 Finally, average values of Te and Ne and their standard deviations are shown as output. 
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Figure 7.1. Smoothed characteristic (left panel)  and Gaussian fit  for its  derivative (rightpanel). 
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Figure 7.2. Linear fit to obtain the equivalent resistance. 
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The program is composed of three functions. Function sondadoble is  the  mainprogram, and it performs the average and smoothing of the characteristic. The subroutine analisisdoble  is called  to analyze the curve,  and  values  for  Te and  Ne are  outputted.  Thefollowing is the code for the sondadoble function. 

function
 

[Te,Ne,Te_prom,Ne_prom]=sondadoble(VmaxA,VmaxB,fichero,MpromI,puntos_suav)
 

% SONDADOBLE Cálculo de Te y Ne en sondas dobles.
 

%
 

% [Te,Ne,Te_prom,Ne_prom]=sondadoble(VmaxA,VmaxB,fichero,MpromI,puntos_suav)
 

% 


% Función para calcular Te y Ne a partir de un fichero de sondas
 

% introducido en forma de string, poniéndole apóstrofes antes y después: 


% [Te,Ne,Te_prom,Ne_prom]=sondadoble(100,10,'13013110.asd',8.4,25)
 

%
 

% El programa consta de tres funciones: sondadoble.m, analisisdoble.m y
 

% puntosF.m, siendo necesario que las tres estén en el directorio de
 

% trabajo de Matlab para funcionar correctamente. Tanto analisisdoble.m
 

% como puntosF.m son funciones auxiliares, por lo que la única que hay que
 

% ejecutar es ésta.
 

%
 

% Al ejecutarlo hay que cambiar para cada fichero:
 

% - La variable fichero.
 

% - La masa promedio MpromI de los iones para las condiciones de medida.
 

% - El número de puntos para el suavizado. En general para un fichero de 1k
 

% datos 25 es un buen valor, pero si hay problemas en el suavizado de la
 

% curva se puede modificar.
 

%
 

% En general dentro del análisis de una misma serie de medidas no va a ser
 

% necesario cambiar VmaxA y VmaxB, que son las ganancias de los canales
 

% leídas directamente del amplificador (1,10,100,1000). Sin embargo hay que
 

% tener cuidado y utilizar las correctas.
 

%
 

% El área de la sonda está definida dentro del programa, por lo que si se
 

% cambia la sonda hay que modificarlo.
 

%
 

% Los diferentes barridos obtenidos experimentalmente se promedian y
 

% suavizan y se analiza esta única curva.
 

%
 

% El programa genera gráficas con los distintos ajustes realizados que
 

% permiten ver si alguna parte del análisis no es correcta:
 

%
 

% Figura 1:
 

% - Curva suavizada frente a datos experimentales.
 

% - Primera derivada de la curva suavizada junto con los diferentes
 

% ajustes para determinar la posición del cero.
 



 

 

 

   
 

 
 

 
 

 
 

 
 

 
 

  

  
 

  
 
 

 
 

 
 

  

  

  
 
 

 
 

  
 

 
  

  

  
 

 

         
 
 

         
 
 

         
             

 
 

APPENDICES 145 
%
 

% Figura 2:
 

% - Ajuste de la pendiente en el origen. 

% - Análisis de la curva con las diferentes asíntotas y puntos usados 

% para el cálculo. 

% 

% 

% El programa da como salida los diferentes valores de Te y Ne calculados
 

% en los vectores Te y Ne. Por otra parte, las variables Te_prom y Ne_prom
 

% contienen los valores promedio y desviación típica de los vectores
 

% anteriores.
 

datos = dlmread(fichero,',',15,0);
 

Lfil = 7.0; % Longitud del filamento en mm
 

rfil = 0.065; % Radio del filamento en mm
 

A = 2*pi*rfil*Lfil/100; % Área de la sonda en cm2
 

R = 1000; % Resistencia
 

limVinf = -35;
 

limVsup = 35; % Rango de voltajes usado en el análisis (en V)
 

ganA = 10/VmaxA;
 

ganB = 10/VmaxB;
 

Vs = datos(:,1)/ganA;
 

Is = datos(:,2)/(ganB*R);
 

% Vs e Is son vectores con todos los datos de la sonda en A y V
 

% respectivamente


 [Vord,ord] = sort(Vs);


 Iord = Is(ord);


 Vprom = zeros(2,1);


 Iprom = zeros (2,1);


 k1 = 1;


 k2 = 1;
 

while k1<length(Vord)
 

if Vord(k1+1)~=Vord(k1)


 Vprom(k2) = Vord(k1);


 Iprom(k2) = Iord(k1);
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k1 = k1+1;


 k2 = k2+1;
 

else


 Vprom(k2) = Vord(k1);


 count = 1;


 Iaux = Iord(k1);
 

while Vord(k1+1)==Vord(k1)


 Iaux = Iaux + Iord(k1+1);


 count = count+1;


 k1 = k1+1;
 

if k1 == length(Vord)
 

break
 

end
 

end


 Iprom(k2) = Iaux/count;


 k1 = k1+1;


 k2 = k2+1;
 

end
 

end


 Vsuav = Vprom;


 Isuav = smooth(Vsuav,Iprom,puntos_suav,'sgolay',3);
 

% Todo el código anterior tiene como objetivo promediar y suavizar
 

% los diferentes barridos para obtener una única curva para el
 

% análisis
 

ii = 1;
 

while Vsuav(ii)<limVinf


 ii = ii+1;
 

end
 

ind_inf = ii;
 

while Vsuav(ii)<limVsup


 ii = ii+1;
 

end
 

ind_sup = ii;
 

V = Vsuav(ind_inf:ind_sup);
 

I = Isuav(ind_inf:ind_sup);
 

% V e I contienen la curva suavizada restringida al rango de voltajes
 

% definido anteriormente para el análisis
 

tam_suav = length(V);
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figure
 

subplot(1,2,1)
 

plot(Vs,Is,V,I,'r','LineWidth',2);
 

axis([V(1) V(tam_suav) I(1) I(tam_suav)]);
 

% Representación de la curva suavizada y los datos originales
 

[Ic,Te_j,Ne_j] = analisisdoble(V,I,MpromI,A);
 

Te=Te_j;
 

Ne=Ne_j;
 

% Llamada a la función analisisdoble para analizar la curva suavizada
 

Te_prom = zeros(2,1);
 

Ne_prom = zeros(2,1);
 

Te_prom(1) = mean(Te);
 

Te_prom(2) = std(Te);
 

Ne_prom(1) = mean(Ne);
 

Ne_prom(2) = std(Ne);
 

% Variables de salida del programa
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The  function analisisdoble called  in this  program  performs the  analysis of thecharacteristic. It corrects the position of the zero of the curve and calculates the slope in that point,  and  performs the linear  extrapolations necessary  to obtain  points E,  F  and  Gthrough the subroutine puntosF, calculating then the values for Te. Values for thesaturation voltage and current are obtained and used to obtain Ne. 

function [Ic,Te,Ne]=analisisdoble(V,I,MpI,A)
 

% Función auxiliar. Análisis de un barrido de voltajes de la sonda.
 

% ========= (1) Cálculo de la posición del cero en voltaje ================
 

tam_der =length(V)-1;
 

der = diff(I)./diff(V);
 

Vder=V(1:tam_der);
 

% Cálculo de la derivada de la curva
 

dsuav = smooth(Vder,der,20,'sgolay',3);
 

% Suavizado de la derivada
 

gaussfit = fit(Vder,dsuav,'gauss1');
 

coef=coeffvalues(gaussfit);
 

% Ajuste gaussiano de la derivada
 

V_00 = coef(2); % Valor del voltaje "0"
 

q=1;
 

while V(q)<V_00


 q=q+1;
 

end
 

v0=q;
 

% Se halla el valor de la curva de la sonda inmediatamente anterior al
 

% voltaje V_00
 

subplot(1,2,2)
 

plot(Vder,der);
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hold on
 

plot(Vder,dsuav,'m');
 

plot(gaussfit);
 

hold off
 

% Representación de la derivada, su suavizado y el ajuste gaussiano
 

% ================= (2) Pendiente en el origen ============================
 

V_0 = V(v0);
 

I_0 = I(v0);
 

Tam = length(V);
 

N = 2*floor(length(V)/50);
 

% Nº de puntos para el ajuste de la pendiente en el 0 (debe ser par). El
 

% valor de 50 incluido en la fórmula funciona bien habitualmente pero se
 

% puede modificar si es necesario.
 

m=1;
 

for n=[v0-N/2:v0+N/2]


 Vreg(m,1) = V(n);


 Ireg(m,1) = I(n);


 m=m+1;
 

end
 

% Extracción de los puntos alrededor del 0 para el ajuste de la pendiente
 

fit_origen = fit(Vreg,Ireg,'poly1');
 

coefs_origen = coeffvalues(fit_origen);
 

pend_origen = coefs_origen(1);
 

ord_origen = coefs_origen(2);
 

% Cálculo de la pendiente en el origen
 

figure
 

subplot(1,2,1)
 

plot(fit_origen,Vreg,Ireg,'o');
 

title('Ajuste origen','FontSize',12)
 

xlabel('V (V)')
 

ylabel('I (A)')
 

legend('Curva exp','Ajuste lineal','Location','NorthWest')
 

% Representación del ajuste
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% =============== (3) Asíntotas y puntos F y G ============================
 

Vc=V-V_0;
 

Ic=I-I_0;
 

% Corrección de la posición del 0 en intensidades y voltajes
 

Nasint = floor(Tam/6);
 

Nasint2 = floor(Tam/10);
 

% Número de datos utilizados para calcular cada una de las dos asíntotas de
 

% cada rama. Los valores de 6 y 10 que aparecen en la fórmula se pueden
 

% cambiar si hay problemas en el cálculo.
 

Vasint1_1 = Vc(1:Nasint);
 

Iasint1_1 = Ic(1:Nasint);
 

% Extracción de los puntos para el ajuste de la asíntota
 

asint1_1 = fit(Vasint1_1,Iasint1_1,'poly1');
 

coefs_asint1_1 = coeffvalues(asint1_1);
 

pend_asint1_1 = coefs_asint1_1(1);
 

ord_asint1_1 = coefs_asint1_1(2);
 

% Ajuste de la asíntota. El proceso se repite para el resto de asíntotas.
 

Vasint1_2 = Vc(Nasint2:Nasint2+Nasint);
 

Iasint1_2 = Ic(Nasint2:Nasint2+Nasint);
 

asint1_2 = fit(Vasint1_2,Iasint1_2,'poly1');
 

coefs_asint1_2 = coeffvalues(asint1_2);
 

pend_asint1_2 = coefs_asint1_2(1);
 

ord_asint1_2 = coefs_asint1_2(2);
 

Vasint2_1 = Vc(Tam-Nasint:Tam);
 

Iasint2_1 = Ic(Tam-Nasint:Tam);
 

asint2_1 = fit(Vasint2_1,Iasint2_1,'poly1');
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coefs_asint2_1 = coeffvalues(asint2_1);
 

pend_asint2_1 = coefs_asint2_1(1);
 

ord_asint2_1 = coefs_asint2_1(2);
 

Vasint2_2 = Vc(Tam-Nasint-Nasint2:Tam-Nasint2);
 

Iasint2_2 = Ic(Tam-Nasint-Nasint2:Tam-Nasint2);
 

asint2_2 = fit(Vasint2_2,Iasint2_2,'poly1');
 

coefs_asint2_2 = coeffvalues(asint2_2);
 

pend_asint2_2 = coefs_asint2_2(1);
 

ord_asint2_2 = coefs_asint2_2(2);
 

subplot(1,2,2)
 

plot(asint1_1,'r',Vc,Ic,'b');
 

title('Ajuste asíntotas','FontSize',12)
 

grid on
 

hold on
 

as1_2 = feval(asint1_2,Vc);
 

as2_1 = feval(asint2_1,Vc);
 

as2_2 = feval(asint2_2,Vc);
 

plot(Vc,as1_2,'g');
 

plot(Vc,as2_1,'c');
 

plot(Vc,as2_2,'k');
 

% Representación de la curva con las asíntotas
 

% Puntos "F"
 

desv = 0.02;
 

[VF(1,1),F(1,1),VF(2,1),F(2,1)] =
 

puntosF(asint1_1,asint2_1,Vc,Ic,Tam,desv,Nasint2);
 

[VF(3,1),F(3,1),VF(4,1),F(4,1)] =
 

puntosF(asint1_2,asint2_2,Vc,Ic,Tam,desv,Nasint2);
 

desv = 0.05;
 

[VF(5,1),F(5,1),VF(6,1),F(6,1)] =
 

puntosF(asint1_1,asint2_1,Vc,Ic,Tam,desv,Nasint2);
 

[VF(7,1),F(7,1),VF(8,1),F(8,1)] =
 

puntosF(asint1_2,asint2_2,Vc,Ic,Tam,desv,Nasint2);
 

% Llamada a la función puntosF para calcular los puntos F en los que la
 

% asíntota se separa de la curva. El criterio de separación viene dado por
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% el valor de desv, usándose dos diferentes para cada asíntota.
 

% Puntos "G"
 

VG(1,1) = VF(1)/5;
 

G(1,1) = asint1_1(0)+(F(1)-asint1_1(0))/5;
 

VG(2,1) = VF(2)/5;
 

G(2,1) = asint2_1(0)+(F(2)-asint2_1(0))/5;
 

G(3) = asint1_2(0)+(F(3)-asint1_2(0))/5;
 

VG(3) = VF(3)/5;
 

G(4) = asint2_2(0)+(F(4)-asint2_2(0))/5;
 

VG(4) = VF(4)/5;
 

VG(5) = VF(5)/5;
 

G(5) = asint1_1(0)+(F(5)-asint1_1(0))/5;
 

VG(6) = VF(6)/5;
 

G(6) = asint2_1(0)+(F(6)-asint2_1(0))/5;
 

G(7) = asint1_2(0)+(F(7)-asint1_2(0))/5;
 

VG(7) = VF(7)/5;
 

G(8) = asint2_2(0)+(F(8)-asint2_2(0))/5;
 

VG(8) = VF(8)/5;
 

% Cálculo de la intensidad en los puntos G (situados a 1/5 de la distancia
 

% entre la ordenada en el origen de la asíntota y el punto F). El vector G
 

% contiene las intensidades de los diferentes puntos.
 

Vfit_or = linspace(VG(1),VG(2),10);
 

fit_or = pend_origen*Vfit_or;
 

plot(VF,F,'ko')
 

plot(VG,G,'k+')
 

plot(Vfit_or,fit_or,'m')
 

xlabel('V (V)')
 

ylabel('I (A)')
 

legend('Curva exp','Asíntota 1','Asíntota 2','Asíntota 3','Asíntota
 

4','F','G','Ajuste origen','Location','NorthWest')
 

hold off
 

% Se añaden a la gráfica de las asíntotas las representaciones de la
 

% pendiente en el origen y los puntos F y G
 

% ==================== (4) Cálculo de Te y Ne =============================
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% Cálculo de Te
 

Te = abs(G/(2*pend_origen));
 

% Valores de la temperatura electrónica a partir de la intensidad en G y la
 

% pendiente en el origen
 

% Cálculo de Ne
 

P = 1;
 

Ne(1,1) = abs(1.81E13*sqrt(MpI)*Ic(P)/(sqrt(abs(V(P)))*A));
 

P = floor(Tam/10);
 

Ne(2,1) = abs(1.81E13*sqrt(MpI)*Ic(P)/(sqrt(abs(V(P)))*A));
 

P = floor(9*Tam/10);
 

Ne(3) = abs(1.81E13*sqrt(MpI)*Ic(P)/(sqrt(abs(V(P)))*A));
 

P = Tam;
 

Ne(4) = abs(1.81E13*sqrt(MpI)*Ic(P)/(sqrt(abs(V(P)))*A));
 

% Para el cálculo de Ne se usan los puntos extremos de la curva analizada y
 

% los situados a 1/10 del total de puntos de los extremos. El valor de 1/10
 

% se puede revisar, si bien la densidad electrónica no suele variar
 

% demasiado con el punto utilizado para el cálculo
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Function puntosF is  a  small  subroutine that, given the  extrapolation  of the ion  saturation region, obtains the point F of separation from the characteristic. 

function [VF1,IF1,VF2,IF2] = puntosF(asint1,asint2,V,Ic,Tam,desv,Nasint2)
 

% Función auxiliar. Obtención de los puntos F de la gráfica.
 

% Los puntos F se calculan buscando en la curva el primer punto que se
 

% desvíe en intensidades de la asíntota en la cantidad marcada por desv
 

% (2% ó 5%)
 

Ic = smooth(V,Ic,15,'sgolay');
 

% Para este cálculo se vuelve a suavizar la curva ya que cualquier punto
 

% que se desvíe de la misma puede afectar mucho a los resultados
 

l = Nasint2;
 

% Para empezar a buscar se parte del último punto usado para el cálculo de
 

% la asíntota
 

while abs((asint1(V(l))-Ic(l))/Ic(l))<desv
 

l = l+1;
 

end
 

VF1 = V(l);
 

IF1 = asint1(VF1);
 

% Se comprueba el criterio hasta que se cumple y se establece ese punto
 

% como F
 

l = Tam-Nasint2;
 

while abs((asint2(V(l))-Ic(l))/Ic(l))<desv
 

l = l-1;
 

end
 

VF2 = V(l);
 

IF2 = asint2(VF2);
 

end
 

% Se repite el mismo proceso para la asíntota de la otra rama
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A.2. Kinetic models 

The models used for the simulation of the discharges have been built using theFACSIMILE software, which implements the Gear method [220] tdifferential equations. Each kinetic model consists of various different parts: o solve coupled 
•	 Specification of parameters to be changed by the user depending on  theconditions to be simulated. These include the electron temperature and density, pressure, and precursor fractions. 
•	 Declaration of constant parameters, such as physical constants or rate coefficients. 
•	 Calculation  of some  of the parameters  appearing  in the differentialequations, which  depend  on the previously  declared  constants  or theconcentrations of the different species. For example, the calculation of ratecoefficients that depend on the electron temperature, or the flow of the species out of the reactor.
•	 Formulation of parameters and variables. he ifferential equations using the previously declared t	 d

The models used for the three different mixtures studied in this  work are shown  below. 
A.2.1 H2 + Ar 

*======================================================;
 

* Modelo H2 + Ar;
 

* % VARIABLE electrones de alta E Energías promedio ;
 

* Tvib(H2) = 3000 K 	 ;
 

* Tgas = 300 K 	 ;
 

* Formación del H en el volumen del plasma ;
 

* Pérdida de H por flujo 	 ;
 

* Gamma = 0.03 	 ;
 

* Preparado para modulación, cambiando t integración ;
 

* Th = proporción de electrones de alta energía ;
 

* proAr = Ar/(Ar+H2)inicial 


*======================================================;
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EXECUTE OPEN 8 "Plasmas\Fcsm\Ar+H2\ArH2.out";
 

EXECUTE OPEN 9 "Plasmas\Fcsm\Ar+H2\par.out";
 

PARAMETER
 

pres 0.015 


proAr 0.8 


e 5.45E+10 


T 2.70 


Th 0.0003 


;
 

PARAMETER
 

a1 6.5023E-9 b1 0.48931 c1 -12.89365 

a2 2.9962E-8 b2 0.44456 c2 -37.72836 

a3 1.0702E-7 b3 0.04876 c3 -9.69028 

a4 2.1202E-9 b4 0.31394 c4 -23.29885 

a7 3.1228E-8 b7 0.17156 c7 -20.07734 

a8 4.8462E-7 b8 -0.04975 c8 -19.16565 

a13 1.7527E-7 b13 -1.23668 c13 -12.59243 

a18 2.5300E-8 b18 0.50000 c18 -16.30000 

a19 2.5800E-9 b19 0.50000 c19 -47.00000 

a20 1.9000E-8 b20 0.50000 c20 -27.67000 

a28 9.9e-10 b28 -0.08 c28 -11.72 

k5 6.4E-10 

k6 1.189E-22 

k11 2E-9 

k25 1.78E-11 

k23 2.1E-9 

k24 1e-11 

k26 8.72E-10 

k27 6.3E-10 

k29 7e-11 

k30 0 

; 

PARAMETER
 

k1 k2 k3 k4 


k7 k8 k13 


k10 k12 


k18 k19 k20 


Vol 


Are Gamma pres 


Rad vth Dh Tdif 


Twall Ttotal kk 


n iH2 iH3 


e0 Ne A 


VP VR VPR 


tR Cin 


Fe Fs FsH FsH2 FsAr 


;
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VARIABLE HC;
 

VARIABLE H2C;
 

VARIABLE H3C;
 

VARIABLE H;
 

VARIABLE H2;
 

VARIABLE Ar;
 

VARIABLE ArC;
 

VARIABLE Ar2C;
 

VARIABLE ArHC;
 

VARIABLE ArM;
 

COMPILE INSTANT;
 

Cin = pres*2.435E16;
 

CinH2 = (1-proAr)*Cin;
 

CinAr = proAr*Cin; 


**;
 

COMPILE GENERAL;
 

Ne = e0*e;
 

k1 = (1-Th)*k1a + Th*k1b;
 

k1a = a1*T@b1*exp(c1/T);
 

k1b = 4.2E-8;
 

k2 = (1-Th)*k2a + Th*k2b;
 

k2a = a2*T@b2*exp(c2/T);
 

k2b = 4.5E-9;
 

k3 = a3*T@b3*exp(c3/T);
 

k4 = a4*T@b4*exp(c4/T);
 

k7a = a7*T@b7*exp(c7/T);
 

k7b = 5E-8;
 

k7 = (1-Th)*k7a + Th*k7b;
 

k8 = a8*T@b8*exp(c8/T);
 

*k10 = 7.51371E-9 - (1.11516E-9)*T + 


(1.03156E-10)*T@2 - (4.14905E-12)*T@3 


+ (5.85916E-14)*T@4;
 

k10=0;
 

*k12 = 8.39247E-9 + (3.01631E-9)*T -


(3.80439E-10)*T@2 +(1.31108E-11)*T@3 + 


(2.41631E-13)*T@4 - (2.29832E-14)*T@5 


+ (3.5472E-16)*T@6;
 

k12=0;
 

k13a = a13*T@b13*exp(c13/T);
 

k13b = 1E-8;
 

k13 = (1-Th)*k13a+ Th*k13b;
 

k18a = a18*T@b18*exp(c18/T);
 

k18b = 1.6E-7;
 

k18 = (1-Th)*k18a + Th*k18b;
 

mailto:3.5472E-16)*T@6
mailto:2.29832E-14)*T@5
mailto:2.41631E-13)*T@4
mailto:1.31108E-11)*T@3
mailto:3.80439E-10)*T@2
mailto:5.85916E-14)*T@4
mailto:4.14905E-12)*T@3
mailto:1.03156E-10)*T@2


    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

158 

k19a = a19*T@b19*exp(c19/T);
 

k19b = 1.1E-8;
 

k19 = (1-Th)*k19a + Th*k19b;
 

k20a = a20*T@b20*exp(c20/T);
 

k20b = 6.5E-8;
 

k20 = (1-Th)*k20a + Th*k20b;
 

k28 = a28*T@b28*exp(c28/T);
 

*k28=0;
 

Vol = 2670;
 

Are = 1225;
 

Gamma = 0.03;
 

GammaAr = 1;
 

Rad = 5;
 

A = Rad/2.405;
 

vth = 1.75E+5;
 

vtAr = 4e4;
 

Dh = 1196/(pres*0.76);
 

DAr = 800/pres;
 

Tdif = (A@2)/Dh;
 

TdifAr = (A@2)/DAr;
 

Twall = (4*Vol)/(Are*Gamma*vth);
 

TwallAr = (4*Vol)/(Are*GammaAr*vtAr);
 

Ttotal = Tdif + Twall;
 

TtotalAr = TdifAr + TwallAr;
 

kk = 1/Ttotal;
 

kk2 = 1/TtotalAr;
 

VP = 2670;
 

VR = 4698;
 

VPR = 0.56;
 

tR = 1;
 

Fe = Cin*VR/tR;
 

FeH2=CinH2*VR/tR;
 

FeAr=CinAr*VR/tR;
 

Fs = (H2*VR + H*VR + Ar*VR)/tR;
 

FsH = H*VR/tR;
 

FsH2 = H2*VR/tR;
 

FsAr = Ar*VR/tR;
 

n = H*kk;
 

R = 1;
 

NG = -k10*H2C-k12*H3C;
 

I = Ne*(k1*H+k2*H2+k7*H2+k4*H2C+k18*Ar+k19*Ar 


+NG)/(HC + (H2C/(2@0.5)) + (H3C/(3@0.5)) 


+ (ArC/(40@0.5)) + (Ar2C/(20@0.5)) 


+ (ArHC/(41@0.5)));
 

kWHC = R*I;
 

kWH2C = R*I/(2@0.5);
 

kWH3C = R*I/(3@0.5);
 

kWArC = R*I/(40@0.5);
 

kWAr2C = R*I/(20@0.5);
 

mailto:R*I/(20@0.5
mailto:R*I/(40@0.5
mailto:R*I/(3@0.5
mailto:R*I/(2@0.5
mailto:ArHC/(41@0.5
mailto:Ar2C/(20@0.5
mailto:ArC/(40@0.5
mailto:H3C/(3@0.5
mailto:H2C/(2@0.5
http:1196/(pres*0.76
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kWArHC = R*I/(41@0.5);
 

PH=H/H2;
 

PHC = HC/Ne;
 

PH2C = H2C/Ne;
 

PH3C = H3C/Ne;
 

PAr2C = Ar2C/Ne;
 

PArC = ArC/Ne;
 

PARHC = ArHC/Ne;
 

eNeu = HC+H2C+H3C+ArC+Ar2C+ArHC-Ne;
 

par1 =- k18*Ar*Ne*VPR;
 

par2 = R*ArC*0.1581*Ne*I*VPR;
 

par3 = k25*ArC*H2*VPR;
 

par4 = - k19*Ar*Ne*VPR;
 

par5 = R*Ar2C*0.2236068*Ne*I*VPR;
 

par6 = - k23*H2C*Ar*VPR;
 

par7 = - k24*H3C*Ar*VPR;
 

par8 = k27*ArHC*H2*VPR;
 

par9 = R*ArHC*0.15617*Ne*I*VPR;
 

par0 = FeAr/VR;
 

par00 = - FsAr/VR;
 

par10 = par0+ par00 +par1 +par2+ par3 


+par4+ par5 +par6 +par7+ par8 +par9;
 

par11=k1*H*Ne;
 

par12= k2*H2*Ne;
 

par13= k3*H2C*Ne;
 

par14= 2*k4*H2C*Ne ;
 

par15= k5*H2C*H;
 

par16= - k6*H2*HC;
 

par17= - R*HC*Ne*I;
 

par18= (HC + (H2C/(2@0.5)) + (H3C/(3@0.5)) 


+ (ArC/(40@0.5)) + (Ar2C/(20@0.5)) 


+ (ArHC/(41@0.5)));
 

par19 = (HC+H2C*0.7071068+H3C*0.5773503 


+ArC*0.1581139 


+Ar2C*0.2236068+ArHC*0.1561738);
 

par20= k19*Ar;
 

par21=k27*ArHC*H2-k24*H3C*Ar-kWH3C*H3C;
 

par22=k19*Ar*Ne;
 

par23=k20*ArC*Ne;
 

par24=- kWAr2C; 


**;
 

COMPILE INITIAL;
 

e0 = 1;
 

mailto:ArHC/(41@0.5
mailto:Ar2C/(20@0.5
mailto:ArC/(40@0.5
mailto:H3C/(3@0.5
mailto:H2C/(2@0.5
mailto:R*I/(41@0.5
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HC = 0;
 

H2C = (1-proAr)*e;
 

H3C = 0;
 

H = 0;
 

H2 = CinH2;
 

Ar = CinAr;
 

ArC = proAr*e;
 

Ar2C = 0;
 

ArHC = 0;
 

ArM = 0; 


**;
 

COMPILE OFF;
 

e0 = 0; 


**;
 

COMPILE EQUATIONS ;
 

'HC = k1*H*Ne + k2*H2*Ne + k3*H2C*Ne + 2*k4*H2C*Ne 


+ k5*H2C*H - k6*H2*HC - kWHC*HC;
 

'H = -FsH/VP + 2*Ne*H2*k13 - H*(kk) 


- k1*H*Ne + k2*H2*Ne + k3*H2C*Ne 


- k5*H2C*H + k6*H2*HC + k8*H3C*Ne 


+ 2*k10*H2C*Ne + k11*H2C*H2 


+ 0.5*k12*H3C*Ne + 3*0.5*k12*H3C*Ne 


+ k23*H2C*Ar + k26*ArC*H2 + kWArHC*ArHC 


+ kWHC*HC 


+ kWH3C*H3C + 2*k29*ArM*H2;
 

'H2C = k7*H2*Ne - k3*H2C*Ne + k6*H2*HC-k4*H2C*Ne 


- k5*H2C*H + k6*H2*HC + k8*H3C*Ne - k10*H2C*Ne 


- k11*H2C*H2 + k25*ArC*H2 - kWH2C*H2C 


- k23*H2C*Ar;
 

'H3C = -k8*H3C*Ne+k11*H2C*H2-0.5*k12*H3C*Ne-


0.5*k12*H3C*Ne - k24*H3C*Ar + k27*ArHC*H2 


- kWH3C*H3C;
 

'H2 = FeH2/VR - FsH2/VR - k13*H2*Ne*VPR 


+ 0.5*H*(kk)*VPR - k7*H2*Ne*VPR - k2*H2*Ne*VPR 


+ k5*H2C*H*VPR - k6*H2*HC*VPR- k11*H2C*H2*VPR 


+ 0.5*k12*H3C*Ne*VPR - k25*ArC*H2*VPR 


+ k24*H3C*Ar*VPR - k26*ArC*H2*VPR - k27*ArHC*H2*VPR 


+ kWH3C*H3C*VPR 


+ kWH2C*H2C*VPR - k29*ArM*H2*VPR;
 

'Ar = FeAr/VR - FsAr/VR - k18*Ar*Ne*VPR 
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+ kWArC*ArC*VPR 


+ k25*ArC*H2*VPR - k19*Ar*Ne*VPR 


+ kWAr2C*Ar2C*VPR 


- k23*H2C*Ar*VPR - k24*H3C*Ar*VPR + k27*ArHC*H2*VPR 


+ kWArHC*ArHC*VPR - k28*Ar*Ne*VPR + k29*ArM*H2*VPR 


+ 2*k30*ArM*ArM*VPR + kk2*ArM*VPR;
 

'ArC = k18*Ar*Ne - kWArC*ArC - k25*ArC*H2 


- k20*ArC*Ne - k26*ArC*H2;
 

'Ar2C = k19*Ar*Ne + k20*ArC*Ne - kWAr2C*Ar2C;
 

'ArHC = k23*H2C*Ar + k24*H3C*Ar + k26*ArC*H2 


- k27*ArHC*H2 - kWArHC*ArHC;
 

'ArM = k28*Ar*Ne - k29*ArM*H2 - 2*k30*ArM*ArM - kk2*ArM; 


**;
 

SETPSTREAM 1 8 16;
 

TIME  H H2 Ar ArM PH; 


**;
 

SETPSTREAM 2 9 16;
 

TIME  PHC PH2C PH3C PArC PAr2C PArHC; 


**;
 

COMPILE OUT ;
 

PSTREAM 1 ;
 

PSTREAM 2 ; 


**;
 

WHENEVER
 

*TIME = 1 CALL OFF RESTART;
 

*TIME = 2 CALL INITIAL RESTART;
 

*TIME = 3 CALL OFF RESTART;
 

TIME = 10000 * (+0.01) 0 % 


CALL OUT; 


**;
 

BEGIN;
 

STOP;
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A.2.2 H2 + N2 

*======================================================;
 

* H2-N2_10062011.fac Modelo amoniaco CON superficie (w1-w21);
 

* Se incluye w21, reacción L-H para formación NHS;
 

* En esta variante de programa w21 =0;
 

* Incluida reacción w22 con NH + H(s) para formar NHS;
 

* Con neutralización en pared (k1-k10) y en fase gas (n1-n12);
 

* Fase gas r.ionización (i1-i15), disociación (d1-d7);
 

* Transferencia de carga (t1-t25);
 

* R (neutralización de iones en pared dando gas neutro)= 1 ;
 

* 1 mbar a 298 K equivale a 2.435E16 molecs/cm3;
 

* Tvib(H2) = 3000 K ;
 

* Tgas = 300 K ;
 

* DATOS EXPERIMENTALES A DISTINTAS PRESIONES;
 

* (pres(mbar), Te (eV), Ne (cm-3));
 

* Pres 0.08 T 3.0 Ne 3.0e10 tr 0.65;
 

* Pres 0.04 T 3.0 Ne 3.7e10 tr 0.6;
 

* Pres 0.02 T 3.2 Ne 3.8e10 tr 0.5;
 

* Pres 0.01 T 3.5 Ne 3.2e10 tr 0.5 ;
 

* Pres 0.008 T  4.1 Ne 2.3e10 tr 0.45;
 

*======================================================;
 

*Conviene cambiar el nombre del fichero de salida cada vez;
 

EXECUTE OPEN 8 "Plasmas\Fcsm\N\H2-N2_neu.out";
 

EXECUTE OPEN 7 "Plasmas\Fcsm\N\H2-N2_ion.out";
 

EXECUTE OPEN 10 "Plasmas\Fcsm\N\H2-N2_mi.out";
 

EXECUTE OPEN 11 "Plasmas\Fcsm\N\H2-N2_at.out";
 

EXECUTE OPEN 12 "Plasmas\Fcsm\N\H2-N2_cn.out";
 

EXECUTE OPEN 14 "Plasmas\Fcsm\N\H2-N2_pr.out";
 

EXECUTE OPEN 16 "Plasmas\Fcsm\N\H2-N2_nor.out";
 

EXECUTE OPEN 18 "Plasmas\Fcsm\N\H2-N2_rad.out";
 

EXECUTE OPEN 2 "Plasmas\Fcsm\N\H2-N2_mol.out";
 

EXECUTE OPEN 21 "Plasmas\Fcsm\N\H2-N2_amo.out";
 

*Parámetros a cambiar cada vez ;
 

PARAMETER
 

Pres 0.08 T 2.0 Ne  3.3e10 


PropH2ini 0.10 PropN2ini 0.90 ;
 

*Valores para los coeficientes cinéticos;
 

PARAMETER
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ad1 1.7527E-7 bd1 -1.23668 cd1 -12.59243 


ad2 1.2E-8 bd2 0.5 cd2 -13.3 


ad3 5.0E-8 bd3 0.5 cd3 -8.6 


ad4 5.0E-8 bd4 0.5 cd4 -7.6 


ad5 5.0E-8 bd5 0.5 cd5 -7.6 


ad6 5.0E-8 bd6 0.5 cd6 -4.4 


ad7 5.0E-8 bd7 0.5 cd7 -5.5 


ai1 1.3E-8 bi1 0.5 ci1 -14.5 


ai2 6.1E-9 bi2 0.5 ci2 -30.0 


ai3 1.67E-8 bi3 0.5 ci3 -17.16 


ai4 6.5023E-9 bi4 0.48931 ci4 -12.89365 


ai5 2.9962E-8 bi5 0.44456 ci5 -37.72836 


ai6 3.1228E-8 bi6 0.17156 ci6 -20.07734 


ai10 1.43E-8 bi10 0.5 ci10 -14.5 


ai11 5.05E-9 bi11 0.5 ci11 -16.5 


ai12 1.33E-8 bi12 0.5 ci12 -11.8 


ai13 1.18E-8 bi13 0.5 ci13 -17.3 


ai14 1.12E-8 bi14 0.5 ci14 -11.0 


ai15 1.15E-8 bi15 0.5 ci15 -17.6 


an4 2.8E-7 bn4 0.026 


an5 4.30E-8 cn5 0.5 


an6 1.02E-7 cn6 0.4 


an7 1.98E-7 cn7 0.4 


an8 1.55E-7 cn8 0.5 


an9 1.55E-7 cn9 0.5 


an10 8.015E-7 cn10 0.605 


an11 1.226E-7 cn11 0.605 


an12 7.1E-7 cn12 0.72 


t2 6.4E-10 t3 2.0E-9 t8 5.0E-10 


t12 1.85E-10 t24 2.6E-10 t16 6.5E-10 


t21 2.0E-9 t7 1.86E-9 t5 2.00E-9 


t13 1.05E-9 t25 3.9E-10 t17 1.95E-10 


t23 2.3E-9 t6 4.4E-9 t15 6.0E-10 


t19 1.15E-9 t20 2.1E-9 t1 5.2E-9 


t4 5.7E-9 t9 4.7E-10 t10 1.67E-9 


t11 2.12E-10 t14 1.8E-9 t18 1.15E-9 


t22 1.95E-9 ;
 

* Definición de parámetros;
 

* i1-i15: coef. cinéticos r. ionización ai(1-15),bi(1-15),ci(1-15);
 

* d1-d7: coef. cinéticos r. disociación ad(1-7),bd(1-7),cd(1-7);
 

* n1-n12 coef. cinéticos r. neutralización en volumen;
 

* t1 a t25: coeficientes cinéticos de r. transferencia de carga;
 

* k1-k10: coef. cinéticos r. neutralización en pared;
 

* w1-w19: coef. cinéticos r. heterogéneas en pared;
 

* Volúmenes: VR, VP, y Area: Are;
 

* VR= volumen del reactor;
 

* Are= Area del reactor;
 

* vtN = velocidad del N = 6.74E4 cms-1 (vtNH, velocidad NH);
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* DH coeficiente difusión H, DNH coeficiente difusión NH, etc.;
 

* TdifH=A@2/DH tiempo de difusión;
 

* A=Rad/2.405 (Chantry);
 

* Rad = radio del reactor= 5 cm;
 

* Twall1 = (4*VRS*(1-0.5*Gamma1))/(Gamma1*vtH);
 

* Cambia el número y expresión de Twall según neutro que difunde;
 

* Ttotal1 = Twall1 + TdifH;
 

* Ne: densidad de electrones, variable con el tiempo si se modula la descarga;
 

* e0: parámetro para modular temporalmente la descarga;
 

* VP: volumen del plasma;
 

* VPC: relación del volumen del plasma al del reactor;
 

* tR: tiempo de residencia;
 

* Cin: concentración inicial (=pres*2.435E16);
 

* Fe, Fs: flujos de entrada y salida totales;
 

* FeH2, FeN2: flujos de entrada de H2 y N2;
 

* FsN, FsN2: flujos de salida de N y N2 (resto igual);
 

PARAMETER
 

d1 d2 d3 d4 d5 d6 d7 i1 i2 i3 i4 i5 i6 w17 w18 w19 w20 


i10 i11 i12 i13 i14 i15 n1 parn2 n3 n4 n5 n6 n7 


n8 n9 n10 n11 n12 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 


w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 


VP VR VRS A Rad Are Ne e0 tR R vtH vtN vtH2 vtN2 vtNH vtNH2 ST SF kB 


Fe FeH2 FeN2 Fs FsN FsN2 FsH FsH2 FsNH FsNH2 FsNH3 


Cin CinH2 CinN2 


thetaHS thetaNS thetaNHS thetaNH2S 


DH DN DN2 DH2 DNH DNH2 TdifH TdifN TdifN2 TdifNH TdifNH2 TdifH2 


Gamma1 Gamma3 Gamma5 Gamma7 Gamma9 


Gamma10 Gamma13 Gamma15 Gamma16 Gamma17 Gamma18 Gamma20 


nudesH nudifH nudesN nudifN nudesNH2 nudesNH 


EdesH EdifN EdesN EdifH EdesNH2 EdesNH 


Twall1 Twall3 Twall5 Twall7 Twall9 


Twall10 Twall13 Twall15 Twall16 Twall17 Twall18 Twall20 


Ttotal1 Ttotal3 Ttotal5 Ttotal7 


Ttotal9 Ttotal10 Ttotal13 Ttotal15 Ttotal16 


Ttotal17 Ttotal18 Ttotal20 


CTiones mc1 mc2 mc3 mc14 mc15 


mc16 mc17 mc18 mc28 mc29 


CPie CNie DenMI T_HC T_H2C T_H3C T_NC T_NHC T_NH2C 


T_NH3C T_NH4C T_N2C T_N2HC 


PieNC PieN PieN2 PieNH PieNH2 PieNH3 


PieN2C PieHC PieH PieH2C PieH2 PieNHC 


PieNH2C PieNH3C DieN DieN2 DieN2C DieH 


DieH2 DieH2C DieH3C DieNH DieNH2 DieNH3 


DieNHC DieNH2C DieNH3C DieNH4C DieN2HC 


PtH3C PtH PtNH4C PtHC PtH2 PtNH3C PtN2HC 


PtNHC PtNH2C PtNH PtN PtNH2 PtN2 


DtHC DtNH3 DtH2C DtH DtH2 DtH3C DtN2 DtNC DtN 


DtNHC DtNH2C DtNH3C DtN2C DtN2HC PrH PrN PrH2 PrN2 




   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

     

 

  

APPENDICES 165 
PrNH PrNH2 PrNH3 NeuHC NeuH2C NeuH3C NeuNC NeuN2C 


NeuNHC NeuNH2C NeuNH3C NeuNH4C NeuN2HC 


PwHS PwH PwH2 PwNS PwN PwN2 PwNHS PwNH2S 


PwNH2 PwNH3 DwH DwHS DwN DwNS DwNHS DwNH2S DwNH2 DwH2 VPC 


PwNH DwNH atH atN 


atSTotal atGTotal Iontotal 


CTNeutros cH cH2 cN cN2 cNH cNH2 cNH3 Suma 


PropH2 PropN2 PropNH3 


Eaw4 Eaw8 Eaw11 Eaw14 Eaw21 w21 


InFNat OutFNat InFHat OutFHat 


FH FN FNH FNH2 Natout Hatout DifNH3 


H2norm N2norm NH3norm fradicales 


FormNH3 DesNH3 FoutNH3 atHini atNini atNsurf 


HSvol NSvol NHSvol NH2Svol Sumafgas FinN2 FoutN2 


atHradi atNradi atHmol atNmol atHion atNion atNsurf atHsurf 


FormH2 FormN2 DesH2 DesN2 FinH2 FoutH2 Prow9NHS Prow20NHS 


Prow13NH3 Prow14NH3 Prow15NH3 Prow16NH3 


;
 

VARIABLE


 H2 


H 


HC 


H2C 


H3C 


HS 


N2 


N 


NC 


N2C 


NS 


NH 


NHC 


NH2 


NH2C 


NH3 


NH3C 


NH4C 


N2HC 


NHS 


NH2S 


;
 

*Se usa COMPILE INITIAL tras GENERAL;
 

*para inicializar las variables a posteriori;
 

*y antes de GENERAL se usa COMPILE INSTANT;
 

COMPILE INSTANT;
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Cin = pres*2.435E16;
 

CinH2 = propH2ini*Cin;
 

CinN2 = propN2ini*Cin; 


**;
 

COMPILE GENERAL;
 

Rad = 5.0;
 

VP = 1709.;
 

VR = 4698.;
 

Are = 2494.;
 

tR = 0.61;
 

VPC = VP/VR;
 

VRS = VR/Are;
 

ST = 1.0E15;
 

SF = ST-NS-HS-NHS-NH2S;
 

*Constantes reacciones impacto electrónico;
 

d1 = ad1*T@bd1*exp(cd1/T);
 

d2 = ad2*T@bd2*exp(cd2/T);
 

d3 = ad3*T@bd3*exp(cd3/T);
 

d4 = ad4*T@bd4*exp(cd4/T);
 

d5 = ad5*T@bd5*exp(cd5/T);
 

*d6 = 0.;
 

d6 = ad6*T@bd6*exp(cd6/T);
 

d7 = ad7*T@bd7*exp(cd7/T);
 

*d7 = 0.;
 

*i1 = ai1*T@bi1*exp(ci1/T);
 

i1 = (1.25819E-10)*T - (1.71845E-10)*T@2 + (6.50747E-11)*T@3 


- (5.74619E-12)*T@4 + (1.70511E-13)*T@5;
 

*i2 = ai2*T@bi2*exp(ci2/T);
 

i2 = -(5.67682E-12)*T + (8.57259E-12)*T@2 - (4.10542E-12)*T@3 


+ (7.25965E-13)*T@4 - (3.09145E-14)*T@5;
 

*i3 = ai3*T@bi3*exp(ci3/T);
 

i3 = (1.01256E-10)*T - (1.12935E-10)*T@2 + (3.13929E-11)*T@3 


- (7.51876E-13)*T@4 - (5.1428E-14)*T@5;
 

i4 = ai4*T@bi4*exp(ci4/T);
 

i5 = ai5*T@bi5*exp(ci5/T);
 

i6 = ai6*T@bi6*exp(ci6/T);
 

i10 = (1.37539E-10)*T - (1.85423E-10)*T@2 + (6.64995E-11)*T@3 


- (4.36204E-12)*T@4 + (3.01658E-14)*T@5;
 

*i10 = ai10*T@bi10*exp(ci10/T);
 

i11 = (5.66045E-11)*T - (6.90587E-11)*T@2 + (2.33164E-11)*T@3 


- (1.96203E-12)*T@4 + (4.96141E-14)*T@5;
 

*i11 = ai11*T@bi11*exp(ci11/T);
 

i12 = (1.76195E-10)*T - (2.7011E-10)*T@2 + (1.17338E-10)*T@3 


- (1.23559E-11)*T@4 + (4.22944E-13)*T@5;
 

*i12 = ai12*T@bi12*exp(ci12/T);
 

i13 = (1.07819E-10)*T - (1.28046E-10)*T@2 + (4.10674E-11)*T@3 


mailto:4.10674E-11)*T@3
mailto:1.28046E-10)*T@2
mailto:4.22944E-13)*T@5
mailto:1.23559E-11)*T@4
mailto:1.17338E-10)*T@3
mailto:2.7011E-10)*T@2
mailto:4.96141E-14)*T@5
mailto:1.96203E-12)*T@4
mailto:2.33164E-11)*T@3
mailto:6.90587E-11)*T@2
mailto:3.01658E-14)*T@5
mailto:4.36204E-12)*T@4
mailto:6.64995E-11)*T@3
mailto:1.85423E-10)*T@2
mailto:5.1428E-14)*T@5
mailto:7.51876E-13)*T@4
mailto:3.13929E-11)*T@3
mailto:1.12935E-10)*T@2
mailto:3.09145E-14)*T@5
mailto:7.25965E-13)*T@4
mailto:4.10542E-12)*T@3
mailto:8.57259E-12)*T@2
mailto:1.70511E-13)*T@5
mailto:5.74619E-12)*T@4
mailto:6.50747E-11)*T@3
mailto:1.71845E-10)*T@2


   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 167 
- (2.91042E-12)*T@4 + (5.15275E-14)*T@5;
 

*i13 = ai13*T@bi13*exp(ci13/T);
 

i14 = (1.5257E-10)*T - (2.24489E-10)*T@2 + (9.37232E-11)*T@3 


- (9.7924E-12)*T@4 + (3.33299E-13)*T@5;
 

*i14 = ai14*T@bi14*exp(ci14/T);
 

i15 = (1.57401E-10)*T - (2.01591E-10)*T@2 + (7.22108E-11)*T@3 


- (6.685E-12)*T@4 + (1.97299E-13)*T@5;
 

*i15 = ai15*T@bi15*exp(ci15/T);
 

n1 = 7.51371E-9 - (1.11516E-9)*T + (1.03156E-10)*T@2 


-(4.14905E-12)*T@3 + (5.85916E-14)*T@4;
 

parn2 = 0.5*(8.39247E-9 + (3.01631E-9)*T - (3.80439E-10)*T@2 


+ (1.31108E-11)*T@3 + (2.41631E-13)*T@4 


- (2.29832E-14)*T@5 + (3.5472E-16)*T@6);
 

n3 = 0.5*(8.39247E-9 + (3.01631E-9)*T - (3.80439E-10)*T@2 


+ (1.31108E-11)*T@3 + (2.41631E-13)*T@4 


- (2.29832E-14)*T@5 + (3.5472E-16)*T@6);
 

n4 = an4*(bn4/T)@0.5;
 

n5 = an5*(0.026/T)@cn5;
 

n6 = an6*(0.026/T)@cn6;
 

n7 = an7*(0.026/T)@cn7;
 

n8 = an8*(0.026/T)@cn8;
 

n9 = an9*(0.026/T)@cn9;
 

n10 = an10*(0.026/T)@cn10;
 

n11 = an11*(0.026/T)@cn11;
 

n12 = an12*(0.026/T)@cn12;
 

*Concentraciones especies moleculares neutras relativas;
 

atH = (2*H2+H+NH+2*NH2+3*NH3)*VR + ((HC+2*H2C+3*H3C+NHC 


+2*NH2C+3*NH3C+4*NH4C+N2HC)*VP) + ((HS+NHS+2*NH2S)*Are);
 

atN = (2*N2+N+NH+NH2+NH3)*VR + ((NC+2*N2C+2*N2HC 


+NHC+NH2C+NH3C+NH4C)*VP) + ((NS+NHS+NH2S)*Are);
 

atSTotal = ((NS+NHS+NH2S)*Are) + ((HS+NHS+2*NH2S)*Are);
 

atGTotal = (2*H2+H+NH+2*NH2+3*NH3)*VR + (2*N2+N+NH+NH2+NH3)*VR;
 

*Atomos H y N iniciales;
 

atHini= 2*CinH2*VR;
 

atNini= 2*CinN2*VR;
 

*Atomos H y N en forma de radicales;
 

atHradi=(H+NH+2*NH2)*VR;
 

atNradi=(N+NH+NH2)*VR;
 

*Atomos H y N en forma de especies moleculares;
 

atHmol = (2*H2+3*NH3)*VR;
 

atNmol = (2*N2 + NH3)*VR;
 

*Atomos H y N en forma ionica;
 

atHion = ((HC+2*H2C+3*H3C+NHC+2*NH2C+3*NH3C+4*NH4C+N2HC)*VP);
 

atNion = ((NC+2*N2C+2*N2HC+NHC+NH2C+NH3C+NH4C)*VP);
 

*Atomos H y N en superficie;
 

atHsur = ((HS+NHS+2*NH2S)*Are);
 

atNsur = ((NS+NHS+NH2S)*Are);
 

*Atomos H y N salientes;
 

Natout = (2*N2+N+NH+NH2+NH3)*VR;
 

Hatout = (2*H2+H+NH+2*NH2+3*NH3)*VR;
 

mailto:an12*(0.026/T)@cn12
mailto:an11*(0.026/T)@cn11
mailto:an10*(0.026/T)@cn10
mailto:an9*(0.026/T)@cn9
mailto:an8*(0.026/T)@cn8
mailto:an7*(0.026/T)@cn7
mailto:an6*(0.026/T)@cn6
mailto:an5*(0.026/T)@cn5
mailto:an4*(bn4/T)@0.5
mailto:3.5472E-16)*T@6
mailto:2.29832E-14)*T@5
mailto:2.41631E-13)*T@4
mailto:1.31108E-11)*T@3
mailto:3.80439E-10)*T@2
mailto:3.5472E-16)*T@6
mailto:2.29832E-14)*T@5
mailto:2.41631E-13)*T@4
mailto:1.31108E-11)*T@3
mailto:3.80439E-10)*T@2
mailto:5.85916E-14)*T@4
mailto:4.14905E-12)*T@3
mailto:1.03156E-10)*T@2
mailto:1.97299E-13)*T@5
mailto:6.685E-12)*T@4
mailto:7.22108E-11)*T@3
mailto:2.01591E-10)*T@2
mailto:3.33299E-13)*T@5
mailto:9.7924E-12)*T@4
mailto:9.37232E-11)*T@3
mailto:2.24489E-10)*T@2
mailto:5.15275E-14)*T@5
mailto:2.91042E-12)*T@4
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*Coberturas superficiales de especies atómicas y radicales;
 

thetaHS=HS/ST;
 

thetaNS=NS/ST;
 

thetaNHS=NHS/ST;
 

thetaNH2S=NH2S/ST;
 

*Concentraciones superficiales expresadas en cm-3;
 

HSvol=HS*(1/VRS);
 

NSvol=NS*(1/VRS);
 

NHSvol=NHS*(1/VRS);
 

NH2Svol=NH2S*(1/VRS);
 

*Concentraciones iónicas relativas;
 

CTiones=HC+H2C+H3C+NC+N2C+NHC+NH2C+NH3C+NH4C+N2HC;
 

Iontotal = CTiones*VP;
 

mc1=HC/CTiones;
 

mc2=H2C/CTiones;
 

mc3=H3C/CTiones;
 

mc14=NC/CTiones;
 

mc15=NHC/CTiones;
 

mc16=NH2C/CTiones;
 

mc17=NH3C/CTiones;
 

mc18=NH4C/CTiones;
 

mc28=N2C/CTiones;
 

mc29=N2HC/CTiones;
 

*Concentraciones de neutros relativas;
 

CTNeutros=H+H2+N+N2+NH+NH2+NH3;
 

cH2=H2/CTNeutros;
 

cN2=N2/CTNeutros;
 

cN=N/CTNeutros;
 

cH=H/CTNeutros;
 

cNH3=NH3/CTNeutros;
 

cNH=NH/CTNeutros;
 

cNH2=NH2/CTNeutros;
 

propH2=H2/(H2+N2+NH3);
 

propN2=N2/(H2+N2+NH3);
 

propNH3=NH3/(H2+N2+NH3);
 

Sumafgas=H2+N2+NH3;
 

fradicales=CTNeutros/Sumafgas;
 

H2norm=propH2*Cin;
 

N2norm=propN2*Cin;
 

NH3norm=propNH3*Cin;
 

*Términos reacciones heterogéneas;
 

*Difusión neutros a la pared y recombinación;
 

*Se incluyen radicales (NH y NH2) y especies atómicas (N y H);
 

*Velocidades medias especies neutras;
 

vtH = 2.52E+5;
 

vtH2 = 1.78E+5;
 

vtN = 6.74E+4;
 

vtNH = 6.5E+4;
 

vtNH2 = 6.3E+4;
 

*Coeficientes de difusión;
 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 169 
DH = 3319.61/pres;
 

DN = 1985.7/pres;
 

DNH = 756.66/pres;
 

DNH2 = 646.17/pres;
 

A = Rad/2.405;
 

*Tiempos de difusión;
 

*Se considera difusión radial;
 

TdifH = (A@2)/DH;
 

TdifN = (A@2)/DN;
 

TdifNH = (A@2)/DNH;
 

TdifNH2 = (A@2)/DNH2;
 

*Coeficientes de adsorción y recombinación;
 

Gamma1 = 1.0;
 

Gamma3 = 0.0015;
 

Gamma5 = 1.0;
 

Gamma7 = 0.006;
 

Gamma9 = 0.01;
 

Gamma10 = 0.008;
 

Gamma13 = 0.008;
 

Gamma15 = 0.01;
 

Gamma16 = 0.0008;
 

Gamma17 = 1.0;
 

Gamma18 = 1.0;
 

Gamma20 = 0.008;
 

Gamma22 = 0.01;
 

*Prefactores (ley tipo Arrhenius);
 

nudesH = 1.0E13;
 

nudifH = 1.0E13;
 

nudesN = 1.0E13;
 

nudifN = 1.0E13;
 

nudesNH2 = 1.0E12;
 

nudesNH = 1.0E12;
 

*Energías de desorción y difusión;
 

EdesH = 2.0;
 

EdifH = 0.2;
 

EdesN = 3.0;
 

EdifN = 0.65;
 

EdesNH2 = 4.0;
 

EdesNH = 4.0;
 

Eaw4 = 0.5;
 

Eaw8 = 0.5;
 

Eaw11 = 0.3;
 

Eaw14 = 0.2;
 

Eaw21 = 0.4;
 

*Constante de Boltzmann kB en eV*K-1;
 

kB= 8.6173E-5;
 

*Tiempos interaccion pared;
 

Twall1 = (4*VRS*(1-0.5*Gamma1))/(Gamma1*vtH);
 

Twall3 = (4*VRS*(1-0.5*Gamma3))/(Gamma3*vtH);
 

Twall5 = (4*VRS*(1-0.5*Gamma5))/(Gamma5*vtN);
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Twall7 = (4*VRS*(1-0.5*Gamma7))/(Gamma7*vtN);
 

Twall9 = (4*VRS*(1-0.5*Gamma9))/(Gamma9*vtN);
 

Twall10 = (4*VRS*(1-0.5*Gamma10))/(Gamma10*vtH);
 

Twall13 = (4*VRS*(1-0.5*Gamma13))/(Gamma13*vtH);
 

Twall15 = (4*VRS*(1-0.5*Gamma15))/(Gamma15*vtNH2);
 

Twall16 = (4*VRS)/(Gamma16*vtH2);
 

Twall17 = (4*VRS*(1-0.5*Gamma17))/(Gamma17*vtNH);
 

Twall18 = (4*VRS*(1-0.5*Gamma18))/(Gamma18*vtNH2);
 

Twall20 = (4*VRS*(1-0.5*Gamma20))/(Gamma20*vtH);
 

Twall22 = (4*VRS*(1-0.5*Gamma22))/(Gamma22*vtNH);
 

Ttotal1 = TdifH + Twall1;
 

Ttotal3 = TdifH + Twall3;
 

Ttotal5 = TdifN + Twall5;
 

Ttotal7 = TdifN + Twall7;
 

Ttotal9 = TdifN + Twall9;
 

Ttotal10 = TdifH + Twall10;
 

Ttotal13 = TdifH + Twall13;
 

Ttotal15 = TdifNH2 + Twall15;
 

Ttotal16 = Twall16;
 

Ttotal17 = TdifNH + Twall17;
 

Ttotal18 = TdifNH2 + Twall18;
 

Ttotal20 = TdifH + Twall20;
 

Ttotal22 = TdifNH + Twall22;
 

*Coeficientes cinéticos r. pared;
 

*w1 = 0.;
 

w1 = VRS/(Ttotal1*ST);
 

w2 = 0.;
 

*w2 = nudesH*exp(-EdesH/(kB*300.));
 

*w3 = 0.;
 

w3 = 1/(Ttotal3*ST);
 

w4 = 0.;
 

*w4 = (nudifH*exp((-EdifH -Eaw4)/(kB*300.)))/(4*ST);
 

*w5 = 0.;
 

w5 = VRS/(Ttotal5*ST);
 

w6 = 0.;
 

*w6 = nudesN*exp(-EdesN/(kB*300.));
 

*w7 = 0.;
 

w7 = 1/(Ttotal7*ST);
 

w8 = 0.;
 

*w8 = (nudifN*exp((-EdifN -Eaw8)/(kB*300.)))/(4*ST);
 

*w9 = 0.;
 

w9 = VRS/(Ttotal9*ST);
 

*w10 = 0.;
 

w10 = VRS/(Ttotal10*ST);
 

*w11 = 0.;
 

w11 = (nudifH*exp((-EdifH -Eaw11)/(kB*300.)))/(4*ST);
 

*w12 = nudesNH2*exp(-EdesNH2/(kB*300.));
 

w12 = 0.;
 

w13 = 1/(Ttotal13*ST);
 

*w13 = 0.;
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*w14 = 0.;
 

w14 = (nudifH*exp((-EdifH -Eaw14)/(kB*300.)))/(4*ST);
 

*w15 = 0.;
 

w15 = 1/(Ttotal15*ST);
 

*w16 = 0.;
 

w16 = 1/(Ttotal16*ST);
 

w17 = VRS/(Ttotal17*ST);
 

w18 = VRS/(Ttotal18*ST);
 

*w19 = nudesNH*exp(-EdesNH/(kB*300.));
 

w19 = 0.;
 

w20 = VRS/(Ttotal20*ST);
 

*w20 = 0.;
 

*w21 = (nudifH*exp(-EdifH/(kB*300.))*exp(-Eaw21/(kB*300.)))/(4*ST);
 

w21 = 0.;
 

w22 = VRS/(Ttotal22*ST);
 

*Neutralización de iones en el cátodo;
 

CPie = Ne*(i1*N + i2*N2 + i3*N2 + i4*H 


+ i5*H2 + i6*H2 + i10*NH + i11*NH 


+ i12*NH2 + i13*NH2 + i14*NH3 + i15*NH3);
 

CNie = Ne*(n1*H2C + parn2*H3C + n3*H3C + n4*N2C 


+ n5*NHC + n6*NH2C + n7*NH2C + n8*NH3C + n9*NH3C 


+ n10*NH4C + n11*NH4C + n12*N2HC);
 

DenMI = HC + (H2C/(2@0.5)) + (H3C/(3@0.5)) 


+ (NC/(14@0.5)) + (NHC/(15@0.5)) + (NH2C/(16@0.5)) 


+ (NH3C/(17@0.5)) + (NH4C/(18@0.5)) + (N2C/(28@0.5)) 


+ (N2HC/(29@0.5));
 

T_HC = (CPie - CNie)/DenMI;
 

T_H2C = (CPie - CNie)/((2@0.5)*DenMI);
 

T_H3C = (CPie - CNie)/((3@0.5)*DenMI);
 

T_NHC = (CPie - CNie)/((15@0.5)*DenMI);
 

T_NH2C = (CPie - CNie)/((16@0.5)*DenMI);
 

T_NH3C = (CPie - CNie)/((17@0.5)*DenMI);
 

T_NH4C = (CPie - CNie)/((18@0.5)*DenMI);
 

T_NC = (CPie - CNie)/((14@0.5)*DenMI);
 

T_N2C = (CPie - CNie)/((28@0.5)*DenMI);
 

T_N2HC = (CPie - CNie)/((29@0.5)*DenMI);
 

R = 1;
 

k1 = R*T_HC;
 

k2 = R*T_H2C;
 

k3 = R*T_H3C;
 

k4 = R*T_NC;
 

k5 = R*T_N2C;
 

k6 = R*T_NHC;
 

k7 = R*T_NH2C;
 

k8 = R*T_NH3C;
 

k9 = R*T_NH4C;
 

k10 = R*T_N2HC;
 

*Terminos de formacion por impacto electronico;
 

*Incluye ionizacion, disociacion y neutralizacion;
 

*Notacion:PieNC es produccion por i.e. de N+, ...;
 

mailto:CNie)/((29@0.5)*DenMI
mailto:CNie)/((28@0.5)*DenMI
mailto:CNie)/((14@0.5)*DenMI
mailto:CNie)/((18@0.5)*DenMI
mailto:CNie)/((17@0.5)*DenMI
mailto:CNie)/((16@0.5)*DenMI
mailto:CNie)/((15@0.5)*DenMI
mailto:CNie)/((3@0.5)*DenMI
mailto:CNie)/((2@0.5)*DenMI
mailto:N2HC/(29@0.5
mailto:N2C/(28@0.5
mailto:NH4C/(18@0.5
mailto:NH3C/(17@0.5
mailto:NH2C/(16@0.5
mailto:NHC/(15@0.5
mailto:NC/(14@0.5
mailto:H3C/(3@0.5
mailto:H2C/(2@0.5
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PieHC = i4*H*Ne + i5*H2*Ne;
 

PieH = i5*H2*Ne + 2*d1*H2*Ne + 2*n1*H2C*Ne + 3*parn2*H3C*Ne 


+ n3*H3C*Ne + i11*NH*Ne + i13*NH2*Ne + i15*NH3*Ne 


+ d3*NH*Ne + d5*NH2*Ne + d6*NH3*Ne 


+ n5*NHC*Ne + n6*NH2C*Ne + 2*n7*NH2C*Ne + 2*n8*NH3C*Ne 


+ n9*NH3C*Ne + n10*NH4C*Ne + 2*n11*NH4C*Ne + n12*N2HC*Ne;
 

PieH2C = i6*H2*Ne;
 

PieH2 = n3*H3C*Ne + d7*NH3*Ne + d4*NH2*Ne;
 

PieNC = i1*N*Ne + i2*N2*Ne + i11*NH*Ne;
 

PieN = i2*N2*Ne + 2*d2*N2*Ne + 2*n4*N2C*Ne 


+ d3*NH*Ne + d4*NH2*Ne + n5*NHC*Ne + n7*NH2C*Ne;
 

PieNH = d5*NH2*Ne + d7*NH3*Ne + n6*NH2C*Ne + n8*NH3C*Ne;
 

PieNH2 = d6*NH3*Ne + n9*NH3C*Ne + n11*NH4C*Ne;
 

PieN2C = i3*N2*Ne;
 

PieNHC = i10*NH*Ne + i13*NH2*Ne;
 

PieNH2C = i12*NH2*Ne + i15*NH3*Ne;
 

PieNH3C = i14*NH3*Ne;
 

PieNH3 = n10*NH4C*Ne;
 

PieN2 = n12*N2HC*Ne;
 

*Terminos de destrucción por impacto electronico;
 

*Notacion:DieN es destruccion por i.e. de N, ...;
 

DieH = -i4*H*Ne;
 

DieH2 = -i5*H2*Ne - i6*H2*Ne -d1*H2*Ne;
 

DieH2C = - n1*H2C*Ne;
 

DieH3C = - parn2*H3C*Ne -n3*H3C*Ne;
 

DieN = -i1*N*Ne;
 

DieN2 = -i2*N2*Ne -i3*N2*Ne -d2*N2*Ne;
 

DieN2C = -n4*N2C*Ne;
 

DieNH = -i10*NH*Ne -i11*NH*Ne -d3*NH*Ne;
 

DieNH2 = -i12*NH2*Ne -i13*NH2*Ne -d4*NH2*Ne -d5*NH2*Ne;
 

DieNH3 = -i14*NH3*Ne -i15*NH3*Ne -d6*NH3*Ne -d7*NH3*Ne;
 

DieNHC = -n5*NHC*Ne;
 

DieNH2C = -n6*NH2C*Ne -n7*NH2C*Ne;
 

DieNH3C = -n8*NH3C*Ne -n9*NH3C*Ne;
 

DieNH4C = -n10*NH4C*Ne -n11*NH4C*Ne;
 

DieN2HC = -n12*N2HC*Ne;
 

*Terminos de formación por reacciones homogéneas;
 

*con transferencia de carga ión-neutro;
 

*Notación:PtH3C es producción de H3+, ...;
 

PtH3C = t3*H2C*H2 + t12*NHC*H2;
 

PtHC = t2*H2C*H;
 

PtN2 = t22*N2C*NH3 + t23*N2HC*NH3;
 

PtNH2C = t9*NC*NH3 + t13*NHC*H2 + t25*H3C*N;
 

PtN2HC = t5*H2C*N2 + t7*H3C*N2 + t11*NC*NH3 


+ t16*NHC*N2 + t21*N2C*H2;
 

PtNHC = t8*NC*H2 + t24*H3C*N;
 

PtNH = t9*NC*NH3 + t14*NHC*NH3 + t19*NH2C*NH3;
 

PtNH2 = t18*NH2C*NH3 + t20*NH3C*NH3;
 

PtNH3C = t1*NH3*HC + t4*H2C*NH3 + t10*NC*NH3 + t14*NHC*NH3 


+ t17*NH2C*H2 + t18*NH2C*NH3 + t22*N2C*NH3;
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PtNH4C = t6*H3C*NH3 + t15*NHC*NH3 + t19*NH2C*NH3 


+ t20*NH3C*NH3 + t23*N2HC*NH3;
 

PtH = t1*HC*NH3 + t3*H2C*H2 + t5*H2C*N2 


+ t8*NC*H2 + t13*NHC*H2 + t17*NH2C*H2 + t21*N2C*H2 


+ t25*H3C*N;
 

PtH2 = t2*H2C*H + t4*H2C*NH3 + t6*H3C*NH3 


+ t7*H3C*N2 + t11*NC*NH3 + t24*H3C*N;
 

PtN = t10*NC*NH3 + t12*NHC*H2 


+ t15*NHC*NH3 + t16*NHC*N2;
 

*Terminos de destrucción por reacciones homogéneas;
 

*con transferencia de carga;
 

*Notacion:DtH3C es destruccion reac. homogenea de H3+, ...;
 

DtH = -t2*H2C*H;
 

DtH2 = -t3*H2C*H2 -t8*NC*H2 -t12*NHC*H2 


- t13*NHC*H2 -t17*NH2C*H2 -t21*N2C*H2;
 

DtHC = -t1*HC*NH3;
 

DtH2C = -t2*H2C*H - t3*H2C*H2 - t4*H2C*NH3 


-t5*H2C*N2;
 

DtH3C = -t6*H3C*NH3 -t7*H3C*N2 -t24*H3C*N -t25*H3C*N;
 

DtNC = -t8*NC*H2 - t9*NC*NH3 - t10*NC*NH3 - t11*NC*NH3;
 

DtNHC = -t12*NHC*H2 - t13*NHC*H2 - t14*NHC*NH3 


-t15*NHC*NH3 - t16*NHC*N2;
 

DtNH2C = -t17*NH2C*H2 - t18*NH2C*NH3 -t19*NH2C*NH3;
 

DtNH3C = -t20*NH3C*NH3;
 

DtN2 = -t5*H2C*N2 -t7*H3C*N2 -t16*NHC*N2;
 

DtN2C = -t21*N2C*H2 - t22*N2C*NH3;
 

DtN2HC = -t23*N2HC*NH3;
 

DtNH3 = -t1*NH3*HC -t4*H2C*NH3 -t6*H3C*NH3 


- t9*NC*NH3 - t10*NC*NH3 - t11*NC*NH3 


- t14*NHC*NH3 - t15*NHC*NH3 -t18*NH2C*NH3 


- t19*NH2C*NH3 - t20*NH3C*NH3 - t22*N2C*NH3 


-t23*N2HC*NH3;
 

DtN = -t24*H3C*N -t25*H3C*N;
 

*Producción especies neutras por neutralización;
 

*en la pared;
 

PrH = k1*HC + k3*H3C + k9*NH4C + k10*N2HC;
 

PrH2 = k2*H2C + k3*H3C;
 

PrN = k4*NC;
 

PrN2 = k5*N2C + k10*N2HC;
 

PrNH = k6*NHC;
 

PrNH2 = k7*NH2C;
 

PrNH3 = k8*NH3C + k9*NH4C;
 

*Destrucción de iones por neutralización en la pared;
 

NeuHC = -k1*HC;
 

NeuH2C = -k2*H2C;
 

NeuH3C = -k3*H3C;
 

NeuNC = -k4*NC;
 

NeuN2C = -k5*N2C;
 

NeuNHC = -k6*NHC;
 

NeuNH2C = -k7*NH2C;
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NeuNH3C = -k8*NH3C;
 

NeuNH4C = -k9*NH4C;
 

NeuN2HC = -k10*N2HC;
 

*Términos reacciones heterogéneas en pared;
 

*Producción de especies por r. heterog.;
 

*Los términos de superficie en molec.cm-2;
 

PwHS = w1*H*SF;
 

PwH = w2*HS*(1/VRS);
 

PwH2 = w3*HS*H + w4*HS*HS*(1/VRS);
 

PwNS = w5*N*SF;
 

PwN = w6*NS*(1/VRS);
 

PwN2 = w7*N*NS + w8*NS*NS*(1/VRS);
 

PwNHS = w9*HS*N + w17*NH*SF + w20*NS*H + w21*HS*NS;
 

PwNH2S = w10*NHS*H + w11*NHS*HS + w18*NH2*SF + w22*NH*HS;
 

PwNH2 = w12*NH2S*(1/VRS);
 

PwNH3 = w13*NH2S*H + w14*NH2S*HS*(1/VRS) 


+ w15*NH2*HS + w16*NHS*H2;
 

PwNH = w19*NHS*(1/VRS);
 

*Destrucción de especies por r. heterog.;
 

DwH = -w1*H*SF*(1/VRS) -w3*H*HS -w10*NHS*H*(1/VRS) 


-w13*NH2S*H -w20*H*NS*(1/VRS);
 

DwHS = -w2*HS -w3*HS*H*VRS -2*w4*HS*HS -w9*HS*N 


-w11*NHS*HS -w14*NH2S*HS -w15*NH2*HS*VRS 


-w21*NS*HS -w22*NH*HS;
 

DwN = -w5*N*SF*(1/VRS) -w7*NS*N -w9*HS*N*(1/VRS);
 

DwNS = -w6*NS -w7*NS*N*VRS -2*w8*NS*NS -w20*NS*H -w21*NS*HS;
 

DwNHS = -w10*NHS*H -w11*NHS*HS 


-w16*NHS*H2*VRS -w19*NHS;
 

DwNH2S = -w12*NH2S -w13*NH2S*H*VRS -w14*NH2S*HS;
 

DwNH2 = -w15*NH2*HS -w18*NH2*SF*(1/VRS);
 

DwH2 = -w16*NHS*H2;
 

DwNH = -w17*NH*SF*(1/VRS)-w22*NH*HS*(1/VRS);
 

*Flujos definidos según programa I. Méndez;
 

*Volumen del reactor para H y N también;
 

FeH2 = CinH2*VR/tR;
 

FeN2 = CinN2*VR/tR;
 

Fe = FeH2 + FeN2;
 

FsN = N*VR/tR;
 

FsN2 = N2*VR/tR;
 

FsH = H*VR/tR;
 

FsH2 = H2*VR/tR;
 

FsNH = NH*VR/tR;
 

FsNH2 = NH2*VR/tR;
 

FsNH3 = NH3*VR/tR;
 

Fs = FsN + FsN2 + FsH + FsH2 + FsNH + FsNH2 + FsNH3;
 

*FeH2 = 0.;
 

*FeN2 = 0.;
 

*FsN = 0.;
 

*FsN2 = 0.;
 

*FsNH = 0.;
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*FsNH2 = 0.;
 

*FsNH3 = 0.;
 

*FsH = 0.;
 

*FsH2 = 0.;
 

*Flujos atómicos de entrada y salida;
 

InFHat = 2*CinH2*VR/tR;
 

OutFHat = (2*H2+H+NH+2*NH2+3*NH3)*VR/tR;
 

InFNat = 2*CinN2*VR/tR;
 

OutFNat = (2*N2+N+NH+NH2+NH3)*VR/tR;
 

*Formación y destrucción de amoniaco;
 

FormNH3 = (PieNH3 + PrNH3)*VPC;
 

DesNH3 = -(DtNH3 + DieNH3)*VPC;
 

FoutNH3 = NH3/tR;
 

DifNH3 = FormNH3 + PwNH3 - DesNH3;
 

*Formación y destrucción de H2;
 

FormH2 = (PieH2 + PrH2 + PtH2)*VPC;
 

DesH2 = -(DieH2 + DtH2)*VPC;
 

FinH2 = CinH2/tR;
 

FoutH2 = H2/tR;
 

*Formación y destrucción de N2;
 

FormN2 = (PieN2 + PrN2 + PtN2)*VPC;
 

DesN2 = -(DieN2 + DtN2)*VPC;
 

FinN2 = CinN2/tR;
 

FoutN2 = N2/tR;
 

*Produccion NHS via w20 y w9;
 

Prow9NHS = w9*HS*N;
 

Prow20NHS = w20*NS*H;
 

*Produccion NH3 via w13 a w16;
 

Prow13NH3 = w13*NH2S*H;
 

Prow14NH3 = w14*NH2S*HS*(1/VRS);
 

Prow15NH3 = w15*NH2*HS;
 

Prow16NH3 = w16*NHS*H2;
 

*Flujos átomos y radicales (cm-2*s-1) hacia la superficie aprox.;
 

FH = H*vtH/4;
 

FN = N*vtN/4;
 

FNH = NH*vtNH/4;
 

FNH2 = NH2*vtNH2/4; 


**;
 

COMPILE INITIAL;
 

H2 = CinH2;
 

H = 0;
 

HC = 0;
 

H2C = PropH2ini*Ne;


 H3C = 0;
 

HS = 0;
 

N2 = CinN2;
 

N = 0;
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NC = 0;
 

N2C = PropN2ini*Ne;
 

NS = 0;
 

NH = 0;


 NHC = 0;


 NH2 = 0;


 NH2C = 0;


 NH3 = 0;
 

NH3C = 0;
 

NH4C = 0;


 N2HC = 0;
 

NHS = 0;
 

NH2S = 0; 


**;
 

COMPILE EQUATIONS ;
 

*Ecuaciones diferenciales;
 

*Notación 'N2 significa derivada primer orden respecto al tiempo;
 

'H2 = FeH2/VR -FsH2/VR + (PieH2 + DieH2 + PrH2 + PtH2 


+ DtH2)*VPC + PwH2 + DwH2;
 

'H = -FsH/VR + (PieH + DieH + PtH + DtH + PrH)*VPC + PwH + DwH;
 

'HC = PieHC + PtHC + DtHC + NeuHC;
 

'H2C = PieH2C + DieH2C + DtH2C + NeuH2C;
 

'H3C = DieH3C + PtH3C + DtH3C + NeuH3C;
 

'HS = PwHS + DwHS;
 

'N2 = FeN2/VR -FsN2/VR + (PieN2 + DieN2 + PrN2 + PtN2 


+ DtN2)*VPC + PwN2;
 

'N = -FsN/VR + (PieN + DieN + PrN + PtN + DtN)*VPC + PwN + DwN;
 

'NC = PieNC + DtNC + NeuNC;
 

'N2C = PieN2C + DieN2C + DtN2C + NeuN2C;
 

'NS = PwNS + DwNS;
 

'NH = -FsNH/VR + (PieNH + DieNH + PrNH + PtNH)*VPC + PwNH + DwNH;
 

'NH2 = -FsNH2/VR + (PieNH2 + DieNH2 + PtNH2 + PrNH2)*VPC 


+ PwNH2 + DwNH2;
 

'NH3 = -FsNH3/VR + (PieNH3 + DieNH3 + DtNH3 + PrNH3)*VPC + PwNH3;
 

'NHC = PieNHC + DieNHC + PtNHC + DtNHC + NeuNHC;
 

'NH2C = PieNH2C + DieNH2C + PtNH2C + DtNH2C + NeuNH2C;
 

'NH3C = PieNH3C + DieNH3C + PtNH3C + DtNH3C + NeuNH3C;
 

'NH4C = PtNH4C + DieNH4C + NeuNH4C;
 

'N2HC = PtN2HC + DieN2HC + DtN2HC + NeuN2HC;
 

'NHS = PwNHS + DwNHS;
 

'NH2S = PwNH2S + DwNH2S; 


**;
 

SETPSTREAM 1 8 ;
 

TIME  H H2 N N2 NH NH2 NH3 NH4C Prow20NHS; 


**;
 

SETPSTREAM 3 7 ;
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TIME  HC H2C H3C NC N2C NHC NH2C NH3C N2HC; 


**;
 

SETPSTREAM 4 10 ;
 

TIME  mc1 mc2 mc3 mc14 mc16 mc17 mc18 mc28 mc29; 


**;
 

SETPSTREAM 9 11 ;
 

TIME  HSvol NSvol NHSvol NH2Svol Iontotal mc15 OutFHat OutFNat; 


**;
 

SETPSTREAM 13 12 ;
 

TIME  cH cH2 cN cNH cNH2 cNH3 cN2 FinN2 FoutN2; 


**;
 

SETPSTREAM 15 14 ;
 

TIME NHS NH2S HS NS propH2 propN2 propNH3 DifNH3 PwNH3; 


**;
 

SETPSTREAM 17 16 ;
 

TIME H2norm N2norm NH3norm mc15 atH atN FormNH3 DesNH3 FoutNH3; 


**;
 

SETPSTREAM 19 18 ;
 

TIME atHradi atNradi atHmol atNmol atHion atNion atNsur atHsur; 


**;
 

SETPSTREAM 20 2 ;
 

TIME FormH2 DesH2 DwH2 PwH2 FinH2 FoutH2 FormN2 DesN2 PwN2; 


**;
 

SETPSTREAM 5 21 ;
 

* TIME Prow13NH3 Prow14NH3 Prow15NH3 Prow16NH3 PieN PieH;
 

TIME PieN2C DieN2C DtN2C NeuN2C i3 N2 Ne; 


**;
 

COMPILE OUT;
 

PSTREAM 1 ;
 

PSTREAM 3 ;
 

PSTREAM 4 ;
 

PSTREAM 9 ;
 

PSTREAM 13 ;
 

PSTREAM 15 ;
 

PSTREAM 17 ;
 

PSTREAM 19 ;
 

PSTREAM 20 ;
 

PSTREAM 5 ; 


**;
 

WHENEVER
 

TIME = 100000 * (+0.000001) 0 % 


CALL OUT; 


**;
 

BEGIN;
 

STOP;
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A.2.3 H2 + O2 

*======================================================;
 

* H2-O2_12082301.fac Modelo H2O CON superficie;
 

* Reacciones L-H con w21 y w14 igual a cero;
 

* El H2O tras formarse pasa a fase gas (se omite desorción);
 

* No se considera la adsorción de H2O en superficie;
 

* Con neutralización en pared (k1-k9) y en fase gas (n1-n15);
 

* Fase gas r.ionización (i1-i11), disociación (d1-d6);
 

* Transferencia de carga (t1-t25);
 

* R (neutralización de iones en pared dando gas neutro)= 1 ;
 

* Tvib(H2) = 3000 K ;
 

* Tgas = 300 K ;
 

*======================================================;
 

EXECUTE OPEN 8 "Plasmas\Fcsm\O\H2-O2_neu1.out";
 

EXECUTE OPEN 7 "Plasmas\Fcsm\O\H2-O2_ion1.out";
 

EXECUTE OPEN 10 "Plasmas\Fcsm\O\H2-O2_mi1.out";
 

EXECUTE OPEN 11 "Plasmas\Fcsm\O\H2-O2_at1.out";
 

EXECUTE OPEN 12 "Plasmas\Fcsm\O\H2-O2_cn1.out";
 

EXECUTE OPEN 14 "Plasmas\Fcsm\O\H2-O2_pr1.out";
 

EXECUTE OPEN 16 "Plasmas\Fcsm\O\H2-O2_nor1.out";
 

EXECUTE OPEN 18 "Plasmas\Fcsm\O\H2-O2_rad1.out";
 

EXECUTE OPEN 2 "Plasmas\Fcsm\O\H2-O2_mol1.out";
 

EXECUTE OPEN 21 "Plasmas\Fcsm\O\H2-O2_amo1.out";
 

EXECUTE OPEN 22 "Plasmas\Fcsm\O\H2-O2_ohs1.out";
 

*Parámetros a cambiar cada vez ;
 

PARAMETER
 

Pres 0.08 T 4.5 NeTot 2.2e10 


 PropO2ini 0.2;
 

*Valores para los coeficientes cinéticos;
 

PARAMETER
 

Tg 300 


Cov_OH 1 


ad1 1.7527E-7 bd1 -1.23668 cd1 -12.59243 

ad2 4.2E-9 cd2 -5.56 

ad3 5.0E-8 cd3 -8.40 

ad4 2.08E-7 bd4 -0.76 cd4 -6.9 


ad5 3.04E-9 bd5 0.5 cd5 -7.0 
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ad6 2.0E-9 bd6 0.5 cd6 -7.0 

ad7 4.0e-8 bd7 0 cd7 -8.4 

ai1 1.03E-8 bi1 0.5 ci1 -14.3 

ai2 4.84E-9 bi2 0.5 ci2 -22.5 

ai3 7.07E-9 bi3 0.5 ci3 -13.1 

ai4 6.5023E-9 bi4 0.48931 ci4 -12.89365 

ai5 2.9962E-8 bi5 0.44456 ci5 -37.72836 

ai6 3.1228E-8 bi6 0.17156 ci6 -20.07734 

ai7 1.48E-8 bi7 0.5 ci7 -12.6 

ai8 9.87E-9 bi8 0.5 ci8 -13.3 

ai9 2.88E-9 bi9 0.5 ci9 -17.7 

ai10 1.77E-9 bi10 0.5 ci10 -20.0 

ai11 3.03E-10 bi11 0.5 ci11 -23.5 

ai12 9e-10 bi12 2.0 ci12 -12.6 

an4 4.9E-8 cn4 0.7 

an5 1.06E-7 cn5 0.7 

an6 7.56E-8 cn6 0.7 

an7 3.75E-8 cn7 0.5 

an8 8.6E-8 cn8 0.5 

an9 3.9E-8 cn9 0.5 

an10 3.05E-7 cn10 0.5 

an11 2.85E-7 cn11 0.5 

an12 5.6E-9 cn12 0.5 

an13 6.02E-8 cn13 0.5 

an14 1.08E-7 cn14 0.5 

an15 3.0E-7 cn15 0.5 

t1 3.75E-10 t2 8.20E-9 t3 1.17E-9 

t4 6.40E-10 t5 2.00E-9 t6 3.87E-9 

t7 3.43E-9 t8 7.83E-10 t9 1.92E-10 

t10 8.40E-10 t11 3.60E-10 t12 5.3E-9 

t13 6.70E-10 t14 6.40E-10 t15 1.62E-9 

t16 2.60E-9 t17 9.70E-10 t18 1.59E-9 

t19 1.30E-9 t20 3.80E-10 t21 7.60E-10 

t22 1.85E-9 t23 3.3E-10 t24 4.00E-11 

t25 3.30E-10 t26 1.6E-10 t27 3e-11 

t28 1.4e-9 

aa1 1.07E-9 ba1 -1.391 ca1 -6.26 

aa2 3.54e-9 ba2 -1.5 ca2 -6.66 

aa3 5.6e-13 ba3 0.5 ca3 -5.5 

aa4 2.28e-10 ba4 0 ca4 -2.29 

adt1 2.32e-8 bdt1 2 cdt1 -0.13 

dt2 1.3e-9 

dt3 1e-9 

dt4 1.2e-9 
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dt5 1.8e-9 

dt6 2e-10 

dt7 3e-10 

adt8 9.67e-6 bdt8 -1.9 cdt8 -12.1 

adx1 4.2e-9 bdx1 0 cdx1 -4.6 


adx2 5.6e-9 bdx2 0 cdx2 -2.2 


hn1 7.51e-13 


ahn2 9.18e-11 bhn2 0 chn2 -971.9 


ahn3 4.8e-16 bhn3 1.55 chn3 80.58 


ahn4 1.1e-12 bhn4 0.56 chn4 -346 


ahn5 2.35e-10 bhn5 0 chn5 -373.7 


ahn6 2.9e-11 bhn6 0 chn6 200 


hn7 1.66e-11 


hn8 2.71e-11 


hn9 1.2e-10 


hn10 1.2e-10 


hn11 1.1e-10 


ahn12 4.8e-12 bhn12 0 chn12 67 


ahn13 1.6e-12 bhn13 0 chn13 67 


ahn14 6e-11 bhn14 -0.186 chn14 -154 


ahn15 1.62e-10 bhn15 0 chn15 64.95 


hn16 1.2e-11 


ax1 1.7e-9 bx1 0 cx1 -3.1 


ax2 4.5e-9 bx2 0 cx2 -2.29 


;
 

* Definición de parámetros;
 

* i1-i11: coef. cinéticos r. ionización ai(1-11),bi(1-11),ci(1-11);
 

* d1-d6: coef. cinéticos r. disociación ad(1-6),bd(1-6),cd(1-6);
 

* Omitida reaccion d3 (por ser especies excitada);
 

* n1-n15: coef. cinéticos r. neutralización en volumen;
 

* Omitidas reacciones n5 y n6 (por ser especies excitadas);
 

* t1 a t25: coeficientes cinéticos de r. transferencia de carga;
 

* k1-k9: coef. cinéticos r. neutralización en pared;
 

* w1-w21: coef. cinéticos r. heterogéneas en pared;
 

* Volúmenes: VR, VP, y Area: Are;
 

* VR= volumen del reactor;
 

* Are= Area del reactor;
 

* vtO = velocidad del O = 6.74E4 cms-1 (vtOH, velocidad OH);
 

* DH coeficiente difusión H, DOH coeficiente difusión OH, etc.;
 

* TdifH=A@2/DH tiempo de difusión;
 

* A=Rad/2.405 (Chantry);
 

* Rad = radio del reactor= 5 cm;
 

* Twall1 = (4*VRS*(1-0.5*Gamma1))/(Gamma1*vtH);
 

* Cambia el número y expresión de Twall según neutro que difunde;
 

* Ttotal1 = Twall1 + TdifH;
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* Ne: densidad de electrones, variable 


* con el tiempo si se modula la descarga;
 

* e0: parámetro para modular temporalmente la descarga;
 

* VP: volumen del plasma;
 

* VPC: relación del volumen del plasma al del reactor;
 

* tR: tiempo de residencia;
 

* Cin: concentración inicial (=pres*2.435E16);
 

* Fe, Fs: flujos de entrada y salida totales;
 

* FeH2, FeO2: flujos de entrada de H2 y O2;
 

* FsO, FsO2: flujos de salida de O y O2 (resto igual);
 

PARAMETER
 

d1 d2 d3 d4 d5 d6 i1 i2 i3 i4 i5 i6 i7 i9 i11 


w17 w19 w20 nudesO3P nudifO3P EdesO3P EdifO3P 


i10 i13 i8 i15 n1 parn2 n3 n4 n5 n6 n7 


n8 n9 n10 n11 n12 n13 n14 k1 k2 k3 k4 k5 k6 k7 k8 k9 


w1 w2 w3 w4 w5 w6 w7 w8 w9 w13 w14 w15 w16 w21 


VP VR VRS A Rad Are Ne e0 tR R vtH vtO3P vtH2 vtO2 vtOH ST SF kB 


Fe FeH2 FeO2 Fs FsO FsO2 FsH FsH2 FsOH FsH2O 


Cin CinH2 CinO2 vtO1D 


thetaHS thetaOS thetaOHS 


DH DO3P DO2 DH2 DOH DO1D TdifH TdifO3P TdifO2 TdifOH TdifO1D 


Gamma1 Gamma3 Gamma5 Gamma7 Gamma9 


Gamma13 Gamma15 Gamma16 Gamma17 Gamma18 Gamma20 


nudesH nudifH nudesO nudifO nudesOH 


EdesH EdifO EdesO EdifH EdesOH 


Twall1 Twall3 Twall5 Twall7 Twall9 


Twall13 Twall15 Twall16 Twall17 Twall20 


Ttotal1 Ttotal3 Ttotal5 Ttotal7 


Ttotal9 Ttotal13 Ttotal15 Ttotal16 


Ttotal17 Ttotal20 


CTiones mc1 mc2 mc3 mc16 


mc17 mc18 mc19 mc32 mc33 


CPie CNie DenMI T_HC T_H2C T_H3C T_OC T_OHC T_HO2C 


T_H2OC T_H3OC T_O2C DieO2C 


PieHC PieH PieH2C PieH2 PieOC PieO2C PieOHC 


PieO3P PieOH PieH2OC DieH 


PieO2 DieH2 DieH2C DieH3C DieO2 DieOH DieO3P 


PtH3C PtH PtHC PtH2 PtH3OC PtHO2C PtOC 


PtOHC PtH2OC PtOH PtO3P PtH2O PtO2 DieOHC 


DieH2O DieH2OC DieH3OC DieHO2C PtO2C DtHO2C 


DtHC DtH2O DtH2C DtH DtH2 DtH3C DtO2 DtOC DtO3P 


DtOHC DtH2OC DtO2C DtH2OC PrH PrO3P PrH2 PrO2 


PrOH PrH2O NeuHC NeuH2C NeuH3C NeuOC NeuO2C 


NeuOHC NeuH2OC NeuH3OC NeuHO2C 


PwHS PwH PwH2 PwOS PwO3P PwO2 PwOHS PwOH 


PwH2O DwH DwHS DwO3P DwOS DwOHS DwOH DwH2 VPC 


atH atO atSTotal atGTotal Iontotal 


CTNeutros cH cH2 cO1D cO3P cO2 cOH cH2O Suma 
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PropH2 PropO2 PropH2O FsO3P FO3P 


Eaw4 Eaw8 Eaw14 Eaw21 


InFOat OutFOat InFHat OutFHat 


FH FO FOH FH2O Oatout Hatout DifH2O 


H2norm O2norm H2Onorm fradicales 


FormH2O DesH2O FoutH2O atHini atOini atOsurf 


HSvol OSvol OHSvol H2OSvol Sumafgas FinO2 FoutO2 


atHradi atOradi atHmol atOmol atHion atOion atOsurf atHsurf 


FormH2 FormO2 DesH2 DesO2 FinH2 FoutH2 Prow9OHS Prow20OHS 


Prow13H2O Prow14H2O Prow15H2O Prow16H2O atHsur atOsur 


Prow17OHS 


;
 

VARIABLE


 H2 


H 


HC 


H2C 


H3C 


HS 


O2 


O3P 


OC 


O2C 


OS 


OH 


OHC 


H2O 


H2OC 


H3OC 


HO2C 


OHS 


OA 


O1D 


O2a 


HO2 


HA 


OHA 


O3 


;
 

*Según programa Miguel se usa COMPILE INITIAL tras GENERAL;
 

*para inicializar las variables a posteriori;
 

*y antes de GENERAL se usa COMPILE INSTANT;
 

COMPILE INSTANT;
 

PropH2ini = 1 - PropO2ini;
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Cin = pres*2.435E16;
 

CinH2 = propH2ini*Cin;
 

CinO2 = propO2ini*Cin;
 

i3 = ai3*T@bi3*exp(ci3/T);
 

i6 = ai6*T@bi6*exp(ci6/T);
 

a1 = aa1*T@ba1*exp(ca1/T);
 

ionO2 = propO2ini*i3/(propO2ini*i3 + propH2ini*i6);
 

ionH2 = propH2ini*i6/(propO2ini*i3 + propH2ini*i6);
 

ionOA = propO2ini*a1/(propO2ini*i3 + propH2ini*i6); 


**;
 

COMPILE GENERAL;
 

Ne = NeTot-OA-HA-OHA;
 

Rad = 5.0;
 

VP = 1709.;
 

VR = 4698.;
 

Are = 2494.;
 

tR = 0.61;
 

VPC = VP/VR;
 

VRS = VR/Are;
 

ST = 1.0E15;
 

SF = ST-OS-HS-Cov_OH*OHS;
 

*Constantes reacciones impacto electrónico;
 

d1 = ad1*T@bd1*exp(cd1/T);
 

d2 = ad2*exp(cd2/T);
 

*d2 = 3.49e-8*exp(-5.92/T);
 

d3 = ad3*exp(cd3/T);
 

d4 = ad4*T@bd4*exp(cd4/T);
 

*d5 = ad5*T@bd5*exp(cd5/T);
 

*d4 = -(2.82402E-11)*T + (3.38111E-11)*T@2 - (7.01504E-12)*T@3 


+ (6.09826E-13)*T@4 - (1.96671E-14)*T@5;
 

d5 = (1.67959E-10)*T - (1.22568E-11)*T@2 + (2.19508E-11)*T@3 


- (3.01892E-12)*T@4 + (1.2549E-13)*T@5;
 

*d6 = 0.;
 

d6 = ad6*T@bd6*exp(cd6/T);
 

d7 = ad7*T@bd7*exp(cd7/T);
 

*i1 = 0.;
 

*i2 = 0.;
 

*i3 = 0.;
 

*i4 = 0.;
 

*i5 = 0.;
 

*i6 = 0.;
 

*i7 = 0.;
 

*i8 = 0.;
 

*i9 = 0.;
 

mailto:1.2549E-13)*T@5
mailto:3.01892E-12)*T@4
mailto:2.19508E-11)*T@3
mailto:1.22568E-11)*T@2
mailto:1.96671E-14)*T@5
mailto:6.09826E-13)*T@4
mailto:7.01504E-12)*T@3
mailto:3.38111E-11)*T@2
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*i10 = 0.;
 

*i11 = 0.;
 

i1 = ai1*T@bi1*exp(ci1/T);
 

*i1 = (9.55301E-11)*T - (1.21783E-10)*T@2 + (4.22787E-11)*T@3;
 

* - (3.18022E-12)*T@4 + (7.4575E-14)*T@5;
 

i2 = ai2*T@bi2*exp(ci2/T);
 

*i2 = (1.09055E-12)*T + (2.16443E-12)*T@2 - (2.87794E-12)*T@3;
 

* + (8.29676E-13)*T@4 - (4.18881E-14)*T@5;
 

i3 = ai3*T@bi3*exp(ci3/T);
 

*i3 = (7.49524E-11)*T - (9.83735E-11)*T@2 + (3.51283E-11)*T@3;
 

* - (2.51068E-13)*T@4 - (5.57533E-14)*T@5;
 

i4 = ai4*T@bi4*exp(ci4/T);
 

i5 = ai5*T@bi5*exp(ci5/T);
 

i6 = ai6*T@bi6*exp(ci6/T);
 

i7 = ai7*T@bi7*exp(ci7/T);
 

*i7 = (2.78054E-10)*T - (4.16184E-10)*T@2 + (1.74364E-10)*T@3;
 

* - (1.85461E-11)*T@4 + (6.57459E-13)*T@5;
 

*i8 = (1.24741E-10)*T - (1.72063E-10)*T@2 + (6.61195E-11)*T@3;
 

* - (6.12998E-12)*T@4 + (1.91436E-13)*T@5;
 

i8 = ai8*T@bi8*exp(ci8/T);
 

*i9 = (1.32325E-10)*T - (1.33844E-11)*T@2 + (2.88652E-12)*T@3;
 

* + (1.8195E-13)*T@4 - (2.06371E-14)*T@5;
 

i9 = ai9*T@bi9*exp(ci9/T);
 

*i10 = (1.15731E-12)*T - (1.85202-13)*T@2 - (7.09024E-13)*T@3;
 

* + (2.72931E-13)*T@4 - (1.42354E-14)*T@5;
 

i10 = ai10*T@bi10*exp(ci10/T);
 

*i11 = -(6.88544E-10)*T - (1.28431E-13)*T@2 + (3.73201E-13)*T@3;
 

* - (2.28823E-13)*T@4 - (2.06934E-15)*T@5;
 

i11 = ai11*T@bi11*exp(ci11/T);
 

i12 = ai12*T@bi12*exp(ci12/T);
 

a1 = aa1*T@ba1*exp(ca1/T);
 

*a1 = 0;
 

*n1 = 0.;
 

*parn2 = 0.;
 

*n3 = 0.;
 

*n4 = 0.;
 

*n5 = 0.;
 

*n6 = 0.;
 

*n7 = 0.;
 

*n8 = 0.;
 

*n9 = 0.;
 

*n10 = 0.;
 

*n11 = 0.;
 

*n12 = 0.;
 

*n13 = 0.;
 

*n14 = 0.;
 

*n15 = 0.;
 

n1 = 7.51371E-9 - (1.11516E-9)*T + (1.03156E-10)*T@2 


-(4.14905E-12)*T@3 + (5.85916E-14)*T@4;
 

mailto:5.85916E-14)*T@4
mailto:4.14905E-12)*T@3
mailto:1.03156E-10)*T@2
mailto:2.06934E-15)*T@5
mailto:2.28823E-13)*T@4
mailto:3.73201E-13)*T@3
mailto:1.28431E-13)*T@2
mailto:1.42354E-14)*T@5
mailto:2.72931E-13)*T@4
mailto:7.09024E-13)*T@3
mailto:1.85202-13)*T@2
mailto:2.06371E-14)*T@5
mailto:1.8195E-13)*T@4
mailto:2.88652E-12)*T@3
mailto:1.33844E-11)*T@2
mailto:1.91436E-13)*T@5
mailto:6.12998E-12)*T@4
mailto:6.61195E-11)*T@3
mailto:1.72063E-10)*T@2
mailto:6.57459E-13)*T@5
mailto:1.85461E-11)*T@4
mailto:1.74364E-10)*T@3
mailto:4.16184E-10)*T@2
mailto:5.57533E-14)*T@5
mailto:2.51068E-13)*T@4
mailto:3.51283E-11)*T@3
mailto:9.83735E-11)*T@2
mailto:4.18881E-14)*T@5
mailto:8.29676E-13)*T@4
mailto:2.87794E-12)*T@3
mailto:2.16443E-12)*T@2
mailto:7.4575E-14)*T@5
mailto:3.18022E-12)*T@4
mailto:4.22787E-11)*T@3
mailto:1.21783E-10)*T@2
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parn2 = 0.5*(8.39247E-9 + (3.01631E-9)*T - (3.80439E-10)*T@2 


+ (1.31108E-11)*T@3 + (2.41631E-13)*T@4 


- (2.29832E-14)*T@5 + (3.5472E-16)*T@6);
 

n3 = 0.5*(8.39247E-9 + (3.01631E-9)*T - (3.80439E-10)*T@2 


+ (1.31108E-11)*T@3 + (2.41631E-13)*T@4 


- (2.29832E-14)*T@5 + (3.5472E-16)*T@6);
 

n4 = an4*(0.026/T)@cn4;
 

n5 = an5*(0.026/T)@cn5;
 

n6 = an6*(0.026/T)@cn6;
 

n7 = an7*(0.026/T)@cn7;
 

n8 = an8*(0.026/T)@cn8;
 

n9 = an9*(0.026/T)@cn9;
 

n10 = an10*(0.026/T)@cn10;
 

n11 = an11*(0.026/T)@cn11;
 

n12 = an12*(0.026/T)@cn12;
 

n13 = an13*(0.026/T)@cn13;
 

n14 = an14*(0.026/T)@cn14;
 

n15 = an15*(0.026/T)@cn15;
 

n16 = 2e-7;
 

n17 = 2e-7;
 

n18 = 2e-7;
 

n19 = 2e-7;
 

n20 = 2e-7;
 

n21 = 2e-7;
 

n22 = 2e-7;
 

n23 = 2e-7;
 

n24 = 2e-7;
 

n25 = 2e-7;
 

n26 = 2e-7;
 

n27 = 1e-7;
 

n28 = 2e-7;
 

n29 = 2e-7;
 

n30 = 2e-7;
 

n31 = 2e-7;
 

n32 = 4e-7;
 

a2 = aa2*T@ba2*exp(ca2/T);
 

a3 = aa3*T@ba3*exp(ca3/T);
 

a4 = aa4*T@ba4*exp(ca4/T);
 

dt1 = adt1*T@bdt1*exp(cdt1/T);
 

dt8 = adt8*T@bdt8*exp(cdt8/T);
 

dx1 = adx1*T@bdx1*exp(cdx1/T);
 

dx2 = adx2*T@bdx2*exp(cdx2/T);
 

hn2 = ahn2*Tg@bhn2*exp(chn2/Tg);
 

hn3 = ahn3*Tg@bhn3*exp(chn3/Tg);
 

hn4 = ahn4*Tg@bhn4*exp(chn4/Tg);
 

mailto:an15*(0.026/T)@cn15
mailto:an14*(0.026/T)@cn14
mailto:an13*(0.026/T)@cn13
mailto:an12*(0.026/T)@cn12
mailto:an11*(0.026/T)@cn11
mailto:an10*(0.026/T)@cn10
mailto:an9*(0.026/T)@cn9
mailto:an8*(0.026/T)@cn8
mailto:an7*(0.026/T)@cn7
mailto:an6*(0.026/T)@cn6
mailto:an5*(0.026/T)@cn5
mailto:an4*(0.026/T)@cn4
mailto:3.5472E-16)*T@6
mailto:2.29832E-14)*T@5
mailto:2.41631E-13)*T@4
mailto:1.31108E-11)*T@3
mailto:3.80439E-10)*T@2
mailto:3.5472E-16)*T@6
mailto:2.29832E-14)*T@5
mailto:2.41631E-13)*T@4
mailto:1.31108E-11)*T@3
mailto:3.80439E-10)*T@2
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hn5 = ahn5*Tg@bhn5*exp(chn5/Tg);
 

hn6 = ahn6*Tg@bhn6*exp(chn6/Tg);
 

hn12 = ahn12*Tg@bhn12*exp(chn12/Tg);
 

hn13 = ahn13*Tg@bhn13*exp(chn13/Tg);
 

hn14 = ahn14*Tg@bhn14*exp(chn14/Tg);
 

hn15 = ahn15*Tg@bhn15*exp(chn15/Tg);
 

x1 = ax1*T@bx1*exp(cx1/T);
 

x2 = ax2*T@bx2*exp(cx2/T);
 

*n16 = 0;
 

*Concentraciones especies moleculares neutras relativas;
 

atH = (2*H2+H+OH+2*H2O)*VR + ((HC+2*H2C+3*H3C+OHC 


+2*H2OC+3*H3OC+HO2C)*VP) + ((HS+OHS)*Are);
 

atO = (2*O2+O3P+OH+H2O)*VR + ((OC+2*O2C 


+OHC+H2OC+H3OC+2*HO2C)*VP) + ((OS+OHS)*Are);
 

atSTotal = ((OS+OHS)*Are) + ((HS+OHS)*Are);
 

atGTotal = (2*H2+H+OH+2*H2O)*VR + (2*O2+O3P+OH+H2O)*VR;
 

*Atomos H y O iniciales;
 

atHini= 2*CinH2*VR;
 

atOini= 2*CinO2*VR;
 

*Atomos H y O en forma de radicales;
 

atHradi=(H+OH)*VR;
 

atOradi=(O3P+OH)*VR;
 

*Atomos H y O en forma de especies moleculares;
 

atHmol = (2*H2+2*H2O)*VR;
 

atOmol = (2*O2+H2O)*VR;
 

*Atomos H y O en forma ionica;
 

atHion = ((HC+2*H2C+3*H3C+OHC+2*H2OC+3*H3OC+HO2C)*VP);
 

atOion = ((OC+2*O2C+OHC+H2OC+H3OC+2*HO2C)*VP);
 

*Atomos H y O en superficie;
 

atHsur = ((HS+OHS)*Are);
 

atOsur = ((OS+OHS)*Are);
 

*Atomos H y O salientes;
 

Oatout = (2*O2+O3P+OH+H2O)*VR;
 

Hatout = (2*H2+H+OH+2*H2O)*VR;
 

*Atomos H y O en fase gas;
 

atHgas = (2*H2+H+OH+2*H2O+HO2)*VR;
 

atOgas = (2*O2+OH+H2O+2*HO2+3*O3+O3P+O1D+2*O2a)*VR;
 

*Coberturas superficiales de especies atómicas y radicales;
 

thetaHS=HS/ST;
 

thetaOS=OS/ST;
 

thetaOHS=OHS/ST;
 

*Concentraciones superficiales expresadas en cm-3;
 

HSvol=HS*(1/VRS);
 

OSvol=OS*(1/VRS);
 

OHSvol=OHS*(1/VRS);
 

*Concentraciones iónicas relativas;
 

CTiones=HC+H2C+H3C+OC+O2C+OHC+H2OC+H3OC+HO2C;
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Iontotal = CTiones*VP;
 

mc1=HC/CTiones;
 

mc2=H2C/CTiones;
 

mc3=H3C/CTiones;
 

mc16=OC/CTiones;
 

mc17=OHC/CTiones;
 

mc18=H2OC/CTiones;
 

mc19=H3OC/CTiones;
 

mc32=O2C/CTiones;
 

mc33=HO2C/CTiones;
 

*Concentraciones de neutros relativas;
 

CTNeutros=H+H2+O3P+O2+OH+H2O+O1D+O2a+O3+HO2;
 

cH2=H2/CTNeutros;
 

cO2=O2/CTNeutros;
 

cO3P=O3P/CTNeutros;
 

cO1D=O1D/CTNeutros;
 

cH=H/CTNeutros;
 

cOH=OH/CTNeutros;
 

cH2O=H2O/CTNeutros;
 

cO2a=O2a/CTNeutros;
 

cO3=O3/CTNeutros;
 

cHO2=HO2/CTNeutros;
 

propH2=H2/(H2+O2+H2O);
 

propO2=O2/(H2+O2+H2O);
 

propH2O=H2O/(H2+O2+H2O);
 

Sumafgas=O2+H2+H2O;
 

fradicales=CTNeutros/Sumafgas;
 

H2norm=propH2*Cin;
 

O2norm=propO2*Cin;
 

H2Onorm=propH2O*Cin;
 

propOA = OA/NeTot;
 

propHA = HA/NeTot;
 

propOHA = OHA/NeTot;
 

propNe = Ne/NeTot;
 

*Términos reacciones heterogéneas;
 

*Difusión neutros a la pared y recombinación;
 

*Se incluyen radicales (OH) y especies atómicas (O3P,O1D y H);
 

*Velocidades medias especies neutras;
 

vtH = 2.52E+5;
 

vtH2 = 1.78E+5;
 

vtO3P = 6.30E+4;
 

vtOH = 6.11E+4;
 

vtO2 = 4.45E+4;
 

vtO1D = vtO3P;
 

vtO2a = vtO2;
 

*Coeficientes de difusión;
 

*Salvo H, hay que cambiar resto de valores;
 

DH = 3319.61/pres;
 

DO3P = 1890.9/pres;
 

DOH = 751.4/pres;
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DO2a = 500/pres;
 

A = Rad/2.405;
 

*Tiempos de difusión;
 

*Se considera difusión radial;
 

TdifH = (A@2)/DH;
 

TdifO3P = (A@2)/DO3P;
 

TdifOH = (A@2)/DOH;
 

TdifO1D = TdifO3P;
 

TdifO2a = (A@2)/DO2a;
 

*Coeficientes de adsorción y recombinación;
 

Gamma1 = 1.0;
 

Gamma3 = 0.0035;
 

Gamma5 = 1.0;
 

Gamma7 = 0.024;
 

Gamma9 = 0.006;
 

Gamma13 = 0.004;
 

Gamma15 = 0.005;
 

Gamma16 = 0.00005;
 

Gamma17 = 1.0;
 

Gamma20 = 0.002;
 

Gamma22 = 1;
 

Gamma23 = 0.007;
 

*Prefactores (ley tipo Arrhenius);
 

nudesH = 1.0E13;
 

nudifH = 1.0E13;
 

nudesO3P = 1.0E13;
 

nudifO3P = 1.0E13;
 

nudesOH = 1.0E12;
 

*Energías de desorción y difusión;
 

EdesH = 2.0;
 

EdifH = 0.2;
 

EdesO3P = 3.0;
 

EdifO3P = 0.65;
 

EdesOH = 4.0;
 

Eaw4 = 0.5;
 

Eaw8 = 0.5;
 

Eaw14 = 0.2;
 

Eaw21 = 0.4;
 

*Constante de Boltzmann kB en eV*K-1;
 

kB= 8.6173E-5;
 

*Tiempos interaccion pared;
 

Twall1 = (4*VRS*(1-0.5*Gamma1))/(Gamma1*vtH);
 

Twall3 = (4*VRS*(1-0.5*Gamma3))/(Gamma3*vtH);
 

Twall5 = (4*VRS*(1-0.5*Gamma5))/(Gamma5*vtO3P);
 

Twall7 = (4*VRS*(1-0.5*Gamma7))/(Gamma7*vtO3P);
 

Twall9 = (4*VRS*(1-0.5*Gamma9))/(Gamma9*vtO3P);
 

Twall13 = (4*VRS*(1-0.5*Gamma13))/(Gamma13*vtH);
 

Twall15 = (4*VRS*(1-0.5*Gamma15))/(Gamma15*vtOH);
 

Twall16 = (4*VRS)/(Gamma16*vtH2);
 

Twall17 = (4*VRS*(1-0.5*Gamma17))/(Gamma17*vtOH);
 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 189 
Twall20 = (4*VRS*(1-0.5*Gamma20))/(Gamma20*vtH);
 

Twall22 = (4*VRS*(1-0.5*Gamma22))/(Gamma22*vtO1D);
 

Twall23 = (4*VRS*(1-0.5*Gamma23))/(Gamma23*vtO2a);
 

Ttotal1 = TdifH + Twall1;
 

Ttotal3 = TdifH + Twall3;
 

Ttotal5 = TdifO3P + Twall5;
 

Ttotal7 = TdifO3P + Twall7;
 

Ttotal9 = TdifO3P + Twall9;
 

Ttotal13 = TdifH + Twall13;
 

Ttotal15 = TdifOH + Twall15;
 

Ttotal16 = Twall16;
 

Ttotal17 = TdifOH + Twall17;
 

Ttotal20 = TdifH + Twall20;
 

Ttotal22 = TdifO1D + Twall22;
 

Ttotal23 = TdifO2a + Twall23;
 

*Coeficientes cinéticos r. pared;
 

*w1 = 0.;
 

w1 = VRS/(Ttotal1*ST);
 

w2 = 0.;
 

*w2 = nudesH*exp(-EdesH/(kB*300.));
 

*w3 = 0.;
 

w3 = 1/(Ttotal3*ST);
 

w4 = 0.;
 

*w4 = (nudifH*exp((-EdifH -Eaw4)/(kB*300.)))/(4*ST);
 

*w5 = 0.;
 

w5 = VRS/(Ttotal5*ST);
 

w6 = 0.;
 

*w6 = nudesO3P*exp(-EdesO3P/(kB*300.));
 

*w7 = 0.;
 

w7 = 1/(Ttotal7*ST);
 

w8 = 0.;
 

*w8 = (nudifO3P*exp((-EdifO3P -Eaw8)/(kB*300.)))/(4*ST);
 

*w9 = 0.;
 

w9 = VRS/(Ttotal9*ST);
 

w13 = 1/(Ttotal13*ST);
 

*w13 = 0.;
 

w14 = 0.;
 

*w14 = (nudifH*exp((-EdifH -Eaw14)/(kB*300.)))/(4*ST);
 

*w15 = 0.;
 

w15 = 1/(Ttotal15*ST);
 

*w16 = 0.;
 

w16 = 1/(Ttotal16*ST);
 

w17 = VRS/(Ttotal17*ST);
 

*w19 = nudesOH*exp(-EdesOH/(kB*300.));
 

w19 = 0.;
 

w20 = VRS/(Ttotal20*ST);
 

*w20 = 0.;
 

*w21 = (nudifH*exp(-EdifH/(kB*300.))*exp(-Eaw21/(kB*300.)))/(4*ST);
 

w21 = 0.;
 

w22 = 1/Ttotal22;
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w23 = 1/Ttotal23;
 

*Neutralización de iones en el cátodo;
 

CPie = Ne*(i1*O3P + i2*O2 + i3*O2 + i4*H 


+ i5*H2 + i6*H2 + i7*OH + i8*H2O 


+ i9*H2O + i10*H2O + i11*H2O +i12*O2a);
 

CNie = Ne*(n1*H2C + parn2*H3C + n3*H3C + n4*O2C 


+ n7*OHC + n8*H2OC + n9*H2OC + n10*H2OC 


+ n11*H3OC + n12*H3OC + n13*H3OC + n14*H3OC + n15*HO2C) 


+ OA*(n16*HC + n17*H2C + n18*H3C + n19*OC + (n20+n26)*OHC 


+ n21*H2OC + n22*H3OC + n23*O2C + n24*HO2C) 


+ OHA*(n25*OC + n27*H2C + n28*H3C + n29*O2C + n30*OHC + n31*H2OC 


+ n32*H3OC);
 

DenMI = HC + (H2C/(2@0.5)) + (H3C/(3@0.5)) 


+ (OC/(16@0.5)) + (OHC/(17@0.5)) + (H2OC/(18@0.5)) 


+ (H3OC/(19@0.5)) + (O2C/(32@0.5)) 


+ (HO2C/(33@0.5));
 

T_HC = (CPie - CNie)/DenMI;
 

T_H2C = (CPie - CNie)/((2@0.5)*DenMI);
 

T_H3C = (CPie - CNie)/((3@0.5)*DenMI);
 

T_OC = (CPie - CNie)/((16@0.5)*DenMI);
 

T_OHC = (CPie - CNie)/((17@0.5)*DenMI);
 

T_H2OC = (CPie - CNie)/((18@0.5)*DenMI);
 

T_H3OC = (CPie - CNie)/((19@0.5)*DenMI);
 

T_O2C = (CPie - CNie)/((32@0.5)*DenMI);
 

T_HO2C = (CPie - CNie)/((33@0.5)*DenMI);
 

R = 1;
 

k1 = R*T_HC;
 

k2 = R*T_H2C;
 

k3 = R*T_H3C;
 

k4 = R*T_OC;
 

k5 = R*T_O2C;
 

k6 = R*T_OHC;
 

k7 = R*T_H2OC;
 

k8 = R*T_H3OC;
 

k9 = R*T_HO2C;
 

*Terminos de formacion por impacto electrónico;
 

*Incluye ionizacion, disociacion y neutralizacion;
 

*Notacion:PieOC es produccion por i.e. de O+, ...;
 

PieHC = i4*H*Ne + i5*H2*Ne + i10*H2O*Ne;
 

PieH = i5*H2*Ne + i9*H2O*Ne + 2*d1*H2*Ne 


+ d4*OH*Ne + d5*H2O*Ne 


+ 2*n1*H2C*Ne + 3*parn2*H3C*Ne + n3*H3C*Ne 


+ n7*OHC*Ne + n8*H2OC*Ne + 2*n10*H2OC*Ne 


+ 2*n11*H3OC*Ne + n12*H3OC*Ne + n14*H3OC*Ne + n15*HO2C*Ne 


+ a3*H2*Ne;
 

PieH2C = i6*H2*Ne;
 

PieH2 = i11*H2O*Ne + n3*H3C*Ne 


+ n9*H2OC*Ne + n12*H3OC*Ne + n13*H3OC*Ne 


+d6*H2O*Ne 


mailto:CNie)/((33@0.5)*DenMI
mailto:CNie)/((32@0.5)*DenMI
mailto:CNie)/((19@0.5)*DenMI
mailto:CNie)/((18@0.5)*DenMI
mailto:CNie)/((17@0.5)*DenMI
mailto:CNie)/((16@0.5)*DenMI
mailto:CNie)/((3@0.5)*DenMI
mailto:CNie)/((2@0.5)*DenMI
mailto:HO2C/(33@0.5
mailto:O2C/(32@0.5
mailto:H3OC/(19@0.5
mailto:H2OC/(18@0.5
mailto:OHC/(17@0.5
mailto:OC/(16@0.5
mailto:H3C/(3@0.5
mailto:H2C/(2@0.5


   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 191 
;
 

PieOC = i1*O3P*Ne + i2*O2*Ne + i11*H2O*Ne;
 

PieO3P = i2*O2*Ne + 2*d2*O2*Ne + d4*OH*Ne 


+ 2*n4*O2C*Ne + n7*OHC*Ne 


+ n9*H2OC*Ne + n10*H2OC*Ne + n12*H3OC*Ne 


+ a1*O2*Ne + a4*O2a*Ne + d7*O2*Ne +2*dx1*O2a*Ne;
 

PieOH = i10*H2O*Ne + d5*H2O*Ne 


+ n8*H2OC*Ne + n11*H3OC*Ne + n13*H3OC*Ne + a2*H2O*Ne;
 

PieO2C = i3*O2*Ne +i12*Ne*O2a;
 

PieOHC = i7*OH*Ne + i9*H2O*Ne;
 

PieH2OC = i8*H2O*Ne;
 

PieO2 = n15*HO2C*Ne +dx2*O2a*Ne;
 

PieH2O = n14*H3OC*Ne;
 

PieOA = a1*O2*Ne + a4*O2a*Ne;
 

PieHA = a2*H2O*Ne + a3*H2*Ne;
 

PieO1D = d6*H2O*Ne + d7*O2*Ne +x2*O3P*Ne;
 

PieO2a = x1*Ne*O2;
 

*Terminos de destrucción por impacto electronico;
 

*Notacion:DieOC es destruccion por i.e. de OC, ...;
 

DieH = -i4*H*Ne;
 

DieH2 = -i5*H2*Ne - i6*H2*Ne -d1*H2*Ne - a3*H2*Ne;
 

DieH2C = -n1*H2C*Ne;
 

DieH3C = -parn2*H3C*Ne -n3*H3C*Ne;
 

DieO3P = -i1*O3P*Ne -x2*O3P*Ne;
 

DieO2 = -i2*O2*Ne -i3*O2*Ne -d2*O2*Ne 


-a1*O2*Ne -d7*O2*Ne -x1*Ne*O2;
 

DieOH = -i7*OH*Ne -d4*OH*Ne;
 

DieOHC = -n7*OHC*Ne;
 

DieO2C = -n4*O2C*Ne;
 

DieH2O = -i8*H2O*Ne -i9*H2O*Ne -i10*H2O*Ne 


-i11*H2O*Ne -d5*H2O*Ne -a2*H2O*Ne -d6*H2O*Ne;
 

DieH2OC = -n8*H2OC*Ne -n9*H2OC*Ne -n10*H2OC*Ne;
 

DieH3OC = -n11*H3OC*Ne -n12*H3OC*Ne -n13*H3OC*Ne -n14*H3OC*Ne;
 

DieHO2C = -n15*HO2C*Ne;
 

DieO2a = -a4*O2a*Ne -dx1*O2a*Ne -dx2*O2a*Ne -i12*Ne*O2a;
 

*Terminos de formación por reacciones homogéneas;
 

*con transferencia de carga ión-neutro;
 

*Notación:PtH3C es producción de H3+, ...;
 

PtOC = t1*HC*O3P;
 

PtH = t1*HC*O3P + t2*HC*H2O + t3*HC*O2 + t5*H2C*H2 


+ t7*H2C*H2O + t9*H2C*O2 + t11*H3C*O3P + t15*OC*H2 


+ t17*OHC*H2 + t21*H2OC*H2 + t24*O2C*H2 




    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

192 

+ n18*H3C*OA + n20*OHC*OA + dt1*HA*Ne 


+t27*OA*H2 +n27*H2C*OHA;
 

PtH2OC = t2*HC*H2O + t6*H2C*H2O + t11*H3C*O3P + t16*H2O*OC 


+ t17*OHC*H2 + t18*OHC*H2O;
 

PtO2C = t3*HC*O2 + t8*H2C*O2 + t20*OHC*O2 + t23*H2OC*O2;
 

PtH2 = t4*H2C*H + t6*H2C*H2O + t8*H2C*O2 + t10*H3C*O3P 


+ t12*H3C*H2O + t13*H3C*O2 + dt2*HA*H +n28*H3C*OHA;
 

PtHC = t4*H2C*H + t14*OC*H;
 

PtH3C = t5*H2C*H2 + t25*HO2C*H2;
 

PtH3OC = t7*H2C*H2O + t12*H3C*H2O 


+ t19*OHC*H2O + t21*H2OC*H2 + t22*H2OC*H2O;
 

PtHO2C = t9*H2C*O2 + t13*H3C*O2 + t24*O2C*H2;
 

PtOHC = t10*H3C*O3P + t15*OC*H2;
 

PtO3P = t14*OC*H + t16*H2O*OC + t19*OHC*H2O 


+ n21*H2OC*OA + n23*O2C*OA;
 

PtOH = t18*OHC*H2O + t20*OHC*O2 + t22*H2OC*H2O 


+ n22*OA*H3OC + n16*HC*OA + n24*HO2C*OA + dt3*HA*O3P 


+t28*OA*H2O +dt8*Ne*OHA +n29*O2C*OHA +2*n30*OHC*OHA 


+n31*H2OC*OHA;
 

PtH2O = t23*H2OC*O2 


+ n22*OA*H3OC + n17*H2C*OA + n18*H3C*OA + n21*H2OC*OA 


+ dt5*OHA*H +n27*H2C*OHA +n28*H3C*OHA +n31*H2OC*OHA 


+2*n32*H3OC*OHA;
 

PtO2 = t25*HO2C*H2 


+ t26*O3P*OA +n19*OC*OA +n20*OHC*OA +n23*O2C*OA +n24*HO2C*OA 


+n29*O2C*OHA;
 

PtHO2 = dt4*HA*O2 +dt6*OHA*O3P +n25*OC*OHA +n26*OHC*OA;
 

PtO3 = dt7*OA*O2a;
 

PtOHA = t27*OA*H2 +t28*OA*H2O;
 

*Terminos de destrucción por reacciones homogéneas;
 

*con transferencia de carga;
 

*Notacion:DtH3C es destruccion reac. homogenea de H3+, ...;
 

DtHC = -t1*HC*O3P -t2*HC*H2O -t3*HC*O2 


-n16*HC*OA;
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DtO3P = -t1*HC*O3P -t10*H3C*O3P -t11*H3C*O3P - t26*O3P*OA 


-dt3*HA*O3P -dt6*OHA*O3P;
 

DtH2O = -t2*HC*H2O -t6*H2C*H2O -t7*H2C*H2O -t12*H3C*H2O 


-t16*OC*H2O -t18*OHC*H2O -t19*OHC*H2O -t22*H2OC*H2O 


-t28*OA*H2O ;
 

DtO2 = -t3*HC*O2 -t8*H2C*O2 -t9*H2C*O2 -t13*H3C*O2 


-t20*OHC*O2 -t23*H2OC*O2 -dt4*HA*O2;
 

DtH2C = -t4*H2C*H -t5*H2C*H2 -t6*H2C*H2O 


-t7*H2C*H2O -t8*H2C*O2 -t9*H2C*O2 


-n17*H2C*OA -n27*H2C*OHA;
 

DtH = -t4*H2C*H -t14*OC*H -dt2*HA*H -dt5*OHA*H;
 

DtH2 = -t5*H2C*H2 -t15*OC*H2 -t17*OHC*H2 -t21*H2OC*H2 


-t24*O2C*H2 -t25*HO2C*H2 -t27*OA*H2;
 

DtH3C = -t10*H3C*O3P -t11*H3C*O3P -t12*H3C*H2O -t13*H3C*O2 


-n18*H3C*OA -n28*H3C*OHA;
 

DtOC = -t14*OC*H -t15*OC*H2 -t16*OC*H2O 


-n19*OC*OA -n25*OC*OHA;
 

DtOHC = -t17*OHC*H2 -t18*OHC*H2O -t19*OHC*H2O -t20*OHC*O2 


-n20*OHC*OA -n26*OHC*OA -n30*OHC*OHA;
 

DtH2OC = -t21*H2OC*H2 -t22*H2OC*H2O -t23*H2OC*O2 


-n21*H2OC*OA -n31*H2OC*OHA;
 

DtO2C = -t24*O2C*H2 


-n23*O2C*OA -n29*O2C*OHA;
 

DtHO2C = -t25*HO2C*H2 


-n24*HO2C*OA;
 

DtOA = -n16*HC*OA -n17*H2C*OA -n18*H3C*OA -n19*OC*OA -n20*OHC*OA 


-n21*H2OC*OA -n22*H3OC*OA -n23*O2C*OA -n24*HO2C*OA -t26*O3P*OA 


-dt7*OA*O2a -n26*OHC*OA -t27*OA*H2 -t28*OA*H2O;
 

DtH3OC = -n22*H3OC*OA -n32*H3OC*OHA;
 

DtHA = -dt1*HA*Ne -dt2*HA*H -dt3*HA*O3P -dt4*HA*O2;
 

DtOHA = -dt5*OHA*H -dt6*OHA*O3P -n25*OC*OHA -dt8*Ne*OHA 


-n27*H2C*OHA -n28*H3C*OHA -n29*O2C*OHA -n30*OHC*OHA 


-n31*H2OC*OHA -n32*H3OC*OHA;
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DtO2a = -dt7*OA*O2a;
 

*Reacciones homogéneas con especies excitadas o radicales;
 

*en fase gas;
 

*Producción;
 

PnO3P = hn1*H*O3 +hn2*H*HO2 +hn7*O2a*HO2 +2*hn10*O1D*O3 


+(hn12+hn13)*O1D*O2 +hn16*O1D*H2O;
 

PnHO2 = hn1*H*O3;
 

PnH2O = hn2*H*HO2 +hn3*H*HO2 +hn16*O1D*H2O;
 

PnO1D = hn3*H*HO2;
 

PnO2 = hn4*H*HO2 +hn6*O1D*HO2 +hn7*O2a*HO2 +hn8*H*O3 


+ 2*hn9*O1D*O3 +hn10*O1D*O3 +hn12*O1D*O2 +hn14*O1D*OH;
 

PnH2 = hn4*H*HO2;
 

PnOH = 2*hn5*H*HO2 +hn6*O1D*HO2 +hn7*O2a*HO2 +hn8*H*O3 


+hn11*O1D*H2 +2*hn15*O1D*H2O;
 

PnH = hn11*O1D*H2 +hn14*O1D*OH;
 

PnO2a = hn13*O1D*O2;
 

*Destrucción;
 

DnH = -(hn1+hn8)*H*O3 -(hn2+hn3+hn4+hn5)*H*HO2;
 

DnO3 = -(hn1+hn8)*H*O3 -(hn9+hn10)*O1D*O3;
 

DnHO2 = -(hn2+hn3+hn4+hn5)*H*HO2 -hn6*O1D*HO2 -hn7*O2a*HO2;
 

DnO1D = -hn6*O1D*HO2 -(hn9+hn10)*O1D*O3 -hn11*O1D*H2 


-(hn12+hn13)*O1D*O2 -hn14*O1D*OH -(hn15+hn16)*O1D*H2O;
 

DnO2a = -hn7*O2a*HO2;
 

DnH2 = -hn11*O1D*H2;
 

DnO2 = -(hn12+hn13)*O1D*O2;
 

DnOH = -hn14*O1D*OH;
 

DnH2O = -(hn15+hn16)*O1D*H2O;
 

*Producción especies neutras por neutralización;
 

*en la pared;
 

PrH = k1*HC + k3*H3C + k8*H3OC + k9*HO2C;
 

PrH2 = k2*H2C + k3*H3C;
 

PrO2 = k5*O2C + k9*HO2C;
 

PrOH = k6*OHC;
 

PrH2O = k7*H2OC + k8*H3OC;
 

*Destrucción de iones por neutralización en la pared;
 

NeuHC = -k1*HC;
 

NeuH2C = -k2*H2C;
 

NeuH3C = -k3*H3C;
 

NeuOC = -k4*OC;
 

NeuO2C = -k5*O2C;
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NeuOHC = -k6*OHC;
 

NeuH2OC = -k7*H2OC;
 

NeuH3OC = -k8*H3OC;
 

NeuHO2C = -k9*HO2C;
 

*Balance de cargas negativas;
 

*ambip = 1 + T/0.026;
 

ambip = 1;
 

FTotC = NeuHC + NeuH2C + NeuH3C + NeuOC + NeuO2C 


+ NeuOHC + NeuH2OC + NeuH3OC + NeuHO2C;
 

raizmOA = ((16/5.486E-4)@0.5)/ambip;
 

*DAn = FTotC*OA/(Ne*raizmOA + OA);
 

DAn = 0;
 

PrO3P = k4*OC - DAn;
 

*Faltan introducir reacciones w10 y w11;
 

*Deexcitación en la pared de O1D y OH(A);
 

*Producción de O3P en la pared;
 

*Destrucción de O1D en la pared;
 

*Términos reacciones heterogéneas en pared;
 

*Producción de especies por r. heterog.;
 

*Los términos de superficie en molec.cm-2;
 

PwHS = w1*H*SF;
 

PwH = w2*HS*(1/VRS);
 

PwH2 = w3*HS*H + w4*HS*HS*(1/VRS);
 

PwOS = w5*O3P*SF;
 

PwO3P = w6*OS*(1/VRS) +w22*O1D;
 

PwO2 = w7*O3P*OS + w8*OS*OS*(1/VRS) +w23*O2a;
 

PwOHS = w9*HS*O3P + w17*OH*SF + w20*OS*H + w21*HS*OS;
 

PwH2O = w13*OHS*H + w14*OHS*HS*(1/VRS) 


+ w15*OH*HS + w16*OS*H2;
 

PwOH = w19*OHS*(1/VRS);
 

*Destrucción de especies por r. heterog.;
 

DwH = -w1*H*SF*(1/VRS) -w3*H*HS 


-w13*OHS*H -w20*H*OS*(1/VRS);
 

DwHS = -w2*HS -w3*HS*H*VRS -2*w4*HS*HS -w9*HS*O3P 


-w14*OHS*HS -w15*OH*HS*VRS -w21*OS*HS;
 

DwO3P = -w5*O3P*SF*(1/VRS) -w7*OS*O3P -w9*HS*O3P*(1/VRS);
 

DwOS = -w6*OS -w7*OS*O3P*VRS -2*w8*OS*OS -w20*OS*H -w21*OS*HS 


-w16*OS*H2*VRS;
 

DwOHS = -w14*OHS*HS -w19*OHS -w13*OHS*H*VRS;
 

DwH2 = -w16*OS*H2;
 

DwOH = -w17*OH*SF*(1/VRS)-w15*OH*HS;
 

DwO1D = -w22*O1D;
 

DwO2a = -w23*O2a;
 

*Flujos definidos según programa I. Méndez;
 

*Volumen del reactor para H, O3P y O1D también;
 

FeH2 = CinH2*VR/tR;
 

mailto:16/5.486E-4)@0.5)/ambip
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FeO2 = CinO2*VR/tR;
 

Fe = FeH2 + FeO2;
 

FsO3P = O3P*VR/tR;
 

FsO2 = O2*VR/tR;
 

FsH = H*VR/tR;
 

FsH2 = H2*VR/tR;
 

FsOH = OH*VR/tR;
 

FsH2O = H2O*VR/tR;
 

FsO1D = O1D*VR/tR;
 

FsHO2 = HO2*VR/tR;
 

FsO2a = O2a*VR/tR;
 

FsO3 = O3*VR/tR;
 

Fs = FsO3P + FsO2 + FsH + FsH2 + FsOH + FsH2O 


+ FsO1D + FsHO2 + FsO2a + FsO3;
 

*FeH2 = 0.;
 

*FeO2 = 0.;
 

*FsO3P = 0.;
 

*FsOH = 0.;
 

*FsH2O = 0.;
 

*FsH = 0.;
 

*FsH2 = 0.;
 

*FsO2 = 0.;
 

*Flujos atómicos de entrada y salida;
 

InFHat = 2*CinH2*VR/tR;
 

OutFHat = (2*H2+H+OH+2*H2O)*VR/tR;
 

InFOat = 2*CinO2*VR/tR;
 

OutFOat = (2*O2+O3P+OH+H2O)*VR/tR;
 

*Formación y destrucción de H2O;
 

FormH2O = (PrH2O)*VPC;
 

DesH2O = -(DtH2O + DieH2O)*VPC;
 

FoutH2O = H2O/tR;
 

DifH2O = FormH2O + PwH2O - DesH2O;
 

*Formación y destrucción de H2;
 

FormH2 = (PieH2 + PrH2 + PtH2)*VPC;
 

DesH2 = -(DieH2 + DtH2)*VPC;
 

FinH2 = CinH2/tR;
 

FoutH2 = H2/tR;
 

*Formación y destrucción de O2;
 

FormO2 = (PieO2 + PrO2 + PtO2)*VPC;
 

DesO2 = -(DieO2 + DtO2)*VPC;
 

FinO2 = CinO2/tR;
 

FoutO2 = O2/tR;
 

*Produccion OHS via w20, w9 y adsorción;
 

Prow9OHS = w9*HS*O3P;
 

Prow20OHS = w20*OS*H;
 

Prow17OHS = w17*OH*SF;
 

*Produccion H2O via w13 a w16;
 

Prow13H2O = w13*OHS*H;
 

Prow14H2O = w14*OHS*HS*(1/VRS);
 

Prow15H2O = w15*OH*HS;
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Prow16H2O = w16*OS*H2;
 

*Flujos átomos y radicales (cm-2*s-1) hacia la superficie aprox.;
 

FH = H*vtH/4;
 

FO3P = O3P*vtO3P/4;
 

FOH = OH*vtOH/4;
 

evoH3C = DieH3C + PtH3C + DtH3C + NeuH3C;
 

ConTot = H +H2 +O3P +O2 +OH +H2O +O1D +O2a +O3 +HO2;
 

par1=t9*H2C*O2;
 

par2 =t13*H3C*O2;
 

par3=t24*O2C*H2; 


**;
 

COMPILE INITIAL;
 

H2 = CinH2;
 

H = 0;
 

HC = 0;
 

H2C = ionH2*NeTot;


 H3C = 0;
 

HS = 0;
 

O2 = CinO2;
 

O3P = 0;
 

OC = 0;
 

O2C = ionO2*NeTot;
 

OS = 0;
 

OH = 0;


 OHC = 0;


 H2O = 0;


 H2OC = 0;


 H3OC = 0;


 HO2C = 0;
 

OHS = 0;
 

OA = 0;
 

HA = 0;


 O1D = 0;


 HO2 = 0;


 OHA = 0;


 O2a = 0;


 O3 = 0; 


**;
 

COMPILE EQUATIONS ;
 

*Ecuaciones diferenciales;
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*Notación 'H2 significa derivada primer orden respecto al tiempo;
 

*Falta introducir ecuación diferencial para OH(A) excitado;
 

'H2 = FeH2/VR -FsH2/VR 


+ (PieH2 + DieH2 + PrH2 + PtH2 + DtH2 )*VPC 


+ PwH2 + DwH2 + PnH2 + DnH2;
 

'H = -FsH/VR + (PieH + DieH + PtH + DtH + PrH )*VPC 


+ PwH + DwH + DnH + PnH;
 

'HC = PieHC + PtHC + DtHC + NeuHC;
 

'H2C = PieH2C + DieH2C + DtH2C + NeuH2C;
 

'H3C = DieH3C + PtH3C + DtH3C + NeuH3C;
 

'HS = PwHS + DwHS;
 

'O2 = FeO2/VR -FsO2/VR 


+ (PieO2 + DieO2 + PrO2 + PtO2 + DtO2 )*VPC 


+ PwO2 + PnO2 + DnO2;
 

'O3P = -FsO3P/VR 


+ (PieO3P + DieO3P + PrO3P + PtO3P + DtO3P )*VPC 


+ PwO3P + DwO3P + PnO3P;
 

'OC = PieOC + PtOC + DtOC + NeuOC;
 

'O2C = PieO2C + DieO2C + PtO2C + DtO2C + NeuO2C;
 

'OS = PwOS + DwOS;
 

'OH = -FsOH/VR 


+ (PieOH + DieOH + PrOH + PtOH )*VPC 


+ PwOH + DwOH + PnOH + DnOH;
 

'H2O = -FsH2O/VR 


+ (PieH2O + DieH2O + DtH2O + PrH2O + PtH2O)*VPC 


+ PwH2O + PnH2O + DnH2O;
 

'OHC = PieOHC + DieOHC + PtOHC + DtOHC + NeuOHC;
 

'H2OC = PieH2OC + DieH2OC + PtH2OC + DtH2OC + NeuH2OC;
 

'H3OC = DieH3OC + PtH3OC + NeuH3OC + DtH3OC;
 

'HO2C = PtHO2C + DieHO2C + DtHO2C + NeuHO2C;
 

'OHS = PwOHS + DwOHS;
 

'OA = PieOA + DtOA + DAn;
 

'HA = PieHA + DtHA;
 

'O1D = -FsO1D/VR + (PieO1D)*VPC + DwO1D + PnO1D + DnO1D;
 

'HO2 = -FsHO2/VR + (PtHO2)*VPC + PnHO2 + DnHO2;
 

'OHA = PtOHA + DtOHA;
 

'O2a = -FsO2a/VR +(PieO2a + DtO2a + DieO2a)*VPC 


+ DwO2a + PnO2a + DnO2a;
 

'O3 = -FsO3/VR + (PtO3)*VPC + DnO3; 


**;
 

SETPSTREAM 1 8 16;
 

TIME  H H2 O3P O2 OH H2O O1D O2a O3 HO2 ConTot; 


**;
 

SETPSTREAM 3 7 16;
 

TIME  HC H2C H3C OC O2C OHC H2OC H3OC HO2C ; 


**;
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SETPSTREAM 4 10 16;
 

TIME  mc1 mc2 mc3 mc16 mc17 mc18 mc19 mc32 mc33; 


**;
 

SETPSTREAM 9 11 16;
 

TIME  HSvol OSvol OHSvol Iontotal OutFHat OutFOat InFHat InFOat; 


**;
 

SETPSTREAM 13 12 16;
 

TIME  cH2 cO2 cH2O cH cO3P cOH cO1D cO2a cHO2 cO3 OHS HS OS; 


**;
 

SETPSTREAM 15 14 16;
 

TIME  OHS HS OS propH2 propO2 propH2O; 


**;
 

SETPSTREAM 17 16 16;
 

TIME H2norm H2Onorm atH atO FormH2O DesH2O FoutH2O; 


**;
 

SETPSTREAM 19 18 16;
 

TIME atHradi atOradi atHsur atOsur infoat outfoat atHgas atOgas; 


**;
 

SETPSTREAM 20 2 16;
 

TIME FormH2 DesH2 DwH2 PwH2 FinH2 FoutH2 FormO2 DesO2 PwO2; 


**;
 

SETPSTREAM 5 21 16;
 

TIME Prow13H2O Prow14H2O Prow15H2O Prow16H2O PieO3P PieH; 


**;
 

SETPSTREAM 6 22 16;
 

TIME propHA propOA propOHA propNe; 


**;
 

COMPILE OUT;
 

PSTREAM 1 ;
 

PSTREAM 3 ;
 

PSTREAM 4 ;
 

PSTREAM 9 ;
 

PSTREAM 13 ;
 

PSTREAM 15 ;
 

PSTREAM 17 ;
 

PSTREAM 19 ;
 

PSTREAM 20 ;
 

PSTREAM 5 ;
 

PSTREAM 6 ; 


**;
 

WHENEVER
 

TIME = 20000 * (+0.1) 0 % 


CALL OUT; 


**;
 

BEGIN;
 

STOP;
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