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la simulación de experimentos. No querŕıa olvidarme de Christophe Domain en estos
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Summary

As the current world reliance on fossil fuels proves to have catastrophic environmen-

tal consequences, which are only exacerbated with a growing world economy and

population, a future clean source of energy is required. The scientific community

expects nuclear fusion to fulfil this task, in particular magnetically confined fusion.

To achieve this, an experimental fusion reactor, the ITER Project, is underway and

shall provide the basis for a future demonstration power plant, known as DEMO.

One of the most important challenges in the design of a future nuclear fusion

reactor is the choice of materials. Materials are subjected to an intense flux of

neutrons and heat in a fusion reactor like ITER or, in a much more pronounced

way, DEMO. Under irradiation, a large amount of defects are created and, as a

consequence, the properties of materials are severely degraded, and may cause the

reactor components to malfunction or break.

Therefore, the choice of materials in fusion reactors depends greatly on their

response to neutron irradiation. However, in order to replicate the behaviour of

materials under conditions similar to ITER or DEMO, very energetic sources of

neutron irradiation are needed, but these are not readily available. Hence, in the

last decades, the use of computational simulations has become a fast and inexpensive

method to study the behaviour of materials under irradiation, as they help avoid

long and costly experiments. In addition, atomistic mechanisms which are not easily

accessible to characterisation can be investigated with the help of simulations.

A number of techniques are available to simulate microstructural defect evolu-

tion. In this work, our choice was the Object Kinetic Monte Carlo (OKMC) method,
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which treats each defect (or particle) as an individual object with a set of parame-

ters. The OKMC method is renowned for its accuracy and flexibility; nevertheless,

its computational cost is substantial. In particular, when the number of particles in

the system is very large, the resulting time step, which is approximately inversely

proportional to the amount of particles, is very small, and many computational steps

are needed to finish the simulation.

In order to bypass this problem, in our approach, the time step is first imposed

on the particle system, and then the nature of events that are undergone by the par-

ticles during this time step is established and their amount calculated. Specifically,

it is possible to sample the amount of performed events with a certain event rate

from a Poisson distribution. Since the event rates of each particle are, in principle,

independent of the rest of particles, these computations can be done for all particles

in parallel. For this purpose, an algorithm labelled the parallel Tau-leaping algo-

rithm (PTLA) was developed and implemented on graphics cards. First, the sums

of event rates displayed by each particle in the system are calculated, and then the

time step is computed as inversely proportional to the maximum of these sums of

event rates. Thus, the time step only depends on the maximum sum of event rates

available in the system, which is a property of a specific particle, and is therefore

independent of the total number of particles. This is a clear advantage over classic

OKMC models, as the time step independence of the number of particles in the

system allows for time steps which are orders of magnitude larger. In turn, this

offers better statistical treatment for the study of systems with larger amounts of

particles; particularly, as far as particles at low density are concerned.

However, in some cases, the PTLA is not sufficient to offer good performance, so

several approximations are required. For instance, when a few particles with very

large sums of event rates are present in the system, the resulting time step is very

small. If these few particles do not contribute to the evolution of the system as a

whole, a large number of computational steps are needed to observe any significant

change, which is an obstacle to performance. We included an approximation to

solve this problem, in which these few particles do not count when the time step is

computed. Therefore, the resulting time step is larger and less computational effort

is required to finish the simulation.

An additional technique, known as the Green’s Function Reaction Dynamics
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(GFRD) method, was applied in this work for systems at low density. In this case,

particles are able to perform many migrations before meeting another particle to

interact with, such that a diffusion coefficient can be defined. Then, these migrations

can be replaced by a single jump, and the time step is advanced accordingly. The

GFRD method reduces the number of necessary computational steps by several

orders of magnitude, and is appropriate for the study of low-density systems with

an important number of very mobile particles. In this dissertation, the application

of the GFRD method in our work is detailed, making special emphasis on systems

under continuous irradiation.

Our work is validated with a number of different test cases and simulations, in-

cluding the simulation of ion irradiation experiments in Fe and FeCr, legitimising our

choice for a parallel model based on graphics cards and justifying the assumptions

that were made for the PTLA and the included approximations. The fact that large

amounts of very mobile particles, such as dislocation loops, can be treated with our

model in realistic runtimes (from minutes to a few days), makes it a valuable tool

for the simulation of microstructural evolution in nuclear materials.
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Resumen

Dado que la actual dependencia mundial de los combustibles fósiles muestra ciertas

consecuencias catastróficas para el medio ambiente, las cuales son magnificadas a

medida que crecen la economı́a y población mundiales, se necesita una fuente de en-

erǵıa limpia para el futuro. La comunidad cient́ıfica espera que sea la fusión nuclear

la que desempeñe este papel, en particular la fusión por confinamiento magnético.

Para ello, un reactor de fusión experimental, el Proyecto ITER, está en marcha y

proporcionará las bases para un futuro reactor de demostración llamado DEMO.

Uno de los desaf́ıos principales en el diseño de un futuro reactor de fusión es

la elección de los materiales. En efecto, los materiales serán sometidos a un flujo

intenso de neutrones y calor en un reactor de fusión como ITER; y, de forma más

pronunciada, en uno como DEMO. Esto provocará la creación de una gran cantidad

de defectos, por lo que las propiedades de los materiales serán gravemente alteradas,

y podrán provocar que los componentes del reactor dejen de funcionar correctamente

o, incluso, se quiebren.

Por lo tanto, la elección de materiales para reactores de fusión depende, en gran

medida, de su respuesta a la irradiación de neutrones. No obstante, para represen-

tar el comportamiento de materiales bajo condiciones similares a ITER o DEMO,

se necesitan unas fuentes de irradiación neutrónica muy potentes que habitualmente

no están disponibles. Por esta razón, el uso de simulaciones computacionales se

ha impuesto en las últimas décadas como un método rápido y económico para in-

vestigar el comportamiento de materiales bajo irradiación ya que permiten evitar

experimentos largos y costosos y además, permiten estudiar mecanismos atomı́sticos

dif́ıcilmente accesibles a la caracterización.
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Existen varias técnicas disponibles para simular la evolución microestructural de

defectos. En este trabajo, elegimos el método de Montecarlo cinético (OKMC), en

el cual se trata cada defecto (o part́ıcula) como un objeto individual con una serie

de parámetros. El método OKMC es reconocido por su precisión y flexibilidad, pero

es computacionalmente muy costoso ya que el paso de tiempo es aproximadamente

inversamente proporcional al número de part́ıculas. Hace falta por lo tanto un

número muy grande de pasos para acabar la simulación de un sistema grande de

part́ıculas.

Para evitar este problema, en nuestro modelo se impone primero un paso de

tiempo en el sistema de part́ıculas, y, a continuación, se determina la naturaleza

de los eventos experimentados por las part́ıculas durante este paso de tiempo, aśı

como el número de los mismos. Propiamente hablando, el número de eventos con

una cierta tasa de transición llevados a cabo por una part́ıcula se puede determinar

tomando muestras de una distribución de Poisson. Dado que las tasas de transición

para una part́ıcula son, en principio, independientes del resto de part́ıculas, podemos

hacer estos cálculos para todas las part́ıculas en paralelo. Para ello, hemos desarrol-

lado un algoritmo llamado algoritmo Tau-leaping paralelo (PTLA) y lo implemen-

tamos en tarjetas gráficas. Primero, se calculan las sumas de tasas caracteŕısticas

de cada part́ıcula, y después se calcula el paso de tiempo siendo inversamente pro-

porcional al máximo de estas sumas. Por tanto, el paso de tiempo solo depende de

la máxima suma de tasas de transición, la cual es una propiedad de una part́ıcula

en concreto. Aśı, el paso de tiempo es independiente del número total de part́ıculas.

Esta es una clara ventaja sobre modelos OKMC clásicos, ya que la independencia

del paso de tiempo del número de part́ıculas en el sistema permite alcanzar pasos

de tiempo órdenes de magnitud más grandes y por lo tanto, el estudio de sistemas

con un mayor número de part́ıculas, lo cual ofrece un mejor tratamiento estad́ıstico;

en particular, en lo relativo a part́ıculas a baja densidad.

Sin embargo, en ciertos casos, el PTLA no es suficiente para ofrecer buen rendimiento

computacional y se necesitan aproximaciones. Por ejemplo, cuando hay en el sistema

unas pocas part́ıculas con grandes sumas de tasas de transición, el paso de tiempo

resultante es muy pequeño. Si dichas part́ıculas no contribuyen significativamente

a la evolución del sistema, hacen falta muchos cálculos para observar algún cambio,

lo cual afecta negativamente al rendimiento de la simulación. Para resolver este
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problema, aplicamos una aproximación en la que estas pocas part́ıculas no cuentan

para el cálculo del paso de tiempo. Por tanto, el paso de tiempo resultante es mayor,

y hace falta menos esfuerzo computacional para terminar la simulación.

Una técnica adicional, conocida como método GFRD (Green’s Function Reaction

Dynamics), fue aplicada en este trabajo para sistemas a baja densidad. En tal caso,

las part́ıculas pueden realizar muchas migraciones antes de encontrar otras part́ıculas

con las cuales interactuar, de forma que se puede definir un coeficiente de difusión.

Entonces, se pueden reemplazar dichas migraciones por un solo salto, y avanzar el

paso de tiempo en consecuencia. El método GFRD reduce el número de pasos de

cálculo en varios órdenes de magnitud, y es adecuado para estudiar sistemas a baja

densidad con un gran número de part́ıculas muy móviles. En esta tesis, se detalla

cómo se aplicó el método GFRD en nuestro trabajo, haciendo especial hincapié en

los sistemas bajo irradiación continua.

Nuestro trabajo se valida con varios casos de prueba y distintas simulaciones,

incluyendo la simulación de experimentos de irradiación iónica en Fe y FeCr, lo

que acredita nuestra elección de un modelo paralelo basado en tarjetas gráficas, y

justifica las conjeturas hechas para el PTLA y las aproximaciones incluidas. El

hecho de poder tratar grandes poblaciones de part́ıculas muy móviles, tales como

bucles de dislocación, en tiempos de ejecución realistas (de minutos a unos pocos

d́ıas), demuestra que nuestro modelo es una herramienta valiosa para la simulación

de la evolución de la microestructura en materiales nucleares.
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Chapter 1

Introduction

In this chapter, we present the motivation behind commercial nuclear fusion, the

material engineering challenges associated with it, and the need to develop accurate

and powerful simulation tools to predict material behaviour in future fusion power

plants. In section 1.1, we explore the possibility of nuclear fusion as an energy source

and describe several approaches that aim at its viability. Afterwards, section 1.2

is devoted to the materials that are considered as candidates for the construction

of nuclear fusion devices, in particular tokamaks, and the processes that take place

in these materials when subjected to neutron irradiation. Finally, section 1.3 shall

describe the main motivations and objectives of our work, and outline the structure

of this doctoral thesis.

1.1 Nuclear fusion

In this section, nuclear fusion is discussed as a future source of energy.

1.1.1 Motivation: the energy question

The demand for energy in the world has been increasing ever since the Industrial

Revolution. Due to their availability and inexpensive price, fossil fuels (mainly

carbon, oil and methane) have been traditionally chosen as the main source of

energy by humans. As world population grows, so do national economies, and more

of these fuels are needed for development.
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This world dependence on fossil fuels is problematic for two reasons. First, the

amount of fossil fuels available on Earth is finite, which indicates that the current

reliance on them is not an option for the development of world economy in the

future. Second, burning fossil fuels is widely considered an environmental hazard.

Indeed, the consumption of fossil fuels leads to an increase of gas emissions to the

Earth’s atmosphere, particularly carbon dioxide, which negatively impacts the envi-

ronment in the form of global warming and climate change [93, 162, 219]. Figure 1.1

shows the time evolution of yearly CO2 emissions in metric tonnes, as studied by

Boden et al. [43], and presents an exponential increase thereof since the start of

industrialisation, in the middle of the 19th century.
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Figure 1.1: Historical record of carbon dioxide emissions [43].

Hence, an alternative to fossil fuels is needed in the midterm. Research on

clean energy sources is underway, since the current ones (solar and wind power or

hydroelectricity, for example) are unfortunately unable to meet the world demand

for energy. Indeed, this demand is expected to increase to 10 TW in the twenty-first

century [89] which cannot be covered with these clean energy sources. On the other

hand, the long-time environmental hazards that nuclear fission energy is prone to

disqualify nuclear fission as a long-term solution. The radioactive waste produced by
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fission power plants must be handled and disposed of; for instance, some isotopes in

spent nuclear fuel are very long-lived, like 239Pu and 237Np. The respective half-lives

of these two isotopes are 2.4 × 104 years and 2.1 × 106 years [52]. Therefore, long-

lived radioactive elements must be stored for a long time under high-level security

conditions in deep underground pools, which must be built at locations that are

not prone to natural disasters. Moreover, the impact of a nuclear power plant on

the environment may become catastrophic, as evidenced by several accidents in

the past. Examples include Kyshtym (1957), where a failure in the cooling system

of a storage tank led to a chemical explosion [152]; Chernobyl (1986), where a

combination of human errors during a safety test and faulty plant design caused a

power spike and a steam explosion [208]; or Fukushima (2011). In Fukushima, an

earthquake triggered the automatic shutdown of nuclear reactions. Power generation

was derivated to emergency generators, but large tsunami waves flooded the site and

damaged key plant systems, including the generators. As a consequence, the cooling

system experienced a loss of power and three reactors suffered a meltdown [140].

In order to satisfy world energy demand in the future in a reliable and clean man-

ner, the most promising candidate is controlled nuclear fusion, for several reasons.

First, the nuclear fusion reaction, discussed in the next subsection, only requires

isotopes of hydrogen as a fuel. Deuterium, for instance, is readily available in wa-

ter, the main component of the Earth’s surface. Tritium, on the other hand, can

be gained from neutron bombardment of lithium, which is very abundant in the

Earth’s crust and in sea water [89]. Thus, nuclear fusion should serve as an en-

ergy source for humanity without any concerns about resource depletion. Second,

long-term radioactivity concerns are not an issue in nuclear fusion. All potentially

activated materials from the fusion reaction chamber have short half-lives, in the

order of 100 years, and the half-life of tritium is 12 years [89, 307]. This means

that security questions are much easier to resolve than in the case of nuclear fission

energy. Finally, no production of greenhouse gases is expected in a nuclear fusion

power plant, other than the expected carbon footprint involving construction and

operation of the plant [89]. For all these reasons, the prospect of a nuclear fusion

power plant seems like the best option for humanity’s future as far as energy and

economy are concerned.
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1.1.2 The nuclear fusion reaction

We shall now review the basics of nuclear fusion. When two atom nuclei with

respective masses m1 and m2 react, a new nucleus with a mass m3 < m1 + m2

is created. The difference in mass ∆m = m1 + m2 − m3 is released as energy E,

according to Eq. 1.1 [94, 307]:

E = ∆m · c2 (1.1)

where c is the speed of light.

A number of fusion reactions are possible. For example, in stellar cores, protons

react with each other to produce He by way of two known processes, the proton-

proton chain and the CNO cycle [2]. In the CNO cycle, which is relevant in the

evolution of heavy stars [2, 37], transmutation of C, N and O nuclei occurs through

a series of proton capture and beta decay reactions. These elements transmute into

other elements at several steps of the CNO cycle but are recreated at other steps,

thus acting as catalysts for the fusion of protons into He. As far as the proton-proton

reaction is concerned, which governs energy production in lighter stars [2, 47], the

necessary conditions to achieve it are very hard to reach in an experiment on Earth.

This is a consequence of its small cross-section [47], so other candidate reactions

must be considered instead. Figure 1.2 depicts the cross-sections of different nuclear

fusion reactions as a function of temperature, calculated with the formulae provided

by Bosch and Hale [47].

Clearly, the fusion process that shows the largest cross-section at the lowest

temperature is the deuterium-tritium reaction. This fact makes this reaction the

most easily achievable fusion reaction in an experiment, and therefore the foremost

candidate for a future fusion power plant. The deuterium-tritium reaction yields:

2D + 3T → 4He(3.5 MeV ) + n(14.1 MeV ) (1.2)

For a fusion reaction to happen, matter must be in the plasma state. Plasma is

the most common state of matter in the visible Universe, present in various forms

such as stellar cores or coronas. A plasma is composed of charged particles like

negative electrons and positive nuclei. Thus, the nuclear fusion reaction can happen

only if Coulomb repulsion between the nuclei is overcome, which requires a very
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Figure 1.2: Cross-sections of different nuclear fusion reactions [47].

high temperature. An important aspect of nuclear fusion is that the plasma must

be confined, i.e. kept to a certain volume and at high temperature, in order to

sustain the reaction. If the plasma is not confined, it rapidly loses energy and the

necessary conditions to achieve nuclear fusion are no longer satisfied. Confinement

time τE measures the energy loss rate of a fusion plasma, such that a large τE value

indicates better confinement [307].

Good confinement is necessary in order to use a fusion plasma as an energy

source. When fusion products heat the plasma enough to guarantee its sustenance,

without the need of any additional external heating, the plasma is said to have

reached ignition. The product of plasma density n, temperature T and confinement

time τE, called the triple product nTτE, is used as a figure of merit to estimate

when the conditions for ignition are met. If nTτE exceeds a certain lower limit, the

plasma is expected to ignite. In the case of the deuterium-tritium reaction shown

in Eq. 1.2, this value is approximately nTτE > 1021 m−3 · keV · s [77]. The goal of a

nuclear fusion power plant is to achieve these conditions and ignite the plasma, so

that more energy is extracted from the fusion plasma than is invested into producing

it.
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Figure 1.3: The four stages of ICF: heating, blowoff, compression and burn [209].

In stellar cores, for instance, the plasma is confined using the gravity field of the

star itself. This type of plasma confinement is labelled gravitational confinement.

Gravitational confinement of plasmas is, obviously, not possible on Earth. Thus,

other measures are necessary. So far, two techniques have been developed to confine

fusion plasmas in laboratory experiments, namely inertial confinement and magnetic

confinement. The next two subsections are dedicated to them respectively.

1.1.3 Inertial confinement fusion

One way to produce a fusion plasma in controlled conditions is via inertial con-

finement fusion (ICF). A frozen deuterium-tritium pellet is rapidly heated by laser

or ion beams, such that its outer layer is evaporated. As a reaction, an inward

shockwave is created that compresses the pellet core to a very high density plasma

in a small time interval. In this state, the ions are not able to move apart during

this time frame due to their own inertia (hence the name), and nuclear fusion is

accomplished. As far as the triple product is concerned, ICF seeks plasma ignition

by increasing density n, since the confinement time τE is very small [138].

This method is skizzed in Figure 1.3 [209]. From left to right, the four images

portray the four stages of ICF, namely the heating of the pellet, the evaporation

of the outer layer (also known as blowoff), the fuel compression, and finally the

thermonuclear burn. Blue arrows represent laser beams, whereas orange arrows

represent the blowoff of the outer material layer.

The most relevant ICF devices in existence use laser beams to heat the target.

In the most intuitive configuration, called the direct drive method, the laser beams

focus on the target directly. To achieve the conditions necessary for fusion, a very
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precise positioning of the beams is necessary. In an alternative approach, labelled

indirect drive, the target is located in a cylindrical hohlraum, which absorbs the

laser energy. Then, the hohlraum releases X-rays which impact the target. The

indirect drive configuration leads to a more uniform target compression than in the

direct drive approach, since the hohlraum is designed to provide almost symmetric

X-ray radiation, and removes the necessity of extreme precision concerning laser

positioning. However, it is less energy-efficient than the direct method, as most of

the laser power is spent by heating the hohlraum [166].

The most important facilities that explore ICF include:

1. The National Ignition Facility (Livermore, USA) [138, 172]: In operation since

2009, NIF is equipped with the most powerful laser beams in the world as of

2017. In a 2014 article [137], the NIF team reported a net energy gain by

fusion reactions.

2. Laser Mégajoule (Bordeaux, France) [66]: This device started operation in

2014. It is part of the French military Simulation programme, and its ob-

jective is the study of material behaviour when exposed to simulated nuclear

detonations.

3. FIREX-1 Project (Osaka, Japan) [264]: Two laser systems (the older Gekko-

XII, completed in 1983, and the newer LFEX, operational since 2009) are used

in cooperation for this ICF experiment. The aim is to achieve fast ignition.

In a fast ignition experiment, a second energetic, short-pulse laser is fired into

the already imploded target core after the first beam has impacted the target.

Additionally, a European project called HiPER (High Power Laser Energy Re-

search Facility), still in the preliminary design phase [112], is a planned European

ICF device which seeks to achieve ignition of the fusion plasma with the use of

smaller, less energetic laser beams than NIF. If this experiment is successful, the

energy gain shall surpass all ICF experiments to date.

1.1.4 Magnetically confined fusion

Another way to confine a fusion plasma is by the use of magnetic fields. Indeed, since

fusion plasmas are ensembles of charged particles, they are responsive to magnetism
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via the Lorentz force, and can be directed with an appropriate use of magnetic fields.

Magnetically confined plasmas display low density [307], which makes it challenging

to produce a large triple product. For this reason, magnetically confined fusion

devices try to reach long confinement times in order to achieve ignition. Two types

of configurations are possible to confine the plasma with magnetic fields, namely the

magnetic mirror and the toroidal configuration.

Magnetic mirrors pinch the field lines at two ends, such that the magnetic field

intensity (or ‘density of magnetic field lines’) varies between one end and the other.

In such a structure, the field is more intense at the ends and weaker in the mid-

dle. Charged particles, except those which travel parallel or almost parallel to the

magnetic field lines, are thus reflected between both ends and confined in between.

Unfortunately, due to the instabilities that are inherent to fusion plasmas, some par-

ticles that were initially confined may be scattered to a direction which is parallel to

the field lines and escape the device. This leads to a certain leakage of plasma that

makes magnetic mirrors a suboptimal choice for a power plant based on magnetically

confined fusion [87].

In fact, most modern experiments concerning magnetically confined fusion are

based on toroidal confinement. Our work, for instance, is mainly oriented towards

the materials used in this kind of devices. In a toroidal configuration, magnetic field

lines are closed on themselves, such that no notion of ‘ends’ exists. These nuclear

fusion devices are inspired by two basic designs, the tokamak and the stellarator.

We shall now describe both of them.

1.1.4.1 Devices in magnetically confined fusion: tokamaks and stellarators

The initial design of a working device capable to induce nuclear fusion using magnetic

confinement is called Tokamak. Tokamak is an abbreviation of Toroidal’naya kam-

era s magnitnymi katushkami, which is Russian for toroidal chamber with magnetic

coils. A tokamak is designed as a toroidal plasma chamber, labelled the vacuum

vessel, surrounded by magnetic coils which create a toroidal field. However, this

is not enough to guarantee good confinement. Since the magnetic field ~B is not

homogeneous, the gradient ~∇B generates a particle drift in the vertical direction.

Moreover, electrons and ions have separate charges, so, even though they drift in the
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same direction, they move toward opposite orientations. The resulting separation

of charges creates an electric field ~E which induces another drift in ~E × ~B direc-

tion [132]. As a consequence, a poloidal magnetic field is also necessary to offset the

drift and confine the plasma.

Tokamaks are equipped with a second set of coils, called poloidal field coils, to

induce a toroidal current inside the plasma, which in turn generates the poloidal

magnetic field. This strong current is the origin of serious instabilities that can ulti-

mately break the confinement in a process called disruption [307, 323]. Disruptions

cause the plasma to violently hit the walls of the plasma chamber. This leads to

a rapid deposition of particles and thermal energy that damages wall components

and erodes the material. To avoid disruptions, most tokamaks work with pulsed

operations rather than in steady state.

In Europe, several tokamaks are in operation such as the following:

1. Joint European Torus (JET) [307]: Located in Culham (United Kingdom),

JET started operation in 1983. JET is the foremost tokamak as far as Euro-

pean fusion science is concerned. In 1997, JET was able to achieve a world

record 16 MW of fusion power [154]. A sketch of the JET is provided in

Figure 1.4, taken from The science of JET by J. Wesson [307].

2. ASDEX Upgrade [331]: This tokamak is situated in Garching bei München

(Germany) and started operation in 1991. Instead of radioactive tritium, the

plasma fed to this device is a mixture of hydrogen (protium) and deuterium.

3. WEST [53, 287]: Having been recently built in Cadarache (France), the first

plasma was launched in 2016. WEST is expected to test the limits of tokamak

technology for future reactors.

An alternative design to tokamaks, the stellarator, solves the drifting problem by

carefully changing the geometry of the torus and the magnetic coils. In a stellarator,

no current is induced inside the plasma. Instead, the poloidal field is produced by

external currents in the complex magnetic coils. Hence, the instabilities related to

plasma interaction with a strong current and potential disruptions are absent, which

makes stellarators better suited than tokamaks for steady-state operation. European

experiments based on the stellarator configuration include, for example:
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Figure 1.4: Sketch of the JET design [307].

1. Flexible Heliac TJ-II [6]: Located in CIEMAT-Madrid (Spain), the first plasma

was launched in 1997. This device is mostly devoted to the study of plasma

diagnostics and confinement. A model of the TJ-II stellarator is portrayed in

figure 1.5, found in the TJ-II website [198].

2. Wendelstein-7X [224, 35]: As of 2022, this device, located in Greifswald (Ger-

many), is the largest and most advanced stellarator in the world. Wendelstein-

7X intends to optimise magnetic confinement for fusion plasmas. Its design is

sketched in Figure 1.6, as shown by Pedersen et al. [224]

Figure 1.5: Sketch of the stellarator TJ-II [198].
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Figure 1.6: Sketch of the stellarator Wendelstein-7X [224].

So far, tokamak physics is better understood than stellarator science. The am-

bitious project ITER (International Thermonuclear Experimental Reactor) is under

construction in Cadarache (France) at the time of writing, and based on the tokamak

design. ITER is expected to achieve ignition of a deuterium-tritium plasma and serve

as a basis for a future Demonstration Power Station, abbreviated DEMO [89, 99, 30].

These devices are described in the upcoming subsection.

1.1.4.2 Devices for nuclear fusion as a future clean source of energy: ITER

and DEMO

ITER is the paramount nuclear fusion project in the world. The ITER project is

funded and monitored by seven partners [141], namely China, the European Union,

India, Japan, Russia, South Korea, and the USA. ITER is expected to produce a

fusion plasma able to sustain itself in long pulses, and eventually achieve steady-state

operation. Thus, in the long run, ITER shall provide a physics basis for controlled

ignition in a tokamak.

The ITER plasma, first expected in the decade of the 2020s, shall be heated up

to a temperature of 1.5×108 K by two methods, namely ohmic heating and external

heating [141]. Ohmic heating is achieved due to the current induced in the plasma by

the poloidal field coils, as the charged particles that respond to this current collide

with each other and create heat. However, this heating effect is diminished for

higher temperatures, so an additional heating system is needed. Therefore, external
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heating is provided in two forms to bring the plasma to the desired temperature,

namely neutral beam injection (NBI) and high-frequency electromagnetic waves.

In NBI, very energetic neutral particles are shot into the plasma, like deuterium

atoms [141], which transfer their large kinetic energy to the particles present in the

plasma and heat the system as a result. Due to their neutral charge, particles in the

neutral beam do not respond to the electric or magnetic fields and do not disturb the

plasma. On the other hand, high-frequency electromagnetic waves introduce energy

via photons into the plasma. Thus, the kinetic energy of the plasma particles is

increased and the plasma is heated.

The ITER project faces serious technological questions, since it is the first de-

vice in history for which the feasibility of a self-sufficient plasma by magnetically

controlled fusion is under scrutiny. For instance, some components that are neces-

sary for a fusion power plant shall be tested in ITER first, like the materials that

shield the magnets from radiation damage or the modules used to breed tritium

for the D-T reaction. Furthermore, ITER shall provide the basic data concerning

plasma regimes of operation in a commercial fusion power plant, starting by induc-

tive regimes and eventually studying steady-state regimes. Other issues like capital

costs, diagnostics and safety features are also part of the investigations that the

ITER project must address [89].

DEMO shall be the next step after ITER on the road to nuclear fusion as an

energy source. While DEMO is not defined as a commercial fusion power plant per

se, but a demonstration one, it aims to produce electricity by fusion and serve as a

basis for commercial power plants. DEMO goals include [89, 21, 30]:

1. Guarantee tritium self-sufficiency. The DEMO facility must be able to produce

all the tritium needed for the entirety of its operation, without any external

input.

2. Achieve net power production. The fusion plasma in DEMO must be self-

sustaining, such that more power is extracted from the fusion reactions than

is invested in the device.

3. Provide information about technology requirements and availability. Using

the experience gained from ITER experiments, DEMO shall test the limits of
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materials and plasma technology and their applicability to a future commercial

fusion power plant. Indeed, the components used for DEMO should be resilient

enough to last for a few years of operation before they are replaced.

Components that are located within the vacuum vessel of a fusion reactor bear

the name of in-vessel components. As far as materials physics is concerned, three

in-vessel components of ITER, and applicable to DEMO, are of interest to this work,

namely the breeding blanket, first wall and divertor.

As we have seen before, the candidate fusion reaction requires tritium to be

present in the plasma. However, the amount of tritium available on Earth is limited

due to its short half-life (12 years). Therefore, the fusion reactor should be able to

produce its own tritium. This is the role of the breeding blanket [42, 48] that, via

the presence of lithium, can achieve the production of tritium through the following

nuclear reaction:

6Li+ n→ 4He+ 3T (1.3)

The necessary neutrons for this reaction are generated by the fusion reaction

itself, as shown in Eq. 1.2. Of course, a self-sufficient nuclear fusion device should

generate more tritium than it consumes. Therefore, an optimal breeding blanket

should capture as many neutrons as possible [21, 42, 48]. For DEMO, the tritium

breeding ratio (i.e. the average amount of neutrons produced per neutron consumed)

required for self-sufficiency has been defined as 1.1 [42, 48, 99, 103]. To achieve this,

a neutron multiplier is usually included in breeding blanket designs. Furthermore,

the breeding blanket fulfils the role of neutron shielding, i.e. it protects external

elements like magnetic coils from neutron bombardment. As 14 MeV neutrons

impact the Li-containing breeding blanket, a large amount of heat is transferred. A

coolant is thus needed to ensure safe operation of the breeding blanket, and heating

this coolant can be used to generate electricity via turbines.

To protect the breeding blanket from heat, the first wall is in place [21, 99,

190, 195, 298]. This component faces the plasma directly, and is subjected to high

particle and heat fluxes. To design a robust first wall, its materials should fulfil the

following requirements:
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Figure 1.7: Location of the divertor in the vacuum vessel [104].

1. Neutron capture should be kept to a minimum, so that the tritium breeding

ratio of the breeding blanket is not disturbed.

2. A high melting point is recommended, due to the large thermal loads faced by

the first wall.

3. To avoid problems with radioactivity, neutron activation of the first wall ma-

terials should be minimised.

4. The materials should show low erosion yield, in order to prevent wall degra-

dation and plasma contamination.

In case there is an abnormal situation that involves a notable thermal load on

the walls, such as a disruption, the first wall must be resistant enough to protect

external components.

Finally, the ash products must be removed from the vacuum vessel. These

include the fusion product He and elements that have been sputtered from the first

wall and contaminate the plasma. For this purpose, ITER is equipped with the

divertor. Figure 1.7 shows the placement of the divertor in the vacuum vessel, as

seen in the Fusion for Energy website [104].

The divertor is a structure that extracts heat and ash produced by the fusion

plasma [141]. Thus, divertors help avoid contamination of the plasma and protect
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other wall components. In case of a plasma disruption, the walls are subjected to

high heat fluxes that are orders of magnitude above those in normal operation [89,

141, 195, 298]. The divertor is in place in order to withstand this substantial heat

flux, such that damage in the wall structure is avoided. A tokamak divertor consists

of a heat sink that is connected to a coolant and protected from the plasma by an

armour. In subsection 1.2.1, the considered modules for divertor testing in ITER

are listed. The data extracted from ITER divertor operation will afterwards serve

as a basis for the DEMO divertor.

As one can see, the materials needed for in-vessel components in future fusion

devices face immense engineering challenges. The upcoming section explains the

effects of neutron irradiation on these components.

1.2 Neutron irradiation in nuclear fusion devices

In this section, a review of the effects of neutron irradiation in materials relevant for

fusion devices is presented. First, in subsection 1.2.1, the main materials used for

components in ITER and DEMO are described. More insight to the processes taking

place in neutron-irradiated materials is given in subsection 1.2.2. Since materials

properties are altered macroscopically as a result [304, 326, 328], subsection 1.2.3

focuses on some of the most important macroscopic effects by which a neutron-

irradiated sample might be affected.

1.2.1 Main material candidates for components in nuclear

fusion devices

In magnetically-confined nuclear fusion reactors, 14 MeV neutrons are produced, as

seen in Eq. 1.2. Therefore, in-vessel components are subjected to a bombardment

of these energetic particles [28, 190, 320, 328]. In the case of DEMO, the particle

and heat fluxes that materials must sustain exceed all experimental values to date.

DEMO materials shall sustain two orders of magnitude of damage above that of

ITER materials, as well as a substantially higher flux of gas particles produced in

the plasma [196]. For this reason, the materials requirements of DEMO are notably

more restrictive than those of ITER.
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Operation in ITER since first plasma is planned for about 30 years [28, 89], so

materials for the ITER vacuum vessel must be able to withstand the particle and

thermal loads for a reasonable lifetime (months to years [161, 196]) before they are

replaced. The vacuum vessel armour material needs high crack resistance at very

high temperatures and compatibility with plasma-wall interaction effects [241].

For in-vessel components like the first wall, breeding blanket and divertor, ma-

terials must be reliable for the whole range of operational temperatures. The main

challenge behind the design of in-vessel components is the response of materials to

neutron irradiation [28] because the intense neutron flux is known to severely de-

grade materials properties, as we shall explain in subsection 1.2.3. The heat sink in

particular must display good resistance to fracture under high stress, i.e. high frac-

ture toughness. A CuCrZr alloy was chosen for the heat sink of the ITER breeding

blanket, as its fracture toughness meets the requirements. In addition, CuCrZr is

easily available and inexpensive [28]. Its range of operational temperatures is very

limited though, as CuCrZr loses its good mechanical properties under irradiation at

moderately high or moderately low temperatures [29, 317], so it is, in principle, not

the best option for a DEMO heat sink design.

The ITER first wall is composed of stainless steel 316L(N)-IG with a high-purity

Be armour [89, 190]. Be would not be optimal for the requirements of DEMO,

however, because of its tendency to tritium retention and transmutation to He, as

well as erosion and dust production [115, 328]. Instead, the default DEMO first

wall design is a stainless steel (EUROFER-97) structure with W coating [21, 168,

195, 298, 319]. W has a high melting point and features low erosion [1, 190, 240].

Figure 1.8 shows a model of two adjacent cassettes of the DEMO first wall [139]. A

W armour protects the EUROFER-97 structure, which is cooled by water flowing

in a stainless steel tube with a Cu layer.

There are disadvantages to using W as first wall armour, however. W is a brittle

material, which is further embrittled by neutron irradiation [21, 167, 190, 201, 240,

319]. Development of W materials with better ductility under DEMO conditions is

a crucial part of DEMO first-wall design. Current research includes the development

of W alloys and composites enhanced with W fibres [75, 167, 168, 201].

As far as the breeding blanket is concerned, the chosen primary structural ma-

terial for ITER is stainless steel 316L(N)-IG. In the case of ITER, six test blan-
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Figure 1.8: Conceptual design of two adjacent cassettes of the DEMO first wall, as
shown by Igitkhanov et al [139].

ket modules (TBM) have been planned and are expected to be tested simultane-

ously [42, 136]:

1. Helium-Cooled Lithium Lead (HCLL) TBM [5], using liquid LiPb as tritium

breeder and neutron multiplier, and He as a coolant.

2. Helium-Cooled Pebble Bed (HCPB) TBM [60], using a lithiated ceramic as

tritium breeder and Be as neutron multiplier in pebble form, and He as a

coolant.

3. Water-Cooled Ceramic Breeder (WCCB) TBM [97], using a lithiated ceramic

as tritium breeder in pebble form, and water as a coolant.

4. Dual-Coolant Lithium Lead (DCLL) TBM [266], using liquid LiPb as tritium

breeder, neutron multiplier and coolant, and He as a secondary coolant.

5. Water-Cooled Lithium Lead (WCLL) TBM [20], using liquid LiPb as tritium

breeder and neutron multiplier, and water as a coolant.

6. Lithium-Lead Ceramic Breeder (LLCB) TBM [156], using LiPb as tritium

breeder, neutron multiplier and coolant, and He as a secondary coolant. T

breeding is also achieved with a lithiated ceramic in pebble form.
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Finally, the divertor is the in-vessel component that is most exposed to high

thermal and particle loads. Therefore, its armour structure must be resistant to heat

(i.e. have a high melting point) and to sputtering, so that plasma contamination is

limited. This is the case of W and carbon fibre composites. However, the latter are

prone to erosion and tritium retention, which leaves W as the most viable option

and the final choice for the ITER divertor armour [226]. As well as in the case

of the breeding blanket heat sink, a CuCrZr alloy is used for the heat sink of the

ITER divertor, and steel 316L(N)-IG as a structural material. The DEMO divertor

is required to guarantee power extraction capability and reliable for two full power

years of operation [318, 319, 320]. In late 2020, the final design for the European

DEMO divertor was chosen [318]. In this design, the heat sink is armoured with a

2 mm W coating, and the aforementioned CuCrZr alloy is the selected material for

the cooling pipes.

We shall now give more attention to the main structural materials in future

fusion reactors, namely structural steels (like stainless steel 316L(N)-IG) and W.

1.2.1.1 Structural steels

The aforementioned austenitic steel 316L(N)-IG is, as we have seen, the main struc-

tural material for the ITER vacuum vessel, breeding blanket and divertor [28, 80,

319]. Stainless steel 316L(N)-IG is chosen for its remarkable behaviour like good

corrosion resistance, availability and high minimum tensile mechanical properties,

which allows for higher stresses than other steels. Its chemical composition takes

into account the limits of impurity content (in particular Co and Nb) set by ITER.

Nevertheless, steel 316L(N)-IG does not guarantee safe operation in DEMO.

As an austenitic steel, its crystal structure is primarily fcc and therefore prone to

swelling. Due to the very high flux of energetic neutrons and the higher than ITER

operational temperature that are expected, this steel is not an optimal choice for

the DEMO vacuum vessel, as it would be extremely affected by swelling under

DEMO conditions [278]. In addition, 316L(N)-IG is a doubtful choice concerning

operational safety under the neutron flux of DEMO, due to the high potential for

nuclear activation.

The need for structural materials that can resist swelling and nuclear activation
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has inspired the research of reduced activation ferritic-martensitic (RAFM) steels.

Based on a Fe-Cr alloy with about 8% - 10% Cr content, RAFM steels are the

main candidates for the structural material of the divertor in ITER and DEMO [40,

57, 161, 276, 278]. Their structure is primarily bcc, and therefore less affected by

swelling than austenitic steels. Alloying elements include W and Ta, which are less

prone to activation than other typical alloying elements in steels, for example Nb.

In addition, impurities that show high activation are minimised in RAFM steels.

RAFM steels display good mechanical properties at low temperature, so they are

chosen as structural materials for the starting phases of DEMO, which set a low

operational temperature of about 620 K [40].

For instance, a very promising RAFM steel for fusion applications is EUROFER-

97, the reference steel for nuclear materials in Europe. As mentioned in the previous

subsection, the DEMO first wall relies on it as a structural material. In fact, the

chosen European DEMO divertor design relies on EUROFER-97 as its structural

material [318]. Besides, EUROFER-97 is the main structural material for the Eu-

ropean TBM destined for the ITER breeding blanket [161].

Unfortunately, RAFM steels developed to date show worse mechanical properties

at high temperature, like resistance to corrosion, than at low temperature. For

higher thermal loads expected in later DEMO experiments, alternative structural

materials to RAFM steels are better suited. Bearing this in mind, oxide-dispersion

strengthened (ODS) steels are being developed and studied [27, 157, 161, 278, 327].

Synthesis of ODS steels involves a steel powder and about 0.3% to 0.5% of a dispersed

oxide like Y2O3. These oxide particles enhance mechanical properties of this material

for operation up to about 950 K [27, 157, 278]. In particular, a class of ODS steels

known as nano-structured ODS steels [27, 40] are optimised for good properties at

high temperature and resistance to radiation. By being available to operate at high

temperatures, ODS steels might be used as a structural material for the DEMO

breeding blanket and divertor.

1.2.1.2 Tungsten

W is a strong candidate for the 54 divertors present in ITER [28]. High melting

point, thermal conductivity, resistance to sputtering and erosion [114, 115, 168, 170,
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230, 240] are among the properties of W that make it attractive to use as a base

material for fusion reactor divertors. In general, W or W alloys are usually the

main material used in DEMO designs for any regions that are subjected to high

thermal fluxes, which is the case of the divertor [115, 168]. There are concerns

about the presence of W in a tokamak however. W can melt in case of disruptions

or edge-localised modes [54, 230, 240], which are instabilities that appear in tokamak

plasmas and are expected in ITER.

Moreover, W is known for its high ductile-to-brittle transition temperature (DBTT),

which makes its use as a structural material at low temperature questionable [240,

241]. The DBTT marks the point at which a material loses its ductility and is

explained in more detail in subsection 1.2.3.1. Since it is dangerous to operate the

fusion device at temperatures below the DBTT, engineering efforts towards W al-

loys focus on decreasing this value. Several alloys based on W are being explored

using Ti, V, Y2O3 or Ta as alloying elements, with the hope of enhancing ductil-

ity [116, 241].

Another question to keep in mind is transmutation of W into elements like Re

or Os [114, 115, 116]. Particularly, large quantities of Os may weaken the structural

and mechanical properties of materials [116, 310]. As Os tends to form small pre-

cipitates and harden the material [310], this leads to embrittlement, as explained

in subsection 1.2.3.1. Although Re is known to increase ductility of W alloys, un-

der the irradiation conditions expected in a fusion reactor like DEMO, the material

would be subjected to an unacceptable level of embrittlement [240]. Therefore, the

production of these elements under neutron irradiation is unwelcome. Moreover, the

production of He by transmutation of the alloying elements, such as Ti or V [240],

also leads to degradation of materials properties.

1.2.1.3 Functional materials

Functional materials are those which contribute actively to the sustenance of the

fusion plasma, which is the case of the tritium breeder and the neutron multiplier

in the breeding blanket, as well as the heating system.

Two of the TBM designs for the ITER and DEMO breeding blanket, namely the

HCPB and HCLL TBM, are being developed in Europe [59, 100]. On the one hand,
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providing the tritium breeder in pebble form, which is the case of the HCPB TBM,

is appropriate due to the intrinsic thermal resistance of pebbles [330]. Lithium

titanates like Li2TiO3 and silicates like Li4SiO4 are being considered as breeder

materials for the DEMO breeding blanket based on the HCPB TBM [59, 330]. The

pebbles must be stable under high heat flux and stress, and activation by neutrons

must be reduced as much as possible [330]. In a structure consisting of pebbles,

tritium removal is straightforward. Due to the fact that the maximum packing

density is about 63% for equally sized pebbles [330], a purge gas may penetrate

in the structure and keep tritium retention to a minimum. However, an additional

neutron multiplier is needed; in the HCPB TBM, Be is chosen for this purpose. Be is

the default neutron multiplier for breeding blanket designs; however, its availability

is scarce and new breeding blanket designs aim to reduce the minimal Be requirement

for economic reasons, while keeping performance high [263].

On the other hand, a liquid metal breeding blanket, such as the HCLL TBM, is

able to provide safe operation even at high operational temperature and is easy

to maintain [61]. In addition, the liquid metal LiPb, which contains enriched

lithium [42, 19, 100], acts as a neutron multiplier itself, and eliminates the need

of expensive Be. The main problems behind a liquid metal breeding blanket are

magnetohydrodynamic instabilities, corrosion of the structural material and tritium

permeation, which can be mitigated by the use of special coatings [61]. Indeed,

corrosion of the structural material, which is a function of its compatibility with the

liquid functional material, may become a serious concern as the structure is degraded

and the liquid metal is contaminated by impurities and activated corrosion prod-

ucts [19, 42, 61, 100]. In turn, the materials used for the coatings should minimise

activation by neutrons. Concerning the HCLL TBM, the liquid metal is the eutectic

Pb-15.8%Li alloy (i.e. 84.2% Pb, 15.8% Li) [42, 100]. This alloy is the reference for

all liquid metal breeding blanket designs, and is chosen for its low tritium retention

and good response to safety concerns and irradiation damage [5, 19, 20, 42, 61, 100].

Moreover, many of the plasma diagnostics in ITER and DEMO will be con-

ducted by means of the analysis of optical radiation [181]. For this reason, optical

components like fibres and diagnostic windows are needed. The materials used

for this purpose must offer good optical transmission and electrical insulation [84].

Since they are subjected to an intense flux of neutrons and heat, good mechanical
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properties are also desired [61, 84]. SiO2 is the main candidate for transmission

components [61, 294] due to its low intensity radiation-induced absorption and lu-

miniscence, compared to other materials. In particular, the fused silicas KU1 and

KS-4V are prime candidate materials for optical components due to their mechanical

strength [294].

For the heating system by microwaves and NBI, a material that guarantees elec-

trical insulation is necessary. Insulators may become conductive under irradiation

in a process known as radiation-induced conductivity (RIC) [135, 294]. RIC is an

increase in conductivity as a result of the excitement of valence electrons to the

conduction band [84, 135, 294]. Furthermore, radiation-induced electrical degrada-

tion (RIED) refers to a permanent increase in volume electrical conductivity caused

by defects in an electric field [84, 294]. The physics behind this process is not

yet fully understood. Therefore, a material that resists RIC and RIED, as well

as surface effects like sputtering or impurity segregation, is necessary for the com-

ponents of the heating system. The foremost candidate for this purpose is Al2O3

[135, 159, 261, 294]. This material offers good resistance to electrical degradation

in the forms of RIC, RIED and surface degradation. Research of different radiofre-

quency window designs with Al2O3 as a functional material is underway [135, 159].

Having reviewed the most important structural and functional materials for a

nuclear fusion device like ITER or DEMO, we shall now explain the physics behind

defect generation in neutron-irradiated materials.

1.2.2 Defect generation in materials under neutron irradiation

Interaction of incident particles such as neutrons with crystal lattices produces mi-

croscopic alterations in the lattice, known as defects. This process is called the

radiation damage event. In this subsection, we discuss different types of defects

that can arise as a result of neutron damage in materials.

1.2.2.1 Interstitials and vacancies

When an incident particle collides elastically with a lattice atom, the latter can be

removed from its original position and unable to return there. An atom that has

been displaced to an equilibrium position away from the lattice node is called a
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self-interstitial atom (SIA). Analogously, a lattice node where no crystal atom is

present is labelled a vacancy. When an atom is displaced from its corresponding

lattice node and placed in an interstitial position, the combination of this SIA and

the new vacancy is known as a Frenkel pair [120, 304]. Figure 1.9 portrays this

defect type. On the left, a sc crystal cell is sketched. On the right, the situation

is depicted after an atom is removed from its node and displaced to an interstitial

position, i.e. when a Frenkel pair is created.

Figure 1.9: Left: sc cell without defects. Right: a Frenkel pair is present in the cell.

In materials with a cubic crystalline structure, SIAs tend to have a high formation

energy and a small migration energy, whereas vacancies have low formation energy

and high migration energy [304]. SIAs show, in general, a greater mobility than

vacancies. For instance, the migration energy of SIAs in α-Fe has been reported

as 0.3 eV to 0.35 eV whereas the migration energy of vacancies has been found to

be between 0.55 eV and 0.7 eV [31, 105, 174, 187, 275, 285, 282, 303]. Similarly,

greater mobility of SIAs over vacancies has been reported in other materials such

as W [12, 13, 130, 147, 303] and Cu [117, 148, 262]. At a certain temperature, SIAs

become mobile and can diffuse in the material. Hence, they can meet other defects

to interact with, like vacancies. Interaction of a SIA and a vacancy typically results

in annihilation [210, 304]. Moreover, some features in the microstructure, like grain

boundaries, dislocation lines or impurity atoms, act as sinks for point defects. In

other words, sinks can attract SIAs or vacancies and immobilise them.

When defects of the same type interact with each other, they are able to form

clusters [304]. Interstitial clusters are particularly stable due to the high energy
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(in the order of a few eV ) necessary to dissociate a SIA from the cluster. On the

other hand, vacancies can nucleate into vacancy clusters, which are thermally less

stable than SIA clusters [194] and can eventually grow into voids. In crystalline

materials, voids are three-dimensional imperfections in the lattice which contain

no atoms. Voids can grow by subsequent agglomeration of vacancies and vacancy

clusters [210, 304]. Vacancy clusters can shrink by recombination with SIAs or

grow by the capture of more vacancies. Mechanisms that trap SIAs, such as sinks,

contribute to the creation of voids. The presence of such mechanisms allows a net

surplus of vacancies which can then nucleate and grow into a void. In particular,

dislocations have been shown to trap interstitials preferentially, resulting in a flow

of vacancies to voids [90, 169, 179, 210, 304].

1.2.2.2 Displacement cascades

The first atom displaced by the incident particle is labelled primary knock-on atom

or PKA. If radiation is sufficiently energetic, the PKA transfers its excess energy

to surrounding atoms that proceed to vibrate and eventually reach interstitial po-

sitions. In other words, energetic radiation can produce movements of atoms that

afterwards set in motion a series of atomic displacements, the collision cascade or

displacement cascade, before equilibrium is reached. The initial phase of neutron-

matter energy transfer is known as the collisional phase, whereas the subsequent

phase until thermalisation is known as the relaxation phase [50, 299, 304].

In dense materials such as Fe, Cu or W [83, 249, 250, 299, 303], energy is trans-

ferred quickly between the displaced atoms and their neighbours in a small region.

This is commonly known as a thermal spike [50, 83, 249, 250, 299, 304]. This is a

very hot region above the melting point of the material, in the order of thousands

of K. As a result, when the thermal spike is produced, the heated region is similar

to molten material. In general, a region with a depleted central core, i.e. a region

dense in vacancies, is formed with an outer shell of interstitial atoms [50, 83, 304].

Then, heat is transferred to surrounding atoms such that the molten region reaches

a temperature lower than the melting point and returns to the state of condensed

matter.

A simulation of this phenomenon, studied by Sand et al. [249, 250], is portrayed
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in Figure 1.10. This simulation shows the effect of a 150 keV cascade on a W crystal,

showing interstitials in blue and vacancies in yellow colour. The snapshot on top

shows the thermal spike, where the depleted core and surrounding interstitial shell

are distinguishable. On the other hand, the relaxation phase results in the creation

of new defects, as depicted in the snapshot below.

Figure 1.10: Top: Simulation of a heat spike, as depicted by Sand et al. [249,
250]. Bottom: formation of defects in the relaxation phase. Blue spheres depict
interstitials, yellow spheres depict vacancies.

SIAs in the shell can travel back to the depleted core as a pressure wave and

recombine with the vacancies. Even though some stable defects and defect clusters

may be produced, most of the formerly created Frenkel pairs are annihilated [304].

If many heat spikes are present in the material such that a sizable number of stable

defects are available, which are able to produce microstructural damage in the ma-

terial, macrostructural properties can be affected. Figure 1.11 depicts the number of

defects produced in a collision cascade as a function of time, as simulated by Vörtler

et al. [299] for an irradiation of Fe-10%Cr with a 20 keV PKA. As one can see,

the three phases of the collision cascade are clearly distinguishable. The number of

defects produced in the collisional phase grows until the thermal spike is achieved,

and then cascade relaxation reduces the number of defects until it reaches a stable

value.
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Figure 1.11: Evolution of the number of defects in a 20 keV cascade on Fe-10%Cr
in time, as simulated by Vörtler et al. [299]

Once the process of displacement collision is finished, the remaining defects in the

system are able to evolve in time and interact with the material structure. Indeed,

the diffusion, clustering and annihilation of defects along a time line, also known as

the annealing process [161, 241, 281, 304, 322], are crucial to understand the effects

of irradiation on material properties in the long run.

1.2.2.3 Dislocation lines and dislocation loops

Distortions in the periodicity of the crystal structure are known as dislocations. The

line that forms the boundary between both regions is the dislocation line. There

are two main types of dislocations that can be distinguished, i.e. the edge and

screw dislocations. In an edge dislocation, this defect can be described as an extra

half-plane of atoms, whereas in a screw dislocation, the material looks like a spiral

ramp when viewed from a plane perpendicular to the dislocation line [304]. For

further clarity, edge and screw dislocations along with their dislocation lines are

depicted in Figure 1.12, as found in G. S. Was’ book Fundamentals of Radiation

Materials Science [304]. A third type of dislocations, the mixed dislocations, are a

combination of edge and screw dislocations. Dislocations are characterised by the

Burgers vector ~b, which indicates the difference between the two regions separated

by the dislocation line.

Dislocations are affected by stress. In the case of an edge dislocation, atoms are
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Figure 1.12: Dislocation types, as sketched by Was [304]. Left: edge dislocation.
Right: screw dislocation.

shifted in a perpendicular direction to the dislocation line, which moves parallel to

the applied stress. In screw dislocations, the atoms are shifted in a parallel direction

to the dislocation line, such that the latter moves perpendicular to applied stress. If

a dislocation lines moves in a direction that is not perpendicular or parallel to the

applied stress, it is a mixed dislocation.

Dislocations are largely responsible for plastic deformation in crystalline mate-

rials [210, 218, 304]. At the atomic level, plastic deformation happens when crystal

atoms slip on the plane where dislocations move, called the slip plane. The combined

effect of many dislocation movements along slip planes gives rise to the macroscopic

plastic deformation [210, 304]. Hence, the mobility of dislocations has a direct effect

on the ductility of materials, a concept that will be detailed in subsection 1.2.3.1.

The dislocation line can also be a closed loop, labelled dislocation loop (DL).

Dislocation loops are of great importance to this work, as they often appear in irra-

diated structural materials for nuclear fusion [234]. They can appear by clustering

of interstitials or vacancies, or they can form in energetic irradiation cascades. En-

ergy minimisation causes defect clusters to acquire a platelet form which gives rise

to the DL [192, 304, 328]. A visual example is given in Figure 1.13. As simulated

by Osetsky et al. [218], three SIA clusters react to form a DL in a 20 keV cascade

in Cu. In this figure, dark spheres and light spheres represent SIAs and vacancies

respectively.

DLs migrate very rapidly and are significantly involved in processes that give

rise to effects like swelling, as we will see in subsection 1.2.3.
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Figure 1.13: A dislocation loop is formed as a reaction of three SIA clusters [218].

1.2.2.4 Helium impurities and bubbles

Transmutation reactions occur in materials under neutron bombardment [115, 114,

106]. In the case of nuclear fusion, the shower of 14 MeV neutrons on metals

produces large quantities of H and He. Eq. 1.4 describes the transmutation of 56Fe

under neutron irradiation [115].

56Fe+ n→ 53Cr + 4He

56Fe+ n→ 56Mn+ 1H (1.4)

He is known to form complexes with point defects like SIAs and vacancies [108,

254]. Particularly, vacancy clusters act as powerful traps for He, which eventually

leads to the formation of stable HenVm clusters. Thus, when He impurities are

present, void nucleation is enhanced [192, 193]. Therefore, the presence of He pre-

vents recombination of Frenkel pairs, as vacancies group into HenVm clusters and

less single vacancies are available for SIAs to recombine with. This leads to the

enhancement of SIA clustering as well, which induces the creation of DLs. This is

why both void and DL formation are increased in the presence of He.

He is also notable for growing into bubbles [106, 115, 193, 194, 260]. When the

size of a void exceeds a limit, the void becomes spherical and is termed a bubble [304].

Bubbles nucleate under irradiation. Then, they can grow by absorption of more He

and vacancies, or shrink by emission of He, emission of vacancies and absorption
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of SIAs [193, 194, 260]. The He impurities expelled from HenVm clusters may act

as new nucleation centres for other bubbles. In addition, when gas pressure is very

high, such as in the case of plasma-facing materials in fusion reactors [193], He

bubbles are able to induce a stress in the neighbouring crystal. In a mechanism

labelled dislocation loop punching, SIAs or SIA clusters are emitted as a result, and

the bubble grows.

1.2.3 Effects of neutron irradiation on main materials used in

nuclear fusion devices

We shall now review the most notable effects of neutron irradiation on materials in

fusion reactors, namely hardening, embrittlement and swelling.

1.2.3.1 Hardening and embrittlement

When a stress load is applied to a material, deformation occurs. If the sample

changes back to its original shape once the load is removed, this phenomenon is

labelled elastic deformation. However, if the change in shape is permanent, it is

called plastic deformation. The resistance of a material to plastic deformation is

understood as the hardness of this material. If a process makes a material more

difficult to deform plastically, the material is said to have been hardened. In general,

materials are able to sustain a stress load and show elastic behaviour up to a limit

called the elastic limit. When the load is increased, plastic deformation occurs. The

stress defining this limit is called the yield stress. Thus, an increase in the yield

stress of a material is an indication of hardening.

It has been observed that the motion of dislocations explains hardness in ma-

terials. If dislocations are able to move easily, the material is prone to plastic de-

formation, whereas obstacles to dislocation motion counter plastic deformation and

harden the material. In fact, hardening represents the increase in stress required to

start a dislocation moving on its glide plane [304]. Neutron irradiation is able to

introduce obstacles to dislocation motion in the form of defect clusters like voids,

DLs, bubbles or impurities. For this reason, neutron irradiation usually hardens the

irradiated material.
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The measure of engineering stress as a function of strain is helpful for the char-

acterisation of materials properties. Figure 1.14 portrays a stress-strain curve pro-

duced by Dai et al. [79] for two T91 steel samples. One of these (blue curve) has

been irradiated with 34 MeV 3He particles and one has not (black curve). In this

figure, the concepts of elastic and plastic deformation, yield stress and point of frac-

ture are exemplified for the curve that corresponds to the unirradiated sample. As

one can see, the material is hardened by irradiation, as a higher stress is necessary

to change the shape of the sample after it has been irradiated.
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Figure 1.14: Stress-strain curves for two samples of T91 steel, one of which has been
irradiated with 3He (blue) and one which has not (black) [79].

However, an associated effect to hardening is embrittlement, which is certainly

unwelcome. To understand the concept of embrittlement, the concept of ductility

must be first introduced. A material that can withstand a large strain and sustain

enough plastic deformation before fracture happens is known as ductile, so this

property bears the name of ductility. The opposite, i.e. a material that is unable to

show good ductility and breaks easily before plastic deformation happens, is defined

as a brittle material. Changes in microstructure that lead a ductile material to

become brittle are characterised as embrittlement. Embrittlement is an undesirable
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condition, since plastic deformation is less damaging than material fracture. In

Figure 1.14, it is shown that fracture occurs in the irradiated sample at a lower

strain than in the unirradiated sample. This is the result of embrittlement.

An ideal nuclear material would be simultaneously hard and ductile, but the

processes leading to the hardening of a material are unfortunately correlated to its

embrittlement. This is due to the fact that obstacles to dislocation motion lead

to embrittlement of the material, as well as being responsible for hardening [304,

326]. Indeed, when dislocations find an obstacle to their motion, they tend to pile

up at the location of that obstacle. This agglomeration of dislocations creates a

small separation of crystal planes, called a crack, which can grow and propagate,

ultimately leading to fracture.

Dislocations, like other defects, move more easily at high temperatures where

defect diffusion is likely. Therefore, the ductility or brittleness of a material depends

on temperature. If temperature in a ductile material is decreased until a point when

dislocations no longer move easily, the material properties change from ductile to

brittle. The temperature that characterises this point is known as the DBTT, and

sets a lower boundary for operational temperature in nuclear materials [326, 328].

In fact, the embrittlement of a material via external processes like irradiation can

be described as an increase in DBTT and a decrease in fracture toughness. In other

words, the more serious embrittlement becomes in a material, the higher operational

temperature is required, as operation below the DBTT is not adequate. The effect

of irradiation hardening and embrittlement is most pronounced at low temperature,

below 0.3 Tm, where Tm is the melting point [326].

In order to study the DBTT of a material sample, Charpy impact tests are

useful. In a Charpy impact test, a pendulum weight dropped from a certain height

collides with a notched sample, such that the energy absorbed by the sample prior

to fracture can be determined. This energy is then plotted against the temperature.

Figure 1.15 shows a Charpy impact test conducted by Dai et al. [79] for two samples

of T91 steel. Again, the results for the sample which has been irradiated with

34 MeV 3He particles to 265 appm (atomic parts per million) is depicted in blue

and those for the unirradiated sample in black. Clearly, the unirradiated sample

is able to absorb more impact energy at lower temperature before fracture occurs,

which shows that the DBTT is increased as a consequence of irradiation.
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Figure 1.15: Charpy impact test for two samples of T91 steel, one of which has been
irradiated with 3He (blue) and one which has not (black) [79].

The presence of DLs is known to harden irradiated materials [17, 180, 308]. It has

been found that DLs are sensitive to stress fields induced by dislocations [304, 308].

DLs move in this elastic field and decorate the dislocations, thus inhibiting their

motion. As a result, yield strength is increased and fracture toughness is reduced.

This leads to an increase in the DBTT, i.e. embrittlement of the material [304].

At high temperature, above 0.5 Tm, embrittlement can also be the effect of

neutron irradiation without associated hardening [304, 328]. For instance, voids

and bubbles can nucleate and grow at the grain boundary, which creates instabilities

between grains. Figure 1.16 shows an underfocus TEM image of He bubbles (white),

as obtained by El-Atwani et al. [95], in the matrix of fine grains of a Fe sample

irradiated with 10 keV He+ ions.

When stress is applied, cracks may propagate between grains as a result. He

impurities, which are very mobile, may quickly migrate to the grain boundary and

help the growth of intergranular voids and bubbles, decreasing the strength of grain

boundaries and further embrittling the material. He migration to grain boundaries

sets an upper boundary for operational temperature of the fusion reactor. To mit-
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Figure 1.16: He bubbles (white) in a He-irradiated Fe sample [95].

igate this effect, materials under development like nano-structured ODS steels are

able to trap He bubbles, thus inhibiting embrittlement at high T [27, 40, 157].

1.2.3.2 Radiation-induced swelling

One of the most catastrophic effects of neutron irradiation on materials is dimen-

sional instability, under which a process known as swelling is classified. Under

swelling, we understand the substantial increase in volume of the material sample

under irradiation [106, 115, 155]. This is problematic for components in nuclear

reactors, as the original sizes and shapes they were designed with are not preserved.

Swollen materials are sensitive to gradients in dose, dose rate and temperatures,

which can lead to strong distortions and eventually fracture [274].

It is generally accepted that ferritic-martensitic steels suffer less swelling than

austenitic steels [111, 155, 328]. Zinkle and Was [329] compared the swelling be-

haviour of austenitic stainless steels 304L and 316 to that of FeCr ferritic-martensitic

steels under neutron irradiation in a fast fission reactor. The swelling rates of

austenitic steels were reported an order of magnitude higher than that of ferritic-

martensitic steels at doses up to 100 displacements per atom (dpa). Similarly, Gar-

ner et al. [111] studied swelling in austenitic and ferritic-martensitic steels at higher

neutron doses, up to 2.5 × 1023 cm−2 or 150 dpa. The steady-state swelling rates

of austenitic steels were reported higher than those of ferritic-martensitic steels by

a factor of 4× - 5×. Under DEMO conditions, swelling is expected to reach 5% in

RAFM steels at a neutron dose of 1023 cm−2 [155, 276, 328, 327].
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Voids and gas bubbles are responsible for swelling. As vacancies nucleate to form

voids, the atoms are displaced outwards. These voids can then develop into small

cavities, and as a result, the total volume is increased. Swelling usually occurs at

intermediate temperatures, between 0.3 Tm and 0.6 Tm [169, 304, 326, 329]. This is

explained by the fact that at lower temperatures, mobility of vacancies is very low, so

it is difficult for them to nucleate into voids, whereas at higher temperatures, voids

are likely to evaporate by thermal emission of vacancies [49, 155, 169, 274, 304].

In the case of nuclear fusion, the reactor’s first wall is subjected to the formation

of bubbles, as H and He are present in the plasma, in addition to being released

as transmutation products. At high temperatures, He impurities tend to migrate

to grain boundaries [255, 328] and form He bubbles [106], as well as contribute

to the formation of HenVm complexes, which was mentioned in subsection 1.2.2.4.

Thus, by providing help for the formation of voids and bubbles, gas particles are

important contributors to radiation-induced swelling. In fact, it has been proposed

that the presence of gas particles is necessary for void nucleation and therefore

swelling [304]. Swollen samples display high sensitivity to gradients in dose, dose

rate and temperature, which leads to important instabilities and inhibits the good

performance of materials. Figure 1.17 shows the difference between an unirradiated

sample (left) and a sample that has been affected by swelling (right), from an article

by Straalsund et al. [271]

Swelling also leads to embrittlement at high temperature [288]. Void swelling

at high temperature can be suppressed by introducing defect sinks in the material

that act as recombination centres for interstitial and vacancy clusters. In particular,

ODS steels show satisfactory swelling behaviour at high T, as oxide particles prove

to be strong sinks for migrating defects [27, 327, 328].

1.3 Motivation and objectives of our work

We are mainly interested in the microstructural processes taking place at irradiated

samples under conditions similar to a fusion reactor like DEMO. The intense neutron

fluxes that are expected for devices like ITER and, in a more pronounced way,

DEMO, require neutron irradiation facilities that are either not readily accessible,

or even nonexistent [196, 328].
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Figure 1.17: Effect of radiation-induced swelling. Left: unirradiated sample. Right:
swollen sample [271].

However, it is necessary to predict the behaviour of structural materials under

development for fusion reactors. For this reason, accurate and powerful simulation

tools are needed. In addition, the physics behind some atomistic mechanisms taking

place in the material is uncertain in many cases, and experimental access to clarify

these questions is not straightforward. For example, the quantitative effect of gas

production (in particular He) via the D-T reaction on structural materials is still an

open question [328].

Simulation techniques try to provide an answer for situations where experimental

study is difficult, and explain physical developments at space and time scales that

cannot be observed directly in the laboratory. For example, a phenomenon like void

growth can be quantified by monitoring sink strength, which explains void swelling

as observed experimentally by transmission electron microscopy (TEM) [49, 144,

177, 291]. Similarly, the physical mechanisms that explain the stages observed in

resistivity recovery (RR) experiments [121, 122, 187, 275] can be interpreted with

the help of simulations [82, 105, 151, 285, 204].

The objective of this work is to develop a simulation model able to simulate the
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evolution of microstructural defects accurately. This model must be able to perform

simulations of realistic pieces of material (in the order of grain size) in achievable

runtimes, and the predicted results must be in agreement with physical experiments.

For this work, the KMC method was chosen as a simulation tool, in particular the

subset of Object Kinetic Monte Carlo (OKMC). A new algorithm, called the parallel

Tau-leaping algorithm (PTLA), which is optimised for parallel programming, was

created for this purpose. Then, an OKMC code based on this algorithm was devel-

oped and implemented on graphics cards, also known as graphics processing units

(GPUs), called Microstructure Evolution GPU-based Accelerated Object Kinetic

Monte Carlo (MEGA-OKMC). The CUDA programming framework was chosen for

this purpose, and the open-source Nvidia®C Compiler was used to compile and

debug our code [76]. As far as the methodology is concerned, an object-oriented

programming approach was selected. Individual properties of single defects such as

position or numeric identifier are stored in one class, and common properties to de-

fects of the same type are looked up in an instance of another class. This approach

enhances performance from a practical point of view, and helps encapsulation from a

programming point of view. The interface of our code was designed with the goal of

versatility in mind, such that the user is able to design objects with arbitrary geome-

tries and properties as well as write their own interaction functions. Basic programs

were tested for validation against examples found in literature, whereas the valida-

tion of more complex programs required coordination with other simulation groups

in the fusion community [25, 176].

Different examples are provided to demonstrate the viability of our work as a

simulation tool for nuclear materials under irradiation conditions relevant to ITER

and DEMO. In this work, we tried to explain the presence of DLs in electron-

irradiated Fe as observed by Arakawa et al. using TEM [15] and in self-irradiated Fe

observed by Yao et al. [315], using TEM as well. In the future, we expect the MEGA-

OKMC model to simulate the trapping of DL by dislocation lines, a phenomenon

that has been suggested to induce hardening in steels [86, 91, 223, 279, 290].

This doctoral dissertation is organised as follows. In chapter 2, different simula-

tion techniques for nuclear materials are described, namely MD, KMC and MFRT,

and our choice for an OKMC model is justified. Chapter 3 offers a description of

general programming on the GPU, which is the chosen implementation of our model.
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Afterwards, the main algorithm used in this work, i.e. the Parallel Tau-leaping Al-

gorithm (PTLA), is detailed in chapter 4. Chapter 5 introduces the acceleration

method known as Green’s Function Reaction Dynamics (GFRD), and how it has

been adapted in this work, particularly in the presence of external irradiation. Chap-

ter 6 is devoted to the implementation and interoperability of PTLA and GFRD

in our code. Our model is applied to the study of DL evolution in irradiated Fe

and Fe-5%Cr in chapter 7, where the benchmarking of our code with OKMC codes

produced in similar research groups is laid out as well. Finally, the conclusions of

our work are laid out in chapter 8.
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Chapter 2

Simulation of defect evolution in

irradiated materials

Radiation damage is intrinsically a multiscale problem. From the very small length

and time scales related to the creation of the PKA in a cascade, in the order of

nm and 10−12 s respectively, to the macroscopic sizes (several m) of fusion reactor

components and the time scales (a few years) they are designed for, different simu-

lation tools have been developed and must be used to simulate the different phases

of radiation damage. The main simulation techniques developed for defect evolution

in irradiated materials are Molecular Dynamics (MD), the Binary Collision Approx-

imation (BCA), the Kinetic Monte Carlo (KMC) method and the Mean Field Rate

Theory (MFRT). We shall now proceed to explain each of them.

2.1 Molecular Dynamics

MD is a powerful tool to describe the processes taking place in collision cascades.

MD simulations follow a classical approach to reproduce the dynamics of the whole

particle system. In other words, the Newtonian equations of motion are solved for

each of the atoms in the simulation box. The positions and velocities of all atoms in

the system are tracked, and this information can be linked via statistical mechanics

to macroscopic properties like temperature, pressure or energy [173, 304, 324].

If mi is the mass of a particle i (like an atom), ~xi its position vector and ~Fi the
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forces acting on the particle, Newton’s second law of motion is written as:

mi
d2~xi
dt2

= ~Fi (2.1)

In a force field, forces can also be expressed as gradients of differentiable poten-

tials U :

~Fi = − ~∇iU (2.2)

This yields:

mi
d2~xi
dt2

= − ~∇iU (2.3)

If uij(~xi, ~xj) describes the potential between particles i and j due to a pairwise

interaction, in the absence of external forces, the system potential U can be expressed

as the sum of all pairwise potentials:

U =
n∑
i

i−1∑
j

uij(~xi, ~xj) (2.4)

where n is the total number of particles.

Therefore, in general, U = U( ~x1, ~x2, . . . , ~xn) is a function of all atomic positions

in the system. Finding a potential that will reproduce the dynamics of the system

and being able to integrate the equations of motion numerically is the goal of MD

models. In a molecular system, forces are exerted on particles by other particles

in their surroundings, in the form of Van der Waals and Coulomb forces. Van der

Waals interactions are commonly represented by the Lennard-Jones potential as a

function of interatomic distance r [10, 296]:

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.5)

Here, σ and ε are two constants respectively called collision diameter and po-

tential well depth. The Lennard-Jones potential includes two terms, a repulsive

one (proportional to r−12) and an attractive one (proportional to r−6). For short

distances, the repulsive term dominates, which is related to Pauli’s exclusion prin-

ciple, as two atoms that are too close to each other tend to separate. However, as
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Figure 2.1: Lennard-Jones potential.

separation increases, the attractive term prevails. Interactions between dipoles or

induced dipoles, giving stability to the system, are described by this term.

Figure 2.1 shows the Lennard-Jones potential as a function of the distance, in

ε and σ units respectively, compared to the pure attractive and repulsive terms

in Eq. 2.5. As one can see, the function has a minimum at U( r
σ
) = −ε, whereas

the collision diameter σ is the distance at which the potential equals zero, as both

attractive and repulsive terms cancel each other out.

As far as electrostatic interactions are concerned, the Coulomb potential de-

scribes the potential between two charged point-like particles with charges q1 and

q2, separated by a distance r. If ε0 is the dielectric constant in vacuum and ε is the

permittivity of the material, the Coulomb potential is written as follows:

U(r) =
q1q2

4πε0ε
· 1

r
(2.6)

The Coulomb potential is repulsive for particles with equally signed charges and

attractive for the interaction between a positively charged and a negatively charged

particle. However, most particle systems are too complex to be described by the

Lennard-Jones and Coulomb potential only. Usually, for the description of the
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system potential, ferromagnetic, spin or other terms are included as well [9, 85, 164,

171, 197, 237].

Once the system potential has been defined, the set of coupled equations Eq. 2.3

must be integrated in time. As this equation system is usually too complicated to

solve analytically, numerical integration is necessary, which is done by time steps

of size ∆t. If ∆t is small and the positions ~x(t), velocities ~v(t) and accelerations

~a(t) of particles are known at time t, then these values at t + ∆t can be estimated

with a Taylor expansion. The velocity ~v(t) = d~x(t)
dt

and acceleration ~a(t) = d2~x(t)
dt2

are

the first and second time derivatives of the position, respectively. If ~b(t) is the time

derivative of the acceleration with respect to time, i.e. the third time derivative of

the position, the Taylor expansion yields:

~x(t+ ∆t) = ~x(t) + ~v(t) ·∆t+
1

2
~a(t) · (∆t)2 +

1

6
~b(t) · (∆t)3 +O

(
(∆t)4

)
~v(t+ ∆t) = ~v(t) + ~a(t) ·∆t+

1

2
~b(t) · (∆t)2 +O

(
(∆t)3

)
~a(t+ ∆t) = ~a(t) +~b(t) ·∆t+O

(
(∆t)2

)
(2.7)

Time integration algorithms in MD models are based on Eq. 2.7. One of the

most popular methods is the Verlet algorithm [188, 296], noted for its accuracy

and simplicity. A useful property of Newton’s equations of motion is that they are

invariant under time reversal. Taking advantage of this, in the original form of

the Verlet algorithm, the position ~x(t + ∆t) in Eq. 2.7 is expressed in forward and

backward time steps, i.e. both +∆t and −∆t are substituted for the time step in

this equation. This yields Eq. 2.8.

~x(t+ ∆t) = ~x(t) + ~v(t) ·∆t+
1

2
~a(t) · (∆t)2 +

1

6
~b(t) · (∆t)3 +O

(
(∆t)4

)
~x(t−∆t) = ~x(t)− ~v(t) ·∆t+

1

2
~a(t) · (∆t)2 − 1

6
~b(t) · (∆t)3 +O

(
(∆t)4

)
⇒ ~x(t+ ∆t) + ~x(t−∆t) = 2~x(t) + ~a(t) · (∆t)2 +O

(
(∆t)4

)
(2.8)

Substitution of Eq. 2.3 into Eq. 2.8 yields:

~x(t+ ∆t) = 2~x(t)− ~x(t−∆t)−
~∇U
m

(∆t)2 +O
(
(∆t)4

)
(2.9)
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Since the original Verlet algorithm does not calculate velocity explicitly, a more

accurate version, the leapfrog Verlet algorithm, has been developed [188]. In the

latter, the velocity at t + ∆t
2

is approximated at the midpoint between ~x(t) and

~x (t+ ∆t).

~v

(
t+

∆t

2

)
≈ ~x(t+ ∆t)− ~x(t)

∆t

⇒ ~x(t+ ∆t) ≈ ~x(t) + ~v

(
t+

∆t

2

)
·∆t (2.10)

Analogously, the velocity at t − ∆t
2

is approximated at the midpoint between

~x(t−∆t) and ~x(t):

~v

(
t− ∆t

2

)
≈ ~x(t)− ~x(t−∆t)

∆t
(2.11)

Following the same logic, the acceleration ~a(t) can be approximated between

~v
(
t− ∆t

2

)
and ~v

(
t+ ∆t

2

)
:

~a(t) = −
~∇U
m
≈
~v
(
t+ ∆t

2

)
− ~v

(
t− ∆t

2

)
∆t

⇒ ~v

(
t+

∆t

2

)
≈ ~v

(
t− ∆t

2

)
−
~∇U
m
·∆t (2.12)

Eqs. 2.10 and 2.12 give the equations of motion in the leapfrog Verlet algorithm.

Other integration mechanisms like the velocity Verlet and Beeman methods are also

used in MD models [34, 188].

To be able to describe the system dynamics accurately, the time step ∆t must

be small enough to resolve the fastest process. In the case of irradiated materials,

the smallest time step corresponds to the atomic vibration and to the characteristic

time related to the projectile velocity, which can be as small as a fraction of fs.

As far as length scales are concerned, MD simulations scale with the number of

atoms, which sets a limitation on the size of the simulation box. In practice, MD

can simulate the evolution of atoms in boxes of a few hundreds of nm [8, 9, 39,

171, 197, 324], which involves already several hundred million atoms. This size is

usually large enough to describe the radiation damage done by collision cascades,

but too small in comparison with the length and depth of materials samples used in

the laboratory or characteristic of reactor components. Therefore, final simulation
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times in these models usually range from ps to ns, in the time frame of collision

cascade relaxation [8, 9, 10, 164, 171, 197].

MD is a also useful tool to estimate the properties of defects and defect clusters

in irradiated materials. Using MD models, it is possible to extract important infor-

mation such as formation, migration and binding energies of defects [23, 39, 173],

the stability of defect clusters [324] or their response to magnetism [85, 171]. In ad-

dition, the interaction mechanisms of defects can be studied with MD [23, 173, 206].

Approximations like the Binary Collision Approximation (BCA), detailed in sec-

tion 2.2, may be applied to enhance performance under certain conditions. All of

this information is helpful for the study of materials at higher length and time scales,

with simulation techniques that are able to achieve them, such as BCA, KMC or

MFRT. The latter are introduced in sections 2.3 and 2.4 respectively.

2.2 Binary Collision Approximation

In order to model the generation of defects in a crystal under bombardment by

energetic particles, it is usually a good approximation to consider the transfer of

energy between impinging particles and the closest atoms in their vicinity [215, 243,

244, 245, 246, 247]. The BCA relies on the assumption that the interactions of

energetic projectiles with solid crystals can be described by a collection of two-body

encounters. The following assumptions are made in the BCA [245, 246]:

1. Collisions between energetic projectiles and their nearest atoms are considered,

and these encounters are considered isolated from the rest of the crystal.

2. The trajectories of colliding atoms are straight lines.

3. Interatomic forces are central and conservative; inelastic collisions with elec-

trons are negligible with respect to elastic collisions with atoms.

As the problem with many-body collisions present in MD is reduced to a series of

two-body collisions, the BCA is an efficient technique to speed up computation [55,

215, 243, 244, 245, 246, 247]. This is particularly true for high-energy regimes

such as sputter erosion, since MD methods become computationally costly at higher

energies [51, 55, 113, 215, 251, 252].
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For each collision, and a given impact parameter p, the scattering integral is

solved between the moving atom and a stationary lattice atom. For a potential

U(r), the scattering angle θ is determined by Eq. 2.13 [215]:

θ = π − 2p

∫ ∞
R

dr

r2g(r)
(2.13)

where:

g(r) =

√
1−

(p
r

)2

− U(r)

Er
(2.14)

In Eqs. 2.13 and 2.14, Er represents the relative kinetic energy of the centre-of-

mass and R is the minimum distance between particles, also known as the apsis [215,

246]. At this point, g(R) = 0.

As far as the impact parameter is concerned, BCA methods can be roughly di-

vided into two types, namely those intended for amorphous materials – or materials

whose structure can be ignored – such as SRIM [325], and those intended for ma-

terials with a crystalline structure such as MARLOWE [244, 247]. In BCA codes

where the material structure is amorphous, the impact parameter p is computed

as a function of the composition and density of the target material [325]. In BCA

codes which take the crystal lattice into consideration, the impact parameter may

also be computed by examining the trajectory of the moving atom along the crystal,

which is the case in MARLOWE [243, 244, 245, 246, 247]. The latter method has

the advantage of being able to simulate channeling phenomena [55, 215, 243].

In typical BCA codes like SRIM and MARLOWE, one of the input parameters

is the displacement energy Ed [244, 247, 251, 252, 325]. It is assumed that, for recoil

energies lower than Ed, an ion will not produce damage, whereas if the recoil energy

is greater, radiation damage will be produced. Some codes replace this value with

an effective displacement energy Ed,eff , which is usually chosen with a larger value

than Ed [51, 113].

The BCA enjoys great popularity in the scientific community for its accuracy

and applicability [51, 113, 251, 252]. A more thorough description of the BCA and

its ongoing improvements can be found in Ref. [215]. One important drawback of

the BCA is its limited usefulness in the range of smaller kinetic energies, as multi-

45



body interactions can become significant [55, 252]. In that scenario, the original

assumption that only binary collisions are important breaks down.

We shall now discuss the KMC method, which is of great relevance to the present

work.

2.3 Kinetic Monte Carlo

Many processes that are activated thermally, like the migration of interstitials, have

got a near zero probability to be undergone in the time scales of atomic vibrations

or collision cascades. These processes are known as rare events, and happen in

time scales that are unreachable by MD. For longer times (ns to µs and beyond),

these rare events are crucial to understand the evolution of particle systems since

it corresponds to the time scale during which defects can migrate and interact with

the microstructure. Therefore, it is necessary to use an alternative simulation tool

to MD in order to predict the evolution of defects.

The KMC method is able to overcome the size and time limitations of MD

models. Instead of attempting to simulate the dynamics of all particles in detail,

frequent events that happen in the time scales of vibrations and cascade collisions

are ignored, and the focus is set on rare events such as migration of defects that

occurs in a much longer time scale. The KMC method is stochastic by nature,

not deterministic, as random numbers are used to decide the time evolution of

the particle system. In the most intuitive KMC algorithm, called the rejection

algorithm, the probability of a particle (picked at random) to perform a rare event

can be expressed by a number p between 0 and 1. A uniform random number

0 < ξ ≤ 1 is then used to determine whether the particle will or will not perform

the event. Specifically, the inequality ξ ≤ p
n

is checked for n iterations until it

holds [70, 256]. In an alternative strategy, the rejection-free algorithm, a cumulative

list of all normalised event rates, called frequency line in some publications [184], is

set up. Figure 2.2 provides a schematic example of a frequency line. In a particle

system with defects of types vacancy, SIA and I2, four possible types of events are

allowed to happen, namely the migrations of each of these three defect types and the

dissociation of I2 clusters. The symbols rV,m, rI,m and rI2,m represent the rates of

vacancy migration, interstitial migration and I2 migration respectively, normalised
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Figure 2.2: Frequency line in a KMC simulation with defects of types V, SIA and
I2.

by the sum of all event rates in the system. Trivially, the rate of I2 dissociation

completes the frequency line in the rejection-free algorithm.

Then, a uniform random number 0 < ξ ≤ 1 is used to sample from this list and

select the event that shall be undergone. The rejection-free algorithm, also known

as Bortz-Kalos-Leibowitz algorithm [46, 70, 300], is of great importance to our work

and is presented in more detail in section 4.1.

After the selected event has been chosen and undergone, the probable time step

that may have passed between two events is calculated. As the time step adapts

to the nature of the events that may take place at the moment, the evolution of a

particle system can be followed with the KMC method for very different time scales

(from ns to hours). In principle, this allows for direct comparison of KMC models

to experiments, which is unfeasible with MD models due to their short time scales.

Rare events that are activated thermally usually follow a Boltzmann distribu-

tion and are characterised by event rates, i.e. the average number of times that

a rare event shall trigger per unit time. This shall be explained in more detail in

section 4.1. Most KMC models are unable to predict event rates, in contrast to MD,

so they must be known a priori [70, 105, 176, 205, 256, 300]. Some KMC models

like SEAKMC [312, 314], SLKMC [200] or k-ART [96, 36] are also able to predict

the event rates via ’on-the-fly’ calculations. In these models, the local neighbour-

hood of atoms is analysed, transition probabilities are determined as needed and

the transitions are computed accordingly. Three important subtypes of KMC meth-

ods can be distinguished, namely Atomistic Kinetic Monte Carlo (AKMC), Object
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Kinetic Monte Carlo (OKMC) and event-based models, which shall be explained in

the following subsections.

2.3.1 Atomistic Kinetic Monte Carlo

The evolution of alloys such as FeCr, of high importance in future fusion reac-

tors [110, 129, 176, 281, 315], at high temperatures is determined by atomistic pro-

cesses, such as the diffusion of vacancies.

The AKMC method has been developed in order to simulate the evolution of

defects in alloys accurately. In an AKMC model, defect diffusion is modelled as

follows [45, 64, 176, 267, 282, 297]. A rigid lattice is simulated, and its nodes may

be occupied by an atom or unoccupied (vacant). In some models [202, 282], SIAs

are included in the simulation as well. A lattice atom neighbouring a vacancy may

exchange its lattice position with the latter, giving rise to the vacancy jump. Simi-

larly, a SIA is able to perform a jump which depends on its configuration [202, 282].

For example, an interstitial atom in dilute FeCr alloys occupies a 〈110〉 dumbbell

configuration, which may change into a 〈111〉 crowdion configuration with a different

migration energy in more concentrated alloys [282].

Defect migration is a thermally activated process characterised by activation

energy ∆E, which depends on the local atomic configuration. In fact, the rate

of defect migration to a neighbouring site can be calculated as a function of the

temperature, attempt frequency (related to atomic vibrations) and ∆E. This is

computed for each possible site that the defect may migrate to. Afterwards, a

random number is chosen to determine which one of the possible jumps is performed.

After the defect has migrated to the chosen site, time is advanced.

The core of the AKMC method resides in the accurate and efficient evaluation

of ∆E for all neighbouring sites of defects [45, 64, 297]. To achieve this, a number

of techniques have been developed, for example:

1. The energy difference method [202, 297]: First, the energy of the whole lattice

before the jump is calculated as Ei, and the energy afterwards is calculated

as Ef . Then, the activation energy is computed at the midpoint between Ef

and Ei:

∆E = E0 +
Ef − Ei

2
(2.15)
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where E0 is an input constant that depends on the exchanged atom.

2. Broken bond models [185, 297]: The activation energy is calculated as the

difference between the energy at the stable position of the atom (lattice site)

Est and at the saddle point between two lattice sites Esp:

∆E = Esp − Est (2.16)

In order to find the value of Est, pairwise interactions between nearest neigh-

bours and, in some models, second or further nearest neighbours are consid-

ered.

3. Artificial neural networks [63, 64, 281, 282]: The value of ∆E is computed

on the fly using an artificial neural network, which is previously set up and

trained to predict the values of ∆E. This method has shown to significantly

speed up simulations and save runtime.

AKMC simulations are the main computational tool to describe diffusion in

alloys, in particular concentrated alloys. Since the lattice is simulated at the atomic

level, in the AKMC method, atomistic processes that take place in the alloy such

as the formation of complex clusters with solute atoms [202, 267], the response of

migrating defects to magnetism [185] or the emission of vacancy-solute pairs from

clusters [64] can be explained accurately. Therefore, AKMC is a powerful choice to

study the behaviour of alloys at high temperatures for longer times than what is

achievable by MD.

Unfortunately, the high computational cost that is inherent to AKMC simula-

tions causes the latter to be usually limited in size. As the volume of the simulated

lattice grows, so does the number of lattice sites, and the computational effort in-

creases significantly. Hence, in AKMC models, typical simulation volumes average

a few tens of unit cells [267, 281, 297], in the order of MD simulation boxes. In

addition, the simulation of several mechanisms such as interstitial clustering, one-

dimensional migration of DLs or solute cluster precipitation is difficult to implement

and tends to increase the complexity of AKMC models [267, 297], so simplifica-

tions and approximations are necessary in many cases. As mentioned by Soisson et

al. [267], the inclusion of complex processes that affect reaction kinetics is a challenge

for modern AKMC models.
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2.3.2 Object Kinetic Monte Carlo

The OKMC method is another widely used variant of KMC simulations in materi-

als science. In OKMC simulations, defects can be designed as objects with a series

of properties such as positions, migration and binding energies, dimensionality of

motion, and so on. Hence, single point defects, sinks or clusters are modelled as de-

fects with different internal properties, and interactions between defects are defined

according to the properties of each defect [26, 33, 70, 109, 176, 270, 313]. External

events like continuous irradiation are also considered, as the defects that are created

under collision cascades can be implemented with ease. This level of simulation is

certainly more abstract than other methods, due to the fact that only the defects

themselves are followed, and on-lattice atoms are ignored.

All properties of defects and the events that they may perform must be known

beforehand. In other words, it must be known a priori whether a defect is mobile,

and if it is the case, in how many dimensions it moves and with what migration

energy. Similarly, the dissociation of clusters is considered an event. Hence, the

stability of a cluster and its associated binding energies must be provided in advance,

since the OKMC method cannot predict them. Interactions between defects are

generally described by an instantaneous reaction that occurs within a capture radius.

Consequently, the capture radii related to defect interactions have to be deduced in

advance as well.

In nuclear materials science, the OKMC method is widely applicable to many

different problems like He trapping in W [32], DL diffusion [33, 144, 176] or void

and bubble motion in Fe [26, 109] and presents a number of advantages. As in-

lattice atoms are ignored, memory constraints in OKMC are not as strict as in

AKMC, so larger simulation boxes, comprising a larger portion of the material, can

be reproduced. Another difference with AKMC is that as a first approximation, the

migration energy is considered constant in most OKMC methods and does not need

to be evaluated as a function of the local atomic environment at every time step.

As a consequence, the number of computational operations that need to be done in

an OKMC simulation is, in general, smaller than in AKMC. For this reason, if the

medium can be considered isotropic, the OKMC method offers a precise description

of system evolution, and is able to simulate larger volumes than AKMC, which
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allows for the study of defect evolution at larger space and time scales.

However, even though OKMC simulations offer this computational advantage

over the AKMC method, the sample volumes that can be simulated with OKMC are

not arbitrarily large. In fact, the achievable simulation box size is limited to several

hundreds of nm [26, 33, 270, 313] because computational effort increases with the

number of defects present in an OKMC model. When irradiation flux is high or

when defects are highly mobile, runtimes in OKMC simulations may also become

prohibitive as a consequence of the small time steps imposed by the rate of the

different possible events. Hence, this requires a large number of computational steps

to achieve the final simulation times. Moreover, phase changes and concentrated

alloy modelling are not as straightforward in OKMC as in other methods like AKMC.

Due to the fact that lattice atoms are not taken into consideration, there is a lack

of information concerning atomistic details [313]. Therefore, an additional effort is

needed to model solute atoms in alloys. This increases the complexity of OKMC

simulations, and may lead to inconsistencies in case of concentrated alloys, which is

why OKMC methods are frequently limited to diluted alloys [26, 88, 110].

2.3.3 Event-based models

A third family of Kinetic Monte Carlo methods exists, which address events them-

selves to save runtime. Examples of these include event-based Kinetic Monte Carlo

(EKMC) and First-Passage Kinetic Monte Carlo (FPKMC).

In many KMC simulations, an important part of runtime is spent on simulating

jumps of fast-moving defects [205]. EKMC models like JERK [81] ignore the details

of defect motion, which is grouped into ‘trajectories’, and advance evolution by per-

forming events. In this context, events include defect transitions as well as defect

diffusion that results in an interaction with another defect. The JERK model has

been used to study the effect of electron irradiation of α-Fe thin foils [81], homoge-

neous precipitation in Fe-Cu alloys [149] or resistivity recovery (RR) in carbon-doped

α-Fe [151].

Opplestrup et al. proposed [212] and later detailed [213] another possibility

to speed up KMC computations by focusing on events, called the FPKMC method.

FPKMC is built upon the Kalos-Levesque-Verlet (KLV) algorithm [153], which relies
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on creating non-overlapping protective environments surrounding all particles, where

they can diffuse freely. These protective environments are allowed to grow in size

until two of them intersect, and at this point, the time needed by each particle to

reach the boundary of its protective space is sampled. In the KLV algorithm, after

the shortest time of first arrival τmin has been identified, the associated particle is

moved to a point on the surface of its protective environment and time is advanced

by τmin. Then, for all the remaining particles, the probability that they have not

reached the boundary of their protective environments at time τmin is calculated

with the help of Green’s functions, in accordance to the theory of first-passage

processes [153, 212, 213]. Their positions are updated, the system clock is advanced

by τmin and the procedure is repeated. Instead of saving only the minimum of all first

arrival times τmin, a list of all first arrival times is preserved. The involved particle is

moved to the calculated position and then only its protective environment (instead

of all environments) is created again. The time of this particle’s first arrival to this

new environment is sampled and inserted into the list of first arrival times. Using

this method, the original problem involving N particles is reduced to N problems

involving 1 particle, which is computationally more efficient [212, 213].

2.4 Mean Field Rate Theory

When the evolution of defects in large volumes must be predicted over long times,

the runtime required with KMC techniques becomes unaffordable. Therefore, an-

other more efficient simulation technique is needed. In large volumes, the number of

defects in the simulation box becomes very large, which, as we have seen, increases

the computational cost of KMC, and tracking their positions may become impracti-

cal. Instead, it is computationally easier to work with space and time averages (like

particle concentrations), if the physical conditions of the experiment can justify this

approximation. This is the mean-field approximation on which MFRT relies. In this

method, the simulation box is divided into infinitesimal volumes dV . The premise

behind MFRT is that defects are distributed uniformly in these dV , so there is no

preference for any type of defect in particular and correlations between defects are

neglected [205, 270]. In this context, correlations are instances where the distance

between two or more defects is so small that their movement is influenced by their
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neighbouring defects. MFRT can be viewed as an approximation to the continuum,

as the idea of distinct defects with individual properties is replaced by macroscopic

averages such as concentrations. As the notion of simulation volume disappears, the

systems that may be modelled with this technique are in principle unbounded by

volume, which is a clear advantage over other simulation methods.

MFRT is a deterministic method, in contrast to KMC. Whereas random numbers

are used in the KMC method, and therefore two simulations with the same initial

conditions may deliver different results, the final result is identical in two MFRT

simulations if their initial conditions are the same.

In MFRT, the concentrations Cj of every defect species j are followed in time

in order to describe the evolution of the system. For every species j, a diffusion-

reaction equation governing the evolution of its concentration in space and time can

be expressed as [214, 216]:

∂Cj
∂t

= Dj∇2Cj +Gj +
∑
i

∑
k

r+
ik(Ci, Ck)−

∑
k

r−jk(Cj, Ck)− r
−
j (Cj)− Lj (2.17)

The terms used in this equation correspond to:

� A Fickian term corresponding to the diffusion of particles with a diffusion

coefficient Dj.

� The direct generation rate Gj. This term represents the production of defects

of type j by mechanisms other than interactions between defects, such as the

introduction of this type of defects in a collision cascade.

� The rate of creation r+
ik(Ci, Ck). This is the production rate of defects of type

j due to reactions between defects of type i with defects of type k. This would

correspond, for instance, to the creation of vacancy clusters Vn via absorption

of vacancies by Vn−1 clusters.

� The rate of destruction r−jk(Cj, Ck). This is the rate at which defects of type

j are lost by interaction with other defects.

� The rate of evaporation r−j (Cj). This rate represents the loss of clusters by

means of defect emission.
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� The direct loss rate Lj. This is the average loss of particles of type j to grain

boundaries or other types of sinks that are not taken into account in the term∑
k r
−
jk(Cj, Ck).

Other terms, such as the drift of a charged particle in an electric field, can be

taken into account as well. Hence, the original problem of tracking the individual

position of defects in time, inherent to KMC method, is translated into a set of

coupled partial differential equations.

All species that may potentially appear in the simulation must be taken into

consideration. Since the number of equations in set Eq. 2.17 cannot be infinite,

in the case of defect clustering, a large upper limit for the cluster size is typically

defined to ensure that all An + A
 An+1 reactions are accounted for [214, 270].

Like in the case of the KMC method, the input parameters in MFRT like capture

radii and activation energies have to be known in advance. In some cases, the

coefficients needed for Eq. 2.17 are straightforward to compute. Let us consider the

simple example of particle recombination, i.e. a system with particles of types A

and B that annihilate each other by the reaction A+B → 0 with reaction constant

k. The respective diffusion coefficients are DA and DB. In this case, Eq. 2.17 is

written as:

∂CA
∂t

= DA∇2CA − kCACB
∂CB
∂t

= DB∇2CB − kCBCA (2.18)

If particles A and B diffuse randomly in three dimensions and rc is the cap-

ture radius defined for the recombination between them, then it can be shown

that the reaction constant is calculated as k = 4πrc (DA +DB) [301]. The set

Eq. 2.18 is then integrated by numerical methods, therefore completely determining

the time evolution of the particle system. In general, this process is computationally

cheap.Therefore, the time scales that may be reached by MFRT are very long, in

the order of the lifetime of a nuclear reactor like ITER and beyond. — In addi-

tion, there are in principle no upper limits to concentration in a MFRT simulation,

which can achieve large damage doses at high temperatures with little computational
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effort [81, 82, 214, 216, 270]. MFRT may therefore seem like a very attractive com-

putational tool to model materials under intense irradiation, which, as we have seen

in the previous chapter, is the case in DEMO. However, the fact that MFRT does not

take correlations into consideration may lead to unphysical results if there are high

localised concentrations of defects. — Some MFRT models attempt to minimise this

effect by including mechanisms to account for spatial resolution [92, 150, 158, 311],

usually with the help of finite difference methods.

Another disadvantage of MFRT is that the terms in Eq. 2.17 are not always

evident to compute. If these terms are complex, they (and their associated coef-

ficients) must be derived before executing the simulation. It might be necessary

to develop new, complex mathematical methods, which makes the applicability of

MFRT certainly not universal. Furthermore, the fact that MFRT does not treat

particles as distinct individuals but as collectives means that some MFRT results

involve a problematic interpretation. For instance, an inaccurate MFRT simulation

could potentially show a negative concentration, which is unphysical.

2.5 Justification for the choice of OKMC in this

work

Amongst the objectives of this work, it was mentioned in section 1.3 that the al-

gorithm to be developed ought to reach simulation times close to those achieved

experimentally, in the order of seconds and beyond. In addition, the size of the

simulation box should be in the order of grain size in an irradiated sample. For

these reasons, the MD method is naturally discarded since it only allows reaching

physical times in the order of ps to ns, as explained in section 2.1.

Hence, the remaining possible choices for our model are KMC or MFRT. These

methods allow for the simulation of longer times, and, in the case of OKMC and

MFRT, larger simulation volumes, as described previously. In order to simulate

boxes of hundreds of nm in size and beyond, the AKMC method is computationally

too expensive. Our intention is to understand physical processes taking place at

length scales that are comparable to the grain size, so AKMC was discarded as an

option. Instead, spatial isotropy is assumed in OKMC and MFRT, and activation
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energies are considered constant.

For the sake of accuracy, OKMC was chosen as the basis for our model. Even

though MFRT calculations are much faster, the fact that correlations and local

inhomogeneities are not taken into account makes MFRT disadvantageous in order

to understand atomistic mechanisms. Since the positions of particles are tracked

individually in OKMC, local effects are accounted for, in contrast to MFRT.

Moreover, the rate of some interactions such as the reaction between a DL mi-

grating in one dimension and a dislocation line, may be difficult to estimate. In

contrast, these interactions are naturally accounted for in the OKMC method, the

jump frequency of defects being the only knowledge required. This makes OKMC a

more accurate tool than MFRT in order to represent systems with a high density of

defects like materials subjected to intense neutron irradiation. Furthermore, in the

case of OKMC, there is no need to set a maximum size of particle clusters, which is

virtually unlimited, unlike in MFRT where a matrix of a fixed size must be defined

in advance. These advantages over MFRT thus support our choice to base this work

on the OKMC method.

Finally, one of the consequences of individual particle treatment by the OKMC

method is that it maps well to parallel programming, which can be used to speed

up simulations. The probabilities of thermally activated events only depend on

the activation energies involved, which in the OKMC framework are modelled as

properties of each defect. Thus, these probabilities are independent of each other

and the problem of following the evolution of a system with many particles can

be divided into smaller problems. The latter are then solved simultaneously and

independently of each other. In chapter 4, we shall show how the MEGA-OKMC

code has been implemented to be efficient even in an inhomogeneous system with an

array of different types of defects, as the time step only depends on the nature of the

defects with the largest sum of event rates. As one shall see in chapters 4 and 5, it is

also possible to enable continuous irradiation in MEGA-OKMC without disturbing

performance. Parallel programming is introduced in the following chapter, giving

special attention to the implementation used in this work.
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Chapter 3

Parallel programming on GPUs

In this chapter, general concepts on parallel programming are presented in sec-

tion 3.1, with focus on general-purpose programming on graphics processing units

(GPGPU). The CUDA programming framework used in this work is introduced in

section 3.2.

3.1 Parallel computation

Parallel computing refers to the simultaneous use of multiple compute resources to

solve a computational problem [125]. In subsection 3.1.1, this concept is explained.

If the computational problem is divided into smaller pieces, such that each com-

putational resource is responsible for one of the pieces, it is possible to reduce the

runtime required to solve it. Some examples of machines on which parallel comput-

ing is applicable are CPU clusters and graphics processing units (GPUs). The use of

GPUs to perform general-purpose computation is known as GPGPU. In particular,

we chose GPGPU for the implementation of our model. GPGPU is presented in

subsection 3.1.2 and the memory model behind it is explained in subsection 3.1.3.

3.1.1 Concept of parallel programming

Traditional computation, more precisely called serial computation, relies on the

partition of a problem into instructions that are introduced one after another, such

57



that only one instruction can be executed at a time. In contrast, a parallel com-

puting model may execute several instructions simultaneously or in parallel. An

important milestone in the history of parallel computing happened in the 1980s,

when the Caltech Concurrent Computation Program built a parallel computer –

the Cosmic Cube – with 64 interconnected commercial Intel processors [257]. This

project demonstrated that it was possible to create a competitive supercomputer us-

ing commercially available components. More recently, parallel machines have been

developed with the purpose of providing useful tools to scientific research, such as

the IBM®Blue Gene®project, originally intended to help investigators in biology

simulations [38].

A parallel computing model may be beneficial to runtime if the problem maps

well to a parallel paradigm, which depends on a number of factors. When solving a

problem within a parallel framework, the independence of instructions that are com-

puted in parallel is crucial. Indeed, let us imagine a simple system of two processing

units A and B respectively executing two instructions IA and IB simultaneously.

Since each unit is, in principle, unaware of the data being processed on the other, it

is necessary to make sure that IA does not need an input from unit B and vice versa.

Therefore, IA and IB must be independent of each other. In a parallel application,

the smallest instruction unit is called the thread. Thus, threads execute instruc-

tions in parallel. In general, these threads are allowed to communicate information

with the help of a block of memory called the shared memory [78, 125]. Although

threads execute instructions in parallel logically, there is no guarantee that these

instructions are executed simultaneously in time. For this reason, in a flawed appli-

cation, it might happen that two parallel threads try to change the output of the

same memory address. This is known as a race condition. In order to avoid such

conflicts, threads that have access to the same shared memory must wait for the

execution of other threads in a process called synchronisation.

With this in mind, it is not difficult to understand why the OKMC method

is easily mapped to a parallel model. The defect properties mentioned in subsec-

tion 2.3.2 are largely independent of each other. If each thread is responsible for the

operations concerning one defect, and many parallel threads (tens of thousands or

more) are launched, a big number of defects can be processed in a shorter runtime

than if these operations were executed serially. This suggests that larger material
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sizes may be represented, and realistic time scales achieved, if an OKMC model is

implemented using parallel computation in an intelligent way.

Several paradigms in parallel programming exist, such as:

1. Message-Passing Interface (MPI) [127]: This is a message passing standard for

C and Fortran applications maintained by a wide array of partners, as a way

to ensure portability and flexibility across CPU clusters. The first standard

was released in 1994.

2. Open Multi Processing (OpenMP) [78]: Originally released in 1997, this model

was originally developed as a portable alternative to MPI. Programming in

MPI can prove difficult [78], so OpenMP is equipped with a set of simple

directives and routines that provide the desired parallelism. OpenMP supports

C, C++ and Fortran on many architectures.

3. General-Purpose Programming on the GPU (GPGPU): As we will explain in

subsection 3.1.2, the GPU is used to process data in parallel. GPUs are a

cheap and efficient alternative to CPU clusters, as far as parallel computing

is concerned. Since GPUs are commonplace whereas access to expensive CPU

clusters is usually restricted, GPGPU is increasingly popular. Several imple-

mentations of MPI and the newest OpenMP standard support GPU program-

ming [76]. In addition, several programming models are explicitly oriented

towards GPGPU, such as CUDA [207] or OpenGL [265].

MPI is suited for both shared memory computers and distributed systems, i.e.

parallelism over several nodes, whereas OpenMP is limited to shared memory com-

puters. Thus, an advantage of MPI over OpenMP is that MPI applications are not

restricted to one node, unlike OpenMP ones. On the other hand, OpenMP is useful

for incremental parallelism, which is the parallelisation of parts of the application

with a minimal change in the code. In particular, the execution of a loop in parallel,

also known as loop-level parallelism, is optimised in OpenMP. This makes OpenMP

applications portable and easier to maintain than MPI ones [78]. As far as GPUs

are concerned, their architecture incorporates a series of multiprocessors that per-

form operations in parallel, such that many parallel threads –in the order of tens

of thousands to millions– can be created. The multiprocessors are able to execute
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tens of thousands of these threads simultaneously [203]. Parallel applications can

be run on a single GPU or on multiple ones, if a paradigm such as MPI is applied

to distribute memory across several GPU nodes.

Our work has been implemented on GPGPU for the following reasons. Since

each defect is able to perform a series of events independently of all other defects,

the instructions that affect each defect can be executed simultaneously. Hence,

each one of the defects can be assigned to each thread. However, the number of

defects present at each stage of the OKMC simulation is not necessarily a constant.

The disappearance of defects by reactions with other defects or by recombination

at the surface, as well as the introduction of new defects from irradiation cascades

or by emission from defect clusters, have to be taken into consideration. In the

case of CPU clusters, this could lead to implementation difficulties, as the amount

of computational resources used for the processing of events must be calculated at

every step. Moreover, the number of parallel threads launched in a CPU cluster

application is a function of the number of available cores, which is correlated to the

number of processors in use. This number has to be known in advance, and is in

general in the order of tens to thousands [125, 184, 233]. This means that only a

few hundred or thousands of particles can be processed effectively at the same time,

which induces a delay in case a realistic simulation box with millions of defects is

simulated.

In contrast, our OKMC model can be implemented on a single GPU, which can

create millions of threads and execute tens of thousands of them simultaneously, as

stated above. To produce a similar number of threads, a CPU cluster would need

vast computational resources, namely thousands of multicore processors. If MPI is

used, a distributed memory system is appropriate, whereas if OpenMP is used, a

large shared memory computer is needed. In both cases, the economic and energetic

cost of maintaining such a system is orders of magnitude higher than the cost of

using a GPU.

Finally, one of the most important bottlenecks in parallel programming is the

overhead due to communication between processors [125]. In a MPI application for

a distributed memory system, minimising this communication is one of the foremost

challenges. This is not an issue for programming on a single GPU. GPU hardware is

designed to efficiently connect the GPU multiprocessors with the RAM, thus greatly
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reducing the overhead [207].

For all these reasons, an OKMC model with hundreds of thousands or millions

of particles is easier, cheaper and more efficient to implement on a GPU than on

a cluster of CPUs, which justifies our choice of GPGPU. The concept of GPGPU

shall be detailed further in the following subsection.

3.1.2 GPGPU

In recent years, has been chosen as an inexpensive, reliable alternative to CPU pro-

gramming [220]. Owing to their architecture, which involves hundreds of parallel

processor cores, GPUs offer a high degree of parallelism, as explained in subsec-

tion 3.1.1. Thus, they compensate the lack of processing power of each individual

processor (compared to modern CPUs) with a substantial display of parallelism.

Driven by the demand for rapid rendering of 3D scenes in video games [203], GPU

technology continues to evolve at a faster rate than Moore’s law [220]. To illustrate

the evolution of GPU processing power over the years, Figure 3.1 depicts the theo-

retical peak processing power in single-precision floating-point operations (FLOPs)

per clock cycle that different generations of GPUs are able to calculate. Clearly, the

development of GPU technology has been fast and efficient over the last years.

GPUs became more flexible and programmable at the start of the 21st cen-

tury [203]. In addition to their low price [220], this brought GPUs to be perceived

as an attractive possibility to researchers, marking the start of GPGPU. For this

reason, GPGPU is used as a paradigm in many fields of research, including MD mod-

els such as LAMMPS [232], NAMD [227] or GROMACS [235], particle transport

models [123, 124] or Monte Carlo models for many-particle systems [165, 233, 306].

Due to their versatility and processing power, GPUs are routinely featured in su-

percomputers, including most of those appearing in the supercomputer reference

list TOP500 [272]. Moreover, several studies have found GPUs to display excel-

lent energy efficiency when compared to CPUs [189, 259]. For this reason, the

supercomputer list Green500 [259], which ranks the top 500 supercomputers in the

world by energy efficiency, explicitly mentions the role of GPU computing in the

challenges involved in achieving sustainable standards within the high-performance

computing community. At the time of writing this dissertation, the second-highest-
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Figure 3.1: Theoretical peak processing power of GPUs in single-precision FLOPs
per clock cycle. Source: developer websites [3, 76].

performing supercomputer in the world was Summit, located in the Oak Ridge

National Laboratory, only behind the Fugaku supercomputer in the RIKEN Center

for Computational Science [272]. Summit is built with 4608 nodes, containing 2

IBM®POWER9�CPUs and 6 Nvidia®Volta®GPUs each [272, 295].

3.1.3 Memory hierarchy in GPGPU

The aspects of the GPU memory hierarchy relevant to our code will be addressed

here, as explained by the CUDA programming guide [207].

GPUs (henceforth devices) are provided with a global memory, which is the

device RAM, where data reside and can be up- and downloaded by the CPU (also

called the host). Each thread is assigned a part of this global memory that can only

be accessed by the thread itself, called the local memory. Small variables are stored

in thread registers, which are limited to each thread and are the fastest accessible

memory regions. Larger variables and arrays are destined to the local memory

outside registers. In this case, accessing these variables is computationally slower.
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In GPGPU, threads can be grouped into thread blocks, which is another level of

parallelism. Blocks are able to carry out operations in parallel, and threads in the

same block can share information via the shared memory of that block. GPU shared

memory is a fast type of cached memory –i.e. faster than the global memory– that

is located on the chip [207] and its scope is limited to the own block. In other words,

one block (or, more specifically, threads in the same block) cannot access the shared

memory of other blocks. Shared memory is particularly useful in the implementation

of the particle interaction algorithm described in the appendix. Since the scope of

shared memory is the block it is associated with, shared memory operations carried

out in a block are guaranteed not to disturb processes in other blocks and vice

versa. Hence, it is straightforward to map our inter-particle reaction algorithm to

a GPGPU application. By associating each cell in space to a thread block in the

kernel, the interaction algorithm is implemented easily and accurately.

In addition, devices are provided with two types of read-only cached memory,

labelled texture and constant memory. Texture memory is optimised for 2D locality,

which means that two threads reading from neighbouring memory sites achieve

better performance. Constant memory is designed for data that will not change

across the application, and may provide a performance advantage over data stored

in the global memory.

Figure 3.2 shows a schematic view [76, 207] of the six different types of memory

in GPGPU: local memory and registers (with thread scope), shared memory (with

block scope) and global, texture and constant memory (with application scope; the

last two being read-only memory spaces). In our work, we mainly make use of the

global and shared memory. Function types and host-device interoperability in the

chosen programming model, namely CUDA, are explained in section 3.2.

3.2 The CUDA programming model

This section is devoted to the traits of the CUDA programming model, which is the

paradigm used in this work.

In November 2006, NVIDIA®Corporation launched a new technology named

CUDA (Compute Unified Device Architecture) [203, 207]. CUDA, essentially an

extension of C/C++, is a parallel computing model designed for NVIDIA graphics
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Figure 3.2: Memory types in GPGPU [76, 207].

cards. Here we present the main aspects that ought to be addressed in order to

understand the CUDA programming model.

In the CUDA framework [207], a distinction is made between the host and the

device. Functions are classified in the CUDA interface into host functions (called

from and executed on the host), kernels (called from the host, but executed on

the device) and device functions (called from and executed on the device). There

is a reserved word for each of these cases, respectively __host__, __global__ and

__device__, that must be placed in front of the function declaration. If none of

these qualifiers are found in the declaration, the function defaults to a host function.

This is summarised in Table 3.1.

Called by Executed on Name Qualifier
Host Host Host function __host__ (default)
Host Device Kernel __global__

Device Device Device function __device__

Table 3.1: Function types in the CUDA programming model.
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A function can be declared with both __host__ and __device__ qualifiers, as

long as the operation is not illegal on either the host or the device, but kernels must

be declared with the __global__ qualifier exclusively. Kernels in CUDA must be

configured by specifying the number of blocks that are launched and the size of

these blocks –i.e. the number of threads per block– have to be declared when a

kernel is called. Some dedicated high-level libraries for CUDA, such as the Thrust

library [134], are designed to manage kernel configuration automatically.

One aspect to keep in mind is that communication between processors is often

an issue for implementations of parallel models, as mentioned in subsection 3.1.1.

The CPU-GPU interface is no exception, as mentioned in the CUDA programming

guide [207], i.e. the transfer of information between host and device should be kept

to a minimum to avoid this bottleneck. Therefore, it is usually beneficial to keep

the data to be processed on the device as long as possible and retrieve them at the

end of the simulation.

We shall now provide a simple example of a problem solved by means of serial

computation on the CPU and by parallel computation on a CUDA-capable GPU,

namely the sum of two vectors ~c = ~a + ~b of N integer components, where N can

take values up to several hundred million. In the case of serial computation, the

appropriate operation is a loop that adds the components of vectors ~a and ~b one

after another. The function to sum both vectors ~a and ~b in C++ has got this form:

void vectorsum_serial(int *a, int *b, int *c){

int i;

for (i = 0; i < N; i++){

c[i] = a[i] + b[i];

}

}

Then, calling this function in the main function is straightforward:

vectorsum_serial(a,b,c);

The sum of each component ci = ai + bi is independent of the rest of com-

ponents. Therefore, in parallel computation, each thread can compute one of the
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components ci in parallel. In CUDA, it is possible to launch blocks of threads in

one, two and three dimensions. Our example involves a sum of vectors, so only one-

dimensional blocks are needed. The internal variables threadIdx.x, blockIdx.x

and blockDim.x indicate the ID of each thread in its block, the ID of the thread’s

block and the number of threads per block respectively. The CUDA kernel is written

as follows:

__global__ void vectorsum_parallel(int *a, int *b, int *c){

int i = threadIdx.x + blockIdx.x * blockDim.x;

c[i] = a[i] + b[i];

}

In order to call this kernel in the main function, it must be configured. In other

words, the number of blocks to be launched and the number of threads per block have

to be determined explicitly. We intend to launch as many threads as the number of

components in each vector –which is equal to N– due to the fact that each thread

is responsible for the addition of one component. We define the size of blocks at 32

threads per block, which is the smallest block size in CUDA to guarantee maximum

GPU parallel performance [207], such that blockDim.x equals 32. This means that

1 +
⌊
N
32

⌋
blocks must be launched in order to achieve N parallel threads. Here bxc

represents the floor function, which returns the greatest n ≤ x with n ∈ Z. In

CUDA C/C++, integer division automatically applies the floor function. For these

reasons, the kernel call in the main function is written as:

vectorsum_parallel<<<1 + N/32, 32>>>(a,b,c);

The serial addition was performed on an Intel Xeon®CPU ES-1620 v2 @3.70

GHz and the parallel addition was executed on a NVIDIA®GeForce®TITAN Black

GPU. Table 3.2 shows the runtime needed by each operation.

As one can see, the gain in runtime –four to five orders of magnitude– offered

by the parallel implementation is excellent, which highlights the possibilities of

GPGPU. Computational effort is proportional to the number of components in the

serial case, such that increasing the vector length by a factor of 25 causes the runtime

to increase in a similar factor. However, this is not the case in the parallel operation,
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N CPU runtime GPU runtime GPU gain
20× 106 51.1 ms 0.048 ms 1060×
200× 106 494.05 ms 0.048 ms 10537×
500× 106 1246.21 ms 0.059 ms 21122×

Table 3.2: Runtimes needed by the serial (CPU) and parallel (GPU) additions of
two vectors of N components.

as runtime increases only slightly when the number of components is increased by an

order of magnitude. Moreover, GPU runtime does not change when N is increased

from 20 × 106 to 200 × 106. The reason is that the GPU is able to launch millions

of parallel threads and optimise memory access in simple operations, such that the

addition of very large vectors can be performed effortlessly.

The main concepts behind GPU programming and the CUDA model have been

explained in this chapter. This is the chosen implementation for our GPU-OKMC

model. With this in mind, chapter 4 is devoted to the main algorithm that we

developed in this work.
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Chapter 4

Development of a parallel OkMC

code based on GPU programming

In this chapter, the basic theory behind MEGA-OkMC is presented. Section 4.1

describes the BKL algorithm, an algorithm of great relevance to OKMC. Section 4.2

shows the PTLA, the algorithm developed by the authors from scratch for the

present work. Finally, some simulation results are presented in section 4.3 to validate

our algorithm.

4.1 Classic BKL algorithm

This section is devoted to the Bortz-Kalos-Leibowitz (BKL) algorithm, which is

widely used in simulations based on the KMC method, like OKMC. First, the con-

cept behind the BKL algorithm is presented in subsection 4.1.1. Later, its advan-

tages and disadvantages are discussed in subsection 4.1.2.

4.1.1 Fundamentals of the BKL algorithm

In a rare-event system [238, 300], transitions or events happen from one state σ

to another σ′ occasionally. If P (σ, t) is the probability that the system is in state

σ at time t, and W (σ → σ′) the transition probability that the state will change
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from state σ to σ′ during δt, then the evolution of the probability P (σ, t) in time is

governed by the master equation [70, 102, 118]:

∂P (σ, t)

∂t
=
∑
σ′

W (σ′ → σ)P (σ′, t)−
∑
σ′

W (σ → σ′)P (σ, t) (4.1)

The idea behind the KMC method is not to provide an exact or analytical so-

lution to this equation [118], which in most cases is not possible, but to compute a

realisation of the system trajectory along the time line up to a final time tend. The

transition probabilities are assumed independent of each other, and the number of

possible transitions must be known a priori and finite [70, 300]. Indeed, since the

system evolves in time {t0 < t1 < . . . } along a series of states {σ0, σ1 . . . }, the

sequence {σk} can be viewed as a Markov chain [238, 256, 300] associated with a

Poisson process with transition rate R [102, 256, 300]. R represents the transition

probability W (σn → σn+1) to evolve from state σn to state σn+1 if σn+1 is an acces-

sible state, meaning an accessible configuration of the system. Examples of system

states are, for instance, the occupation arrays of a cubic crystal [70, 256, 18].

The aim of the KMC method is to produce the sequence {σk} in a time line

{tk}. It must be noted that a Markov chain is ‘memory-less’, i.e. the probability of a

change of state in a system is independent of the history of the system [102, 119, 300].

Hence, the probable evolution of the system at a given moment can be estimated by

the probability that an accessible state will be reached next. As far as the master

equation is concerned, we only need to focus on the W (σ → σ′) values when the

states σ′ can be accessed from state σ directly. The transition of a state σi to

an accessible state σj, which follows a Poisson process, is called an event and is

characterised by the event rate rj.

The number of possible values that j can take is equal to the number of possible

events in the system, i.e. the number of possible states that the system can move to

at a certain moment. On average, an event k can occur rkδt times in a time interval

[t, t+ δt]. Strictly speaking, we can compute the probability that an event with rate

rk will be triggered n times within [t, t+ δt] using a Poisson law [44, 119]:

P (n; rkδt) =
(rkδt)

n

n!
exp (−rkδt) (4.2)
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Essentially, the systems we want to investigate are ensembles of particles able

to perform different events. These events are Poisson processes, and they are inde-

pendent of each other. For example, the rate of migration or dissociation of a given

cluster is a function of the properties of that specific cluster, and independent of all

other particles in the particle system. With this premise, we shall take advantage

of a useful property of the Poisson distribution, namely the fact that a sum of inde-

pendent Poisson processes is, itself, a Poisson process. This is easily demonstrated

as follows. If {Xi} (i = 1 . . . n) is a set of n independent Poisson random variables

with parameters {λi}, then the variable X =
∑n

i Xi is a Poisson random variable

with parameter λ =
∑n

i λi [44]. This is clearly the case of the particle systems we

intend to study. Indeed, the (total) rate R of the system can be expressed as the

sum of all event rates within the system:

R =
N∑
k

rk (4.3)

As far as the OKMC method is concerned, in the context of this work, we are

mainly interested in thermally activated events [144, 175, 214, 270]. In these cases,

the probability that a system will be in a certain state of a given energy at a given

temperature usually follows a Boltzmann distribution [88, 118, 300]. If kB is the

Boltzmann constant, T the temperature, and ν0 the attempt frequency –i.e. the

vibration frequency of the atom [70, 88]–, the rate of the event characterised by

energy barrier E is given by Eq. 4.4:

rk = ν0 exp

(
− E

kBT

)
(4.4)

It is now clear how to calculate the event rates in the system in order to generate

the sequence of system states {σk}. The question remains of how to generate {tk},
i.e. how to advance time step by step in a rational way. In order to do this, let us

consider a system with only one particle able to perform exactly one event with event

rate rk. This is, as mentioned, a Poisson process, and therefore has exponential decay

statistics [118, 119, 300]. The probability that the particle has not yet performed

the event at time t is [300]:

pno event = exp (−rkt) (4.5)
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Therefore, the probability that the event has been performed at t is:

pevent(t) = 1− pno event = 1− exp (−rkt) (4.6)

Let us now introduce the transition probability density function f(t). This func-

tion gives the probability density of times between successive events [102] and is

defined as the time derivative of pevent(t). This yields Eq. 4.7:

f(t) =
dpevent(t)

dt
= rk exp (−rkt) (4.7)

Trivially, the cumulative distribution function F (t) =
∫ t

0
f(x)dx = pevent(t) as

given by Eq. 4.6. The inverse transform method [44] is useful to sample the probable

time interval te between two events in succession. Trivially, by letting t = F−1(u)

we get:

u = 1− exp (−rkt)⇒ t = − ln (1− u)

rk
(4.8)

If 0 ≤ u < 1 is a uniformly distributed random variable, and η = 1 − u, then

0 < η ≤ 1 is also a uniformly distributed variable. By substitution of η into Eq. 4.8,

Eq. 4.9 yields the probable time interval te between two consecutive events with rate

rk.

te = − ln(η)

rk
(4.9)

Finally, we shall find out how to sample the time interval between two successive

events in a rare-event system in general, also known as the time step δt. Due to the

fact that the sum of a number of independent Poisson processes is a Poisson process,

substitution of the total system rate R into Eq. 4.7 yields the transition probability

density function of the whole system:

f(t) = R exp (−Rt) (4.10)

Thus, Eq. 4.11 gives the probable time interval that passes between two consec-

utive events in the system, i.e. the time step δt.

δt = − ln (η)

R
(4.11)
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There are a number of KMC methods to generate trajectories of rare-event sys-

tems along a time line. Here, we will focus on one of these techniques that is relevant

to this work. Named the residence-time algorithm or BKL algorithm, this method

involves two steps [46, 70, 118, 300], namely the computation of all possible event

rates in the system and the selection of the process to be undergone.

The residence-time Monte Carlo algorithm was described by Young and El-

cock [321] as a way to study vacancy migration in binary alloys. In their 1975

paper, Bortz, Kalos and Leibowitz (BKL) [46] applied their version, initially called

the n-Fold Way, to the evolution of Ising spin systems. In this algorithm, usually

referred to as Bortz-Kalos-Leibowitz or BKL algorithm, all possible event rates ri in

the system must be given a priori. It is also equivalent to the stochastic simulation

algorithm (SSA) detailed by Gillespie [118]. The BKL algorithm can be described

along these lines:

1. Time is initialised to t = 0.

2. All transitions j available to particles i in the system are identified and their

individual event rates ri,j computed.

3. The sum Rj =
∑Nj

i=1 ri,j is calculated, where Nj is the number of particles that

can undergo the event j.

4. The sum of all event rates corresponding to the N possible types of events is

computed as R =
∑N

i=1Ri. This is the total rate of the system.

5. A uniform random number ξ such that 0 < ξ ≤ 1 is produced to choose the

event that will be undergone during this time step.

6. Event i such that Ri−1

R
< ξ ≤ Ri

R
is chosen.

7. One of the particles able to perform an event of type i is chosen randomly,

and the event is carried out.

8. The system state is updated after the event has been undergone by the selected

particle.

9. Another uniform random number η such that 0 < η ≤ 1 is produced in order

to advance time.
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10. Time is advanced by δt = − ln(η)
R

, such that t′ = t+ δt.

11. Steps 2 to 10 are repeated until the final simulation time tend has been reached.

It should be mentioned that the average of − ln (η) calculated in step 10 is exactly

1, so it is common to compute the time step as δt = 1
R

instead, in particular if the

total number of time steps is large. [31, 70, 88]

4.1.2 Advantages and disadvantages of the classic BKL

algorithm

The BKL algorithm has been extensively used in OKMC models for decades, par-

ticularly in the research field of materials physics [31, 33, 88, 175, 176, 177, 214]. An

important advantage is that the time step conforms dynamically to the situation,

explained by the fact that it depends on the event rates existing at the moment.

Indeed, if certain particles vanish from the system and/or others appear in it, the

time step is adjusted automatically to reflect this fact, as the calculation of R in

Eq. 4.3 yields a different result. As a consequence, δt, which is inversely proportional

to R as shown in Eq. 4.11, is updated as well. Therefore, the BKL algorithm gives

an idea about the time scales associated with the evolution of the particle system

under scrutiny.

However, the inversely proportional dependence of the time step δt on the total

system rate R also reflects a limitation of the BKL algorithm when the simulation

box consists of a large amount of particles. As shown by Eq. 4.3, R is calculated as

the sum of event rates in the system. When many particles able to perform events

are present, their event rates contribute to R, which may take a large value. Trivially,

Eq. 4.11 indicates that large values for R imply small δt values. If the time step is

very small, the number of computational steps needed to reach a final simulation

time will be very large, which implies a long runtime to achieve the simulation.

In addition, as seen in step 7 of the BKL algorithm detailed in subsection 4.1.1,

only one event is performed in the whole particle system per time step. Hence, all

particles in the simulation box except one –the particle that performs the chosen

event– are idle during δt. Many computational steps are thus necessary to notice
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significant changes in microstructural evolution of the system as a whole, which be-

comes a major problem for simulation boxes with hundreds of thousands or millions

of particles.

Due to these drawbacks, simulations based on the BKL algorithm must restrict

themselves to simulation boxes with a limited number of particles in order to avoid

prohibitive runtimes. To do so, the size of the simulation box is reduced, which is

equivalent to reducing the size of the sample, often to unrealistic sizes [270].

For instance, typical simulation box sizes average a few hundred lattice parame-

ters in depth [31, 39, 175, 176, 270, 306, 313]. Clearly, this strong restriction seriously

hinders the study of defect evolution in realistic pieces of materials that can contain

polycrystals and grain boundaries, which play an important role in the evolution of

defects and/or impurities and thus, cannot be neglected [11, 24, 56, 283, 305]. In

fact, experimental grains are in general in the order of µm [129, 191, 315]. Small sizes

of simulation boxes become particularly problematic for defects which are typically

present in low concentrations, such as DLs in Fe. For instance, in the experiment

of Arakawa et al. [16] where Fe was electron-irradiated, DLs were found with den-

sities in the order 1016 − 1017 cm−3. Considering a typical OKMC simulation box

of (200a0)3 in size, this implies that it is only possible to follow the evolution of 1

to 20 DL, which is clearly not enough statistical information for the prediction of

defect evolution and their influence on a macroscopic level.

A number of acceleration mechanisms for the OKMC method have been proposed

in the scientific community [69, 70, 119, 286], but the size of the problem remains an

issue for large simulation boxes with hundreds of thousands or millions of particles.

Our work tries to overcome these limitations, as we shall see in section 4.2.

4.1.3 Previous attempts to accelerate the BKL algorithm:

Parallelisation

One possible way to accelerate the BKL algorithm is by means of parallelisation.

Previous work has been done on OKMC models based on parallel codes [182, 184].

Notably, Mart́ınez et al. [184] developed a parallel KMC code, based on the BKL

algorithm, that relies on the partition of the computational cell into K subdomains

Ωk (k = 1, . . . , K), each of which is responsible for nk particles. In their algorithm,
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each of these subdomains is then assigned to one of the processing units present

in the parallel machine. The rates of events taking place in each subdomain are

calculated, including null-event functions r0,k, i.e. the probability that an event

will not take place in subdomain k. A uniform random number is produced per

subdomain and used to determine which event will take place in each one of them.

Assuming that no null-event was chosen in subdomain k, the event is undergone and

the particle system is updated globally. Communication between processors must

take place, since it is possible that an event taking place in subdomain k might affect

the state of subdomain k′. This is the case, for instance, for particle migrations from

subdomain k to subdomain k′ or interactions across subdomain boundaries. Global

time is advanced and the whole process is repeated until the final simulation time

tend has been reached.

Space decomposition in this algorithm is, in principle, arbitrary, so that the user

is free to choose the desired implementation. Clearly, a space division intended to

minimise r0,k for most subdomains is optimal [184], but this may not be a straightfor-

ward task and depends on the problem. A priori, a simulation box with N particles

that are approximately uniformly distributed may be divided into K equally sized

subdomains and implemented on a parallel machine with K processing units, with

one unit being responsible for each subdomain. It follows that there would be ap-

proximately 〈nk〉 = N
K

particles per subdomain on average, so that the size of the

problem to be solved by each processor decreases linearly with K.

Unfortunately, Mart́ınez et al., who implemented this algorithm on a parallel

CPU cluster, found a sublinear computational gain which would peak at K = 64.

The main issue slowing down simulations was found to be the communication over-

head between processors, which takes up too much runtime for the simulations to

be efficient. This is a well-known issue in parallel programming [4, 125, 182, 258],

as mentioned in subsection 3.1.1, so, whereas Mart́ınez et al.’s approach is an en-

couraging one, we found that a different perspective is required in order to exploit

parallel programming as a tool to accelerate OKMC.

We shall now present our solution, which is inspired by Gillespie’s Tau-leaping

algorithm [119] and based on parallel programming.
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4.2 Our approach: parallel Tau-leaping algorithm

In this section, our proposal to accelerate the KMC method is discussed. First, the

Tau-leaping method, which serves as inspiration for our work, is detailed. After-

wards, the parallel Tau-leaping algorithm (PTLA) developed during this work is

presented, with specific emphasis given to the selection of the time step δt.

4.2.1 The Tau-leaping method

The Tau-leaping method described by Gillespie [119] is used to accelerate OKMC

models without a significant loss in accuracy. Instead of calculating the time step

δt as described in Eq. 4.11, a fixed time step τ is set and the system is advanced in

concordance.

Let us describe the history of the system from t = 0 to t = tend as a collection of

consecutive instants t0 = 0, t1, t2, . . . , tend such that the time interval between two

consecutive instants tα−1 and tα is, for the sake of simplicity, a constant τ larger

than the standard δt. Then, as described by Gillespie [119], if it were possible to

determine the number of times a certain event was undergone within said interval,

it would not be necessary to know the exact moments when each of the events were

carried out. Under these conditions, it would be possible to explore the system

evolution in time steps of size τ rather than δt, which implies a smaller amount

of computational steps than the standard, due to the condition τ > δt. This is

certainly an interesting possibility to save runtime. As described in the original

article [119], the value for τ must be large enough to accelerate computation but

small enough to preserve accuracy; in other words, the system is not expected to

change significantly between instants t and t+ τ .

By definition, the number of events of a Poisson process to occur within an

interval is a Poisson random variable X ∼ P (λ) [119]. Recalling Eq. 4.2, we know

that the Poisson probability mass function with parameter λ has the form:

P (n;λ) =
λn

n!
exp (−λ) (4.12)

where n is the number of occurrences of the event and λ is the average number of

occurrences expected during a given time interval.
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In particular, the average number of times that an event j with rate rj shall be

triggered during an infinitesimal dt is rj ·dt. If τ , though certainly not infinitesimal,

is small enough to estimate that the system does not change notably before and

after the interval (a situation called the leap condition of the Tau-leaping method),

the mean number of times that event j is going to fire between t and t + τ is

approximately rj · τ . With this in mind, we can substitute the parameter λ by rjτ

and write:

P (n; rjτ) =
(rjτ)n

n!
exp (−rjτ) (4.13)

Therefore, if τ has got a fixed value, it is possible to estimate the number of

occurrences of event j in time interval τ , which we call Nj. In fact, this number is

a Poisson random variable: Nj ∼ P (rjτ). After the system has been updated, it is

advanced in time by τ and the process is repeated. Certainly, the choice of a suitable

value for τ is the main challenge behind this approximation, which is discussed by

Gillespie in detail [119]. An appropriate τ may help us investigate larger than usual

systems in achievable runtimes accurately. In principle, the largest τ that satisfies

the leap condition is the obvious choice for the time step.

4.2.2 Description of our parallel Tau-leaping algorithm

Starting from the main idea behind the Tau-leaping algorithm described in the

previous section, we developed a parallel Tau-leaping algorithm (PTLA), which can

be found in our article [146].

Similarly to the Tau-leaping method, the time step in the PTLA is imposed

beforehand. In our approach, the time step τ is evaluated taking into account the

rates inside the system and the rate of external events. Then, the number of events

happening in the system is calculated according to a Poisson law. However, there is

a difference between our work and Gillespie’s Tau-leaping method. In the original

article [119], particles of the same type are treated as a collective, and the evolution

of their population is tracked. Instead, the PTLA treats particles as individuals, each

of which is potentially capable of performing an event during the time step. Instead

of attempting a space division like Mart́ınez et al., as mentioned in section 4.1.3,
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each particle in the system is treated separately in order to ensure a higher degree

of parallelism.

We shall now describe the PTLA step by step. After time has been initialised,

the following operations are performed:

1. For each particle pi able to undergo different events with rate rk,i, the sum of

event rates is computed, as described by:

Ri =

Ki∑
k=1

rk,i (4.14)

with Ki being the total number of events that particle pi can perform. All sums

of event rates are computed in parallel, due to the fact that the calculation of

Ri is independent of particle pj if j 6= i.

2. The maximum rate Rmax out of the Ri of all particles is determined in a

parallel manner:

Rmax = max{Ri} (4.15)

3. Let us assume that the rate of external events (such as irradiation flux) is Rext.

Then, the time step is calculated as a function of Rmax and Rext:

δt = f(Rmax, Rext) (4.16)

4. For each particle pi, the number of times Nk,i that each event with rate rk,i

will occur during the time step δt is determined using the Poisson distribution:

P (Nk,i; rk,iδt) =
1

Nk,i!
(rk,iδt)

Nk,i exp(−rk,iδt) (4.17)

This operation is applied to all particles in parallel.

5. Analogously, the number Next of external events to happen in the system is

chosen using a Poisson law P (Rextδt).

6. Particles undergo the selected events in parallel, provided Nk,i > 0. External

events are performed as well if Next > 0.
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7. The surrounding of particles that have moved is analysed. This applies to

particles that have migrated, dissociated from a cluster or belong to a cascade

that was introduced to the system in this time step.

8. Particles that lie within a specified distance interact, provided interaction is

allowed.

9. Time is advanced by δt.

10. Repeat steps 1 to 9 until the final simulation time tend has been reached.

As well as in the serial Tau-leaping algorithm shown in subsection 4.2.1, in the

PTLA it is important to find a suitable time step to keep a sensible balance between

accuracy and performance. This question shall now be investigated.

4.2.3 Selection of the time step

A possibility to choose τ in an intelligent way is suggested in Gillespie’s original

article [119]. First, aj = rjhj is defined as the ‘propensity function’ of event j,

with rj being the event rate associated with it and hj the number of particles that

can perform it [118]. Then, the criterion to decide whether the system changes

significantly in a time interval between t and t+τ is that the change in aj before and

after the interval is not noticeable, for any j. Taking into account all the particles

that can perform event j, the average number of times that it is triggered in this

interval is given by ajτ . Therefore, it is possible to compute the expected change

∆aj from t to t+ τ in each function aj easily. These values ∆aj are then compared

to a fraction of
∑

j aj and the largest value of τ that satisfies this condition for all τ

is taken. Compared to the standard BKL algorithm, the number of computational

steps was reported to be reduced by two to three orders of magnitude [119].

Our approach is different though. Since the PTLA does not treat particles

as collectives but as individuals, our work does not consider propensity functions.

Instead, the maximum sum of event rates Rmax and the rate of external events

Rext are used to determine δt, as shown in step 3 of the algorithm described above.

Specifically, the function 4.16 chosen to calculate δt is inversely proportional to Rmax.

As explained in subsection 4.1.2, this allows the time step to adapt to the situation
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of the particle system dynamically. In the absence of continuous irradiation, Eq. 4.18

is the function used for the calculation of δt in our model:

δt =
ω

Rmax

(4.18)

where ω > 0 is a constant.

However, if the sample is under irradiation, the external rate of irradiation Rext

must be taken into account. Indeed, if we consider a sample which is initially without

any defects, Eq. 4.18 without correction would lead to an infinite time step.

In addition, we should take into consideration the case when irradiation is par-

ticularly intense, such that Rext is very large. In case that the rate of external events

is much larger than the largest sum of event rates of the particles that are inside the

simulation box, i.e. if Rext >> Rmax, using Eq. 4.18 may lead to inconsistencies, as

we will explain now. If δt is computed using this equation, the average number of

cascades introduced at each time step is Rext · ω
Rmax

, as seen in step 5 of the algorithm

detailed in the previous subsection. Therefore, if Rext >> Rmax, this number is very

large, and many cascades (and therefore many particles) enter the simulation box

during the time step. It may happen that several of these particles display a higher

sum of event rates than the current Rmax, such that many events may take place in

the box in the interval between the insertions of one cascade and the next cascade.

In practice, all selected cascades are introduced simultaneously, so in this case, the

evolution of the system is rendered inaccurate. Obviously, this inaccuracy is more

pronounced if the total number of particles entering the simulation box that fulfil

this condition is high. However, since the cascades are chosen randomly, there is no

possibility to know a priori which type of particles enter the sample at each δt.

One way to mitigate this problem is to restrict the average number of cascades

that may be introduced at each time step. By introducing a constant C > 0 that

sets an upper limit on the average number of cascades per time step, C · ω
Rext

gives the

average number of cascades introduced in a time interval equal to ω
Rext

. This number

can then be compared to ω
Rmax

. If the latter is larger than C · ω
Rext

, the limit to the

average number of introduced cascades is triggered, and the time step is calculated

using the expression δt = C · ω
Rext

. Otherwise, we can consider that continuous

irradiation is weak enough to guarantee that the computation of δt using Eq. 4.18
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gives accurate results. Summing up, the time step in the PTLA is calculated as:

δtPTLA = min

{
C · ω

Rext

,
ω

Rmax

}
(Rmax > 0)

δtPTLA = C · ω

Rext

(Rmax = 0)

(4.19)

Trivially, setting Rext = 0, Rmax > 0 yields Eq. 4.18.

Eq. 4.19 shows that the time step calculated by the PTLA is independent of the

number of particles in the system. To highlight this advantage, let us examine a

simple example from the perspective of the models described in this chapter, namely

the BKL algorithm [46], the Tau-leaping method [119], and Mart́ınez et al’s parallel

model [184]. We shall apply these models to a simulation box with Npart equal

particles able to perform one event with rate r and compare their behaviour with

that of the PTLA.

In the standard BKL algorithm [46] described in subsection 4.1.1, the total rate

of this system is simply R = Npart · r. Considering the average of the random

exponential distribution, and using Eq. 4.11, the time step in this case yields:

δtBKL = − ln (η)

R
= − ln (η)

Npart · r
≈ 1

Npart · r
(4.20)

One of the particles is chosen, which performs the event, while the rest (i.e.

Npart − 1 particles) are idle during the time step. If Npart increases, the total rate

R is increased and δt is decreased. Thus, many computational steps are necessary

if this system comprises millions of particles.

If the Tau-leaping method [119] is used instead, the time step τ is about two to

four orders of magnitude times larger than δtBKL. Gillespie was able to simulate

the irreversible isomerization reaction accurately with a set of 105 molecules in only

305 computational steps, whereas a simulation with the BKL algorithm would need

105 steps [119]. In this case, the propensity function is calculated as ak = Npart · r.
If this event changes the nature of the particles involved (such as a dissociation or,

in the context of Gillespie’s work, a chemical reaction), the change in the propensity

function between times t and t+ τ is calculated as:

∆ak = (Npart −N ′part) · r (4.21)
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where N ′part represents the number of particles for which the event does not trigger

during time interval τ . To satisfy the leap condition, ∆ak
ak

must be small [118,

119]. As mentioned above, the leap condition is usually satisfied when τ is about

two orders of magnitude larger than δtBKL. Since δtBKL decreases when Npart is

increased, this is also the case for τ in the Tau-leaping method.

Finally, in the Mart́ınez et al.’s work [184], the simulation box is divided into

K subdomains. Clearly, if there is a higher concentration of particles in one of the

subdomains than in the others, this is the subdomain that defines Rmax. In the

optimal case, Rmax is minimised so that the time step δtMart. is maximised. To do

this, each of the subdomains must contain exactly Npart

K
particles. Then, the rate in

each subdomain k is Rk = Npart

K
· r, such that Rk = Rmax. Hence, the time step in

the best-case scenario verifies:

δtMart. = − ln (η)

Rmax

= − ln (η)
Npart

K
· r
≈ K

Npart · r
(4.22)

For a network of N = 64 processors, a realistic configuration [184], and a SIA

migration rate of r = 2.7× 104 s−1 in α-Fe at T = 200 K [105, 31, 146], this yields

a time step of δtMart. = 2.4 × 10−7 s for a system with Npart = 10000 particles

and δtMart. = 2.4 × 10−8 s for a system with Npart = 100000 particles. Again, the

time step is inversely proportional to the number of particles in the simulation box

with proportionality constant K
r

, assuming the density of particles is the same in all

subdomains. In general, particle density varies across subdomains. There is usually

a higher concentration of particles than Npart

K
in at least one of them, yielding a

larger value for Rk. As a consequence, the time step δt is decreased, such that a

greater computational effort to finish the simulation is necessary. In this model, K

events are carried out simultaneously at most, assuming that no null-events were

chosen. However, in the general case, there is a nonzero probability to choose a

null-event in each of the subdomains for which Rk < Rmax.

In practice, the time step in all of the three mentioned methods is decreased

by the number of particles in the system. This makes those algorithms impractical

to use for systems with several hundred thousand to millions of particles, which,

as we discussed in subsection 4.1.2, are closer to the experimental size of grains in

irradiated materials that this work intends to simulate.
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However, our PTLA is not constrained by these conditions. Instead, all particles

are considered individually capable of performing events during the time step, the

probability of which is calculated in Eq. 4.17. In the present example, Rmax = r

and Rext = 0. Hence, Eq. 4.19 yields:

δtPTLA =
ω

r
(4.23)

The PTLA time step δtPTLA is thus (ω ·Npart) times larger than δtBKL and at

least
(
ω · Npart

K

)
times larger than δtMart.. In the case ω = 1, our model reduces the

number of computational steps by a factor of Npart compared to the standard BKL

algorithm, and by a factor of Npart

K
or greater compared to Mart́ınez et al.’s model.

In other words, for systems with several hundred thousand or millions of particles,

the time step achieved with the PTLA increases by five or more orders of magnitude

compared to δtBKL. This strongly reduces the number of computational steps that

are necessary to reach a specified physical time, which speeds up simulations signif-

icantly. This indicates that the PTLA is a promising technique to simulate particle

systems which are representative of real samples.

The behaviour of the PTLA compared to the other three methods is sketched in

Figure 4.1. All particles are assumed equal and able to perform a migration with

rate r. If ω = 1, in our model, the time step takes the value δtPTLA = 1
r
. Then, the

number of times that a particle i is going to migrate is given by Nmig,i ∼ P(1). In

other words, even though individually, each particle performs a number of migrations

during δtPTLA that follows a Poisson distribution, the average number of migrations

per particle when all particles are considered is 1, regardless of the total number of

particles. For this reason, it seems natural to set ω = 1 as the standard, and this

will be the case in forthcoming examples unless otherwise stated.

Having described the PTLA used in this work and its potential advantages, we

shall now focus on a number of test cases of relevance in materials physics.

4.3 Validation of the parallel Tau-leaping algorithm

In this section, some results produced by our implementation of the PTLA on the

programming framework CUDA version 6.5 are presented. Since our OKMC model
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(a) Standard BKL algorithm [46]. (b) Serial Tau-leaping algo-
rithm [119].

(c) Mart́ınez et al. algo-
rithm [184].

(d) PTLA [146].

Figure 4.1: Sketch of the four methods mentioned in section 4.2: serial BKL [46],
serial Tau-leaping [119], Mart́ınez et al. [184] and PTLA [146].
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was implemented on GPGPU, it is referred to as GPU-OKMC. The device used for

this purpose was a GPU NVIDIA®GeForce®TITAN Black with 6 GB of global

memory. These results were published in Comp. Mat. Sci. 113 178-186 (2016) [146].

4.3.1 Test case: Random walks of non-interacting particles

Many processes in materials physics are governed by the random walks of defects or

impurities in solids [229, 248, 304]. The test case presented in this subsection is a

simple example related to this problem. In order to validate our GPU-OKMC model,

we simulated the random walk of particles that interact neither with each other nor

with any surface. In this particular case, it is possible to compare simulations to

analytical results, which is an appropriate way to validate our results.

As an example, we considered the case of particles diffusing in pure Fe. This

is a system of interest in fission and future fusion reactors as these defects form

by collision cascades in steels irradiated by energetic neutrons [98, 234, 267, 304].

First, we consider the evolution of five million non-interacting random walkers in

Fe, in a (36a0)2 × 216a0 simulation box. Initially located in a plane z = zmax

2
with

random 0 ≤ x < xmax and 0 ≤ y < ymax coordinates, the particles are allowed to

perform one-dimensional random walks in z direction for a time interval from t = 0

to t = tend. In principle, after t = tend, if the total number of jumps is sufficiently

high, the profile in z direction describes a Gaussian function in agreement with

Fick’s laws of diffusion [67, 229].

If a particle performs enough jumps by means of random walks, a macroscopic

diffusion coefficient D may be defined [67, 229]. For particles migrating in n dimen-

sions with migration energy Em at temperature T , the diffusion coefficient can be

expressed by Eq. 4.24:

D =
ν0λ

2

2n
exp

(
− Em
kBT

)
(4.24)

where ν0 and λ represent the attempt frequency and the jump length, respectively.

In the case of diffusion in one dimension, n = 1. The time-dependent concentration

per unit length of particles migrating in one dimension is given by Eq. 4.25 [67, 229].

ρ(x, t) =
N√

4πDt
exp

(
−(x− x0)2

4Dt

)
(4.25)
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where N is the initial number of particles at x = x0.

Considering this, simulations were performed at three different temperatures

T = 130 K, T = 135 K and T = 140 K for tend = 30 s and compared to equivalent

Gaussians.

The values ν0 = 1013 s−1 for the attempt frequency and Em = 0.34 eV for the

migration energy of walkers were used, which corresponds to the parameters related

to SIA migration in pure Fe found in literature [105]. The results are shown in

Figure 4.2 and show excellent agreement with the analytical solution.
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Figure 4.2: Profiles at t = 30 s of 1D random walkers in pure Fe at three different
temperatures, initially located in a plane z = zmax

2
. The results of this code (symbols)

are compared to those obtained with the analytical expression based on Fick’s laws
of diffusion (lines).

In order to compare performance of this GPU-OKMC model over a hypothetical

solution on one single processor (a classic OKMC solution), a similar case described

by Mart́ınez et al. [184] was simulated. In their article, Mart́ınez et al. investigated

the evolution of 222 (about 4 million) random walkers. Using 64 parallel processors,

a speedup of circa 30× over the standard BKL on a single processor was achieved.

Here, we simulated the migration of four million SIAs at a temperature of 135 K

for 10 s. The same test case was run on a CPU AMD Opteron 6174@2.2 GHz using
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code LAKIMOCA [88] version o128p. LAKIMOCA is an established code in the

scientific community based on the standard BKL algorithm. Both codes, the present

GPU-OKMC model and the classic LAKIMOCA model, achieved the same result

in 1.9 s and 563 s respectively. This corresponds to a remarkable speedup of 296×.

Encouraged by this result, more complex test cases that were simulated with our

GPU-OKMC code are discussed in the next subsections.

4.3.2 Test case: Diffusion of non-interacting particles in the

presence of absorbing surfaces

In irradiated materials, point defects like SIAs and vacancies that are created in

irradiation cascades tend to recombine when they migrate to the surface [129, 304,

315]. For this reason, it is interesting to examine the diffusion of defects in the

presence of an absorbing surface.

In the present work, the evolution of five million initial SIAs in Fe, randomly

distributed in a (400a0)3 simulation box at the beginning, was simulated. This

corresponds to an initial density of ρ = 3.34 × 1021 cm−3. Then, particles were

allowed to perform random walks in three dimensions during 200 s for three different

temperatures, namely 130 K, 140 K and 150 K. Absorbing boundary conditions

were set for planes z = 0 and z = 400a0, whereas periodic boundary conditions were

assumed in x and y directions. The values for ν0 and Em were set equal to those

assumed in subsection 4.3.1.

In order to validate our GPU-OKMC model, simulations with classical diffusion

equations and Dirichlet boundary conditions were also performed. The time evolu-

tion of the number of particles under the aforementioned conditions was monitored

and depicted in Figure 4.3 along with the results obtained with diffusion equations.

The agreement between our GPU-OKMC model and the results obtained with

diffusion equations is excellent. Similarly, Figure 4.4 shows the depth profiles of

random walkers under these conditions, which are also found to agree very well

with the depth profiles calculated with the help of diffusion equations. Hence, our

GPU-OKMC model reproduces the recombination of randomly walking particles at

absorbing surfaces accurately.
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Figure 4.3: Time evolution of the total amount of Fe interstitials for 200 s at three
different temperatures in the presence of absorbing surfaces at z = 0 and z = 400a0.
Results of GPU-OKMC simulations (symbols) are compared to those obtained with
diffusion equations (lines).

4.3.3 Test case: Recombination of interacting particles

In this subsection, we shall examine a relevant case of interest, namely the evolution

of a system of particles of different types that annihilate each other, as the evolution

of many systems is governed by the diffusion-limited reaction A + B → AB [72,

128, 146, 177]. For instance, this process is commonly found in materials relevant

for nuclear fusion like the agglomeration of helium and vacancies in W [32] or in

Fe [107, 214, 288], and the nucleation of point defect clusters in α-Fe [131, 180, 289].

As a practical example to test the accuracy and performance of our GPU-OKMC

model, we investigated the annihilation of Frenkel pairs in Fe, i.e. I+V → 0. These

point defects form in Fe under irradiation [16, 105, 237, 275] by atomic displacement

cascades –and, more generally, in any crystal material under irradiation– and tend

to annihilate when they are close enough.

For vacancies, the value found in literature for the migration energy is Em =

0.67 eV [105, 175, 214], and the values for SIA migration energy and attempt fre-
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Figure 4.4: Depth profiles of Fe interstitials in z direction for three different tem-
peratures in the presence of absorbing surfaces at z = 0 and z = 400a0. Results of
GPU-OKMC simulations (symbols) are compared to those obtained with diffusion
equations (lines).

quency were set equal to those used in subsections 4.3.1 and 4.3.2. Recombination

between SIAs and vacancies takes place within a capture radius instantaneously, as

described in subsection 2.2.2, i.e. the reaction takes place if the distance between

both particles is less than the defined capture radius for this reaction. A value of

rc = 3.3a0 was used for the recombination radius between SIAs and vacancies, as

accepted by the community [105, 175, 214].

The time evolution of 4 million SIAs and 4 million vacancies in a simulation

box of (200a0)2 × 70000a0 was monitored. This corresponds to an initial Frenkel

pair density of ρ = 6.11 × 1019 cm−3 in a simulation box of 20 µm depth, which

is already in the order of grain sizes and close to material thickness in some re-

alistic physical experiments. In order to ensure that particles may only disappear

by recombination, periodic boundary conditions were set in all directions. Then,

simulations were performed for 500 s at three different temperatures (130 K, 135 K

and 140 K) and compared to results obtained with LAKIMOCA [88] version o128p,

a classic OKMC. For this case, the GPU-OKMC simulations were produced with
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a NVIDIA®GeForce®TITAN Black graphics card, whereas LAKIMOCA simula-

tions were performed on a CPU AMD Opteron 6174@2.2 GHz. A value ω = 1 was

used to reproduce these results in the GPU-OKMC model. Figure 4.5 depicts the

time evolution of SIAs as calculated by both GPU-OKMC and LAKIMOCA models.

The agreement between both approaches is clearly excellent, which again vali-

dates the accuracy of our GPU-OKMC model.
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Figure 4.5: Time evolution of 4 million SIAs at three different temperatures. Re-
sults of GPU-OKMC simulations (lines) are compared to those obtained with LAKI-
MOCA (symbols), courtesy of C. Domain.

4.3.3.1 Speedup and accuracy

We have shown that the results for the case of recombination of particles are accurate

for ω = 1. Still, it might be useful to check if other values for ω might as well lead

to satisfactory results. As one can see in Eq. 4.18, the δt value is proportional to

ω. Therefore, choosing a larger value for ω leads to larger time steps, which might

reduce the necessary computational effort to achieve simulations. However, choosing

a time step that is too large could affect the physical accuracy of the simulation,
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which means that a compromise is necessary. We shall now discuss the impact of ω

on accuracy and performance.

Due to the large values that the time step can take in our algorithm, there exists a

significant probability that a particle undergoes the same event several times during

the same time step. Assuming ω = 1 and a system of 2 × 105 particles, which

corresponds to a density of ρ = 6.84× 1019 cm−3 in a (500a0)3 simulation box, the

probability that one particle will perform a certain number of events is shown in

Figure 4.6. As one can see, in the standard BKL algorithm, the probability that

a particle undergoes no event at all during a time step is close to 1, whereas the

probability that a single particle of the whole system undergoes one event is N−1
part,

that is, five orders of magnitude smaller. Furthermore, the probability that a particle

undergoes the same event n times during the same time step is proportional to N−npart,

which explains why, in the standard BKL algorithm, it can be safely assumed that

one particle in the whole simulation box will perform only one event at each time

step.
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Figure 4.6: Probability that a particle performs a given number of events during a
time step according to the PTLA (squares) and to the BKL algorithm (circles).

Clearly, this is not the case in the PTLA. The probability that each particle
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carries out at least one event in the same time step is relatively high, as seen in

Figure 4.6. Setting Nk,i = 1 and rk,iδt = 1 in Eq. 4.17 yields the probability that

a particle will perform exactly one event, namely P (1) ≈ 0.37. This means that

a large number of events can take place simultaneously in the system. Figure 4.6

also evidences that the probability that a particle performs more than one event

during the same time step is not negligible. With the help of Eq. 4.17, it is trivial

to compute that the probability to perform more than one event in δt, considering

rk,iδt = 1:

P (Nk,i > 1) = 1− P (0)− P (1) ≈ 0.26 (4.26)

However, due to the fact that the surrounding of particles is only analysed at

the end of each time step, in several instances, this may affect the accuracy of the

solution. For example, if a particle is chosen to undergo Nm migrations in the same

time step, its surrounding is only analysed after the N th
m event, and hence, possible

interactions are neglected on Nm − 1 occasions. This might affect accuracy at large

concentrations for which the distance between particles can be relatively small.

In order to achieve a physically realistic approximation, this occurrence, which

is also an issue in Gillespie’s Tau-leaping method [119] discussed in subsection 4.2.1,

ought to be minimised. One possible solution is to choose a small value for ω, and

therefore an arbitrarily small time step, such that the probability that more than

one event is carried out for the same particle in the same time step is attenuated.

To illustrate this point, in Figure 4.7 we plotted this probability for values of ω ≤ 1

against the given number of events.

Evidently, this figure shows that the probability that an event will be carried

out once or more than once decreases for smaller values of ω, i.e. for smaller values

of δt. For the curve associated with the smallest value considered (ω = 0.1), the

probability that a particle will carry out two events during the same time step is

already negligible. Nevertheless, a small ω < 1 value such as ω = 0.1 implies that a

larger number of computational steps will be needed to achieve the final simulation

time tend. With this in mind, we should be able to find a sensible compromise

between accuracy and performance.

In order to examine the influence of the particle density and choice of time step

interval on accuracy and speedup, several simulations were performed for T = 135 K

by varying values for ω, ranging from ω = 0.1 to ω = 5, and initial Frenkel pair
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Figure 4.7: Influence of ω on the probability that a particle performs a number of
events during the same time step, for values ω ≤ 1.

density, ranging from ρ = 6.11 × 1017 cm−3 to ρ = 6.11 × 1020 cm−3. In order

to perform simulations for different initial densities while keeping good statistics,

the initial total number of Frenkel pairs (4 million) was kept constant and the

simulation box volume was changed. Then, the gain in performance was compared

to simulations under the same conditions performed with LAKIMOCA.

The time evolution of SIAs obtained with both models is depicted in Figure 4.8.

As we can see, the agreement is excellent in all cases, as only a small deviation of

the results is observed for the case with the largest time step (ω = 5), in the cases

for medium and high density. This is expected, since for large values of ω, i.e. for

large values of the time step, particles are able to perform several jumps in the same

time step, as seen in Figure 4.7.

Due to the fact that interactions are only checked at the end of each time step,

it is possible that some interactions are missed in such cases. However, in the test

cases presented here, a good compromise between performance and accuracy for

values of ω > 1 was found.

Table 4.1 shows the speedups achieved by our code based on the PTLA over the
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Figure 4.8: Evolution of the number of SIAs in time at T = 135 K for different
initial densities and values of ω. GPU-OKMC results (lines) are compared to those
obtained with LAKIMOCA (symbols), courtesy of C. Domain.

LAKIMOCA simulations based on the classic BKL algorithm. As expected, better

speedups are obtained for larger values of ω. Indeed, larger values of the time step

imply less computational steps and hence, shorter simulation runtimes.

ρ (cm−3)
ω

0.1 0.5 1.0 2.0 5.0

6.1× 1017 12.9× 51.6× 88.4× 157.7× 375.6×
6.1× 1019 4.5× 17.8× 32.2× 51.1× 115.6×
6.1× 1020 3.3× 12.7× 20.5× 33.3× 62.9×

Table 4.1: Speedup achieved with our GPU-OkMC algorithm for different particle
densities and values of ω in comparison to LAKIMOCA runtimes for the case T =
135 K.

Additionally, in order to distinguish between the gain achieved by the PTLA

from the one achieved by the implementation, we performed additional simulations

where the standard BKL algorithm was used on the GPU. To do so, we calculated the

time step corresponding to the BKL algorithm, as defined in Eq. 4.11. This leads to
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a much smaller time step and consequently, on average, only one event is carried out

per time step, as it is expected in the BKL algorithm. As an example, we performed

a simulation at 130 K for a time of 10 s in a volume of 200a0 × 200a0 × 700a0 with

40000 Frenkel pairs, which corresponds to a density of 6.11 × 1020 cm−3 for SIAs

and vacancies alike. Under these conditions, the time step predicted by the BKL

is approximately equal to 3.79 × 10−5 s. To achieve the simulation using the BKL

algorithm on the GPU, a runtime of 1493 s was necessary. In contrast, when the

PTLA is used (with ω = 1), a time step of 1.51 s is obtained using Eq. 4.18. In this

case, only 87 ms were necessary to achieve the final simulation time. This evidences

that when both algorithms are used on the GPU, an important speedup of about

17100× is achieved by the PTLA over the classic BKL algorithm.

Actually, this is not surprising. As mentioned in subsection 3.1.2, GPUs are

inherently able to launch a large number of threads in parallel. In particular, the

GPU used in this example, NVIDIA®GeForce®TITAN Black is able to launch ap-

proximately 3×105 threads in parallel. This means that, on average, approximately

300000 particles can move simultaneously with our implementation of the PTLA.

However, if the classic BKL is used instead, only one particle is able to move per

time step, i.e., about 300000 times fewer particles (five orders of magnitude) than

what the PTLA allows. Hence, it is not surprising that we get a speedup of 17100×
between the BKL and the PTLA when they are both used on the GPU. The speedup

obtained when comparing the performance of our model with the serial code LAKI-

MOCA is of course not so high since the implementation of the BKL algorithm is

likely optimised for a CPU use. Moreover, as mentioned in subsection 3.1.2, GPU

processors are significantly slower than CPUs.

Our work accounts for some approximations that are appropriate, and sometimes

necessary, for the study of defect evolution. These are addressed in the next chapter.
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Chapter 5

Adaptation of Green’s Function

Reaction Dynamics to the

MEGA-OkMC code

In this chapter, the Green’s Function Reaction Dynamics (GFRD) method is intro-

duced and its application to our work is explained. Special attention is given to the

use of GFRD in diffusion-reaction systems with an external source of particles, and

examples related to the study of nuclear materials under irradiation are shown.

5.1 Introduction

In the previous chapter, the PTLA was explained and shown as an efficient OkMC

technique to study diffusion-reaction systems. However, despite its advantages, the

PTLA, as any OKMC method, becomes highly inefficient when the system is dilute,

i.e., when the concentration of species is low. In such systems, the average distance

between particles is large and hence, they can evolve without interacting during

long periods of time. Consequently, most of the computational effort is wasted in

propagating the random walkers and reactions that could lead to some significant

evolution of the system occur very rarely. At higher temperature, this is particularly

damaging to performance, due to the fact that the computed time step becomes very

small.
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To circumvent this problem and efficiently simulate the evolution of dilute sys-

tems, Van Zon, ten Wolde et al. developed the Green’s Function Reaction Dynamics

method [292, 293]. It is based on the assumption that a diffusion coefficient can be

defined for particles that are able to perform a large number of migrations before

finding an obstacle, such as an open surface or another particle with which they may

react [293, 304]. In the GFRD method, the space containing the N particles is par-

titioned into domains that contain one or, at most, two particles. After breaking up

the N -body problem into one-body and two-body problems, the reaction-diffusion

problem of each domain is solved analytically and the particle positions are up-

dated. This method allows to propagate the particles by large jumps in time and

space while keeping the spatial-stochasticity of the diffusion process, and taking into

account reactions between particles. The GFRD method has showed to be very effi-

cient in the case of systems where the particles are initially distributed in space and

only evolve by random walks and mutual interactions [292, 293].

However, to our knowledge, there is another class of systems where GFRD has

not been applied so far, namely systems with an external continuous source of parti-

cles. Such systems can be found, for instance, in materials under irradiation. Defects

are continuously created in the material due to displacement cascades generated by

collisions between energetic particles and the lattice atoms. Simultaneously, the de-

fects formed at a previous time migrate by performing random walks and interact

with other defects. As we shall see, applying the GFRD method näıvely to simulate

the evolution of such systems gives rise to two problems. In this chapter, we propose

a novel scheme that circumvents these issues and allows to simulate the evolution

of systems with an external source of particles with the GFRD.

The chapter is organised as follows. In Section 5.2 we remember the fundamental

concepts of GFRD, which will allow us to demonstrate why the original GFRD

algorithm cannot be applied in the case of systems with a continuous source of

particles. In Section 5.3 we present the solution to the two issues mentioned above

and describe a novel GFRD scheme that takes into consideration the external source

of particles.

All the simulations presented in this chapter were performed on the GALILEO

supercomputer at the CINECA supercomputing centre. More specifically, the simu-

lations were performed on a machine with a NVIDIA® Tesla K80 GPU and Intel®
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Xeon® E5-2697 v4 processors at 2.30 GHz.

5.2 Description of the original Green’s Function

Reaction Dynamics method for dilute systems

Before we present our GFRD algorithm adapted to the case of materials under

irradiation, we believe it is instructive to remind various concepts and mathematical

expressions related to the GFRD method developed by Van Zon, ten Wolde et

al [292, 293]. This will allow the reader to understand why the original GFRD

method is not well-suited to the case of systems with a continuous source or particles

and how it should be adapted.

In an infinity medium where a random walker is free to evolve without any

interaction, the probability p(~r, t|~r0) of finding the particle at the position vector

~r at time t given that its initial position is ~r = ~r0 at t = 0, i.e., with an initial

probability distribution p(~r, t) = δ(~r − ~r0), is governed by the classical diffusion

equation [67, 231, 248]:

∂

∂t
p(~r, t|~r0) = D∇2

rp(~r, t|~r0) (5.1)

where D is the diffusion coefficient of the particle. Under these conditions, an

analytical solution of p(~r, t|~r0) can be found and is known as the Green’s func-

tion [228, 248, 292, 293].

Similarly to an infinite medium, in a dilute system composed of random walkers,

the average distance between particles is large and hence, they can evolve without

interacting during long periods of time. In such conditions, it is clear that it is

significantly more efficient from the computational point of view to determine the

probable position of a particle after a time t using the analytical solution of the

diffusion equation (Eq. 5.1) than performing many individual jumps or random

walks. This is the main advantage of the GFRD method.

However, in a realistic system, though it may be dilute, particles are at a finite

distance one from each other and are likely to experience encounters with other par-

ticles, leading to a physico-chemical process such as the formation of a new product

or the mutual anihilation of the particles. Hence, in this case, Eq. 5.1 is no longer
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valid and appropriate modifications of the diffusion equation, accounting for reac-

tion with other particles, should be taken into account. Unfortunately, the general

diffusion-reaction problem of N interacting random walkers is very difficult, not to

say impossible, to solve analytically [292, 268]. Nevertheless, in the particular case

where two particles diffuse and interact, isolated from the rest of the other particles,

the diffusion-reaction problem can be formulated such that an analytical solution

can be found [292, 293]. This suggests that, if a realistic system of N interacting

particles can be broken up into independent problems involving only one or at most

two particles, the diffusion equation could be analytically solved for each of them.

This is precisely the original idea of the GFRD method developed by Van Zon, ten

Wolde et al [292, 293]. In the GFRD method, the system is divided spatially into

different independent protective environments of simple geometric shape (originally

introduced by Oppelstrup and co-workers [211]), which only contain one or two par-

ticles. The domains containing only one particle are named Single domains whereas

domains containing two particles are called Pair domains. The size of these protec-

tive domains is determined by allowing them to grow geometrically until a contact

with another one is found. An illustration of how protective domains are built in

practice around isolated particles and pairs of particles is shown in Fig. 5.1. For

the sake of simplicity, here we considered that all particles are random walkers that

migrate in 3D. Hence, the protective domains in this case are spheres.

5.2.1 Solution for Single domains

Here, the calculations for particles moving in Single domains are detailed. In this

case, particles diffuse freely without any interaction inside their protective domain.

We shall focus, in particular, on the cases of particles moving in one dimension,

like dislocation loops (DL) in Fe [16, 17, 131, 234, 284, 289, 309, 308], and three

dimensions, like SIAs and vacancies [33, 105, 284, 304, 313].

The movement of a randomly walking particle follows Bernoulli statistics [67,

229, 248]. Let us first focus on the case of a particle that performs random walks in

one dimension along an axis of motion. The probability W (m,N) that the particle

starting at the origin will be found at position m (with m ∈ Z) after N jumps is

given by Eq. 5.2.
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Figure 5.1: Example of spherical protective domains in the case of particles migrat-
ing in 3D. Domains containing only one particle are named Singles whereas domains
containing two particles are named Pairs.

W (m,N) =
1

2N

(
N
N+m

2

)
(5.2)

For a large enough number of free jumps, i.e. for a large value of N , this formula

can be approximated as Eq. 5.3.

W (m,N) =

√
2

Nπ
exp

(
−m

2

2N

)
(5.3)

If λ is the jump length, x = mλ yields the total displacement from the origin.

Then, the probability W (x, δx;N) to find the particle in the interval [x, δx] is given

by Eq. 5.4.

W (x, δx;N) =
1√

2πNλ2
exp

(
− x2

2Nλ2

)
δx (5.4)
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The fact that the number of jumps N takes a large value implies that a diffusion

coefficient D = N ·λ2
2t

can be defined. The diffusion coefficient is thus related to the

migration rate rmig = N
t

, i.e. the average number of jumps that a particle performs

per unit time. In particular, in one dimension, the diffusion coefficient is expressed

as [67, 229, 248, 304]:

D = rmig ·
λ2

2
(5.5)

Substitution into Eq. 5.4 yields the Green’s function p(x, t|x0) for the one-dimensional

motion of a particle with diffusion coefficient D starting at position x0, given by

Eq. 5.6. This function is a Gaussian probability distribution function with mean x0

and standard deviation
√

2Dt [67, 229, 248].

p(x, t|x0) =
1√

4πDt
exp

(
−(x− x0)2

4Dt

)
(5.6)

However, since domains around particles are of finite size, appropriate boundary

conditions must be imposed to solve Eq. 5.1. In the common case where particles

diffuse in three dimensions, the domain is of spherical shape with radius R and the

boundary conditions are simply written as:

p(‖~r − ~r0‖ = R, t|~r0) = 0 (5.7)

The Green’s function for this case is the solution of Eq. 5.1 with boundary

conditions given by Eq. 5.7. In Cartesian coordinates, the function p(~r, t|~r0) can be

rewritten as the product of three independent functions:

p(~r, t|~r0) = px(x, t|x0)py(y, t|y0)pz(z, t|z0) (5.8)

Since
∂pxi
∂xj

= 0 for i 6= j, Eq. 5.1 can be written as:

∂p(~r, t|~r0)

∂t
= D

[
∂px(x, t|x0)

∂x

∂py(y, t|y0)

∂y

∂pz(z, t|z0)

∂z

]
(5.9)

Integration of Eq. 5.9 yields:

p(~r, t|~r0) =
1

(4πDt)
3
2

exp

(
−(x− x0)2 + (y − y0)2 + (z − z0)2)

4Dt

)
(5.10)

which in spherical coordinates yields [229]:
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p(~r, t|~r0) =
1

(4πDt)
3
2

exp

(
−(~r − ~r0)2

4Dt

)
(5.11)

In this case, the diffusion coefficient in three dimensions is given by Eq. 5.12 [231,

229].

D = rmig ·
λ2

6
(5.12)

5.2.2 Solution for Pair domains

As mentioned above, when two particles diffuse and such as they may interact during

an interval of time δt, an analytical solution can still be found. However, in this

case, solving the diffusion equation is a more complex task than for Single domains.

In the one-dimensional case, a particle moving with diffusion coefficient D along

an axis of motion has a chance to migrate towards its neighbour in a Pair domain and

interact. Let xc be the point of contact, i.e. the position at which the particle reacts

with its neighbour. This occurs when the distance between both particles equals

the capture radius rc between them, as defined in subsection 2.2.2. This scenario is

analogous to a particle moving in one dimension with an absorbing boundary at xc.

In this case, the Green’s function takes the form [67, 231]:

p(x, t|x0) =
1√

4πDt

[
exp

(
−(x− (x0 − xc))2

4Dt

)
− exp

(
−(x+ (x0 − xc))2

4Dt

)]
(5.13)

In the case of three dimensions, the probability density of finding the particles

p and q at time t at ~rp and ~rq knowing they are initially located at ~r0,p and ~r0,q at

t = 0 is governed by the following equation [231]:

∂

∂t
p(~rp, ~rq, t|~r0,p, ~r0,q) = [Dp∇2

rp +Dq∇2
rq ]p(~rp, ~rq, t|~r0,p, ~r0,q) (5.14)

The equation above must be solved for ‖~rp − ~rq‖ ≥ rc, where rc is the capture

radius defined for their interaction. As it is often assumed in the OkMC approach

[33, 88, 146, 214], we consider here that the time of reaction between two particles
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is much shorter that the characteristic time of the diffusion process. The reaction

can thus be considered as instantaneous.

As suggested by Van Zon and ten Wolde [293], the problem of solving Eq. 5.14

can be simplified by a convenient transformation of coordinates:

~r = ~rp − ~rq

~R =
√
Dq/Dp~rp +

√
Dp/Dq ~rq

(5.15)

where ~r = ~rp− ~rq is the distance between the two particles and ~R is the weighted

centre-of-mass of the two particles. This change of coordinates allows to split

Eq. 5.14 into two uncoupled diffusion equations in ~r and ~R, with p(~r, ~R, t|~r0, ~R0) =

pr(~r, t|~r0)pR(~R, t|~R0):

∂

∂t
pR(~R, t| ~R0) = Dtot∇2

RpR(~R, t| ~R0) (5.16)

∂

∂t
pr(~r, t|~r0) = Dtot∇2

rpr(~r, t|~r0) (5.17)

where Dtot = Dp +Dq.

Eq. 5.16 that governs the evolution of pR(~R, t| ~R0) corresponds to the free diffu-

sion of the centre-of-mass. The solution of this equation is thus similar to that of

Eq. 5.11:

pR(~R, t| ~R0) =
1

(4πDtott)
3
2

exp

(
−(~R− ~R0)2

4Dtott

)
(5.18)

In turn, Eq. 5.17 describes the diffusion of two interacting particles, initially at

a mutual distance r0. As mentioned above, a reaction between the two particles

is supposed to occur instantaneously if their distance is smaller than the capture

radius rc. This corresponds to the following boundary conditions (Dirichlet):

pr(‖~r‖ = rc, t) = 0 (5.19)

The derivation of the Green’s function corresponding to these conditions can be

found in literature [228, 231].
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pr(r, t) =
r

r0

√
4πDtott

(
exp

[
−(r − r0)2

4Dtott

]
− exp

[
−(r + r0 − 2rc)

2

4Dtott

])
(5.20)

As can be verified, this solution predicts that there is a region of space where

the probability of finding both particles at the same time becomes negative when

their distance is r ≤ rc. This is the region where particles react.

5.2.3 Concept of Survival probability

Once all the domains have been defined, in the original GFRD method, it is necessary

to estimate the next-time event for each domain individually [292, 293]. For instance,

for Single domains, the next event simply corresponds to hitting the outer absorbing

domain boundary by the particle. In the case of a Pair domain, next-event can be the

reaction between both particles, when the centre-of-mass reaches the outer boundary,

or when the particles reach the outer boundary conditions. For each domain, the

next-event time is sampled using the corresponding analytical probability solution

of the diffusion (Single domains) or diffusion-reaction (Pair domains) equation. In

Pair domains, this can be done using the concept of survival probability, which is

the probability for the particle(s) to still remain in their domain Ω at time t and

that is defined as follows [292, 293]:

S(t) =

∫
Ω

p(~r, t|~r0)d~r (5.21)

For instance, for the case of two particles moving in three dimensions and in-

teracting, the survival probability, i.e., the probability that the particles have not

recombined by time t, is obtained by integration of Eq. 5.20, which yields [228]:

S(t|~r0) = 1− rc
r0

erfc

(
r0 − rc√

4Dt

)
(5.22)

If particles move in one dimension, the survival probability of a Pair after time

step δt is equal to the survival probability of a particle moving along a straight

line in the presence of an absorbing wall. This survival probability is calculated

as [41, 231, 269]:
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S(t) = erf

(
x0 − xc√

4Dt

)
(5.23)

Knowing the expression of S(t) for each domain, it is thereby possible in principle

to estimate the next-time event for a given domain with:

τ = S−1(1− ξ) (5.24)

where ξ ∈ (0, 1] is a uniformly distributed random number.

Hence, it is necessary to derive the analytical expression of S−1 to calculate the

next-time event associated to a domain. However, this can be difficult since S does

not have a simple form, as can be seen in Eq. 5.22. Alternatively, the next-time

event τ can be obtained by solving S(τ)− ξ = 0 with a numerical rootfinder.

Once the event times are obtained for all the different domains, they are ordered

chronologically and the events are performed in the same order. Since the event

times associated to the domains are, a priori, different, each particle evolves with

its own local time and the original GFRD method is therefore an asynchronous

algorithm.

5.2.4 Construction of Singles and Pairs

We believe it might be useful to explain the construction of Single and Pair domains

in MEGA-OkMC. In their original work [292, 293], Van Zon, ten Wolde et al. de-

veloped the GFRD method with a particle system composed of identical particles,

i.e. particles with the same diffusion coefficient. In contrast, in the present work, we

assume that there are different species of particles in the system which, in general,

have different mobilities. In our method, it is necessary to identify the fastest par-

ticles in the system as a first step, meaning the particles with the largest migration

rate. We make the assumption that all other particles can be considered immobile

with respect to them. This assumption is justified because a small difference in

migration en- ergy between two different particles induces a big difference between

migration rates. For instance, the ratio between migration rates of SIA and I2 in Fe

takes the value
rmig(SIA)

rmig(I2)
= 185.3 at T = 200 K and

rmig(SIA)

rmig(I2)
= 32.5 at T = 300 K,

using the values found in Ref. [105]. In other words, at room temperature, the num-

ber of jumps performed by an SIA is, on average, 32 times larger than the number
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of jumps performed by an I2 in the same time interval. Afterwards, non-overlapping

protective environments are created around mobile particles in such a way that only

one or two particles are found within them.

5.2.4.1 Fastest particles moving in three dimensions

As mentioned in subsection 5.2.1 and shown in Fig. 5.1, the protective environments

around particles that migrate in three dimensions are spheres. The sphere radius

represents the mean distance covered by the particle after time δtGFRD.

Green’s functions for Single domains are calculated with Eq. 5.11. If two particles

are located inside a Pair domain, their survival probability is given by Eq. 5.22, and

the motion of their centre of mass is given by Eq. 5.18.

5.2.4.2 Fastest particles moving in one dimension

To isolate the fast 1D-moving particle p and its closest neighbour q1 in a Pair domain,

it must be guaranteed that motion in the opposite direction is not perturbed by the

presence of another close neighbour. In other words, if the position vector to p is

~x0 and the vector to the point of contact with its closest neighbour q1 is ~xc, this

pair can only be isolated if movement in direction ( ~x0− ~xc) is free. If a second close

neighbour q2 is found along the axis of motion of p in said direction, this assumption

is false. This situation is illustrated in Fig. 5.2. In the top example, the distance

between particles p and q2 is notably larger than the distance between p and q1.

Therefore, it can be assumed that they form an isolated Pair, so the movement of

p can be described by Eq. 5.13 and the survival probability of the Pair is expressed

by Eq. 5.23.

The bottom example shows a situation where the distance between p and ~q2 is

comparable to the distance between p and q1. Hence, ~q2 would act as a second

absorbing boundary for p. In this case, Eq. 5.13 cannot describe the motion of p

accurately and the pair (p, q1) cannot be considered as isolated. The movement of

a particle migrating in one dimension with absorbing boundaries xc1 and xc2 takes

the form of a Fourier series given by Eq. 5.25 [231, 248]:
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Figure 5.2: Top: Particles p and q1 form a Pair. Bottom: Particles p and q1 may
not be isolated due to the close presence of q2

p(x, t|x0) =
2

L

∞∑
n=1

exp

(
−
[nπ
L

]2

Dt

)
sin
(nπ
L
x
)

sin
(nπ
L
x0

)
(5.25)

where L = |xc2 − xc1|.
It follows that, when particle q1 is found, the line of motion has to be traversed

in the opposite direction until a certain point of validity to decide whether p and q1

form a Pair. To find the point of validity, the solutions given by Eq. 5.13 and 5.25

were compared to each other. By fixing xc1 and varying the position of xc2, it is

possible to find the point at which both solutions are similar enough, such that the

Pair (p, q1) is considered isolated.

The Green’s functions p(x, t|x0) are portrayed in Fig. 5.3 for a value Dt = 1 and

different positions of xc2. Equivalent Green’s functions are portrayed in Fig. 5.4 for

Dt = 2. Jump length was set at λ = 1 and the position of x0 was fixed at x0 =
√

5.

As one can see, both solutions approach each other the bigger the separation

between p and q2 is, to the point that they are barely distinguishable when |xc2 −
x0| ≥ 2 · |x0 − xc1|. Thus, we used the following criterion to determine whether p

and q1 form a Pair or p is included in a Single domain. If the closest neighbour q1

is found and the point of contact xc1 is determined, the axis of motion of p has to

be inspected from x0 to x0 + 2 · (x0− xc1). If no particles are found in this segment,

then (p, q1) form a Pair. On the other hand, if a particle q2 is found in the segment

between x0 and x0 + 2 · (x0 − xc1), particle p must be isolated in a Single domain.
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Figure 5.3: Green’s functions for particles moving in one dimension in the presence
of one absorbing wall (solution to Eq. 5.13, depicted in blue lines) and two absorbing
walls (solution to Eq. 5.25, depicted in black squares). Here, Dt = 1.
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Figure 5.4: Green’s functions for particles moving in one dimension in the pres- ence
of one absorbing wall (solution to Eq. 5.13, depicted in blue lines) and two absorbing
walls (solution to Eq. 5.25, depicted in black squares). Here, Dt = 2.

Moreover, it is possible that no particle q1 will be found at all along the axis of

motion of p. For this reason, it is helpful to establish an arbitrary maximum time

step tmax so that the neighbour search algorithm is not executed indefinitely, but

stopped at a cutoff distance that is a function of tmax.

With this in mind, we shall now outline the algorithm used for the construction

of Single and Pair domains when the fastest particles migrate in one dimension along

an axis of motion.
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Algorithm 1 Pseudocode that shows the computations performed in order to create
Single and Pair domains, when the fastest particles move in one dimension.

for all particles pi in positions ~x0,i do
traverse the axis of motion of pi from ~x0,i until a particle qi is found
if no particles are found then

stop search at distance σmax =
√

2Dδtmax
else

identify neighbour q1,i and store distance σi = ~x0,i − ~xc1,i
end if
traverse the axis of motion of pi from ~x0,i until position ~x0,i + 2 · (~x0,i − ~xc1,i)
if no particles are found in the segment [~x0,i, ~x0,i + 2 · (~x0,i − ~xc1,i) then

identify pi and q1,i as a Pair
else

isolate pi in a Single cylindrical domain with length σi = 1
2
‖~x0,i − ~xc1,i‖

end if
end for

Having explained the construction of Single and Pair domains when the fastest

particles move in one or three dimensions, we shall now detail one of the main

achievements in this work, namely the application of the GFRD method in the

presence of an external source of particles.

5.3 Application of the GFRD method to systems

with continuous introduction of particles

Although the original GFRD algorithm is in principle much faster than a scheme

using only discrete random walks, in particular in the case of a dilute system, it can

become computationally expensive under certain conditions. For instance, we can

anticipate that the GFRD method requires an increased computational effort as the

number of particles grows in the system. This is the situation when a material is

subjected to continuous irradiation. Indeed, the more particles the system contains,

the larger the number of domains to be calculated and the higher the computational

effort necessary to sample the next-time events in all the protective domains.

On the other hand, the fact that the GFRD algorithm is inherently asynchronous

makes it suboptimal to simulate the evolution of a system where particles are contin-
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uously introduced. Indeed, the number of particles to be introduced by irradiation

in the system is by definition proportional to the time step, which is common to all

particles. In addition, one can anticipate the difficulty to define protective domains

around particles during a given time interval at the same time that others are be-

ing introduced. One expects that some of the newly introduced particles will be

located into some of the protective domains previously defined. In this situation,

some domains could contain more than two particles, condition for which it is no

longer possible to find an analytical solution for the diffusion-reaction equation, as

we have seen before.

In the current section, we describe how these issues can be circumvented and

we present the new GFRD algorithm that we specifically developed to simulate the

evolution of systems of interacting with an external source.

5.3.1 Synchronous scheme: Selection of the time step

As it was mentioned above, it is desirable to find a method that can significantly

reduce the computational cost associated to the sampling of the next-time events

in the original GFRD method. In their work, Van Zon, ten Wolde et al. [292]

created a list of possible events which were associated to their survival probability

functions. Then, these were used to sample next-reaction times and select the event

to undergo, if an event occurs within the maximum allowed time step. Instead

of using a sampling method – that can be computationally costly – to determine

the next-time event of each domain, in this work we propose to use a more direct

method.

To calculate the time step associated to an event in a given protective domain,

one has to keep in mind that during the time interval that particles will evolve,

they must not cross the outer boundary of their protective domain. This is one of

the principles of the GFRD method. If this is not guaranteed, some particles could

penetrate other domains and the analytical solution of the diffusion or diffusion-

reaction problem would no longer be valid.

To prevent that particles reach the outer boundary of their protective domain and

penetrate another domain during a given δt, it is useful to calculate the probability

to find a particle outside its domain Ω. If we assume, for instance, that a particle
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performs random walks in three dimensions and that it starts at the origin, we can

calculate the probability to find the particle at a distance r ≤ R by integrating

Eq. 5.11 in spherical coordinates, which yields (see Ref. [239]):

P (r ≤ R) =
1√
π

(
√
πerf(u)− 2u exp(−u2)) (5.26)

with u2 = R2/4Dδt.

On the other hand, it is useful to remember a well-known property of random

walks, which goes back to Einstein[94, 229] and according to which the mean square

distance σ2 travelled by a random walker is proportional to the time interval δt. For

a particle that performs random walks in three dimensions, it is given by:

σ2 = 6Dδt (5.27)

With this in mind, one might calculate, for instance, what is the fraction of

particles that go beyond r = σ during an interval of time δt. Using Eq. 5.26 and

R = σ, we obtain P (r ≤ σ) ' 0.608. This means that, if we choose a δt for a

given spherical domain such that the mean distance σ travelled by the particles

corresponds to the radius R of the domain, around 40% of the particles would cross

the outer boundary of the domain and could penetrate other domains. On the other

hand, one can verify that P (r ≤ 2σ) ' 0.992. In other words, if particles are allowed

to travel during a time interval δt such that 2σ = R, then it would be very unlikely

that a particle crossed the outer boundary of its protective domain. Thereby, for a

given domain of radius R, it is possible to calculate in a simple manner a conservative

time step that minimises the chance that a particle will cross the outer boundary of

the domain. It is given by the following condition:

6Dδtmax = (R/2)2 (5.28)

Clearly, this method allows to determine the maximum time interval δtmax that

particles can travel inside a domain of a given radius R without reaching its outer

boundary in an analytical and thus efficient manner.

Now, since our aim is to use the GFRD method with a synchronous scheme, i.e.,

a scheme where all particles will evolve with the same time step, it is necessary to

select an appropriate and unique time step value to evolve all the particles during a

112



given update. Though in this scheme, the time step is the same for all the particles

during an update, it does not mean that it is constant throughout the simulation.

Since the density of particles changes with time, the domains must be recalculated

and thus, the time step must adapt to the situation.

A conservative approach to ensure that no particle will cross the outer boundary

of its protective domain is to select the minimum of the time steps obtained with

Eq. 5.28 from all the domains. In order to determine the accuracy and the efficiency

achieved with the GFRD method using a synchronous scheme and with the minimum

of the time steps found among all the domains in the system, the GFRD algorithm

was implemented in our MEGA-OkMC code. As a practical case, we simulated

the evolution of SIAs and vacancies in Fe. The values for the attempt frequency,

migration energies and capture radius were equal to those used in Section 4.3. These

parameters were used to calculate their diffusion coefficients, which are used in the

diffusion-reaction equations and in Eq. 5.28.

We considered a hypothetical case where SIAs and Vs are initially randomly dis-

tributed in space at a given concentration and where the system evolves at different

temperatures for different times. In Fig. 5.5 we can see the evolution of the SIA con-

centration obtained with the GFRD using the minimum time step (blue line) for an

annealing at 250 K and for initial SIA/V concentrations of 1019 and 1020 cm−3. For

comparison, we also show the results obtained using only the PTLA (green squares).

The latter does not use a geometrical approximation like the GFRD and is thus, by

definition, more accurate. The agreement between both methods is very good. A

similar good agreement was found for the other conditions of temperature and time

explored in this work.

Since SIAs have a migration energy smaller than that of vacancies, the character-

istic time step of the system is imposed by the SIAs. For example, at a temperature

of 250 K, a SIA performs on average one jump in approximately 7.14×10−7 s. There-

fore, the simulations performed with the PTLA for the temperature of 250 K during

1 s required about 1.4 million computational steps. As expected, the GFRD method

requires fewer computational steps, which results in a reduction of the computational

effort.

In order to quantify the reduction of computational effort achieved by the GFRD

using the minimum time step, we calculated the speedup factor, which is defined as
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Figure 5.5: Comparison between results obtained with discrete random walks (green
squares) and the GFRD with a synchronous scheme using the minimum time step
(blue line) and the average time step (red line) for initial concentrations of 1019 and
1020 cm−3.

SIA/V conc. Temperature tend Nb. Steps Runtime
(cm−3) (K) (s) (s)

1019 200 1 27063 492.3
1019 250 1 1399267 13706.2
1019 300 0.1 1942007 17530.8
1020 200 1 27063 371.36
1020 250 1 1399267 10128.1
1020 300 0.1 1942007 20227

Table 5.1: Number of computational steps and runtime corresponding to the simu-
lations performed using the τ -leaping method for each of the conditions considered
in this work.

the ratio of the runtime achieved with the PTLA to the runtime achieved with the

GFRD method. This was done for each condition considered in this work and was

reported in the last column of Table 5.2. For the first condition, we can notice that

the GFRD method is even slower than the PTLA as the speedup factor is lower than

1. This is due to the overhead necessary to the calculation of the protective domains,

which is higher than the gain achieved with the GFRD method in this particular
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condition. Otherwise, as a general trend, we noticed that the gain achieved by

GFRD is enhanced at higher temperatures. This can be explained by the fact

that the characteristic time step associated to the jump of SIAs gets smaller as

the temperature increases. Hence, the number of computational steps increases

significantly with temperature when using only discrete random walks. This is where

the advantage of the GFRD method is exploited since much fewer computational

steps are required to reach a same physical time, as can be seen by comparing Tables

5.1 and 5.2. However, for most conditions explored in this work, we can see that

the speedup factor achieved by the GFRD method and a conservative time step

remains modest. Such modest gain can be explained by the fact that the time step

is always limited by the occurrence of particles that are close to each other, since the

minimum time step is taken. Their protective domain has thus a small extension

and consequently, the corresponding time step is small.

SIA/V conc. Temperature tend Nb. Steps Runtime Acceleration factor
(cm−3) (K) (s) (s)

1019 200 1 23825 593.18 0.82
1019 250 1 114103 1440.77 9.51
1019 300 0.1 113018 1409.23 12.43
1020 200 1 20958 248.14 1.49
1020 250 1 65800 570.90 17.74
1020 300 0.1 63288 561.83 36.0

Table 5.2: Number of computational steps and runtime corresponding to the simu-
lations performed using the GFRD method and the minimum time step for each of
the conditions considered in this work.

Since such reduction of the computational effort was achieved with the minimum

time step in the system, one expects thus that with larger time steps the number

of computational steps could be reduced even further. Since we are dealing with a

system with a large number of particles, from the statistical point of view it seems

reasonable to describe its behaviour with the average time step τ , which can be

calculated at the beginning of each update from the time step distribution obtained

from all the domains in the system.

The evolution of the SIA concentration with time obtained with the GFRD

method and the average time step (red line) for a temperature of 250 K is illus-
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SIA/V conc. Temperature tend Nb. Steps Runtime Acceleration factor
(cm−3) (K) (s) (s)

1019 200 1 129 5.10 96.52
1019 250 1 817 11.57 1184.63
1019 300 0.1 934 12.03 1457.25
1020 200 1 231 4.40 84.4
1020 250 1 1353 22.76 444.99
1020 300 0.1 1608 32.45 623.32

Table 5.3: Number of computational steps and runtime corresponding to the simula-
tions performed using the GFRD and the average time step for each of the conditions
considered in this work.

trated in Fig. 5.5 along with the results discussed above. Clearly, the agreement

with the results obtained with discrete random walks is excellent. Table 5.3 quan-

tifies the computational effort achieved using the GFRD method and the average

time step for the different conditions considered in this work. As one can see by

comparing Tables 5.2 and 5.3, simulations performed with the average time step

require remarkably fewer steps than those performed using the minimum time step.

As a result, simulations are considerably accelerated. For some conditions, the ac-

celeration factor with respect to simulations performed with the PTLA is larger

than three orders of magnitude.

We have thus evidenced that the results produced with the GFRD method us-

ing the average time step are in excellent agreement with those obtained with the

PTLA. Hence, although the chosen time step –the average time step– is relatively

large, the resulting loss of accuracy is negligible. At first glance, one could indeed

expect a large deviation, since a certain amount of particles are located in domains

with an associated time step which is smaller than the average time step τ . Thus,

these particles are able, in principle, to cross the outer boundary of their respective

domains and intersect the domains of other particles. In order to explain why the

loss of accuracy is negligible in spite of this, we did the following. For each particle in

the system, we used Eq. 5.26 to compute the probability P (r ≤ R) that the particle

remains inside its protective domain of radius R during an interval of time equal

to τ . For the sake of simplicity, we assumed that all particles are isolated in Single

domains. In Fig. 5.6 we plotted the probability distribution (red histogram), i.e.,
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Figure 5.6: Distribution of the probability P (r ≤ R) that a particle has to remain
inside its protective domain during a time interval τ (red histogram) and during a
time interval τ × 10 (green histogram). Results are shown for a temperature of 250
K at time t = 1.75× 10−2s.

the number of particles that have a probability between P and P + ∆P to remain

inside their protective domain. This was done for a temperature of 250 K and an

initial concentration of 1019 cm−3, i.e., one of the conditions showed in Fig. 5.5.

The distribution represented in Fig. 5.6 was calculated at the 100th time step of the

simulation, which corresponds approximately to t = 1.75× 10−2s. At this time, the

average time step τ calculated from the time step distribution is about 3.7× 10−4s.

As we can see in the figure, the probability histogram exhibits a stiff peak around

a value of 1. This means that a significant amount of the particles in the system

have a high probability to remain inside their domain during the time step τ . Nev-

ertheless, the figure also evidences that there are a certain amount of particles that

have a non-negligible probability to escape from their protective domain. In order to

quantify the amount of particles in the system that could reach the outer boundary

of their domain with a significant probability during the time step τ , we calculated

the fraction of particles that have a probability P (r ≤ R) ≤ 0.90, i.e., the frac-

tion of particles that have more than 10% probability to escape from their domain.

Our calculations show that only about 5% of the particles in the system fulfill this

condition. Instead, if we calculate the fraction of particles that have a probability
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higher than 20% to escape from their domain (P (r ≤ R) ≤ 0.80) then our calcula-

tions show that only 3.4% of the particles in the system would be affected. In other

words, only a small fraction of the particles have a non-negligible probability to exit

their domain and interact with other particles in adjacent domains during the time

interval τ . This explains why the loss of accuracy is negligible when a large time

step such as τ is used to evolve all the particles synchronously.

However, we observed that the probability distribution shifts more and more to

the left as the time step used to evolve the particles increases. As expected, the

number of particles that can reach the boundary of their domain with a significant

probability rapidly increases when the time step becomes too large. To illustrate

this, we calculated the probability distribution in the same conditions as before but

for a time step equal to 10× τ (see green histogram in Fig. 5.6). Our results show

that for this time step, approximately 71% of the particles in the system would have

more than 10% probability to escape from their domain. In this case, we observed

indeed that results obtained with such large time step significantly deviate from the

results calculated with discrete random walks.

Using the GFRD method with a synchronous scheme and the average time step

τ seems thus a good choice that allows for simulating the evolution of systems in a

very efficient manner and with a very good accuracy.

5.3.2 Development of a new scheme for systems with

continuous introduction of particles

In the previous subsection, we established that the GFRD method can be used

with a synchronous scheme. It was shown that, when all particles in the system

are evolved with the average time step computed from all the protective domains,

GFRD displays a very good accuracy when compared to simulations performed only

with discrete random walks. This method achieves a considerable reduction of the

computational effort, reaching for some conditions an acceleration factor larger than

three orders of magnitude. These results were obtained in a specific case, namely a

system with an initial distribution of defects.

Another interesting example of a diffusion-reaction system is the case where

a continuous external source of particles is present. Indeed, this is the situation
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in materials under continuous irradiation. In this case, defects are continuously

introduced in the system at the same time that those that are already present

migrate and interact. A priori, this situation makes the use of the GFRD method

difficult, not to say impossible. Indeed, in a conventional system where GFRD is

typically used, there is no external source of particles. The system is defined by

an initial number of particles distributed in space and at the beginning of each

update, the number of particles is known as well as their position, which allows for

the definition of a protective domain around each particle. The spatial extension of

these domains defines the time during which particles will travel isolated from the

rest (Single domains) or interacting with another particle (Pair domains). In the case

we are considering now, new particles are introduced during the interval of time that

the already present particles are supposed to travel in isolation, within the limits of

their protective domains. Consequently, these new particles might either fall into

some of the protective domains corresponding to the particles already present in

the system or, in a more general way, their protective domains might intersect with

some of the protective environments that were already defined. In both cases, the

solution of the diffusion equation calculated for the domains where this occurs would

no longer be valid. For instance, if a new particle is introduced during a time step

into a Single domain, this latter would become a Pair domain and the solution given

by Eq. 5.11 would not be applicable. Similarly, if a new particle is introduced such

that its domain intersects with a Pair domain that was already defined, one of the

fundamental principles of the GFRD method would be violated, since the problem

of diffusion can only be solved analytically for domains that contain, at most, two

particles.

In this section, we propose a new GFRD algorithm that circumvents this prob-

lem and allows treating the case where particles are continuously introduced in the

system. For the sake of simplicity, we present the algorithm for the case of parti-

cles that perform random walks in three dimensions, i.e., for spherical protective

domains. The same reasoning can of course be extended to other dimensions.

Let us assume that after some time t, the system already contains some particles

and that we wish to evolve the system by a certain time step δt. During this time

step δt, the particles already present in the system will migrate and possibly interact

with others while new particles will be introduced. In the new GFRD algorithm that
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Figure 5.7: Left: Single and Pair domains in the simulation box before new particles
are introduced. Right: Single and Pair domains after new particles are introduced.
Newly introduced particles are coloured yellow. The protective sphere highlighted
in green cannot be solved analytically since it contains more than two particles. The
highlighted cell (blue) where the domain with more than two particles appears is
labelled as unsolvable cell.

we propose, we first consider the particles that are already present in the system. As

in the original GFRD method, protective environments (spheres) are created around

the particles and domains are identified as Single and Pair domains, as shown in

Fig. 5.7 on the left. Then, as described in the previous subsection, the average time

step τ is calculated from all the protective domains. This will be the time step

used to evolve all the particles synchronously. The time step τ thereby calculated

is also used to estimate the number of new particles to be introduced in the system

during the update owing to the rate of the external source. The new particles are

then placed in the simulation box and the extension of their protective domains is

calculated assuming a time step τ . When the protective domain of one of the newly

introduced particles intersects with some of the domains already defined, the cell in

which it is located is identified and labelled as unsolvable cell. This denomination

refers to the fact that no analytical solution can be found in this case. The rest of the

cells, i.e, where no domains intersect, are labelled as solvable cells. Fig. 5.7 on the

right schematically illustrates the simulation box after the new particles have been

introduced by irradiation. Here, some particles have been introduced inside one of

the protective environments, highlighted in green colour. Since there are more than

two particles in the protective sphere, in principle, the problem of diffusion cannot

be solved analytically. The cell in which this domain is located, highlighted in blue,

is therefore labelled as an unsolvable cell.
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Once this classification has been done, the particles located in Single and Pair

domains in solvable cells, i.e., those that have not been altered by new particles, are

first evolved with the time step τ calculated previously. For the unsolvable cells,

i.e., where the protective domains of the new particles intersect with other domains,

we proceed as follows. For a given unsolvable cell i, the protective domains around

all the particles are reconstructed, taking into account the new particles introduced

by irradiation. This leads to a local redefinition of the Single and Pair domains.

The minimum of the time steps corresponding to these new protective domains,

denoted δti,1min, is determined and is, by definition, such that δti,1min < τ . Particles

in the new Single and Pair domains in the unsolvable cell i are then evolved using

the time step δti,1min. Since the sub-time steps a priori vary from one unsolvable

cell to another, the particles that have evolved in different unsolvable cells are no

longer synchronized with the rest of the particles. In order to synchronize again with

the rest of the system, i.e., with the particles in solvable cells, they must continue

evolving by sub-time steps until they reach the time step τ . Each unsolvable cell

i is then examined again to define the new protective domains and to determine a

new sub-time step δti,2min, as before. The process is repeated until
∑

j δt
i,j
min = τ is

reached in each cell. Once all the particles in the unsolvable cells have reached the

time step τ , all the particles can be considered synchronized and a new global time

step τ can be determined to evolve all the particles and to introduce new ones. Our

GFRD algorithm is thus a combination of synchronous and asynchronous schemes.

The following pseudocode summarises our GFRD algorithm.

In order to demonstrate the accuracy and the efficiency of our GFRD algorithm

to simulate the evolution of systems with an external source of particles, we sim-

ulated an experiment that was carried out by Arakawa et al [16] in which Fe was

irradiated with 1 MeV electrons. In these experimental conditions, only SIA-V pairs

(Frenkel pairs) are expected to be created. Indeed, the calculation of the average

of energy spectrum of collisions [163] shows that electrons displace Fe lattice atoms

with, on average, a kinetic energy of approximately 11 eV. This implies that Fe

atoms are only displaced by a small distance from their lattice site. As a result,

only a SIA-V pair is formed when an electron succeeds to displace a Fe atom from

its site. Thus, it is necessary to calculate how many SIA-V pairs are introduced in

the simulation box during a time step δt. To do so, we must calculate how many
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Algorithm 2 Pseudocode that summarises our GFRD algorithm developed to solve
the problem of particle evolution under continuous irradiation.

while tsim < tend do
divide space into cells
for all cells do

define protective domains around particles
calculate time step associated to each domain

end for
calculate average time step τ
calculate number of new particles to be introduced by irradiation during τ
introduce the new particles in simulation box
calculate extension of domains of new particles
identify unsolvable cells
evolve particles in solvable cells with time step τ
for all unsolvable cells i do

j ← 1
δtilocal ← 0
while δtilocal < τ do

recalculate protective domains
determine minimum time step δti,jmin
if
∑

j δt
i,j
min < τ then

evolve particles with δti,jmin
δtilocal ← δtilocal + δti,jmin
j ← j + 1

else
evolve particles with τ − δtilocal
δtilocal ← τ

end if
end while

end for
tsim ← tsim + τ

end while

electrons hit the front surface of the material during this time step and how many

SIA-V pairs are generated by each electron on average.

The number of electrons that impinge on the surface during a time step δt is

simply given by Eq. 5.29:

nbe = φ · S · δt (5.29)
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where φ is the irradiation flux per unit surface and unit time, 9.2× 1018cm−2s−1

in the experiment considered here [16], and S is the surface of the sample hit by

electrons.

On the other hand, the average number of displacements that an electron can

generate when going through the sample can be calculated as follows:

nbdisp = σ · ρ · z (5.30)

where z is the thickness and ρ is the density of the material, i.e., the number

of Fe atom per unit volume (8.46 × 1022cm−3). In the experiment, Arakawa et

al irradiated Fe samples with a thickness of 150 nm approximately. Using the

relativistic expression for the differential cross-section [163], we calculated that for

this energy (1 MeV) the total cross-section for displacements σ between electrons

and Fe lattice atoms is equal to 1.46 × 10−21 cm2. The average number of SIA-V

pairs to be introduced in the system during a time step δt is thus merely nbe ·nbdisp.
The following atomistic model was considered to simulate the evolution of this

system of defects in Fe. Once the SIAs and the Vs are created by atomic displace-

ments in Fe, they start performing random walks at a frequency determined by their

migration energies, the same that were used in Sections 4.3 and 5.3.1. As described

in Section 5.3.1, SIAs and Vs can annihilate upon encounter. In addition, we took

into consideration that when two SIA defects approach at a sufficiently small dis-

tance, they can agglomerate into a cluster following the first order chemical reaction

SIAn + SIA −→ SIAn+1. These SIA clusters can also migrate, as it was determined

by first principle calculations [105, 175]. In this work, for the sake of simplicity, we

consider that only small clusters of up to four SIAs can migrate and their migration

energies are those calculated in Ref. [105]. Similarily to SIAs and Vs, SIA clusters

can also annihilate with vacancies upon encounter following the reaction SIAn + V

−→ SIAn−1. This is of course a simple model to describe the evolution of defects

in Fe under irradiation. The atomistic mechanisms that can fully describe what

occurs in Fe under irradiation are certainly more complex and are in fact, still under

debate [175, 214, 234, 31, 105]. Our goal here is to demonstrate that our GFRD

algorithm is able to efficiently simulate the evolution of a system of particles under

realistic irradiation conditions and we believe that a simple atomistic model will

suffice.
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Figure 5.8: Comparison between the PTLA (green symbols) and GFRD with our
synchronous-asynchronous scheme (blue line). Results were obtained for an irradi-
ation at 200 K for 1 s. Experimental parameters of the irradiation conditions were
taken from Ref. [16].

In order to test our GFRD algorithm in a wide range of conditions, we simu-

lated the irradiation of Fe using the model mentioned above and the experimental

parameters given in Ref. [16] for different temperatures and irradiation times. As in

the previous subsection, results obtained with our GFRD algorithm were compared

to those obtained with a scheme using only discrete random walks, i.e., without the

approximation.

In Fig. 5.8, the evolution of the density of different SIA clusters (up to 4 SIAs)

and of vacancies obtained with our GFRD algorithm is represented for a temper-

ature of 200 K and an irradiation time of 1 s. The results obtained using discrete

random walks (τ -leaping) are also plotted for comparison. As we can see, our GFRD

algorithm is able to predict the evolution of different species that form under irradi-

ation with a very good accuracy. For this condition, a comparison of the runtimes

shows that the simulation performed with our GFRD algorithm requires 17 times

less effort than that performed with only discrete random walks. The number of

computational steps and the runtimes necessary to achieve the simulations that

were performed for different conditions are summarised in Tables 5.4 and 5.5 for the

PTLA and for our GFRD algorithm, respectively. Similarily to what we observe in
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Temperature tend Nb. Steps Runtime
(K) (s) (s)
200 1 27036 1161.9
250 1 1399275 32515.0
300 0.1 1942002 13265.1

Table 5.4: Number of computational steps and runtime corresponding to the simu-
lations with continuous irradiation using the τ -leaping method.

Temperature tend Nb. Steps Runtime Acceleration factor
(K) (s) (s)
200 1 583 66.13 17.57
250 1 24757 1508.23 21.55
300 0.1 8290 247.62 53.57

Table 5.5: Number of computational steps, runtime and acceleration factor corre-
sponding to the simulations with continuous irradiation using the GFRD and the
average time step with our synchronous-asynchronous scheme.

conditions where particles are initially distributed without an external source, the

gain achieved by our GFRD algorithm is better for higher temperatures.

We would like to point out that additional simulations were performed with the

conventional GFRD algorithm, i.e., without identifying unsolvable cells and with-

out using the synchronous-asynchronous scheme. The results (not shown here) ob-

tained with the conventional GFRD algorithm strongly deviate from those showed

in Fig. 5.8. This evidences that it is crucial to identify the domains where new par-

ticles have been introduced and to redefine the domains locally, taking into account

the new particles.

5.4 Conclusions

The GFRD method developed by Van Zon and ten Wolde [292, 293] was adapted to

our MEGA-OKMC code. GFRD is useful to accelerate low-density diffusion-reaction

systems where random walkers perform many migrations before interactions happen.

As a first step, we have proposed an alternative way to estimate the time steps

associated to Single and Pair protective domains to evolve particles. Using the
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probability that a free random walker has to be found beyond a certain distance

after a certain time, we could establish the maximum allowed time step that a

particle can travel without reaching the outer boundary of its protective domain.

The method proposed to calculate the time step associated to a protective domain is

analytical and thus, significantly reduces the computational effort that is in general

necessary in the original GFRD method to sample time steps through numerical

root finders.

Then, we have demonstrated that the GFRD can be used in a synchronous

manner, i.e., that particles can be evolved with the same time step during the same

update. To do so, we have evidenced that the varying time step must be carefully

selected. On the one hand, we have showed that when the GFRD method is used

with a conservative time step, i.e., the minimum time step found among all the

domains in the system, it achieves an interesting reduction of the computational

effort in comparison to simulations performed with only discrete random walks. On

the other hand, we also have demonstrated that results obtained with the GFRD and

the average time step τ are in excellent agreement with those obtained with discrete

random walks. We have showed that in this case, the GFRD method requires

much fewer computational steps and hence, achieves a considerable reduction of the

computational effort. For some conditions, simulations were accelerated by a factor

larger than three orders of magnitude. The accuracy of the results obtained with

the average time step evidence that, despite the fact that some particles belong to

domains with an associated time step smaller than τ and hence, might cross the

outer boundary of their protective domains, the loss of accuracy is negligible. To

explain this, we have calculated for each particle the probability P (r ≤ R) it has

to remain in its protective domain during a time interval τ . Our calculations show

that in fact, only a small fraction of the particles have a non-negligible probability

to escape from their domain.

The feasibility of using the GFRD method in the presence of continuous irradi-

ation has been demonstrated. Initially, the following circular problem was found.

The GFRD time step has to be calculated with the help of Singles and Pairs in

protective environments, such that the number of particles produced in cascades is

computed accordingly; however, some of the particles created in cascades may enter

the protective environments used to calculate this time step, which would violate
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the principle that Singles and Pairs are isolated. Solutions were offered when the

fastest particles move in one or three dimensions. The GFRD algorithm that we

propose consists in a hybrid scheme that combines a step during which particles are

evolved synchronously and another step where the rest of the particles is evolved

asynchronously by sub-time steps. In three dimensions, the cells which the simula-

tion box are divided into were classified as solvable cells or unsolvable cells. Singles

and Pairs in solvable cells are solved in one time step δtGFRD, whereas unsolvable

cells are treated separately. In the latter, Singles and Pairs are redefined and solved

by sub-time steps δti,1, δti,2 . . . until the final time step δtGFRD is reached. In one

dimension, it is sufficient to redefine Singles and Pairs and solve these problems in

one time step δtGFRD.

Our implementation of the GFRD method for materials under continuous irra-

diation was tested and compared to an equivalent simulation using only the PTLA,

yielding promising results. In order to validate our GFRD algorithm we have simu-

lated, taking the parameters of a realistic experiment, the formation and evolution

of self-interstitial clusters and of vacancies in Fe under electron irradiation for dif-

ferent temperatures and times. The results obtained with our GFRD algorithm are

in very good agreement with those obtained with simulations performed with only

discrete random walks. The reduction of the computational effort achieved by our

GFRD algorithm is enhanced for higher temperatures.

In the following chapter, the full implementation of the PTLA and GFRD meth-

ods into our MEGA-OkMC code is detailed.
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Chapter 6

Integration of PTLA and GFRD and

additional approximations in the

MEGA-OkMC code

As we have seen in the previous chapter, the GFRD method is useful to acceler-

ate OkMC simulations in low density conditions. Obviously, GFRD is not always

applicable. For example, this method breaks down when particles are not able to

perform many jumps before interactions take place, such that a diffusion coefficient

D cannot be defined. In order to decide whether this assumption is correct at a

particular time step, it is necessary to establish a criterion.

Thus, it is essential to provide the code with a mechanism that is able to choose

the correct option (PTLA or GFRD) according to a criterion that depends on the

physical situation. In particular, the calculations which are responsible for the

creation of protective environments in GFRD are computationally expensive, which

means that they are best avoided if GFRD cannot be used. In this chapter, the

mechanism used in MEGA-OkMC to make the decision between PTLA and GFRD

is explained. We refer to computational steps where the PTLA is applied as PTLA

steps. Computational steps where the GFRD method is applied are labelled GFRD

steps. Section 6.1 reviews the considerations that must be accounted for, such that

GFRD is applicable in a given time step. In addition, some approximations to

reduce runtime by means of choosing an appropriate time step shall be presented
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in Section 6.2. In Section 6.3, we show how MEGA-OkMC has been adapted to

include the GFRD method in the presence of continuous irradiation. In the rest of

this chapter, δtPTLA and δtGFRD refer to the time step calculated with PTLA and

the GFRD method, respectively.

6.1 Considerations and assumptions in the

application of GFRD to realistic

diffusion-reaction systems

Assumption: migration dominates

As shown in chapter 5, GFRD is a geometric method. In our implementation,

this method relies on the assumption that only the fastest particles are considered

mobile, and all others can be considered immobile. This assumption is justified

because a small difference in migration energy between two different particles induces

a big difference between migration rates. For instance, the ratio between migration

rates of I2 and SIA in Fe takes the value
rmig(I2)

rmig(SIA)
= 185.3 at T = 200 K and

rmig(I2)

rmig(SIA)
= 32.5 at T = 300 K. A long sequence of PTLA steps producing discrete

particle jumps is replaced by one GFRD calculation, saving a considerable amount

of runtime. This is correct since in this case, it is justified to define a diffusion

coefficient for the fastest particles. In other words, the GFRD method is exact if the

only event that happens within a time step is the migration of the fastest particles.

Naturally, this works well for simple models where a single particle species is

so fast that migrations of other species can be neglected. In general, in a realistic

diffusion-reaction system [65, 174, 267, 281, 284], there is an array of different par-

ticle species with varying mobilities, and it is not guaranteed that during the whole

simulation, one specific species is substantially more mobile than the rest. In fact,

the existence of different mobile species means that there is a non-zero possibility

that not only the fastest particles are able to migrate within the time step. In addi-

tion, there are other events like dissociation of clusters or introduction of particles

via continuous irradiation that should be considered.
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For these reasons, we tried to implement the GFRD method in our work in a

manner that is both accurate and compatible with particle systems in which different

types of particles are present. As a first step, the MEGA-OkMC code checks whether

the most probable event in the system is the migration of fastest particles. The

fastest particles are identified and their migration rate Rmax,mig is determined. This

is compared to the rate of external irradiation, Rext, and the maximum rate of other

events per particle, Rmax,other. If Rmax,mig ≥ Rext or Rmax,mig ≥ Rmax,other, the

migration of fastest particles is not the likeliest event, and therefore GFRD cannot

be applied in this step. The pertinent calculations to GFRD are avoided and a

PTLA step is produced instead.

Assumption: second fastest particle can be considered immobile

It is possible that the computed time step δtGFRD is large enough so that particles

other than the fastest ones can perform one or more jumps during this time step.

This might be the case, for instance, in α-Fe under irradiation. As small SIA clusters

are formed during system evolution, a few DL 〈111〉 may appear through clustering,

which coexist with mobile SIAs and I2, I3 and I4 clusters. Due to the fact that

these DLs migrate in one dimension [16, 17, 131, 234, 284, 289, 308, 309], they may

cover a long distance until they find a neighbour to interact with. Consequently,

the protective environments around them (cylinders) may become quite long until

a collision between protective environments is found, and the computed time step

becomes large enough for other particles (for example, the SIAs) to move as well.

Let δt2nd = ω
R2

be the time step associated to the sum of event rates R2 of the

second fastest particles, i.e. the particles with the second largest sum of event rates

in the system. If it is less than or equal to the time step δtGFRD computed by the

GFRD method, using the fastest particles in the simulation box, then it is incorrect

to assume that the second fastest particles may be considered immobile during the

time step.

Considering this possibility, we have implemented a solution that avoids this

inaccuracy. Namely, we verify whether the possible events undergone by second

fastest particles are likely or unlikely to trigger during the chosen time step. As

mentioned above, if R2 is the sum of event rates of the second fastest particles,
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these are expected to perform 1 event on average in the characteristic time step

δt2nd = 1
R2

. Consequently, to minimise the chance that any events are undergone by

the second fastest particles during the GFRD step, it is advisable to check whether

the characteristic time step δt2nd is large enough with respect to the selected time

step δtGFRD, computed via the GFRD method. In our code, δt2nd is computed and

compared to δtGFRD. If δt2nd > δtGFRD, we assume that the GFRD method is

accurate, therefore, a GFRD step with time step δtGFRD is produced.

On the other hand, if δt2nd ≤ δtGFRD, the GFRD method may not be applied in

this computational step. In the latter case, a PTLA step is produced. It is in our

interest to choose the largest possible time step that keeps the simulation accurate,

in order to reduce the number of computational steps. One can simply check that

the applicable time step is δt2nd in this case. The question remains whether the

choice this time step describes the behaviour of the fastest particles with accuracy.

Indeed, we can assume that it does. Due to the fact that δt2nd ≤ δtGFRD, the time

needed by the fastest particles to leave their protective environments is larger than

the selected δt2nd, which justifies our choice.

Summing up, if δt2nd > δtGFRD, a GFRD step is produced with time step δtGFRD,

whereas if δt2nd ≤ δtGFRD, a PTLA step is produced with time step δt2nd.

Algorithm 3 sums up the computational steps taken to decide between a GFRD

and a PTLA step, in pseudocode.

Algorithm 3 Pseudocode that shows the first computational steps performed to
execute or ignore GFRD calculations.

do GFRD step ← false
do PTLA step ← false
determine δtGFRD
δt2nd ← ω

R2

if δt2nd ≤ δtGFRD then
do GFRD step ← true
δt← δtGFRD

else
do PTLA step ← true
δt← δt2nd

end if
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6.2 Additions for the acceleration of simulations in

MEGA-OkMC: approximation for very mobile

particles at low density

Since the time step tends to decrease as T increases, it is desirable to minimise the

amount of computational steps needed to complete the simulation. One possibility to

achieve this is by applying convenient approximations. We shall now present some

mechanisms included in MEGA-OkMC that accelerate computation by choosing

a time step such that meaningless calculations are avoided, yet accuracy is still

preserved.

6.2.1 Approximation for the PTLA

As described in section 4.2, in the absence of continuous irradiation, the particle

with the highest sum of event rates determines Rmax and thus, the time step δt. In

particular, if it happens that Rmax takes a large value –for instance, when there are

very mobile particles in the system– then the time step can take very small values.

In heterogeneous systems where many defects of different types are present, it may

occur that the density of these particles is very small in comparison to the total

system density, and that they are not relevant for the physical processes that are

under scrutiny in the present simulation. If Rmax is very large compared to the sums

of event rates for the remaining particles, it implies that the other particles –those

with a lower event rate– will likely not perform any event during the time step δt.

This is simply evidenced using Eq. 4.13.

Under these conditions, the system as a whole is not going to evolve significantly

until a large number of computational steps have been undergone, which is clearly

detrimental to performance. For instance, this situation arises in the investigation

of defect evolution in Fe under neutron irradiation where a large amount of He

atoms form by nuclear transmutation. Interstitial He impurities in Fe display a

high mobility due to their small migration energy Em = 0.06 eV [106, 108], which

is much smaller than the migration energies of single Fe SIAs or vacancies. If the

system contains millions of SIA and vacancies and there is only one interstitial He
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impurity, then the time step δt would take a very small value. Indeed, by the

nature of our PTLA, the time step would be determined by the interstitial He

impurity, the particle with the highest sum of event rates in the system. In the

case given as an example, this would imply a time step of about 10−12s at room

temperature. It is easy to understand that in this case, a very large amount of

computational steps should to be performed before any event involving SIAs or

vacancies is triggered. Consequently, it is crucial to circumvent this issue to keep

the runtime of the simulation as small as possible.

It is reasonable to assume that if the density of the particles with the highest

sum of event rates is low enough, they should not significantly contribute to the

evolution of the whole system. We can thus define a threshold ε, such that, if the

density of the particles with the highest event rate is lower than (ρtot · ε) –where ρtot

represents the total density of the system– they can be neglected. It is important to

note here that by ‘neglected’, we mean that these particles do not count concerning

the computation of the time step, as described by Eq. 4.18. Instead, particles with

a lower sum of event rates are considered to compute the value of the time step.

In our implementation, the list of particles present in the system is ordered in

decreasing sums of event rates Ri. The fraction fi is defined as the density of

particles of type i with the sum of event rates Ri divided by the total density ρtot.

Then, the cumulative function Fi =
∑i

k fk is defined as the sum of particle fractions

of higher and equal rates to those of type i. In other words, particles of type k must

verify Rk ≥ Ri. If Fi ≤ ε, the density of ‘fast’ particles up to type i is considered

significant enough to define Rmax. Otherwise, Ri is ignored for the calculation of

Rmax. The ordered list of particles is navigated until a large enough cumulative

function Fj ≥ ε is found for particles of type j. Then, the corresponding sum of

event rates Rj is used to determine Rmax.

This is summed up in Algorithm 4.
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Algorithm 4 Choice of Rmax in the PTLA. ε is the threshold defined for the
significant fraction of particles with a large sum of event rates.

define ε such that 0 ≤ ε < 1
while Fj ≥ ε do

identify event rates Ri of each particle i
order list of particles in decreasing Ri

fi ← ρi
ρtot

Fi ←
∑i

k fk s.t. Rk ≥ Ri

end while
Rmax ← Rj

As one can see, the further the list of particles is explored if the condition Fi ≤ ε

is not reached, the smaller Rmax and therefore the larger δt becomes.

In order to demonstrate the usefulness of this approximation, the evolution of

He in the presence of vacancies and the formation of HenVm clusters in a Fe sample

was investigated. Helium is known to be produced by nuclear transmutation in

stainless steels subjected to neutron irradiation, as described in subsection 1.2.4.

Once created, interstitial He atoms quickly migrate and get trapped by vacancies or

recombine at the surface in a short time. As a result, the concentration of interstitial

He in the system decreases rapidly.

A collection of collision cascades of He ions implanted in Fe at 5 keV were sim-

ulated with the MARLOWE code [242, 243, 244, 247]. A 3 × 1014 cm−2 dose was

applied to a simulation box with 300a0×300a0 surface area and 7000a0 depth, equiv-

alent to 2 µm. Periodic boundary conditions in x and y directions and absorbing

boundaries in z direction were set for all species in the system. Then, the system

was allowed to evolve for tend = 60 s at 300 K (room temperature). Simulations

with different threshold values (ε = 5%, ε = 2%, ε = 1%, ε = 0.5% and ε = 0.2%)

were performed on a NVIDIA®GeForce®GTX 1060 GPU and compared.

Figure 6.1 depicts the depth profiles of HenVm clusters for the five values of

ε. Notably, all profiles almost overlap, showing that the simulations are accurate

even for higher values of ε. The runtimes that were necessary to achieve each

simulation are reported in Table 6.1. In fact, it was not possible to achieve the

reference simulation for which the approximation was not used (ε = 0). The authors

wish to emphasise that after seven days of calculations, only 2.2 µs of physical
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Figure 6.1: Depth profiles of HenVm clusters for five different ε values in a simulation
box of 7000a0 depth at 300 K.

time could be reached. In other words, millions of days of calculations would be

required to achieve a few seconds of physical time. We estimate that since 7 days of

runtime were needed to achieve 2.2 µs of simulation, the expected runtime required

to achieve the final time tend = 60 s would be 1.65×1013 s, i.e. 1.9×108 days or 5.2

million years. Obviously, it would be unfeasible to complete even a small fraction

of the simulation within a sensible time frame. Our approximation reveals itself as

a necessary addition to the MEGA-OkMC code in order to perform simulations of

particle systems which include very mobile particles.

Indeed, at room temperature, the time step associated with the migration of in-

terstitial He atoms is δt = 10−12 s. Clearly, a simulation without the approximation

proposed here is not feasible since it would imply more than 1014 computational

steps. With our approximation, the time step is calculated according to the mi-

gration of vacancies (Em = 0.67 eV ) when the relative concentration of interstitial

He atoms falls below the pre-established threshold ε. In practice, this leads to a

time step of 0.018 s, which is ten orders of magnitude higher than the time step

associated to the migration of He atoms. The increase in performance is noteworthy,

without a noticeable loss of accuracy. Therefore, the introduction of the ε threshold
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ε
Runtime

(Tau-Leaping)
Speedup

(Tau-Leaping)
0%

(estimated)
1.65× 1013 s
(estimated) 1.00×

0.2% 4320.9 s 3.82× 109×
0.5% 1357.3 s 1.22× 1010×
1.0% 790.7 s 2.09× 1010×
2.0% 665.8 s 2.48× 1010×
5.0% 636.4 s 2.59× 1010×

Table 6.1: Speedup comparison between simulations with different ε values, as de-
picted in Figure 6.1.

is justified as an acceptable, and sometimes necessary, approximation.

6.2.2 Approximation for GFRD

The first step to decide whether GFRD is valid is to check what particles have the

largest sum of event rates. As explained in 6.1, the GFRD method does not offer

any significant advantages if the migration of fastest particles does not dominate

in comparison to other events. Thus, the maximum rate of migration Rmig,max is

compared to Rother,max such that a PTLA is produced if Rother,max ≥ Rmig,max. In

case δtGFRD has a smaller value than δtPTLA, GFRD is not applicable, and a PTLA

step is produced.

If GFRD is applicable, it might be possible to choose a larger time step than the

δtGFRD computed using the GFRD method if the corresponding particles are at low

density. In this case, we defined the threshold η as follows. The ratio of the number

of fastest particles Nf with respect to the total number of particles N is compared

to η. If
Nf

N
< η, we consider that the presence of these particles is not significant

enough to determine the evolution of the particle system. Thus, a larger time step

may be chosen without a negative effect on the accuracy of the simulation.

To make sure that the algorithm keeps the assumptions behind GFRD valid, it

is advisable to ensure that the second fastest particles may be considered immobile

during the GFRD time step. More importantly, we need to make sure that the

configuration of Pairs and Singles does not change within the GFRD step. In other

words, when a Pair is defined with a fastest particle and a second fastest particle
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–which is considered immobile in the construction of protective environments– the

time step must be chosen in such a way that the second fastest particle does not

move.

As mentioned above, δt2nd is the characteristic time step for the events performed

by the second fastest particles. In our approximation, this means that, whereas the

factor η determines whether the time step δt may be selected such that δt > δtGFRD,

the characteristic time step δt2nd is an upper threshold to δt. The time step may

be chosen larger than δtGFRD to accelerate the simulation, but not so large that the

second fastest particles can evolve during that time step, and therefore violate the

premise that they may be considered immobile. In summary, time step δt needs to

verify δtGFRD ≤ δt < δt2nd.

In MEGA-OkMC, the chosen time step in this situation is δt = δt2nd

10
. The

probability that the second fastest particles will not perform an event within this

time step 1
10R2

is 91%, according to the Poisson law shown in Eq. 4.2., and 9%

of the second fastest particles are expected to perform one event. Even though

at first glance, this seems like a considerable error which would accumulate with

increasing simulation time, in practice it is an acceptable approximation, as we

shall demonstrate with the following example.

Simulations were performed with the same initial conditions as in the previous

subsection, i.e. a He dose of 3 × 1014 cm−2 dose was applied to a simulation box

with 300a0 × 300a0 surface area and 7000a0 depth. We allowed the GFRD method

to be triggered automatically if the situation allowed it. Since it was not possible

to finish a reference PTLA simulation with ε = 0, as explained previously, the new

(GFRD) simulations were compared to the slowest PTLA simulation with ε = 0.2%

and depicted in Fig. 6.2. The values of η ranged from η = 0.2% to η = 5%.

Table 6.2 shows the runtimes needed for each simulation and their speedup with

respect to the estimated runtime of the PTLA simulation at ε = 0.

6.2.3 Algorithm in the absence of continuous irradiation

Now that both approximations for PTLA steps and GFRD steps have been pre-

sented, we shall describe the execution of MEGA-OkMC when continuous irradi-

ation is disabled. After δtGFRD has been determined, it is compared to δt2nd, the
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Figure 6.2: Depth profiles of HenVm clusters for five different ε values in a simulation
box of 7000a0 depth at 300 K. GFRD simulations (symbols) are compared to the
slowest PTLA simulation (line) that could be performed, namely ε = 0.2%.

η
Runtime
(GFRD)

Speedup
(GFRD)

ε = 0%
(PTLA, estimated)

1.65× 1013 s
(estimated) 1.00×

0.2% 7264.7 s 2.27× 109×
0.5% 1436.7 s 1.15× 1010×
1.0% 726.7 s 2.27× 1010×
2.0% 557.3 s 2.96× 1010×
5.0% 467.9 s 3.53× 1010×

Table 6.2: Speedup comparison between simulations with different ε values, as de-
picted in Figure 6.2.
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time step associated to the sum of event rates of the second fastest particles. If

δtGFRD > δt2nd, it is not possible to consider the second fastest particles immobile

during time step δtGFRD. In this case, GFRD calculations are repeated, focusing on

the second fastest particles. The time step is recalculated, yielding δtGFRD,2nd, and

δtGFRD is rewritten with this value.

Algorithm 5 Pseudocode that shows the first steps executed in MEGA-OkMC.

determine Rmig,max, Rother,max, δt2nd
if Rmig,max ≤ Rotner,max then

return do PTLA step
end if
compute δtGFRD
if δtGFRD ≥ δt2nd then

redraw protective environments, considering second fastest particles mobile
compute δtGFRD,2nd
δtGFRD ← δtGFRD,2nd

end if

Afterwards, the criterion explained in section 6.2 is checked. Namely, if a GFRD

step is produced, the fraction of fastest particles is compared to the threshold defined

for the minimum significant fraction η. If the fraction of fastest particles happens

to be below the established threshold η, a PTLA step is produced, and the chosen

time step is δt2nd

10
. Instead, in case a PTLA step is produced, the list of particles

is iterated through until the cumulative function Fi is greater than or equal to the

threshold εi, as shown in Algorithm 4. The chosen time step is δt = ω
Ri

.
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Algorithm 6 Pseudocode that shows our implementation of the approximations
laid out in this section.

if
Nf

N
≤ η then

δt← δt2nd

10

do PTLA step ← true
else

do GFRD step ← true
end if
if do PTLA step then

execute PTLA algorithm with chosen ε
end if
if do GFRD step then

execute GFRD algorithm with chosen η
end if

Finally, if a PTLA step has been produced, the interactions are performed using

the space division algorithm explained in the Appendix. In the code, this is cal-

culated by comparing the number of particles np,i in each cell i to the number of

particles allowed by the shared memory np,max, which depends on the hardware.

In case a GFRD step has been produced instead, the Single and Pair problems

are solved in parallel. As described in Section 5.2.3, the two particles in a Pair

problem have a chance to react that is given by 1−S(δt) where S(δt) is the survival

probability and δt is the time step. A uniform random number ξ ∈ (0, 1] is used to

determine whether the particles interact.
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Algorithm 7 Pseudocode that shows the final commands in the execution of PTLA
or GFRD steps, as particles interact with each other.

if do PTLA step then
execute interaction algorithm

end if
if do GFRD step then

if Pair then
generate ξ ∈ (0, 1]
compute S(δt)
if ξ > S(δt) then

execute interaction
else

execute events
end if

else
if Single then

execute events
end if

end if
end if

6.3 Choice of the GFRD time step in the presence

of continuous irradiation: special case of

electron irradiation

6.3.1 Solving the problem with continuous irradiation and the

GFRD method

As mentioned in previous section 5.3, MEGA-OkMC includes the possibility of in-

troducing particles into the sample during the simulation via continuous irradiation.

Clearly, the choice of the time step affects how many particles enter the sample at

each computational step.

Special care has to be taken when continuous irradiation is electronic. Irradi-

ation flux in typical electron irradiation experiments are usually large and in the

range (1018 − 1021)cm−2s−1 [16, 68, 221, 253, 302]. If only one electron on average
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were allowed to impact the sample on average per time step, the latter would be-

come very small. Thus, the total number of computational steps –and, consequently,

the runtime– would become prohibitively large. To avoid this problem, in our al-

gorithm, many electrons are allowed to impact the sample at any given time step.

Therefore, many defects –in general, Frenkel pairs– may be created inside protective

environments at a time step when electron irradiation is enabled.

To check the validity of this choice, we simulated an electron irradiation experi-

ment on Fe. Electron irradiation parameters were chosen equal to the conditions in

the experiment by Arakawa et al. [16]. The energy of impinging electrons was 1 MeV

and the irradiation flux was Φ = 9.2 × 1018 cm−2. We chose an irradiation face of

area A = 1000a0 × 1000a0 which corresponds to A = 8.18 × 10−10 cm2. Material

thickness was chosen equal to the experimental thickness, z = 150 nm ≈ 520a0.

Under these conditions, if only one electron were allowed to strike the sample on

average per time step, the corresponding rate of irradiation would be Rext = Φ ·A =

7.53×109 s−1. Using the energy parameters calculated by Fu et al. [105], this rate is

2.78× 105 times higher than the migration rate of SIAs in Fe at T = 200 K and 388

times higher at T = 300 K. In fact, this rate is comparable to the rate of migration

of prismatic DL 〈111〉 in Fe.

In addition, the cross-section was calculated as σ0 = 1.545 × 10−21 cm2. Since

the atomic density of α-Fe is ρ = 8.46 × 1022 cm−3, the mean number of PKA per

electron is nPKA = ρ ·z ·σ0 = 1.9×10−3. This shows that only 0.19% of the electrons

actually produce damage in the chosen sample.

The necessary calculations to create the protective environments around par-

ticles in the simulation box are performed. These are allowed to grow until two

environments intersect, as explained in the previous chapter. The average times

that particles need to arrive to the edge of their respective domains are then sam-

pled. The time step δtGFRD is thus determined. The following subsection details

this process.

6.3.2 Algorithm in the presence of continuous irradiation

If continuous irradiation is enabled, and a PTLA step is produced, cascades are

introduced into the sample according to a Poisson distribution in the chosen time
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step δt. Should there be any massive particles in the simulation box, then the

interactions between massive particles with each other are performed, followed by

the interactions of massive particles with other particles in their vicinity. Finally,

the neighbour search algorithm from the Appendix is applied to all particles except

the massive ones, and the interactions between them are done.

However, if a GFRD step is produced instead, the solution is more complex. The

cascades are introduced in the sample in time step δt = δtGFRD. Some of the new

particles may appear inside the Single or Pair environments defined before. Here, we

apply our solution shown in subsection 5.2.4. As we have seen, if the fastest particles

move in one dimension, it is sufficient to redefine Singles and Pairs and solve these

in δt, due to the fact that movement in one dimension is recurrent. On the other

hand, if the fastest particles move in three dimensions, the code identifies unsolvable

and solvable cells. Solvable cells are those where all protective environments contain

one or two bodies in the new situation – that is, after the introduction of irradiation

cascades – and unsolvable cells are those that contain at least one protective envi-

ronment with three or more bodies. The protective environments are recalculated,

taking into account the new particles created by irradiation.

Singles and Pairs in solvable cells are solved in parallel with time step δt. In

each unsolvable cell i, Singles and Pairs are solved in sub-time steps δti,jmin until the

time step δt is reached, as described in Algorithm 2 presented in subsection 5.3.2.

At the end of the GFRD step, events other than migrations are executed, such as

dissociations. These steps are summarised in pseudocode in this Algorithm:
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Algorithm 8 Pseudocode showing the execution of events and interactions in
MEGA-OkMC, depending on whether a PTLA or GFRD step was produced.

introduce cascades in δt
if do PTLA step then

execute events
execute interactions

end if
if do GFRD step then

if movement fastest == 1D then
redefine Single, Pair problems
Create Single, Pair domains in 1D

else
if movement fastest == 3D then

Create Single, Pair domains in 3D
end if

end if
execute events other than migrations

end if

The authors wish to emphasise the adaptive nature of our code. As one can see,

the MEGA-OKMC code is able to decide which method to apply (PTLA or GFRD)

in each time step, depending on the physical conditions of the simulation. In the

following chapter, we shall present the experimental validation of MEGA-OkMC.
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Chapter 7

Application of the MEGA-OkMC

code to the simulation of

experiments

Having developed a number of different computational techniques which were pre-

sented throughout this manuscript, in the last part of the present dissertation, we

focused on the simulation of experiments with the MEGA-OkMC code.

In this chapter, the simulation of a resistivity recovery (RR) experiment is pre-

sented in Section 7.1. In Section 7.2.1, a Fe irradiation experiment carried out

by Yao et al. [315] is introduced. This experiment is further described in subsec-

tion 7.2.2. Inputs used in the MEGA-OkMC code are presented in subsection 7.2.3

and simulation results are shown and discussed in subsections 7.2.4 and 7.2.5. Fi-

nally, a summary of benchmark results of MEGA-OKMC and two other OKMC

codes is shown in section 7.3 in the context of the Multiscale Modelling for Fusion

and Fission Materials (M4F) project.

7.1 Simulation of a resistivity recovery experiment

In order to demonstrate the efficiency of our model to simulate the evolution of a

large amount of interacting particles in realistic conditions, we simulated a typi-

cal RR experiment in a Fe sample with realistic dimensions. This type of exper-
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iment is of importance as it allows to investigate the kinetics of defects in met-

als [121, 122, 204, 275, 285]. In a typical RR experiment, the sample is first cooled

down to a very low temperature (4 − 77 K) and is then irradiated with electrons,

such that only Frenkel pairs (SIA-V) are produced. At these temperatures, SIAs

and vacancies are immobile and thus their recombination is inhibited. Temperature

is then increased by δT and kept constant for a fixed amount of time, in general in

the order of a few minutes. Resistivity ρ is measured at the end of the isothermal

annealing and the process is repeated until a preset temperature is reached. Since

resistivity reflects the total number of defects that affect electron diffusion in the

metal, RR experiments are a valuable tool to study the evolution of defects and

the thermally-activated mechanisms they undergo. In practice, a typical RR curve

exhibits several drops, reflecting the activation of recombination processes. Indeed,

as temperature increases, the migration of the different defects gets thermally ac-

tivated, allowing them to diffuse and recombine with defects of the opposite type.

As a result, if the derivative of the total number of defects is plotted with respect

to temperature, a typical RR spectrum exhibits several peaks, also called recovery

stages, corresponding to the different thermally-activated mechanisms [275, 285, 214]

that take place in the sample.

To simulate a typical RR experiment in Fe, we considered the evolution of SIAs

and Vs in pure Fe, assuming that they both migrate and can recombine, as de-

scribed in Section 4.3. The formation of SIA or V clusters or other mechanisms

were neglected here. We emphasise that our goal is not to propose a physically-

based model to explain the different features of the kinetics of defects in Fe but to

show that, taking into account basic mechanisms and Fe parameters, our MEGA-

OkMC code can be used to reproduce typical experiments using realistic simulation

boxes representative of real samples with a large amount of particles and in short

runtimes.

Here we consider a simulation box similar to that of a typical sample thickness

in a RR experiment, with a thickness of about 20 µm (70000a0). For the sake of

simplicity, the effect of electron irradiation, i.e. the formation of Frenkel pairs during

irradiation, was emulated by distributing randomly an equal number of interstitials

and vacancies in the simulation box. In the present case we used 10 million SIAs

and 10 million vacancies. The evolution of the system was then simulated for tem-
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peratures starting from 77 K up to 140 K with increase steps of δT
T

= 0.008, and

an annealing time tend = 300 s at each temperature. Each RR curve simulated here

consists thus of 77 simulations at different temperatures. In a similar fashion to the

test cases shown in chapter 4, the size of the simulation box was changed in x and

y directions in order to vary the initial concentration of particles, as their initial

number (10 million SIAs and 10 million vacancies) was kept constant. Values for

the initial density of Frenkel pairs range from 6.11× 1018 cm−3 to 6.11× 1020 cm−3.

Like in previous cases, time step values were computed with ω = 1. The GPU which

was chosen in this example was a NVIDIA®GeForce®TITAN Black graphics card.

The derivative of the total number of defects as a function of temperature, for

different initial concentrations, is shown in Figure 7.1. Here, two different peaks

(recovery stages) can be observed, depending on the initial concentration. When

the initial concentration is sufficiently high, our model predicts a first peak at about

107 K, which corresponds to the so-called ID stage reported in literature [105, 275]

for Fe. This stage corresponds to the recombination of correlated interstitials and

vacancies, i.e. that are spatially close. When the migration of SIAs is thermally

activated, the probability that they recombine with their vacancy after the first jump

is relatively high, giving rise to a recombination at relatively low temperature. The

temperature at which our model predicts this stage to appear is in perfect agreement

with what is observed experimentally [275] and predicted theoretically [105].

Our model also predicts a second peak at a temperature of about 120−130 K, in

very good agreement to what is reported in the literature [105, 275]. In contrast to

previous stage ID, this stage, commonly denoted stage IE, corresponds to the recom-

bination of uncorrelated SIA-V pairs. It is related to the recombination of intersti-

tials that must perform several jumps before they can find a vacancy and recombine.

As one can see in Figure 7.1, this peak shifts towards higher temperatures as initial

concentration decreases. This is expected and experimentally observed [187] since

for lower particle densities, the mean distance between particles increases and thus,

interstitials need to perform more jumps to find a vacancy to recombine with. As

a result, it becomes more difficult for interstitials to find a vacancy in a limited

amount of time as the initial concentration decreases. Hence, higher temperatures

are necessary for them to perform the required number of jumps before they can

recombine with a vacancy, leading to the shift in temperature of stage IE.
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Figure 7.1: Resistivity recovery spectra in Fe simulated with MEGA-OkMC, corre-
sponding to different initial SIA and V densities.

The runtimes needed to finish the simulations shown in Figure 7.1 are reported

in Table 7.1. In each case the simulation was performed with 10 million SIAs and

10 million vacancies.

Simulation box
Initial density of

Frenkel pairs (cm−3) Runtime (s)
100a0 × 100a0 × 70000a0 6.11× 1020 400.7
100a0 × 200a0 × 70000a0 3.05× 1020 476.6
200a0 × 200a0 × 70000a0 1.53× 1020 631.4
400a0 × 400a0 × 70000a0 3.82× 1019 1270

1000a0 × 1000a0 × 70000a0 6.11× 1018 3481

Table 7.1: Size of simulation box, initial concentration of Frenkel pairs and respective
runtimes corresponding to Figure 7.1.

As one can see, our model, based on the PTLA and implemented on GPGPU,

allows to simulate the evolution of a large number of particles and reproduce a

realistic experiment in very reasonable runtimes. Where an OKMC model based on

the standard BKL algorithm would likely require days of calculations, the PTLA
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algorithm that we developed and implemented using a GPU programming approach

only requires computational times between 6 min and slightly less than 1 h in the

worst case (lowest concentration).

7.2 Simulation of a self-ion irradiation experiment

7.2.1 Motivation to simulate a self-ion irradiation experiment

Understanding the effects of irradiation on steels is an important step in the devel-

opment of novel nuclear materials. In the design of new fusion and Generation IV

fission reactors, steels are the main structural material of choice, as seen in section

1.2.1. In the case of ITER [89, 141] and DEMO [21, 75, 101], the study of steels is

of particular interest to predict embrittlement, hardening and creep in future fusion

reactors [21, 75, 79, 167, 190, 201, 240, 304, 326, 328].

Self-ion irradiation experiments are performed to emulate the effect of neutron

irradiation in materials [129, 222, 315]. The accessibility of ion sources compared

to neutron sources makes self-ion irradiation an attractive alternative to monitor

radiation damage in nuclear materials, as described in Section 1.3. Even though the

fluence in typical ion irradiation experiments is higher than in neutron irradiation

experiments [22, 23, 105, 204, 254], self-ion irradiation avoids the introduction of

foreign ions that may interact with the defects in the sample and distort the results.

Moreover, the investigation of irradiation effects in pure Fe and Fe-5%Cr is a case

study of great interest to the MEGA-OkMC code, as it is possible to efficiently

investigate a number of physical mechanisms and monitor their impact on the evo-

lution of defects, making the study of complex diffusion-reaction systems in realistic

conditions viable.

We shall now describe the Yao et al. experiment that was chosen as a study case

for MEGA-OkMC.

7.2.2 Description of the Yao et al. experiment

The chosen experiment [315] was conducted at the IVEM-Tandem Facility at Ar-

gonne National Laboratory, USA.
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In this experiment [315], thin Fe and Fe-5%Cr foils were irradiated with 100 keV

Fe+ self-ions. The experiment was carried out at room temperature and a constant

flux Φ = 8× 1010cm−2s−1. The areal density of DLs was monitored with respect to

dose, until a final dose of d = 3 × 1014cm−2 in the case of Fe and d = 1014cm−2 in

the case of Fe-5%Cr.

The impurity content of the Fe sample was 0.0013 wt%, which is equivalent to

a density of 2.38 × 1018 cm−3. Eq. 7.1 [304] shows the equation used to convert

impurity content from wt% to cm−3, where ρC represents the density of carbon

impurities, xC the impurity content of the sample in percentage, ρs the number

density of the sample (i.e. 8.46× 1022 cm−3 for α-Fe [304]), and nFe and nC are the

respective atomic weights of Fe and C. It must be noted that there was an erratum

in the original article [315] regarding the impurity content, which was corrected in

a private communication. The Fe-5%Cr sample was reported to possess a higher

purity than the α-Fe sample.

ρC = xC · ρs ·
nFe
nC

(7.1)

7.2.3 Input parameters in MEGA

The evolution of defects in OKMC simulations is a function of the input parameters.

The most important parameters that govern the evolution of defects are:

1. Properties of the simulation box: crystal structure (sc, bcc or fcc), lattice

parameter, box size, Debye frequency, sample orientation and material density.

In the case of simulations with alloys, the solute content is also input as a

property.

2. Radii of the various defects, expressed as either a constant or a function of

defect type and cluster size.

3. Defect mobility: migration energies and dimensionality of motion.

4. Binding energies to defect clusters.

5. Interactions between defects and capture radii of said interactions.
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In this work we focused on studying the mechanisms that may explain the de-

velopment of DLs under self-ion irradiation of Fe and Fe-5%Cr as observed by Yao

et al. using TEM. The 100 keV Fe+ on Fe cascades were simulated with MAR-

LOWE [244, 247], a BCA code.

We took a number of defects that may appear in the sample into consideration.

In addition to single SIAs and vacancies, we considered the clusters that could be

formed by these defects, i.e. In and Vn clusters. When In clusters reach a certain size,

they may transform into prismatic DLs moving in one dimension. As is commonly

accepted in literature [16, 17, 131, 234, 284, 289, 308, 309], here it is assumed that

In clusters in Fe adopt a DL configuration for sizes n ≥ 5.

As far as the interactions between defects are concerned, we introduced intersti-

tial clustering and vacancy clustering, shown in Eq. 7.2 and 7.3 respectively, as well

as recombination between interstitials and vacancies, shown in Eq. 7.4.

In + Im → In+m, n+m < 5 (7.2)

Vacancy clustering:

Vn + Vm → Vn+m (7.3)

Recombination:

In + Vm →


0 (n = m)

In−m (n > m)

Vm−n (n < m)

(7.4)

For our parameterisation of defect properties, we adopted the data provided in

literature and used in the M4F project [176]. The migration (Em) and binding

energies (Eb) of defects were chosen as a compromise between the values provided

by a number of different studies [58, 105, 143, 142, 176, 174, 178, 199, 284]. The

migration energies of single SIAs and vacancies were selected as Em(SIA) = 0.3 eV

and Em(V ) = 0.6 eV respectively.

Binding energies of Vn clusters were computed according to Eq. 7.5, an extrap-

olation [176] of AKMC data provided by Castin et al [64].

Eb (Vn) =
[
1.71− 2.76 ·

(
(n+ 1)0.73 − n0.73

)]
eV (7.5)
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Defect radii were calculated according to the following criteria. For vacancy

clusters, Eq. 7.6 was used, which is the standard formula found in literature [65, 88,

176, 199] used to compute the radius of a spherical defect.

rXn =

(
3a3

0

8π
n

)1/3

(X = V,C) (7.6)

The radius of an interstitial cluster is calculated in this manner as well for single

SIAs and clusters that are smaller than I5, as shown in Eq. 7.7.

rIn =

(
3a3

0

8π
n

)1/3

(n < 5) (7.7)

As in other examples seen in chapters 4-6, each defined interaction between two

defects has a capture radius associated to it, such that the interaction only occurs

if the distance between both defects is less than the capture radius defined for

them. Using data from simulations with SEAKMC code [312, 314], Nakashima et

al. [199] proposed a recombination radius between Frenkel pairs of rFP = 2.26a0. In

the same work, Eq. 7.8 was provided for the capture radius between a SIA and a

vacancy cluster. These are the values that were used in our work.

rc (I1, Vm) =
(
0.86 ·m1/3 + 1.41

)
· a0 (7.8)

As far as clustering between defects of the same type is concerned – i.e. inter-

stitial clustering and vacancy clustering –, we chose the capture radii proposed by

Jansson et al. [142, 143, 176] which take into consideration the geometry of each

defect and the strain field around them. Eq. 7.9 yields the capture radius for inter-

stitial clustering and Eq. 7.10 yields the one for vacancy clustering, where rIj and

rVj (j = n,m) are the geometrical radii of interstitial and vacancy clusters respec-

tively, given by Eq. 7.7 and Eq. 7.6, with bias γ = 1.2 for interstitials and γ = 1 for

vacancies.

rc (In, Im) = 2 · γ · rFP
γ + 1

+ rIn−1 + rIm−1 (7.9)

rc (Vn, Vm) = 2 · rFP
γ + 1

+ rVn−1 + rVm−1 (7.10)
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For In and Vm clusters with n > 1, Eq. 7.11 applies.

rc (In, Vm) = rFP + rIn + rVn (7.11)

For the simulation of FeCr alloys, our model follows a grey alloy approach [73, 74,

142, 143]. This means that the atoms of Cr solute are not represented specifically.

Instead, in a grey alloy, the solute is assumed to be distributed uniformly across the

simulation box. Hence, the effect of solute atoms on defect mobility is represented

as a multiplicative prefactor ν = DFeCr

DFe
on the diffusion coefficient of each defect.

It must be said that this grey alloy model does not allow for the portrayal of pre-

cipitates or distinct phases, since it is assumed that the uniform distribution of the

solute is kept constant throughout the simulation.

In order to establish the prefactor ν needed to compute the diffusivities of SIAs

and In clusters, the data provided by Chiapetto et al. [73] were taken into consider-

ation. We performed a cubic spline interpolation of the available data given for a set

of In clusters in order to calculate migration and binding energy values for the rest

of interstitial clusters. Eq. 7.12 shows the function ν(n) obtained by interpolation.

This function is shown in Fig. 7.2.

ν(n) =



8.3503 · 10−4 · x3−2.5051 · 10−3 · x2−

− 1.9411 · 10−1 · x+ 1.1958
if x ∈ [1, 7]

−5.0793 · 10−4 · x3+2.5697 · 10−2 · x2−

− 3.9152 · 10−1 · x+ 1.6564
if x ∈ (7, 19]

7.4063 · 10−5 · x3−7.4766 · 10−3 · x2+

+ 2.3877 · 10−1 · x− 2.3355
if x ∈ (19, 37]

−1.1300 · 10−5 · x3+1.9988 · 10−3 · x2−

− 1.1182 · 10−1 · x+ 1.9885
if x ∈ (37, 61]

7.6900 · 10−7 · x3−2.0994 · 10−4 · x2+

+ 2.2915 · 10−2 · x− 7.5107 · 10−1
if x ∈ (61, 91]

(7.12)

The formation of interstitial DLs may occur through a number of mechanisms,

which we shall discuss now. DLs can be formed by growth of interstitial clusters or
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Figure 7.2: Function ν(n) shown in Eq. 7.12, obtained by cubic spline interpolation
using the data given by Chiapetto et al. [73]

nucleation at impurities, as mentioned above [14, 16, 23, 71, 131, 142, 143, 176, 180,

217, 253, 277, 280, 284, 313].

DL formation through interstitial clustering:

In + Im → In+m〈111〉, n,m < 5, n+m ≥ 5 (7.13)

DL capture of small interstitial clusters:

In〈111〉+ Im → In+m〈111〉, n ≥ 5,m < 5

In〈100〉+ Im → In+m〈100〉, n ≥ 5,m < 5
(7.14)

Clustering of two DLs:

In〈~b1〉+ Im〈~b2〉 →

In+m〈~b1〉(n ≥ m)

In+m〈~b2〉(n < m)
(7.15)

Capture of DLs by impurities:

In〈111〉+ Ck → In〈111〉Ck (7.16)
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The binding energy of interstitial-type DLs was computed with the parameters

provided by Alexander et al. [7] using ab initio calculations. The respective expres-

sions for the binding energy of In〈111〉 and In〈100〉 (n ≥ 5) are given in Eq. 7.17

and Eq. 7.18.

Ef,〈111〉(n) =
(
1.60485 · ln(n)

√
n+ 5.35226

√
n− 0.147319

)
eV

Eb,〈111〉(n) = Ef,〈111〉(n− 1) + Ef,SIA − Ef,〈111〉(n)
(7.17)

Ef,〈100〉(n) =
(
1.77677 · ln(n)

√
n+ 7.15951

√
n− 5.81801

)
eV

Eb,〈100〉(n) = Ef,〈100〉(n− 1) + Ef,SIA − Ef,〈100〉(n)
(7.18)

When two SIA clusters Im,m < 5 and In, n < 5 interact, the resulting cluster

Im+n,m + n ≥ 5 is a DL which is mobile in one dimension with Burgers vector

〈111〉 [105, 280, 284].

In case an interstitial cluster grows to DL size, namely In with n ≥ 5, the formula

in Eq. 7.19 is applied [142, 143, 176], with lattice parameter a0.

rDL(n) = a0

√
n− 1√
π
√

3
(7.19)

In case two DLs with different Burgers vectors react, the Burgers vector of the

product is equal to the Burgers vector of the largest reactant. In other words, if two

DLs Im with Burgers vector ~b1 and In with Burgers vector ~b2 react, the product is

a DL Im+n with Burgers vector ~b1 if m > n or Burgers vector ~b2 if m < n. In the

particular case when two DLs of similar sizes with Burgers vector 〈111〉 react, the

resulting product may become a DL with Burgers vector 〈100〉 [284]. This requires

both interacting DLs to be of size I15 or larger. This is shown in Eq. 7.20.

In〈111〉+ Im〈111〉 → In+m〈100〉
(
n,m ≥ 15;

|n−m|
n

< 0.1

)
(7.20)

7.2.4 Results and discussion: Fe+ on Fe

We shall now present the simulation results. In order to monitor the concentration

of DLs with respect to the dose, the number of DLs was recorded at different times.
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DLs were expected to be found as In complexes with n ≥ 5, either alone or trapped

by carbon impurities or single vacancies. The smallest DLs which are visible to

TEM are around the sizes I50 to I60 [133], i.e. those with a radius of about 0.8 nm

as calculated with Eq. 7.19.

Case 1

In the first case, we shall consider that the only available mechanism for the for-

mation of DLs is interstitial clustering. In order to help the readers visualize the

physical situation of the particle system, Fig. 7.3 portrays the simulation box in

MEGA-OkMC. Vacancies and their clusters are depicted in red, SIAs and intersti-

tial clusters in white, carbon impurities in blue and vacancy-carbon complexes in

yellow colour.

No DLs appeared in the sample other than a few small I6 and I7 clusters. In fact,

during the course of the simulation, we noticed that once DLs were formed, they

tended to be rapidly absorbed by the surface. All SIA clusters found in the sample

were small and present on a residual level. Fig. 7.6 shows the evolution of SIAs and

SIA clusters in this simulation. As one can see, the population of these defects was

very small throughout the whole simulation – as their density was always lower than

1017 cm−3 – which confirms that the chosen conditions were not conducive to the

formation of observable DLs. Fig. 7.5 displays the size distribution of SIA clusters

for the final dose.

Closer inspection of individual defects shows that the conditions that would allow

for a substantial population of DLs are not met. Fig. 7.7 shows the evolution of small

interstitial clusters in time. As one can see, small interstitial clusters (I2 to I4) tend

to disappear rapidly, i.e. the population of interstitial clusters never reaches a level

which would be conducive to the formation of I5 and visible DLs.

Fig. 7.8 shows the time evolution of small vacancy clusters in Case 1. One may

notice that their density tends to decrease for higher doses, showing that vacancies

gradually coalesce into larger vacancy clusters.

Clearly, this small population of SIA clusters does not correspond to the exper-

imental data, as Yao et al. [315] were able to observe a population of DLs which

grows with irradiation dose. Instead, in our simulation, DLs with Burgers vector
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Figure 7.3: On the left, MEGA-OkMC simulation box at the start of the simulation.
On the right, MEGA-OkMC box after 60000 computational steps. The top plane
of the figure is plane (100). Vacancies and Vn clusters are coloured red, SIAs and In
clusters are coloured green. C impurities and VC complexes are depicted in blue and
yellow colour respectively. OVITO software [273] was used to display the simulation
box in this and all following instances.

Figure 7.4: Simulation box at the end of the Case 1 simulation, i.e. for the final dose
d = 8 × 1014 cm−2, as depicted with OVITO [273]. Most of the particles present
at the end of the simulation are vacancy clusters (red). Interstitial clusters (green)
and carbon impurities (blue) can be found as well.
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Figure 7.5: Histogram showing the size distribution of SIA clusters at the end of
the Case 1 simulation. Only small In clusters were found, since prismatic DL loops
tended to quickly recombine at the surface.
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Figure 7.6: Evolution of SIA clusters in the Case 1 simulation. Under these condi-
tions, SIAs and SIA clusters were only present on a residual level.
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Figure 7.7: Evolution of SIAs and small I2 to I4 clusters in Case 1.
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Figure 7.8: Evolution of vacancies and small V2 to V4 clusters in Case 1.
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〈111〉 leave the sample and do not get trapped or immobilised. Prismatic In〈111〉mi-

grate to the absorbing surfaces where they disappear by recombination, and In〈100〉
are not found at any point of the simulation, indicating that the formation of these

DLs 〈100〉 does not occur. This suggests that a mechanism that temporarily im-

mobilises In〈111〉 DLs is necessary, as interstitial clustering alone may not explain

their presence in the sample as the dose increases. One such mechanism may be the

trapping of DLs by single vacancies, which takes us to case 2.

Case 2

Based on previous theoretical studies and MD calculations [14, 225, 236], single

vacancies have been theorised to act as weak traps for interstitial DLs in bcc metals

under certain conditions for a short time, provided the sizes of these DLs are large

enough. In the case of Fe, this trapping effect has been calculated for I19 and larger

SIA clusters [14, 225, 236].

Eq. 7.21 shows DL immobilisation by a single vacancy:

In〈111〉+ V →

V · In (under right conditions)

In−1〈111〉 (otherwise)
(7.21)

This mechanism was modelled according to the computations described by Refs. [14,

225, 236]. Vacancies are only able to trap DLs if the vacancy is located inside the

cylinder described by the motion of the DL with a radius equal to the DL radius,

otherwise both particles recombine if the distance between them is lower than the

recombination radius between vacancy and DL. This is illustrated in Fig. 7.9. The

DL is depicted in green colour, whereas the vacancy is depicted in red. On the left,

the vacancy is able to trap the DL because of its location inside the cylinder; on

the right, the vacancy is located on the edge of the cylinder, so recombination will

happen.

For our second study case, trapping of DLs by single vacancies was enabled. With

the introduction of this mechanism, our results show no formation of V ·In complexes

at any stage of the simulation. Furthermore, we searched the simulation box for DL

which may have been formed as In clusters, and none were reported. As in Case 1,

all SIA clusters disappeared from the sample quickly. In other words, vacancies were
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Figure 7.9: Sketch of a vacancy-DL interaction. On the left, the vacancy (red) is
located inside the cylinder described by the radius of the DL (green) and its axis of
motion (in the middle), and trapping may occur [14, 225, 236]. On the right, the
vacancy is located on the edge of the cylinder, therefore both defects will recombine.

not able to trap prismatic DLs before these escaped to the surface. The evolution

of SIAs and SIA clusters in this second case is illustrated in Fig. 7.10. Clearly, our

results suggest that the presence of single vacancies does not enhance the nucleation

of DLs. On the contrary, we found that the availability of vacancies hinders the

formation of SIA clusters, due to the fact that single SIAs and small clusters tend

to recombine with them. The necessary conditions shown in literature [14, 225, 236]

proved too restrictive to result in any significant trapping of DLs – namely, the fact

that only vacancies located inside the cylinder described in Fig. 7.9 can act as traps

for DLs. Instead, vacancies are likelier to destroy SIA clusters by recombination

than trap them.

It is of interest to observe the behaviour of vacancy clusters, as we have noticed

that all SIA clusters vanish from the sample rapidly, whereas vacancy clusters re-

main. Fig. 7.12 displays the size distribution of vacancies and vacancy clusters at

two different times, t = 200 s and t = 1300 s, which is the end of the simulation.

Under the present conditions, many vacancy clusters are formed under these condi-

tions which evolve into larger clusters for higher doses, although most of them are

small in size. This is best evidenced by monitoring the time evolution of small Vn

and Vn clusters in Case 2, shown up to size V4 in Fig. 7.13. These vacancy clusters

act as a barrier to SIA cluster formation, and thus to DL formation.

We can safely conclude from this simulation that single vacancies acting as traps

for DLs do not explain the experimental results obtained by Yao et al. [315] such
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Figure 7.10: Evolution of SIAs and SIA clusters in Case 2. All defects of this type
disappeared quickly by recombination at the surface or with vacancies.

Figure 7.11: End state of the simulation box in Case 2, depicted with OVITO [273],
as viewed from the plane (100).
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(b) t = 1300 s

Figure 7.12: Size distribution showing Vn clusters at t = 200 s (left) and t = 1300 s
(right) in Case 2.
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Figure 7.13: Evolution of vacancies and small V2 to V4 clusters in Case 2.

that a different mechanism is needed. This brings us to Case 3.

Case 3

Another mechanism that could explain the experimental observations by Yao et al.

is the interaction of defects with impurities. As mentioned in subsection 7.2.2, the

sample contains an impurity content of 0.0013 wt%. Impurities are known to act as

nucleation points for interstitial and vacancy clusters [14, 142, 143, 176, 253, 277,

280, 284].
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Hence, we considered the following interactions between impurities and SIAs or

vacancies:

Interstitial trapping by impurity:

In + Cm → InCm (7.22)

Vacancy trapping by impurity:

Vn + Cm → VnCm (7.23)

Interstitial clustering at impurities:

In + IkCm → In+kCm (7.24)

Vacancy clustering at impurities:

Vn + VkCm → Vn+kCm (7.25)

The radii of impurity clusters were calculated with Eq. 7.6, which is, as mentioned

above, the formula that is typically used to calculate the radius of a spherical defect.

As far as the capture of DL by impurities is concerned, impurities may contribute

to the trapping of DLs, as shown in literature [14, 16, 23, 71, 131, 142, 143, 176,

180, 217, 253, 277, 280, 284, 313]. This mechanism was studied by Jansson and

Malerba [143] in Fe-C alloys. In their work, the effect of C impurities and VC

complexes on the motion of vacancy and interstitial clusters was simulated with the

introduction of traps. Instead, in the present work, C impurities are introduced

explicitly in the sample, as particles that may interact with defects in their vicinity.

With this method, C atoms are able to migrate and react, resulting in the creation

of Cn clusters, as well as leave the sample by recombination at the surface.

The capture radius between an impurity and an interstitial cluster is given by

Eq. 7.26 which is equal to the radii of both defects plus one nearest-neighbour jump.

This is the standard formula used for impurity trapping in literature [142, 176, 199].

rc(In, Ck) = rIn + rCk
+

√
3

2
a0

rc(Vn, Ck) = rVn + rCk
+

√
3

2
a0

(7.26)
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Using this mechanism, large DLs were found in the simulation box, which in all

cases existed in the form of In − C complexes.

Fig. 7.14 shows the simulation box in MEGA at the end of Case 3.

Figure 7.14: Simulation box at the end of the Case 3 simulation, depicted with
OVITO [273].

Our simulation shows an overestimation of the DLs found experimentally, as

evidenced by the fact that the curves showing In − C complexes for n ≥ 50 and

n ≥ 80 in Fig. 7.15 are clearly above the curve depicting the experimental results.

In fact, vacancies were shown to coalesce into a few vacancy clusters, which may

explain the large number of In−C complexes found, as SIAs and their clusters find

no available vacancy clusters to recombine with. Fig. 7.16 shows the time evolution

of vacancies and vacancy clusters in Case 3.

In fact, this tendency that vacancies have to form larger vacancy clusters was

observed in Cases 1 and 2. However, unlike in those two cases, the presence of carbon

impurities was able to assist the formation of DLs. This effect can be explained by

the fact that small In − C defects are created by trapping of small DLs by carbon

impurities, which are afterwards able to grow into larger In − C clusters. Fig. 7.17

illustrates the time evolution of small I10 −C, I15 −C and I20 −C clusters in Case

3. A small population of In − C clusters forms at low dose which then grows to
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Figure 7.15: MEGA-OkMC results for Case 3, compared to the experimental re-
sults [315]. All DLs were found in the form of In − C complexes.
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Figure 7.16: Evolution of vacancies and vacancy clusters, Case 3. Vacancy clusters
are shown to coalesce into a few large Vn clusters.
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Figure 7.17: Evolution of small In − C clusters in Case 3.

a stable level. Larger clusters are thus able to form as these small In − C defects

trap more DLs. Hence, the result of introducing DL trapping by C impurities is

consistent with established theoretical literature [14, 253, 277, 280], which predicts

that In − C clusters can act as nucleation points for larger clusters.

In the fourth and last case we considered for Fe+ on Fe irradiation, Case 4, we

took both trapping mechanisms into account, namely trapping of DLs by single

vacancies and trapping by impurities.

Case 4

In our final study case for Fe+ on Fe irradiation, all mechanisms present in Cases 2

and 3 were included. In other words, we allowed DLs to be formed by interstitial

clustering, as well as by clustering at carbon impurities and single vacancies.

We noticed a remarkable similarity with the results of Case 3, which we shall

discuss now. As well as in Case 3, DLs were also only found attached to C atoms,

as InC complexes. Fig. 7.18 shows the evolution of said InC complexes in time.

In addition, the evolution of vacancy-type defects, shown in Fig. 7.19, was also

very similar to their behaviour in Case 2.
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Figure 7.18: Evolution of InC complexes in Case 4, n ≥ 50.
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Figure 7.19: Evolution of vacancy-type defects in Case 4.

Our results demonstrate that impurities play a crucial role in the creation of

DLs in Fe. This observation supports the results found in literature [142, 143, 253,

277, 280] describing the role of impurities in DL trapping. On the other hand, the

effect of single vacancies as weak traps does not contribute to the formation of DLs;
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Defect Em [eV] Eb [eV]
Defect

radius [nm]
Dimensionality

of motion
I1 0.30 N/A 0.14 3D
I2 0.40 0.80 0.18 3D
I3 0.40 0.92 0.20 3D
I4 0.40 1.64 0.22 3D

In〈111〉, n ≥ 5 0.10 Eq. 7.17 Eq. 7.19 1D
V1 0.60 N/A 0.14 3D
V2 0.60 0.13 0.18 3D
V3 0.40 0.27 0.20 3D
V4 0.50 0.37 0.22 3D
V5 0.70 0.44 0.24 3D
Vn 1.00 Eq. 7.5 Eq. 7.6 3D
C1 0.86 N/A 0.14 3D

Cn, n ≥ 2 Immobile Stable Eq. 7.6 N/A
InC1, n < 5 Immobile Unstable N/A

InC1, 5 ≤ n ≤ 19 Immobile 0.40 Eq. 7.7 N/A
InC1, 20 ≤ n ≤ 50 Immobile 0.70 Eq. 7.7 N/A
InC1, 51 ≤ n ≤ 90 Immobile 0.80 Eq. 7.7 N/A
InC1, 91 ≤ n ≤ 150 Immobile 0.80 Eq. 7.7 N/A
V · In〈111〉, n ≥ 5 Immobile Ref. [14] Eq. 7.7 N/A
V · In〈100〉, n ≥ 5 Immobile Ref. [14] Eq. 7.7 N/A

Table 7.2: Energies and defect radii of the defects considered in the MEGA-OkMC
simulations of the Yao et al. experiment [315].

rather, the abundance of vacancies acts as an obstacle to interstitial clustering.

Therefore, we may conclude that impurities act as nucleation points for DLs in

self-ion irradiation of pure Fe.

Table 7.2 shows a summary of the energies and defect radii used in our input.

7.2.5 Results and discussion: Fe+ on Fe-5%Cr

As in subsection 7.2.3, we included interstitial clustering, vacancy clustering and

recombination between SIA and vacancy clusters, represented by Eqs. 7.2, 7.3 and

7.4 respectively.

Two cases were contemplated, similar to Cases 1 and 3 in subsection 7.2.4.
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Case 1

As well as in the first case of subsection 7.2.4, impurities were ignored and the only

available method for the production of DLs was interstitial clustering, described by

Eq. 7.13.

We noticed that, as well as in Case 1 of the simulations with α-Fe, SIAs did not

tend to cluster and form DLs. Instead, they recombined quickly with vacancies and

their clusters. Fig. 7.20 depicts the evolution of vacancies and vacancy clusters in

time.
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Figure 7.20: Time evolution of vacancies and their clusters in Case 1.

The time evolution of small interstitial and vacancy clusters may help us under-

stand why DLs were not found at any point of the simulation. These are shown

respectively in Fig. 7.21 and Fig. 7.22 up to I4 and V4. It is easy to notice that

the formation of large interstitial and vacancy clusters is not brought about by the

present conditions, as even the population of I3 and V3 defects is too small. These

small clusters are eventually destroyed by recombination, such that in fact, I4 clus-

ters were not found at any point of the simulation, and V4 clusters were only formed

at the start.

These results we obtained for Case 1 contradict the experimental results and

demonstrate the necessity of a trapping mechanism that allows SIA clusters to stay

in the sample, and thus allows for a population of DLs to be built up over time.
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Since trapping of DLs by impurities could explain the fact that DLs were present in

the simulation box in α-Fe, as shown in the previous section, we chose to introduce

this mechanism in Case 2.
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Figure 7.21: Evolution of SIAs and small interstitial clusters in Case 1.

Case 2

In our second case, impurities were allowed to act as traps for DLs. The purity of

the FeCr sample was described as higher than the Fe sample studied in Section 7.2.1.

To reflect this fact, an impurity content of 0.001% was introduced in the simulation

box, lower than the impurity of the previously studied Fe sample.

In this example, all DLs were found in the form of In−C complexes, as in Cases

3 and 4 of the α-Fe simulations. We depicted the time evolution of DLs which were

visible to TEM – i.e. DLs of size I50 and larger – in Fig. 7.23 and found our results

to be in fair agreement with the experiment.

Indeed, similarly to Case 3 of the α-Fe simulations, the presence of DLs may be

explained by C impurities. As in the previous cases, we decided to monitor several

small In−C clusters – namely, I10, I15, I20 – whose evolution is shown in Fig. 7.24.

Once again, we noticed that the populations of these small clusters build up rapidly
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Figure 7.22: Evolution of single vacancies and small vacancy clusters in Case 1.
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Figure 7.23: Time evolution of DLs in Case 2, size I50 and larger. All DLs were
found in the form of In − C complexes.
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at low dose until they reach a stable level that allows larger DLs to be formed

by trapping. As we have seen, this result is consistent with the known properties

of carbon impurities in steels [14, 73, 86, 142, 277]. We can therefore confidently

conclude that carbon impurities play an important role in DL trapping, both in α-Fe

and Fe-5%Cr.
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Figure 7.24: Time evolution of DLs in Case 2. All DLs were found in the form of
In − C complexes.

7.2.6 Summary

As a final comment on these results, the authors believe that a summary of the

mechanisms taken into account for each of the simulation cases would be helpful to

the reader. In this work, different mechanisms that could lead to the formation of

DLs were taken into consideration, which were grouped into four cases in the case

of α-Fe:

1. As a first approach, we only allowed DLs to be formed by clustering of SIAs

and small SIA clusters, according to Eq. 7.13.

2. In the second case, the effect of vacancies as weak traps for DLs was monitored.

In our simulation, this mechanism was simulated through the implementation
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of V · In complexes with a small binding energy which decreases with n [14].

Hence, the second case includes interstitial clustering and DL trapping by

vacancies as possible mechanisms for DL growth.

3. In the third case, we included the trapping of DLs by carbon impurities, in

addition to interstitial clustering. For this purpose, we added an initial distri-

bution of carbon impurities.

4. In the fourth and final case, both trapping mechanisms, namely carbon impuri-

ties and single vacancies, were considered, in addition to interstitial clustering.

Our purpose was to explore the possibility of a synergy between DL formation

by nucleation at impurities and nucleation at vacancies.

In Fe-5%Cr simulations, two cases were considered:

1. In Case 1, the only mechanism that would potentially lead to the formation

of DLs was clustering of SIAs and small SIA clusters. This is similar to the

conditions present in Case 1 for α-Fe.

2. In Case 2, carbon impurities were also allowed to act as traps. For this purpose,

an initial distribution of carbon impurities was created in the simulation box.

This is similar to the conditions present in Case 3 for α-Fe.

The summary of interactions for α-Fe and Fe-5%Cr are shown in Table 7.3 and

Table 7.4 respectively.

7.3 Benchmarking of MEGA-OKMC with similar

codes

Our work was presented as one of the modelling tools in the M4F project [176], in the

same Work Package as two other OKMC codes, namely MATEO and MMonCa [176,

183]. In order to demonstrate that all three codes are consistent with each other

regarding defect migration, defect interaction and the advancement of time [25, 176],

efforts were made in this Work Package in the form of simple benchmark cases.

Whereas a more comprehensive description of these cases may be found in Ref. [25],
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Case Interactions References

Case 1

Interstitial clustering
In + Im → In+m

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[284]

Case 2

Interstitial clustering
In + Im → In+m

DL capture by C impurities
In + C → In − C

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[142, 143, 176]

[284]

Case 3

Interstitial clustering
In + Im → In+m

DL capture by single vacancies
In + V → V · In

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[14, 225, 236]

[284]

Case 4

Interstitial clustering
In + Im → In+m

DL capture by C impurities
In + C → In − C

DL capture by single vacancies
In + V → V · In

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[142, 143, 176]

[14, 225, 236]

[284]

Table 7.3: Defect reactions considered in each of our inputs for α-Fe.

Case Interactions References

Case 1

Interstitial clustering
In + Im → In+m

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[284]

Case 2

Interstitial clustering
In + Im → In+m

DL capture by single vacancies
In + V → V · In

DL immobilisation
In〈111〉+ Im〈111〉 → In+m〈100〉

[105, 199, 280, 284]

[14, 225, 236]

[284]

Table 7.4: Defect reactions considered in each of our inputs for Fe-5%Cr.

in this section, we shall show a summary of some of these benchmark results. All
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figures shown in this section have been taken from Ref. [25].

To demonstrate that all three codes deliver equivalent results when their input

parameters and simulation conditions are equal, several cases involving the evolution

of DLs in α-Fe were considered. In all cases, the chosen simulation box was a cubic

(1000a0)3 box with periodic boundary conditions in all dimensions. Temperature

was fixed to T = 300 K and the final simulation time was set to t = 1 s. As in

the previous section, two types of DLs were considered, namely mobile 〈111〉 and

immobile 〈100〉 loops. 〈111〉 loops were permitted to move in one dimension along a

direction of the 〈111〉 family. For a DL with n SIA, the migration attempt frequency

was calculated as ν0 = 2.4× 1010n−0.64 s−1 and the DL radius as r = a0

√
n√
2π

. The

capture radius between two DLs of radii r1 and r2 was set to rc = r1 + r2 + 2a0 [25].

Case 1

In the first case, the simulation box was initially filled with a concentration of

1017 cm−3 I50〈111〉 and randomly chosen positions. Each interaction between two

DLs was defined as the formation of an immobile DL 〈100〉 as follows:

In〈111〉+ Im〈111〉 → In+m〈100〉

In〈111〉+ Im〈100〉 → In+m〈100〉
(7.27)

The time evolution of DLs in benchmark case 1 is depicted in Fig. 7.25 [25].

In all three codes, the density of 〈111〉 loops rapidly decreases as 〈100〉 loops are

formed. As expected, the final density of DL 〈100〉 is approximately equal to one

half of the initial density of DL 〈111〉, as two DLs 〈111〉 are needed to produce one

DL 〈100〉. The remaining nonzero density of mobile DLs was shown to be an effect of

the cubic geometry of the simulation box [25]. The fact that the three codes predict

the same evolution of defects was evaluated positively in the M4F project [176].

Case 2

Once again, the initial concentration of mobile DLs in the simulation box was set to

1017 cm−3, but in the second benchmark case, their size was defined as I10, i.e., the

initial population of defects consisted of I10〈111〉 loops. In this case, the interaction
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Figure 7.25: Time evolution of DLs in benchmark case 1 [25].

rules between DLs were inspired by Ref. [284]. Thus, interactions between DLs

of similar size were determined as described in Eq. 7.20, whereas in interactions

between DLs of unequal sizes, the resulting product took the Burgers vector of the

bigger reactant.

The time evolution of DLs in benchmark case 2 is shown on the left in Fig. 7.26 [25].

The results predicted by all codes are very similar, showing that the creation of DLs

〈100〉 only begins circa t = 10−4 s. Final densities of 〈111〉 and 〈100〉 loops are

roughly equal. Balbuena et al. [25] explained this phenomenon by the fact that

the size criterion established for the formation of a DL 〈100〉 in Ref. [284] is not

fulfilled at the very start of the simulation. This was confirmed with a complemen-

tary benchmark case, in which the initial DL population was replaced with I30〈111〉
loops, shown on the right in Fig. 7.26.

Case 3

In the next benchmark case, both types of DLs – namely, mobile and immobile DLs

– were introduced in the local population. The initial density of DLs was set to

1017 cm−3, of which half were I10〈111〉 and half were I20〈100〉. The same interaction

rules were established as in the previous case, i.e., two DLs of similar sizes would

coalesce into a bigger DL following Eq. 7.20 as studied by Terentyev and Mart́ın-
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(a) Initial population of I10〈111〉 loops. (b) Initial population of I30〈111〉 loops.

Figure 7.26: Time evolution of DLs in benchmark case 2 [25].

Figure 7.27: Time evolution of DLs in benchmark case 3 [25].

Bragado [284], and when the sizes of the reactants were not similar, the reaction

product would inherit its Burgers vector from the bigger reactant.

Again, the results produced by all three codes are in agreement, shown in

Fig. 7.27 [25]. Whereas the population of 〈111〉 loops decreases to a residual level,

the density of 〈100〉 loops is approximately constant. Balbuena et al. [25] found that

most 〈111〉 loops are simply absorbed by bigger immobile 〈100〉 loops, as their size

is too small to fit the size requirement established in Ref. [284] for the formation of

a new immobile 〈100〉 loop. A small decrease of DL 〈100〉 density was reported as

a consequence of the absorption of small 〈100〉 loops by large 〈111〉 [25].

In this chapter, we have used MEGA-OKMC as a tool to understand physical
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experiments. The benchmarking of all three codes involved in this Work Package

of the M4F project – MEGA-OKMC, MATEO and MMonCa – was determined

successful [176].

We shall now finish the current dissertation with some conclusions.
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Chapter 8

Summary and conclusions

An OKMC model to study defect evolution in irradiated materials of interest in

nuclear fusion was developed from the ground up, named MEGA-OKMC. Due to

the fact that the OKMC method maps well to a parallel model, a GPGPU paradigm

was considered for the implementation of our work. The programming model used

in our GPGPU implementation was CUDA.

The main problem behind classic OKMC models is their high computational

cost when the number of defects is large. Indeed, due to the fact that the time step

is approximately inversely proportional to this number, many computational steps

are necessary to bring the simulation to a final simulation time, which increases

the necessary runtime. For this reason, most OKMC models are restricted to small

simulation boxes, in the order of a few hundred lattice parameters, which does not

allow for enough statistics when the density of defects is low. In order to create

an efficient GPU-OKMC model that solves this problem, the parallel Tau-leaping

algorithm was developed in this work. In the PTLA, the time step is independent of

the number of defects in the system, and consequently, the number of computational

steps necessary to finish the simulation is smaller –in the order of the number of

defects– than in an equivalent classic OKMC simulation.

To test our model for accuracy and performance, different test cases were consid-

ered. In order to demonstrate that this work is suited for particle systems of realistic

sizes, millions of particles were simulated in realistic simulation boxes, in the order

of typical grain size (20 µm). Our test cases showed excellent agreement with theory
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and equivalent classic OKMC simulations, and the performance of MEGA-OKMC

over the serial OKMC –up to a 375× reduction in runtime– shows that our model

is appropriate and efficient for the simulation of defect evolution in realistic boxes.

For instance, we succeeded to reproduce resistivity recovery simulations in relatively

short runtimes (less than one hour) where serial OKMC would require days of cal-

culations to achieve the same result.

However, it was shown in this work that, under certain conditions, application

of the PTLA is not enough to achieve simulations in a realistic runtime, such that

approximations are necessary. In the case of dilute systems, where particles must

perform many jumps before they can interact with other defects, the OKMC method

becomes inefficient as most of the runtime is invested into the propagation of ran-

dom walkers, the PTLA being no exception. Van Zon, ten Wolde et al. [292, 293]

developed a solution to this problem, namely the GFRD method. In the GFRD

method, the space containing N particles is partitioned into subspaces (protective

domains) that contain one or two particles, and then, these 1-body and 2-body

problems, identified as Singles and Pairs respectively, are solved independently of

each other. This method was implemented in MEGA-OKMC as a complement to

the PTLA, in situations where the density of defects was low. It was proven that

using the GFRD method with a synchronous scheme in MEGA-OKMC, coupled

with a sensible choice of the time step, provided accurate results efficiently.

One aspect that needed to be addressed was the behaviour of the GFRD method

under continuous introduction of particles, which is the case in the simulation of a

material under continuous irradiation. Since it is possible that several protective do-

mains are entered by some of the newly introduced particles, the chance that some

domains contain three or more particles at the end of the time step may not be

ignored. These domains are not solvable analytically, so a new solution is required.

In MEGA-OKMC, we developed a scheme that circumvents this problem. After

creating the protective environments in the simulation box, cascades are introduced

according to the rate of external irradiation, following a Poisson law. New protec-

tive environments are created around the new particles, and the simulation box is

scanned in order to find where the new and old environments intersect. Cells where

an intersection occurs are labelled unsolvable cells whereas all other cells are labelled

solvable cells. First, the solvable cells are evolved with the selected time step. Then,
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the protective environments around particles in unsolvable cells are reconstructed,

such that only 1-body and 2-body problems are defined. These are evolved in sub-

time steps until the originally selected time step has been reached. Our solution

was exemplified with the simulation of an electron irradiation experiment done by

Arakawa et al. [16], and shown to be efficient and precise.

Further approximations were added to MEGA-OKMC. Some situations may

arise in which many calculations are needed, resulting in a long runtime, which

justifies the need for approximations. This is the case, for instance, when a few

particles with very large sums of event rates are present in the system. Then, the

associated time step is very small. If the contribution of these few particles to the

evolution of the system is negligible, the number of computational steps needed to

notice any change of state in the system becomes too large, which is detrimental to

runtime. Hence, we introduced an approximation in which these few particles are not

considered for the calculation of the time step, described in relation to the PTLA

and the GFRD method. This approximation proved to be accurate and helped

finish the simulations, which would have not been possible otherwise, or they would

have required a prohibitive runtime. Specifically, with this approximation we were

able to achieve good speedup factors of 9.2×, while keeping satisfactory precision.

We deduce that this approximation provides an important increase in performance

without a significant decrease in accuracy.

In addition, we noticed that there are limitations to the space division algorithm

used in MEGA-OKMC to calculate interactions between particles and perform the

computations needed for the GFRD method. Indeed, the growth of defect clusters

may result in the appearance of some particles with a large radius, and the need

of larger cells in order to do the desired calculations. As spatial cells may only

contain a certain number of particles due to the upper threshold to the available

shared memory per thread block on the GPU, regions of space with a large density

of particles may translate into a hardware problem. We were able to overcome this

limitation by developing a space division algorithm. Cells assigned to thread blocks

whose shared memory limit is surpassed are subdivided into 8 new cells, giving rise

to a new subdivision level. This operation is applied recursively if needed – up to 7

times in the current MEGA-OKMC version – and each subdivision level is processed

separately.
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The algorithm showing the integration of the PTLA and the GFRD method into

MEGA-OKMC was explained. MEGA-OKMC is able to decide whether the GFRD

method is applicable in any given time step by analysing the state of particles in

the simulation box. Different parameters that influence the decision to produce a

PTLA or GFRD step include the presence of massive particles, the prevalence of

fast particle migration over other events, the mobility of second-fastest particles, the

population of fast particles with respect to other populations, or the existence of

continuous irradiation. The adaptive nature of MEGA-OKMC was demonstrated.

Last, our MEGA-OKMC model was used to study DL evolution in Fe and Fe-

5%Cr. For this purpose, an experiment conducted by Yao et al. [315] in which

an ultra-high purity Fe sample and a Fe-5%Cr sample were irradiated at 300 K

with 150 keV self-ions was chosen. Under these conditions, a number of hypotheses

were tested, and our simulation results show that the formation of DLs may be

explained by trapping by impurities. Since we overestimated the presence of DLs

compared to the experimental TEM observations, we explored several ideas that may

clarify our results. On the one hand, the availability of many vacancies and vacancy

clusters was shown as an obstacle to the formation of DLs. On the other hand, the

artificial reduction of DL mobility resulted in unphysical behaviour. Future work

with MEGA-OKMC may be concerned with the study of the capture radii used

for SIA and vacancy clustering. It must be noted that, due to the efficiency of the

algorithms developed in this work and the implementation using GPU programming,

it was possible to study the evolution of thousands of DLs. This contrasts with

previous studies conducted with sequential OKMCs, where only few DLs can be

tackled due to the small size of the simulation boxes.

In conclusion, we have developed a GPU-OKMC model able to simulate the

evolution of defects in pieces of material with sizes close to those achieved exper-

imentally in realistic runtimes. As a consequence, our model can provide enough

data for statistical treatment of particles that are usually present in low density,

such as DLs, in principle related to the hardening of steels under irradiation. With

this model, experimental time scales can be reached, which would be very difficult

with classic OKMC models as a consequence of the long runtimes required.

MEGA-OKMC has been used and tested as a benchmark in the framework of

the M4F project [176] by comparison with codes MMonCa [183] and MATEO [62],
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and found to be usable and accurate. In addition, MEGA-OKMC has been recently

applied to neutron irradiation, delivering promising results for a future publication.

Future work includes the application of MEGA-OKMC to defects in alloys, such

as FeCr, which are of high interest for structural materials in nuclear fusion [121, 145,

281, 315]. For example, in the case of FeCr, our model needs to take into account

the possible migration energies of SIAs that depend on the local Cr arrangement.

This remains a challenge for our model that shall be investigated in the future.

In addition, long-range effects between particles, such as elasticity, are important

for the evolution of many defects like DLs in the surrounding of dislocation lines [186,

316]. MEGA-OKMC expects to represent materials in the presence of ITER-like

or DEMO-like neutron irradiation environments, where the production of many of

these defects is expected. Hence, our work must take long-range effects into account,

but our work on this matter is only tentative so far. A possibility to account for

long-range effects in an OKMC model is to calculate the field potential created by

each particle in space, and then calculate the potential difference sustained by each

particle when a jump is performed. The effects of elasticity and other field potentials

on defect evolution must be implemented and validated as part of our future work.

Finally, the introduction of one-dimensional defects in this GPU-OKMC model,

such as dislocations, or two-dimensional ones, like grain boundaries, will be a next

step in our modelling in order to simulate the evolution of defects in realistic mate-

rials.
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Appendix A

Appendix

A.1 Inter-particle reaction algorithm

As mentioned in subsection 4.2, the reactions between defects are the driving force

behind many processes in materials physics. One of the most important features

of any OKMC model is the treatment of interactions between particles. Indeed,

in order to investigate diffusion-reaction systems relevant for nuclear fusion like

helium and vacancy clustering in W [32] and the nucleation of point defects in α-

Fe [131, 180, 289], it is necessary to search for inter-particle reactions at every step.

Clearly, a brute force search is inadvisable for the million-particle systems that

this work is expected to represent. Moreover, since local phenomena like particle

interactions are confined to a small region in space, a neighbour search is appropriate.

By dividing space into subspaces and treating these in parallel, the interactions

between particles can be studied without the computational effort that a brute

force search across the whole simulation box would entail.

The inter-particle reaction algorithm chosen in this GPU-OKMC model consists

of two parts, namely the neighbour search algorithm and the function that performs

interactions between particles. These are explained in section A.2 and section A.3

respectively.
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A.2 Neighbour search algorithm

The neighbour search algorithm used for interactions in this code is based on the

space division method described by S. Le Grand in chapter 32 of the book GPU

Gems 3 [126]. However, there are a few differences. For instance, we do not strictly

regard particles as hard spheres, but as point objects surrounded by a sphere whose

radius is related to the capture radius between two objects. In order to clarify this,

a description of the neighbour search algorithm follows.

In order to exploit the power of device parallelism, our intention is to divide

the simulation box into subdomains or cells such that particle interactions may be

performed in each of these cells in parallel. With this in mind, space is divided into

a three-dimensional uniform grid of n cells with the shape of a rectangular prism

whose sides are parallel to the three axes. The cells are characterised by integer

indices i, j and k according to the position of their left, bottom, front vertex in

the X, Y and Z axes respectively. Thus, a particle pα whose position is given by

~xα = (x, y, z) is located in cell α with indices (i, j, k). These indices are easily

computed with Eq. A.1:

i =

⌊
x

dx

⌋
j =

⌊
y

dy

⌋
k =

⌊
z

dz

⌋
(A.1)

Here, dx, dy and dz are the cell dimensions along each axis and the operator

bxc represents the floor function (i.e. rounding down of a real number). The cell α

(i, j, k) is called the home cell of particle pα.

It may be the case that two possibly interacting particles are located close to

each other in space but along a boundary between their home cells, as shown in

Figure A.1. If all cells were processed in parallel –in this figure, cells α and β–

without regard for this situation, the algorithm would be fundamentally flawed.

For this reason, we need to account for phantom cells, a concept which is de-

scribed by S. Le Grand in the cited book [126] and shall be explained next.

First, a spherical environment with radius Rc is drawn around each particle. The

cells that are intersected by this sphere and that are not identical to the home cell

of the particle are labelled phantom cells. Special care is taken if the sphere around

particle pα crosses a periodic boundary, since the cell on the opposite side that would

be equivalent to the intersected cell beyond the boundary has to be counted as a
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Figure A.1: Close particles in two different home cells.

phantom cell of pα. To clarify this, a visual example involving home and phantom

cells is depicted in Figure A.2. The point-like particle pα is located in its home cell

α. A sphere with radius Rc also intersects cell β, which is counted as a phantom cell.

Considering periodic boundary conditions, cell γ is also intersected by the sphere.

For easier visualisation, the simulation box is divided into only 8 cells, although our

model usually creates thousands of cells to take full advantage of GPU parallelism.

The phantom cells are computed with help of the box-sphere collision test algo-

rithm described by Larsson et al. in their 2007 article [160]. For each particle pα

with position ~xα, collision tests are performed between the sphere with centre in ~xα

and radius Rc and all 26 cells surrounding the home cell (i, j, k) of pα, i.e. those cells

with indices (i′, j′, k′) which satisfy Eq. A.2. Interactions in phantom cells as well as

those in home cells must be taken into consideration in order to avoid inaccuracies

in the final result.

(|i− i′| ≤ 1) and (|j − j′| ≤ 1) and (|k − k′| ≤ 1)

and (not [(i = i′) and (j = j′) and (k = k′)])
(A.2)

The question remains of how to determine the size of sphere radius Rc and cell

dimensions (dx, dy, dz) in a sensible manner. The value of Rc must be large enough
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Figure A.2: Home and phantom cells of particle pα. The simulation box borders are
depicted in black.

to ensure that no particle interactions shall be overlooked. In our GPU-OKMC

model, Rc must be at least as large as the largest possible capture radius defined in

the possible reactions that can take place in the system.

Considering this, it is clear that the cell dimensions cannot be arbitrarily small,

since their minimal size depends on Rc. Furthermore, although the interaction

algorithm must take phantom cells into account, as we have shown, this may pose a

problem if done näıvely. Let us, for instance, take a look at the situation depicted

in Figure A.3. Assume that a particle pA, whose home cell is cell α, is located close

to the border between cells α and β, such that cell β is one of its phantom cells. If

particle pB is found in cell α and particle pC is found in cell β, both located within

the capture radii between them and pA, it is certainly possible for pA to perform

an interaction with both pB and pC . Hence, if both cells α and β are processed in

parallel, both interactions take place simultaneously, which is unphysical and may

lead to wrong simulation results.

As a solution to this problem, we need a way to ensure that either the (pA, pB)

interaction or the (pA, pC) one shall be performed. The idea suggested in [126] and

applied to our GPU-OKMC model is to classify all grid cells by a type, such that
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Figure A.3: Particles pA and pB are meant to interact in cell α (green), whereas an
interaction between particles pA and pC is expected to take place in cell β (purple).

no two contiguous cells belong to the same type. Then, cells of the same type are

processed in parallel, and this mechanism is repeated for all defined cell types. In

the case of a three-dimensional grid, it is self-evident that 8 cell types are enough

to fully characterise the cell system. Hence, the cells have to be created in groups

of 8; strictly speaking, the total number of cells that the simulation box is divided

into is a multiple of 8.

Figure A.4 illustrates this point. If all interactions in cells of type i are performed

in parallel, and the particle system is updated before cells j 6= i are processed, no

conflicts arise from contradictions like those described in Figure A.3.

Figure A.4: 3D grid with 8 cell types, numbered 1-8.

At the same time, this means that the separation between cells of the same type
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should be large enough to avoid conflicts in parallel operations. Let pA and pB be

two particles whose home cells, respectively α and α′ 6= α, have the same cell type i.

Let β be a phantom cell of both pA and pB. Then, assume that a third particle pC

is present in cell β, and placed in such a way that its bounding sphere overlaps both

spheres around pA and pB. In other words, when the cells of type i are processed

in parallel, particle pC will be updated simultaneously in cell α and cell α′. This

creates an undesirable race condition and a physically unreliable result.

This issue vanishes trivially if the cell dimensions are at least 4Rc in size. If both

particles pA and pB are separated by a distance greater or equal to 4Rc, the spheres

with radius Rc around them cannot overlap simultaneously with a sphere with the

same radius centred in pC . Both situations are exemplified in Figure A.5. The

top figure shows the contradictory situation where particles pA and pB are within

interacting distance of pC . Since the home cells α and α′ are different but have the

same type, they are processed in parallel, so the state of pC is updated twice. Our

solution is depicted in the bottom figure. pA and pB are separated by a distance of

at least 4Rc, i.e. the lower bound of the dimensions that shape the cell β between

α and α′. By construction, the spheres around pA and pB cannot overlap the sphere

around pC at the same time. Therefore, the lower limit that defines the size of cell

dimensions in each direction is equal to 4Rc.

This construction has got an important consequence. Due to the existence of this

lower bound, two particles may only interact in a cell if it is the home cell for at least

one of them. If two particles appear in the same cell β which is a phantom cell for

both, but neither of them are present in each other’s home cell, it is safe to assume

that they are too far apart to interact. The calculation can thus be neglected, saving

runtime.

A.3 Particle interaction function

In order to perform the interactions, parallel operations are performed across all cells

of the same type. Hence, eight function calls must be made per time step in order

to sweep through the whole simulation box. Consequently, since two contiguous

cells are of different types by construction, the operations performed in one cell are

ensured to disturb no processes taking place in neighbouring cells.
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Figure A.5: Top: Contradictory situation that leads to the double update of particle
pC . Bottom: Our solution.

At any time step in the simulation, it may happen that several particle pairs in

the same cell are in the right conditions to interact. Thus, a criterion is necessary

to establish what pair to choose to interact. At this point, several criteria can be

considered. On the one hand, it would seem logical and intuitive to discriminate in

favour of the closest pair in the cell, i.e. to choose the pair with the shortest distance

between both particles; however, from the physical point of view, there is no evidence

that reactions actually take place in this way. In fact, this criterion fails to consider

other factors such as the energy landscape, i.e. the shape of the interaction potential

between the particles involved. On the other hand, the algorithm could simply

choose one of the pairs randomly or according to a non-physical, arbitrary criterion:

for example, choosing the first pair that appears on the list. This somehow takes

into account the stochasticity of reactions and the fact that the energy landscape

between particles cannot be known a priori. The fact that the inter-particle reaction

function operates in parallel for cells of the same type, which is a completely arbitrary

construction, contributes to this randomness, since there is no guarantee that pairs

processed in cells of type α are closer than those processed in cells of type β 6= α.

In this work, we present a combination of both criteria. Particles present in a cell
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are iterated through in order to check for possible interactions with other particles

in the same cell. When the aforementioned occurrence presents itself, the closest

neighbour of the chosen particle takes precedence over all others.

The following algorithm describes our particle interaction function:

1. One of the particles in the cell is chosen. The particle must satisfy all of the

following conditions:

� The particle must have moved in this time step. In other words, it must

have migrated, been dissociated from a cluster or been introduced in a

cascade.

� The present cell must be the home cell of this particle.

� The particle must not be flagged as having already interacted in this time

step (see step 5).

Otherwise, the particle is discarded.

2. The distances between the particles in the cell and the chosen particle are

computed in parallel and stored. Reactions across periodic boundaries are

also taken into consideration.

3. A parallel reduction takes place in order to find the closest neighbour of the

chosen particle, determined by the minimum of the distances computed in

step 2.

4. The function checks if an interaction is possible between the chosen particle

and its closest neighbour. For this to occur, an interaction between both

particles must have been defined in the input, and the distance between them

must be smaller than the capture radius defined for them.

5. If there is an interaction taking place between the chosen particle and its

neighbour, said interaction is performed. Both particles are then flagged as

having interacted in this time step to avoid confusion.

6. If no interaction took place however, the particle’s closest neighbour is ignored

and steps 2 to 5 are repeated with the remaining neighbours.
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7. For all particles in this cell, steps 1 to 6 are repeated.

Summing up, the inter-particle reaction algorithm used in our GPU-OKMC

model has got the following form:

1. Choose the appropriate cell dimensions (dx, dy, dz) automatically, such that

the simulation box can be divided into groups of 8 cells. The sides of grid cells

must be at least as large as 4Rc.

2. Identify the home and phantom cells of each particle.

3. Call the particle interaction function to process all cells of type α in parallel.

4. Repeat step 3 for all seven remaining cell types.
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