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Abstract

This Ph.D. Thesis studies some data processing methodologies in the area of
e-Health for categorizing therapeutic responses in patients with migraine. In
a real e-Health scenario, this work focuses on the prediction of the response
to the treatment of migraine through the use of retrospective medical records
collected from Hospital Clínico Universitario in Valladolid and Hospital Uni-
versitario de La Princesa, in Madrid.

The goal of this research work is to pose and answer the following ques-
tions: is it possible to predict the response to every stage of the BoNT-
A treatment for migraine? Does a pre-treatment prediction model for the
BoNT-A treatment in migraine exist? How do these models respond under
missing values? Is it possible to reveal those medical factors that make it
possible a high response to the BoNT-A treatment? Are the medical factors
used to predict the response of the treatment coherent with the knowledge
of medical experts? To answer these questions, this work has explored and
implemented different approaches for the training of the predictive models.

Three predictive approaches have been proposed, which are: panoramic,
feedback and hierarchy prediction models. In addition, a data transformation
is proposed for finding a better representation of the numeric labels while
achieving high prediction accuracies without adding more columns to the
dataset. Furthermore, in order to bridge the gap between the biomedical
community and the data mining community, a consensus model technique
has been proposed for unveiling relevant attributes from prediction models.

A significant improvement in accuracy due to the use of SAR encoding
has been achieved, from close to 68% (baseline) to 75% with panoramic pre-
diction, and up to around 88% when using feedback prediction. Furthermore
, predictability of panoramic and feedback prediction models are improved
when applying a hierarchy of models, obtaining accuracies close to 85% and
94% respectively. Regarding the runtime, the obtained results with the use
of MOEAs show that training times are decreased from 8 to less than 2 hours
when using 8 threads. In addition, this Ph.D. Thesis has made possible the
extraction of relevant attributes that allow to know in advance the response
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to the treatment. These are: “evolution of migraine time”, “unilateral pain”,
“abuse of analgesics”, “days of headache” and the “retroocular component”.
All these attributes have been consistent with the expert knowledge of doc-
tors.



Resumen

La presente tesis doctoral estudia algunas metodologías de procesamiento
de datos en el área de e-Health para clasificar las respuestas terapéuticas
en pacientes con migraña. En un escenario real de e-Health, este trabajo se
centra en la predicción de la respuesta al tratamiento de la migraña mediante
el uso de registros médicos retrospectivos recopilados del Hospital Clínico
Universitario en Valladolid y del Hospital Universitario de La Princesa, en
Madrid.

El objetivo de este trabajo de investigación es plantear y responder las
siguientes preguntas: ¿es posible predecir la respuesta a cada etapa del
tratamiento para la migraña con BoNT-A? ¿existe un modelo predictivo para
el tratamiento con BoNT-A en la migraña? ¿cómo responden estos modelos
bajo registros incompletos? ¿es posible conocer aquellos factores médicos que
hacen posible una alta respuesta al tratamiento con BoNT-A? ¿Los factores
médicos utilizados para predecir la respuesta del tratamiento son coherentes
con el conocimiento de los expertos médicos? Para responder a estas pre-
guntas, este trabajo ha explorado e implementado diferentes enfoques para
el entrenamiento de los modelos predictivos.

Se han propuesto tres enfoques predictivos, que son: modelos panorámi-
cos, de retroalimentación y jerarquía de modelos. Además, se ha propuesto
una transformación de datos para encontrar la mejor representación de las
etiquetas numéricas mientras se alcanza una alta precisión de predicción sin
agregar más columnas al conjunto de datos. Adicionalmente, para estable-
cer nexos entre la comunidad biomédica y la comunidad de la minería de
datos, se ha propuesto una técnica de consenso de modelos con la finalidad
de extraer atributos relevantes de los modelos de predicción.

Se ha logrado una mejora significativa en la precisión debido al uso de
la codificación SAR, desde cerca del 68% (baseline) al 75% con la predic-
ción panorámica, y hasta alrededor del 88% cuando se usa la predicción
por retroalimentación. Además, la precisión de los modelos de predicción
panorámica y de retroalimentación se mejora al aplicar una jerarquía de
modelos, obteniendo precisiones cercanas al 85% y 94% respectivamente.
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xviii Resumen

Con respecto al tiempo de ejecución, los resultados obtenidos con el uso de
MOEA muestran que los tiempos de entrenamiento se reducen de 8 a menos
de 2 horas cuando se usan 8 hilos. Además, esta tesis doctoral ha hecho
posible la extracción de atributos relevantes que permiten conocer de an-
temano la respuesta al tratamiento. Estos son: “evolución del tiempo de
migraña”, “dolor unilateral”, “abuso de analgésicos”, “días de dolor de cabeza”
y el “componente retroocular”. Todos estos atributos han sido coherentes con
el conocimiento experto de los médicos.
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Introduction

Learning is not the product of teaching.
Learning is the product of the activity of

learners.

John Holt
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2 Chapter 1. Introduction

1.1 The migraine disease

The present research work focuses on the prediction of the treatment response
to migraine by the use of medical records. Therefore, it is convenient to
explain and motivate the study of the disease given its economic and social
implications in the contemporary world.

Migraine is a common neurological disorder characterized by recurrent
headaches. Migraine attacks usually last for 4-72 h and involve moderate or
severe intensity headaches, which typically are worsened by routine physical
activity, are of a pulsating nature, and are associated with nausea, vomit-
ing, photophobia or phonophobia (IHS, 2013). In clinical terms, migraine
can be classified into two types according to the frequency of pain: episodic
migraine (less frequent headaches) and chronic migraine. Chronic migraine
is defined as a headache occurring on 15 or more days per month for more
than 3 months, and which has the attributes of a migraine headache on at
least 8 days per month (IHS, 2013). The transformation of episodic migraine
into chronic migraine occurs over months or years and involves atypical pain
modulation and central sensitization triggered by repetitive inputs from sen-
sitized peripheral sensory neurons (Diener et al., 2012).

Globally, approximately 10% of the population experiences chronic mi-
graine (Natoli et al., 2010; Stovner et al., 2018). In fact, Stovner et al. (2018)
have mentioned that around three billion people suffer migraine and tension
type-headache together. Furthermore, their work manifest that the migraine
prevalence in Europe is close to 15%. Moreover, they have mentioned that its
derivative headache is the third most prevalent disorder (after dental caries
and latent tuberculosis infection). Their work present a geographic distribu-
tion of the prevalence of headache and it is presented in Figure 1.1.

1.1.1 Socioeconomic cost

According to Linde et al. (2012), the economic consequences of the migraine
represent e1,222 per patient per year in Europe. It implies almost e125,000
millions in this continent.

In addition to the increased use of analgesic medication, visits to doctors,
and visits to the emergency services, chronic migraine has a high socioe-
conomic cost, with higher direct and indirect costs. In fact, some of the
direct costs are due to absences at work or a low performance carrying out
a job. Furthermore, chronic migraine sufferers are more prone to anxiety,
depression, other chronic diseases (CDs) like respiratory, heart or circula-
tory diseases and more chronic pain, all of this associated with significant



1.1. The migraine disease 3

Figure 1.1: Age-standardised prevalence of tension-type headache per 100000
population by location for both sexes. Image taken from Stovner et al. (2018).

personal, societal, and economic burdens (Buse et al., 2010; Adams et al.,
2015). In fact, in a survey conducted by the Eli Lilly and Company on 1,018
US adults1 concludes that several people diagnosed with migraine usually
suffer headache episodies for about half a month. They also point out that
people who do not suffer from migraine, often underestimate the pain and
average duration of migraine. On the other hand, migraine often adds stress
and it can affect the relationship with their family and loved ones. Addition-
ally, the professional potential of the person diagnosed with the disease may
be affected. The conclusions of such survey are presented in Figure 1.2.

1.1.2 Assessment of migraine severity

In order to estimate the goodness of the treatment, it is necessary to define a
metric, aka severity index, that indicates how efficient the treatment session
has been. For this purpose, there is an abundant medical literature regard-
ing various chronic diseases where different severity indexes are presented.
However, each index is usually specific to any disease or symptom(s). For
example, in the case of Parkinson Disease (PD), the HY scale (Hoehn et al.,

1Survey Reveals Many People with Migraine Live with Pain Nearly
Half of Every Month https://www.multivu.com/players/English/
8259051-lilly-migraine-impact-report/ (accessed June 2019)

https://www.multivu.com/players/English/8259051-lilly-migraine-impact-report/
https://www.multivu.com/players/English/8259051-lilly-migraine-impact-report/
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THE PHYSICAL, SOCIAL 
AND ECONOMIC EFFECTS 
OF MIGRAINE 

Source: Lilly-sponsored, quantitative opinion survey with 518 
people diagnosed with migraine by a healthcare provider,  200 
people who know someone with migraine and 300 community 
members who do not know someone with migraine. Conducted 
by Nielsen on behalf of Eli Lilly and Company in May 2017.
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Figure 1.2: The physical, social and economic effects of migraine. Image
taken from https://www.multivu.com/ (accessed June 2019).

1998) is a classical instrument used to categorize patients according to PD
stages. Other metric is the CISI-PD (Martínez-Martín et al., 2006), which
extends the evaluated motor symptoms criteria to more complex aspects like
the patients’ cognitive state.

In the migraine scenario, the severity is typically evaluated through the
HIT6 value (Yang et al., 2011), the intensity, the duration, the frequency of
attacks (Gasbarrini et al., 1998), number of headache days (Schoenen et al.,
1998), the Global Assessment of Migraine Severity (GAMS) (Sajobi et al.,
2019; Dowson, 2001), the migraine severity scale (MIGSEV) (El Hasnaoui
et al., 2003) or the Migraine Disability Scale (MIDAS) (Thompson et al.,
2002). For measuring the associate depression due migraine, doctors use the
9-item Patient Health Questionnaire (PHQ-9) (Arroll et al., 2010) and the
14-item Hospital Anxiety and Depression Scale (HADS) (Sajobi et al., 2019;
Zigmond & Snaith, 1983). Table 1.1 presents a more detailed information
about these indexes.

Hence, the severity index is something inherent to the CD under consid-
eration, but also depends on the number of medical records containing the
index. For example, a dataset of 100 migraine patients can be considered. In
it, the value of HIT6 may have been collected for only 10 patients, while 95
of them have values related to the “number days with headache” before and

https://www.multivu.com/
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after every stage of the treatment. In this example, the use of HIT6 would be
ruled out given its absence in most dataset records. A better decision would
be to use the “number days with headache” to measure the improvement to
migraine for this specific dataset.

Table 1.1: Medical indexes used for measuring the severity level of migraine.

Severity index Short description Publication
HADS A 14-item screening tool for depres-

sion and anxiety developed for use
in populations with medical condi-
tions.

Zigmond &
Snaith (1983)

Intensity, du-
ration and
frequency of
attacks

Indexes chosen based on available
medical data

Gasbarrini et al.
(1998)

Number of
headache days

Index chosen based on available
medical data

Schoenen et al.
(1998)

PHQ-9 A 9-item questionnaire for screening,
diagnosing, monitoring, and measur-
ing the severity of depression.

Kroenke et al.
(2001)

MIGSEV Test for assessing the migraine at-
tack at the level of an individual pa-
tient.

El Hasnaoui et
al. (2003)

MIDAS A high test-retest reliability in per-
sons with migraine and correlates to
clinical judgment regarding the need
for medical care.

Thompson et al.
(2002)

HIT6 A 6-item survey for discriminating
headache impact across episodic and
chronic migraine.

Yang et al.
(2011)

GAMS Test developed to assess patients’
perception of their disease severity.

Sajobi et al.
(2019)

1.1.3 The OnabotulinumtoxinA treatment

The pharmacological treatment of chronic migraine is based on two pillars:
abortive treatment of acute migraine attacks (that are taken only in the acute
pain phase) and preventive therapy. The latter is used to diminish the sever-
ity, frequency or duration of attacks. Preventive therapy includes additional
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benefits such as reduction of disability and enhancement of response to acute
treatments (Lipton & Silberstein, 1994). It may also result in a reduction in
health care costs (Silberstein et al., 2003).

Many classes of medication are used for migraine prevention: antiepileptic
drugs, antidepressants, betablockers, calcium channel antagonists, serotonin
antagonists, and botulinum neurotoxins, among others. In the case of chronic
migraine, although all preventive treatments for migraine may be useful,
only topiramate (a type of antiepileptic) and OnabotulinumtoxinA (BoNT-
A) (Frampton, 2012) have solid proven evidence for their use according to
various works and clinical trials (Diener et al., 2007; Silberstein et al., 2007;
Aurora et al., 2010, 2011; Diener et al., 2010; Dodick et al., 2010).

BoNT-A has been an extended use treatment for chronic migraine since its
approval in 2010 by the Food and Drug Administration in the United States
(FDA), having also shown a more sustained effect and better tolerability than
topiramate in the few comparative studies performed (Mathew & Jaffri, 2009;
Cady et al., 2011). BoNT-A can be injected under the skin (subcutaneous)
or inside the muscles (intramuscular) in accordance with the so-called The
Phase III REsearch Evaluating Migraine Prophylaxis Therapy (PREEMPT)
paradigm. This injection method consists of using both fixed and follow-the-
pain sites, with additional specific follow-the-pain sites considered depending
on individual symptoms. Follow-the-pain refers to administering the rest of
the medication in areas where patients particularly have pain. This procedure
should be carried out in repeated patterns after several months.

Following the results of the initial clinical trials and subsequent pub-
lished studies in real-life settings (Lipton et al., 2011; Oterino et al., 2011;
Sandrini et al., 2011; Cernuda-Morollón et al., 2015), nowadays it is known
that 70-80% of patients with chronic migraine show an improvement with
this treatment (improvement defined as a reduction in migraine attack fre-
quency or days with attacks by at least 50% within 3 months, leading to a
significantly improved quality of life in patients). Moreover, there is evidence
that patients with chronic migraine who do not show the desired treatment
response after the first cycle of BoNT-A treatment may indeed experience
clinical improvement after one or two additional treatment cycles (Silberstein
et al., 2015). In the work presented by Lovati & Giani (2017) the importance
of predicting whether BoNT-A treatment will be effective in a patient is
pointed. Knowing the phenotype-response relationship may help in the de-
velopment of new treatments for the 20-30% of patients that do not respond
to the treatment. Besides the cost, it would avoid the patients suffering the
pain associated with the treatment.

Several studies have looked at the clinical attributes of patients with
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migraine which may be associated with a favorable response to BoNT-A
treatment, although conclusive results are not yet available for use in clinical
practice. In fact, the exact analgesic mechanism of action of BoNT-A is only
partially known. The main hypothesis is that the toxin exerts its antinocicep-
tive action inhibiting peripheral sensitization. BoNT-A lowers neuropeptide
and neurotransmitter release from peripheral sensory neurons, thereby indi-
rectly reducing central sensitization, the hallmark of chronic migraine (Aoki,
2005; Barbanti et al., 2015).

One of the most debated aspects in recent years has been the possible
relationship between the clinical phenotype of migraine attacks and the re-
sponse to BoNT-A. In this sense, the following possible predictors of a good
response have been proposed in literature: allodynia (painful hypersensitiv-
ity to superficial stimuli) (Mathew et al., 2008b), the unilateral character
of a migraine (Lainez et al., 2006; Mathew et al., 2008b), associated mi-
graine aura (visual, language, motor or sensory alterations occurring prior to
pain) (Grogan et al., 2013), or the build-up time to maximum pain (shorter
time, better response to BoNT-A) (Schulman et al., 2008). Pain direction-
ality also seems to be a possible clinical predictor. This attribute refers to
whether the headache feels like it is exploding, imploding or ocular. The term
exploding refers to when the discomfort is felt pushing from the inside out.
Patients suffering from imploding or ocular pain tend to be relieved with
the BoNT-A treatment than those with the exploding (Jakubowski et al.,
2006). Pagola et al. (2014) studied a number of possible clinical predictive
attributes in parallel, including unilateral location of headache, pericranial
muscular tension, directionality of pain, duration of migraine history and
medication overuse, comparing responders to BoNT-A treatment with non-
responders, but no significant differences emerged. Other works suggest that
the pharmacological response to BoNT-A might be better when the migraine
headache is “trigeminal” in pain location and corresponds to reflex trigeminal-
autonomic activation (Barbanti et al., 2015; Barbanti & Egeo, 2015). As a
consequence, BoNT-A action may be more effective in migraineurs who over-
activate peripheral trigeminal endings during the attack, and such patients
may be identified by means of easily obtainable patient-reported clinical find-
ings, such as pain location or direction (unilateral, implosive-retroocular), the
presence of cranial autonomic symptoms (allodynia) and cortical spreading
depression signs (aura) (Barbanti et al., 2015). Other data such as the re-
sponse to anesthetic block of the greater occipital nerve (GON) or its local
painful pressure (positive palpation) might suggest the same. Many authors
believe that a therapy which blocks peripheral transmission of pain signals
from extracranial areas prior to central sensitization will successfully disrupt
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migraine headache propagation (Dodick et al., 2005; Olesen et al., 2009; Gro-
gan et al., 2013). All in all, the reasons of a positive/negative response to
BoNT-A treatment is not clearly understood yet.

1.2 Data mining

With the purpose of understanding the mechanisms that determine the ef-
fectiveness of medical treatments, doctors are considering different big data
techniques (Kang, 2018). For this reason, the issue of data mining is ad-
dressed in this chapter.

The modern world is immersed in the era of data explosion (Kersting
& Meyer, 2018). For every second, petabytes of data are generated (Fox,
2018). The omnipresent personal computers make it very easy to store things
that we would have destroyed before (Chakrabarti et al., 2008). With the
rapid growth of promising applications such as social networks, web, mobile
services and other applications in various fields, an unprecedented generation
of contents is observed and for which there is no end in sight (Idrees et al.,
2018).

The field of medicine is not exempt from this phenomenon. Centers
such as the European Institute of Bioinformatics, one of the world’s largest
biology-data repositories, are currently storing large amounts of petabyte
of data and backup copies of genes, proteins and small molecules (Marx,
2013). Electronic medical records (EMRs) are also responsible for generat-
ing petabytes of data every second (Deshpande et al., 2018).

The problem lies not in the collection of information but in the interpre-
tation that we give from those data collected, which means that quantity is
as important as quality (Eisenstein, 2015). In fact, by increasing the data
size the computational burden of this analysis increases (Tashkandi et al.,
2018).

Data mining focuses on filling the growing gap between the generation
of data and our understanding of it through finding patterns in data. That
process can be carried out automatically. However, the most usual is to do
it semiautomatically. The discovered patterns must be significant and must
carry some advantage that usually is usually an economic advantage (Lev-
enthal, 2018). The set of patterns obtained become part of the prediction
model.

In the medical field, predictive models are tools, useful for helping decision-
making by doctors, which, through the combination of two or more medical
characteristics, allow to obtain the clinical outcomes (Wyatt, 1995). There
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are two ways of representing the prediction models in data mining. One is
called the black box model because we cannot get a direct or explicit inter-
pretation of the predictive model and the other is called a white box model
because we can access and visualize the structure of the patterns (decision
structure) in an explicit way (Witten et al., 2016).

In the case of medical records, predictive models will be useful when they
can be translated into knowledge (explanatory capability) and that knowl-
edge will be useful if it can be used to improve the health of individual
patients (Sacristán & Dilla, 2015). Black and white prediction models can
achieve good predictions, but in the medical field it will be more useful to
obtain predictive models that are represented in terms of a structure that
is examined, reasoned and used to inform future decisions. Moreover, the
capability of using the previous medical knowledge (background) in the data
analysis process is well appreciated (Bellazzi & Zupan, 2008). That back-
ground knowledge must be understood as the essential medical information
to comprehend a situation or a problem (Miller, 1998). This information
does not need to be rediscovered from the data because it can be obtained
from medical experts or medical literature (Bellazzi & Zupan, 2008).

1.2.1 Medical data

Predictive models of response to any CD treatment can leverage the use of
digitally stored data, also called electronic medical records (EMRs). They are
also called electronic health records (EHR). The rapid growth of the EMRs
requires a combination between the traditional analysis of data manually
collected by medical experts and the computational methods. It needs to
be carried out in order to help in the decision making process of a specific
treatment (Stone & Bornhorst, 2012). EMRs allow doctors the storage, re-
trieval and modification of medical records through the use of digital media
instead of paper-based records systems, which often led to a loss of time and
organizational problems (Kasthurirathne et al., 2015).

In this sense, the use of data mining techniques has allowed to approach
the analysis of medical data and the construction of prediction models (Bel-
lazzi & Zupan, 2008). Furthermore, some machine learning techniques have
proved to be better suited for the analysis of medical databases because of
the derivation of symbolic rules, the use of background knowledge, pattern-
recognition and interpretation of time-ordered data (Lavrač, 1999). Hence,
it is vitally important to explore, adapt and make use of those techniques, so
that we can select the most appropriate ones. That is, those techniques that
allow us to provide an accurate prediction and that the medical factors used
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in their generated models are in accordance with the knowledge of medical
experts.

Despite the great advantages offered by the use of information technolo-
gies for the collection of medical information in patients, dealing with the
collected medical data is not an easy task at all. This is because some prob-
lems such as the heterogeneity of the data (Huddar et al., 2016) or directly
the lack of values, typically happen in the EMRs (Lin & Haug, 2008).

1.2.2 Mining

In data mining, mining refers to the exploration of data with the purpose of
finding repetitive patterns or rules that explain the behavior of the data in
a given context. In this thesis, the medical context is addressed through the
use of EMRs related to the treatment of migraine. There are different data
mining methodologies that consider EMRs for the prediction of the therapeu-
tic response on some CD treatments or responses to continuous treatments
such as the case of oncological therapies. These methodologies predict the
therapeutic response after several stages of the treatment but they do not
consider the prediction of responses to several stages altogether. One exam-
ple is the work presented by Kurosaki et al. (2011), who exposes the use of
decision trees to model the prediction of the final outcome of the treatment
of chronic hepatitis C after 48 weeks of PEG-IFN/RBV therapy treatment.
Another methodology is presented by Lambin et al. (2013). Their work con-
siders the prediction of the prognosis and the response to an oncological
treatment based on radiation through the use of multifactorial decision sup-
port systems. Both methodologies discretize and normalize the data to avoid
sensitivity to different orders of data scales. They also deal with the missing
values, replacing them with calculated estimates.

In addition, there are some methodologies designed to reveal medical
factors that influence the effectiveness of treatment. For example, Armañan-
zas et al. (2013) use the Feature Subset Selection (FSS) technique to re-
veal the most important attributes to predict the severity of a patient with
Parkinson’s disease (Parrales Bravo et al., 2017) using non-motor symptoms.
In Armañanzas et al. (2012), authors propose to extract the most important
attributes for a continuous CD treatment using a consensus model. Hence,
based on the aforementioned works, it is desirable to incorporate the features
of all these techniques into this thesis to be able to predict the response to
several treatment stages as well as revealing the reasons that make them
effective.
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1.2.3 Life cycle of a medical data mining project

Figure 1.3 presents an adaptation of the CRISP-DM methodology (Wirth
& Hipp, 2000), a life cycle of a data mining project, to the medical context
defined according to techniques presented by Lan et al. (2018).

Clinical 
data 

Understanding 
medical 

requirements 

Data 
understanding 

Data 
preprocessing 

Modeling 

Evaluation 

Clinical 
data Clinical 

data 
Deployment 

Figure 1.3: Life cycle of a data mining project, adapted for a medical context
from Wirth & Hipp (2000).

Before applying the techniques offered by the field of data mining, we
must understand what we are being asked to implement. Therefore, the first
phase of the cycle consists of “Understanding medical requirements”. In this
stage, the objectives and requirements of the doctors and the feasibility of
being solved by data mining techniques must be clarified. In addition, the
available data should be reviewed and those that are possible to be collected.

“Data understanding” is the second stage and it begins with the review
of the available data and determines if these are suitable to be processed
by data mining. It will be necessary to collect more data based on more
stringent criteria for the case when the data quality is poor. At this stage,
we can also reconsider the benefit and need to carry out the application of
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data mining to achieve the desired objective. The first and second stages
are connected since the formulation of the medical project is based on the
available data and the data collection is based on the stated objective of the
medical project.

The “data preprocessing” stage takes care of preparing the data so that
later it can be useful in the production of predictive models (next stage)
by the data mining algorithms. The results obtained during the “modeling”
stage may yield new knowledge. Thus, it may be necessary to return to this
stage several times as new results can affect the selection of preprocessing
techniques. According to Lan et al. (2018), the tasks of data cleaning, data
integration, data transformation and data reduction should be considered in
this stage.

In the “modeling” stage is where the predictive models are obtained with
the use of the different data mining algorithms. To carry it out, it is necessary
to specify the respective parameters and even some techniques may require
specific data formats. In this stage, data problems can arise when modeling
or we can figure out ideas to build new data, making it necessary to return to
the previous “preprocessing” stage. According to Lan et al. (2018), available
algorithms that allow us to get white box prediction models are the decision
trees, rules, bayesian classifiers and logistic regression. Other techniques
like k-nearest neighbor, support vector machine (SVM), neural networks and
ensemble classifiers are more difficult to interpret.

The stage of “evaluation” of predictive models must be considered before
deploying them in the medical context. For this, the steps executed for the
construction of the model must be reviewed. It should be checked if we
are having overfitted prediction models. The evaluation must be carried out
first of all on the training dataset. There are techniques like k-fold cross
validation that help us avoid overly optimistic results of the classification
algorithms due to overfitting. Another validation method to work in the
case of small datasets is an exhaustive cross-validation method called Leave-
One-Out Cross-Validation (LOOCV) (McCarthy, 1976). After obtaining a
desired precision of the model, it must be evaluated in the validation dataset
in order to corroborate the obtained accuracy. Additionally, in the medical
context, it must be validated if the predictive models have clinical factors
that are or are not according to the medical literature. In the case that
they are not, their relevance and causes must be studied with the purpose of
unveiling new medical findings.

There is nothing worse to think that the project ends when obtaining the
prediction model (s). While it is true that this is a good step forward, the
knowledge acquired must be organized and presented in a useful way for the
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medical environment. This will depend to a large extent on how demanding
the medical requirements are. As mentioned by Lan et al. (2018), in most
cases it is the user who carries out the implementation steps. In this sense,
the guidelines to use to the obtained prediction models must be defined.

Each of the stages of the CRISP-DM methodology involves the develop-
ment of several tasks. In the article where the methodology (Wirth & Hipp,
2000) is presented, a scheme with the tasks linked to each stage is added.
Figure 1.4 presents a diagram with some changes made to the one presented
by Wirth. This is done with the purpose of adapting it to the medical en-
vironment. In the following lines, an outline is presented with those stages
and tasks that have been contemplated in the present research work, adding
the section number in which the task is addressed.

• Understanding medical requirements

– Determine the medical objectives:

∗ Background: Continuous treatment prediction methodologies
(Section 1.1.3), review of migraine severity indexes (Section 1.1.2).
∗ Objectives and criteria of medical success: predictive models

must be according to medical literature (Section 1.3).

– Assess situation:

∗ Inventory of Resources: EMRs (Section 1.2.1), data mining
(Section 1.2) and other computational techniques described
throughout the Chapter 2.
∗ Costs and benefits: socio-economic cost (Section 1.1.1), ad-

vantage of predicting treatment responses (Section 1.3).

– Determine data mining goals:

∗ Data mining goals: Section 1.3 and 3.1.
∗ Criteria for success in data mining: Accuracy, sensitivity and

specificity (Section 2.3.1).

• Data understanding

– Collect initial data: Section 3.2.1.

– Describe data: Section 3.2.1.

– Explore data: Sections 3.2.1 and 3.2.2.

• Data preprocessing

– Dataset description: Section 3.2.1
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– Select data: all dataset (Section 3.2.1) but dealing with missing
values (Section 3.4).

– Construct data: class attribute based on effects of reduction and
adverse effects (Section 3.2.3).

• Modeling

– Select modeling technique: Section 3.3, Section 4.2 and Section 4.3.

– Build model:

∗ Parameter settings models: Section 4.1 and more specifically
in Section 4.2.
∗ Model description: Section 4.4.

– Assess model: accuracy values of the k-fold cross validation, sen-
sitivity and specificity (Section 4.1), results (Section 4.2 and Sec-
tion 4.3).

1.3 Purpose of this thesis

The present research work focuses on the prediction of the response to the
treatment of migraine through the use of medical records in a real e-Health
scenario. In this sense, retrospective medical data from Hospital Clínico
Universitario in Valladolid and Hospital Universitario de La Princesa, in
Madrid have been collected. Clinical data are used to develop predictive
models to help doctors make better informed decisions about whether to
administer treatment or not. More specifically, this thesis will focus on data
derivated from the use of BoNT-A for diminishing the symptoms associated
with migraine. As has been mentioned by Lovati & Giani (2017), it is very
important to predict if the BoNT-A treatment will be effective in a patient.
Knowing the phenotype-response relationship may help in the development
of new treatments for the 20-30% of patients that do not respond to the
treatment (Section 1.1.3).

Due to the importance of knowing in advance the therapeutic response to
BoNT-A and avoiding unnecessary costs, the following questions are posed
and answered within this thesis:

• Is it possible to predict the response to every stage of the BoNT-A
treatment for migraine?

• Does a pre-treatment prediction model for the BoNT-A treatment in
migraine exist?
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• How do these models respond under missing values?

• Is it possible to reveal those medical factors that make possible a high
response to the BoNT-A treatment?

• Are the medical factors used to predict the response of the treatment
coherent with the knowledge of medical experts?

In order to answer these questions, we present throughout the thesis a
methodology that considers:

• The preprocessing of the data, given that the situation that is most
often found within the medical environment is the existence of miss-
ing values. Many attributes or medical factors and a low number of
registers are also found very commonly in clinical datasets (Cabitza et
al., 2019). Therefore, this thesis considers dealing with missing values
when building predictive models for all stages of the BoNT-A treat-
ment. In this sense, some data mining techniques such as imputation
of data and feature subset selection (FSS) will be taken into account.

• Thus, a coarse-grained solution is considered when no session has been
made yet. This approach is called the panoramic prediction and it will
allow doctors to decide if the administration of the treatment will be
beneficial without involving unnecessary treatments.

• Once the treatment has begun and the results of some stages are known,
feedback prediction is proposed. It allows a more accurate prediction
when considering the results of previous stages of the treatment.

• Finally, this thesis reviews some techniques in order to extract relevant
medical attributes from the obtained predictive models. After that,
those attributes are contrasted with expert medical knowledge. In this
way, this research bridges the gap between biomedical community and
data mining community thanks to the extraction of medical factors
that make the treatment effective or not.

The objectives of the present manuscript are depicted in the Figure 1.5.
In this figure, a framework to generate knowledge from real medical data is
shown. This framework allows to improve the prediction accuracy through
the “numeric label encoding” with two methods: SAR encoding (Section 3.2.5.1)
and AMOR encoding (Section 3.2.5.2) for one-target and multi-target pre-
diction models, respectively. They are an interesting contribution because
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they allow to improve the representation of medical data that have been pre-
viously labeled by doctors. Moreover, this framework considers hierarchical
models for dealing with missing values.

All the points presented in the scheme of Figure 1.5 will be presented
throughout this PhD Thesis.

Dealing with the data 

Data 
categorization 

Severity index 
selection 

Numeric label 
encoding 

Prediction approaches 

Panoramic 
prediction 

Feedback 
prediction 

Unveiling relevant 
factors 

Consensus 
models 

Application to real medical data 

Hierarchical 
models 

Figure 1.5: Research objectives. This scheme summarizes the different issues
surrounding the research objectives.

1.4 Publications

The results of this thesis have lead to research publications in international
conferences and journals. In the following lines these publications are shown
with the detailed rankings of each one.

1.4.1 Journal papers

This thesis has generated the following articles in international journals:

1. Parrales, F., Del Barrio García, A., Gallego, M., Gago,
A. V., Ruiz, M., Guerrero, A. P., Ayala, J. et al. Prediction
of patient’s response to OnabotulinumtoxinA treatment for migraine.
Heliyon, vol. 5(2), pages e01043–e01043, 2019d
[CiteScore 2018=1.66]
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2. Parrales, F., Del Barrio, A. A., Gago, A. B., Gallego, M. M.,
Ruiz, M., Peral, A. G., Dzeroski, S. & Ayala, J. L. SMURF:
Systematic Methodology for Unveiling Relevant Factors in retrospec-
tive data on chronic disease treatments. IEEE Access , pages 1–1, 2019c.
ISSN 2169-3536
[JCR 2018=Q1, IF=4.098]

1.4.2 Conference papers

This thesis has generated the following articles in national and international
conferences:

1. Parrales, F., Del Barrio, A. A. & Ayala, J. L. A study on
the parallelization of moeas to predict the patient’s response to the on-
abotulinumtoxina treatment. In Proceedings of the Summer Simulation
Multi-Conference, page 12. Society for Computer Simulation Interna-
tional, 2019b
[CORE: B]

2. Parrales, F., Del Barrio, A. A. & Ayala, J. L. Estudio sobre la
paralelización de modelos MOEAs de predicción terapéutica con tox-
ina botulínica tipo A en migraña. In Actas de las Jornadas SARTECO
2019 , pages 96–101. Universidad de Extremadura, Servicio de Publi-
caciones, 2019a

1.5 Thesis structure

The rest of the thesis is organized as follows: Chapter 2 reviews the funda-
mental concepts related to the preprocessing, supervised classification and
optimization metaheuristics. Chapter 3 presents the methodology proposed
for processing the data related to the BoNT-A treatment. Chapter 4 de-
scribes the experiments carried out on the medical dataset for predicting
treatment responses and extracting medical knowledge from data. The con-
cluding remarks will be given in Chapter 5, as well as the future lines of
work.

Finally, the Appendix A presents a copy of the ethical consent taken in
this reseach study.
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Preliminaries

Success is neither magical nor
mysterious. Success is the natural

consequence of consistently applying the
basic fundamentals.

Jim Rohn
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2.1 Introduction

One of the biggest problems faced by CDs is their continuous treatment
to mitigate or eliminate their symptoms. This must be considered when
deciding if a continuous treatment can be beneficial to a specific patient. For
example, patients suffering from Parkinson’s disease usually discontinue the
treatment due to its ineffectiveness when mitigating the pain (Beiske et al.,
2009), which then involves wasting money. In order to avoid this, cost-benefit
analyses have been applied, like those for patients with chronic kidney disease
or hepatitis C (Klarman & Rosenthal, 1968; Leidner et al., 2015; Rein et al.,
2015). The conclusions drawn after these studies are diverse. For some cases,
doctors conclude that it is better to employ the treatment in short periods
than in early phases of the CD (Rein et al., 2015). But, on the other hand, an
earlier treatment has also been associated with a faster recovery (Wilkinson
et al., 2004). Therefore, it is important to establish a prediction model of
response to customize the treatment for each patient.

As briefly discussed in the literature reviewed in the previous chapter,
the data mining techniques can be useful to reveal underlying patterns in
the space of chemical and pharmacological attributes. These patterns can be
decisive for the advancement of personalized medicine and more specifically,
for the improvement of treatments in patients with migraine (Yosipof et al.,
2018; Denny et al., 2018).

From the use of statistics and data mining, useful conclusions can be gen-
erated from data (Breiman et al., 2001). As expressed by the work of Lar-
rañaga et al. (2018), these conclusions can be expressed in three different
ways as those presented in Figure 2.1. These are: (1) Clustering, which aims
to find groups of similar records; (2) Supervised classification, whose purpose
is to forecast the response or output for future records; and (3) Discovery of
associations, which means looking for (probabilistic) relationships between
the input and output variables.

This thesis will focus on supervised classification techniques. In fact, this
work will review the techniques that allow an easy medical interpretation.

Throughout this chapter, a brief collection of basic concepts around the
data mining field will be presented in order to facilitate the understanding
of subsequent chapters.

This chapter presents an overview about data mining fundamentals. None-
theless, the examples and additional explanations are contributions of the
author of this dissertation.
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Figure 2.1: Three examples of tasks solved by statistics and machine learning
methods. (1) Clustering. (2) Supervised classification. (3) Discovery of
associations. Figure taken from Larrañaga et al. (2018).

2.2 Preprocessing

According to Yoo et al. (2012), the field of medicine differs considerably from
other fields. The first difference is that the quality of the data within the
biomedical and health fields is lower than that found in other fields due to
many reasons. These are:

• Missing values are very commonly found in clinical records (Lin &
Haug, 2008; Peterkova et al., 2018). This situation can even occur
with patients of the same disease since they are not always subjected
to identical laboratory tests (due to different ages, symptoms, family
history and/or risk of complications).

• Obtaining high quality clinical data for data mining can be a somewhat
difficult operation (Jollis et al., 1993; Dans, 1993). This situation is a
consequence of the fact that the hospital information systems or their
databases are designed mainly for financial or billing purposes and not
for medical or clinical purposes.

• Some hospital centers still do not make full use of EMRs (Section 1.2.1).
This situation is very common because part of the medical data (espe-
cially the results of laboratory tests) are not digitalized yet, which leads
to obtain medical data that are often incomplete in terms of electronic
or digital availability of the same (Prather et al., 1997). In addition,
much of the patient’s historical data is based on paper or scanned digital
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format, so they cannot be used for data extraction without meaningful
data preparation.

Therefore, it is important to study some data preprocessing methods in
order to improve the quality of collected clinical data and the performance
of classifications algorithms when applied to them to predict the responses
to the BoNT-A treatment in all stages.

2.2.1 Dataset

To understand the preprocessing techniques that will be addressed through-
out this section, it is necessary to begin by defining the key terms used in
the data mining literature. The first point to mention is that the different
techniques that allow to predict or classify results (medical labels in our case)
work on a dataset . This is defined as a collection of records . A record rep-
resents an entity or concept. For the case of a medical database, the records
can be patients. For the case of a database of a hospital, records can refer
to rooms, departments, doctors, patients, treatments, among others. Every
record is described by some attributes , also called features, variables, fea-
tures or columns. These records can be called samples, examples, instances
or data objects. They are also called tuples when these records are stored
within a database. In other words, the rows of a database correspond to the
records and the columns correspond to the attributes of any dataset. Fig-
ure 2.2 shows each of the parts of which the dataset is composed and that
will be described in detail below.

Id Age Relatives with cancer Stage Treatment 

1 child yes I X 

2 young no II Y 

3 adult yes III Z 
4 young yes II Y 

5 adult no IV Z 
… … … … … 

D
at

as
et

 Record 

Attribute 

Class 
attribute 

Label 

Figure 2.2: The different elements of a dataset.

An attribute is a data field, which represents a characteristic of a record.
It is also commonly referred to as the dimension, feature, characteristic or
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variable. The term dimension is commonly used in data storage. In the area
of statistics, the term variable is commonly used. Attribute is the term
that will be prefered to use in the present research work because it is usually
employed in the areas of data mining and machine learning.

According to Han et al. (2011), observations are defined as the observed
values for a given attribute. Attribute vector (or feature vector) refers to a
set of attributes that are used to describe a given object. In addition, the
distribution of data that involve only one attribute (or variable) is called
univariate. A distribution that implies two attributes is called bivariate, and
so on.

Within the different attributes in a dataset, the class attribute is/are
the selected attribute(s) that indicate the response(s) of every record of the
dataset.

2.2.1.1 HIT6

A key point to mention is how to measure the impact that headaches have
on daily life of migraine patients. In this sense, one of the metrics mostly
used as severity index for migraine according to the medical literature is the
“Headache Impact Test” (HIT6) factor (Mathew & Jaffri, 2009; Silberstein
et al., 2015; Grazzi & Usai, 2015).

The HIT6 (Kosinski et al., 2003) scale is a perceptional survey that is
filled out by patients in order to measure their level of pain related with the
migraine. In regular clinical practice, the BoNT-A response is considered
successful by doctors if it reduces migraine attack frequency or days with
attacks by at least 50% within 3 months. Response attributes such as the
HIT6 score are reflected less consistently. Thus, in this thesis, where data
were obtained retrospectively through the review of clinical histories, only
a small set of patients have their HIT6 score. As a consequence, for the
vast majority of cases an alternative way of determining the efficiency of
treatment based on BoNT-A should be defined.

This value is obtained after patients fill out a standardized survey (Kosin-
ski et al., 2003) consisting of six questions that capture the impact of headaches
as well as their treatment. An example is shown in Table 2.1. These questions
are:

1) When do you have headaches, how often is the pain severe?

2) How often do headaches limit your ability to perform usual daily ac-
tivities including housework, your job, homework, or social activities?

3) When you have a headache, how often do you wish you could lie down?
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4) In the past 4 weeks, how often have you felt too tired to do work or
daily activities because of your headaches?

5) In the past 4 weeks, how often have you felt fed up or irritated because
of your headaches?

6) In the past 4 weeks, how often did headaches limit your ability to
concentrate on work or daily activities?

The values allowed for the answers are: never, rarely, sometimes, very
often, and always. These values are graded with 6, 8, 10, 11 and 13 points,
respectively. The HIT6 value is computed as the sum of all the individual
scores. If the HIT6 value is 50 or higher, doctors interpret that the level of
pain is enough to affect quality of life.

Table 2.1: HIT6 headache impact test example

never rarely sometimes very often always
Question 1 X
Question 2 X
Question 3 X
Question 4 X
Question 5 X
Question 6 X
Points added 6+6=12 8 10 11 13

2.2.2 Categorizing data

Data mining algorithms face some difficulties while evaluating heterogeneous
data because they cannot infer a good model for predicting the outcome
of the treatment (Tang et al., 2018). Medical data can come from images
(X-rays, magnetic resonance, etc), interviews with the patients, laboratory
data as well as the doctor’s observations and interpretations (Cios & Moore,
2002). The homogeneity of the information can be achieved by simplifying
and categorizing the data. For instance, this can be carried out through the
transformation of heterogeneous clinical data to labels (Cimino et al., 1996;
Huddar et al., 2016). Categorizing data is one of the techniques to explore
in this work with the purpose of improving the prediction accuracy of the
BoNT-A treatment responses. Due the heterogeneous clinical data provided
by doctors from the two hospitals considered, it is necessary to categorize
the data. For this purpose, the labels are previously defined and agreed by
the experts in the disease to be analyzed in order to achieve an adequate
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representation of the medical information (Cimino et al., 1996). However,
the heterogeneity of data may still persist in medical factors previously cat-
egorized by doctors. Hence, as pointed by the aforementioned works, it is
desirable that this PhD Thesis deals with heterogeneous data, leveraging the
labelling provided by medical experts.

2.2.2.1 Equal-width-interval discretization

One type of data categorization is the one based on maximum and minimum
values and intervals linearly defined between these bounds. This technique is
also called equal-width-interval discretization (Liao & Lee, 2002). A uniform
interval range width U can be defined when following the Equation 2.1, where
I is the number of intervals to be obtained:

U =
Vmax − Vmin

I
. (2.1)

It should be noted that Vmin and Vmax are the minimum and maximum
values of the data, respectively, for a variable V .

For example, if it is necessary to obtain three intervals to refer to value 1,
value 2 and value 3, respectively, the U value will take the value of Vmax−Vmin

3

and the intervals will be defined as presented in Figure 2.3.

[Vmin, Vmin+ U] (Vmin+U,Vmin+ 2U] (Vmin+ 2U,Vmax] 

1 2 3 

Figure 2.3: Defined intervals based on a uniform U for three categories.

The main problem of this approach is that many data could be concen-
trated in one of the categories (Muhlenbach & Rakotomalala, 2005), nega-
tively affecting the training process of prediction models. In Figure 2.3, the
black dots represent the various values of a continuous variable. Based on
the linear categorization it can be observed how several points have been
represented in the second category in contrast to the first and the third.

2.2.2.2 Categorization based on mean and standard deviation

Due to the aforementioned inconvenient, the method selected for the cat-
egorization of our medical data will be based on the mean and standard
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deviation. Applying this method makes it possible to work with more ho-
mogeneous values. The mean and standard deviation categorization type
centers the intervals around the mean (µ), and defines subsequent intervals
by adding or subtracting the standard deviation (σ). For instance, if two
categories are defined for a certain clinical attribute, the intervals to refer to
value 1 and value 2, respectively will be as presented in Figure 2.4.

[Vmin, µ] (µ,Vmax] 

1 2 

Figure 2.4: Defined intervals for two categories based on µ and σ.

If it is necessary to consider three categories, the intervals [Vmin, µ− σ],
(µ − σ,µ + σ] and (µ + σ, Vmax] will be defined to refer to value 1, value 2
and value 3, respectively as shown in Figure 2.5.

[Vmin, µ-σ] (µ-σ, µ+σ] (µ+σ,Vmax] 

1 2 3 

Figure 2.5: Intervals for three categories based on µ and σ.

By following a similar strategy it is possible to define multiple inter-
vals (Parrales et al., 2019d). The pseudocode of the intervals generation for
an attribute categorization is presented in Algorithm 1.

In this thesis, the categorization based on mean and standard deviation
will be used given its better distribution of elements in each of its ranges
than that performed by the equal-width-interval discretization.

2.2.3 Missing values

As mentioned in Section 2.2, the existence of missing values (NA) is very
common within the medical environment. According to Barnard & Meng
(1999), the treatment of missing data must be addressed, since otherwise
they bring at least three main difficulties, which are:

1. Loss of information and efficiency.

2. Complication in the handling, calculation and analysis of data due
to irregularities in data patterns and the non-application of standard
software.
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Algorithm 1: Intervals for categorizing attributes

Require: Number of intervals N , mean µ and standard deviation σ. An
empty list of intervals I = ∅.

1: if N = 1 then
2: I = {(Vmin, Vmax)}
3: end if
4: if N = 2 then
5: I = {(Vmin, µ), (µ, Vmax)}
6: end if
7: if N ≥ 3 then
8: if isOdd(N) then
9: I = {(µ− σ, µ+ σ)}

10: λ = N−1
2

11: else
12: I = {(µ− σ, µ), (µ, µ+ σ)}
13: λ = N−2

2

14: end if
15: I− = {(Vmin, µ− λσ)}
16: I+ = {(µ+ λσ, Vmax)}
17: for j = λ− 1 downto 1 do
18: I− = I− ∪ {(µ− (j + 1)σ, µ− jσ)}
19: I+ = I+ ∪ {(µ+ jσ, µ+ (j + 1)σ)}
20: end for
21: I = I ∪ I− ∪ I+
22: sort(I)
23: end if
24: return I
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3. Potentially very serious statistical bias due to the systematic differences
between observed and unobserved data.

For example, consider the case of obtaining the mean of five values 1, 2,
7, 8 and 1 which is equal to 3.8. The problem begins when a missing value
(NA) is found in the list, that is: 1, 2, 7, NA and 1. In this way, an undefined
mean is obtained due to the unavailable data. The first solution to consider
would be to eliminate all those records that take NA as values in any of their
columns. This method of addressing missing values is called listwise deletion
or complete-case analysis (Van Buuren, 2018). In this case, with the values
1, 2, 7, 1 an average of 2.75 is achieved, different from the obtained value
of 3.8 with the complete data. Additionally, with this perspective, a large
part of the available records would be eliminated, especially in the medical
environment. As a consequence, other methods that consider how to replace
missing values or how to work with them by grouping records according to
the number of NAs should be studied.

2.2.3.1 Data imputation

One of the existing techniques in data mining to address the problem of
missing data is the imputation of the data. It is responsible for completing the
missing data with some plausible values. This has been a popular method for
handling incomplete data problems (Barnard &Meng, 1999). This popularity
is due in large part to the fact that once the missing values are completed,
the standard data mining methods that operate on complete data sets can be
easily applied to obtain predictive models, and thus avoiding the complication
in the handling, calculation and data analysis due to irregularities in data
patterns. However, to have an analysis based on datasets that are partially
imputed, two requirements must be met. First, the imputation method or
model must reasonably capture the real distributive relationships between the
unobserved and the observed. Second, the analysis must take into account
the uncertainty in the imputed values, because no matter how much effort
one makes, the imputed values simply are not the actual observations.

According to Larrañaga et al. (2018) and Van Buuren (2018), there are
different imputation approaches in the literature. These are:

• Single imputation (Allan & Wishart, 1930): refers to the imputation
of a value for each missing data.

• Unconditional mean (or median) imputation (imputation based on the
mean): replaces each missing value with the mean (or median) of the
observed values of that variable (Yates, 1933).
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• Regression imputation (Santos, 1981): in this case, the missing values
for each variable are replaced with the predicted values from a regres-
sion of a variable.

• Imputation based on the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977): it is a model-based imputation approach. It
groups records and estimates the missing values of a record based on
its most similar records.

• Stochastic regression imputation (Schieber, 1978; Kalton & Kasprzyk,
1982): it is an extension of the imputation by regression. It tries to
address the correlation bias by adding noise to the predictions.

• Multiple imputation (Rubin, 2004, 1996): It focuses on not creating a
single dataset, but multiple datasets of imputed data in which different
imputations. Each of the completed datasets are analyzed and the
results are combined (for example, calculating their arithmetic mean)
to produce the final imputed value.

According to Van Buuren (2018), the unconditional mean imputation is a
quick and simple way to complete the missing data. However, the variance is
usually underestimated, in addition to altering the relationships between the
variables and biasing almost any estimate other than the mean. Additionally,
it will skew the estimate of the mean when the missing data is not completely
random. Van Buuren (2018) recommends applying this technique only as a
quick way to impute some missing values. However, its use should be avoided
in general.

Regarding regression imputation, it is necessary to emphasize that it in-
corporates the knowledge of other variables with the idea of producing more
intelligent imputations. Nevertheless, Van Buuren (2018) warns that this ap-
proach is probably the most dangerous of all the methods described here be-
cause the relationships between the variables are not being preserved. In fact,
the regression imputation artificially strengthens the relationships within the
data. As a consequence, the correlations are biased, the variability is under-
estimated and the imputations are too good to become true. In summary, the
use of regression imputation can become a recipe for obtaining false positives
and spurious relationships.

The stochastic regression imputation represents an important conceptual
advance. According to Van Buuren (2018), one may think that the data
imputation is ruined by adding some random noise, but this is precisely
what makes it suitable for this task. A well-executed stochastic regression
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imputation preserves not only the regression weights, but also the correla-
tion between variables. This technique estimates the intersection, slope and
residual variance in the linear model. Afterwards, it calculates the missing
value and adds a random value to it from the residual. Precisely, the idea of
extracting a random value from the residuals is very powerful and forms the
basis of more advanced imputation techniques.

Since imputing only one value (single imputation) for the missing value
may not be correct in general, Rubin (Rubin, 1976) proposed the creation of
multiple imputations that reflect the uncertainty of the missing data. More-
over, Rubin considers that a low number of imputations (five, for example)
would be enough.

In this thesis, the multiple imputation method will be selected, since it
is now accepted as the best general method to deal with incomplete data
in many fields (Van Buuren, 2018). In this sense, several imputations will
be made using the method of stochastic regression, since it preserves the
correlation between variables.

2.2.4 Feature Subset Selection

The datasets for the analysis may contain hundreds of attributes, a situation
that often occurs within the medical environment. The data mining task of
Feature Subset Selection (FSS) (Lewis, 1962) is responsible for identifying
and eliminating those attributes (features) that are considered irrelevant or
redundant with the purpose of reducing the dimensionality of the dataset
(n). The goal of applying this technique to the dataset is to improve the
performance of the different classification algorithms in terms of time and
accuracy. Additionally, it has the advantage of producing a more compact
representation of the prediction model, helping to improve the patterns un-
derstanding by medical experts. However, such simplification is obtained in
exchange for increasing the complexity of the modeling task due to the FSS
process, especially if n is large.

This approach has certain advantages, such as offering a better under-
standing of the prediction model or a better generalization by reducing over-
fitting. This problem happens when a prediction model is very closely ad-
justed to the training data, so it does not perform well when predicting
new observations (Molina et al., 2002). These methods have been applied
to different neurological anomalies, for example: an attribute extraction and
selection from EEG signals in combination with a sleep stages classifier (Şen
et al., 2014), an automatic seizure detection system for newborns (Aarabi et
al., 2006), or to assess the feasibility of employing accelerometers to charac-
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terize the postural behavior of early Parkinson’s disease subjects (Palmerini
et al., 2011).

The FSS process can be highly expensive (Han et al., 2011). In fact, for a
dataset with n attributes, 2n possible subset combinations can be obtained.
Therefore, it is necessary to make use of the heuristic search methods in or-
der to explore promising regions of the search space. These methods usually
apply a greedy approach. That is, while looking in the space of attributes,
it always select what seems to be the best option at that time. Its strategy
is to make an optimal choice locally with the hope that this will lead to an
optimal global solution. Such greedy methods are effective in practice and
can come close to estimating an optimal solution. The attributes are catego-
rized as better and worse, typically based on tests of statistical significance.
Many other attribute evaluation measures are also commonly used, such as
the measure of gain ratio (Larrañaga et al., 2018). This metric is in turn
based on the metric of mutual information, which is based on the entropy of
Shannon (Shannon, 1948) that quantifies the uncertainty of the distribution
of values in a random variable. For a discrete variable with l possible values,
x1, . . . , xl, its entropy is defined as:

H(X) = -
l∑

i=1

p(X = xi)log2 p(X = xi). (2.2)

The mutual information I(X,C) between any dataset attribute X and
the class attribute C with m possible values is defined as:

I(X,C) = H(C)−H(C|X) =
l∑

i=1

m∑

j=1

p(xi, cj) log2
p(xi, cj)

p(xi)p(cj)
. (2.3)

Thus, mutual information is interpreted as the reduction in uncertainty
about C after observing X. According to Larrañaga et al. (2018), this metric
has the disadvantage of preferring attributes with many different values to
attributes with few different values. A fairer option is to use the information
gain ratio defined as:

gain ratio =
I(Xj, C)

H(Xj)
. (2.4)

Some FSS methods apply different types of filters, either univariate or
multivariate. The univariate filtering evaluates each attribute with any at-
tribute’s relevance metric (for example, gain ratio), eliminating those that
obtain low score. The selected attributes are used as input variables for the
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classification algorithm. One of its disadvantages is that the dependencies
among attributes are ignored, since they do not take into account the pos-
sible redundancy among them. This redundancy can be detrimental to the
behavior of the classification model. Multivariate filtering techniques just
address this problem by comparing different subsets of attributes and choos-
ing a subset according to its relevance (with respect to the class attribute)
and redundancy.

2.2.4.1 Correlation-based feature selection

Proposed by Hall (1999) in his doctoral thesis, it is one of the most widely
used methods of multivariate attributes filtering. The goodness of a subset
of attributes is defined in terms of its correlation with the class attribute
(relevance) and the lack of correlation between feature pairs in the subset
(redundancy). For a subset of attributes S ⊆ X = {X1, . . . , Xn}, CFS
technique will look for that S∗ = arg max

S⊆X
f(S), where:

f(S) =

∑

Xi∈S

r(Xi, C)

√
k+(k-1)

∑

Xi,Xj∈S

r(Xi, Xj)

. (2.5)

where k refers to the number of selected attributes, r(Xi, C) is the correlation
between the attribute Xi and the class attribute C, and r(Xi, Xj) is the
correlation between the attributes Xi and Xj. The correlations r(X, Y ) are
given by the symmetric uncertainty coefficient defined as:

r(X, Y ) = 2
I(X, Y )

H(X) +H(Y )
. (2.6)

The problem of maximization can be solved by using some heuristics such
as the greedy approach.

In order to extend the CFS method for a multi-target classification prob-
lem, with z class attributes to classify, Fernandes et al. (2013) has proposed
the following three approaches:

1. The union of subsets with higher-scoring attributes obtained by con-
sidering each class attribute separately.

2. The subset of attributes with the highest score of the composite class
attribute that models all possible joint configurations of the class at-
tribute.
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3. The subset of attributes with the highest score of a modified metric,
such that it rewards the correlation of each attribute in the subset with
each of the z class attributes, defined as:

f(S) =

∑

Xi,Cz∈S

r(Xi, Cz)

√
k+(k-1)

∑

Xi,Xj∈S

r(Xi, Xj)

. (2.7)

This PhD Thesis will take into account the third approach since it con-
siders in a better way the correlation of each attribute with each of the class
attributes (Fernandes et al., 2013).

2.3 Supervised classification

Classification is one of the data mining tasks that allows to analyze the
dataset by extracting models that describe its important attributes. For
example, a classification or prediction model can be obtained for pre-
dicting medical insurance categories as normal, high or low risk. Another
example may be the case of a medical researcher who needs to know which
of the available and specific treatments a cancer patient should receive based
on their collected clinical data. In each of these examples, the task of classifi-
cation will build a model or classifier to predict the categorical response that
will be given by different labels, such as “normal” or “low” or “high” risk for
the data of the health insurance application or “treatment X”, “treatment Y”
or “treatment Z” for an oncological dataset. This PhD Thesis will focus on
supervised classifiers, those classifiers that build models with labeled training
data. It means that the label of every record of a training set is previously
known. Afterwards, this model is applied to predict categorical labels of new
records. These categorical labels can be represented by discrete values, where
the order among the values has no meaning. For example, the values 1, 2
and 3 can be used to represent treatments X, Y and Z, where there is no
implicit ordering among this group of treatments.

In the data mining field, many classification methods, pattern recognition
and statistics have been proposed. Recent research in data mining addresses
the generation of scalable prediction and classification techniques capable
of handling large amounts of data resident on the disk or that incremen-
tally accumulate (streaming). Nonetheless, the amounts of data collected in
the employed dataset are still tractable enough for being accessible in RAM
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memory. That is why in this PhD Thesis the proposed algorithms will focus
on those techniques that use memory resident data.

2.3.1 Performance metrics

As Japkowicz & Shah (2011) and Larrañaga et al. (2018) have mentioned,
performance evaluation measures of a classifier model are used as figures of
merit for the supervised classifiers. There are several metrics or measure-
ments and their choice depends on the objective and characteristics of the
supervised classification problem, as well as the type of classifier used.

2.3.1.1 Confusion matrix

True/negative positives and true/false negatives are some of the most pop-
ular metrics used in medicine (Lavrač, 1999). To explain these metrics, it is
necessary to start talking about what a confusion matrix is. As the name
implies, it is a matrix that contains the key elements required in most per-
formance measures in supervised classification algorithms. The contents of
the cell of the position (i, j) presents the number of cases that really have
the class label i and that the classifier assigns or predicts as the class label
j.

Thus, the performance measures in the supervised classification are de-
fined based on the entries in the confusion matrix. In binary classification
problems the four counters of the confusion matrix are the number of true
positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN). This confusion matrix is easily generalizable to problems of multiclass
classification, that is, where there are more than two class labels. Figure 2.6
presents the contents of the matrix.
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Figure 2.6: Confusion matrix for two class values

An example of the confusion matrix obtained when classifying the re-
sponse to some medical treatment is presented in Figure 2.7. In this ex-
ample, 15 and 14 medical records have obtained a correct classification as
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positive and negative responses to the treatment, respectively. This implies
that their predicted and real values match. In contrast, 6 medical records
have obtained a bad classification, obtaining 2 responses predicted as “low”
when their real values were “high”. These 2 predicted responses are false
negatives. Moreover, 4 responses were predicted as “high” when their real
value were “low”. These 4 predicted responses are false positives.
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Figure 2.7: Example of a confusion matrix for high-low responses to any
medical treatment.

2.3.1.2 Accuracy

The accuracy of a classifier given the test dataset and a learned classifier
model, is the percentage of records of such dataset that are correctly classified
by the model. The associated class label of each record of the test dataset is
compared to the one that has been predicted by the classifier for that record.
If the accuracy obtained from the classifier model is considered acceptable,
the model can be used to classify future records for which the class label is
not known.

Expressing it in the values of the confusion matrix, the equation that
defines the value of accuracy is equal to:

Accuracy =
TP+TN

TP+FP+TN+FN
. (2.8)

For the example presented in Figure 2.7, the accuracy value of the clas-
sifier model will be equal to 15+14

15+4+14+2 = 0.83.

2.3.1.3 Sensitivity and specificity

Sensitivity and specificity values are often considered to be more important
than high accuracy values in many medical problems (Lavrač, 1999). For
example, let’s consider that prediction of the response of some cancer treat-
ment is needed. In this case, the detection of false positives is very expensive
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in economic terms because it involves the application of treatments such as
chemotherapy or immunotherapy unnecessarily, leading to their side effects.
On the other hand, the detection of false negatives is delicate when it comes
to an early stage of cancer, that is, when in theory there is a greater hope
of cure with treatment. Another example could be the case of health insur-
ers. These companies will prefer the detection of more erroneous cases of
high-risk patients than a false detection of low-risk cases, given the economic
implications involved.

Sensitivity measures the fraction of positive cases that are classified as
positive, while specificity measures the fraction of negative cases classified
as negative. Equations 2.9 and 2.10 define them based on the values of the
confusion matrix.

Sensitivity =
TP

TP+FN
. (2.9)

Specificity =
TN

FP+TN
. (2.10)

2.3.2 Classification process

Within the data mining field, the classification task refers to a process that
includes two steps. The first is the learning step where a classification model
is generated. The second step consists of a classification stage and it is where
the model obtained in the previous phase is used in order to be able to predict
the class labels for the new records.

In Figures 2.8 and 2.9 the classification process is presented, using for
this purpose the aforementioned example of predicting the most appropri-
ate oncological treatment for patients. It should be noted that the datasets
presented in these figures have been simplified for the sake of clarity. It is
noteworthy that especially in the field of medicine, the amount of attributes
or medical factors that are considered within the dataset is enormous (Stew-
art et al., 2018).

Returning to the illustrative example, in the first step of the classifica-
tion (Figure 2.8) a model is constructed. It describes a predetermined set of
classes, factors, entities or data concepts. This is the learning stage or also
known as the training stage of the predictive model. In this stage, some clas-
sification algorithm is used. This is who is responsible for the construction of
a classifier model through learning from the training dataset. This dataset
contains tuples of medical records and their associated class labels. Math-
ematically speaking, a tuple X is represented as a vector of n attributes,
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X = (X1, X2, . . . , Xn). This vector represents the n measurements made in
the tuple from n attributes of the database, respectively, X1, X2, . . . , Xn. It
is assumed that each tuple X belongs to a predefined class as determined by
another attribute of the dataset called the class attribute . This research
work will focus on discrete and unordered class attributes. An attribute is
called categorical when each of its values serves as a category. The individual
tuples that are part of the training set are known as training tuples and they
are taken randomly from the database that is analyzed.

Training data 

Id Age  family history of cancer Stage  Treatment 
1 child yes I X 

2 young no II Y 
3 adult yes III Z 

4 young yes II Y 
5 adult no IV Z 

… … … … … 

Classification 
algorithm 

Classification 
rules 

IF Age =“child” AND Stage =“I” THEN Treatment =“X” 
IF Stage =“III” OR Stage =“IV” THEN Treatment =“Z” 

IF Age =“young” AND Stage =“II” THEN Treatment =“Y” 
……. 

Figure 2.8: Classification: Learning Stage. The training data is analyzed by
a classification algorithm. Here, the class attribute is the type of oncological
treatment, and the classification model is represented by the classification
rules.

This first step is known as supervised learning since the learning is done
knowing in advance the class label of each training tuple. This learning is
opposed to unsupervised learning (or grouping), in which the class label of
each training tuple is not known. For example, if the treatment applied to
every patient of the training set is not known, clustering could be very useful
in order to find out groups of cancer patients with similar values.

Mathematically, this first step of the classification process can be defined
as the learning of a mapping function, Y = f(X), which will allow to predict
the class tag associated with a given X tuple. Usually, this function takes
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the form of classification rules, decision trees or mathematical formulas. In
Figure 2.8, the assignment function is represented by some classification rules
that identify the most appropriate oncological treatment for each patient
based on the data collected from it. The rules can be used to classify new
medical records. Additionally, the rules allow to understand in a deeper way
how the data are related.

The second step of the classification process is exemplified in Figure 2.9.
As can be observed, the model extracted from the previous step is used to
carry out the classification of tuples not used in the training stage. The aim is
to estimate the accuracy (Section 2.3.1.2) of the classifier model. The training
set should not be used to measure this value since it would be obtaining a too
optimistic and unreal result. This topic will be expanded in Section 2.3.4.

Classification 
rules 

Id Age  Family history of cancer Stage  Treatment 
1 child no II X 
2 adult yes III Z 
3 adult yes III Z 
… … … … … 

Test data 

New data 

Age=young, Family history of 
cancer=“yes”, Stage=“II” 

¿Treatment? 
Y 

Figure 2.9: Classification: classification stage. The testing dataset is used
to estimate the accuracy of the classification rules generated in the previous
step. If the accuracy of the model is considered acceptable, these rules can
be applied for the classification of new tuples or records.

2.3.3 Overfitting

When training the model, some particular anomalies can be incorporated
into the training data that are not present in the general dataset. It is called
overfitting and it implies the failure of the obtained model to generalize the
knowledge that is intended to be acquired.
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An example is presented in Figure 2.10, in which, a classification model is
obtained from the training dataset in order to determine the most appropri-
ate breast cancer treatment. Hence, this model is employed to classify new
unseen records. Although the model’s training classification error is zero, its
error rate on the test set is 30%. In this example, the classification model
is overadjusted to the training data, losing some generalization capability to
classify new previously unseen records. Let’s see as an example on one of
the records of the testing dataset, more specifically, the clinical record with
id=8. The most appropriate treatment for that patient is Y. However, if the
classifier model is employed, the treatment X will be predicted since its age
is “adult” and its stage is “II”.

For avoiding the problem of overfitting, the complete dataset can be di-
vided into two subsets. One for training and another for testing purposes.
The testing dataset will not be used for model training. It is important to
note that the testing dataset should have diverse samples with a sufficient
quantity of them to be able to check the results once the model has been
trained.

2.3.4 Honest estimation of accuracy

An important issue is knowing how to honestly estimate the accuracy of the
prediction model. The first thing that comes to mind is to use the training
set to learn the classifier model and then measure the accuracy of the model
in the test set. However, as expressed by Larrañaga et al. (2018), this method
(named hold-out in the literature) would be using only the training dataset
to learn the final classifier model instead of learning from the whole dataset.
In the work of Japkowicz & Shah (2011), various honest estimation methods
are presented as hold-out, k-fold cross-validation or bootstrap. Among them,
the k-fold cross-validation method will be considered in this thesis because it
often outperforms the other estimators in some studies (Nakatsu, 2020; Borra
& Di Ciaccio, 2010; Kohavi et al., 1995). This technique is implemented in
the WEKA framework (Hall et al., 2009) that will be used for the experiments
in this research work.

2.3.5 k-fold cross-validation

The k-fold cross-validation method (Kurtz, 1948) randomly divides the data
set into k segments or folds of approximately equal size. To train the classifier
model, the k−1 segments are used and the accuracy of the obtained model is
evaluated in the remaining segment. This process is repeated about k times
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       Adult                  Young 

Id Age Family history of cancer Node-caps Stage  Actual Treatment 
1 Young No Yes I X 
2 Young Yes No II X 
3 Adult No No II X 
4 Adult No No I X 
5 Adult No Yes I Y 

Training  dataset 

Classifier model  

Id Age Family history of cancer Node-caps Stage  Actual treatment Predicted treatment 
1 Adult Yes No II Y X 
2 Adult No No II X X 
3 Adult Yes Yes II Y X 
4 Young Yes No II X X 
5 Young No Yes II X X 
6 Young No No II X X 
7 Young No No II X X 
8 Adult Yes No II Y X 
9 Adult No Yes I Y Y 

10 Young No Yes I X X 

Testing  dataset 

Figure 2.10: Overfitting example with clinical breast cancer records: the
training dataset is used for building the classifier model. Afterwards, this
model is used to classify the testing dataset. The incorrect predicted treat-
ments are colored in red.
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for each of the k segments. With them, k accuracy results are obtained. They
are averaged to estimate the accuracy of the model obtained from the whole
dataset. In this way, the classification model is learned on all the dataset.
Figure 2.11 shows this entire process for 4 segments (k = 4) for illustrative
purposes. The parameter k must be defined by the user. However, the
literature of classification algorithms usually define k equal to 10 (Burman,
1989).
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Figure 2.11: Example of k-fold cross validation with k = 4. An M model
is obtained from the entire dataset on the left. To estimate the accuracy
of such model, the dataset D is divided into four segments (D1,D2,D3,D4).
A model is obtained from every of the four combinations of k − 1 segments
(M1,M2,M3,M4). Each model is evaluated in its remaining segment to obtain
the four values of accuracy to be averaged.

2.3.6 Multi-target classification

Section 2.3 has focused on describing the training and classification steps for
predicting a single class attribute. However, in several applications, what
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is really required is to learn classifying models that allow the prediction
of several class attributes at the same time. This task of data mining is
called multi-target classification or also called multi-objective or multi-label
classification (Tsoumakas et al., 2009). With this, a tuple X represents
a vector of n attributes, X = (X1, X2, . . . , Xn) from which a vector of s
outputs Y = (Y1, Y2, . . . , Ys) (with s > 1) is predicted (instead of a single
output value) using a function f(X) such that:

f(x) : x = (x1, x2, . . . , xn)
f(x)−−→ y = (y1, y2, . . . , ys). (2.11)

Each element of the output vector will be a binary value, indicating
whether the corresponding label is relevant to the sample or not. Several
tags can be active at the same time. Each different combination of labels is
defined as label set.

For example, considering the example of the oncological treatment pre-
diction, it may be necessary to find out the result of the treatment of five
sessions of chemotherapy for a given patient. It could be obtained by ap-
plying the function f(X) the following set of labels: {high, high, high, low,
low}, which would indicate that the response of a certain oncological treat-
ment will be highly effective only in the first three sessions. Multi-target
classification algorithms are responsible for learning that function f(X).

In the work presented by Madjarov et al. (2012), methods such as pre-
dictive clustering trees (PCT), hierarchy of multi-label classifiers (HOMER)
and binary relevance (BR) have been recommended to carry out the learning
of multi-target prediction models.

• In predictive clustering trees (PCT) (Blockeel & De Raedt, 1998), de-
cision trees partition the set of examples into subsets in which the
examples have similar values of the target variable, while clustering
produces subsets in which the examples have similar values of the de-
scriptive variables.

• In the binary relevance (BR) (Zhang & Zhou, 2007) method, the trans-
formation of the multi-label prediction into z binary classification prob-
lems is considered. A prediction model is learnt for every target variable
(y1, . . . , yz) independently. After that, all the results are combined to
determine the predicted class set.

• In the hierarchy of multi-label classifiers (HOMER) (Tsoumakas et al.,
2008), a hierarchy of multiple labels is built and a classifier is obtained
for the label sets of each node of the hierarchy.
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2.4 Optimization metaheuristics

As mentioned in Section 2.2.4, several heuristics can be used to find the subset
of attributes that improve the performance of the classifying algorithms. For
Martí et al. (2018), the term heuristic refers to the strategies that make use of
readily accessible, loosely applicable information to control problem solving.
For example, algorithms are a type of heuristic. On the other hand, the
same authors mention that metaheuristics methods can coordinate the usage
of several heuristics toward the formulation of a single method. All in all,
metaheuristic algorithms are iterative procedures that guide a subordinate
heuristic, intelligently combining different concepts to properly explore and
exploit the search space (Glover & Kochenberger, 2006).

It is neccesary to mention that metaheuristics differ from the heuristics
in that it can be applied to a large number of problems and not only to a
specific field of application (Gendreau et al., 2010; Sörensen, 2015). For ex-
ample, considers the search strategy. The hill climbing is an heuristic method
employed to find local optimums, but it does not guarantee finding global
optimum solutions (Skiena, 1998). For this reason, various metaheuristic
methods have been proposed to improve local search heuristic in order to
find better solutions (Blum & Roli, 2003). Some of these metaheuristics
are SA, GRASP, variable neighborhood search (VNS), and the tabu search.
However, the distinctions between heuristic and metaheuristic methods are
inappreciable by some authors (Gandomi et al., 2013; Stojanović et al., 2017).

Previous to the use of any metaheuristic, it is very important to define
what is the objective or fitness value that is necessary to optimize. For
example, let’s assume that it is necessary to find the selection of clinical data
that allow obtaining a high percentage of accuracy for the prediction of a
treatment response. In this case, the fitness value will be the percentage
of accuracy and the target will be its maximization in order to achieve an
accuracy close to 100%.

2.4.1 Simulated annealing

The simulated annealing method (SA) (Kirkpatrick et al., 1983) is a random-
ized search method for optimization. This technique is used in order to find
those weights that improve the representation of the numeric labels encoded
by doctors for each stage. SA is a stochastic, metaheuristic technique used
in difficult optimization problems to approximate the global optimum of a
given function in its search space. This approach has been widely employed
to improve the performance of other algorithms. For example, SA has been
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used to improve FSS in Sharma et al. (2012). Furthermore, SVM and SA
have been combined to find the best selected attributes to increase the accu-
racy of anomaly intrusion detection in Lin et al. (2012), and for a hepatitis
diagnosis method in Sartakhti et al. (2012).

The name has its origin from the phenomenon of the physical heating
of a material such as steel. To heat it, this material is subjected to high
temperature and then gradually cooled. Gradual cooling allows the material
to cool to a state where there are few weak points. It achieves a kind of
“global optimum” in which the whole object reaches a crystalline structure
of minimal energy. If the material cools quickly, the object breaks easily in
some parts because it would not have become strong in its entirety.

The SA method is an algorithm that begins with an initial solution that
can be completely random, and every iteration makes slight changes in the
solution (current solution) until it reaches a result close to the optimal solu-
tion. In this research, the percentage of classification error (100-accuracy) of
the classifier model is the fitness value to optimize.

With the progress of SA, the current solution is altered, even if it is
worse than the previous one. However, the probability of accepting a worse
solution decreases with time (cooling process) and distance. A new solution
is always accepted if it is better than the previous one. The probability of
acceptance used is derived from the distribution proposed by Maxwell and
Boltzmann. It is the classical distribution function for the distribution of an
amount of energy between identical but distinguishable particles. Its value is
equal to e(−Ediff/T ), where T refers to its temperature and Ediff refers to the
energy difference calculated as the fitness value distance between the initial
solution and the minimum value reached so far (in the case of a minimization
problem).

This algorithm has been implemented in different libraries. Hero li-
brary (Risco, 2016) has been selected because it implements the “natural
optimization” (De Vicente et al., 2000), which means that the temperature
does not need to be given because it is continuously tuned while running the
SA algorithm through Equation 2.12.

T =
K × (Cmin − Cinit)

N
, (2.12)

where N is the number of iterations, K is a constant that refers to the
backward degree and time/quality trade-off and has been set to 1, and Cmin
and Cinit refer to the current minimal cost and initial cost, respectively. The
cost refers to the fitness value of the solution. The energy difference is defined
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in Equation 2.13.

Ediff = Csol − Cmin , (2.13)

where Csol is the cost of the current solution. Finally, the probability (P )
to compare with the random number (R) is given by Equation 2.14. This
P value is the probability of changing to a new solution. This is calculated
when Csol is not lower than Cmin. When R ≤ P , SA moves the solution
to another point within the search space to avoid being trapped in a local
minimum.

P = e(−Ediff/T ) . (2.14)

Figure 2.12 depicts a flowchart with the methodology proposed by De Vi-
cente et al. (2000).

2.4.2 Multi-objective evolutionary algorithms

The goal of the multi-objective evolutionary algorithms (MOEAs) is to achieve
a set of efficient solutions, non-dominated or Pareto optimal solutions (Zit-
zler et al., 2000). These set of solutions are called Pareto optimal solutions
(denoted by XP ), when there is no other feasible solution that takes a lower
value (in minimization problems) in some objective without causing a si-
multaneous increase in at least another. Mathematically, a multi-objective
problem face the optimization of n ≥ 2 objective functions. These functions
are represented as: f1(x), f2(x), . . . , fn(x). Their solutions are represented by
x1, x2, . . . , xn. A solution x1 ∈ X dominates another solution x2 ∈ X if and
only if ∀i ∈ {1, . . . , n}, fi(x1) ≤ fi(x2) and ∃j ∈ {1, . . . , n}, fj(x1) < fj(xn).
In this sense, A solution x∗ ∈ X is a non-dominated solution if and only if
there is not another solution x ∈ X such that x dominates x∗. XP is the
whole set of non-dominated solutions.

For example, doctors need to select the prediction model that achieves
the best accuracy percentage when predicting the response of two stages
of a migraine treatment, represented by f1 and f2 respectively. Let us the
existence of three prediction models with the accuracy values represented
by the tuples (f1, f2): (75%, 72%), (73%, 75%), (65%, 71%). These tuples
represent the solutions x1, x2 and x3 respectively. x1 dominates x3 when
comparing their f1 and f2 values because 75% > 65% and 72% > 71%. Also,
x2 dominates x3 because 73% > 65% and 65% > 71%. However, x1 is not
dominated by x2 and viceversa because 75% > 73%, but 72% < 75%. Then,
the resulting Pareto frontier would be composed of x1 and x2.
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Figure 2.12: Flowchart with the Simulated Annealing-based methodology
proposed by De Vicente et al. (2000)
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The XP set forms the Pareto frontier as depicted in Figure 2.13. An
important point to consider is that MOEA algorithms handle a set of solu-
tions (population) instead of a single solution as in the case of the SA. As a
consequence of having more solutions, its computational cost is higher than
algorithms with a single solution approach, specially when performing with-
out parallelism (Durillo et al., 2008). The parallelization allows to distribute
the computational load on different cores of the computer, making the exe-
cution of tasks efficiently. Parallel implementations of MOEAs can be used
in order to achieve faster execution of algorithms and a superior numerical
performance (Alba & Tomassini, 2002).

f2

f1

B

A
C

f2(A)>f2(B)

f1(A)<f1(B)

Figure 2.13: Example of a Pareto frontier (red line) formed by the set of
Pareto optimal solutions. The boxed points represent feasible solutions, and
smaller values are preferred to larger ones. Point C is not on the Pareto
frontier because it is dominated by both points, A and B Points. A and B
are not strictly dominated by any other, and hence do lie on the frontier.
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Methodology
We should be suspicious of any dataset
(large or small) which appears perfect.

David J. Hand
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3.1 Introduction

D. Hand (Hand, 2018) mentioned that there is no perfect dataset. An analysis
of its characteristics will allow to find the challenges to solve for obtaining a
predictive model. In this chapter, an exhaustive study of the available clinical
data is carried out. Based on this, the most convenient class attribute for
measuring the efficiency of the migraine treatment is selected. Then, to get
closer to medical needs, two prediction approaches are considered. They are:
panoramic prediction and feedback prediction. Afterwards, some techniques
are explored for knowing how to attack and solve the problem of missing
values found in the medical records. Finally, in order to explore the medical
characteristics described in the predictive models and reveal whether there
are new medical findings, the use of consensus models is addressed.

3.2 Preprocessing

As the phrase at the beginning of this chapter mentions, there is no perfect
dataset that is ready to obtain the prediction models of its class attributes.
In order to achieve an efficient application of classification algorithms, it is
necessary to explore and work on one of the most important components of
this process, that is: the preprocessing of data.

In this section, the issues related to the treatment of data prior to learning
prediction models are discussed.

3.2.1 Clinical data

The first step to take into account to visualize the problems to solve is the
analysis of the available medical data. It has been collected in a retrospective
way from the review of medical histories of patients with chronic migraine and
under previous or current treatment with BoNT-A at the Headache unit of
two tertiary-level hospitals. To this end, the approval of the ethics committee
of both hospitals was obtained under the documents ANA-TOX-2015-1 and
PI-17-832, which are provided as supplementary content.

As presented in Figure 3.1, a total of 173 patients were included (116
from Hospital Clínico Universitario in Valladolid and 57 from Hospital Uni-
versitario de La Princesa, in Madrid). Sixty-two baseline attributes were
categorized. Therefore, they are the X1, . . . , Xn attributes of the clinical
dataset, where n is equal to 62. These attributes were related to the fol-
lowing points: clinical pain attributes, demographic attributes of patients,
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Figure 3.1: Source of our clinical data.

comorbidities, tested and concomitant preventive drugs, pain impact mea-
sures, and available analytical parameters. The latter were obtained from
blood tests recorded in the clinical history that were performed for other
reasons in the 3 months prior to, or 3 months after, the first stage, and in-
cluded hemogram and liver, renal, thyroid, ferric, vitamin B12, folic acid and
vitamin D profiles.

Figure 3.2 presents demographic data of patients. This figure shows that
the majority of patients are between 30-55 years old. Also, most of the
patients are women. This fact agrees with what is expressed in some stud-
ies (Gazerani & Cairns, 2020; Schwedt et al., 2019; Finocchi & Strada, 2014),
where a high prevalence of migraine in women is found, and also falling within
the aforementioned age range. In addition, Pelzer et al. (2019) found that mi-
graine seems to be associated with a genetic predisposition (1st grade family)
as in our patients.

The efficacy of BoNT-A was evaluated by comparing the baseline situa-
tion (before the first stage) and the situation after each of the three stages
of treatment, through the following parameters: number of days of pain per
month, percentage reduction in days with pain, subjective intensity of pain,
number of days of disability due to pain per month, HIT-6 scale score, drug
consumption for pain and adverse effects of stage. Since this was a retrospec-
tive study, not all the data could be obtained for each patient in a systematic
way.

Some patients are non-respondent, while others respond after the ith ses-
sion. In order to predict the patients’ behaviour after the stages, it is nec-
essary to explore the patients’ data before these take place. In other words,
in order to predict the outcome after the ith session, the clinical data of the
patient as well as the outcome after the (i − 1)th stage are required. Nev-
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Figure 3.2: Demographic of patients.

ertheless, some problems are encountered while evaluating these data. For
example, a small set of patients with many attributes is typically present in
our medical databases. In addition, the incompleteness of data is another
problem that must be dealt with. Some attributes are given as continuous
numeric values while other attributes are categorized by doctors. All in all,
it is hard to properly process all this information. As a consequence of these
heterogeneous data, algorithms cannot infer a good model for predicting the
outcome of the treatment. An example of these attributes can be observed
in Table 3.1. In it, the age is represented by natural numbers while the body
mass index and hemoglobin take decimal values. Furthermore, platelets can
take very large values while creatinine can take very small values. Finally,
the reduction effects take categorical values (from 1 to 4). This example
shows the importance of categorizing the values prior to learning predictive
models.

Table 3.1: Example of attributes in our clinical data.

Toxin-age of onset Body mass index Hemoglobin Creatinine Platelets Reduction effects
(years) (kg/m2) (g/dL) (mg/dL) (u/mcL) (1-4)

51 20.39 13.4 0.71 213000 4
49 26.5 14.2 0.55 252000 2
36 23.15 13.5 0.44 304000 3
26 17.7 13.1 0.66 218000 2
31 NA 14.8 0.71 327000 1
50 NA 16.2 0.74 327000 3
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3.2.2 Class attribute selection

Once the available data have been analyzed and with the purpose of mea-
suring how efficient a treatment stage has been, it is neccesary to define the
class attribute, also called severity index in the medical domain. In other
words, the class attribute is the selected clinical attribute used to measure
the effectiveness of treatment.

In the migraine scenario, the severity is typically evaluated through the
HIT6 value (Yang et al., 2011), the intensity, the duration, the frequency of
attacks (Gasbarrini et al., 1998) or the headache days (Schoenen et al., 1998).
Hence, the severity index is something inherent to the CD under considera-
tion, but also depends on the number of EMRs containing the index (Parrales
et al., 2019d).

In this section, the HIT6 value and its limitations are exposed. In ad-
dition, a class attribute based on both the reduction and adverse effects is
proposed to tackle the limitations imposed by the use of HIT6.

3.2.2.1 HIT6

As it has been mentioned in Section 2.2.1.1, HIT6 is a survey that allows to
measure the level of pain associated with migraine episodes. As this metric
is perceptional, this thesis has focused only on those medical records that
contain the HIT6 value prior and after the stage (consecutive stages). By
defining the class attribute as the difference between the two values, as Equa-
tion 3.1 indicates, the bias due to different perceptions from different patients
is diminished. According to Silberstein et al. (2015), if the HIT6 value after
the stage diminishes by more than 30%, the treatment is considered as suc-
cessful, and unsuccessful otherwise. Hence, for this particular class attribute,
only two categories have been defined, namely: successful and unsuccessful.

HIT6dif = HIT6b −HIT6a . (3.1)

A very hard limitation is that the HIT6 values are rarely found in our
clinical database. In fact, only 18 out of 173 records from our clinical dataset
had the perceptional HIT6 value before stages, and only 12 and 3 contain
this value after the first and second BoNT-A treatment stages, respectively.

3.2.3 Reduction and adverse effects

As a consequence of the lack of HIT6 value in many of the collected clinical
records, the reduction (R) and the adverse (A) effects, which are more fre-
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quently found in collected records, have been considered to define the class
attribute.

R and A are measurable values directly provided by doctors from an
objective point of view based on definitions. R is a clinical objective value
categorized from 1 to 4 according to the percentage of reduction of days of
migraine (RD), being 1 when RD ≤ 25%, 2 when 25% < RD ≤ 50%, 3
when 50% < RD ≤ 75% and 4 when RD > 75%. A is equal to 1 when
there are no adverse effects, 2 when there are mild adverse effects (easily
tolerated), 3 when there are moderate adverse effects (interfere with usual
activities and may require suspension of treatment) and 4 when there are
serious adverse effects (incapacitate or disable usual activities, and require
suspension of treatment as well as medical intervention).

A high level of R indicates good treatment results, while high levels of A
point to many adverse effects. Hence, in order to obtain a directly propor-
tional attribute, our class attribute (NAC) has been determined by dividing
R and A, as Equation 3.2 shows.

NAC =
R

A
. (3.2)

A similar approach to the one based on HIT6 (two response categories:
high and low) (Silberstein et al., 2015) has been considered for class attribute
categorization, instead of the three categories (low, medium and high) used
for the rest of the clinical attributes. Thus, following this approach, two inter-
vals (low and high) need to be defined before trying to predict the efficiency
of the treatment when using NAC as class attribute.

Responses are labeled as “high” for those NAC values falling within the
[cut-off point, Vmax] interval, while responses are labeled as “low” when the
NAC value falls into the [Vmin, cut-off point) interval. In this case, Vmin =
0.25 occurs when R = 1 and A = 4, while Vmax = 4 occurs when R = 4 and
A = 1.

According to Silberstein et al. (2015), responses are considered as “high”
when a patient obtains a decrease higher than 30%, as the criterion used for
the HIT6 value in the PREEMPT clinical trial. For this reason, the cut-off
point value (Vcut−off ) is obtained with the Equation 3.3. A cut-off point of
1.40 is obtained when replacing Vmin = 0.25 and Vmax = 4. Thus, values
lower than 1.40 represent the 30% of the values that NAC can take. Then,
the “low” and “high” categories are defined with the intervals [0.25; 1.40) and
[1.40; 4], respectively. Table 3.2 depicts an instance of the NAC computation



3.2. Preprocessing 55

using different values provided by the hospitals.

30% =
Vcut−off − Vmin
Vmax − Vmin

× 100% . (3.3)

Table 3.2: Class attribute categorization.

Reduction effects (R) Adverse effects (A) R/A Categorized value
1 1 1 low
2 1 2 high
3 2 1.5 high
1 2 0.5 low

Applying the class attribute defined here for each of the three stages of
the treatment, the distribution of high-low values is obtained over the records
of the medical dataset, as shown in Table 3.3. This results in the following
baseline values of accuracy: 56.64%, 58.95% and 51.44%. These values refer
to classifying all the records with the most frequent label for each stage of
the treatment. More in detail, 98, 71 and 89 patients have a high response
for the first, second and third stage of the treatment. On the other hand, 75,
102 and 84 patients have a low response for the first, second and third stage
of the treatment.

Table 3.3: Distribution of high-low categories through stages.

Response Stage 1 Stage 2 Stage 3
high 98 71 89
low 75 102 84

3.2.4 Data categorization

Due to the heterogeneous clinical data provided by the doctors of the two
hospitals, the data must be categorized. For this purpose, the labels are first
defined and agreed by the experts in the disease. Then, they are analyzed to
achieve an adequate representation of the medical information (Cimino et al.,
1996). However, the heterogeneity of data may still persist in medical factors
previously categorized by doctors. Therefore, as noted in Section 2.2.2, it is
desirable that this work deals with heterogeneous data, taking advantage of
the labeling provided by medical experts.

The method selected for the categorization of the collected medical data
is based on the mean and standard deviation presented in Section 2.2.2.2.
The number of categories to obtain is defined as 3 for each attribute that
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contains numerical data. The categorization of class attributes will follow
the approach addressed in Section 3.2.3.

3.2.5 Numerical label encoding

At this point of the methodology, all the values have been categorized thanks
to the mean and standard deviation based categorization. Although every-
thing is categorized, there are data with non-numeric labels given by doctors.
With the purpose of homogenizing the medical labels and working with nu-
merical optimization algorithms as well as allowing a better representation of
the labels with respect to the models, the nominal labels established by the
doctors should be converted to numeric labels. This can be done by using
consecutive natural numbers different to 0 for each label. Although this basic
encoding method has the advantage of being simple, the numerical values can
be misunderstood when applying and obtaining prediction models with the
data mining algorithms. For example, a variable that identifies the sex of the
patient will take values of M for men and W for women. When these nominal
values are converted to numeric labels, they can be transformed into 1 and 2
respectively. However, this does not imply that one of them is greater than
or lower than the other.

Another encoding approach is called one-hot encoding (Yu et al., 2019).
The strategy of this method is to convert the different column labels of the
original dataset into columns of a new dataset, defining a column for each
different value. Then, the cell values of the new dataset will be filled with 1’s
or 0’s (true/false) in the corresponding column according to the label value
of the original dataset. An example can be seen in Figure 3.3. It has the
benefit of not weighting a value improperly. However, its drawback consists
of adding many new columns to the data set. Hence, this approach is not
good for processing medical data, since the purpose is to reduce the number
of medical factors to be contempled by the data mining algorithms.

Given the limitations of the one-hot approach, two approaches have been
proposed to improve numerical coding in a dataset. The first is based on the
use of SA. This approach is valid in the case of learning one-target prediction
models, since SA optimizes a single objective. To extend it to a multi-
target environment, the average accuracy of all targets can be considered as
the value to be optimized. However, a better optimization can be achieved
through the second approach based on the use of MOEAs, given that several
optimization objectives are allowed. Below, the description of each of the
proposed methods is presented.
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Register Feature 1 Register F1‐AA F1‐AB F1‐AC

1 AA 1 1 0 0

2 AB 2 0 1 0

3 AA 3 1 0 0

4 AC 4 0 0 1

5 AC 5 0 0 1

6 AA 6 1 0 0

Figure 3.3: One-hot example. It converts three different labels of the “Feature
1” column, creating a column for each different label value and adding the
value of 1 or 0 depending on the label value that the record takes.

3.2.5.1 With SA

“SAR encoding” is proposed by Parrales et al. (2019c) and is designed for
finding a better representation of the numeric labels. This technique produces
a data transformation for achieving high prediction accuracies without adding
more columns to the dataset. It is called SAR because this technique consider
the SA algorithm (Kirkpatrick et al., 1983) and a rounding operation to
perform small numeric label perturbations for each column of the medical
dataset. The inputs of this method are the dataset to be analyzed, the
number of decimal digits to consider (D) and the classification algorithm to
be used to generate the predictive model. The outputs are the set of optimal
column weights (Wopt), the optimal number of fractional digits for rounding
(dopt), and the optimized classification model (Mopt). The employed variables
are defined in Table 3.4. The different steps in SAR are shown in Figure 3.4
and explained in the following lines:

• The input of the algorithm is an initial dataset O containing m clinical
records, each containing the same set of n medical factors (columns)
c1, c2, c3, . . . , cn. The conversion of nominal labels to numbers is done
following a consecutive order of integers begining with 1. It is done for
the n columns of the dataset. The modified dataset will be called O′
with c′1, c′2, c′3 . . . , c′n as modified columns.

• Once the O′ dataset is generated, the next step is performing the at-
tribute weighting task. For it, the SA algorithm will find the optimal
weights wj, 1 ≤ j ≤ n, i.e. one for each column c′j ∈ O′. The weights
wj will reflect the degree of relevance of a column c′j for a problem to
solve, where wj ∈ IR{0, 1}. The values of every cell o′i,j ∈ O′ are multi-
plied by the corresponding weight wj through the o′i,j × wj operation,
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Table 3.4: Description of variables employed in the SAR encoding.

Name Description
O Training dataset.
O′ Modified dataset.
m Number of records of the initial dataset.
r Number of records of the training dataset.
n Number of columns of the training and test datasets.
ci Medical factor (column) of a dataset.
T Threshold, number of columns that will be taken into account

for grouping the dataset records.
W Set of weights of the columns of a dataset.
wj Weight of the jth column of a dataset.
oi,j Cell value of the ith record and jth column of a dataset O.
D Number of decimal positions to analyze.
d Decimal position.
Od O′ modified dataset and rounded to the d decimal position.
cdj jth column of the Od dataset.
odi,j Cell value of the ith record and jth column of a dataset Od.
ACCd

i Accuracy of the Od dataset in the ith stage.
ACCd

AV Average accuracy of the Od dataset.
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Figure 3.4: SAR encoding diagram.

∀i, 1 ≤ i ≤ m and ∀j, 1 ≤ j ≤ n. This multiplication is illustrated in
Figure 3.5.

• The O′ dataset is rounded to the nearest tenth, hundredth, thousandth,
and other decimals in order to generate small perturbations among
the different numeric labels in each column (Higham, 2002; García &
Tarragona, 2010). These rounded labels will generate modifications in
the prediction models learnt by the classification algorithms that work
with real numbers. The number of decimals to be considered when
rounding is defined by the parameter D, generating different datasets
Od with columns cdj and cells odi,j, where 1 ≤ d ≤ D, 1 ≤ i ≤ m and
1 ≤ j ≤ n. For example, if D is equal to 3, three modified datasets O1,
O2 and O3 will be generated to train the SAR optimization, rounding
to the nearest tenth, hundredth and thousandth for the first, second
and third modified datasets, respectively. An example of this step is
shown in Figure 3.5 when rounding O′ to the hundredth (O2).

• The prediction models are learnt by the classification algorithm when
training it with each of the modified datasets Od. The accuracy for
each of the s stages, ACCd

i , 1 ≤ i ≤ s, of any modified dataset Od,
1 ≤ d ≤ D, is obtained through Equation 3.4. In the case of a one-
target prediction model, s will be equal to 1. True positives (TP d)
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and true negatives (TNd) refer to the correct prediction of positive and
negative responses to treatment of the ith class attribute, respectively.
False positives (FP d) and false negatives (FNd) refer to the wrong
prediction of positive and negative responses to treatment of the ith
class attribute, respectively.

ACCd
i =

TP d
i +TN

d
i

TPi+FP d
i +TN

d
i +FN

d
i

. (3.4)

• The average accuracy of all the s stages ACCd
AV (Equation 3.5) asso-

ciated to the Od modified dataset will be the value to be optimized. In
this sense, (1−ACCd

AV ) is defined as the fitness value to be diminished
by the SA algorithm. A number K of iterations is defined as input
parameter in order to limit the execution of the SA algorithm.

ACCd
AV =

1

s
(

s∑

i=1

ACCd
i ) (3.5)

• The outputs of the SAR encoding are the transformation settings to
apply in the initial O dataset and the optimized model Mopt. These
settings are composed of the Wopt set of weights to apply to columns of
the initial dataset and the dopt number of fractional digits that achieved
the best accuracy. These outputs will be used to transform the data
and to apply the model Mopt.

Applying the proposed SAR encoding, the minimization of the prediction
error for all stages is not solved simultaneously. This situation is a conse-
quence of the fact that the SA technique does not consider the optimization
of multiple objectives. This is the reason why an average error for all stages
(100-ACCAV ) has been considered as the fitness value to be diminished in a
multi-target prediction scenario.

3.2.5.2 With parallel MOEAs

Our label encoding problem can be considered as multiobjective when consid-
ering the improvement of accuracy of multi-target prediction models. Since
SA is limited to optimize a single objective, the use of MOEAs (Section
2.4.2) will be considered for adapting the SAR encoding to a multi-target
prediction scenario, while SA will be applied when improving numeric labels
in one-target prediction scenario. This adaptation of the SAR encoding to



3.2. Preprocessing 61
EJEMPLO PARA PAPER Recorte superior: 30 Recorte inferior: 70 izq 25 der 80

W (weights): w1 w2 w3

0.795269560373731 0.18469775 0.767716221

O' (dataset): c'1 c'2 c'3 y1 y2
1 2 3 low high
2 3 1 low low
3 1 2 high high

o' i,j  x w j : c'1 x w1 c'2 x w2 c'3 x w3 y1 y2
0.79526956 0.369395501 2.303148663 low high
1.590539121 0.554093251 0.767716221 low low
2.385808681 0.18469775 1.535432442 high high

O 2  dataset: c21 c22 c23 y1 y2
0.80 0.37 2.30 low high
1.59 0.55 0.77 low low
2.39 0.18 1.54 high high

Figure 3.5: Weighting dataset and rounding to the hundreth (d=2).

the multi-target scenario shall be named “A Multi-Objective and Rounding
encoding” (AMOR encoding).

In a multi-target prediction scenario, it is possible to define the prediction
error of each stage separately as a goal to minimize, instead of minimizing
the average error of all stages. In this sense, the AMOR encoding will follow
the SAR encoding approach for finding the optimal labels, replacing the
SA metaheuristic by any of the MOEA methods. In addition, the fitness
function need to be redefined. Thus, the new goal will be the minimization
of the prediction error ei for all the stages (s), described by Equation 3.6:

ei = 100− Acci , ∀i ∈ [1, s] , (3.6)

where Acci refers to the accuracy percentage of the corresponding prediction
model. In the available clinical dataset, three stages are contemplated. This
implies that there are three objectives to be minimized simultaneously, i.e. e1,
e2 and e3. The approach has been implemented using the MOEA framework
presented in (Hadka, 2019). More specifically, the MOEAs that can be paral-
lelized will be selected for diminishing the computational cost. Those selected
algorithms are: GDE3 (Kukkonen & Lampinen, 2005), PESA2 (Corne et al.,
2001), SMPSO (Nebro et al., 2009), NSGA-II (Deb et al., 2002), NSGA-
III (Deb & Jain, 2014) and SPEA2 (Zitzler et al., 2001).



62 Chapter 3. Methodology

3.3 Prediction approaches

With the purpose of predicting the treatment response to the different stages
of BoNT-A treatment, several classification algorithms have been considered
when building the prediction models. In addition, two prediction approaches
will be considered, those are: panoramic prediction and feedback prediction.
Panoramic prediction makes it possible to decide whether the treatment will
be beneficial without using previous treatment responses and without in-
volving unnecessary treatments. On the other hand, the feedback prediction
considers the results of previous stages of the treatment. Their application
to the collected medical data set will be addressed in this section.

3.3.1 Panoramic prediction

The suitability of this method arises from studying the convenience of a cer-
tain drug for every stage involved in a CD treatment (Beiske et al., 2009).
Predicting the response to every session of the treatment fits to what the
personalized medicine is searching: allowing a cost-benefit analysis by the
doctors and thus deciding whether the cost and other details inherent to the
medication can be assumed by the patient (Suhrcke et al., 2006). Never-
theless, this first prediction approach aims to analyze a medical scenario of
therapeutic response to a given treatment without any prior knowledge or
feedback. This implies that the results of the first or subsequent treatment
applications are not known yet. Hence, the responses cannot be used at
different treatment stages to perfect the prediction model.

In contrast with the traditional one-target attribute prediction, this ap-
proach allows to carry out a simultaneous prediction of various responses
from the described attributes of a medical record (Waegeman et al., 2019),
where the prediction model is obtained with the use of multi-target classifier
algorithms, as presented in Section 2.3.6.

It is important to incorporate this panoramic prediction approach to the
proposed methodology due the goal is to present the prediction to treatment
response in subsequent stages. This goal can be translated into a multi-target
problem. This implies an important advantage because it is not necessary to
obtain clinical data after a session of treatment to guess the response after
the following session.

The selected methods for obtaining the multi-target prediction models
are: predictive clustering trees (PCT), binary relevance (BR) and hierarchy of
multilabel classifiers (HOMER). These methods have been selected following
the recommendation done by Madjarov et al. (2012).
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These techniques are implemented in two java frameworks: MEKA (Read
et al., 2016) for multidimensional classification, and CLUS (Struyf et al.,
1999) for predictive clustering. The MEKA framework implements the BR
and HOMER methods while PCT is implemented in CLUS.

Multi-target prediction can be benefited with the use of the AMOR en-
coding in order to better represent the information coded by doctors and to
improve the prediction of the therapeutic responses. Figure 3.6 presents the
proposed approach. It has been exposed in the work presented by Parrales et
al. (2019c) as the “panoramic prediction”. However, AMOR encoding instead
of SAR encoding will be applied in order to find the best label representation
of the collected clinical data, since it addresses the generation of multi-target
prediction models.

Panoramic prediction 

 
Preprocessed 

data 

Missing value-dependent model selection system 

Multi-target 
prediction 

model 

AMOR 
encoding 

Panoramic 
model 

Figure 3.6: Panoramic prediction presented by Parrales et al. (2019c) and
adapted to the multi-target scenario with AMOR encoding instead of SAR
encoding.

3.3.2 Feedback prediction

This methodology seeks to improve the prediction of the therapeutic response
by creating a predictive model for each treatment stage. This approach is
called “feedback prediction” because it needs responses of previous treatment
sessions for the generation of a later stage model. Therefore, in order to
generate the prediction model for the ith stage (Mi), the initial dataset O is
required, as well as the feedbacks Fj, 1 ≤ j < i, corresponding to the (i− 1)
previous stages of the treatment. The first stage of the treatment will not
have any feedback. Figure 3.7 presents the proposed approach.

Feedback prediction implies the use of a one-target prediction approach
instead of a multi-target prediction approach. SAR encoding is considered
for improving the numeric labels in one-target prediction models. To carry
out the learning of these models, several state-of-the-art classifiers (Wu et al.,
2008) (e.g. TAN, RIPPER, C4.5 or NB tree algorithms) have been considered
for comparing their prediction accuracy and to achieve a general idea of
possible ways to improve the results. All these algorithms are described in
Table 3.5. Applying this approach to the collected clinical data, a prediction
model for each stage of the treatment will be obtained separately.
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Table 3.5: Descriptions of one-target classifier algorithms selected for feed-
back prediction.

Method Description
Naive Bayes Numeric estimator precision values are chosen based on

analysis of the training data.
IBk k -nearest neighbours classifier.
RIPPER Propositional rule learner, Repeated Incremental Pruning

to Produce Error Reduction.
C4.5 Generates a pruned or unpruned C4.5 classification tree.
Logistic Builds and uses a multinomial logistic regression model

with a ridge estimator.
AdaBoostM1 Meta classifier: Boosts a nominal class classifier.
Bagging Meta classifier: Bagging a classifier to reduce variance.
LMT Builds classification trees with logistic regression func-

tions at the leaves.
NBTree Generates a classification tree using Naive Bayes classi-

fiers for the leaves.
Random forest (RF) Builds a forest of Random trees (RTs).
Random tree (RT) Builds a tree considering K randomly chosen attributes

for each node. Performs no pruning.
REPTree Builds a regression(classification) tree using information

gain and variance and prunes it using reduced-error prun-
ing.

DecisionStump Builds a tree that make predictions based on the value of
just a single input attribute (also called 1-rules).

SVM Builds a model that assigns new examples to one category
or the other, making it a non-probabilistic binary linear
classifier.
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Figure 3.7: Feedback prediction presented by Parrales et al. (2019c).

3.4 Dealing with missing values

One of the most common problems involved in the collection of medical
data is the presence of missing values (Lin & Haug, 2008), since doctors
does not always have all the information of each patient or some medical
characteristics are only necessary and relevant to collect for certain types of
diseases.

In order to mitigate these problems, Lambin et al. (2013) propose replac-
ing missing values by calculated estimates. On other hand, the absence of
data can have value on its own information (Lin & Haug, 2008). For instance,
Pagán et al. (2015) create a set of models to attack the lack of information
due to the malfunction of medical sensors. This “lack of clinical information”
needs to be considered in this proposed methodology because it can provide
useful information to build a set of prediction models in order to adapt the
prediction to the missing values appearing in the EMRs.

To address the aforementioned inconvenient of missing values, a hierarchy
of models will be considered to group medical records that contain similar
missing values. This approach also addresses data imputation to fill in the
missing values based on records of each group.

Figure 3.8 presents the diagram of the Missing Value-Dependent Model
Selection System (MVDMS2). The purpose of this method is to generate
a hierarchy of predictive models taking into account the missing values in
the medical records. To do this, the preproccesed dataset composed of m
records is split into two groups of records. One for training/validation and
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Figure 3.8: Missing value-dependent model selection system (MVDMS2).

the other for testing purposes. Then, the training dataset is clustered first
by their NA values. Afterwards, for each of the resulting groups, the ini-
tial predictive models are obtained using the classifier algorithm specified as
input parameter. These models are optimized through the application of a
numerical label encoding using SAR or AMOR encodings for one-target and
multi-target prediction scenario, respectively. To take into account those pa-
tient records that do not meet the membership rule of the groups, a fuzzy
selector is trained too. This selector establishes the membership rules of each
record according to its number of NAs. The final product of this system is
the hierarchy of models whose membership rules are governed by the fuzzy
selector. In order to get the accuracy of the system, the test dataset is used to
apply the fuzzy selector and the hierarchy models. Every process presented
in Figure 3.8 will be described in detail though the following subsections.

3.4.1 Clustering of missing values

The preprocessed data are the input to the algorithm. Their missing values
are represented by the label NA in the EMRs. Figure 3.9 shows an example of
the medical dataset provided with many EMRs. O is the training/validation
dataset composed of r records and n medical attributes (columns). The NA
values of every cell oi,j ∈ O, 1 ≤ i ≤ r and 1 ≤ j ≤ n, are accumulated
in the “Total NA” row for each column of the dataset. Afterwards, the n
columns are sorted in descending order according to the number of NAs in
Table A. Then, only the first T attributes will be considered to create Table
B. The value of this threshold T should be defined by doctors depending on
the number of attributes they wish to take into account. The cells bi,j of
Table B, 1 ≤ i ≤ r and 1 ≤ j ≤ T , are filled with 0’s and 1’s according to
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Initial dataset Table A
# Record Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 ……. Attribute N Columns # NA

1 2 2 3 1 NA NA Attribute 5 3
2 3 NA 1 2 NA NA Attribute 2 2
3 1 1 2 3 1 NA Attribute N 2
4 1 1 2 2 NA 1 Attribute 4 1
5 2 NA 1 NA 1 1 ……. …..

Total NA 0 2 0 1 3 2

Table B
# Record Attribute 5 Attribute 2 Attribute N Attribute 4

1 0 1 0 1
2 0 0 0 1 ……… 
3 1 1 0 1
4 0 1 1 1
5 1 0 1 0

Figure 3.9: Data structure to analyze missing values found in medical records.

Equation 3.7. A pseudocode with these steps is presented in Algorithm 2.

bi,j =

{
1, if oi,j 6= NA
0, otherwise

. (3.7)

Algorithm 2: Selecting columns for Table B.

Require: Training dataset O composed of r records, columns cj and cells
oi,j, 1 ≤ i ≤ r and 1 ≤ j ≤ n. Threshold T .

1: for j = 0, j < n, j++ do
2: addToTableA(getColumnName(cj),countColumnNAs(cj))
3: end for
4: sortTableA(DESC)
5: for i = 0, i < T , i++ do
6: addToTableB(ci)
7: end for
8: fillValuesTableB(O)

Table B provides the information about the NA values of every record.
The registers contained in Table B are then grouped using the k -medians
clustering (Jain & Dubes, 1988) algorithm. The k -nearest neighbor algorithm
(k -NN) has not been taken into account for this task, since k -medians is less
sensitive to outliers. It must be noted that given a number of record groups
G, the k parameter will be set to this value. Afterwards, it is important to
generate rules for defining the membership of the medical records belonging
to each group. For example, when considering a group named “model1” with
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all the rows presented in Table B of Figure 3.9, their median of NAs will be
equal to 2, as presented in Figure 3.10.

NAs of Table B
NAs of Table B in ascendant order

# Record # NA # Record # NA
1 2 2 1
2 1 1 2
3 3 5 2 median
4 3 3 3
5 2 4 3

Figure 3.10: Number of NAs of every record of Table B (Figure 3.9). It
is important to mention that not several groups are generated but a single
group with all the records presented in Table B of Figure 3.9.

3.4.2 Initial set of models and numerical encoding

Once the groups of medical records have been found, each group is considered
as a different dataset. Each of them is trained with a classification algorithm.
In order to improve the numerical label encoding, each model is optimized
by using the SAR or AMOR encoding proposed in Section 3.2.5. The output
of this training phase will be a hierarchy of optimized models. For example,
when considering the example of the “model1” group, the classification models
will be trained with records located in rows 1 and 5 because they have only
2 NAs, as the median of the “model1” group.

3.4.3 Fuzzy model selector

Section 3.4.1 explains how to get different groups of medical records. More-
over, Section 3.4.2 describes how to get the membership rules for adding
new records to each group. However, some medical records do not belong to
any given group because they do not meet the group membership rules. To
solve this issue, it is necessary to consider the use of fuzzy logic to soften the
membership rules, selecting the most suitable model for each medical record.

For this purpose, a mapping table (Tmap) is defined, as the one presented
in Figure 3.11. It is composed of r records that present their number of NA
values and also the model (cluster) assigned by the algorithm described in this
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section. Then, this table is used for training-testing the fuzzy classifier and
obtaining the fuzzy model selector. Afterwards, these rules will be applied to
the m− r remaining records (testing set), taking into account their number
of NAs.

Number of NAs Cluster 
Assigned 

11 Model 2 
7 Model 1 
… … 
3 Model 1 

Model 1 

Model 2 

Model G 

…
…

…
. 

Tmap 
 

Medical  
Records 

  

Figure 3.11: Mapping table (Tmap) for training the fuzzy selection of models

The Fuzzy Unordered Rule Induction Algorithm (FURIA) (Hühn & Hüller-
meier, 2009) has been selected as the algorithm to train our model selector
because it combines the generation of classification rules with fuzzy logic,
obtaining simple and compact sets of fuzzy classification rules.

This algorithm is implemented in the WEKA framework (Hall et al.,
2009). The work presented by Hühn & Hüllermeier (2009) mentions that the
FURIA fuzzy rules are obtained through replacing rule intervals by fuzzy
intervals, namely fuzzy sets with trapezoidal membership function as shown
in Figure 3.12. The fuzzy rule interval is specified by four parameters, as
presented in Equation 3.8:

IF = (φs,L, φc,L, φc,U , φs,U) , (3.8)

whose parameters are defined in Equation 3.9:

IF (v) =





1, φc,L ≤ v ≤ φc,U

v−φs,L
φc,L−φs,L , φs,L ≤ v ≤ φc,L

φs,U−v
φs,U−φc,U , φc,U ≤ v ≤ φs,U

0, otherwise

, (3.9)

where φc,L and φc,U are the lower and upper bound of the core respectively.
On the other hand, φs,L and φs,U are the lower and upper bound of the
support respectively. In the non-fuzzy case, a fuzzy interval can be open to
one side, i.e. φs,L = φc,L = −∞ or φc,U = φs,U =∞.
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φ s,L φ c,L φ c,U φ s,U

0

IF

1

Figure 1: A fuzzy interval IF .

µrF (x) = ∏
i=1...k

IF
i (xi) . (1)

3.4 Rule Fuzzification

To obtain fuzzy rules, the idea is to fuzzify the final rules from our modified RIPPER
algorithm. More specifically, using the training set DT ⊆ D for evaluating candidates,
the idea is to search for the best fuzzy extension of each rule, where a fuzzy extension is
understood as a rule of the same structure, but with intervals replaced by fuzzy intervals.
Taking the intervals Ii of the original rules as the cores [φ c,L

i ,φ c,U
i ] of the sought fuzzy

intervals IF
i , the problem is to find optimal bounds for the respective supports, i.e., to

determine φ s,L
i and φ s,U

i .

A

possible support bounds φ s,Uφ c,U

0

IF

1

Figure 2: Examination of possible support bounds given a crisp antecedent.

For the fuzzification of a single antecedent (Ai ∈ Ii) it is important to consider only the
relevant training data Di

T, i.e., to ignore those instances that are excluded by any other
antecedent (A j ∈ IF

j ), j 6= i:

Di
T =

{
x = (x1 . . .xk) ∈ DT | IF

j (x j)> 0 for all j 6= i
}
⊆ DT (2)

We partition Di
T into the subset of positive instances, Di

T+ , and negative instances, Di
T− .

7

Figure 3.12: A fuzzy interval IF (Image taken from Hühn & Hüllermeier
(2009)).

Following the example of the “model1” group (Figures 3.9 and 3.10), an
example of a FURIA rule that could define the membership of one medical
record to that group would be the following:

IF NumNAs in [1,2,3,7] THEN model1, CF=0.85

The explanation would be: If the number of NAs (NumNAs) falls in the
region defined by the trapezoidal membership function with [1, 2, 3, 7],then
the selected model will be “model1” with a certainty factor (CF) of 0.85.
Applying this rule to the example in Figure 3.11, those records with 7 and 3
NAs will belong to the “model1” group.

3.4.4 Data imputation

Once the clinical records are grouped by their missing values, these values
are replaced taking into account the other records of their cluster through
the imputation of data.

In this thesis, the multiple imputation method has been selected, following
the recommendation presented by Van Buuren (2018) and commented in
Section 2.2.3. In this sense, the stochastic imputation by regression has been
selected to create different imputed datasets. Figure 3.13 presents an example
of multiple imputations that creates 3 imputed datasets. The final imputed
dataset is filled with the most frequent imputed values. In the collected
clinical dataset, five multiple imputations will be carried out, following the
Rubin recomendations commented in Section 2.2.3.1. The library MICE (van
Buuren et al., 2015) will be used on the statistical software R.
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Initial dataset  Imputed dataset  1
# Record Attribute 1 Attribute 2 # Record Attribute 1 Attribute 2

1 2 2 1 2 2
2 3 NA 2 3 2
3 1 1 3 1 1
4 1 1 4 1 1
5 2 NA 5 2 2

Imputed dataset  2 Imputed dataset  3 Final imputed dataset 
# Record Attribute 1 Attribute 2 # Record Attribute 1 Attribute 2 # Record Attribute 1 Attribute 2

1 2 2 1 2 2 1 2 2
2 3 2 2 3 2 2 3 2
3 1 1 3 1 1 3 1 1
4 1 1 4 1 1 4 1 1
5 2 2 5 2 1 5 2 2

Figure 3.13: Example of a multiple imputation with 3 imputed datasets. The
final imputed dataset is filled with the most frequent imputed values.

3.4.5 Integration of hierarchical models with panoramic
and feedback prediction

In order to address the problem of missing data in the panoramic prediction
and feedback approaches, the step of AMOR and SAR encoding from Figures
3.6 and 3.7 must not be carried out before. This is due to the numeric label
will be performed by the MVDMS2 instead, which includes SAR/AMOR
encoding among its phases.

Figure 3.14 presents the inputs and outputs for integrating panoramic
and feedback prediction approaches with MVDMS2. The input and output
of the MDVMS2 will change because it depends on the prediction approach
selected. The method for learning the predictive model will also depend on
the chosen approach. Multi-target or one-target classification algorithms can
be used for panoramic or feedback approaches, respectively.

3.5 Obtaining relevant medical factors

As was mentioned in Section 1.3, the pathophysiological attributes that de-
termine the positive or negative response to the migraine treatment are not
known yet (Ornello et al., 2015). In order to extract the attributes described
by the predictive models of the response to treatment with BoNT-A, two
approaches have been taken into account, namely: Feature Subset Selection
and Consensus Models. They will be explained in this section.
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Figure 3.14: Integration between MVDMS2 of Figure 3.8 and panoramic or
feedback prediction.

3.5.1 Feature subset selection

This technique makes it possible to enhance the prediction efficiency of the
classification methods, as it allows to consider the most influential attributes
(features) when predicting the class attribute value. This approach has cer-
tain advantages, such as offering a better understanding of the prediction
model and a better generalization by reducing overfitting (Witten et al.,
2016). Several approaches have been designed to implement the FSS tech-
nique as the filter, wrapper or embedded method (Saeys et al., 2007). The
filter type method selects attributes without considering the model. In this
approach, the emphasis is placed on the general attributes such as the exis-
tent correlation with the class to predict. The wrapper method tries to find
interactions between attributes by evaluating subsets of them. Finally, the
embedded method considers certain search algorithms in order to combine
the advantages of the first two methods.

As mentioned in Section 2.2.4.1, CFS has been the selected method in
order to determine the most relevant clinical attributes when obtaining the
treatment response prediction. C4.5 is the classifier selected to work together
with the CFS method to measure the worthiness of the subset of attributes
within the dataset. Moreover, CFS will select the subset of attributes with
the highest score of the correlation of each attribute in the subset with each
of the s class attributes (Section 2.2.4.1).
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3.5.2 Consensus model

Ensemble techniques can help analyze attribute relations with the construc-
tion of consensus models to make new and relevant findings (Villoslada et
al., 2009; Larrañaga et al., 2006). In this sense, Armañanzas et al. (2012)
have proposed an ensemble interaction network for unveiling biological re-
lations when analyzing Alzheimer’s disease. In that study, many Bayesian
k -dependence models are induced to output a gene interaction network com-
posed of arcs (edges). An occurrence threshold t is defined to output the
most frequent edges above a predefined confidence level (the 0.999 quantile
is used in order to retain just the most important connections). The list of
interaction networks and the associated list of highly relevant attributes are
obtained to reveal or corroborate biological hypotheses in this disease. Other
studies (Otaegui et al., 2009; Small et al., 2005) can be found in the literature
with similar purposes.

Consensus models can be incorporated to this Ph.D. Thesis in order to
reveal relevant attributes in the collected medical dataset. The idea is not
to build a consensus predictor model, but to understand the most relevant
clinical attributes that exist in the majority of the induced prediction models
of the best classifier. Thus, this technique is applied in order to group dif-
ferent prediction models (classification trees) produced by the best classifier
in terms of accuracy for all stages. This is done with the purpose of find-
ing explicit attributes and relations between medical attributes that allow
to predict the treatment response. In the FSS method, these attributes are
selected before the construction of the prediction model by using different
metrics. In the consensus model approach, the idea is to invert the attribute
selection process of FSS, which means that the relevant attributes will be
selected after, and not before, the construction of the prediction models.

A classification tree model is defined as a graph G(V,E), where V repre-
sents the vertex list (attributes as vertices) of the model and E represents the
list of edges (relations between vertices) of the model. The interactions in
the classification tree consist of parent-child edge relations. Nodes are filled
with the attribute values and edges represent the parent-child relation from
the classification tree model.

Many classification trees will be induced by a resampling method (k -fold
cross validation) together with the SAR or AMOR encoding. For each level
of the classification tree, the most frequent clinical attributes will be taken
into account. After this, a consensus model will be depicted with edges whose
frequencies are higher than a reliability threshold t. Edges occurring more
than t times for each level of the tree will be retained.

The methodology for building consensus models is presented in the Algo-
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rithm 3. Moreover, Table 3.6 presents the functions and definition of variables
used in the algorithm. Edges for the first level of the induced models (E0→1)
will have a NULL value as vertex u in the edge tuple (u, v) because the roots
of classification trees do not have parents. Edges will be sorted in descendant
order, according to their frequency of appearance in a given level. In order
to retain only one vertex as root of the consensus classification tree, only the
head of the E0→1 list of the induced models will be retrieved. This step is
carried out in the lines 3-6 of the Algorithm 3. For the rest of the levels,
the lines 7-15 of the algorithm are applied. In these lines, the 0.9 quantile
will determine the t value for retaining the most important edges. These
quantile values have been defined by considering the 0.999 quantile applied
by Armañanzas et al. (2012), but modified with the purpose of retaining
multiple important child nodes in the consensus classification tree proposed.
Moreover, only edges whose origin vertex is equal to any destination vertex
of their previous level will be selected.

An example of the consensus model construction is presented in Fig-
ure 3.15. In it, the number of levels (Lmax) has been defined as 3. For level
1, only the edge located in the head of the E0→1 list has been selected as root
of the consensus model. For selecting the edges in level 2, they need to have
a frequency greater than or equal than the t value of the level (t = 850). In
addition, only edges whose origin vertex is equal to any destination vertex of
their previous level has been selected. The same criteria is applied for level
3 with a t value of 642.

Table 3.6: Description of variables and functions employed in Algorithm 3.

Name Description
v Vertex.
e(u, v) Edge u→ v, where u is parent of v.
E(i−1)→i The edges list from level i − 1 to i of the induced pre-

diction models for a given stage.
w(e, E(i−1)→i) Weight of an edge e. w(e, E(i−1)→i) = |{e ∈ E(i−1)→i}|.
M List of nodes that conform the consensus tree.
Lmax A defined maximum number of levels to explore for the

consensus tree construction.
tvalue(q,E(i−1)→i) Calculates the t value given the quantile (q) value and

the E(i−1)→i list.
head(E(i−1)→i) Returns and removes the first element of the E(i−1)→i

list.
add(e,E(i−1)→i) Adds e to the E(i−1)→i list.
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Algorithm 3: Relevant attributes in consensus trees.

Require: Lists E0→1, . . . , E(Lmax−1)→Lmax in descendant order and Lmax.
1: M = ∅
2: t=tvalue(0.99, X0→1)
3: if X0→1 6= ∅ then
4: e(u, v)=head(X0→1)
5: add(e, M)
6: end if
7: for i = 2, i < Lmax, i++ do
8: t=tvalue(0.9, X(i−1)→i)
9: while X(i−1)→i 6= ∅ do

10: e(u, v)=head(X(i−1)→i)
11: if w(e,X(i−1)→i) ≥ t and ∃e′ = (u′, v′) ∈M : u = v′ then
12: add(e, M)
13: end if
14: end while
15: end for
16: return M
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Experiments

It doesn’t matter how beautiful your
theory is, it doesn’t matter how smart

you are. If it doesn’t agree with
experiment, it’s wrong.

Richard P. Feynman
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78 Chapter 4. Experiments

4.1 Parameters

This section will present use of various environments, parameters and meth-
ods described in the previous chapters on the collected medical dataset for
the classification of responses to migraine treatment with BoNT-A.

4.1.1 k-fold cross-validation

To honestly measure the performance of classification algorithms, k -fold
cross-validation has been applied with k=10 in order to use the 90% of data
for training and the 10% for testing in every loop of cross-validation. This
method has been used to avoid reporting overly optimistic results of the
classification algorithms that estimate their performance with replacement
(using the training sample) (Section 2.3.3).

4.1.2 Sensitivity and specificity

The sensitivity and specificity values of prediction models are considered
because these measurements are often used and are frequently more impor-
tant than the accuracy of classification in some medical applications (Lavrač,
1999), as discussed in Section 2.3.1. Sensitivity measures the fraction of posi-
tive cases that are classified as positive, while specificity measures the fraction
of negative cases classified as negative. In the collected medical dataset, the
positive values will be patients who have a good therapeutic response (la-
beled “high”) to treatment, while negative cases will be those who get a poor
response (labeled “low”). High sensitivity values could be preferred when the
goal is to improve the selection of patients on whom to apply BoNT-A treat-
ment. In this way, doctors can assure that the economic investment to be
made for the treatment will be beneficial for the patient. High specificity val-
ues will be preferred when it is desired to avoid unnecessary costs due to the
ineffectiveness of migraine treatment with BoNT-A. For a clinic, better sensi-
tivity values will be preferred, since they would ensure that the income to be
obtained from migraine treatment with BoNT-A will correspond to customer
satisfaction. On the other hand, patients will prefer a prediction model with
a high specificity value because it could better ensure if the investment to be
made will be worthy.
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4.2 Obtaining classification models

4.2.1 One-target classification algorithms

It is convenient to start evaluating this type of classification algorithms be-
cause some multi-target classification methods need to define any of these
one-target methods as parameter. Thus, the prediction of a single response to
treatment will be compared between different one-target classification meth-
ods. In this sense, different models will be obtained for each of the treatment
stages. To select the best method, accuracy, sensitivity and specificity will be
compared for first, second and third stages of the treatment. For this exper-
iment, the feedback prediction approach will not be considered. This implies
that prediction models of a determined stage only will consider the response
outputs of that stage and not from other stages in the training step. For
example, treatment results of stages 1 and 2 will be ignored when obtaining
a prediction model to the third stage of treatment.

One-target classifiers algorithms of Table 3.5 have been considered for
this experiment. The parameters selected for these algorithms are described
in Table 4.1. They have been defined following the work of Parrales et
al. (2019d). Performance results will be obtained when using an imputed
dataset. To impute the data from the collected clinical dataset, the guide-
lines addressed in Section 3.4.4 will be followed. After that, the results with
the use of FSS and with the use of SAR encoding will be compared.

Table 4.2 presents accuracy, sensitivity and specificity values for all se-
lected classifier algorithms over each stage of treatment. IBk, RIPPER and
SVM methods have obtained the best accuracies for stages 1, 2 and 3, re-
spectively. However, their mean accuracy values do not exceed 70%. These
results mean that the response to the treatment will be correctly predicted
in 6 out of 10 patients. These results are not far from baseline accuracy, i.e.
close to 50% of accuracy, which means that the prediction of the response to
the treatment will be correct in 5 out of 10 patients. Moreover, despite the
fact that these methods have obtained high sensitivity or specificity values,
their results are not good when both metrics are taken into account together.
All in all, the results obtained could be the consequence of having irrelevant
and redundant attributes among the 62 columns of the dataset. Irrelevant
attributes do not affect the description of the class attribute. Redundant
attributes provide nothing but noise towards the description of the class at-
tribute. Removing irrelevant and redundant attributes could reduce the risk
of overfitting while improving the predictability of classification models (Shi-
laskar & Ghatol, 2013; Chormunge & Jena, 2018). Therefore, it is convenient
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Table 4.1: Parameters of one-target classifier algorithms selected for one-
target prediction.

Method Parameters
Naive Bayes No parameters
IBk k -NN=2, Linear Search algorithm
RIPPER Pruning=true, Seed=1
C4.5 Confidence factor=0.25, Seed=1
Logistic maxIts=-1, Ridge=1 · 10−8
AdaBoostM1 Classifier=Decision Stump, Iterations=10, Seed=1
Bagging bagSizePercent=100, Classifier=Random tree or C4.5, It-

erations=10, Seed=1
LMT minNumInstances=15, numBoostingIterations=-1
NBTree No parameters
Random forest (RF) Number of trees=100, Seed=1
Random tree (RT) minNum=1, Seed=1
REPTree maxDepth=-1, minNum=2
DecisionStump No parameters
SVM cacheSize=40, cost=1, kernelType=radial

to explore the use of FSS on the collected clinical dataset in the next section.
In order to remove the correlated data, the use of FSS on the collected

clinical dataset is considered. More specifically, it is important to consider the
use of the CFS method for each stage to predict. Following it, the predictive
attributes for each class attribute have been obtained independently. The
selected attributes have been the following:

• First stage: Onset age of toxin treatment, Chronic migraine, Chronic
migraine time evolution, Drugs tested before toxin, Tricyclic antide-
pressants, Vitamin B12.

• Second stage: GON, Preventive oral treatment at time of infiltration,
Tricyclic antidepressants, Gastropathy, Pneumopathy, Dermopathy.

• Third stage: Calcium antagonists, Catamenial, Concomitant oral pre-
ventive treatment, Gastropathy, Headache days per month, Analgesic
abuse.

In summary, the attributes selected for the first stage have been only
used for obtaining classifier models of the first stage. In the same way, the
attributes selected for the second and third stages have been used for building
classifier models for the second and third stage, respectively. Their results
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are presented in Table 4.3. It presents an improvement in the percentage of
accuracy, exceeding 70% in most methods for each stage, which implies a cor-
rect prediction of the response to treatment for 7 out of 10 patients for each
stage. However, the classification of high and low responses to the treatment
is not well proportioned according to their sensitivity and specificity values.
In fact, some methods obtain high percentages of specificity by sacrificing
sensitivity. For example, the Bagging (C4.5) method presents an accuracy
close to 70 % in the first stage when predicting a “high” response to the treat-
ment for almost all patients (sensitivity close to 94%). Hence, it is necessary
to obtain models that improve the prediction of high and low responses to
the treatment. All in all, these results may indicate that a deeper review of
correlated data is needed in order to get prediction models with high sensi-
tivity and specificity values. In this sense, the SAR encoding method will be
applied to the original dataset (without FSS) in the next section.

The previous selection of attributes (FSS) is not taken into account since
SAR encoding performs an attribute weighting while optimizing numeric
labels.

In this experiment, a number of 106 iterations for SAR encoding (K
parameter) has been defined considering this as a sufficient number of itera-
tions for the algorithm to converge to a good solution (Parrales et al., 2019d;
Szűcs & Balázs, 2019). The D parameter has been defined in 2 for consider-
ing two orders of decimal magnitude. “SAR (d=1)” and “SAR (d=2)” will be
the notation for prediction models improved with SAR encoding when using
one and two decimals, respectively. Their results are presented in Table 4.4
and 4.5.

On the basis of the results, it can be observed that non-deterministic clas-
sifier algorithms (RT and RF) combined with SAR encoding perform the best
in Tables 4.4 and 4.5. In fact, their accuracies are close to 85% when apply-
ing SAR with d=1. Previous results (Tables 4.2 and 4.3) show that the best
classifiers were deterministic. Then, it can be concluded that SAR encoding
becomes an important factor, as it helps to optimize non-deterministic algo-
rithms. Looking for the lowest error percentage (100-accuracy percentage),
the SA heuristic moves the solution within the search space to avoid being
caught in a local minimum, benefiting from it mostly the non-deterministic
algorithms.

Looking more closely at the results of sensitivity and specificity values of
Tables 4.2, 4.3, 4.4 and 4.5, it can be observed an overall improvement in
the classification of “high” and “low” responses to the treatment due to SAR
encoding. This implies that SAR has been the best method for finding those
correlated medical characteristics, which have not been taken into account
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in predictive models.
With the purpose of statistically validating if the improvement in classi-

fication mean accuracies due to the FSS and SAR methods (d=1 and d=2)
is significant, the Kruskal-Wallis (non-parametric) test was carried out be-
tween the accuracy values of Tables 4.2, 4.3, 4.4 and 4.5 for all stages. The
Kruskal-Wallis test consist of a non-parametric test that can be used to de-
termine the existence of statistically significant differences between three or
more groups of an independent variable on a continuous or ordinal dependent
variable. Therefore, because there are 4 techniques to compare, this test will
be applied. This test gave us the results of p = 1.791 · 10−8, p = 4.143 · 10−9
and p = 2.224 ·10−8 for the first, second and third stages, respectively. These
values, being less than 0.05, guarantee us that there is a significant difference
in the distributions of accuracy mean values among groups. The distribution
of classification mean accuracy obtained under the baseline, FSS and SAR
methods (d=1 and d=2) used in Tables 4.2, 4.3 4.4 and 4.5 for all stages are
presented in Figure 4.1. It can be observed a global improvement in accu-
racy due to the application of SAR (d = 1) with respect to FSS and baseline
for all stages. In addition, SAR (d = 2) and FSS improve baseline results.
However, there is no great improvement in results with respect to FSS after
using SAR with two decimals (d = 2) in the second and third stages.

For detecting which pairs of methods are significantly different, the cri-
teria exposed by García & Herrera (2008) has been considered. It consists
in the use of Nemenyi’s (post-hoc) test in order to know which group pairs
differ after a statistical test of multiple comparisons. In this experiment, the
Kruskal-Wallis was the selected test for performing multiple comparisons.
The adjusted p-values are compared against a significance level of α = 0.05
to reject or accept the null hypothesis that a pair of methods perform equally.

Table 4.6 shows the results of the Nemenyi post-hoc test. According to
this test, the classifiers improved with SAR (d=1) had a highly significant
difference (p < 0.01) in comparison to baseline classifiers for all stages. More-
over, SAR (d=1) had a highly significant difference (p < 0.01) in comparison
to classifiers improved with FSS with the exception of a significant difference
(p < 0.05) achieved for the third stage. It should also be noted that although
SAR (d = 1) improves the results achieved by SAR (d = 2), the test has not
achieved significant differences between both methods for all stages. How-
ever, SAR (d = 2) has only significantly improved the FSS results for the first
stage (p < 0.05). Regarding FSS, it can be contemplated that its use signif-
icantly improves baseline results for the second and third stages (p > 0.05).
All in all, it can be concluded with this experiment that the use of SAR (d
= 1) is recommended, since it has achieved significant improvements with
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respect to the FSS and baseline results.
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(a) First stage.
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(b) Second stage.
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(c) Third stage.

Figure 4.1: Distribution of classification mean accuracy values obtained un-
der the Baseline, FSS and SAR methods used in Tables 4.2, 4.3, 4.4 and 4.5
for all stages.
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4.2.2 Parallel MOEAs

At this point, the RT algorithm has achieved the best accuracy results when
SAR (d = 1) is applied for improving accuracy in prediction models. How-
ever, a study towards the multiobjective optimization must be considered
because a MOEA instead of SA heuristic must be selected in order to apply
the panoramic prediction approach. MOEA implies the optimization of all
stage accuracies in the predictive models.

Regarding the training of the predictive models for this experiment, it
is important to note that the multi-target classification methods will not be
considered here. The reason is because this experiment will look for that
MOEA that achieves the best performance. Thus, one prediction model for
each stage of the treatment will be obtained. Thus, MOEA methods will be
in charge of looking for that set of weights for the attributes that optimize
the accuracy of the three predictive models simultaneously.

Vectors of attribute weights will be the candidate solutions to be found by
the use of MOEAs. These weights will be multiplied by the numerical labels
of the collected medical dataset and their result will be rounded as presented
in Figure 3.5. The one decimal rounding (d = 1) will be considered given
the good results shown in the previous experiment when SAR (d = 1) was
applied together with RT.

For determining which of MOEAs has the best performance, two criteria
will be considered: (1) the execution time and (2) the accuracy achieved by
prediction models with solutions provided by MOEAs. In this sense, the
MOEA framework presented by Hadka (2019) will be used. More specifi-
cally, those MOEAs that can be parallelized for diminishing the computa-
tional cost when optimizing accuracies in prediction models will be exam-
ined. Those selected algorithms are: GDE3 (Kukkonen & Lampinen, 2005),
PESA2 (Corne et al., 2001), SMPSO (Nebro et al., 2009), NSGA-II (Deb et
al., 2002), NSGA-III (Deb & Jain, 2014) and SPEA2 (Zitzler et al., 2001).
For completing the comparisons, SAR encoding results of Table 4.4 will be
presented. It is important to note that that the SA implementation used in
SAR encoding was not implemented with parallel execution support (De Vi-
cente et al., 2000). The number of threads that has been considered in parallel
MOEAs has been: 1, 2, 4, 6 and 8. The machine used to perform the ex-
periments consists of an Intel Core i7-4790 CPU running at 3.60GHz with 4
cores and 2 threads/per core and 16GB of RAM. The number of iterations of
the experiment was established in 106 as in Parrales et al. (2019d); Szűcs &
Balázs (2019). The population size for MOEAs was established in 100. This
has value has been selected in order to guarantee the diversity of solutions
while avoiding a slow convergence of individuals (Chen et al., 2012; Zitzler
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& Thiele, 1999).

4.2.2.1 Runtime

Table 4.7 presents the execution time of the previously employed algorithms
following the hour:minutes:seconds format. It is important to note that the
applied SA method (De Vicente et al., 2000) does not perform a multiobjec-
tive optimization. The SA time executions presented in Table 4.7 refer to
the time taken by the feature weighting task for each stage of the BoNT-A
treatment and not for all stages at the same time. SA results are presented
only for comparison purposes.

Table 4.7: Runtime achieved by SA and MOEA parallel algorithms with RT.

Methods Number of threads
1 2 4 6 8

SPEA2 8:16:53 4:06:08 2:30:37 2:02:08 1:54:20
NSGAIII 8:12:20 4:05:14 2:28:52 2:02:17 1:55:32
NSGAII 8:12:04 4:05:12 2:28:48 2:02:05 1:54:35
SMPSO 8:13:02 4:06:16 2:29:04 2:07:27 1:59:15
PESA2 8:16:53 4:07:01 2:29:27 2:05:33 1:58:19
GDE3 8:13:02 4:06:08 2:29:45 2:02:39 1:54:38
SA-stage 1 4:13:05 NA NA NA NA
SA-stage 2 4:32:31 NA NA NA NA
SA-stage 3 4:19:25 NA NA NA NA

According to the results of Table 4.7, apparently, MOEAs have a longer
execution time than SA when only one thread is used. However, SA only
performs accuracy optimization for a single stage. Therefore, the real total
time employed by SA is the sum of the times of the first, second and third
stages. This value is around 4 hours higher than the employed by the MOEAs
with 1 thread.

Furthermore, it can be observed that parallel MOEAs executed on two or
more threads have required less time than the SA algorithm. Parallel MOEAs
are benefited from the use of more threads to distribute the computational
load in the feature weighting task. However, it is important to note that the
time difference between 6 and 8 threads is much smaller than the difference
between 1, 2 and 4 threads. Because of that, it is important to detect any
significant difference between the time spent using 6 and 8 threads. In this
sense, the Wilcoxon (non-parametric) test was carried out between the time
in seconds achieved when using 6 and 8 threads. The Wilcoxon test has been
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considered because there are two groups of results to be contrasted, which
are the obtained results when using 6 and 8 threads. The adjusted p-value
is compared against a significance level of α = 0.05 to reject or accept the
null hypothesis that MOEAs perform with a significant difference in time.
The obtained p-value of 0.003948, being less than 0.05, guarantee that there
is a significant difference in runtime due to the use of 8 threads. It can be
concluded that the number of threads improves runtime.

From Table 4.7, it can be seen that SPEA2 is the MOEA that has had
the best execution time when using 8 threads. However, when applying
the Wilcoxon test between 8 thread MOEA’s values in seconds, a p-value
of 0.4159 is obtained. This value, being more than 0.05, does not guarantee
that there is a significant difference between execution times of MOEAs. This
fact indicates that there is no MOEA that significantly improves others’ time.
Therefore, it is necessary to review their accuracy results on predictive models
to select the best MOEA method.

4.2.2.2 Accuracy

Table 4.8 presents the best accuracy percentages values when predicting the
treatment response to BoNT-A for the first, second and third stages. To
present the results of this table, only non-dominated solutions that have the
highest accuracies (lowest errors) have been selected for each algorithm.

According to the results, it can be observed that high values of accuracy,
sensitivity and specificity are obtained both when the MOEA methods are
applied and when SA is used. According to the results shown in this table,
SA achieves the best accuracy (84.93%) for stage 1 while NSGAII achieve the
best performance for stage 2 and 3. It means accuracies of 85.96% and 84.88%
for stages 2 and 3, respectively. In all these best results, percentages higher
than 80% were obtained as values of sensitivity and specificity, indicating a
low number of false positives and false negatives.

To compare the runtime and the error obtained by each of the MOEAs
contained in Table 4.8, Figure 4.2 is presented. Figures 4.2a and 4.2b depict
the errors and runtimes produced during the feature weighting task for the
first and second stages of the BoNT-A treatment, respectively. In addition,
the solutions provided by SA have been considered in both figures, since
they present the results of each stage separately. In the figures, the best
points in terms of accuracy are marked with red circles for MOEAs. Blue
circles are used to present best results achieved by SA. It is important to note
how the charts show a better performance for MOEAs when using 6 and 8
threads than when using 1, 2 and 4 threads (both in runtime and accuracy),
since the error for each stage decreases when each one is considered sepa-
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rately. In Figure 4.2a, it can be observed that SA achieves the best accuracy
(84.93%) when only stage 1 is considered. However, SA implementation per-
formed (De Vicente et al., 2000) does not support multiobjective optimization
or parallelism, as it has been commented in Section 3.2.5.2. Thus, it takes
more time in the feature weighting task (close to 4 hours) without being able
to minimize errors for both stages at the same time, while the MOEAs are
able to do this. One of them, GDE3, achieves an error of 17.44% for stage 1,
but it gets an error of 18.60% for stage 2 (see Figure 4.2b), being surpassed
by NSGAII and PESA2 in that stage. These last two obtain the best error
minimizations for stage 2 (errors of 14.04% and 15.12%, respectively) and
stage 3 (errors of 15.12% and 16.29%, respectively), but they are surpassed
by SA in stage 1. In stages 2 and 3, SA cannot achieve an error as low as
GDE3 and NSGAII, despite its low error achieved in stage 1.

Given that it is difficult for us to visualize which method maximizes the
accuracy (i.e., minimize the error) for both stages simultaneously, Figure 4.3
is presented considering only the MOEAs. It is important to note that SA is
not taken into account in Figure 4.3 since it does not minimize both stages
simultaneously. As can be seen in this figure, the best tradeoff is the one
that minimizes the error for both stages, which is achieved with NSGAII
when performing on 8 threads (marked with a red circle). To see if there is
a significant difference between the accuracy values of each stage obtained
by the MOEAs and SA methods, the Wilcoxon test is applied. The adjusted
p-value is compared against a significance level of α = 0.05 to reject or accept
the null hypothesis that MOEAs and SA perform with a significant difference
in accuracy. The p-values of 0.3168, 0.4115 and 0.5091 are obtained when
comparing the accuracy values of first, second and third stages, respectively.
These p-values have exceeded the 0.05 threshold, which means that the hy-
pothesis of having a significant difference in accuracy has been rejected. It
can be concluded that NSGAII is the MOEA that achieves the best perfor-
mance when minimizing the prediction error. However, there is no significant
time and accuracy difference with other MOEAs.

4.2.3 Panoramic prediction

The purpose of this experiment is to obtain a panoramic model with the best
accuracy. As mentioned in Section 3.3.1, the panoramic prediction approach
makes use of multi-target algorithms. In this sense, PCT, BR and HOMER
have been employed, following the recommendation given by Madjarov et al.
(2012). Regarding their one-target classification parameter, the RT method
(RT) has been selected due to the accurate results achieved in Table 4.4.
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Figure 4.2: Time vs Error in 1st, 2nd and 3rd stages.
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Figure 4.3: Best points for each thread setting and MOEA method.
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NSGAII has been selected as heuristic method for AMOR encoding due to
the good results achieved in Table 4.8. More details about the parameters
of the multi-target classifiers used in the experiments are presented in Ta-
ble 4.9. The baseline results (without any rounding) are shown in Table 4.10.
Also, FSS has been used for evaluation, applying the CFS method with the
following parameters: 1 as the number of threads to use, 1 as the size of
the thread pool, and best-first as the search method. The parameter D is
set to 3 because three decimal magnitude orders have been considered as in
Parrales et al. (2019c).

Table 4.9: Description of the multi-target classifier parameters used in ex-
periments.

Classification algorithm Parameters
Predictive clustering tree (PCT) classifier=RT, Heuristic = Gain ratio

Binary relevance (BR) classifier=RT
HOMER type=Random, classifier=RT, Multi-label learner=BR

With the purpose of comparing the performance of the methods presented
in Table 4.10, the Nemenyi’s test procedure will be selected to conduct all
pairwise comparisons in a multiple comparison analysis. The idea is to detect
which technique has a statistically significant difference when outperforming
the other methods. By observing the p-values of the tests from Tables 4.11,
4.12 and 4.13, the conclusions are: (1) The use of AMOR encoding with
d = 1 produces a significant improvement in the accuracy values of the PCT,
BR and HOMER methods without FSS (baseline), and with it for the first,
second and third stage with the exception of BR with FSS. (2) The use of
AMOR encoding in PCT with d = 1 produces significant improvements in
the baseline and FSS values of the BR and HOMER methods for the first,
second and third stages. (3) The use of AMOR encoding with d = 2 and
d = 3 does not produce significant improvements in the accuracy values of
PCT, BR and HOMER baseline and FSS for the first, second and third
stages. According to these results, the highest accuracies are obtained when
there are more perturbations in the numerical labels, e.g. rounding to the
tenth (d = 1) instead of the hundredth (d = 2). It can be inferred that
AMOR encoding then becomes an important factor, as it helps to optimize
the prediction models, moving the solution within the search space to avoid
being caught in a local minimum.

The aforementioned tables show that 73.26%, 75.58% and 74.61% are
the best mean values of accuracy for the first, second and third stages of
treatment, and they were obtained when performing PCT with d = 1. These
results imply that without applying the treatment, it can be predicted how it
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will work at each stage for three out of four patients. In addition, 0.72, 0.73
and 0.73 are the mean sensitivity values obtained when d = 1 for the first,
second and third stages of treatment, respectively, indicating a good detec-
tion of patients who respond positively to treatment. Moreover, the model
obtained with PCT obtains mean specificity values of 0.75, 0.76 and 0.75 for
the first, second and third stage of the treatment, which indicates that this
model is good when detecting patients who respond negatively to all stages
of treatment. Results allow to conclude that panoramic prediction allows the
doctor to provide an insightful preliminary criterion for the response to the
treatment and make the respective medical decisions.

4.2.4 Feedback prediction

The purpose of this experiment is to improve the prediction of the therapeutic
response to BoNT-A through the use of known information. This information
is the response that the patient has had to the previous stages of treatment.
Hence, it is not known before the first stage.

As explained in Section 3.3.2, this approach of prediction implies the use
of one-target classification algorithms. In this sense, SAR encoding will be
used to improve accuracy results in predictive models due to the good results
achieved in Table 4.4. In this phase of the methodology, only rounding to
the tenth will be considered, given the good results obtained in the previous
experiment. To do this, the parameter D has been set to 1. Also, CFS will be
the FSS method used to compare with SAR encoding results in this experi-
ment due the significant differences with baseline results achieved in 4.6. It is
set in the same way as described in Section 4.2.3. RT will be the one-target
classification algorithm to consider given the high accuracies obtained in Ta-
ble 4.4. Results will be obtained after imputing the initial clinical dataset
following the guidelines addressed in Section 3.4.4. The obtained results are
presented in Table 4.14. To make comparisons with results obtained by RT
with SAR rounded to one decimal (RT+SAR with d = 1) and FSS, their
results of Tables 4.4 and 4.3 have been included in Table 4.14 as “Single”
prediction approach.

With the purpose of verifying whether the improvement in classifica-
tion due to the feedback prediction approach is statistically significant, the
Wilcoxon (non-parametric) test was carried out between the accuracy values
of RT+SAR and the RT+FSS methods under feedback and single predic-
tion approaches when using 10-fold cross validation. The Wilcoxon test has
been considered because there are two methods to be contrasted, which are
the feedback and single prediction approaches. The adjusted p-values are
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compared against a significance level of α = 0.05 to reject or accept the
null hypothesis that prediction approaches performs equally. The obtained
p-values were 0.009409, 0.0186 and 0.01383 for the first, second and third
stages of the treatment prediction, respectively. These values, being less
than 0.05, guarantee that there is a significant difference in the distributions
of values between the two prediction approaches. Therefore, results allow
to conclude that the feedback prediction approach improves the results ob-
tained by incorporating into the predictive model the therapeutic responses
that are already known so far.

4.3 Dealing with missing values

Until now, the experiments have made use of imputed data in general, con-
sidering all the records to carry out the imputation. The purpose of this
section is to experience the use of a more specific imputation. That is, by
using a hierarchy of models that takes into account the number of missing
values (NAs) of each record. Since not all records in the group will have the
same number of NAs, the use of a fuzzy selector to establish the membership
of a medical record to a certain model has been proposed in Section 3.4.
Thus, NAs are imputed taking into account only the medical records of their
respective groups. The use of the MVDMS2 method for dealing with NAs
has been proposed for it. Regarding its parameters, 3 has been defined as the
number of groups (G parameter) in order to categorize the records accord-
ing to their low, medium and high level of NA cells. The dataset has been
split using 75% for training and 25% for testing the hierarchical model. The
training dataset has been split into training and validation when using the
k-fold validation approach. The table B described in Figure 3.9 is generated
from the training dataset. This table is used for clustering the records by
their NA values when applying the k-medians clustering with k = G.

With the purpose of building a fuzzy selector that considers the number
of NAs in new records when assigning the correspondent model, the FURIA
algorithm has been applied to the Tmap table described in Section 3.4.3 with
the following parameters: 3 folds for pruning (the rest for growing the rules),
2 as the number of optimization runs, 2 as the minimum total weight of the
instances in a rule and 2 as the number of decimal places to be used for the
output of numbers in the model. One rule per model with an accuracy of
85.52% has been obtained with the FURIA algorithm. Regarding accuracy,
it is necessary to clarify that the purpose of these rules is not to classify treat-
ment responses, but to build a fuzzy selector that assigns the corresponding
model. The rules R1, R2 and R3 are defined according to the number of
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missing values in the interval [0,14], where:

• R1: If the number of NAs falls in the region defined by the trapezoidal
membership function with [0, 0, 3, 4], then the selected model will be
“model1” with a CF of 0.83,

• R2: If the number of NAs falls in the region defined by the trapezoidal
membership function with [3, 4, 14, 14], then the selected model will
be “model2” with a CF of 0.85,

• R3: If the number of NAs falls in the region defined by the trapezoidal
membership function with [0, 0, 11, 12], then the selected model will
be “model2” with a CF of 0.78,

where 14 is the maximum number of NAs found in the medical registers, CF
is the certainty factor and [a,b,c,d] represents the boundaries of the trape-
zoidal region (Hühn & Hüllermeier, 2009). These functions are graphically
represented in Figure 4.4. If the number of NAs falls in the middle of three
regions as in the case of NAs = 3, the selected model will be the model with
the highest CF value. After that, the missing values are replaced with the
values obtained from multiple imputation within their group.

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 NAs

CF

CF= 0.83

Model 1

Model 2

CF= 0.85

CF= 0.78

Model 3

Figure 4.4: Membership functions of the fuzzy model selector

The purpose of the next experiments is to demonstrate whether dealing
with missing values helps to improve the results obtained when a general im-
putation of the medical records has been carried out. In this sense, panoramic
and feedback prediction approaches will be taken into account due to the
good accuracy results achieved in the previous section. This implies that
the groups obtained when applying the fuzzy rules on medical records and
after imputing them will be trained using panoramic and feedback prediction
approaches.
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4.3.1 Panoramic prediction

The fuzzy selector of Figure 4.4 has been applied to the records. The groups
obtained are trained using the PCT+AMOR (d=1) combination due to its
good results achieved as shown in Table 4.10. Accuracies achieved by the
three hierarchical models (models 1, 2 and 3) generated when considering the
NA number are presented in Table 4.15. The best results are obtained when
performing a hierarchy of PCT+AMOR prediction models instead of only
PCT+AMOR combination of Table 4.10, with a mean accuracy of 85.14%,
88.35% and 85.73%, as shown in the row labelled “Hierarchy” in Table 4.15.
Moreover, the high values of sensitivity and specificity indicate the goodness
of the hierarchy model when predicting the “high” and “low” responses to
treatment.

With the purpose of verifying if the improvement in classification due
to the use of a hierarchy of models in panoramic prediction is statistically
significant, the Wilcoxon test was carried out between the accuracy values of
the hierarchical model and panoramic prediction results of the PCT+AMOR
(d=1) combination presented in Table 4.10. The Wilcoxon test has been
selected because there are only two methods to be tested, which are the
accuracy values with and without a hierarchy of models. The results of
models 1, 2 and 3 are not taken into account in the statistical validation since
they are part of the final hierarchical model built in the MVDMS2 process
presented in Figure 3.14. The adjusted p-values are compared against a
significance level of α = 0.05 to reject or accept the null hypothesis that a
pair of methods perform equally. The p-values of 0.0001571, 0.0001571 and
0.0001571 were obtained for the first, second and third stages of the treatment
prediction, respectively. These values, being less than 0.05, guarantee that
there is a significant difference in the distributions of values between the two
methods. With the results obtained, it can be concluded that the use of a
hierarchy of models helps to improve the accuracy in panoramic prediction
models, since it takes into account the medical information available of each
patient.

4.3.2 Feedback prediction

As in the previous experiment, the fuzzy selector of Figure 4.4 has been
applied to the medical records. The groups obtained are trained using the
RT+SAR combination due to its good results achieved in Table 4.14. Accura-
cies achieved by the three hierarchical models (models 1, 2 and 3) generated
when considering the NA number are presented in Table 4.16. The best
results are obtained when performing a hierarchy of RT+SAR prediction
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Table
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F
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A
ccuracy

Sensitivity
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A
ccuracy
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A
ccuracy

Sensitivity
Specificity

P
C

T
+

A
M

O
R

M
odel1

81.25±
1.23%

85.71±
1.05%

77.78±
2.35%

84.37±
2.69%

86.67±
2.33%

82.35±
1.89%

85.16±
2.52%

75.14±
3.45%

93.75±
2.26%

M
odel2

87.87±
2.68%

82.35±
2.13%

93.75±
2.47%

90.90±
1.91%

94.11±
1.34%

87.51±
0.48%

84.85±
2.25%

77.78±
2.35%

84.21±
1.13%

M
odel3

81.08±
1.42%

76.15±
2.14%

84.34±
1.29%

83.78±
2.62%

88.47±
1.35%

78.94±
1.05%

81.25±
0.94%

83.32±
0.85%

77.78±
2.35%

H
ierarchy

85.14±
1.29%

88.69±
2.05%

81.98±
1.89%

88.35±
2.17%

86.67±
1.95%

89.82±
2.14%

85.73±
1.53%

85.92±
1.86%

84.97±
2.23%
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models instead of only RT+SAR combination of Table 4.14, with a mean
accuracy of 92.11%, 94.23% and 96.05%, as shown in the row labelled “Hier-
archy” in Table 4.16. Moreover, the high values of sensitivity and specificity
indicate the goodness of the hierarchy model when predicting the “high” and
“low” responses to treatment.

In order to check whether the improvement in classification due to the
hierarchical models in feedback prediction is statistically significant, the
Wilcoxon (non-parametric) test was carried out between the accuracy values
of the hierarchical model and feedback prediction results of the RT+SAR
combination presented in Table 4.14. This test has been selected because
there are only two prediction approaches to be compared, the hierarchical
and the feedback approaches, both with RT+SAR. The results of models 1,
2 and 3 are not taken into account in the statistical validation since they are
part of the final hierarchical model built in the MVDMS2 process presented
in Figure 3.14. The adjusted p-values are compared against a significance
level of α = 0.05 to reject or accept the null hypothesis that a pair of meth-
ods perform equally. The p-values of 0.0006697, 0.0003811 and 0.0001571
have been obtained for the first, second and third stages of the treatment
prediction, respectively. These values, being less than 0.05, guarantee that
there is a significant difference in the distributions of values between the two
methods. It is concluded that the use of a hierarchy of models helps to im-
prove the accuracy in feedback prediction models since it is better suited to
the medical information available in the medical dataset.

4.4 Obtaining relevant medical attributes

Section 3.5.2 discusses the importance of studying a consensus model with
the prediction models built for the first, second and third stage of the BoNT-
A treatment. In this research work, the hierarchical models have proved to
be the best classifiers for all stages of treatment when using RT as classifica-
tion algorithm and AMOR and SAR encoding for panoramic and feedback
prediction approaches, respectively.

4.4.1 Extracting relevant attributes

With the purpose of extracting relevant attributes from prediction models,
many prediction models will be induced. Moreover, only the most frequent
attributes for each level of the studied models will be taken into account.
An important point to emphasize is that the obtained ensemble trees are
not intended to be a prediction model of the treatment response for each
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Table
4.16:

E
stim

ated
perform

ance
m
etrics

(m
ean
±

std
deviation)

of
hierarchy

m
odels

w
ith

D
=

1
and

G
=

3
using

feedback
prediction

and
10-fold

cross
validation.

T
he

hierarchy
results

are
highlighted

in
bold.

A
lgorithm

s
M
odel

F
irst

stage
Second

stage
T
hird

stage
A
ccuracy

Sensitivity
Specificity

A
ccuracy

Sensitivity
Specificity

A
ccuracy

Sensitivity
Specificity

RT+SAR

M
odel1

87.51±
2.14%

86.67±
1.15%

88.23±
0.78%

93.75±
1.05%

87.51±
0.48%

98.12±
0.24%

93.33±
0.92%

88.36±
1.26%

97.24±
1.05%

M
odel2

90.91±
2.38%

88.23±
1.59%

93.75±
2.13%

93.93±
1.45%

94.11±
1.23%

93.61±
1.78%

90.91±
2.05%

93.75±
0.63%

88.23±
1.83%

M
odel3

91.89±
1.28%

88.88±
1.45%

94.73±
0.78%

94.59±
1.78%

97.16±
0.23%

89.47±
1.05%

97.29±
0.32%

94.44±
1.02%

98.12±
0.24%

H
ierarchy

92.11±
2.12%

93.49±
2.16%

90.65±
2.09%

94.23±
2.17%

92.36±
2.13%

95.94±
2.21%

96.05±
2.21%

98.12±
0.24%

94.53±
0.71%
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treatment stage. On the contrary, they will allow the study of the most
frequent clinical attributes and the relations that appear in the majority
of the selected prediction models (only prediction models with the highest
accuracies).

Many classification trees will be induced by the resampling method (using
k -fold cross validation with k=10) with the AMOR and SAR encoding (used
for the experiments in Section 4.3). These relevant attributes are contrasted
with the important features obtained when using the FSS methodology in
Section 4.2.1. The prediction models selected for induction will be the models
(1, 2 and 3) that are part of the hierarchical models presented in Tables 4.15
and 4.16 for panoramic and feedback prediction approaches, respectively.
5000 prediction models for each treatment stage will be generated from 50
solutions found by SA and MOEA heuristic methods (weighted attribute
vectors), which make it possible to achieve the highest accuracies for all
treatment stages. Regarding the root vertex of the ensemble tree, the 0.99
quantile will be applied as the t value.

Table 4.17: Top-10 clinical attributes for the first level (root) of feedback
prediction model 1 on the first stage.

Feature Frequency
Platelets 1673

Hemoglobin 1012
Emergency days by month 752
Migraine days by month 516
History of migraine status 500

1st grade family with migraine 482
Creatinine 464

Unilateral pain 348
GON 303

Onset age of toxin treatment 241

For example, inducing many RTs from feedback prediction model 1 of
Table 4.16, this value was equal to 1449.08 for the first treatment stage. In
this way, Platelets was selected as the root of the consensus tree for the first
stage because of its high frequency (1673 times). In a similar way, t is defined
as the 0.9 quantile from the empirical observation on the edge frequency
distributions in the other levels of the ensemble tree for all treatment stages.
In this way, only the attributes with occurrences higher than 0.9 are retained.

Figure 4.5 presents the most frequent clinical attributes from feedback
prediction model 1 of Table 4.16. An important aspect to note is that the
Lmax value has been defined as 3 for all treatment stages. This value was
established by considering the comprehension of the resultant consensus tree
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as a primordial criterion. Higher values of this parameter would allow to see
more attributes, but comprehension could decrease when contrasting these
attributes with those obtained with the FSS method. In this sense, a con-
sensus tree with a low number of leaves is more understandable.

Platelets 
1673 

821 

514 

Concomitant treatment 
with statins 

 Creatinine 

279 

Unilateral pain 

GON 

654 

235 

Onset age of toxin 
administration 1st grade family 

with migraine 

Serum iron 

132 

126 

PARA TESIS-
cap04 

Figure 4.5: Consensus tree using RTs from feedback prediction model 1 of
first stage of Table 4.16.

For the hierarchy of panoramic prediction models (PCT + AMOR en-
coding with d = 1), the medical attributes are the same in the three stages,
given that a consensus model is obtained from the multi-target prediction
models. All the relevant medical attributes from the 13 consensus models
are presented in Table 4.18. The selected features when applying FSS in Sec-
tion 4.3.1 are also presented in Table 4.18. The “GON”, “Analgesic abuse”,
“1st grade family with migraine” and “Drugs tested before toxin” medical
attributes have been selected for the consensus models 10, 9, 8 and 6 times,
respectively. Moreover, “1st grade family with migraine” and “Chronic mi-
graine time evolution” have also been selected for the majority of the feedback
consensus models for the first and second treatment stage, respectively. Fur-
thermore, “Headache days per month”, “Unilateral pain” and “Migraine days
per month” are present in the majority of the third stage consensus models.
Finally, “GON”, “Drugs tested before toxin” and “Chronic migraine time evo-
lution” have also been selected by FSS, which was described in Section 4.2.1.

To summarize, the medical attributes that appear at least once for each
stage in the consensus models of the feedback prediction and appear at least
one of the panoramic consensus models are: “Chronic migraine time evo-
lution”, “GON”, “Hemoglobin”, “Analgesic abuse”, “Serum iron”, “1st grade
family with migraine”, “Retroocular component”, “Chronic migraine time evo-
lution”, “Headache days per month”, “Unilateral pain”, “Platelets”, “Anxiety”,
“Concomitant oral preventive treatment” and “Onset age of toxin treatment”.
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These are the most important medical attributes among all the relevant at-
tributes from the consensus models presented in Table 4.18.

4.4.2 Medical discussion

Some predictors of response to treatment with BoNT-A are in agreement with
current publications, namely: migraine time evolution (Eross et al., 2005;
Domínguez et al., 2018), unilateral pain (Domínguez et al., 2018; Mathew
et al., 2008a), analgesic abuse (Freitag, 2010), days of headache (Domínguez
et al., 2018) and the retroocular component (Lin et al., 2014). Moreover,
these articles continue supporting the approach of not delaying treatment
with BoNT-A in those patients who have a diagnosis of chronic migraine,
who will improve more than those with a shorter evolution time and with
a profile of lesser severity of the migraine. Following this line of thought,
it is not strange to find that the presence of status, the number of triptans
per month or the number of previous tested drugs, are also predictors of
response.

A interesting fact not assessed so far is the predictive nature of the re-
sponse in patients who take concomitant oral preventive treatment. Although
it is not described in the literature, it is possible that the variables such as
relatives in the first degree, the catamenial component and the presence of
sensory alterations such as sono or photophobia, are predictive, either be-
cause they really assure that we are dealing with a patient with chronic
migraine, a fact whose diagnosis is not always easy when a patient presents
daily headaches and the semiological profile is no longer so pure.

A clinical relation with the analytical parameters (liver profile, iron,
platelets, creatinine, hemoglobin) and associated pathologies such as der-
mopathy, gastropathy, dyslipidemia, hypertension and lung disease has not
been found. But these points open up future lines of research with more tar-
geted prospective studies. Relevant attributes also agree with the literature
that neither gender nor nausea or vomiting (Jakubowski et al., 2006) have
been predictive.

To conclude, several of the medical attributes that are relevant to predict
the treatment response to BoNT-A are coherent with the medical literature.
Those are: migraine time evolution, unilateral pain, analgesic abuse, days of
headache and the retroocular component. Other medical attributes revealed
as relevant by the consensus models as “Concomitant oral preventive treat-
ment” or “Platelets” have no medical explanation yet. Therefore, they should
be studied in the future with more specific prospective studies.



Chapter 5

Conclusions and future work

I am slowly coming to the conclusion
that it’s more important to learn to work

with what you’ve got, under the
circumstances you’ve been given, than

wishing for different ones.

Charlotte Eriksson

5.1 Conclusions

This Ph.D. Thesis has explored some data processing methodologies in the
area of e-Health for categorizing therapeutic responses in patients with mi-
graine. In a real e-Health scenario, this work has focused on the prediction
of the response to the treatment of migraine through the use of retrospective
medical records collected from Hospital Clínico Universitario in Valladolid
and Hospital Universitario de La Princesa, in Madrid.

In this research we pose and answer the following questions: is it possible
to predict the response to every stage of the BoNT-A treatment for migraine?
Does a predictive model for the BoNT-A treatment in migraine exist? How
do these models respond under missing values? Is it possible to reveal those
medical factors that make it possible a high response to the BoNT-A treat-
ment? The medical factors used to predict the response of the treatment are
coherent with the knowledge of medical experts? To answer these questions,
a methodology has been developed, which considers the following issues:

1. The preprocessing of the data in order to mitigate some limitation
problems that are commonly found in clinical datasets, like the pres-
ence of many attributes or medical factors present in a low number of
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registers (Cabitza et al., 2019).

2. A panoramic prediction for allowing doctors to decide whether the ad-
ministration of the treatment will be beneficial without involving un-
necessary treatments.

3. A feedback prediction for those situations when the treatment has be-
gun and the results of some stages are known.

4. The extraction of relevant medical attributes for allowing to verify
whether prediction models are coherent with the knowledge of med-
ical experts.

To address the heterogeneous clinical data provided by the doctors of the
two hospitals, a numerical encoding approach is considered. In this sense, the
SAR encoding is proposed for finding a better representation of the numeric
labels. This technique considers the Simulated Annealing (SA) algorithm
and a rounding operation to perform small numeric label perturbations for
each column of the medical dataset, producing a data transformation for
achieving high prediction accuracies without adding more columns to the
dataset.

Because the proposed SAR encoding considers a SA implementation that
does not allow the optimization of multiple objectives, the minimization of
the prediction error for all stages is not solved simultaneously. For solving
this issue, the use of MOEAs metaheuristics has been considered for adapting
the SAR encoding to a multi-target prediction scenario. In this way, the SA
metaheuristic is applied only when improving numeric labels in one-target
prediction scenario, while MOEAs are applied for a multi-target prediction
scenario. This adaptation of the SAR encoding to the multi-target scenario
has been called AMOR encoding.

To address the existence of missing values, the imputation of data has
been considered in this Thesis. For this reason, a hierarchy of models has
been proposed in order to handle that the lack of clinical information, be-
cause it can provide useful information to build a set of prediction models.
The purpose is to adapt the prediction to the missing values appearing in the
collected clinical records. This technique considers the clustering of records
that contain similar missing values. This approach also addresses data im-
putation to fill in the missing values based on records of each group.

The results show a significant improvement in accuracy due to the use
of SAR encoding, from close to 68% (baseline) to 75% with panoramic pre-
diction, and up to around 88% when using feedback prediction. Moreover,
predictability of panoramic and feedback prediction models are improved
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when applying a hierarchy of models, obtaining accuracies close to 85% and
94% respectively. Regarding the runtime, the obtained results with the use
of MOEAs show that training times are decreased from 8 to less than 2 hours
when using 8 threads.

Through the use of the proposed methodology it has been possible to
extract the relevant attributes that allow to know in advance the response
to the treatment. These are: “evolution of migraine time”, “unilateral pain”,
“abuse of analgesics”, “days of headache” and the “retroocular component”.
All these attributes have been consistent with the expert knowledge of doc-
tors. However, other medical attributes revealed as relevant by consensus
models such as “Concomitant oral preventive treatment” or “Platelets” still
have no medical explanation. Therefore, they should be studied by doctors
in the future with more specific prospective studies in order to find out the
medical relevance of such attributes.

As it can be seen, a functional predictive methodology of therapeutic
responses for the treatment of chronic migraine based on retrospective data
has been presented. This opens the research to many other areas, which the
author believes would lead to other relevant innovative solutions.

5.2 Future work

This work marks a starting point, as well as a very promising future to
the prediction of treatment response to multi-stage treatments in chronic
diseases. However, further studies will require the collection of a high number
of medical records to give statistical rigor to the technical work done here.
A deeper study will allow the following issues:

1. The training of predictive models considering the economic cost of the
attributes. This cost could be expressed in terms of time (time for col-
lecting surveys, interviews or medical tests) or money (medical tests).

2. The clustering of migraine patients according to their phenotype values
for creating prediction models adjusted to their common characteristics.

3. Carrying out specific prospective studies that consider those medical at-
tributes that, being indicated as relevant by the methodology presented
in this Ph.D. Thesis, they have not been found relevant by doctors yet.

All these points will enhance the effort made throughout this research
work and will contribute with a grain of sand to establish closer links between
the medical and computer community.





Appendix A

Ethical consent

A.1 Description

Data were collected retrospectively from the review of the clinical histories
of patients with chronic migraine and in previous or current treatment with
BoNT-A with follow-up in the headache unit of two hospitals, the Hospital
Clínico Universitario in Valladolid and Hospital Universitario de La Princesa
in Madrid.

To this end, the approval of the ethics committee of both hospitals was
obtained under the code documents ANA-TOX-2015-1 and PI-17-832
that are provided as complementary content. These documents authorize the
investigation of the evaluation of the evolutionary characteristics of chronic
migraine at different levels of care and its influence on the response to BoNT-
A.

Both documents consider that the suitability requirements of the proto-
col in relation to the objectives of the study and the foreseeable risks and
inconveniences are justified by the researchers.

The contents of both documents are presented below:
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CEIC Hospital Universitario La Princesa. C/ Diego de León 62, MADRID (28006). Tel.: 91 520 24 76/Fax: 91 520 25 60 

ceic.hlpr@salud.madrid.org 

 INFORME DEL COMITÉ ÉTICO DE INVESTIGACIÓN CLÍNICA 

 
 Dña. Dolores Ochoa Mazarro, vocal-secretaria en funciones del Comité Ético de 
Investigación Clínica del Hospital Universitario de la Princesa 
 

Certifica 

 Que este Comité ha evaluado la propuesta del investigador principal la Dra. 
Ana Beatriz Gago Veiga (Servicio de Neurología, Hospital Universitario de La 
Princesa), para que se realice el estudio EPA-OD con código de protocolo ANA-TOX-
2015-1, titulado: Evaluación de los factores evolutivos de la Migraña crónica en los 
diferentes niveles asistenciales y su influencia en la respuesta a Onabotulinumtoxin 
A (OnabotA) y considera que: 
 

Se cumplen los requisitos necesarios de idoneidad del protocolo en relación con 
los objetivos del estudio y están justificados los riesgos y molestias previsibles 
para el sujeto. 
 
La capacidad del investigador y los medios disponibles son apropiados para llevar 
a cabo el estudio. 
 
Son adecuados tanto el procedimiento previsto para obtener el consentimiento 
informado como la compensación prevista para los sujetos por daños que 
pudieran derivarse de su participación en el ensayo. 
 
El alcance de las compensaciones económicas previstas no interfiere con el 
respeto a los postulados éticos. 
 

 
 Y que este Comité acepta que dicho estudio posautorización sea realizado por 
la  Dra. Ana Beatriz Gago Veiga (Servicio de Neurología) como investigador principal, 
en el Hospital Universitario de La Princesa. 
 

 
    Lo que firmo en Madrid a 09 de julio de 2015 
 

 
Fdo:  Dra. Dolores Ochoa Mazarro 
 Vocal-Secretaria en funciones del C.E.I.C. 
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–¿Qué te parece desto, Sancho? – Dijo Don Quijote –
Bien podrán los encantadores quitarme la ventura,

pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero
Don Quijote de la Mancha

Miguel de Cervantes

–Buena está – dijo Sancho –; fírmela vuestra merced.
–No es menester firmarla – dijo Don Quijote–,

sino solamente poner mi rúbrica.

Primera parte del Ingenioso Caballero
Don Quijote de la Mancha

Miguel de Cervantes
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