
Subgroups of even Artin groups of FC-type
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Abstract

We prove a Tits alternative theorem for subgroups of finitely generated even Artin groups of FC type
(EAFC groups), stating that there exists a finite index subgroup such that every subgroup of it is either
finitely generated abelian, or maps onto a non-abelian free group. Parabolic subgroups play a key role,
and we show that parabolic subgroups of EAFC groups are closed under taking roots.

1 Introduction

Artin–Tits groups are a class of groups defined through their presentation. The family was introduced by J.
Tits in the 1960s as generalizations of the presentation of the braid group found by E. Artin. We recall now
the definition to set our convention. Let (V,E) be a simplicial graph. i.e. V is a non-empty set and E is a
subset of {{u, v} | u, v ∈ V, u ̸= v}. Let m : E → {2, 3, . . . } be a function. The pair Γ = ((V,E),m) is called
an Artin–Tits system, and m is called the labeling of Γ.

The Artin–Tits group associated to Γ, denoted by GΓ, is the group

GΓ := ⟨V | prod(u, v,m({u, v})) = prod(v, u,m({u, v})) ∀{u, v} ∈ E ⟩,

where prod(u, v, n) denotes the prefix of length n of the infinite alternating word uvuvuv . . .

An Artin–Tits system Γ = ((V,E),m) is called even if m(E) ⊆ 2N; it is called right-angled if m(E) ⊆ {2}.
The family of right-angled Artin–Tits groups (RAAGs), is the family associated to right-angled Artin–Tits
systems. Similarly, the family of even Artin–Tits groups is the one associated to even Artin–Tits systems.

The family of RAAGs stands out as a subfamily of Artin–Tits groups from the richness of its family of
subgroups. Indeed, from the work of Agol and Wise we know that fundamental groups of hyperbolic 3-
manifolds, limit groups, or torsion one-relator groups are (virtually) subgroups of RAAGs.

Even Artin–Tits FC-type groups (EAFC groups) constitutes a family of Artin–Tits groups that contains the
family of RAAGs. An EAFC system Γ is an even system with the condition that in any triangle of Γ there
are always at least two edges labeled by 2. An EAFC group is a group associated to an EAFC system. It is
clear from the definition that all RAAGs are EAFC groups.

There are many features in common between EAFC groups and RAAGs. Typically, the Artin–Tits groups
defined over complete graphs are difficult to understand. This is not the case for EAFC groups and RAAGs.
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For instance, the combinatorics of the definition allow to show that if (Γ,m) is an EAFC system (resp.
right-angled) with Γ complete, then GΓ is isomorphic to a direct product of even Artin groups on 1 or 2
generators (resp. 1 generator). See Lemma 2.9.

Another feature in common between EAFC groups and RAAGs, is that all these groups are poly-free ([15]
for RAAGs and [4] for EAFC groups). Therefore EAFC groups are locally indicable, and in particular,
torsion-free.

In this paper we study subgroups of finitely generated EAFC groups. Before stating our main result, we recall
some terminology. A group is called large if it has a finite index subgroup that maps onto F2, the non-abelian
free group of rank 2. We use K to denote the fundamental group of a Klein bottle, i.e K ∼= ⟨x, y | x2 = y2⟩,
which contains Z2 as an index 2 subgroup.

Our main theorem is the following Tits alternative.

Theorem 1.1. Let G be the group associated to the EAFC system Γ with Γ finite. There exists a finite

index normal subgroup G0 of G of index at most
∏

e∈E
m(e)
2 , such that for any subgroup H of G one of the

following holds

(a) H is a subgroup of Zs ×Kt with s+ 2t ≤ |V | and H ∩G0 is free abelian, or

(b) H ∩G0 maps onto a non-abelian free group.

In particular, every subgroup of G is either large or virtually abelian.

Note that in the case of RAAGs one has G0 = G, as
∏

e∈E
m(e)
2 = 1. Hence, we have the following corollary.

Corollary 1.2 (Strongest Tits alternative). Any subgroup of a finitely generated RAAG, is either free
abelian, or maps onto a non-abelian free group.

This corollary was already established by the first author and A. Minasyan in [2], where the term ’Strongest
Tits alternative’ was introduced. Residually free groups satisfy (trivially) the strongest Tits alternative,
and RAAGs were the first non-trivial example of groups satisfying such dichotomy. J. O. Button showed
that tubular free by cyclic groups that act freely on a CAT(0) cube complex have a finite index subgroup
satisfying the strongest Tits alternative [5]. As far as we know, our theorem provides the first new example
of groups satisfying the strongest Tits alternative since [2, 5]. It is worth mentioning that the method on
this paper to find maps onto F2 differs from [2]; we explain this in Remark 5.5.

We remark that G0 is not uniquely defined and depends on certain choices. In fact, any subgroup as in
Definition 2.6 will satisfy the strongest Tits alternative.

One can see that the EAFC group D4 = ⟨a, b | abab = baba⟩ does not map onto F2 and ⟨ab, ba⟩ is isomorphic
to K. Thus EAFC groups do not satisfy the strongest Tits alternative and thus the necessity of pass to
finite index subgroup in Theorem 1.1.

Regarding the quantitative claims of the Theorem, in case that Γ is complete then GΓ does contain a
subgroup isomorphic to Zs ×Kt with s+ 2t = |V | (see Lemma 2.9). So the bound of the ’poly-cyclic rank’
(i.e. the Hirsch length) of virtually abelian subgroups is optimal.

Our bound for the index of G0 is optimal for RAAGs. For the general case, we do not know if the bound
is optimal. The bound of the index is related to the two-generated case. An Artin–Tits group over a graph
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with two vertices is called dihedral (as the associated Coxeter group is a dihedral group). Non-free, even
dihedral Artin–Tits groups have the following presentation

D2n = ⟨a, b | (ab)n = (ba)n⟩.

An important observation is that D2n contains a normal subgroup H ∼= Fn×Z (Lemma 2.5), and G/H ∼= Cn,
a cyclic group of order n.

This subgroup H is exactly a the subgroup G0 of the theorem. Thus for D2n any subgroup has an index n
subgroup that is a subgroup of Fn × Z, and hence this index n subgroup is either a subgroup of Z2 or maps
onto F2.

Other Tits alternative style theorems are known for Artin–Tits groups. Recall that the original theorem of
Tits, that gives the name to the Tits Alternative, says that subgroups of linear groups are either virtually
solvable or contain F2. From that, and linearity of Artin–Tits groups of spherical type [6, 18], we see that
spherical Artin–Tits group satisfy this alternative. For Artin–Tits groups of FC–type, this dichotomy (the
original for Tits) was proved by A. Martin and P. Przytycki [21]. For 2-dimensional Artin groups, there are
alternatives that restrict the classes of virtually solvable groups that can appear as subgroups [23, 22] to
only Z,Z2 and K in certain cases. The full Tits alternative for 2-dimensional Artin groups was settled by A.
Martin in [20]. None of the mentioned results prove that subgroups containing non-abelian free subgroups
are large, besides [2].

Theorem 1.1 uses the action of GΓ on a tree with parabolic stabilizers. Let Γ be an Artin–Tits System and
GΓ the associated Artin–Tits group. For S ⊆ V , we denote by GS the subgroup of GΓ generated by the
vertices of S. Subgroups of this form are called standard parabolic subgroups, and a theorem of Van der Lek
[24] (for the whole class of Artin groups) shows that GS

∼= G∆ where (∆,m|∆) is the Artin–Tits system
induced by S. A subgroup K of GΓ is called parabolic if it is a conjugate of a standard parabolic subgroup.

The main theorem of our previous paper [1] says that the intersection of parabolic subgroups of EAFC
groups is again parabolic. Let GΓ be a finitely generated EAFC group and Y ⊆ GΓ. We denote by P (Y )
the parabolic closure of Y in GΓ, that is the intersection of all parabolic subgroups of GΓ that contain Y .
By [1], P (Y ) is parabolic.

To show Theorem 1.1, not only it is important to understand parabolic closures of elements, but moreover,
a key property that we need is the that parabolic closures are closed under taking roots. The second main
result of this paper is the following.

Theorem 1.3. Let GΓ be an EAFC group, g ∈ GΓ and n ∈ Z− {0}. Then P (g) = P (gn).

We note that the closure of parabolic subgroups by taking roots is known for other families of groups as
spherical type [8], or large type [9].

We end the paper giving a characterization of EAFC groups that are coherent. This result is not new, as it
can be found in the literature. But we have not found it with the formulation given here, which serves to
support our claim that the family of RAAGs and EAFC groups are intimately related. Droms [11] showed
that RAAGs with defining graph Γ are coherent if and only if Γ is chordal. For EAFC groups we have:

Theorem 1.4. Let Γ be an EAFC system. Then GΓ is coherent if and only if Γ and Γ≤2 are chordal.

Here Γ≤2 denotes the graph obtained from Γ by removing edges with label greater than 2.
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We have stressed some similarities of EAFC groups and RAAGs. However there are some differences. It is
known that there are EAFC groups that can not be virtually co-compactly cubulated. Indeed, consider the
graph V = {a, b, c, d} and E = {{a, b}, {a, c}, {b, d}, {c, d}} with m(E) = 4. Then, by [14, Theorem 4.12.],
GΓ is not virtually co-compactly cubulated. In particular, GΓ is not commensurable with a RAAG (i.e. GΓ

does not have a finite index subgroup isomorphic to a finite index subgroup of a RAAG). We do not know
whether or not every EAFC group has a finite index subgroup that embeds on a RAAG. In that case, a
strongest Tits alternative could have been deduced from the RAAG case (Corollary 1.2).

The paper is structured as follows. In Section 2 we collect several basic facts about EAFC groups, including
a description of normalizers of parabolic subgroups due to E. Godelle and setting our notation for Bass-Serre
theory. In Section 3 we collect some facts of our previos work [1] to prove Theorem 1.3. In Section 4 we
characterize subgroups of EAFC groups not containig free subgroups, and with that, we finish in Section 5
the proof of our Tits Alternative theorem (Theorem 1.1). Finally in Section 6, we sketch a proof for the
characterization of coherent EAFC groups.

2 Preliminaries and notation

In this paper, two types of graphs will be used: simplicial graphs and oriented graphs. Simplicial graphs will
be only used for Artin–Tits systems and oriented graphs for graphs of groups and graphs with an action, so
we will in general use only the term graph, and its nature (simplicial or oriented) should be clear from the
context.

Recall that a simplicial graph Γ = (V,E) consists of a non-empty set of vertices V and a set of edges E which
is a subset of {{x, y} | x, y ∈ V, x ̸= y}. Given v ∈ V , the link of v, denoted LkΓ(v), is the set of vertices u
of V such that {v, u} ∈ E. The star of v, denoted by StΓ(v), is the set LkΓ(v) ∪ {v}.
Let Γ = ((V,E),m) be an Artin–Tits system and GΓ be the associated Artin–Tits group; for convenience
we will usually denote GΓ just by G. Sometimes, we will just say that Γ is an Artin graph or defining graph
of G, and implicitly denote by m or mΓ the labeling function.

For any subset S ⊆ V , we denote by GS the standard parabolic subgroup ⟨S⟩. As mentioned in the introduc-
tion, a theorem of Van der Lek [24] shows that GS

∼= G∆ with the Artin–Tits system (∆ = (V∆, E∆),m |E∆)
given by the subgraph ∆ of Γ induced by S, and m|E∆ is the restriction of m to E∆.

For an even Artin–Tits system Γ = ((V,E),m), i.e. m(E) ⊆ 2N, every standard parabolic subgroup is a
retract. For any S ⊆ V one has a retraction

ρS : GΓ −→ GS

defined on the generators of GΓ as: ρS(s) = s for s ∈ S, and ρS(v) = 1 for v ∈ V Γ− S.

Recall that a parabolic subgroup P is a conjugate to a standard parabolic subgroup. It is easy to see that
parabolic subgroups are also retracts.

We recall the main theorem of [1, Theorem 1.1.]

Theorem 2.1. Let Γ be an finite EAFC system. The intersection of parabolic subgroups of GΓ is again
parabolic.

We remark that being parabolic subgroup of an Artin–Tits group is a property of a group and the defining
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Artin–Tits system. We tend to omit the dependency of the Artin–Tits system. The next lemma guarantees
that being parabolic is well behaved under passing to standard parabolic subgroups.

Lemma 2.2. Let P be a parabolic subgroup of the EAFC group GΓ, and ∆ a subgraph of Γ. Then P ∩G∆

is parabolic in G∆.

Proof. Both P and G∆ are parabolic subgroups of GΓ, so from Theorem 2.1, it follows that P ∩G∆ is again
parabolic in GΓ. Denote P ∩G∆ = gGQg

−1 for some g ∈ GΓ and some Q ⊆ Γ. As gGQg
−1 = P ∩G∆ ⩽ G∆

by applying the retraction ρ∆ one obtains:

gGQg
−1 = ρ∆(gGQg

−1) = ρ∆(g)ρ∆(GQ)ρ∆(g)
−1 = ρ∆(g)G∆∩Qρ∆(g)

−1 = hGUh
−1,

for U = ∆ ∩Q ⊆ ∆, and h = ρ∆(g) ∈ G∆, meaning that gGQg
−1 is parabolic in G∆, as we wanted.

Let (Γ,m) be a finite EAFC system and S ⊆ GΓ. The parabolic closure of S in GΓ, is the set

PΓ(S) =
⋂

P parabolic in GΓ
S⊆P

P.

By Theorem 2.1 for any finitely generated EAFC group GΓ, and any set S ⊆ GΓ, one has that PΓ(S) is a
parabolic subgroup of GΓ.

Lemma 2.3. Using the notation above, one has:

(1) PΓ(gSg−1) = gPΓ(S)g−1, for any g ∈ GΓ and any S ⊆ GΓ.

(2) If ∆ is a subgraph of Γ and S ⊂ G∆, then P∆(S) = PΓ(S).

Proof. (1). As S ⊆ PΓ(S), for any g ∈ GΓ, one has gSg−1 ⊆ gPΓ(S)g−1. Since gPΓ(S)g−1 is a parabolic
subgroup of GΓ containing gSg−1, one obtains PΓ(gSg−1) ⊆ gPΓ(S)g−1. For the other inclusion, we have:

gPΓ(S)g−1 = gPΓ(g−1(gSg−1)g)g−1 ⊆ g[g−1(PΓ(gSg−1))g]g−1 = PΓ(gSg−1).

(2). Any parabolic subgroup of G∆ is also a parabolic subgroup of GΓ, which implies that PΓ(S) ⊆ P∆(S).
On the other hand, for any parabolic subgroup P of GΓ containing S, the subgroup P ∩G∆ is parabolic in
G∆ which contains S (see Lemma 2.2). This implies P∆(S) ⊆ PΓ(S) and the equality follows.

When the ambient defining graph is well understood, we write P (S) instead of PΓ(S) to denote the parabolic
closure of S in GΓ.

Lemma 2.4. Let GΓ be an EAFC group. For any S ⊆ GΓ, NG(S) := {g ∈ G | gSg−1 = S} ⩽ NG(P (S)).

Proof. Let g ∈ NG(S), i.e. gSg
−1 = S. Taking parabolic closures and applying Lemma 2.3 we obtain:

P (S) = P (gSg−1) = gP (S)g−1,

hence g ∈ NG(P (S)).
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We now explore the structure of EAFC groups based on complete graphs. We start with the even dihedral
Artin–Tits groups. Recall that we use Fn to denote the non-abelian free group of rank n. We also use Cn

to denote the cyclic group of order n.

The following lemma is well-known.

Lemma 2.5. The subgroup N = ⟨(ab)n, a, (ab)a(ab)−1, . . . , (ab)n−1a(ab)−n+1⟩, of the dihedral Artin group
D2n = ⟨a, b | (ab)n = (ba)n⟩, is normal and isomorphic to Fn × Z; moreover the quotient of Dn by N is
isomorphic to Cn.

Proof. Set G = D2n, and note that G ∼= ⟨ a, x | xn = a−1xna ⟩ via a←→ a, ab←→ x.

The subgroup H = ⟨xn ⟩ is normal in G as xn commutes with a, and the quotient is equal to:

G/H = ⟨ a, x | xn = 1 ⟩ ∼= ⟨ a ⟩ ∗ ⟨x | xn = 1 ⟩ ∼= Z ∗ Cn.

Consider φ : G/H −→ Cn, defined by φ(a) = 0 and φ(x) = 1. The kernel of φ is isomorphic to Fn with
basis {xiax−i | 0 ≤ i < n}.
Since H ∼= Z is central in G the kernel of the composition G −→ G/H −→ Cn is equal to Fn × Z; note that
this kernel is exactly N .

The subgroups of the following definition are the ones that appears in Theorem 1.1. We will show that such
subgroups exist immediately.

Definition 2.6. Let Γ be a finite EAFC system and GΓ the corresponding group. An appropriate subgroup
is a normal subgroup G0 ⩽ GΓ of finite index such that for all 2-generated parabolic subgroup P , P ∩ G0

satisfies the following alternative: every subgroup of P ∩G0 is either a subgroup of Z2 or maps onto F2.

Remark 2.7. If GS is an standard parabolic of GΓ and G0 is an appropriate subgroup of GΓ, then G0 ∩GS

is an appropriate subgroup for GS. Indeed, G0 ∩ GS is finite index and normal in GS. Moreover, every
2-generator parabolic subgroup P of GS is also a parabolic subgroup of GΓ and henge P ∩ (GS ∩G0) = P ∩G0

satisfies the required alternative.

Lemma 2.8. Let Γ = ((V,E),m) be a finite EAFC system. Then an appropriate subgroup G0 of index

[GΓ : G0] ≤
∏

e∈E
m(e)
2 exists.

Proof. If E is empty, we can take G0 to be GΓ.

For each e = {a, b} ∈ EΓ, fix a finite index subgroup Ne of Ge of index m(e)/2 as described in the previous
lemma. Note that Ne is not uniquely defined and there are two possibilities. Then Ne

∼= Fn × Z (note that
n is allowed to be 1). Clearly every subgroup of Ne is either a subgroup of Z2 or maps onto F2.

For E non-empty, define
G0 = ∩e∈EΓρ

−1
e (Ne),

where ρe : GΓ → Ge is the canonical retraction. Then G0 is normal in GΓ and of index
∏

e∈E
m(e)
2 . If P is

a parabolic subgroup on two generators, either P is free of rank 2 (and hence every subgroup of P ∩G0 are
free) or P is conjugated to some Ge, and since G0 is normal, every subgroup of P ∩ G0 is isomorphic to a
subgroup of Ge.
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Lemma 2.9. Let (Γ = (V,E),m) be a EAFC system with Γ finite and complete. The group GΓ is a direct
product of dihedral Artin–Tits groups and Z’s.

Proof. If all the edges of Γ are labeled with 2’s then GΓ is isomorphic to the group Z|V |. Next, assume that
there is an edge with vertices a, b, which is labeled by an even number k ≥ 4. Now, any other vertex c of the
graph forms a triangle with a, b, because our graph is complete. In this triangle the other two edges should be
labeled with 2’s, hence any other generator commutes with a, b. We have that GΓ = G{a,b}×GΓ−{a,b}. Now,
the subgraph Γ − {a, b} is still complete, and using an inductive hypothesis we know that the Artin–Tits
group based on Γ\{a, b} is a direct product of even dihedral Artin groups and Z’s; hence our original group
is as well.

We will also need the following well-known fact.

Lemma 2.10. The group D2n = ⟨a, b | (ab)n = (ba)n⟩ has a normal subgroup isomorphic to Fn, and the
quotient of Dn by this subgroup is isomorphic to Z.

Proof. Consider the homomorphism D2n → Z, a, b 7→ 1. Redemeister-Schreier rewriting method gives the
infinite presentation of the kernel ⟨ai, i ∈ Z | aiai+1 · · · ai+n−1 = ai+1 · · · ai+n, i ∈ Z⟩. It is easy to check that
this group is isomorphic to Fn.

Corollary 2.11. Every subgroup of D2n not containing a non-abelian free subgroup is isomorphic to a
subgroup of K.

Proof. Let N ∼= Fn, be the normal subgroup of D2n of the previous lemma. Let H ⩽ D2n not containing a
non-abelian free subgroup. If H ∩N is trivial, as D2n/N ∼= Z, H is a subgroup of Z (which is a subgroup of
K). If H ∩N is non-trivial, then it must be cyclic. Hence H is a subgroup of an extension of Z by Z. Since
the only extensions of Z by Z are K and Z2, and Z2 is a subgroup of K, we get our result.

The Lemma 2.10 can be generalized to all EAFC groups in the sense that they are all poly-free [4].

2.1 Normalizers of Parabolics

We will need to use the normalizers of some subgroups of an EAFC group. Since the normalizer of a subgroup
is contained in the normalizer of its parabolic closure (Lemma 2.4), it will be enough for our applications to
understand the normalizer of a parabolic subgroup of an EAFC group. We collect here a theorem from [12]
for future use. The results in [12] are stated for Artin–Tits groups of FC-type (not necessarily even). We
will not give the definition of Artin–Tits groups of FC-type here, the only thing required to know is that
EAFC groups indeed lie in this class. Using retractions we manage to give more explicit descriptions in the
case when the labels are even.

Theorem 2.12 (Theorem 0.1, [12]). Let Γ = ((V,E),m) be an Artin–Tits system of FC-type. Let G = GΓ

and S ⊂ V . Then one has the equality:

NG(GS) = GS ·QZG(GS).
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The normalizer NG(GS), and the quasi-centralizer QZG(GS) respectively, appearing in the theorem above
are defined as:

NG(GS) := {g ∈ G|gGSg
−1 = GS},

QZG(GS) := {g ∈ G|gS = Sg}.

Lemma 2.13. With the above notation, for an EAFC group G, one has

QZG(GS) =
⋂
s∈S

QZG(G{s}).

In particular, for every g ∈ NG(GS) − GS there is g′ ∈ NG(GS) with g′GS = gGS such that g′ commutes
with every element of GS.

Proof. Pick g ∈ QZG(GS) and s ∈ S. By definition gS = Sg, or equivalently gSg−1 = S. Let s′ ∈ S be an
element such that gsg−1 = s′, and apply ρ{s}. We get s = ρ{s}(s

′), which implies that s = s′, and hence
gsg−1 = s. Ultimately g ∈ QZG(G{s}), and since s ∈ S was arbitrary we get QZG(GS) ⊂

⋂
s∈S QZG(G{s}).

The other inclusion is obvious.

2.2 Groups acting on trees

In order to prove our main theorem, we will make use of some Bass-Serre theory. We collect here some
notation and facts for completeness. We follow [10], details and proofs can be found there.

While for Artin–Tits system we used simplicial graphs, when dealing with group actions we will work with
oriented graphs.

An oriented graph Y = (V,E, ι, τ) consists of a non-empty set V , whose elements are called vertices; a set E,
whose elements are called edges; and functions ι, τ : E → V . We say that the edge e ∈ E starts at ι(e) and
ends at τ(e). There is a natural 1-dimensional CW-complex associated to Y , called the topological realization
of Y , whose 0-skeleton is V , its 1-skeleton is E × [0, 1], and for any e ∈ E, e × [0, 1] is an interval where
(e, 0) is identified with ιe and (e, 1) is identified with τe. The graph is a tree if its topological realization is
connected and contractible.

An action of a group G on a graph Y = (V,E, ι, τ) is a tuple of actions of G on the sets V and E such that
gι(e) = ι(ge) and gτ(e) = τ(ge) for all e ∈ E and all g ∈ G.

A graph of groups is a pair (G(−), Y ) where Y = (V,E, ι, τ) is an oriented graph and G(−) is a function
that to every vertex v ∈ V assigns a group G(v) and to every edge e ∈ E assigns a distinguished subgroup
G(e) of G(ι(e)) and an injective homomorphism te : G(e)→ G(τ(e)), g 7→ gte .

Let Y0 be a maximal subtree of Y . The fundamental group of a graph of group (G(−), Y ) with respect to Y0,
denoted by π1((G(−), Y, Y0)), is the quotient of the free product

(∗v∈V G(v)) ∗ (∗e∈E⟨te | ⟩)

by the normal closure of the relations

t−1
e gte = gtee , e ∈ E, g ∈ G(e), and
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te = 1, if e ∈ EY0.

Main examples of graphs of groups (G(−), Y ) are based on graphs with a single edge. If Y = ({u, v}, {e}, ι, τ),
then the fundamental group is the free product with amalgamation G(u) ∗G(e) G(v). If Y = ({v}, {e}, ι, τ),
then the fundamental group is the HNN extension G(v) ∗G(e) te.

Remark 2.14. Let G = π1((G(−), Y, Y0)) and N = ⟨∪v∈V G(v)G⟩ the normal closure of the vertex groups
in G. Then G/N ∼= ⟨{te : e ∈ EY − EY0} | ⟩. That is, G/N is isomorphic to π1(Y ), the fundamental group
of the underlying graph of the graph of groups Y.

Given a graph of groups (G(−), Y ) with fundamental group G, one can construct a G-graph T associated to
the graph of groups as follows. The vertex set V T = ⊔v∈V Y G/G(v). The edge set is ET = ⊔e∈EY G/G(e)
The adjacency functions are given by ιT (gG(e)) = gG(ιY e) and τT (gG(e)) = tegG(τY e). This graph is a
G-tree ([10, Theorem I.7.6]) and it is called the Bass-Serre tree of the graph of groups.

Let G be a group action on a tree T = (V T,ET, ιT , τT ). A fundamental G-transversal Y consists of subsets
V Y ⊆ V T and V E ⊆ ET such that V Y and V E are G-transversals for the action (i.e. they contain exactly
one element for each orbit of vertices and edges), ιe ∈ V Y for all e ∈ EY , and Y is connected (as a subset
of the topological realization).

The graph of groups of G acting on T with respect to the fundamental G-transversal Y is the graph G\T
which is naturally in bijection with Y . Denote by ι and τ the adjacency functions on G\T . Note that by
construction (and using the bijection Y ↔ G\T ) one has that ιT (e) = ι(e) for all e ∈ Y . We now describe
the function G(−). For v ∈ V Y , we assign G(v) to be Gv, the stabilizers of v ∈ V T by the action of G. For
e ∈ EY , we assign G(e) to be Ge, the stabilizers of e ∈ ET by the action of G. Note that since ιT (e) = ι(e)
for all e ∈ Y , G(e) is naturally a subgroup of G(ι(e)). Finally, let v = τT (e). There is some te ∈ G such that
u = t−1

e v ∈ V Y ; we can choose te = 1 if v ∈ V Y . Then Ge is a subgroup of Gv = Gteu = teGut
−1
e and we

define the map G(e)→ G(τe) = G(u) given by g 7→ t−1
e gte.

Bass-Serre theory says that if G acts on a tree T and we construct a graph of groups of the action (with
respect to some fundamental G-transversal), then the fundamental group of the graph of groups is isomorphic
to G and the G-tree associated to the graph of groups is G-isomorphic to T .

3 Parabolic closures and roots

In this section we prove Theorem 1.3. The proof is done by induction on the number of edges with labels
greater than 2. A key step in the induction is to pass to certain kernels of retractions. For that we need to
recall the description of such kernels obtained in [1].

Notation 3.1. Let Γ = ((V,E),m) be an EAFC system. Let x ∈ V , and ρ := ρ{x} : GΓ → ⟨x⟩ the associated
retraction. If St(x) = V , then K = ker(ρx) is isomorphic to GΩ, where (Ω = (V Ω, EΩ),mΩ) is an EAFC
system (Section 4.1 in [1]) that will be described below.

Moreover, V Ω comes with an indexing: i : V Ω → Z. We will say that P ⩽ GΩ is index parabolic (with
respect to i) if there is n ∈ Z, S ⊆ i−1(n), and g ∈ GΩ, such that P = gGSg

−1.

Let x be a vertex of Γ with L = Lk(x) = V − {x}. For u ∈ L, set ku = m({u, x})/2. Let Ω be the graph
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with vertex set
V Ω =

⋃
u∈L

{u} × {0, 1, . . . , ku − 1}.

We define the indexing i : V Ω→ Z as i(v, n) = n. Denote the vertex (v, n) by vn, and call vn ∈ V Ω of type v
and of index n.

The edge set of Ω is
EΩ = {{un, vm} | un, vm ∈ V Ω, {u, v} ∈ EΓ}.

That is, there is an edge between un and vm in Ω if and only if there is and edge between u and v in Γ.
Finally, the label mΩ

un,vm of {un, vm} is the same as the label mu,v of {u, v}.

Lemma 3.2 (Lemma 4.1 in [1]). With the previous notation, (Ω = (V Ω, EΩ),mΩ) is an even EAFC system
and GΩ

∼= ker(ρ) via vn 7→ xnvx−n.

Remark 3.3. Let Γ be an EAFC graph, v ∈ V Γ with St(v) = V and suppose that GΓ is not a direct product
of Gv and GV−{v}. Denote by E>2Γ the set of edges of Γ with a label greater than 2, and GΩ the Artin–Tits
group referred in Lemma 3.2. Then |E>2Ω| < |E>2Γ|.

To prove that parabolic subgroups are closed under taking roots, we need to relate parabolic closures on GΓ

and GΩ. This is not as well-behaved as when we compared parabolic closures in GΓ and its standard parabolic
subgroups (Lemma 2.3), but the control provided by the next lemma will be enough for our purposes.

Lemma 3.4. Let v ∈ V with St(v) = V , and K = ker(ρv) ∼= GΩ. Let k ∈ K such PΓ(k) is a standard
parabolic. Then, the intersection PΓ(k) ∩K is parabolic in K = GΩ. In particular, PΩ(k) ⩽ PΓ(k) ∩K.

Proof. Suppose that PΓ(k) is a standard parabolic, say PΓ(k) = GQ for some Q ⊂ V Γ. We are going to
show that GQ ∩K is a standard parabolic in GΩ.

Consider first the case v ̸∈ Q. In this case GQ is a standard parabolic subgroup of K as well (see Notation
3.1) containing k, so we have PΓ(k) ∩K = GQ and moreover, PΩ(k) ⩽ GQ = PΓ(k).

Consider now the case v ∈ Q. Recall that K = GΩ with vertices of Ω of the form ui as in Notation 3.1,
where u ∈ V − {v} and i ∈ Z, with ui = viu0v

−i and u0 = u.

We claim that ⟨{ui ∈ V Ω | u ∈ Q − {v}, i ∈ Z}⟩ = GQ ∩K. Clearly, ⟨{ui ∈ V Ω | u ∈ Q − {v}, i ∈ Z}⟩ ⩽
GQ ∩K. For the other inclusion, pick an element w ∈ GQ ∩K; since ρv(w) is trivial we write w in terms of
ui = viu0v

−i for u ∈ Q − {v}. Finally PΓ(k) ∩K = ⟨{ui ∈ V Ω | u ∈ Q − {v}, i ∈ Z}⟩ which is a standard
parabolic in K, and moreover PΩ(k) ⩽ PΓ(k) ∩K.

Theorem 3.5. For every even FC-type labelled graph, every g ∈ GΓ and every n ∈ Z − {0}, the equality
P (g) = P (gn) holds.

Proof. Let E>2Γ denote the number of edges of Γ with a label greater than 2. The proof proceeds by
induction on (|E>2|, |V Γ|) (ordered lexicographically). If (|E>2|, |V Γ|) = (0, 1), then |V Γ| = 1, and the
parabolic closure of any non-trivial element is the whole group GΓ and the lemma holds. Assume now
that |V Γ| > 1.

Let g ∈ GΓ and n ∈ Z− {0}.
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If g lies in a proper parabolic subgroup, so does gn. In this case there would be a proper subgraph ∆ of Γ
and t ∈ GΓ such that tgt−1 and tgnt−1 = (tgt−1)n lie in G∆. Notice that (|E>2∆|, |V∆|) < (|E>2Γ|, |V Γ|).
By induction P∆(tgt−1) = P∆(tgnt−1). As the parabolic closure is well-behaved with conjugation and
intersections with restrictions to standard parabolics (Lemma 2.3), PΓ(g) = PΓ(gn).

So we will assume that g is not contained in any proper parabolic subgroup of GΓ. In particular PΓ(g) = GΓ.
We also let PΓ(gn) = tGSt

−1 for some subset S of V and t ∈ GΓ. We need to show that S = V . As parabolic
closure commutes with conjugation (Lemma 2.3), P (t−1gnt) = GS and P (t−1gt) = GΓ. So, replacing g by
t−1gt we can assume that PΓ(gn) = GS and PΓ(g) = GΓ.

First consider the case where the group GΓ can be expressed as a direct product of two proper standard
parabolic subgroups as:

GΓ = GΓ1
×GΓ2

,

then for any h = (h1, h2) we have P (h) = ⟨PΓ1(h1), P
Γ2(h2)⟩ ∼= PΓ1(h1) × PΓ2(h2). In particular, if

g = (g1, g2) then PΓi(gi) = PΓi(gni ) for i = 1, 2 by induction, and hence P (g) = P (gn).

So assume that the graph Γ is irreducible, i.e. GΓ cannot be expressed as a direct product of two proper
standard parabolic subgroups. If there are u, v ∈ V Γ with v ̸∈ St(u), then GΓ splits as the amalgamated
free product:

GΓ = GΓ−{u} ∗GΓ−{u,v} GΓ−{v}.

If g stabilizes a vertex of the Bass-Serre tree corresponding to the splitting above, then g is contained in a
parabolic subgroup P over Γ−{u} or Γ−{v}, contradicting our hypothesis. So g does not stabilize a vertex,
and neither does gn, implying that both u, v ∈ S.

So it remains to show that for each v ∈ V with St(v) = V we have v ∈ S. We consider two cases, whether
ρv(g) is trivial or not.

If ρv(g) is non-trivial, then ρv(g
n) is non-trivial. As ρv(GS) is non-trivial, we have that v ∈ S as we desired.

If ρv(g) is trivial, then both g and gn belong to K = ker(ρv) and there is an isomorphism of K with GΩ

where Ω is an EAFC system (see Notation 3.1). We have that |E>2Ω| < |E>2Γ| and hence, by induction we
know that for every h ∈ K, PΩ(h) = PΩ(hn).

Hence PΩ(g) = PΩ(gn), and as PΓ(gn) = GS is a standard parabolic inGΓ, Lemma 3.4, gives that PΓ(gn)∩K
is a parabolic subgroup of GΩ containing gn. Therefore PΩ(gn) ⩽ PΓ(gn).

Now g ∈ PΩ(g) = PΩ(gn) ⩽ PΓ(gn), and taking the parabolic closures of these sets we obtain

PΓ(g) ⩽ PΓ(PΩ(g)) = PΓ(PΩ(gn)) ⩽ PΓ(PΓ(gn)) = PΓ(gn).

And therefore, GΓ = PΓ(g) = PΓ(gn), as desired.

Corollary 3.6. Parabolic subgroups are closed by taking roots. That is, if P is parabolic and gn ∈ P , then
g ∈ P .

4 Subgroups not containing non-abelian free groups

Throughout this section, Γ is a finite EAFC system. The following proof follows closely the strategy of [2,
Theorem 4.1].
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Theorem 4.1. Every subgroup of G = GΓ, that does not contain a non-abelian free subgroup, is isomorphic
to Zs ×Kt for some non-negative integers s, t with s+ 2t ≤ |V |.
Let G0 be an appropriate subgroup of G. Then every subgroup of G0 (Definition 2.6), that does not contain
a non-abelian free subgroup, is isomorphic to Zs with s ≤ |V |.

Proof. We argue by induction on |V |.
If |V | = 1 then GΓ is cyclic, and every subgroup of GΓ is cyclic as well.

For |V | = 2, the group GΓ is either a free group or a dihedral Artin group. In any case (Corollary 2.11)
subgroups not containing non-abelian free groups must be subgroups of K. If moreover, we restrict to
subgroups of G0 not containing non-abelian free groups, then we are left with subgroups of Z2 (Definition
2.6).

Assume now that |V | > 2. We have two cases: the graph is reducible or not.

If Γ is reducible, then there are A, B ⊆ V such that GΓ = GA ×GB . In this case for any H ⩽ GΓ one has
H ⩽ ρA(H)×ρB(H). If H ⩽ GΓ does not contain a non-abelian free subgroup, then so is the case for ρA(H)
and ρB(H), which by induction are of the form ZsA ×KtA and ZsB ×KtB respectively, with sA +2tA ≤ |A|
and sB + 2tB ≤ |B|. Now H is isomorphic to a subgroup of

ρA(H)× ρB(H) ∼= ZsA+tB ×KsA+tB

which is of the desired form for s = sA + sB , and t = tA + tB . Moreover, one has:

s+ 2t = (sA + sB) + 2(tA + tB) = (sA + 2tA) + (sB + 2tB) ≤ |A|+ |B| = |V |.

For the case of subgroups of G0, note that G0
∼= (G0 ∩ GA) × (G0 ∩ GB). By Remark 2.7, G0 ∩ GA and

G0 ∩ GB are appropriate subgroups of GA and GB respectively. Therefore, the same inductive argument
shows that if H is a subgroup of G0 not containing a non-abelian free subgroup, then H ⩽ Zs with s ≤ |V |.
Now assume that the graph is irreducible. If Lk(v) = V − {v} for any v ∈ V our graph Γ would be
complete, and hence reducible as it is EAFC; so there is a vertex v ∈ V such that Lk(v) ̸= V − {v}. Let
A = {v} ∪ Lk(v), B = V − {v} and C = Lk(v). Therefore GΓ = GA ∗GC

GB is a non-trivial amalgamated
free product. Let T be the corresponding Bass-Serre tree.

Now a subgroup H of GΓ that does not contain a non-abelian free subgroup, either fixes a vertex of T , or
there is a bi-infinite line of T invariant under H, or H fixes an end of T ; otherwise, a ping-pong argument
allows to construct a non-abelian free subgroup. See, for example [7, Section 2].

Case 1: H fixes a vertex. Up to conjugation, H is a subgroup of GA or GB , which by induction implies
that H is a isomorphic to Zs ×Kt where s+ 2t ≤ max{|A|, |B|} ≤ |V |. Similarly, H ∩G0 is isomorphic to
Zs with s ≤ max{|A|, |B|} ≤ |V |.
Case 2: H acts on a bi-infinite geodesic line L. Here the action of H induces a homomorphism
Φ : H → D∞, where D∞ is the infinite dihedral group of all simplicial isometries of L. If Φ(H) is finite,
H would fix a vertex of L, and hence we would be on the previous case, so assume that Φ(H) is infinite.
If Φ(H) ∼= D∞, then there is h ∈ H such that hGC ̸= GC but h2GC = GC . Then h2 ∈ GC and by roots
closure h ∈ GC , which is impossible. So this case does not hold.

Therefore, we can assume that Φ(H) is infinite cyclic.
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Put N := kerΦ ◁ H; then N fixes every vertex and edge of L and so it is contained, up to conjugation, in
GC . Therefore, by induction, N is isomorphic to Zs ×Kt with s+ 2t ≤ |C| (resp. N ∩G0 is isomorphic to
Zs with s ≤ |C|). We will assume that N is a subgroup of GC , and hence, PΓ(N) ⩽ GC .

If N = {1} then H is infinite cyclic. So, suppose that N ̸= {1} and notice that H ≤ NG(N) ≤ NG(P
Γ(N)).

As Φ(H) is infinite cyclic, then H = N ⋊Φ(H). Let h ∈ H such that Φ(⟨h⟩) = Φ(H). Note that h /∈ GC as
h does not fix this edge. Thus h ∈ NG(P

Γ(N)) − GC ; as PΓ(N) ⩽ GC we have h ∈ NG(P
Γ(N)) − PΓ(N)

and therefore, by Lemma 2.13, up to changing h with another element of hPΓ(N), we can assume that
h commutes with PΓ(N) and with N , thus H ∼= N × ⟨h⟩. And hence H is isomorphic to Zs × Kt with
s+ 2t ≤ |C|+ 1 ≤ |V | (resp. H ∩G0 is isomorphic to Zs with s ≤ |C|+ 1 ≤ |V |).
Case 3: H fixes some end e of T . If an element g ∈ H fixes some vertex o ∈ T , then it will have to fix
every vertex of the unique infinite geodesic ray between o and e. If h ∈ H is another elliptic element, then it
will fix (point-wise) another geodesic ray converging to e. But any two rays converging to e are eventually
the same, in particular they will have a common vertex, which will then be fixed by both g and h. Thus
gh ∈ H will also be elliptic. It follows that the subset N ⊂ H, of all elliptic elements of H, is a normal
subgroup of H. Moreover, as Γ is finite, there is a finite subset X ′ of N such that the parabolic closure of X ′

and N agree. Note that the previous argument shows that there is a common fixed vertex for all elements of
X ′ (and therefore a ray from that vertex to e) so the parabolic closure of X ′ (and hence of N) is contained
up to conjugation in GC . So, by induction N is isomorphic to Zs×Kt, s+2t ≤ |C| (and N ∩G0

∼= Zs with
s ≤ |C|).
If H ̸= N , let x ∈ H−N be an element (necessarily loxodromic) of minimal translation length (for the action
of H in T ). For any other element y ∈ H −N , the intersection of axis(x) and axis(y) is an infinite geodesic
ray R, starting at some vertex p of T and converging to e. After replacing x and y with their inverses, where
necessary, we assume that x ◦ R ⊂ R, and y ◦ R ⊂ R. Write ∥y∥ = q∥x∥+ r where q ∈ N, r ∈ N ∪ {0}, and
r < ∥x∥. Then y ◦ p, (x−my) ◦ p ∈ R and so dT (p, (x

−my) ◦ p) = ∥y∥ − q∥x∥ = r. So ∥x−my∥ ≤ r < ∥x∥,
which implies that x−my ∈ N by minimality of ∥x∥. So y ∈ ⟨x⟩N for all y in H − N , which means that
H = ⟨x⟩N . As x ∈ H ⩽ NG(N) ⩽ NG(P

Γ(N)), we have that x (up to changing it with another PΓ(N)-coset
representative) commutes with PΓ(N) and hence with N . We have that H ∼= N ×Z. Hence H is isomorphic
to Zs ×Kt, for some s+ 2t ≤ |C|+ 1 (and N ∩G0

∼= Zs with s ≤ |C|+ 1).

We need the following fact to prove the main theorem. The structure of the proof mimics a bit the previous
one, so we will give fewer details.

Lemma 4.2. Let Γ be a finite EAFC system, and GΓ the corresponding group. Let G0 be an appropriate
subgroup. The following holds for x, y, z ∈ G0:{

xyx−1 = y

zxz−1 = y
⇒ x = y.

Proof. The proof is by induction on |V |. If |V | = 1 there is nothing to prove. If |V | = 2, then ⟨x, y, z⟩ is
either a subgroup of Z2, in which case there is nothing to prove, or there exist a surjective homomorphism
f : ⟨x, y, z⟩ → F2. In the latter case, we are going to derive a contradiction. Note that f(x) and f(y) must
commute, and hence they must lie in a cyclic subgroup C of F2. If C is trivial, then f can not be surjective,
and hence f(x) and f(y) are non-trivial. Also f(z)Cf(z)−1 ∩ C is non-trivial, and hence f(z) must lie in a
cyclic subgroup with f(x) and f(y), contradicting that f was surjective.
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Assume that |V | > 2. Suppose that Γ is reducible, i.e. V = A ∪ B, A ∩ B = ∅, G = GA × GB . Let x, y, z
as in the statement. Then ρA(x) commutes with ρA(y) and ρA(z) conjugates ρA(x) to ρA(y), and hence
ρA(x) = ρA(y). The same occurs with ρB(x), ρB(y), ρB(z), and hence x = y.

Let v ∈ V Γ such that Lk(v) ̸= ∆ = Γ− {v}. We have a splitting

GΓ = GSt(v) ∗GLk(v)
G∆,

and let T be the associated Bass-Serre tree.

Since x, y are conjugated, then either both fix a vertex or both act loxodromically.

If x fixes a vertex u and y fixes w but x does not fix w and y does not fix u, then ⟨x, y⟩ is non-abelian free.
A contradiction. Thus if x, y fix a vertex, then they fix a common vertex, and hence x, y ∈ gGAg

−1 for a
proper parabolic subgroup. Let ρ : G → gGAg

−1 be the retraction associated to gGAg
−1. Note that ρ(z)

conjugates x to y. Thus, by induction x = y.

Now suppose that both x, y act loxodromically. Then axis(y) = axis(zxz−1) = zaxis(x). But also as x, y
commute, axis(x) = axis(y), so we have that z fixes axis(x). Let H = ⟨x, y, z⟩. Then H acts on L = axis(x)
and we have a homomorphism associated to the action Φ: H → Aut(L) = D∞. As x, y act loxodromically,
|Φ(H)| is infinite. Let N = kerΦ. Up to changing H by a conjugate, we can assume that N ⩽ GLk(v).
As in the previous proof Φ(H) ̸∼= D∞ and hence Φ(H) is infinite cyclic. Arguing as in the previous proof
H = N × ⟨h⟩ for certain h ∈ H. Let ρN : H → N and ρ⟨h⟩ : H → ⟨h⟩. Then ρN (x) commutes with ρN (y)
and ρN (z) conjugates ρN (x) to ρN (y). As N is contained in a proper parabolic subgroup, by induction
ρN (x) = ρN (y). Similarly, ρ⟨h⟩(x) = ρ⟨h⟩(y) and hence x = y.

5 Subgroups containing non-abelian free groups

In this section we complete the proof of our main theorem. We will prove this general criterium

Theorem 5.1. Let G be a group acting on a tree T with finitely generated abelian stabelizers of rank
uniformly bounded. Suppose that edge stabilizers are direct factors on vertex stabilizers and that for all
x, y, z ∈ G (xy = yx and zxz−1 = x implies x = y). If G is not solvable, then G maps onto F2.

The strategy of proof of Theorem 5.1 is quite natural. In fact, other authors have used similar arguments to
show largeness of groups acting on trees with abelian stabilizers. For exmple J.O. Button [5, Theorem 3.7]
for tubular groups and G. Levitt for Generalized Baumslag-Solitar groups [19, Theorem 6.7].

The proof of Theorem 5.1 is split into two propositions. The first one is the case where G\T is not a circle
and it is proved in the next proposition. This case is easy when G\T is finite, and slightly more technical in
the general case.

Instead, the second case when G\T is homeomorhic to a circle is proved in Proposition 5.3.

Proposition 5.2. Let G act on a tree T without a global fixed point. Assume that

(i) there is no proper G-subtree of T ,

(ii) there is M ∈ N such that vertex stabilizers are free abelian groups of rank ≤M ,
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(iii) edge stabilizers are direct factors on vertex stabilizers.

If G\T is not homeomorphic to a circle, then G maps onto F2.

Proof. Let Y = G\T be the quotient graph, and (G(−), Y ) a graph of groups associated to the action of G
on T .

Recall that G maps onto π1(Y ) (Remark 2.14), so if π1(Y ) is non-abelian then we are done.

So we are restricted to the cases π1(Y ) is trivial or infinite cyclic.

Suppose first that u ∈ V Y is a valency 1 vertex and e is the edge incident to u. Let u ∈ V T and e ∈ ET
such that e is adjacent to u, Gu = u, and Ge = e.

If rank(Stab(u)) and rank(Stab(e)) are equal, then since Stab(e) is a direct factor of Stab(u), and both are
free abelian groups, they must be equal. This means that u is a valency 1 vertex in T and clearly, we can
remove the orbit of e and u from T and still have a G-tree. This however, contradicts (i). Thus, for every
valency 1 vertex u ∈ V Y with adjacent edge e, we have that G(e) is a proper direct factor of G(u).

Suppose that there are two valency 1 vertices u, v ∈ V Y with adjacent edges e and f respectively. Let N be
the normal subgroup generated by G(e), G(f), and G(z) for all z ∈ V Y − {u, v}. From the presentation of
the graph of groups, we see that G/N = G(u)/G(e) ∗G(v)/G(f) ∼= Zs ∗ Zt with s, t > 0. Therefore G maps
onto F2.

Suppose that π1(Y ) is cyclic and there is a valency 1 vertex with adjacent edge e = {u, v}. Similarly as
before, let N be the normal subgroup generated by G(e) and G(z) for all z ∈ V Y − {u, v}. Fix a maximal
subtree Y0 of Y and let f be the unique edge outside of Y0. Note that f ̸= e. From the presentation of the
graph of groups, we see that G/N = G(u)/G(e) ∗ ⟨tf ⟩ ∼= Zs ∗ Z with s > 0. Therefore G maps onto F2.

So we are restricted to the following cases:

(i) π1(Y ) is infinite cyclic and there is no vertices of valency 1, or

(ii) π1(Y ) = {1} and there is at most one vertex of valency 1.

Note that in the first case, as Y is not homemorphic to S1, Y must consist of an S1 with trees attached. As
those trees have no valency one vertices they must be infinite and of infinite diameter. A similar argument
holds of case (ii) so in either case Y must be infinite and of infinite diameter.

In this setting, there is e ∈ EY such that Y −{e} has at least one infinite connected component, say Y ′ that
is a tree without valency one vertices. Let Ỹ ′ be a subtree of T that maps to Y ′ under the quotient map
T 7→ G\T . Let e be an edge of T adjacent to Ỹ ′ mapping to e. If Stab(e) = Stab(Ỹ′) then, removing from
T G-equivariantly the orbit of e and Ỹ ′ we get a proper G-subtree, contradicting (i). Therefore Stab(e) is a
proper subgroup of Stab(Ỹ′), which means that there exist an edge f ∈ EY ′ such that Stab(f) is a proper
subgroup of either Stab(ιf) or Stab(τ f). If f denotes Gf , this means that G(f) is a proper direct factor
either of G(ιf) of G(τf). As f ∈ EY ′, we have that Y ′−{f} must have an infinite component that is a tree
without valency 1 vertices.

Therefore, repeating the previous argument, we have an infinite geodesic path in Y with infinitely many
edges e such that G(e) is a proper direct factor either of G(ιe) of G(τe). Now, as ranks of vertex groups
are bounded by M there must be two vertices, say u, v with adjacent edges e, f respectively, such that e, f
are in the unique path from u, v and rank(G(e)) < rank(G(u)) and rank(G(f)) < rank(G(v)). Moreover, as
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there infinitely many such pairs, we can assume that the connected component of Y − {e, f} containing the
path between u, v is either empty (f = e) or a tree.

Let Yu (resp Yv) be the connected component of Y −{e, f} containing u (resp. v) and let Ku (resp. Ku) be
the fundamental group of the graph of groups (G(−), Y ) restricted to Yu (resp Yv). Finally, if e ̸= f let K
be the fundamental group associated to the remaining connected component of Y −{e, u}. We see from the
presentation of the fundamental group of the graph of groups that

G = Ku ∗G(e) ∗K ∗G(f) ∗Kv if f ̸= e or G = Ku ∗G(e) ∗Kv if f = e.

Now, if π1(Yu) = Z, then Ku maps onto Z having G(e) in the kernel (see Remark 2.14). If π1(Yu) = {1},
then Yu is a tree and the map ϕ : : G(u) → G(u)/G(e) extends to a map Ku → G(u)/G(e). Indeed, as Yu

is a tree and edge groups are direct factors of vertex groups, we can extend ϕ to the G(z) for the z that are
in the neighborhood of u. On the direct factor of G(z) corresponding to the edge group adjacent of u and
z there is only one way to extend ϕ, but on the direct complement we can extend it freely. Repeating this
construction inductively, we see that the extension exists. In either case Ku maps onto Z having G(e) in the
kernel, and the same holds for Kv, that is, it maps onto Z with G(f) in the kernel.

Thus there are surjective homomorphism from Ku and Kv to Z and we see that they extend to a surjective
homomorphism from G to F2.

Proposition 5.3. Let G be a non-solvable group acting on a tree T with G\T homeomorphic to a circle.
Assume that

(i) vertex stabilizers are free abelian groups,

(ii) edge stabilizers are direct factors on vertex stabilizers,

(iii) for all x, y, z ∈ G, if xy = yx and zxz−1 = y then x = y.

Then G maps onto F2.

Proof. Let (G(−), Y ) be the graph of groups associated to the action of G on T . We have that Y is a circle,
H(v) is free abelian for all v ∈ V Y , for all e ∈ EY G(e) is a direct factor of G(ιe) and there is injective
homomorphism te : G(e)→ G(τe) such that te(G(e)) is a direct factor of G(τe).

If |EY | ≥ 2 and e ∈ EY is such that G(e) = G(ιe) or te(G(e)) = G(τ(e)), then we can construct a graph of
groups with fewer edges by removing e and properly identifying G(ιe) with a subgroup of G(τe) in the first
case, or identifying G(τe) with a subgroup of G(ιe) in the second case. Observe that the remaining edge
groups are still direct factors in the vertex groups in the new graph of groups.

Hence, we will assume that either there is a single edge, or all groups are proper subgroups on the adjancent
vertex groups. We have two cases now.

Case 1: |EY | = 1. In this case, there is single vertex u of V Y . Here G(u) must be finitely generated abelian.
If rank(G(e)) = rank((G(u)), and taking into account that G(e) and te(G(e)) are direct factors of G(u), we
have that G(u) = G(e) and te : G(u) → G(u) is an isomorphism. In this case, G is a semidirect product
G(u)⋊ Z and hence solvable. A contradiction.

Then rank(G(e)) < rank((G(u)). Note that te conjugates elements of G(e) to elements of te(G(e)), but
elements of G(e) and te(G(e)) commute. By (iii), we have that te : G(e) → G(u) is the identity on the
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subgroup G(e) of G(u). Then, if N is the normal closure of G(e) in G, we get that G/N = G(u)/G(e) ∗ t,
which maps onto F2.

Case 2: |EY | ≥ 2. Suppose that V Y = {u0, . . . un−1} and EY = {e0, . . . , en−1} with ιei = ui, τei = ui+1

with the index taken mod n. Consider group G′ consisting on the fundamental group of the graph of groups
(G(−), Y ′) obtained by removing en. We will show that G′, the quotient of G′ by the normal closure of
G(en) ∪ te(G(en)), has infinite abelianization. This implies that G/⟨G(en)

G⟩ = G′ ∗ ⟨ten⟩ maps onto F2.

The fundamental group of G′ is

G(u0) ∗G(e0) G(u1) ∗G(e1) G(u2) ∗ · · · ∗G(en−1) G(un).

We set Li = G(ei) ⩽ G(ui) and Ri = tei−1
(G(ei−1)) ⩽ G(ui), indexes mod n. Let Mi = Li ∩ Ri. Note

that Mi is a direct factor of Li and of Ri (and hence of G(ui)), and ⟨Li, Ri⟩ is also a direct factor of G(ui).
Therefore, using Smith normal forms for finitely generated abelian groups, we can find a base of G(ui)

µ
(i)
1 , . . . , µ(i)

mi
, λ

(i)
1 , . . . , λ

(i)
li
, ρ

(i)
1 , . . . , ρ(i)r1 , δ

(i)
1 , . . . , δ

(i)
di

such that Mi = ⟨µ(i)
1 , . . . , µ

(i)
mi⟩, Li = ⟨Mi, λ

(i)
1 , . . . , λ

(i)
li
⟩ and Ri = ⟨Mi, ρ

(i)
1 , . . . , ρ

(i)
ri ⟩. Using these generating

sets for each G(ui) we see that G′ is a RAAG on a graph with

n∑
i=0

rank(G(ui))−
n−1∑
i=0

rank(G(ei))

vertices.

Now we want to show that G′ quotient by the normal closure of R0∪Ln has infinite abelianization. Note R0

has basis µ
(0)
1 , . . . , µ

(0)
m0 , ρ

(0)
1 , . . . , ρ

(0)
r0 and Ln has basis µ

(n)
1 , . . . , µ

(n)
mn , λ

(n)
1 , . . . , λ

(n)
ln

. Note that ten conjugates
each member x of the basis of R0 to a member y of the basis of Ln. Therefore, by (iii), if x and y commute,
then x = y.

To simplify the notation, note that since G′ is a RAAG and ⟨G(u0), G(un)⟩ is a parabolic subgroup that
contains R0 ∪Ln, it is enough to show that if we quotient ⟨G(u0), G(un)⟩ by the normal closure of R0 ∪Ln,
the the resulting group has infinite abelianization.

The situation is as follows. The group ⟨G(u0), G(un)⟩ is the amalgamated product of two finitely generated
abelian groups, amalgamated by a free basis. So we can assume that

⟨G(u0), G(un)⟩ = ⟨a1, . . . , ai, b1 . . . , bj , c1, . . . , ck | cp is central, [ap, aq] = 1, [bp, bq] = 1∀p, q⟩. (1)

The conjugation te of members of the basis of R0 to members of the basis of Ln translates to a bijection
between generators of the presentation above. More precisely, let C = {c1, . . . , ck}. There are proper subsets
A0 ⊂ {a1, . . . , ai}∪C and B0 ⊂ {b1, . . . , bj}∪C and a bijection π : A0 → B0 such that if x and π(x) commute,
then x = π(x). Therefore π(cs) = cs for all cs ∈ A0 ∩ C and π(as) ∈ {b1, . . . , bj} for all as ∈ A0 − C. Note
that in particular A0 ∩ C = B0 ∩ C.

Let us quotient first ⟨G(u0), G(un)⟩ by then normal subgroup generated by A0 ∩ C. Note that we get a
presentation as above, only that we reduce the number of central generators. Note that still |A0−A0 ∩C| <
i+k−|A0∩C| and |B0−A0∩C| < j+k−|A0∩C|. So we abuse the notation and we still denote by A0 the set
A0−(A0∩C) and the same for B0, and we still use the same notation as above for ⟨G(u0), G(un)⟩/⟨⟨A0∩C⟩⟩.
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That is, we are assuming we have the presentation (1) with A0 ⊆ {a1, . . . , ai}, B0 ⊆ {b1, . . . , bk}, generate
proper factor of ⟨a1, . . . , ai, c1, . . . , ck⟩ and ⟨b1, . . . , bj , c1, . . . ck⟩ respectively. This means that |A0| < i if
k = 0 or |A0| ≤ i if k > 0, and similarly for |B0|. The group ⟨G(u0), G(un)⟩/⟨⟨A0 ∪ B0⟩⟩ will have infinite
abalianization if |A0∪B0| < i+ j+k. But this holds since if k = 0, |A0∪B0| = |A0|+ |B0| < i+ j = i+ j+k
and if k > 0 then |A0 ∪B0| = |A0|+ |B0| ≤ i+ j < i+ j + k. Therefore G maps onto F2.

Proof of Theorem 5.1. Let G act on a tree T as in the hypothesis of the theorem. As G is non-solvable,
it can not have a global fixed point (as it would mean that G is abelian). By replacing T by a minimal
G-subtree, we meet condition (i) of Proposition 5.2. Note that conditions (ii) and (iii) of Proposition 5.2
follow from the hypothesis, and hence if G\T is not homeomorphic to a circle, it maps onto F2. In the case
G\T is homeomorphic to a circle, we apply Proposition 5.3.

Theorem 5.4. Let Γ be a finite EAFC system. Let G0 be an appropriate subgroup for G = GΓ. For every
subgroup H of G that is not virtually abelian, H ∩G0 maps onto F2.

Proof. We argue by induction on |V |. Let H be a subgroup of GΓ that is not virtually abelian, and hence,
by Theorem 4.1 contains a non-abelian free group. In particular, we can assume that |V | ≥ 2.

If |V | = 2, we can further assume that GΓ is non-abelian. If GΓ is free, then so is H. If GΓ is not free, then
GΓ
∼= D2n with n > 1 and G0

∼= Fn × Z and hence we can take H0 = G0 ∩H which maps onto F2.

So assume that |V | > 2 and that the result holds for EAFC groups based on graphs with fewer vertices.

Suppose that there is proper subset A ⊆ V such that ρA(H) contains a non-abelian free subgroup. Note that
ρA(H ∩G0) has finite index in ρA(H) and hence it also contains a non-abelian free subgroup. As ρA(H ∩G0)
is appropiate in GA, it maps onto F2. Thus H ∩G0 maps onto F2.

So, we can assume that for all proper subset A ⊆ V , ρA(H) does not contain a non-abelian free group. Thus,
we can assume that (G0 ∩H) ∩ GA ⩽ ρA(H) does not contain a non-abelian free subgroup. Therefore, by
Theorem 4.1, for all A ⊆ V , we can assume that (G0 ∩H) ∩GA is isomorphic to Zs with s ≤ |A|.
By replacing H with H ∩G0, we will assume that H contains a non-abelian free group and H ∩ gGAg

−1 is
free abelian on rank ≤ |A| for all proper subset A of V .

If Γ is reducible, there are A,B ⊆ V such that V = A ∪ B, A ∩ B = ∅, and GΓ = GA × GB . Then
H ⩽ ρA(H) × ρB(H) ≤ Z|A| × Z|B| and does not contain a non-abelian free subgroup. A contradiction.
Therefore, we further assume that Γ is irreducible.

Let v ∈ V Γ such that Lk(v) ̸= ∆ = Γ− {v}. We have a splitting

GΓ = GSt(v) ∗GLk(v)
G∆,

and let T be the associated Bass-Serre tree. Note that T is countable as G is finitely generated. Now H
also acts on T as a subgroup of GΓ. Notice that since H is not contained in a proper parabolic subgroup, H
does not fix a vertex.

Claim. Let g ∈ G, K = H ∩ gG∆g
−1 or K = H ∩ gGSt(v)g

−1, and L = H ∩ gGLk(v)g
−1. Then L is closed

under taking roots in K. In particular, L is a direct factor in K.

Proof of the Claim. Let k ∈ K and nk > 1 such that knk ∈ L ⊆ gGLk(v)g
−1, hence k ∈ gGLk(v)g

−1 because
of the closure of roots (Theorem 1.3). Note that k ∈ K ⊆ H, thus k ∈ H ∩ gGLk(v)g

−1 = L.
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By the claim, we have that H acts on T with finitely generated abelian stabilizers of rank ≤ |V | and edge
stabilizers are direct factors on the vertex stabilizers. By Lemma 4.2, for every x, y, z ∈ H, if xy = yx and
zxz−1 = y then y = z. As H contains a non-abelian free group, it is not solvable. Therefore, by Theorem
5.1, H maps onto a non-abelian free group.

Proof of Theorem 1.1. Take G0 to be the appropriate subgroup of Lemma 2.8. It has the desired bound on
the index. Now the theorem follows from Theorem 4.1 and Theorem 5.4.

Remark 5.5. The first part of our proof, where we classify the subgroups not containing free groups is very
similar to the analogous one in the paper [2]. However, for the second part, where we prove largeness, the
approach is essentially different.

In [2], the fact that the kernel of any canonical retraction onto 1-generated standard parabolic subgroup is
again a RAAG is used to reduce to the case of subgroups of RAAGs that have non-trivial images under any
retractions. In this situation, and similar to our proof, the main case is when one has a subgroup H of a
RAAG GΓ over an irreducible graph Γ such that the retraction of H over any 1-generated standard parabolic
is non-trivial, and the retraction over any proper parabolic is abelian. Decompose GΓ as GA ∗GC

GB with A
again irreducible. An abelian subgroup of H ∩ gGAg

−1 such that has non-trivial retractions onto 1-generated
parabolics of gGAg

−1 can not be contained in a proper parabolic subgroup, and hence it must be cyclic (as in
the proof of Theorem 4.1) and this implies that H ∩ gGCg

−1 is trivial and H is a free product of indicable
groups.

The analogous key statement (that kernels of retractions onto vertices of RAAGs are RAAGs again) is not
true for EAFC groups. Since we did not have that fact, we had to do a finer analysis on the types of graphs
of groups obtained from the action of subgroups on splittings of our EAFC; for this, the closure of parabolic
subgroups under taking roots and the equations of Lemma 4.2 are fundamental. These two facts are not used
in [2]. Note that the graphs of groups obtained are not free products as in the RAAG case. This is not
surprising since this is already happens in the two generator EAFC case, which is the base of induction, and
we have subgroups of the form Z × Fn which can be split as a groups of with Z2 vertex groups and Z edge
groups.

6 Coherence

In this section we give an explicit characterization of coherence of EAFC groups that emphasizes its similar-
ities with the class of RAAGs. Recall that a group G is called coherent, if any finitely generated subgroup
H of G, is finitely presented.

A (simplicial) graph Γ = (V,E) is said to be chordal if for every S ⊂ V such that the induced subgraph ΓS

is a cycle (i.e. homeomorphic to S1) one has that |S| = 3. In other words all cycles of four or more vertices
have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Droms provided the following simple characterization of coherent RAAGs

Theorem 6.1 (Theorem 1 in [11]). Let G be a RAAG based on Γ. G is coherent if and only if Γ is chordal.

Let Γ = ((V,E),m) be an EAFC system and Γ≤2 = ((V,E′),m|E′) where E′ = m−1({2}). That is Γ≤2 is
obtained from Γ by removing all the edges with label > 2.
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We have the following

Theorem 6.2 (Theorem 1.4). Let Γ be an EAFC system. Then GΓ is coherent if and only if both Γ and
Γ≤2 are chordal.

This theorem can be deduced from the classification of coherent Artin groups, which was settled in [25] after
the reduction in [13], and it stresses the similarities between EAFC groups and RAAGs. Theorem 1.4 admits
a proof that is very similar to the one of Droms for RAAGs. We provide here a schematic proof.

We will use the following facts.

Proposition 6.3. Let A,B be group and C a common subgroup. Let G = A ∗C B. Then

(1) If A and B are finitely generated, but C is not, then G is not finitely presented.

(2) If A and B are coherent and all subgroups of C are finitely generated, then G is coherent.

Proof. (1) is the content of [3]. (2) is Theorem 8 of [17].

Definition 6.4. Let Γ be an Artin system and GΓ the associated group. The map ϕ : GΓ → Z, v 7→ 1 for
all v ∈ V Γ defines a morphism, as it respects the relations of GΓ. We define KΓ to be the kernel of ϕ.

The follwing is essentially in Droms [11], see also [16, Lemma 4.4].

Proposition 6.5. Let Γ be an Artin system, and U, V proper induced subgraphs of Γ with Γ = U ∪V . Then

KΓ = KU ∗KU∩V
KV .

Proof. As GΓ = GU ∗GU∩V
GV , the group GΓ acts on a Bass-Serre tree T , whose vertices are the left cosets

of the subgroups GU and GV in GΓ, while the edges are the left cosets of GU∩V in GΓ.

The subgroup KΓ of GΓ acts on T as well; moreover, this action is transitive on edges: let gGU∩V be an
edge of T , pick s ∈ GU∩V such that ϕ(s) = 1. Then sϕ(g)g−1 ∈ KΓ and one has

(sϕ(g)g−1)(gGU∩V ) = sρ(g)GU∩V = GU∩V .

Thus, there is only one orbit of edges under the action of KΓ. The vertices GU and GV lie in different
orbits of the action of KΓ on T . Finally the vertices stabilizers are of the form gGUg

−1 ∩ KΓ
∼= KU or

gGV g
−1 ∩KΓ

∼= KV and the edge stabilizers are gGU∩V g
−1 ∩KΓ

∼= KU∩V . Ultimately, the quotient T/KΓ

consists of two vertices joined by an edge, so one has KΓ = KU ∗KU∩V
KV .

The following was already observed in [16, Proposition 4.6].

Proposition 6.6. If Γ is a tree, then KΓ is a finitely generated free group.

Proof. Expressing GΓ as a graph of groups with dihedral vertex groups and cyclic edge groups, and using
the previous proposition, we get that KΓ is a free product of KU where U is dihedral. Lemma 2.10 tells us
that KU is a finitely generated free group, and so is KΓ, as a free product of finitely many such groups.
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Proof of Theorem 1.4. We prove first that the conditions are necessary.

Suppose first that Γ is not chordal. Then it contains an induced cycle C of length at least 4. Let x, y be two
vertices of C that are not adjacent. One can express C as a union of two trees T1, T2 with C = T1 ∪ T2 and
T1 ∩ T2 = {x, y}. From this, one has a splitting:

KC = KT1 ∗K{x,y} KT2 .

From Theorem 6.6, both KT1
, and KT2

are finitely generated free groups, so KC is finitely generated as well.
The group K{x,y} is the normal closure of xy−1 in the free group G{x,y}, so K{x,y} is not finitely generated,
and hence by Proposition 6.3, KC is not finitely presented. This means that GC is not coherent, and hence
GΓ is not coherent as well.

It remains to consider the case when Γ is chordal but Γ≤2 is not. Then Γ≤2 contains an induced cycle C of
length at least 4. Suppose that the length of C is > 4, then there are two chords in Γ with label > 2 and an
edge of C forming a triangle, contradicting that Γ is EAFC. So, assume then that there is an induced cycle
C of length 4 in Γ≤2. This means that GC , the standard parabolic of GΓ spanned by C, is either isomorphic
to D2s ×D2t with s, t > 1 or isomorphic to (⟨a⟩ ×D2n) ∗D2n (⟨a⟩ ×D2n) with n > 1. As D2n contains Fn,
we see that in both cases GC contains F2 × F2, which is not coherent.

We now prove that the conditions are sufficient.

As coherence is preserved under free products, it is enough to consider the case when Γ is connected and it
satisfies the hypothesis of the theorem.

If Γ is complete, then by the hypothesis of the theorem it can contain at most one edge with label greater
than 2. By Lemma 2.9, GΓ is a direct product of a dihedral Artin group and some copies of Z, so it is
coherent.

If Γ is not complete, then there are two proper subgraphs Γ1 and Γ2 with Γ = Γ1 ∪ Γ2, and Γ1 ∩ Γ2 = A,
with A complete. Here one has a splitting:

GΓ = GΓ1 ∗GA
GΓ2 .

One important thing to notice here is that GA is abelian. Indeed, if there is an edge {a, b} ⊂ A with label
m > 2, then from the construction, one can find x ∈ Γ1, and y ∈ Γ2 where a, x, b, y form a square with a
chord labeled by m; but this is not allowed by the hypothesis of the theorem. Now the result follows from
Propostion 6.3.
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[1] Yago Antoĺın and Islam Foniqi. Intersection of parabolic subgroups in even Artin groups of FC-type.
Proc. Edinb. Math. Soc. (2), 65(4):938–957, 2022.
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[4] Rubén Blasco-Garćıa, Conchita Mart́ınez-Pérez, and Luis Paris. Poly-freeness of even artin groups of
fc type. Groups, Geometry, and Dynamics, 13(1):309–325, 2018.

[5] J. O. Button. Tubular free by cyclic groups and the strongest tits alternative. arXiv math.GR
1510.05842, 2015.

[6] Arjeh M. Cohen and David B. Wales. Linearity of Artin groups of finite type. Israel J. Math., 131:101–
123, 2002.

[7] Marc Culler and John W. Morgan. Group actions on R-trees. Proc. London Math. Soc. (3), 55(3):571–
604, 1987.
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