
Deep learning applied to turn-based
board games

Aprendizaje profundo aplicado a
juegos de tablero por turnos

Universidad Complutense de Madrid

Facultad de Informática

Trabajo Fin de Grado del Doble Grado en Ingenieŕıa
Informática-Matemáticas

Curso 2020/2021

Pablo Sanz Sanz
Juan Carlos Villanueva Quirós

Dirigido por: Antonio A. Sánchez Ruiz-Granados

Resumen

Gracias al ritmo vertiginoso al que crece la capacidad computacional, la inteligencia ar-
tificial está logrando hitos que hace tan solo unas décadas se consideraban impensables.
Uno de ellos es AlphaZero, un algoritmo capaz de alcanzar un nivel de juego sobrehumano
en ajedrez, shogi y Go, mediante unas pocas horas de autoaprendizaje y sin conocimiento
del dominio excepto las reglas del juego.

En este trabajo, revisamos los fundamentos, explicamos cómo funciona el algoritmo y
desarrollamos nuestra propia versión de este, capaz de ser ejecutada en un ordenador
personal. A pesar de la escasez de recursos computacionales disponibles, hemos conseguido
dominar juegos menos complejos como el Tres en Raya y el Conecta 4. Para verificar el
aprendizaje, probamos nuestra implementación contra otras estrategias y analizamos los
resultados obtenidos.

Palabras clave

Inteligencia artificial, AlphaZero, árboles de búsqueda de Monte Carlo, aprendizaje por
refuerzo, aprendizaje profundo, juegos combinacionales.

I

Abstract

Due to the astonishing growth rate in computational power, artificial intelligence is achiev-
ing milestones that were considered as inconceivable just a few decades ago. One of them
is AlphaZero, an algorithm capable of reaching superhuman performance in chess, shogi
and Go, with just a few hours of self-play and given no domain knowledge except the
game rules.

In this paper, we review the fundamentals, explain how the algorithm works, and develop
our own version of it, capable of being executed on a personal computer. Despite the lack
of available computational resources, we have managed to master less complex games such
as Tic-Tac-Toe and Connect 4. To verify learning, we test our implementation against
other strategies and analyze the results obtained.

Keywords

Artificial intelligence, AlphaZero, Monte Carlo tree search, reinforcement learning, deep
learning, combinational games.

III

Contents

List of Figures VII

List of Tables VIII

1 Introduction 1
1.1 Objectives . 2
1.2 Planning . 2
1.3 Memory Structure . 3

2 Algorithms in Games 4
2.1 Reinforcement Learning . 4

2.1.1 Multi-armed Bandit . 6
2.2 Game Theory . 8
2.3 Search Methods . 10

2.3.1 Minimax and AlphaBeta . 10
2.3.2 Monte Carlo Tree Search (MCTS) 11

2.4 Deep Reinforcement Learning in Combinational Games 15
2.4.1 Activation Functions . 15
2.4.2 Convolutional Neural Networks . 16
2.4.3 Residual Neural Network . 18
2.4.4 Batch Normalization . 18
2.4.5 Regularization . 19

3 AlphaZero 20
3.1 Training Loop . 20
3.2 Self-play . 21
3.3 Neural Network . 23
3.4 Execution Example . 26

4 AlphaZero Implementation 31
4.1 Game Representation . 31

4.1.1 Tic-Tac-Toe . 32
4.1.2 Connect N . 33

4.2 Strategies and MCTS Implementation . 33
4.3 Neural Network Implementation . 35
4.4 AlphaZero Implementation . 36

4.4.1 Adapter . 36
4.5 Training Parallelization . 38

V

CONTENTS

4.5.1 Multiprocessing . 38
4.5.2 Multithreading . 40

4.6 Repository . 41

5 Experiments and Results 42
5.1 Tic-Tac-Toe . 42

5.1.1 Tic-Tac-Toe with MCTS (no learning) 42
5.1.2 AlphaZero’s Parameter Tuning . 43
5.1.3 Final Results . 44

5.2 Connect 4 . 47

6 Conclusions 50
6.1 Review of Objectives . 51
6.2 Future Work . 52

Appendices 54

A Personal contributions to the project 55
A.1 Pablo Sanz Sanz’s Contributions . 55
A.2 Juan Carlos Villanueva Quirós’ Contributions 57

Bibliography 59

VI

List of Figures

2.1 Reward distribution for each action. 8
2.2 Comparison between ε-greedy and UCB algorithms. 8
2.3 Example of a Tic-Tac-Toe game. 9
2.4 Example of a Connect 4 game. 10
2.5 MCTS outline. 12
2.6 Graphical representation of erfc(x). 13
2.7 ReLU function. 15
2.8 Tanh function. 16
2.9 Elemental structure of a Convolutional Neural Network. 17
2.10 The convolution operation. 17
2.11 Example of a ReLU operation. 18
2.12 Example of Maximum Grouping. 18

3.1 AlphaZero’s game representation. 24
3.2 AlphaZero’s neural network architecture. 25
3.3 Initial board state in the example. 26
3.4 Tree after expansion step. 26
3.5 Tree after evaluation and backpropagation steps. 27
3.6 Tree after the second iteration. 28
3.7 Tree after the third iteration. 29
3.8 Final move selection. 30
3.9 Data stored from the game. 30

4.1 UML class diagram for GameEnv and its subclasses. 32
4.2 Example of the application of the heuristic for Connect 4. 34
4.3 UML class diagram for tfg.strategies. 35
4.4 UML sequence diagram for a training step of AlphaZero. 37
4.5 Input conversion. 38
4.6 UML class diagram for AlphaZero. 39
4.7 Outline of the algorithm with parallelism. 41

5.1 Comparison of different parameters in MCTS for Tic-Tac-Toe. 43
5.2 Value and policy heads losses during Tic-Tac-Toe training. 45
5.3 Prediction examples of AlphaZero’s trained neural network for Tic-Tac-Toe. 46
5.4 Comparison between AlphaZero and MCTS. 47
5.5 Value and policy heads losses during Connect 4 training. 48

VII

List of Tables

5.1 Variable hyperparameter settings for Tic-Tac-Toe. 44
5.2 Results with black and 100 iterations after training, ordered by number of

draws. 44
5.3 Hyperparameters used during Tic-Tac-Toe training. 45
5.4 Hyperparameters used during Connect 4 training. 48
5.5 Match results for Connect 4. 49

VIII

Chapter 1

Introduction

When IBM’s Deep Blue beat chess grandmaster Garry Kasparov in 1996, the intellectual
supremacy of humankind was definitively called into question. Since the last decades, the
rapid development in computing power has permitted Artificial Intelligence to achieve
superhuman performance on many tasks. Problems that were once considered as unap-
proachable for computers, such as board games like chess and Go, are now being solved
with simplicity. Steadily, the gap between human and machine intelligence is narrowing.

Much effort has been expended trying to create programs capable of playing at a superhu-
man level in such hard games. This is because it is usually necessary to search among all
possible moves and the branching factor of these games makes it unfeasible in a reasonable
amount of time. Thus, typically these kinds of programs use the Minimax algorithm with
an AlphaBeta prune, a highly fine-tuned heuristic with handcrafted features and many
other domain-specific efficiency improvements.

In the case of chess, Stockfish [1] is one of the strongest engines at the moment. In its
twelfth version, which was released in 2020, it incorporated a neural network for position
evaluation. But before they used handcrafted features in the heuristic. Besides, it uses a
big transposition table (a board cache) or an opening book, among others, to make the
search more efficient.

As for the game of Go, most of the programs were unable to compete with professional
human players. The reason behind this is mainly the size of the board (19× 19, whereas
a game like chess has a board of 8× 8) and the branching factor. For instance, a typical
position in Go may have around 250 possible moves.

However, in 2016 DeepMind, Google’s notorious artificial intelligence company, created
AlphaGo [2]. It is an algorithm based on a neural network that was trained using both
human games and self-play, as well as some other game-specific enhancements. For ex-
ample, they exploited the fact that Go has a symmetric board. AlphaGo supposed a
milestone in Go. It faced South Korean 9-dan player Lee Sedol, one of the strongest
players, and defeated him with four wins out of five games [3]. This match was streamed
live in YouTube and reached around 60 million viewers in China.

This group continued its research on the topic and published an improved version of the
algorithm, AlphaGo Zero [4]. This time, no human games where used for training, which
showed that they were not necessary. This algorithm clearly outperformed the previous

1

CHAPTER 1. INTRODUCTION

one.

Finally, in 2017 they developed AlphaZero, a general reinforcement learning algorithm
which outperforms humans in these challenging games (chess, shogi and Go). But the
most relevant achievement was that AlphaZero started its training from random play
and no domain-knowledge was provided except the game rules. It purely learnt by self-
playing and achieved superhuman level of play within 24 hours. AlphaZero was capable
of thoroughly beating Stockfish (the eighth version) in chess, AlphaGo Zero in Go and
Elmo, a strong shogi engine.

In this project, we will explain how algorithms applied to turn-based board games work
and, in particular, how AlphaZero accomplished such astonishing results. We will also
implement our own version of AlphaZero, capable of being executed in a personal com-
puter. Unfortunately, we could not afford powerful computational resources and for this
reason, we will focus in less complex games such as Tic-Tac-Toe and Connect 4. In order
to verify that our implementation is learning by self-play and with no domain knowledge,
we will test it against other implemented algorithms and analyze the results obtained.

1.1 Objectives

We now list the main objectives that were intended to be achieved for this project:

• Acquire a fully comprehension on how AlphaZero algorithm works. In addition, we
are going to study other algorithms for games, like Minimax. This way, we can
compare AlphaZero with different approaches.

• Develop and implement our own version of AlphaZero. We will also implement the
rest of algorithms we are studying.

• Train and test our AlphaZero version as far as possible. For this purpose, we will
use the other algorithms as rivals to check if AlphaZero can outperform them.

1.2 Planning

We divided the proposed objectives into tasks and assign deadlines to each one.

The first objective was split into three main tasks: acquire a basic foundation in rein-
forcement learning, study the two main components used in AlphaZero (Monte Carlo Tree
Search and Convolutational Neural Networks), and put all these pieces together to fully
understand the complete algorithm. We assigned two months for this research period.

Secondly, we also divided the implementation part. We distributed the work so that each
one of us could focus on implementing a specific module. More time was reserved for this
part, as we had to code everything from scratch and adapt many concepts to fit into the
computational power of a personal computer. Altogether, three months were planned to
be spent for the implementation.

The third and last objective was divided into two tasks: debugging and testing. Debugging
would consist of ensuring every module worked as expected. While testing, we would
obtain all the results and conclusions. We planned to start with a basic game, such as
Tic-Tac-Toe and then increase the difficulty if we got positive results. We expected that

2

CHAPTER 1. INTRODUCTION

we would be able to train a perfect Tic-Tac-Toe player. If we achieved that, we would
try it with Connect 4. We hoped we could reach at least a player that is better than an
average human. After that, if we continued having the expected results we might try it
with harder games, like checkers. In total, two months were assigned for this part.

Finally, we planned to write this document progressively as we progress in the project.

Additionally, in order to ensure proper progress, we would fix a meeting every two weeks
with our supervisor, so that he could check our work and provide new ideas. During the
last month, we met every week instead to finish the last details.

1.3 Memory Structure

In Chapter 2 we cover the fundamentals that are later going to be applied in the expla-
nation and development of AlphaZero. We explain the concept of reinforcement learning
and introduce the Markov Decision Process as the formal environment that we are dealing
with and the multi-armed bandit problem as an example of it. Then, we present search-
based algorithms used by computers to play games. In particular, we study in depth the
Monte Carlo Tree Search algorithm. In addition, we provide a general overview of the
concepts of deep reinforcement learning that will be used later.

Chapter 3 thoroughly describes the AlphaZero algorithm. We divide the explanation in
three well distinguished parts: training loop, self-play and neural network. Furthermore,
we provide an execution example in great detail to facilitate understanding.

In Chapter 4 we explain how we implemented our version of AlphaZero. We give details of
every module implemented and mention the libraries that were necessary. We also state
all the problems that we had to face and how we solved them.

In Chapter 5 we show the experiments carried out with AlphaZero for Tic-Tac-Toe and
Connect 4. Specifically, we train multiple instances of AlphaZero with different parame-
ters, choose the most appropriate ones and test them against other strategies.

Finally, in Chapter 6 we summarize the conclusions obtained from this project. We
mention which objectives has been achieved and what further work could be done if we
had enough time.

3

Chapter 2

Algorithms in Games

2.1 Reinforcement Learning

We often say there are three paradigms in machine learning: supervised learning, unsu-
pervised learning and reinforcement learning [5]. On the one hand, supervised learning
aims to build a model capable of learning to label input data based on already annotated
examples. On the other hand, unsupervised learning tries to find some kind of structure
of unlabeled data. As their names suggest, we may think that these first two paradigms
cover the whole spectrum of machine learning. However, reinforcement learning cannot
be classified either as supervised or unsupervised learning, even though it has some things
in common with both of them.

Briefly, reinforcement learning tries to find the actions an agent should take in a cer-
tain environment. The main difference between reinforcement learning and the other two
paradigms is that finding the training data is part of the problem, whereas in both su-
pervised and unsupervised learning it is given beforehand. In order for the agent to know
whether an action is beneficial or not, it is given a reward after taking it. Therefore, the
goal of the agent is to maximize the acquired reward.

A reinforcement learning problem consists of two main entities: the agent and the envi-
ronment. The interaction between them is as follows: the agent sees a state st at time
t, takes an action at and the environment returns its new state st+1 and the reward rt+1.
This process may be repeated indefinitely.

Formally, as David Silver does in [6], we may describe a reinforcement learning problem
as a Markov Decision Process (MDP), that is, a tuple (S,A,P ,R, γ) where:

• S is a finite set of states,

• A is a finite set of actions,

• P : S × S ×A → [0, 1] is a state transition probability function

P(s, s′, a) = P[St+1 = s′ | St = s, At = a],

• R : S ×A → R is the reward function

R(s, a) = E[Rt+1 | St = s, At = a]

4

CHAPTER 2. ALGORITHMS IN GAMES

• and γ ∈ [0, 1] is the discount factor.

Here, P[St+1 = s′ | St = s, At = a] means the probability of ending in state s′ at time t+1
given that the actor is in state s and takes action a at time t; and E[Rt+1 | St = s, At = a]
is the expectancy of receiving reward Rt+1 if the actor takes action a in state s at time t.

The kinds of problems we are going to cover are deterministic, so if the agent is in state
s and takes action a there will only exist one state s′ ∈ S such that P(s, s′, a) = 1 and
therefore P(s, s′′, a) = 0 for all s′′ ∈ S \ {s′}. Thus, we can treat P as a transition
function P : S ×A → S, (s, a) 7→ argmaxs′∈S P[St+1 = s′ | St = s, At = a], where argmax
is the mapping that returns one argument that maximizes the given function. We will
also consider a deterministic reward function.

Now a reinforcement learning agent takes actions following a given policy. The policy
function π : A × S → [0, 1] is a mapping from a state to the probabilities of taking each
possible action. Thus,

∑
a∈A π(a | s) = 1 for every s ∈ S. With this policy, the agent will

try to maximize its reward, given by the value function vπ : S → R that maps a state s
to the expected return after following the policy π starting from s. More formally,

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
, (2.1)

where t is any time step and Eπ is the expectancy operator provided that policy π has
been followed. Similarly, we could define the action-value function qπ : S×A → R instead:

qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
. (2.2)

Here is where the discount factor γ comes into play. A low value of γ will only consider
important immediate rewards, whereas a high value will take also into account long-term
ones. For instance, if γ = 0 the agent will be called greedy, and if γ = 1 it will try to
maximize all possible rewards. But it is important that there is a finite horizon in the
second case because the sum will not converge otherwise. Usually, γ ∈ (0, 1), which make
the series convergent if all possible rewards are bounded by a certain value R > 0:∣∣∣∣∣

∞∑
k=0

γkRt+k+1

∣∣∣∣∣ ≤
∞∑
k=0

γkR =
1

1− γ
R <∞.

The agent does not know the MDP in advance but it will try to learn the policy function
by experience. This process will also affect the value (or action-value) function. But we
can also do it the other way around. We can first learn a value function and then modify
π accordingly. For example, once an action-value function q has been learnt, it can be
used to define a greedy policy function πq(s) = argmaxa∈A q(s, a). Note that we have
omitted the dependence with the action in πq because this type of policy is deterministic.
Another typical policy function is called ε-greedy. This policy chooses a random action
with probability ε ∈ (0, 1) and the greedy action with probability 1− ε. Thus, it can be
defined as

πq(a | s) =

®
1− ε a = argmaxa∈A q(s, a)
ε

|A|−1 otherwise.
(2.3)

5

CHAPTER 2. ALGORITHMS IN GAMES

There are several methods to learn the policy function but we are going to show one
just as an example, the Q-learning algorithm [7]. This method uses a tabular function
Q : S × A → R that will be updated to improve a given policy π to compute either vπ
or qπ in the end. The algorithm initializes the Q table randomly and iterates during a
given number of episodes. Every episode consists of a succession of steps and ends when
a terminal state is reached. Every step starts from the last state S and selects a valid
action A following a behavior policy µ derived from Q. A typical example of µ is the
ε-greedy policy with respect to Q. Then, this action is taken and new state S ′ and reward
R are observed. Thus, we update the Q table with the new information using the Bellman
equation [8]:

Q′(S,A) = Q(S,A) + α(R + γmax
a∈A

Q(S ′, a)−Q(S,A)),

where α > 0 is the learning rate. Finally, we can compute a greedy policy function

π(s) = argmaxa∈AQ(s, a).

This algorithm has been proved to converge to the optimal action-value function [9], that
is, Q converges to the mapping q∗ = maxπ qπ as the number of episodes go to infinity.

This is only one example of an algorithm but there are numerous others. In any case, we
are not going to cover them as it is not the purpose of this project. But we are going to talk
about a problem that all these methods encounter, which is the exploration-exploitation
balance; there must be an equilibrium between exploration, which helps the agent find as
many different states as possible, and exploitation, which allows the agent to collect the
highest possible reward. We will cover this problem with the following example, which is
one of the simplest MDPs.

2.1.1 Multi-armed Bandit

In the multi-armed [10] or k-armed bandit problem an agent can take one of the k different
actions every time step and has to maximize the total reward over T time steps. Each
action i yields a reward from an unknown stationary (i.e., it does not change over time)
probability distribution Xi that we should be able to estimate through experience. We
denote the value of a given action a with q∗(a), defined as the expected reward given we
selected action a at time t:

q∗(a) = E[Rt+1 | At = a].

If we knew this function in advance, we could act greedily with respect to its highest
value and maximize our reward. Therefore, let Qt(a) be the estimated value for action a
at time step t. This mapping is learnt through experience and can be defined as

Qt(a) =

∑t−1
i=1Ri+11Ai=a∑t−1

i=1 1Ai=a

,

where 1p is 1 when p is true and 0 otherwise. If the denominator is 0 we fix it by defining
Qt(a) = 0. This way, Qt(a) estimates the mean reward yielded by a, so if we could
select that action an infinite number of times, the denominator would go to infinity and
Qt(a) → q∗(a). But this is not the case because we are limited by a horizon T < ∞, so
we need to choose actions carefully in order to have a good estimate of q∗.

6

CHAPTER 2. ALGORITHMS IN GAMES

If we act greedily with respect to Qt, we will be maximizing our total reward in the short
term. Thus, we are exploiting our knowledge of the environment. However, if we choose
an action with a lower value, then we will be exploring the action space in order to find
actions that might lead to better long-term total rewards.

Here, the exploration-exploitation problem arises; it is impossible to be both exploring
and exploiting so we must find a balance between them. Therefore, we should explore
enough to find the best actions so we can exploit them many times in the long run.

ε-greedy Algorithm

This is the most simple algorithm that ensures a certain balance between exploration and
exploitation. This method selects actions using policy defined in (2.3), assuming that the
state is always the same. This way, it is exploiting the best known action at the moment
but sometimes explores some other which may be better than the current best one.

Therefore, with an infinite horizon all actions will be taken infinitely many times and,
thus, their estimated values will tend to their real ones.

The main problem of this method is that all actions have the same probability of being
taken even though they are already known to be suboptimal.

Upper Confidence Bound Algorithm

As exploring is really important, it is better to select useful actions rather than doing it
randomly. This is what the Upper Confidence Bound (UCB) algorithm [11] was devel-
oped for. It selects the action based on its potential; higher valued actions with higher
uncertainty will be preferred over lower valued ones.

The certainty of an action is defined as the number of times it has been tried. For instance,
if an action has been taken few times and has yielded a low value it will be harder for it
to be taken again. But every time it is selected its value will be more certain so it will
have even less chances to be used in the future.

All this can be reduced to this formula:

At = argmaxa∈A

(
Qt(a) + C

log t

Nt(a)

)
, (2.4)

where log denotes the natural logarithm function (y = log t if and only if ey = t), Nt(a)
is the number of times action a has been taken until time t (Nt(a) =

∑t−1
i=1 1Ai=a) and

C > 0 is an exploration constant.

A simple experiment comparing ε-greedy and UCB algorithms can show how the latter
outperforms the former. We took 10 different normal distributions, displayed in Figure 2.1,
as reward generators for each of the ten actions. Their means and standard deviations
were selected randomly from the intervals [−5, 5] and [1, 2], respectively.

Then, we used both UCB (with C = 2) and ε-greedy (with ε = 0.1) formulas for action
selection during 1,000 steps and compared the mean reward each of them obtained and
the value they expected to get with each action. UCB got a final reward of 4,357.4 while
ε-greedy obtained 3,974.5. We can also see in Figure 2.2a that UCB needed about 200
steps to learn which the best action was and easily beat ε-greedy (which was lucky and

7

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.1: Reward distribution for each action.

(a) (b)

Figure 2.2: a) Mean reward obtained after t steps. b) Expected value of every action for
each algorithm, with the real mean reward and its deviation in black.

exploited a good action at the beginning) and reached the expected mean reward (the
highest mean reward).

As for the estimated value of each action, we can observe in Figure 2.2b that both algo-
rithms estimated the mean reward of the last action really well because it was the one
taken most times in both cases. They struggled more with the rest of them and that is
because there were only 1,000 steps. On the one hand, ε-greedy could not explore random
actions as much as needed (each action may have been selected randomly only ten times).
On the other, UCB could easily find that all other actions were not worth taking. In fact,
it selected the last action 976 times, while the ones that yielded a negative reward were
not taken a second time. Usually, with a high number of steps UCB will have an accurate
estimation of the best actions and will be more uncertain about the worst ones, but it
does not need to improve its certainty.

2.2 Game Theory

In the following sections we are going to cover different algorithms that can be used to
play games, but first we need to define what a game is [12].

We are going to define a game as a tuple G = (N ,S,A, T ,R), where N is the set of
players, S and A are the sets of possible states and actions in the game, respectively,
T : N ×S×A → S is the transition function and R : N ×S → R is the reward function.
We can see the similarities between this definition and the MDP defined in Section 2.1.

8

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.3: Example of a Tic-Tac-Toe game. Here, white won as it was able to place three
tokens in the second row.

First, N represents a set of actors. It is necessary because this time there is more than
one actor. The sets S and A mean exactly the same as before. Now, for each player
p ∈ N , Tp(s, a) = T (p, s, a) is a simplification of P that maps a state-action pair into the
resulting state after taking that action, and Rp(s) = R(p, s) is another simplification of
its counterpart. Finally, as there is no γ defined here, we could say γ = 1. This is not
problematic since we are considering finite games, that is, games that end after a finite
number of actions.

Here, we will specially focus in two player board games. Thus, we will simply say
N = {white, black}, similarly to chess, where white is the player that moves first. A
state is defined by the board situation and some other relevant information if necessary.
In addition, the reward function will only make sense for a subset L ⊂ S of terminal or
leaf states where the game has already ended and we know the real outcome. Thus,

R(p, s) =

−1 s ∈ L and p lost

0 s /∈ L or the game ended in a draw

1 s ∈ L and p won.

(2.5)

Aside from that, we will also consider that the games have the following properties:

• They are zero-sum games. If we add up all the rewards that can be obtained by both
players the sum will end up being zero. In other words, what is good for one player
is bad for the other. The reward function defined in (2.5) matches this condition,
because R(white, s) +R(black, s) = 0 for all s ∈ S.

• They are perfect-information games. Every state must hold information about the
entire situation of the game. It must be equal for black and white. For instance a
typical card game does not have perfect information because one player only sees
its hand but knows nothing about the cards of the rest of the players. Thus, a state
from the same time step would be different for every player.

We will use Tic-Tac-Toe and Connect N as examples of simple games that meet these
conditions.

On the one hand, Tic-Tac-Toe consists of a 3 × 3 board where each player alternatively
places its tokens in. Typically white’s tokens are represented as X and black’s as O. The
goal of the game is to place three tokens in the same line, either in the same row, column
or diagonal. The first player that achieves this is the winner. An example of a game is
shown in Figure 2.3.

On the other hand, Connect N has the same goal as Tic-Tac-Toe with the difference that
in this game pieces fall by the gravity to the first empty cell in the column, starting from

9

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.4: Example of a Connect 4 game. In spite of their names, white is using red
pieces and black’s are yellow. Some moves have been omitted to make it shorter. Black
was able to win by placing four consecutive tokens in the same diagonal.

the bottom. The most usual version is Connect 4, played in a 6 rows by 7 columns board.
Figure 2.4 represents a sample game of Connect 4.

Both games are solved, which means that there exists a known perfect strategy for either
player. The perfect outcome for a Tic-Tac-Toe game is known to be a draw and can be
computed with a brute force search, because the number of different states is only 5,478.
In contrast, Connect 4’s perfect strategy leads to a win by white [13]. This time, the
number of different states is around 4.5× 1012 [14], so a much more fine-tuned algorithm
is needed. For example, [15] is a C++ implementation of a perfect Connect 4 player.

2.3 Search Methods

In this section we are going to cover search-based algorithms used by computers to play
games. Specifically, we are going to start briefly with the Minimax algorithm and its
optimization: the AlphaBeta prune. Then, we are going to study in depth the Monte
Carlo Tree Search algorithm, which is the one we are really going to use.

2.3.1 Minimax and AlphaBeta

Minimax is a basic search-based algorithm used in two-player zero-sum games with perfect
information. It is attributed to von Neumann, who proved the minimax theorem in 1928
[16].

Let G = (N ,S,A, T ,R) be a game, L ⊆ S the set of leaf states and h : N × L → R an
heuristic function. Note that L might not be the same as defined in Section 2.2. If it is
the set of states where the game has already ended the heuristic function can be simply
defined as h = R

∣∣
N×L.

In the general case, it is not viable to execute the Minimax algorithm until a final state.
So frequently, L is defined as the set of states at a certain depth and the heuristic function

10

CHAPTER 2. ALGORITHMS IN GAMES

must be an estimation of the possible outcome. The value returned by h will be a positive
number below 1 when white has a higher probability to be the winner, negative but higher
than −1 when black is the one with higher odds and 0 if the expected outcome is a draw.

Let us describe now the algorithm. Let s ∈ S be the current state of the game, which is
called the root of the game tree, and p ∈ N the player to play in s. Minimax is a recursive
algorithm that takes the root state s and returns the best move and its expected value. If
s ∈ L the algorithm cannot continue, so there is no such a move and the expected value is
the result of h(p, s). In the other case, this algorithm is recursively applied to all children
nodes of s (i.e., the ones reachable from s after one move). Once this has been done, the
best move is selected based on its value and p. If p is white, the max player, the move
with the highest value will be chosen. Otherwise, if it is black’s turn (the min player) the
move with the minimum value will be selected. This is where the name of this algorithm
comes from. White tries to maximize its value, while also trying to minimize black’s, as
it has to assume that the opponent is trying to make the best move as well.

This algorithm works, but usually the state space is huge and has a high branching
factor. This reduces enormously the maximum depth that can be reached and, therefore,
the information that can be obtained using this search. With that in mind, we must
optimize the algorithm so that it does not traverse the complete state space, but rather
avoids visiting branches of the tree known to lead a worse result. This is the main purpose
of the AlphaBeta prune [17].

Minimax algorithm with AlphaBeta prune is similar to the original one, but it adds two
additional parameters: α and β. Each of them holds, respectively, the highest and the
lowest value found in the subtree that is being explored at the moment. This parameters
are initialized at α = −∞ and β = ∞, meaning that the tree has not been visited yet,
and they are passed to child nodes. Then, α is updated with the results of current node’s
children if it is white’s turn and β if it is black’s. Thus, if α ≥ β at any moment it is
impossible to find a better value in this subtree (from the point of view of either player)
than some other already found. Therefore, it is not necessary to keep searching in this
branch.

In conjunction with AlphaBeta prune, other domain-specific optimizations are often
added, such as choosing carefully the order in which nodes are visited so that better
moves are explored first and the tree can be pruned earlier. Also, big part of the effort
is made on optimizing heuristic functions in order to anticipate as much information as
possible.

2.3.2 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search [18, 19] (MCTS) is a probabilistic algorithm that can be used
in finite two-player zero-sum games with perfect information. This algorithm self-plays
multiple games starting from the root of the game tree until a final state is reached.
The outcome of every game is collected and backpropagated through the tree so that
the expected value of every action can be estimated and the best move can be selected
accordingly. As opposed to Minimax, there is no need to build a complex heuristic
function, but rather it is estimated with experience.

Specifically, this method consists of four phases: selection, expansion, simulation and
backpropagation. The algorithm runs N iterations and each of them executes all four

11

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.5: MCTS outline.

phases (except for expansion and simulation if selection phase reaches a final state). The
details of every phase are listed below. They are not exactly the same as in the original
MCTS algorithm, but we want to show the modification that AlphaZero uses.

1. Selection. Starting from the root of the tree, successive actions are taken driven
by a given selection policy until a non-expanded node is reached. For instance,
during the first iteration there is only one node in the tree, the root. It has not been
expanded yet so the selection phase would end there.

2. Expansion. After the selection phase we expand the selected node. Expanding
means that we add to the tree all its child nodes, that is, they are stored in memory
permanently while the algorithm is running. This way any of these nodes can be
selected during the next iteration.

3. Simulation. This is the actual self-play phase. A game is played choosing the
moves at random at each node until a final state is reached. As opposed to the
previous step, these nodes are stored in memory temporally until this phase ends.

4. Backpropagation. Once the outcome of the simulated game has been collected,
it is backpropagated from the expanded node to the root of the tree. In the basic
algorithm the number of visits of each node is increased, as well as its accumulated
value. This information will be used during selection phase and when choosing the
final move, so it is common to add some other information if required.

Figure 2.5 summarizes one iteration of the algorithm.

Once this iterative process is done, the algorithm returns the best action to take in the
current state according to a given metric.

Selection policies

Selection policies are our main mechanism to ensure balance between exploration and
exploitation. Selecting the correct policy for our game is crucial and can make a difference
about how well the algorithm behaves. Let us introduce some examples of selection
policies.

• Objective Monte Carlo (OMC). This algorithm was proposed in [20] and selects
the move that has the highest probability of having a better value than the current

12

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.6: Graphical representation of erfc(x).

better node. It first defines an urgency function1 of each node i

U(i) = erfc

(
V − v(i)√

2σ(i)

)
,

where v(i) is the value of i, V = maxk v(k), σ(i) is the standard deviation of v(i)
and erfc (Figure 2.6) is the complementary error function

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt.

Then, the selected node will be the one that maximizes the fairness function

f(i) =
NU(i)

n(i)
∑

j 6=i U(j)
.

Here, N and n(i) are the visit count of the parent node and node i, respectively.
We will use n(i)+1 instead of just n(i), as we may encounter nodes with zero visits.

• Probability to be Better than Best Move (PBBM). This algorithm is a modification
of OMC used in [19]. It also maximizes the fairness function but uses a different
urgency function, defined as follows:

U(i) = exp

(
− 2.4 · V − v(i)√

2(Σ2 + σ2(i))

)
.

Everything is the same as in OMC and Σ is the standard deviation of V .

• Upper Confidence bounds applied to Trees (UCT). This algorithms is one of the
most widely used. It is an adaptation of the UCB algorithm (2.4). It was proposed
in [21] and selects the node i that maximizes

v(i) + C

logN

n(i)
,

1When the visit count of a node is lower than 2 we can set σ(i) ≈ ∞, hence U(i) ≈ erfc(0) = 1.

13

CHAPTER 2. ALGORITHMS IN GAMES

where C > 0 is a constant (theoretically
√

2 works well, but it may be tuned
experimentally).

In our case, we have to keep in mind that we are working with two-player games, so we
must be careful when implementing these algorithms. We must take into account the turn
at the node where we are selecting the move. If we are always trying to maximize the
value of a node, the tree will consider that the rival’s worst moves are actually the best,
because those moves will lead to better states for us. However, that is not the expected
behavior, as we want to model a rival able to play at least as well as we do. Thus, we
can solve this problem easily if we set the value at each node from the point of view of
the player to play at that node. Therefore, if a victory for black is being backpropagated,
then those states where it is black’s turn will be updated with a new value of 1, while in
the others the new value will be −1. This way, we ensure that we always maximize the
odds of winning for the player who is going to make a move during selection phase.

Final move policy

Another important thing to determine is how we select the move that is going to be
returned by the algorithm. The straightforward approach is to choose the action that
leads to the state with the highest value associated. This is the max child strategy, as
named in [22], and it is not usually the most suitable when the maximum number of
iterations is low. There are some better methods.

One of the most used methods is robust child [18, 22]. This policy just chooses the
action that has been taken most times. This strategy works well because the algorithm
tries to explore the most promising nodes: if a node has a high number of visits, then its
expected value is more certain but it will be high also, because the branch would have been
discarded otherwise. Of course, this policy’s performance is closely related to the selection
policy, which must ensure a correct balance between exploration and exploitation.

Previous policy does not ensure that the returned child is actually the one with the highest
value. Therefore, we can join these previous methods and choose the max-robust child
[19], that is, the node with the highest number of visits as well as highest value. If such
a node does not exist it is recommended to keep looking until one is found, rather than
returning a child with a lower value or visit count. With this method we increase the
probability that the selected move is optimal.

Lastly, we might try to maximize both value and visit count together. This is the secure
child policy. In this case, the action which maximizes a lower confidence bound is selected.
For example, we could use the following formula [23]:

v(i) +
A√
n(i)

,

where A > 0 is a constant and v(i) and n(i) are the value and number of visits of node i,
respectively.

Anyway, all these techniques tend to behave similarly, assuming that enough number
of iterations have run so that the expected value at each node is sufficiently precise.
Nevertheless, the most commonly used policy is robust child as it is simpler than the
others and slightly outperforms max child [22].

14

CHAPTER 2. ALGORITHMS IN GAMES

2.4 Deep Reinforcement Learning in Combinational

Games

In this chapter, we provide a general overview of deep reinforcement learning, focusing on
its applications to master combinational games. We assume from the reader some previous
fundamental knowledge about artificial neural networks such as perceptron, multilayer
perceptron, activation and loss functions, and backpropagation algorithm.

Deep reinforcement learning [24] (DRL), as its name may suggest, combines the advan-
tages of deep learning (DL) with reinforcement learning (RL). It relies on deep neural
networks to approximate both value and policy function (Section 2.1). Indeed, our policy
and value function will be determined by the parameters and variables of our deep neural
network.

2.4.1 Activation Functions

An activation function transforms the weighted sum of the input into the output of the
neuron. The main purpose of activation functions is to introduce non-linearity into the
output of a node. A neural network without an activation function behaves essentially as
a linear regression model. With this component, our model is capable of learning more
complex tasks. The most common activation functions are:

ReLU

The rectified linear unit (ReLU) replaces all negative values with 0. It is mathematically
defined as

R(x) = max{0, x} (2.6)

and its graph is the one seen in Figure 2.7.

ReLU is the most frequent activation function, especially in Convolutional Neural Net-
works, as we will see later. ReLU function is able to speed up the training phase of deep
neural networks compared to traditional activation functions, due to its simple derivative,
which is 1 for a positive input and 0 otherwise. Because it is constant, it is not required
to take additional time for computing error terms.

−5−4−3−2−1 1 2 3 4 5

1

2

3

4

5

x

y

Figure 2.7: ReLU function.

15

CHAPTER 2. ALGORITHMS IN GAMES

−3 −2 −1 1 2 3

−1

1

x

y

Figure 2.8: Tanh function.

Tanh

The hyperbolic tangent (Tanh) takes any real number as input and outputs a number
between (−1, 1). We can see its graph in Figure 2.8.

Large positive inputs will be mapped to values close to 1, whereas large negative inputs
will correspond to values close to −1. The Tanh activation function is mostly used for
classification between two classes.

Softmax

The Softmax activation function takes a k-dimensional vector of real values as input and
outputs a vector of values between [0, 1] whose components’ sum is 1. The Softmax
function is mathematically defined as follows:

σ(z)i =
ezi∑k
j=1 e

zj
. (2.7)

The output vector may be interpreted as a categorical distribution over predicted output
classes.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks [25], also known as CNN, are a type of neural networks
widely used for image recognition. They are able to recognize faces, objects or signals
from pictures.

As shown in Figure 2.9, we receive an image as input, and as output we get the probability
that this image belongs to each of the existing categories. Obviously, the network will be
working properly when it assigns the greatest probability to the corresponding category.

We should recall that an image is nothing more than a pixel matrix, and pixels are
numerical values. A channel is a component of the image. For instance, a standard
digital camera has three channels: red, green and blue. We can imagine a conventional
image as three matrices one on top of each other (one color each), in which each pixel
has a value between 0 and 255. Moreover, a black and white image will have one single
channel.

There are four main operations that form the basic building blocks of all CNN: convolu-
tion, non linearity, pooling and classification. We will now present a further explanation
on each of these steps.

16

CHAPTER 2. ALGORITHMS IN GAMES

Figure 2.9: Elemental structure of a Convolutional Neural Network. Source [26].

Input
Dimension 5× 5

1 0 1 0 1
0 1 1 1 1
0 0 0 1 0
1 1 1 1 0
1 0 1 0 1

∗

Filter
Dimension 3× 3

Stride s = 1

1 0 1
0 0 0
1 0 1

=

Feature Map
Dimension 3× 3

2 1 2
3 4 3
2 1 2

Figure 2.10: The convolution operation.

Convolution

The main goal of this step is to extract characteristics from the image received as input.
Convolution preserves the spatial relationship between pixels by learning the patterns of
the images.

Considering the input image as a pixel matrix m×m, we denote filter to a n× n matrix
and feature map to the matrix formed by moving the filter s positions (stride) over the
image and performing the dot product (element wise multiplication) for every position.
This process is illustrated in Figure 2.10

It is important to note that the filters act as detectors for features of the original input
image. Different values of the filter matrix will clearly produce different feature maps for
the same input image. In practice, a CNN learns the values of these filters during the
learning stage. The more filters we have, the more features we can obtain from images.

Non Linearity

We need an additional operation in order to add non linearity to our system. For this
purpose, we use the ReLU operation. This operation is applied to each pixel of the
resulting feature map.

The feature map resulting of applying the ReLU operation is called Rectified feature map.
In Figure 2.11 we see an example of applying ReLU to a feature map. Black pixels have
negative values and white pixels have positive values. When ReLU is applied, rectified
feature map only contains positive values.

Pooling

In the pooling step, we reduce the dimensionality of our feature map retaining the most
relevant information. We divide the feature map in sub-matrices and obtain an element

17

CHAPTER 2. ALGORITHMS IN GAMES

Input Feature Map Rectified Feature Map

Figure 2.11: Example of a ReLU operation. Source [27].

Rectified Feature Map

3 0 1 0
4 1 2 1

2 5 7 1
3 1 1 1

Max Pooling
Window 2× 2

Stride 2

4 2

5 7

Figure 2.12: Example of Maximum Grouping.

from them. We can apply many types of pooling: Maximum, Average, Sum...

In the case of grouping by maximum, we divide the feature map in sub-matrices and
take the greatest element. But we could have taken the average the sum element instead.
Maximum grouping is the most used, as it normally performs better than the others.

Classification

This step is usually performed by a fully connected neural network layer, which uses
Softmax as activation function on the output of the last layer.

In conclusion, the output of the previous three steps has provided us some high-level
patterns that occur in the input image. The goal of the traditional neural network is to
use these patterns to classify the input image into a specific category.

2.4.3 Residual Neural Network

There are many architectures for Convolutional Neural Networks. We have introduced
the LeNet architecture [28], which was the very first successful architecture of CNN and
the basis for the others.

Furthermore, Residual Networks [29] (ResNets) are state of the art in Convolutional
Neural Network models. When we add many layers to neural networks some problems may
arise. Very deep neural networks are difficult to train because of vanishing and exploding
gradient. In order to solve this problem, Resnet uses skip connections (“shortcuts” to
jump over some layers), and Batch Normalization to obtain a better performance.

2.4.4 Batch Normalization

Batch normalization [30] is a very common technique used to improve the training process
in deep neural networks. This method allows us to stabilize and dramatically accelerate

18

CHAPTER 2. ALGORITHMS IN GAMES

the training stage.

A mini-batch is a subset of the training data, supplied for a given epoch. Batch normal-
ization normalizes the inputs to a layer for each mini-batch. This normalization is done
by subtracting the mini-batch’s mean and dividing by the its standard deviation.

The effects of batch normalization are evident, however, the reasons of why it works so
well are still under discussion.

2.4.5 Regularization

Overfitting occurs when a model tries to fit the training data so well that it fails to
generalize to new observations. It is an important issue for deep learning and a solution
is required. Regularization is a technique that prevents overfitting, allowing the model to
generalize effectively to the underlying structure.

We have multiple types of regularization, but the one we will introduce here is the L2

regularization. It essentially encourage weights to have values close to zero. For doing so,
it adds a penalty term (the squared value of the weights) in the cost function:

Cost = Loss+ λ
N∑
j=0

θ2i , (2.8)

where λ is the regularization coefficient and θj are the weights of the respective layer.
The λ coefficient controls the amount of regularization applied to the model.

19

Chapter 3

AlphaZero

AlphaZero [31] is a general-purpose reinforcement learning algorithm developed by Deep-
Mind in 2017. It can learn from tabula rasa1 and achieves superhuman performance in
combinational games such as Go and Chess. The most relevant characteristic is that it
uses self-play, so that it starts playing randomly against itself and gradually learns further
comprehension of the game.

Furthermore, AlphaZero belongs to model-based algorithms [24]. These kind of algorithms
have a difference of paramount importance: future states and rewards can be accessed by
the agent via the environment model. This characteristic will benefit us as the agent will
be able to make a better planning. To be concrete, the rules of the combinational game
that we are trying to learn are specified, so that the transition and reward functions are
accessible for our agent to evaluate and improve its policy.

The algorithm is formed by three distinguished parts: a general-purpose reinforcement
learning algorithm, a deep neural network, and a general-purpose tree search algorithm
(Monte Carlo Tree Search). AlphaZero surpasses previous approaches made for combina-
tional games by using a powerful combination of MCTS and neural networks.

We will then explain each of these parts and show a complete execution of a tree search
iteration to provide a better understanding.

3.1 Training Loop

The overall scheme of AlphaZero’s training process is a loop between self-playing and
training the neural network. The algorithm plays against itself executing a MCTS for
each move. At each move, the following information is stored:

• The game state: stores the current board configuration and the turn of the player
who moved (+1 for white and −1 for black). This will be the input to the deep
neural network.

• The search probabilities (π): will be obtained proportionally to the visit count in
MCTS (described later).

1Without any human expert play or domain-specific knowledge

20

CHAPTER 3. ALPHAZERO

• The winner (z): +1 if the player whose turn it is won and −1 if the player lost.
This data is added once the game has finished, whereas the game state and search
probabilities are stored after choosing each move.

Once the algorithm has played enough games against itself, it samples a mini-batch of
positions from the information stored in the last games. It will retrain the neural network
on these positions comparing predictions from the neural network with the search proba-
bilities and actual winner. We will denote the collected data as (s, π, z) and the network
as fθ(s) = (p, v), where θ are the parameters of the neural network, p are the predicted
search probabilities, and v is the predicted value.

3.2 Self-play

As previously explained, we execute the self-play process with MCTS for gathering data.
The Monte Carlo Tree Search is a slight different version of the one introduced in Sec-
tion 2.3.2.

First of all, each node of the tree contains the following information:

• State: current board configuration and turn.

• Action: action that needs to be taken to reach the actual node.

• N: the node’s visit count. N = 0 if the node has not been visited yet.

• W: the node’s total reward. This is obtained by the output of the neural network
and when reaching terminal states.

• Q: the node’s average reward, i.e., Q = W /N .

• P: the probability of taking the action that drives to this node. This probability
will be obtained by the output of the neural network.

It is important to preserve the perspective. In our case, the information in one node is
always read from the perspective of its parent node. To avoid confusion, we should never
forget the perspective of the node that we are dealing with.

There are also differences on the phases we take to perform the search. In AlphaZero,
the phase of simulation is replaced with the evaluation step. This way, we obtain the
following method:

• Selection. As we explained before, we will start from the root node and traverse
through the tree selecting actions until we find a leaf node. Additionally, the selec-
tion policy is given by the formula

a = argmaxa∈A(Q(s, a) + U(s, a)), (3.1)

where Q(s, a) = W /N is the average reward that is stored in the node resulting of
taking the action a from the state s, and

U(s, a) = cpuctP (s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
,

where cpuct is a parameter determining the exploration scale. In this formula, Q(s, a)
encourages the exploitation of higher-reward actions, and U(s, a) encourages the
exploration of less-visited actions.

21

CHAPTER 3. ALPHAZERO

• Expansion. The expansion phase is not different from the one described in the
previous chapter.

• Evaluation. In this step, the neural network fθ(s) outputs a vector of move prob-
abilities p with components p(a|s) for each action a, and a scalar value v ∈ [−1, 1]
estimating the expected outcome z, i.e., indicating how “good” the current state is.
These values will be used later in the selection and backpropagation stages, respec-
tively. Also, as the neural network is initialized randomly, these values may not be
accurate in the early stages of the training process, but they will gradually become
more accurate.

• Backpropagation. In this stage, the information from the expanded node up to the
root is updated. In particular, we perform the following updates:

N(s, a) := N(s, a) + 1 W (s, a) := W (s, a) + v Q(s, a) :=
W (s, a)

N(s, a)

changing perspectives according to the parent node’s player’s turn.

One last relevant detail concerning the evaluation step is the addition of Dirichlet Noise.
When predicting the probabilities for the root node, we add “noise” to them, which
encourages exploration and ensures that a diverse set of positions are encountered. This
noise comes from the Dirichlet distribution [32] of parameter α: Dir(α). The support
of the Dirichlet distribution is the set of vectors whose entries are non-negative real
numbers and their sum is 1. When α is close to 0, Dirichlet distribution tends to favour
basis vectors. For example, (0.95, 0.02, 0.03) will be more likely to be sampled than
(0.3, 0.4, 0.3). Instead, when α takes values greater than 1, more-balanced vectors are
preferred. To add the noise to the probability vector, we sample a vector n from Dir(α)
and perform a λ-weighted sum:

p := (1− λ) · p+ λ · n,

where λ is the noise fraction parameter. Note that because p and n both have coordinates
summing to one, p preserves this property.

We then repeat all four phases for N iterations. Once all iterations have been executed,
we have to determine which move to finally select. In the previous chapter we have already
introduced some approaches for this. However, in AlphaZero a different final move policy
is used. After iterating N times, an action sampled from a categorical distribution with
probabilities given by the formula

π(a|s) =
N(s, a)1/τ∑
a′ N(s, a′)1/τ

, (3.2)

where τ is a temperature parameter. The temperature parameter is used to control
exploration and may take two values: either τ = 1 or τ → 0. Let us briefly examine (3.2).

If τ = 1, we have

π(a|s) =
N(s, a)∑
a′ N(s, a′)

and the final move is chosen according to a sample from the categorical distribution π,
where probabilities are related to visit counts. For instance, if the root node performs

22

CHAPTER 3. ALPHAZERO

100 iterations and has 3 children with 20, 50 and 30 visit counts, respectively, we get the
distribution π with probabilities (0.2, 0.5, 0.3). Then, we would take a random sample
with this probabilities and finally choose the sampled move. This way, we do not always
take the most visited move and we are encouraging exploration.

On the other hand, if τ → 0, we have

π(a|s) = lim
τ→0

N(s, a)1/τ∑
a′ N(s, a′)1/τ

which ultimately assigns a probability of 1 to the most visited child node and 0 to the
rest. Therefore, when τ → 0 we are actually using the robust child policy. Continuing
with the example from the last paragraph, in this case we would get the distribution π
with probabilities (0, 1, 0). Thus, we are always selecting the node with maximum visit
count and encouraging exploitation.

In AlphaZero, when the self-play proccess is being executed to collect data, τ = 1 for the
first moves (depending on the game) and then τ → 0 for the rest of the game. Moreover,
when playing a real game with an opponent, the temperature is always set to τ → 0.

3.3 Neural Network

The neural network fθ(s) = (p, v) has the following architecture: it receives a transformed
version of the game state (board, turn and other relevant information) as input and returns
two outputs. The policy head outputs a vector p, with the probabilities for each of the
possible actions to take in the current state, and the value head outputs the value v of the
state, which tells us how good the current state is. Note that these act for the policy and
value function that we have defined for our agent in Section 2.1. We will now describe all
the details about the architecture of the neural network used for AlphaZero.

As we have previously specified, the neural network parameters θ, are randomly initialized
and updated to minimize both the error between the predicted vector p and the search
probabilities π, and the error between the predicted value v and the game outcome z.
Specifically, the parameters θ are optimized by gradient descent on a loss function l that
combines mean-squared error for the value head, cross-entropy loss for the policy head,
and L2 weight regularization. The formula is

l = (z − v)2 − πT log(p) + c‖θ‖2, (3.3)

where c is the parameter which controls the level of weight regularization.

For the input, the stored game state will be transformed into feature planes stacked one
on top of each other. The format of these feature planes is meant to generalize the input
for any existing combinational game. Therefore, the data is not augmented in any way
in the AlphaZero algorithm, as some games are not invariant to rotation and reflection.

As the figure Figure 3.1 portrays, the input of the neural network is an N ×N ×M image
stack. N × N is the size of the game board and M = (2PT + L). Here, there is one
set of PT planes for each player, one plane for each piece type (P type of pieces) for the
previous T time steps. Every feature plane is composed of binary values, indicating the
presence of the player’s pieces. In addition, we add L constant-valued input planes for

23

CHAPTER 3. ALPHAZERO

Figure 3.1: AlphaZero’s game representation. Source [33]

extra information of the state as the player’s turn or special rules, for example the legality
of castling in chess. An explanatory example is provided in Section 3.4 to facilitate the
comprehension of this conversion.

The architecture is clearly illustrated in Figure 3.2. The structure of the network con-
sists of a convolutional layer, followed by a “body” of 19 residual layers (ResNets) and
finally both policy and value “heads”. The convolutional layer contains 256 convolutional
filters2 of kernel size 3 × 3 and stride 1, a Batch Normalization and a Rectified Linear
Unit (ReLU). Each residual layer consists of two rectified batch-normalized convolutional
layers with a skip connection. Furthermore, the value head is composed of one rectified
batch-normalized convolution of 1 filter and 1 × 1 kernel size with stride 1, a rectified
fully connected layer of size 256, and a last fully connected layer of size 1 with a tanh
non-linearity unit. And finally, the policy head contains one rectified batch-normalized
convolution of 2 filters and a final fully connected layer with a Softmax activation unit.

During training, 5000 first-generation tensor processing units (TPU) are used to generate
self-play games, and 16 are used to train the neural network. With this setting, training
lasts around 9 hours in chess, 12 hours in shogi and 13 days in Go, playing 44 millions,
24 million, and 140 million training games respectively [31].

2The number of residual layers and convolutional filters may vary depending on the game or the
computational power available.

24

CHAPTER 3. ALPHAZERO

Figure 3.2: AlphaZero’s neural network architecture. Source [33]

25

CHAPTER 3. ALPHAZERO

3.4 Execution Example

We are now going to show an example of the execution of MCTS in the self-play process.
This example is intended to throw light on all the abstract concepts and details that we
have explained so far. Once we have fully comprehended how to piece together all the
concepts used, the execution is straightforward to grasp.

First, recall the objective of MCTS: choose the next move and store the corresponding
information for it. Let us suppose we are playing the simplest combinational game we
know: Tic-Tac-Toe. Crosses denote white player’s pieces and circles denote black’s. In
order to represent the choice for each move, we number the possible positions on the board
from 1 to 9 (left to right, top to bottom). Also, with the intention of illustrating the tree
search to the end of the game, we assume the game begins from the state in Figure 3.3.
It is black player’s turn.

o
× ×
o ×

1 2 3

4 5 6

7 8 9

Figure 3.3: Initial board state in the example.

We start to execute MCTS from this node. We begin with the selection step. For the
whole execution of MCTS, we fix the value of the exploration scale constant to cpuct = 5.
As there is only one node in the tree, the root is a leaf node and we finish the step
immediately. We head to the second stage: expansion. As Figure 3.4 shows, we add to
the tree root all its child nodes.

o
× ×
o ×

Action = 4
N = 0
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 2
N = 0
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0

o
× × o
o ×

Action = 6
N = 0
W = 0
Q = 0
P = 0

o
× ×
o o ×

Action = 8
N = 0
W = 0
Q = 0
P = 0

Figure 3.4: Tree after expansion step.

The following step is evaluation. To accomplish this step, we introduce the board state
and the turn (black) into the neural network. As output, we obtain the state value and
the probability vector. Then, we assign each probability to its corresponding node as
depicted in Figure 3.5.

26

CHAPTER 3. ALPHAZERO

o
× ×
o ×

Action = 4
N = 1
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 2
N = 0
W = 0
Q = 0
P = 0.45

o o
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0.15

o
× × o
o ×

Action = 6
N = 0
W = 0
Q = 0
P = 0.25

o
× ×
o o ×

Action = 8
N = 0
W = 0
Q = 0
P = 0.15

N
eu

ra
l

N
et

w
or

k p =

0 0.45 0.15

0 0 0.25

0 0.15 0
v = −0.25

Figure 3.5: Tree after evaluation and backpropagation steps.

Taking a look at the output of the neural network, we note that our neural network is
semi-trained at this stage of the training process. The network is giving the maximum
probability to an action that may make us lose if the opponent plays correctly. Neverthe-
less, the second highest probability is assigned to the proper node that avoids us losing.
Additionally, the backpropagation step has also been executed. It is not necessary to
backup W and Q in the root node, but we update the visit count to N = 1. Finally, the
first iteration of MCTS has finished.

We start the second iteration by the selection stage. As we defined earlier, we will begin
selecting from the root node. Now, the root node is not a leaf node, so we have to decide
which child node to select. According to the selection policy, we choose the action 2, as
it has the highest probability and the rest of the terms involved in the formula are the
same for every child node. We have reached a leaf node and the selection step is done.

Next, we expand and evaluate, that is, we create the new child nodes of the one selected
and assign their corresponding probabilities resulting of the output of the neural network.

Now, we perform the backpropagation step. This time it is a little bit more complex
because the player’s perspective comes into play. We have remarked earlier that the
information in one node is always seen from the perspective of its parent node. The
output value from the network v = −0.2 is from the perspective of the white player.
However, the information stored in the node needs to be seen from the perspective of the
black player, and so it needs to be reversed. Thus, we have: N = 1, W = 0.2, Q = 0.2.

But we have not finished yet. We still need to return recursively from the leaf node until
we reach the root node. But the parent node is already the root node, and like before,
we only have to update the visit count: N = 2. Now, the second iteration is over and the
renewed tree is the one shown in Figure 3.6

Once again, the third iteration starts with selection from the root node. Now, from the

27

CHAPTER 3. ALPHAZERO

o
× ×
o ×

Action = 4
N = 2
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 2
N = 1
W = 0.2
Q = 0.2
P = 0.45

o o ×
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0.34

o o
× × ×
o ×

Action = 6
N = 0
W = 0
Q = 0
P = 0.4

o o
× ×
o × ×

Action = 8
N = 0
W = 0
Q = 0
P = 0.26

o o
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0.15

o
× × o
o ×

Action = 6
N = 0
W = 0
Q = 0
P = 0.25

o
× ×
o o ×

Action = 8
N = 0
W = 0
Q = 0
P = 0.15

Neural
Network

p =

0 0 0.34

0 0 0.4

0 0.26 0

v = −0.2

Figure 3.6: Tree after the second iteration.

formula of the selection policy we obtain:

Q(s, 2) + U(s, 2) = 0.2 + 5 · 0.45 ·
√

2

2
≈ 1.79

Q(s, 6) + U(s, 6) = 0 + 5 · 0.25 ·
√

2

1
≈ 1.76

Q(s, 3) + U(s, 3) = Q(s, 8) + U(s, 8) = 0 + 5 · 0.15 ·
√

2

1
≈ 1.06.

Hence, we select first action 2. It is not a leaf node, so we continue selecting from its
child nodes. We choose action 6, as it has the highest probability and the rest of the
terms involved in the formula are the same for every child node. Selection finishes here
as we have reached a leaf node, and a special one because it is also a terminal node.
The game ends in this node and there are no children to expand. Therefore, we skip the
expansion step. And for the evaluation step, we do not need to use the neural network.
The probabilities are not needed and the value can be obtained directly from the game
reward z = 1.

It is time to backup recursively from the leaf node to the root node. There are three
nodes in the path and the perspective of each node should be switched. Note that the
reward that we obtain from a terminal state is +1 if white wins and −1 if black wins. We
have to transform this number to the perspective of the parent node. In this situation,

28

CHAPTER 3. ALPHAZERO

the parent of the leaf node corresponds to white’s turn. Consequently, the value stored in
the leaf node should be +1. However, in the Action = 2 node, we change the perspective
to the black player and we store the value −13. The other values of Q and N are also
updated accordingly. After the third iteration has been performed, the resulting tree is
portrayed in Figure 3.7.

o
× ×
o ×

Action = 4
N = 3
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 2
N = 2

W = −0.8
Q = −0.4
P = 0.45

o o ×
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0.34

o o
× × ×
o ×

Action = 6
N = 1
W = 1
Q = 1
P = 0.4

o o
× ×
o × ×

Action = 8
N = 0
W = 0
Q = 0
P = 0.26

o o
× ×
o ×

Action = 3
N = 0
W = 0
Q = 0
P = 0.15

o
× × o
o ×

Action = 6
N = 0
W = 0
Q = 0
P = 0.25

o
× ×
o o ×

Action = 8
N = 0
W = 0
Q = 0
P = 0.15

Terminal!
Reward = 1

Figure 3.7: Tree after the third iteration.

We have fully executed three iterations of MCTS in order to illustrate how the tree search
works. After performing 100 iterations, the tree is grown much larger and the estimated
values are more accurate (shown in Figure 3.8). The tree search is over and now we have
to choose our definitive move on the real board. The final move selection is accomplished
according to (3.2). We are performing the self-play process, so the temperature is set to
τ = 1. Thus, the move will be selected according to a categorical distribution π with
probabilities (0.2, 0.05, 0.7, 0.05). Here, we suppose that we choose the most likely move,
Action = 6, but we have to keep in mind that any of the other moves could have been
selected.

The circle has finally been placed at position 6 on the board, so the root node in the tree
will be changed to the child node and the next MCTS will go on from this new root node.
Note how MCTS has allowed us to choose the proper move, even when the neural network
produced an inaccurate probability vector. When the real game is over, we obtain the
data and the results from each move (illustrated in Figure 3.9).

As the result of the game is a draw, the labels for the reward are 0 for every move. Now,

3Understanding the change of perspective might result the most confusing aspect of MCTS. If we reach
a terminal state in which black wins, we obtain a reward value of −1. But the parent of the leaf node
corresponds to black’s turn and the value stored would be +1. In general, we will see in the following
chapter that the change of perspective can be easily made multiplying by the current node’s turn.

29

CHAPTER 3. ALPHAZERO

o
× ×
o ×

Action = 4
N = 101
W = 0
Q = 0
P = 0

o o
× ×
o ×

Action = 2
N = 20

W = −16.5
Q = −0.825
P = 0.45

o o
× ×
o ×

Action = 3
N = 5
W = −5
Q = −1
P = 0.15

o
× × o
o ×

Action = 6
N = 70
W = −12
Q = −0.17
P = 0.25

o
× ×
o o ×

Action = 8
N = 5
W = −4
Q = −0.8
P = 0.15

· · ·
· · · · · ·

· · ·
· · · · · ·

· · ·
· · · · · ·

· · ·
· · · · · ·

20
100

5
100

70
100

5
100

π(a|s)

Figure 3.8: Final move selection.

× ×
o

×
o ×

o
×

o ×

o
× ×
o ×

o
× × o
o ×

o ×
× × o
o ×

o ×
× × o
o o ×

o × ×
× × o
o o ×

o
× ×
o ×

π = (0
100
, 20
100
, 5
100
, 0
100
, 0
100
, 70
100
, 0
100
, 5
100
, 0
100

)

winner = 0

Figure 3.9: Data stored from the game.

the game has ended and the information provided by MCTS is available to train the deep
neural network.

30

Chapter 4

AlphaZero Implementation

Our AlphaZero implementation was divided into several modules: game representation,
game strategies, neural network and the actual AlphaZero, which uses the rest of them.
This way, every module is independent from each other and can be reused.

Everything was implemented in Python using typical machine learning libraries, such as
NumPy1 [34], SciPy2 [35] or TensorFlow 3 [36].

4.1 Game Representation

First of all, we needed a common interface in order to represent a game so that we could
easily change from one to another without changing many lines of code. As we are in a
reinforcement learning context, we are going to represent games as reinforcement learning
environments. For this purpose we are using OpenAI Gym [37], one of the most popular
reinforcement learning libraries, which includes interfaces for environments as well as
several action and observation spaces.

An OpenAI Gym environment (Env class) contains at least the action space and the
observation space attributes and must implement at least three methods: step, reset
and render. The reset method resets the environment to an initial state and returns
that state. The render method displays the current state of the environment. And the
step method is the one where the actions are executed in. This method takes a valid
action (one in action space) as its argument, modifies the environment’s inner state
and returns the new observation (which must be in observation space), the reward
seen, a boolean informing whether the episode ended or not and a dictionary containing
additional information. These variables are usually referred as observation, reward,
done and info.

We extended the Env interface with a GameEnv class, more specific to board games but
keeping the essence of OpenAI Gym. It is implemented in the module tfg.games and
adds two methods and one property to the original class. One method, legal actions,
is used to obtain a list with all legal actions in the current state, and the other, winner,
returns the winner of the game (1 for white, −1 for black and 0 if it is a draw) if there

1https://numpy.org
2https://www.scipy.org
3https://www.tensorflow.org

31

https://numpy.org
https://www.scipy.org
https://www.tensorflow.org

CHAPTER 4. ALPHAZERO IMPLEMENTATION

Figure 4.1: UML class diagram for GameEnv and its subclasses.

is one; otherwise it returns None. The property mentioned, to play, represents which
player has to move in the current state; again, 1 being white’s turn and −1 black’s.

Thus, we can easily play any game implemented with this interface without knowing
anything about it. We just need to reset the game to start a new one and loop the step

method until it returns done. We will know which player won just by observing the
reward returned, which was 0 in all previous states, or by calling the winner method.
This workflow is very similar to base Gym’s one except that we need to take turns into
account as we have two agents, black and white.

Using this interface we created the two simple games we explained in Section 2.2: Tic-
Tac-Toe and Connect N (game.tictactoe.TicTacToe and game.connect n.ConnectN).
We will use these games later in the experiments.

Figure 4.1 is a simple UML class diagram with the dependencies of all these classes (space
classes have been omitted).

4.1.1 Tic-Tac-Toe

The representation of Tic-Tac-Toe is simple. We used a Numpy array of shape (3, 3) to
represent the board. If the element in (i, j) is 0 it means that the cell (i, j) is empty;
otherwise, it can be either 1 if there is a white token or −1 if it is black. An action
is represented as an integer k ∈ {0, . . . , 8}, standing for the k-th cell counting from top
to bottom and from left to right. Consequently, the observation space of Tic-Tac-Toe
is represented by the gym.spaces.Box class with shape (3, 3) and the action space is a
discrete space (gym.spaces.Discrete) with 9 elements.

Thus, a move in Tic-Tac-Toe is done by first checking that the cell is empty, that is, it is
a legal move, and then writing the correct value in that position. After that, the board

32

CHAPTER 4. ALPHAZERO IMPLEMENTATION

will be checked to detect final positions. If there is a winner the line must pass across the
last piece placed. For this reason, it is only necessary to check four lines at much: two
diagonals, one vertical and one horizontal. On the other hand, if there is no winner we
can check if there has been a draw checking the number of moves; after the ninth move
there cannot be more, so the game is tied.

4.1.2 Connect N

We implemented Connect N ’s board the same way as in Tic-Tac-Toe but we needed an
additional structure to store the row of the first empty cell for each column. An action is
again an integer k ∈ {0, . . . , C − 1}, where C is the number of columns, representing the
column where the token is dropped. As in Tic-Tac-Toe, the action space is discrete with
C elements and observations comes from the box space of shape (R,C), where R is the
number of rows.

This time, to make a move we first need to access to the structure that tells us which
is the first free row in the given column. If there is no free row the move is not valid;
otherwise, the token is placed in that row. To check the board we can copy what we did
in Tic-Tac-Toe, but now it is usual that N is smaller than R and C so we do not need to
traverse the whole line. Also, it is not necessary to check the cells above the last placed
token because we know they are empty.

4.2 Strategies and MCTS Implementation

If we only had games, we could only play them manually. In order to have automatic
agents play we created the Strategy interface in tfg.strategies, which essentially de-
fines the move method. This method takes a state as its only parameter and returns a
valid action. For example, HumanStrategy renders the board and asks the user to input
an action which will be returned by the method. This way, we can manually test other
strategies. Other important one is Minimax, which implements the Minimax algorithm
and allows the use of AlphaBeta prune. Thus, we have a perfect rival for short games, such
as Tic-Tac-Toe, or, depending on heuristic, a decent rival for longer ones, like Connect
N .

For this purpose, we implemented a simple heuristic for Connect N . This heuristic takes
an integer n as a parameter and counts how many times each player has n non-blocked
tokens in a row. This means that pieces surrounded by rival’s pieces or the edges of the
board are not taken into account, because it is impossible to place more in that same line.
Once counted for each player, it returns the difference divided by some factor that ensures
this number is between −1 and 1 (for example, the number of cells in the board). If we
did not do this, the Minimax algorithm would consider that it is better to have many
times n pieces aligned, rather than N just once. This is because the environment returns
1 or −1 when a player wins. For instance, Figure 4.2 is an example of the application
of this heuristic to a particular board. Obviously, this heuristic is far from perfect, but
will make Minimax try to align as much tokens as possible, so it will have more winning
chances.

But the main objective of this module is to implement the MCTS algorithm. This is done
by the MonteCarloTree class. We will use it for move selection in AlphaZero but we also

33

CHAPTER 4. ALPHAZERO IMPLEMENTATION

Figure 4.2: Example of the application of the heuristic for Connect 4 with a borad size of
6× 7. If n = 2, the red player (usually referred as white) has five pairs of tokens aligned:
(1, 2), (2, 3), (1, 4), (1, 5) and (3, 5), whereas yellow (usually black) has only two: (2, 3)
and (3, 4). (2, 5) is not counted for white because this line is surrounded by a yellow token
on the top and the edge of the board on the bottom. Thus, the result of the heuristic will
be +3 divided by some constant. However, if n = 3 the result will be zero, because both
players have three tokens in a row.

wanted it to work perfectly as a strategy itself. Therefore, we made it very versatile.

It takes the game environment as its first argument in the constructor, but also the
maximum number of iterations or the maximum time allowed for each call to the move

method; a selection policy, such as OMC, PBBM, UCT or any other custom callable; a
value function that completely substitutes the simulation phase, as AlphaZero’s neural
network does; an update function that allows storing arbitrary attributes in the tree nodes;
and a function that selects the returned action based on some attributes of the nodes,
such as their visit count, their value, or any other. Additionally, we added the ability to
recycle the tree from the previous move, so that it does not lose the information about
the child nodes that have already been visited.

We also implemented some selection and final move policies, even though they are not
used in AlphaZero, but enabled us to compare it to a basic MCTS. The UML diagram of
this module is depicted in Figure 4.3.

The move method was implemented following the algorithm described in Section 2.3.2.
The selection, expansion, simulation and backpropagation phases are executed in a loop
while there is time remaining. That is, when neither the number of iterations nor the
time elapsed has reached the maximum established. At the beginning of every iteration,
the history of nodes traversed is initialized with the root node and the game environment
is cloned.

Then, the selection phase starts and loops until a non-expanded node is reached. As every
node has a mapping from action to child node, it is only necessary to call the selection
policy function with the list of children and advance to the selected node. The selected
node is then appended to the history.

34

CHAPTER 4. ALPHAZERO IMPLEMENTATION

Figure 4.3: UML class diagram for tfg.strategies.

Next, the current node gets expanded. This implies simply calling the step method on
the game environment once for each legal action and storing the results as node’s children.
Also, the update function is called on every child node in case some attributes needed to
be initialized.

Once the node has been expanded the simulation or evaluation phase begins. Normally, a
random game will be played from that position until a reward is found. But if there is an
evaluation function it will be used to find the value of that node. Independently of where
the reward came from, it will be backpropagated through the history list in accordance
with the player to play in each node.

In the end, after all these iterations, the best node policy function will be called to
determine which root’s child will be selected and the associated action will be returned.

4.3 Neural Network Implementation

The implementation of the neural network is achieved by the NeuralNetworkAZ class
implemented in tfg.alphaZeroNN. This class uses TensorFlow library and its Keras sub-
module to create the model for the neural network architecture specified in Section 3.3.
When the class is instantiated with all the necessary parameters, it produces the model
using all the components explained in Section 2.4. Also, when compiling the model, we
have used either Adam or SGD optimizer.

As we have less computational power, we included the number of residual blocks and
the number of filters in each convolutional layer as parameters. This way, we can create
smaller networks. For instance, we can use only one residual block and 32 filters per layer,
instead of 19 blocks with 256 filters, as DeepMind used. For instance, a concrete example
of the former has 23,780 parameters, while the latter has 22,550,276.

The class also contains multiple methods to facilitate its use. The fit method is used to
train the network and the predict to make our predictions. We have also implemented
save model and load model which allows us to save the model and interrupt the training
process when it takes too long, and load a specific model to resume training or play against

35

CHAPTER 4. ALPHAZERO IMPLEMENTATION

it. Additionally, we have added two extra methods: summary model and plot model,
which provide us further information from our model, such as the number of parameters
or an image of the architecture.

4.4 AlphaZero Implementation

Once we implemented both the MCTS and the neural network modules, we finally im-
plemented an AlphaZero class (in tfg.alphaZero) which combines both of them and
accomplishes the training loop process.

When instantiated, the class initializes all the parameters, MCTS and neural network
of AlphaZero. As we described earlier, we implemented the MonteCarloTree class as
versatile as possible, so that it takes a selection policy, a value function and a final move
policy as parameters. Hence, we implemented the custom selection policy Equation (3.1),
the final move selection policy Equation (3.2), and the value function, predicting with the
neural network and adding Dirichlet exploration noise if node is root.

Moreover, two methods are used for the training loop: self play and train. The former
plays N games against itself and returns all the data collected (boards, π vectors and
winners). When self-playing, each move is performed calling MCTS. An important detail
is that games are played concurrently. In Section 4.5, we will explain how we achieved
this parallelization. The latter loops until training time is over or error is lower than a
threshold or the maximum number of played games has been reached. While looping, it
calls self play and stores the data in a shared buffer. Then, a mini-batch is extracted
from the buffer and the data is converted to fit the network input format. Finally, we call
the neural network fit method and start the loop again.

A sequence diagram of a training step can be found in Figure 4.4. It shows only one move
of a self-played game and one iteration of MCTS.

In order to play against other opponents, this class also implements the Strategy inter-
face, and its move method, which basically calls the MCTS’s move method.

4.4.1 Adapter

When the data is collected from self-play, it needs to be converted to fit the neural
network input format. This conversion corresponds to the one explained in Section 3.3.
Specifically, the board and turn is converted into M binary feature planes of size N ×N .
Nevertheless, these variables depend strongly on the game being played. Besides, the
transformation of a particular action into an index of the probability vector of the neural
network output is also dependent on the game considered.

The tfg.alphaZeroAdapters.NeuralNetworkAdapter class helps to solve these depen-
dencies. It is an abstract class with two methods: to input which transforms the board
and turn to network input, and to indices which converts an action into the corre-
sponding index of the probability vector predicted. Consequently, when implementing a
particular game, in order to use AlphaZero, we also have to implement its adapter for the
game.

With the intention of clarifying the input conversion process, we are now going to provide
a brief example of how we converted the Tic-Tac-Toe board and turn into N × N ×M

36

CHAPTER 4. ALPHAZERO IMPLEMENTATION

Figure 4.4: UML sequence diagram for a training step of AlphaZero. Self-play and MCTS
are simplified to a single iteration of each of them and a single game. MCTS selection
policies and update function return to AlphaZero because they are implemented there.

image stack. In this case, for each player there is only one piece type (P = 1) and we
will only consider one time step (T = 1). Additionally, the extra information we need is
the current player’s turn. This way, M = (2 · 1 · 1 + 1) = 3, so that we need: 1 plane
with ones in the positions of white player’s pieces, 1 plane with ones in the positions of
black player’s pieces, and 1 last plane with all zeros if it is white’s turn, or all ones if it is
black’s turn. The conversion is visually depicted in Figure 4.5.

Connect N ’s adapter is almost equal to Tic-Tac-Toe’s. The R × C board and turn are
converted into a R × C × 3 image stack with the same meaning as in Tic-Tac-Toe. The
only difference is that here the board size is variable, so an instance of the game must be
provided in advance. This is done in the adapter’s constructor.

Finally, Figure 4.6 shows a complete class diagram centered in AlphaZero.

37

CHAPTER 4. ALPHAZERO IMPLEMENTATION

o
× ×
o ×
Black Player’s Turn!

0
0

0

1
1

0

0
0

1

0
0

1
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

Figure 4.5: Input conversion.

4.5 Training Parallelization

We are going to dedicate a section to training parallelization because we had to make a
different approach to this problem.

DeepMind researchers used 5,000 TPUs to generate self-play games and 16 to train the
networks. We only had access to our personal computers with 8 to 16 logical CPUs and a
single GPU. Thus, we had to find an efficient way of parallelizing training in our setups.
Specifically, we started using a multiprocess parallelization and then added an additional
threading parallelization.

4.5.1 Multiprocessing

First of all, we used a multiprocessing library. However, these types of libraries usually
use a method called pickling to communicate state between different processes. This is a
problem because our instances of AlphaZero contains an instance of the neural network
class (NeuralNetworkAZ) that holds a Keras model, which cannot be pickled. For this
reason, we had to find a different way of parallelizing without needing to pickle the model.

We first tried to keep the neural network in the GPU only and access it from the different
CPUs. But we could not find a reasonable way of doing this. That was because we were
not able to find a proper way of sending the input to a process with the neural network,
while also using the barriers we added in Section 4.5.2. Therefore, we had to have a copy
of the neural network in all the processors, but we could not copy it. Consequently, we
had to create the processes first and then instantiate the networks. We were able to do it
using a multiprocessing library called Ray4 [38]. This way, we could split the computing
into a cluster of machines if we had the infrastructure.

Basically, Ray allowed us to create AlphaZero instances as remote actors (in different
processes), call their methods from the main program and retrieve their results there.

4https://ray.io

38

https://ray.io

CHAPTER 4. ALPHAZERO IMPLEMENTATION

Figure 4.6: UML class diagram for AlphaZero.

For this purpose, we created an external function (create alphazero) which instantiates
a number of Ray ’s remote actors. These actors are used to generate self-play games.
However, their neural networks are built in their respective processes, hence they do not
have access to the GPU, which makes self-play slower.

Every actor plays approximately the same number of games and returns their results to
the main process, that will be waiting for all other processes to finish. This main process
has another reference to an AlphaZero instance, but this one has its neural network built
on the GPU. Then, it generates the input and trains the neural network. Finally, this
process sends the updated weights to all the remote actors for the next batch of games.

With this method, we were able to reduce significantly the training time, in spite of the
fact that network evaluation during self-play was made in a CPU instead of a GPU.

39

CHAPTER 4. ALPHAZERO IMPLEMENTATION

4.5.2 Multithreading

When we tried to train with a bigger game we found out that the biggest bottleneck
was game generation. Specifically, AlphaZero is very inference heavy during self-play.
MCTS requires hundreds of position evaluations for a single move. This is because neural
networks are more efficient if data is fed in batches instead of one element at a time. And
that was exactly what we were doing: after expansion phase in MCTS the value function
was called for the expanded node. Thus, only one state was being evaluated at a time in
every copy of the neural network.

Nevertheless, each process was usually playing around ten consecutive games before train-
ing the network, so we could use this situation to gather more boards before feeding them
to the neural network, hence reducing the number of inferences needed.

For this reason, we used Python’s threading library, which allowed us to execute the MCTS
algorithm at the same time for all games in a processor. For instance, if a given processor
was assigned ten games, instead of finishing one and starting the next afterwards, it will
make ten concurrent calls to MTCS’ move method until all games have finished. In fact,
as Python uses the Global Interpreter Lock (GIL) [39], games are not really played in
parallel, but rather they are alternated in the single thread.

However, we needed a way of collecting all boards before calling the inference method. We
did it by giving every thread an index to save their respective current boards in a common
buffer. After accessing the buffer they will wait in a barrier until all other threads have
done the same. Next, all threads will be awaken but the first one will evaluate the input
buffer in the neural network and store the result in a common output buffer. Finally, all
threads will be executing again and will be able to collect the results with the same index.

One final important remark is that some games are shorter and even some MCTS calls
need less network evaluations than others. This could create some inconsistencies and
cause deadlocks. To avoid this, after finishing the move selection algorithm all threads
will have to pass the same barrier until all actions have been selected. This ensures that
no thread is left in the barrier waiting for another that has already finished. The same
applies if a thread has already finished its game.

Figure 4.7 shows a basic diagram of these two parallelization techniques together.

In addition to training parallelization, we also parallelized the playing function. We have
two different playing functions. The first one (tfg.util.play) is intended to be used
with any game and strategy. This function executes n games (maybe in parallel) and
returns the results. Again, the problem was that the neural network was not picklable so
we could only use this function for sequential playing. Thus, we had to create a specific
function for AlphaZero: tfg.alphaZero.parallel play. This one does the same as the
previous but it imposes that one player is an AlphaZero instance, given by its weights
file. Therefore, instances are created inside processes so they do not have to be pickled.
This helped us speed up AlphaZero evaluations. Both versions of the play function use
the Joblib5 library, instead of Ray because this time all the parallel code can be executed
inside the same function, so remote actors are not needed.

5https://github.com/joblib/joblib

40

https://github.com/joblib/joblib

CHAPTER 4. ALPHAZERO IMPLEMENTATION

B
a
rr
ie
r

B
a
rr
ie
r

B
a
rr
ie
r

B
a
rr
ie
r

Remote actors: self-play

Game results

Main process: train

Updated weights

Figure 4.7: Outline of the algorithm with parallelism.

4.6 Repository

All the code reference along this chapter can be found in our GitHub repository:

https://github.com/TFG-AlphaZero/Implementacion-TFG

The main implementations can be found in modules tfg and game. The experiments
we will present in Chapter 5 have been done in Jupyter Notebooks and are under the
experiments folder. Finally, our trained models and checkpoints are inside the models

folder.

41

https://github.com/TFG-AlphaZero/Implementacion-TFG

Chapter 5

Experiments and Results

Now, we can start testing our implementation. For this purpose, we are going to train
different instances of AlphaZero for Tic-Tac-Toe and Connect 4 and test them against
other strategies. We have to use these rather simple games because we do not have access
to such computational power as DeepMind’s researchers did.

5.1 Tic-Tac-Toe

First, we are going to test our implementation with Tic-Tac-Toe. For this purpose, we
are going to use three different agents: Minimax, MCTS and AlphaZero. In particular,
we are going to use MCTS as AlphaZero’s opponent, but we are going to compare them
by making them face the same Minimax rival.

5.1.1 Tic-Tac-Toe with MCTS (no learning)

Before playing the matches, it is important to test the implementation of the Monte Carlo
Tree Search algorithm as it is the one that AlphaZero uses inside. We are going to do
this using Minimax with AlphaBeta prune as the rival because it can play Tic-Tac-Toe
perfectly and the UCT algorithm for move selection as it is one of the most widely used.
We will also compare different values for the UCT’s C constant – even though in [21] they
just used C =

√
2 – in case there were a better possible rival for AlphaZero for the next

sections.

We did a selection of possible C constants between 0 (greedy selection strategy) and 3
(making uncertainty very relevant) and played 100 games with each of them, 50 with
MCTS as white and 50 as black. The maximum number of iterations was set to 500,
a sufficiently high number to make it possible for MCTS to draw some games, but low
enough so it does not tie all of them.

Figure 5.1a shows the results of this match. As we know Tic-Tac-Toe’s perfect outcome
is a tie, we will be only counting draws, because Minimax will not be able to lose a single
game. Thus, games that are not drawn must be MCTS’ losses. Results demonstrate that
a completely greedy selection is useless, because it can only select the first state the tree
visits. Also, the best C value might be near 1.5, which is close to

√
2 ≈ 1.41; additionally,

Tic-Tac-Toe is so simple that only few iterations are needed to obtain a draw with white,

42

CHAPTER 5. EXPERIMENTS AND RESULTS

(a) C constant vs draws. (b) Number of iterations vs draws.

Figure 5.1: a) Number of draws achieved by MCTS against a Minimax player with respect
to UCT’s C constant’s value, playing both black and white. b) Number of draws as black
with C = 1.5 when the number of MCTS iterations is increased.

no matter which exploration constant has been chosen, hence we will only focus on black
from now on.

With the C constant selected we later compared different number of iterations to find
out how many are necessary to reach perfect play in Tic-Tac-Toe. Therefore, we selected
C = 1.5 for the exploration constant and iterations between 100 and 1,200. We only
collected draws with black, as we explained above, and obtained the results displayed in
Figure 5.1b. We can check that more than 1,200 iterations are needed to achieve perfect
play, because even with this number MCTS lost one game.

5.1.2 AlphaZero’s Parameter Tuning

Now that we have a rival for AlphaZero we need to find out which training configuration
is the best for Tic-Tac-Toe. For this purpose, we trained for 100 games several instances
with different hyperparameter settings. We made variable the learning rate, the presence
of L2 regularization, the number of filters in every convolutional layer, the PUCT constant
and the α value in Dirichlet noise (Dir(α)). Table 5.1 summarizes all selections of these
variables.

We kept some other hyperparameters constant because we thought what it would not be
necessary to change them. The number of residual layers was set to 1 because Tic-Tac-
Toe is a small game. The kernel size was 3 × 3, the same DeepMind used. We used a
temperature of 100, as we thought it would not be useful for this game. Finally, we set
Adam as the optimizer.

Self-play games were played using MCTS with 100 iterations and 25 % exploration noise
weight in a computer with 16 GB of RAM, using 10 logical processors of an Intel Core i7
10700F CPU to generate games and a Nvidia GeForce RTX 3060Ti GPU with 8 GB of
VRAM to train the network. Each training lasted about 30 seconds. During this time,
100 games were played and the neural network’s weights were updated twice (once after
50 games and once in the end), fitting 384 boards for 5 epochs each time. As we noted in
Section 5.1.1, 100 iterations are too few for a MCTS algorithm, so it is expected that not
all games will end it a draw. Thus, the combination of hyperparameters with the highest

43

CHAPTER 5. EXPERIMENTS AND RESULTS

ID Learning rate L2 regularization Filters C α

A 10−2 0 16 1.0 1.0
B 10−3 0 16 1.0 1.0
C 10−3 0 32 1.0 1.0
D 10−2 10−4 16 1.0 1.0
E 10−3 10−4 32 1.0 1.0
F 10−2 0 32 1.0 0.5
G 10−3 0 32 1.0 0.5
H 10−2 10−4 32 1.0 0.5
I 10−3 10−4 32 1.0 0.5
J 10−3 0 32 1.2 0.5
K 10−3 10−4 32 1.2 0.5
L 10−3 0 32 0.8 0.5
M 10−3 10−4 32 0.8 0.5
N 10−3 10−4 64 1.0 0.5

Table 5.1: Variable hyperparameter settings for Tic-Tac-Toe.

ID H I M D F K L J G C N A E B
Draws 48 47 47 46 46 46 44 41 34 25 25 24 17 13

Table 5.2: Results with black and 100 iterations after training, ordered by number of
draws.

number of draws will be used in Section 5.1.3.

Table 5.2 displays the results of each set, sorted by the number of draws. There are six
combinations over 45 draws, which is a really good result, considering only 100 games
were played, hence only 768 boards were used to train the network. Top three settings
have in common that they all used L2 regularization, 32 filters and α = 0.5. Conversely,
they differ in the learning rate and the C constant. I and M were exactly the same except
for the constant, while H had a higher learning rate (10−2) but shared the constant C = 1
with I. Thus it seems that these kinds of combinations are the best but it is better to
have a higher learning rate.

5.1.3 Final Results

Once we know the best combination for Tic-Tac-Toe we are going to train a new instance
of AlphaZero for 1,000 games to have a more fitted network. For this purpose, we used the
winner combination of variable hyperparameters and the constant ones. The configuration
is displayed in Table 5.3.

Training took about 3:20 minutes to complete and ended with around 0.36 loss, but the
value head loss was below 0.1. Complete training loss is shown in Figure 5.2. The graph
has a wavy behavior because the targets change from one set of boards to the next, after
the policy function has been modified.

To check if the neural network had learnt enough, we handcrafted some board examples
and evaluated them with the network. We used an empty board, some states where the

44

CHAPTER 5. EXPERIMENTS AND RESULTS

Hyperparameter Value

Residual layers 1
Filters 32

Kernel size 3× 3
Optimizer Adam

Learning rate 10−2

L2 regularization 10−4

Epochs 5
Batch size 384

MCTS iterations 100
PUCT C 1

Dirichlet noise 25 % with α = 0.5
Temperature 100

Table 5.3: Hyperparameters used during Tic-Tac-Toe training.

Figure 5.2: Value and policy heads losses during Tic-Tac-Toe training.

player could win in the next move, some others where the player had to avoid losing
and some where the player will lose no matter what they do. Results are displayed in
Figure 5.3.

The first one is an empty board, whose value should be 0 as Tic-Tac-Toe’s optimal game
is a draw. For the first move, the best is to place the piece in a corner, but any other
move ensures a draw as well. It seems that AlphaZero has preference for the center.

Second, third and fourth boards are a succession that could have been taken from the
same game, where white (X) is winning in all of them independently of black’s moves.
In the first one the network gives a slightly better value for black, but it gives higher
probability to one of the winning moves (center cell). In the next one, white played a
correct move but black played a wrong one. That makes white able to win in the next
move. The network keeps giving a neutral value and is unable to find the correct move
(the bottom-right corner). However, the selected move is also winning by force, but it
takes more time. In the last board the move was already played and white won. This
time the probability distribution is irrelevant but the value is important. White should
be preferred. Unfortunately, the value yielded tells us again it should be a tied game.

45

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.3: Prediction examples of AlphaZero’s trained neural network for Tic-Tac-Toe.
The numbers in every cell mean the probability of moving there, and the bar (and the
number) below the board indicates which player the neural network prefers. The more
white (more positive), the more AlphaZero thinks white will win, and vice versa.

In the second row there are two examples where black is winning. However, the network
does not give it a high value. It is interesting that in the first board the correct move is
the one with the lowest probability of all legal ones. In the second to last board one move
loses, whereas the other saves the game. The network chooses the correct one with a high
probability and thinks it is a drawn game. In the last one any move but the corners loses
the game for black and AlphaZero’s network finds one of them.

In general, we can see that the value is not very accurate and sometimes the preferred move
is not the correct one. The reason for this might be that the network needs more training,
as we used very few examples in comparison with any supervised learning problem. In
any case, this should not be a problem because we are also exploring with MCTS, which
would fix any error the network could make.

Finally, we tested it against a simple MCTS to check how much improvement AlphaZero
has introduced. MCTS will use UCT as selection policy with the default C =

√
2 constant

because Section 5.1.1 proved that it is good enough for this game. Instead of playing
against MCTS directly, we made both players play 100 games as black versus a Minimax
with AlphaBeta prune player. Again, we will only take black’s draws into account.

We made two different matches: the first one’s goal is to compare AlphaZero’s performance
during training and the second one compared AlphaZero and MCTS using the same
number of iterations.

We saved ten checkpoints during training and we used them to play the first match,
using 100 MCTS iterations per move. We also made MCTS play to have a baseline to
compare with. MCTS drew 53 games and AlphaZero beat this mark after only the first
100 games. It was capable of drawing 68 games. Figure 5.4a shows the complete result
of this experiment.

46

CHAPTER 5. EXPERIMENTS AND RESULTS

(a) Draws during training. (b) Draws after training.

Figure 5.4: a) Different instances of AlphaZero throughout training compared to MCTS.
All of them are using 100 iterations. b) A trained instance of AlphaZero is compared
against MCTS using different number of iterations for both of them.

In the other experiment, different instances of AlphaZero and MCTS played against Min-
imax four sets of 100 games using several numbers of iterations of the algorithm. First
set used only one iteration, second used 20, third 100 and the last one 200. Results show
the clear superiority of AlphaZero over a simple MCTS, as the former drew 87 games
using only the neural network, whereas the latter was not able to reach 70 draws with the
highest number of iterations. The complete plot can be seen in Figure 5.4b.

5.2 Connect 4

Now, we are going to train AlphaZero to play Connect 4, the version of Connect N with
N = 4 and a board of size 6× 7.

For this experiment we are going to introduce several changes. The first one is related
to the size of the state space. Connect 4’s state space is too large to be explored with
a simple Minimax algorithm, even using AlphaBeta prune. Thus, we are going to use
different opponents, which will not be perfect players. For this reason, we cannot expect
the perfect outcome of the game (white always wins). We are going to use two types of
opponents: Minimax and MCTS opponents. For Minimax we need to use a fixed depth
and a heuristic. The heuristic h selected is the one explained in Section 4.2 that counts
the number of times each player has n pieces in a row. Specifically, we are using n = 2.
Thus, we are going to call Minimax(d), with d ∈ N, the Minimax algorithm with depth d
and heuristic h, and MCTS(k), k ∈ N the MCTS algorithm with k iterations.

Additionally, as now there will be very different results, AlphaZero will play both as
white and black and we will count wins and losses, and not only draws as we did with
Tic-Tac-Toe.

This time, we needed a bigger network, because it is a much bigger game. We used 3
residual layers instead of 1 and 128 filters per layer instead of 32. The kernel size stayed
the same, as it is an usual value. As for the remaining hyperparameters, we reduced the
learning rate to 10−3 and removed L2 regularization, because it seemed to work better this
way. The PUCT C constant and the Dirichlet noise were kept unchanged (C = 1, α = 0.5

47

CHAPTER 5. EXPERIMENTS AND RESULTS

Hyperparameter Value

Residual layers 3
Filters 128

Kernel size 3× 3
Optimizer SGD

Learning rate 10−3

L2 regularization 0
Epochs 5

Batch size 2048
MCTS iterations 400

PUCT C 1
Dirichlet noise 25 % with α = 0.5
Temperature 30

Table 5.4: Hyperparameters used during Connect 4 training.

Figure 5.5: Value and policy heads losses during Connect 4 training.

weighted by a 25 %). Since Connect 4 games are longer, we incorporated temperature with
a value of 30. This means that after 30 moves actions will be selected greedily with respect
to the visit count of the node. For the same reason, we used a higher number of MCTS
iterations, 400 instead of 100. Finally, we played 10,000 games, training the network after
every 80 games, using 2,048 positions randomly sampled from the self-played games and
5 epochs per training. Table 5.4 summarizes the training configuration.

Training took 18:40 hours to complete. Training loss graph is shown in Figure 5.5.

For evaluation purposes we are going to use the final network and we are going to in-
crease the number of MCTS iterations to 800. It will face five different rivals, namely
Minimax(5), Minimax(6), MCTS(200), MCTS(400) and MCTS(600). It will play 50
games with white and 50 with black against every opponent. The results of these matches
are displayed in Table 5.5.

These results show us several facts. First of them is that Minimax is a weak opponent,
probably because of the heuristic selected. Anyway, we have to note that Minimax(d) can
look up to 4d leaf states in average, because the branching factor of Connect 4 is 4. So

48

CHAPTER 5. EXPERIMENTS AND RESULTS

White Results Black

AlphaZero 45–5 Minimax(5)
AlphaZero 46–2 Minimax(6)
AlphaZero 30–19 MCTS(400)
AlphaZero 31–19 MCTS(800)
AlphaZero 25–25 MCTS(1200)

Minimax(5) 14–35 AlphaZero
Minimax(6) 10–38 AlphaZero
MCTS(400) 23–22 AlphaZero
MCTS(800) 17–29 AlphaZero
MCTS(1200) 29–19 AlphaZero

Table 5.5: Match results for Connect 4. Every match consisted of 50 games. If results do
not add up to 50, then the difference is the number of drawn games.

Minimax(5) might be looking around 1,024 leaf states and Minimax(6) 4,096. These are
much higher numbers than the 800 states that AlphaZero can look in total. Therefore, the
neural network introduces a better estimation of the states than any standard Minimax
heuristic, hence much fewer states need to be checked.

Finding a goof Connect 4’s heuristic is not the aim of this project, so we are going to
focus more on the matches against MCTS. Theoretically, AlphaZero should be able to win
first two MCTS rivals with white and at least draw against the second with black. This
is because first MCTS uses less iterations than AlphaZero does and the second uses the
same and white has advantage in this game. However, results exhibit a better performance
than the expected. AlphaZero easily won both first rivals with black and white and drew
against the third. Surprisingly, MCTS(800) behaved worse than MCTS(400). We blame
this on the size of the game. It makes 800 iterations not enough and the randomness of
the simulation phase gains more importance.

In summary, we achieved to train an agent capable of playing as well as a MCTS algorithm
that uses more iterations than AlphaZero does. This is a great improvement, but we could
have gotten better results if we had had more computing power. We have to note that
we have a much slower hardware than DeepMind had, so we do not have the capability
to play that many games in that little time. For instance, DeepMind’s AlphaZero was
trained to play chess in 9 hours using 44 million games in total, whereas ours spent 18
hours playing 10,000 Connect 4 games using a smaller network.

If we had a way of playing a “reasonable” number of games in a “decent” amount of time
we could probably achieve better results. We could increase the number of games played
between one weight update and the next, so that the network is trained with a wider
variety of states. This might help it generalize better. And logically, playing one game in
less time would allow us to train with many more games. For example, if we could play
1,000 games in 10 minutes, we could train AlphaZero with 100,000 games in around 17
hours, which may be enough to win all these opponents and even harder ones. But we
are too far from it at the moment.

49

Chapter 6

Conclusions

Game theory is a field that has been studied for numerous years. Since Minimax and
AlphaBeta, a lot of effort has been put into the implementation of efficient and accurate
heuristics to create automatic players of games that were usually reserved to humans,
such as chess or Go. However, with the appearance of Monte Carlo Tree Search, other
approaches have been possible. And finally, AlphaZero has been a game changer in this
field.

The aim of this project was to imitate what DeepMind’s researchers did in a much smaller
scale. We wanted to create a general purpose algorithm capable of playing different games,
Tic-Tac-Toe and Connect 4 in our case.

But before this we had to make sure we comprehended all algorithms behind it. That
is, we had to deeply understand MCTS and neural networks and gain a basic knowledge
about reinforcement learning: main definitions and fundamental algorithms. Specially, we
focused on understanding the exploration-exploitation balance problem and did a simple
example about it. Additionally, we wanted to compare the AlphaZero algorithm to others,
so we also studied Minimax and AlphaBeta.

With all this, we could start studying DeepMind’s AlphaZero paper. We spent some time
trying to understand how all these pieces were put together to create such an algorithm.
For this purpose, it was useful for us to follow a step-by-step execution example.

Having studied all theory about these algorithms we could start our own implementation.
Our main goal for this part was to make it as much extensible and reusable as possible.
For this purpose, we implemented the game interface, which allow us to use them in the
algorithms without knowing specific information about them. This would allow us to add
more games if we wanted, without changing much code. As for the algorithms, we also
tried to make them as versatile as possible. For instance, we made the selection policy
in MCTS a parameter, so we could use AlphaZero’s policy or any other, like UCT. Even
AlphaZero’s neural network was very parametric, which enabled us to make it bigger or
smaller, depending on our needs. To help detach the boards from the neural network we
added an intermediate adapter, which not only makes it possible to adapt more games to
our AlphaZero implementation, but it can be also used to test different representations
of the same game, without having to change any code inside the game class.

We did not try hard games, like chess or Go, because we knew it would not be possible

50

CHAPTER 6. CONCLUSIONS

for us to train AlphaZero in our personal computers. For this reason, we implemented
Tic-Tac-Toe and Connect N for testing purposes. At the beginning, we thought they
would be simple enough games for the simplicity of their rules. However, we soon realized
Connect 4 was not that simple, and training was too slow. Because of this, we had to pay
special attention to parallelism. We used two different approaches: multiprocessing to be
able to play multiple games at the same time and multithreading, to gather more states
before feeding them to the network.

Finally, we did some experiments with our implementation. Due to its simplicity, Tic-
Tac-Toe mainly allowed us to test if our implementation was correct. Furthermore, our
trained instance for Tic-Tac-Toe achieved perfect play with few training games, but also
played really well using the network only (with no search). Once we had made sure it
was working properly, we were able to start testing it against a more challenging game,
Connect 4. We also obtained satisfactory results in this game, but with a bigger network
and much more training time. This instance of AlphaZero was not a perfect player as
the other, but it was able to win widely against a weak Minimax and was superior than
MCTS. It lost just one match, but it was playing with black versus a MCTS that used
more iterations, so it was expected.

6.1 Review of Objectives

We had three initial objectives: learn the theory, implement our own version of AlphaZero
along other algorithms and test it using two different games.

On the first goal, we can say we achieved it. First, we studied different techniques used in
this field, like Minimax, MCTS and deep reinforcement learning. Once we had compre-
hended everything, we could start reading and understanding AlphaZero’s paper. Finally,
we did a simple step-by-step example following the ideas explained in the article. Having
done this, we can claim we accomplished the first objective.

As for the second point, we implemented a highly versatile version of the algorithms and
games. In particular, it is important for us to have a common interface for all games so
they can be used interchangeably and have external adapters that convert their boards to
inputs and outputs to actions. This way, games can be perfectly used without needing to
know anything about AlphaZero, as it is just another part of our modules. For the same
reason, MCTS and Minimax algorithms, neural network and actual AlphaZero algorithm
are also very configurable. For instance, many different selection policies, heuristics,
architectures, or training settings can be used.

Finally, we obtained satisfactory results for our third objective. Our main success was to
be able to train two different AlphaZero instances for two different games, namely, Tic-
Tac-Toe and Connect 4, without needing to change one line of code and using no human
knowledge. They learnt everything by self-play and their only prior knowledge were the
rules of each game. These were the main purposes of AlphaZero. It is an algorithm easy
to adapt to diverse games as it does not need any domain-specific information.

We were able to master Tic-Tac-Toe and trained a strong Connect 4 player. However,
with our personal resources we do not expect better results and we do not think we can
address harder games. Presumably, this should be possible with greater computational
power, as DeepMind showed.

51

CHAPTER 6. CONCLUSIONS

6.2 Future Work

There are several ways to extend and improve our work. Mainly, we would need to speed
up our implementation so that we could train Connect 4 in much less time than we do
now. For this purpose, we would focus on improving our parallelism techniques or adding
additional enhancements. Specifically, we should be able to achieve playing games in
multiple processors that are sharing a single GPU. We could also use a cloud service that
allowed us to use more machines and even more GPUs. Apart from parallelism, we could
add a board cache so that we do not need to reevaluate typical states. This way, board
evaluations in MCTS would be done faster, hence, training too.

Once we could play games much faster, we might try to master Connect 4 again if possible,
but also try it with harder games, such as checkers. Checkers is a much more challenging
game due to its state space and branching factor.

In relation with that, bigger games as checkers might need to use several time steps as
input for the neural network, as AlphaZero originally did. However, we did not add this
possibility because the games we are using are rather simple and we thought it would
not be necessary. Thus, adapters take only one board at a time. We could easily change
it if needed. It would be only necessary to add an additional attribute in the adapters
meaning the number of time steps that will be used as network input and additional
minor changes in some algorithms. This improvement would make our implementation
even more versatile.

As this project has its focus on two-player zero-sum bard games with perfect information,
all algorithms have been developed to match these constraints. However, we could explore
some generalizations of the AlphaZero algorithm. In particular, we could start with
multiplayer games. For instance, Connect N could be played by multiple players without
changing the rules. At first glance, we would have to modify our game interface so that
the reward is not a single number in [−1, 1], but rather n numbers in [0, 1], meaning if
each player won or lost (or if they all drew). Similarly, we might need to replace the value
head of the neural network with a different one that also returns n values.

A different line could be to improve our implementation to allow stochastic games, that
is, games where there is a random component, such as a dice. Backgammon is an example
of such a game. This fact would complicate the search, because we cannot decide which
state we are going to end up in. Presumably, the value would be averaged among all
possible die rolls.

Additionally, we could also allow imperfect information games, such as card games (black-
jack without bets, for example), where you cannot see your rivals’ hands. These types of
games usually go hand in hand with stochasticity, so it would be a much harder approach
than the previous. Probably, it would be necessary to sample among all possible “per-
fect” states in order to compute the value of a single “imperfect” one. We might even try
typical casino games, like poker or blackjack, which include bets and their rewards are
how much money one wins or loses.

Aside from games, we could research other fields where this kind of algorithm could be
applied in. In fact, mathematical game theory has not only been developed to play games,
but also has several applications in economy or biology, to name a few examples.

Finally, we could also follow the same line DeepMind did. They worked on an improvement

52

CHAPTER 6. CONCLUSIONS

of this algorithm that was able to master Go, chess and shogi, but also Atari games, but
this time they did not tell it the rules of these games. This work culminated in the MuZero
algorithm [40], that was released in December 2020, during the elaboration of this project.

53

Appendices

54

Appendix A

Personal contributions to the project

A.1 Pablo Sanz Sanz’s Contributions

The first part of this project consisted on learning the basic parts that made up AlphaZero.
We both needed to learn about everything, but each of us focused more on a different
part.

I was in charge of the part related to combinational games. Thus, I was more centered
on game theory and also on search algorithms (Minimax, AlphaBeta and Monte Carlo
Tree Search). In addition, as we had to relate game theory with reinforcement learning,
I focused more on the reinforcement learning part, but we both needed to have a basic
background about this topic.

Then, we had to understand the AlphaZero algorithm, so we put our findings in common
and applied them to it.

Similarly, we used the same splitting for writing this report. Therefore, I wrote Sections 2.1
to 2.3.

In the next part, the implementation, we could separate our work more easily. As I studied
more theory about games, I was in charge of the implementation of the game environments
(GameEnv) and the strategies used for them, namely, HumanStrategy, Minimax (which can
use AlphaBeta pruning) and MonteCarloTreeSearch. Specially, for the MCTS algorithm
I needed to make sure that my implementation was suitable for my partner’s AlphaZero
implementation, but also wanted it to be used as a strategy itself. Thus, I added several
parameters so that it can be used either way. This also meant that I had to code some
selection and final move policies, such as UCT, OMC, PBBM and SecureChild, even though
we only used UCT selection policy in the end. Again, I was in charge of writing the
associated sections: Sections 4.1 and 4.2.

I also helped my colleague improve the training process. One of these improvements
was the creation of the adapter interface (AlphaZeroAdapter). Initially, he had added
the board conversion inside the evaluation function for simplicity and testing purposes.
But we needed a way to extract this outside the AlphaZero class to be able to play
different games without needing to change its code. Thus, I created the main interface
and refactored this code as an implementation of the interface.

Additionally, I created a Callback (tfg.alphaZeroCallbacks) interface to be used for

55

APPENDIX A. PERSONAL CONTRIBUTIONS TO THE PROJECT

training purposes. With some extra code inside the training loop we could do some
additional useful operations. We only used the Checkpoint callback that allowed us to
save the model in different moments during training. This way, we could evaluate the
performance of AlphaZero along training, as we did in Section 5.1.3. We implemented
other callbacks that we did not need in the end, such as ParamScheduler, to change some
hyperparameters (learning rate, MCTS iterations, etc.) during training, or GameStore,
intended to be used to save all games that were played during training.

Once we had our implementation of AlphaZero and realized it was too slow, I took some
time looking for ways of parallelizing it. Initially, I tried simple approaches, like splitting
training into multiple processes hoping that they all would have access to the GPU.
However, I quickly discovered that TensorFlow initializes all its GPU variables when it
was first imported. This meant that the memory filled with all these variables and the
program crashed. Therefore, I had to find a way to either disable GPU usage or use a
single neural network allocated in the GPU. Therefore, I tried the first approach with the
same library we were using for the play function, Joblib. Nevertheless, we only wanted
self-play to happen in parallel, but the weight update had to occur only once in a main
process. For this reason, we could not use this library, because we would have had to
create all AlphaZeros inside the parallel functions for every self-play batch.

Finally, I found Ray, that allowed us to have remote actors and call their methods from
the main process. Hence, I implemented the new version of the training loop, imitating
what my partner had done, but with parallelism. But it was still too slow for Connect 4.
After that, our director suggested us how to accumulate boards before evaluating them
with the neural network, instead of feeding them one by one. I tried this idea and achieved
the threading parallelization. Consequently, I implemented the parallelization part, hence
wrote Section 4.5.

The final part was composed of training AlphaZero and evaluating it. We both did some
testings, but I was the one that did the final executions because my computer is faster
than my colleague’s and I have also access to a new generation GPU. For this reason, I
was the one that wrote Sections 5.1 and 5.2.

After debugging our implementation and having made sure it was working we could evalu-
ate it. As training Tic-Tac-Toe took much less time, I could try numerous hyperparameter
settings to check which was the best and see the results immediately. In contrast, Con-
nect 4 was much slower, as we have already explained. Thus, I tested a small number of
hyperparameter combinations with few training games to have a quick overview of which
kinds of settings seemed to work better. Once having selected a set of hyperparameters
I started a new training session. It was supposed to last around 20 hours, from one af-
ternoon to next midday. Finally, that combination seemed to work well, and we achieved
the results presented in Section 5.2.

56

APPENDIX A. PERSONAL CONTRIBUTIONS TO THE PROJECT

A.2 Juan Carlos Villanueva Quirós’ Contributions

As we have previously explained, in the first part of the project we tried to study the
fundamentals and investigate how AlphaZero worked. Personally, I thought it was an
extraodinary opportunity to learn about a field that fascinated me. Although we both
made sure to understand every single concept, we distributed the work and each of us
would focus on a specific part. In my case, I focused on the deep learning part and training
process.

I had to read and comprehend every single component involved in the deep neural network
architecture that AlphaZero used. For instance, I understood how convolution operation
worked, how the architecture of the neural network was organized, and the conversion of
the game representation into the neural network input.

In the implementation part, we used the same splitting for the organization of the coding.
We implemented the parts accordingly to what we investigated in the first part. Hence,
I was in charge of the implementation of the modules alphaZeroNN and alphaZero.

In the first one, the neural network model is created using TensorFlow library. I was not
acquainted with TensorFlow and therefore I had to put a lot of effort into it. Choosing
which functions were needed and guessing out how they worked was a long-lasting task.
First, I had many complications trying to create two outputs (policy and value head)
for the neural network. After that, when testing the neural network, I noted a different
behaviour at training time and predicting time. After a long time trying to figure out
what was happening, I discovered that it was intentional. Indeed, the batch normalization
layer behaves differently in training and predicting process. In training, calculating the
mean and variance is based on mini-batch, whereas in predicting, mean and variance is
calculated using the batches it has seen during training.

In the AlphaZero module, it was needed to piece both the MonteCarloTreeSearch class
and the NeuralNetworkAZ class together. Firstly, I implemented the functions required
for the MCTS, i.e., the selection policy, the best node policy and the value function. The
selection function applied the Q+ U formula and the best node function used the π(a|s)
formula, introducing the temperature parameter τ as explained in Chapter 3.

The value function was a little bit more complex. Before predicting with the neural
network, the node had to be converted to network input format. Consequently, I created
a function that performed the conversion of the node board into the input format of the
neural network. But this function was game dependent, it was only suitable for the Tic-
Tac-Toe. After discussing with my colleague about this, we agreed that it was better to
create another module alphaZeroAdapters in which an adapter class was implemented
for each game, and the adapter would become a parameter. Once the conversion and
prediction was made, I applied the Dirichlet noise for the root node, which caused some
difficulties because I had to obtain only the legal probabilities and interpolate them.

Furthermore, in order to replicate the self-play process, I created the self play function.
Here, a fixed number of games were played executing the MCTS until the games was done.
When a game ended, its data was stored in the game data buffer, using the make policy

function to return the π vector according to temperature parameter. For the training loop,
I built the train function, which loops until the training is over. It self plays multiple
games, stores the data in a shared buffer and train the neural network with a mini-batch.

57

APPENDIX A. PERSONAL CONTRIBUTIONS TO THE PROJECT

When the first version of the implementation of AlphaZero was over, I proceeded to debug
it. This was without any doubt the most tedious part. I spent hours and hours trying to
figure out little mistakes that were preventing AlphaZero to learn properly. For example,
in the training process, it reached a point in which the same game was being played again
and again. There was not exploration at all and the learning stalled. After debugging
a lot, I found out that in the best node policy, we were always choosing the node with
the higher visit count, even when the temperature parameter was set to τ = 1. This
way, we were never taking a random sample from the categorical distribution as we have
explained. Removing this random factor reduced exploration a lot and caused to play the
same games, leaving a great part of the game tree unexplored.

Moreover, keeping the right perspective when storing the information in the MCTS caused
a lot of headaches. When self-playing, we were not changing correctly the sign of the values
in the back-propagation step. This caused AlphaZero to choose wrong actions most of the
times. When I fixed this bug, the algorithm started to play Tic-Tac-Toe almost perfectly
and it was such a great satisfaction for me.

Additionally, I also helped to test the algorithm with Tic-Tac-Toe. Unfortunately, my
computer was not powerful enough and it was much slower than the one from my colleague,
therefore I could not afford to test it with Connect N.

Finally, we wrote this memory distributing the chapters according to the distribution
made in the investigation part. Thus, I wrote Section 2.4 for the deep learning part and
Chapter 3 for AlphaZero explanation. I also wrote Sections 4.3 and 4.4 to explain the
implementation details.

58

Bibliography

[1] Tord Romstad, Marco Costalba, Joona Kiiski, et al. Stockfish: A strong open source
chess engine. https://stockfishchess.org. [Online; Accessed: 2021-05-31].

[2] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–489, 01 2016.

[3] DeepMind. AlphaGo. https://deepmind.com/research/case-studies/

alphago-the-story-so-far#our_approach. [Online; Accessed: 2021-05-31].

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[6] David Silver. Lectures on reinforcement learning. url: https://www.davidsilver.
uk/teaching/ [Online; Accessed: 2021-05-10], 2015.

[7] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Oxford, 1989.

[8] Richard Bellman. A markovian decision process. Journal of mathematics and me-
chanics, 6(5):679–684, 1957.

[9] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[10] William R Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[11] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-
tiarmed bandit problem. Machine learning, 47(2):235–256, 2002.

[12] Martin J Osborne et al. An introduction to game theory, volume 3. Oxford university
press New York, 2004.

[13] Louis Victor Allis. A knowledge-based approach of Connect-Four. J. Int. Comput.
Games Assoc., 11(4):165, 1988.

59

https://stockfishchess.org
https://deepmind.com/research/case-studies/alphago-the-story-so-far#our_approach
https://deepmind.com/research/case-studies/alphago-the-story-so-far#our_approach
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

BIBLIOGRAPHY

[14] John Tromp. Number of legal 7 x 6 connect-four positions after n plies. url: https:
//oeis.org/A212693 [Online; Accesed: 2021-05-12], 2012.

[15] Pascal Pons. Connect 4 game solver. url: https://github.com/PascalPons/

connect4 [Online; Accesed: 2021-05-05], 2019.

[16] J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen,
100(1):295–320, 1928.

[17] Daniel James Edwards and TP Hart. The alpha-beta heuristic. M.I.T. Artificial
Intelligence Project Memo, 1961.

[18] Guillaume Chaslot et al. Monte-Carlo Tree Search: A new framework for game AI.
Artificial Intelligence and Interactive Digital Entertainment, 2008.

[19] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search.
Computers and Games, 2006.

[20] Guillaume Chaslot, Jahn-Takeshi Saito, Bruno Bouzy, JWHM Uiterwijk, and H Jaap
Van Den Herik. Monte-Carlo strategies for computer Go. In Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence, Namur, Belgium, pages 83–91, 2006.

[21] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Eu-
ropean conference on machine learning, pages 282–293. Springer, 2006.

[22] Frederik Christiaan Schadd. Monte-Carlo Search Techniques in the Modern Board
Game Thurn and Taxis. PhD thesis, Maastricht University, 2009.

[23] Guillaume Chaslot. Monte-Carlo Tree Search. PhD thesis, Maastricht University,
2010.

[24] Hao Dong, Hao Dong, Zihan Ding, Shanghang Zhang, and Chang. Deep Reinforce-
ment Learning. Springer, 2020.

[25] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a con-
volutional neural network. In 2017 International Conference on Engineering and
Technology (ICET), pages 1–6, 2017.

[26] Clarifai Technology. Elemental structure of a convolutional neural network. https:

//www.clarifai.com. [Online; Accessed: 2021-05-20].

[27] Machine Learning Summer School 2015 Rob Fergus. Example of a relu opera-
tion. http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf. [On-
line; Accessed: 2021-05-20].

[28] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[30] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? arXiv preprint arXiv:1805.11604, 2018.

60

https://oeis.org/A212693
https://oeis.org/A212693
https://github.com/PascalPons/connect4
https://github.com/PascalPons/connect4
https://www.clarifai.com
https://www.clarifai.com
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

BIBLIOGRAPHY

[31] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419):1140–1144, 2018.

[32] Jiayu Lin. On the dirichlet distribution. Department of Mathematics and Statistics,
Queens University, 2016.

[33] Medium David Foster. Alphazero’s neural network architecture. https:

//adspassets.blob.core.windows.net/website/content/alpha_go_zero_

cheat_sheet.png. [Online; Accessed: 2021-05-31].

[34] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[35] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill-
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

[36] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016.

[38] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray:
A distributed framework for emerging AI applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 561–577, 2018.

[39] Python. Global Interpreter Lock. https://wiki.python.org/moin/

GlobalInterpreterLock. [Online; Accessed: 2021-05-20].

61

https://adspassets.blob.core.windows.net/website/content/alpha_go_zero_cheat_sheet.png
https://adspassets.blob.core.windows.net/website/content/alpha_go_zero_cheat_sheet.png
https://adspassets.blob.core.windows.net/website/content/alpha_go_zero_cheat_sheet.png
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

BIBLIOGRAPHY

[40] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Grae-
pel, et al. Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, 2020.

62

	List of Figures
	List of Tables
	Introduction
	Objectives
	Planning
	Memory Structure

	Algorithms in Games
	Reinforcement Learning
	Multi-armed Bandit

	Game Theory
	Search Methods
	Minimax and AlphaBeta
	Monte Carlo Tree Search (MCTS)

	Deep Reinforcement Learning in Combinational Games
	Activation Functions
	Convolutional Neural Networks
	Residual Neural Network
	Batch Normalization
	Regularization

	AlphaZero
	Training Loop
	Self-play
	Neural Network
	Execution Example

	AlphaZero Implementation
	Game Representation
	Tic-Tac-Toe
	Connect N

	Strategies and MCTS Implementation
	Neural Network Implementation
	AlphaZero Implementation
	Adapter

	Training Parallelization
	Multiprocessing
	Multithreading

	Repository

	Experiments and Results
	Tic-Tac-Toe
	Tic-Tac-Toe with MCTS (no learning)
	AlphaZero's Parameter Tuning
	Final Results

	Connect 4

	Conclusions
	Review of Objectives
	Future Work

	Appendices
	Personal contributions to the project
	Pablo Sanz Sanz's Contributions
	Juan Carlos Villanueva Quirós' Contributions

	Bibliography

