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Resumen
La verificación formal de un programa es la demostración de que este funciona de acuerdo a una

descripción del comportamiento esperado en toda posible ejecución. La especificación de lo deseado
puede utilizar técnicas diversas y entrar en mayor o menor detalle, pero para ganarse el título de formal
esta ha de ser matemáticamente rigurosa.
El estudio y ejercicio manual de alguna de esas técnicas forma parte del currículo común a los estudios

de grado de la Facultad de Informática y del itinerario de Ciencias de la Computación de la Facultad de
Ciencias Matemáticas de la Universidad Complutense de Madrid, como es el caso de la verificación con
pre- y postcondiciones o lógica de Hoare.
En el presente trabajo se explora la automatización de estos métodos mediante el lenguaje y verifica-

dor Dafny, con el que se especifican y verifican algoritmos y estructuras de datos de diversa complejidad.
Dafny es un lenguaje de programación diseñado para integrar la especificación y permitir la verifi-

cación automática de sus programas, con la ayuda del programador y de un demostrador de teoremas
en la sombra. Dafny es un proyecto en desarrollo activo aunque suficientemente maduro, que genera
programas ejecutables.
Palabras claves: algoritmos, estructuras de datos, especificación, verificación automática, lógica de

Hoare, Dafny

Abstract
The formal verification of a program is the proof that it works according to a description of its expected
behaviour in any possible execution. The specification of what is desired can use different techniques
and go into more or less detail, but to win the formal title it must be mathematically rigorous.
The study and manual exercise of some of those techniques is part of the common curriculum of

the degree studies at the School of Computer Science and of the Computer Science itinerary at the
School of Mathematics at the Universidad Complutense de Madrid, such as verification with pre- and
postconditions or Hoare logic.
In the current work, the automation of those methods is explored through the language and ver-

ifier Dafny, with has been used to specify and verify some algorithms and data structures of diverse
complexity.
Dafny is a programming language designed to integrate specification and allow automatic verifica-

tion of its programs, with the help of the programmer and a theorem prover in the shade. Dafny is in
active development but mature enough and it generates executable programs.
Keywords: algorithms, data structures, specification, automatic verification, Hoare logic, Dafny
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Chapter 1

Introduction
It is not incredible to conceive that computer programmers or algorithm designers want their creations
to operate as desired. From the ancient Greeks to the modern computer programmers, all of them are
supposed to wish that their algorithms or programs do what they want without errors.
The usual way of taking care of this praiseworthy aim is to be careful. From the informal knowledge

on mathematical facts, language constructs, library functions, ... the programmers hoard and with the
help of diverse documentation, previous works and examples, they can design and build programs in
the hope that these meet their purposes.
When a feature is advanced enough, some tests can be carried out. If the program works properly,

the programmers will be invested of a (maybe misleading) confidence to go on. Otherwise, there is a
bug they should find and correct, carefully reviewing the code or more likely debugging.
This program genesis is generally more than acceptable and requires a reasonable effort. It may

convince us of its correct behaviour, but would other people trust? When the program’s task is sensitive
or it cannot be tested in action or when dealing with common reusable components, it is worthwhile to
take the supplementary effort formal verification methods require.
During this double degree studies, some of them have been introduced in different subjects. In the

School of Mathematics (Facultad de Ciencias Matemáticas) we have attended Programming Theory (Teoría
de la programación) lessons, where language semantics and static program analysis were taught. In
the School of Computer Science (Facultad de Informática), we have heard about formal techniques on
Concurrent Programming (Programación concurrente), and in Data Structures and Algorithms (Estructuras de
datos y algoritmos) we have been taught pre- and postcondition specification and verification.
This work will explore the automation of the last formalism above at the hand of the Dafny language

and verifier, in which we will specify and verify some interesting algorithms and data structures.

1.1 The foundations
In 1967, Robert W. Floyd (1936–2001) published “Assigning Meaning to Programs” [Flo67] and stated
that all imperative programs could be represented in flowcharts and their constructs could be viewed
as predicate transformers.
Two years later, C.A.R. Hoare (1934–) published “An Axiomatic Basis for Computer Programming”

[Hoa69] where he claims that “computer programming is an exact science” and proposes a formal
system for reasoning about programs, which we know nowadays as Hoare logic.
The axiomatization attempt of computer arithmetic, which starts the article, is not as famous as

Hoare triples
{𝑃} 𝑄 {𝑅}

which mean “if the assertion 𝑃 is true before initiation of a program 𝑄, then the assertion 𝑅 will be true
on its completion”. 𝑃 was called precondition and 𝑅 postcondition and a set of rules in this form was

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: “Flowchart of program to compute 𝑆 = ∑𝑛
𝑗=1 𝑎𝑗 (𝑛 ≥ 0)” from [Flo67]

established for the basic constructs of a simple imperative language with assignments and loops. To the
previous phrase “providing that the program successfully terminates” was appended later in the article
because termination is not ensured by this method (partial correctness).
Following the abstraction and decomposition principles, this formalism let us reason about complex

programs in a convenient and affordable way. It also allows choosing to which extent we want to talk
about the program, which properties we want to consider.
Nevertheless, Hoare pointed out some limitations in the article: apart from the termination, real

arithmetic, arrays, records, files, input/output, declarations, subroutines, recursion, parallel execution
were not considered. He thought that dealing with these issues was not a difficult task and would be
solved soon, and they have, usually with his contribution. He looked more pessimistic with respect to
pointers and name parameters.
In further works like “Proof of Correctness of Data Representations” [Hoa72], Hoare set the bases for

using abstract datatypes in his theory. Data can be represented as a mathematical object along with an
abstract specification of its operations in those terms. Programs using data structures are proved correct
according to their abstract specifications and the correctness of the concrete representations with respect
to their specification is checked apart.
Hoare defines a representation function 𝒜 to “map the concrete variables into the abstract object

which they represent” and an invariant condition 𝐼 to “place a constraint on the possible combinations
of values the constituent concrete variables may take”.
These concepts will be called abstraction function and representation invariant respectively from now

on. We adopt this terminology and procedure in our work on data structures and algorithms which use
them. Its adaptation to Dafny and our purposes, is described in Section 4.2.

1.2 Automatic program verification
As it was mentioned before, we will try the automation of the previously studied methods. We have
just exercised them by hand in ad-hoc examples and they can and have been used manually in complex
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algorithms.
From the time Ada Lovelace designed and demonstrated her algorithm to calculate Bernoulli numbers

for the hypothetical Charles Babbage’s Analytical Engine [Men42], formal and informal correctness
proofs have been written by hand. However, in the line traced by Leibniz, Hilbert, Ackermann, Church,
and Turing, who wanted mathematical proofs to be checked by a machine for a greater trust, automatic
tools were and are still being developed for program verification.
Like this, the correctness proof can be checked automatically and shipped as a guarantee jointly with

the program, giving rise to what is called PCC (proof-carrying code). A wide range of tools are available
with different goals and degrees of automation.
The hardware industry was one of the first to assimilate formal verification methods, which have

been used for more than 20 years. The ACL2 system [KM16] was applied to the verification of critical
hardware systems, which were modelled in the ACL2 language and then proved correct with the help
of a theorem prover. In 1995 the correctness of the AMD K5 floating point division was demonstrated.
Another tool called HOL Light [Har15] was used by Intel to formalize floating point arithmetic and verify
several algorithms from their processors. On a slightly higher level, Microsoft uses symbolic execution
in their Static Driver Verifier [Mic16a] to detect defects and design issues in drivers for the Windows
operating system.
Another example is theAstrée analyser [Cou+16] that was developed to prove the absence of runtime

errors in C-written programs for real-time embedded software. It has been used in Airbus airplanes as
well as in vehicles from the European Space Agency. The B Method [Cle16] was used to design and
prove correct some parts of the automatic driver system for the line 14 of the Parisian underground, for
instance.
The multiple techniques that can be ascribed to formal verification have their advantages and draw-

backs. Searching potential null pointer exceptions is less ambitious than proving that there are not.
And this is less than demonstrating that the program always terminates providing the correct result.
However, the required effort increases from one to another.
Being humble, formal verification is not to rely on blindly. Just like the executable program code,

the specification could be wrong due to errors caused by the human specifier. It also relies on the
correctness of the verifier (human or machine), the compiler, the abstract machine if any and the real
machine in any situation, which may include traversing the sky within a rocket. The convenient and
inevitable abstraction also left some hollows that can give rise to errors in practice, albeit they may be
treated and prevented apart.
In this project, we are interested in functional correctness andwewill use deductive verificationmethods.

A program is functionally correct if it really does what we have designed it for. Deductive verification
is based on the application of proof rules like in the Hoare logic we have just described.
These techniques are quite powerful and expressive but they require a non-negligible amount of

work. According to [BH14] it “is elusive for almost all application scenarios” and statistics show that
annotations require five times more lines that the program code itself.
The availability of efficient satisfiability modulo theories (SMT) solvers has propitiated a rise in

verification system performance and automation. However, when working with first-order logic, full
automation could not be expected as a consequence of the negative answer to the Entscheidungsproblem
(i.e. first-order logic is undecidable).
Verification systems like HOL [CCT16], Isabelle [CM16], Why3 [Bob+16] or Dafny [Res16] make

use of SMT solvers to operate. The differences between HOL/Isabelle and Why3/Dafny is in the degree
of automation and so in the user role. Both Why3 and Dafny work as Verification condition generators
(VCG): from the code they produce verification conditions for an automated theorem prover, which then
tries to prove that they are satisfied.
The most similar to Dafny is the Why3 system. It provides a specification and programming language

called WhyML which can be used to write code directly or as an intermediate language to translate code
from C, Java or Ada. It is able to generate verification conditions for several SMT solvers. Why3 is a
reimplementation of a former system called Why and it is developed since 2011 by the Toccata team at
the Inria Saclay-Île-de-France research centre.
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In the case of Dafny, the role of WhyML is played by Boogie2 and Dafny code is translated to this
intermediate language. Then Boogie generates verification conditions for the Microsoft’s prover Z3.
Dafny will be described more in depth in Chapter 2.

1.3 Objectives
This project objective is to explore functional verification of programs within the Dafny language and
verifier, and specify and verify some interesting algorithms and data structures using it.
The experience and the conclusions drawn during this process should serve to elaborate a convenient

methodology to face specification and verification within Dafny.

1.4 Work plan
This project has been carried out between late July 2015 and early June 2016. The work has been
arranged in two stages.

1. Foremost, some tutorials and articles on the verification tool were read in order to learn how to
express, specify and verify algorithms with it. This learning was simultaneously put into practice
through some classroom-like exercises from [MSV12], not without interest for themselves.
Those exercises, up to 38 with alternative solutions, play with interesting properties of numbers
and vectors. From greatest common divisor or sine approximation calculations to binary search,
a variety of topics have been covered. The description and conclusion of the process are written
in Chapter 3, along with the description of the most interesting examples.

2. In the second phase, we have specified and verified some well-known algorithms and data struc-
tures of a greater complexity.
The implemented and verified data structures are stacks, lists and binary heaps. Two graph-related
algorithms have been considered: Floyd-Warshall algorithm and Dijkstra’s algorithm, as represen-
tatives respectively of dynamic programming and greedy techniques. Chapters 4 and 5 describe
their implementation, specification and verification.

The first experiments with data structures began in late January and specification of renowned algo-
rithms started in March with the Floyd-Warhsall algorithm. This report was started in mid-April.
Some auxiliary tools have been developed with the aim of making some tasks more comfortable. A

brief description of those is in Section 2.5 and they can be found as part of the attached material as
described in Appendix B.



Chapter 2

The Dafny system

Dafny [Res16] is a programming language for verification as well as its compiler and verifier. Created
and maintained by members of the Research in Software Engineering (RiSE) group at Microsoft Research
and coordinated by K. Rustan M. Leino, it includes built-in specification constructs and comes with a
static verifier to validate the functional correctness of programs.
In its early days, Dafny was developed as part of another RiSE project called Boogie, an intermediate

verification language, which is still Dafny’s backend. In turn, Boogie was originally developed and
distributed together with Spec#, a verification extension for C#. Their sources have been available
since 2009 in a Microsoft code hosting website. In 2012 Dafny moved to a separate repository and the
first standalone release was offered.
Dafny is in active development. From the beginning of our project, almost 420 commits have been

pushed to the repository, more than 70 issues have been reported, 30 discussions have been opened
in the repository forum and two new versions have been released. The code is licensed under the
Microsoft Public Licence, considered a free software licence by the Free Software Foundation, although
incompatible with GNU GPL.
According to its project page [Res16], Dafny is being used in teaching at some universities around

the world and in the proof of complex algorithms’ properties like the stability and correctness of natural
mergesort [LL15]. It has also been used in some program verification competitions and benchmark
challenges, like COST Verification Competition (Formal Verification of Object-Oriented Software) or
VerifyThis, being the most used system in some of their editions.
As a language, Dafny is mainly imperative, sequential, strongly and statically typed with minimal

type inference, generic, modular and somehow object-oriented. Specification is based on pre- and post-
conditions, frame specifications and termination metrics. To support further specification the language
provides recursive functions and suitable types like sets and sequences. Specification material is con-
sumed in verification time, so that it is omitted from executable code.
Its official description admits being influenced by Euclid, Eiffel (built-in contracts), CLU (iterator

and out parameter syntax), Java, C# and Scala (classes, traits and functions), ML (module system, func-
tions and inductive datatypes), Coq and VeriFast (coinductive datatypes and inductive and coinductive
proofs).
The axiomatic semantics principle harmoniously rules both the effective programming context and

pure specification one, which in fact could be mixed at user discretion. Dafny programs are composed
of two main top level constructs: methods and functions.

• Methods are imperative procedures with named parameters (passed by value) and named return
values. There are a list of statements to produce an effect or calculation or to provide a proof.
When we are only in the last case, they are called lemmas.
• Functions are expressions which admit recursive and mutually recursive calls. Actually they are
functional programs, most likely used for specification.

5
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Methods and functions which are not written to generate executable code and used only for speci-
fication or verification are named ghost. Functions are ghost by default. Methods, variables and also
method or function parameters can be declared to be ghost with this keyword.
Other top level declarations include classes, iterators, subtype or type synonym definitions and the
experimental async-task types. Its type system distinguishes value and reference types (as in C#) where
reference types are pointers, whose referent is dynamically heap-allocated.
Built-in value types comprise integers (implemented as arbitrary-precision integers), natural num-

bers, characters, Booleans, and reals (implemented as quotients of arbitrary-precision integers). In
addition, some other immutable types like sequences, sets, multisets, maps (both finite and infinite) are
provided mainly to be used in specification context.
Reference types include type-parametric arrays of no matter what number of dimensions, and objects.

Some object-oriented programming support is available. Classes don’t allow inheritance or subclassing
but there are traits for that purpose, borrowed from Self or Scala. This part of the language is still under
construction and there are missing features like support for generic traits. Dafny has a particular way
of dealing with dynamic memory locations and their influence in programs, called dynamic frames.
User interaction is not really supported by Dafny, apart from the print statement. Still and all,

as Dafny generates .NET assemblies, the resulting programs, types and classes can be used from C# or
any other language supporting the Common Language Infrastructure, but not necessarily in a clean and
comfortable fashion.

Dafny can be used in several ways. The easiest one is the online interface at http://rise4fun.com/
Dafny/ for which no installation is required. rise4fun hosts different software engineering tools from the
RiSE group, including many other verification languages.
The recommended interface is the Dafny extension for Visual Studio, which provides syntax highlight-

ing and live verification in the background as you write, powered by a caching system which restrains
reverification to what is affected by the last changes. Errors are shown in place linked to their related
locations. Tooltips appear when you hover over certain items, including information on automatically
selected termination functions, triggers... It also integrates the Boogie Verification Debugger which can
be sometimes used to see counterexamples.

Figure 2.1: Visual Studio Dafny extension and Boogie Verification Debugger

Dafny is also available from the command line as a typical compiler. If the program gets past the
validation phase, a .NET assembly will be generated: a dynamic library (.dll) or an executable (.exe)

http://rise4fun.com/Dafny/
http://rise4fun.com/Dafny/
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whenever the program includes a method called or designated as Main. Dafny personalization, by means
of different parameters, is easier here.
Extensions for other editors like Sublime Text, Vim and Emacs exist. The Emacs’ Dafny mode is

officially proposed in Dafny’s website too. Besides syntax highlighting, completion, code snippets... it
offers on-the-fly verification. The last is possible thanks to the Dafny server, a tool which let external
programs benefit from the verification result caching available in Visual Studio.

Figure 2.2: Emacs Dafny mode

Dafny installation is quite easy in recent versions. To install the extension in Visual Studio, a simple
click in the .vsix file that comes in the release package should be enough. Non Windows users need
to install Mono and download the appropriate package from the Dafny project download page. Debian
and Ubuntu packages will be available from the official repositories in the near future.
Dafny and Boogie are based on the .NET Framework and both are cross-platform. However, they

depend on the Z3 SMT solver which is compiled to native code.

2.1 Brief description of the verification architecture
Dafny architecture is based on previous Microsoft Research’s tools, namely Boogie, an intermediate
verification language, and Z3, an SMT solver, although this dependency and collaboration is transparent
to the user.

Dafny
Boogie

Z3
C#

compiler

VisualStudio
extension

Command line
interface Dafny server

Emacs mode

Figure 2.3: Dafny system architecture
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First, Dafny performs the typical compiler work, it does parsing and checks types and identifiers.
Errors are reported when found. Otherwise, Dafny continues to verification, by translating Dafny con-
structs into a Boogie program, including the necessary asserts and assumptions and Dafny’s infrastruc-
ture from the DafnyPrelude.bpl file. The translation details can be read in [Lei08].
Then Boogie takes the responsibility to verify its code. Boogie generates several first-order verifica-

tion conditions that the Z3 theorem prover will then check.
When all is done, Dafny generates C# code including the implementation of built-in data types

and functions available in DafnyRuntime.cs. Later on, this program is compiled in a .NET assembly, a
dynamic library or an executable depending on the presence of a method named or designated as Main.
During normal operation this process is not visible to the user. Some internal errors, which we have

seldom suffered, like Boogie failures or errors in the generated C# code, may make lower layers arise.

2.2 Language syntax and semantics overview
The Dafny language is quite similar to the one used in the Data Structures and Algorithms lessons, as in
[MSV12] and [Peñ06]. The procedures are equivalent to those we used by hand.
Dafny statements are those we can find in any usual imperative language, those which Hoare con-

sidered in his article [Hoa69]. Dafny has while statements and conditions (if, else if and else).
Here we show simplified partial correctness rules for those constructs. They are simplified, as Dafny
statements like break and return are not being contemplated. Actually, Dafny considers different re-
turn paths. In this rules, we also mix syntax and semantics but, as Dafny’s Boolean expressions language
for effective programming is a subset of the specification language, it is not serious.

{𝑃} S1 {𝑄} {𝑄} S2 {𝑅}
{𝑃} S1 ; S2 {𝑅}

{𝐵 ∧ 𝑃} S {𝑃}
{𝑃} while B invariant P { S } {𝑃 ∧ ¬𝐵}

{𝐵 ∧ 𝑃} S1 {𝑄} {¬𝐵 ∧ 𝑃} S2 {𝑄}
{𝑃} if B { S1 } else { S2 } {𝑄}

Dafny (or Boogie) communicates the errors to the user in a relatively pleasant way. For example, in
the case of loops, the types of errors Dafny produces reminds me about the steps we are taught to follow
to prove the correctness of an iterative algorithm; that is:

1. The invariant holds at the start of a loop.
2. The invariant holds after each execution of
the loop body providing it and the loop con-
dition hold before.

3. The invariant and the negation of the loop
condition imply the desired property at the
end of the loop.

4. The bound function is non-negative when-
ever the invariant and the loop condition
hold.

5. The bound function decreases at every execu-
tion of the loop body whenever the invariant
and the loop condition hold.

In fact, every loop, method or function to be called recursively needs a bound function in Dafny. It
is usually able to provide one1 but we may choose one explicitly using the decreases clause.
Assignments require special attention as they allow different variables to be assigned at the same

time and in parallel. Moreover, a special form of assignment let the right-hand side expression be a
single method call (with potential side effects) when the left-hand side should have as many variables
as the method output parameter length.
1The default bound expression for (recursive) functions is the lexicographic tuple of its parameters. Formulas like

if n - m ≥ 0 then n - m else n - m are used for loops whose condition looks like n ≠ m.



2.3. DOCUMENTATION AND REFERENCE RESOURCES 9

In any function or method call, we must ensure that its preconditions hold and that the callee is
allowed to read or write what the function or method declares to read or write. Thereafter we can
assume its postconditions.

assert and assume are other important statements. Both take a Boolean expression and cause the
verifier to assume it afterwards. The assert statement also tries to prove it, showing an error if this is
not possible. Assert and assume statements as well as lemma calls can appear in expressions, as a prefix
separated with a semicolon. For example var y ∶= assume x > 0; 1 / x; is a valid Dafny term.

2.3 Documentation and reference resources
Dafny’s main references are its web page at Microsoft Research [Res16] and the project page at the
Microsoft’s code hosting website CodePlex http://dafny.codeplex.com.
My first reading on Dafny was a 3-page tutorial-like article called “Developing Verified Programs with

Dafny” [Lei13]. Despite its small size it explains most of the Dafny we have dealt with. Other tutorials
–more or less updated– can be found at the pages mentioned in the previous paragraph as well as in the
bibliography. Leino’s publications web page includes links to many articles, from tutorials to feature
devoted monographs. A guide is also available inside the rise4fun website and also video tutorials are
conducted by Leino in the Verification Corner YouTube channel.
To solve particular doubts about the language, there are two interesting and easy-reading references

in Dafny Quick Reference [Mic16b] and Types in Dafny [Lei15]. A detailed language (draft) reference
[FL16], hidden deep in the repository, will solve any further doubt.
Another valuable source of information is the Formal methods for software development (Métodos for-

males de desarrollo de software) course page [Luc16], taught by Paqui Lucio at the University of the
Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea).
In CodePlex, apart from the Mercurial repository that contains the Dafny code, the project site offers

a discussion forum and an issue tracking system open for contribution to the public. The repository
forum has been useful to answer some questions we have come across. Here is the list of threads we
created:
1. Function type attributes (654197)
2. Express relations and their properties (653715)

3. Generic traits (651246)
4. Instability of verifications (648164)

A Dafny tag exists in Stack Overflow too.
Some errors have been reported to the Dafny authors through the issue tracking system, in the hope

that they were solved.
1. Wrong z3.exe in .vsix (105)
2. Verification result depends on declaration order
(152)

3. Bug in BigRational implementation (148)
4. Something wrong in release notes (163)

Only the third issue has been closed and the problem was solved. None of the others has been
considered for the moment (perhaps partially the first).

Comments on some reported issues

Let’s make a parenthesis to comment two of those issues, not in order to rub in the failures but to
emphasize and illustrate how the correctness of the final program relies not only in the user code itself,
but in the validity of the verification tool, the code generator, the compiler, etc.
The third issue, Bug in BigRational implementation, was a bug in the implementation of the comparison

method for the BigRational class, which is the base for the real datatype. As a consequence generated

http://dafny.codeplex.com
https://dafny.codeplex.com/discussions/654197
https://dafny.codeplex.com/discussions/653715
https://dafny.codeplex.com/discussions/651246
https://dafny.codeplex.com/discussions/648164
https://stackoverflow.com/questions/tagged/dafny
https://dafny.codeplex.com/workitem/105
https://dafny.codeplex.com/workitem/152
https://dafny.codeplex.com/workitem/148
https://dafny.codeplex.com/workitem/163
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programs with real number comparisons generate bad results, against the specification. That was the
case of the Floyd-Warshall algorithm described in Section 5.1. Investigating the causes, we arrived at
the Dafny runtime sources where the bug was found.
The first issueWrong z3.exe in .vsix is also related with this topic: the Z3 executable included within

the Visual Studio extension installer (.vsix) differs from that distributed with the command line version,
despite being shipped in the same compressed packet. So Dafny produces different verification results
whether using Visual Studio or the command line interface (there might be other causes yet).
The concern which made us look carefully at the Z3 version was a curious story. The first versions

of Dafny until 1.9.6 are offered as a downloadable packet which contains the Dafny binaries and the
Z3 binary for Windows only. As Z3, required by the Dafny system and written in C++, is a native
executable, we ourselves had to provide it in order to use Dafny in Linux. We downloaded Z3 from
the Debian official repositories and we worked with it for months. Someday, Dafny arrived to prove
something false. The reason was that the Z3 version was too old or buggy. We downloaded Z3 from its
original repository at GitHub and the issue was solved.

2.4 Dafny configuration and options used in this project
The Dafny tool has a bunch of options which influence its verification results. Since we obtained different
outcome for the same file whether we were using Visual Studio or the command line interface, we
realised the need to find a common criterion to say whether the verification of a program has been
successfully achieved.
As Visual Studio options are more difficult to change2 and while they seem reasonable, we will adapt

to them. At the present time, only a timeout of 10 seconds should explicitly be fixed at the command
line to follow Visual Studio convention. Its extension uses another option to fix the number of prover
threads to one less the total number in the machine, but we have omitted it as it seems to be a source
of instability (see Section 2.3, thread Instability of verifications).
To sum up, the general criterion to admit that a program verification has been successful is that

Dafny 1.9.7 shows no errors for the file at the command line when called with options
/compile:0 /timeLimit:10 /noCheating:1

where /compile:0 omits the compilation phase (it has no effect on verification) and /noCheating:1 treats
assume as assert .
Most of the time, we have used Dafny from the command line and edited .dfy files within a text

editor in a GNU/Linux environment. Visual Studio extension, Emacs Dafny mode and rise4fun have
been used sometimes.

2.5 Auxiliary tools we have developed
Some programs have been built as auxiliary tools in the hope that they would be helpful for the project
development.

Vaed Vaed is a program to batch verify and keep track of the set of all Dafny files from the project.
It keeps a register of the previous verification results and only reverifies those files which have changed
since the last execution, like a make utility. The tool is able to generate a .pdf listing all Dafny programs
along with their verification outcome. These can also be reviewed through a web interface, from where
Dafny programs can be tested as a modest rise4fun.
The program can serve as a quick check for a third person to ensure that all programs written are

syntactically correct and verified, and it has revealed to be very useful on every Dafny update, which
usually make some programs stop working.
2There is a DafnyOptions.txt file in the extension folder where parameters can be set as in the command line.
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This program was first written in Python 3 and rewritten in C# to reduce dependencies.

dafny.pl As the Dafny command line verifier output is not as comfortable as desired, a Perl script
called dafnyc.pl was written to reformat and colourize its output, as well as to include the cited code
line in it, following the style of modern GCC compilers up to a point, as shown in Figure 2.4.

$ dafnyc er4.4.dfy
Dafny program verifier version 1.9.7.30401, Copyright (c) 2003-2016, Microsoft.
er4.4.dfy:113:9: Warning: /!\ No terms found to trigger on.
er4.4.dfy:83:33: Error: the calculation step between the previous line and this line might not hold

Pot(1.0, k) * Abs(Pot(x, dk1)) / Abs(real(Fact(dk1)));
^

er4.4.dfy:163:6: Error: the calculation step between the previous line and this line might not hold
< e;

^
er4.4.dfy:214:7: Verification of 'Impl$$_module.__default.senoAprox' timed out after 10 seconds
er4.4.dfy:234:14: Timed out on BP5005: This loop invariant might not be maintained by the loop.

invariant t == TerminoSeno(x, k)
^

Dafny program verifier finished with 16 verified, 2 errors, 1 time out
$

Figure 2.4: Dafny console beautifier

partes.pl partes.pl is another Perl script that was programmed to separately verify all the methods
and functions of a Dafny file, using the /proc: option. In many situations, we have found programs that
get verified in this way while they do not taking the file as a whole.
Other auxiliary works like syntax highlighting specifications and Debian packages were created to

facilitate the use of the tool in a GNU/Linux environment.
All of them are included in the attached CD as well as in https://github.com/ningit/vaed. Their

contents are described in Appendix B.

https://github.com/ningit/vaed
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Chapter 3

Verifying iterative and recursive
programs

In the first phase of this project and to get familiar with Dafny, up to 38 exercises on algorithm verifica-
tion and derivation from the textbook “Algoritmos correctos y eficientes” (Correct and Efficient Algorithms)
[MSV12], coauthored by two of my supervisors, have been written and proved in Dafny. The book con-
tains mainly solved exercises along with some proposed unsolved ones. They come from three book’s
chapters

(2) Algorithm verification
(4) Iterative programs derivation

(5) Recursive programs derivation

Most exercises from these chapters have been considered except those which are too similar to the
previously selected ones. Only three unsolved exercises have been included. Alternative solutions and
Dafny features experiments have been carried out with the solved ones.
Algorithms deal with numbers or arrays. They calculate integer square roots, greatest common

divisors, powers, logarithms... or they work with arrays to compute maxima, sums, dot products, binary
search...
Seven exercises have been proved without any help, not a single assertion, invariant, lemma or

termination bound specification; and eight more only need their invariants or decreases clauses.
Apart from that, the rest of the exercises require some help to the prover, with a varied degree of
difficulty. If we have to put a star on the most complicated exercises, we would place it in Exercises 2.11,
4.4, 4.15, 4.27 and 5.18.

3.1 Initial difficulties
Since the Dafny language is quite similar to the pseudocode used in [MSV12] and that of Data Structures
and Algorithm’s lessons at the School of Computer Science, code translation is almost direct. There are
int for integer numbers, nat for non-negative numbers, real for real numbers and bool for Booleans.
There are also arrays but here we found more differences.
Dafny’s arrays are type parametric, their indexes start from 0 to the length of the array (as in C), which

can be retrieved by the .Length property and it is fixed from the time they are created. Be aware that
array type is a reference type, i.e. a pointer to a heap allocated region on which the array elements are
stored (like in Java or C#), and so array variables need to be initialized (with new T[size] syntax)
and can be null. Consequently, we have the responsibility to require that any array parameter given to
a method is properly allocated, unless a special meaning is reserved to the null array. There are plenty
of exercises dealing with arrays in this collection, where v ≠ null is a boilerplate precondition.

13
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These mundane particularities of arrays justifies the use of alternatives in the specification context.
To emphasize array contents and elude the gory details, we have the more abstract and handy sequences,
a parametrized type called seq, which stands for the mathematical object 𝐴∗ where 𝐴 is the set of
all values of a given type. Sequences are a value type (not a pointer) and immutable. The Dafny
documentation recommends its use as the specification arrays counterpart, and so it provides some
language constructs to convert arrays or portions of arrays to sequences. They are called slices (and old
invention that exists from Algol 68 and persists nowadays in Python) and written [l..u] where l is
the lower index to be included in the sequence and u is the upper bound, which is not included. Both
ends can be omitted. Slices can be applied to arrays producing sequences or to sequences themselves.
They allow a convenient sequence manipulation.
We have not found many differences for now between Dafny and our previous knowledge regarding

specification and verification. Their syntax and principles should be familiar to us, assuming we have
studied manual pre/post specification or axiomatic semantics. Nevertheless, some differences appear
soon concerning arrays and some quantifiers related to them.
To illustrate what we have just discussed, let us see Exercise 2.7 as an example. We are asked to

verify an algorithm which sums all elements in an integer array. We are given the code and the following
loop invariant 𝐼𝑁𝑉 ≡ 0 ≤ 𝑛 ≤ 𝑁 ∧ 𝑥 = (∑ 𝑖 ∶ 𝑛 ≤ 𝑖 < 𝑁 ∶ 𝑉 [𝑖]):

{ 𝑁 ≥ 0 }
func sum(V[0..N) of int) returns x : int

var n : nat := N
x := 0
while n != 0 do

x := x + V[n-1]
n := n - 1

endwhile
endfunc
{ 𝑥 = ∑ 𝑖 ∶ 0 ≤ 𝑖 < 𝑁 ∶ 𝑉 [𝑖] }

Code translation is direct, taking care of what has been said before. But the postcondition cannot
be easily expressed in Dafny. The language does not have any sum quantifier available, so we have to
define it ourselves.

er2.7.dfyfunction Sum(v ∶ seq <int >) ∶ int {
if v = [] then 0 else v[0] + Sum(v[1..])

}

method sum(v ∶ array <int >) returns (x ∶ int)
requires v ≠ null
ensures x = Sum(v[..])

{
var n ∶= v.Length;

x ∶= 0;

while n ≠ 0
invariant 0 ≤ n ≤ v.Length
invariant x = Sum(v[n..])

{
x, n ∶= x + v[n-1], n - 1;

}
}

We have defined sum by means of a recursive function that assigns zero, the identity element for the
sum, to the empty list and otherwise decomposes the sum in the first element plus the rest. There are
several other definitions we might have chosen. For instance, we can start the sum from right to left.
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At this point, some philosophical question may arise. We want to say that the algorithm calculates
“the sum of all elements in the sequence”, but we should express it formally. The only way to specify it
is with a function like that, which is a completely executable functional program. So let’s use Haskell
or any other functional language and forget about verification, because its programs will be correct by
definition.

sum :: [Integer] -> Integer
sum [] = 0
sum (v:vs) = v + sum vs

To make this definition more abstract we can derive properties from it. In fact, we will be obliged
to do so.
Back to verification, note that the given recursive definition of sum works similarly to the iterative

loop. Both of them refer to suffixes of the sequence, v[n..]. The previous program verifies without
any further help. But, what happens if we change the loop index direction to sum elements from lower
to higher indices? That is what we are required to do in Exercise 2.8, and Dafny is not able to prove the
result without our help.

method sum '(v ∶ array <int >) returns (x ∶ int)
requires v ≠ null
ensures x = Sum(v[..])

{
var n ∶= 0;

x ∶= 0;

while n ≠ v.Length
invariant 0 ≤ n ≤ v.Length
invariant x = Sum(v[..n])

{
x, n ∶= x + v[n], n + 1;

}
}

Dafny is not able to demonstrate that Sum(v[..n]) + v[n] = Sum(v[..n+1]). The human
should provide the proof. This was our first lemma. lemma is a synonym for ghost method , i.e. a
method only for verification.

er2.8.dfy
lemma LeftSumLemma(s ∶ seq <int >, m ∶ int)

requires 0 ≤ m < |s|

ensures Sum(s[..m]) + s[m] = Sum(s[..m+1])
{

if m > 0 {
LeftSumLemma(s[1..], m-1);

// Induction hypothesis (only for clarity)
assert Sum(s[1..][..m-1]) + s[1..][m-1] = Sum(s[1..][..m]);

// Unavoidable assert
assert s[1..][..m-1] = s[1..m];
assert s[1..][..m] = s[1..m+1];

// s[1..][m-1] = s[m] is deduced without help

// We finally arrive (can be omitted)
assert Sum(s[1..m]) + s[m] = Sum(s[1..m+1]);
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// And the Sum definition does the rest
}

}

method sum '(v ∶ array <int >) returns (x ∶ int)
requires v ≠ null
ensures x = Sum(v[..])

{
var n ∶= 0;

x ∶= 0;

while n ≠ v.Length
invariant 0 ≤ n ≤ v.Length
invariant x = Sum(v[..n])

{
x, n ∶= x + v[n], n + 1;

LeftSumLemma(v[..], n-1);
}

// Dafny also needs help with that
assert v[..v.Length] = v[..];

}

We can also derive other properties for the sum like the following which ensures that it is independent
on the order of the elements in the array. It gets verified without human help, even if it looks harder
than LeftSumLemma.

lemma SumElems(s ∶ seq <int >, r ∶ seq <int >)
requires multiset{s} = multiset{r}
ensures Sum(s) = Sum(r)

{
}

Another feature we miss in Dafny is the ability to give names to parameters which may vary, some-
times known as logical variables in the literature. For example take Exercise 2.14 where we are asked
to verify an algorithm to positivize a vector, i.e. to change its negative values into zero. It is presented
as:

{ 𝑁 ≥ 0 ∧ 𝑣 = 𝑉 }
proc positivize(v[0, N) of int)

var j : nat := 0;
while j < N do

if v[ j ] < 0 do
v[ j ] := 0

endif
j := j + 1

endwhile
endproc
{ ∀𝑖 ∶ 0 ≤ 𝑖 < 𝑁 ∶ (𝑉 [𝑖] < 0 ⇒ 𝑣[𝑖] = 0) ∧ (𝑉 [𝑖] ≥ 0 ⇒ 𝑣[𝑖] = 𝑉 [𝑖]) }

In the precondition, 𝑣 = 𝑉 means that the fresh variable 𝑉 refers to the current value of 𝑣 at that
time (for this pseudocode, arrays are not pointers, the array value includes all of its elements). Then we
can use 𝑉 to compare and describe the changes the algorithm has made to 𝑣.
In Dafny, we can store an intermediate value of any variable simply by defining a ghost variable for

it, like in ghost var x0 ∶= x;. For parameters we ought to use a language primitive called old.
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From [FL16] we learn that “an old expression is used in postconditions. old(e) evaluates to the value
expression e had on entry to the current method”.
Then we can write the positivize algorithm in Dafny:

er2.14.dfy
method positivize(v ∶ array <int >)

requires v ≠ null
ensures Positivized(v[..], old(v[..]))

modifies v
{

var j ∶= 0;

while j < v.Length
invariant 0 ≤ j ≤ v.Length

invariant Positivized(v[..j], old(v[..j]))
invariant v[j..] = old(v[j..])

{
if v[j] < 0 { v[j] ∶= 0; }

j ∶= j + 1;
}

}

Note that we have included a modifies clause to allow the method to modify the heap-allocated
array v. Also note that we have used old not only in the postcondition but also in the loop invariants
to ensure that we have a prefix of the vector positivized while we maintain the rest unchanged. The
postcondition is Positivized(v[..], old(v[..])) (you can read the attached file to see its def-
inition), i.e. the sequence of elements at the end is the positivized version of the sequence of elements
of the original array.
Here error risk is important. Wemay have written (and I have) old(v)[..] instead of old(v[..])

(changing accordingly the loop invariants) and Dafny will give us its blessing too. But we are not saying
what we pretend to say. Arrays are reference types, pointers, so old(v) = v because the program has
never changed v itself which still points to the same memory address (in fact, method’s parameters are
read-only in Dafny). As a result we are ensuring tautologies while vectors contents may be unleashed.

To end with this section some words should be said on existential and universal quantifiers. Dafny
(or its children) are intelligent enough to use or to prove quantified properties in the common case when
they are required. Another issue is how to prove yourself a quantifiers formula when Dafny alone is not
enough.
Any method or lemma is implicitly a forall sentence. Its parameters are universally quantified under

the constraint of the relations established by the preconditions; and for all of them the postconditions
must hold. Dafny has a special block syntax to prove forall assertions, an almost undocumented feature,
the forall statement, which has been used in Solved Exercises 2.11, 4.15 and Proposed 5.9.
Existential quantifiers can be proved in different ways: in a constructive manner, showing a variable

(or collection of variables) who make its thesis true; negating them and so converting it to a universal
quantifier. An interesting existential proof is described in depth in Section 3.4.

3.2 Other features worth mentioning
3.2.1 Calculations

In Exercise 5.7 we are told to write different recursive algorithms to calculate the dot product of two
vectors. As usual, it is necessary to define the dot product as a function to be used in the specification.
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er5.7.dfyfunction DotProduct(v ∶ seq <int >, w ∶ seq <int >) ∶ int
requires |v| = |w|

{
if v = []
then 0
else v[0] * w[0] + DotProduct(v[1..], w[1..])

}

As in many other cases, this definition proceeds recursively from left to right but one of the proposed
algorithms does not follow this direction. So it is necessary to prove that we can start multiplying from
the right end, for which we use a lemma, mainly identical to that which has been used to solve the same
problem for the sum of a vector of integers.
The lemma was done (copy-pasted and adapted) and Dafny confirmed its validity. However small

and innocent changes to the code or environmental conditions where the Dafny verifier execution takes
place changed the verification result to a timeout. Then we decided to ask in Dafny forum why that
happens and how this simple lemma could be written to take less time. A new thread called Instability
of verifications (648164) was created.
As an anecdote, the initial code which gets verified in some cases with that version of Dafny, does

not get verified at all with the current version. But, without timeout, the Spanish version gets verified
in 14.596 seconds and when we translate identifiers to English it takes 40.612 seconds.
As a solution, we were proposed to use calculations (i.e. the calc syntax), a special language

construct to establish a relation between two expressions through a stepwise transformation where each
step can be justified separately. This style is more similar to that of mathematical proofs and makes
verifiers’ life easier as it restricts the effect of each step proof to the step itself, reducing the number of
unneeded hypothesis the verifier may get confused with.
This syntax has been used widely in the following work, because despite of being more verbose it

is clearer in case of doubt and reduces significantly the verification time. It is described in detail in
“Verified Calculations” [LP13].
The final dot product lemma looks like this:

lemma DotProductLemma(v ∶ seq <int >, w ∶ seq <int >)
requires |v| = |w|
requires v ≠ []

ensures DotProduct(v, w) = DotProduct(v[..|v|-1], w[..|v|-1])
+ v[|v|-1] * w[|v|-1]

{
if (|v| = 1) {

// Base case
}
else {

// Previous in the order
var vr , wr ∶= v[1..], w[1..];

calc = {
DotProduct(vr, wr);

// Induction hypothesis
{ DotProductLemma(vr, wr); }
DotProduct(vr[..|vr|-1], wr[..|wr|-1])

+ vr[|vr|-1] * wr[|wr|-1];

// Subsequence simplification
{ assert vr[..|vr|-1] = v[1..|v|-1];

assert wr[..|wr|-1] = w[1..|v|-1]; }
DotProduct(v[1..|v|-1], w[1..|v|-1])

+ vr[|vr|-1] * wr[|wr|-1];

https://dafny.codeplex.com/discussions/648164
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// Subsequence elements simplification
{ assert vr[|vr|-1] = v[|v|-1];

assert wr[|vr|-1] = w[|v|-1]; }
DotProduct(v[1..|v|-1], w[1..|v|-1])

+ v[|v|-1] * w[|v|-1];
}

// Only remains to add the first coordinate in each term
}

}

3.2.2 Reductio ad absurdum

Reductio ad absurdum is available in Dafny. If we want to prove a Boolean expression 𝑃 , we can translate
“suppose that 𝑃 does not hold then we arrived to contradiction” by

if ¬ P
{

// [ … ]

assert false;
}

At the end of the conditional, 𝑃 will be true for sure if we are able to prove that denying it leads to a
contradiction, i.e. if we can derive a contradiction inside the conditional branch. Then assert false;
is redundant.
Proof by reductio ad absurdum is usually elegant and convenient for the way Dafny (or its auxiliary

programs) verifies. This technique is used in Exercise 4.15 and 4.27 in the context of other proofs or
methods.

3.2.3 Incremental program and proof building

Dafny allows the user to construct proofs and programs leaving blanks to be filled later. Apart from the
assume statement, there are other mechanisms to postpone the proof (or the programming) of certain
fact (or effect) but take advantage of its results meanwhile. Function, lemma, method, and loop bodies
can be omitted. They will not serve to generate compiled programs, obviously, but this can be useful
while a program or proof is still being written.
These will let us take an incremental approach to verification, thanks to dynamic frames and the black

box model in which these components (methods, lemmas, loops, ...) are considered in the axiomatic
semantics. However, reality is harder and there are interdependencies that make this method frustrating:
what is established once does not remain stable when new methods are added or any independent body
is changed, as experience has shown.
There are other means to focus Dafny efforts to a particular method we are working on. In Visual

Studio or Emacs IDEs, and thanks to result caching, changes will only trigger the reverification of what
is affected by them. But when this effect is desired between sessions or from command line, some active
alternatives are at our disposal:

• Placing the attribute {:verify false} on each top level construct we don’t want to verify for the
moment.
• Putting the lemma or lemmas we are working on in a separate file and include the original file.
Inclusion brings top level declarations available in the separate file without verifying them.
• Using command line options, passing the argument /proc:'*<name>' where <name> should be
replaced by the name of the method (or any regular expression).
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3.2.4 Matching triggers

In the most complex exercises from this part and in the following work, we have experienced what
[LP16] names as butterfly effect. When using SMT-solvers often “a minor modification in one part of the
program source causes changes in the outcome of the verification in other, unchanged and unrelated
parts of the program”, causing “verification instability” and “user frustration”.
There are different reasons behind and one of them is the way the solver tackles quantifier instanti-

ations.
At any time during the search proof, the SMT solver has a set of quantified formulas at its disposal, to

which it may resort to complete the proof. In order to make use of the universally quantified formulas1
the solver instantiates them to concrete values. This instantiation should be appropriate, avoiding in-
stantiations that, far from making the proof easier, hinder or delay it. To that purpose matching patterns,
also known as matching triggers or simply triggers, are used.
When the SMT solver finds a term in its state that matches any of those patterns associated with a

quantified formula, it triggers its appropriate instantiation.
Oversimplifying, suppose that our prover state is { ∀𝑥 𝑓(𝑥) = 𝑔(𝑥) + 1, 𝑔(3) = 0 }. It may select

{𝑓(𝑥)} and {𝑔(𝑥)} as triggers for the first formula. If we want to prove that 𝑓(3) = 1, our SMT solver
will recognise 𝑓(𝑥) with 𝑥 = 3 in the new term and will instantiate the quantified formula to give
𝑓(3) = 𝑔(3) + 1. Finally, it will conclude that 𝑓(3) = 1.
However, this technique has some inconveniences. Sometimes a formula or a set of them gets instan-

tiated in a matching loop forever, and sometimes the selected triggers are based on lower level functions
added during the translation phase which do not work properly.
In the recent versions of Dafny, the trigger selection has been moved from Z3 to Dafny, where

some heuristics are carried out to avoid or mitigate the previously described issues. The change also
allows the user to inspect the selected triggers. This new feature called autotriggers is the more noticeable
change we have experimented during this project development. It can be disabled with /autoTriggers:0
and custom triggers can be selected with an attribute like {:trigger a[i]} after the bound variable
enumeration of the quantifier, but in general this is not necessary.
For instance, the ordered predicate for a sequence appears in many exercises from the book. We have

tried different alternatives:

predicate Ord(s ∶ int)
{

(1) ∀ i | 0 ≤ i < |s|-1 • v[i] ≤ v[i+1]
(2) ∀ i | 0 < i < |s| • v[i-1] ≤ v[i]
(3) ∀ i, j | 0 ≤ i ≤ j < |s| • v[i] ≤ v[j]

}

The first definition was proposed in the book, while the second is quite similar. Dafny complains
about these because it finds that they may provoke matching loops since the trigger { v[i] } matches
both with v[i] and v[i+1]. The third definition is the recommended one.

Any user should find learning something about triggers and bearing them in mind appropriate, be-
cause a correct trigger choice can make proofs easier, more efficient and less sensitive to changes in the
rest of the code or to Dafny updates.
After having problems with complex expressions in quantifiers, we have drawn the lesson that defin-

ing predicates to confine those, instead of placing them inline in the quantifiers’ statement, is quite
useful in many situations. In particular, arithmetic expressions do not usually work well, as no triggers
will be generated for them or for terms involving them.

1The existentially quantified formulas are skolemized, so converted to universally quantified.
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3.2.5 Functional types and generics

Generics have been used in Exercises 4.7, 4.26, 5.14 and 5.17 (whose solutions differ from those of the
book). Functional types have been used in conjunction with them in Exercise 4.7. The exercise statement
asks to count the number of even elements in a given array. There is no need to use functional types
but a great opportunity to experiment with them as the condition of the elements to be counted, that
they are even, can be replaced by any other predicate on elements.
We can write a generic higher-order function like the following for specification and a generic

parametrized algorithm for execution, and then call them with the desired predicate on duty; for exam-
ple with a predicate lemma IsEven(n ∶ int) whose body may be n % 2 = 0 or an equivalent
lambda expression like n ⇒ n % 2 = 0.

er4.7.dfyfunction Count <T>(s ∶ seq <T>, p ∶ T -> bool) ∶ nat
// Count is allowed to read any object p can read
reads p.reads

// Predicate p's precondition hold for every element
// in the sequence
requires ∀ i | 0 ≤ i < |s| • p.requires(s[i])

{
if s = [] then 0 else ( if p(s[|s|-1]) then 1 else 0 )

+ Count(s[..|s|-1], p)
}

The previous code shows that there are some things to take in consideration, which are reasonable
according to Dafny rules. Up to now, there is no official documentation on the use of functional param-
eters but some examples can be found in the repository tests. In summary, what we need to do is to
ensure that p invocations are licit: that it is called on parameters for which the precondition holds. And
we need also to ensure that Count is able to read any object p can read.
There are also examples of use of generic types in Exercise 5.14, where we are asked to program an

algorithm to decide whether an array is a palindrome. The exercise is solved generically providing the
assumption that the type is equally comparable. This can be expressed in Dafny with a (==) following
the type parameter name. This approach is also used in Exercise 5.17 where a matrix is tested for
symmetry and in 4.26 where we are asked to count the occurrences of certain element in an array.
In Exercise 4.26 generics was dropped and substituted by an equivalent function with concrete types,

because the proof seemed to be hard or impossible with the generic definition but immediate with the
concrete one. This problem does not persist in Dafny’s current version and the generic function has been
restored.

3.2.6 Automated induction

In Exercise 2.10 we arrive to many problems regarding some lemmas where Dafny gets stuck evermore
or comes to hang the computer, when used without time limit. What happens in LemaJusto from 2.10
and other methods is due to automated induction in presence of the simple recursive proof description
provided for the lemma.

er2.10.dfy
lemma { ∶ induction false} LemaJusto(b ∶ int , e ∶ nat)

requires e % 2 = 0
ensures pot(b * b, e / 2) = pot(b, e)

decreases e
{
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if e > 0 { LemaJusto(b, e - 2); }
}

However, other lemma’s bodies could be written to turn automated induction helpful, by removing
the need for an explicit call to the induction hypothesis. Then automated induction is an advantage
instead of a problem, as it was supposed to be.

lemma LemaJusto(b ∶ int , e ∶ nat)
requires e % 2 = 0
ensures pot(b * b, e / 2) = pot(b, e)

decreases e
{

if e > 0 { assert pot(b * b, e / 2 - 1) = pot(b, e - 2); }
}

Automated induction is described in “Automating Induction with an SMT Solver” [Lei12]. In sum-
mary, by the (complete) induction principle, ∀𝑛 𝑃(𝑛) holds if ∀𝑛 (∀𝑘 𝑘 ≺ 𝑛 ⟹ 𝑃(𝑘)) ⟹ 𝑃(𝑛))
does, where ≺ stands for a well-founded order relation on a type or product of types. Article’s Section
2.2. describes the induction heuristic used to discriminate whether a lemma or quantifier is suitable for
automated induction, taking recursive functions and their parameters into account.
Automated induction can be prevented with the attribute {:induction false} which can also be

used to specify the particular variables on which we want to apply induction. This has been useful to
verify some simple lemmas like the following from Exercise 5.12:

er5.12.dfylemma { ∶ induction n} LemaPotBase(x ∶ int , y ∶ int , n ∶ nat)
ensures Pot(x, n) * Pot(y, n) = Pot(x * y, n)

{
}

3.3 A detailed example: Euclidean algorithm er2.11.dfy aritmnl.dfy

In Exercise 2.11 we have to prove the correctness of the following algorithm for greatest common divisor
calculation. The statement does not say it explicitly but it is an iterative implementation of Euclidean
algorithm.

{ 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑥 > 𝑦 ≥ 0 }
while 𝑦 ≠ 0 do

⟨𝑥, 𝑦⟩ ∶= ⟨𝑦, 𝑥 mod 𝑦⟩
endwhile
{ 𝑥 = gcd(𝑋, 𝑌 ) }

The following predicate 𝑥 > 𝑦 ∧ gcd(𝑋, 𝑌 ) = gcd(𝑥, 𝑦) is proposed as invariant. As expected, the gcd
function is not available as a primitive in Dafny. So, to be true to the letter of the problem’s formulation,
we ourselves should define it when translating this code into Dafny.

method gcd(x0 ∶ nat , y0 ∶ nat) returns (x ∶ nat)
requires x0 > y0 ≥ 0
ensures x = Gcd(x0, y0)

{
var y;

x, y ∶= x0 , y0;
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while y ≠ 0
invariant 0 ≤ y < x
invariant Gcd(x, y) = Gcd(x0, y0)

{
x, y ∶= y, x % y;

}
}

In order to define the Gcd function we may appeal to the gcd definition, which is inside its name:
greatest common divisor

𝑚 = gcd(𝑥, 𝑦) ⟺ 𝑚 ∣ 𝑥 ∧ 𝑚 ∣ 𝑦 ∧ ( ∀𝑧 ∈ ℤ 𝑧 ∣ 𝑥 ∧ 𝑧 ∣ 𝑦 ⟹ 𝑧 ∣ 𝑚 )

where 𝑎 ∣ 𝑏 means “𝑎 divides 𝑏”. We know that for every 𝑥, 𝑦 ∈ ℕ there is a unique gcd(𝑥, 𝑦) in ℕ, so the
function is well defined.
To define this function ourselves we have to give a more or less effective functional algorithm to

compute it. We know one: Euclidean algorithm.
function Gcd(x ∶ nat , y ∶ nat) ∶ nat

requires x ≠ 0 ∨ y ≠ 0
{

if x = 0 then y
else if y = 0 then x
else if x > y then Gcd(y, x % y)

else Gcd(x, y % x)
}

As expected, verification goes hunky-dory with this definition as the imperative and declarative
algorithms are essentially the same. But we have proven that this particular iterative implementation
of Euclidean algorithm produces the same result as the more abstract Euclidean algorithm. We can stop
here or go on to prove that Euclidean algorithm calculates the greatest common divisor according to its
definition.
This proof is easy given the fact that gcd(𝑦, 𝑥 mod 𝑦) = gcd(𝑥, 𝑦) if 𝑥 > 𝑦 with follows easily from

the fact that ∀𝑑 𝑑 > 0 ∧ 𝑑 ∣ 𝑦 ⇒ 𝑥 mod 𝑑 = (𝑥 mod 𝑦) mod 𝑑 for which we dedicate a lemma called
LemaDivision.
But LemaDivision is not as easy as it may look. For humans it is almost direct; we all know and

Dafny does that 𝑥 = 𝑥 div 𝑦 ⋅ 𝑦 + 𝑥 mod 𝑦

𝑥 mod 𝑑 = (𝑥 div 𝑦 ⋅ 𝑦 + 𝑥 mod 𝑦) mod 𝑑 = ((𝑥 div 𝑦 ⋅ 𝑦) mod 𝑑 + 𝑥 mod 𝑦) mod 𝑑 = (𝑥 mod 𝑦) mod 𝑑

because 𝑑 ∣ 𝑦 and 𝑦 ∣ (𝑥 div 𝑦 ⋅ 𝑦). But even the latter is not automatically true for Dafny. Some
evident results on nonlinear algebra are obscure for it and we have to demonstrate them. These essential
propositions have been proved in a separate module called AritmNL:

(1) 𝑚 ∈ ℕ, 𝑘 ∈ ℕ, 𝑚 ≠ 0 ⟹ (𝑘𝑚) div 𝑚 = 𝑘 ∧ (𝑘𝑚) mod 𝑚 = 0
(2) 𝑛 ∈ ℤ, 𝑚 ∈ ℕ, 𝑘 ∈ ℤ, 𝑚 ≠ 0 ⟹ (𝑛 + 𝑘𝑚) mod 𝑚 = 𝑛 mod 𝑚

The proofs for the corresponding lemmas are interesting and I recommend their reading in the
attached file aritmnl.dfy. (2) uses (1) but both are based on the fact that for any 𝑥, 𝑦 ∈ ℤ then
𝑥 = 𝑥 div 𝑦 ⋅ 𝑦 + 𝑥 mod 𝑦. This is applied to 𝑚 ⋅ 𝑘 in order to prove that 𝑑 ∶= (𝑚 ⋅ 𝑘) div 𝑚 is 𝑘
with a sandwich strategy. We are able to prove that 𝑘 ≥ 𝑑 and that 𝑘 − 1 < 𝑑 so we conclude 𝑘 = 𝑑.
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3.4 An example in depth: limits er4.4.dfy er4.4aux.dfy

Exercise 4.4 is interesting and singular because of its mathematical content, perhaps infrequent in the
formal verifications we have seen up to now, since most code is devoted to the proof of the convergence
of a sequence of real numbers. It is also unique for another reason: unlike most exercises developed in
this work, the hard part is to prove that the algorithm terminates.
The statement asks to specify and derive an iterative algorithm that given a real number 𝑥 and a 𝜀 > 0

is able to find an approximation of the sine sin 𝑥 with an error less that 𝜀, using the Taylor expansion of
the function sin at 0, that is,

sin 𝑥 =
∞

∑
𝑛=0

(−1)𝑛 𝑥2𝑛+1

(2𝑛 + 1)!⏟⏟⏟⏟⏟⏟⏟
𝑎𝑛

In the solution proposed by the authors, the sum of the 𝑘 first terms of the Taylor expansion (not counting
the null terms, as in the previous formula) is returned as the sine approximation along with the 𝑘 itself
for which the condition | 𝑎𝑘 | < 𝜀 is met. In Dafny that will look like:

method sinAprox(x ∶ real , e ∶ real) returns (k ∶ nat , s ∶ real)
requires e > 0.0
ensures s = SineTaylor(x, k)
ensures Abs(SineTerm(x, k)) < e

where SineTerm(x, k) corresponds to 𝑎𝑘 and SineTaylor(x, k) to∑𝑘−1
𝑛=0 𝑎𝑛, that can be easily expressed

recursively. See attached file er4.4.dfy for details.
Indeed, assuming the preconditions, by Taylor’s theorem with remainder in Lagrange form, there

exists a 𝜉 between 0 and 𝑥 such that

| sin 𝑥 − 𝑠 | = | cos 𝜉 | ⋅ |𝑥|2𝑛+1

(2𝑛 + 1)!
| cos | ≤ 1

≤ |𝑥|2𝑛+1

(2𝑛 + 1)! ≤ 𝜀

Therefore, 𝜀 is truly an upper bound of the sine’s approximation error, if we assume that numerical
operations are accurate in the ideal world of Dafny. In fact, the concrete representation of the real
type in the code generated by Dafny are big-integer quotients, so no additional error will be commited
when 𝑥 is rational.
It was advanced at the beginning of the example and the astute reader may have guessed: the

difficulty does not lie in the partial correction of the algorithm, which gets solved by a simple loop and
its natural invariants. The difficulty lies in termination.
The loop needs an accumulator variable, the s itself which acts as a result, where to add 𝑎𝑛 until it

becomes small enough. In view of the cost of the independent calculation of every 𝑎𝑛 and because this
relation 𝑎𝑛+1 = 𝑥2/(2𝑛 + 3)(2𝑛 + 1) 𝑎𝑛

2 holds, another variable t should be defined to carry the current
term of the sum. Almost complete, we arrive at

s, t, k ∶= 0, x, 0;

while Abs(t) ≥ e
invariant t = SineTerm(x, k)
invariant s = SineTaylor(x, k)

{
s ∶= s + t;

t ∶= (( -1.0) * t * x * x) /

2Surprisingly, the proof of this fact has also had its complications, with Z3 errors (already solved) and unused but unavoidable
local variables included. We should admit there are difficulties apart from the termination.
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real ((2 * k + 3) * (2 * k + 2));

k ∶= k + 1;
}

The algorithm terminates if some time Abs(t) < e holds or, in other words, |𝑎𝑘| < 𝜀. That is
what the remaining almost 400 lines of the exercise are devoted to. The final result of that code is the
following lemma:

lemma ExistsK0(x ∶ real , e ∶ real)
requires e > 0.0
ensures ∃ k ∶ nat • Abs(SineTerm(x, k)) < e

which does not state but almost, because it is not necessary although it is true, that 𝑎𝑛 converges to 0

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

(−1)𝑛 𝑥2𝑛+1

(2𝑛 + 1)! = 0

that can be written like this

lemma Limit0(x ∶ real , e ∶ real)
requires e > 0.0
ensures ∃ k0 ∶ nat • ∀ k | k ≥ k0 • Abs(SineTerm(x, k)) < e

To sum up, the loop would look like this, using 𝑘0, whose existence states the lemma, as a bound for
the number of iterations the loop can take.

ExistsK0(x, e);

ghost var k0 ∶ nat ∶ | Abs(SineTerm(x, k0)) < e;

while Abs(t) ≥ e
invariant t = SineTerm(x, k)
invariant s = SineTaylor(x, k)

invariant 0 ≤ k ≤ k0
decreases k0 - k

{
s ∶= s + t;

t ∶= (( -1.0) * t * x * x) /
real ((2 * k + 3) * (2 * k + 2));

k ∶= k + 1;
}

The previous fragment includes a Dafny statement we have not presented yet. It is the such-that
declaration which looks like any other variable declaration but it includes a condition after a ∶ | symbol
where the typical initialization occurs. The verifier must be able to prove that there exists a value which
meets the condition and then the variable will stand for any value that fulfils it. The variable is declared
ghost because it is only used for specification3.
Now, we will briefly discuss the proof idea for the ExistsK0 lemma. Although there are certainly

easier ways to do this proof, especially considering that it was written in the first phase of this work,
the proof process is not without interest.
The proof is split in two files er4.4aux.dfy and er4.4.dfy which includes the previous one through

the include directive and contains the executable iterative algorithm. In the first one, something
3Any way, only some such-that declarations are compilable. The verifier may be able to prove that a value exists but not to

construct it.
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similar to ExistsK0 is proved but with function

Pf(𝑥, 𝑘) = 𝑥𝑘

𝑘!
and in the last file it is adapted to give place to the final ExistsK0.
This separation in files is not a purely organizational question. On the contrary it is essential for

the correct verification of the algorithm. If include "er4.4aux.dfy" is replaced by the content of
this file (as the C preprocessor would do) the verification result will be negative, while the separate
verification of both files will be satisfactory. This is not the only case where this serious error occurs,
against the desirable and expectable principle that a method, lemma or function proof only depends on
the public part (signature, preconditions, postconditions, ...) of the declarations involved in it.
The following diagram outlines the proof’s procedure, which composes simple results to achieve the

more complicated ones. Let 𝑥 ∈ ℝ and 𝜀 > 0

∃𝑘0 ∈ ℕ • |𝑎𝑘| < 𝜀 [ExisteK0]

∀𝑥 > 0 ∃𝑘 ∈ ℕ • Pf(𝑥, 2𝑘 + 1) < 𝜀 [FactVsPotAdapt]

∀𝑥 > 0 ∃𝑘 ∈ ℕ • Pf(𝑥, 𝑘) < 𝜀 [FactVsPot]

∀𝑥 ∈ (0, 1/2], 𝑐 > 0 ∃𝑛 ∈ ℕ • 𝑥𝑛 < 𝑐 [AcotaPot]

∀𝑥 ∈ (0, 1/2], 𝑚 ∈ ℕ ∃𝑛 ∈ ℕ • 𝑥𝑛 < 1/𝑚 [AcotaPotAux]

|𝑎𝑘| = Pf(|𝑥|, 2𝑘 + 1) [PfTermino]

∀𝑛 ∈ ℕ • 1𝑛 = 1 [PotUno] ∀𝑥 ∈ ℝ, 𝑛 ∈ ℕ • |𝑥𝑛| = |𝑥|𝑛 [PotAbs]

Some of these lemmas seem to be too evident (like 1𝑛 = 1) but they are not for Dafny and for the
power definition we use. The power and factorial functions have been defined like this:

function Pot(x ∶ real , n ∶ nat) ∶ real
ensures x > 0.0 ⟹ Pot(x, n) > 0.0

{
if n = 0 then 1.0 else x * Pot(x, n - 1)

}

function Fact(n ∶ nat) ∶ nat
ensures Fact(n) > 0

{
if n = 0 then 1 else n * Fact(n-1)

}

It is worth commenting briefly some lemmas. For example, AcotaPot appears not to have an easy
direct proof. Induction? There is nothing ordered. That is why the problem is reduced to the particular
case in which 𝑐 is a natural number inverse. By the Archimedean property, those can be lower than any
given positive real number.
Constructively, given 𝑐 > 0 we take 𝑛 = ⌊1/𝑐⌋ + 1 (for which 1/𝑛 < 𝑐) and the stated lemma as in

AcotaPotAux can be addressed by induction, that is what we do.
The hardest lemma is FactVsPot and it is solved by an iterative proof. First, an 𝑛0 ∈ ℕ is found such

that 𝑥 / 𝑛0 < 1/2 (just take 𝑛0 = 2(⌊𝑥⌋ + 1). The AcotaPot lemma is used with 𝜀 /Pf(𝑥, 𝑛0) from which
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we deduce ∃ itmax ∈ ℕ Pf(𝑥, 𝑛0)( 𝑥𝑛0
)itmax < 𝜀. This name explains what this value is, an upper bound

to the number of iterations needed to find the 𝑘 whose existence the lemma advocates.
The rest of the proof is a loop in increasing 𝑘 in which the obvious lemma 𝑥/𝑘 < 𝑥/𝑛0 is maintained

along with
Pf(𝑥, 𝑘) < Pf(𝑥, 𝑛0) ( 𝑥

𝑛0
)

𝑘

so before 𝑘 arrives to itmax, Pf(𝑥, 𝑘) will be less that 𝜀.

The adaptations in er4.4.dfy may have been simplified in different ways, modifying the lemmas we
just described. Proving that |𝑎𝑘| = Pf(|𝑥|, 2𝑘 + 1) is relatively easy: we have to introduce the absolute
value in the power and manipulate the expressions. The second argument force us to find a value of Pf
less than 𝜀 with an even argument, and this is not directly deducible from the previous.
It could have been easily proved if 𝑥/𝑘 < 1/2 had been included as a FactVsPot’s precondition, or

we had asserted that both Pf(𝑥, 𝑛) and Pf(𝑥, 𝑛 + 1) are less than 𝜀 or we had put the complete definition
of limit. At the time it was decided not to modify the lemmas and to provide an independent proof,
which is done through some case distinction and playing with the formal 𝜀 with which the lemmas are
called.
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Chapter 4

Data structures
Different data structures have been implemented and verified in this project. We have tried different ap-
proaches but a general idea or pretended systematic methodology has been sketched. Some difficulties,
limitations or simply inconveniences have molded the strategy when doing things.

4.1 Introduction
In this first section, some Dafny features, that have not yet been explained, are presented and its conve-
nience to represent data structures is discussed.

4.1.1 Class, traits and generics

Dafny classes’ declaration has the following shape. The class body can contain method, function and
field definitions. No nested classes are allowed and fields are defined like local variables..

class C<T> extends B1, … , Bn
{

// members

var field1 ∶ type;
}

Constructors are a special type of methods only available in classes. They can be defined without
name constructor () or with a name constructor Ctor() and they can receive either parameters
or not.
The <T> introduces a type parameter. We have already introduced generics in Section 3.2.5. Every

method, function, class, datatype, ... is allowed to receive type parameters, denoted by a comma-
separated list of formal type names between angles.
Generics are interesting and useful when programming collections for which the concrete nature of

its elements is not relevant and that are supposed to be used with many types.
The extends clause introduces a list of traits the class will extend. Traits syntax is similar to that of

classes, except that they cannot extend other traits. Its meaning is also close. Traits are comparable to
Java interfaces except that those can contain fields and definitions1 which are allowed to use the other
undefined trait methods.
Traits initially seemed to be an interesting feature to elaborate the specification of abstract data types

(ADT) and then allow concrete implementations to inherit from it and share a common specification.
In languages that also support traits like Scala and Rust, those can be used to specify the minimum
1In fact, Java 5 interfaces are allowed to contain method definitions called default methods.
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interface type parameters must provide. This allows elegant programming of generic collections and
algorithms that require certain operations to be defined on the parameter type, like being comparable
for example. Dafny traits do not include this possibility.
Dafny traits have not been used in this project. One of the reasons is that they do not admit type

parameters because this feature is not yet implemented. The second is that the trait specification needs
to be copied in the extending classes, making futile the aim for clarification pursued with its use.

4.1.2 Dynamic frames

Dafny counts with a mechanism called dynamic frames to control access and modification to dynamically
allocated memory, to the heap.
In order to reason about programs modularly it is convenient to control what its components depend

on and what they are allowed to modify. This leads us to the frame problem first introduced by John
McCarthy and Patrick J. Hayes in the artificial intelligence field. Regarding the description of a chang-
ing situation, it signals the difficulty to express in logic the dynamics of a situation without explicitly
specifying all that has not been affected by those changes.
Dynamic frames were invented by I.T. Kassios [Kas11] to “deal with the frame problem in the pres-

ence of encapsulation and pointers” and it is used in Dafny with certain particularities. Dafny’s frames
have object granularity, in other words, frame specifications are sets of objects a function or method is
allowed to read or write.
A frame is a set of memory positions, and a dynamic frame is an expression that designates a frame.

Methods have modifies clauses in which they declare the memory positions they are allowed to modify.
Functions use reads clauses to indicate which objects they can read.
Another element of the theory is the swinging pivots requirement, which means that a frame does

not increase in any way other than the allocation of new memory. Leino admits that this principle is
extremely strong but it is enforced in the language conventions. A language primitive function called
fresh exists to say that the object or a collection of objects provided as argument have just been
allocated in the current method.
Methods are allowed to read anything but to modify only what has been declared in their modifies

clauses. Functions cannot modify anything and they must declare the heap variables they can read.
Any knowledge about a predicate or function value is invalidated whenever a method whose modify

frame has non-empty intersection with its read frame is called.

class Example
{

// Valid depends on this
predicate Valid ()

reads this

method Main()
requires Valid()

modifies this
{

// this changes
value ∶= 8;

// Example is no longer valid
assert Valid ();

}

var value ∶ int;
}
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4.1.3 Inductive datatypes

Inductive or algebraic datatypes are available in Dafny. They are like Haskell’s data and they are
defined with a list of alternative constructors:

datatype Maybe = Nothing | Just(int)

For every constructor C, a discriminator member C? is defined. When Dafny is able to prove from
which alternative an inductive datatype variable is constructed, its components can be safely retrieved
accessing with a member if the component was given a name, like in Just(value ∶ int). Otherwise
and in any case, match expressions and statements can be used to destruct an inductive datatype value:

match e {
case Nothing ⇒ Stmts/Expr
case Just(v) ⇒ Stmts/Expr

}

Walking through these types is easy. A rank value is defined in such a way that a constructed value
has a strictly higher rank than that of any of its components. Like this, termination of recursive functions
that decompose an inductive datatype parameter is direct.
Inductive datatypes are used in one of the stack implementations and in the Floyd-Warshall algorithm

covered in Section 5.1.

4.1.4 Modules and refinement

Modules are not more than namespaces to arrange related declarations and definitions. Any top level
definition is allowed here, even nested modules.

abstract module MyModule refines OtherModule {
// decls

}

Modules can refine other modules, that is, provide definitions for declarations which have been left
without body or concrete opaque types defined with type T. Modules can be declared abstract if no
executable code is intended to be generated for them.
Module refinement is available to support a stepwise elaboration of programs, increasing the level

of details in each step. Here we will only use them in the stack example to maintain different implemen-
tations of that abstract data type (each one in a separate refining module) and a common specification
(in the base module).
When a function or method is defined its complete declaration can be elided with .... Further

information can be found in rise4fun’s tutorial and [KL15].
abstract module A
{

type T

predicate Leq(x ∶ T, y ∶ T)
ensures Leq(x, y) ∧ Leq(y, x) ⟹ x = y

}
module B refines A
{

type T = int

predicate Leq …
{

x ≤ y
}

}
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4.2 Data structures representation
In the specification and verification of data structures we follow the strategy suggested by Hoare in
[Hoa72] and described in Section 1.1 just as in [Peñ06]. It is essentially the same approach Dafny’s
authors propose in [Lei13].
We consider abstract datatypes (ADT) composed of a set of types and operations called signature

or interface. In our (class-based) object-oriented approach, we collect all those operations in a class
definition. The class type will probably be involved in all those operations along with other types.
To the signature we add the specification, in our case, in the form of pre- and postconditions. Those

conditions are written in terms of an abstract representation of the ADT based on basic Dafny value
types like set, seq, map, ... which have a direct translation to elements of discrete mathematics (like
sets, sequences and functions).

{{1, 2, 3}}{{7, 10, 10}}

[1, 2, 3] (3)

[1, 3, 2, 0, ...] (3)[10, 10, 7] (3)

[9, 1, 3] (3)

Abstraction function

Array-based binary heaps of int

Ordered multisets on (ℤ, <)

Figure 4.1: Abstraction function and representation invariant, for ADT described in Section 4.5

Each ADT can potentially have different concrete implementations which share the same specifica-
tion inherited from their base and available for the ADT users. The abstract value is calculated from the
concrete representation by means of an abstraction function. As not any concrete variable values may be
admissible or correct we define a validity condition, the representation invariant, that is:
• Precondition of the abstraction function, as
well as any other function in the class with
the exception of those to be used internally
and the representation invariant itself.

• Precondition and postcondition of every class
method.

• Postcondition of every constructor.

Let us put into Dafny terms all we have already described. Here the representation invariant is stated
using a predicate defined into the class, we conventionally name Valid(). As described above, it must be
included in the precise requires and ensures clauses. The abstraction function is defined in another
class function, whose name is Elements() in all exercises we have done. This function is used to specify
the ADT in the pre- and postconditions of the class functions and methods. In addition, postconditions
could be added to the abstraction function in order to declare desired properties of the abstract value
for the ADT user.
Here there is a difference with the strategy proposed by Dafny’s authors. They recommend main-

taining the abstract value in a ghost field instead of calculating them with a function. In that case, the
field should be updated properly whenever the abstract value changes and the class invariant should
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guarantee that the ghost field value is accurate, that is to say, that the ghost field contains the value our
function would calculate.
Even though verifications work better with the author’s alternative according to them, we have

chosen to keep using the abstraction function as previously defined.

4.2.1 Allocated memory and dynamic frames

Data structures may use dynamically allocated memory. Dafny’s dynamic frames convention uses a ghost
field Repr of type set <object > to store all objects the structure is responsible for and is allowed to
modify. The Repr set must contain this and any array or class instance that is part of the structure
representation.
If a method has to be able to modify the structure representation a modifies Repr clause must

be added to its declaration. The swinging pivots requirement, i.e. that Repr can only grow by means of
new allocated memory, should be enforced with postconditions like fresh(Repr - old(Repr)) for
methods or fresh(Repr - {this}) for constructors.
Not every method has to include a modifies clause, because they can implement observer oper-

ations. However, function methods are preferred for observer operations because they are more
flexible and can appear in expressions. Sometimes an imperative body is required (or advisable for effi-
ciency) in order to retrieve the requested value. Some observer operations might even need to modify
the concrete representation, usually in the case of lazy or amortized structures like Fibonacci heaps.

4.2.2 Collections and generics

Data structures like lists, stacks, queues, ... must be generic because they treat data regardless of their
nature. As a consequence, even if their element type is a reference type, elements should not be included
in Repr or accounted in any way. Even if we wanted, elements cannot be included in Repr because they
are not created by the data structure (swinging pivots) and they are not under its responsibility.
Some data structures like priority queues, sorted lists, search trees... require somehow to inspect

the data, to compare elements against an order relation, for instance. Again, the structure’s elements
cannot be included in Repr but these objects should be accounted in order to be included in the read
frame of the operations (comparison operators for example) which need access to them. The whole data
structure validity is then conditioned to the invariability of this data: suppose we have an ordered list
of objects and we changed one of them so that the comparison with the other elements varies; then the
list would not be in a valid state.
When working with generics we cannot indicate that the elements belong to a frame because the

type may be a value type. The plot thickens, so we find tolerable to assume that type parameters will
only be value types in Section 4.5.

4.2.3 Autocontracts

There is an experimental attribute {:autocontracts} that makes much of what we have described here
automatically. A predicate, compulsorily named Valid, must be defined for the representation invariant,
and Dafny will automatically produce the dull writing of pre- and postconditions for methods and con-
structors, as well as the Repr updates and some other changes. Dafny will complete the representation
invariant with this in Repr ∧ null ∉ Repr and other Repr membership statements depending
on the class fields.
Autocontracts is still an experimental feature and it has some drawbacks. Methods are always de-

clared to modify Repr, which may be inconvenient. But the greatest difficulty lies in the way errors
from automatically added code are reported to the user both in Visual Studio and from the command
line. The errors in the pre- and postconditions added by this feature cannot be distinguished from one
another. Moreover, the extra code added by autocontracts in the methods body to update Repr hinders
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the understanding of those errors causes. The absence of the Valid predicate produces an exception and
the program termination.
So as to obtain the result of the autocontracts application to a class, include the command line option

/rprint:<filename>2. The resulting file will contain internal Dafny definitions and identifiers, so it
could not be compilable as is.

4.3 Stacks stacks

Before going to the task of specifying and programming data structures for their own interest, some
experiments have been carried out to help define the strategy to use. The stack example has taken
multiple forms and we will succinctly describe its final state to illustrate the ideal procedure and note
certain difficulties of the dynamic frames encoding.
In this example modules and refinement have been used along with classes. This is probably the

easiest example we have done but also the most organized.
The stack signature and specification are written in an abstract module called Stack defined in

Stack.dfy. The module consists of an opaque type declaration type T and a class Stack. The opaque
type definition can be substituted by a generic parameter to the class. Stack operations are Push, Pop,
Empty, Size, and a constructor to generate the empty stack. Observers have been written as function
methods, and Push and Pop are methods (because they modify the structure).
The specification value is an element of seq <T> or 𝑇 ∗ and the abstraction function was called

Elements. Two declarations are included here as example:

// Pushes an element on the top of the stack
method Push(e ∶ T)

modifies this , Repr
requires Valid ()
ensures Valid()
ensures fresh(Repr - old(Repr))
ensures Elements () = [e] + old(Elements ())

// Number of elements
function method Size() ∶ nat

reads this , Repr
requires Valid ()
ensures Size() = |Elements ()|

Three different implementations have been written using different Dafny types as support. Each
goes in a separate module which refines the Stack module. All those modules are abstract because the
opaque type T remains still opaque; for them to be used T should be given a definition. In Main.dfy
there is an example where type T = int.

Stack

DatatypeStack ArrayStack ClassStack

Figure 4.2: Stack examples

1. DatatypeStack uses an inductive datatype

datatype StackIR = EmptyStack | Cons(x ∶ T, xs ∶ StackIR)

2In general, it shows the resulting file after the resolution phase.
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Every instance is valid so the representation invariant is true.
The abstraction function recursively decomposes the inductive datatype and collects its values, its
xs, in a sequence.

2. ArrayStack uses a growing array. Its fields are the array <T> elems (where elements are stored
from left to right) and the number of elements in the stack nelems (that can be less than the array
capacity).
Then the representation invariant is not trivial, we have to ensure that array ≠ null and that
it has enough capacity nelems ≤ elems.Length3.
The abstraction function is not as direct as elems [.. nelems]. The specification has been written
with the top element to the left but the array is holding its values from left to right. So the previous
sequence need to be reverted, for which some interesting functions and lemmas were written.

3. ClassStack uses linked nodes: values are stored in dynamically allocated objects4 with links to the
following value’s node until the last element of the list, where the pointer is null.

value
next

tailLength

'a'

0xAF

1

'b'

null

0>

Figure 4.3: ClassStack nodes illustration

ClassStack is more complex than the previous implementations. We should be aware of the risks
linked nodes imply: they could be linked in a loop. Thus, we have to ensure using the representation
invariant that the list is properly connected. So we have added an extra ghost attribute tailLength to
each node, an upper bound of the number of steps we have to take to arrive at the null pointer, i.e. to
the end of the list.
Like this, we will guarantee the absence of loops as long as the same node cannot appear twice in

a walk in strictly decreasing the tailLength values. Walks across the list are now safe. A recursive
predicate is suitable to express that property, say:

predicate ValidLink(node ∶ Node)
reads node , node.next

requires node ≠ null
{

(node.tailLength = 0 ⟹ node.next = null)
∧
(node.next ≠ null ⟹ node.next.tailLength < node.tailLength)

}

function ValidChain(node ∶ Node)
decreases if node = null then 0 else node.tailLength + 1

{
node = null ∨ ValidLink(node) ∧ ValidChain(node.next)

}

Even though termination is solved, ValidChain is not well defined yet. Any function is only able
to read the objects in its read frame. How can we say that it should be able to read the whole list?
Obviously we cannot gather the nodes walking with a function through the list, we will be in the same
case. These objects must be available beforehand.
3Another statement elems.Length > 0 is included but its justification comes from irrelevant implementation details.
4Despite being instances of a class, nodes do not have any behaviour and are rather plain registers as C-like structs.
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Then Repr will be a reasonable frame for the function, provided we have added the newly creates
nodes to it and we have reflected that ultimately in the representation invariant. Nonetheless, it is not
convenient to set the function’s frame to Repr. Known facts are discarded or they need to be revaluated
when their frames have suffered a change. So the smaller the frame the better. With this idea in mind,
the validity condition has been written like that:

predicate ValidChain(node ∶ Node , nodes ∶ set <object >)
reads nodes
requires node = null ∨ node in nodes

{
node = null
∨
(node.next ≠ null ⟹ node.next in nodes ∧ ValidLink(node)

∧ ValidChain(node.next , nodes - {node }))
}

predicate Valid ()
{

(head ≠ null ⟹ head in Repr) ∧ ValidChain(head , Repr - {this})
}

Note we have added node.next in nodes to ValidChain. It is in the function itself where we say
that the frame contains all the list’s nodes. The initial call takes Repr - {this} as the node. this
has been removed from the set because there is no need to include it, and in the hope that changes to
this do not invalidate the known facts about the list chain.
The previous wordy bound function has been omitted since the node set is a parameter which de-

creases in size. However, .tailLength is still essential to ensure the absence of loops.
Following the same principles, the representation invariant is written like that:

function Elements …
{

ValueChain(head , Repr - {this})
}

function ValueChain(node ∶ Node , nodes ∶ set <object >) ∶ seq <T>
reads nodes

requires node = null ∨ node in nodes
requires ValidChain(node , nodes)

{
if node = null

then []
else [node.value] + ValueChain(node.next , nodes - {node})

}
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4.4 Lists list/LinkedList.dfy

A list represents an ordered sequence of values and offers operations to view and modify it. This funda-
mental datatype is very often implemented as a linked list, and this is our case.
That implementation template was already used in the previous section in the ClassStack example.

List elements are stored in dynamically allocated nodes along with a pointer to the node for the next
element in the list. The chain is closed by a null pointer and the first element’s node is reached through
an initial separate pointer.
We have followed the specification and verification principles described in Section 4.2 in an un-

orthodox manner, as we will see. The chosen operations allow users to view, modify, remove and insert
elements to the list using a positional index, in linear time. Other operations exist to get the list length
and add elements to the left.
The code fragment below is an extract of the LinkedList class code. We omit the implementation

bodies as well as the representation invariant calls and dynamic frames boilerplate in each method or
function. Autocontracts has not been used in this program and those have been written by hand.

class LinkedList <T>
{

/// Abstract value

function Elements () ∶ seq <T>

predicate Valid()

/// Observers

// Tests whether the list is empty
predicate method Empty()

ensures Empty() ⟺ Elements () = []

// Gets the list size
function method Size() ∶ nat

ensures Size() = |Elements ()|

// Gets the front of the list
function method Front() ∶ T

requires ¬Empty()
ensures Front() = Elements ()[0]

// Gets the n-th element of the list
method Get(n ∶ nat) returns (x ∶ T)

requires 0 ≤ n < Size()
ensures x = Elements ()[n]

/// Modifiers

// Sets the n-th element of the list
method Set(n ∶ nat , x ∶ T)

requires 0 ≤ n < Size()

ensures Elements () =
old(Elements ())[n ∶= x]

// Removes the n-th element of the list

method Remove(n ∶ nat)
requires 0 ≤ n < Size()
ensures Elements () =

old(Elements ())[..n]
+ old(Elements ())[n+1..]

// Insert at n-th position of the list
method Insert(n ∶ nat , x ∶ T)

requires 0 ≤ n ≤ Size()

ensures Elements () =
old(Elements ())[..n]

+ [x] + old(Elements ())[n..]

/// Constructors

constructor ()
ensures Elements () = []

method Cons(x ∶ T)
ensures Elements () =

[x] + old(Elements ())

// Data representation
var head ∶ Node <T>;

// Sequence of nodes
ghost var Nodes ∶ seq <Node <T> >;

}

// Single linked nodes
class Node <T> {

var next ∶ Node <T>;

var value ∶ T;
}

Note that the memory representation of the class consists of a set of Node objects in the heap and
a pointer which provides access to them from the LinkedList class. The class also counts with a
specification-only field Nodes of type seq <T>, which is a key element of the correctness proof of this
implementation.
Nodes is the sequence of all nodes (or pointers to nodes) in the list, placed in strictly list order. Then

the 𝑖th element’s next is the (𝑖 + 1)th, the last element of Nodes’s next is null and the first is the head.
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2
0xBA

7
0xFC

1
null

Nodes

ghost

Figure 4.4: List illustration

This artifice helps to prove that no loops are produced and that the walks through the references chain
are well defined.
Those good properties of the Nodes sequence (in fact and most importantly, of the chain of linked

nodes) are established by means of the representation invariant.
predicate Valid ()

reads Repr()
{

// The sequence is filled with valid nodes
(∀ i | 0 ≤ i < |Nodes| • Nodes[i] ≠ null)
∧
// Nodes are linked in a sequence
(∀ i | 0 ≤ i < |Nodes|-1 • Nodes[i].next = Nodes[i+1])
∧
// If head is empty , there are not nodes
(Nodes = [] ⟺ head = null)
∧
// Otherwise , the first one is the head and the last one closes
(head ≠ null ⟹ Nodes [0] = head ∧ Nodes[|Nodes |-1]. next = null)

}

The Nodes field convenience can be discussed but proofs with it seem to be more comfortable than
those which would have resulted by using the strategy in Section 4.3. There are no extra requirements as
the linear order of the nodes (across their links, not physically in memory) is an inherent characteristic
of the list. No execution overhead is produced because Nodes existence is restricted to verification time.
The ghost file used to act as the dynamic frames Repr, but the code was modified to be closer to the

standards and a Repr function was written as

{this} + set n ∶ object | n in Nodes

and used in frame specifications. In this expression, intensional set syntax and the in operator for
sequences have been used.
The type’s abstract value can be obtained recursively with the help of Nodes, and it is ultimately a

map of the .value attributes to Nodes.
function CollectElements(ns ∶ seq <Node <T> >) ∶ seq <T>

reads (set n | n in ns)

requires ∀ i | 0 ≤ i < |ns| • ns[i] ≠ null
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ensures |CollectElements(ns)| = |ns|
ensures ∀ i | 0 ≤ i < |ns| • CollectElements(ns)[i] = ns[i].value

{
if ns = [] then [] else

[ns[0]. value] + CollectElements(ns [1..])
}

Hereafter we will comment the implementation of a pair of simple operations, which suggest how
the rest of the LinkedList code was written.

Cons is a method to add elements to the left of the list in constant time. The operation is simple: a
new node is created to host the new element and its next pointer is set to the previous head, which it
replaces.

method Cons(x ∶ T)
modifies this

requires Valid()
ensures Valid()
ensures fresh(Repr() - old(Repr ()))

ensures Elements () = [x] + old(Elements ())
{

var head0 ∶= head;

head ∶= new Node;

head.value ∶= x;
head.next ∶= head0;

Nodes ∶= [head] + Nodes;
}

We also need to update the Nodes field to accommodate the new node. Dafny is astute enough to
demonstrate that all remains correct.
The Set method is a bit more complicated. It modifies the value at the 𝑛th position of the list. In

order to modify the 𝑛th node value, access to it is needed. To this end, we iteratively walk the list,
keeping the invariant that the current node after 𝑚 iterations is the 𝑚th in Nodes. Finally, we can
assign the new value cnod.value ∶= x in the knowledge that cnod = Nodes[m] and we are then
modifying Elements ()[m].

method Set(n ∶ nat , x ∶ T)
modifies (set n | n in Nodes)

requires Valid()
requires 0 ≤ n < Size()

ensures Valid()
ensures fresh(Repr() - old(Repr ()))

ensures Elements () = old(Elements ())[n ∶= x]
{

var m ∶= 0;

// Current node
var cnod ∶= head;

while m < n
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invariant n < |Nodes|
invariant 0 ≤ m ≤ n
invariant cnod = Nodes[m]

{
cnod ∶= cnod.next;

assert cnod = Nodes[m+1];

m ∶= m + 1;
}

cnod.value ∶= x;

DistinctNodes ();

// This is unnecessary but decreases verification time
∀ i | 0 ≤ i < |Nodes|

ensures i ≠ m ⟹ Nodes[i].value =
old(Nodes[i].value)

ensures i = m ⟹ Nodes[i].value = x
{

assert Nodes[m] = cnod;
}

}

Dafny is able to complete the proof of the operation description and the representation invariant
with a little help, the DistintNodes lemma, which states that all Nodes components are distinct. Then,
only the 𝑛th position of Nodes, and so only the 𝑛th element of the abstract list, has been modified. That
is made explicit in a dispensable forall statement.
The DistintNodes proof is not difficult. It is done by induction, growing the sequence from right to

left. In every step a reduction ad absurdum argument is invoked: if Node[i] were equal to Node[j]
then Node[i].next and Node[j].next would. From the properties of Nodes, Nodes[i+1] and
Nodes[j+1] will coincide, against the induction hypothesis.
There is another lemma with an easier proof, NullIsLast, which establishes that any node whose

next is null is the last in Nodes. The proof by reduction ad absurdum is included below:

lemma NullIsLast(m ∶ nat)
requires Valid ()
requires 0 ≤ m < |Nodes|
requires Nodes[m].next = null

ensures m = |Nodes| - 1
{

// Suppose not ∶ next is a valid node which is not null
if (m ≠ |Nodes| - 1) {

assert Nodes[m].next = Nodes[m+1];
}

}

Something could be done to reduce the cost of the list operations. Iterators let us work more effi-
ciently with lists. Dafny has a special syntax for them and we have included one in this list implementa-
tion, but we have not written a specification for it. In the dynamic frames context, such a specification
may be possible, assuming iterators only remain valid as long as no change is done in the structure. We
include the iterator code here as a suggestion:

iterator Iter <T>(nod ∶ Node <T>) yields (x ∶ T) {
var curr ∶= nod;

while curr ≠ null {
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yield curr.value;

curr ∶= curr.next;
}

}

4.5 Binary heaps prioqueue

A priority queue is a collection of elements that can be retrieved according to certain order or priority.
This abstract data type is usually implemented in the form of a heap, an arborescent structure where
each vertex has higher priority than its children, so the highest priority value is in the root of the tree
and every branch is in order.
There are different alternatives to implement a heap. Here we will use a binary heap based on an

array. A binary heap is an almost complete binary tree, i.e. all the tree levels are complete except
perhaps the deeper one, which only has empty positions to the right. These properties allow a handy
implementation using an array where the vertex at position 𝑛5 has its children in 2𝑛 + 1 and 2𝑛 + 2,
whenever they exist.

1

3 2

8
1 3 2 8 4

{{1, 2, 3, 8}}

nelems= 4

multiset(elems [.. nelems ])

Figure 4.5: Binary heap illustration

In our case, there are three different implementations, almost identical. IntBinaryHeap.dfy was
written first. It is a binary heap of integers where lower value means higher priority (the order relation
for the priority). Then it was generalized in BinaryHeapMod.dfy to use a generic element type and a
comparison function gep (greatest or equal priority) encoded as a function method member in the class.
The function must meet the properties of a total preorder relation.

predicate method gep(a ∶ T, b ∶ T)
// Reflexive
ensures a = b ⟹ gep(a, b)
// Transitive
ensures ∀ c | gep(a, c) ∧ gep(c, b) •

gep(a, b)
// Total
ensures gep(a, b) ∨ gep(b, a)

However, the previous does not work when the element type is a reference type. The problem
(as we anticipate in Section 4.2) is related to dynamic frames. The comparator frame must include its
parameters but that cannot be expressed with a reads frame because the generic type is not known
to be a reference type. Note also that the heap may become invalid if an element in the heap changes,
because the comparator results may differ.
The initial idea was to let the users set the priority function in the structure constructor, using a

lambda or a function defined elsewhere. This has been tried in BinaryHeap.dfy without success. We
5The array numbering starts at 0.
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might have rewritten the structure using object (the super type of all reference types) as the element
type instead of generics, but we would have left value types out.
The two main operations of the ADT are Insert and Pull to retrieve the highest priority element.

The abstract value is the multiset of all the heap elements. Here is the class code, after removing the
bodies and the boilerplate code6:

class { ∶ autocontracts} BinaryHeap <T(=)>
{

// Greatest or equal priority comparator
predicate method gep(a ∶ T, b ∶ T)

// Reflexive
ensures a = b ⟹ gep(a, b)
// Transitive
ensures ∀ c | gep(a, c) ∧ gep(c, b) •

gep(a, b)
// Total
ensures gep(a, b) ∨ gep(b, a)

function Elements () ∶ multiset <T>

// Number of elements in the heap
function Size() ∶ nat

// Increase the size of the full up
// internal array
method Expand ()

ensures nelems < elems.Length
ensures Elements () = old(Elements ())

// Retrives the least element of the
// priority queue
method Pull() returns (x ∶ T)

requires Size() ≠ 0

ensures ∀ y | y in old(Elements ()) •
gep(x, y)

ensures Elements () =
old(Elements ()) - multiset{x}

// Inserts an element in the queue
method Insert(x ∶ T)

ensures Elements () =
old(Elements ()) + multiset{x}

constructor ()
ensures Elements () = multiset {}

predicate Valid()

// Index of the parent node
function Parent(n ∶ nat) ∶ nat

requires n ≠ 0

// Elements
var elems ∶ array <T>;

// Elements count
var nelems ∶ nat;

}

The concrete representation consists of an array elems of type array <T>, whose capacity grows as
needed using the Expand method, and the element count nelems. The abstract value is calculated as
multiset(elems [.. nelems ]). The representation invariant states that the array is allocated and
has enough capacity, and the fundamental property of a heap: that parents have higher priority than
their children.

predicate Valid ()
{

// There is an array with enough capacity
elems ≠ null ∧ nelems ≤ elems.Length
∧
// Parents have higher priority
∀ i | 0 < i < nelems • gep(elems[Parent(i)], elems[i])

}

// Index of the parent node
function Parent(n ∶ nat) ∶ nat

requires n ≠ 0
{

(n - 1) / 2
}

That has been illustrated in Figure 4.1. Concrete values are represented as the combination of an
array [...] (elems) and a number in parenthesis (nelems). The red instance out of the cloud does
not meet the invariant because 9 is higher than their children. The other two rightmost elements are
equivalent from the abstract point of view, because both contain the same elements in the portion of
the array than is considered according to nelems.
6Autotriggerswas used here but functions (function methods too) are not managed by it, so some routine code is needed anyway.
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Let’s see the code of Insert as an example.

method Insert(x ∶ T)
ensures Elements () = old(Elements ()) + multiset{x}

{
if nelems = elems.Length
{

Expand ();
}

ghost var elems0 , Repr0 ∶= elems , Repr;

elems[nelems] ∶= x;

nelems ∶= nelems + 1;

// Floats the number

var pos ∶ nat ∶= nelems - 1;

ghost var Elements0 ∶= multiset(elems [.. nelems ]);

while pos > 0 ∧ ¬gep(elems[(pos - 1) / 2], elems[pos])
invariant 0 ≤ pos < nelems

// Keeps validity
invariant elems = elems0
invariant Repr = Repr0
invariant elems ≠ null ∧ nelems ≤ elems.Length

// All children are lower than their parents except pos

invariant ∀ i | 0 < i < nelems ∧ i ≠ pos •
gep(elems[Parent(i)], elems[i])

// But pos 's children are lower than their grandparent
invariant 0 < pos ⟹ ∀ chd ∶ nat | 0 < chd < nelems •

Parent(chd) = pos ⟹ gep(elems[Parent(pos)], elems[chd])

// Elements are only changed by permutations
invariant Elements0 = multiset(elems [.. nelems ])

{
var parent ∶= (pos - 1) / 2;

elems[parent], elems[pos] ∶= elems[pos], elems[parent ];

pos ∶= parent;
}

}

If the array capacity is exhausted, a call to Expand provides the necessary space for the new element
(the array is doubled in size). Then the element is written in the first empty position of the array and
elements counter nelems is updated. At that moment, the heap may be in an invalid state. To fix this,
the inserted element is floated (i.e. permuted with its ancestors) until its parent has higher priority than
it or it arrives to the root.
Most invariants in the floating loop say that certain variables do not change. The most interesting

invariants are the last which says that the array is only changed by permutations and the two above
it, which say that every node except for the floating one is lower priority than its parent and that the
floating one’s children are lower priority than their grandparent. So the new element is the only one
out of order.
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When the loop ends, either the new element arrives to the root or to a position where its parent has
higher priority. The structure has recovered its valid state.
The Pull implementation is similar. elems[0] is returned as the minimum and it is removed and

replaced by elems[nelems-1], which is then sunken to its correct position. The element count is reduced
by one. These procedures are standard and can be viewed in Section 6.1 of [Cor+09] for example.
The fact that elems[0] is the highest priority is not evident for Dafny. The RootIsMin lemma demon-

strates it. The iterative proof uses reduction ad absurdum: suppose there is an element with strictly
higher priority in the heap; then by climbing the tree to the root we conclude elems [0] < elems [0],
a contradiction. The key is the fundamental property of the heap, that the parent has higher priority
than its child, so we have climbed in increasing priority values.

lemma RootIsMin ()
ensures ∀ y | y in Elements () • gep(elems[0], y)



Chapter 5

Algorithms

5.1 Floyd-Warshall algorithm dynamic/floyd.dfy

The Floyd-Warshall algorithm (published by Robert Floyd in 1962 and similar to one of Bernard Roy
in 1959 and Stephen Warshall in 1962) is a dynamic programming algorithm to calculate the distance
between every two nodes of a directed weighted graph without any restriction except for the absence
of negative cost loops. This is not a restrictive requirement since their presence implies that there is no
optimal path between nodes of the graph, as iterating such a loop will decrease the cost forever.
The algorithm code has been adapted from the pseudocode of its article in English Wikipedia1. It is

also available in Section 25.2 of [Cor+09].
The absence of negative loops restriction is assumed and declared as a method’s precondition. How-

ever, the algorithm is profitable even if the condition does not hold. It terminates and allows us to know
precisely if the precondition is satisfied in the graph; because when it is not, at least the calculated cost
from a node to itself must be negative.

5.1.1 Specification outline

In order to treat uniformly and elegantly the absence of path or direct connection between two vertices,
we have decided to extend real numbers (in which costs are expressed) with an infinity value. Hereafter
we will assume that there is an edge between every two vertices, with an infinite cost if it does not really
exist. To this end, we define an inductive datatype and the operations to work with it, as it is shown
thereupon:

// Extended real numbers with (positive) infinity
datatype xreal = Real(value ∶ real) | Infty

// Less or equal on xreals
predicate method Leq(x ∶ xreal , y ∶ xreal)
{

match y
{

case Infty ⇒ true

case Real(yv) ⇒ match x
{

case Infty ⇒ false

case Real(xv) ⇒ xv ≤ yv
}

1Floyd-Warshall algorithm (https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm?oldid=710345047).
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}
}

// Addition in xreals
function method Add(x ∶ xreal , y ∶ xreal) ∶ xreal
{

if x.Infty? ∨ y.Infty?
then Infty
else Real(x.value + y.value)

}

The graph is given as a square matrix of xreals where each cell (𝑖, 𝑗) stores the cost of the edge
between 𝑖 and 𝑗. The matrix may be symmetric or not. We have defined a type synonym for it
type xgraph = array2 <xreal >.
Once the data representation has been solved, the algorithm specification gives rise to some doubts.

How to define the distance between two nodes?
For that, we first define the concept of path: a sequence of at least two vertices where only the first

and the last are allowed to coincide. The distance between two nodes is the minimum cost of a path
between them, where the cost of a path is the sum of the edges costs between every two consecutive
vertices.
In Dafny, we represent paths as sequences of node indices of type seq <int >. Different predicates

are used to state that a sequence is a path. We have defined less restrictive entities that are helpful in
verification:

predicate Walk(w ∶ seq <int >, bound ∶ nat)
{

// At least two vertices (an edge)
|w| ≥ 2
∧
// Intermediate nodes are valid and not higher than bound
∀ i | 0 < i < |w|-1 • 0 ≤ w[i] < bound

}

predicate AnyPath(s ∶ seq <int >, bound ∶ nat)
{

// It is a walk
Walk(s, bound)
∧
// And it doesn 't contain inner loops
∀ i, j | 0 ≤ i < |s| ∧ 0 < j < |s|-1 •

i ≠ j ⟹ s[i] ≠ s[j]
}

predicate Path(s ∶ seq <int >, from ∶ nat , to ∶ nat , bound ∶ nat)
{

AnyPath(s, bound) ∧ Start(s) = from ∧ End(s) = to
}

As we can see above, a walk is a path which allows vertices repetitions. Note that all predicates take
an extra parameter called bound which restricts the vertices that can appear as intermediate nodes in
the walk or path to those whose index is lower than the bound. The reason is in the algorithm strategy.
It stepwise calculates the optimal distances between nodes with that extra restriction. When bound

is zero, only direct connections (edges) are considered (this is the base case). In each step the algorithm
calculates the optimal path cost with a higher bound. When the bound arrives to the number of nodes
in the graph, the algorithm has calculated the distances without restrictions.
In each step, different cases are possible. Suppose we are considering the distance between 𝐴 and 𝐵

with intermediate nodes below 𝐶 + 1, we write 𝑑𝐶+1(𝐴, 𝐵). The distance must be given by an optimal
path from 𝐴 to 𝐵:
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• If the path does not go through 𝐶 the minimum distance is 𝑑𝐶(𝐴, 𝐵), that we have already calcu-
lated.
• If the path passes by 𝐶, the minimum distance must be the sum of 𝑑𝐶(𝐴, 𝐶) and 𝑑𝐶(𝐶, 𝐵). This is
a consequence of the Bellman optimality principle.

So the algorithm only has to update the distance when the sum 𝑑𝐶(𝐴, 𝐶) + 𝑑𝐶(𝐶, 𝐵) is less than
𝑑𝐶(𝐴, 𝐵) and those three values have been calculated in the previous step.
Note also that the definitions are lax. In general we do not need to ensure that the indices are in

bounds, i.e. that the indices are lower than the number of vertices in the array. When talking about costs,
that we read from a matrix of fixed size, this information is essential and predicates and preconditions
are used to ensure that the vertex indices are correct.

// The cost of travel through a path
// (it does not require that the path is actually a path)
function Cost(s ∶ seq <int >, edges ∶ xgraph) ∶ xreal

reads edges
requires edges ≠ null
requires edges.Length0 = edges.Length1

requires ∀ i | 0 ≤ i < |s| • 0 ≤ s[i] < Size(edges)
{

if |s| < 2 then Real (0.0) else Add(edges[s[0], s[1]],
Cost(s[1..], edges))

}

At this point we are able to express the distance definition as the minimum cost of a path between
them using a Dafny predicate. Given a cost and a pair of node indices in a graph, the predicate says that
this cost is the distance between them if there is a path with this cost and any other path cost is greater
or equal, always taking care of the bound restriction.

predicate MinCost(from ∶ nat , to ∶ nat , graph ∶ xgraph ,
bound ∶ nat , cost ∶ xreal)

reads graph
requires ValidGraph(graph)

requires bound ≤ Size(graph)
requires from < Size(graph) ∧ to < Size(graph)

{
(∀ path | Path(path , from , to, bound) •

Leq(cost , Cost(path , graph )))
∧
∃ path | Path(path , from , to, bound) • cost = Cost(path , graph)

}

In this code we mention ValidGraph. It is the predicate used to ensure that the graph is valid, i.e.
that it is a square matrix whose diagonal is filled with zeros and there are no negative cycles in it.

/*
* Graphs are represented as square matrices of costs (xreal
* numbers) with no negative cycles.
*/

predicate ValidGraph(edges ∶ xgraph)
reads edges

{
edges ≠ null
∧
edges.Length0 = edges.Length1
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∧
(∀ node | 0 ≤ node < Size(edges) •

edges[node , node] = Real (0.0))
∧
// No negative cycles
(∀ path , bound ∶ nat |

AnyPath(path , bound)
∧
bound ≤ Size(edges)
∧
Start(path) = End(path)
∧
0 ≤ Start(path) < Size(edges)

•
Leq(Real (0.0), Cost(path , edges))

)
}

The algorithm signature is shown thereupon. edges is the graph and the out parameter dist will
contain the distances between every two nodes. The algorithm initializes it with a copy of edges and
then iteratively improves it while increasing bound values. The algorithm cost is 𝑂(|𝑉 |3) where 𝑉 is the
set of vertices.

method Floyd(edges ∶ xgraph) returns (dist ∶ xgraph)
requires ValidGraph(edges)

requires Size(edges) > 0

ensures dist ≠ null
ensures dist.Length0 = Size(edges)
ensures dist.Length1 = Size(edges)

ensures ∀ i, j | 0 ≤ i < edges.Length0 ∧ 0 ≤ j < edges.Length0 •
MinCost(i, j, edges , edges.Length0 , dist[i, j])

The source code file floyd.dfy is available to read the algorithm implementation, specification and
verification in detail. We hope its comments would let readers easily understand the specification
choices and the verification ideas.
The verification of this algorithm is a little rough, due to the so-called butterfly effect which sometimes

makes established lemmas to stop working when another lemma’s body is modified. It has also been
affected by Dafny updates; a previous version worked in Dafny 1.9.6 but it stopped working after the
update. The current version verifies with the repository version of Dafny at the moment we write these
lines2, but it will not probably do so with older versions.

5.1.2 Verification outline

As an iterative algorithm, Floydmethod verification relies on the loop invariants. As a dynamic program-
ming algorithm, we have a matrix, whose contents we use in each iteration to calculate other values.
Apart from the invariants and some asserts in the main method, the proof takes place in different sep-
arate lemmas, which are called from the main method. Some of them are devoted to the proof that
the invariants hold on entry or that they are maintained in different circumstances after each iteration.
Others provide more general properties about paths and walks: paths can be split in two paths whose
costs sum is equal to the original cost, and walks with an inner loop can be split in loop and cutoff (the
rest), whose sum produces the same cost.

WalkReduce is another interesting and important lemma which states that for any walk in the graph
there is a path of equal or lower cost sharing origin and destination vertices.
22090:8a0ad1c50f24
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5.1.3 Using the algorithm from C# graphs/graph.cs

Dafny is said to generate executable code. The Dafny repository includes in its Test folder different
programs using a Main method to produce an executable. We have already done it for stacks. Another
possibility we can learn in Test is the use of external methods and classes within Dafny. Here we have
tried the opposite: to use Dafny methods and types in external code.
With the aim to see our algorithm running and to test the ability of Dafny to generate usable code

for real programs, we have written a simple C# program. It deals with what is beyond the Dafny scope,
the interaction with the environment and the user. It reads a graph from a file, fills a matrix with the
edge costs and calls the Floyd method, printing the results.
We use the Floyd.dll assembly generated by Dafny after successful verification, which we link to

the final program. Dafny methods are called and Dafny types are used from the C# code.

: Minus creates a two -way edge
:
A B 1 -
A C 8 -
B C 3 -
B D 10 -
C D 1 -

A B

C D

1

8 3 10
1

Output data:
0 1 4 5
1 0 3 4
4 3 0 1
5 4 1 0

Figure 5.1: Example graph with its result (map2.txt)

Different graph examples have been included as examples. In one of them we provide a graph which
violates the Floyd algorithm preconditions. Note that no verification information is included in the
executable code and preconditions are not checked at runtime. However, as we have informally said at
the beginning of this section, the algorithm still terminates and provides useful information.
There is virtually no documentation about that. However, .NET assemblies can be inspected to find

out how methods are organized and how Dafny types have been translated. In Mono, monodoc can be
used for that purpose.
In brief, user methods are gathered into a class called __default. Its output parameters have been

encoded as output parameters in C# and arrays are still arrays, but datatypes are more difficult to
manage.

5.2 Dijkstra’s algorithm greedy/dijkstra.dfy

Dijkstra’s algorithm, first described by Edsger Dijkstra in 1959, is a greedy algorithm to calculate the
shortest paths from a fixed node to the rest of nodes in a graph whose edge distance or cost is non
negative.
In each greedy step, the algorithm determines the distance and the minimum path to a new node, the

nearest one from the origin for which the distance has not been calculated yet. There are three classes
of nodes at any given time:

• Closed nodes, for which the final distance is already calculated.
• Frontier nodes, which are reachable by an edge from closed nodes. A provisional distance has been
assigned to them, but it may be improved when new nodes are closed.
• Outside nodes, those which are not directly connected to any closed node. When the algorithm
finishes, the remaining outside nodes are unreachable.

The algorithm uses a priority queue to retrieve where the neighbours of each closed node are inserted,
taking as priority the distance to the closed node plus the edge cost. If the node was already present the
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frontier

closed outside
0

Figure 5.2: Dijkstra’s nodes illustration

priority queue is updated only if it is improved. Like this, the Pull operation of the priority heap offers
the nearest node from the origin.
The original Dijkstra’s implementation ran in 𝑂(|𝑉 |2) without priority queue, where 𝑉 is the set of

vertices or nodes of the graph. Using a Fibonnaci heap as the queue (see [Cor+09], Section 24.3) the
algorithm runs in 𝑂(|𝐸| + |𝑉 | log |𝑉 |) where 𝐸 is the set of edges. In our case, we have used an abstract
queue called PriorityQueue with a complete specification but unimplemented.
There are many differences in the specification and data representation from the Floyd-Warshall

algorithm. Both agree that the vertices are identified with a number from 0 but the graph representations
differ. An abstract trait has been used to represent the graph, which can be implemented using adjacency
lists. An Adjacents function is provided; given a node index, it returns a map <int , real > where the
keys are the neighbour nodes indices and the value the cost of the edge towards them.

trait Graph
{

function method Count() ∶ nat

function method Adjacents(n ∶ nat) ∶ map <int , real >
reads this
requires 0 ≤ n < Count()

ensures n ∉ Adjacents(n)

ensures ∀ node | node in Adjacents(n) •
0 ≤ node < Count()
∧
Adjacents(n)[node] ≥ 0.0

}

Edge costs are reals but no infinite cost is explicitly defined: if there is not a direct link between two
nodes the corresponding key should not be present in the map. To represent the absence of path to a
node a negative value is used, as no path can have negative cost.
The distance, in this case from the origin to any node, is defined in a similar way: the minimum cost

of a walk between the origin and the given node. We do not use paths but walks, i.e. we do not ban
loops in the path as it would only contribute to the walk cost for worst. The algorithm result is an array
dist of distances to nodes, each in its corresponding array position. A twin array prev can be used to
reconstruct the path from the origin to the given node, going backwards to the origin following prev
values.
We have proved many interesting properties of the algorithm but we have not arrived to prove it

completely in time. The file dijkstra.dfy is available and commented to read and understand the
specification we have used and the verification tactic we have put in place. Succinctly we can comment
two lemmas we have proved:
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• IsTheDistance guarantees that the distance to the node Dijkstra’s algorithm extracts from the
priority queue is definitive, which its the key point of the greedy character of the program.
• Unreachables proves that those vertices with are not closed at the end of the algorithm are un-
reachable from the origin, i.e. there is not a path from the origin to them. It is demostrated by
reductio ad absurdum.
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Chapter 6

Conclusions
This final chapter is a reflection on the experience using Dafny and on the work done. Some conclusions
are drawn in the hope that they would contribute to a better use and design of these tools in the future.
The experience with Dafny has been bittersweet. The facility to try and install the system and

the clarity and simplicity of the language make adaptation to it an easy and enjoyable task. It has
been pleasant to recognize the methods learned during the studies, to observe the harmony in mixing
the executable code with the specification, to see how mathematical results like the convergence of a
numerical limit can be demonstrated in virtually the same terms with which an algorithm to sum a
vector is written. Regarding the verifier, its ability to prove the correctness of many algorithms without
help, not all of them trivial, has been striking.
Given the experimental nature of the tool and the difficulty its development must imply, the less

pleasant aspects should also be pointed out. Error reporting, although it is sufficient for simple pro-
grams, is not of much help in more complex programs. However, the most serious problem is what one
of the articles we have read called butterfly effect: “a minor modification in one part of the program
source causes changes in the outcome of the verification in other, unchanged and unrelated parts of the
program”. Along this project, we have experienced distinct verification results after identifier renam-
ing, permutations of the order of the declarations, changes into the body of a method far from the error
origin or after the addition of a new declaration to a file, unrelated to the previous ones.
As for the work done and the results obtained, we can say we are satisfied. However, the easiness

in solving the exercises gave us hope to go further in verifying data structures and algorithms. The
difficulties appeared as the complexity and size of the programs increase. Some of these difficulties are
originated in slip-ups, extreme cases of certain properties that were not considered, or the resistance
to the adaptation to the machine reasoning... many have their roots in the problems described in the
preceding paragraph.
At this point, we consider that some earlier reading about the theorem prover tactics and about trig-

gers could have been useful. Dynamic frames should have been considered carefully before, because its
knowledge could have helped us to better organize ideas, attempts and plans concerning data structures.
For better or for worse, it seems necessary to know the intricacies of Dafny to make an efficient use

of it. That is not comparable to using a compiler, for which knowledge of the syntax and semantics of
the language must be sufficient to operate with it, regardless of how the source is parsed or the machine
code generated.
In the introductory chapter, we include a cite from [BH14] which states that functional verification

“is elusive for almost all application scenarios” and pointed to the large ratio between specification and
useful code. In the Floyd algorithm, the ratio is seven to one. Nevertheless, if we consider the number
of times the verified program would be used or the errors we can prevent with it, this effort could be
worthwhile.
We finally conclude that a verification system as Dafny which does not want to frustrate the user

must respect the principle of decomposition: each method should be a black box which only depends
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on the other methods by their preconditions, postconditions or other public specifications they declare.
What happens between the brackets, between the brackets must remain. This principle theoretically
holds in Dafny, but in practise it is not met. Avoiding those butterfly effects should be a priority for a
better user experience, although that supposes a loose of performance or a reduction in the capacity of
autonomous reasoning of the system.
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Conclusiones
En esta sección se hace una reflexión final sobre la experiencia con el sistema Dafny y sobre el

trabajo realizado. De todo ello se han extraído algunas conclusiones que esperamos puedan contribuir
a un mejor uso y diseño de estas herramientas en el futuro.
La experiencia con Dafny ha sido agridulce. La facilidad para probar e instalar el sistema y la claridad

y sencillez del lenguaje hacen de su adaptación a él una tarea fácil y amena. Ha sido grato reconocer los
métodos aprendidos durante los estudios, observar la armonía con que se mezclan el código ejecutable
y la especificación, ver cómo resultados matemáticos como la convergencia de un límite numérico se
pueden demostrar en prácticamente los mismos términos en que se escribe un bucle para sumar un
vector. Llama también la atención la capacidad del verificador para demostrar sin ayuda la corrección
de no pocos algoritmos, no siempre evidentes.
Habida cuenta de la naturaleza experimental de la herramienta y la dificultad que desarrollarla ha

de suponer, es preciso señalar también los aspectos menos agradables. La notificación de errores, si
bien suficiente para programas simples, no es de tanta ayuda en programas de mayor complejidad. Pero
el problema más grave es aquel que uno de los artículos consultados denomina efecto mariposa: «una
pequeña modificación en una parte del código del programa provoca cambios en el resultado de la veri-
ficación en otras partes del mismo, que no han sido modificadas ni están relacionadas». En el trascurso
de este trabajo, se han experimentado resultados de verificación dispares ante un renombramiento de
identificadores o una permutación del orden de las declaraciones. El cambio en el cuerpo de un método
o la incorporación una nueva declaración ha producido en ocasiones cambios en otros elementos del
programa sin relación alguna con ellos.
Valorando el trabajo realizado y los resultados obtenidos, se puede decir que se está satisfecho y

no se considera que hayan sido escasos. Sin embargo, la facilidad para escribir y verificar los primeros
problemas dio lugar a la esperanza de poder llegar más lejos en la verificación de estructuras de datos y
algoritmos. Las dificultades fueron apareciendo al aumentar la complejidad y el tamaño de los progra-
mas. Algunas de esas dificultades tienen su origen en despistes, casos extremos de ciertas propiedades
que no se habían considerado o la no adecuada adaptación al razonamiento máquina. Otras tienen su
origen en los problemas descritos en el párrafo anterior.
Echando la vista atrás, una lectura más temprana sobre el funcionamiento del demostrador y sobre

disparadores podría haber resultado de utilidad. Un aprendizaje más cuidadoso sobre los marcos diná-
micos hubiese ayudado a organizar mejor las ideas, los intentos y los planes respecto a las estructuras
de datos.
Por suerte o por desgracia, parece necesario conocer las interioridades de un sistema de verificación

como Dafny para hacer un uso eficiente de él. No es comparable al uso de un compilador, para el
cual el conocimiento de la sintaxis y semántica del lenguaje ha de ser suficiente para operar con él,
independiente cómo se analice el código o qué representación interna se utilice.
En el capítulo introductorio, se incluye una cita de [BH14] que afirma que la verificación funcional

«es inasequible para casi todas las aplicaciones» y señala la gran desproporción entre código de especifi-
cación y verificación y el código útil. En el algoritmo de Floyd, la proporción es de siete a uno. Aún así,
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si consideramos el número de ejecuciones del programa verificado o los errores que se pueden evitar
con ello, el esfuerzo puede merecer la pena.
Concluimos finalmente que un sistema de verificación como Dafny que no quiera frustrar al usuario

debe respetar el principio de descomposición: cada método debe ser verdaderamente una caja negra que
solo dependa de otros métodos por sus precondiciones, postcondiciones y otras especificaciones públicas
que declare. Lo que ocurra entre las llaves entre las llaves ha de quedar.
En teoría Dafny sigue este principio, pero en la práctica no se cumple. Evitar estos efectos mariposa

debe ser una prioridad para una mejor experiencia de usuario, aunque ello suponga un deterioro del
rendimiento o una merma de la capacidad de razonamiento autónomo de la herramienta.



Appendix A

Dafny program examples

A.1 An iterative and recursive binary search: er5.12.dfy
/*
* En la versión anterior de este ejercicio Ord se definía como s[i] ≤ s[i+1]
* y así sólo funcionaba con la opción /autoTriggers ∶ 0.
*
* Hay un ejemplo oficial en ∶
* http ∶ //dafny.codeplex.com/SourceControl/latest#Test/triggers/
* some -proofs -only -work -without -autoTriggers.dfy
*/

// ¿Está la secuencia ordenada?
predicate Ord(s ∶ seq <int >) {

∀ i, j | 0 ≤ i ≤ j < |s| - 1 • s[i] ≤ s[j]
}

// Versión recursiva

method busq_binaria(a ∶ array <int >, x ∶ int , c ∶ nat , f ∶ nat) returns
(b ∶ bool , p ∶ nat)

requires a ≠ null
requires Ord(a[..])
requires 0 ≤ c ≤ f ≤ a.Length -1

ensures b ⟹ c ≤ p < f ∧ a[p] = x
ensures ¬b ⟹ c ≤ p ≤ f

∧ (∀ j | c ≤ j < p • a[j] < x)
∧ (∀ j | p ≤ j < f • a[j] > x)

decreases f - c
{

var m ∶ nat;

if c = f {
b, p ∶= false , c;

}
else /* c < f */ {

m ∶= (c + f) / 2;

if x < a[m] {
b, p ∶= busq_binaria(a, x, c, m);

}
else if x = a[m] {

b, p ∶= true , m;
}
else /* x > a[m] */ {

b, p ∶= busq_binaria(a, x, m+1, f);
}
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}
}

// Versión iterativa

method busq_binaria_it(a ∶ array <int >, x ∶ int , c ∶ nat , f ∶ nat) returns
(b ∶ bool , p ∶ nat)

requires a ≠ null
requires Ord(a[..])
requires 0 ≤ c ≤ f ≤ a.Length -1

ensures b ⟹ c ≤ p < f ∧ a[p] = x
ensures ¬b ⟹ c ≤ p ≤ f

∧ (∀ y | y in a[c..p] • y < x)
∧ (∀ y | y in a[p..f] • y > x)

{
var m ∶ nat ∶= (c + f) / 2;

var c', f' ∶= c, f;

while c' < f' ∧ x ≠ a[m]
invariant c ≤ c' ≤ f' ≤ f
invariant m = (c' + f') / 2;

// Resto de invariantes
invariant ∀ y | y in a[c..c'] • y < x
invariant ∀ y | y in a[f'..f] • y > x

{
if x < a[m] {

f' ∶= m;
}
else /* x > a[m] */ {

c' ∶= m+1;
}

m ∶= (c' + f') / 2;
}

if c' = f' {
b, p ∶= false , c';

}
else /* x = a[m] */ {

b, p ∶= true , m;
}

}

A.2 Euclidean algorithm
A.2.1 er2.11.dfy

/**
* En este ejercicio se prueba la corrección un algoritmo iterativo para el
* cálculo del máximo común divisor por medio del algoritmo de Euclides.
*
* Por un lado se demuestra que el algoritmo iterativo da como resultado el
* de la función Mcd , que es una versión funcional del algoritmo de Euclides.
* Por otro , se prueba que Mcd es el máximo común divisor según su definición ,
* es decir , el mayor de todos los divisores comunes.
*
* Se ha utilizado (en LemaDivision) una notación específica para demostrar
* para -todos. Se ha encontrado por casualidad en la siguiente página ∶
* http ∶ //www.lexicalscope.com/blog /2014/07/31/ dafny -proving -∀-x-px -qx/
*/

include "aritmnl.dfy"

// x divide a y
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predicate Divide(x ∶ nat , y ∶ nat) {
x ≠ 0 ∧ y % x = 0

}

// Mcd por el algoritmo de Euclides
function Mcd(x ∶ nat , y ∶ nat) ∶ nat

requires x ≠ 0 ∨ y ≠ 0
{

if x = 0 then y
else if y = 0 then x
else if x > y then Mcd(y, x % y)

else Mcd(x, y % x)
}

// m es el máximo común divisor de x e y
predicate EsMcd(x ∶ nat , y ∶ nat , m ∶ nat)

requires x ≠ 0 ∨ y ≠ 0
{

Divide(m, x) ∧ Divide(m, y)
∧ ∀ d ∶ nat | Divide(d, x) ∧ Divide(d, y) • Divide(d, m)

}

// Lema útil para demostrar McdEsMcd
lemma LemaDivision(x ∶ nat , y ∶ nat)

requires y > 0
ensures ∀ d ∶ nat | Divide(d, y) • x % d = (x % y) % d

{
// Descomposición por división entera
assert x = (x/y) * y + x % y;

// Se utiliza la sintaxis específica para demostrar paratodos
// Aquí d un natural cualquiera que divide a y
∀ d ∶ nat | Divide(d, y)

ensures x % d = (x % y) % d
{

// Eso permite la siguiente descomposición
assert y = (y/d) * d;

// Y se puede reescribir la descomposición
var f ∶= (x/y) * (y/d);

assert x = f * d + x % y;

AritmNL.ModMasMultiplo(x % y, d, f);

// De la igualdad primera y el resultado del lema
assert x % d = (x % y) % d;

}
}

lemma McdEsMcd(x ∶ nat , y ∶ nat)
requires x ≠ 0 ∨ y ≠ 0
ensures EsMcd(x, y, Mcd(x, y))

decreases y, x
{

// Dafny sabe que Mcd y EsMcd son conmutativos en las
// dos primeras entradas

// Supone sin pérdida de generalidad que x ≥ y
if x < y {

McdEsMcd(y, x);
}
else {

if y = 0 {
// Caso fácil

// Curiosamente son necesarios
assert Mcd(x, 0) = x;
assert Divide(x, 0);

}
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else {
// Inducción
McdEsMcd(y, x % y);

// Por hipótesis y Mcd(x, y) = Mcd(y, x % y)
assert EsMcd(y, x % y, Mcd(x, y));

// Aplicando el lema de la división se obtiene que
// d es divisor de x y x % y ⟺ es divisor de x e y
LemaDivision(x, y);

// Como conclusión , Mcd(x, y) | x

// Y además todo divisor de x e y divide a Mcd(x, y)
}

}
}

method mcd(x0 ∶ nat , y0 ∶ nat) returns (x ∶ nat)
requires x0 > y0 ≥ 0
ensures x = Mcd(x0 , y0)

{
var y;

x, y ∶= x0, y0;

while y ≠ 0
invariant 0 ≤ y < x
invariant Mcd(x, y) = Mcd(x0, y0)

{
x, y ∶= y, x % y;

}
}

A.2.2 aritmnl.dfy
/**
* Este módulo incluye algunos resultados bastante elementales sobre la
* división entera y el módulo que el demostrador no sabe por defecto.
*/

/**
* La demostración de estos dos lemas resultó más difícil de lo esperado.
* Muchos asertos son prescindibles pero se incluyen para seguir la idea
* de la demostración. Tal vez haya demostraciones más directas sabiendo
* cómo trata el demostrador la aritmética no lineal (hay una opción
* «/noNLarith» para disminuir su conocimiento sobre el particular ).
*
* Las demostraciones aquí utilizan que el módulo es positivo y menor que
* el divisor y con ello hacen acotaciones en forma de sándwich.
*
* Ha sido necesario definir variables en las demostraciones. Sin ellas el
* demostrador no era capaz de demostrar lo que está demostrado. Parece que
* aunque dos términos compuestos sean sintácticamente iguales no los
* considera el mismo y no puede aplicarles algo como
* ∀ x • P(x) ⟹ Q(x).
*/

module AritmNL {

lemma DivPorFactor(m ∶ nat , k ∶ int)
requires m ≠ 0
ensures (k*m) / m = k
ensures (k*m) % m = 0

{
// Al divisor le llamo d
var d ∶= (k*m)/m;

// Se toma lo siguiente como base
assert k*m = d * m + (k*m) % m;
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assert 0 ≤ (k*m) % m < m;

// Se substituye de acuerdo a la acotación
assert k*m ≥ d * m;
assert k*m < d * m + m;

// Se cancelan factores comunes
assert k ≥ d;

// La otra desigualdad resulta más compleja
assert k*m - d*m - m < 0;
assert (k - d - 1) * m < 0;

var dd ∶= k - d - 1;

assert dd ≥ 0 ⟹ dd * m ≥ 0;

assert dd < 0;
assert k - d - 1 < 0;

// Con esta acotación sólo puede ser k
assert k - 1 < d ≤ k;

}

lemma ModMasMultiplo(n ∶ int , m ∶ nat , k ∶ int)
requires m ≠ 0
ensures (n + k * m) % m = n % m

{
// Partimos de los dos siguientes asertos
assert n+k*m = (n+k*m)/m * m + (n+k*m)%m;
assert n = n/m*m + n%m;

// Substituyendo el segundo en el primero
assert n/m*m + n%m + k*m = (n+k*m)/m * m + (n+k*m)%m;

// Se pasan a la izda los múltiplos de m
assert n/m*m + k*m - (n+k*m)/m * m = (n+k*m)%m - n%m;

// Se saca factor común
assert (n/m + k - (n+k*m)/m) * m = (n+k*m)%m - n%m;

// Por la acotación de los módulos se sabe que la parte dcha
// está entre -m y m exclusive.
// De la parte izda se deduce que es múltiplo de m y el único
// múltiplo de m en ese intervalo es 0.
assert -m < (n+k*m)%m - n%m < m;

// Hay que ayudarle para llegar a esa conclusión
// t es la parte izquierda sin m
var t ∶= n/m + k - (n+k*m)/m;

assert -m < t * m < m;

// Aplicamos el lema demostrado anteriormente
DivPorFactor(m, t);

assert -1 < t < 1;

// Luego t = 0 y eso implica lo buscado
}

lemma SumaMod0(a ∶ int , b ∶ int , m ∶ nat)
requires m ≠ 0
requires a % m = 0
requires b % m = 0

ensures (a + b) % m = 0
ensures (a - b) % m = 0

{
// Descompone en divisor * cociente + resto
assert a = (a / m) * m;
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assert b = (b / m) * m;

// Para luego sacar factor común
assert a + b = (a/m + b/m) * m;
assert a - b = (a/m - b/m) * m;

DivPorFactor(m, a/m + b/m);
DivPorFactor(m, a/m - b/m);

}

lemma SumaMod(a ∶ int , b ∶ int , m ∶ nat)
requires m ≠ 0

ensures (a + b) % m = (a % m + b % m) % m
ensures (a - b) % m = (a % m - b % m) % m

{
// Descompone en divisor * cociente + resto

// assert a = (a / m) * m + a % m;
// assert b = (b / m) * m + b % m;

// Para luego sacar factor común
// assert a + b = (a/m + b/m) * m + (a % m + b % m);
// assert a - b = (a/m - b/m) * m + (a % m - b % m);

ModMasMultiplo(a % m + b % m, m, a/m + b/m);
ModMasMultiplo(a % m - b % m, m, a/m - b/m);

}

}

A.3 Sine calculation
A.3.1 er4.4.dfy

/**
* Cálculo aproximado del seno por Taylor.
*/

/*
* Lo que aparece en los includes no se demuestra.
*/

include "er4.4aux.dfy"

// Valor absoluto
// (es function -method para poder usarla en la implementación)
function method Abs(x ∶ real) ∶ real

ensures Abs(x) ≥ 0.0
{

if x < 0.0 then -x else x
}

// «El valor absoluto del cociente es el cociente de los valores absolutos»
lemma AbsCociente(x ∶ real , y ∶ real)

requires y ≠ 0.0
ensures Abs(x / y) = Abs(x) / Abs(y)

{
}

// Término de orden 2k+1 de la serie de Taylor del seno en x
function TerminoSeno(x ∶ real , k ∶ nat) ∶ real {

Pot(-1.0, k) * Pot(x, 2*k + 1) / real(Fact(2 * k + 1))
}

// Polinomio de Taylor del seno de orden 2n-1 evaluado en x
function TaylorSeno(x ∶ real , n ∶ nat) ∶ real {

if n = 0
then 0.0
else TerminoSeno(x, n-1) + TaylorSeno(x, n-1)

}
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// Prueba que ciertos productos convierten un coeficiente en su siguiente
lemma AvanceTerm(x ∶ real , k ∶ nat)

ensures (( -1.0) * TerminoSeno(x, k) * x * x)
/ real ((2 * k + 3) * (2 * k + 2))
= TerminoSeno(x, k+1)

{
assert (-1.0) * Pot(-1.0, k) = Pot(-1.0, k+1);

// Al hacer estos dos pasos juntos se daba un error de Z3
// con versiones antiguas de Dafny
assert Pot(x, 2*k + 1) * x * x = Pot(x, 2*k + 3);
assert Pot(x, 2*(k+1) + 1) = Pot(x, 2*k + 3);

assert real ((2 * k + 3) * (2 * k + 2)) * real(Fact(2 * k + 1))
= real(Fact(2 * k + 3));

}

/**
* Demostración de la terminación.
*/

lemma PotAbs(x ∶ real , k ∶ nat)
ensures Abs(Pot(x, k)) = Pot(Abs(x), k)

{
}

lemma PotUno(k ∶ nat)
ensures Pot(1.0, k) = 1.0

{
}

lemma PfTermino(x ∶ real , k ∶ nat)
ensures Abs(TerminoSeno(x, k)) = Pf(Abs(x), 2 * k + 1)

{
var dk1 ∶= 2 * k + 1;

calc = {
Abs(TerminoSeno(x, k));
// Definición de TerminoSeno (parece necesario explicitarla)
{ assert TerminoSeno(x, k) = Pot(-1.0, k) * Pot(x, dk1)

/ real(Fact(dk1)); }
Abs(Pot(-1.0, k) * Pot(x, dk1) / real(Fact(dk1 )));
// Pasa el valor absoluto a los factores
Abs(Pot(-1.0, k)) * Abs(Pot(x, dk1)) / Abs(real(Fact(dk1 )));
// Mete el valor absoluto dentro de la potencia (fase 1)
{ PotAbs (-1.0, k); }
Pot(1.0, k) * Abs(Pot(x, dk1)) / Abs(real(Fact(dk1 )));
// Quita la potencia de 1
{ PotUno(k); }
Abs(Pot(x, dk1)) / Abs(real(Fact(dk1 )));
// Quita el valor absoluto del denominador (es positivo)
{ assert Fact(dk1) > 0; }
Abs(Pot(x, dk1)) / real(Fact(dk1));
// Vuelve a conmutar Abs y Pot (fase 2)
{ PotAbs(x, dk1); }
Pot(Abs(x), dk1) / real(Fact(dk1));
// Definición de Pf
Pf(Abs(x), dk1);

}
}

/*
* Adaptación de PotVsFact para tomar impar el n0
*
* Otras posibles alternativas ∶
* - Cambiar la postcondición de FactVsPot a un existe -para todos
* los mayores (como la definición de límite ).
* - Añadir a la postcondición de FactVsPot que el x / k es menor
* que 1.
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*
* Ambas opciones no parecen difíciles sobre el papel.
*/

lemma FactVsPotAdapt(x ∶ real , e ∶ real)
requires x > 0.0
requires e > 0.0

ensures ∃ k ∶ nat • Pf(x, 2*k+1) < e
{

var k ∶ nat;

if x ≤ 1.0 {
FactVsPot(x, e);

var dk ∶ nat ∶ | Pf(x, dk) < e;

// En todos los casos vale la misma
k ∶= dk / 2;

// Ya está , sólo hay que despejar k
if dk % 2 = 1 {

calc = {
Pf(x, 2 * k + 1);
{ assert dk = 2 * k + 1; }
Pf(x, dk); < e;

}
}
// Como x < 1.0 el Pf siguiente es también menor que e
else {

calc = {
Pf(x, 2*k+1);
{ assert 2 * k = dk; }
Pf(x, dk+1);
// Definición de Pf
Pf(x, dk) * (x / real(dk + 1));
≤
{ assert x / real(dk + 1) ≤ 1.0; }
Pf(x, dk); < e;

}
}

}

else {
// Se coge como épsilon e / x < e
FactVsPot(x, e / x);

var dk ∶ nat ∶ | Pf(x, dk) < e / x;

// Valor común
k ∶= dk / 2;

if dk % 2 = 1 {
calc = {

Pf(x, 2 * k + 1);
{ assert dk = 2 * k + 1; }
Pf(x, dk);
< e / x;
< e;

}
}
else {

calc = {
Pf(x, 2 * k + 1);
{ assert dk = 2 * k; }
Pf(x, dk + 1);
// Definicion de Pf
Pf(x, dk) * x / real(dk + 1);
≤
{ assert real(dk + 1) ≥ 1.0; }
Pf(x, dk) * x;
// Pf(x, dk) < e / x;
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< (e / x) * x;
e;

}
}

}

}

/**
* Cuidado se pide que exista uno menor que no que todos lo sean.
*/

lemma ExisteK0(x ∶ real , e ∶ real)
requires e > 0.0
ensures ∃ k ∶ nat • Abs(TerminoSeno(x, k)) < e

{
if x = 0.0 {

calc = {
TerminoSeno(x, 0);
// Definición
-1.0 * Pot(x, 1) / real(Fact (1));
// Simplificando
-1.0 * x;
0.0;

}
}
else {

// Utilizamos lo demostrado en el archivo auxiliar
FactVsPotAdapt(Abs(x), e);

var k ∶ nat ∶ | Pf(Abs(x), 2*k+1) < e;

// Hay que hacer una pequeña adaptación
PfTermino(x, k);

}
}

method senoAprox(x ∶ real , e ∶ real) returns (k ∶ nat , s ∶ real)
requires e > 0.0
ensures s = TaylorSeno(x, k)
ensures Abs(TerminoSeno(x, k)) < e

{
// El término actual de la serie
var t ∶= x;

k, s ∶= 0, 0.0;

// Esto ayuda a probar que TerminoSeno(x, 0) = x
assert Pot(x, 1) = x;

// Toma el k0 que para e asegura la existencia del límite
ExisteK0(x, e);

// Si se quita la especificación de tipo hay fallos
ghost var k0 ∶ nat ∶ | Abs(TerminoSeno(x, k0)) < e;

while Abs(t) ≥ e
invariant t = TerminoSeno(x, k)
invariant s = TaylorSeno(x, k)

invariant 0 ≤ k ≤ k0
decreases k0 - k

{
// Guarda el valor inicial de t
ghost var t0 ∶= t;

s ∶= s + t;

t ∶= (( -1.0) * t * x * x) /
real ((2 * k + 3) * (2 * k + 2));
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// Demuestra el avance correcto de la variable t
AvanceTerm(x, k);

k ∶= k + 1;
}

}

A.3.2 er4.4aux.dfy
// Potencia (de números reales)
function Pot(x ∶ real , n ∶ nat) ∶ real

ensures x > 0.0 ⟹ Pot(x, n) > 0.0
{

if n = 0 then 1.0 else x * Pot(x, n - 1)
}

// Factorial
function Fact(n ∶ nat) ∶ nat

ensures Fact(n) > 0
{

if n = 0 then 1 else n * Fact(n-1)
}

/*
* Lemas auxiliares relativos al orden de los números
* reales.
*/

// Orden inverso de los inversos
lemma OrdenInversos(x ∶ real , y ∶ real)

requires 0.0 < x < y
ensures 1.0 / x > 1.0 / y

{

}

// Dividir respeta el orden
lemma AcotaFrac(x ∶ real , y ∶ real , c ∶ real)

requires c > 0.0
requires 0.0 ≤ x ≤ y

ensures x / c ≤ y / c
{
}

// Lema para acotar productos (orden no estricto)
lemma AcotacionProducto(x ∶ real , y ∶ real , s ∶ real , t ∶ real)

requires 0.0 ≤ x ≤ y
requires 0.0 ≤ s ≤ t

ensures x * s ≤ y * t
{

// ¿Por qué este lema se verifica solo en archivo aparte
// y aquí no?

calc ≤ { x * s; y * s; y * t; }
}

// Lema para acotar productos (orden estricto)
lemma AcotaProdEst(x ∶ real , y ∶ real , s ∶ real , t ∶ real)

requires 0.0 < x < y
requires 0.0 < s < t

ensures 0.0 < x * s < y * t
{

// ¿Por qué este lema se verifica solo en archivo aparte
// y aquí no?

calc < { x * s; y * s; y * t; }
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}

// Las potencias de base en (0, 1) tienden a 0 (lema auxiliar)
lemma AcotaPotenciaAux(x ∶ real , m ∶ int)

requires 0.0 < x ≤ 1.0 / 2.0
requires m > 0

ensures ∃ n ∶ nat • Pot(x, n) < 1.0 / real(m)
{

// Demostración por inducción

if m = 1 {
assert Pot(x, 1) < 1.0 / real (1);

}
else {

AcotaPotenciaAux(x, m-1);

var n ∶ nat ∶ | Pot(x, n) < 1.0 / real(m-1);

// n+1 vale como aquello que existe para m

calc {
Pot(x, n+1);
= // Definición de Pot
x * Pot(x, n);
< // Hipótesis
x / real(m-1);
// Parece evidente pero funciona aleatoriamente
≤ { AcotaFrac(x, 1.0/2.0 , real(m-1)); }
(1.0 / 2.0) / real(m-1);
= // Pasar al denominador
1.0 / real(2 * (m-1));
≤ { assert m > 1; }
1.0 / real(m);

}
}

}

// Las potencias de base en (0, 1) tienden a 0
lemma AcotaPotencia(x ∶ real , c ∶ real)

requires 0.0 < x ≤ 1.0 / 2.0
requires c > 0.0

ensures ∃ n ∶ nat • Pot(x, n) < c
{

var inv ∶= 1.0 / c;

// Un entero tal que 1/m < c
var m ∶ nat ∶= inv.Trunc + 1;

assert real(m) > inv;

OrdenInversos(inv , real(m));

assert 1.0 / real(m) < c;

AcotaPotenciaAux(x, m);
}

// Da un nombre al factor x^n / n¬
function Pf(x ∶ real , n ∶ nat) ∶ real {

Pot(x, n) / real(Fact(n))
}

// Prueba que el avance de Pf que se usa en FactVsPot es correcto
lemma AvancePf(x ∶ real , k ∶ nat , f ∶ real)

requires k > 0
requires f = x / real(k)
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ensures Pf(x, k) = Pf(x, k-1) * f
{

assert Pot(x, k) = Pot(x, k-1) * x;

assert Fact(k) = k * Fact(k-1);
}

// PF converge a 0
lemma FactVsPot(x ∶ real , e ∶ real)

requires x > 0.0
requires e > 0.0

ensures ∃ k ∶ nat • Pf(x, k) < e
{

// Un n0 tal que a partir de entonces P/F
// decrezca (divida entre dos) al aumentar n
var n0 ∶ nat ∶= 2 * (x.Trunc + 1);

var factor ∶= x / real(n0);
var origen ∶= Pf(x, n0);

// Demuestra que el n0 está bien escogido
calc {

factor;
= // Definición de factor
x / real(n0);
= // Definición de n0
x / (2.0 * real(x.Trunc + 1));
< // x es menor que su parte entera más uno
{

assert real(x.Trunc + 1) > x;

/* Descomentar el siguiente assert impide que se
demuestre este paso y provoca un error en el
calc de más abajo en ciertas versiones de Dafny.
En la última versión estable es imprescindible.

*/
// assert 2.0 * real(x.Trunc + 1) > 2.0 * x;
}
x / (2.0 * x);
= // Cancelan las x
0.5;

}

// Acota el número máximo de iteraciones que hay que hacer
// suponiendo que P/F decrece por el «factor» cuando en
// realidad decrece más rápidamente
AcotaPotencia(factor , e / origen );

var itmax ∶ nat ∶ | origen * Pot(factor , itmax) < e;

// Variables del bucle
var pfreal , pfcota , k ∶= origen , origen , n0;

while pfreal ≥ e
decreases itmax + n0 - k
invariant n0 ≤ k ≤ n0 + itmax
invariant k = n0 + itmax ⟹ pfreal < e

invariant pfreal = Pf(x, k)
invariant pfcota = origen * Pot(factor , k - n0)

invariant pfreal ≤ pfcota

invariant factor = x / real(n0)
{

// Aumenta el índice de Pf (el exponente de la cota)
k ∶= k + 1;
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// Guarda pfreal y pfcota para uso posterior
var pfreal0 , pfcota0 ∶= pfreal , pfcota;

// Factor real por el que cambia Pf
var facreal ∶= x / real(k);

// Actualización de pfreal y pfcota y demostración de que
// siguen cumpliendo sus invariantes definitorios

// ** pfreal
pfreal ∶= pfreal * facreal;

AvancePf(x, k, facreal );

// ** pfcota
pfcota ∶= pfcota * factor;

calc = {
pfcota;
// Asignación anterior
pfcota0 * factor;
// Invariante sobre pfcota0
{ assert pfcota = origen * Pot(factor , k - n0); }
origen * Pot(factor , k - 1 - n0) * factor;
// Suma de exponentes
origen * Pot(factor , k - n0);

}

// Prueba que pfcota acota a pfreal
// FactorDecreciente(x, k, n0);

assert k > n0;

AcotacionProducto(pfreal0 , pfcota0 , facreal , factor );

assert pfreal ≤ pfcota;

// Demostración del primer y segundo invariante
// (llegado al límite no se dan más vueltas)
if k = n0 + itmax {

calc {
pfreal;
// Acota por pfcota
≤ pfcota;
// Invariante sobre pdfcota
// Valor de k = n0 + itmax
origen * Pot(factor , itmax);
// Definición de itmax
< e;

}
}

}
}

A.4 Floyd-Warshall algorithm
/**
* Floyd -Warshall algorithm (1959)
*
* Minimum path cost in a negative cycle free directed graph.
*
* The absence of negative cycles is set as a precondition.
* However it can be modified to detect the presence of
* negative cycles.
*
* Taken from ∶
* https ∶ //en.wikipedia.org/wiki/–FloydWarshall_algorithm&oldid =710345047
*/
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/**
* A special cost value (infinity) is used to point out that there is no
* connection between two nodes. Dafny doesn 't support "extended real numbers"
* or something similar so an algebraic datatype is used.
*
* Floyd -Warshall algorithm let edge costs be negative , then using negative
* numbers as infinity is not a choice.
*
* A real implementation could use floating point arithmetic according to the
* IEEE 754 standard which provides special values for infinities.
*/

// Extended real numbers with (positive) infinity
datatype xreal = Real(value ∶ real) | Infty

// Type synonym for a graph (a nxn matrix of xreals)
type xgraph = array2 <xreal >

// Less or equal on xreals
predicate method Leq(x ∶ xreal , y ∶ xreal)
{

match y
{

case Infty ⇒ true

case Real(yv) ⇒ match x
{

case Infty ⇒ false

case Real(xv) ⇒ xv ≤ yv
}

}
}

function method Add(x ∶ xreal , y ∶ xreal) ∶ xreal
{

if x.Infty? ∨ y.Infty?
then Infty
else Real(x.value + y.value)

}

/**
* Path formalization.
*
*
* The key definition is "path". Paths are represented as sequences of vertex
* indices (non negative integers) and intermediate nodes cannot appear twice
* (while ends may agree ).
*
* Due to way the Floyd -Warshall algorithm works , a upper bound for
* intermediate vertices has has been added to the definition.
*/

predicate Walk(w ∶ seq <int >, bound ∶ nat)
{

// At least two vertices (an edge)
|w| ≥ 2
∧
// Intermediate nodes are valid and not higher than bound
∀ i | 0 < i < |w|-1 • 0 ≤ w[i] < bound

}

predicate WalkIn(w ∶ seq <int >, bound ∶ nat , edges ∶ xgraph)
reads edges
requires ValidGraph(edges)

{
bound ≤ Size(edges)
∧
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Walk(w, bound)
∧
0 ≤ Start(w) < Size(edges)
∧
0 ≤ End(w) < Size(edges)

}

predicate AnyPath(s ∶ seq <int >, bound ∶ nat)
{

// It is a walk
Walk(s, bound)
∧
// And it doesn 't contain inner loops
∀ i, j | 0 ≤ i < |s| ∧ 0 < j < |s|-1 •

i ≠ j ⟹ s[i] ≠ s[j]
}

function Start(w ∶ seq <int >) ∶ int
requires w ≠ []

{
w[0]

}

function End(w ∶ seq <int >) ∶ int
requires w ≠ []

{
w[|w|-1]

}

predicate Path(s ∶ seq <int >, from ∶ nat , to ∶ nat , bound ∶ nat)
{

AnyPath(s, bound) ∧ Start(s) = from ∧ End(s) = to
}

function Size(graph ∶ xgraph) ∶ nat
reads graph
requires graph ≠ null

{
graph.Length0

}

// The cost of travel thought a path
// (it does not require that the path is actually a path)
function Cost(s ∶ seq <int >, edges ∶ xgraph) ∶ xreal

reads edges
requires edges ≠ null
requires edges.Length0 = edges.Length1

requires ∀ i | 0 ≤ i < |s| • 0 ≤ s[i] < Size(edges)
{

if |s| < 2 then Real (0.0) else Add(edges[s[0], s[1]],
Cost(s[1..] , edges))

}

/*
* Graph are represented as square matrices of costs (xreal
* numbers) with no negative cycles.
*/

predicate ValidGraph(edges ∶ xgraph)
reads edges

{
edges ≠ null
∧
edges.Length0 = edges.Length1
∧
(∀ node | 0 ≤ node < Size(edges) •

edges[node , node] = Real (0.0))
∧
// No negative cycles
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(∀ path , bound ∶ nat |
AnyPath(path , bound)
∧
bound ≤ Size(edges)
∧
Start(path) = End(path)
∧
0 ≤ Start(path) < Size(edges)

•
Leq(Real (0.0) , Cost(path , edges))

)
}

/*
* 'cost ' is the minimum cost of any path in 'graph ' from 'from ' to 'to '
* using nodes whose index is lower than 'bound '
*/

predicate MinCost(from ∶ nat , to ∶ nat , graph ∶ xgraph ,
bound ∶ nat , cost ∶ xreal)

reads graph
requires ValidGraph(graph)

requires bound ≤ Size(graph)
requires from < Size(graph) ∧ to < Size(graph)

{
(∀ path | Path(path , from , to, bound) •

Leq(cost , Cost(path , graph )))
∧
∃ path | Path(path , from , to, bound) • cost = Cost(path , graph)

}

method Floyd(edges ∶ xgraph) returns (dist ∶ xgraph)
requires ValidGraph(edges)

requires Size(edges) > 0

ensures dist ≠ null
ensures dist.Length0 = Size(edges)
ensures dist.Length1 = Size(edges)

ensures ∀ i, j | 0 ≤ i < edges.Length0 ∧ 0 ≤ j < edges.Length0 •
MinCost(i, j, edges , edges.Length0 , dist[i, j])

{

// Initialization
var n ∶= edges.Length0;

dist ∶= new xreal[n, n];

var i ∶ nat , j ∶ nat , k ∶ nat;

j ∶= 0;

while j < n
invariant 0 ≤ j ≤ n

invariant ∀ r, s | 0 ≤ r < n ∧ 0 ≤ s < j •
dist[r, s] = edges[r, s]

{
i ∶= 0;

while i < n
invariant 0 ≤ i ≤ n
invariant 0 ≤ j ≤ n

invariant ∀ r, s | 0 ≤ r < n ∧ 0 ≤ s < j •
dist[r, s] = edges[r, s]

invariant ∀ r | 0 ≤ r < i •
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dist[r, j] = edges[r, j]
{

dist[i, j] ∶= edges[i, j];

i ∶= i + 1;
}

j ∶= j + 1;
}

// The algorithm itself ∶ iterative refinement of upper bounds

k ∶= 0;

// Lemma to prove that initial values are correct
Initialization(edges);

while k < n
invariant 0 ≤ k ≤ n

invariant ∀ r, s | 0 ≤ r < n ∧ 0 ≤ s < n •
MinCost(r, s, edges , k, dist[r, s])

{
j ∶= 0;

while j < n
invariant 0 ≤ j ≤ n

// Preserve
invariant ∀ r, s | 0 ≤ r < n ∧ j ≤ s < n •

MinCost(r, s, edges , k, dist[r, s])

// Advance
invariant ∀ r, s | 0 ≤ r < n ∧ 0 ≤ s < j •

MinCost(r, s, edges , k+1, dist[r, s])
{

i ∶= 0;

while i < n
invariant 0 ≤ j < n
invariant 0 ≤ i ≤ n

// Preserve
invariant ∀ r, s | 0 ≤ r < n ∧ j+1 ≤ s < n •

MinCost(r, s, edges , k, dist[r, s])

invariant ∀ r | i ≤ r < n •
MinCost(r, j, edges , k, dist[r, j])

invariant ∀ r, s | 0 ≤ r < n ∧ 0 ≤ s < j •
MinCost(r, s, edges , k+1, dist[r, s])

// Advance
invariant ∀ r | 0 ≤ r < i •

MinCost(r, j, edges , k+1, dist[r, j])

{
/*
* dist contains at the same time minimum costs
* with bound k and k+1. Still and all , where k
* is an end those minimums coincide.
*/

MinPathBound(i, k, j, edges);

assert MinCost(i, k, edges , k, dist[i, k]);
assert MinCost(k, j, edges , k, dist[k, j]);
assert MinCost(i, j, edges , k, dist[i, j]);

var through_k ∶= Add(dist[i, k], dist[k, j]);
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// It worth taking the path through k
if ¬Leq(dist[i, j], through_k)
{

UpdateBetter(i, k, j, dist[i, k], dist[k, j],
dist[i, j], edges);

dist[i, j] ∶= through_k;
}
else {

UpdateSame(i, k, j, dist[i, k], dist[k, j],
dist[i, j], edges);

}

assert MinCost(i, j, edges , k+1, dist[i, j]);

// The following seems to be unavoidable. Why?

assert ∀ r | r = i • dist[i, j] = dist[r, j];

i ∶= i + 1;
}

j ∶= j + 1;
}

k ∶= k + 1;
}

}

/*
* Auxiliary lemmas
*/

lemma Initialization(edges ∶ xgraph)
requires ValidGraph(edges)

ensures ∀ i, j | 0 ≤ i < edges.Length0 ∧ 0 ≤ j < edges.Length0 •
MinCost(i, j, edges , 0, edges[i, j])

{
// In this case is not even necessary to invoke the absence
// of negative cycles

∀ i, j | 0 ≤ i < edges.Length0 ∧ 0 ≤ j < edges.Length0
ensures MinCost(i, j, edges , 0, edges[i, j])

{
// There is a path whose cost is edges[i, j]

var thePath ∶= [i, j];

assert Path(thePath , i, j, 0);
assert Cost(thePath , edges) = edges[i, j];

// And is the only one

∀ path | Path(path , i, j, 0)
ensures path = thePath

{
if |path| > 2 {

var med ∶= path [1];

assert 0 ≤ path [1] < 0;
}

}
}

}
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/*
* A stretch of a path is a path itself.
*/

lemma PathSplitArePath(path ∶ seq <int >, start ∶ nat , end ∶ nat ,
i ∶ nat , bound ∶ nat)

requires Path(path , start , end , bound)

requires 0 < i < |path|-1

ensures Path(path [..i+1], start , path[i], bound)
ensures Path(path[i..], path[i], end , bound)

{

}

/*
* The total cost of a path can be summed by sections.
*
* We don 't really require that 'path ' is a path , taking
* advantage of the lack of this restriction in PathCost.
*/

lemma PathSplitCost(path ∶ seq <int >, i ∶ nat , edges ∶ xgraph)
requires ValidGraph(edges)
requires 0 ≤ i < |path|

requires ∀ k | 0 ≤ k < |path| • 0 ≤ path[k] < edges.Length0

ensures Add(Cost(path [..i+1], edges), Cost(path[i..], edges))
= Cost(path , edges)

decreases i
{

if i = 0 {
// Base case
return;

}
else if i = |path|-1
{

assert path [..i+1] = path;
assert Cost(path[i..], edges) = Real (0.0);

return;
}

calc {
Cost(path , edges);

Add(edges[path[0], path [1]], Cost(path [1..], edges ));
{ PathSplitCost(path [1..], i-1, edges); }

Add(edges[path[0], path [1]], Add(Cost(path [1..][..i], edges),
Cost(path [1..][i-1..], edges )));

{
assert path [1..][i-1..] = path[i..];
assert path [1..][..i] = path [1..i+1];

}
Add(edges[path[0], path [1]], Add(Cost(path [1..i+1], edges),

Cost(path[i..], edges )));

Add(Add(edges[path[0], path [1]], Cost(path [1..i+1], edges)),
Cost(path[i..], edges ));

Add(Add(edges[path[0], path [1]], Cost(path [..i+1][1..] , edges)),
Cost(path[i..], edges ));

Add(Cost(path [..i+1], edges), Cost(path[i..], edges ));
}

}
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/*
* The sum of the two previous lemmas.
*/

lemma PathSplit(path ∶ seq <int >, start ∶ nat , end ∶ nat ,
i ∶ nat , bound ∶ nat , edges ∶ xgraph)

requires ValidGraph(edges)
requires Path(path , start , end , bound)

requires 0 < i < |path|-1
requires bound ≤ edges.Length0
requires start < edges.Length0
requires end < edges.Length0

ensures Path(path [..i+1], start , path[i], bound)
ensures Path(path[i..], path[i], end , bound)

ensures Add(Cost(path [..i+1], edges), Cost(path[i..], edges))
= Cost(path , edges)

{
PathSplitArePath(path , start , end , i, bound);
PathSplitCost(path , i, edges);

}

/*
* A concatenation of two path is a path under certain conditions ∶
* 1. Ends where they join match.
* 2. Both are optimal paths.
* 3. The optimal cost between the start and end (avoiding the contact
* vertex) exceeds the sum of the costs of the two paths.
*
* A easy handwritten proof can be done by reductio ad absurdum , finding
* a path which , avoiding k, has a cost lower than cij , against (3).
* However , a "easier" proof has been applied instead.
*/

lemma WalkLoop(walk ∶ seq <int >, edges ∶ xgraph , k ∶ nat , r ∶ nat , s ∶ nat ,
loop ∶ seq <int >, cutoff ∶ seq <int >)

requires ValidGraph(edges)
requires WalkIn(walk , k, edges)

// There are two stops in the walk that
// share the same vertex
requires s < |walk|
requires r < s
requires ¬(r = 0 ∧ s = |walk|-1)

requires walk[r] = walk[s]

requires loop = walk[r..s+1]
requires cutoff = walk [..r] + walk[s..]

ensures Cost(walk , edges) = Add(Cost(loop , edges), Cost(cutoff , edges))
{

/*
* A tedious calculation.
* Dafny alone can deal with the two first postconditions.
*/

calc {
Cost(walk , edges);

// First split
{ PathSplitCost(walk , r, edges); }
Add(Cost(walk [..r+1], edges), Cost(walk[r..], edges ));

// Second split , we have 3 sections
{ PathSplitCost(walk[r..], s-r, edges); }
Add(Cost(walk [..r+1], edges), Add(Cost(walk[r..][..s-r+1], edges),

Cost(walk[r..][s-r..], edges )));
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// Slice simplification and loop = walk[r..s+1]
{

assert walk[r..][..s-r+1] = walk[r..s+1];
assert walk[r..][s-r..] = walk[s..];

}
Add(Cost(walk [..r+1], edges), Add(Cost(loop , edges),

Cost(walk[s..], edges )));

// Add is associative and commutative
Add(Cost(loop , edges), Add(Cost(walk [..r+1], edges),

Cost(walk[s..], edges )));

// That 's cutoff
{

// Reduces verification time a lot (~4s)
assert walk[r] = walk[s];

assert cutoff [..r+1] = walk [..r+1];
assert cutoff[r..] = walk[s..];

PathSplitCost(cutoff , r, edges);
}
Add(Cost(loop , edges), Cost(cutoff , edges ));

}

}

/*
* Given a walk between two vertices there is a path between those vertices
* whose cost is lower than that of the walk.
*/

lemma WalkReduce(walk ∶ seq <int >, k ∶ nat , edges ∶ xgraph)
requires ValidGraph(edges)

requires WalkIn(walk , k, edges)

ensures ∃ path • Path(path , Start(walk), End(walk), k)
∧ Leq(Cost(path , edges), Cost(walk , edges))

decreases |walk|
{

// If walk is a path there is nothing to do
if AnyPath(walk , k) {

assert Path(walk , Start(walk), End(walk), k);

return;
}

// When walk is not a path …

var r, s ∶ | 0 ≤ r < |walk| ∧ 0 < s < |walk|-1 ∧ r ≠ s ∧
walk[r] = walk[s];

// Without loss of generality , suppose r < s
if s < r { r, s ∶= s, r; }

// There is at least a loop. Lets remove it.

// At least one of {r, s} is an inner index
assert 0 < s < |walk|-1 ∨ 0 < r < |walk|-1;

// Breaks the walk
var loop ∶= walk[r..s+1];
var cutoff ∶= walk [..r] + walk[s..];

assert Start(loop) = End(loop);
assert WalkIn(loop , k, edges);

assert Start(walk) = Start(cutoff );

var cutoff_cost ∶= Cost(cutoff , edges);
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//var loop_cost ∶= Cost(loop , edges );
var walk_cost ∶= Cost(walk , edges);

WalkLoop(walk , edges , k, r, s, loop , cutoff );

// Loop has non negative cost so Cost(cutoff) ≤ Cost(walk)
LoopCosts(loop , k, edges );

assert Leq(cutoff_cost , walk_cost );

// Induction (as cutoff is strictly smaller)
WalkReduce(cutoff , k, edges);

var path ∶ | Path(path , Start(cutoff), End(cutoff), k)
∧ Leq(Cost(path , edges), cutoff_cost );

assert End(walk) = End(cutoff );
assert Start(walk) = Start(cutoff );

}

/*
* The minimum cost of a path which starts or ends in k using 0..k vertices
* coincides with that of a path whose vertices are vertices in 0..k-1.
* (because k cannot appear as an intermediate vertex ).
*/

lemma MinPathBound(i ∶ nat , k ∶ nat , j ∶ nat , edges ∶ xgraph)
requires ValidGraph(edges)

requires i < edges.Length0
requires j < edges.Length0
requires k < edges.Length0

ensures ∀ cik • MinCost(i, k, edges , k+1, cik) ⟹
MinCost(i, k, edges , k, cik)

ensures ∀ ckj • MinCost(k, j, edges , k+1, ckj) ⟹
MinCost(k, j, edges , k, ckj)

{
}

/*
* Two lemmas to help proving that the update (or the lack of it) in the
* innermost loop is correct.
*/

lemma UpdateBetter(i ∶ nat , k ∶ nat , j ∶ nat , cik ∶ xreal ,
ckj ∶ xreal , cij ∶ xreal , edges ∶ xgraph)

requires ValidGraph(edges)

requires i < edges.Length0
requires j < edges.Length0
requires k < edges.Length0

requires MinCost(i, k, edges , k, cik)
requires MinCost(k, j, edges , k, ckj)
requires MinCost(i, j, edges , k, cij)

requires ¬Leq(cij , Add(cik , ckj))

ensures MinCost(i, j, edges , k+1, Add(cik , ckj))
{

// The cost of any path is higher or equal to cik + ckj

∀ path | Path(path , i, j, k+1)
ensures Leq(Add(cik , ckj), Cost(path , edges))

{
MinPathBound(i, k, j, edges );

if Path(path , i, j, k)
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{
// Definition of cij and cik + ckj < cij

assert Leq(cij , Cost(path , edges ));
}
else {

// Due to MinPathBound (otherwise Path(path , i, j, k))
assert i ≠ k ∧ j ≠ k;

var ind ∶ nat ∶ | 0 < ind < |path|-1 ∧ path[ind] = k;

/*
* The split subpaths costs are higher than cik and ckj
* respectively and the total cost is the sum.
*
* So all paths bounded by k+1 have a cost bounded by
* cik + ckj.
*/

PathSplit(path , i, j, ind , k+1, edges);
}

}

// There is a path whose cost is cik + ckj

var pik ∶ seq <int > ∶ | Path(pik , i, k, k) ∧ Cost(pik , edges) = cik;
var pkj ∶ seq <int > ∶ | Path(pkj , k, j, k) ∧ Cost(pkj , edges) = ckj;

var wij ∶= pik + pkj [1..];

WalkReduce(wij , k+1, edges);

var pij ∶ | Path(pij , i, j, k+1) ∧ Leq(Cost(pij , edges), Cost(wij , edges ));

PathSplitCost(wij , |pik|-1, edges);

// assert Cost(wij , edges) = Add(cik , ckj);
// assert Cost(pij , edges) = Add(cik , ckj);
}

lemma UpdateSame(i ∶ nat , k ∶ nat , j ∶ nat , cik ∶ xreal ,
ckj ∶ xreal , cij ∶ xreal , edges ∶ xgraph)

requires ValidGraph(edges)

requires i < edges.Length0
requires j < edges.Length0
requires k < edges.Length0

requires MinCost(i, k, edges , k, cik)
requires MinCost(k, j, edges , k, ckj)
requires MinCost(i, j, edges , k, cij)

requires Leq(cij , Add(cik , ckj))

ensures MinCost(i, j, edges , k+1, cij)
{

// The cost of any path is higher or equal to cij

∀ path | Path(path , i, j, k+1)
ensures Leq(cij , Cost(path , edges))

{
MinPathBound(i, k, j, edges);

if Path(path , i, j, k)
{

// Definition of 'cij '
assert Leq(cij , Cost(path , edges ));

}
else {

// Due to MinPathBound (otherwise Path(path , i, j, k))
assert i ≠ k ∧ j ≠ k;
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var ind ∶ nat ∶ | 0 < ind < |path|-1 ∧ path[ind] = k;

/*
* The splitted subpathes costs are higher than cik and ckj
* respectively and the total cost is the sum , in the other
* hand cij ≤ cik + ckj.
*
* So all paths bounded by k+1 have a cost bounded by cij.
*/

PathSplit(path , i, j, ind , k+1, edges);
}

}
}

// The minimum path cost is also the minimum walk cost
// between two given nodes
lemma MinWalkCost(walk ∶ seq <int >, bound ∶ nat , cost ∶ xreal , edges ∶ xgraph)

requires ValidGraph(edges)
requires WalkIn(walk , bound , edges)
requires MinCost(Start(walk), End(walk), edges , bound , cost)

ensures Leq(cost , Cost(walk , edges))

decreases |walk|
{

if AnyPath(walk , bound)
{

// Base case (true by definition of MinCost)
}
else
{

// If it 's not a path , there are repeated nodes
assert ∃ r, s | 0 ≤ r < |walk| ∧ 0 < s < |walk|-1 •

r ≠ s ∧ walk[r] = walk[s];

var r, s ∶ | 0 ≤ r < |walk| ∧ 0 < s < |walk|-1 ∧ r ≠ s ∧ walk[r] = walk[s];

// Suppose r ≤ s without loss of generality
if s < r
{

r, s ∶= s, r;
}

// Any of them is an inner index
assert 0 < r < |walk|-1 ∨ 0 < s < |walk|-1;

// Split the path in a loop and the rest
var loop ∶= walk[r..s+1];
var cutoff ∶= walk [..r] + walk[s..];

WalkLoop(walk , edges , bound , r, s, loop , cutoff );

assert Walk(loop , bound);

// Induction using min cost for a loop is 0
StaticCost(Start(loop), bound , edges);

MinWalkCost(loop , bound , Real (0.0), edges);

// Then Cost(walk) = Cost(loop) + Cost(cutoff)
// ≥ Cost(cutoff)

// Induction again cost ≤ Cost(cutoff) ≤ Cost(walk)

assert Walk(cutoff , bound);
assert Start(cutoff) = Start(walk);
assert End(cutoff) = End(walk);

MinWalkCost(cutoff , bound , cost , edges);
}
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}

// The minimum cost from a vertex to itself is 0
lemma StaticCost(i ∶ nat , bound ∶ nat , edges ∶ xgraph)

requires ValidGraph(edges)

requires bound ≤ Size(edges)

requires i < Size(edges)

ensures MinCost(i, i, edges , bound , Real (0.0))
{

var zeropath ∶= [i, i];

assert Cost(zeropath , edges) = Real (0.0);
}

// Loops have non negative cost even if they aren 't paths
lemma LoopCosts(loop ∶ seq <int >, bound ∶ nat , edges ∶ xgraph)

requires ValidGraph(edges)
requires WalkIn(loop , bound , edges)
requires Start(loop) = End(loop)

ensures Leq(Real (0.0), Cost(loop , edges))
{

StaticCost(Start(loop), bound , edges);

MinWalkCost(loop , bound , Real (0.0), edges);
}

A.5 Dijkstra’s algorithm
/**
* Dijkstra algorithm (Edsger Dijkstra , 1959)
*/

/*
* Abstract graph to allow easy implementation as an adjacency list.
*
* Count () provides the number of vertices and the Adjacents(nat)
* function returns a map whose key are the neighbour vertices and
* its value is the cost of the edge which connect them.
*/

trait Graph
{

function method Count() ∶ nat

function method Adjacents(n ∶ nat) ∶ map <int , real >
reads this
requires 0 ≤ n < Count()

ensures n ∉ Adjacents(n)

ensures ∀ node | node in Adjacents(n) •
0 ≤ node < Count()
∧
Adjacents(n)[node] ≥ 0.0

}

/*
* Improved priority queue.
*
* - Priorities can be updated.
* - There are a key and a value.
* - A map is used as its representation.
*/

class PrioQueue
{

// Creates the empty queue
constructor ()
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ensures Elems = map[]
modifies this

// Is the queue empty?
predicate method Empty()

reads this
ensures Empty() ⟺ Elems = map[]

// Sets or update a queue value
method Set(key ∶ nat , value ∶ real)

ensures Elems = old(Elems)[key ∶= value]
modifies this

// Gets the minimum entry in the queue
method Pop() returns (key ∶ nat , value ∶ real)

requires ¬Empty()

ensures key in old(Elems)
ensures value = old(Elems)[key]

ensures ∀ k | k in old(Elems) • old(Elems)[k] ≥ value

// Removes the the element from the table of elements
ensures Elems = map k | k in old(Elems) ∧ k ≠ key • old(Elems)[k]
modifies this

// Abstract representation
ghost var Elems ∶ map <int , real >

}

predicate ValidGraph(graph ∶ Graph)
reads graph

{
graph ≠ null
∧
graph.Count() > 0

}

/*
* A walk is a sequence of connected vertices represented by their indices.
*
* They must be non -empty. Singleton walks are allowed.
*/

predicate Walk(w ∶ seq <int >, graph ∶ Graph)
reads graph
requires ValidGraph(graph)

{
// At least one element
w ≠ []
∧
// Walk vertices are in bounds
(∀ i | 0 ≤ i < |w| • 0 ≤ w[i] < graph.Count ())
∧
// The nodes are connected
(∀ i | 0 ≤ i < |w|-1 • w[i+1] in graph.Adjacents(w[i]))

}

// It says ∶ is w a walk from 0 to node within graph?
predicate WalkTo(node ∶ nat , w ∶ seq <int >, graph ∶ Graph)

reads graph

requires ValidGraph(graph)
requires 0 ≤ node < graph.Count()

{
// A walk from 0 to node
Walk(w, graph)
∧
w[0] = 0
∧
w[|w|-1] = node
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}

// The cost of a walk is the sum of the cost of its composing edges
function WalkCost(w ∶ seq <int >, graph ∶ Graph) ∶ real

reads graph

requires ValidGraph(graph)
requires Walk(w, graph)

{
if |w| = 1 then 0.0 else

graph.Adjacents(w[|w|-2])[w[|w|-1]] + WalkCost(w[..|w|-1], graph)
}

/*
* About distances.
*/

// It says ∶ dist is the distance to node in graph.
predicate DistanceTo(dist ∶ real , node ∶ nat , graph ∶ Graph)

reads graph

requires ValidGraph(graph)
requires 0 ≤ node < graph.Count()

{
// Its a lower bound of the cost of any path
(∀ walk | WalkTo(node , walk , graph) •

dist ≤ WalkCost(walk , graph))
∧
// And there is a path with this cost
(∃ walk • WalkTo(node , walk , graph)

∧ WalkCost(walk , graph) = dist)
}

/*
* Definitions to ensure the correction of the list of links to previous
* nodes in the calculated path from the origin.
*
* The predicate is enunciated in two steps and it states that there is a
* prev cell for each node , whose value could be -1 (if the node is not
* connected with the origin , or not yet) or the index of the previous nodes
* in an optimal path from the origin.
*
* Every non negative cell let return back to the origin and so reconstruct
* a path from there.
*/

predicate ValidPrev(prev ∶ seq <int >, graph ∶ Graph)
reads graph
requires ValidGraph(graph)

{
BasicValidPrev(prev , graph)
∧
∀ i | 0 ≤ i < |prev| • prev[i] ≥ 0 ⟹

BackToZero(i, prev , graph , graph.Count ())
}

predicate BasicValidPrev(prev ∶ seq <int >, graph ∶ Graph)
reads graph
requires ValidGraph(graph)

{
|prev| = graph.Count()
∧
prev [0] < 0
∧
(∀ i | 1 ≤ i < |prev| • prev[i] < 0 ∨ (0 ≤ prev[i] < graph.Count()

∧ i in graph.Adjacents(prev[i])))
}

// It is possible to go back to zero in a bounded number of steps
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predicate BackToZero(i ∶ nat , prev ∶ seq <int >, graph ∶ Graph , steps ∶ nat)
reads graph

requires ValidGraph(graph)
requires BasicValidPrev(prev , graph)
requires 0 ≤ i < graph.Count()

decreases steps
{

steps > 0 ∧ (i = 0 ∨ (prev[i] ≥ 0 ∧
BackToZero(prev[i], prev , graph , steps - 1)))

}

/*
* Function methods to get the path from the origin based on prev.
*
* The auxiliary function includes an extra parameter
* to prove termination.
*/

function method WalkFromPrev(i ∶ nat , prev ∶ seq <int >, graph ∶ Graph) ∶ seq <int >
reads graph
requires ValidGraph(graph)
requires ValidPrev(prev , graph)
requires 0 ≤ i < graph.Count()

requires BackToZero(i, prev , graph , graph.Count ())

ensures WalkTo(i, WalkFromPrev(i, prev , graph), graph)
{

WalkFromPrevAux(i, prev , graph , graph.Count ())
}

function method WalkFromPrevAux(i ∶ nat , prev ∶ seq <int >,
graph ∶ Graph , ghost bound ∶ nat) ∶ seq <int >

reads graph
requires ValidGraph(graph)
requires ValidPrev(prev , graph)
requires 0 ≤ i < graph.Count()

requires BackToZero(i, prev , graph , bound)

ensures WalkTo(i, WalkFromPrevAux(i, prev , graph , bound), graph)

decreases bound
{

(if prev[i] ≥ 0
then WalkFromPrevAux(prev[i], prev , graph , bound -1)
else []) + [i]

}

/**
* Computes the minimum path from the origin (numbered as 0) to the rest of
* vertices.
*
* dist and prev will contain the distance from the origin and the previous
* node in an optimal path from it for each node in the graph. When a node
* is unconnected to the origin -1 will be written in both cells.
*/

method Dijkstra(graph ∶ Graph) returns (dist ∶ array <real >, prev ∶ array <int >)
requires ValidGraph(graph)

ensures dist ≠ null
ensures dist.Length = graph.Count()

ensures prev ≠ null
ensures ValidPrev(prev [..], graph)

ensures ∀ id | 0 ≤ id < graph.Count() • dist[id] ≥ 0.0
⟹ DistanceTo(dist[id], id, graph)
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ensures ∀ id | 0 ≤ id < graph.Count() • dist[id] ≥ 0.0
⟹ dist[id] =

WalkCost(WalkFromPrev(id, prev [..], graph), graph)

ensures ∀ id | 0 < id < graph.Count() • dist[id] < 0.0
⟹ ¬(∃ walk • WalkTo(id, walk , graph))

{
var queue ∶= new PrioQueue ();
var closed ∶= new bool[graph.Count ()];

dist ∶= new real[graph.Count ()];
prev ∶= new int[graph.Count ()];

// Initialization

var i ∶= 0;

while i < graph.Count()
invariant 0 ≤ i ≤ graph.Count()

invariant ∀ j | 0 ≤ j < i • dist[j] = -1.0
invariant ∀ j | 0 ≤ j < i • prev[j] = -1
invariant ∀ j | 0 ≤ j < i • ¬closed[j]

invariant queue.Elems = map[]
{

dist[i] ∶= -1.0;
prev[i] ∶= -1;
closed[i] ∶= false;

i ∶= i + 1;
}

queue.Set(0, 0.0);

dist [0] ∶= 0.0;

ghost var npend ∶= closed.Length;

AllFalse(closed [..]);

Initialization(graph);

while ¬queue.Empty ()

invariant npend = CountFalses(closed [..])

// About the final results

// The distance is negative iff the node has not been visited yet
invariant ∀ id | 0 < id < graph.Count() •

dist[id] < 0.0 ⟺ IsOutside(id, graph , closed [..])

// Nodes which have been visited but are not yet closed , have the
// nearest distance from the closed nodes assigned
invariant ∀ id | 0 < id < graph.Count() • dist[id] ≥ 0.0

⟺ BestApproach(id, graph , closed [..], dist [..], prev [..])

// For the closed nodes , the final distance is already calculated
invariant ∀ id | 0 ≤ id < graph.Count() • closed[id]

⟹ DistanceTo(dist[id], id, graph)

invariant 0 ∉ queue.Elems ⟹ closed [0]

// Prev is valid
invariant ValidPrev(prev [..], graph)

// About the queue and its values

invariant ∀ id | id in queue.Elems • 0 ≤ id < graph.Count()
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invariant ∀ id | 0 ≤ id < graph.Count() •
dist[id] ≥ 0.0 ∧ ¬closed[id] ⟺ id in queue.Elems

invariant ∀ id | id in queue.Elems • dist[id] = queue.Elems[id]

invariant ∀ id, c | id in queue.Elems ∧ 0 ≤ c < graph.Count()
∧ closed[c] • dist[c] ≤ queue.Elems[id]

decreases npend
{

// Keeps a copy of the old close
ghost var closed0 ∶= closed [..];

// Gets the nearer node from the queue
var nearer , nearcost ∶= queue.Pop();

// Closes the node
closed[nearer] ∶= true;

npend ∶= npend - 1;

// Some proofs for the initialization of invariants

CancelOne(closed0 , nearer );

var adjacents ∶= set node | node in graph.Adjacents(nearer );

StillOutside(nearer , graph , closed0 , dist [..], adjacents );

assert ∀ id | 0 < id < graph.Count() ∧ id ∉ adjacents •
dist[id] < 0.0 ⟺ IsOutside(id, graph , closed [..]);

assert nearer ∉ queue.Elems;

// Checks every (not closed) adjacent node for a lower
// distance to it

while |adjacents| > 0
invariant npend = CountFalses(closed [..]);

// About the final results

invariant ∀ id | 0 < id < graph.Count() ∧ id ∉ adjacents •
dist[id] < 0.0 ⟺ IsOutside(id, graph , closed [..])

invariant ∀ id | 0 < id < graph.Count() ∧ id in adjacents •
dist[id] < 0.0 ⟺ IsOutside(id, graph , closed0)

invariant ∀ id | 0 < id < graph.Count() ∧ id ∉ adjacents •
dist[id] ≥ 0.0 ⟺
BestApproach(id, graph , closed [..], dist [..], prev [..])

invariant ∀ id | 0 < id < graph.Count() ∧ id in adjacents •
dist[id] ≥ 0.0 ⟺
BestApproach(id, graph , closed0 , dist [..], prev [..])

invariant ∀ id | 0 ≤ id < graph.Count() • closed[id]
⟹ DistanceTo(dist[id], id, graph)

invariant 0 ∉ queue.Elems ⟹ closed [0]

invariant ValidPrev(prev [..], graph)

// About the queue and its values

invariant ∀ id | id in queue.Elems • 0 ≤ id < graph.Count()

invariant ∀ id | 0 ≤ id < graph.Count() •
dist[id] ≥ 0.0 ∧ ¬closed[id] ⟺ id in queue.Elems
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invariant ∀ id | id in queue.Elems • dist[id] = queue.Elems[id]

invariant ∀ id, c | id in queue.Elems ∧ 0 ≤ c < graph.Count() ∧
closed[c] • dist[c] ≤ queue.Elems[id]

decreases |adjacents|
{

var next ∶ | next in adjacents;

var cost ∶= graph.Adjacents(nearer )[next];

if ¬closed[next] ∧ dist[next] > nearcost + cost
{

// Updates the distance and antecedent

dist[next] ∶= nearcost + cost;
prev[next] ∶= nearer;

queue.Set(next , dist[next ]);
}

i ∶= i + 1;

adjacents ∶= adjacents - {next};
}

}

Unreachables(graph , closed [..], dist [..]);
}

/*
* Functions for readability
*/

// The vertex 'id ' is outside , i.e. it is not reachable from a
// closed node
predicate IsOutside(id ∶ nat , graph ∶ Graph , closed ∶ seq <bool >)

reads graph

requires ValidGraph(graph)
requires 0 < id < graph.Count()

requires |closed| = graph.Count()
{

∀ c | 0 ≤ c < graph.Count() ∧ closed[c] •
id ∉ graph.Adjacents(c)

}

/*
* The distance we have assigned to a frontier node is the best possible from
* the current closed nodes. This is also valid for closed nodes (except for 0).
*/

predicate BestApproach(id ∶ nat , graph ∶ Graph , closed ∶ seq <bool >,
dist ∶ seq <real >, prev ∶ seq <int >)

reads graph

requires ValidGraph(graph)
requires 0 < id < graph.Count()

requires |closed| = graph.Count()
requires |dist| = graph.Count()
requires |prev| = graph.Count()

requires ValidPrev(prev , graph)
{

// The previous ∃ and is closed
prev[id] ≥ 0
∧
closed[prev[id]]
∧
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// The distance is the best from the closed set
dist[id] = dist[prev[id]] + graph.Adjacents(prev[id])[id]
∧
∀ c | 0 ≤ c < graph.Count() ∧ closed[c] ∧ id in graph.Adjacents(c) •

dist[id] ≤ dist[c] + graph.Adjacents(c)[id]
}

/*
* Auxiliary definitions to prove termination.
*/

function CountFalses(s ∶ seq <bool >) ∶ nat
{

if s = [] then 0 else (if s[|s|-1] then 0 else 1) + CountFalses(s[..|s|-1])
}

// When all elements are false , the count gives the array length
lemma AllFalse(s ∶ seq <bool >)

requires ∀ i | 0 ≤ i < |s| • ¬s[i]

ensures CountFalses(s) = |s|
{
}

lemma CancelOne(s ∶ seq <bool >, k ∶ nat)
requires 0 ≤ k < |s|
requires ¬s[k]

ensures CountFalses(s[k ∶= true]) = CountFalses(s) - 1
{
}

/*
* Lemmas
*/

// Any walk has have positive costs
lemma AllWalkPositive(walk ∶ seq <int >, graph ∶ Graph)

requires ValidGraph(graph)
requires Walk(walk , graph)

ensures WalkCost(walk , graph) ≥ 0.0
{
}

// Lemma to prove the invariants at the start of the loop
lemma Initialization(graph ∶ Graph)

requires ValidGraph(graph)

ensures DistanceTo (0.0, 0, graph)
{

var zeropath ∶= [0];

assert WalkTo(0, zeropath , graph);

assert WalkCost(zeropath , graph) = 0.0;

∀ walk | WalkTo(0, walk , graph)
ensures 0.0 ≤ WalkCost(walk , graph)

{
AllWalkPositive(walk , graph);

}
}

/*
* If we close a vertex , the outside vertices which are not adjacent to it
* remains outside.
*/

lemma StillOutside(newcl ∶ nat , graph ∶ Graph , closed ∶ seq <bool >,
dist ∶ seq <real >, adjacents ∶ set <int >)
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// The preconditions of routine
requires ValidGraph(graph)
requires |closed| = graph.Count()
requires |dist| = graph.Count()
requires 0 ≤ newcl < graph.Count()

// Adjacents to the recently closed nodes
requires adjacents = set node | node in graph.Adjacents(newcl)

// The invariant of the main method loop we wanted to preserve
requires ∀ id | 0 < id < graph.Count() •

dist[id] < 0.0 ⟺ IsOutside(id, graph , closed)

ensures ∀ id | 0 < id < graph.Count() ∧ id ∉ adjacents •
dist[id] < 0.0 ⟺ IsOutside(id, graph , closed[newcl ∶= true])

{

}

/*
* When we get the a vertex from the queue , its distance is definitive.
*/

lemma IsTheDistance(id ∶ nat , graph ∶ Graph , closed ∶ seq <bool >,
dist ∶ seq <real >, prev ∶ seq <int >)

// The preconditions of routine
requires ValidGraph(graph)
requires |closed| = graph.Count()
requires |dist| = graph.Count()
requires 0 < id < graph.Count()

// Prev is valid and id is in the frontier
requires ValidPrev(prev , graph)

requires ∀ id | 0 < id < graph.Count() •
(∃ c | 0 ≤ c < graph.Count() • id in graph.Adjacents(c))
⟹ dist[id] ≥ 0.0

requires ∀ i | 0 < i < graph.Count() ∧ dist[i] ≥ 0.0 •
BestApproach(i, graph , closed , dist , prev)

requires BestApproach(id, graph , closed , dist , prev)

requires closed [0]

// For the closed nodes , the final distance is already calculated
requires ∀ id | 0 ≤ id < graph.Count() • closed[id]

⟹ DistanceTo(dist[id], id, graph)

// The property that comes from the min -heap
// requires ∀ c | 0 ≤ c < graph.Count () ∧ closed[c] •
// dist[c] ≤ dist[id]

// Consequence of the min -heap extraction
requires ∀ jd | 0 ≤ jd < graph.Count() ∧ ¬closed[jd] ∧

dist[jd] ≥ 0.0 • dist[id] ≤ dist[jd]

ensures DistanceTo(dist[id], id, graph)
{

// The previous node is closed
assert closed[prev[id]];

// So its distance is final
assert DistanceTo(dist[prev[id]], prev[id], graph);

// (1) We try to prove that there is a walk with dist[id] cost
// using the optimum walk to prev[id]

assert ∃ walk • WalkTo(prev[id], walk , graph)
∧ WalkCost(walk , graph) = dist[prev[id]];
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var walk ∶ | WalkTo(prev[id], walk , graph)
∧ WalkCost(walk , graph) = dist[prev[id]];

var walk ' ∶= walk + [id];

assert WalkTo(id, walk ', graph);

// (2) We try to prove that every other walk has higher cost

∀ walk | WalkTo(id , walk , graph)
ensures dist[id] ≤ WalkCost(walk , graph)

{
// As id ≠ 0, |walk| ≥ 2
assert |walk| ≥ 2;

// Let 's consider some cases depending on the antecedent in the walk
var pr ∶= walk[|walk |-2];

/*
* The idea is that a path cost is higher than dist[j] for sure
* only if j is closed. There is at least a closed node (0) in
* the path.
*/

if closed[pr]
{

/*
* The key elements are ∶
* - dist[id] = dist[pr] + edge(pr , id)
* - dist[pr] ≤ WalkCost(walk [..| walk|-1], graph)
*/

assert dist[id] ≤ WalkCost(walk , graph);
}
else if |walk| > 2
{

var i ∶= |walk| - 2;

// We find the last closed node in the walk
while ¬closed[walk[i]]

invariant 0 ≤ i < |walk|
invariant ∀ j | i+1 ≤ j < |walk|-1 • ¬closed[walk[j]]

decreases i
{

i ∶= i - 1;
}

assert closed[walk[i]];
assert ¬closed[walk[i+1]];

// As walk[i] is closed
assert DistanceTo(dist[walk[i]], walk[i], graph);

assert dist[walk[i]] ≤ WalkCost(walk [..i+1], graph);

assert dist[walk[i+1]] ≥ 0.0;

assert BestApproach(walk[i+1], graph , closed , dist , prev);

calc ≤ {
dist[id];
dist[walk[i+1]];
WalkCost(walk [..i+2], graph);
{ SubWalkCost(walk , graph , i+2); }
WalkCost(walk , graph);

}
}

}
}
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lemma SubWalkCost(walk ∶ seq <int >, graph ∶ Graph , i ∶ nat)
requires ValidGraph(graph)
requires Walk(walk , graph)
requires 0 < i < |walk|

ensures WalkCost(walk [..i], graph) ≤ WalkCost(walk , graph)

decreases |walk| - i
{

if i < |walk|-1
{

calc ≤ {
WalkCost(walk [..i], graph);
// We add a positive number
WalkCost(walk [..i], graph) + graph.Adjacents(walk[i-1])[ walk[i]];
{ assert walk [..i+1][..i] = walk [..i]; }
WalkCost(walk [..i+1][..i], graph)

+ graph.Adjacents(walk [..i+1][i-1])[ walk [..i+1][i]];
WalkCost(walk [..i+1], graph);
// Induction hypothesis
{ SubWalkCost(walk , graph , i+1); }
WalkCost(walk , graph);

}
}

}

/*
* At the end , those nodes which have not been visited by the algorithm
* are unreachable.
*/

lemma Unreachables(graph ∶ Graph , closed ∶ seq <bool >, dist ∶ seq <real >)
// The preconditions of routine
requires ValidGraph(graph)
requires |closed| = graph.Count()
requires |dist| = graph.Count()

requires ∀ id | 0 < id < graph.Count() •
dist[id] < 0.0 ⟺ IsOutside(id, graph , closed [..])

requires ∀ id | 0 < id < graph.Count() •
dist[id] < 0.0 ⟺ ¬closed[id]

requires closed [0]

ensures ∀ id | 0 < id < graph.Count() ∧ dist[id] < 0.0 •
¬(∃ walk • WalkTo(id, walk , graph))

{
∀ id | 0 < id < graph.Count() ∧ dist[id] < 0.0

ensures ¬(∃ walk • WalkTo(id, walk , graph))
{

/*
* Reductio ad absurdum.
*
* Suppose there is a walk to id. As id is outside , no closed
* node connect to it. So its antecedent in the walk is not
* closed. If it is not closed , it is outside. And we iterate.
*
* Finally , we arrive to the conclusion that the origin is not
* closed , against the hypothesis.
*/

if ∃ walk • WalkTo(id, walk , graph)
{

var walk ∶ | WalkTo(id, walk , graph);

if |walk| > 2
{

var i ∶= |walk| - 1;

while i > 1
invariant 1 ≤ i < |walk|
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invariant ¬closed[walk[i]]
{

assert ¬closed[walk[i-1]];

i ∶= i - 1;
}

assert walk [1] in graph.Adjacents (0);
}

}
}

}



Appendix B

Attached material
Both attached CD and the repository at https://github.com/ningit/vaed include the Dafny programs
written in this project. They are organized in directories we will describe below. Source code for
auxiliary programs is also included there.

/
vaed.exe Batch verifier binary
memoria.pdf A .pdf version of this document
exercises Exercises from [MSV12], see Chapter 3
structures Implemented data structures, see Chapter 4
algorithms Implemented algorithms, see Chapter 5
util Auxiliary programs’ code, see Section 2.5

The root directory contains a copy of this document and the binary for the Vaed program. It can be
used to automatically verify all the included .dfy files, although it may take some time. This program
uses Dafny which is not included here. If it is available in the binary path as dafny, Vaed will be able to
find it. Otherwise, its path must be set with the --dafnyexe option.

Exercises

exercises
er*.dfy
er*.dfy
aritmln.dfy

The exercises directory contains all exercises from the first phase
of the project, including those which have been described in Chapter 3.
They are written in Spanish.
The exercises can be found easily looking at their file name. Solved

exercises names start with er while proposed exercises begin with ep.
The number of the chapter and the exercise in [MSV12] follow.

Some exercises have alternative versions, marked with an v2 prefix. aritmnl.dfy includes general
properties about non linear arithmetic which are used in other exercises.

Data structures

The data structures code is in structures directory. Each datatype
goes in a separate folder.
Alternative implementations exist in different files for both

priority queues and stacks, as described in Chapter 4. A simple
test program called Main.dfy is available in stacks.

structures
list

LinkedList.dfy
prioqueue

*BinaryHeap.dfy
stack

*Stack.dfy
Main.dfy
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Algorithms
algorithms

dynamic
floyd.dfy
graph

graph.cs
graph.exe
floyd.dll
map*.dfy

greedy
dijkstra.dfy

The algorithms directory includes the .dfy files for the Floyd-
Warhsall algorithm and Dijkstra’s algorithm.
The Floyd algorithm also includes a C# program graph.cs in

order to apply the algorithm to graphs described in a file. Four
map examples and the binaries are included.

floyd.dll has been generated by Dafny from floyd.dfy.

Utils
The util directory contains auxiliary programs and resources,
described in Section 2.5.
Both dafnyc.pl and partes.pl are Perl scripts. The first

one is a wrapper for Dafny. It calls the verifier with the given
parameters, arranges and colours the verifiers’ output and in-
cludes the line from where the reported errors come from.

partes.pl receives a .dfy file as argument and verifies each
function or method separately.

util
vaed2

vaed.sln
...

dafnyc.pl
partes.pl
dafny.lang

dafny.lang is a GtkSourceView’s language description for syntax highlighting. If included in the
appropriate directory (like ~/.local/share/gtksourceview-3.0/language-specs) it can be used from
Gedit and other applications.

vaed2 contains the batch verifier tool, written in C# and in the form of a Visual Studio (or MonoDe-
velop) solution. The tool can also be built from the command line using msbuild in Visual Studio or
xbuild in Mono.
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