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Facultad de Ciencias F́ısicas

Universidad Computense de Madrid





A mi yayo

”Science is the belief in the ignorance of experts”
R. P. Feynman





The work presented in this doctoral thesis has been funded through a Calvo-Rodés
scholarship from the Instituto Nacional de Técnica Aeroespacial (INTA) and the
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Resumen

Es un hecho emṕırico que hay un desequilibrio quiral absoluto (o ruptura de simetŕıa
especular) en todos los sistemas biológicos conocidos, dónde los procesos cruciales para la
vida, como la replicación, implican estructuras supramoleculares que comparten el mismo
signo quiral (homoquiralidad). Estas estructuras quirales son proteinas, compuestas de
amino ácidos encontrados como L-enantiómeros; y poĺımeros de ADN y ARN y azúcares,
compuestos de R-monocarbohidratos. Basándonos en el hecho de que es quimicamente
imposible lograr una mezcla perfectamente racémica por motivos puramente estad́ısticos,
podemos asumir la presencia de un pequeño exceso enantiomérico inevitable incluso en
una mezcla racémica ’perfecta’. Entonces, en principio, el origen y la evolución de la homo-
quiralidad biológica y de la ruptura espontánea de simetŕıa especular (Spontaneous Mir-
ror Symmetry Breaking, SMSB) en los sistemas qúımicos y biológicos podŕıan explicarse
teóricamente mediante un modelo en el cual un pequeño desequilibrio entre enantiómeros
es amplificado, y el camino más probable para ello es mediante reacciones autocataĺıticas.
Nuestro principal propósito aqúı es probar la capacidad de varios modelos autocataĺıticos
diferentes de amplificar un exceso enantiomérico inicial, ee0, incluso por debajo del dese-
quilibrio esperado (es decir, ee0 < eest).

En este contexto, introducimos y estudiamos el sistema autocatálitico más básico cono-
cido conducente a la amplificación quiral - modelo de Frank - y su capacidad para ampli-
ficar las pequeñas desviaciones estad́ısticas iniciales respecto de la composición racémica
ideal. Dependiendo las condiciones, esta amplificación puede ser sólo temporal, y puede
ser interpretada como una excursión quiral en un espacio de fases dinámicas. Estas excur-
siones quirales se pueden estudiar a través de una combinación de análisis del espacio de
fases, análisis de estabilidad y simulaciones numéricas, con el fin de determinar la forma
en que dependen de si el sistema es abierto, semiabierto o cerrado. También la emer-
gencia de homoquiralidad en autocatálisis enantioselectiva de compuestos que no pueden
transformarse según el conjunto de reacciones de tipo Frank es discutida, con respecto al
controvertido modelo de enantioselectividad ( Limited Enantioselectivity, LES ), integrado
por autocatálisis enantioselectiva y no enantioselectiva acopladas, y que no puede conducir
a SMSB en sistemas cerrados. Ya que la homoquiralidad biológica de los sistemas vivos im-
plica grandes macromoléculas, la capacidad de amplificar (y transmitir a todo el sistema)
esos pequeños excesos enantioméricos es estudiada para dos modelos cinéticos diferentes
de polimerización y copolimerización quiral en sistemas cerrados al flujo de materia y de
enerǵıa, y mostramos los resultados de ajustar el modelo de copolimerización a los datos
experimentales de amplificación quiral de oligopéptidos.

Por último, tanto un modelo de equilibrio qúımico de copolimerización por control de
plantillas como un enfoque probabiĺıstico se presentan para describir los resultados de los
escenarios experimentales de desimetrización inducida propuestos recientemente por Lahav
y su grupo; estos mecanismos de amplificación quirales tienen lugar mediante polimer-
ización controlada por láminas β racémicas, tanto en cristalitos en superficie como en
solución. En este caso, la ruptura de simetŕıa surge de la combinatoria, y no de fenómenos
espontáneos (bifurcación). Estos efectos estad́ısticos /combinatorios/estocásticos no se
deben a las pequeñas fluctuaciones inherentes quirales presentes en todos los sistemas
qúımicos reales , sino a la oclusión aleatoria de aminoácidos anfitriones y huéspedes por
los sitios quirales de la plantilla: los mecanismos propuestos aqúı funcionan aún para las
mezclas racémicas idealmente.
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Abstract

It is an empirical fact that there is an absolute chiral imbalance (or mirror symmetry
breaking) in all known biological systems, where processes crucial for life such as replica-
tion, imply chiral supramolecular structures, sharing the same chiral sign (homochirality).
These chiral structures are proteins, composed of amino acids found as the left-handed
enantiomers (L); and DNA, and RNA polymers and sugars, composed of right-handed
(R) monocarbohydrates. Based on the fact that a perfect racemic mixture is chemically
impossible to achieve on purely statistical grounds alone, we can assume the presence of
an unavoidable tiny enantiomeric excess even in a ’perfect’ racemic mixture. Then, in
principle, the origin and evolution of biological homochirality and Spontaneous Mirror
Symmetry Breaking (SMSB) in chemical and biological systems could be theoretically ex-
plained by a model in which a tiny imbalance of one enantiomer was amplified, and the
most likely path for this is by autocatalytic reactions. Our main purpose here is to test
the ability of some different autocatalytic models to amplify a tiny initial enantiomeric
excess, ee0, even lower than the expected inherent imbalance (i.e., using ee0 < eest).

Then, in this context, we introduce and study the most basic known autocatalytic
system leading to chiral amplification- the Frank model - and its ability to amplify the
initial small statistical deviations from the idealized racemic composition. Depending on
the conditions, this amplification can be just temporary, and it can be interpreted as a
chiral excursion in a dynamic phase space. These chiral excursions can be studied through
a combination of phase space analysis, stability analysis and numerical simulations in order
to determine how they depend on whether the system is open, semi-open or closed. Also
the emergence of homochirality in enantioselective autocatalysis for compounds unable to
transform according to the Frank-like reaction network is discussed with respect to the
controversial limited enantioselectivity (LES) model composed of coupled enantioselective
and non-enantioselective autocatalyses, which cannot lead to SMSB in closed systems.
Since biological homochirality of living systems involves large macromolecules, the ability
to amplify (and transmit to the entire system) those small initial enantiomeric excesses is
studied for two different kinetic models of chiral polymerization and copolymerization in
systems closed to matter and energy flow, and the results from fitting the copolymerization
model to the experimental data on chiral amplification of oligopeptides are shown.

Finally, both a chemical equilibrium model of template-controlled copolymerization
and a probabilistic approach are presented for describing the outcome of the experimental
induced desymmetrization scenarios recently proposed by Lahav and co-workers; these
chiral amplification mechanisms proceed through racemic β-sheet controlled polymeriza-
tion operative in both surface crystallites as well as in solution. In this case, the symmetry
breaking arises from combinatorics, not from spontaneous (bifurcation) phenomena. These
stochastic/statistical/combinatorial effects are not due to the inherent tiny chiral fluctu-
ations present in all real chemical systems, but are due rather to the random occlusion of
host and guest amino acids by the chiral sites of the template: the mechanisms proposed
here work even for ideally racemic mixtures.
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Chapter 1

Introduction: chirality, biological
homochirality and the origin of life

1.1 Introduction

A chiral molecule is one that is not superposable on its mirror image. Human hands are
perhaps the most common example of chirality: The left hand is a non-superposable mirror
image of the right hand; no matter how the two hands are oriented, it is impossible for all
the major features of both hands to coincide (not even by pure rotations or translations).
The term chirality is derived from the Greek word for hand (ξειρ). Chirality plays an

important role in chemistry, where it usually refers to molecules. Chiral molecules have
the property of rotating the plane of polarization of plane-polarized monochromatic light
that is passed through it, this phenomenon is called optical activity; that is why two mirror
images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers
are often designated as right-handed (R or D) and left-handed (L). The feature that is
most often the cause of chirality in molecules is the presence of an asymmetric carbon
atom.1

Synthesis of chiral molecules from achiral substrates (in the absence of directing chiral
agents) results in the formation of equal amounts of both enantiomers, this is the definition
of a racemic mixture, or racemate. By marked contrast, molecules that form the building
blocks of life such as amino acids and sugars only exist as a single enantiomer in nature.
Indeed, in the artificial synthesis experiments carried out by Miller, for example, only
racemates of amino acids were formed [1].

1An asymmetric carbon atom is a carbon atom that is attached to four different types of atoms or four
different groups of atoms.
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8 1. Introduction

Homochirality describes a property of some molecules made up of chiral units. A
molecule is said to be homochiral if all the molecule’s constituent units are of the same
chiral form. In biology, homochirality is a common property of amino acids and sugars.
It is an empirical fact that there is an absolute chiral imbalance (or mirror symmetry
breaking) in all known biological systems, where processes crucial for life such as replica-
tion, imply chiral supramolecular structures, sharing the same chiral sign (homochirality).
These chiral structures are proteins, composed of amino acids almost exclusively found as
the left-handed enantiomers (L); and DNA, and RNA polymers and sugars, with chiral
building blocks composed by right-handed (R) monocarbohydrates.

This raises the fundamental question how these molecules were directed to this asym-
metry in the evolution of biological systems. Over the past few decades, experimental
observations have provided evidence leading to a variety of theories concerning the origins
of biomolecular homochirality [2]. In the absence of a prevalent hypothesis, there is a need
to classify the theories proposed so far: if there is a relationship between cause and effect,
that is a specific chiral field or influence causing the mirror symmetry breaking, the theory
is classified as deterministic; otherwise it is classified as a theory based on chance (in the
sense of randomness) mechanisms.2

Deterministic theories can be further divided into two subgroups: if the initial chiral
influence took place in a specific space or time location (averaging zero over large enough
areas of observation or periods of time), the theory is classified as local deterministic; if the
chiral influence is permanent at the time the chiral selection occurred, then it is classified
as universal deterministic. The classification groups for local determinist theories and

Theories

Deterministic

Universal

Local

Chance

Scheme 1.1: Classification of the various theories of the origins of biomolecular homochirality.

theories based on chance mechanisms can overlap. Even if an external chiral influence
produced the initial chiral imbalance in a deterministic way, the outcome sign could be
random since the external chiral influence has its enantiomeric counterpart elsewhere, this
is represented in Scheme 1.1.

Deterministic theories evolve through three sequential stages. First, a chiral field or in-
fluence creates an initial enantiomeric imbalance in the originally achiral primeval matter.
This is the mirror-symmetry breaking step. Once any kind of imbalance has been created,
several different mechanisms can operate in further chiral enrichment and perhaps ulti-
mately towards homochirality. This second process is the amplification step. Finally, once
a significant enantiomeric enrichment has been produced in a system, the transference of
chirality through the entire system is customary. This last step is known as the chiral
transmission step.

2Another classification for the different theories of the origin of biological homochirality could be made
depending on whether life emerged before the enantiodiscrimination step (biotic theories) or afterwards
(abiotic theories). Biotic theories claim the coexistence of the two enantiomeric kinds of life (each one
having the opposite chiral sign to the other) followed by the extinction of one of them, suggesting that
remains of the extinct chirality sign should be found. Since this is not the case, nowadays biotic theories
are no longer supported.
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In deterministic theories, the enantiomeric imbalance is created due to an external
chiral field or influence, and the ultimate sign imprinted in biomolecules will be due to it.
So the most important process will be that in which any efficient method can create an
initial enantiomeric excess. Thus, for determinist theories, the key process is the mirror-
symmetry breaking step.

The study of deterministic theories is beyond the scope of this thesis, but given their
prolific nature, it is worth mentioning some examples of mechanisms that can yield an
enantiomeric imbalance. Some examples of local deterministic theories are: Circular Po-
larized Light (CPL) on earth as well as in outer space, β-Radiolysis or the magnetochiral
effect [3]. The most accepted universal deterministic theory is the electroweak interation.

1.2 Chance Theories

Chance theories are counterintuitive to most chemists, mainly due to the irreproducibil-
ity of the experiments that could validate them. The scenarios of Spontaneous Mirror
Symmetry Breaking (SMSB) can be included in this category and are the topic of main
interest discussed in the following chapters of the present thesis. Chance and deterministic

Theories

Deterministic

Chance

Mirror-symmetry breaking

Chiral amplification

Chiral transmission

Scheme 1.2: Sequential steps through which chance theories evolve.

theories of the origins of biomolecular homochirality evolve through the same sequential
steps or stages: mirror-symmetry breaking followed by chiral amplification and a possi-
ble chiral transmission; but the importance of each step is different for each group. In
chance theories, the initial enantiomeric excess is inexorable to the system and it is due to
stochastic fluctuations within the ideal racemic system. It is based on the assumption that
a perfect racemic mixture is chemically impossible to achieve: mirror asymmetric states
are in practice unavoidable on purely statistical ground alone [4] (as is further explained
in the following sections). In this scenario, there is a need to amplify the initial stochastic
chiral imbalance through any efficient mechanism of amplification, so the key process in
this case is the amplification step (Scheme 1.2).

Amplification of tiny stochastic imbalances

As already pointed out, the mirror symmetry breaking step is not the key process in
theories based on chance mechanisms since there is an imbalance already due to stochastic
fluctuations over the ideal racemic system. Consider the racemic state as a macroscopic
property described by a binomial distribution, see Fig. 1.1; the experiment of tossing a
coin, where the two possible outcomes are the two enantiomers is a good analogy. The
discrete probability distribution Pp(n,N) of obtaining n successes out of N Bernoulli
trials, where the result of each Bernoulli trial occurs with probability p and the opposite
occurs with probability q = (1 − p) is given by Eq.(1.1). As in the experiment of tossing
a coin, in this case, we assume both events (L or D) to be equiprobable, p = q = 1/2.
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Figure 1.1: The statistical distribution of the
composition of racemic mixtures can be derived
from the binomial distribution, which is char-
acterized by its mean value, µ = N/2 and the
standard deviation, σ =

√
N/2. About 68% of

racemic mixtures (are in dark gray) are within
one standard deviation from the mean value,
while for the remaining 32% (in lighter gray)
the deviation from N/2 is greater.

D-enriched 
mixtures

L-enriched 
mixtures

2Σ = N

P
ro

ba
bi

lit
y

The mean value of this distribution is µ = Np = N/2 and the standard deviation is
σ =

√
Np(1− p) =

√
N/2, then:

Pp(n,N) =
( N

n

)
pn(1− p)N−n. (1.1)

The racemic state is that in which there are equal amounts of L and D enantiomers of a
chiral molecule, in this case, N/2 (the case in which N is odd is disregarded for simplicity).
The discrete probability distribution P (N/2, N) of having exactly N/2 molecules of one
chirality and N/2 of the other, is given by:

P1/2(N/2, N) =
( N

N/2

)(1
2

)N/2(1
2

)N/2
≈

√
2

πN
, (1.2)

using the Stirling’s approximation: N ! ≈
√
2πN

(
N
e

)N
.

Thus the probability of having exactly the same amount of both enantiomers is inversely
proportional to the total number of molecules N . For one mol of a racemic compound,
N = NA ≈ 6.022 · 1023 molecules, this probability becomes P1/2(NA/2, NA) ≈ 10−12. The
most likely mode or configuration is that lying on top of the bell, in this particular case,
this mode is the racemic state (NA)L + (NA)D, but the probability to find such a state is
so small that we can consider it negligible.

For N large, the binomial distribution approaches a normal (Gaussian) distribution.
Following the properties of the normal distribution, about 68% of the values are within one
standard deviation from the mean, this is within the interval µ ± σ. Using the values for
this particular case, the state of the system will lie within the interval NA/2±

√
NA/2 =

3.011·1023±3.9·1011, about 95% of the values are within two standard deviations from the
mean NA/2±2

√
NA/2 = 3.011 ·1023±7.8 ·1011, and about 99.7% lie within three standard

deviations from the mean NA/2±3
√
NA/2 = 3.011·1023±1.7·1012. These results show the

great magnitude of the stochastic dispersion for just one mol in the racemic state, leading
us to affirm that absolute asymmetric synthesis, even in the absence of chiral physical
forces, is in practice unavoidable on statistical grounds alone [4].

That random fluctuations, combined with suitable amplification mechanisms, might
ultimately account for biomolecular homochirality in Nature, was clearly reconized more
than a century ago by Pearson [5] and it was Mills who first reported a quantitative treat-
ment of the statistical fluctuations that might be responsible for the origin of biomolecular
homochirality [6]. The expected number of molecules deviating from the mean value in a
sample withN total number of molecules directly depends onN and is given by σ =

√
N/2.
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It is convenient to define a magnitude describing the degree of chiral imbalance in a
given sample, this magnitude is called enantiomeric excess and depends on the concen-
tration of both enantiomers as follow:

ee =
[L]− [D]

[L] + [D]
(−1 ≤ ee ≤ 1). (1.3)

Also it is customary to define the same quantity as a percentage:

ee(%) =
[L]− [D]

[L] + [D]
· 100%. (1.4)

Then, the expected stochastic enantiomeric excess in a sample due to fluctuations (see
Fig. 1.1) is given by the product of two standard deviations (where σ =

√
N/2) and the

probability (0.68%) for the racemic mixture to lie in this interval:

eest =
0.68√
N

. (1.5)

The magnitude of the statistical fluctuation eest, and so the number of enantiomeric
molecules in excess, eest ·N , depend on the size of the sample N . Let’s consider a feasible
scenario to better understand the magnitude of these fluctuations: If we start with a
millimolar sample (i.e., customary laboratory amount) of 1020 molecules, there is an even
chance of obtaining a product containing an excess of 6.7 ·109 molecules, a huge increase of
eest ·N that is matched by an equally pronounced decrease of eest to 6.7 · 10−11. Even the
most powerful measuring device available today is incapable of detecting such a minuscule
enantiomeric excess.

Regarding chemical evolution, this obviates the need to invoke chiral physical fields
and lends further support to the conviction that homochirality is a ”stereochemical im-
perative” of molecular evolution [7]. Then, the evolution of biological homochirality could
be theoretically explained by a model in which a tiny imbalance of one enantiomer was
amplified, and the most likely path for this amplification step is by autocatalytic reac-
tions. An autocatalytic chemical reaction is that in which the reaction product is itself
a reactive, in other words, a chemical reaction is autocatalytic if the reaction product is
itself the catalyst of the reaction. The possible amplification mechanisms that could have
lead to the emergence of homochirality are the central point of study of the present thesis.

1.3 Aim and outline of the thesis

The primary research goals of the present work are directed towards understanding the
basis of molecular evolution through its origins in prebiotic chemistry, so in this frame
work, most of the effort is dedicated to the theoretical and analytical study of the origin of
biological homochirality and spontaneous mirror symmetry breaking (SMSB) in chemical
systems.

In this context,in Chapter 2, we introduce and study the most basic known autocatalytic
system leading to chiral amplification- the Frank model [8]- and its ability to amplify the
initial small statistical deviations from the idealized racemic composition. Depending on
the conditions, this amplification can be just temporary, and it can be interpreted as a
chiral excursion in a dynamic phase space. These chiral excursions can be studied through
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a combination of phase space analysis, stability analysis and numerical simulations in order
to determine how they depend on whether the system is open, semi-open or closed.

In Chapter 3, the emergence of homochirality in enantioselective autocatalysis for com-
pounds unable to transform according to the Frank-like reaction network is discussed with
respect to the controversial limited enantioselectivity (LES) model composed of coupled
enantioselective and non-enantioselective autocatalyses, which cannot lead to SMSB in
closed systems.

The relationship of the polymerization process with the emergence of chirality is the
central point of study in Chapter 4 since biological homochirality of living systems involves
large macromolecules [9], thus the ability to amplify (and transfer through the entire
system) the small initial enantiomeric excesses due to statistical fluctuations is studied
for two different kinetic models of chiral polymerization and copolymerization in systems
closed to matter and energy flow, and the results from fitting the copolymerization model
to the experimental data [10] on lattice-controlled chiral amplification of oligopeptides are
shown.

Finally, in Chapter 5, both a chemical equilibrium model of template-controlled
copolymerization and a probabilistic approach are presented for describing the out-
come of the experimental induced desymmetrization scenarios recently proposed by La-
hav and co-workers [11]; these chiral amplification mechanisms proceed through racemic
β-sheet controlled polymerization operative in both surface crystallites as well as in
solution. In contrast to the preceding chapters, in this case, the symmetry breaking
arises from combinatorics, not from spontaneous (bifurcation) phenomena. These stochas-
tic/statistical/combinatorial effects are not due to the inherent tiny chiral fluctuations
present in all real chemical systems but are due rather to the random occlusion of host
and guest amino acids by the chiral sites of the template: the mechanisms proposed here
work even for ideally racemic mixtures.
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Chapter 2

Frank model

2.1 Introduction

In 1953, Frank described a simple autocatalytic process leading to the amplification
of a tiny initial enantiomeric excess which is still widely accepted at the present time:
the Frank model. The simple and sufficient model that Frank proposed was based on a
chemical substance which is a catalyst for its own production and an anti-catalyst for the
production of its optical antimer. Actually, Frank did not propose any set of chemical
reactions but of dynamical equations where the concentrations of both enantiomers were
denoted as [n1] and [n2] respectively, and their rate of increase to be given by the following
pair of equations (where time dependence is omitted in the notation for simplicity):

d[n1]

dt
= (k1 − k2[n2])[n1],

d[n2]

dt
= (k1 − k2[n1])[n2], (2.1)

where k1 and k2 are positive. The interaction between n1 and n2 expressed by the second
term on the right side of Eq.(2.1) may be interpreted as a lethal interaction (or as a
tendency to diminish the reproduction rate of the other).

The analytical solutions for Eq.(2.1) are found to be [n1]/[n2] =

[n1]0/[n2]0 e
k2([n1]0−[n2]0)(ek1t−1), this ratio increases at a more than exponential rate

if [n1]0 − [n2]0 is positive (and viceversa). Every starting conditions different to
[n1]0 = [n2]0 lead to one of the asymptotes [n1]0 = 0 or [n2]0 = 0. Thus the equality of
[n1]0 and [n2]0 and so of [n1] and [n2] represents a condition of unstable equilibrium, this
result depending on the presence of the term representing mutual antagonism.

In order to study the sensitivity of the model described in Eq.(2.1) to the miniscule
initial enantiomeric excess, a very dilute initial concentration of a scalemic (non racemic)
mixture is used in the following simulations: the initial concentrations of [n1]0 = 10−6 +
10−15M and [n2]0 = 10−6M yielding an initial chiral excess of ee0 = 5 · 10−10. This is
actually slightly lower than the excess corresponding to the initial concentrations (eest =
6.2 ·10−10). Setting k1 = 5 ·10−5s−1 and k2 = 5 ·10−5s−1M−1 and numerically integrating
over time we obtain the simulations shown in Fig. (2.1a). As shown in Fig. (2.1a), the
production of n1 and n2 undergoes a bifurcation leading to the exclusive presence of one
enantiomeric species after it. The initial enantiomeric excess ee0 = 5 · 10−8% is amplified
up to its maximum value ee = 100%. If we set up equations representing also unspecific
antagonism then:

d[n1]

dt
= (k1 − k2([n1] + [n2]))[n1],

d[n2]

dt
= (k1 − k2([n1] + [n2]))[n2], (2.2)

13
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Figure 2.1: Numerical simulation of Frank’s model described by (a) Eq.(2.1), for which the initial
stochastic enantiomeric excess is amplified up to its maximum value of 100% and (b) Eq.(2.2), for
which the initial stochastic enantiomeric excess is not amplified but preserved. Initial conditions for
both cases: [n1]0 = 10−6 + 10−15M and [n2]0 = 10−6M , and reaction rates: k1 = 5 · 10−5s−1,k2 =
5·10−5s−1M−1. Initial conditions correspond to an ee0 = 5·10−10, slightly lower that the calculated
stochastic excess, eest = 6.2 · 10−10

.

with solutions [n1] + [n2] =
k1/k2

1±e−k1t
. When including unspecific antagonism, any initial

disproportion is preserved, but not amplified. The model is no longer able to amplify tiny
initial enantiomeric excesses. Setting the same parameters as in the example above, the
results of the simulation are those shown in Fig(2.1b).

2.2 Reversible Frank model

A much more realistic scenario based on Frank’s model was proposed in 1983 by Kon-
depudi and Nelson [1]. In this model, two kind of achiral precursors, A and B participate
in the production of the enantiomeric products L and D in two different ways: direct pro-
duction and autocatalytic production (we abandon the notation n1 and n2 to use a more
customary one: L and D), and all the steps are assumed to be reversible. The reaction
scheme studied in the following sections consists of a straight non-catalyzed reaction (1),
an enantioselective autocatalysis (2) and an heterodimerization step (3). Note that, for
the sake of simplicity, A is the only prechiral starting product in this scheme, and L and
D are the two enantiomers of the chiral product:

(1) Production of chiral compound: A
k1

GGGGGGBF GGGGGG

k−1

L, A
k1

GGGGGGGBF GGGGGGG

k−1

D,

(2) Autocatalytic production: A+ L
k2

GGGGGGBF GGGGGG

k−2

L+ L, A+D
k2

GGGGGGGBF GGGGGGG

k−2

D +D,

(3) Hetero-dimerization: L+D
k3

GGGGGGBF GGGGGG

k−3

LD,

(2.3)

where LD is an achiral product that is usually removed from the system at a rate γ. The
elimination of the heterodimer can actually be neglected as long as the mutual inhibition
remains irreversible [2]. It is usually to find this model being called ”Frank’s model” in
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the literature, since it is the most widely used adaptation of the original model nowadays.
Several versions of the original model have been proposed during the last decades: the two
achiral precursors A and B in reactions (1) and (2) [1] can actually be replaced by a single
achiral compound, named A [3] [4]; the direct production described in the reaction (1) can
be totally neglected compared with the autocatalytic reaction (2) [5–7]; and the mutual
inhibition in reaction (3) and the removal of the achiral heterodimer from the system can
be modeled by a direct continuous elimination of both chiral compounds L and D from
the system [7].

When reversible steps in all the reactions are allowed (and it is assumed to be a closed
system) it is capable of [8] (i) amplification of the initially tiny statistical enantiomeric
excesses from ee ∼ 10−8% to practically 100%, leading to (ii) long duration chiral excur-
sions or chiral pulses away from the racemic state at nearly 100% ee, followed by, (iii) the
final approach to the stable racemic state for which ee = 0, i.e., mirror symmetry is recov-
ered permanently. To understand this temporary asymmetric amplification is important
because the racemization time scale can be much longer than that for the complete conver-
sion of the achiral substrate into enantiomers. In order to better understand these chiral
excursions, the Frank model has been studied by combining the information provided by
phase plane portraits, numerical simulation and linear stability analysis [4].

The equilibrium constants for the direct production and the autocatalytic reactions in
Eq.(2.3) are given by:

K1 =
k1
k−1

=
[L]

[A]
=

[D]

[A]
, K2 =

k2
k−2

=
[L]2

[A][L]
=

[D]2

[A][D]
, (2.4)

so the system is under the following thermodynamic constraint:

k1
k−1

=
k2
k−2

. (2.5)

2.3 Results

Focusing our attention on chiral excursions, we make a careful distinction between open,
semi-open or fully closed systems. These system constraints are crucial for determining
both the intermediate and the asymptotic final states of the chemical system. Each case
has been studied using information provided by phase plane portraits and linear stability
analysis.

For obtaining the fixed points and stability of the system, it is convenient to redefine the
differential equations in the variables sums and differences of dimensionless concentrations:
χ = [L̃]+[D̃] and y = [L̃]−[D̃]. The stationary solutions of the kinetic equations for dχ

dτ and
dy
dτ (τ is a dimensionless time parameter) correspond to the steady states of the system.
Generally, there is an (always unstable) unphysical state called U , a racemic state R
and two chiral states Q±. The fixed points correspond to the final asymptotic state (as
τ → ∞) solutions of the kinetic model. Substituting χ = χ∗ + δχ(t), y = y∗ + δy(t), etc.,
into the set of differential equations for χ and y, where χ∗, y∗, ..., denotes a fixed point
solution, we obtain differential equations for the arbitrary perturbations δχ(t), δy(t), ...,
about the fixed point. Then, the Jacobian matrix governs the time dependence of these
perturbations to first order O(δ) in the fluctuations. In order to study the stability of the
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possible homogeneous solutions (generally R and Q±), we calculate the eigenvalues of the
Jacobian matrix evaluated at each of the fixed points solutions.

The constraint imposed by Eq.2.5 must be taken into account at all times in order
to avoid erroneous and artifactual simulations displaying mirror symmetry breaking. In
this aspect, the main point is the issue of kinetic versus thermodynamic control and the
reversibility of the chemical reaction steps, or processes, as crucial elements to take into
account to avoid misinterpretations.

The key variables throughout for the study of the phase plane portraits are the dimen-
sionless chiral polarization, η, and the total chiral mass of the system, χ:

η =
[L̃]− [D̃]

[L̃] + [D̃]
, χ = [L̃] + [D̃], (2.6)

η obeys −1 ≤ η ≤ 1, and represents the order parameter for mirror symmetry breaking
(see Chapter 1).

In the phase space of the dynamical system defined by the kinetic equations of η and
χ there are curves with a special significance. These are the nullclines defined by dχ

dτ = 0

and dη
dτ = 0. The intersections of the curves defined above correspond to the fixed points

of the system. The representation of these curves and the study of its morphology help to
understand the chiral excursion and predict their appearance.

Fig. 2.2 shows the temporal evolution of the L and D chiral monomer concentrations
starting from an extremely dilute total monomer concentration and the very small statis-
tical chiral deviations from the ideal racemic composition for the three different cases.
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Figure 2.2: Temporal behavior (logarithmic scale) of the individual enantiomer concentrations [L]
and [D], in cases of chiral symmetry breaking in the a) open, b) semi-open and c) closed systems
(L and D have been amplified by a factor of 10). Initial concentrations: [L]0 = (10−6 + 10−15)M ,
[D]0 = 10−6M (ee0 = 5 · 10−8%) and [A] = 1M . Rate constants: k1 = 10−4s−1, k−1 = 10−6s−1,
k2 = 1s−1M−1 and k−2 = 0.5s−1M−1. For the case (a) k3 = 1s−1M−1, (b) k3 = 1s−1M−1 and
k−3 = 10−3s−1, and (c) k3 = 20s−1M−1 and k−3 = 10−4s−1 All the values correspond to the
situations in which either the expected final stationary state is the chiral one (open case, g < gcrit)
or a chiral excursion is observed (semi open and closed systems). In figures of simulations, we
always display original variables [L], [D], [LD] and ee = ([L] − [D])/([L] + [D]), etc. as function
of time t. Initial conditions correspond to an ee0 = 5 · 10−10, slightly lower than the intrinsic
stochastic excess, eest = 6.2 · 10−10.
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Open system

For an open system, the prechiral component A is assumed to be constant and instead
of having the heterodimer dissociate into monomers, we set k−3 = 0 and remove the
heterodimer from the system at a fixed rate γ̄, that is,

L + D
k3→ LD, (2.7)

LD
γ̄→ ∅. (2.8)

The stationary solutions for the open system reveals four steady states: besides an un-
physical state, denoted as U , there is a Z2 pair of chiral solutions Q± and a racemic
state R. The linear stability analysis determines that the final stable state can be either
racemic or chiral, depending on the system parameters’ values. The key parameter in this
case, is a ratio between reaction rates called g and defined as g = k−2/k3; the chiral
state is found to be the stable if g < gcrit ≤ 1, where gcrit = (

√
1 + 16u − 1)/8u and

u = k1k3[A]/(k2[A] − k−1)
2. Thus, a necessary but not sufficient condition to achieve a

final stable chiral state is k3 > k−2. That is, the chiral state is stable if and only if the
heterochiral interactions are favored over the homochiral ones. Fig. 2.2a shows the the
temporal evolution of [L], [D] and η for the case in which permanent symmetry breaking
is expected.

The direct monomer production step (k1) tends to racemize the system leading to
final ee values strictly less than unity: the monomer production step reduces the range of
parameters’ values for which stable mirror symmetry breaking can occur, and the chiral
solutions are no longer 100% chiral.

Are there chiral excursions found in the open system model? A chiral excursion holds
when the enantiomeric excess η departs from a small initial value, evolves to some maxi-
mum absolute value and then decays to the final value of zero. The nullclines for this case
show, depending on the parameters’s values, three possible intersections, R and Q± for
g < gcrit (Fig. 2.3a, corresponding to Fig. 2.2a) or a single intersection R for g > gcrit
(indicating that the racemic state is the only possible solution, Fig. 2.3b); in qualitative
agreement with the stability analysis. We set g > gcrit to ensure a final racemic state (see
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Figure 2.3: Nullclines for the (a),(b) open, (c) semi-open and (d) closed systems (for more in-
formation on the parameters’ values, see Ref. [4]). The dη/dτ = 0 and dχ/dτ = 0 nullclines are
plotted in black and red, respectively. The black (red) arrows indicate the regions of phase space
where η (χ) increases or decreases.

Fig. 2.3b) but then we find no numerical evidence for such temporary chiral excursions.
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This can be understood qualitatively from inspection of the nullclines: the initial condi-
tions (dilute monomer concentration and statistical chiral fluctuation) corresponds to a
initial point located at tiny values of both χ and η. In this situation, the system approaches
the single possible intersection of curves, R, and it is impossible for the chiral excess to
increase, not even temporarily. On the other hand, if we set the parameters to ensure a
final chiral state, g < gcrit (see Fig. 2.3a), the system approaches the racemic state R,
but before its arrival, it is attracted to one of the other possible two chiral fixed points
where it stays forever, provided the system is maintained out of equilibrium. The chiral
symmetry is permanently broken, and there is no excursion such as we have defined it.

Semiopen system

For the semi-open case, we do not remove the heterodimer from the system (and allow
the back reaction to homodimers), although we still keep [A] constant.

In this case, we find negative concentrations in the chiral states Q±, so clearly, for this
scheme, the chiral states are also unphysical states. Even if the linear stability analysis
implies extremely long algebraic expressions, an inequality analysis over the racemic state
shows that two of the three corresponding eigenvalues are negative and the other one is
null, concluding that the racemic state R is marginally stable (see Fig. 2.2b). The final
outcome will always be the racemic state. There is no stable mirror symmetry broken
solution when the heterodimer dissociates back into the chiral monomers. Nevertheless,
the system can have temporary chiral excursions (see Fig. 2.2b and Fig. 2.3c).

Closed system

There is no flow of material into or out of the system, thus [A] is not constant in this
situation.

The dimensionless concentrations are subject to the constraint [Ã] = [C̃]− ([L̃]+ [D̃])−
2[L̃D], where [C̃] = (k3/k1)[C] and [C] is the total initial concentration, being constant in
time.

As before, we find unphysical chiral solutions Q± since they imply negative monomer
concentrations (χ < 0). Thus, the only physically acceptable solution is the racemic one
R, and this is (at least marginally) stable.

The nullclines for this case, show a single intersection R indicating that the racemic
state is the only possible solution, in qualitative agreement with the stability analysis.
The final outcome will always be the racemic state. There is no stable mirror symmetry
broken solution for a closed system (to matter and energy). Nevertheless, the system can
have temporary chiral excursions (see Fig. 2.2c and Fig. 2.3d).

2.4 Conclusions

• Enantioselective autocatalysis [2], when coupled to other reactions implying chiral
catalysts, may lead to SMSB. In the Frank model [5], enantioselective autocatalysis am-
plifies the chiral fluctuations by the coupling with a ”mutual inhibition” reaction that
determines (by removing the chiral products/catalysts in racemic composition) the in-
crease of the ee of the catalyst available for autocatalysis.
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• Temporary chiral excursions are observed for closed and semi-open systems and
can be explained through phase space analysis, stability analysis and numerical simula-
tions. Such chiral excursions may be experimentally observed and could be mistaken for
a transition to a chiral state.

In the closed system (neither inflow nor outflow), total mass is conserved and tempo-
rary symmetry breaking can occur but never permanent symmetry breaking: SMSB is a
kinetically controlled emergence of chirality, however, the system is resistant to the even-
tual racemization that occurs much later than the time necessary to exhaust the initial
achiral products.

For the semi-open case, LD is not removed and we allow for its dissociation into
chiral monomers. There is no mass balance but temporary symmetry breaking can arise.

• A recent kinetic analysis of the Frank model in closed systems applied to the Soai
reaction [9] indicates that in actual chemical scenarios, reaction networks that exhibit
SMSB are extremely sensitive to chiral inductions due to the presence of inherent tiny
initial enantiomeric excesses [8].

Finally, Mauksch and Tsogoeva have also previously indicated that chirality could
appear as the result of a temporary asymmetric amplification [10, 11].
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[9] Soai, K., Shibata, K. T., Morioka, H. and Choji, K. Nature 378, 767 (1995).

[10] Mauksch, M., Tsogoeva, S. B., Wei, S. and Martynova, I. M. Chirality 19, 816 (2007).

[11] Mauksch, M. and Tsogoeva, S. B. Chem. Phys. Phys. Chem. 9, 2359 (2008).





Chapter 3

Limited enantioselective (LES) au-
tocatalytic model

3.1 Introduction

Enantioselective autocatalysis is the key reaction that may lead to SMSB on coupling
to reactions that amplify the enantiomeric excess (ee) generated by statistical fluctuations
about the ideal racemic composition (or induced by small chiral polarizations). Clearly,
for a system in conditions that allow a chemical thermodynamic equilibrium to be reached
(i.e. a closed system with a uniform distribution of matter, temperature, and energy), the
final outcome must be the racemic state. However, in a system with a nonuniform energy
distribution (e.g. energy absorption by only some of the species of the system, or open to
matter exchange with the surroundings), the final stable stationary state may be chiral,
as has been already seen for the Frank model of SMSB in open systems.

In a Frank-like network a necessary condition for SMSB is that the heterochiral inter-
action between products/catalysts is favored compared to the homochiral interaction [1].
This is the case in the majority of chiral organic compounds, as can be inferred from the
number of chiral compounds that crystallize as racemic crystals compared to those yielding
a racemic mixture of enantiopure crystals (racemic conglomerates) [2]. However, this last
group includes significant compounds in prebiotic chemistry, as for example, several amino
acids. The emergence of chirality in enantioselective autocatalysis for compounds which do
not follow Frank-like schemes is investigated here for the limited enantioselectivity (LES)
model composed of coupled enantioselective and non-enantioselective autocatalyses.

The LES model [3] is composed of an enantioselective autocatalytic reaction coupled
to the corresponding nonenantioselective autocatalysis, and was proposed originally as a
SMSB alternative to the Frank model [4]. The basic model [3] is defined by the following
chemical transformations.

(1) Production of chiral compound: A
k1

GGGGGGBF GGGGGG

k−1

L, A
k1

GGGGGGGBF GGGGGGG

k−1

D,

(2) Autocatalytic production: A+ L
k2

GGGGGGBF GGGGGG

k−2

L+ L, A+D
k2

GGGGGGGBF GGGGGGG

k−2

D +D,

(3) Limited enantioselectivity: A+ L
k3

GGGGGGBF GGGGGG

k−3

L+D, A+D
k3

GGGGGGGBF GGGGGGG

k−3

D + L.

(3.1)

21
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In both models (Frank and LES) the enantioselective autocatalysis in reaction (2) is cou-
pled to a reaction leading to the decrease of the racemic composition of chiral catalysts:
in Frank because of the ”mutual inhibition” between enantiomers and in LES because of
the reverse reaction of the non-enantioselective autocatalysis (3). In contrast to the Frank
model, LES is able to account for two important facts: namely, (i) the enantioselectivity
of any chiral catalyst is limited because of reaction (3), and (ii) the kinetic link between
mirror conjugate processes arises from the reversibility of the catalytic stage [3]. The in-
verse reaction of the non-enantioselective autocatalysis (reaction (3)) substitutes for the
mutual inhibition reaction in the Frank model or formation of the heterodimer (L + D →
P).

The equilibrium constants for the direct production and the autocatalytic reactions in
this case are given by:

K1 =
k1
k−1

=
[L]

[A]
=

[D]

[A]
, K2 =

k2
k−2

=
[L]2

[A][L]
=

[D]2

[A][D]
, K3 =

k3
k−3

=
[L][D]

[A][L]
=

[D][L]

[A][D]
,

(3.2)

so the system is under the following thermodynamic constraint:

k1
k−1

=
k2
k−2

=
k3
k−3

. (3.3)

For a closed system, the dimensionless concentrations are subject to the constraint [Ã] =
[C̃] − ([L̃] + [D̃]), where [C̃] = (k3/k1)[C] and [C] is the total initial concentration, being
constant in time.

The linear stability study is performed by following the same procedures explained in
Chapter 2: to obtain the stationary solutions, we redefine the differential equations in
the variables sums and differences of dimensionless chiral concentrations, χ = [L̃] + [D̃]
and y = [L̃] − [D̃], and calculate the steady states of dχ

dτ and dy
dτ . The system has four

steady states: besides an unphysical state, denoted as U , there is a Z2 pair of chiral
solutions Q±, and a racemic state R. The stability of the asymptotic racemic solution
is governed by the algebraic sign of the associated eigenvalues. Performing an inequality
analysis over the racemic state it is found that the condition for SMSB in LES may occur
when, in addition to k2 >> k1 and k2 > k3, the condition g < gcrit where g = k−2/k−3

and gcrit ≈ (1 − k3/k2)/(1 + 3k3/k2) holds. Obviously this cannot be achieved when the
thermodynamic constraint of equation 3.3 is fulfilled (see Ref. [5]).

Previous reports had claimed SMSB in this model; contradictory reports concerning
this were consequence [6] of the use of a set of reaction rate constants which do not fulfill
the principle of detailed balance.

A new scenario for SMSB in compounds for which the homochiral interactions are
more favored than the heterochiral ones, i.e. for reactions that cannot follow a Frank-like
model or scheme, is that of the dramatic experimental reports on the deracemization of
racemic mixtures of crystals and on the crystallization from boiling solutions [7], [8], [9],
[10], [11], [12]. This probably also occurs for other phase transitions, as indicated by a
recent example on sublimations [13].

In spite of some controversy about the actual mechanisms acting in this SMSB, the
experimental reports all agree that the final chiral state is a stationary state; for instance
a mechano-stationary state in the case of wet grinding of racemic crystal mixtures [9],
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[10], [11] and due to the presence of temperature gradients (system without a uniform
temperature distribution) in the case of deracemizations and crystallizations in boiling
solutions [7], [8]. Only when the final conditions are those of constant energy input to the
system and constant entropy production output to the surroundings, can the system be
maintained away from the racemic state in a stationary manner. Note that this raises the
question if the LES model could lead to SMSB as a stationary stable state when the system
possesses a non-uniform temperature distribution, as is the case of the recent reports of
the deracemization of racemic conglomerates. In the following section, we will discuss the
possibility and necessary conditions for SMSB in the LES autocatalytic model driven by
external reagents and under a temperature gradient.

3.2 Results

LES cycle driven by an external reagent

Following Section 3.1, the LES model in closed systems, and under experimental con-
ditions able to achieve chemical equilibrium, can give rise to neither spontaneous mirror
symmetry breaking (SMSB) nor kinetic chiral amplifications. However, it is able to lead
to SMSB, as a stationary final state, in thermodynamic scenarios involving a cyclic net-
work if the reverse reaction of the nonenantioselective autocatalysis, which gives limited
inhibition on the racemic mixture, is driven by an external reagent, that is, in conditions
that keep the system out of chemical equilibrium.

Herein, it is of interest to consider the LES model considering the nonenantioselective
autocatalysis driven by a constant concentration of external reactants, X and Y in the
reaction (3) as follows:

(1) Production of chiral compound: A
k1

GGGGGGBF GGGGGG

k−1

L, A
k1

GGGGGGGBF GGGGGGG

k−1

D,

(2) Autocatalytic production: A+ L
k2

GGGGGGBF GGGGGG

k−2

L+ L, A+D
k2

GGGGGGGBF GGGGGGG

k−2

D +D,

(3) Limited enantioselectivity:

A+ L+ Y
k3

GGGGGGBF GGGGGG

k−3

L+D +X, A+D + Y
k3

GGGGGGGBF GGGGGGG

k−3

D + L+X.

that is, an open system with X and Y matter exchange with the surroundings. 1

The stability analysis previously carried out for LES in closed systems can be applied
here by formally substituting k3 → [Y ]k3 and k−3 → [X]k−3 in the relevant expressions
for the static solutions and eigenvalues (for a detailled explanation see Ref. [14]). Note
that the principle of microreversibility requires:

k1
k−1

=
k2
k−2

(3.4)

And the dimensionless total system concentration is defined by C̃ = Ã+ L̃+ D̃.

1Notice that, regarding the substrate and the final products, the reaction network is a cyclic one with
permanent consumption and production of X and Y , respectively (or of Y andX depending on the reaction
flow direction in the cycle).
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After obtaining the temporal asymptotic R and Q± stationary solutions, it is sufficient
to establish the stability criteria of the final state in terms of the racemic solution R
alone (algebraic expressions for Q± are usually much more complex). The stability of time
asymptotic racemic solution is governed by the algebraic signs of the associated pair of
eigenvalues: stability in state R requires both of these eigenvalues to be negative, λ1,2(R) <
0. The first expression λ1(R) < 0 is always negative, whereas the second λ2(R) can be
positive or negative depending on the values of the parameters. The critical parameter g
in this case is defined as g = k−2

[X]k−3
, and the racemic state is stable (λ2(R) < 0) if and

only if g > gcrit, where:

gcrit(u) = − 1

8C̃

{
4C̃(h− r) + C̃2h2 + 2C̃2hr − 3C̃2r2 + 4u− 2C̃u(h+ r) + u2

+ (C̃(r − h) + u)

√
C̃2(h+ 3r)2 + 8C̃(2 + h+ 3r)− 2C̃(h+ 3r)u+ (4 + u)2

}
.

(3.5)

The dimensionless parameters appearing on Eq.(3.5) are defined as:

u =
k−1

k1
, h =

k2
[X]k−3

, r =
[Y ]k3
[X]k−3

. (3.6)

Since g > 0 always, studying the sign of gcrit we can obtain conditions for the final
asymptotic states, gcrit is found to be real and positive if and only if h > r and

C > Cmin =
u+ 2ru

h− r
+ 2

√
u(h− r) + r2u2

(h− r)2
. (3.7)

Thus, if either of these two conditions is not satisfied (either h ≤ r or C ≤ Cmin), then
gcrit < 0 and because g is always positive, there can be no values of g satisfying g < gcrit,
and consequently the only stable state will be R, the racemic one. So, we can conclude
that the racemic state will be stable under two possible conditions:

R is stable if

{
h ≤ r or C ≤ Cmin = u+2ru

h−r + 2
√

u(h−r)+r2u2

(h−r)2

h > r and C > Cmin and g > gcrit(u).
(3.8)

Obviously, an unstable racemic state implies a final stable chiral outcome Q±, so we can
write the only condition that must be fulfilled for the chiral states Q± to be stable as:

Q± is stable if h > r and C > Cmin and g < gcrit(u). (3.9)

All simulations performed by numerical integration show, at long reaction times, the
achievement of either a racemic or a chiral final state in accord with the predictions
summarized in Eq.(3.8) and Eq.(3.9), respectively. The numerical simulations (see below)
reveal a clear picture of the chiral final state in complete accord with the theoretical
bifurcation scenario depicted by the equations obtained. After the bifurcation point giv-
ing the transition from the racemic state to the chiral state, the racemic solution is a
metastable state with respect to the more stable degenerate chiral solutions. Furthermore,
the calculated χ values for all the racemic and metastable chiral states and of the chiral
solutions agree at the level of the numerical error with the values obtained in the numerical
simulations.
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(a) Exergonic transformation:
k1/k−1 = 1 · 10−5 ≈ 0

(b) Non-exergonic transformation:
k1/k−1 = 1

Figure 3.1: Examples of the time evolution of the LES reaction network to achieve the final chiral
stable state (g > gcrit), corresponding to systems showing an enantioselective autocatalysis much
faster than the nonautocatalytic reaction (k2 >> k1), for (a) an exergonic reaction (k−1/k1 ≈ 0)
and (b) a nonexergonic reaction (u = 1). The final state obeys the criteria of Eq.(3.8) and Eq.(3.9),
that is, when h > r or C > Cmin, and the final concentrations agree with those calculated from
the asymptotic solutions (t → ∞). Initial conditions: [A]0 = 0.1M , [L]0 = 10−10 + 10−20M ,
[D]0 = 10−10M and [Y ]0 = [X ]0 = 0.01M . Reaction rates: (a) k1 = 10−4s−1, k−1 = 10−9s−1,
k2 = 10s−1M−1, k−2 = 10−4s−1M−1, k3 = 10s−1M−2, k−3 = 0.5s−1M−1; (b) k1 = 10−4s−1,
k−1 = 10−4s−1, k2 = 10s−1M−1, k−2 = 10s−1M−1, k3 = 100s−1M−2 and k−3 = 5000s−1M−2.
Initial conditions correspond to an ee0 = 5·10−11, considerably lower than the calculated stochastic
excess, eest = 6.2 · 10−8.

Fig.3.1 shows two examples of the time evolution for the LES reaction network under
conditions leading to a final chiral stable state. For the same reaction parameters, the
change of k−3 (or X) may lead to chiral or racemic final states. This simple change of
one of the ten reaction parameters leads to the change of three (h, r, and C) of the five
dimensionless parameters. The first example (3.1a) corresponds to an exergonic reaction
(k1/k−1 = k2/k−2 = 1 · 10−5) and the second example (3.1b) illustrates a nonexergonic
transformation (k1/k−1 = k2/k−2 = 1). Both examples show how the deracemization
occurs later than that of the transformation of A to D and L.

Conversion of the cyclic LES model into a Frank model. If reaction (3) is replaced
by the reaction 2A + Y = D + L + X, the cyclic LES system transforms into a cyclic
Frank-like reaction network, which can also be solved exactly for the asymptotic analytic
solutions. For all simulated examples [14] for the same reaction parameters but using the
above mutual inhibition reaction instead of reaction (3), no significant differences were
observed between both models. All cases exhibit the transition between the chiral and
racemic states for the same reaction parameters and lead to similar final concentrations.
This suggests that the importance of the inverse reaction in (3) and of the (forward) mutual
inhibition in the Frank model is due to the decrease of racemic composition regardless
of whether or not it leads to the partial or total destruction of a racemic mixture. To
bring these results closer to applied chemistry topics and to the emergence of chirality
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in prebiotic chemistry, a speculative but plausible scenario is discussed in Ref. [14]. We
assume as possible a cyclic reaction network composed of the Strecker amino acid synthesis
and the Strecker amino acid degradation and propose stereoselectivity requirements for a
reasonable applied chemistry scenario.

LES in a temperature gradient

Consider now the LES scheme described by Eq. 3.1 in a temperature gradient: this
permits the reaction rates to vary spatially in the system, from one place to another,
and might provide a way to achieve mirror symmetry breaking. The reverse reaction of
(3) in one region (compartment) could be faster that the reverse of (2) in the other.

Scheme 3.1: LES in two compartments
with volumns V and V ∗ each held at
different temperatures T ∗ > T and in-
terconnected by an internal flow a of
material.

And then mixing could bring the hot and cold mate-
rial into contact. We model this by extending the ba-
sic LES scheme in 3.1 to a closed two-compartment
system with volumes V, V ∗; each compartment held
at a uniform temperature, T ∗ > T , and internally
coupled by a constant internal flow or recycling a.
The concentrations, and reaction rates for the sec-
ond compartment are labeled by an asterisk, see Fig.
3.1.

The corresponding rate equations for the two-
compartment system have been derived in [15]. As
before, for setting up a stability analysis it is con-
venient to employ the sums and differences of the
concentrations χ = [L] + [D], y = [L] − [D],
χ∗ = [L∗] + [D∗] and y∗ = [L∗] − [D∗]. The
rate equations satisfy the constant mass constraint:

V ([A] + χ) + V ∗([A∗] + χ∗) = C, where C is the total conserved mass in the complete
two-compartment system. In Ref. [16] it is demonstrated that a temperature gradient and
internal flow are by themselves, not enough to produce a bifurcation.

Certain thermodynamic relationships hold among the reaction rates in both compart-
ments. These will be used to prove that SMSB is also impossible for the scheme presented
in Section 3.1 in a background temperature gradient. Following this demonstration, we
then introduce the variant of LES that can and does lead to SMSB.

From Arrhenius-Eyring, the forward (and reverse) reaction rates for reaction i at tem-
peratures T ∗ (idem for T , T < T ∗) are [17]

k∗i =
(kBT ∗

h

)
e−

∆Gi(T
∗)

RT∗ , k∗−i =
(kBT ∗

h

)
e−

∆G
−i(T

∗)

RT∗ , (3.10)

where ∆Gi(T ) = ∆Hi −T∆Si denotes the difference in free energy between the activated
state (transition state) and the reactants, while ∆G−i(T ) = ∆H−i − T∆S−i is the free
energy difference between the activated state (transition state) and the products; H and S
denote the enthalpy and entropy, respectively. Clearly, once the values of the ki are chosen
for the reference compartment at T , we are not free to independently choose the reaction
rates k∗i at the higher temperature T ∗.

The fundamental microreversibility condition in Eq.(3.3) ( ki
k−i

= K(T )), together with
Arrhenius-Eyring implies ∆G−i −∆Gi ≡ ∆∆G, that is, the difference of the free energy
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differences ∆∆G must be independent of i, that is, independent of the specific ith reaction.
This implies that the individual double differences in enthalpy and in entropy must also
be independent of reaction i, so we must also have ∆∆H = (∆H−i −∆Hi) and ∆∆S =
(∆S−i −∆Si).

This also gives us an expression for calculating K, as K(T ) = e
∆∆H
RT e−

∆∆S
R The inverse

reaction rates are obtained through the constraint Eq.(3.3) as k−i =
ki

K(T ) .

We also note that if the constraint Eq.(3.3) is satisfied at one specific temperature T ,
then it will automatically hold at all others, that is

k∗i
k∗−i

= K(T ∗) = e
∆∆H
RT∗ e−

∆∆S
R , (1 ≤ i ≤ 3). (3.11)

The ratio of the equilibrium constants is given by

K(T ∗)

K(T )
= exp

(∆∆H

R

( 1

T ∗
− 1

T

))
. (3.12)

In view of the gradient T < T ∗, the putative condition, which could conceivably lead
to symmetry breaking in the limit of small values of a 2:

k−2 < k−3, k2 > k3 at T and k∗−2 < k∗−3, k∗2 > k∗3 at T ∗, (3.13)

is incompatible with the constraints in Eqs. (3.3,3.11). This condition (3.13) is inspired
by the observation that for a → 0, the two compartments are practically isolated from
each other and can be treated as approximately independent. These could be then the
necessary conditions for obtaining an unstable racemic solution in each compartment. But
they are incompatible with microreversibility.

Secondly, the analysis in Section 3.1 suggests that SMSB might occur when the inverse
reaction of (3) in one region is faster than the inverse reaction of (2) in the other region.
Taking microreversibility into account, the only way this might be achieved is, for example,
by arranging for

k−2 > k−3, k2 > k3 at T and k∗−2 < k∗−3, k∗2 < k∗3 at T ∗, (3.14)

but this is forbidden by virtue of Eq.(3.12), which is satisfied by the ratio of the equilibrium
constants. So a temperature gradient and internal flow are by themselves, not enough to
produce a bifurcation. Actually, no spatially varying temperature profile is sufficient, as
can be seen by partitioning the closed system into a number of sufficiently small regions
within which the local temperature is approximately uniform.

LES in a temperature gradient and compartmentalized autocatalysis (2)
and (3)

The condition k∗−3 > k−2 and k∗3 < k2 is possible thermodynamically in a
thought experiment that assumes, in addition to the presence of a temperature gra-
dient, the separation of the autocatalysis reactions in the different temperature re-
gions of the system; the nonenantioselective autocatalysis is confined to the com-
partment at higher temperature (T ∗), whereas the enantioselective autocatalysis is
localized within the compartment at the lower temperature (T ), see Scheme 3.2.

2The algebraic intricacy of the model is already such that we are unable to obtain useful and manageable
analytic closed form expressions for the conditions leading to the instability of the racemic solution, and the
situation is even worse for obtaining analytic information regarding the possible stationary chiral solutions.
We appeal instead to chemically inspired conjectures that can be tested numerically for coherence and
compatibility with microreversibility.
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Scheme 3.2: Limited enantioselectiv-
ity (LES) in two compartments with
volumns V and V ∗ each held at differ-
ent temperatures T ∗ > T and intercon-
nected by an internal flow a of material
and enantioselective autocatalysis sep-
arated from non-enantioselective auto-
catalysis.

For specific values of the reaction network param-
eters (concentrations and rate constants at T and
T ∗) and of the system parameters (V , V ∗, and a),
the final stable state can be a chiral stationary state
of high ee. This occurs when the autocatalysis (2)
is more effective than the uncatalyzed plain reac-
tion (1) (k2 >> k1 and k∗2 >> k∗1) and k∗−3 > k−2

while k∗3 < k2. However, these conditions in the two-
compartment system are probably necessary but not
sufficient.

Fig. 3.2 displays characteristic examples of such
simulations obtained by numerical integration of the
corresponding differential equations (see Ref. [16])
modified assuming the presence or absence of the
transformations (2) or (3) in each compartment.
Reasonable reaction parameters were used assum-
ing a very slow uncatalyzed reaction (1) and good
autocatalysis (2) and (3). In the case of SMSB, the

evolution of the species concentrations can be qualitatively described to be composed by
three stages, as follows: (i) evolution of the concentrations of A, D, and L to equalize
their concentrations in both compartments (can not be seen in the examples of Fig. 3.2
because of the equal initial concentrations in both compartments), followed by (ii) con-
version of the species toward the racemic steady state and finally, (i) amplification of this
persistently small ee to a high final ee in the case of SMSB (bifurcation), or else racem-
ization in the case of a racemic final state. When the internal flow value a is very small,
then the concentration equalization between both compartments occurs later than the
transformation of the species, and then racemization dominates over the enantioselective
amplification for any initial ee. The LES system of Fig. 3.2 can lead to SMSB at a very
low total concentration of the reactants ([A]0+[D]0+[L]0). Furthermore, the achievement
of the bifurcation leading to SMSB, when the condition k∗−3 > k−2 and k∗3 < k2 is fulfilled,
occurs below a critical value of the total concentration; above this critical concentration,
the system evolves to the racemic state, and below it to the chiral state. Fig. 3.2 shows
an example of how the increase of concentration values -from micromolar to millimolar
order- leads from SMSB to a racemic final stationary state (compare middle column and
right columns of Fig. 3.2). This critical concentration value depends also on the value of
the exchanging flow a with respect to the compartment volumes V and V ∗.

A phase and stability analysis of this system would in principle establish the mathe-
matical dependence of all the system variables in an expression for its critical parameter;
even for this case, obtaining exact expressions for the conditions that must be satisfied
to obtain SMSB is not possible, it is useful to map out the regions in chemical param-
eter space in which the racemic state is unstable and bifurcates to chiral solutions (see
Ref. [16]).

3.3 Conclusions

• The LES model may lead to SMSB in a cyclic network with uniform temperature
distribution if the reverse reaction of the nonenantioselective autocatalysis is driven by
an external reagent (i.e. in conditions that keep the system out of chemical equilibrium).
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(a) (b) (c)

Figure 3.2: Simulations of the LES model in two compartments at different temperature (T and
T ∗) and enantioselective autocatalysis separated from non-enantioselective autocatalysis under the
condition k∗−3 > k−2 and k∗3 < k2. Constant rates and parameters values: k∗1 = 10−7s−1, k∗−1 =
10−11s−1, k∗

2
= k∗−2

= 0, k∗
3
= 10s−1M−1, k∗−3

= 10−3s−1M−1, k1 = 10−9s−1, k−1 = 10−16s−1,
k2 = 102s−1M−1, k−2 = 10−4s−1M−1, k3 = k−3 = 0, V = V ∗ = 10L and a = 0.1L · s−1 (for
T = 275K and T ∗ = 413K). Initial conditions: (a) [A]0 = 10−6M , [L]0 = 10−11M , [D]0 = 10−11M ,
[A∗]0 = 10−6M , [L∗]0 = 10−11 + 10−21M and [D∗]0 = 10−11M , then ee0 = 5 · 10−11, considerably
lower than the calculated stochastic excess, eest = 1.9 ·10−7, (b) [A]0 = 10−11M , [L]0 = 5 ·10−7M ,
[D]0 = 5·10−7M , [A∗]0 = 10−11M , [L∗]0 = 5·10−7+10−20M and [D∗]0 = 5·10−7M , corresponding
to an ee0 = 10−14M , in this case the calculated stochastic excess, eest = 8.8 · 10−10M , (c) [A]0 =
10−10M , [L]0 = 5 · 10−4M , [D]0 = 5 · 10−4M , [A∗]0 = 10−10M , [L∗]0 = 5 · 10−4 + 10−5M
and [D∗]0 = 5 · 10−4M , that is ee0 = 0.0099, substantially higher than the stochastic excess,
eest = 2.7 · 10−11.

In such conditions the system can evolve, for certain reaction and system parameters,
towards a chiral stationary state, amplifying a tiny initial enantiomeric excess (even lower
than the calculated eest).

Some analogies of such a cycle with those of the proposals of primordial autocatalytic
cycles [18], [19], [20], [21] suggest that the quest for the emergence of chirality in chemical
evolution should be jointly studied with that of these premetabolic cycles.

• The LES model is able to lead to SMSB (as a stationary final state), in a two-
compartment model if both autocatalytic reactions are spatially separated at different
temperatures in different compartments but coupled under the action of a continuous
internal flow.

Numerical simulations using reasonable chemical parameters suggest that an ade-
quate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of
the typical temperature gradients found there and the role of inorganic solids mediating
chemical reactions in an enzyme-like role (see Ref. [15]). The more relevant feature of
this LES scenario is its ability to exhibit SMSB at very low reactant concentrations: the
effect on the SMSB dependence of the minimal internal flow rate and of the reaction rate
inequality k∗−3 > k−2, and the variability range for SMSB of these parameters increases
when the total system concentration C decreases, i.e. the probabilities for SMSB to occur
increase in a prebiotic scenario.
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Chapter 4

Chiral polymerization and copoly-
merization

4.1 Introduction

Biological homochirality of living systems involves large macromolecules, therefore a
central point is the relationship of the polymerization process with the emergence of chi-
rality. This hypothesis has inspired recent activity devoted to modeling efforts aimed at
understanding mirror symmetry breaking in polymerization of relevance to the origin of
life. The models so proposed [1–5] are by and large, elaborate extensions and general-
izations of Franks original paradigmatic scheme. [6] Sandars [1] introduced a detailed
polymerization process plus the basic elements of enantiomeric cross inhibition as well as
a chiral feedback mechanism in which only the largest polymers formed can enhance the
production of the monomers from an achiral substrate. He treated basic numerical studies
of symmetry breaking and bifurcation properties of this model for various values of the
number of repeat units N . All the subsequent models cited here are variations on San-
dars’ original theme. Brandenburg and coworkers [3] studied the stability and conservation
properties of a modified Sandars’ model and introduce a reduced N = 2 version, including
the effects of chiral bias. In ref. [2], they included spatial extent to study the spread and
propagation of chiral domains as well as the influence of a background turbulent advection
velocity field. The model of Wattis and Coveney [4] differs from Sandars’ in that they allow
polymers to grow to arbitrary lengths N and the chiral polymers of all lengths, from the
dimer and upwards, act catalytically in the breakdown of the achiral source into chiral
monomers.

The model introduced by Saito and Hyuga [5] gives rise to homochiral states but dif-
fers markedly from Sandars’ in that it does not invoke the enantiomeric cross inhibition,
allowing instead for reversibility in all the reaction steps. Their model requires open flow,
which is the needed element of irreversibility. A different model which stands apart from
the above group is that of Plasson et al. [7] They considered a recycled system based on
reversible chemical reactions and open only to energy flow and without any (auto)catalytic
reactions. A source of constant external energy (the element of irreversibility) is required
to activate the monomers. This energy could be introduced into the system in a physical
form, say, as high energy photons. A system of this kind, limited to dimerizations, was
shown to have nonracemic stable final states for various ranges of the model parameter
values and for total concentrations greater than a minimal value. A simple APED model
like this (activation-polymerization-epimerization-depolymerization) can be considered for
describing the emergence of chiral solutions within a non-catalytic framework for chiral
polymerization; the minimal APED model for dimerization can lead to the spontaneous
appearance of chiral oscillations. The nature of these oscillations in the enantiomeric excess

31
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Scheme 4.1: The polymerization model. The L (red) and D (blue) monomers reversibly associate
into the growing homochiral polymer chains. The heterodimer formation must be treated separately
to avoid double counting and thus ensure that the total system mass is conserved in a closed system.

-as a consequence of oscillations of the concentrations of the associated chemical species-
, their relevance and implications in prebiotic chemistry is discussed in Ref. [8].

The polymerization models referred to above are defined only for open flow systems
which exchange matter and energy with the exterior. A constant source of achiral precursor
is usually assumed. An unrealistic consequence is that homochiral chains can grow to
infinite length. By contrast, most experimental procedures are carried out in closed and

spatially bounded reaction domains and are initiated in far from equilibrium states [9–16].
It is thus crucial to have models compatible with these experimentally realistic boundary
and initial conditions. The most immediate consequences are that polymer chains can
grow to a finite maximum length and that the total system mass is constant.

4.2 The polymerization model

The model we introduce and study here, is modified and extended from that of Wattis
and Coveney [4] which is in turn, a generalization of Sandar’s scheme [1]. Three salient
differences that distinguish our model from these and other previous ones [1–5, 17] are that
we (i) consider polymerization in closed systems (so that no matter flow is permitted with
an external environment), (ii) we allow for reversible reactions in all the steps and (iii)
we also include the formation (and dissociation) of the heterodimer. While heterodimer
formation was originally contemplated in ref. [1], it has been silently omitted from all
the subsequent models [2–4, 17] that derive therefrom. We assume there is an achiral
precursor A which can directly produce the chiral monomers L1 and D1 at a slow rate
ǫ as well as be consumed in processes in which homopolymers of all lengths catalyze the
production of monomers. The specific reaction scheme we study here is composed of the
following steps, where 0 ≤ f ≤ 1 is the fidelity of the feedback mechanism:

A
ǫ

GGGGBF GGGG

ǫ−
L1, A+Q

k
2 (1 + f)

GGGGGGGGGGGGGBF GGGGGGGGGGGGG

k−
2 (1 + f)

L1 +Q, A+ P

k
2 (1− f)

GGGGGGGGGGGGGGBF GGGGGGGGGGGGGG

k−
2 (1− f)

L1 + P, (4.1)

and

A
ǫ

GGGGBF GGGG

ǫ−
D1, A+ P

k
2 (1 + f)

GGGGGGGGGGGGGBF GGGGGGGGGGGGG

k−
2 (1 + f)

D1 + P, A+Q

k
2 (1− f)

GGGGGGGGGGGGGGBF GGGGGGGGGGGGGG

k−
2 (1− f)

D1 +Q. (4.2)
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Here Q =
∑N

n=1 nLn, and P =
∑N

n=1 nDn represent a measure of the total concentrations
of left-handed and right handed polymers. We allow for the monomers themselves to
participate in these substrate reactions: hence N ≥ n ≥ 1, where N is the maximum chain
length. The central top and bottom reactions in Eqs. (4.1 and 4.2) are enantioselective,
whereas those on the right hand side are non-enantioselective: the model contains the
features of limited enantioselectivity (see 3).

The following reactions are schematized in Fig.4.1: The monomers combine to form
chirally pure polymer chains denoted by Ln and Dn, according to the isodesmic [18]
stepwise reactions for 1 ≤ n ≤ N − 1,

Ln + L1

kLL
⇀↽
k−
LL

Ln+1, Dn +D1

kDD
⇀↽

k−
DD

Dn+1, (4.3)

and inhibition, or the chain end-termination reactions for N − 1 ≥ n ≥ 2:

Ln +D1

kLD
⇀↽
k−
LD

DLn, Dn + L1

kDL
⇀↽
k−
DL

LDn. (4.4)

These upper limits for n specified in Eqs.(4.3,4.4) ensure that the maximum length for all
oligomers produced (or consumed) by these reaction sets, both the homo- and heterochiral
ones, is never greater than N .

In the remainder of the present chapter we will consider here the natural and chiral
symmetric rate assignments kLL = kDD, kLD = kDL and likewise for the inverse rates,
k−LL = k−DD and k−LD = k−DL

1. There are then four independent rate constants.

We include a separate reaction for the heterodimer formation and dissociation:

L1 +D1

kh⇀↽

k−h
H ≡ L1D1, (4.5)

where kh = (kLD + kDL)/2 and k−h = (k−LD + k−DL)/2. Note that these latter two rate
constants are automatically determined from the above choice and that L1D1 = D1L1 of
course. This completes the specification of the model’s reactions.

Note that in the elementary reaction steps, in the rate constants, and in the corre-
sponding differential rate equations (see Ref. [19]), the left-right symmetry of the model is
manifest, that is, possesses a discrete Z2 symmetry. This symmetry can be broken spon-
taneously by the dynamical solutions of the differential rate equations, thus this model is
apt for studying spontaneous mirror symmetry breaking.

By lifting the Z2 degeneracy in the reaction rates, e.g., allowing for kLL 6= kDD and
thus leading to more independent rate constants for describing the reaction set, we could
study the influence of explicit chiral bias in the model. As this is not the aim of this work,
we will not consider it here.

The differences in the Gibbs free energy ∆G0 between initial and final states should be
the same in all the reactions listed in Eqs.(4.1 and 4.2), which implies the thermodynamic
constraint on the following forward and reverse reaction constants (see also [5]): ǫ

ǫ−
= k

k−
.

1Though not considered here, the effects of explicit chiral bias (e.g., that induced by external physical
fields) can also be studied with this model by lifting the Z2 degeneracy in the reaction rates, e.g., allowing
for kLL 6= kDD, etc., leading to a maximum of eight independent rate constants for describing the reaction
set in Eqs. (4.3,4.4).
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Rate-equation theory as employed in chemical kinetics is used to describe the differential
rate equations of the achiral source, the monomers, as well as the homo- and heterochiral
oligomers belonging to this reaction network (the kinetic equations for the concentrations
that follow from these elementary steps can be found in Ref. [19]). The system is described
by a set of 4N − 2 kinetic equations that satisfy (the overdot denotes time derivative):

[Ȧ] + 2[Ḣ ] +
N∑

n=1

n([L̇n] + [Ḋn]) +
N−1∑

n=2

(n+ 1)
(
[ḊLn] + [L̇Dn]

)
= 0. (4.6)

4.3 The copolymerization model

Consider now a simple model for the copolymerization of two chemically distinct
monomers displaying a wide variety of product sequence compositions. The model we
introduce and study here is an appropriately modified and extended version of the one
considered a few years ago by Wattis and Coveney [20]. The main important differences

Scheme 4.2: The copolymerization model. The (L)-chiral (red) and (D)-chiral (blue) monomers
reversibly associate into the growing homochiral (top) or heterochiral (bottom) copolymer chains.
Because the system is closed, both the heterodimer (second line) and hetero-trimer (third and
fourth lines) reactions must be treated separately to avoid double counting and thus ensure that
the total system mass is conserved in a closed system (see text for an explanation).

compared to prior and related models are that we (1) consider polymerization in closed

systems [21], so that no matter flow is permitted with an external environment– and (2)
we allow for reversible monomer association steps. We also correctly include the formation
(and dissociation) of the heterodimer [21]. It turns out this must be treated on a separate
basis in order to avoid double counting, which if left unchecked, would lead to a violation
in the constant mass constraint. Once the heterodimer is treated correctly, this implies
that the hetero-trimer must also be treated separately. Beyond this, the remainder of the
hetero-oligomers can be treated in a uniform way.

First, we introduce the notation to be used. Polymers are classified by three quanti-
ties: the number of L monomers of which it is composed (subscript l), the number of D
monomers which it contains (subscript r) and the final or terminal monomer in the chain,
denoted by a superscript. In this scheme, the monomers are denoted by L ≡ CL

1,0 and

D ≡ CD
0,1 ; pure homopolymers are denoted by Ln ≡ CL

n,0 and Dn ≡ CD
0,n ; all copolymer
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chains CL
l,d or CD

l,d with l, d ≥ 1 are heteropolymers. Note also that chains of the form CL
0,n

and CD
n,0 are forbidden. The corresponding time-dependent concentrations are denoted by

lower case variables: e.g., cLl,d(t) and cDl,d(t).

As before, we assume there is an achiral precursor A which can directly produce the
chiral monomers CL

1,0 and CD
0,1 as well as be consumed in processes in which homopolymers

of all lengths catalyze the production of monomers. :

A
ǫ

GGGGBF GGGG

ǫ−
L1, A+Q

k
2 (1 + f)

GGGGGGGGGGGGGBF GGGGGGGGGGGGG

k−
2 (1 + f)

L1 +Q, A+Q

k
2 (1− f)

GGGGGGGGGGGGGGBF GGGGGGGGGGGGGG

k−
2 (1− f)

D1 +Q,

and

A
ǫ

GGGGBF GGGG

ǫ−
D1, A+ P

k
2 (1 + f)

GGGGGGGGGGGGGBF GGGGGGGGGGGGG

k−
2 (1 + f)

D1 + P, A+ P

k
2 (1− f)

GGGGGGGGGGGGGGBF GGGGGGGGGGGGGG

k−
2 (1− f)

L1 + P .

In this case, Q =
∑N

r=1 rC
L
r,0, and P =

∑N
n=1 sC

D
0,s. Again, we must obey the thermo-

dynamic constraint ǫ
ǫ−

= k
k−

.

The overall basic scheme must be broken down into several special subcases, especially
important so as to avoid undesired double counting of the heterodimer and heterotrimer
reactions, see Fig. 4.2.

The formation of chirally pure polymer chains denoted by cLn,0 and cD0,n, for 1 ≤ n ≤
N − 1 is described by the homo-polymerization reactions:

CL
n,0 + CL

1,0

kLL
GGGGGGGBF GGGGGGG

k−LL

CL
n+1,0, CD

0,n + CD
0,1

kDD
GGGGGGGGBF GGGGGGGG

k−DD

CD
0,n+1,

where N is the maximum chain length permitted. In constrast to the polymerization
model presented in 4, in the present model, we assume that chains can continue growing
by adding monomers of both configurations.

In contrast to the polymerization model presented in 4.2, in this model (as in the
original one for open systems [20]), the polymeric chains that have taken up the ”wrong”
chirality monomer can continue to grow. Thus, we we allow for the further growth of these
chains by adding monomers of either chirality:

CL
l,d + CL

1,0

kLL
GGGGGGGBF GGGGGGG

k−LL

CL
l+1,d, CD

l,d + CD
0,1

kDD
GGGGGGGGBF GGGGGGGG

k−DD

CD
l,d+1,

CL
l,d + CD

0,1

kLD
GGGGGGGGBF GGGGGGGG

k−LD

CD
l,d+1, CD

l,d + CL
1,0

kDL
GGGGGGGGBF GGGGGGGG

k−DL

CL
l+1,d.

Note that even if we have the information about the composition, we can only know
the chirality of the last monomer attached to the chain, we have no information regarding
the specific sequence. Then, for all practical purposes, CL

1,1 ≡ CD
1,1, and this suggests

using the following notation: C1,1 ≡ CL
1,1 ≡ CD

1,1, and to define a unique direct constant

rate: kh = kLD+kDL

2 , and an inverse one k−h =
k−
LD

+k−
DL

2 . Note that if kLD = kDL, then
kh = kLD = kDL. Due to these characteristics, we will treat the heterodimer in a different
way compared with the other hetero-polymers. The reaction of the heterodimer formation
is therefore:
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CL
1,0 + CD

0,1

kh
GGGGGGBF GGGGGG

k−h

C1,1,

implying the thermodynamic constraint kLD

k−
LD

= kDL

k−
DL

.

The heteropolymers formed from the addition of a monomer to a heterodimer:

C1,1 + CL
1,0

khL
GGGGGGGBF GGGGGGG

k−hL

CL
2,1 C1,1 + CD

0,1

khD
GGGGGGGGBF GGGGGGGG

k−hD

CD
1,2,

where khL = kLL+kDL

2 , khD = kDD+kLD

2 and k−hL =
k−
LL

+k−
DL

2 , k−hD =
k−
DD

+k−
LD

2 . Note
that if kLL = kDD and kLD = kDL, then khL = khD, and if k−LL = k−DD and k−LD = k−DL,
then k−hL = k−hD. Again, the left-right symmetry of the model is manifest. It possesses a
discrete Z2 symmetry that can be broken spontaneously by the dynamical solutions of the
differential rate equations.

The total number of equations for describing the system as a function of maximum
chain length N is:

#eqs = 6+2(N − 1)+ 2(N − 2)+ 2(N − 3)+ (N2 − 7N +12)+2(N − 3) = N(N +1),

so from the computational point of view, the number of equations grows quadratically
with the maximum chain length N . As remarked earlier, the complete reaction scheme
must satisfy mass conservation in a closed system, implying that the mass variation rate
must be strictly zero:

0 = 2ċ1,1 + 3(ċL2,1 + ċD1,2) +

N∑

n=1

n
(
ċLn,0 + ċD0,n

)
+

N−1∑

n=2

(n+ 1)
(
ċL1,n + ċDn,1

)

+
N−2∑

n=2

(n+ 2)
(
ċL2,n + ċDn,2

)
+

N−1∑

l=3

N−1∑

d=1

(l + d)
(
ċLl,d + ċDl,d

)
, (4.7)

where the overdot stands for the time-derivative.

4.4 Results

Results are quantified in terms of a variety of convenient chiral measures. The per-
cent enantiomeric excess values of the oligomers with homochiral sequence are calculated
according to (2 ≤ n ≤ N)

een =
[Ln]− [Dn]

[Ln] + [Dn]
. (4.8)

A global or ensemble-averaged measure of the degree of symmetry breaking is provided
by the number-weighted enantiomeric excess η:

η =

∑N
n=2([Ln]− [Dn])∑N
n=2([Ln] + [Dn])

. (4.9)

The average chain length of the homopolymers is given by:

n̄ =

∑N
n=2 n([Ln] + [Dn])∑N
n=2([Ln] + [Dn])

, (4.10)
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and the root mean square deviation in the homochiral chain length are:

(n2)1/2 ≡
√

< (n− n̄)2 > =
√

< n2 > − < n >2. (4.11)

The angular brackets <> denote averaging with respect to the ensemble
∑

n([Ln]+ [Dn]),
similar to Eq.(4.10). It is important to remember that these are all time-dependent quan-
tities.

The entropy production rate in an irreversible process is a measure of the dissipation
in that process. At equilibrium, the entropy production rate vanishes and is an extremum
[22]. This production has been investigated recently for reversible versions of the Frank
model [23, 24]. In those simple models, the behavior of the entropy produced near the chiral
symmetry breaking transition as well as its subsequent temporal development, depends
on whether the chemical system is open or closed to matter flow (see Ref. [19]).

For reactions obeying mass action kinetics, the entropy produced in any chemical re-
action can be calculated straightforwardly in terms of the individual elementary reaction
rates [22, 25]. The rate of entropy production is the sum over the difference of the forward
(Rjf ) and reverse (Rjr) reaction rates multiplied by the natural logarithm of the ratio of
the forward and reverse rates [25]

σ(t) = R∗
∑

j

(Rjf −Rjr) ln
(Rjf

Rjr

)
≥ 0, (4.12)

where the sum runs over each elementary reaction step j, and R∗ = 8.314 Jmol−1 K−1 is
the gas constant. Since our reaction scheme is set up for closed systems, equilibrium is
reached after a racemization time scale tracem is reached, which suggests a further measure
is provided by the total net entropy produced from the start of the reactions through chiral
symmetry breaking, then on to final racemization, when the system reaches chemical and
thermodynamic equilibrium and σ(t > tracem) = 0

σT =

∫ tracem

0
σ(u) du. (4.13)

This quantifies the total dissipation over the complete history of the chemical transforma-
tions under study.

The central point here is studying the sensitivity of the above reversible polymeriza-
tion and copolymerization networks to minuscule initial enantiomeric excesses, so a very
dilute initial concentration of a non racemic mixture was employed in the calculations.
Results corresponding to the polymerization model (section 4.2) are shown in Fig. 4.1a.
The enantiomeric excess η (solid black lines), starts off at zero value until a time on the
order of t ∼ 10 at which the excess increases rapidly to nearly 100% at SMSB. This is
followed by a gradual stepwise decrease characterized by the appearance of quasi-plateaus
of approximate constancy: η falls to about 90% at t ∼ 103, then to about 60% at t ∼ 106,
staying approximately level until the final decrease to zero occurring at a time on the
order of t ∼ 1011 − 1012. The system has racemized on this time scale. Results for the
copolymerization model (section 4.3) are shown in Fig. 4.1b. In this case, the behaviour of
the enantiomeric excess η (start at zero, rapid increase to near 100%, stepwise decrease to
zero, final racemization) is qualitatively similar to that shown in Fig.4.1a. No appreciable
differences in η can be discerned when we include the monomer, that is, start the sums at
n = 1 (slow chiral erosion proceeding though quasi-steady plateaus).
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(a) Polymerization
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Figure 4.1: Time evolution of the average enantiomeric excess η (black lines) and the individual
chain-length dependent enantiomeric excesses een (family of solid curves). The dashed curve shows
the chiral excess for the monomers ee1. Initial concentrations: [L1]0 = 10−6+10−15M and [D1]0 =
10−6M (ee0 = 5 · 10−10, eest = 6.2 · 10−10), [A]0 = 2M , the rest of initial concentrations are zero.
Reaction rates: ǫ = 2 · 10−5s−1, ǫ− = 10−10s−1, k = 2.0s−1M−1, k− = 10−5s−1M−1, f = 0.9,
kLL = kDD = 1.0s−1M−1, kLD = kDL = 103s−1M−1, k−

LD
= k−

DL
= 1.0s−1, k−

LL
= k−

DD
=

10−5s−1. For (a) near t ≃ 104, the sequence of curves corresponds to n = 2 to n = 12 top to
bottom and for (b) near t = 109 from bottom to top.

Since the enantiomeric cross inhibition kLD = kDL is a determining factor in this model,
by way of contrast, we consider a second N = 12 run with a much lower mutual inhibition
than employed above, namely kLD = kDL = 20s−1M−1, and with the following inverse
rates all set equal k−LL = k−DD = k−LD = k−DL = 10−6s−1, but keeping the remainder of the
rates as before and with the same initial concentrations and excess. In this situation, the
symmetry breaking occurs at a later time (see Ref. [19])

The individual percent chain-length dependent enantiomeric excesses, Eq.(4.8) plotted
in Fig. 4.1 (coloured lines) reveal a remarkable complex dynamic behavior: the individual
ee’s follow a common curve from initialization to chiral symmetry breaking and remain
together at nearly 100% until the common curve begins to split up into its constituents.
Then, the percent chiral excess of each length homochiral chain behaves differently, until
they again coalesce into a single curve upon final racemization.

Only in Fig.4.1a the largest length chains pass from positive then to negative values of
the excess (the N = 12, 11, 10 chains exhibit nearly −100% excess during the period from
103 to 104 and beyond): there has been a chiral sign reversal in the excess corresponding
to the largest chains. This holds also for the monomer ee1, plotted in the dashed curve.
Except for the monomer, the individual excesses then all increase back to positive values at
t ∼ 106, then from t ∼ 107 to t ∼ 1011, the excess increases sequentially as a function of the
chain length n until racemization, where they all collapse to zero. The temporal behavior
of the enantiomeric excesses of the largest chains n = 12, 11, 10, 9, 8, 7 is reminiscent of
strongly damped oscillations. In Fig. 4.1b, the individual ee’s though behaves qualitatively
similar to those obtained in Fig.4.1a, but there is a remarkable difference: except for the
monomers, the individual excesses have all them positive values at all times.

Static ”snapshots” of this dynamic behavior complement the evolution of the chain
length dependent enantiomeric excesses. In Fig. 4.2 we display the enantiomeric excess
versus the number of chiral repeat units at selected time slices. In Fig.4.2a, in the left-
hand graph, the ee’s are all at 100% for all the chains (constrast with Fig.4.1a). The next
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(a) Polymerization.
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(b) Copolymerization
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Figure 4.2: Different time slices or ”snap-shots” of Fig 4.1a and Fig.4.1b showing dependence of
the chain-length dependent enantiomeric excesses een for n ≥ 2, at different selected time scales
for (a)t = 100, t = 104, t = 109, t = 1013 and (b) t = 100, t = 107, t = 1010, t = 1013

graph, corresponding to t = 104, shows the sign reversal tendency as a function of chain
length, with the full reversal (−100%) being attained for the largest homochiral chains.
The following graph, corresponding to t = 109 shows the monotone increase of ee with
chain length. Finally, the righthand most graph shows that racemization has set in by
t = 1013.

The qualitative behaviors depicted in the second and third snapshot have been reported
in two recent and independent polymerization experiments [15] [12] (see Ref. [19]). The
tendency of the sign reversal in ee (from positive to negative values) as a function of chain
length has been observed in the polymerization of racemic valine (Val-NCA) and leucine
(Leu-NCA)in water subject to chiral initiators [15]. By contrast, the monotonic increase
of the percent ee with chain length has been measured in independent chiral amplification
experiments using leucine and glycine in water [12] starting with a 20% initial enantiomeric
excess of the L1 monomer.

In Fig.4.2b, in the left-hand graph, the ee’s are all at 100% for all the chains at t =
100 (contrast with Fig.4.1b). The two next graphs, corresponding to t = 107 and t =
1010, shows the decreasing tendency as a function of chain length, the largest homochiral
chains remain at values near 100% longer. Finally, the righthand most graph shows that
racemization has set in by t = 1013.

Additional information regarding the homo-oligomer composition of the chemical sys-
tem is provided by the average homochiral chain length < n >, see Eq.(4.10). We plot
this in Fig. 4.3 along with the standard deviation about the mean, Eq.(4.11). The final
stable values of the mean and RMS values are n̄ = 11.0±1.4 for the polymerization model
and n̄ = 10.9 ± 1.5, for the copolymerization model. This demonstrates that the final
racemic mixture is dominated by the longer length homopolymer chains, and this is the
final equilibrium configuration.

The behavior of entropy in polymerization models is rarely discussed, [26] and has not
been addressed previously for mirror symmetry breaking in chiral polymerization. The
entropy produced in a chemical reaction initiated out of equilibrium gives a measure of
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(a) Polymerization
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(b) Copolymerization
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Figure 4.3: The time evolution (logarithmic scale) of the average or mean homopolymer chain

length n̄ (upper curve) and the corresponding root-mean-square deviation < n2 >
1

2 from the mean
value (lower dashed curve).

the dissipation during the approach to final equilibrium. In Ref. [19] the rate of entropy
production in chiral polymerization is calculated following Eq.4.12 when the system un-
dergoes a chiral phase transition as well at the later stages when the system reaches final
chemical equilibrium upon racemization.

The sum in Eq.(4.12) contains 2N + 4 terms for both models; so it is possible to
determine which specific steps of the full reaction network provide the leading contributions
to σ by representing them individually.

For both, the polimerization and copolymerization, using the same initial concentra-
tions and reaction rates, the leading contribution to the entropy production comes from
the monomer catalysis steps eqn (1), followed by the polymerization itself eqn (4), next
by the mutual inhibition reactions: heterodimer formation eqn (6) and the ”end-spoiled”
cross-inhibition reactions eqn (5). The least important contribution comes from the direct
production of monomers from the achiral substrate.

For a lower heterochiral inhibition, the entropy production peaks well before the mirror
symmetry is broken. The catalysis still yields the major contribution to this peak, but the
second and third most important contributions are now formation of end-chain spoiled
oligomers followed by the polymerization, exactly opposite to the previous run employing
the much higher mutual inhibition. The peak in σ is due principally to monomer catalysis,
and not symmetry breaking.

Interpretation of experimental data

Polymerization reactions of racemic mixtures of monomers in solution are typically ex-
pected to yield polymers composed of random sequences of the left- and right-handed re-
peat units following a binomial or Bernoulli distribution (see also Fig.1.1). Thus the proba-
bility for obtaining oligomers with homochiral sequence becomes negligible with increasing
length [27]. In contrast, Luisi and coworkers [10, 12, 28, 29] have reported the polymeriza-
tion of racemic α-amino acids in solution which yields small amounts of oligopeptides of
homochiral sequence whose abundances with respect to the heterochiral chains exhibit a
slight departure from the binomial distribution. This problem of the random distribution
can be overcome by catalyzed polymerization of amphiphilic amino acids, in racemic and
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nonracemic forms, which self-assemble into two-dimensional ordered crystallites at the
air-water interface [30]. Based on a process involving self-assembly followed by lattice con-
trolled polymerization, Lahav and coworkers recently proposed a general scenario for the
generation of homochiral oligopeptides of a single handedness from non-racemic mixtures
of activated alpha amino acids [30].

Scheme 4.3

We are interested in the lattice-controlled
polymerization reactions proposed by those au-
thors. The proposed experimental scheme, rep-
resented in Fig.4.3 (Fig.15 in Ref. [31]) starts
from an initial excess, say L > D of monomers
which undergoes an initial self-assembly process
into two types of two-dimensional crystallites
at the air/water interface. Once formed, each
one of these two crystal phases participates in
the control of a subsequent type of polymer-
ization. Thus, the racemic crystallites polymer-
ize racemic mixtures of oligomers and the hete-
rochiral products, whereas the other pure enan-
tiomorphous crystallite controls the polymer-
ization of the isotactic chains, these are formed
from the monomer in excess (L, in this exam-

ple). Our attempt to fit the experimental data to the copolymerization model2 is con-
cerned with the effective polymerization controlled by each of the two crystalline phases.
Different chemical model systems were used in the experiments: namely γ-stearyl-glutamic
thioethyl ester (C18 − TE − Glu), N ǫ-stearoyl-lysine thioethyl ester (C18 − TE − Lys),
γ-stearyl-glutamic acid N-carboxyanhydride (C18 − Glu − NCA) and γ-stearyl-glutamic
thioacid (C18− thio−Glu), varying both their initial compositions and for various choices
of catalyst.

Employing the same initial concentrations as in the experiments, and after setting all
the inverse reaction rates to a unique value, k−LL = k−DD = k−LD = k−DL = 10−10s−1, and
the cross inhibition rates equal to unity (kLD = kDL = 1s−1M−1), the next step is to
search for the reaction rates kLL = kDD leading to the best fits. Results from fitting the
model to the data indicate that the maximum chain length N does not play a significant
role, the Pearson product-moment correlation coefficient, r, remains the same for N =
12, 14, 16, 18, 20, so we set N = 12 for all compounds3.

In one set of experiments, the authors reported MALDI-TOF analysis of the oligopep-
tides formed at the air-water interface from racemic mixtures L : D = 1 : 1 of the
monomers for the various model systems and catalysts. The best correlation data for
the racemic C18-TE-Glu system, with the I2/KI catalyst are found for kLL = kDD =
1.7(s−1M−1) (for the time scale t = 1011(s)). Exactly by the same process, the best corre-
lation data for the racemic C18−TE−Lys are found for kLL = kDD = 2.3(s−1M−1) and for
kLL = kDD = 1.3(s−1M−1) when adding I2/KI and AgNO3 as catalyst (t = 1010(s) and
t = 1011(s)), respectively. Finally, we fit our copolymerization model to the C18−thio−Glu

2The model may be termed effective in the following sense: it presupposes or takes as given the prior

formation of the self-assembled 2D crystallites at the air-water interface and is concerned exclusively with
the subsequent polymerization reactions.

3Since the number of independent equations scales as N2, this represents an important reduction on
computer time and the memory used.
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Copolymerization model Binomial

Fits for each subgroup (n) Global Global

di tri tetra penta hexa hepta fit fit

C18-TE-Glu (L:D) 1:1 0.92 0.96 0.80 0.84 - - 0.93 0.75

(L:D) 4:6 0.86 0.89 0.93 0.99 - - 0.94 0.75

(L:D) 3:7 0.95 0.94 0.96 0.99 0.99 - 0.95 0.85

C18-TE-Lys (L:D) 1:1 0.98 1 0.03 0.88 0.76 0.84 - 0.8

(L:D) 4:6 0.78 1 0.87 0.90 0.84 0.97 0.89 0.46

(L:D) 3:7 0.93 1 0.95 0.97 0.99 - 0.94 0.65

C18-thio-Glu (L:D) 1:1 1 1 1 0.98 0.97 0.95 - 0.98

(L:D) 4:6 0.93 0.98 0.93 0.92 0.92 0.91 0.91 0.93

(L:D) 3:7 0.89 1 0.99 0.99 0.98 - 0.96 0.97

Table 4.1: Comparative fits between the copolymerization model and the binomial distribution
to the experimental relative abundances (Pearson product-moment correlation coefficient, r) mea-
sured for racemic and non-racemic mixtures of C18−TE−Glu, C18−TE−Lys and C18−thio−Glu

experimental relative abundances. The authors of the experiments affirmed that this com-
pound undergoes a truly random polymerization [30], so fits from our model are expected
to be slightly less satisfactory than those for the binomial distribution function. Setting the
inverse reaction rates and the cross inhibition as indicated above, then the best correlation
coefficients are found for kLL = kDD = 0.4(s−1M−1). The instant or time-scale leading to
these numerical values is t = 1010(s). The resulting data correlations are shown in Table
4.1, the latter gives a detailed comparison of the best fits between individual subfamilies
and the overall global fit. In a second set of experiments, the authors reported MALDI-
TOF analysis of the oligopeptides formed at the air-water interface from non-racemic
mixtures of the monomers for the same model systems. No catalysts were employed there.
The best correlations factors for both chirally enriched mixture cases (20% and 40% ex-
cesses) in the case of the C18 − TE − Glu system are found for the same rates, that is
for kLL = kDD = 2(s−1M−1) (at t = 1011(s)). For the chiral mixtures of C18 − TE − Lys
we found the best fits for the dynamics corresponding to kLL = kDD = 2.5(s−1M−1) (at
t = 1010(s)). In the case of nonracemic C18 − thio−Glu, the best correlation coefficients
are found for the same values of the reaction rates that we found in the racemic case,
namely for kLL = kDD = 0.4(s−1M−1). As to be expected and as shown there, the cor-
relation factors for the global fit to the binomial distribution function are slighter better
than those for any simulation we could perform with the copolymerization model, so we
reconfirm what was claimed by the authors of the experimental work: namely that the
C18 − thio−Glu system polymerizes randomly. The results for these values are shown in
Table 4.1. Relative abundances and enantiomeric excesses obtained for 4:6 and 3:7 (L:D)
mixtures in the four cases can be found in Ref. [19].
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4.5 Conclusions

• A strong but temporary chiral amplification can take place in a reversible model of
chiral polymerization closed to matter flow and subject to constraints imposed by micro-
reversibility. Strong mutual inhibition is required to amplify the initial ee to large values,
very similar to what we found for the reversible Frank model in closed systems (see Chapter
2).

• The chain length dependent enantiomeric excesses is clearly a time dependent phe-
nomena, tending to exhibit a damped oscillatory behavior before the onset of final racem-
ization. 4 The implications for chirality transmission are far reaching: ”memory” of the
sign of the initial chiral fluctuation is washed-out by the oscillations in the enantiomeric
excess, adding another heretofore unexpected element of randomness to the process. These
oscillations cease as the system approaches its equilibrium state.

• Computation of the average homopolymer length indicates that the final racemic
state is dominated by the longest available chains (see Fig.4.3).

• The rate of entropy production per unit volume exhibits a peak value either before
or near the vicinity of the chiral symmetry breaking transition. The leading contribution
to the entropy production comes from the monomer catalysis steps, followed by the poly-
merization itself, next by the mutual inhibition reactions: heterodimer formation and the
”end-spoiled” cross-inhibition reactions. The least important contribution comes from the
direct production of monomers from the achiral substrate.

• The copolymerization model is defined for fully reversible reactions and this im-
plies that some of the reaction rates must obey a corresponding constraint as dictated
by microreversibility. The model is appropriate for closed systems under thermodynamic
control.

• The forward rates of adding the same chirality monomer to the end of the growing
chain are found to be greater than those for addition of a wrong chirality monomer (i.e.
kLL = kDD > kLD = kDL = 1), except for the model system C18 − thio−Glu, serving as
reference for random polymerization.

• The Pearson product-moment correlation coefficient r between experimental and
numerical data is greater for the copolymerization model than for the binomial distri-
bution, except for the C18 − thio − Glu, which truly polymerizes randomly (see Table
4.1).

• A very positive feature of the copolymerization model is the robustness of the fits
with respect to differing initial imbalances of the enantiomers. The correlation between
calculated and experimental relative abundances is greater for the initially non-racemic
situations (the higher the initially chiral enrichment of the mixture is, the better the
copolymerization model reproduces the chemical data). The results obtained here lead us
to affirm that the model systems considered all undergo a non-random polymerization, as
was asserted by the authors of the experiments [30].

• The model also qualitatively reproduces the behavior of the enantiomeric excess ee,
its increase with the length of the chains and the enhancement of the ee of the corre-
sponding initial mixture of monomers (see Ref. [21]). In conclusion then, we may therefore

4Oscillatory dynamics in chemical reactions has been observed experimentally, and analyzed theoret-
ically and numerically in simple model systems [32]; as far as we are aware, this behavior has not been
revealed previously as a valid dynamical solution in polymerization models.
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assert that our simple copolymerization scheme does provide an accurate course-grained
description of the lattice-controlled polymerization reported in Ref [30].
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Chapter 5

Mirror symmetry breaking via β-
sheet-controlled copolymerization:
(i) Mass Balance and (ii) Proba-
bilistic Treatment

5.1 Introduction

One scenario for the transition from prebiotic racemic chemistry to chiral biol-
ogy suggests that homochiral peptides or amino acid chains must have appeared
before the onset of the primeval enzymes [1–5]. However, except for a couple of
known cases [6, 7], the polymerization of racemic mixtures (i.e., in 1:1 proportions)
of monomers in ideal solutions typically yields chains composed of random sequences
of both the left and right handed repeat units following a binomial distribution [8].

Scheme 5.1: Self assembly of oligopeptides into
racemic β-sheets, for the case of a single species
(R0, S0) of amino acid supplied in ideally racemic pro-
portions. For a full experimental account, see Weiss-
buch et al. [9].

This statistical problem has been over-
come recently by the experimental
demonstration of the generation of am-
phiphilic peptides of homochiral se-
quence, that is, of a single chirality,
from racemic compositions or race-
mates. This route consists of two steps:
(1) the formation of racemic parallel
or anti-parallel β-sheets either in aque-
ous solution or in 3-D crystals [9] dur-
ing the polymerization of racemic hy-
drophobic α-amino acids (Fig. 5.1) fol-
lowed by (2) an enantioselective con-
trolled polymerization reaction [10–
16]. This process leads to racemic or
mirror-symmetric mixtures of isotac-
tic oligopeptides where the chains are
composed from amino acid residues of
a single handedness (see Fig. 5.1). Fur-

thermore, when racemic mixtures of different types of amino acids were polymerized, iso-
tactic co-peptides of homochiral sequence were generated. The guest (S) and (R) molecules
are enantioselectively incorporated into the chains of the (S) and (R) peptides, respectively,
however the guest molecules are randomly distributed within the corresponding homochi-
ral chains, see Fig. 5.2.

45



46 5. β-Sheet-controlled copolymerization

As a combined result of these two steps, the sequence of pairs of co-peptide S and R
chains within the growing template will differ from each other, see Fig. 5.2, resulting in
non-racemic mixtures of co-peptide polymer chains of different sequences1. Consequently,
by considering the sequences of the peptide chains, a statistical departure from the racemic
composition of the library of the peptide chains is created which varies with chain length
and with the relative concentrations of the monomers used in the polymerization [11, 12].
This can be appreciated comparing Fig. 5.1 and Fig. 5.2: in the former the β-sheet is
globally racemic (no guest amino acids) whereas the latter template is not by virtue of
the randomness of the specific amino acid sequences within each homochiral strand, due
to the presence of guest amino acids.

In this chapter, we are concerned about the theoretical investigation of multi-component
copolymerization controlled by such templates, with this purpose in mind, the two differ-
ent models here introduced presuppose or take as given the prior formation of the initial
templates or β-sheets and is concerned exclusively with the subsequent enantioselective
polymerization reactions (the nonlinear template control is implicit throughout our dis-
cussions).

Scheme 5.2: The proposed scheme for enantioselective occlusion within racemic β-sheet templates;
a majority host species (R0, S0) and two minority guest species (R1, S1) and (R2, S2) of amino
acids, all of them provided in racemic proportions. The amino acids of a given chirality attach to
sites of the same handedness within the growing β sheet leading to the polymerization of oligomer
strands of a uniform chirality (in the alternating row S−R−S−R−... fashion). The guest monomers
(typically less abundant than the host species) occlude in a random way leading to independent
uncorrelated random sequences in each chiral strand. The overall process yields non-enantiomeric

pairs of homochiral copolymers: mirror symmetry is broken in a stochastic manner.

5.2 Theoretical Methods I: Mass Balance

To address the general setting for the generation of libraries of diastereoisomeric mix-
tures of peptides as originally proposed by Nery at al. [11], we consider the case where we
have a majority amino acid species R0 ,S0 and a given number mr,ms ≥ 1 of minority
amino acid species of each chirality (R1, ..., Rmr ) and (S1, ..., Sms).

1Note that this does not necessarily imply any net optical activity of solution containing the remaining
free chiral monomers.
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Since the following calculations are based on chemical equilibrium and detailed bal-
ance, if all (mr + 1) and (ms + 1) species are supplied in strictly 1:1 racemic proportions
(only possible for mr ≡ ms), we would justifiably expect a racemic outcome, that is, no
mirror symmetry breaking. However, we can test the model’s ability for chiral amplifi-
cation by considering unequal initial proportions for the mr and ms minority species in
solution. That is, does the enantiomeric excess ee increase as a function of chain length,
and is it greater than the initial ee of the monomers? i.e., does the model lead to chiral
amplification?

From detailed balance, each individual monomer attachment or dissociation reaction
is in equilibrium. Then we can compute the equilibrium concentrations of all the (co)-
polymers in terms of equilibrium constants Ki for each individual amino acid and the free
monomer concentrations. The equilibrium concentration of an S-type copolymer chain
of length n0 + n1 + n2 + ... + nms = N made up of nj molecules type Sj is given by
pSn0,n1,...,nms

= (K0s0)
n0(K1s1)

n1 ...(Kmssms)
nms /K0, where sj = [Sj] [17]. Similarly for

the concentration of an R-type copolymer chain of length n′
0 + n′

1 + n′
2 + ... + n′

mr
= N

made up of n′
j molecules of type Rj: p

R
n′

0,n
′

1,...,n
′

mr
= (K0r0)

n′

0(K1r1)
n′

1 ...(Kmrrmr)
n′

mr /K0,

where rj = [Rj ]. Note that we are considering only copolymers with random sequences such
as R0−R0−R1−R0−R0−R2−R0−.... and S0−S0−S1−S1−S0−S2−S0−...., but not
heterochiral polymers (that is, no sequences involving both the S and R type monomers.)
The equilibrium concentration equations we write down pSn0,n1,...,nmr

, pRn′

0,n
′

1,...,n
′

mr

implicitly

assume the underlying template control2.

The number of different S-type copolymers of length l with nj molecules of type Sj, for
0 ≤ j ≤ ms species, is given by the multinomial coefficient, hence the total concentration
of the S-type copolymers of length l within the β-sheet is given by

pSl =
∑

n0+n1+...+nms=l

(
l

n0, n1, ..., nms

)
pSn0,n1,...,nms

=
1

K0
(K0s0 +K1s1 + ...+Kmssms)

l, (5.1)

which follows from the multinomial theorem [18]. From this we can calculate the number
of each type Sj of S-monomer present in the S-copolymer of length equal to l, for any
0 ≤ j ≤ ms:

sj(p
S
l ) =

∑

n0+n1+...+nms=l

(
l

n0, n1, ..., nms

)
njp

S
n0,n1,...,nms

= sj
∂

∂sj
pSl

=
Kj

K0
sj l(K0s0 +K1s1 + ...+Kmssms)

l−1. (5.2)

Then we need to know the total amount of the S-type monomers bound within the S-
copolymers (in the β-sheet) from the dimer on up to a maximum chain length N . Using
Eq.(5.2) for the jth type of amino acid, this is given by

sj(p
S
Tot) =

N∑

l=2

sj(p
S
l ) →

Kj

K0
sj
a(2− a)

(1− a)2
, (5.3)

2Our above approach assumes that the polymerization reactions are under thermodynamic control. If
there are any kinetic effects, they will not be seen as they would contribute to the chain compositions at
shorter (finite) time scales. Our aim here is to obtain the compositions at asymptotically long relaxation
times, and we thus hypothesize that the dominant pathways are under thermodynamic control.
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the final expression holds in the limit N → ∞ provided that a = (K0s0 + K1s1 + ... +
Kmssms) < 1. This must be the case, otherwise the system would contain an infinite num-
ber of molecules [17]. Similar considerations hold for the R-sector, and the total amount of

R monomers inside R copolymers for the jth amino acid, is given by rj(p
R
Tot) =

Kj

K0
rj

b(2−b)
(1−b)2

where b = (K0r0 +K1r1+ ...+Kmrrmr ) < 1. From this we obtain the mass balance equa-
tions which hold for both enantiomers S,R of the host and guest amino acids, and is our
key result [19]:

sj +
Kj

K0
sj
a(2− a)

(1− a)2
= sjtot, rj +

Kj

K0
rj
b(2− b)

(1− b)2
= rj tot. (5.4)

These equations express the fact that each type of enantiomer is either free in solution, or
is else bound inside a (co)polymer strand within the template.

The problem then consists in the following: given the total concentrations of all the
mr + 1 and ms + 1 host plus guest enantiomers {sjtot, rj tot}

ms,mr

j=0 , and the equilibrium
constants Ki, we calculate the free monomer concentrations in solution {sj , rj}ms ,mr

j=0 from
solving the nonlinear equations Eqs. (5.4). Denote by s0tot+...+smstot

+r0tot+...+rmrtot
=

ctot the total system concentration. From the solutions of Eq.(5.4) we can calculate e.g., the
equilibrium concentrations of homochiral copolymers pSn0,n1,...,nms

and pRn′

0,n
′

1,...,n
′

mr

of any

specific sequence or composition as well as the resultant enantiomeric excess for homochiral
chains of length l composed of the host (majority) amino acid:

eel =
(r0)

l − (s0)
l

(r0)l + (s0)l
. (5.5)

5.3 Theoretical Methods II: Probabilistic approach

We adopt now a statistical approach for calculating the likelihood for finding non-

enantiomeric pairs of copolymers formed by the proposed template mechanism. This ap-
proach does not require assuming chemical equilibrium.

We first need to specify the length N of the homochiral copolymer chains to be
formed, and the number of each minority species or additive mr, ms. Thus we consider
(r0, r1, r2, ..., rmr ) and (s0, s1, s2, ..., sms) whereas (r, s) ≡ (r0, s0) denotes both the enan-
tiomers of the majority species. The total number of possible sequences in a chain with N
repeat units for each configuration is (mr +1)N and (ms +1)N . This most general case is
represented in a suggestive pictorial way in Fig. 5.3. This diagram is used to enumerate all
possible chiral copolymers that can form in the template, laid out in a linear fashion, the
totality of R-copolymers strung out above a ”mirror” and the mirror-related S-copolymers
directly below it.

Statistical copolymers are those for which the sequence of monomer residues follows a
statistical rule. The attachment probability is proportional to the monomer’s concentration
in solution [rj ],[sj ] times a rate constant that depends on the activation energy Ej for
attachment of that specific monomer to the polymer/template thus:

p(rj) ∝ Aj exp(−Ej/kT )[rj ] = wj [rj ], p(sj) ∝ Aj exp(−Ej/kT )[sj ] = wj [sj]. (5.6)

To obtain bona-fide probabilities, these are are normalized so that, for 0 ≤ j ≤ mr and
0 ≤ j ≤ ms respectively
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mirror

γ1
R γ2

R
... γ

j
R

... γ
(mr+1)N

R

γ1
S γ2

S
... γ

j
S

... ... γ
(ms+1)N

S

P ~nR

N equiprobables

P ~nS

N equiprobables

Scheme 5.3: Homochiral copolymer sequences and their mirror-related sequences. Top row (above
the mirror) enumerates all the possible R-type copolymers γR of lengthN that can be made up from
mr different R-type monomers: there are (mr + 1)N such chains. Below the mirror: mirror image
related S-type homochiral copolymers γS made up of S-type monomers. In this example mr < ms,
so there are more S-type copolymers than R-type. Solid vertical line segment links an enantiomeric
pair of sequences, the dotted lines represent examples of non-enantiomeric pairs of sequences. A
given composition typically gives rise to many inequivalent but equiprobable sequences (indicated
by the horizontal solid brackets).

0 ≤ p(rj) =
wj[rj ]∑mr

k=0wk[rk]
≤ 1, 0 ≤ p(sj) =

wj[sj ]∑ms

k=0wk[sk]
≤ 1, (5.7)

which implies
∑mr

k=0 p(rk) = 1 and
∑ms

k=0 p(sk) = 1.

In writing down Eq.(5.6), there are two implicit assumptions being made: (1) the rate
of polymerization is independent of polymer length N (i.e. isodesmic polymerization [20]),
and (2), the probability of any given monomer joining a polymer is independent of the
existing polymer structure (i.e. first-order Markov process [9])

Define the attachment probability vectors as ~pR = {p(r0), p(r1), p(r2), ..., p(rmr)}
and ~pS = {p(s0), p(s1), p(s2), ..., p(sms)}, one for the R-monomers, and one for the
S-monomers. Note that in the limit when both minority species are absent mr,ms → 0,
there will be one unique sequence for each handedness, forming with unit probability.

Chain compositions for the R and S type chains are specified as n(r0)+n(r1)+n(r2)+
... + n(rmr) = N and n(s0) + n(s1) + n(s2) + ... + n(sms) = N , where n(rj) and n(sj)
denote the number of times the j-th R and S monomer occur in the corresponding chain,
respectively. These are ordered partitions of the integer N . Many different sequences can
follow from one given composition. By means of the template controlled polymerization
mechanism [11], only homochiral chains will be formed, and these can be represented by
vectors. For example, a right-handed chain γR and its mirror image related sequence γS

are denoted by the vectors

γR = {r, r, r1, r, r, r3, ...., r}N , γS = {s, s, s1, s, s, s3, ...., s}N . (5.8)

The probability to form specific sequences of length N from the compositions is given by
the composition probability:

p(γR) =

mr∏

j=0

p(rj)
n(rj), p(γS) =

ms∏

j=0

p(sj)
n(sj). (5.9)

In general, there will be many distinct sequences with exactly the same composition-
probability Eqs.(5.9), see the horizontal solid line segments in Fig. 5.3.
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Probability to form one enantiomeric pair From a given sequence γR, we immedi-
ately deduce the composition vector ~nR = {n(r0), n(r1), ..., n(rmr )} , and the composition
vector of the mirror image must be equal to ~nR, that is ~nS = ~nR ≡ ~n.

The probabilities to form the specific sequence γR and its mirror image γS are given
by Eq.(5.9) and hence the joint probability to find the enantiomeric pair γR and γS is
Ppair(γR|γS) = p(γR)p(γS). This is a function of N , min(mr,ms), ~n, ~pR and ~pS .

Probability to form all possible enantiomeric pairs for fixed N For computing
the probability of forming all possible enantiomeric pairs, we need to know both mr and
ms and which one is greater. Without loss of generality we may assume that mr ≤ ms. For
fixed N and mr, the number of distinct compositions of the R type copolymers is given
by

#N,mr,{n0,n1,n2,...nmr}
=

(
mr +N

N

)
=

(mr +N)!

N !mr!
, (5.10)

and the number of different sequences that we can form from each individual composition
is given by

P ~nR

N ≡ P
n0n1n2...nmr

N =

(
N

n0, n1, n2, ..., nmr

)
=

N !

n0!n1!n2!...nmr !
. (5.11)

Summing the latter expression over all the possible compositions with fixed N must be
equal to the total number of different sequences, that is, we obtain the multinomial theorem

[18]:
∑(

N
n0, n1, n2, ..., nmr

)
= (mr + 1)N .

The net probability we seek to evaluate is Ppairs(N,mr) =
∑

γR
Ppair(γR|γS). This

expression is the probability that each and every possible sequence in R and its mirror
image sequence in S are formed of fixed length N . For a given composition, all the se-
quences that can be made therefrom (re-shufflings) are equiprobable. Thus summing over
all these possible rearrangements, we arrive at the probability to form chains and their
mirror image sequences within one such equiprobable equivalence class, recall mr < ms:

P ~nR

N p(γR)p(γS) =
N !

n0!n1!n2!...nmr !

mr∏

j=0

p(rj)
n(rj)

mr∏

j=0

p(sj)
n(sj).

(5.12)

Finally, summing this result over all the different compositions, we calculate the net prob-
ability to form homochiral chains and their mirror image sequences in the system: i.e.,
the probability to form all possible enantiomeric pairs. Thus, the probability that mirror
symmetry is not broken for m additives and N repeat units is given by

Pno break(N,mr) = Ppairs(N,mr) =
∑

n0+n1+n2+...+nmr=N

P ~n
Np(γR)p(γS). (5.13)
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Then the probability that mirror symmetry is broken for these values of m and N is:

Pbreak(N,mr) = Pno pairs(N,mr) =
∑

n0+n1+n2+...+nmr=N

P ~nR

N p(γR)
(
1− p(γS)

)

= 1−
∑

n0+n1+n2+...+nmr=N

P ~nR

N p(γR)p(γS)

= 1−
(
pr0ps0 + pr1ps1 + ...+ prmr

psmr

)N
= 1− (~pR · ~pS)N .

(5.14)

which follows from the multinomial theorem, [18].

From Eqs. (5.7) the monomer attachment probability vectors ~pR and ~pS define the
faces of two standard or unit mr and ms-simplexes [21]. These simplex faces represent
the domains of all allowed monomer attachment probabilities, see Ref. [22] for a detailed
explanation and graphic representations.Typically, copolymers will be formed with lengths
ranging from the dimer, trimer, etc. on up to a maximum number of repeat units N
[11, 12, 15]. The above arguments apply to any value of N , thus the probability P≤N

break(m)
to break mirror symmetry in a system containing a spectrum of chain lengths 2 ≤ n ≤ N
is given as follows,

P≤N
break(mr) =

1

N − 1

N∑

n=2

Pbreak(n,mr) = 1− (~pR · ~pS)2(1− (~pR · ~pS)N−1)

(N − 1)(1 − ~pR · ~pS)
, (5.15)

and satisfies lim~pR·~pS→1 P
≤N
break(m) = 0 when the two occlusion probability vectors are

parallel.

5.4 Results

Additives of only one handedness

Mass balance Following the model introduced in Section 5.2, the three monomer case
originally treated [11] corresponds to mr = 0 and ms = 1 (the system contains R0, S0

and only the enantiomer S1 of the guest species). We consider stepwise additions and
dissociations of single monomers from one end of the (co)polymer chain, considered as a
strand within the β-sheet, see Fig. 5.2. It is reasonable to regard the β-sheet in equilibrium
with the free monomer pool3 [23]. For a single guest, we drop numbered indices and denote
the majority host species and concentrations by r = [R], s = [S] and the minority guest
with a prime: s′ = [S′]. In Fig. 5.1a we plot the numerical results obtained from calculating
the enantiomeric excess ee as a function of chain length l, from Eq.5.5, for the three starting
compositions of the monomer crystals as reported [11]. The only quantities required for
this are the solutions of r and s obtained from solving the set of equations Eq.(5.4). For
strictly illustrative purposes only, we set the equilibrium constants to be the same for

3Ref. [23] reports a stochastic simulation of two concurrent orthogonal processes: 1) an irreversible
condensation of activated amino acids and 2) reversible formation of racemic β-sheets of alternating ho-
mochiral strands. The two steps taken together comprise a two-dimensional formulation of the problem.
These architectures lead to the formation of chiral peptides whose isotacticity increases with length (we
assume as given the prior formation of the initial templates or β-sheets, and are concerned exclusively with
the subsequent enantioselective random polymerization reactions (step (2)))
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(a) Mass balance
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(b) Probabilistic approach
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Figure 5.1: (a) Calculated ee values from solving Eqs. (5.4) for m = 1 guest monomer and three
different starting monomer compositions (in relative proportions) rtot : stot : s

′
tot = 0.5 : 0.25 : 0.25

(filled circles), 0.5 : 0.45 : 0.05 (squares) and 0.5 : 0.475 : 0.025 (triangles) for the equilibrium
constantK0 = K1 = 1000M−1 and the total monomer concentration ctot = 10−3M . (b) Probability

to break mirror symmetry, P≤N

break
(m), for the three different starting composition fr : fs : fs′ of

the three component case (mr = 0 and ms = m = 1) as a function of repeat units N . Compare to
Fig. 13 of Nery et al. [11].

both host and guest monomers K1 = K0 ≡ K = 1000M−1, the total initial concentration,
ctot = 10−3M ; the initial fractions of each component are denoted by f = {fr, fs, fs′} and
obey fr+fs+fs′ = 1. The starting composition of the mixture is ctot = rtot+stot+s′tot, and
the total amount of each component is: rtot = ctot ∗ fr, stot = ctot ∗ fs, and s′tot = ctot ∗ fs′ .
We can appreciate the induced symmetry breaking mechanism [11] from the behavior of
eel.

For the first case fr : fs : fs′ = 0.5 : 0.25 : 0.25, mirror symmetry is broken for
almost all the chain lengths, even for small values of l; this is due to the equal starting
fractions of the majority stot and the guest s′tot monomer species of the same chirality:
the large amount of guest is the reason for these large values of ee. For the second case
fr : fs : fs′ = 0.5 : 0.45 : 0.05, the starting fraction of the majority species, s′tot, is almost
10 times (0.45/0.05 = 9) greater than that of the guest, s′, so for the enantiomeric excess
to be greater than 60% the chain length must be at least l = 13, and for obtaining an
ee of 80%, the chain length must be at least l = 20. Finally, for the third case, fr : fs :
fs′ = 0.5 : 0.475 : 0.025, the starting fraction of the majority species, stot, is almost 20
times (0.475/0.025 = 19) greater than that of the guest, s′tot, thus the enantiomeric excess
for each chain length is expected to be much less than for the two previous cases. For
the three cases, an increase of the eel is observed (for all l) when increasing the starting
fraction of the guest species, s′tot. When s′tot is comparable to stot, while maintaining the
overall proportion R-type:S-type=1:1, then symmetry breaking is ensured to be > 40%
for all l > 5.

Probabilistic approach Consider first the general case mr = 0 and we set ms = m.
Clearly, there is only one possible composition (and hence, sequence) that can be formed
in R: namely γR = {r, r, ..., r}N , and this forms with unit probability: p(γR) = 1. Thus,
the probability that mirror symmetry is not broken for m types of S-additives and for N
repeat units is given by Eq.(5.13), which simplifies to give:

Pno break(N,m) = Ppairs(N,m) = p(γR)p(γS) = p(s0)
N . (5.16)
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Then the probability that mirror symmetry is broken for these values of m and N is:

Pbreak(N,m) = Pno pairs(N,m) = p(γR)
(
1− p(γS)

)
= 1− p(s0)

N . (5.17)

If the number of S-type additives goes to zero, ms → 0, then p(s0) → 1 and then mirror
symmetry is maintained with absolute certainty.

The probability of breaking mirror symmetry depends only on p(s0): the attachment
probability of the S-enantiomer of the majority species. The minimal probability of break-
ing symmetry Pbreak(N,m) = 0 is obtained for p(s0) = 1, in this case, there are no guests,
only the majority species S0, so we recover the case in which additives are supplied in
racemic proportions, and moreover, no guests are added. The maximum probability of
breaking mirror symmetry Pbreak(N,m) = 1 is obtained for p(s0) = 0. In this case, the
majority species in S, is absent, thus no possible enantiomeric pairs can be forme. The
probability P≤N

break(m) to break mirror symmetry in a system containing a spectrum of
chain lengths 2 ≤ n ≤ N Eq.(5.15) reduces to

P≤N
break(m) = 1− p(s0)

2(1− p(s0)
N−1)

(N − 1)(1 − p(s0))
, (5.18)

and satisfies limp(s0)→1 P
≤N
break(m) = 0 when no majority specie of the S-type is supplied.

Following Eq.(5.18) we can calculate P≤N
break(m) for the three different starting compo-

sitions considered before, exemplary numerical results are shown in Fig. 5.1b showing the
effect of varying the relative concentrations of all the monomers and the activation energy
(we vary w′

s) of the guest monomer s′ (see Ref. [22] for numerical values). The curves for
Pbreak are qualitatively similar to those of the percent ee in Fig. 5.1a.

Racemic additives

Mass balance By way of one further example, we carry out a similar analysis for the
case of four monomers,this time for two majority R,S and two minority amino acids: R′, S′

(mr = ms = m). Fig. 5.1a and Fig. 5.2 clearly demonstrate that the higher (lower) is the
initial degree of chiral asymmetry, characterized by rtot/stot in the former and r′tot/s

′
tot in

the latter, the higher (lower) is the final asymmetry. Thus, rather than symmetry breaking
per se, we are observing the model’s capacity for asymmetric amplification, as stated at
the beginning of Section 5.2. Nevertheless, effects closer to a symmetry breaking effect can
be appreciated by looking at the average chain lengths for unequal equilibrium constants
(see Ref. [19] or Ref. [22]).

Probabilistic approach From Eq.(5.5) we calculate the eel for the different chain
lengths l for three different starting compositions.In Fig. 5.2 we show the numerical
results obtained from the solutions of the set of equations Eq.(5.4) and Eq.(5.5), for
K0 = K1 = 1000M−1 and stot + s′tot + rtot + r′tot = 10−3M . When the enantiomeric
species are provided in ideally racemic proportions, the probability that mirror symmetry
is broken for given values of the chain length N and number of species m can be expressed
succinctly as

Pbreak(N,m) = 1− ‖~p‖2N , (5.19)
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that is, one minus the squared-modulus of the probability attachment vector ~p, raised
to the chain length. Thus, for fixed N , in order to maximize the probability that mirror
symmetry be broken, we should prepare the chemical system so that allm additives and the
majority species have equally shared mole fractions. For any other values, but excluding
m+1, then ‖~p‖ < 1, hence the probability to break mirror symmetry increases with chain
length N and/or with increasing number of additives m, provided these are supplied with
small mole fractions.

Finally, if ‖~p‖ = 1, so Pbreak(N,m) = 0, and mir-
ror symmetry is maintained with absolute certainty for all N .
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Figure 5.2: Calculated ee values for
three different starting monomer com-
positions rtot : r

′
tot : stot : s

′
tot for K0 =

K1 = 1000M−1 and ctot = 10−3M .

If we increase the mole fraction of any one of the ad-
ditives in excess, the tables are turned, and the ma-
jority and minority species interchange their roles:
excessive amounts of any additive tend to reduce the
probability for breaking mirror symmetry. Eq.(5.15)
now simplifies to give

P≤N
break(m) = 1− ‖~p‖4(1− ‖~p‖2(N−1))

(N − 1)(1− ‖~p‖2) , (5.20)

and satisfies lim‖~p‖→1 P
≤N
break(m) = 0. As expected,

we find increasing probability for symmetry break-
ing as N and/or m increase. And the probability to
break mirror symmetry is strictly zero when there
are no additives: P≤N

break(m = 0) = 0. The cases with
two majority species r and s and two guests, r′ and
s′, with starting fractions fr : fr′ : fs : fs′, as con-

sidered in the first section of the present chapter, is a case of racemic additives where
mr = ms = 1. Following Eq.(5.20) we can calculate P≤N

break(m) for the three different start-
ing compositions considered before. The results (not shown) are qualitatively very similar
to to those shown in the previous tables.

5.5 Conclusions

——————–

• The proposed experimental mechanism [11] leads to the formation of homochiral
copolymers with random sequences of the majority and minority amino acids. Given the
implications of the experimental mechanism, we have provided two independent and com-
plementary theoretical approaches to the problem. Both these approaches provide further
quantitative insights into the template-controlled induced desymmetrization mechanisms
advocated by Lahav and coworkers [10–16].

• Our two theoretical models invoke the underlying template control in that they
do not allow for any heterochiral oligomers to form. The sequence of the host and guest
amino acids within the homochiral peptides assembles in a completely random fashion,
in accord with the experiments [11]. This sequence randomness is captured by both the
model based on chemical equilibrium and by the second model based on the monomer
occlusion probabilities.
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• The statistical/combinatorial effects do lead to a stochastic mirror symmetry break-
ing effect. The symmetry breaking in these experiments arises from combinatorics, not
from spontaneous (bifurcation) phenomena. These stochastic/statistical/combinatorial ef-
fects are not due to the inherent tiny chiral fluctuations present in all real chemical sys-
tems [24–26] but are due rather to the random occlusion of host and guest amino acids
by the chiral sites of the template: the mechanisms proposed here work even for ide-
ally racemic mixtures. Mirror symmetry is broken in the sequences, as non-enantiomeric
pairs of oligomers are formed. The solution of free monomers can nevertheless be opti-
cally inactive. The symmetry breaking is to be found in the template, or β-sheet, but not
(necessarily) in the solution.
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Conclusions
• In the Frank model, strong mutual inhibition is required to amplify the initial ee to
large values, and temporary chiral excursions are observed for closed and semi-open sys-
tems and can be explained through phase space analysis, stability analysis and numerical
simulations. Such chiral excursions may be experimentally observed and could be mistaken
for a transition to a chiral state. In the system closed to matter flow and subject to con-
straints imposed by micro-reversibility, total mass is conserved and temporary symmetry
breaking can occur but never permanent symmetry breaking: SMSB is a kinetically con-
trolled emergence of chirality. The system eventually reaches chemical equilibrium, where
the racemic state is the only stable one.
• The LES model may lead to SMSB (as a stationary final state) whether in a cyclic
network if the reverse reaction of the nonenantioselective autocatalysis is driven by an
external reagent, or in a two-compartment model if both autocatalytic reactions are spa-
tially separated at different temperatures in different compartments but coupled under
the action of a continuous internal flow. In both systems, total mass is conserved, but per-
manent symmetry breaking can occur (the external reagent and the temperature gradient
respectively ensure conditions that keep the system out of chemical equilibrium).
• A strong but temporary chiral amplification can take place in both reversible models
of chiral polymerization and copolymerization, closed to matter flow and subject to con-
straints imposed by micro-reversibility. Total mass is conserved in both systems, which
necessary will reach chemical equilibrium, where the racemic state is the only stable one.
The chain length dependent enantiomeric excesses tend to exhibit a damped oscillatory
behavior before the onset of final racemization and the rate of entropy production per
unit volume exhibits a peak value either before or near the vicinity of the chiral symmetry
breaking transition.
• The copolymerization model provides robustness of the fits with respect to differ-
ing initial enantiomeric excesses and qualitatively reproduces its temporal behavior. The
correlation between calculated and experimental relative abundances is greater for the ini-
tially non-racemic situations: our simple copolymerization scheme does provide an accurate
course-grained description of the lattice-controlled polymerization reported by Lahav and
coworkers.
• In all the five cases: the Frank model, the LES model (considering the necessary con-
ditions above mentioned), the polymerization model and the copolymerization model, the
system can evolve, for certain parameters, towards a chiral stationary state, amplifying a
tiny initial enantiomeric excess (even lower than the calculated eest). It is worth mention-
ing that, for the polymerization and copolymerization models, this tiny initial enantiomeric
excess can not only be amplified but transmitted to the longest chains (note that initial
conditions assume an initial imbalance in the monomers while the rest of initial concen-
trations are set to zero).
• The two theoretical approaches for the experimental formation of homochiral
copolymers provide further quantitative insights into the template-controlled induced
desymmetrization mechanisms advocated by Lahav and coworkers. Both models invoke
the underlying template control. The symmetry breaking in these experiments arises
from combinatorics, not from spontaneous (bifurcation) phenomena. These stochas-
tic/statistical/combinatorial effects are not due to the inherent tiny chiral fluctuations
present in all real chemical systems but are due rather to the random occlusion of host
and guest amino acids by the chiral sites of the template: the mechanisms proposed here
work even for ideally racemic mixtures.





Conclusiones
• En el modelo de Frank, es necesaria una fuerte inhibición mutua para amplificar el
ee inicial hasta valores altos. Se observan excursiones quirales en sistemas cerrados y
semiabiertos que pueden ser explicadas mediante análisis del espacio de fases, análisis
de estabilidad y simulaciones numéricas. Tales excursiones quirales pueden ser obervadas
experimentalmente y ser confundidas con una transición al estado quiral. El un sistema
cerrado al flujo de materia y sujeto a ligaduras impuestas por microreversibilidad, la
masa total se conserva y puede tener lugar ruptura temporal de simetŕıa, pero nunca
de manera permanente: SMSB es emergencia de quiralidad controlada cineticamente. El
sistema finalmente alcanza el equilibrio qúımico, siendo el estado racémico el único estado
estable posible.
• El modelo de LES puede dar lugar a SMSB tanto en un mecanismo ćıclico si la reacción
inversa de la autocatálisis no enantioselectiva es conducida por un agente externo, o en
un modelo de dos compartimentos si ambas reacciones autocataĺıticas están separadas a
diferentes temperaturas en diferentes compartimentos pero unidos bajo la acción de un
flujo interno constante. En ambos sistemas, la masa se conserva, pero la ruptura permnente
de simetŕıa puede tener lugar (el agente externo y el gradiente de temperatura aseguran
condiciones que mantienen al sistema fuera del equilibrio qúımico).
• Una amplificación quiral fuerte, pero temporal, puede tener lugar en los modelos re-
versibles de polimerización y copolimerización quiral cerrados al flujo de materia y sujetos
a ligaduras impuestas por microreversibilidad. La masa total se conserva en ambos sis-
temas, que necesariamente alcanzan equilibrio qúımico, en el cuál, el estado racémico es
el único estable. El exceso enantiomérico en función de la longitud de las cadenas muestra
un comportamiento oscilatorio amortiguado antes de que comience la racemización final,
y la tasa de producción de entroṕıa por unidad de volume muestra un pico o bien antes,
o bien cerca de la transición de ruptura de simetŕıa quiral.
• El modelo de copolimerización ofrece ajustes consistentes con respecto a diferentes ex-
cesos iniciales, y reproduce cualitativamente su comportamiento temporal. La correlación
entre las abundancias relativas calculadas y las experimentales aumenta para situaciones
iniciales no racémicas: nuestro esquema sencillo de copolimerización quiral ofrece una de-
scripción apta de la polimerización por control de plantillas descrito por Lahav y su grupo.
• En los cinco casos: el modelo de Frank, el modelo de LES (considerando las condi-
ciones necesarias mencionadas más arriba), el modelo de polimerización y el de copolimer-
ización quiral, el sistema puede evolucionar, para determinados parámetros, hacia un es-
tado estacionario quiral, amplificando el pequeño exceso enantiomérico inicial (incluso por
debajo del calculado, eest). Cabe mencionar que, para los modelos de polimerización y
copolimerización quiral, ese pequeño exceso enantiomérico inicial, no sólo es amplificado,
sino también transmitido a las cadenas más largas (las condiciones iniciales asumen un
desequilibrio inicial en los monómeros, mientras que el resto de concentraciones iniciales
son nulas)
• Los dos enfoques teóricos propuestos para la formación experimental de copoĺımeros
homoquirales ofrecen un entendimiento cuantitativo de los mecanismos de dessimetrización
inducida propuestos por Lahav y su grupo. Ambos modelos asumen el control
de plantilla subyacente. La ruptura de simetŕıa en estos experimentos surge de
la combinatoria, no de fenómenos espontáneos (bifurcaciones). Estos efectos es-
tocásticos/estad́ısticos/combinatorios no son debido a pequeñas fluctuaciones quirales pre-
sentes en todos los sistemas qúımicos, sino más bien a la oclusión aleatoria de amino ácidos
huéspedes y anfitriones en los sitios quirales de la plantilla: los mecanismos propuestos aqúı
funcionan incluso para mezclas perfectamente racémicas.
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The reversible Frank model is capable of amplifying the initial small statistical deviations from the
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1. Introduction

The Frank model [1] has been extensively invoked to justify the-
oretically the emergence of biological homochirality [2,3], and is
usually analyzed as a reaction network in open systems (matter
and energy are exchanged with the surroundings) composed of
an irreversible enantioselective autocatalysis coupled to an irre-
versible mutual inhibition reaction between the product enantio-
mers. The model shows how homochirality is achieved as a
stationary state when the mutual inhibition product (the heterodi-
mer) is removed from the system and when the concentration of
the achiral substrate is held constant. By contrast, for reversible
transformations and when the mutual inhibition product remains
in the system, the final stable state can only be the racemic one.
As a consequence, a thermodynamically controlled spontaneous
mirror symmetry breaking (SMSB) cannot be expected to take
place. In particular, SMSB is not expected for reversible reactions
taking place in systems closed to matter and energy flow.

Nevertheless, as was recently demonstrated [4] for systems
closed to matter flow, the Frank model is a prime candidate for
the fundamental reaction network necessary for reproducing the
key experimental features reported on absolute asymmetric syn-
thesis in the absence of any chiral polarization [5]. Most impor-
tantly, when reversible steps in all the reactions are allowed it is
capable of [4] (i) amplification of the initially tiny statistical enan-
tiomeric excesses from ee � 10�8% to practically 100%, leading to
(ii) long duration chiral excursions or chiral pulses away from the
racemic state at nearly 100% ee, followed by, (iii) the final approach
to the stable racemic state for which ee ¼ 0, i.e., mirror symmetry
ll rights reserved.

chberg).
is recovered permanently. To understand this temporary asymmet-
ric amplification is important because the racemization time scale
can be much longer than that for the complete conversion of the
achiral substrate into enantiomers.

Long duration chiral excursions have also been reported re-
cently in closed chiral polymerization models with reversible reac-
tions [6] where constraints implied by microreversibility have
been taken into account. These results are important because they
suggest that temporary spontaneous mirror symmetry breaking in
experimental chiral polymerization can take place, and with obser-
vable and large chiral excesses without the need to introduce chiral
initiators [7] or large initial chiral excesses [8].

The purpose of this Letter is to elucidate the nature of these chi-
ral excursions by combining the information provided by phase
plane portraits, numerical simulation and linear stability analysis.
We consider the Frank model, this being the most amenable to
such types of analysis and because it is the ‘common denominator’
of numerous more elaborate theoretical models of SMSB [3].

The reaction scheme consists of a straight non-catalyzed reac-
tion Eq. (1), an enantioselective autocatalysis Eq. (2), where A is
a prechiral starting product, and L and D are the two enantiomers
of the chiral product. We also assume reversible heterodimeriza-
tion step in Eq. (3), where LD is the achiral heterodimer. The ki

denote the reaction rate constants. In the following, we give the
reaction steps in detail.

Production of chiral compound:

A �

k1

k�1

L; A �

k1

k�1

D: ð1Þ

Autocatalytic amplification:

Lþ A �

k2

k�2

Lþ L; Dþ A �

k2

k�2

Dþ D: ð2Þ

http://dx.doi.org/10.1016/j.cplett.2011.02.032
mailto:hochbergd@cab.inta-csic.es
http://dx.doi.org/10.1016/j.cplett.2011.02.032
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett
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Hetero-dimerization:

Lþ D �

k5

k�5

LD: ð3Þ

We assume the feasibility of the reverse reaction for all the steps.
Focusing our attention on chiral excursions, we make a careful
distinction between open, semi-open or fully closed systems.
These system constraints are crucial for determining both the
intermediate and the asymptotic final states of the chemical
system.

2. Open system

2.1. Rate equations

We first consider the original Frank scenario [1]. There, steady
and stable chiral states can be achieved, since the system is perma-
nently held out of equilibrium. See [9] for more details. An impor-
tant question is, can the system support chiral excursions? That is,
pass through temporary chiral states before ending up in the final
racemic state?

In the original Frank model there is an incoming flow of achi-
ral compound A and elimination of the heterodimer LD from the
system. A convenient way to account for the inflow of achiral
matter is to assume that the concentration of the prechiral com-
ponent ½A� is constant, and then we need not write the corre-
sponding kinetic equation for it. For the outflow the
heterodimer leaves the system at a rate �c. We assume that the
heterodimer formation step is irreversible, and set k�5 ¼ 0. Note,
the elimination of LD from the system can actually be neglected
as long as the hetero-dimerization step is irreversible [3]. We re-
tain this outflow however since it is needed to obtain stationary
asymptotic values of all three concentrations ½L�; ½D� and ½LD�;
see the fixed points below. So with ½A� ¼ const and replacing Eq.
(3) by

Lþ D!k5 LD; ð4Þ

LD!
�c ;; ð5Þ

we obtain the rate equations

d
dt
½L� ¼ k1½A� þ ðk2½A� � k�1Þ½L� � k�2½L�2 � k5½L�½D�; ð6Þ

d
dt
½D� ¼ k1½A� þ ðk2½A� � k�1Þ½D� � k�2½D�2 � k5½D�½L�; ð7Þ

d
dt
½LD� ¼ k5½L�½D� � �c½LD�: ð8Þ

The key variable throughout is the chiral polarization

g ¼ ½L� � ½D�½L� þ ½D� ; ð9Þ

also called enantiomeric excess ee, which obeys �1 6 g 6 1 and
which represents the order parameter for mirror symmetry
breaking.

In order to simplify the analysis, we define a dimensionless time
parameter s ¼ ðk2½A� � k�1Þt and dimensionless concentrations
that scale as ½~L� ¼ k5ðk2½A� � k�1Þ�1½L�; ½~D� ¼ k5ðk2½A� � k�1Þ�1½D�;
½fLD� ¼ k5ðk2½A� � k�1Þ�1½LD�. It is convenient to define the sums
and differences of concentrations: v ¼ ½~L� þ ½~D�; y ¼ ½~L� � ½~D�, and
for the heterodimer put P ¼ ½fLD�. The chiral polarization g ¼ y=v
remains unchanged.
In terms of the new variables, Eqs. (6)–(8) read

dv
ds
¼ 2uþ v� 1

2
ðg þ 1Þv2 � 1

2
ðg � 1Þv2g2; ð10Þ

dg
ds
¼ gð1� gvÞ � g

v
dv
ds

� �
; ð11Þ

dP
ds
¼ 1

4
v2ð1� g2Þ � cP: ð12Þ

The dimensionless parameters appearing here are:

u ¼ k1k5½A�
ðk2½A� � k�1Þ2

; g ¼ k�2

k5
; c ¼

�c
ðk2½A� � k�1Þ

: ð13Þ

The system is described by three equations (10)–(12). Since P does
not enter into the equations for v and g, the equations decouple and
the dynamical system to study is effectively two-dimensional and
so the appearance of SMSB cannot depend on whether the hetero-
dimer is removed from the system when k�5 ¼ 0, although the fixed
points will (see Section 2.3).

2.2. Phase plane and linear stability analysis

In the phase space of the dynamical system defined by Eqs. (10)
and (11) there are curves with a special significance. These are the
nullclines defined by

dv
ds
¼ 0; ð14Þ

dg
ds
¼ 0: ð15Þ

The intersections of these curves give the possible steady states (or
fixed points) of the system. The condition dv=ds ¼ 0 leads to two
curves

vð1Þ� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4uðgð1þ g2Þ þ 1� g2Þ

p
gð1þ g2Þ þ 1� g2 ; ð16Þ

while dg=ds ¼ 0 implies the three curves

g ¼ 0; vð2Þ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4u
1� g þ ðg � 1Þg2

s
: ð17Þ

For u > 0 the solutions denoted v� correspond to negative total
enantiomer concentrations so we discard them. The physically
acceptable nullclines are plotted in Figure 1. Which of the two dif-
ferent intersection configurations is obtained depends only on the
single parameter g. We emphasize that despite the similar appear-
ance, the nullcline graphs should not be confused with the classic
bifurcation diagrams that have been discussed often in the past
[10–12].

2.3. Fixed points and stability

The system has several steady states: besides an unphysical
state that we disregard, there is a Z2 pair of chiral solutions Q�,
and a racemic state R:

R ¼ P ¼ 2ðg þ 1Þuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðg þ 1Þuþ 1

p
þ 1

2ðg þ 1Þ2c
;

 

v ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðg þ 1Þuþ 1

p
g þ 1

; y ¼ 0

!
; ð18Þ

Q� ¼ P ¼ u
c� gc

; v ¼ 1
g
; y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððg � 1Þ=g2Þ þ 4u

p ffiffiffiffiffiffiffiffiffiffiffiffi
g � 1

p !
: ð19Þ



Figure 1. Nullclines for the open system (10) and (11). These curves correspond to u ¼ 0:3 implying gcrit ¼ 0:59. The dg=ds ¼ 0 and dv=ds ¼ 0 nullclines are plotted in black
and red, respectively. The black (red) arrows indicate the regions of phase space where g(v) increases or decreases. Left: g ¼ 0:79 > gcrit . The nullclines intersect in only the
one point R representing the asymptotic stable racemic state. Right: g ¼ 0:29 < gcrit . In this case there are three intersections, Q� and R representing the Z2 equivalent stable
chiral states and the unstable racemic state, respectively. From Eq. (22) the enantiomeric excess at Q� is g ¼ �0:93.
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The associated eigenvalues are given by [9]:

k1;2;3ðRÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðg þ 1Þuþ 1

p
;

1� g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðg þ 1Þuþ 1

p
g þ 1

; �c

 !
; ð20Þ

k1;2;3ðQ�Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16g3uþ 4g2 � 4g þ 1

p
� 1

2g
;

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16g3uþ 4g2 � 4g þ 1

p
� 1

2g
; �c

!
: ð21Þ

Note that k1ðRÞ < 0 and k1ðQÞ < 0 are always negative whereas
k2ðRÞ > 0 and k2ðQÞ < 0 for g < gcrit , otherwise k2ðRÞ < 0 and
k2ðQÞ > 0 for g > gcrit , where gcrit ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16u
p

� 1Þ=8u is the critical
value for this parameter. Note that gcritðuÞ 6 1 for all u P 0. For
small u we can write gcrit ¼ 1� 4u; while for large u,
gcrit ! 1=2u1=2. Thus the direct chiral monomer production step
(/ k1 in (1)) tends to racemize the system leading to final g values
strictly less than unity:

g ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ug2

1� g

s
; ð22Þ
Figure 2. Chiral symmetry breaking in the open system (6)–(8). Temporal behavior (loga
chiral polarization g and total enantiomer concentration v (right). Initial concentration
Rate constants: k1 ¼ 10�4s�1; k�1 ¼ 10�6s�1; k2 ¼ 1s�1M�1; k�2 ¼ 0:5s�1M�1 and k5 ¼ 1
we always display original variables ½L�; ½D�; ½LD�, etc. as function of time t.
which holds when g < gcrit . The chiral monomer production step
thus reduces the range of g for which stable mirror symmetry
breaking can occur, and the chiral solutions are no longer 100%
chiral.

Figure 2 shows the temporal evolution of the L and D chiral
monomers starting from an extremely dilute total enantiomer con-
centration and the very small statistical chiral deviations from the
ideal racemic composition. The right hand side of this figure shows
the evolution in terms of the quantities v and g. Note the mirror
symmetry breaking signalled by g. Are there chiral excursions
found in the open system model? A chiral excursion holds when
the enantiomeric excess g departs from a small initial value,
evolves to some maximum absolute value and then decays to the
final value of zero. To ensure a final racemic state we must set
g > gcrit but then we find no numerical evidence for such tempo-
rary chiral excursions. This can be understood qualitatively from
inspection of left hand side of Figure 1. The initial conditions (di-
lute chiral monomer concentration and statistical chiral fluctua-
tion) corresponds to a initial point located at tiny values of v and
close to the vertical nullcline, well below the point labeled as R.
The system is attracted to the black curve and moves up the curve
to R. In this situation, it is impossible for the chiral excess to
rithmic scale) of the individual enantiomer concentrations ½L� and ½D� (left), and the
s: ½L�0 ¼ ð1� 10�6 þ 1� 10�15ÞM; ½D�0 ¼ 1� 10�6M ðg0 ¼ 5� 10�8%Þ and ½A� ¼ 1M.
s�1M�1. These values correspond to g ¼ 0:5 and u ¼ 10�4. In figures of simulations,
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increase, not even temporarily. Notice the time scales for v and g
are of the same order. On the other hand, if g < gcrit , then we have
the situation depicted on the right hand side of the figure. Here the
same initial point moves towards the vertical nullcline and up to-
wards R, but once past the locally horizontal black curve, is at-
tracted to one of the two chiral fixed points where it stays
forever, provided the system is maintained out of equilibrium.
The chiral symmetry is permanently broken, and there is no excur-
sion such as we have defined it.
Figure 3. Nullclines for the semi-open case (31) and (32) in the steady state
approximation for P. The nullclines (33) and (34) are plotted in red and black,
respectively. Red and black arrows indicate the phase-space regions of increasing or
decreasing v and g. The four stationary solutions O;R;Q� are indicated by the black
dots. These curves are illustrated for u ¼ 0 and g ¼ 0:5.
3. Semi-open system

3.1. Rate equations

To elucidate the temporal evolution of v and g for a more gen-
eral setting, we do not remove the heterodimer from the system
now allow the back reaction to chiral monomers, and we keep
[A] constant. There is an implicit inflow as a consequence of con-
stant ½A�, but no outflow, so we denote this case ‘semi-open’. While
there is no mass balance the system can still exhibit temporary
SMSB.

The corresponding rate equations are

d
dt
½L� ¼ k1½A� þ ðk2½A� � k�1Þ½L� � k�2½L�2 � k5½L�½D� þ k�5½LD�; ð23Þ

d
dt
½D� ¼ k1½A� þ ðk2½A� � k�1Þ½D� � k�2½D�2 � k5½D�½L�

þ k�5½LD�; ð24Þ

d
dt
½LD� ¼ k5½L�½D� � k�5½LD�: ð25Þ

After performing the same rescaling as in the open case, we arrive at

dv
ds
¼ 2uþ v� 1

2
ðg þ 1Þv2 � 1

2
ðg � 1Þv2g2 þ 2rP; ð26Þ

dg
ds
¼ gð1� gvÞ � g

v
dv
ds

� �
; ð27Þ

dP
ds
¼ 1

4
v2ð1� g2Þ � rP: ð28Þ

The dimensionless parameters appearing here are:

u ¼ k1k5½A�
ðk2½A� � k�1Þ2

; g ¼ k�2

k5
; r ¼ k�5

ðk2½A� � k�1Þ
: ð29Þ

The system is described by three equations, Eqs. (26)–(28) which do
not decouple.

3.2. Phase plane and linear stability analysis

In order to obtain an approximate two-dimensional phase plane
representation of the system, we will invoke the dynamic steady
state approximation for the heterodimer. Such approximations
are usually justified when there exists a clear separation of time
scales in the problem, thus allowing one to identify rapidly and
slowly changing concentrations [13]. Here however, no such time
scales are evident, all concentration variables evolve on a similar
time scale. Nevertheless, we will see a posteriori that this approx-
imation can be good over a wide range of time scales. We therefore
assume that the heterodimer is in a dynamic steady state Pstat rel-
ative to the chiral monomer concentrations and chiral polarization:

Pstat �
v2

4r
ð1� g2Þ: ð30Þ

Substituting this Pstat into Eqs. (26) and (27) leads to the differential
equations
dv
ds
¼ 2uþ v� g

2
v2ð1þ g2Þ; ð31Þ

dg
ds
¼ g �gv� 2u

v þ
g
2
vð1þ g2Þ

� �
: ð32Þ

As above, we study the phase space of the two-dimensional sys-
tem by means of the nullclines. These are plotted in Figure 3. The
condition dv=ds ¼ 0 implies two curves

v� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4guð1þ g2Þ

p
gð1þ g2Þ ; ð33Þ

whereas the condition dg=ds ¼ 0 implies the three curves

g ¼ 0; g� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4u

gv2

s
: ð34Þ
3.3. Fixed points and stability

We solve Eqs. (26)–(28) looking for steady states. To keep the
algebra manageable, we also set u ¼ 0 as in [9]. There are four solu-
tions, namely, the empty O solution, the racemic R or the two
mirror-symmetric chiral Q� solutions:

O ¼ ðP ¼ 0; v ¼ 0; y ¼ 0Þ; ð35Þ

R ¼ P ¼ 1
g2r

; v ¼ 2
g
; y ¼ 0

� �
; ð36Þ

Q� ¼ P ¼ 0; v ¼ 1
g
; y ¼ �1

g

� �
: ð37Þ

Note that the final heterodimer concentration P is zero in the chiral
states Q�. Note that the steady state approximation Eq. (30) implies
the same result since jgj ¼ 1. In order to study the linear stability
of the four possible homogeneous solutions O;R and Q�, we calcu-
late the eigenvalues of the 3� 3 Jacobian array Mopen derived in [9]
after deleting the 3rd and 4th rows and columns. The eigenvalues
corresponding to these solutions are given by
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k1;2;3ðOÞ ¼ ð1;1;�rÞ; ð38Þ
k1;2;3ðRÞ ¼ �1; �
2þ gð1þ rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ g2ð�1þ rÞ2 þ 4gð1þ rÞ

q
2g

;

0@
�2� gð1þ rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ g2ð�1þ rÞ2 þ 4gð1þ rÞ

q
2g

1A;
ð39Þ
Figure 5. Semi-open system: Comparison of direct numerical solution P ¼ ½fLD� and
the steady state approximation Pstat in Eq. (30) for the heterodimer concentration
(after transforming from ½L�; ½D�; ½LD� to v;g; P).
k1;2;3ðQ�Þ ¼ �1; �

1þ gð�1þ rÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gð�1þ rÞ þ g2ð1þ rÞ2

q
2g

;

0@
�1þ gð1� rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gð�1þ rÞÞ2 þ 4g2r

q
2g

1A: ð40Þ
As k1;2ðOÞ > 0, the empty state is always unstable. An inequality
analysis shows that both k2ðRÞ < 0 and k3ðRÞ < 0 for all r > 0 and
g > 0. Since k1ðRÞ ¼ �1 this demonstrates that the racemic state R
is always stable. As an independent check, we also verify that
k3ðQÞ > 0 is positive for all r > 0 and g > 0, so the chiral solutions
Q� are always unstable. The final outcome will always the racemic
state. There is no stable mirror symmetry broken solution when the
heterodimer dissociates back into the chiral monomers. Neverthe-
less, the system can have temporary chiral excursions.

In Figure 4 we plot the temporal evolution of the L and D chiral
monomers starting from an extremely dilute total enantiomer con-
centration and the very small statistical chiral deviations from the
ideal racemic composition. The right hand side of this figure shows
the evolution in terms of the quantities v and g. Note the chiral
excursion in g for the time interval between t ’ 100 s and
t ’ 1000 s. Finally, we compare the heterodimer concentration
from direct numerical simulation with the steady state approxima-
tion in Figure 5. To do so we simulate the original concentration
variables in Eqs. (23)–(25) and then transform results in terms of
v, g and P. While Pstat appears to overestimate P ¼ ½fLD�, it provides
a reasonably good approximation to the actual heterodimer con-
centration P right after chiral symmetry is broken, at about
t ’ 100 s and coincides perfectly after chiral symmetry is recov-
ered, and when v reaches its asymptotic value, after approximately
t ’ 104 s).
Figure 4. Temporary chiral symmetry breaking and chiral excursions in the semi-open sy
concentrations ½L� and ½D� (left) and the chiral polarization g and total ena
10�15ÞM; ½D�0 ¼ 1� 10�7M ðg0 ¼ 5� 10�8%Þ and ½A� ¼ 1M. Rate constants: k1 ¼ 10�4s�

These rate constants imply g ¼ 0:5 and u ¼ 10�4.
4. Closed system

4.1. Rate equations

The rate equations directly follow from (1)–(3):

d
dt
½L� ¼ k1½A� þ ðk2½A� � k�1Þ½L� � k�2½L�2 � k5½L�½D� þ k�5½LD�; ð41Þ

d
dt
½D� ¼ k1½A� þ ðk2½A� � k�1Þ½D� � k�2½D�2 � k5½D�½L� þ k�5½LD�; ð42Þ

d
dt
½A� ¼ �2k1½A� � ðk2½A� � k�1Þð½L� þ ½D�Þ þ k�2ð½L�2 þ ½D�2Þ; ð43Þ

d
dt
½LD� ¼ k5½L�½D� � k�5½LD�: ð44Þ

There is no flow of material into or out of the system. Since ½A� is not
constant in this situation, we cannot use it to rescale the time or the
concentrations. Instead, we take s ¼ k1t for the time parameter and
½~L� ¼ ðk5=k1Þ½L�, etc. for the dimensionless concentrations. This al-
lows us to express the rate equations in the following dimensionless
form:

d
ds
½~L� ¼ ½~A� � u½~L� þ h½~A�½~L� � g½~L�2 � ½~L�½~D� þ q½fLD�; ð45Þ

d
ds
½~D� ¼ ½~A� � u½~D� þ h½~A�½~D� � g½~D�2 � ½~D�½~L� þ q½fLD�; ð46Þ

d
ds
½fLD� ¼ ½~L�½~D� � q½fLD�: ð47Þ

These are subject to the constraint ½~A� ¼ ½~C� � ð½~L� þ ½~D�Þ � 2½fLD�,
where ½~C� ¼ ðk5=k1Þ½C� and ½C� is the total initial concentration, being
constant in time. The four parameters appearing here are
stem (23)–(25). Temporal behavior (logarithmic scale) of the individual enantiomer
ntiomer concentration v (right). Initial concentrations: ½L�0 ¼ ð1� 10�7 þ 1�
1; k�1 ¼ 10�6s�1; k2 ¼ 1s�1M�1; k�2 ¼ 0:5s�1M�1; k5 ¼ 1s�1M�1 and k�5 ¼ 10�3s�1.



Figure 6. Nullclines for the closed system (53) and (54) in the steady state
approximation for P. The g and v nullclines are plotted as the black and red curve,
respectively. These nullclines intersect at the one point (indicated with a dot) which
corresponds to the stable racemic solution R with g ¼ 0 and v > 0. The flow
directions are indicated with arrows. This diagram corresponds to the parameter
values g ¼ 0:05; u ¼ 0:01; h ¼ 0:1 and q ¼ 1:0 and ½~C� ¼ 105.

C. Blanco et al. / Chemical Physics Letters 505 (2011) 140–147 145
u ¼ k�1

k1
; g ¼ k�2

k5
; h ¼ k2

k5
; q ¼ k�5

k1
: ð48Þ

Changing variables as before to v;g; P, we arrive at

dv
ds
¼ 2½~A� þ ðh½~A� � uÞv� 1

2
ðg þ 1Þv2 � 1

2
ðg � 1Þv2g2 þ 2qP; ð49Þ

dg
ds
¼ gðh½~A� � gv� uÞ � g

v
dv
ds

� �
; ð50Þ

dP
ds
¼ 1

4
v2ð1� g2Þ � qP: ð51Þ

In these variables, the constant mass constraint reads
½~A� ¼ ½~C� � v� 2P.

4.2. Phase plane and linear stability analysis

As in the semi-open case, to obtain an approximate two-dimen-
sional phase plane portrait, we assume that the heterodimer is in
an approximate steady state Pstat and solve Eq. (51) for

Pstat �
v2

4q
ð1� g2Þ: ð52Þ

Substituting this back into Eqs. (49) and (50), we obtain

dv
ds
¼ ð2þ hvÞ½~A� � uv� g

2
v2ð1þ g2Þ; ð53Þ

dg
ds
¼ g �gv� 2½~A�

v þ g
2
vð1þ g2Þ

 !
; ð54Þ

where

½~A� ¼ ½~C� � v� v2

2q
ð1� g2Þ: ð55Þ

The nullcline condition dv=ds ¼ 0 leads to an unwieldy cubic
equation in v. More importantly, the nullcline is an even function
of g, reflecting the underlying Z2 mirror symmetry. The other con-
dition dg=ds ¼ 0 is straightforward to solve analytically and leads
– after discarding the unphysical solution corresponding to nega-
tive total enantiomer concentrations – to two curves

g ¼ 0;

v ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2½~C�ðgð1þ g2Þ=2þ ð1� g2Þ=q� gÞ

q
gð1þ g2Þ=2þ ð1� g2Þ=q� g

: ð56Þ

The curve vðgÞ is an even function of g and vðgÞ ! 1 for g2 ! 1
with a minimum at g ¼ 0. Thus the nullcline has the form of a nar-
row fork as depicted in Figure 6.

4.3. Fixed points and stability

A linear stability analysis for the closed Frank model is given in
[9]. That analysis was carried out in terms of v; y and P and does
not assume the stationary approximation for the heterodimer. It
turns out, even in a model as simple as this one, that keeping
q > 0 is analytically untractable, so we consider q ¼ 0 in what fol-
lows. Then the asymptotic stationary racemic R and chiral solu-
tions Q� are given by

R ¼ P ¼ ½
~C�
2
; v ¼ 0; y ¼ 0

 !
; ð57Þ

Q� ¼ P ¼ ½
~C�g þ u

2g
; v ¼ �u

g
; y ¼ �u

g

 !
: ð58Þ

The chiral solutions Q� are unphysical for all u > 0 since they imply
negative total enantiomer concentrations v < 0. Thus, the only
physically acceptable solution is the racemic one R, and this is (at
least marginally) stable, the corresponding eigenvalue was calcu-
lated to be [9]

k1;2;3ðRÞ ¼ ð0;�2� u;�uÞ: ð59Þ

In the limit q ¼ 0, the substrate is consumed and all the matter ends
up finally as pure heterodimer. Finally, note that limu!0Q� ¼ R: the
unphysical chiral solutions merge to the racemic one when k�1 ¼ 0.
For reversible heterodimer, the matter in the racemic state g ¼ 0 is
distributed between the chiral monomers and the heterodimer:
P ¼ ð½eC � � vÞ=2 and v > 0 in keeping with the law of mass action.
The single intersection R displayed in Figure 6 indicates that the
racemic state is the only possible solution, in qualitative agreement
with the stability analysis.

Example of a chiral excursion in a closed system is provided in
Figure 7. Once again, as for the semi-open situation, the scheme is
capable of amplifying a tiny initial chiral excess to practically 100%,
followed by final approach to the racemic state. The steady state
approximation for the heterodimer is rather poor during the early
stages (Figure 8), but similar to semi-open case, converges to the
true heterodimer concentration after symmetry breaking and
restoration.

5. Discussion

In this Letter, we investigated transient mirror symmetry break-
ing in chiral systems, in particular in the Frank model in settings of
open, semi-open, and closed environments. Temporary chiral
excursions are observed for closed and semi-open systems and ex-
plained through phase space analysis, stability analysis and
numerical simulations. Such chiral excursions may be experimen-
tally observed and could be mistaken for a transition to a chiral
state. They are in fact a long sought goal for the experimental
chemist who could actually fail to see them if not aware of their
transitory nature. In open systems by contrast, the racemic state
is approached monotonically. Therefore, it is important to under-
stand the processes and constraints responsible for these



Figure 8. Comparison of direct numerical solution ½LD� and the steady state
approximation ½LD�stat ¼ ðk5=k�5Þ½L�½D� for the heterodimer concentration. The
steady state approximation peaks to a maximum value of about 25 in this example.

Figure 7. Temporary chiral symmetry breaking and chiral excursions in the closed system (41) and (42). Temporal behavior (logarithmic scale) of the individual enantiomer
concentrations ½L� and ½D� (left) and the chiral polarization g and total enantiomer concentration v (right). Initial concentrations: ½L�0 ¼ ð1� 10�7 þ 1�
10�15ÞM; ½D�0 ¼ 1� 10�7M ðg0 ¼ 5� 10�8%Þ and ½A�0 ¼ 1M. Rate constants: k1 ¼ 10�4s�1; k�1 ¼ 10�6s�1; k2 ¼ 1s�1M�1; k�2 ¼ 0:5s�1M�1; k5 ¼ 10s�1M�1 and k�5 ¼ 10�4s�1.
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outcomes. This Letter has focused on the effects that the in- and
outflow of matter has on these phenomena. The open nature of
the Frank model can be arranged experimentally with an incoming
flow of achiral precursor A and an outflow of the product heterodi-
mer LD, to conserve mass balance. Mathematically, we can model
the inflow by assuming a constant concentration of ½A� and the out-
flow by a term representing the rate at which LD leaves the system.
In our open model we assumed no dissociation of LD back into chi-
ral monomers. From the point of view of achieving permanent
SMSB, there is then actually no need to remove LD from the
system, but we retain this outflow since it is needed to ensure sta-
tionary fixed points for all the chemical concentrations. For the
semi-open case, LD is not removed and we allow for its dissociation
into chiral monomers. There is no mass balance but temporary
symmetry breaking can arise. Finally, in the closed system there
is neither inflow nor outflow, total mass is conserved and tempo-
rary symmetry breaking can occur.

A recent kinetic analysis of the Frank model in closed systems
applied to the Soai reaction [5] indicates that in actual chemical
scenarios, reaction networks that exhibit SMSB are extremely sen-
sitive to chiral inductions due to the presence of inherent tiny ini-
tial enantiomeric excesses [4]. This amplification feature is also
operative in much more involved reaction networks such as chiral
polymerization [6]. When the system is subject to a very small per-
turbation about an extremely dilute racemic state, the initial chiral
fluctuation does not immediately decay, but becomes amplified
and drives the system along a long-lived chiral excursion in phase
space before final and inevitable approach to the stable racemic
solution. Mauksch and Tsogoeva have also previously indicated
that chirality could appear as the result of a temporary asymmetric
amplification [14,15].

Excursions in phase space as studied in this work are superfi-
cially reminiscent of excitable systems as studied in dynamical sys-
tems [13,16,17]. But there are important differences. First of all, the
excursions reported in chiral systems are not easily visualized in
the chiral monomer concentrations themselves, but are strikingly
manifested by the chiral polarization or enantiomeric excess. Sec-
ondly, the total enantiomer and heterodimer concentrations do in-
crease with time, so that the complete phase-space trajectory does
not follow a closed path: there is no return to the initial state. The
chiral excursion is a one way trip, not a round trip as in an excitable
system. Third, whereas excursions are traditionally studied for
open excitable systems [13,16,17], chiral excursions are observed
here only for closed or at most semi-open systems, but not for open
systems.

The original impetus for considering phase-space descriptions
of the Frank model comes not only from the chiral excursions re-
ported in [4] and [6] but also by the recent report of damped chiral
oscillations detected numerically in a model of chiral polymeriza-
tion in closed systems [6]. Absolute asymmetric synthesis is
achieved in the latter scheme, accompanied by long duration chiral
excursions in the enantiomeric excesses for all the homopolymer
chains formed, analogous to the much simpler Frank model. But
unlike the latter, strong enantiomeric inhibition converts these
excursions into long period damped chiral oscillations in the enan-
tiomeric excesses associated with the longest homochiral polymer
chains formed. Moreover, short period sustained chiral oscillations
have been observed numerically in a recycled Frank model open to
energy flow, for large values of the inhibition [18]. This oscillatory
behavior poses an additional problem for the origin of biological
homochirality, since any memory of the sign of the initial fluctua-
tion is further erased by subsequent oscillations thus adding a fur-
ther element of uncertainty to the overall problem. Chemical
oscillations have been traditionally studied in conjunction with
excitability. Although the latter concept is not directly applicable
to models exhibiting SMSB, it remains to be seen if the techniques
used to study oscillations can be applied profitably to reaction
schemes that lead to chiral oscillations.
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Spontaneous Emergence of Chirality in the Limited
Enantioselectivity Model: Autocatalytic Cycle Driven by an
External Reagent
Celia Blanco,[a] Joaquim Crusats,[b, c] Zoubir El-Hachemi,[b, c] Albert Moyano,[b]

David Hochberg,*[a] and Josep M. Rib�*[b, c]

1. Introduction

Most applied chemists view the theoretical models of sponta-
neous mirror symmetry breaking (SMSB) in chemical transfor-
mations as mere academic research efforts, because of the ab-
sence of actual experimental models to study. This despite the
recent reports on absolute asymmetric synthesis[1] and on the
spontaneous deracemization of racemic mixtures of enantio-
pure crystals.[2] The significance of these reports is not easily
grasped by synthetic organic chemists, not only because they
deal with the rather uncommon phenomenon of enantioselec-
tive autocatalysis, but also as a consequence of the lack of reli-
able models for explaining SMSB in chemical processes.[3, 4] The
interest in finding the correct chemical explanations of these
results is not only related to the phenomenon of biological ho-
mochirality, but also to the prospects of achieving absolute
asymmetric synthesis in applied chemistry.

Enantioselective autocatalysis is the key reaction that may
lead to SMSB on coupling to reactions that amplify the enan-

tiomeric excess (ee) generated by statistical fluctuations about
the ideal racemic composition, or induced by small chiral po-
larizations. For certain reaction parameters and thermodynamic
constraints, such a system as a whole follows a bifurcation sce-
nario in which the racemic final state is metastable and the
more stable final state is chiral.[5] Clearly, for a system in condi-
tions that allow a chemical thermodynamic equilibrium to be
reached (i.e. a closed system with a uniform distribution of
matter, temperature, and energy), the final outcome must be
the racemic state. However, in a system with a nonuniform
energy distribution (e.g. energy absorption by only some of
the species of the system, or open to matter exchange with
the surroundings), the final stable stationary state may be
chiral. A classical example of this is called the Frank model of
SMSB in open systems.[6] Furthermore, a Frank-like reaction
network (see below) in a closed system (Scheme 1, left-hand
side) with a uniform temperature distribution can lead to chiral
excursions, that is, to kinetically controlled temporary chiral
windows, which in the case of exergonic transformations are
resilient to racemization that occurs on a timescale much
longer than that required for the fast conversion of the reac-
tants to products.[7] This chiral window can be so wide that,
from the point of view of organic synthesis, the reaction is an
absolute asymmetric synthesis, such as has been demonstrated
in the case of the Soai reaction.[1]

The limited enantioselectivity (LES) model[8] (Scheme 1, right-
hand side) is composed of an enantioselective autocatalytic re-
action coupled to the corresponding nonenantioselective auto-
catalysis, and was proposed originally as a SMSB alternative to
the Frank model.[6] The Frank reaction network is composed of

The model of limited enantioselectivity (LES) in closed systems,
and under experimental conditions able to achieve chemical
equilibrium, can give rise to neither spontaneous mirror sym-
metry breaking (SMSB) nor kinetic chiral amplifications. Howev-
er, it has been recently shown that it is able to lead to SMSB,
as a stationary final state, in thermodynamic scenarios involv-
ing nonuniform temperature distributions and for compart-
mentalized separation between the two autocatalytic reac-
tions. Herein, it is demonstrated how SMSB may occur in LES
in a cyclic network with uniform temperature distribution if
the reverse reaction of the nonenantioselective autocatalysis,

which gives limited inhibition on the racemic mixture, is driven
by an external reagent, that is, in conditions that keep the
system out of chemical equilibrium. The exact stability analysis
of the racemic and chiral final outcomes and the study of the
reaction parameters leading to SMSB are resolved analytically.
Numerical simulations, using chemical kinetics equations, show
that SMSB may occur for chemically reasonable parameters.
Numerical simulations on SMSB are also presented for specula-
tive, but reasonable, scenarios implying reactions common in
amino acid chemistry.
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the coupling between the enantioselective autocatalysis (II)
and a reaction of mutual inhibition between the enantiomeric
reaction compounds/catalysts (IIIhetero). In both models the
enantioselective autocatalysis (II) is coupled to a reaction lead-
ing to the decrease of the racemic composition of chiral cata-
lysts.[9] This leads to an increase in the ee that is strongly ampli-
fied in the basic reaction (II).[10] The amplification is so strong
that statistical fluctuations about the ideal racemic mixture[10]

may be amplified up to detectable ee values. The significant
difference between the Frank and LES models is that in the
Frank model the reaction (IIIhetero) must be more exergonic than
the (IIIhomo) one.[7d] Notice that this happens for many but not
all chiral compounds,[11] whereas the LES reaction network
does not require such a mutual inhibition between the enan-
tiomers.

The LES model has had a controversial reputation because
at times the thermodynamic constraints imposed by the princi-
ple of microreversibility have not been considered,[7d, 12] that is,
the simulated SMSB obtained in those cases cannot represent
a thermodynamically possible process. In fact, it has been
shown[13] that LES in a closed system does not lead to SMSB,
nor can it lead to a temporary and resistant amplification[14] of
the initial ee, such as those that can be obtained in Frank-like
networks for relatively high exergonic reactions.[7d] However,
recent reports demonstrate that LES reaction networks may
lead to SMSB in a scenario in which the enantio- and nonenan-
tioselective autocatalyses are each individually compartmental-
ized within different temperature regions of the system.[15]

Taking into account the dependence of the equilibrium con-
stant and rate constants on the temperature, a very high tem-
perature gradient between compartments is necessary for
such a SMSB. This determines that the medium can only
remain in the fluid state in all regions of the system in the case
of enormous pressures, such as those present in deep ocean
hydrothermal plumes, and this has been suggested as a plausi-
ble prebiotic scenario for SMSB.[15a]

Herein, we discuss the SMSB in the LES model with a uniform
temperature distribution, but with the nonenantioselective au-
tocatalysis driven by a constant concentration of external reac-
tants (X and Y in reaction (III) in Scheme 1, right-hand side),
that is, an open system with X and Y matter exchange with

the surroundings. Notice that, regarding the substrate and the
final products, the reaction network is a cyclic one with perma-
nent consumption and production of X and Y, respectively, or
of Y and X depending on the reaction flow direction in the
cycle.

We show how this type of system can achieve SMSB for
a wide range of reaction parameters. In Section 3 we perform
a stability analysis and discuss the conditions for SMSB of the
minimal LES model (I) + (II) + (III) in a uniform temperature dis-
tribution. However, reaction (III) in Scheme 1 is difficult to
imagine as a chemically reasonable reaction because of its
high molecularity. Therefore, in Section 4 we discuss the condi-
tions for an applied chemistry scenario through the simulation
of a system with reasonable chemical reactions in a cycle com-
posed of the amino acid Strecker synthesis and the amino acid
Strecker degradation.

2. Numerical Simulations

Simulations were performed by numerical integration of the
differential rate equations according to rate-equation theory as
applied in chemical kinetics (mean field assumption). The con-
centration units are mol L�1 and the different rate constants
have the appropriate units to yield rate values in units of
mol s�1. Numerical integration was performed with the Mathe-
matica program package. The results were monitored and veri-
fied to ensure that the total system mass remained constant in
time. For a set of parameters corresponding to the system at,
or very near to, the bifurcation point, the numerical integration
is highly sensitive to minute differences between the reaction
parameters, so that the inherent numerical noise of the calcu-
lations suffices to bifurcate the system towards a chiral out-
come, or is made insensitive to SMSB. In our simulations we
suppressed this computational noise, which arises from round-
off errors, by setting a high numerical precision of the input
parameters (100 significant decimal digits) and exact number
representation of the reaction rates and the initial concentra-
tion values (e.g. “1 + 1 � 10�2” instead of “1.01” or “1. + 1 �
10�10” or “1 + 1. � 10�2”). Integration methods of “StiffnessS-
witching” and “WorkingPrecision” of up to 50 were used in the
present calculations. An example of the Mathematica input for

Scheme 1. Frank[6] and limited enantioselective[8] cyclic reaction networks. For a description of the kinetically controlled SMSB in a closed system of this Frank
model, see ref. [7d] . The LES network cannot lead to absolute asymmetric synthesis, due to the microreversibility principle, when it is composed of the three
reactions (I) + (II) + (IIIrac) (see ref. [13]). However, it leads to SMSB in a compartmentalized system at different temperatures.[15] The cyclic LES network studied
herein is that composed of the reactions (I) + (II) + (III) in a uniform temperature distribution and at constant concentrations of the reactants Y and X, that is,
an open system with Y and X matter exchange. A is an achiral compound and D and L the enantiomer pair of a chiral compound.
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one of the examples reported in Section 3 is provided in the
Supporting Information. The fluctuations of chirality able to
convert the racemic output to a chiral one were simulated by
using an initial ee of products/catalysts lower than that expect-
ed from the statistical fluctuations about the ideal racemic
composition, that is, an initial ee (%) <67.43 � (N�0.5), in which
N is the number of chiral molecules.[10] By using this procedure
the SMSB was detected for initial ee values much lower than
those of the statistical fluctuations from the ideal racemic com-
position and in the absence of any chiral polarization. In condi-
tions of an initial ideal racemic composition of chiral com-
pounds, or in their initial absence, no SMSB takes place, that is,
the composition of the virtual metastable racemic state could
be determined. The numerical integration was run between 0
and 1 � 1020 s. This limit of time, three orders of magnitude
larger than the age of the universe, was used to compare the
simulated numerical values of the ee and the final concentra-
tions of chiral compounds with those obtained from the stabil-
ity analysis at t!1 [see Eqs. (4)–(6) below] and those ob-
tained from the asymptotic analytic stability analysis. In this re-
spect, the values of the final concentrations [A], [D], and [L]
calculated through the stability analysis [see Eqs. (4)–(6) below]
and those obtained by the numerical integration agree at the
level of the numerical errors in the calculated precision.

3. Results

3.1. Analysis of the Conditions to Yield a Final Chiral
Stationary State in the Network (I) + (II) + (III)

We can take over the stability analysis previously carried out
for LES [(I) + (II) + (IIIrac)] (see Scheme 1, right-hand side) in
closed systems by formally substituting k3![Y]k3 and k�3!
[X]k�3 in the relevant expressions for the static solutions and
eigenvalues that appear in Section 5.3 in ref. [13] . For this pur-
pose, the following dimensionless parameters are defined as
follows, taking into account that [Y] and [X] are constant con-
centration values [Eq. (1)]:

u ¼ k�1=k1; g ¼ k�2=ð½X�k�3Þ;
h ¼ k2=ð½X�k�3Þ; r ¼ ð½Y�k3Þ=ð½X� k�3Þ

ð1Þ

Note that the principle of microreversibility requires [Eq. (2)]:

k1=k�1 ¼ k2=k�2 ð2Þ

and therefore [Eq. (3)]:

g=h ¼ u ð3Þ

Note that in the case of [Y] = [X] , r is the thermodynamic equi-
librium constant of the transformation (III) and in the case of
unequal concentrations [Y]¼6 [X] , it is the corresponding effec-
tive equilibrium ratio.

The complete set of reaction parameters defining the net-
work are the six rate constants k� i (i = 1,2,3) subject to the

constraint Equation (2), the initial concentrations [A]0, [L]0, and
[D]0, and the constants [Y] and [X], 11 in all. The constriction of
Equation (2) reduces the total number of independent parame-
ters defining the system to 10. The dimensionless parameters
of Equation (1) are determined in terms of these, and the con-
straint of Equation (3) should hold automatically. Therefore, the
final states depend only on the four dimensionless parameters
in Equation (1), subject to the one constraint Equation (3), the
total concentration C, and the conversion factor [X]k�3/k1, that
is, a total of five parameters.

The dimensionless concentrations A, L, and D are related to
the dimensionfull concentrations by, for example, A = ([X]k�3/
k1)[A]. We remark that the dimensionless total system concen-
tration is defined by C = A + L + D.

3.1.1. Exact Solutions for the Final Stationary Racemic (R)
and Stationary Chiral (Q�) Solutions

We generalize the results in ref. [13] as follows in that we in-
clude the exact full dependence on u (i.e. for u>0). The tem-
poral asymptotic R and Q� stationary solutions are given by
[Eq. (4)]:

R � y ¼ 0; c ¼ �2þ C hþ rð Þ � u
1þ gþ 2 hþ rð Þ

�
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 C 1þ gþ 2 hþ rð Þð Þ þ 2� C hþ rð Þ þ uð Þ2
p

1þ gþ 2 hþ rð Þ

! ð4Þ

and [Eq. (5)]:

Q� ¼ y ¼ � �4 Cg gþ h� rð Þ � C2 h� rð Þ g� 1ð Þhþ r þ 3 grð Þ
g� 1ð Þ gþ h� rð Þ2

��
þ

þ2 Cu h g� 2 r � 1ð Þ þ r gþ 2 r þ 1ð Þð Þ
g� 1ð Þ gþ h� rð Þ2 þ

u �g uþ 4ð Þ � 4 hþ 4 r uþ 1ð Þ þ uð Þ
g� 1ð Þ gþ h� rð Þ2

�1=2
; c ¼ C h� rð Þ � u

gþ h� r

�
ð5Þ

in which y = L�D and c= L + D. For conditions leading to the
chiral solution we can evaluate the final ee value from using
the expressions y and c given in Q� . Thus [Eq. (6)]:

ee ð%Þ ¼ ðy=cÞ � 100 ð6Þ

To compare c with the value of the dimensionfull concentra-
tion [L] + [D] the conversion factor [X]k�3/k1 must be employed.

3.1.2. Exact Eigenvalues for Racemic State (R) and Stability
Criteria

It is sufficient to establish the stability criteria of the final state
in terms of the racemic solution R in Equation (4) alone. The
stability of time asymptotic racemic solution is governed by
the algebraic signs of the associated pair of eigenvalues
[Eq. (7)]:
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l1 Rð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 C gþ 2 hþ 2 r þ 1ð Þ þ �C hþ rð Þ þ uþ 2ð Þ2

q
l2 Rð Þ ¼ C h� rð Þ � u� gþ h� rð Þ

1þ gþ 2 hþ 2 r
� uþ 2ð Þ þ C hþ rð Þþðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 hþ rð Þ2þ4 C 1þ gþ hþ rð Þ � 2 Cu hþ rð Þ þ uþ 2ð Þ2
q �

ð7Þ

Stability in state R requires both these eigenvalues to be nega-
tive; l1,2(R)<0. The first expression l1(R)<0 is always negative,
whereas the second l2(R) can be positive or negative depend-
ing on the values of the parameters C, g, h, r, and u = g/h. The
stability of the state R is determined by the algebraic sign of
l2(R) alone. So, we find l2(R)<0 if and only if g>gcrit, for which
[Eq. (8)]:

gcrit uð Þ ¼ � 1
8 C

4 C h� rð Þ þ C2h2 þ 2 C2hr � 3 C2r2 þ 4 u�ð

2 Cu hþ rð Þ þ u2 þ C r � hð Þ þ uð Þ C2 hþ 3 rð Þ2þ8 C 2þ hþ 3 rð Þ�ð

2 C hþ 3 rð Þuþ 4þ uð Þ2Þ
1=2
�

ð8Þ

We find the sign of gcrit to be real and positive if and only if
h> r and [Eq. (9)]:

C > Cmin ¼
uþ 2 ru

h� r
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u h� rð Þ þ r2u2

h� rð Þ2

s
ð9Þ

Thus, if either of these two conditions is not satisfied (either
h� r or C�Cmin), then gcrit<0 and because g is always positive,
there can be no values of g satisfying g<gcrit, and consequent-
ly the only stable state will be R the racemic one.

To summarize [Eq. (10)]:

h � r OR C � Cmin : gcrit < 0! Racemic ðRÞ ð10Þ

On the other hand, h> r AND C>Cmin imply that gcrit(u)>0. In
which case we have two alternatives that depend on g :
namely, either a final chiral outcome Q� or a final racemic one
R [Eqs. (11) and (12)]:

g < gcrit ! Q� ð11Þ

g > gcrit ! R ð12Þ

Finally, in the limit of large C, and using Equation (3), the criti-
cal value becomes [Eq. (13)]:

gcrit !
1� r

h

1þ 3 r
h

þ uh
8

1þ 7
r
h

� �
¼ 1� r

h

1þ 3 r
h

þ g
8

1þ 7
r
h

� �
ð13Þ

All simulations performed by numerical integration show, at
long reaction times, the achievement of either a racemic or
a chiral final state in accord with the predictions summarized
in Equations (10) and (11) or (12), respectively. The numerical
simulations (see below) reveal a clear picture of the chiral final
state in complete accord with the theoretical bifurcation sce-
nario depicted by Equations (4) and (5). After the bifurcation
point giving the transition from the racemic state to the chiral
state, the racemic solution is a metastable state with respect
to the more stable degenerate chiral solutions. The higher sta-
bility is characterized by a higher total chiral matter of the
chiral solutions compared to the metastable racemic state [the
c values of Eqs. (4) and (5)] . In contrast, in the branch of the
racemic solution its c value is higher than that of the chiral sol-
utions. Furthermore, the calculated c values for all the racemic
and metastable chiral states [Eq. (4)] and of the chiral solutions
[Eq. (5)] agree at the level of the numerical error with the
values obtained in the numerical simulations.

3.1.3. Surface Representation of the Racemic and Chiral
Regions

The intersection of the g and gcrit hypersurfaces defines the re-
gions leading to racemic or chiral solutions. Figure 1 shows 3D
representations of the g surface as a function of u and h
values, and the gcrit surfaces correspond to varying u and h for
different fixed r and C values. The intersection between the g
and gcrit surfaces divides the racemic and chiral regions of the
final-state solutions. The red and green points plotted in
Figure 1 correspond to the parameter values of the chemical
kinetics simulations displayed in Figures 2 and 3.

Figure 1. Surfaces of g (blue/gray) and gcrit at fixed r and C values. Left : r = 20 and C = 5 (red) ; r = 1000 and C = 0.1 (green). Middle: r = 0.02 and C = 50 000
(red) ; r = 0.2 and C = 5000 (green). Right: r = 0.1 and C = 5 � 10�4 (red); r = 1 and C = 5 � 10�5 (green). The graphics correspond to the r, h, and C values of Fig-
ures 2 and 3; the points on the blue g surface correspond to the examples leading to racemic or chiral final states depending on whether the g value lies re-
spectively above or below the gcrit value given by the corresponding gcrit surface.
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Figure 3. Examples of the time evolution of the LES reaction network [(I) + (II) + (III) ; see Scheme 1] to achieve the final stable state, either racemic or chiral.
The integrations start from an ee value below the statistical fluctuations from the ideal racemic composition. The examples correspond to an exergonic reac-
tion (u�0) showing an enantioselective autocatalysis (II) slower than the nonautocatalytic reaction (I). The final state obeys the criteria of Equations (11) and
(12), that is, when h> r and C>Cmin, and the final concentrations agree with those calculated from the asymptotic solutions (t!1) of Section 3.1.

Figure 2. Examples of the time evolution of the LES reaction network [(I) + (II) + (III) ; see Scheme 1] to achieve the final stable state, either racemic or chiral.
The integrations start from an ee value below the statistical fluctuations from the ideal racemic composition. The examples correspond to systems showing
an enantioselective autocatalysis (II) much faster than the nonautocatalytic reaction (I) (k2 @ k1), for an exergonic reaction (u�0, top row) and a nonexergonic
reaction (u = 1, bottom row). The final state obeys the criteria of Equations (11) and (12), that is, when h> r or C>Cmin, and the final concentrations agree
with those calculated from the asymptotic solutions (t!1) of Section 3.1.
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3.2. Examples of Chemical Kinetic Simulations

Figure 2 shows two examples of how, for the same reaction
parameters, the change of k�3 may lead to chiral or racemic
final states.[16] This simple change of one of the ten reaction
parameters leads to the change of three (h, r, and C) of the
five dimensionless parameters. The first example corresponds
to an exergonic reaction (k1/k�1 = k2/k�2 = 1 � 105 ; that is, at
300 K a reaction DG8��28.7 kJ mol�1) and the second exam-
ple illustrates a nonexergonic transformation (k1/k�1 = k2/k�2 =

1). Both examples show how the deracemization occurs later
than that of the transformation of A to D and L.

The comparison between the two pairs of examples shows
how flexible[16] and efficient the effect of the limited enantiose-
lective inhibition reaction (III) is for the transition of a racemic
final solution into a chiral one. Moreover it can also lead to
SMSB in the case of a nonexergonic transformation for reac-
tions (I) and (II).

SMSB can also occur if the enantioselective autocatalysis (II)
is slower than the uncatalyzed reaction (I) but the transforma-
tion is highly exergonic. An example of this is presented in
Figure 3. In this case, the kinetics of the transformations (I) and
(II) does not exhibit the convex time evolution of the final
products, the signature of autocatalysis, but rather a concave
curve characteristic of a nonautocatalytic process (linear time-
scale).[17] However, the deracemization stage shows the autoca-
talytic signature of a convex time evolution of L and D. The
chemical significance of this is that SMSB does not require
a high selectivity of reaction (II) compared to (I). Notice that
the underlying problem in the topic of absolute asymmetric
synthesis is the small number of known autocatalytic reactions.
The results in the example of Figure 3 suggest that if an enan-
tioselective autocatalysis (II) is “obscured” by the nonautocata-
lytic reaction (I), a situation that is not easy to detect by kinetic
measurements, the system would still be capable of absolute
asymmetric synthesis on coupling to a reaction of type (III).

3.2.1. Estimation of the Reaction Parameters Leading to
Regions Undergoing SMSB

From a chemical point of view the search for chiral regions in
parameter space needs to be made taking into account the
chemical reaction parameters, that is, ten that specify the
system and not the five dimensionless parameters used for the
stability analysis of the racemic and chiral solutions. However,
in the search for regions leading to SMSB, a helpful approxima-
tion is to first use reaction parameters leading to g<1 and to
an effective equilibrium constant at reaction (III) smaller than
the equilibrium constant at reaction (II), that is [Eq. (14)]:

½X�k�3 > k�2 and
Y½ �k3

X½ �k�3

<
k3

k�2
ð14Þ

This is because 0<g<1 and at large C values and u�0, that
is, a relatively high exergonic transformation, then the gcrit

value (18) approximates to [Eq. (15)]:

gcrit!
1� r

h

1þ 3 r
h

¼
g� K

0

3

K2

gþ 3 K
0

3
K2

ð15Þ

A second step, when u is not zero and C<Cmin, is to increase
the exergonicity of reactions (I) and (II), which leads to the de-
crease of u and to an increase in the term [X]k�3, which has
the effect not only to decrease g but also to increase the di-
mensionless C value, that is, allowing C>Cmin [Eq. (11)] . Howev-
er, in some cases the change from the chiral to racemic final
state is paradoxical. For example, at the conditions of the
chiral outcome of Figure 2 in the case of nonexergonic trans-
formations, the increase of efficiency of the enantioselective
autocatalysis, upon changing k2 and k�2 to 1 � 102, leads to the
racemic outcome. This is a consequence of the cyclic character
of the network studied here, in which an overflow of reactio-
n (II) takes the system out of the metastable region leading to
the SMSB.

3.2.2. Conversion of the Cyclic LES Model into a Frank Model

If reaction (III) is replaced by the reaction [Eq. (16)]:

2 Aþ Y ¼ Dþ Lþ X ð16Þ

the cyclic LES system transforms into a cyclic Frank-like reac-
tion network, which can also be solved exactly for the asymp-
totic analytic solutions. Details of this and of the ability of LES
and Frank models for SMSB in cyclic reaction networks will be
discussed elsewhere. Herein, we only point out that for all si-
mulated examples (Figures 2 and 3) for the same reaction pa-
rameters but using the above mutual inhibition reaction
[Eq. (16)] instead of reaction (III), no significant differences were
observed between both models. All cases exhibit the transition
between the chiral and racemic states for the same reaction
parameters and lead to similar final concentrations. This sug-
gests that the importance of the inverse reaction in (III) and of
the (forward) mutual inhibition (IIIhetero) in the Frank model is
due to the decrease of racemic composition regardless of
whether or not it leads to the partial or total destruction of
a racemic mixture.

4. Discussion

4.1. Speculative Scenario for a Cyclic Network

To bring these results closer to applied chemistry topics and to
the emergence of chirality in prebiotic chemistry, in what fol-
lows we discuss a speculative but plausible scenario. We
assume as possible a cyclic reaction network (Scheme 2) com-
posed of the Strecker amino acid synthesis and the Strecker
amino acid degradation. The cycle is composed of: 1) CN� ad-
dition to an imino (Im) species, a process that, according to
the experimental evidence, is nonexergonic or very slightly ex-
ergonic; 2) exergonic hydrolysis of the a-amino nitrile (ImN) to
the a-amino acid (AA); and 3) its exergonic oxidative decarbox-
ylation towards the initial imino derivative. The feasibility of
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such a system depends on the simultaneous presence of these
three different reactions. We assume that the CN� addition
and the imino nitrile hydrolysis may occur simultaneously if
a specific heterocatalyst acts on one of the two reactions. With
respect to the Strecker degradation, it can be promoted by
many oxidants.[18] Some of these oxidants, for example, a-di-
carbonyl compounds, can act selectively on the oxidative deg-
radation of the amino acid without oxidizing the imine or the
carbaldehyde groups.

The system simulated here by numerical integrations is sim-
plified by the suppression of the imine formation from the car-
baldehyde and by assuming constant concentrations of the
nucleophile (CN�) and of the redox pair of the Strecker degra-
dation.

The necessary enantioselective autocatalysis could occur
either at the imino nitrile formation or at its hydrolysis to the
amino acid. Furthermore, the oxidative fragmentation must
also be stereospecific upon a racemic mixture of the amino
acid. Hence, a reasonable scenario for SMSB should imply the
presence of catalytic coadjuvants leading to stereospecific
transformations.

4.1.1. Stereoselectivity Requirements for a Reasonable
Applied Chemistry Scenario

The Strecker degradation of Scheme 3 can play the role of the
limited inhibition step (III) of a LES network, which implies the
stereospecific decomposition of a racemic mixture of the

amino acid enantiomers. This could be achieved by an oxidant
(X) able to act after the heterochiral coordination with both
enantiomers. In spite of the fact that the oxidative amino acid
decarboxylation, in the absence of an enzyme, is a reaction
leading to many byproducts, here we assume that in a prebiot-
ic scenario an inorganic solid oxidant (e.g. chiral but in racemic
composition) may assume such a catalytic role. In particular,
we hypothesize that in the presence of a suitable catalyst,
a racemic mixture of amino acids undergoes a specific oxida-
tion so that only one enantiomer is transformed into the achi-
ral starting imine that can reenter the autocatalytic cycle.
Clearly, this does not exclude the presence of the direct oxida-
tion, but this must be much slower than the stereospecific oxi-
dation.

Enantiospecific autocatalysis is a rare reaction. Hence, we
assume that it may occur after the coordination of the enantio-
mers with a stereospecific “catalyst”. The role of such a catalytic
coadjuvant may be played by a clay material, such as a phyllosi-
licate. Phyllosilicates are sheet silicate materials that can act as
catalysts in organic reactions and have been proposed as cata-
lysts in abiotic chemistry scenarios.[19–21] Furthermore, stereose-
lective effects on the separation of homochiral and racemic
mixtures have been reported[21, 22] and some experimental re-
ports claim enantioselective effects. In fact, some phyllosili-
cates, for example kaolinite, are intrinsically chiral ; therefore,
significant enantioselective effects could be expected. Notice
that this agrees with several reports on the stereoselective ef-
fects of amino acid layered architectures in the origin of bio-
logical homochirality.[23] Therefore, we assume that a heteroge-
neous catalyst supports the enantioselective autocatalytic reac-
tion. In one of the examples (Scheme 3 and Figure 4) we
simply assume that the heterocatalyst is present in constant
concentration and yields enantioselective autocatalysis togeth-
er with a less important nonenantioselective autocatalysis. In
another example (Supporting Information) we assume for the
catalytic material an initial concentration of achiral sites lead-
ing to the nonenantioselective autocatalysis, and a racemic
mixture of chiral sites leading to the enantioselective autoca-
talysis. In summary, enantio- and stereoselective effects can be

Scheme 2. Plausible cyclic reaction network composed of the Strecker a-
amino acid synthesis and Strecker amino acid degradation.

Scheme 3. Kinetic scheme of LSE network of Strecker amino acid synthesis coupled to Strecker degradation with the enantioselective autocatalysis at the
stage of the imino nitrile (ImN) hydrolysis to amino acid (AA) and stereospecific oxidative degradation. Both stereoeffects occur through the coordination to
heterocatalyst coadjuvants. Ph = phyllosilicate heterocatalyst.
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assumed to be able to occur in a realistic scenario thanks to
the presence of racemic mixtures of chiral cocatalysts.

The autocatalytic reactions can occur either in the nucleo-
philic addition of cyanide ion to the imino compound or in the
hydrolysis to the amino acid. In the example of Scheme 3 and
Figure 4, the autocatalysis occurs at the hydrolysis stage and in
the example of the Supporting Information, in the imino nitrile
formation. The first network is a more plausible model for
a prebiotic scenario[24] taking into account the role of water in
the catalytic properties of phyllosilicates in hydrolytic reac-
tions.[20d]

4.2. Examples of SMSB

The SMSB takes place if the initial ee, used to simulate a statisti-
cal chiral fluctuation, appears at either the imino nitrile or the
amino acid stage. When this ee occurs simultaneously at these
two stages, the sign of the final ee is that of the initial ee for
the stage at which the autocatalysis occurs, that is, the amino
acid hydrolysis in the example of Figure 4 and the imino nitrile
formation in the example of the Supporting Information.

In the case of autocatalysis in the formation of imino nitrile
(Supporting Information), the final chiral sign is the same for
imino nitrile and amino acid and the corresponding ee values
are similar. In the case of autocatalysis in the amino acid hy-
drolysis (Scheme 3 and Figure 4), the final ee in the imino ni-
trile composition is very low (�0.001 % in the example of
Figure 4) and of opposite sign to that of the amino acid ee
(�100 %). This fact, together with the very low concentration
of the imino nitrile, does not lead to a detectable difference of
the total ee of the mixture if it is compared with that of the
amino acid alone (see Figure 4).

In the case that the amino acid degradation is converted to
a Frank-like mutual inhibition [Eq. (16)] , for the same reaction
parameters the final ee values and species concentrations are
similar to those of the LES model. Therefore, the results point
to the ability for SMSB in an autocatalytic cycle either in a LES

or in a Frank reaction network, in a cycle containing reactio-
n (III) of Scheme 1 or that of Equation (16).

If SMSB is able to amplify the ee fluctuation values below
the expected statistical deviations from the ideal racemic com-
position, the very small stability differences between d and l e-
nantiomers, which result from the effect of the weak force
[energy differences due to the violation of parity (PVED)] ,[25]

are also able to take the system out from the metastable race-
mic state to a chiral state of definite sign. Figure 5 shows a sim-
ulation of this using the same reaction parameters as those of
Figure 4 but an initial ideal racemic composition. The simula-
tion takes into account changes in the rate constants because
of the higher stability of the l enantiomers than the d enan-
tiomers (PVED�1 fJ mol�1, that is, Dk�1 � 10�20). Although
any change of PVED at the ImN or AA allows the bifurcation
towards the chiral state, the important stage that determines
the final sign is now reaction (III), for which the higher stability
of the l enantiomer determines that the final ee is that of the
l enantiomer.

However, notice that the study of the cooperative and/or
competitive interactions between chiral statistical fluctuations,

Figure 4. Numerical simulation of the reaction network of Scheme 3 for constant concentrations of the nucleophile CN� , the redox pair X/Y, and the heteroca-
talyst Ph. The final ee values for ImN and AA show different chiral signs but very different ee values that, together with the very different final concentrations
of ImN and AA, yield a total ee not different, between the limits of any analytical observation, from that of AA.

Figure 5. Example of SMSB on the system of Scheme 3 due to PVED
(��1 fJ mol�1 for the l enantiomers). The diagram corresponds to a numeri-
cal simulation using the same reaction parameters as those of Figure 4, but
an initial racemic composition. Different rate constants for d and l enan-
tiomers were assumed for k�n, kp, k�p, k3, k�2, and k3, that is, the correspond-
ing values for the d enantiomers were those of Figure 4 and for the l enan-
tiomers the same but modified by the value �1 � 10�20.
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at different stages of the coupled reactions, and the rate con-
stant differences induced by PVED requires a quite different
methodology from the assumptions implicit in chemical kinet-
ics (see, for example, ref. [26]).

5. Conclusions

The results presented herein show, in agreement with a previ-
ous report on this topic,[27] that absolute asymmetric synthesis
based on an enantioselective autocatalytic reaction can occur
both in conditions disabling the achievement of thermody-
namic LES and in Frank models in a cycle of coupled reactions
and in equilibrium. In our results such a cycle is constituted by
an enantioselective autocatalysis and a reaction implying the
decrease of chiral compounds through a heterochiral stereo-
specific interaction between enantiomers. A chiral stationary
state, as the more stable state of the system, may be obtained
if the reaction flow is driven by the input of an external reac-
tant (the redox pair X/Y in the examples discussed).

Some analogies of such a cycle with those of the proposals
of primordial autocatalytic cycles[28] suggest that the quest for
the emergence of chirality in chemical evolution should be
jointly studied with that of these premetabolic cycles.
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Mirror symmetry breaking with limited
enantioselective autocatalysis and temperature
gradients: a stability survey

Celia Blanco,a Josep M. Ribó,bc Joaquim Crusats,bc Zoubir El-Hachemi,bc

Albert Moyanob and David Hochberg*a

We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal

flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the

presence of a temperature gradient alone. This symmetry can be broken however when the auto-

catalysis and limited enantioselective catalysis are each localized within the regions of low and high

temperature, respectively. This scheme has been recently proposed as a plausible model for

spontaneous emergence of chirality in abyssal hydrothermal vents. Regions in chemical parameter space

are mapped out in which the racemic state is unstable and bifurcates to chiral solutions.

1 Introduction

Recent experimental reports on the deracemization of racemic
mixtures of crystals and on the crystallization from boiling
solutions1–6 are striking examples of novel scenarios for spon-
taneous mirror symmetry breaking (SMSB) of compounds for
which the homochiral interactions are favored over the hetero-
chiral ones. In other words, these are reactions that cannot be
explained by Frank-like mechanisms, in which the heterochiral
interaction is the favored one. Despite some controversy about
the actual mechanisms responsible for the SMSB in these
situations, the experimental reports all coincide in that the
final state is stationary: mechano-stationary in the case of wet
grinding of racemic mixtures of crystals3–5 and the presence of
temperature gradients in the case of deracemization and
crystallization in boiling solutions.1,2 The above reports stress
the fact that the racemic conglomerate crystal mixtures are
deracemized under experimental conditions where chemical
equilibrium is not possible, i.e., they require specific energy
input to only some of the species of the system (as in the

crystal grinding experiments) or else a non-uniform tempera-
ture distribution.

The point of departure of the present paper is that if limited
enantioselectivity7 under experimental conditions of closed
systems with a uniform distribution of temperature and energy
inexorably yields a final racemic state,8 then can SMSB occur in
scenarios of non-uniform temperature distributions? As it
turns out, this is in fact possible in the case that, in addition
to a non-uniform temperature distribution, the systems possess
a compartmentalization of the enantioselective and the non-
enantioselective autocatalyses.

The emergence of chirality in enantioselective autocatalysis
of compounds which do not follow Frank-like schemes is
investigated here for the limited enantioselectivity (LES) model
composed of coupled enantioselective and non-enantioselective
autocatalyses. The basic model7 is defined by the following
chemical transformations. Production of chiral compounds L,D
from an achiral substrate A:

AÐ
k1

k�1
L; AÐ

k1

k�1
D: ð1Þ

Autocatalytic production:

Aþ LÐ
k2

k�2
Lþ L; AþDÐ

k2

k�2
DþD: ð2Þ

Limited enantioselectivity:

Aþ LÐ
k3

k�3
LþD; AþDÐ

k3

k�3
Dþ L: ð3Þ
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In contrast to the Frank model, LES is able to account for two
important facts: namely, (i) the enantioselectivity of any chiral
catalyst is limited because of the third reaction, eqn (3), and (ii)
the kinetic link between mirror conjugate processes arises from
the reversibility of the catalytic stage.7 The inverse reaction
of the non-enantioselective autocatalysis (reaction (3)) substi-
tutes for the mutual inhibition reaction in the Frank model or
formation of the heterodimer (L + D - P). Earlier reports had
claimed spontaneous mirror symmetry breaking (SMSB) in LES,
but this cannot occur in either open or closed systems with a
uniform temperature distribution. The obstacle comes from
microreversibility, where K(T) is the temperature dependent
equilibrium constant:

ki

k�i
¼ KðTÞ; ð1 � i � 3Þ: ð4Þ

The condition for the instability of the racemic state is that

0o go
1� w

1þ 3w
o 1; ð5Þ

where g ¼ k�2
k�3

and w ¼ k3

k2
.8 From eqn (5), we must have 1� w > 0

so that 1 > w. But from eqn (4),
k2

k3
¼ k�2

k�3
, which is incompatible

with 1 > w and g o 1. This is the situation for open systems. For
closed systems, it can be shown8 that the racemic state is
unstable provided that

0o go gclosedcrit o gopencrit ¼
1� w

1þ 3w
o 1; ð6Þ

where the critical parameter in a closed system is always
bounded above by the corresponding one for open systems,
and approaches the latter from below in the limit of large
total concentrations C, that is: gclosed

crit - gopen
crit . But eqn (6) is

also incompatible with eqn (4). So the racemic state is
always asymptotically stable in this scheme for both open
and closed systems held at a uniform temperature. Therefore
there can be no asymptotically stable chiral outcome in this
model.

Nor can the LES model lead to SMSB in closed systems even
with a stationary non-uniform temperature distribution. On the
other hand, numerical simulations of chemical kinetics in a
two-compartment model9 demonstrate that SMSB may occur if
both catalytic reactions (2) and (3) are spatially separated
at different temperatures in different compartments but
coupled under the action of a continuous internal flow.
Under such conditions the system can evolve, for certain
reaction and system parameters, towards a chiral stationary
state, i.e., the system is able to reach a bifurcation point leading
to SMSB.

This is an appealing result since numerical simulations
using reasonable chemical parameters suggest that an ade-
quate scenario for such an LES-based SMSB would be that of
abyssal hydrothermal vents, by virtue of the typical temperature
gradients found there and inorganic solids mediating chemical
reactions in an enzyme-like role. We therefore proposed9 that a
natural prebiotic scenario for such emergence of chirality is

that of abyssal hydrothermal vents and volcanic plumes10–13

which do have the adequate temperature gradients and contain
solids, as for example clays, which have been proposed by
several authors14–18 as catalysts in the prebiotic synthesis of
organic compounds.

In view of the above, this paper deals with an analytic/
numerical study of the conditions leading to the instability of
the ideal racemic composition for the LES model with com-
partmentalized catalyses (2) and (3) in regions held at different
temperatures. The two-compartment model (Section 2) is
already sufficiently involved as to make deriving general analytic
stability results a near impossible task. We thus focus our
efforts on analyzing properties of the racemic fixed point; the
analytic conditions for its linear stability can be set up and then
tested in numerical domains. The direct study of the stationary
chiral solutions is substantially more complicated and alge-
braically unwieldy. Nevertheless, the characterization of a racemic
state as unstable necessarily implies that the system evolves to a
state of non-racemic composition. Such a nonracemic state
could be stable, chaotic or oscillatory. However, the many
numerical SMSB tests performed for reasonable reaction para-
meters and under the thermodynamic constraints imposed by
the principle of microreversibility and the temperature depen-
dencies of the reaction rate constants (see Section 3) have in all
cases led to a stable chiral state. These stable states are
scalemic mixtures of enantiomeric excesses (ee) whose values
depend on the parameters of the phase diagram. We first
review the impossibility of SMSB in LES with a stable tempera-
ture gradient. We then prove that SMSB in such a system is
possible when the two catalyses (2) and (3) are compartmenta-
lized (localized) in different temperature regions connected by
an internal flow of material.

2 LES with a temperature gradient

Consider the LES scheme in a temperature gradient: this
permits the reaction rates to vary spatially in the system, from
one place to another, and might provide a way to achieve mirror
symmetry breaking. The reverse reaction of (3) in one region
(compartment) could be faster than the reverse of (2) in the
other. And then mixing could bring the hot and cold material
into contact. We model this by a closed two-compartment
system with volumes V and V*; each compartment held at a
uniform temperature, T* > T, and internally coupled by a
constant internal flow or recycling. The concentrations and
reaction rates for the second compartment are labeled by an
asterisk, see Fig. 1. We extend the basic LES scheme, eqn (1)–(3),
by including the terms corresponding to the internal flow. The
internal ‘‘flow’’ parameter a has units of volume per time; V and
V* denote the volumes of each compartment. The corre-
sponding rate equations for the two-compartment system have
been derived in ref. 9.

2.1 New variables

For setting up a stability analysis it is convenient to employ the sums
and differences of the concentrations w = [L] + [D], y = [L] � [D],
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w* = [L*] + [D*] and y* = [L*] � [D*]. In terms of these, the rate
equations take the following form:

d½A�
dt
¼ � 2k1½A� � ðk2½A� þ k3½A� � k�1Þwþ

k�2
2
ðy2 þ w2Þ

þ k�3
2
ðw2 � y2Þ þ a

V
ð½A�� � ½A�Þ; ð7Þ

dw
dt
¼ þ 2k1½A� þ ðk2½A� � k�1Þwþ k3½A�w� k�2

ðw2 þ y2Þ
2

� k�3
ðw2 � y2Þ

2
þ a

V
ðw� � wÞ; ð8Þ

dy

dt
¼ þðk2½A� � k�1Þy� k�2wy� k3½A�yþ

a

V
ðy� � yÞ; ð9Þ

d½A��
dt

¼ � 2k�1½A�� � ðk�2½A�� þ k�3½A�� � k��1Þw� þ k��2ðy�2 þ w�2Þ

þ k��3
2
ðw�2 � y�2Þ þ a

V�
ð½A� � ½A��Þ; ð10Þ

dw�

dt
¼ þ 2k�1½A�� þ ðk�2½A�� � k��1Þw� þ k�3½A��w� � k��2

ðw�2 þ y�2Þ
2

� k��3
ðw�2 � y�2Þ

2
þ a

V�
ðw� w�Þ; ð11Þ

dy�

dt
¼ þðk�2½A�� � k��1Þy� � k��2w

�y� � k�3½A��y� þ
a

V�
ðy� y�Þ:

ð12Þ
They satisfy the constant mass constraint:

V([A] + w) + V*([A*] + w*) = C, (13)

where C is the total conserved mass in the complete two-
compartment system.

3 Constraints from Arrhenius–Eyring

Certain thermodynamic relationships hold among the reaction rates
in both compartments. These will be used to prove that SMSB is also
impossible for the scheme presented in Section 2 in a background
temperature gradient. Following this demonstration, we then intro-
duce the variant of LES that can and does lead to SMSB.

From Arrhenius–Eyring, the forward (and reverse) reaction
rates for reaction i at temperatures T* and T o T* are19

k�i ¼
kBT

�

h

� �
e�

DGiðT�Þ
RT� ; k��i ¼

kBT
�

h

� �
e�

DG�iðT�Þ
RT� ; ð14Þ

ki ¼
kBT

h

� �
e�

DGiðTÞ
RT ; k�i ¼

kBT

h

� �
e�

DG�iðTÞ
RT ; ð15Þ

here

DGi(T) = DHi � TDSi (16)

denotes the difference in free energy between the activated
state (transition state) and the reactants, while

DG�i(T) = DH�i � TDS�i, (17)

is the free energy difference between the activated state (transi-
tion state) and the products; H and S denote the enthalpy and
entropy, respectively. From the above we can obtain a relation-
ship between the forward reaction rates i in each compartment:

k�i ¼
T�

T

� �
exp �DHi

R

1

T�
� 1

T

� �� �
ki: ð18Þ

Clearly, once the values of the ki are chosen for the reference
compartment at T, we are not free to independently choose the
reaction rates k�i at the higher temperature T*.

The fundamental microreversibility condition, eqn (4),
together with Arrhenius–Eyring implies

ki

k�i
¼ e�

DGi
RT

e�
DG�i
RT

¼ eðDG�i�DGiÞ=RT ¼ KðTÞ; ð19Þ

3 DG�i � DGi � DDG, (20)

that is, the difference in the free energy differences DDG must
be independent of i, that is, independent of the specific ith
reaction. This implies that the individual double differences in
enthalpy and in entropy must also be independent of reaction i,
so we must also have

DDH = (DH�i � DHi), (21)

DDS = (DS�i � DSi). (22)

This also gives us an expression for calculating K:

KðTÞ ¼ e
DDH
RT e�

DDS
R : ð23Þ

The inverse reaction rates are obtained through the constraint
eqn (4) as follows:

k�i ¼
ki

KðTÞ: ð24Þ

We also note that if the constraint eqn (4) is satisfied at one
specific temperature T, then it will automatically hold at all
others, that is

k�i
k��i
¼ KðT�Þ ¼ e

DDH
RT� e�

DDS
R ; ð1 � i � 3Þ: ð25Þ

Fig. 1 Limited enantioselectivity (LES) in two compartments with volumes V and
V* each held at different temperatures T* > T and interconnected by an internal
flow a of the material. See ref. 9.
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The ratio of the equilibrium constants is given by

KðT�Þ
KðTÞ ¼ exp

DDH
R

1

T�
� 1

T

� �� �
: ð26Þ

The algebraic intricacy of the model in Section 2 is already
such that we are unable to obtain useful and manageable
analytic closed form expressions for the conditions leading to
the instability of the racemic solution. The situation is even
worse for obtaining analytic information regarding the possible
stationary chiral solutions. We appeal instead to chemically
inspired conjectures that can be tested numerically for coherence
and compatibility with microreversibility.

First, it is clear that in view of the gradient T o T*, the
putative condition, which could conceivably lead to symmetry
breaking in the limit of small values of a,

k�2 o k�3 & k2 4 k3 at T

and k��2 o k��3 & k�2 4 k�3 at T�
; ð27Þ

is incompatible with the constraints in eqn (23) and (25). This
condition (27) is inspired by the observation that for a - 0, the
two compartments are practically isolated from each other and
can be treated as approximately independent. These are thus
the necessary conditions for obtaining an unstable racemic
solution in each compartment (see Section 1). But they are
incompatible with microreversibility.

Secondly, the analysis in Section 1 suggests that SMSB might
occur when the inverse reaction of (3) in one region is faster
than the inverse reaction of (2) in the other region. Taking
microreversibility into account, the only way this might be
achieved is, for example, by arranging for

k�3 o k�2 & k2 4 k3 at T

and k��2 o k��3 & k�2 o k�3 at T�
: ð28Þ

But this is forbidden by virtue of eqn (26), which is satisfied
by the ratio of the equilibrium constants. So a temperature
gradient and internal flow are by themselves not enough to
produce a bifurcation. Actually, no spatially varying tempera-
ture profile is sufficient, as can be seen by partitioning the
closed system into a number of sufficiently small regions
within which the local temperature is approximately uniform.

4 Temperature gradient and immobilized
catalysts

Our working hypothesis is that a necessary but not sufficient
condition for the instability of the racemic solution is k��3 4 k�2
and k2 4 k�3 in the presence of immobilized catalysts that ensure
that k��2 ¼ 0 in one region and k�3 = 0 in the other.9 Other
conditions (total system concentration C, the flow rate a, compart-
ment volumes V, V*, etc.) also come into play for determining the
overall instability, in a highly nontrivial and nonlinear fashion.

4.1 Linear stability analysis of the stationary racemic fixed point

Eqn (9) and (12) for
dy

dt
¼ dy�

dt
¼ 0 are identically satisfied for the

stationary solution �y = �y* = 0. We therefore carry out a stability
analysis of this racemic fixed point and determine whether the
racemic solution (racemic in both compartments) is asymptotically
stable or unstable. This will depend on the internal flow parameter a
that characterizes the cycling of hot to cold material between the two
compartments. Clearly, if we set a = 0, we merely recover two isolated
copies of LES in independent closed compartments, each one at a
constant temperature, and there can be no mirror symmetry
breaking in this situation; the considerations of Section 1 apply.

An algebraic advantage of studying the racemic fixed point
�
y = �y* = 0 is that the five independent concentration fluctua-
tions decouple into two sets of three and two, respectively. This
situation is reflected in the structure of the Jacobian matrix J
which then reduces to a block-diagonal form with a 3 � 3 sub-
block corresponding to the fluctuations (dA,dw,dw*) and a 2 � 2
sub-block corresponding to (dy,dy*) thus:

J ¼ A3�3 D3�2

C2�3 B2�2

� �
) A3�3 0

0 B2�2

� �
: ð29Þ

The temporal evolution of the linearized concentration
fluctuations about the racemic fixed point �y = �y* = 0 of the
kinetic equations is given by

d

dt

dA
dw
dw�

0@ 1A ¼ A
dA
dw
dw�

0@ 1A
and

d

dt

dy
dy�

� �
¼ B

dy
dy�

� �
; ð30Þ

where the 3� 3 array A is given by eqn (31) and the 2 � 2 array B
is given by eqn (32), (see Appendix A)

A ¼

�2k1 � ½k2 þ k3��w�
a

V
� a

V�

� �
�ðk2 þ k3Þ �Aþ ðk�2 þ k�3Þ�wþ k�1 �

a

V�

� �
� a

V

ð2k1 þ ½k2 þ k3��wÞ ðk2 þ k3Þ �A� k�1 � ðk�2 þ k�3Þ�w�
a

V

� � a

V

�V

V�
ð2k�1 þ ½k�2 þ k�3��w�Þ

a

V�
� V

V�
ð2k�1 þ ½k�2 þ k�3��w�

� � ½k�2 þ k�3�
C

V�
� V

V�
ð �Aþ �wÞ � �w�

� �
�k��1 � ðk��2 þ k��3Þ�w�

� a

V�
� ð2k�1 þ ½k�2 þ k�3��w�Þ

0BBBBBB@

1CCCCCCA

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
; ð31Þ
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The Jacobian matrix J (29) must be evaluated on non-negative
stationary solutions

�
A Z 0, �w Z 0, �w* Z 0 corresponding

to�y =�y* = 0. Then, to assess the stability of the solution, the five

eigenvalues li, i = 1,2,. . .,5 of the Jacobian matrix must be
calculated. If any one of these five eigenvalues is positive
(or their real part, if complex) then the solution is unstable.

B ¼
�k�1 � k�2�wþ ðk2 � k3Þ �A� a

V

� � a

V

a

V�
ðk�2 � k�3Þ

C

V�
� V

V�
ð �Aþ �wÞ � �w� � k��1 � k��2�w

� � a

V�

� �� �
0BBB@

1CCCA: ð32Þ

Fig. 2 White zones indicate where the racemic state is unstable to perturbations and so bifurcates to a chiral state (color/grayscale, where the racemic state is stable) as
a function of the indicated selected pairs of variables: (a) the cold and hot compartment volumes V and V*, (b) the flow parameter a versus the volume of each
compartment, holding V = V* fixed, (c) the flow parameter a and the total system concentration C, and (d) the reaction rate k�2 and a, where a ¼ k��3=k�2 . Except for

the specific pair that is varied in (a), (b), (c), and (d), the remainder of values are held fixed at k1 = 10�9, k�1 = 10�15, k�1 ¼ 10�7, k��1 ¼ 10�11 , k2 = 102, k�2 = 10�4, k�2 ¼ 0,

k��2 ¼ 0, k3 = 0, k�3 = 0, k�3 ¼ 101 , k��3 ¼ 10�3 , the volume and flux parameters V = 10, V* = 10, a = 0.1. The initial concentrations [A]0 = 10�6, [A*]0 = 10�6, [L]0 = 10�11,

[D]0 = 10�11, [L*]0 = 10�11 + 10�21, [D*]0 = 10�11.
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This means that the system will evolve to a chiral state, so
mirror symmetry will be broken. Only if all five of the eigenva-
lues are negative (real part) we can claim that the solution is
stable. Deriving manageable and useful closed form expres-
sions for the eigenvalues li of eqn (31) and (32) is practically
impossible, due to the fact that the racemic fixed point solu-

tions
�
A, �w, �w* lead to unwieldy expressions (as solutions of

coupled quartic equations). On the other hand, direct numerical
calculation of the fixed point solutions and their associated
eigenvalues is amenable and provides a wealth of information
about the dynamic stability of the underlying model, as func-
tions of the chemical rates and the system parameters. We will
therefore map out regions of stability/instability in parameter
space. We carry out this assuming the immobilized catalyst

from the start, setting k�2; k
�
�2 to zero in one compartment and

k3, k�3 in the other. Variations in the remaining rate constants
are carried out satisfying the constraints in eqn (24) and (25).

We apply a second, independent, stability test which does
not require calculation of the eigenvalues: namely, the Routh–
Hurwitz (RH) criteria. We derive explicit expressions whose
algebraic signs indicate whether the racemic fixed point is
stable or unstable. The canonical form of the characteristic
polynomial for the complete 5 � 5 Jacobian matrix, eqn (29), is

P(l) = l5 + a1l
4 + a2l

3 + a3l
2 + a4l + a5 = 0. (33)

Then (see Appendix B of ref. 20) there are conditions on the
coefficients ai, i = 1,2,. . .,5 such that the zeros of P(l) have <lo 0.

Fig. 3 White zones indicate where the racemic state is unstable to perturbations (color/grayscale, where it is stable) for different values of k�2 and k��3 , and for
different values of the internal flow parameter a. The area of the region of instability scales up with the flow rate. The remainder of parameters and initial
concentrations as in Fig. 2.
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The necessary and sufficient conditions for this to hold are the
Routh–Hurwitz conditions. One such form, together with

a5 � �det (B) det (A) > 0, (34)

is that

D1 = a1 � �[tr(B) + tr(A)] > 0, & (35)

D2 = (a1a2 � a3) > 0, & (36)

D3 = a3D2 + a1(a5 � a1a4) > 0, & (37)

D4 = a4D3 � a5{a1(a2
2 � a4) � (a3a2 � a5)} > 0. (38)

The expressions ai can be read off directly from comparing the
polynomial in eqn (33) to �P calculated in eqn (56).

If any of the above conditions, eqn (34)–(38) does not
hold, then the racemic fixed point solution is unstable. As
before, this means the system will evolve to a chiral state.
This test can be compared with direct numerical calcula-
tion of the five eigenvalues li, i = 1,2,3,4,5 (the roots of the
characteristic polynomial). We find complete agreement
between the two methods (eigenvalues, RH criteria) employed.
We emphasize that an instability in the racemic fixed point
implies the onset of a bifurcation to a non-racemic, hence
chiral, solution.

4.2 Domains of instability

We initiate the procedure outlined above by specifying the
forward/reverse reaction rates (temperature differences are
treated implicitly), the internal flow rate, the compartment
volumes and the conserved total system mass:

fk�iðTÞ; k��iðT�Þg; a;V ;V�;C; ð39Þ

the individual rates of course satisfying microreversibility at
the respective temperatures T and T*. We then solve for the

complete racemic fixed point solution, retaining only those
solutions that are non-negative:

dA

dt
¼ 0;

dw
dt
¼ 0;

dw�

dt
¼ 0

� �
�y¼�y�¼0

) f �A; �w; �w�g	0: ð40Þ

We next evaluate the Jacobian matrix over this fixed point
solution:

J ) A3�3 0
0 B2�2

� �����
f �A;�w;�w�g	0

: ð41Þ

As a final step we evaluate the five RH conditions eqn (34)–(38):
are they all true or not? If not, then we immediately know that
the racemic fixed point is unstable for the parameter choice
made in eqn (39). Hence any fluctuation about the idealized
racemic composition will grow and drive the system to a chiral
final state. In parallel, we also evaluate numerically the five
roots of the characteristic polynomial li, i = 1,2,3,4,5 and verify
agreement between RH criteria and the eigenvalues. We use the
RH criteria to map out the regions of linear instability for the
racemic solution.

We start with the reaction rates k1 = 10�9, k�1 = 10�15,
k�1 ¼ 10�7, k��1 ¼ 10�11, k2 = 102, k�2 = 10�4, k�2 ¼ 0, k��2 ¼ 0,

k3 = 0, k�3 = 0, k�3 ¼ 101, k��3 ¼ 10�3, the volume and flux
parameters V = 10, V* = 10, a = 0.1, and the initial concentra-
tions [A]0 = 10�6, [A*]0 = 10�6, [L]0 = 10�11, [D]0 = 10�11, [L*]0 =
10�11 + 10�21, [D*]0 = 10�11 as employed in ref. 9. This point in
parameter space was shown to lead to SMSB and subsequent
chiral amplification from direct numerical integration of the
differential rate equations. These specific rate values and
system parameters were obtained after performing a set of trial
and error numerical simulations obeying the conditions
k��3 4 k�2 and k2 4 k�3 which correspond approximately to
thermodynamically unattainable conditions for systems with
a uniform temperature and lacking compartments. Once
obtained, we can exploit the stability analysis to map out and
amplify the full domain of instability of the racemic solution.

We consider how the stability of the racemic fixed point
responds to variations of selected pairs of variables about this
point. In Fig. 2 we display the regions of stability/instability as a
function of (a) the two compartment volumes V and V*, (b) the
flow rate a versus equal compartment volumes V = V*, (c) the

total concentration C versus flow rate a, and (d) a ¼ k��3
k�2

versus

k�2. The graphs in (a) and (b) merely tell us that the ratio of the
compartment volumes cannot be either arbitrarily large nor
small, and that for equal compartment volumes, there is a
minimum flow rate below which no chiral state can be
obtained. Perhaps more surprising are the trends indicated in
Fig. 2(c) and (d): for a given flow rate there is a critical system
concentration above which mirror symmetry cannot be broken
and in (d), for a given value of k�2 a bounded region in k��3 in
which the racemic state is unstable, and this region narrows
down and pinches off for a critical value of k�2. We can here
appreciate that the conjecture k��3 4 k�2 is necessary, but certainly
not sufficient to lead to an instability in the racemic state.

Fig. 4 Effect of varying the internal flow rate. The three dimensional figure
represents all points for which the racemic state is unstable to perturbations.
Increased flow enlarges the allowed region of instability. The racemic state is
stable in the empty (white) domain. The remainder of parameters and initial
concentrations as in Fig. 2.
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We therefore delve further into this nonlinear relationship by
considering how the instability varies with k��3; k�2 and with the
flow rate a. In Fig. 3 we display a sequence of plots showing how
the region of instability grows in area as we scale up the flow
rate. For a given flow rate, there is a maximum value of k�2

beyond which no value of k��3 will lead to an instability, and this
maximum value scales with a. Below this maximum value, there
are always upper and lower bounds on k��3 between which the
system is unstable. These bounds also scale with a. In Fig. 3 we
keep both k��3 and k�2 fixed and vary a: increased flow enlarges
the region of instability. This can also be appreciated in the
three-dimensional plot in Fig. 4 exhibiting how the region of
instability expands in the cross-sectional area as we scale up the
internal flow rate a.

In Fig. 5 we display a sequence of plots showing how the
region of instability decreases in area as we scale up the total
concentration C, over three orders of magnitude. As C is scaled
up, the rates k��3; k�2 decrease in magnitude in such a way as to
preserve the shape of the region of instability. As before, for a
given total concentration, there is a maximum value of k�2

beyond which no value of k��3 will lead to an instability, and this
maximum value inversely scales with C. Below this maximum
value, there are always upper and lower bounds on k��3 between
which the system is unstable. These bounds also inversely scale
with C. A three-dimensional plot in Fig. 6 indicates the cross-
sectional area of the domain of instability shrinks as we scale
up the total system concentration C. Dilute concentrations are
more favorable for SMSB.9

Fig. 5 Regions where the racemic state bifurcates to chiral states (in white) for different values of k�2 and k��3 , and for different values of the total concentration C.
Increasing C decreases the ranges in both k�2 and k��3 for which the racemic state is linearly unstable. The remainder of parameters and initial concentrations

as in Fig. 2.
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5 Symmetry breaking and entropy
production

We illustrate the above considerations by way of two examples. The
inherent chiral fluctuations about the ideal racemic composition
can be modeled by starting with an initial ee below the statistical
deviation. In the first simulation, Fig. 7, we begin with [A]0 = [A*]0 =
1 � 10�6 M, [L]0 = [D]0 = 1 � 10�11 M, [L*]0 = 1 � 10�6 + 1 �
10�21 M, and [D*]0 = 1� 10�6 M. In the second, Fig. 8, we keep the
same rates and system parameters but start off with different initial
concentrations: [A]0 = [A*]0 = 1 � 10�11 M, [L]0 = [D]0 = 5 � 10�7 M,
[L*]0 = 5 � 10�7 + 1 � 10�20 M, and [D*]0 = 5 � 10�7 M.

We calculate and superimpose the entropy production21 s
on the concentration curves. The entropy production is a
measure of the dissipation of the out-of-equilibrium process
under study. For the initial conditions leading to Fig. 7, the
entropy production suffers a peak at the onset of the induction

period, reflecting the fact that the catalysis of enantiomers,
eqn (2), and subsequent depletion of the achiral substrate, is
the most important contribution. The production then falls to a
small but constant nonzero value and remains nonzero as long
as the system is kept out of equilibrium. In the case of Fig. 8,
the entropy production starts off from a large value then drops
(at the same time scale as the peak in Fig. 7) and subsequently
drops down to its minimum nonzero value at the symmetry
breaking bifurcation. It again remains small but nonzero as
long as the system is kept out of equilibrium.

6 Concluding remarks

Compartmentalization, together with different temperatures
for the enantioselective and the non-enantioselective auto-
catalyses, was shown to be a necessary condition for SMSB.

Fig. 6 Effect of varying the total system concentration C. The solid three-dimensional figure (color/gray) indicates where the racemic state is unstable to perturbations.
Increasing the system concentration C shrinks the cross-sectional domain k�2; k

�
�3 of instability. The racemic state is linearly stable in the empty (white) region.

The remainder of parameters and initial concentrations are as listed in Fig. 2.

Fig. 7 Symmetry breaking bifurcation in the two compartment model, see Fig. 1.
The rates and system parameters are given in Section 4.2. The entropy production
s peaks at the onset of the induction period, well before the symmetry breaking
bifurcation. Note s > 0 for all times.

Fig. 8 Symmetry breaking bifurcation in the two compartment model, same rates
and system parameters as in Fig. 7. See the text for the initial concentrations.
In this case the entropy production s (scaled up by a factor of 107) decreases
monotonically and drops to a minimum (but nonzero) value at the symmetry
breaking bifurcation, and remains positive for all subsequent times.

PCCP Paper

Pu
bl

is
he

d 
on

 2
6 

N
ov

em
be

r 
20

12
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 A

st
ro

bi
ol

og
ía

 o
n 

21
/0

1/
20

14
 1

1:
42

:0
6.

 
View Article Online

http://dx.doi.org/10.1039/C2CP43488A


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 1546--1556 1555

The temperature gradient and internal flow or recycling of hot
and cold material are the required driving forces to keep the
system far from equilibrium. On the basis of the stability
analysis of the racemic final state, the results presented here
demonstrate the existence of SMSB as a closed region (see Fig. 3,
5 and 6) in the phase representation of the reaction parameters.
Explicit examples of SMSB are displayed in Fig. 7 and 8 showing
also the time dependence of the associated production of
entropy for starting from two different initial concentrations.

The considerations given to the microreversibility condition
in Sections 1–3 serve to underscore the fact that limited enantio-
selectivity – of and by itself � cannot lead to spontaneous mirror
symmetry breaking, neither for a uniform temperature (i.e.
under an experimental condition required to attain chemical
equilibrium), nor even for two temperatures (i.e. an experimental
condition that excludes chemical equilibrium). By contrast,
mirror symmetry breaking may be possible when in addition
to a non-uniform temperature distribution the reactions (2) and
(3) occur in two distinct compartments held at different tem-
peratures. The microreversibility arguments,8,22 used as a proof
of the correctness of the model, are necessary because we
assume a scenario where chemical kinetics can be applied.

We briefly point out what modifications would have to be made
in order to consider spatial temperature gradients. First, we need
to input the temperature profile T(x,y,z) as a known field. This
converts the reaction rates ki into spatially dependent functions
via the Arrhenius relation. The kinetic rate equations must be
replaced by partial differential reaction-diffusion-advection equa-
tions for the spatial and temporal dependence of the concentra-
tions. The background convective flow of hot/cold material could
be modeled by a steady hydrodynamical flow-field compatible with
the compartment boundary conditions. In short, the technical
complications would be considerable, but not insurmountable.

The significance of the above results with respect to applied
absolute synthesis is somewhat limited due to the temperature
difference required for achieving the essential inequality
k��3 4 k�2. The point is, a sufficiently large difference would
require high pressure conditions as well to maintain the media
in a liquid state. By contrast, the results can be of significance in
scenarios of prebiotic chemistry. In this context, the required
experimental conditions for high temperature gradients and
compartmentalization agree with those found in deep ocean
hydrothermal vents, as we have previously reported.9 Further-
more, the more relevant feature of this LES scenario is its ability
to exhibit SMSB at very low reactant concentrations. In this
respect, the detailed description given here for the effect on
the SMSB dependence of the minimal internal flow rate – with
respect to the compartment volumes at different temperatures –
and on the reaction rate inequality k��3 4 k�2 shows that the
variability range for SMSB of these parameters increases when
the total system concentration C decreases, i.e. the probabilities
for SMSB to occur increase in a prebiotic scenario. Note that this
overcomes the more important difficulty for a reasonable SMSB
in a prebiotic scenario, where a specific prebiotic organic
compound could be present, but only at very low concentrations.
This, in spite of the presence of an important fraction of organic

compounds, is because of the diversity of different organic
compounds in prebiotic scenarios.23 While LES is ruled out as a
scheme for SMSB under experimental conditions where thermo-
dynamic equilibrium can be achieved, the results presented
here open up the study for SMSB in scenarios of non-uniform
temperature distributions, specific energy inputs to some species
of the system, and compartmentalization, i.e. under conditions
similar to those of living systems.

Appendix

A Fluctuation equations

The linearized fluctuation equations that follow from the
kinetic equations, eqn (7)–(12) in Section 2.1 are as follows.
The overbar denotes a stationary solution of eqn (7)–(12).

d _A ¼ �2k1 � ½k2 þ k3��w�
a

V
� a

V�

� �
dA

þ �ðk2 þ k3Þ �Aþ ðk�2 þ k�3Þ�wþ k�1 �
a

V�

� �
� dwþ ðk�2 � k�3Þ�y dy� a

V
dw�

ð42Þ

d _v ¼ ð2k1 þ ½k2 þ k3��wÞdA

þ ðk2 þ k3Þ �A� k�1 � ðk�2 þ k�3Þ�w�
a

V

� �
dw

þ ðk�3 � k�2Þ�y dyþ a

V
dw�

ð43Þ

d _y� ¼ ðk2 � k3Þ�ydA� k�2�ydw

þ �k�1 � k�2�wþ ðk2 � k3Þ �A� a

V

� �
dyþ a

V
dy�

ð44Þ

d _v� ¼ � V

V�
ð2k�1 þ ½k�2 þ k�3��w�ÞdA

þ a

V�
� V

V�
ð2k�1 þ ½k�2 þ k�3��w�Þ

� �
dw

þ ½k�2 þ k�3�
C

V�
� V

V�
ð �Aþ �wÞ � �w�

� ��
� k��1 � ðk��2 þ k��3Þ�w� �

a

V�

�ð2k�1 þ ½k�2 þ k�3��w�Þ
�
dw� þ ðk��3 � k��2Þ�y� dy�

ð45Þ

d _y� ¼ � V

V�
�y�ðk�2 � k�3ÞdA�

V

V�
�y�ðk�2 � k�3Þdwþ

a

V�
dy

� ðk��2 þ k�2 � k�3Þ�y� dw�

þ ðk�2 � k�3Þ
C

V�
� V

V�
ð �Aþ �wÞ � �w�

� ��
�k��1 � k��2�w

� � a

V�

�
dy�:

ð46Þ
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Specializing to the racemic fixed point �y = �y* = 0 leads to
the decoupling of the first three fluctuations from the
latter two:

d _A ¼ �2k1 � ½k2 þ k3��w�
a

V
� a

V�

� �
dA

þ �ðk2 þ k3Þ �Aþ ðk�2 þ k�3Þ�wþ k�1 �
a

V�

� �
dw� a

V
dw�

ð47Þ

d _v ¼ ð2k1 þ ½k2 þ k3��wÞdA

þ ðk2 þ k3Þ �A� k�1 � ðk�2 þ k�3Þ�w�
a

V

� �
dwþ a

V
dw�

ð48Þ

d _y ¼ þ �k�1 � k�2�wþ ðk2 � k3Þ �A� a

V

� �
dyþ a

V
dy� ð49Þ

d _v� ¼ � V

V�
ð2k�1 þ ½k�2 þ k�3��w�ÞdA

þ a

V�
� V

V�
ð2k�1 þ ½k�2 þ k�3��w�Þ

� �
dw

þ ½k�2 þ k�3�
C

V�
� V

V�
ð �Aþ �wÞ � �w�

� ��
� k��1 � ðk��2 þ k��3Þ�w� �

a

V�

� ð2k�1 þ ½k�2 þ k�3��w�Þ
�
dw�

ð50Þ

d _y� ¼ þ a

V�
dy

þ ðk�2 � k�3Þ
C

V�
� V

V�
ð �Aþ �wÞ � �w�

� �
� k��1 � k��2�w

� � a

V�

� �
dy�;

ð51Þ

as reflected by the specific matrix entries in eqn (31)
and (32).

B Characteristic polynomial

The characteristic polynomial associated with the Jacobian
matrix, eqn (29), evaluated at the racemic fixed point is

P(l) = det|J � lI| = det|A � lI|det|B � lI|,

= P(3)(l)P(2)(l), (52)

where I is the identity matrix and the quadratic and cubic
polynomials are given by

P(2)(l) = l2 � tr(B)l + det(B), (53)

P(3)(l) = �l3 + tr(A)l2 + G(A)l + det(A), (54)

respectively, where

G(A) = �a11a22 � a11a33 � a22a33 + a32a23 + a12a21 + a13a31.
(55)

Thus, inserting eqn (53) and (54) into eqn (52), we obtain the
fifth order polynomial

P(l) = �l5 + [tr(B) + tr(A)]l4 + {G(A) � det(B)

� tr(B)tr(A)}l3 + {tr(A)det(B) � G(A)tr(B) + det(A)}l2

+ {G(A)det(B) � det(A)tr(B)}l + det(B)det(A). (56)
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Chiral polymerization: symmetry breaking and entropy production
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We solve numerically a kinetic model of chiral polymerization in systems closed to matter

and energy flow, paying special attention to its ability to amplify the small initial enantiomeric

excesses due to the internal and unavoidable statistical fluctuations. The reaction steps are

assumed to be reversible, implying a thermodynamic constraint among some of the rate constants.

Absolute asymmetric synthesis is achieved in this scheme. The system can persist for long times in

quasi-stationary chiral asymmetric states before racemizing. Strong inhibition leads to long-period

chiral oscillations in the enantiomeric excesses of the longest homopolymer chains. We also

calculate the entropy production s per unit volume and show that s increases to a peak value

either before or in the vicinity of the chiral symmetry breaking transition.

I. Introduction

There is a growing consensus that the homochirality of

biological compounds is a condition associated to life that

emerged in the abiotic stages of evolution through processes of

spontaneous mirror symmetry breaking (SMSB). This could

have proceeded in a prebiotic stage, incorporating steps of

increasing complexity thus leading to chemical systems and

enantioselective chemical networks.1–3 An important issue is

therefore to identify processes of chirality amplification in

chemical reactions. In this regard, a recent kinetic analysis of

the Frank model in closed systems applied to the Soai reaction4

has taught us that in an actual chemical scenario, reaction

networks that exhibit SMSB are very sensitive to chiral

inductions owing to the presence of tiny initial enantiomeric

excesses, as previously shown theoretically.5 The stochastic

scenario implies the creation of chirality from intrinsic chiral

fluctuations and its later transmission and amplification. This

can occur in far-from-equilibrium systems that undergo

dynamic phase transitions.

The process must be coupled to others which preserve,

extend, and transmit the chirality. Biological homochirality

of living systems involves large macromolecules, therefore a

central point is the relationship of the polymerization process

with the emergence of chirality. This hypothesis has inspired

recent activity devoted to modeling efforts aimed at

understanding mirror symmetry breaking in polymerization

of relevance to the origin of life. The models so proposed6–14

are by and large, elaborate extensions and generalizations of

Frank’s original paradigmatic scheme.15 Heading this list,

Sandars6 introduced a detailed polymerization process plus

the basic elements of enantiomeric cross inhibition as well as a

chiral feedback mechanism in which only the largest polymers

formed can enhance the production of the monomers from an

achiral substrate. He treated basic numerical studies of

symmetry breaking and bifurcation properties of this model

for various values of the number of repeat units N. All the

subsequent models cited here are variations on Sandars’

original theme. Soon afterwards, Brandenburg and

coworkers8 studied the stability and conservation properties

of a modified Sandars’ model and introduce a reduced N = 2

version including the effects of chiral bias. In ref. 7, they

included spatial extent in this model to study the spread and

propagation of chiral domains as well as the influence of a

background turbulent advection velocity field. The model of

Wattis and Coveney9 differs from Sandars’ in that they allow

polymers to grow to arbitrary lengths N and the chiral

polymers of all lengths, from the dimer and upwards, act

catalytically in the breakdown of the achiral source into

chiral monomers. An analytic linear stability analysis of both

the racemic and chiral solutions is carried out for the model’s

large N limit and various kinetic timescales are identified. The

role of external white noise on Sandars-type polymerization

networks including spatial extent has been explored by Gleiser

and coworkers: theN= 2 truncated model introduced in ref. 7

is subjected to external white noise in ref. 10, chiral bias is

considered in ref. 11, high intensity and long duration noise is

considered in ref. 12 and in ref. 13, modified Sandars-type

models with spatial extent and external noise are considered

both for finite and infinite N, with an emphasis paid to the

dynamics of chiral symmetry breaking. By contrast, Saito and

Hyuga’s14 model gives rise to homochiral states but differs

markedly from Sandars’ in that it does not invoke the

enantiomeric cross inhibition, allowing instead for

reversibility in all the reaction steps. Their model requires

open flow, which is the needed element of irreversibility. A

different model which stands apart from the above group is

that of Plasson et al.16 They considered a recycled system based

on reversible chemical reactions and open only to energy flow

and without any (auto)catalytic reactions. A source of constant

external energy—the element of irreversibility—is required to

activate the monomers. This energy could be introduced into

the system in a physical form, say, as high energy photons. A

system of this kind, limited to dimerizations, was shown to
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have nonracemic stable final states for various ranges of the

model parameter values and for total concentrations greater

than a minimal value.

The polymerization models referred to above are defined

only for open flow systems which exchange matter and energy

with the exterior. A constant source of achiral precursor is

usually assumed. An unrealistic consequence is that

homochiral chains can grow to infinite length. By contrast,

most experimental procedures are carried out in closed and

spatially bounded reaction domains and are initiated in far-

from equilibrium states.3,17–24 It is thus crucial to have models

compatible with these experimentally realistic boundary and

initial conditions. The most immediate consequences are that

polymer chains can grow to a finite maximum length and that

the total system mass is constant. These two properties are of

course intimately related. An original aspect of our work is

that we consider the polymerization process in a closed

system and include reversible reactions. This enables us to

explore absolute asymmetric synthesis in thermodynamically

closed systems (closed to matter flow) taking into account the

backward reaction steps, which we call here ‘‘reversible

reactions/reversible models’’ in spite of the fact that the

values of the forward and reverse rate constants can be very

different. As we are eloquently reminded by Mislow, mirror

asymmetric states are in practice unavoidable on purely

statistical grounds alone,25 even in the absence of chiral

physical forces. Absolute asymmetric synthesis is the ability

of a system to amplify these statistical and minuscule

enantiomeric biases up to observably large excesses. Thus a

major goal of this work is assess the ability of such

polymerization schemes to amplify these initial excesses,

albeit if only temporarily. Asymmetric amplification is

demonstrated to occur obeying microscopic reversibility in

a reversible model closed to matter flow. This is of great

practical interest as the racemization time scale can be

substantially longer than that of the transformation of the

initial reagents, depending on the strength of the mutual

inhibition, or direct interaction between the enantiomers.

And regarding chemical evolution, this obviates the need to

invoke chiral physical fields and lends further support to the

conviction that homochirality is a ‘‘stereochemical

imperative’’ of molecular evolution.26

The behavior of entropy in polymerization models is rarely

discussed,27 and has not been addressed for mirror symmetry

breaking in chiral polymerization. The entropy produced in a

chemical reaction initiated out of equilibrium gives a measure

of the dissipation during the approach to final equilibrium. In

this paper, we calculate the rate of entropy production in

chiral polymerization. Depending on the enantiomeric

mutual inhibition, the entropy production undergoes a

rapid increase to a peak value either before, or else in the

vicinity of the chiral symmetry breaking transition, followed

by an equally dramatic decrease. The system racemizes at

time scales greater than that of polymerization, and is

accompanied by a final decrease of entropy production to

zero, indicating that the system has reached a final stable state

(not to be confused with a stationary state, which must be

accompanied by a nonzero constant entropy production).

Computation of the average homopolymer length indicates

that the final racemic state is dominated by the longest

available chains.

II. The polymerization model

The model we introduce and study here is modified and

extended from that of Wattis and Coveney9 which is in turn,

a generalization of Sandar’s scheme.6 Two salient differences

that distinguish our model from these and other previous

ones6–14 are that we (1) consider polymerization in closed

systems28—so that no matter flow is permitted with an

external environment—and (2) we allow for reversible

reactions in all the steps. A third difference is that we also

include the formation (and dissociation) of the heterodimer.

While heterodimer formation was originally contemplated in

ref. 6, it has been silently omitted from all the subsequent

models7–13 that derive therefrom. Fragmentation in a Sandars

type model has been considered previously, but was shown to

yield a maximum average polymer length of onlyN= 3 repeat

units.29

We assume there is an achiral precursor S which can directly

produce the chiral monomers L1 and R1 at a slow rate e as well
as be consumed in processes in which homopolymers of all

lengths catalyze the production of monomers. The specific

reaction scheme we study here is composed of the following

steps, where the e, (e�), k (k�), etc., denote the forward

(reverse) reaction rate constants and 0 r f r 1 is the fidelity

of the feedback mechanism:

SÐ
e

e�
L1; SþQÐ

k
2ð1þf Þ

k�
2 ð1þf Þ

L1þQ;SþPÐ
k
2ð1�f Þ

k�
2 ð1�f Þ

L1þP

SÐ
e

e�
R1; SþPÐ

k
2ð1þf Þ

k�
2 ð1þf Þ

R1þP;SþQÐ
k
2ð1�f Þ

k�
2 ð1�f Þ

R1þQ:

ð1Þ

Here

Q¼
XN
n¼1

nLn; P¼
XN
n¼1

nRn; ð2Þ

represents a measure of the total concentrations of left-handed

and right handed polymers. The amount of each chiral

monomer produced is influenced by the total amount of

chiral oligomer already present in the system. We allow for

the monomers themselves to participate in these substrate

reactions: hence N Z n Z 1, where N is the maximum

chain length. The central top and bottom reactions in eqn (1)

are enantioselective, whereas those on the right hand side are

non-enantioselective. The model therefore contains the

features of limited enantioselectivity, first proposed as an

alternative to the mutual inhibition of Frank.1

An important observation is that differences in the Gibbs

free energy DG0 between initial and final states should be the

same in all the reactions listed in eqn (1), which implies the

thermodynamic constraint on the following forward and

reverse reaction constants (see also ref. 14)

e
e�
¼ k

k�
: ð3Þ
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The polymerization and chain end-termination reactions (see

below) are not subject to a thermodynamic constraint.

The monomers combine to form chirally pure polymer

chains denoted by Ln and Rn, according to the isodesmic31

stepwise reactions for 1 r n r N � 1

Ln þ L1Ð
kaa

k�aa
Lnþ1; Rn þ R1Ð

kbb

k�
bb

Rnþ1; ð4Þ

and inhibition, or the chain end-termination reactions for N �
1 Z n Z 2:

Ln þ R1Ð
kab

k�
ab

RLn; Rn þ L1Ð
kba

k�
ba

LRn: ð5Þ

These upper limits for n specified in eqn (4) and (5) ensure that

the maximum length for all oligomers produced (or consumed)

by these reaction sets, both the homo- and heterochiral ones, is

never greater than N. In the remainder of this paper we will

consider here the natural and chiral symmetric rate

assignments kaa = kbb, kab = kba and likewise for the inverse

rates, k�aa= k�bb and k�ab= k�ba. There are then four independent

rate constants.

We include a separate reaction for the heterodimer

formation and dissociation:

L1 þ R1Ð
kh

k�
h

H � L1R1; ð6Þ

where kh = (kab+kba)/2 and k�h = (k�ab + k�ba)/2. Note that

these latter two rate constants are automatically determined

from the above choice and that L1R1 = R1L1 of course. This

completes the specification of the model’s reactions.

The model is left–right symmetric, that is, possesses a

discrete Z2 symmetry,30 which is manifest in the elementary

reaction steps, in the rate constants, and in the corresponding

differential rate equations (see below). This symmetry can be

broken spontaneously by the dynamical solutions of the

differential rate equations. This model is thus apt for

investigating spontaneous mirror symmetry breaking.

Though not considered here, the effects of explicit chiral bias

(e.g., that induced by external physical fields) can also be

studied with this model by lifting the Z2 degeneracy in the

reaction rates, e.g., allowing for kaa a kbb, etc., leading to a

maximum of eight independent rate constants for describing

the reaction set in eqn (4) and (5).

Rate-equation theory as employed in chemical kinetics is

used to describe the differential rate equations of the achiral

source, the monomers, as well as the homo- and heterochiral

oligomers belonging to this reaction network. The kinetic

equations for the concentrations that follow from these

elementary steps are as follows. We begin with the rate

equations for the achiral precursor S and those

corresponding to the two chiral monomers:

d½S�
dt
¼� 2e½S� � k½S�ðPþQÞ þ e�ð½L1� þ ½R1�Þ

þ 1

2
k�½L1�ðð1þ f ÞQþ ð1� f ÞPÞ

þ 1

2
k�½R1�ðð1þ f ÞPþ ð1� f ÞQÞ;

ð7Þ

d½L1�
dt
¼ e½S� þ k

2
½S�ðð1þ f ÞQþ ð1� f ÞPÞ

� kaa½L1� 2½L1� þ
XN�1
n¼2
½Ln� þ kba=kaa

XN�1
n¼1
½Rn�

 !

� e�½L1� �
k�
2
½L1�ðð1þ f ÞQþ ð1� f ÞPÞ

þ k�aa 2½L2� þ
XN�1
n¼2
½Lnþ1� þ k�ba=k

�
aa

XN�1
n¼2
½LRn�

 !
þ k�h H;

ð8Þ

d½R1�
dt
¼ e½S� þ k

2
½S�ðð1þ f ÞPþ ð1� f ÞQÞ

� kbb½R1� 2½R1� þ
XN�1
n¼2
½Rn� þ kab=kbb

XN�1
n¼1
½Ln�

 !

� e�½R1� �
k�
2
½R1�ðð1þ f ÞPþ ð1� f ÞQÞ

þ k�bb 2½R2� þ
XN�1
n¼2
½Rnþ1� þ k�ab=k

�
bb

XN�1
n¼2
½RLn�

 !
þ k�h H:

ð9Þ

Whereas for N � 1 Z n Z 2 we have the set of stepwise

polymerization rate equations

d½Ln�
dt
¼ kaa½L1�ð½Ln�1� � ½Ln�Þ � kab½Ln�½R1�

þ k�ab½RLn� þ k�aað½Lnþ1� � ½Ln�Þ;
ð10Þ

d½Rn�
dt
¼ kbb½R1�ð½Rn�1� � ½Rn�Þ � kba½Rn�½L1�

þ k�ba½LRn� þ k�bbð½Rnþ1� � ½Rn�Þ:
ð11Þ

Note, in accord with eqn (4) and (5) for the largest polymers

n = N, we have instead the final pair

d½LN �
dt
¼ kaa½L1�½LN�1� � k�aa½LN �; ð12Þ

d½RN �
dt
¼ kbb½R1�½RN�1� � k�bb½RN �: ð13Þ

Then the kinetic equation for the heterodimer H R L1R1

(which we keep separate from the other end-chain rate

equations):

d½H�
dt
¼ kh½L1�½R1� � k�h ½H�: ð14Þ
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Lastly, for N � 1 Z n Z 2 the rate equations for the ‘‘end-

spoiled’’ chains:

d½LRn�
dt

¼ kba½L1�½Rn� � k�ba½LRn�; ð15Þ

d½RLn�
dt

¼ kab½R1�½Ln� � k�ab½RLn�: ð16Þ

For chemical systems closed to matter flow, the constant mass

constraint that must be obeyed by the coupled system of

differential equations at every instant is given by (the overdot

denotes time derivative):

½ _S� þ 2½ _H� þ
XN
n¼1

nð½ _Ln� þ ½ _Rn�Þ

þ
XN�1
n¼2
ðnþ 1Þð½ _RLn� þ ½ _LRn�Þ ¼ 0:

ð17Þ

This relation can be verified directly using the above set of 4N

� 2 kinetic equations eqn (7)–(16).

III. Entropy production

The entropy production rate in an irreversible process is a

measure of the dissipation in that process. At equilibrium, the

entropy production rate vanishes and is an extremum.32 This

production has been investigated recently for reversible

versions of the Frank model.33,34 In those simple models, the

behavior of the entropy produced near the chiral symmetry

breaking transition as well as its subsequent temporal

development, depends on whether the chemical system is

open or closed to matter flow. We will return to this

important point below. Here we consider the behavior of the

entropy produced by polymerization reactions and monomer

catalysis when the system undergoes a chiral phase transition

as well at the later stages when the system reaches final

chemical equilibrium upon racemization.

For reactions obeying mass action kinetics, the entropy

produced in any chemical reaction can be calculated

straightforwardly in terms of the individual elementary

reaction rates.32,35 The rate of entropy production is the sum

over the difference of the forward (Rjf) and reverse (Rjr)

reaction rates multiplied by the natural logarithm of the

ratio of the forward and reverse rates:35

sðtÞ ¼ R�
X
j

ðRjf � RjrÞ ln
Rjf

Rjr

� �
� 0; ð18Þ

where the sum runs over each elementary reaction step j, and

R*= 8.314 J mol�1 K�1 is the gas constant. Since our reaction

scheme is set up for closed systems, equilibrium is reached after

a racemization time scale tracem is reached, which suggests a

further measure is provided by the total net entropy produced

from the start of the reactions through chiral symmetry

breaking, then on to final racemization, when the system

reaches chemical and thermodynamic equilibrium and

s(t 4 tracem) = 0

sT ¼
Z tracem

0

sðuÞdu: ð19Þ

This quantifies the total dissipation over the complete history

of the chemical transformations under study.

The sum in eqn (18) contains 2N + 4 terms. In order to

determine which specific steps of the full reaction network

provide the leading contributions to s, we group the forward

and reverse reaction rates as follows:

A. Direct monomer production

R1f = e[S] R1r = e�[L1], (20)

R2f = e[S] R2r = e�[R1]. (21)

B. Monomer catalysis

R3f ¼
k

2
ð1þ f Þ½S�½Q� R3r ¼

k�
2
ð1þ f Þ½L1�½Q�; ð22Þ

R4f ¼
k

2
ð1þ f Þ½S�½P� R4r ¼

k�
2
ð1þ f Þ½R1�½P�; ð23Þ

R5f ¼
k

2
ð1� f Þ½S�½P� R5r ¼

k�
2
ð1� f Þ½L1�½P�; ð24Þ

R6f ¼
k

2
ð1� f Þ½S�½Q� R6r ¼

k�
2
ð1� f Þ½R1�½Q�: ð25Þ

C. Polymerization

For 1 r n r N � 1 we have

RL
nf = kaa[L1][Ln] RL

nr = k�aa[Ln+1], (26)

RR
nf = kbb[R1][Rn] RR

nr = k�bb[Rn+1]. (27)

D. End-chain termination and the heterodimer

The heterodimer rates are

Rh
f = kh[L1][R1] Rh

r = k�h [H], (28)

whereas for 2 r n r N � 1 the end-chain forward and reverse

rates are given by

ReR
nf = kab[Ln][R1] ReR

nr = k�ab[RLn], (29)

ReL
nf = kba[Rn][L1] ReL

nr = k�ba[LRn]. (30)

IV. Results

As discussed in the Introduction, we are interested in testing

the model’s ability to amplify the initial small statistical

deviations about the idealized racemic composition,25 in

systems closed to matter flow and taking microscopic

reversibility fully into account. In order to study the

sensitivity of the above reversible polymerization network to

these minuscule initial enantiomeric excesses, a very dilute

initial concentration of a scalemic (non racemic) mixture was

employed in the calculations: the initial monomeric

concentrations of [L1]0 = (1 � 10�6 + 1 � 10�15) M and
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[R1]0 = 1 � 10�6 M yielding an initial chiral excess of ee0 =

5 � 10�8%. This is actually slightly lower25,36 than the excess

corresponding to the initial monomer concentrations (ee0 =

6.1� 10�8%). The initial concentration of the achiral substrate

is [S]0 = 2 M, whereas those corresponding the homo- hetero-

oligomers are all set to zero: [Ln]0 = [Rn]0 = 0, for 2 r n r N,

[H]0= 0, and [LRn]0= [RLn]0= 0 for 2r nrN� 1.We choose

e=2� 10�5, e�=10�10, k=2.0, k�=10�5, f=0.9, kaa= kbb
= 1.0, kab = kba = 103, k�ab = k�ba = 1.0, k�aa = k�bb = 10�5.

For illustrative purposes, we consider chains that can grow to

a maximum length of N = 12. This N value is intended as a

mean ‘‘ball-park’’ figure suggested by recent experiments

yielding homochiral chains anywhere from N = 518 up to

N = 1824 chiral repeat units, depending on the amino acids

employed and the experimental conditions. The differential

rate equations eqn (7)–(16) were numerically integrated with

the version 7 Mathematica program package and using a level

of numerical precision, typically twenty or more significant

digits, to ensure the numerical significance of these initial

concentrations and enantiomeric excess. The results were

monitored and verified to assure that total system mass

eqn (17) remained constant in time.

Results are quantified in terms of a variety of convenient

chiral measures. The percent enantiomeric excess values of the

oligomers with homochiral sequences are calculated according

to (2 r n r N)

een ¼
½Ln� � ½Rn�
½Ln� þ ½Rn�

� 100: ð31Þ

A global or ensemble-averaged measure of the degree of

symmetry breaking is provided by the number-weighted

enantiomeric excess Z:

Z ¼
PN

n¼2 ð½Ln� � ½Rn�ÞPN
n¼2 ð½Ln� þ ½Rn�Þ

� 100: ð32Þ

The importance of the enantiomeric excess is that it provides

the order parameter for the symmetry breaking transition: the

|ee| Z 0 is zero for chiral symmetric states and nonzero

otherwise. In the latter case, the Z2 symmetry is broken. The

average chain length of the homopolymers is given by:

�n ¼
PN

n¼2 nð½Ln� þ ½Rn�ÞPN
n¼2 ð½Ln� þ ½Rn�Þ

; ð33Þ

and the root mean square deviation in the homochiral chain

length are:

ð�n2Þ1=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðn� �nÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2i � hni2

q
: ð34Þ

The angular brackets hi denote averaging with respect to the

ensemble
P

n([Ln] + [Rn]), similar to eqn (33). It is important

to remember that these are all time-dependent quantities.

Temporary but rather long lived asymmetric amplification

can take place, as shown in Fig. 1; note the logarithmic time

scale. The enantiomeric excess Z averaged over all chain

lengths eqn (32), from the dimer up to the maximum length

chainN=12 starts off at zero value until a time on the order of

t B 10 at which the excess increases rapidly to nearly 100% at

SMSB. This is followed by a gradual stepwise decrease or

chiral erosion characterized by the appearance of quasi-

plateaus of approximate constancy: Z falls to about 90% at

t B 103, then to about 60% at t B 106, staying approximately

level until the final decrease to zero occurring at a time on the

order of tB 1011�1012. The system has racemized on this time

scale. No appreciable differences in Z can be discerned when we

include the monomer, that is, start the sums at n = 1: we still

observe slow chiral erosion proceeding though quasi-steady

plateaus. The rate of the entropy produced eqn (18) exhibits an

initial increase followed by a dramatic burst coinciding with

the mirror symmetry breaking transition. This production then

decreases rapidly to an exceedingly tiny but non zero value that

remains constant during the entire period of slow chiral

erosion, spanning more than ten orders of magnitude in

time. The entropy production then goes strictly to zero when

the system racemizes in complete accord with the fact that the

system has reached chemical equilibrium. Although not

displayed in Fig. 1, the substrate concentration falls from its

initial value to zero approximately coincident with the peak

structure of the entropy production, thus suggesting a

connection between the sharp production of the latter and

the change in S. The total entropy produced eqn (19) is sT =

378.4 J mol�1 K�1. We can identify the major contributions to

the entropy production in this process, see Fig. 2, from

calculations of the partial entropies. In this way we find that

the leading contribution comes from the monomer catalysis

steps eqn (1), followed by the polymerization itself eqn (4), next

by the mutual inhibition reactions: heterodimer formation

eqn (6) and the ‘‘end-spoiled’’ cross-inhibition reactions

eqn (5). The least important contribution comes from the

direct production of monomers from the achiral substrate.

The first three partial contributions all display a peak structure

in the neighborhood of the symmetry breaking transition, with

the corresponding peak values being displaced in time, see

Fig. 1 Time evolution (logarithmic time scale) of the average

enantiomeric excess Z, averaged over all chains (2 r n r 12)

eqn (32), and the associated entropy production s, eqn (18). The

entropy production peaks sharply at the onset of chiral symmetry

breaking followed by a dramatic decrease to very small values. s
strictly approaches zero only at the racemization time scale tracem \

1011. Initial concentrations: [L1]0 = (1 � 10�6 + 1 � 10�15) M and

[R1]0 = 1 � 10�6 M (ee0 = 5 � 10�8%), [S]0 = 2 M, all other homo-

and heterochiral oligomer initial concentrations are zero; and for

the following rates e = 2 � 10�5, e� = 10�10, k = 2.0, k� = 10�5,

f = 0.9, kaa = kbb = 1.0, kab = kba = 103, k�ab = k�ba = 1.0, k�aa =

k�bb = 10�5.
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Fig. 2. The exception to this is the entropy rate due to direct

monomer production, which decreases monotonically.

A finer or more detailed measure of the degree of symmetry

breaking and amplification is provided by the individual

percent chain-length dependent enantiomeric excesses,

eqn (31). A remarkable and complex dynamic behavior is

revealed here. The time dependence of these n-dependent ee’s

is plotted in Fig. 3; note the logarithmic time scale. The

individual ee’s follow a common curve from initialization to

chiral symmetry breaking, at about t B 10, and remain

together at nearly 100% until about t B 100 at which time

the common curve begins to split up into its constituents. Then,

the percent chiral excess of each length homochiral chain

behaves differently, until they again coalesce into a single

curve upon final racemization, occurring at around t B 1011.

There is a common tendency for all the ee’s to decrease

at intermediate time scales, with the largest length chains

(here, N = 7, 8, 9, 10, 11, 12) passing from positive then to

negative values of the excess. TheN= 12, 11, 10 chains exhibit

nearly �100% excess during the period from 103 to 104 and

beyond: there has been a chiral sign reversal in the excess

corresponding to the largest chains. This holds also for the

monomer ee1, plotted in the dashed curve. Except for the

monomer, the individual excesses then all increase back to

positive values at t B 106, then from t B 107 to t B 1011, the

excess increases sequentially as a function of the chain length n

until racemization, where they all collapse to zero. The

temporal behavior of the enantiomeric excesses of the largest

chains n = 12, 11, 10, 9, 8, 7 is reminiscent of strongly damped

oscillations. This oscillatory behavior in the enantiomeric

excess can be understood in terms of the evolution of the

individual concentrations of the longest chains. To illustrate

this, we focus on the time dependence of the concentrations

[L12] and [R12], the corresponding ee experiences the largest

amplitude damped oscillations, see Fig. 4. For reference the

inset diagram shows the enantiomeric excess over the entire

time interval of the simulation, in comparison to Fig. 3. As

shown in Fig. 4, the dominant concentration shifts back and

forth between [L12] and [R12], respectively, until racemization

when both concentrations converge to a common value. This

leads to the chiral oscillations depicted in the inset. The shorter

chains do not experience this oscillation, as illustrated for

example by the concentrations [L5] and [R5] plotted in Fig. 5.

There, the dominant concentration is always [L5], all the way

from symmetry breaking at t B 10 to racemization, at

approximately t \ 1011. The corresponding ee suffers a dip

near t = 103 (see inset), due to the concentration [R5]

momentarily increasing at that time, see left hand graph of

Fig. 5. This dip becomes more pronounced the longer the

chain, see the sequence of curves around tB 104 in Fig. 3, and

becomes a fully-fledged damped chiral oscillation for the

longest chains in the system.

Static ‘‘snapshots’’ of this dynamic behavior nicely

complement the evolution of the chain length dependent

enantiomeric excesses. In Fig. 6 we display the enantiomeric

excess versus the number of chiral repeat units at selected time

slices. In the left-hand graph, the ee’s are all at 100% for all the

chains. The next graph, corresponding to t = 104, shows

the sign reversal tendency as a function of chain length, with

the full reversal (�100%) being attained for the largest

homochiral chains. The following graph, corresponding to

t = 109 shows the monotonic increase of ee with chain length.

Finally, the right-hand graph shows that racemization has set in

by t = 1013. These should be contrasted with Fig. 3. It is

interesting to point out that both the qualitative behaviors

depicted in the second and third snapshot have been reported

in two recent and independent polymerization experiments. The

tendency of the sign reversal in ee (from positive to negative

values) as a function of chain length has been observed in

the polymerization of racemic valine (Val-NCA) and leucine

(Leu-NCA) in water subject to chiral initiators.23 By contrast,

the monotonic increase of the percent ee with chain length

has been measured in independent chiral amplification

experiments using leucine and glycine in water18 starting with

a 20% initial enantiomeric excess of the L1 monomer. These

static snapshots also raise the important question of when to

Fig. 2 Partial contributions to the total entropy production. From,

(a) limited enantioselective monomer catalysis, (b) stepwise

polymerization reactions, (c) chain-end termination and heterodimer

formation reactions� 20, and (d), direct monomer production� 1000.

Note how the peak values of (a), (b) and (c) are displaced in time. Same

initial concentrations and rate constants as in Fig. 1.

Fig. 3 Time dependence (logarithmic scale) of the individual chain-

length dependent enantiomeric excesses een% ¼ ½Ln ��½Rn �
½Ln �þ½Rn � � 100, from

the start of reactions to chiral symmetry breaking, and then on to the

final racemization (family of solid curves). Near t C 104, the sequence

of curves from top to bottom corresponds to n = 2 to n = 12,

respectively. Note damped oscillatory behavior of the excesses

corresponding to n = 7, 8, 9, 10, 11, 12. The dashed curve shows the

chiral excess for the monomers: ee1%. Same initial concentrations and

rate constants as in Fig. 1.
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observe the chiral amplification and the enantiomeric excesses.

In nonlinear reaction schemes such as this one, the

enantiomeric excesses one measures can depend strongly on

when the measurement or observation is made, that is, when

one decides to terminate the experiment.

Additional information regarding the homo-oligomer

composition of the chemical system is provided by the

average homochiral chain length hni, see eqn (33). We plot

this in Fig. 7 along with the standard deviation about

the mean, eqn (34). The mean chain length starts off at 2,

Fig. 4 Chiral oscillations. Evolution of the individual concentrations [L12] (the upper curve at the bifurcation) and [R12] for the complete time

interval spanning symmetry breaking to final racemization. The inset graph gives the associated percent enantiomeric excess ee12 versus time. Left:

expanded view of the initial stages of evolution for 1 r t t 104. Symmetry breaking occurs at t B 10 with L12 dominating the excess. The chiral

excess of these longest chains vanishes instantaneously for the first time at around t = 103 when the curves intersect, and then turns over such that

now R12 dominates the chiral excess, see right hand graph (this leads to the sign flip in the excess, see inset). Right: chiral excess vanishes a second

time at tB 106 when the two curves intersect again (compare to inset). Then from about 106 to 1011 the L12 chains again dominate the chiral excess

until racemization, when the two curves collapse to a common curve (anti-bifurcation). Same initial concentrations and rate constants as in Fig. 1.

Fig. 5 Evolution of the individual concentrations [L5] (the upper curve at the bifurcation) and [R5] for the complete time interval spanning

symmetry breaking to final racemization. The inset graph gives the associated percent enantiomeric excess ee5 as a function of time. Left: full history

of the evolution. Right: close up of the final time scales and racemization (anti-bifurcation).

Fig. 6 Different time slices or ‘‘snap-shots’’ of Fig. 3 showing dependence of the chain-length dependent enantiomeric excesses een% ¼ ½Ln ��½Rn �
½Ln �þ½Rn � � 100

for n Z 2, at different selected time scales. From left to right: total chiral symmetry breaking for all length homopolymer chains at t = 100,

second graph shows the sign reversal tendency for the largest chains at t= 104, followed by the third graph, the monotone increase of chiral excess

as a function of chain length at t=109, and then the fourth graph, the final racemization at t=1013. Same initial concentrations and rate constants

as in Fig. 1.
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corresponding to the homodimer and then increases

monotonically after the symmetry breaking transition,

reaching a constant plateau at t = 107 where it remains

constant all the way through to racemization and beyond.

The final mean value hni=11.0. The corresponding root mean

square indicates that the fluctuations in the mean chain length

increase as the mean chain length increases but then drops

down to a constant value ðn2Þ1=2 � 1:4 when the average value

stabilizes. This indicates that the final racemic composition is

dominated by the longer chains: nfinal = 11.0 	 1.4. The

racemization time scale depends on how ‘‘irreversible’’ the

model is. By way of example, if we increase the rate k� of

the reverse catalysis steps in eqn (1), keeping everything else

constant, then the increased recycling of monomers back into

achiral precursor S lowers this time scale as follows: (k�, tracem)

= (10�6, 5 � 1012s), (10�5, 5 � 1011s), (10�4, 5 � 1010s),

(10�3, 1 � 1010s), (10�2, 5 � 109s). By the same token, if we

make k� smaller, we can postpone racemization.

The enantiomeric cross inhibition kab = kba is a determining

factor in this model. By way of contrast, we consider a second

N = 12 run with a much lower mutual inhibition than

employed above, namely kab = kba = 20 , and with

the following inverse rates all set equal k�aa = k�bb = k�ab =

k�ba = 10�6, but keeping the remainder of the rates as before

and with the same initial concentrations and excess. In this

situation, the symmetry breaking occurs at a later time and

most interestingly, the entropy production now peaks well

before the mirror symmetry is broken, see Fig. 8. Fig. 9

shows that the catalysis still yields the major contribution to

this peak, but the second and third most important

contributions are now formation of end-chain spoiled

oligomers followed by the polymerization, exactly opposite

to the previous run employing the much higher mutual

inhibition. The peak in s is due principally to monomer

catalysis, and not symmetry breaking.

The time dependence of these n-dependent ee’s is plotted in

Fig. 10; note the logarithmic time scale. The individual ee’s

follow a common curve from initialization to chiral symmetry

breaking, at about t B 300, and remain together at nearly

100% until about t B 1000 at which time the common curve

begins to split up into its component parts. Note how the

shorter homopolymers tend to racemize before the longer ones,

there is a sequential chiral erosion in the individual

enantiomeric excesses that is more pronounced the shorter

the chain length. This holds as well for the monomer, plotted in

the dashed curve (contrast to the monomer behavior in Fig. 3).

Then, the percent excess of each length homochiral chain

behaves differently, until they again coalesce into a single

curve upon final racemization, occurring at around t B 1014.

The final approach to racemization is qualitatively very similar

to the case treated above, compare the sequence in the right

Fig. 7 The time evolution (logarithmic scale) of the average or mean

homopolymer chain length �n (upper curve) and the corresponding

root-mean-square deviation hn2i
1
2 from the mean value (lower curve).

The final stable values of the mean and RMS values are �n= 11.02 and

hn2i
1
2 ¼ 1:38, for t \ 107. This demonstrates that the final racemic

mixture is dominated by the longer length homopolymer chains, and

this is the final equilibrium configuration. Same initial concentrations

and rate constants as in Fig. 1.

Fig. 8 Time evolution (logarithmic time scale) of the average

enantiomeric excess Z, averaged over all chains (2 r n r 12)

eqn (32), and the associated entropy production s, eqn (18). The

entropy production peaks well before (t B 3) the onset of chiral

symmetry breaking (t B 300) followed by a dramatic decrease to

very small values. s strictly approaches zero only at the racemization

time scale tracem \ 1015. Initial concentrations: [L1]0 = (1 � 10�6 +

1 � 10�15) M and [R1]0 = 1� 10�6 M (ee0 = 5 � 10�8%), [S]0 = 2M,

all other homo- and heterochiral oligomer initial concentrations are

zero; and for the following rates e = 2 � 10�5, e� = 10�10, k = 2.0,

k� = 10�5, f = 0.9, kaa = kbb = 1.0, kab = kba = 20, k�ab = k�ba =

k�aa = k�bb = 10�6.

Fig. 9 Partial contributions to the total entropy production. From,

(a) limited enantioselective monomer catalysis, (b) stepwise

polymerization reactions, (c) chain-end termination and heterodimer

formation reactions� 20, and (d), direct monomer production� 1000.

Same initial concentrations and rate constants as in Fig. 8.
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hand graph of Fig. 10; to the sequence of curves in Fig. 3 from

roughly t B 107 to 1012. A sequence of snap-shots of the een’s

at selected times is displayed in Fig. 11.

Finally, we plot the average homochiral chain length hni, see
eqn (33) in Fig. 12 along with the standard deviation. The

mean chain length starts off at 2, corresponding to

the homodimer and then increases monotonically after the

symmetry breaking transition, reaching a constant plateau at

about t=109 where it remains constant all the way through to

racemization and beyond. The final mean value hni = 10.9.

Once again, the final racemic composition is dominated by the

longest chains.

V. Conclusions and discussion

We have demonstrated that a strong chiral amplification can

take place in a reversible model of chiral polymerization closed

to matter flow and subject to constraints imposed by micro-

reversibility. The inherent statistical fluctuations about the

idealized racemic composition are modeled by an initial

minuscule enantiomeric excess in a system dilute in the

monomers. These results are important, because they suggest

that spontaneous mirror symmetry breaking in experimental

chiral polymerization can take place, and with observable and

large chiral excesses without the need to introduce chiral

initiators24 or large initial chiral excesses.18 Instead, the

needed chiral monomers (i.e., amino acids) can be produced

directly from an achiral precursor and amplified via catalysis.

Strong mutual inhibition is required to amplify the initial ee to

large values, very similar to what we found for the reversible

Fig. 10 Time dependence (logarithmic scale) of the individual chain-length dependent enantiomeric excesses een% ¼ ½Ln ��½Rn �
½Ln �þ½Rn � � 100, from the start

of reactions to chiral symmetry breaking, and then on to the final racemization (family of solid curves). The dashed curve shows the chiral excess for

the monomers. Right hand side shows a blow-up of the een’s for the time scale t = 109 to 1015, exhibiting the sequence of excesses and its final

convergence to zero at racemization. Same initial concentrations and rate constants as in Fig. 8.

Fig. 11 Different time slices or ‘‘snap-shots’’ of Fig. 10 showing dependence of the chain-length dependent enantiomeric excesses een% ¼
½Ln ��½Rn �
½Ln �þ½Rn � � 100 for n Z 2, at different selected time scales. From left to right: total chiral symmetry breaking for all lengths of homopolymer chains at

t=103, the second graph shows the stepwise increase for the largest chains at t=106, followed by the third graph, the monotonic increase of chiral

excess as a function of chain length at t = 1010, and then the fourth graph shows the final racemization at approximately t = 1014. Same initial

concentrations and rate constants as in Fig. 8.

Fig. 12 The time evolution (logarithmic scale) of the average or mean

homopolymer chain length �n (upper curve) and the corresponding

root-mean-square deviation hn2i
1
2 from the mean value (lower curve).

The final stable values of the mean and RMS values are �n = 10.9 and

hn2i
1
2 ¼ 1:5, for t\ 1010. The final racemic mixture is highly dominated

by the longer length homopolymer chains, and this is the equilibrium

configuration. Same initial concentrations and rate constants as

in Fig. 8.
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Frank model in closed systems.4 The chain-length dependent

enantiomeric excesses depend on time in a highly nontrivial

way. The essential rate constant is that corresponding to the

enantiomeric inhibition. A most intriguing novel feature

revealed here for appreciable enantiomeric cross inhibition is

the tendency for the chain length dependent enantiomeric

excesses to exhibit a damped oscillatory behavior before the

onset of final racemization. In these conditions, the observed

chiral excess is clearly a time dependent phenomena, though

the ‘‘period’’ of the chiral oscillations can be quite long.

Oscillatory dynamics in chemical reactions has been observed

experimentally, and analyzed theoretically and numerically in

simple model systems;38,39 as far as we are aware, this behavior

has not been revealed previously as a valid dynamical solution

in polymerization models. The implications for chirality

transmission are far reaching: ‘‘memory’’ of the sign of the

initial chiral fluctuation is washed-out by the oscillations in the

enantiomeric excess, adding another heretofore unexpected

element of randomness to the process. While the sign of the

initial chiral fluctuation is entirely random, any subsequent

chiral oscillations can further ‘‘erase’’ the memory of the sign

of this initial enantiomeric excess. These oscillations cease as

the system approaches its equilibrium state. Moderate values

lead to strong temporary symmetry breaking and larger values

can lead to long period damped chiral oscillations before final

racemization takes over.

We have also shown that the rate of entropy production per

unit volume exhibits a peak value either before or near the

vicinity of the chiral symmetry breaking transition. This

increase to a peak value is mainly due to the catalytic

production of the chiral monomers, followed next by the

stepwise polymerization reactions, and then by the chain-end

termination reactions and lastly, by direct monomer

production. The rate falls to a vanishingly small but constant

nonzero value maintained during the intermediate time scales,

then drops to zero once the system has racemized. Previous

calculations of the entropy produced in chiral symmetry

breaking transitions have been carried out in the Frank

model. In ref. 33, s was evaluated for a reversible open flow

Frank model with a constant inflow of achiral substrate and a

constant outflow of the mutual inhibition product. In that

situation, the entropy production rises from a small initial

value and then levels off to a constant plateau after symmetry

breaking. As the open flow keeps this system far from

equilibrium, it can never racemize, and entropy is produced

at a constant rate, in sempiternum. In ref. 34, the rate of

entropy production was evaluated for a reversible open flow

Frank model including limited enantioselectivity. Mirror

symmetry is broken incompletely, and s increases sharply

from the start of the reaction, remains at a constant level

during the lifetime of the initial racemic state and then

decreases to a new stationary value once symmetry breaking

sets in. These latter authors also consider the reversible Frank

model with constant concentration of substrate but freely

varying inhibition product. The entropy production

increases, a peak value is reached when symmetry breaking is

almost complete, then decreases to very small values. On the

other hand, for a reversible Frank model closed to matter flow,

and with strong mutual inhibition, the rate of entropy

production exhibits a sharp peak at the onset of symmetry

breaking, falling to a tiny positive value until the system

racemizes, at which time s goes to zero.37 This latter

behavior is qualitatively similar to what we find in our

polymerization model for large inhibition.

For the sake of computational simplicity, we have

considered a model wherein no generally mixed

heteropolymers were formed, only the heterodimers LR =

RL and LRn�1 and RLn�1 for 3 r n r N. The corresponding

number of differential equations grows linearly with the length

N as 4N � 2. A more realistic model should of course include

the formation of all the possible heteropolymers of a given

length n, i.e., those heterochiral chains of length n containing

r Z 1 copies of L1 and s Z 1 copies ofR1 such that r+ s= n.

It is possible to build such a system, for example, starting with

the copolymerization model of ref. 40, where the concentration

variables are denoted as cr,s
L(t)|rZ 1,sZ 0 and cr,s

R(t)|rZ 0,sZ 1,

the superscript indicating the final monomer in the chain, while

the double subscript r, s encodes the number of individual L

and R’s making up the chain, respectively. The number of

differential equations in this case grows quadratically with

polymer length N as N(N+1), and is mathematically more

involved. Detailed studies employing a reversible

copolymerization scheme in closed systems will be presented

elsewhere.41
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We present a differential rate equation model of chiral polymerization based on a simple

copolymerization scheme in which the enantiomers are added to, or removed from, the

homochiral or heterochiral chains (reversible stepwise isodesmic growth or dissociation).

The model is set up for closed systems and takes into account the corresponding thermodynamic

constraints implied by the reversible monomer attachments, while obeying a constant mass

constraint. In its simplest form, the model depends on a single variable rate constant, the

maximum chain length N, and the initial concentrations. We have fit the model to the

experimental data from the Rehovot group on lattice-controlled chiral amplification of

oligopeptides. We find in all the chemical systems employed, except for one, that the model fits

the measured relative abundances of the oligopeptides with higher degrees of correlation than

from a purely random polymerization process.

1 Introduction

In the transition from prebiotic racemic chemistry to chiral

biology one scenario suggests that homochiral peptides must

have appeared before the appearance of the primeval

enzymes.1,2 While several stochastic synthetic routes for mirror

symmetry breaking that convert racemates into nonracemates

have been described,3,4 the generation of long bio-like polymers1

made up of repeating units of the same handedness requires

elaboration of new synthetic routes. Polymerization reactions of

racemic mixtures of monomers in solution are typically expected

to yield polymers composed of random sequences of the left- and

right-handed repeat units following a binomial or Bernoulli

distribution. Thus the probability of obtaining oligomers with a

homochiral sequence becomes negligible with increasing length.1

Recent investigations have proposed thatN-carboxyanhydride

(NCA)5,6 and thioester derivatives7,8 of amino acids might have

operated as relevant precursors in the formation of the early

peptides.9 Results on the polymerization of NCA monomers in

organic solvents,10–15 in water16–18 and in the solid state19,20 have

been published. Luisi and coworkers21–24 have reported the

polymerization of racemic a-amino acids in solution which yields

small amounts of oligopeptides of homochiral sequence whose

abundances with respect to the heterochiral chains exhibit a

slight departure from the binomial distribution.

This problem of the random distribution can be overcome

by catalyzed polymerization of amphiphilic amino acids, in

racemic and nonracemic forms, which self-assemble into two-

dimensional ordered crystallites at the air–water interface.25,26

Based on a process involving self-assembly followed by lattice

controlled polymerization, Lahav and coworkers recently

proposed a general scenario for the generation of homochiral

oligopeptides of a single handedness from non-racemic mixtures

of activated alpha amino acids.25,26 Initial non-racemic mixtures

undergo a phase separation by self-assembly into a 2D racemic

crystalline phase and a separate enantiomorphous 2D phase of

the enantiomer in excess. Each of these crystalline phases has

markedly different chemical properties, thus yielding products

that differ in the composition of the oligomers. So, polymerization

within the enantiomorphous crystalline phase yields homochiral

oligopeptides of one handedness whereas the reaction controlled

by the racemic crystallites yields racemic mixtures and hetero-

chiral products. The combination of the two routes leads to an

overall chiral amplification process.

In this paper, we are interested in the lattice-controlled

polymerization reactions proposed by those authors. It is

important to clarify at the outset what specific aspect of the

overall experimental mechanism we want to model here and

the way we aim to do so. The proposed experimental scheme

starts from an initial excess, say S 4 R of monomers which

undergoes an initial self-assembly process into two types of

two-dimensional crystallites at the air/water interface. Once

formed, each one of these two crystal phases participates in the

control of a subsequent type of polymerization. Thus, the

racemic crystallites polymerize racemic mixtures of oligomers

and the heterochiral products, whereas the other pure enantio-

morphous crystallite controls the polymerization of the

isotactic chains, these are formed from the monomer in excess
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(S, in this example). However, the details of the polymerizations

depend in a complicated way upon the specific packing arrange-

ments of the crystal monomers and the possible reaction pathways

taken within each crystallite phase. The authors of the experi-

ments state that the connection between the monomer packing

arrangements in the crystallites and the resultant composition of

the various diastereoisomeric products is ‘‘not straightforward’’.26

We therefore opt for a simple model for interpreting their data.

With this objective in mind, we present a copolymerization model

for the interpretation of the experimental data. The model may be

termed effective in the following sense: it presupposes or takes as

given the prior formation of the self-assembled 2D crystallites at

the air–water interface and is concerned exclusively with the

subsequent polymerization reactions. Thus the complicated

microscopic details referring to the monomer packing arrange-

ments and reaction pathways within the crystallite self-assemblies

are treated implicitly with our rate constants. Our copolymeri-

zation reaction rates can satisfactorily account for the different

chemical properties of the two crystalline phases (racemic 2D

crystallites and pure enantiomorphous 2D crystallites) that lead to

the formation of racemic mixtures, heterochiral products and

isotactic oligopeptides. We contrast the fits from our model with

those assuming a purely random process that obeys a binomial

distribution. The final justification for considering such an

effective model rests on its ability to yield good fits to the data.

The goodness of the fits obtained below demonstrates that the

experimental data can be fit convincingly as if the simple scheme

depicted pictorially in Fig. 1 were the sole mechanism leading to

the observed relative abundances. This then gives additional

meaning to the term ‘‘effective’’, and in the operational sense.

2 The copolymerization model

Our starting point is a simple model for the copolymerization of

two chemically distinct monomers displaying a wide variety of

product sequence compositions. The model we introduce and

study here is an appropriately modified and extended version of

the one considered a few years ago by Wattis and Coveney.27

The main important differences compared to prior and

related models are that (1) we consider polymerization in

closed systems28—so that no matter flow is permitted with

an external environment—and (2) we allow for reversible

monomer association steps. We also correctly include the

formation (and dissociation) of the heterodimer.28 It turns

out that this must be treated on a separate basis in order to

avoid double counting, which if left unchecked, would lead to

a violation in the constant mass constraint. Once the hetero-

dimer is treated correctly, this implies that the hetero-trimer

must also be treated separately. Besides this, the remainder of

the hetero-oligomers can be treated in a uniform way.

First, we introduce the notation to be used. Polymers are

classified by three quantities: the number of A monomers of

which it is composed (subscript r), the number of B monomers

which it contains (subscript s) and the final or terminal

monomer in the chain, denoted by a superscript. In this

scheme, the monomers are denoted by A = CA
1,0 and B = CB

0,1;

pure homopolymers are denoted by CA
r,0 and CB

0,s; all

copolymer chains CA
r,s or CB

r,s with r, s Z 1 are hetero-

polymers. Note also that chains of the form CA
0,s and CB

r,0

are forbidden. The corresponding time-dependent concentrations

are denoted by lower case variables: e.g., cAr,s (t) and cBr,s(t). The

model is then defined by the following reactions, in which

equilibrium is maintained between the finite monomer pool

and the ensemble of copolymers:

CA
r;s þ AÐ

kaa

k�aa
CA

rþ1;s; ð1Þ

CA
r;s þ BÐ

kab

k�
ab

CB
r;sþ1; ð2Þ

CB
r;s þ AÐ

kba

k�
ba

CA
rþ1;s; ð3Þ

CB
r;s þ BÐ

kbb

k�
bb

CB
r;sþ1: ð4Þ

Fig. 1 The copolymerization model. The (R)-chiral (red) and

(S)-chiral (blue) monomers reversibly associate into the growing

homochiral (top) or heterochiral (bottom) copolymer chains. Because

the system is closed, both the heterodimer (second line) and hetero-

trimer (third and fourth lines) reactions must be treated separately to

avoid double counting and thus ensure that the total system mass is

conserved in a closed system (see the text for an explanation).
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This model can accommodate any two chemically distinct

monomers. For the purpose of this paper, we consider the case

when A = R and B = S are two enantiomers.

The overall basic scheme must be broken down into several

special subcases, especially important so as to avoid undesired

double counting of the heterodimer and heterotrimer reactions,

see Fig. 1. Once we treat these special cases, we then pass to the

corresponding set of rate equations for the concentrations.

The formation of chirally pure polymer chains denoted by

cAn,0 and cB0,n for 1 r n r N � 1 is described by the homo-

polymerization reactions:

CA
n;0 þ CA

1;0Ð
kaa

k�aa
CA

nþ1;0; CB
0;n þ CB

0;1Ð
kbb

k�
bb

CB
0;nþ1: ð5Þ

where N is the maximum chain length permitted. In our

recently reported work,28 we considered that once a monomer

has been added to a homopolymer of the opposite chirality

(that is, ‘‘the wrong’’ monomer), the polymer is inhibited and

further growth is halted. This polymer could not directly react

anymore and could only lose its wrong terminal monomer

through the inverse reaction. In the present model, we assume

that such a chain can continue to grow by adding monomers

of both configurations. So, for 2 r n r N � 1, the hetero-

polymerization or inhibition reactions are as follows:

CA
n;0 þ CB

0;1Ð
kab

k�
ab

CB
n;1; CB

0;n þ CA
1;0Ð

kba

k�
ba

CA
1;n: ð6Þ

For both homo- and hetero-polymerization reactions,

represented by eqn (5) and (6), the upper limits specified for

n ensure that the maximum length for all oligomers produced

(or consumed) by these reaction sets, both the homo- and

heterochiral ones, is never greater than N. In the remainder

of this paper we will consider here the natural and chiral

symmetric reaction rate assignments kaa = kbb, kab = kba
and likewise for the inverse rates, k�aa ¼ k�bb and k�ab ¼ k�ba,

reducing the number of independent rate constants to four.

Even if we have information about the composition, we

can only know the chirality of the last monomer attached to

the chain, we have no information regarding the specific

sequence. This implies that the following two reactions are

indistinguishable:

CA
1;0 þ CB

0;1Ð
kab

k�
ab

CB
1;1; CB

0;1 þ CA
1;0Ð

kba

k�
ba

CA
1;1:

Thus for all practical purposes, CA
1,1 � CB

1,1, and this suggests

using the following notation: C1,1 � CA
1,1 � CB

1,1, and to define

a unique direct constant rate: kh ¼ kabþkba
2

, and an inverse one

k�h ¼
k�
ab
þk�

ba
2

. Note that if kab = kba, then kh = kab = kba. Due

to these characteristics, we will treat the heterodimer in a

different way compared with the other hetero-polymers. The

reaction of the heterodimer formation is therefore:

CA
1;0 þ CB

0;1Ð
kh

k�
h

C1;1: ð7Þ

As before, the reactants and products in eqn (7) are the same,

so the differences in the free energy between initial and final

states should be the same in all the reactions in these

equations, implying the following thermodynamic constraint

on the reaction rates:

kab

k�ab
¼ kba

k�ba
: ð8Þ

If the heterodimer formation were not to be treated in a separate

way as we have done, and were to be included, e.g. in eqn (6) by

merely changing the lower limits for n (2 r n r N � 1) by 1 r
nrN� 1, we would be making the mistake of double counting

it. The same occurs for the heteropolymers formed from the

addition of a monomer to a heterodimer. The two reactions of

each pair of the following equations are also indistinguishable:

C1;1 þ CA
1;0Ð

kaa

k�aa
CA

2;1; C1;1 þ CA
1;0Ð

kba

k�
ba

CA
2;1

C1;1 þ CB
0;1Ð

kbb

k�
bb

CB
1;2; C1;1 þ CB

0;1Ð
kab

k�
ab

CB
1;2:

Again, it is convenient to define the following direct reaction

rates for these steps, kha ¼ kaaþkba
2

, khb ¼ kbbþkab
2

and inverse

rates: k�ha ¼
k�aaþk�ba

2
, k�hb ¼

k�
bb
þk�

ab
2

. Note that if kaa = kbb and

kab = kba, then kha = khb, and if k�aa ¼ k�bb and k�ab ¼ k�ba, then

k�ha ¼ k�hb. The reactions to be considered are then:

C1;1 þ CA
1;0Ð

kha

k�
ha

CA
2;1; C1;1 þ CB

0;1Ð
khb

k�
hb

CB
1;2: ð9Þ

As we have already remarked, in our model, as in the original

one for open systems,27 the polymeric chains that have taken

up the ‘‘wrong’’ chirality monomer can continue to grow.

Thus, we allow for the further growth of these chains by adding

monomers of either chirality. This kind of polymerization

reaction for 2 r n r N � 2 is given by:

CA
1;n þ CA

1;0Ð
kaa

k�aa
CA

2;n; CB
n;1 þ CB

0;1Ð
kbb

k�
bb

CB
n;2 ð10Þ

CA
1;n þ CB

0;1Ð
kab

k�
ab

CB
1;nþ1; CB

n;1 þ CA
1;0Ð

kba

k�
ba

CA
nþ1;1: ð11Þ

And for 2 r r r N � 2, 1 r s r N � 1 � r:

CA
r;s þ CA

1;0Ð
kaa

k�aa
CA

rþ1;s; CB
r;s þ CB

0;1Ð
kbb

k�
bb

CB
r;sþ1 ð12Þ

CA
r;s þ CB

0;1Ð
kab

k�
ab

CB
r;sþ1; CB

r;s þ CA
1;0Ð

kba

k�
ba

CB
rþ1;s: ð13Þ

Note that in the elementary reaction steps, in the rate constants,

and in the corresponding differential rate equations (see below),

the left–right symmetry of the model is manifested, that is, it

possesses a discrete Z2 symmetry. This symmetry can be broken

spontaneously by the dynamical solutions of the differential

rate equations, thus this model is apt for studying spontaneous

mirror symmetry breaking.

By lifting the Z2 degeneracy in the reaction rates, e.g.,

allowing for kaa a kbb and thus leading to more independent

rate constants for describing the reaction set, we could study

the influence of explicit chiral bias on the model. As this is not

the aim of this work, we will not consider it here.
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We next write down the differential rate equations corres-

ponding to this reaction network. We employ the rate-equation

theory as in chemical kinetics. We begin with the rate equations

for the chiral monomers:

dcA1;0
dt

¼ � kaac
A
1;0 2cA1;0 þ

XN�1
n¼2

cAn;0 þ
XN�2
n¼2

cA1;n þ
XN�2
r¼2

XN�1�r
s¼1

cAr;s

 !

� kbac
A
1;0

XN�1
n¼2

cB0;n þ
XN�2
n¼2

cBn;1 þ
XN�2
s¼2

XN�1�s
r¼1

cBr;s

 !

� khc
A
1;0c

B
0;1 � khac

A
1;0c1;1

þ k�aa 2cA2;0 þ
XN
n¼3

cAn;0 þ
XN�2
n¼2

cA2;n þ
XN�1
r¼3

XN�r
s¼1

cAr;s

 !

þ k�ba
XN�1
n¼2

cA1;n þ
XN�2
n¼2

cA2;n þ
XN�1
r¼3

XN�r
s¼1

cAr;s

 !

þ k�hc1;1 þ k�hac
A
2;1 ð14Þ

dcB0;1
dt

¼ � kbbc
B
0;1 2cB0;1 þ

XN�1
n¼2

cB0;n þ
XN�2
n¼2

cBn;1 þ
XN�2
s¼2

XN�1�s
r¼1

cBr;s

 !

� kabc
B
0;1

XN�1
n¼2

cAn;0 þ
XN�2
n¼2

cA1;n þ
XN�2
r¼2

XN�1�r
s¼1

cAr;s

 !

� khc
A
1;0c

B
0;1 � khbc

B
0;1c1;1

þ k�bb 2cB0;2 þ
XN
n¼3

cB0;n þ
XN�2
n¼2

cBn;2 þ
XN�1
s¼3

XN�s
r¼1

cBr;s

 !

þ k�ab
XN�1
n¼2

cBn;1 þ
XN�2
n¼2

cBn;2 þ
XN�1
s¼3

XN�s
r¼1

cBr;s

 !

þ k�hc1;1 þ k�hbc
B
1;2 ð15Þ

The equations describing the concentration of the homopolymers,

for 2 r n r N � 1, are:

dcAn;0
dt

¼ kaac
A
1;0ðcAn�1;0 � cAn;0Þ � kabc

A
n;0c

B
0;1

þ k�aaðcAnþ1;0 � cAn;0Þ þ k�abc
B
n;1

ð16Þ

dcB0;n
dt

¼ kbbc
B
0;1ðcB0;n�1 � cB0;nÞ � kbac

B
0;nc

A
1;0

þ k�bbðcB0;nþ1 � cB0;nÞ þ k�bac
A
1;n

ð17Þ

It is necessary to treat the kinetic equations of the maximum

length homopolymers N individually. Since these do not elongate

further, they cannot directly react, and cannot be the product of

an inverse reaction involving a longer chain:

dcAN;0
dt
¼ kaac

A
1;0c

A
N�1;0 � k�aac

A
N;0 ð18Þ

dcB0;N
dt
¼ kbbc

B
0;1c

B
0;N�1 � k�bbc

B
0;N ð19Þ

The differential equations describing the concentration of each

type of heteropolymer (included the heterodimer), for 2 r n r
N � 2, are:

dc1;1

dt
¼ khc

A
1;0c

B
0;1 � khac1;1c

A
1;0 � khbc1;1c

B
0;1

� k�hc1;1 þ k�hac
A
2;1 þ k�hbc

B
1;2

ð20Þ

dcA1;n
dt

¼ � kaac
A
1;0c

A
1;n � kabc

B
0;1c

A
1;n þ kbac

B
0;nc

A
1;0

þ k�aac
A
2;n þ k�abc

B
1;nþ1 � k�bac

A
1;n

ð21Þ

dcBn;1
dt

¼ � kbbc
B
0;1c

B
n;1 � kbac

A
1;0c

B
n;1 þ kabc

A
n;0c

B
0;1

þ k�bbc
B
n;2 þ k�bac

A
nþ1;1 � k�abc

B
n;1

ð22Þ

As before, it is useful to treat individually the maximum length

polymers N:

dcA1;N�1
dt

¼ kbac
B
0;N�1c

A
1;0 � k�bac

A
1;N�1 ð23Þ

dcBN�1;1
dt

¼ kabc
A
N�1;0c

B
0;1 � k�abc

B
N�1;1 ð24Þ

As was mentioned when describing the reaction network, each

kind of trimer cA2,1 and cB1,2 must have its own differential equation

in terms of kha, khb:

dcA2;1
dt

¼ � kaac
A
1;0c

A
2;1 � kabc

B
0;1c

A
2;1 þ khac1;1c

A
1;0

þ k�aac
A
3;1 þ k�abc

B
2;2 � k�hac

A
2;1

ð25Þ

dcB1;2
dt

¼ � kbbc
B
0;1c

B
1;2 � kbac

A
1;0c

B
1;2 þ khbc1;1c

B
0;1

þ k�bbc
B
1;3 þ k�bac

A
2;2 � k�hbc

B
1;2

ð26Þ

For 2 r n r N � 3:

dcA2;n
dt

¼ kaac
A
1;0ðcA1;n � cA2;nÞ � kabc

B
0;1c

A
2;n þ kbac

B
1;nc

A
1;0

þ k�aaðcA3;n � cA2;nÞ þ k�abc
B
2;nþ1 � k�bac

A
2;n

ð27Þ

dcBn;2
dt

¼ kbbc
B
0;1ðcBn;1 � cBn;2Þ � kbac

A
1;0c

B
n;2 þ kabc

A
n;1c

B
0;1

þ k�bbðcBn;3 � cBn;2Þ þ k�bac
A
nþ1;2 � k�abc

B
n;2

ð28Þ

Once again, the equations corresponding to the maximum length

homopolymers N are:

dcA2;N�2
dt

¼ kaac
A
1;0c

A
1;N�2 þ kbac

B
1;N�2c

A
1;0

� k�aac
A
2;N�2 � k�bac

A
2;N�2

ð29Þ

dcBN�2;2
dt

¼ kbbc
B
0;1c

B
N�2;1 þ kabc

A
N�2;1c

B
0;1

� k�bbc
B
N�2;2 � k�abc

B
N�2;2

ð30Þ
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For 3 r r r N � 2 and 1 r s r N � 1 � r:

dcAr;s
dt
¼ kaac

A
1;0ðcAr�1;s � cAr;sÞ � kabc

B
0;1c

A
r;s þ kbac

B
r�1;sc

A
1;0

þ k�aaðcArþ1;s � cAr;sÞ þ k�abc
B
r;sþ1 � k�bac

A
r;s

ð31Þ
For 3 r s r N � 2 and 1 r r r N � 1 � s:

dcBr;s
dt
¼ kbbc

B
0;1ðcBr;s�1 � cBr;sÞ � kbac

A
1;0c

B
r;s þ kabc

A
r;s�1c

B
0;1

þ k�bbðcBr;sþ1 � cBr;sÞ þ k�bac
A
rþ1;s � k�abc

B
r;s

ð32Þ
For 3 r n r N � 1:

dcAn;N�n
dt

¼ kaac
A
1;0c

A
n�1;N�n þ kbac

B
n�1;N�nc

A
1;0

� k�aac
A
n;N�n � k�bac

A
n;N�n

ð33Þ

dcBN�n;n
dt

¼ kbbc
B
0;1c

B
N�n;n�1 þ kabc

A
N�n;n�1c

B
0;1

� k�bbc
B
N�n;n � k�abc

B
N�n;n

ð34Þ

As remarked earlier, the complete reaction scheme must satisfy

mass conservation in a closed system, implying that the mass

variation rate must be strictly zero:

0 ¼ 2 _c1;1 þ 3ð _cA2;1 þ _cB1;2Þ þ
XN
n¼1

nð _cAn;0 þ _cB0;nÞ

þ
XN�1
n¼2
ðnþ 1Þð _cA1;n þ _cBn;1Þ þ

XN�2
n¼2
ðnþ 2Þð _cA2;n þ _cBn;2Þ

þ
XN�1
r¼3

XN�1
s¼1
ðrþ sÞð _cAr;s þ _cBs;rÞ;

ð35Þ
where the overdot stands for the time-derivative. The compliance

with this constraint is an important and crucial check on the

consistency of the numerical integration of the full set of

differential equations eqn (14)–(34), which we monitor and

confirm in all the simulations presented below. Analytically, this

relation is satisfied by the rate equations.

As we see, there is one differential equation for each type of

monomer and one for the heterodimer. The homopolymer set

requires 2(N� 1) equations and the heteropolymer set a total of

N2 � N � 1 equations. The total number of kinetic differential

equations describing the whole system is N(N + 1) � 1, and is

broken down into separate contributions as displayed in

Table 1. Then, the total number of equations for describing

the system as a function of maximum chain length N is:

#eqs = 5 + 2(N � 1) + 2(N � 2) + 2(N � 3)

+ (N2� 7N+ 12)+ 2(N� 3)=N(N+ 1)� 1,

(36)

as pointed out in ref. 28. From the computational point of

view, the number of equations grows quadratically with the

maximum chain length N.

3 Numerical results

We are interested in applying our copolymerization model to fit

the experimental data measured by the Rehovot group, so our

primary goal is to reproduce as closely as possible the details

reported concerning the experiments on chiral amplification of

oligopeptides. For this purpose, the first step is to determine the

initial monomer concentrations to be employed in the simulations.

The actual experiments were carried out for 0.5 mM

solutions of monomers, thus we have employed for each case:

(a) R : S = 1 : 1 which corresponds to an initial enantiomeric

excess ee0 = 0%, so cA1,0(0) = 0.25 mM and cB0,1(0) = 0.25 mM;

(b)R : S=4 : 6 corresponding to ee0= 20%, so cA1,0(0)= 0.2mM

and cB0,1(0) = 0.3 mM; (c) R : S = 3 : 7 which corresponds to

ee0 = 40%, so cA1,0(0) = 0.15 mM and cB0,1(0) = 0.35 mM. The

remainder of the initial concentrations (the dimers and on up)

are taken to be zero. Next, we systematically search for the

reaction rates leading to the best fit to the given data.

Different chemical model systems were used in the experiments:

namely g-stearyl-glutamic thioethyl ester (C18–TE–Glu),Ne-stearoyl-

lysine thioethyl ester (C18�TE�Lys), g-stearyl-glutamic acid

N-carboxyanhydride (C18�Glu�NCA) and g-stearyl-glutamic

thioacid (C18�thio�Glu), varying both their initial compositions

and for various choices of catalyst. The composition of the

oligopeptides formed was analyzed by matrix-assisted laser

desorption/ionization time-of-flight mass spectroscopy (MALDI-

TOF) with enantio-labeled samples. The experimental relative

abundances of the oligopeptides were inferred from the ion

intensity. These are the relative abundances that we aim to

interpret vis-a-vis our copolymerization model.

Since only the experiments with racemic mixtures of the

starting compounds required a catalyst, it is reasonable to

expect that the racemic and the chiral enriched cases will

follow different dynamics for a given model system. That is,

Table 1 Number of differential equations as a function of the maximum polymer length N

Number of eqn Number of eqn

cA1,0 1 cB0,1 1

c1,1 1
cAn,0, (2 r n r N)

PN
n=2 = N � 1 cB0,n, (2 r n r N)

PN
n=2 = N � 1

cA1,n, (2 r n r N � 1)
PN�1

n=2 = N � 2 cBn,1, (2 r n r N � 1)
PN�1

n=2 = N � 2

cA2,1 1 cB1,2 1

cA2,n, (2 r n r N � 2)
PN�2

n=2 = N � 3 cBn,2, (2 r n r N � 2)
PN�2

n=2 = N � 3

cAr,s
PN�2

r=3

PN�1�r
s=1 = 1

2
(N2 � 7N + 12) cBr,s

PN�1�s
r=1

PN�2
s=3 = 1

2
(N2 � 7N + 12)

(3 r r r N � 2) (3 r s r N � 2)
(1 r s r N � 1 � r) (1 r r r N � 1 � s)
cAn,N�n, (3 r n r N � 1)

PN�1
n=3 = N � 3 cBn,N�n, (3 r n r N � 1)

PN�1
n=3 = N � 3
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the presence or absence of a specific catalyst affects the

rate constants, for a given chemical system. Firstly, we will

find the reaction rates for the racemic case, and afterwards,

those for the enriched chiral case, allowing us to compare

both. The a priori nine free parameters we must set to run

the numerical integrations are comprised of the four direct

and the four inverse rate constants kaa, kbb, kab, kba, and

k�aa; k
�
bb; k

�
ab; k

�
ba, plus the maximum polymer chain length,N.

We set all the inverse reaction rates to a unique value,

k�aa ¼ k�bb ¼ k�ab ¼ k�ba ¼ 10�10ðs�1Þ, implying an almost irre-

versible scheme, and we determine the remainder of the para-

meters from fitting the copolymerization model to the relative

abundance data. This required numerical integration of the set

of differential equations eqn (14)–(34) which we performed using

the Mathematica program package. For each independent run

we verified the compliance of the numerical results with the

constraint in eqn (35), an imperative for any closed system.

Results from fitting the model to the data indicate that the

maximum chain length N does not play a significant role, the

Pearson product-moment correlation coefficient, r, remains

the same for N = 12, 14, 16, 18, 20, so we will set N = 12 for

all compounds and cases treated below. Since the number of

independent equations scales as N2, this represents an important

reduction in the computer time and the memory used. We

note that one is free to scale out the dependence of one pair

of reaction constants from the rate equations by a suitable

redefinition of the time variable. Thus, without loss of generality,

we set the cross inhibition rates equal to unity kab = kba =

1 s�1 mol�1 and then search for the reaction rates kaa = kbb
leading to the best fits.

3.1 Racemic mixtures

In one set of experiments, the authors reported MALDI-TOF

analysis of the oligopeptides formed at the air–water interface

Fig. 2 Relative abundance versus number of repeat units (r,s) of

the oligopeptides obtained from fitting the model (white) to the

experimental data (black) from racemic mixtures R : S = 1 : 1 of

monomers. The four chemical models are indicated by the insets.

Fig. 3 Data correlations r from fitting the model to the data in the

case of racemic mixtures of all the compounds employed. The chemical

systems are indicated by the insets. The solid line represents the linear

correlation between experimental data and numerical calculations.
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from racemic mixtures R : S = 1 : 1 of the monomers for the

various model systems and catalysts. We first fit the copoly-

merization model to this data.

The best correlation data for the racemic C18�TE�Glu

system with the I2/KI catalyst are found for kaa = kbb =

1.7 s�1 mol�1. In this case, the best fit is obtained for the time

scale t = 1011 s. Exactly by the same process, the best

correlation data for the racemic C18�TE�Lys system are

found for kaa = kbb = 2.3 s�1 mol�1 and for kaa = kbb =

1.3 s�1 mol�1 when adding I2/KI and AgNO3 as catalysts,

respectively. For the simulations here, we took the times t =

1010 s and t = 1011 s in the racemic cases with I2/KI and

AgNO3 respectively. Finally, we fit our copolymerization

model to the C18�thio�Glu experimental relative abun-

dances. The authors of the experiments affirmed that this

compound undergoes a truly random polymerization, so fits

from our model are expected to be slightly less satisfactory

than those for the binomial distribution function. Setting the

inverse reaction rates and the cross inhibition as indicated

above, then the best correlation coefficients are found for

kaa = kbb = 0.4 s�1 mol�1. The instant or time-scale leading

to these numerical values is t = 1010 s.

The corresponding (experimental and numerical) relative

abundances for the four compounds cited above corres-

ponding to these values are shown in Fig. 2. The histograms

show the relative abundance of each experimentally obtained

oligopeptide compared to the best fit from our copolymerization

model. We emphasize that we fit the model to the complete

family of stereoisomer subgroups (global fit). The resulting data

correlations are shown in Fig. 3 and Table 2, the latter gives a

detailed comparison of the best fits between individual

subfamilies and the overall global fit.

In the case of the C18�Glu�NCAwith catalyst Ni(CH3CO2)2,

the best fit is obtained for kaa = kbb= 0.2 s�1 mol�1. Results for

the corresponding relative abundances are shown in Fig. 4

and the correlation from fitting is displayed in the bottom frame

of Fig. 3 and Table 3. Not all subfamily data sets are reported

in the experimental paper;25 here we use the fitted model to the

partial data set to predict or fill in these missing subfamily data.

Numerical results for the racemic case have been found for

t = 1010 s.

3.2 Chirally enriched mixtures

In a second set of experiments, the authors reported

MALDI-TOF analysis of the oligopeptides formed at the

air–water interface from non-racemic mixtures of the

monomers for the same model systems. No catalysts were

employed there. We next consider fits of our model to these

data sets.

The best correlation factors for both chirally enriched

mixture cases (20% and 40% excesses) in the case of the

C18�TE�Glu system are found for the same rates, that is

for kaa = kbb = 2 s�1 mol�1. The results for these values are

shown in Table 4. In Fig. 5 we display the relative abundances

of the homochiral oligopeptides and in Table 5 both the

calculated and experimental enantiomeric excesses for the

4 : 6 and 3 : 7 (R : S) mixtures. In Fig. 6 we show the data

correlation. Numerical results for the non-racemic case have

been found for the time scale t = 1011 s.

For the chiral mixtures of C18�TE�Lys we found the best

fits for the dynamics corresponding to kaa = kbb =

2.5 s�1 mol�1. The results for these values are shown in

Table 6. The relative abundances results for these values are

shown in Fig. 7 and the enantiomeric excesses obtained for

4 : 6 and 3 : 7 (R : S) mixtures are presented in Table 7. In

Fig. 8 the data correlation is shown. For the simulations here,

we took the instants t = 1010 s and t = 1011 s in the racemic

cases with I2/KI and AgNO3 respectively, and t = 1010 s for

the chirally enriched mixtures.

In the case of nonracemic C18�thio�Glu, the best correlation

coefficients are found for the same values of the reaction rates

that we found in the racemic case, namely for kaa = kbb =

0.4 s�1 mol�1. Results for the chiral cases are shown in Table 8.

As to be expected and as shown in the table, the correlation

factors for the global fit to the binomial distribution function are

Fig. 4 The C18�Glu�NCA system with catalyst Ni(CH3CO2)2: relative abundance of the oligopeptides obtained from fitting the model (white) to

the experimental data (black) from racemic mixtures of monomers. Compare Fig. 4A of ref. 26.

Table 2 Comparative fits between the copolymerization model and
the binomial distribution to the experimental relative abundances:
racemic mixtures R : S = 1 : 1 of monomers of the four model
systems as indicated in the leftmost column. Only in the case of
C18�thio�Glu does the binomial distribution give a better global fit
than the copolymerization model: the latter system provides an
experimental reference system for random polymerization26

r

Copolymerization model Bin.

Fits for each subgroup n
Global Global

Di Tri Tetra Penta Hexa fit fit

C18�TE�Glu 0.92 0.96 0.80 0.84 — 0.93 0.75
C18�TE�Lys(I2/KI) 0.9 �0.82 �0.11 �0.73 0.45 0.85 0.32
C18�TE�Lys(Ag) 0.98 1 0.03 0.88 0.76 0.84 0.8
C18�thio�Glu 1 1 1 0.98 0.97 0.95 0.98
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slightly better than those for any simulation we could perform

with the copolymerization model, so we reconfirm what was

claimed by the authors of the experimental work: namely that

the C18�thio�Glu system polymerizes randomly. In Fig. 9 the

relative abundances of the oligopeptides are shown. The data

correlation is shown in Fig. 10.

The best fits for both chirally enriched mixture cases (20%

and 40% excesses) in the case of C18�Glu�NCA are found for

the same dynamics, that is kaa = kbb = 3.8 s�1 mol�1. The

results for these values are shown in Table 9. In Fig. 11 we

compare the best fit against the experimentally obtained

Table 3 Comparative fits between the copolymerization model and binomial distribution to the experimental relative abundances for the racemic
compositions (R : S = 1 : 1) of the C18�Glu�NCA system

r

Copolymerization model Bin.

Fits for each subgroup n

Global fit Global fitDi Tri Tetra Penta Hexa Hepta Octa Nona Deca Endeca Dodeca

C18�Glu�NCA 1 — 1 — 0.98 — 0.98 — 0.97 1 0.95 0.96 0.75

Table 4 Comparative fits between the copolymerization model and
the binomial distribution to the experimental relative abundances
measured for non-racemic mixtures of C18�TE�Glu

r

Copolymerization model Binomial

Fits for each subgroup n

Global fit Global fitDi Tri Tetra Penta Hexa

(R : S) 4 : 6 0.86 0.89 0.93 0.99 — 0.94 0.75
(R : S) 3 : 7 0.95 0.94 0.96 0.99 0.99 0.95 0.85

Fig. 5 Relative abundance versus number of repeat units (r,s) of

the oligopeptides obtained from fitting the model (white) to the

experimental data (black) from non-racemic mixtures of monomers

for the C18�TE�Glu system.

Table 5 Enantiomeric excesses ee: numerical results from the copoly-
merization model (experimental data) for the relative abundances of the
homochiral oligopeptides for the C18�TE�Glu system

ee(%) Di Tri Tetra Penta Hexa

(R : S) 4 : 6 18 (26) 24 (39) 30 (46) 35 (59) —
(R : S) 3 : 7 37 (48) 48 (71) 57 (82) 66 (92) 73 (499.8)

Fig. 6 Results from fitting the model to the experimental data:

non-racemic mixtures of C18�TE�Glu. The solid line represents the

linear correlation between experimental and numerical data obtained

from fitting. The dotted line has a slope equal to unity.

Table 6 Results for the copolymerization model and experimental
data correlations for non-racemic mixtures of C18�TE�Lys

r

Copolymerization model Binomial

Fits for each subgroup n

Global fit Global fitDi Tri Tetra Penta Hexa Hepta

(R : S) 4 : 6 0.78 1 0.87 0.90 0.84 0.97 0.89 0.46
(R : S) 3 : 7 0.93 1 0.95 0.97 0.99 — 0.94 0.65

Fig. 7 Relative abundance versus number of repeat units (r,s) of

the oligopeptides obtained from fitting the model (white) to the

experimental data (black) from non-racemic mixtures of monomers

of C18�TE�Lys.
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relative abundances of the oligopeptides. The corresponding

data correlation is shown in Fig. 12. Numerical results for the

racemic case have been found for t = 1011 s.

4 Conclusions

The overall scheme for the chiral amplification process leading to

the experimental data investigated here involves a self-assembly

step followed by a lattice-controlled polymerization.25,26 It is this

subsequent polymerization which is the prime focus of this paper.

The authors of the experimental work stress that it is not at all

straightforward to actually establish the correlation between the

packing arrangements of the crystallites and the composition of

the diastereoisomeric products that result therefrom. Therefore,

our task here was to fit the outcome of these latter steps assuming

an effective copolymerization scheme. The term ‘‘effective’’ simply

means that the putative complicated correlations and interplay

between the 2D crystallite phases at the air–water interface and

the polymerization reaction pathways that depend on the micro-

scopic packing arrangements within the crystals are treated here

with a simple model. In this regard, our model can be regarded as

a ‘‘course-grained’’ description of the overall process in that the

microscopic details (the structures of the crystalline phases) are

not resolved, but that the end-result or net effect of the pathways

afforded by the crystallites can be summarized by the polymeri-

zation scheme as depicted graphically in Fig. 1.

The model as introduced is defined for fully reversible

reactions and this implies that some of the reaction rates must

obey a corresponding constraint as dictated by microreversibility.

Thus the model is appropriate for closed systems under thermo-

dynamic control. For the numerical fits themselves, we found that

all the reverse reaction rates could be set to rather small values,

and this is in consonance with experimentally observed irreversible

condensation. Thus for the present purposes, the copolymeri-

zation model is practically irreversible. The values for the forward

rates of adding the same chirality monomer to the end of the

growing chain are found to be greater than those for addition of a

wrong chirality monomer: that is, kaa = kbb 4 kab = kba = 1

(except of course for the model system C18�thio�Glu serving as a

reference for random polymerization).

Other closed systems that lead to copolymers could, in

principle, be fit with our model. If for example kaa and kbb
had different magnitudes, this would imply that an underlying

chiral bias is operative either in the polymerization or in the

Table 7 Enantiomeric excesses: numerical results from the copoly-
merization model (experimental data) for the relative abundances of
the homochiral oligopeptides for C18�TE�Lys

ee(%) Di Tri Tetra Penta Hexa Hepta

(R : S) 4 : 6 23 (34) 30 (34) 36 (41) 42 (60) 49 (62) 54 (499.8)
(R : S) 3 : 7 45 (46) 57 (63) 66 (73) 75 (85) 81 (86) —

Fig. 8 Results from fitting the model to the experimental data.

Chiral mixtures of C18�TE�Lys. The solid line represents the linear

correlation between the experimental and numerical data obtained

from fitting. The dotted line has a slope equal to unity.

Table 8 Results for the copolymerization model and experimental
data correlations for non-racemic mixtures of C18�thio�Glu

r

Copolymerization model Binomial

Fits for each subgroup n

Global fit Global fitDi Tri Tetra Penta Hexa Hepta

(R : S) 4 : 6 0.93 0.98 0.93 0.92 0.92 0.91 0.91 0.93
(R : S) 3 : 7 0.89 1 0.99 0.99 0.98 — 0.96 0.97

Fig. 9 Relative abundances versus number of repeat units (r,s) of the

oligopeptides obtained from fitting the model (white) to the experi-

mental data (black) for the non-racemic mixtures of C18�thio�Glu.

Fig. 10 Results from fitting the model to the experimental data for

non-racemic mixtures of the C18�thio�Glu system. The solid line

represents the linear correlation between experimental and numerical

data obtained from fitting. The dotted line has a slope equal to unity.
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prior formation of the two crystallites that control the poly-

merization. This bias could affect the packing arrangements of

the crystal monomers and the reaction pathways taken within

each crystallite phase. Since however our model is effective, as

explained earlier, we would not be able to say whether the

chiral bias is in the polymerization or in the structure of the

crystallites that control the polymerization. Nevertheless, this

bias in kaa being different from kbb would result in favoring the

attachment of say, an S to an S over the attachment of an R

to an R, and this feature would show clearly up in the relative

abundances.

Another positive feature of the model is the robustness of

the fits with respect to differing initial imbalances of the

enantiomers. That is, for a given chemical model (including

catalyst, if any) the values of the fitted rates do not depend on

the initial enantiomeric excesses of the monomers. If our rate

constants are viewed as effective, that is, implicitly involving

the different chemical properties of the racemic and enantio-

morphous crystallite phases, then this feature suggests that

the packing arrangements and reaction pathways in the solid-

state do not depend (or only weakly) on the magnitude of

these imbalances.

The Pearson product-moment correlation coefficient r

between experimental and numerical data is greater for the

copolymerization model than for the binomial distribution,

except for the C18�thio�Glu, which truly polymerizes randomly.

The correlation between calculated and experimental relative

abundances is also greater for the initially non-racemic situations,

and the higher the initially chiral enrichment of the mixture is, the

better the copolymerization model reproduces the chemical data.

The results obtained here lead us to affirm that the model systems

considered all undergo a non-random polymerization, as was

asserted by the authors of the experiments.25,26

The model also qualitatively reproduces the behavior of the

enantiomeric excess ee, its increase with the length of the

chains and the enhancement of the ee of the corresponding

initial mixture of monomers. All this, in spite of the complexity

Table 9 Results for the copolymerization model and experimental data correlations for C18�Glu�NCA. The global fit from the binomial
distribution is shown for comparison

r

Copolymerization model Binomial

Fits for each subgroup n

Global fit Global fitDi Tri Tetra Penta Hexa Hepta Octa Nona Deca

(R : S) 4 : 6 �0.79 0.9 0.63 0.74 0.95 0.89 0.77 0.86 — 0.68 0.11
(R : S) 3 : 7 �0.33 0.79 0.81 0.76 0.86 0.96 0.75 0.83 0.89 0.75 0.38

Fig. 11 Relative abundances for the non-racemic mixtures of C18�thio�Glu. The experimental data set (black) is incomplete, we have used our

model to fill in the missing portions of the histogram (white).

Fig. 12 Results from fitting the model to the experimental data for

the C18�Glu�NCA system. The solid line represents the linear

correlation between experimental and numerical data obtained from

fitting. The dotted line has a slope equal to unity.
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of the factors that affect the reactivity within the experimental

two-phase system, i.e., the microscopic crystallite packing

arrangements and the possible reaction pathways within these

2D crystallites. In conclusion, we may therefore assert that

our simple scheme does provide an accurate course-grained

description of the lattice-controlled polymerization reported in

ref. 25 and 26.
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A chemical equilibrium model of template-controlled copolymeri-

zation is presented for describing the outcome of the experimental

induced desymmetrization scenarios recently proposed by Lahav

and co-workers.

It is an empirical fact that mirror symmetry is broken in all

known biological systems, where processes crucial for life such

as replication, imply chiral supramolecular structures, sharing

the same chiral sign (homochirality). These chiral structures

are proteins, composed of amino acids almost exclusively

found as the left-handed enantiomers (S), also DNA, and

RNA polymers and sugars with chiral building blocks

composed by right-handed (R) monocarbohydrates.

One scenario for the transition from prebiotic racemic

chemistry to chiral biology suggests that homochiral peptides

must have appeared before the onset of the primeval

enzymes.1–5 However, the polymerization of racemic mixtures

(1 : 1 proportions) of monomers in ideal solutions typically

yields chains composed of random sequences of both the

left- and right-handed repeat units following a binomial

distribution.6 This statistical problem has been overcome

recently by the experimental demonstration of the generation

of amphiphilic peptides of homochiral sequence, that is, of a

single chirality, from racemic compositions. This route consists of

two steps: (1) the formation of racemic parallel or anti-parallel

b-sheets either in aqueous solution or in 3-D crystals7 during the

polymerization of racemic hydrophobic a-amino acids followed by

(2) an enantioselective controlled polymerization reaction8–14

(Fig. 1). This process leads to racemic or mirror-symmetric

mixtures of isotactic oligopeptides where the chains are composed

from amino acid residues of a single handedness. Furthermore,

when racemic mixtures of different amino acid species were

polymerized, isotactic co-peptides of homochiral sequence

were generated. Here a host or majority species (R0,S0), together

with a given number m of minority amino acid species

(R1, S1),(R2, S2), � � � (Rm, Sm) (supplied with lesser abundance)

were employed. The guest (S) and (R) molecules are enantio-

selectively incorporated into the chains of the (S) and (R)

peptides, respectively, however the former are stochastically

distributed within the homochiral chains. As a combined

result of these two effects, the sequence of the co-peptide

S and R chains will differ from each other, resulting in non-

racemic mixtures of co-peptide polymer chains: non-enantiomeric

pairs of chains are thus formed. By considering the sequences of

these peptide chains, a statistical departure from the racemic

composition of the library of the peptide chains is created which

varies with chain length N and with the relative concentrations

of the host/guest monomers used in the polymerization.9,10

The mechanism has some features in common with the scenarios

proposed by Green and Garetz,15 Eschenmoser et al.16 and

Siegel17 in which a limited supply of material results in a

stochastic mirror symmetry breaking process.

To address the general scenario for the generation of

libraries of diastereoisomeric mixtures of peptides in accord

with that proposed in ref. 9, consider a model with a host

amino acid species and m guest amino acids. We assume as

given the prior formation of the initial templates or b-sheets,

and are concerned exclusively with the subsequent random

polymerization reactions (step (2)). The underlying nonlinear

template control is implicit throughout the discussion.

We consider stepwise additions and dissociations of single

monomers from one end of the (co)polymer chain, considered

as a strand within the b-sheet. It is reasonable to regard the b-sheet

in equilibrium with the free monomer pool.18 y

From detailed balance, each individual monomer attachment

or dissociation reaction is in equilibrium. This holds for closed

equilibrium systems in which the free monomers are depleted/

replenished by the templated polymerization. Then we can

compute the equilibrium concentrations of all the (co)-polymers

in terms of equilibrium constants Ki and the free monomer

concentrations. The equilibrium concentration of an S-type

copolymer chain of length n0 + n1 + n2 + � � � + nm =N

made up of nj molecules Sj is given by

pSn0;n1...;nm
¼ ðK0s0Þ

n0ðK1s1Þ
n1

. . . ðKmsmÞ
nm=K0, where sj = [Sj].

19

Similarly for the concentration of an R-type copolymer

Fig. 1 The scheme proposed in ref. 7 leading to regio-enantioselection

within racemic b-sheet templates.
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chain of length n00 þ n01 þ n02 þ � � � þ n0m ¼ N made up of n0j

molecules Rj: pR
n0
0
;n0
1
;...;n0m

¼ ðK0r0Þ
n0
0ðK1r1Þ

n0
1 . . . ðKmrmÞ

n0m=K0,

where rj = [Rj].

The number of different S-type copolymers of length l with

nj molecules of type Sj is given by the multinomial coefficient.

Hence the total concentration of the S-type copolymers of

length l is given by

pSl ¼
X

n0þn1þ���þnm¼l

l

n0; n1; . . . ; nm

 !

pSn0;n1 ;...nm

¼
1

K0

ðK0s0 þ K1s1 þ � � � þ KmsmÞ
l ;

ð1Þ

which follows from the multinomial theorem.20 We calculate

the number of each type Sj of S-monomer present in the

S-copolymer of length equal to l, for any 0 r j r m:

sjðp
S
l Þ ¼

X

n0þn1þ���þnm¼l

l

n0; n1; . . . ; nm

 !

njp
S
n0 ;n1;...;nm

¼ sj
@

@sj
pSl ¼

Kj

K0

sj lðK0s0 þ K1s1 þ � � � þ KmsmÞ
lÿ1:

ð2Þ

Then we need to know the total amount of the S-type

monomers bound within the S-type copolymers, from the

dimer on up to a maximum chain length N. Using eqn (2)

for the jth type of amino acid, this is given by

sjðp
S
TotÞ ¼

X

N

l¼2

sjðp
S
l Þ !

Kj

K0

sj
að2ÿ aÞ

ð1ÿ aÞ2
; ð3Þ

the final expression holds in the limit N - N provided that

a = (K0s0 + K1s1 + � � � + Kmsm) o 1. This must be the case,

otherwise the system would contain an infinite number of

molecules.19 Similar considerations hold for the R-sector, and

the total amount of R monomers inside R type copolymers for

the jth amino acid is given by rjðp
R
TotÞ ¼

Kj

K0
rj

bð2ÿbÞ

ð1ÿbÞ2
where

b = (K0r0 +K1r1 + � � � + Kmrm) o 1. From this we obtain

the mass balance equations which hold for both enantiomers

of the host and guest amino acids, and is our key result:

sj þ
Kj

K0

sj
að2ÿ aÞ

ð1ÿ aÞ2
¼ sjtot ; rj þ

Kj

K0

rj
bð2ÿ bÞ

ð1ÿ bÞ2
¼ rjtot : ð4Þ

These equations express the fact that each type of enantiomer

is either free, or else is bound inside a (co)polymer strand

within the template.

The problem then consists in the following: given the total

concentrations of all the m + 1 enantiomers fsjtot ; rjtotg
m
j¼0,

and the Ki we calculate the free monomer concentrations

{sj, rj}
m
j=0 from solving eqn. (4). Denote by s0tot +� � �+ smtot

+

r0tot + � � � + rmtot
= ctot the total system concentration. From the

solutions we can calculate e.g., the equilibrium concentrations

of homochiral copolymers of any specific sequence or composition

as well as the resultant enantiomeric excess for homochiral

chains of length l composed of the host (majority) amino acid:

eel ¼
ðr0Þ

lÿðs0Þ
l

ðr0Þ
lþðs0Þ

l. When there are no guest amino acids, i.e., for

m = 0, and when the majority species is supplied in racemic

proportions s0tot : r0tot = 1 : 1, then eel must be zero: there will

be no mirror symmetry breaking. So we turn to the scenario

of ref. 9 and consider the influence of a single guest species,

m = 1 being sufficient for our purposes.

We first use our mass balance equations to calculate eel for

the same initial compositions of the monomers as reported in

ref. 9. This is shown in top of Fig. 2. We consider a single

equilibrium constant K0 = K1 = K = 1 Mÿ1 for sake of

simplicity, and the total system concentration, ctot = 1M. The

enantiomeric excess increases when increasing the amount of

guest species s0tot, obtaining a maximal symmetry breaking for

the case shown with equal amounts of majority and minority

S-molecules: stot ¼ s0tot. In the limit as s0tot ! 0 we tend

towards a racemic situation, so decreasing the amount of the

minority or guest species is equivalent to approaching the

racemic state, manifested through ever smaller values of eel for

fixed l (top to bottom sequence of curves). The eel increases

monotonically with the chain length l in all cases. The behavior

of the eel demonstrates quite well the induced symmetry breaking

mechanism proposed in ref. 9.

The solutions of the mass balance equations (4) can be used

to evaluate the average chain lengths as functions of initial

monomer compositions and the equilibrium constants. The

average chain lengths of the S-type copolymers hlSi, composed

of random sequences of the Sj type monomers, and that of

the R-type copolymers hlRi composed of random sequences of

the Rj type monomers, are derived in the ESI.z Results for the

m = 1 three monomer cases are shown in Table SI, ESI.z

There is a marked increase in the average chain length

when increasing K, we moreover observe how the average

Fig. 2 Calculated ee values versus chain length l from solving eqn (4).

(Top) Non-racemic host rtot > stot and one guest amino acid s0tot (m= 1)

and three monomer starting compositions (in moles) rtot : stot : s0tot ¼ 0:5 :

0:25 : 0:25 (filled circles), 0.5 : 0.45 : 0.05 (squares) and 0.5 : 0.475 : 0.025

(triangles) for the equilibrium constant K = 1 Mÿ1 and the total

monomer concentration ctot = 1 M. Compare to Fig. 13 of ref. 9.

(Bottom) Racemic host rtot = stot and m = 1 guest r0tot; s
0
tot. Starting

compositions rtot : r0tot : stot : s0tot ¼ 0:3 : 0:1 : 0:3 : 0:3 (filled circles),

0.3 : 0.15 : 0.3 : 0.25 (squares) and 0.3 : 0.18 : 0.3 : 0.22 (triangles) for

four monomers.� ���� �� �� 	
�� 
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chain length corresponding to each monomer species increases

when increasing its own starting proportion. In the case of

additives of only one handedness (three monomer case) and

for the different compositions considered (rtot : stot : s0tot ¼

0:5 : 0:25 : 0:25; 0:5 : 0:45 : 0:05; 0:5 : 0:475 : 0:025) the average

chain length for the S-type copolymers and the R-type polymers

will be the same. This follows since K is the same for both

monomer types and the amount of S-type andR-type molecules

in the starting compositions is the same, rtot ¼ stot þ s0tot, so the

average chain length must be the same: hlSi = hlRi.

By a further example, we carry out an analysis for the case

of one guest m = 1 and all four enantiomers, treating a

majority species R, S in strictly racemic proportions and a

single guest amino acid R0, S0 in various relative proportions.

We solve eqn (4) and then calculate eel for the different chain

lengths l for three different starting monomer compositions. In

Fig. 2 (bottom) we show the results obtained from calculating

eel for K = 1 Mÿ1 and ctot = 1 M. The behavior is

qualitatively similar to that previously commented, the

greater the relative disproportion of the minority species

r0tot; s
0
tot, the greater is the enantiomeric excess. Values for

the average chain lengths are calculated for four molecules,

with the abundances rtot : r0tot : stot : s0tot ¼ 0:3 : 0:1 : 0:3 : 0:3

and rtot : r0tot : stot : s0tot ¼ 0:3 : 0:14 : 0:3 : 0:26, and are displayed

in Table SII in ESIz, where other choices for the Ki and ctot are

employed (see Tables SIII to SVI, ESIz).

In summary, we consider a multinomial sample space for

the distribution of equilibrium concentrations of homochiral

copolymers formed via template control. We deduce mass

balance equations for the enantiomers of the individual

amino acid species, and their solutions are used to evaluate

the sequence-dependent copolymer concentrations, in terms

of the total species concentrations. Measurable quantities signalling

the degree of mirror symmetry breaking such as the ee and average

chain lengths are evaluated. This approach provides a quantitative

basis for the template-controlled induced desymmetrization

mechanisms advocated by Lahav and co-workers.8–14

We are indebted to Meir Lahav for suggesting a mathematical

approach to this problem. CB has a Calvo Rodés scholarship

from INTA. DH acknowledges a grant AYA2009-13920-C02-01

from the MICINN and forms part of the COST Action

CM0703 ‘‘Systems Chemistry’’.
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lead to the formation of chiral peptides whose isotacticity increases
with length.
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Models for Mirror Symmetry Breaking via β‑Sheet-Controlled
Copolymerization: (i) Mass Balance and (ii) Probabilistic Treatment
Celia Blanco and David Hochberg*

Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kiloḿetro 4, 28850 Torrejoń de Ardoz, Madrid, Spain

ABSTRACT: Experimental mechanisms that yield the growth of
homochiral copolymers over their heterochiral counterparts have been
advocated by Lahav and co-workers. These chiral amplification
mechanisms proceed through racemic β-sheet-controlled polymerization
operative in both surface crystallites as well as in solution. We develop
two complementary theoretical models for these template-induced
desymmetrization processes leading to multicomponent homochiral
copolymers. First, assuming reversible β-sheet formation, the equilibrium
between the free monomer pool and the polymer strand within the
template is assumed. This yields coupled nonlinear mass balance
equations whose solutions are used to calculate enantiomeric excesses
and average lengths of the homochiral chains formed. The second
approach is a probabilistic treatment based on random polymerization.
The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the
concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented
geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking
can be determined.

1. INTRODUCTION
Mirror or chiral symmetry is broken in all known biological
systems, where processes crucial for life such as replication imply
chiral supramolecular structures, sharing the same chiral sign
(homochirality). These chiral structures are proteins, composed
of amino acids almost exclusively found as the left-handed
enantiomers (S), and DNA and RNA polymers and sugars with
chiral building blocks composed by right-handed (R) mono-
carbohydrates. The emergence of this biological homochirality in
the chemical evolution from prebiotic to living systems is an
enticing enigma in the origin of life and early evolution and is a
compelling problem that foments scientific activity transcending
the traditional boundaries of physics, chemistry, and biology.1

Biological homochirality of living systems involves large
macromolecules; therefore, a key issue is the relationship of the
polymerization process with the emergence of chirality. This
problem has generated activity in theoretical modeling aimed at
understanding mirror symmetry breaking in chiral polymerization.
Most of themodels proposed2,4−10 can be understood as elaborated
extensions and generalizations of Frank’s original paradigmatic
scheme.3 An early work is that of Sandars,2 who introduced a
detailed polymerization process plus the basic elements of
enantiomeric cross inhibition as well as a chiral feedbackmechanism
in which only the largest polymers formed can enhance the
production of themonomers from an achiral substrate. He provided
basic numerical studies of symmetry breaking and bifurcation
properties of this model for various values of the number of repeat
units N. The subsequent models cited below are actually variations
on Sandars’ original theme. Thus, Brandenburg and co-workers5

studied the stability and conservation properties of a modified

Sandars’model and introduce a reducedN = 2 version including the
effects of chiral bias. They included spatial extent4 in this model to
study the spread and propagation of chiral domains as well as the
influence of a backround turbulent advection velocity field. The
model of Wattis and Coveney6 differs from Sandars’ in that they
allow for polymers to grow to arbitrary lengths N, and the chiral
polymers of all lengths, from the dimer and upward, act catalytically
in the breakdown of the achiral source into chiral monomers. An
analytic linear stability analysis of both the racemic and chiral
solutions is carried out for the model’s large N limit, and various
kinetic time scales are identified. The role of external white noise on
Sandars-type polymerization networks including spatial extent has
been explored by Gleiser and co-workers: the N = 2 truncated
model cited above4 is subjected to external white noise,7 and chiral
bias is then considered,8 as well as the influence of high intensity and
long duration noise.9 Modified Sandars-type models with spatial
extent and external noise10 are considered, allowing for both finite
and infinite N, with an emphasis paid to the dynamics of chiral
symmetry breaking. On the experimental side, Luisi et al.11,12

reported the polymerization of racemic tryptophan, leucine, or
isoleucine in buffered solutions which yielded libraries of short
oligopeptides in the range of six to ten residues, where the isotactic
peptides were formed as minor diastereoisomers, in amounts larger
than those predicted by a purely random binomial distribution.
One scenario for the transition from prebiotic racemic

chemistry to chiral biology suggests that homochiral peptides
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or amino acid chains must have appeared before the onset of the
primeval enzymes.13−17 However, except for a couple of known
cases,11,12 the polymerization of racemic mixtures (i.e., in 1:1
proportions) of monomers in ideal solutions typically yields chains
composed of random sequences of both the left and right handed
repeat units following a binomial distribution.1 This statistical
problem has been overcome recently by the experimental
demonstration of the generation of amphiphilic peptides of
homochiral sequence, that is, of a single chirality, from racemic
compositions or racemates. This route consists of two steps: (1) the
formation of racemic parallel or antiparallel β-sheets either in
aqueous solution or in 3-D crystals19 during the polymerization of
racemic hydrophobic α-amino acids (Figure 1) followed by (2) an
enantioselective controlled polymerization reaction.20−26 This
process leads to racemic or mirror-symmetric mixtures of isotactic
oligopeptides where the chains are composed from amino acid
residues of a single handedness (see Figure 1). Furthermore, when
racemicmixtures of different types of amino acidswere polymerized,
isotactic copeptides of homochiral sequence were generated. The
guest (S) and (R) molecules are enantioselectively incorporated
into the chains of the (S) and (R) peptides, respectively; however,
the guest molecules are randomly distributed within the
corresponding homochiral chains (see Figure 2).
As a combined result of these two steps, the sequence of pairs of

copeptide S andR chains within the growing template will differ from
each other (see Figure 2). This results in nonracemic mixtures of
copeptide polymer chains of different sequences. Consequently, by
considering the sequences of the peptide chains, a statistical departure
from the racemic composition of the library of the peptide chains is
created which varies with chain length and with the relative
concentrations of the monomers used in the polymerization.21,22

This can be appreciated comparing Figure 1 and Figure 2: in the
former the β-sheet is globally racemic (no guest amino acids),
whereas the latter template is not by virtue of the randomness of the
specific amino acid sequences within each homochiral strand, due to
the presence of guest amino acids. It is precisely here, in the β-sheet
template, that mirror symmetry is stochastically broken. Non-
enantiomeric pairs of homochiral chains are formed; this mechanism
relies crucially on the presence of more than one type of amino acid.
Note that this does not necessarily imply any net optical activity of
solution containing the remaining free chiral monomers.
In this paper, we report a theoretical investigation of

multicomponent copolymerization controlled by such templates.
The models we introduce presuppose or take as given the prior

formation of the initial templates or β-sheets and is concerned
exclusively with the subsequent enantioselective polymerization
reactions. Thus, the nonlinear template control is implicit
throughout our discussions. We consider two distinct model
approaches to the problem. The first is based on a detailed
balance where the polymerization proceeds through stepwise
isodesmic additions and dissociations of the chiral monomers
(amino acids) to one end of the growing homochiral chain within
the template. This can be treated knowing the compositions of
the majority and minority monomers and their associated
equilibrium constants, and we use chemical kinetics at equilibrium
as a useful approximation to completely solve the problem. In
thermodynamic equilibrium, detailed balance allows us to derive
coupled sets of nonlinear mass balance equations. Their solutions
yield the equilibrium concentrations of all the monomers and

Figure 1. Self-assembly of oligopeptides into racemic β-sheets, for the case of a single species (R0,S0) of amino acid supplied in ideally racemic
proportions. For a full experimental account, see Weissbuch et al.19

Figure 2. Proposed scheme leading to enantioselective occlusion within
racemic β-sheet templates. For the case illustrated, a majority host
species (R0,S0) and two minority guest species (R1,S1) and (R2,S2) of
amino acids are provided in ideally racemic proportions. The amino
acids of a given chirality attach to sites of the same handedness within the
growing β-sheet, leading to the polymerization of oligomer strands of a
uniform chirality and in the alternating row S−R−S−R−... fashion as
depicted. Since the polymerization in any given row is random and the
guest monomers are typically less abundant than the host species, the
former will occlude in a random way leading to independent
uncorrelated random sequences in each chiral strand. The overall
process yields nonenantiomeric pairs of homochiral copolymers, so that
mirror symmetry is broken in a stochastic manner. The corresponding
mass balance equations (eq 5) are obtained assuming the monomer
attachment/dissociation is in chemical equilibrium.
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chiral copolymers in terms of the equilibrium constants and the
initial total monomer compositions. With these in hand, we can
calculate the enantiomeric excesses of the homochiral chains and
their average lengths. The degree of mirror symmetry breaking
depends on the numbers of the monomer components and their
relative concentrations.27 A brief communication of preliminary
results obtained from this equilibrium model were reported
recently by the authors.27 This paper extends and generalizes that
previous work.
The second model approach is based on strictly probabilistic or

statistical considerations and does not assume chemical equilibrium.
We will consider the general case involving racemic mixtures of
various species of enantiomers, that is, a variety of racemic guest
molecules, which can occlude randomly into the chiral sites of the
host racemic β-sheet or crystal site.21,22,25,26 Among the questions to
be addressed: how many species m of such guests are needed to
break mirror symmetry? How many repeat units N should the
homochiral chains have? What are the ideal mole fractions of the
monomers in solution for symmetry breaking? To answer these
questions, we first calculate the probability that a given homochiral
sequence is formed from the majority and minority species. For
random copolymerization, the attachment probability, or the
probability of occlusion by the template/crystal, of an amino acid
monomer to the growing chain is proportional to its concentration
in solution, and we will invoke the constant pool approximation.
This probability depends on the polymerization activation energy of
the individual monomers (through the Arrhenius relation). The
second part deals with combinatorics: counting the number of
rearrangements of a given sequence, as all these independent
sequences or “reshufflings” will have the same probability to form.
The information from both these parts permits us to calculate the
joint probability of finding enantiomeric pairs, and from this we
deduce the net probability for finding nonenantiomeric pairs. The
latter provides a statistical measure of the likelihood that mirror
symmetry is broken as a function of chain length and the number
and concentration of the minority species. We will then generalize
these arguments to the case of many additives and even allow
nonracemic initial concentrations for all the amino acid species. Here
again, the underlying kinetic template control is assumed implicitly.
Both approaches assume that the template-controlled

polymerization obeys a first-order Markov process. Experiments
carried out in solution11,12 appear to confirm this expectation:
these results were subsequently rationalized by a mathematical
model assuming a first-order Markov mechanism.28

These two theoretical perspectives afford a complementary
view of the induced mirror symmetry breaking scenario as
originally proposed by Lahav and co-workers. The first scenario
holds for closed systems in equilibrium where the monomers are
depleted/replenished by the polymerization. We can never-
theless approximate irreversible polymerization as well as we
please by simply choosing sufficiently large equilibrium
constants. The numerical effects are negligible. The second
approach is apt for open systems where the monomer pool is
held constant and is free from the assumption of equilibrium.

2. THEORETICAL METHODS I
2.1. Mass Balance. To address the general setting for the

generation of libraries of diastereoisomeric mixtures of peptides
as originally proposed by Nery at al.,21 we need a suitable
generalization of their scenario. To this end, we consider the case
where we have a majority amino acid species (R0,S0) and a given
number m ≥ 1 of minority amino acid species (R1,S1),(R2,S2), ...,
(Rm,Sm). Since the following calculations are based on chemical

equilibrium and detailed balance, if all (m + 1) species are
supplied in strictly 1:1 racemic proportions, we would justifiably
expect a racemic outcome, that is, no mirror symmetry breaking.
However, we can test the model’s ability for chiral amplification by
considering unequal initial proportions for themminority species in
solution. That is, does the enantiomeric excess (ee) increase as a
function of chain length, and is it greater than the initial ee of the
monomers? The three-monomer case originally treated21 is a
specific example of this form = 1 and with R1 = 0; that is, the system
contains R0,S0 and only the enantiomer S1 of the guest species. We
assume as given the prior formation of the initial templates or
β-sheets and are concerned exclusively with the subsequent
enantioselective random polymerization reactions (step (2)). The
underlying nonlinear template control is implicit throughout the
discussion. We consider stepwise additions and dissociations of
single monomers from one end of the (co)polymer chain,
considered as a strand within the β-sheet (see Figure 2). It is
reasonable to regard the β-sheet in equilibrium with the free
monomer pool.32 (Ref 32 reports a stochastic simulation of two
concurrent orthogonal processes: (1) an irreversible condensation
of activated amino acids and (2) reversible formation of racemic
β-sheets of alternating homochiral strands. The two steps taken
together comprise a two-dimensional formulation of the problem.
These architectures lead to the formation of chiral peptides whose
isotacticity increases with length.)
From a detailed balance, each individual monomer attachment

or dissociation reaction is in equilibrium. This holds for closed
equilibrium systems in which the free monomers are depleted/
replenished by the templated polymerization. Thenwe can compute
the equilibrium concentrations of all the (co)polymers in terms of
equilibrium constants Ki for each individual amino acid and the free
monomer concentrations. The equilibrium concentration of an
S-type copolymer chain of length n0 + n1 + n2 + ... + nm =Nmade up
of nj molecules of type Sj is given by pn0,n1,...,nm

S = (K0s0)
n0(K1s1)

n1...
(Kmsm)

nm/K0, where sj = [Sj].
29 Similarly for the concentration of an

R-type copolymer chain of length n0′ + n1′ + n2′ +...+ nm′ =Nmade up

of nj′molecules of typeRj: pn0′,n1′,...,nm′
R = (K0r0)

n0′(K1r1)
n1′...(Kmrm)

nm′/K0,
where rj = [Rj]. Note that we are considering only copolymers
with random sequences such asR0−R0−R1−R0−R0−R2−R0−... and
S0−S0−S1−S1−S0−S2−S0−... but not heterochiral polymers (that is,
no sequences involving both the S- and R-type monomers). The
equilibrium concentration equations we write down, pn0,n1,...,nm

S and

pn0′,n1′,...,nm′
R , implicitly assume the underlying template control.
The number of different S-type copolymers of length l with nj

molecules of type Sj, for 0 ≤ j ≤ m species, is given by the
multinomial coefficient

= !
! ! !

⎛
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⎞
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Hence, the total concentration of the S-type copolymers of
length l within the β-sheet is given by
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which follows from the multinomial theorem.30 From this we can
calculate the number of each type Sj of S-monomer present in the
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S-copolymer of length equal to l, for any 0 ≤ j ≤ m
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Then, we need to know the total amount of the S-typemonomers
bound within the S-copolymers (in the β-sheet) from the dimer
on up to a maximum chain lengthN. Using eq 3 for the jth type of
amino acid, this is given by
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The final expression holds in the limit N→∞ provided that a =
(K0s0 + K1s1 + ... + Kmsm) < 1. This must be the case; otherwise,
the system would contain an infinite number of molecules.29

Similar considerations hold for the R-sector, and the total
amount of R monomers inside R copolymers for the jth amino
acid is given by rj(pTot

R ) = (Kj/K0)rj(b(2− b)/(1− b)2) where b =
(K0r0 + K1r1 + ... + Kmrm) < 1. From this we obtain the mass
balance equations which hold for both enantiomers S,R of the
host and guest amino acids and is our key result27
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These equations express the fact that each type of enantiomer is
either free in solution or bound inside a (co)polymer strand
within the template.
The problem then consists of the following: given the total concen-

trations of all the m + 1 host plus guest enantiomers {sjtot, rjtot}j=0
m and

the equilibrium constants Ki, we calculate the free monomer con-
centrations in solution {sj, rj}j=0

m from solving the nonlinear equations
(eqs 5). The total system concentration is denoted by s0tot + ... +
smtot

+ r0tot + ... + rmtot
= ctot. From the solutions of eq 5we can calculate,

e.g., the equilibrium concentrations of homochiral copolymers
pn0,n1,...,nm
S and pn0′,n1′,...,nm′

R of any specific sequence or composition as
well as the resultant enantiomeric excess for homochiral chains of
length l composed of the host (majority) amino acid

=
−
+

r s
r s

ee
( ) ( )

( ) ( )l

l l

l l
0 0

0 0 (6)

At this juncture, it is important to point out that our above
approach assumes that the polymerization reactions are under
thermodynamic control. If there are any kinetic effects, they will not

be seen as theywould contribute to the chain compositions at shorter
(finite) time scales. Our aim here is to obtain the compositions at
asymptotically long relaxation times, andwe thus hypothesize that the
dominant pathways are under thermodynamic control.

2.2. Average Chain Lengths.We can calculate the average
copolymer chain lengths as functions of initial monomer
compositions sjtot, rjtot, and the equilibrium constants Kj, using
the solutions of our mass balance equations (eq 5).
The ensemble-averaged chain lengths afford an alternative

measure of the degree of mirror symmetry breaking resulting from
the desymmetrization process discussed in Nery el al.21 There are a
number of relevant and interesting averages one can define and
calculate. The average chain lengths, starting from the dimers, of the
S-type copolymers, composed of random sequences of the Sj type
monomers, and that of theR-type copolymers composed of random
sequences of the Rj type monomers are given by
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respectively. We also obtain an expression for the average length of
the polymer chains composed exclusively from sequences of the Sj
or Rj enantiomers of a given specific amino acid of type j
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To complete the list, we can calculate the chain length averaged over
all the copolymers in the system
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The right-hand most expressions (→) in each case hold in the limit
ofN→∞ and for a < 1 and b < 1. See Table 1 for definitions of all
these quantities.

3. RESULTS
3.1. Induced Desymmetrization. We turn to the scenario

discussed in Nery et al.21 and consider the influence of a single
guest species, so m = 1 will be sufficient for our purposes. For a
single guest, we drop numbered indices and denote the majority
host species and concentrations by r = [R], s = [S] and the
minority guest with a prime: s′ = [S′].
We use the above framework to calculate the enantiomeric

excess (ee) as a function of chain length l for the three starting
compositions of the monomer crystals as reported.21 In Figure 3

we plot the numerical results obtained from calculating eq 6, and
the only quantities required for this are the solutions of r and s
obtained from solving the set of equations (eq 5). For strictly
illustrative purposes only, we set the equilibrium constants to be
the same for both host and guest monomers, K1 = K0≡ K = 1000
M−1; the total initial concentration is ctot = 10

−3 M; and the initial
fractions of each component are denoted by f = {f r,fs,fs′} and obey
f r + fs + fs′ = 1. The starting composition of the mixture is ctot =
rtot + stot + stot′ , and the total amount of each component is rtot =
ctot*f r, stot = ctot*fs, and stot′ = ctot*fs′. We can appreciate the induced
symmetry breaking mechanism21 from the behavior of eel. For
the first case f r:fs:fs′ = 0.5:0.25:0.25, and mirror symmetry is
broken for almost all the chain lengths, even for small values of l:
for l = 3 the ee reaches 60%, and for l = 5 the ee is found to be
greater than 80%. This is due to the equal starting fractions of
the majority stot and the guest stot′ monomer species of the same
chirality, and the large amount of guest is the reason for these

large values of ee. For the second case f r:fs:fs′ = 0.5:0.45:0.05, the
starting fraction of the majority species, stot′ , is almost 10 times
(0.45/0.05 = 9) greater than that of the guest, s′. So, for the
enantiomeric excess to be greater than 60% the chain length must
be at least l = 13, and tp obtain an ee of 80%, the chain length
must be at least l = 20. Finally, for the third case, f r:fs:fs′ =
0.5:0.475:0.025, the starting fraction of the majority species, stot,
is almost 20 times (0.475/0.025 = 19) greater than that of the
guest, stot′ , thus the enantiomeric excess for each chain length is
expected to be much less than for the two previous cases. An ee
greater than 60% is found for the chain length l = 27, and for
reaching greater than 80%, the chain length must be at least
l = 42. For the three cases, an increase of the eel is observed
(for all l) when increasing the starting fraction of the guest
species, stot′ . When stot′ is comparable to stot, while maintaining the
proportion R-type:S-type = 1:1, then symmetry breaking is
ensured to be >40% for all l > 5.
The mass balance equations can be used for calculating the

amount of free monomers in solution as well as the amounts of
the monomers bound inside the polymers as functions of the
starting compositions and K. Solving eq 5 yields the amounts of
the free monomers, given by (r,s,s′), while the amounts of the R,
S, and S′ monomers inside the copolymers are given by the
expressions rpoly = rb(2− b)/(1 − b)2, spoly = sa(2 − a)/(1 − a)2,
and spoly′ = s′a(2 − a)/(1 − a)2, respectively. Then the total
amount of all the monomers in polymers is given by cpoly = rpoly +
spoly + spoly′ , and the total amount of free monomers in solution is
cfree = r + s + s′. In Figure 4 we display the values of these
quantities for the same three starting compositions considered
above as a function of ctot and for K0 = K1 = 1000 M−1. The first
row of Figure 4 indicates how the amount of free monomers in
solution, cfree, is greater than the amount of those in polymers,
cpoly, for values of ctot below a critical value. Above this value, then
cpoly > cfree: that is, the majority of the monomers are found in the
polymers, not in solution. In the second row, the different
contributions to cpoly are plotted for each type of monomer. In
the first case stot:stot′ = 1:1 and leads to spoly:spoly′ = 1:1 which is the
most favorable case for mirror symmetry breaking. Increasing the
starting ratio between stot and stot′ increases the difference
between spoly and spoly′ and diminishes the degree of symmetry
breaking. The curves for spoly approach that of rpoly as stot′ is
diminished (from left to right in Figure 4). Hence, in the third
case, where stot:stot′ = 0.475:0.025, almost all the monomers
present in copolymers are the Smonomers. The same applies for
the third row, where the different contributions to cfree are
plotted. Both the amounts of free monomers and those forming
polymers increase when increasing ctot. The degree of mirror
symmetry breaking can be visualized by the gap or vertical
distance between the curves for rfree and sfree versus ctot and as the
amount of sfree′ is varied. In a similar way, Figure 5 displays the same
quantities for fixed ctot = 10

−3 M and as functions of the equilibrium
constant K. As before, cpoly and its individual contributions all
increase with increasing K, whereas cfree (and its individual
contributions) all decrease. Clearly, increasing K favors the
formation of the polymers over their dissociation into free
monomers, and we can approximate irreversible polymerization as
close as we please by taking sufficiently large values of K.
The equilibrium concentration of the S-type copolymer chain

of lengthm + n =Nmade up ofmmolecules S and of nmolecules
S′ is given by pm,n

S = (Ks)m(Ks′)n/K. Using the solutions from
eqs 5 we compute the mole fractions of each S-copolymer,
normalized to its own subfamily as pm,n

S /∑m+n=Npm,n
S . This is

displayed in Figure 6 for 2 ≤ N ≤ 7.

Table 1. Definitions of the Various Average Chain Lengths
<l>, <lS>, <lR>, <lS

sj>, and <lR
rj> Employed

<l> Average length of all the copolymers in the system
<lS> Average length of all the S-type copolymers, composed of random

sequences of the Sj type monomers
<lR> Average length of all the R-type copolymers, composed of random

sequences of the Rj type monomers
<lS

sj> Average length of the polymer exclusively composed from sequences of
the Sj enantiomers of a given amino acid type j

<lR
rj> Average length of the polymer exclusively composed from sequences of

the Rj enantiomers of a given amino acid type j

Figure 3. Calculated ee values from solving eqs 5 for the m = 1 guest
monomer and three different starting monomer compositions (in
relative proportions) rtot:stot:stot′ = 0.5:0.25:0.25 (filled circles),
0.5:0.45:0.05 (squares), and 0.5:0.475:0.025 (triangles) for the
equilibrium constant K0 = K1 = 1000 M−1 and the total monomer
concentration ctot = 10−3 M. Compare to Figure 13 of Nery et al.21
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By way of one further example, we carry out a similar analysis
for the case of four monomers, this time for two majority R,S and
twominority amino acids R′,S′. From eq 6 we calculate the eel for
the different chain lengths l for three different starting compositions.
In Figure 7we show thenumerical results obtained from the solutions
of the set of equations (eq 5 and eq 6), for K0 = K1 = 1000 M

−1 and
stot + stot′ + rtot + rtot′ = 10−3 M.
As before, we can evaluate themole fractions of both the S- and

R-type copolymers that are in equilibriumwith the free monomer
pool: namely pm,n

S /∑m+n=Npm,n
S and pm,n

R /∑m+n=Npm,n
R , respectively.

These are displayed in Figure 8 for the initial total compositions
indicated there.
Figures 3 and 7 clearly demonstrate that the higher (lower) is

the initial degree of chiral asymmetry, characterized by rtot/stot in the
former and rtot′ /stot′ in the latter, and the higher (lower) is the final
asymmetry. Thus, rather than symmetry breaking per se, we are
observing themodel’s capacity for asymmetric amplification, as stated
at the beginning of Section 2.1. Nevertheless, effects closer to a
symmetry breaking effect can be appreciated by looking at the average
chain lengths for unequal equilibrium constants in Section 3.2.
3.2. Average Lengths of Copolymer Chains. As an

application of the mean chain length formulas derived in eqs 7−11,
in the followingwe focus on the simplest case of them = 1 guest.We
consider the effect of different equilibrium constants K0 ≠ K1 and a
small total system concentration ctot = 10−3 M in Table 2. The
dependence on varying ctot for fixed but distinct equilibrium
constants K0 ≠ K1 is displayed in Table 3.
Most interestingly, in Tables 2 and 3, one can see the evolution

of the global r/(s + s′) asymmetry, by looking at the <lS>/<lR>

difference. Especially from the results for the 0.5:0.25:0.25 case,
i.e.. starting from a symmetric r/(s + s′) state, some chiral
asymmetry, albeit small, is obtained between the length of the all-
R and all-S copolymers. The source of this asymmetry is the ratio
K0/K1 of the equilibrium constants, which we set to 2 in these
examples. By contrast, when K0 = K1 there is then no difference
between <lR> and <lS>. Conversely, greater ratios of K0/K1 lead
to greater differences in <lR> and <lS> (data not shown).
Finally Tables 4 and 5 have been calculated for the same

starting compositions as Figure 7 and can be compared with the
latter.

4. THEORETICAL METHODS II

4.1. Probabilistic Approach. In the following sections, we
adopt a statistical approach for calculating the likelihood for
finding nonenantiomeric pairs of copolymers formed by the
proposed template mechanism. This approach does not require
chemical equilibrium. How many species m of the chiral guest
monomers are needed to break mirror symmetry? How many
repeat unitsN should the chains have? Are there conditions on the
polymerization activation energies and mole fractions of the
monomers in solution for maximizing the mirror symmetry
breaking?We provide answers to these questions based on statistics,
and this means being able to count polymer configurations,
distinguishing sequences from compositions, and applying some
basic combinatorial analysis. Indeed, we may regard the specific
homochiral copolymerization sequences formed within the
template mechanism as outcomes or “tosses” of generalized
multifaceted “dies” (e.g., see Figure 2). However, these dies

Figure 4. K0 = K1 = 1000 M−1. The amounts of free monomers and those bound in polymers as a function of total monomer concentration ctot versus
three different initial relative proportions: rtot:stot:stot′ = 0.5:0.25:0.25, rtot:stot:stot′ = 0.5:0.45:0.05, and rtot:stot:stot′ = 0.5:0.475:0.025. The first row: the total
amount of free monomers and those forming polymers. Second row: the total and individual amounts of monomers forming polymers. Third row: the
total and individual amounts of free monomers. See text for discussion.
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are loaded, in the sense that not all faces of the generalized die
have an equal probability of turning up in any given throw. This is
because different amino acids have different polymerization activation
energies and may be present in solution in different proportions.
To resolve this problem, we must pay special attention to both

the overall composition of the copolymer chain and its specific
sequence. The problem has two basic parts: one is concerned
with calculating the probability that a given amino acid sequence

is formed from the majority species and whatever minority
species are present in their respective mole fractions in solution.
The attachment probability (the probability that the host
template occludes this monomer) of an amino acid monomer
to the growing chain is proportional to its concentration in
solution and to a factor depending on its polymerization
activation energy. The second part is to count the number of
rearrangements or “shufflings” of the given sequence, as all these

Figure 5. ctot = 10−3 M. The amounts of free monomers and those in polymers as a function of the equilibrium constant K versus three different initial
relative proportions: rtot:stot:stot′ = 0.5:0.25:0.25, rtot:stot:stot′ = 0.5:0.45:0.05, and rtot:stot:stot′ = 0.5:0.475:0.025. The first row: the total amount of free
monomers and those forming polymers. Second row: the total and individual amounts of monomers forming polymers. Third row: the total and
individual amounts of free monomers. See text for discussion.

Figure 6.Mole fractions of the S-type copolymers composed of n S and m S′ monomers for m + n = N with 2 ≤ N ≤ 7, as functions of the total initial
fractions rtot:stot:stot′ . For stot:stot′ = 1:1, the distributions are binomial (top), but when stot:stot′ = 9:1 (center) or when stot:stot′ = 19:1 (bottom), then the
distributions are skewed.
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independent sequences will have the same probability to form as
the given one. The information from both these parts will permit
us to calculate the joint probability that a given sequence and its
mirror image sequence are formed. This in turn will be used to
provide a statistical measure of the likelihood that mirror

symmetry is broken: below we derive a compact expression for
the probability to find nonenantiomeric pairs of copolymers in
the template (Figure 2). We first need to specify the length N of
the homochiral copolymer chains to be formed and the number
of each minority species or additive mr, ms. Thus we consider
(r0,r1,r2, ..., rmr

) and (s0,s1,s2, ..., sms
), whereas (r,s)≡ (r0,s0) denotes

both the enantiomers of the majority species. Following the
experimental scenario, the minority species will typically be
present in small mole fractions, whereas the majority species will
be present with a predominantly large mole fraction, as their
names suggest. The total number of possible sequences in a chain
withN repeat units for each configuration is (mr +1)

N and (ms + 1)
N.

This most general case is represented in a suggestive pictorial way in
Figure 8. This diagram is used to enumerate all possible chiral
copolymers that can form in the template, laid out in a linear fashion,
the totality of R-copolymers strung out above a “mirror” and the
mirror-related S-copolymers directly below it.
Statistical copolymers are those for which the sequence of

monomer residues follows a statistical rule. The attachment
probability is proportional to the monomer’s concentration in
solution [rj],[sj] times a rate constant that depends on the

Figure 7. Calculated ee values from solving eqs 5 for three different
starting monomer compositions (in relative proportions) rtot:rtot′ :stot:stot′
= 0.3:0.1:0.3:0.3 (filled circles), 0.3:0.15:0.3:0.25 (squares), and
0.3:0.18:0.3:0.22 (triangles) for the equilibrium constant K0 = K1 =
1000 M−1 and the total monomer concentration ctot = 10−3 M.

Figure 8. Top set: mole fractions of the S-type copolymers (n,m) form + n =N with 2≤N≤ 7 (left to right in each row), as functions of the total initial
fractions rtot:rtot′ :stot:stot′ indicated there. Bottom set: mole fractions of the R-type copolymers (n,m) form + n =Nwith 2≤N≤ 7. Since stot:stot′ = 1:1 in the
first row of the top graph, the distributions are binomial but are skewed in all the other cases displayed.
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activation energy Ej for attachment of that specific monomer to
the polymer/template. Thus

∝ − =p r A E kT r w r( ) exp( / )[ ] [ ]j j j j j j (12)

∝p s w s( ) [ ]j j j (13)

To obtain bona fide probabilities, these are normalized so that

≤ =
∑

≤ ≤ ≤
=

p r
w r

w r
j m0 ( )

[ ]

[ ]
1, (0 )j

j j

k
m

k k
r

0
r

(14)

≤ =
∑

≤ ≤ ≤
=

p s
w s

w s
j m0 ( )
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1, (0 )j

j j

k
m

k k
s

0
s

(15)

which implies

∑ ∑= =
= =

p r p s( ) 1, ( ) 1
k

m

k
k

m

k
0 0

r s

(16)

Normalization ensures that the probability that any single
monomer attaches to the template is between zero and unity:

evidently no individual probability can be greater than one, nor
can the total probability exceed unity. In writing down eq 12,
there are two implicit assumptions being made: (1) the rate of
polymerization is independent of polymer length N and (2) the
probability of any given monomer joining a polymer is
independent of the existing polymer structure. In (1) we are
assuming isodesmic polymerization: the successive addition of a
monomer to the growing chain leads to a constant decrease in the
free energy. This in turn indicates that the affinity of a subunit for
a polymer end is independent of the length of the polymer.18 In
(2) we assume the polymerization is a first-order Markov
process, and the attachment depends only on the nature of the
terminal end of the polymer but not on the monomer sequence
in the chain. Evidence for kinetic Markov mechanisms has been
observed experimentally in some chiral polymerizations.19

Define the attachment probability vectors as

⃗ =p p r p r p r p r{ ( ), ( ), ( ), ..., ( )}R m0 1 2 r (17)

⃗ =p p s p s p s p s{ ( ), ( ), ( ), ..., ( )}S m0 1 2 s (18)

Table 2. Average Chain Lengths for the Three Different Starting Compositions As a Function of K0 for K1 = K0/2 and ctot = 10
−3 M

rtot:stot:stot′ = 0.5:0.25:0.25 rtot:stot:stot′ = 0.5:0.45:0.05 rtot:stot:stot′ = 0.5:0.475:0.025

K0 (M
−1) <l> <lS> <lR> <lS

s> <lS
s′> <l> <lS> <lR> <lS

s> <lS
s′> <l> <lS> <lR> <lS

s> <lS
s′>

1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
100 2.04 2.04 2.05 2.02 2.01 2.05 2.05 2.05 2.04 2.00 2.05 2.05 2.05 2.04 2.00
1000 2.34 2.31 2.37 2.17 2.10 2.36 2.36 2.37 2.32 2.02 2.36 2.36 2.37 2.34 2.00
10000 3.76 3.73 3.79 2.51 2.42 3.79 3.78 3.80 3.40 2.06 3.79 3.79 3.79 3.58 2.03
100000 8.57 8.56 8.59 2.78 2.75 8.59 8.58 8.59 5.60 2.10 8.59 8.59 8.59 6.73 2.04

Table 3. Average Chain Lengths for the Three Different Starting Compositions As a Function of ctot forK0 = 100 000 andK1 =K0/2

rtot:stot:stot′ = 0.5:0.25:0.25 rtot:stot:stot′ = 0.5:0.45:0.05 rtot:stot:stot′ = 0.5:0.475:0.025

ctot (M) <l> <lS> <lR> <lS
s> <lS

s′> <l> <lS> <lR> <lS
s> <lS

s′> <l> <lS> <lR> <lS
s> <lS

s′>
10−5 2.34 2.31 2.37 2.17 2.10 2.36 2.36 2.36 2.32 2.02 2.36 2.36 2.37 2.34 2.01
10−4 3.76 3.73 3.79 2.51 2.42 3.79 3.78 3.79 3.40 2.06 3.79 3.79 3.79 3.58 2.03
10−3 8.57 8.56 8.59 2.78 2.75 8.59 8.58 8.59 5.60 2.09 8.59 8.59 8.59 6.73 2.04
10−2 23.86 23.86 23.87 2.92 2.91 23.87 23.86 23.87 8.18 2.11 23.87 23.87 23.87 11.93 2.05
10−1 72.21 72.21 72.21 2.97 2.97 72.22 72.22 72.21 9.88 2.11 72.24 72.27 72.21 16.79 2.05

Table 4. Average Chain Lengths for the Two Different Starting Compositions As a Function of K0 for K1 = K0/2 and ctot = 10−3 M

rtot:rtot′ :stot:stot′ = 0.3:0.1:0.3:0.3 rtot:rtot′ :stot:stot′ = 0.3:0.14:0.3:0.26

K0 (M
−1) <l> <lS> <lR> <lS

s> <lS
s′> <lR

r > <lR
r′> <l> <lS> <lR> <lS

s> <lS
s′> <lR

r > <lR
r′>

1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
100 2.04 2.04 2.03 2.03 2.01 2.03 2.00 2.04 2.04 2.04 2.03 2.01 2.03 2.00
1000 2.33 2.36 2.28 2.19 2.12 2.22 2.04 2.33 2.35 2.30 2.20 2.10 2.22 2.05
10000 3.77 3.94 3.53 2.53 2.45 2.88 2.16 3.75 3.86 3.61 2.58 2.40 2.78 2.22
100000 8.62 9.23 7.83 2.80 2.77 3.81 2.27 8.58 8.79 8.13 2.89 2.67 3.44 2.37

Table 5. Average Chain Lengths for the Two Different Starting Compositions As a Function of ctot for K0 = 100 000 and K1 = K0/2

rtot:rtot′ :stot:stot′ = 0.3:0.1:0.3:0.3 rtot:rtot′ :stot:stot′ = 0.3:0.14:0.3:0.26

ctot (M) <l> <lS> <lR> <lS
s> <lS

s′> <lR
r > <lR

r′> <l> <lS> <lR> <lS
s> <lS

s′> <lR
r > <lR

r′>
10−5 2.33 2.36 2.28 2.19 2.12 2.22 2.04 2.33 2.35 2.30 2.20 2.10 2.22 2.05
10−4 3.77 3.94 3.53 2.53 2.45 2.88 2.16 3.75 3.86 3.61 2.58 2.40 2.78 2.22
10−3 8.62 9.23 7.83 2.79 2.77 3.81 2.26 8.58 8.97 8.13 2.89 2.67 3.44 2.37
10−2 23.99 25.99 21.50 2.92 2.92 4.49 2.31 23.90 25.16 22.48 3.06 2.80 3.86 2.43
10−1 72.58 78.96 64.75 2.97 2.97 4.82 2.33 72.34 76.33 67.83 3.12 2.85 4.05 2.46
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one for the R-monomers and one for the S-monomers. Note that
in the limit when both minority species are absent, mr,ms → 0,
there will be one unique sequence for each handedness, namely, a
sequence ofNR’s and amirror sequence ofN S’s. These two pure
sequences will each form with unit probability, since p(r0) =
p(s0) = 1, as follows from eqs 16. An enantiomeric pair will form
with absolute certainty when there are no guest additives. This
limit provides an important check on the statistical arguments
developed below.
Chain compositions for the R- and S-type chains are specified

as

+ + + + =n r n r n r n r N( ) ( ) ( ) ... ( )m0 1 2 r (19)

and

+ + + + =n s n s n s n s N( ) ( ) ( ) ... ( )m0 1 2 s (20)

where n(rj) and n(sj) denote the number of times the jth R and S
monomer occur in the corresponding chain, respectively. These
are ordered partitions of the integer N. Many different sequences
can follow from one given composition (eqs 19 and 20). By
means of the template-controlled polymerization mechanism,21

only homochiral chains will be formed, which means that chains
formed of either all right-handed R or all left-handed S
monomers, and these can be represented by vectors. For
example, for the case of a right-handed chain

γ = r r r r r r r{ , , , , , , ...., }R N1 3 (21)

while its mirror image related sequence is denoted by the vector

γ = s s s s s s s{ , , , , , , ...., }S N1 3 (22)

We emphasize that we are comparing the sequences of copolymers
made up exclusively of either all right- R or all left-handed S
monomers and not making any claim about their corresponding
secondary or tertiary structures. When we discuss copolymers
related through themirror as in Figure 9, we refer exclusively to their
specific monomeric sequences or primary structures. It enumerates
all the possible sequences that can form from the given composition.
The underlying template control is assumed implicitly, thus the
system is composed of only homochiral structures (see Figure 2).
The probability to form specific sequences of length N from the

compositions 19 and 20 is given by the composition probability

∏γ =
=

p p r( ) ( )R
j

m

j
n r

0

( )
r

j

(23)

∏γ =
=

p p s( ) ( )S
j

m

j
n s

0

( )
s

j

(24)

In general, there will be many distinct sequences with exactly the
same composition probability (eqs 23 and 24); see the horizontal
solid line segments in Figure 9. These are reshufflings or reorderings
of the given sequence, keeping the individual composition numbers
n(rj),n(sj) fixed in eqs 19 and 20, and the number of such
equiprobable sequences will be calculated below.

4.1.1. Probability to Form One Enantiomeric Pair. First
consider the probability to form a specific sequence, and call it γR.
We fix the number of repeat unitsN and the numbermr of R-type
additives. From the sequence we immediately deduce the
composition (or composition vector) nR⃗ = {n(r0),n(r1), ...,
n(rmr

)}, and we specify the monomer attachment probabilities
(or the attachment/occlusion probability vector) (eq 17). Next,
consider the probability to form its mirror image, that is, γS. The
number of repeat units N has been already fixed, and we know
the number ms of additives of S type. The composition vector of
the mirror image nS⃗ must be equal to n ⃗R, that is, n ⃗S = n ⃗R ≡ n ⃗, and
we must specify the monomer attachment probabilities (or the
attachment/occlusion probability vector) (eq 18).
The probabilities to form these sequences from these

compositions are given by eqs 23 and 24, and hence the joint
probability to find the enantiomeric pair γR and γS is

γ γ γ γ=P p p( ) ( ) ( )R S R Spair (25)

This is a function of N, min(mr,ms), n⃗, p ⃗R, and p ⃗S.
4.1.2. Probability to Form All Possible Enantiomeric Pairs

for Fixed N. For computing the probability of forming all possible
enantiomeric pairs, we need to know both mr and ms and which
one is greater since limits on the possible enantiomeric pairs that
can be formed come from the enantiomer with the least number
of guest species. Without loss of generality we may assume that
mr≤ms. For fixedN andmr, the number of distinct compositions
of the R-type copolymers is given by

# =
+

=
+ !
! !

⎛
⎝⎜

⎞
⎠⎟

m N

N

m N
N m

( )
N m n n n n

r r

r
, ,{ , , ,..., }r mr0 1 2

(26)

and the number of different sequences that we can form from
each individual composition is given by

Figure 9. Homochiral copolymer sequences and their mirror-related sequences. Top row (above the mirror) enumerates all the possible R-type
copolymers γR of length N that can be made up from mr different R-type monomers: there are (mr + 1)N such chains. Below the mirror: mirror image
related S-type homochiral copolymers γSmade up of S-type monomers. In this example,mr <ms, so there are more S-type copolymers than R-type. The
solid vertical line segment links an enantiomeric pair of sequences, and the dotted lines represent examples of nonenantiomeric pairs of sequences. A given
composition typically gives rise to many inequivalent but equiprobable sequences (indicated by the horizontal solid brackets).
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Summing the latter expression over all the possible compositions
with fixed N must be equal to the total number of different
sequences; that is, we obtain the multinomial theorem30
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r

N

0 1 2 r

Recall that the joint probability to form a particular sequence
and its mirror image sequence is given by eq 25. The net
probability we seek to evaluate is

∑ γ γ= |
γ

P N m P( , ) ( )r R Spairs pair

R (28)

This expression is the probability that each and every possible
sequence inR and itsmirror image sequence in S are formed of fixed
length N. For this purpose, we will first sum over all different (but
equiprobable) sequences belonging to the same composition and
then sum over all different compositions for N repeat units. That is
∑all−sequences = ∑compositions(∑equiprobable−sequences). From eq 27 each
given composition can be rearranged in PN

n ⃗ different ways. For a
given composition, all the sequences that can be made therefrom
(reshufflings) are equiprobable. Thus, summing over all these
possible rearrangements, we arrive at the probability to form chains
and their mirror image sequences within one such equiprobable
equivalence class. Recall mr < ms
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Finally, summing this result over all the different compositions, we
calculate the net probability to form homochiral chains and their
mirror image sequences in the system, i.e., the probability to form all
possible enantiomeric pairs. Thus, the probability that mirror
symmetry is not broken form additives andN repeat units is given by

∑ γ γ

=

=
+ + + + =

⃗

P N m P N m

P p p

( , ) ( , )

( ) ( )

r r

n n n n N
N
n

R S

nobreak pairs

... mr0 1 2 (30)

Then the probability thatmirror symmetry is broken for these values
of m and N is

∑

∑

γ γ

γ γ
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= −

= −

= − + + +
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r s r s r s
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R S
N

break nopairs

...

...

mr

R

mr

R

mr mr

0 1 2

0 1 2

0 0 1 1

(31)

which follows from the multinomial theorem30 and after using
eqs 16, 17, and 18.

4.2. Chiral Additives.This is a special case of the general one
described above and is pictorially sketched out in Figure 10. Here
we consider mr = 0 and we set ms = m. Clearly, there is only one
possible composition (and hence, sequence) that can be formed
in R; namely, the pure homochiral sequence made up ofN repeat
units of r: γR = {r,r,...,r}N, and this forms with unit probability
p(γR) = 1. Thus, the probability that mirror symmetry is not
broken form types of S-additives and forN repeat units is given by
eq 30, which simplifies to give

γ γ

=

= =

P N m P N m

p p p s

( , ) ( , )

( ) ( ) ( )R S
N

nobreak pairs

0 (32)

Then the probability that mirror symmetry is broken for these
values of m and N is

γ γ

=

= −

= −

P N m P N m

p p

p s

( , ) ( , )

( )(1 ( ))

1 ( )

R S

N

break nopairs

0 (33)

If the number of S-type additives goes to zero,ms→ 0, then p(s0)
→ 1 and then mirror symmetry is maintained with absolute
certainty.

4.3. Ideal Racemic Additives. For our final example, we
deal with the case in which all the additives are supplied in ideally
racemic proportions; that is, we have equal numbers of
enantiomer types mr = ms ≡ m, and all are supplied in identical
concentrations: [rj] = [sj] for all types 0 ≤ j ≤ m = mr = ms. This
situation is pictorially represented in Figure 11. Since the
activation energies are the same for both R and S enantiomers,
then from eqs 14 and 15 p(rj) = p(sj) and from eqs 23 and 24
p(γR) = p(γS) ≡ p(γ). All the sequences that are obtained from
reshuffling the original one have the same probability for

Figure 10. Pictorial situation for chiral guest additives. In this case, only additives of one chirality (in S) are added. So mr = 0 and ms = m, with N fixed.
Top row (above the mirror): the unique R-type polymer of lengthN that can be made up from the single R-type monomer present in the system. Below
the mirror: all the S-type copolymers made up of m distinct S-type monomers. Solid vertical line indicates the single unique enantiomeric pair, and the
dotted lines represent all the nonenantiomeric pairs of sequences for ms ≥ 1.
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polymerizing: they define equivalence classes of equiprobable
sequences. This number gives the number of distinct equivalence
classes of equiprobable sequences (Figure 11). An important
check on the formalism and numerics that follow from it is that
the probability for mirror symmetry breaking must go to zero as
the number m of (ideally racemic) monomer additives goes to
zero. We will see that these expectations are confirmed.
For ideally racemic additives, the probability that mirror

symmetry is not broken form additives andN repeat units is given
by eq 30, which reduces to

= ⃗P N m p( , ) (( ) )R
N

nobreak
2

(34)

Now, from eq 31 the probability that mirror symmetry is broken
for m species of racemic additives and for chain length N is

= − ⃗P N m p( , ) 1 (( ) )R
N

break
2

(35)

This result is important: it says that even for ideally racemic initial
proportions in all the host and guest amino acids there is a finite
probability 1 ≥ Pbreak(N,m) > 0 for statistical or stochastic
breaking of mirror symmetry. This mirror symmetry breaking is
manifested in the formation of nonenantiomeric pairs of
homochiral sequences within the template, in support of the
proposed experimental scenario.21

5. RESULTS
From eqs 14 to 18 the monomer attachment probability vectors
p ⃗R and p⃗S define the faces of two standard or unit mr and ms
simplexes.31 These simplex faces represent the domains of all
allowed monomer attachment probabilities (see the shaded
regions in Figure 12 and Figure 13). This allows us to find the
basic physicochemical criteria for maximizing (or minimizing)
the probability for broken mirror symmetry in template-
controlled polymerization.21,22,25 For an m-simplex there is a
maximum and a minimum distance from the origin. The maxi-
mum distance pertains when the attachment probability vector p ⃗
coincides with one of the m + 1 vertices, and in these cases we have
∥p ⃗∥ = 1. The minimum distance is achieved for the point defined by
the centroid of the simplex face located at p ⃗ ={1/(m +1),1/(m +1), ...,
1/(m + 1)} (a vector with (m + 1) components), and its modulus is
∥p ⃗∥ = 1/(m + 1)1/2.
5.1. General Case: Nonracemic Additives. For this

general case in which the number of additives of each enantiomer
type can be distinct, the attachment probability vectors p ⃗R and pS⃗
have mr and ms components, respectively. In principle, they are
vectors in simplexes of different dimensions. The limits on the
number of possible mirror related copolymer pairs that can be
formed come from the enantiomer with the least number of
additives, which, without loss of generality, we take to be mr.

If we express the vector pR⃗ in the ms simplex by simply
redefining p ⃗R = {pr0,pr1, ..., prmr

,0,0, ..., 0} with ms − mr zero entries,
then the probability for mirror symmetry breaking follows from
eq 31

= − ⃗ · ⃗P N m p p( , ) 1 ( )r R S
N

break (36)

Now, both attachment vectors can be regarded as belonging to
the same ms-simplex. This can be visualized graphically as an ms-
simplex with one of its subspaces being the mr-simplex (the
subspace can be just a point of the ms-simplex (mr = 0), a line
(mr = 1), a face (mr = 2), etc). Figure 14 represents the case in
which ms = 3 and mr = 2; here, the subspace of the ms-simplex

Figure 11. Pictorial scheme for the case of all racemic additives: mr = ms = m; N is fixed. Compare to Figure 9.

Figure 12. Unit m-simplex, illustrated for the case of m = 2 amino acid
additives. The three vertices are located at the points (1,0,0), (0,1,0),
and (0,0,1) and correspond to maximum attachment probabilities
(mirror symmetry is conserved). Shaded area (green) corresponds to
the domain of all allowed attachment vectors. A generic point (broken
arrow) corresponds to a positive probability for symmetry breaking. The
centroid (1/3,1/3,1/3) (solid arrow) corresponds to the maximum
probability for mirror symmetry breaking.

Figure 13. Unit m-simplex, illustrated for the case of m = 3 additives.
The four vertices are located at the points (1,0,0,0), (0,1,0,0), (0,0,1,0),
and (0,0,0,1) and correspond to maximum attachment probabilities
(mirror symmetry is conserved). The centroid (blue dot) corresponds
to maximal mirror symmetry breaking.
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corresponding to the mr-simplex is a face of the tetrahedron.
Then, the probability of breaking symmetry is minimal (zero)
when the attachment probability vectors p⃗R and pS⃗ are parallel
because p ⃗R·p ⃗S = 1 and Pbreak(N,mr) = 0. For both vectors to be
parallel, both must be in the subspace of the ms-simplex that
coincides with the mr-simplex. The maximum probability for
breaking mirror symmetry Pbreak(N,mr) = 1 is achieved when the
attachment probability vectors are orthogonal and thus
coinciding with two different vertices of the ms-simplex (see
Figure 13). p ⃗Rmust be in one of themr + 1 vertices, and p ⃗S can be
in one of the ms + 1 vertices, always different from the vertex in
which p ⃗R lies. In this case, the species in r will be different from
the species in s, so it will be impossible to form enantiomeric pairs
of homochiral chains.
Typically, copolymers will be formed with lengths ranging

from the dimer, trimer, etc. on up to a maximum number of
repeat unitsN.21,22,25 The above arguments apply to any value of
N, thus the probability Pbreak

≤N (m) to break mirror symmetry in a
system containing a spectrum of chain lengths 2≤ n≤N is given
as follows

∑=
−

= −
⃗ · ⃗ − ⃗ · ⃗

− − ⃗ · ⃗

≤

=

−

P m
N

P n m

p p p p

N p p

( )
1

1
( , )

1
( ) (1 ( ) )

( 1)(1 )

N
r

n

N

r

R S R S
N

R S

break
2

break

2 1

(37)

and satisfies lim pR⃗·p⃗S→1
Pbreak
≤N (m) = 0 when the two occlusion

probability vectors are parallel.
5.2. Additives of Only One Handedness. This is a

particular case of the above for mr ≠ ms, when mr = 0. The
probability of breaking mirror symmetry depends only on p(s0):
the attachment probability of the S-enantiomer of the majority
species. Each monomer attachment vector is in a different
simplex with different dimensions: p ⃗S is in an ms-simplex, and pR⃗
will coincide with a vertex of the ms-simplex.
Theminimal probability of breaking symmetry Pbreak(N,m) = 0

is obtained for p(s0) = 1; in this case, there are no guests, only the
majority species S0, so we recover the case in which additives are
supplied in racemic proportions. Moreover, no guests are added.
In this case, the attachment probability vector pS⃗ coincides with
one of the m + 1 vertices, the vertex corresponding to p⃗R and to
p(s0) maximum. The maximum probability of breaking mirror

symmetry Pbreak(N,m) = 1 is obtained for p(s0) = 0. In this case,
the majority species in S is absent, thus no possible enantiomeric
pairs can be formed; that is, the vector p ⃗S can lie anywhere in the
ms-simplex, except at the mr vertex.
In this case, the probability Pbreak

≤N (m) to breakmirror symmetry
in a system containing a spectrum of chain lengths 2 ≤ n ≤ N
(eq 37) reduces to

= −
−

− −
≤

−
P m

p s p s
N p s

( ) 1
( ) (1 ( ) )

( 1)(1 ( ))
N

N

break
0

2
0

1

0 (38)

and satisfies limp(s0)→1 Pbreak
≤N (m) = 0 when no majority species of

the S-type is supplied.
The cases with twomajority species r and s and one guest, s′, with

starting fractions f r:fs:fs′, as considered in the first section of the paper,
would be a case of additives of only one handedness or chiral additive,
where mr = 0 and ms = m = 1. Following eq 33 we can calculate
Pbreak
≤N (m) for the three different starting compositions considered

before. Exemplary numerical results are shown in Tables 6 and 7

and in Figure 15, showing the effect of varying the relative
concentrations of all the monomers and the activation
energy (we vary ws′) of the guest monomer s′. The curves
for Pbreak are qualitatively similar to those of the percent ee in
Figure 3.

5.3. Racemic Additives.When the enantiomeric species are
provided in ideally racemic proportions, the probability that

Figure 14. Both the unit mr- and ms-simplexes, illustrated for the
particular case of mr = 2 and ms = 3 additives. The three vertices of the
mr-simplex are located at the points (1,0,0), (0,1,0), and (0,0,1) and
coincide to maximum attachment probabilities of r. These three vertices
of the mr-simplex also coincide with three of the four vertices of the
ms-simplex, located at the points (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1)
and corresponding to maximum attachment probabilities of s.

Table 6. wr = ws = ws′ = 1 Probability to break Mirror
Symmetry, Pbreak

≤N (m), for the Three Different Starting
Compositions f r:fs:fs′ of the Three-Component Case (mr = 0
and ms = m = 1) as a Function of Repeat Units N

Pbreak
≤N (m) N = 5 N = 10 N = 15 N = 20 N = 25 N = 30

0.5:0.25:0.25 0.88 0.94 0.96 0.97 0.98 0.98
0.5:0.45:0.05 0.30 0.45 0.55 0.63 0.69 0.73
0.5:0.475:0.025 0.16 0.26 0.34 0.41 0.47 0.52

Table 7. wr = ws = 1, ws′ = 0.75 Probability to Break Mirror
Symmetry, Pbreak

≤N (m), for the Three Different Starting
Composition f r:fs:fs′ of the Three-Component Case (mr = 0
and ms = m = 1) as a Function of Repeat Units N

Pbreak
≤N (m) N = 5 N = 10 N = 15 N = 20 N = 25 N = 30

0.5:0.25:0.25 0.83 0.92 0.95 0.96 0.97 0.97
0.5:0.45:0.05 0.24 0.37 0.47 0.54 0.61 0.66
0.5:0.475:0.025 0.12 0.22 0.27 0.33 0.39 0.43

Figure 15. wr = ws = 1, ws′ = 0.5. Probability to break mirror symmetry,
Pbreak
≤N (m), for the three different starting composition f r:fs:fs′ of the three-

component case (mr = 0 andms =m = 1) as a function of repeat unitsN.
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mirror symmetry is broken for given values of the chain lengthN
and number of species m can be expressed succinctly as

= − || ⃗ ||P N m p( , ) 1 N
break

2
(39)

That is, one minus the squared-modulus of the probability
attachment vector p ⃗, raised to the chain length. Thus, for fixedN,
to maximize the probability that mirror symmetry be broken, we
should prepare the chemical system so that all m additives and
the majority species have equally shared mole fractions. For any
other point in the face (including the centroid), but excluding the
m + 1 vertices, then ∥p ⃗∥ < 1, hence the probability to breakmirror
symmetry increases with chain length N and/or with increasing
number of additivesm, provided these are supplied with small mole
fractions (to prevent p ⃗ from coinciding with the vertices).
Finally, if the occlusion probability vector p⃗ coincides with any

one of the m + 1 vertices, then ∥p ⃗∥ = 1, so Pbreak(N,m) = 0, and
mirror symmetry is maintained with absolute certainty for all N.
Each vertex corresponds to a chemical system with only one type
of monomer (and its enantiomer), in other words, a system with
no additives. The mth vertex corresponds to the mth amino acid
being the sole species present in the system. Thus, we see that if
we increase the mole fraction of any one of the additives in excess
the tables are turned, and the majority and minority species
interchange their roles: excessive amounts of any additive tend to
reduce the probability for breaking mirror symmetry.
Equation 37 now simplifies to give

= −
|| ⃗ || − || ⃗ ||

− − || ⃗ ||
≤

−
P m

p p
N p

( ) 1
(1 )

( 1)(1 )
N

N

break

4 2( 1)

2
(40)

and satisfies lim∥p ⃗∥→1 Pbreak
≤N (m) = 0 at the vertices of the simplex.

As expected, we find increasing probability for symmetry
breaking as N and/or m increase. A comparison of the two
tables confirms that the probabilities are maximized for each N
and m, when all species are supplied in equal proportions. The
probability to break mirror symmetry is strictly zero when there
are no additives: Pbreak

≤N (m = 0) = 0.
The cases with two majority species r and s and two guests, r′

and s′, with starting fractions f r: f r′: fs: fs′, as considered in the first
section of the paper, is a case of racemic additives wheremr =ms = 1.
Following eq 35 we can calculate Pbreak

≤N (m) for the three different
starting compositions considered before. The results (not shown)
are qualitatively very similar to those shown in the previous tables.

6. CONCLUSIONS
The proposed21 experimental mechanism leads to the formation
of homochiral copolymers with random sequences of the
majority and minority amino acids. Given the implications of
the experimental mechanism, we have provided two independent
and complementary theoretical approaches to the problem. The
first one is based on approximate chemical equilibrium and
the second on statistical principles and combinatorics. Both these
approaches provide further quantitative insights into the
template-controlled induced desymmetrization mechanisms
advocated by Lahav and co-workers.20−26

In the first approach, appealing to chemical equilibrium, the
template or β sheet is in approximate equilibrium with the free
monomer pool. We obtain a multinomial sample space for the
distribution of equilibrium concentrations of the homochiral
copolymers. We then deduce mass balance equations for the
enantiomers of the individual amino acid species, and their
numerical solutions are used to evaluate the sequence-dependent
copolymer concentrations, in terms of the total species

concentrations. Measurable quantities signaling the degree of
mirror symmetry breaking such as the enantiomeric excess (ee),
relative abundances, and average chain lengths are evaluated as
functions of initial monomer concentrations and the individual
equilibrium constants. We can take these constants as large as
desired to approximate irreversible polymerization.
The second, or probabilistic, description confirms that this is a

viable mechanism for stochastic mirror symmetry breaking. We
give criteria for the chemical conditions leading to either maximal
or minimal probabilities for breaking mirror symmetry in this
experimental context. The probability for finding nonenantio-
meric pairs of copeptide chains of different sequences increases as
a function of increasing chain length and increasing number of
guest amino acids. We can calculate the probabilities of all these
joint outcomes in terms of the basic monomer attachment/
occlusion probabilities. These probabilities can be calculated in
terms of the monomer concentrations and take into account the
fact that different amino acids have different polymerization
activation energies. The solution of the full problem admits an
appealing visual and geometric interpretation in terms of unit
simplexes which summarize the allowed relative polymerization
rates and concentrations of the different amino acids involved.
There are two important points worth emphasizing. First, our

theoretical models invoke the underlying template control in that
they do not allow for any heterochiral oligomers to form. The
sequence of the host and guest amino acids within the
homochiral peptides assembles in a completely random fashion,
in accord with the experiments.21 This sequence randomness is
captured by both the model based on chemical equilibrium and
the secondmodel based on themonomer occlusion probabilities.
Second, the statistical/combinatorial effects do lead to a
stochastic mirror symmetry breaking effect. The symmetry
breaking in these experiments arises from combinatorics, not
from spontaneous (bifurcation) phenomena. These stochastic/
statistical/combinatorial effects are not due to the inherent tiny
chiral fluctuations present in all real chemical systems39,40,43 but
are due rather to the random occlusion of host and guest amino
acids by the chiral sites of the template: the mechanisms
proposed here work even for ideally racemic mixtures. Mirror
symmetry is broken in the sequences, as nonenantiomeric pairs
of oligomers are formed. The solution of free monomers can
nevertheless be optically inactive. The symmetry breaking is to be
found in the template, or β-sheet, but not (necessarily) in the
solution.
An important distinction must be drawn between the types of

symmetry breaking/amplification treated in this paper. Whereas
the first part (Section 2) treats the global system symmetry (that
thus can lead to global chiral effects), the one described in the
latter parts (Section 4) concerns local asymmetries (specific all-R
versus all-S amino acid sequences) that could be “invisible” at the
global scale. It is not guaranteed that one asymmetry will imply
the other.
The experiments21 motivating the present study shed valuable

light on the role of templates in the origin of homochiral
peptides. Recent works have discussed the potential roles of
peptide (amino acid) β-sheets in the origin of life, underscoring
their effective protection against decomposition and racemiza-
tion (recovery of mirror symmetry) as well as their catalytic
ability toward hydrolysis.33,34 An experimental demonstration of
the formation of β-sheets that serve as catalysts for peptide
condensation and self-replication has been reported recently.35

Other groups have demonstrated that β-sheet templates can
affect enzyme-assisted amino acid polymerization36 and
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replication of cylic peptide structures.37 Such templates might
have enjoyed a considerable enantioselective advantage in a
prebiotic environment.38

In closing, we note that the symmetry breaking mechanism of
Lahav and co-workers21,25 has some features in commonwith the
qualitative scenarios of Green, Eschenmoser, and Siegel in which
a deficient or limited supply of material results in a stochastic
symmetry breaking process.41−43
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