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work on magnetic monopoles. The scientific exchange and the hospitality of his group
was greatly appreciated. Furthermore, Wolfgang Ketterle and Anthony J. Leggett also
provided guidance in brief exchanges. It is of immeasurable value to have the fortune to
exchange ideas with such clear-sighted and thoughtful minds. I am forever thankful for
the love and support of my partner Summer A. Banks. She is not only responsible for a
thorough proofreading of this thesis but she is also the architect and engineer guaranteeing
the structural integrity of my sanity throughout my time in Madrid. I am, of course, also
thankful for the emotional support of my family in Hamburg, Berlin and Peckatel and my
in- laws in Ridgecrest, California. The friendship of my colleagues Alicia Prados and Belén
Cortés-Llanos was also instrumental to the process of working on this thesis. I have them
to thank for most of my Spanish, as well as for the assistance and help they provided during
my first years at the Complutense. I greatly appreciate the company of my fellow office
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Summary

Exotic quantum matter generated from Floquet engineering

This thesis investigates three time periodic quantum mechanical systems, all of which are
of particular interest for research related to ultracold atoms in optical lattices.

In the first system (Chapter 2), a synthetic uniform magnetic field is created through
the shaking of a two dimensional square optical lattice [1]. In this way an effective mag-
netic field can be felt by ultra cold atoms trapped in the lattice. Simple continuous
shaking, however, produces non-uniform effective masses (tunneling amplitudes) which
lead to non-uniform flux configurations. This is addressed both analytically and numeri-
cally in this work. In addition, the limitations of continuous shaking schemes are discussed
and several non-continuous shaking protocols are analyzed and compared. At the end of
this investigation, the shaking schemes that yield a uniform effective mass and magnetic
flux are identified.

The second system (Chapter 3) under investigation in this work centers on the effect
of a rapidly oscillating magnetic charge of a magnetic monopole. Floquet theory is used
to derive a high-frequency limit of an electric charge coupled to such a Floquet magnetic
monopole. A non-relativistic solution to the Schrödinger equation of this effective system
is presented. This solution is then compared to a charge confined to a sphere and coupled
to a static magnetic monopole.

The third system (Chapters 4 and 5) under investigation is a one-dimensional Bose-
Hubbard chain, whose tunneling amplitude is varied periodically (kinetic driving) with a
zero time average. We reported on this work in Refs. [2] and [3]. The system is investigated
for both periodic and hard wall boundary conditions. With the help of Floquet theory,
a time-independent effective Hamiltonian is calculated, in which nearest-neighbor single
particle hopping is suppressed. The effective Hamiltonian consists of correlated hoppings
and non-local interaction processes. For a critical value of the driving parameter, the
system shows evidence of a Mott to superfluid transition. The superfluid consists of two
fragmented condensates with opposite non-zero momenta.

For large values of the driving parameter, the system shows similarities to Richardson-
Gaudin models. This connection provides key insights into the problem of interacting
bosons. A particular type of pairing interaction in momentum space explains the for-
mation of the macroscopic superposition of bosons in non-zero and opposite momentum
eigenstates. These interactions also give rise to a peculiar depletion cloud (reduction
cloud) that is shared by both branches of the cat. The branches are identified precisely
through symmetry considerations and studied with regard to several quality measures. In
the ring (periodic boundary conditions), the system is sensitive to variations of the effec-
tive flux but only in such a way that the macroscopic superposition is preserved. The cat
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4 Summary

structure stays intact in the presence of a harmonic confinement, with a single impurity
in the ring and a disorder potential, as long as it does not cause localization. The shared
reduction cloud provides additional protection against premature decay due to particle
losses. These and other considerations discussed in this work highlight a remarkable
intrinsic protection against collapse.

Materia cuántica exótica generada con ingenieŕıa de Floquet

En la presente tesis doctoral se muestran los resultados obtenidos en la investigación de
tres sistemas cuánticos periódicos en el tiempo, todos ellos de gran interés dentro de la
investigación relacionada con átomos ultrafŕıos en redes ópticas.

En el primer sistema (Capitulo 1), un campo magnético uniforme es creado de manera
artificial a partir del sacudido periódico de una red óptica bidimensional cuadrada [1]. De
este modo, los átomos ultra fŕıos atrapados en dicha red pueden experimentar un campo
magnético efectivo. Una perturbación simple y continua produce, sin embargo, masas
efectivas no uniformes (amplitudes de tuneleo) que dan lugar a configuraciones de flujo
no uniforme. Ambos puntos son abordados de manera anaĺıtica y numérica. Además
de ello, las limitaciones de una perturbación continua son discutidas y varios protocolos
de perturbación discontinua son analizados y comparados. Finalmente, los protocolos
de perturbación que producen una masa efectiva y un flujo magnético uniformes son
identificados.

El segundo tema (Capitulo 3) investigado en esta tesis está centrado en el efecto de
una carga magnética asociada a un monopolo magnético y que oscila rápidamente. La
teoŕıa de Floquet es empleada para derivar el ĺımite de alta frecuencia de una carga
eléctrica acoplada a dicho monopolo magnético tipo Floquet. Se presenta una solución
no relativista de la ecuación de Schrödinger para este sistema efectivo. Dicha solución
se compara con una carga confinada a una esfera y acoplada a un monopolo magnético
estático.

El tercer sistema (Capitulos 4 y 5) investigado es una cadena Bose-Hubbard unidimen-
sional cuya amplitud de tunelización es mudulado periódicamente (de forma ”cinética”)
con un promedio temporal nulo. Este trabajo está recogido en las referencias [2] y [3].
Este sistema es investigado aplicando condiciones de frontera tanto periódicas como de
paredes duras. Con la ayuda de la teoŕıa de Floquet, se calcula el Hamiloniano efectivo e
independiente del tiempo en el que el tuneleo de part́ıculas individuales entre primeros ve-
cinos es suprimida. El Hamiltoniano efectivo consiste en saltos correlacionados y procesos
de interacción no locales. Para un valor cŕıtico del parámetro de control, el sistema mues-
tra evidencias de una transición entre un estado Mott y un superfluido. El superfluido
consiste en dos condensados fragmentados con momentos opuestos no nulos. Para valores
grandes del parámetro impulsor, el sistema se asemeja a modelos de Richardson-Gaudin.
Esta similitud proporciona información clave sobre la interacción entre bosones. Un tipo
particular de interacción por pares en el espacio de momento explica la superposición
macroscópica de bosones en estados con momento no nulo y opuesto. Estas interacciones
también dan lugar a una peculiar nube de vaciamiento (nube de reducción) que es com-
partida por ambas ramas del estado de gato. Las ramas son identificadas con precisión
a través de consideraciones de simetŕıa y estudiadas con respecto a varias medidas de
calidad. En el anillo (condiciones de frontera periódicas), el sistema es sensible a las
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variaciones del flujo efectivo, pero de tal manera que la superposición macroscópica se
conserva. La estructura del estado de gato permanece intacta en presencia de un con-
finamiento armónico, con una única impureza en el anillo y un potencial desordenado,
siempre que éste no produzca localización. La nube de reducción compartida proporciona
protección adicional contra el deterioro prematuro debido a la pérdida de part́ıculas. Es-
tas y otras consideraciones discutidas en este trabajo resaltan una notable protección
intŕınseca contra el colapso.
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Introduction

Over the past century our understanding of the interactions of light with matter has ad-
vanced steadily. The expertise required to apply this understanding to the cooling and
trapping of atoms with lasers has also increased in parallel. This culminated in the obser-
vation [4, 5] of Bose-Einstein condensates [6], which had been predicted by Satyendranath
Bose and Albert Einstein 70 years earlier. The Bose-Einstein condensates commonly en-
countered in laboratories form out of a cloud of ultracold atoms at temperatures very
close to the absolute zero of −273.15◦C.

The condensate consists of many atoms sharing the same state, which is one of the
consequences of Bose-Einstein statistics. This form of quantum coherence, which involves
a macroscopic number of atoms, is what makes condensates such a remarkable resource.
Indeed, they can consist of so many atoms and occupy a large enough amount of space
that their fluorescence is visible to the naked eye.

Ever since Bose-Einstein condensates were created in the laboratory, the field has
made huge strides. A recent example of the use of Bose Einstein condensates for precision
measurements involves atom gravimeters [7–10], which measure local accelerations due to
gravity and have even been proposed as a means for detecting gravitational waves [11].

These applications prove that ultracold atom systems are no longer just a quantum
mechanical curiosity but also represent a building block for an ever expanding quantum
mechanical tool box. This thesis addresses both aspects: it investigates curious aspects
of ultracold atom systems and expands the tool box by investigating the effects of various
time dependent systems.

The ability to trap ultracold atoms with light not only makes them attractive for quan-
tum sensing, but also allows experimenters to design artificial crystals. This is commonly
accomplished with interfering lasers that create a stable pattern of low and high intensity
regions of light. This optical lattice is a potential landscape that can then be filled with
ultracold atoms [12]. Crystals created in this manner offer a remarkable level of control
and tuneability. They can be one, two, three or even higher dimensional, if internal states
are used in addition to spatial dimensions [13]. In two dimensions, triangular, square,
hexagonal, kagome and ring geometries [14–16] have all been produced in experiments.
An excellent review of ultracold atoms in optical crystals can be found in [17]. Although
these experimental techniques can also be used for fermions, this thesis focuses on bosons.

The lasers not only control the lattice geometry, but also the depth of the potential
wells, which has a direct impact on the tunneling dynamics of the confined atoms. In
combination with the control over the interaction strength via Feshbach resonances [18],
numerous possibilities emerge for the simulation of many-body systems with ultracold
atoms in optical lattices [17, 19].

A very prominent example is the implementation of the Hubbard model [20]. It is
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10 Introduction

an approximation that describes electrons and their motion in a solid, and it can be
adapted for bosons to describe their motion in an optical lattice. With these advances,
experimental implementation of the Bose-Hubbard model [21] became possible. It is
highly interesting that the Bose-Hubbard model has a quantum phase transition, from
a Mott-insulator to a superfluid [22], which was observed in [23]. This and many other
experiments proved that ultracold atoms can indeed be used to simulate condensed matter
systems and investigate their properties in this manner. In the spirit of Feynman’s idea
of quantum simulation [24], this spurred a flurry of proposals and experiments dedicated
to the exploration of the vast new landscape that has opened up with these experimental
techniques.

Optical lattices do not have to be static. They can be made explicitly time dependent
by accelerating them uniformly [25], shaking them or superposing a moving lattice [1].
The time periodic manipulations in particular suggest the use of Floquet theory, which
provides an elegant treatment of time periodic systems. Classically Floquet theory helps
analyze the stability of system. In a quantum mechanical setting, it explains how time
periodically driven optical lattices can be used to engineer topological bands [1].

The previous paragraphs provided a broad overview of the context of this thesis. This
work is devoted to exploring the possibilities of time periodic manipulations of zero-, one-
and two-dimensional systems. The main goals for this research are twofold: quantum
simulation and the exploration of potentially new and interesting effects related to peri-
odically driven systems. The particularly interesting applications for ultra cold atoms in
driven optical lattices are discussed in detail in the chapters summarized below.

Chapter 1 is devoted to an introduction of Floquet theory and provides a solid foun-
dation for the rest of the thesis. It details some of the historical developments in the
treatment of time periodic systems, as well as the concepts that connect classical and
quantum mechanical systems. The quantum mechanical implementation of Floquet the-
ory is of particular relevance for this work, so care has been taken to introduce its modern
implementation in the context of many-body systems. The stage for the next chapter
is set with a treatment of Floquet engineering. The chapter then concludes with a brief
discussion of heating in Floquet systems.

Chapter 2 is a review of our work in Ref. [1], where the shaking of a square optical
lattice was proposed for the creation of a synthetic uniform magnetic field with a uniform
effective mass. The quantum simulation aspect is at its most evident in this part of the
work. Various transformations related to the derivation of an effective Hamiltonian are
discussed and interpreted. The minimal requirements of shaking protocols are investigated
and, in particular, we address the question of whether or not continuous shaking schemes
can generate uniform synthetic magnetic fields. This chapter concludes with an analysis
and comparison of various shaking schemes.

Chapter 3 stays within the theme of magnetic fields, dealing with the implications
of a magnetic monopole with a rapidly switching magnetic charge. This system is an
interesting combination of a periodic time variation and a curious hypothetical particle:
the magnetic monopole. The effects of such a particle on an electric charge are investi-
gated, with a focus on the limit of large frequencies of the charge oscillations. A charge
is coupled to such monopoles, and its Hilbert space is constructed for both a charge that
can move freely in three dimensions and a charge that is confined to a sphere.

Chapter 4 also addresses an unusual system, and truly centers on exploring new quan-
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tum phases of matter. This chapter is based on our work in Ref. [2], which presents a
one dimensional Bose-Hubbard model whose kinetic energy depends periodically on time.
An effective description of the oscillation of the kinetic energy in the limit of large fre-
quencies is developed. Its properties are studied for a ring lattice and a hard-wall box.
This effective model features many local and non-local interactions and hoppings, and no
longer possesses single-particle nearest-neighbor hoppings. An intriguing Mott to super-
fluid transition also takes place. In the superfluid phase, the ground state is comprised of
a fragmented condensate which is condensed at two nonzero momenta. The fragmented
condensate is best described by a Schrödinger cat-like superposition of two condensates,
which is the central topic of the following chapter.

Chapter 5 continues the investigation of the kinetically driven Bose-Hubbard chain,
and develops a microscopic picture to explain the unusual fragmented condensate. This
chapter draws on work presented in Ref. [3], where the main focus lies on the character-
ization of the Schrödinger cat-like ground state. The cat state is characterized for both
the ring lattice as well as the hard-wall box. A new type of depletion cloud is introduced
(which is labeled reduction cloud) and various measures of cat quality are discussed.

The ground states are investigated with regard to their intrinsic quality as a cat state,
the feasibility of their preparation, and their resistance to collapse. The picture that
emerges is that of a boson system whose ground doublet is formed by two cat-like states.
Their most remarkable property is their resilience to collapse.

The final chapter contains the conclusion and outlook, and in the appendix the nu-
merical methods that were used are explained.
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Chapter 1

Floquet Theory

Floquet theory is the theory of ordinary linear differential equations that have time peri-
odic coefficients. In physics ordinary linear differential equations play an important role
in the modeling of systems. Often they are useful first-order approximations that help
explain aspects of an initially nonlinear description. One of the best known examples of
such a system is the parametric oscillator whose natural frequency changes periodically
in time. This could be the O Botafumeiro (a giant censer [26]) which is kept swinging
by periodically changing the length of its suspension rope, or a child on a swing, period-
ically extending its legs and thereby lowering and raising its center of mass. The crucial
difference between a parametric and a forced oscillator is that energy is not directly put
into the system, such as a parent pushing the child on the swing, or the wind forcing
the deck of a bridge into oscillations 1. As far as modeling goes, these forces appear as
inhomogeneous terms in a differential equation, and not necessarily as a time-dependent
coefficient. Floquet theory provides an elegant means of studying the motion and stabil-
ity of a system. A historically important example of this is Hill’s treatment of the lunar
motion around the earth in a gravitational potential, which is time periodic due to the
presence of the sun [28]. In honor of this work, Hill’s equation

ÿ + f(t)y = 0 , (1.1)

where f(t+T ) = f(t), was named after him [29]. In the following introduction to Floquet
theory, two special cases of Hill’s equation are presented and the process of analyzing
their stability explained.

These examples from classical mechanics provide a way to familiarize oneself with the
historical context of Floquet theory and to recognize how relevant it still is for quantum
many-body physics. The development of laser cooling enabled the manipulation of large
ensembles of quantum matter [30–32] and played a major role in achieving Bose-Einstein
condensation [4, 5]. Advancements in experimenters’ ability to sculpt their trapping
potentials spatially and temporally in so-called optical lattices made it possible to study
condensed matter systems with a hitherto unprecedented level of control. From the first
preparation of a Bose Einstein condensate to quantum gas microscopes [33, 34] that allow

1Although the Tacoma Narrows bridge structural failure is often cited in physics textbooks as an
example of forced resonance, the actual mechanism that led to its demise was the runaway self-excitation
of a torsional degree of freedom [27]. This catastrophe of self excitation is fundamentally different from
that caused by a forced resonance.

13



14 CHAPTER 1. FLOQUET THEORY

single site resolution of atoms in an optical lattice, the field has come a long way. The
formalism I will present here is more suited to these quantum many-body problems even
though many of the examples work on a single-particle level as well.

In the spirit of the second quantum revolution [35], Floquet theory appears under the
banner of Floquet engineering [36]. It is often geared towards the simulation of condensed
matter Hamiltonians. The idea of quantum simulators was popularized by Feynman [24]
with the goal of emulating quantum systems that are either very difficult or impossible to
create in a laboratory. Some examples for proposed quantum simulators are trapped ions
[37], superconducting circuits [38] and simulators based on photons [39]. More important
for this thesis are simulators based on ultracold atoms [17, 40]. A rapidly growing branch
of theory and experimental works is focused on the generation of artificial gauge potentials,
allowing for the study of electrons in a lattice under the influence of a magnetic field [41],
topological quantum matter [42] or even more elusive gauge theories [43, 44]. I will expand
on this in Chapter 2.

Simulation is, however, not the only use of Floquet engineering. It also promises the
generation of entirely new quantum phases of condensed matter, and the study of their
properties. In this thesis I will present examples of both: simulation (Chapter 2) and the
generation of an interesting quantum phase (Chapter 4 and 5).

This chapter is organized as follows: First a more formal mathematical introduction
to Floquet theory is provided in Section 1.1. The treatment mostly cites results, and
features more detailed derivations that help underline important concepts. Throughout
the chapter formal theory will be supplemented with examples to illustrate its practical
uses.

This is followed (Section 1.2) by an application of Floquet theory to time periodic
quantum systems. This application builds a bridge between its formal introduction and
the more specialized manifestation in quantum mechanics, providing a connection be-
tween concepts relevant to both classical and quantum mechanical systems. For example,
the monodromy matrix, an important quantity introduced in classical systems, will be
shown to be equivalent to the time evolution operator after one period of modulation in
quantum mechanics. Additionally, an overview of the important concept of the effective
Hamiltonian and its construction is given. Finally, Section 1.3 provides examples of Flo-
quet engineering of various condensed matter Hamiltonians, and the chapter is concluded
with some remarks on heating (section1.4).

1.1 Introduction to Floquet theory

In this section a general introduction to Floquet theory is given. Most of the results
are presented without rigorous proofs. Those can be found in the excellent book on
ordinary differential equations (ODE) by Gerald Teschl [45], whose treatment has been
instrumental in constructing this section. As mentioned earlier, the Floquet theorem
comes up in the analysis of linear first order differential equations with time-periodic
coefficients. Quite generally this can be written as

ẏ = A(t)y , A(t+ T ) = A(t) , (1.2)

where A(t) is the periodic (with period T ) coefficient matrix of the system. Before stating
the most general form of the Floquet theorem, it is useful to introduce the principal matrix
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solution of a linear ODE. For each initial condition y(t0) = y0 the general solution of Eq.
(1.2) can be expanded according to

y(t) =
N∑
n=1

un(t, t0)y0,n (1.3)

where the y0,n are the components of y0. The un(t, t0) are the solutions of (1.2) with the
associated initial conditions yn0 = en = (0, · · · , 1n, · · · , 0), i.e. the canonical base vec-
tors. One can thus define the matrix U(t, t0) ≡ {u1(t, t0),u2(t, t0), · · · ,uN(t, t0)} whose
columns are made of the un(t, t0). The matrix U(t, t0) is called the principal matrix
solution. It solves the matrix valued equivalent of Eq. (1.2)

U̇(t, t0) = A(t)U(t, t0) (1.4)

with the initial value U(t0, t0) = 1. An important property of the principal matrix solution
is

U(t, t1)U(t1, t0) = U(t, t0) , U(t1, t0)U(t0, t1) = 1 (1.5)

The Floquet theorem [46] can now be stated as follows: A principal matrix solution to
Eq. (1.4) must have the form

U(t, t0) = P (t, t0)eQ0(t−t0) , (1.6)

with

P (t+ T, t0) = P (t, t0) , P (t0, t0) = 1 . (1.7)

where Q0 = Q(t0) is a constant matrix and P (t, t0) is a time periodic matrix with the same
period as A(t). Moreover, it can be shown that U(t+ T, t0 + T ) = U(t, t0). The Floquet
theorem is essentially the analog of Bloch’s theorem [47] for time periodic systems. A
proof of Floquet’s theorem can be found in Ref. [45]. In more mathematical contexts,
the eigenvalues λn of Q0 are called characteristic exponents and the eigenvalues γn of
M(t0) = exp(Q0T ) are called Floquet (or characteristic) multipliers. Later in section 1.2
the eigenvalues λn are identified as quasienergies of a time-dependent Hamiltonian. The
reason for this will become clear when when quantum mechanical systems are addressed.
An important and very useful quantity is the monodromy matrix

M(t0) ≡ U(t0 + T, t0) = eQ0T (1.8)

which is the principal matrix solution evaluated after one period. One of its many useful
features is the independence of its eigenvalues γn of the initial time t0. This is because
M(t′0) and M(t0) are similar matrices:

M(t′0) = U(t′0 + T, t0)U(t0, t
′
0)

= U(t′0 + T, t0 + T )U(t0 + T, t0)U(t0, t
′
0)

= U(t0, t
′
0)−1M(t0)U(t0, t

′
0)

(1.9)

Another intuitive argument for its importance is that it generates the stroboscopic
evolution of the system:

U(t+ nT, t0) = P (t, t0)eQ0(nT+t−t0) = U(t, t0)M(t0)n . (1.10)
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If there were any cases when Re(λn) > 0 (|γn| > 1) then M(t0)n would cause exponential
growth (for finite systems P (t, t0) is bounded) and hence system Eq. (1.4) would be
unstable. Quite generally, the stability of the system can be inferred from the monodromy
matrix.

As an example, the stability of the Meissner equation is analyzed

ÿ + {α + δ sgn[cos(ωt)]}y = 0 , (1.11)

where sgn is the sign function and y(t) ∈ R. The Meissner equation - a special case
of Hill’s equation (1.1) - has the advantage of being amenable to explicit integration.
Thus it is possible to calculate the monodromy matrix and infer the regions of stability
of Meissner’s equation (1.11). If δ < α one can interpret (1.11) as a harmonic oscillator
with a spring that periodically and abruptly changes its stiffness with frequency ω. One
can use the standard trick ẏ = v to write (1.11) as(

ẏ
v̇

)
=

(
0 1

−α− δ sgn[cos(ωt)] 0

)(
y
v

)
. (1.12)

A general solution to (1.12) in the first half of the period is(
y
v

)
= V−(t)

(
a−
b−

)
, 0 ≤ t < T/2 (1.13)

and in the second half (
y
v

)
= V+(t− T/2)

(
a+

b+

)
, T/2 ≤ t < T (1.14)

where

V± =

(
e
√
µ±t e−

√
µ±t

√
µ±e
√
µ±t −√µ±e

√
µ±t

)
(1.15)

and µ± = −α± δ. Since the eigenvalues of the monodromy matrix are independent of the
initial value [Eq. (1.9)] one can set t0 = 0. Following the definition of U(T, 0) the time
evolution of the two initial values is calculated

(y0, v0) = (1, 0) and (y0, v0) = (0, 1) (1.16)

over one period. I will only show the steps of the calculation for the first initial value.
For (y0, v0) = (1, 0) and a− = b− = 1/2, which means that(

y
v

)
=

(
ch(
√
µ−t)√

µ−sh(
√
µ−t)

)
, (1.17)

where ch = cosh and sh = sinh. Since (y, v) is continuous at t = T/2 the two solutions
(1.17) and (1.14) connect at t = T/2:(

ch(
√
µ−T/2)√

µ−sh(
√
µ−T/2)

)
= V+(0)

(
a+

b+

)
. (1.18)
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Because this fixes a+ and b+, the only thing left in the calculation is to evaluate (1.14) at
t = T . For the first initial value y(T ) and v(T ) are(

y(T )
v(T )

)
= V+(T/2)V+(0)−1

(
ch(
√
µ−T/2)√

µ−sh(
√
µ−T/2)

)
(1.19)

This is the first column of U(T, 0). The second column can be computed in exactly the
same way starting with a− = −b− =

√
µ−/2. The monodromy matrix becomes

U(T, 0) =

 ch(Γ−)ch(Γ+) +

√
µ−√
µ+

sh(Γ−)sh(Γ+) ch(Γ+)sh(Γ−)√
µ−

+ ch(Γ−)sh(Γ+)√
µ+

√
µ−ch(Γ+)sh(Γ−) +

√
µ+ch(Γ−)sh(Γ+) ch(Γ−)ch(Γ+) +

√
µ+√
µ−

sh(Γ−)sh(Γ+)


where Γ± = T

√
µ±/2. The equation determining the eigenvalues and hence the stability

of the system is

0 = 1 + λ2 − 2λ ch
(
Γ−
)

ch
(
Γ+
)
− λ sh

(
Γ−
)

sh
(
Γ+
) (µ− + µ+)√

µ−µ+
. (1.20)

Using the above expression one can determine the regions of stability of the Meissner
equation. They are mapped out in Fig. 1.1 for a range of δ and T . The light orange
areas indicate stability, which means that both eigenvalues of the monodromy matrix, i.e.
solutions to (1.20), are smaller or equal to one.
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16

T
/A
.U
.

Figure 1.1: Regions of stability of the Meissner equation for µ± = 1 ± δ and period T .
The solutions are stable(unstable) in the light orange(dark violet) regions.
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Figure 1.2: Regions of stability for the Mathieu equation for different values of α and
δ (ω = 2). The solutions are stable in the light orange and unstable in the dark violet
regions.

Another very interesting example is a close relative of the Meissner equation and
another special case of Hill’s equation (1.1), the Mathieu equation [48]:

ÿ + [α + δ cos(ωt)]y = 0 . (1.21)

Unlike Meissner’s equation (1.11), it cannot be explicitly integrated. Studying it with
the help of numerical integration is of course always an option. As with the Meissner
equation it is possible to map the regions of stability by calculating the eigenvalues of
the monodromy matrix. As calculated above, the columns of the monodromy matrix are
made up from the time evolution of the two initial values (1.16) over one period. This
calculation was performed with a Fortran implementation of the Runge-Kutta-Fehlberg
method (RKF45), which is described in Ref. [49]. The resulting stability diagram is shown
in Fig. 1.2. The Mathieu equation has many applications in physics [50]. A couple of
notable examples are: describing the inverted vertically vibrated pendulum [51, 52] for
small angle oscillations, and describing the focusing of electrons in a quadrupole potential
that is modulated in the radio frequency regime [53]. Most notably, the Mathieu equation
describes the motion of a charge in a Paul trap [54], an achievement for whose experimental
realization Wolfgang Paul was awarded the Nobel prize in 1989. In all of these systems
certain driving parameters of the time periodic perturbation lead to some manifestation
of stability or instability. In the case of the inverted pendulum, stability means that it
remains upright. Stability for the radio frequency modulated quadrupole manifests itself
as a focusing of the electron beam, whereas an instability can be used for acceleration. In
the Paul trap, stability means that the charge does not escape, hence the name “trap”.
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The application of Floquet theory goes, of course, beyond that of stability considerations
and this will be thoroughly explored in the following sections. The application of Floquet
in quantum mechanics will now be addressed and, more specifically, the way it is used in
the steadily growing field of Floquet engineering of ultra cold atoms.

1.2 Floquet theory in quantum mechanics

In quantum mechanics the time evolution of a state |Ψ〉 of a system is determined by the
Schrödinger equation

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉 (1.22)

where Hamiltonian H(t) is a time-dependent Hermitian operator (setting ~ = 1). The
following focuses on the subset of time periodic Hamiltonians where

H(t+ T ) = H(t) . (1.23)

Since the Schrödinger equation is linear, it is immediately clear that it is of the same form
as Eq. (1.2). Because it is of the same type, it connects to the more formal treatment
in the previous section with many well established concepts in quantum mechanics. It is
self evident that the time evolution operator

U(t, t0) = T exp

(
−i

∫ t

t0

dτH(τ)

)
, (1.24)

is the principal matrix solution of (1.22). T is the time-ordering operator. As its name
suggests, the time evolution operator propagates a state from an initial time t0 to some
time t:

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 . (1.25)

The inverse of the time evolution operator is given by its Hermitian adjoint U(t, t0)−1 =
U(t, t0)†. Applying Floquet’s theorem (1.6) to (1.24) leads to

U(t, t0) = P (t, t0)e−iHF(t−t0), (1.26)

where P (t, t0) is a periodic operator with period T . The general Floquet Hamiltonian is
abbreviated as HF. Identifying Q0 = −iHF is justified because U(t0 + T, t0) is unitary.
Additionally, it means that HF can be assumed to be Hermitian. This in turn implies

P (t, t0)P (t, t0)† = 1 . (1.27)

The question of whether the exponential representation in Eq. (1.26) always exists in
infinite dimensional Hilbert spaces [55, 56] is not entirely trivial. However, these subtleties
are beyond the scope of this introduction and it will be assumed that log[U(t0 +T, t0)], i.e.
the logarithm of the monodromy, is defined. Since it will be important in the next section,
it helps to point out that just as Q0 depends on the initial time, so does HF. As stated
above, one can now relate the eigenvalues (characteristic exponents) of Q0 with those of
HF. One can identify λn = −iεn. The εn are commonly referred to as quasienergies.
This term is analogous to the term quasimomentum appearing in Bloch’s theorem. As
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with the quasimomentum, the quasienergies are not uniquely defined. An easy way to
see this is by examining the monodromy exp(−iHFT ). A shift in any of the eigenvalues
of HF by εn → εn + lω, where ω = 2π/T and l is some whole number, would leave the
monodromy invariant. In order for the logarithm of the monodromy to be single valued,
i.e. HF, the branch of the logarithm must be specified or, to put it in more physical
terms, a Brillouin zone must be defined. The first Brillouin zone has width ω. For the
time evolution operator (1.26) such a shift in the quasienergies can always be absorbed
by P (t, t′), leaving the general properties of (1.26) unchanged.

For completeness’ sake, Eq. (1.26) is connected to an equivalent formulation that is
often used in the literature. Instead of specifying the form of the time evolution operator
(1.26) the states are said to have a specific form. From Eq. (1.26) and the existence of a
gauge transformation to a frame where the system’s Hamiltonian is HF (the Floquet frame
- discussed in the next section), it follows that there exist solutions to the Schrödinger
equation Eq. (1.22) that can be indexed by the quantum number n, and which have the
form

|Ψn(t)〉 = |un(t)〉e−iεnt , (1.28)

where the so-called Floquet modes |un(t+ T )〉 = |un(t)〉 are time periodic and the εn are
the aforementioned quasienergies. The Floquet modes are eigenstates of the Hamiltonian

H(t) = H(t)− i∂t , (1.29)

with the corresponding energies εn.

1.2.1 Effective and Floquet Hamiltonian

For a realistic experimental proposal of a Floquet system, the question of whether the
specific starting point of a periodic manipulation has measurable consequences is very
relevant. Theoretically this can either be addressed by demanding that the starting point
of the protocol appeared in some infinite past t0 → −∞ or at some specific point in time,
e.g. t0 = 0. In the first scenario the description of the system should be independent of
the initial time, in the second it does have real physical significance. The second approach
is more adjusted towards the realities of an experimenter, who commonly has to switch on
his or her experiment at some moment in time. Take, for example, the following classical
Floquet systems: a ball that is kicked left and right periodically. Even for this simple
system, the initial kick has a significant effect on its trajectory (see e.g [57]). Another
important issues is that T is often the shortest time scale in a given Floquet problem.
This means that it can be very challenging to account for the initial time dependence of
HF in an actual experiment. It is therefore highly desirable to have a systematic way
to account for the initial time, as well as the short and long term dynamics. Separating
the short and long time dynamics will be one of the goals of the next two sections. The
idea is to separate the time evolution into a part that is governed by a time-independent
effective Hamiltonian sandwiched between two operators that account for the short term
dynamics - sometimes referred to as the micromotion. The time-independent effective
Hamiltonian will be the most important object in this and the following chapters.

In order to set the stage for the construction of said operators, some important precur-
sory concepts related to gauge transformations will be reviewed. Some useful overviews
on this topic can be found in Refs. [36, 57–59]. Here the work of [57, 58] and [59] is used.
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The time-dependent effective Hamiltonian is constructed through an operator expan-
sion in orders of 1/ω. The next paragraphs will begin with some remarks on the con-
sequences of a key assumption necessary for this expansion: The existence of a gauge
transformation R(t) = exp[iK(t)] that will lead to a frame in which the Hamiltonian no
longer depends on time. A gauge transformation will change states according to

|Ψ′(t)〉 = R(t)|Ψ(t)〉 , (1.30)

A change of gauge should have no effect on the outcome of measurements, which implies
that R(t) is unitary. In the following it is required that K(t) is Hermitian, which is
reasonable, given the unitarity of R(t) . For the time evolution operator one finds

U ′(t, ti) = R(t)U(t, ti)R(ti)
† . (1.31)

The initial time ti is chosen, which can in general be different from t0, which is kept as
the time that fixes HF. With the help of Schrödinger’s equation (1.22) and either of the
previous two equations, one can derive the Hamiltonian in the transformed frame

H ′(t) = iṘ(t)R(t)† +R(t)H(t)R(t)† . (1.32)

R(t) is now fixed so that the H ′(t) = Heff is completely independent of time. In this
work Heff is called the effective Hamiltonian and it will be this Hamiltonian for which the
expansion in 1/ω is constructed. If ω is the largest energy in the system, 1/ω is a good
candidate for a small parameter for which this expansion will converge.

In the next few paragraphs the connection between the Floquet representation [Eq.
(1.26)] and the effective Hamiltonian is made explicit. In the frame of Heff the time
evolution operator is simply U ′(t, ti) = exp[−iHeff(t − ti)]. By inverting (1.31) one finds
that

U(t, ti) = R(t)†e−iHeff(t−ti)R(ti) . (1.33)

In order to compare this with (1.26) (as in Ref. [59]) one has to reformulate the time
evolution operator in (1.26) slightly

U(t, ti) = U(t, t0)U(ti, t0)† (1.34)

= P (t, t0)e−iHF(t−ti)P (ti, t0)† . (1.35)

This accommodates the initial time ti and HF, which depends t0. The above equation
adds a bit more meaning to P (t, t0) since it has the same form as (1.31). One can, together
with (1.27), interpret P (t, t0) as a gauge transformation. Following Ref. [59] it is called the
Floquet gauge. In the Floquet frame the time evolution is given by HF. Since the choice
of t0 is arbitrary, it is clear that there are many gauge equivalent frames, i.e. t0 spans a
family of gauges. Having established that P (t, t0) represents a gauge transformation, one
can simply compose the Floquet gauge with R(t)

R̃(t) = R(t)P (t, t0) (1.36)

to establish the connection between Heff and HF

Heff = i ˙̃R(t)R̃(t)† + R̃(t)HFR̃(t)† . (1.37)



22 CHAPTER 1. FLOQUET THEORY

Alternatively one can take ∂tU(t, ti) in Eq. (1.33) and (1.35) and compare the results.
Eq. (1.37) implies that there is a gauge transformation of HF, removing the dependence
on t0, that is, Heff is assumed to be completely time-independent. With this, a subtlety
comes to light: There are two different notions of gauge: The Floquet gauge and the
gauge associated with R(t). As intended, R(t) removes the unwanted time dependence of
HF on the initial time. It also shows that in general HF and Heff are not the same and
should not be mistaken for each other.

A very illustrative example of this was given in Refs. [58, 59]. They consider a two
level system in a rotating magnetic field.

H(t) = Bzσz +B‖[σx cos(ωt) + σy sin(ωt)] , (1.38)

where the σi are the Pauli matrices. The transformation

P (t, t0) = e−i(ω+σzω)(t−t0)/2 (1.39)

defines a Floquet gauge. It has all the properties required of P (t, t0), i.e. it is periodic in
P (t + T, t0) = P (t, t0) and P (t0, t0) = 1. The Floquet Hamiltonian [Eq. (1.32)] in this
gauge is

HF =
ω

2
+ (Bz −

ω

2
)σz +B‖[cos(ωt0)σx + sin(ωt0)σy]. (1.40)

Removing the dependence on the initial time can be done with the transformation

R′(t0) = e−iλ[− sin(ωt0)σx+cos(ωt0)σy ] (1.41)

One can calculate λ for which R′(t0) removes the dependence on t0 by using the well-known
properties of the Pauli matrices

[σi, σj] = 2iεijkσk , (1.42)

σiσj = δi,j + iεijkσk (1.43)

and
eiλnσ = cos(λ) + inσ sin(λ) (1.44)

where n is a three component vector with unit length and σ = (σx, σy, σz). For

tan(2λ) =
ω/2−Bz

B‖
(1.45)

the transformed Hamiltonian becomes:

H ′eff =
ω

2
+ σzε , (1.46)

where
ε =

√
(ω/2−Bz)2 +B2

‖ . (1.47)

The effective Hamiltonian is now manifestly independent of the initial time. Incidentally
ε is one of the two quasienergies ±ε of HF. This is not quite the effective Hamiltonian to
be reviewed in the next section because it is clearly divergent in the limit ω → ∞. This
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inconvenience is easily compensated for by an additional gauge transformation, which
removes ω/2 and eliminates the pathological behavior at ω →∞,

R′′(t) = ei[ω/2+(2ε−ω/2)σz ]t . (1.48)

The final Hamiltonian thus is
Heff = (ω/2− ε)σz . (1.49)

In the limit of ω →∞, ε→ ω/2, which means that the above Heff is does not diverge for
large ω. The composition of all the transformations that lead up to this result is

R(t) = R′′(t)R′(t0)P (t, t0) . (1.50)

This example is one of the few cases where the exact Floquet and effective Hamiltonians
can be derived. In the above, most of the important concepts needed to construct the
expansion of Heff were presented. The difference between the general Floquet Hamiltonian
HF and how they relate to each other were also detailed. Another difference that was
not mentioned in the previous treatment is that Heff does not necessarily generate the
stroboscopic time evolution of the system. This is only always true for HF.

1.2.2 Construction of the effective Hamiltonian

Now the construction of the effective Hamiltonian and the two operators that drive the
short time dynamics is reviewed. Again the formalism in Ref. [57] is used. The time
periodic Hamiltonian is defined as

H(t) = H0 + V (t) , (1.51)

where

V (t) =
∞∑
j=1

V (j)eijωt + V (−j)e−ijωt (1.52)

The construction of the effective Hamiltonian relies on three assumptions: (i) The time
evolution operator between an initial time ti and a final time te has the form

U(te, ti) = e−iK(te)e−iHeff(tf−ti)eiK(ti) . (1.53)

In the following the naming convention in Ref. [57] of calling K(t) the “kick” operator is
maintained. When comparing it with Eq. (1.33) R(t) = exp[iK(t)] is straightforward to
identify. (ii) Furthermore it is imposed that the kick operator is periodic K(t+T ) = K(t)
and (iii) has zero average over one period. The naming stems from interpreting the time
evolution of Eq. (1.53) as a three step process: An initial kick with K(ti) is followed
by the constant evolution with Heff and a final kick with K(tf ). As pointed out in the
previous part, the effective Hamiltonian is assumed to be completely independent of ti
and tf . One can now construct Heff and K(t) perturbatively. To that end both Heff and
K(t) are expanded in orders of 1/ω.

Heff =
∞∑
n=0

1

ωn
H

(n)
eff (1.54)
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and

K(t) =
∑
n=1

1

ωn
K(n)(t) . (1.55)

One then uses Eq. (1.32)

Heff = eiK(t)H(t)eiK(t) + i
(
∂te

iK(t)
)
e−iK(t) (1.56)

In combination with the Baker-Campbell-Hausdorff series expansion of

eiKHe−iK = H + i[K,H]− 1

2
[K, [K,H]]− i

6
[K, [K, [K,H]]] + (· · · ) . (1.57)

and (
∂te

iK
)
e−iK = i∂tK −

1

2
[K, ∂tK]− i

6
[K, [K, ∂tK]] + (· · · ) (1.58)

Heff can be contructed to any desired order. For the sake of brevity the t dependence in
the last two equations was dropped.

The calculation of the first order is briefly explained. Since it was assumed that the
average over one period of K(1)(t) vanishes, its Fourier expansion can be written as

K(1) =
∞∑
j=1

K
(1)
j eiωjt +K

(1)
−j e

−iωjt , (1.59)

Inserting this into (1.56) together with (1.51), (1.57) and (1.58) gives in zeroth order in
1/ω

Heff
(0) = H0 + V (t)− ∂tK(1)(t) . (1.60)

The second term in Heff has to be time-independent to all orders, so it has to vanish:

K(1) =
∞∑
j=1

1

ij

(
V (j)eiωjt − V (−j)e−iωjt

)
. (1.61)

In conjunction with the second term in (1.58) one finds

H
(1)
eff =

∞∑
j=1

1

j

[
V (j), V (−j)] . (1.62)

One can iterate this procedure to calculate Heff up to arbitrarily high orders. To second
order one finds [57]:

Heff =H0 +
1

ω

∞∑
j=1

1

j

[
V (j), V (−j)]+

1

2ω2

∞∑
j=1

1

j2

([[
V (j), H0

]
, V (−j)]+ H.c.

)
1

3ω2

∞∑
j,l=1

1

jl

([[
V (j), V (l)

]
, V (−j−l)]− [V (j),

[
V (−l), V (l−j)]])+O(1/ω3)

(1.63)
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and the kick operator

K(t) =
1

iω

∞∑
j=1

1

j

(
V (j)eiωjt − V (−j)e−iωjt

)
+

1

iω2

∞∑
j=1

1

j2

(
[V (j), H0]eiωjt − H.c.

)
+

1

2iω2

∞∑
j,l=1

1

j(j + l)

(
[V (j), V (l)]ei(j+l)ωt − H.c.

)
+

1

2iω2

∞∑
j,l=1

1

j(j − l)
(
[V (j), V (−l)]ei(j−l)ωt − H.c.

)
+O(1/ω3)

(1.64)

The convergence of this expansion is not guaranteed. As noted in Ref. [57] its convergence
can, in general, only be determined after it’s been explicitly worked out, and has been
checked for whether it accurately describes the system. This will be commented on more
in Section 1.4.

At this point, it is important to recognize that Heff and HF have the same quasienergy
spectrum. This can be shown by computing the quasienergies through the time evolution
operator after one period of the driving. Since P (t, t0) and R(t) are both unitary and
periodic, with the period T , U ′(T, 0) = exp(−iHeffT ) and U(T, 0) = exp(−iHFT ), they
must be similar matrices by construction (U ′ = R̃†UR̃). This in turn means that they
have the same spectrum and hence produce the same quasienergies. The ambiguity in
the quasienergies due to freedom of choice with regard to the Brillouin zone remains of
course.

As a first example for the above expansion I want to come back to the spin in the
rotating magnetic field Eq. (1.38). The identification of

H0 = Bzσz (1.65)

and

V (1) =
B‖
2

(σx − iσy) , V (−1) =
B‖
2

(σx + iσy) , V (j 6=±1) = 0 (1.66)

is straightforward. Calculating Heff with (1.63) up to the first order correction gives

Heff =

(
Bz −

B2
‖

ω

)
σz (1.67)

When expanding ε in (1.49) in orders of 1/ω one finds

ε =
ω

2

√(
1− 2Bz

ω

)2

+
4B2
‖

ω2
(1.68)

≈ ω

2
−Bz +

B2
‖

ω
. (1.69)

The effective Hamiltonian in Eq. (1.49) is thus consistent up to first order with the one
above (1.67).
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At this point another important and interesting example is introduced: A Bose-
Hubbard model with a periodic variation of the on-site potential. Such a system was
considered by the authors of Refs. [60–63] and produces coherent destruction of tunnel-
ing (CDT). This is somewhat related to the notion of dynamical localization, which was
formed in Ref. [64], where they studied a charged particle moving under the influence of
an electric field. The difference between dynamical localization and CDT is that, in the
first case, the dynamics appear to be frozen stroboscopically, whereas for the latter, the
dynamics freeze for large frequencies entirely.

In this thesis, the time periodic modification of the on-site potentials is referred to as
potential driving. The driven Hamiltonian is

H(t) = H0 + V (t) (1.70)

= −J
L−1∑
x=0

(
a†x+1ax + a†xax+1

)
+K cos(ωt)

L−1∑
x=0

xnx . (1.71)

The a†x, ax are the bosonic creation and annihilation operators on a lattice site x and
nx = a†xax is the number operator. L is the number of sites of the lattice. They fulfill the
usual bosonic commutation relations [ax, ay] = [a†x, a

†
y] = 0 and [ax, a

†
y] = δx,y. J is the

hopping energy and K cos(ωt) is the energy offset between two adjacent sites. The time-
dependent term can be generated by going into the rest frame of a shaking lattice, where
it is interpreted as an inertial force. For example, in a one dimensional lattice shaking
was studied experimentally in Ref. [63, 65–69]. Shaking will be discussed in detail in
Chapter 2.

There are two routes to calculating the effective Hamiltonian. To begin, the first and
second order terms in the inverse frequency expansion (1.63) are calculated. Here the
lattice spacing is set to a = 1. Again, the Fourier components of (1.71) are identified as

H0 = −J
L−1∑
x=0

(
a†x+1ax + H.c.

)
(1.72)

V (1) = V (−1) =
K

2

L−1∑
x=0

xnx (1.73)

V (j 6=±1) = 0 (1.74)

The first order contribution to Heff vanishes, since V (1) and V (−1) commute. This is a
general feature of drives that are symmetric under time inversion. The last term in Eq.
(1.63) does not contribute as well. This leaves us with the second term. After evaluating
the relevant commutators one finds

Heff = −
(

1− K2

4ω2

)
H0 +O(1/ω3). (1.75)

If K � ω this is a good approximation of the exact effective Hamiltonian.
The second way to derive the effective Hamiltonian begins with a gauge transformation

(see for example Ref. [57])

W (t) = eiK/ω sin(ωt)
∑L−1
x=0 xnx , (1.76)
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Using Eq. (1.32) it is evident, that the transformed Hamiltonian is

H ′(t) = iẆ (t)W (t)† +W (t)H(t)W (t)† . (1.77)

The inertial term will be canceled by

− V (t) = iẆ (t)W (t)† . (1.78)

The remaining term W (t)H(t)W (t)† can be worked out by considering

f(λ) = eiλ
∑L−1
x=0 xnxa†x+1axe

−iλ
∑L−1
x=0 xnx . (1.79)

and its derivative with respect to λ. It turns out that

∂λf(λ) = ieiλ
∑L−1
x=0 xnx

L−1∑
x=0

[xnx, a
†
y+1ay]e

−iλ
∑L−1
x=0 xnx

= if(λ)

(1.80)

so that with f(0) = a†x+1ax one finds

f(λ) = a†x+1axe
iλ . (1.81)

The transformed Hamiltonian thus becomes

H ′(t) = −J
L−1∑
x=0

(
a†x+1axe

iK/ω sin(ωt) + H.c.
)

(1.82)

The Jacobi-Anger expansion,

eiz sin(θ) =
∞∑

n=−∞

Jn(z)einθ , (1.83)

where Jn(z) is the n-th Bessel function of the first kind, can be used to expand

H ′(t) = −J
L−1∑
x=0

∞∑
n=−∞

(
Jn(K/ω)a†x+1axe

inωt + H.c.
)

(1.84)

One can now time average the above Hamiltonian over one period of the driving to get
the zeroth order Fourrier component of H ′(t) in the moving frame:

Heff
′ = H ′0 =

1

T

∫ T

0

dtH ′(t) (1.85)

= −JJ0(K/ω)
L−1∑
x=0

(
a†x+1ax + H.c.

)
. (1.86)

When compared with Eq. (1.63) it becomes clear that it is the zeroth order contribution
to the expansion. Before it is justified that Heff = H ′eff , a quick observation with regard
to (1.63) is made: In fact, for an infinite lattice,

L−1∑
x=0

→
∞∑

x=−∞

, (1.87)
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periodic boundary conditions aL = a0, or hard wall boundary conditions a−1 = aL = 0,
the commutators of the Fourier components of H ′(t) [Eq. (1.52)]

V ′
(j)

= −JJj(K/ω)
L−1∑
x=0

a†x+1ax

V ′
(−j)

= −JJj(K/ω)
L−1∑
x=0

a†xax+1

(1.88)

vanish [H ′0, V
′(±j)] = [V ′(j), V ′(−j)] = 0. This implies that all higher order terms in the

expansion (1.63) must vanish and the effective Hamiltonian is exact. One can check that
by expanding the Bessel function up to the second order where it is consistent with the
expression (1.75).

Since W (t) is just a gauge transformation one can compose the transformation

R(t) = R′(t)W (t) , (1.89)

where R′(t) transforms the system in the moving frame into the frame of the effective
Hamiltonian of the moving frame. The time evolution operator becomes

U(te, ti) = R(t)†e−iH′eff(te−ti)R(ti) . (1.90)

This means that R(t) indeed determines the kick operator K(t) and that, as promised,
H ′eff = Heff . Using Eq. (1.64) yields in the moving frame

R′(t) = e−iK
′(t) (1.91)

where

K ′(t) =
iJ

ω

∞∑
n=1

Jn(K/ω)
L−1∑
x=0

[
a†x+1axe

iωnt − a†xax+1e
−iωnt

]
(1.92)

Here the method used in this example must, once more, be highlighted: the very helpful
trick of transforming the system into a moving frame with W (t) in Eq. (1.76). It will be
one of the main tools to derive effective Hamiltonians in this thesis. This trick allows for
either a non-perturbative treatment, or results in a clever partial resummation of (1.63).
The key is the commutator that appears in (1.80). In the next section this trick is used
extensively. If the inverse frequency expansion were to be derived starting with (1.96)
without the transformation into the moving frame, it must be ensured that for the lower
order corrections ω < K, so that the expansion is justified.

Another interesting feature of Heff in Eq. (1.86) is related to the prefactor J0(K/ω),
which modifies or renormalizes the tunneling amplitude J :

Jeff = JJ0(K/ω) (1.93)

For certain values of the driving parameters K and ω, the Jeff is zero (Fig. 1.3), which
means that tunneling is completely inhibited. In the context of ultracold quantum gases
in lattices, this effect is known as coherent destruction of tunneling [60–62, 70, 71].
Experimental realizations related to coherent destruction of tunneling can be found in
Refs. [63, 65, 72].
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Figure 1.3: Shown are the first four Bessel functions of the first kind. The zeroth Bessel
function renormalizes the hopping amplitude Jeff = JJ0(K/ω) for the modulation in Eq.
(1.71). The zeros of the Bessel mark the points where tunneling is inhibited, i.e. coherent
destruction of tunneling. The higher order Bessel functions appear in the renormalization
of the hopping for the driving in (1.101): Jeff = (−1)NJJN(K/ω). The orders correspond
to the condition K0 = Nω

1.3 Floquet engineering

In the previous section two examples of Hamiltonians with periodic variations were intro-
duced. The derivation of the respective effective Hamiltonians primarily served as a way
to familiarize the reader with various concepts such as the Floquet or effective Hamilto-
nian and the various gauge transformations. This part details how one can use periodic
manipulations of quantum systems to engineer a specific behavior. The end goal is the
generation of so called Peierls phases, which allow for the generation of artificial gauge
fields [1]. Their origin is explained in detail in the next chapter, here it suffices to mention
that Peierls phases eiφx,y accompany the hopping terms

H =
∑
〈x,y〉

(
Jxya

†
xaye

iφx,y + H.c.
)
, (1.94)

where Jxy is the hopping amplitude that connects the neighbors x, y in an arbitrary lattice.
To engineer these phases, modifications are introduced incrementally to the simple

driven one dimensional Bose Hubbard model of the previous section. This allows for
addressing each of the changes individually. Additionally, it retraces the chronology of
theoretical and experimental advances concerning these types of drivings for ultracold
atoms in optical lattices specifically.
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The first modification is the introduction of interactions into Eq. (1.71).

H(t) = HT +Hint + V (t) (1.95)

= −J
L−1∑
x=0

(
a†x+1ax + .H.c.

)
+
U

2

L−1∑
x=0

nx(nx − 1) +K cos(ωt)
L−1∑
x=0

xnx , (1.96)

where U is the on-site interaction energy. Because [Hint, V (t)] = 0 the gauge trans-
formation (1.76) can be used to calculate the zeroth order contribution to the effective
Hamiltonian by time averaging in the moving frame

H
(0)
eff =

1

T

∫ T

0

dtH ′(t) (1.97)

= J0(K/ω)HT +Hint . (1.98)

As shown in Fig. 1.3 there are values for which the tunneling is suppressed. This is what
the authors of Refs. [70, 71] proposed. As mentioned earlier, the effects of this modulation
were measured for example in the experiment reported in Ref. [65].

The result (1.98) is no longer non-perturbative. In the inverse frequency expansion
(1.63) the Fourier components of V ′(t) [(1.88)] no longer commute with

H ′0 = J0(K/ω)HT +Hint . (1.99)

because the interactions in Hint are present. This means that the effective Hamiltonian
in Eq. (1.98) is no longer exact and that Heff only constitutes a partial resummation of
the full inverse frequency expansion. The first correction to (1.98) due to the interactions
is according to (1.63)

H
(2)
eff =

UJ2

2ω2

∞∑
j=1

1

j2
Jj(K/ω)2

×
L−1∑
x=0

[
− 8nx(nx − 1) + 16nx+1nx

− 4a†x−1a
†
x+1axax − 4a†xa

†
xax+1ax−1

]
,

(1.100)

where the first term second line is a renormalized addition to the interactions and the
second term describes nearest neighbor interactions. The last line shows two correlated
hopping processes: Two particles hopping from site x to the adjacent sites and vice versa.

H
(0)
eff remains a good approximation as long as the frequency of the driving sets the

biggest energy scale ω > |εmax − εmin| where εmax and εmin are the biggest and smallest
quasienergies respectively. The demand ω > J, U is slightly weaker. This doesn’t eliminate
the possibility of multiple particle hole excitations (many-body excitations in general) but
it makes them unlikely and ensures that they contribute little in the inverse frequency
expansion (1.63). A very detailed discussion of this was given in Ref. [73] and these
processes will be commented on in greater detail in Section 1.4.

The last two Hamiltonians are already minimalist examples of Floquet engineering.
They show how to use a periodic drive to attain a new time-dependent effective system.
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The tunneling amplitude was modified by the driving, allowing for the localization of
particles. It is well known that the Bose Hubbard model has a quasi quantum phase
transition in one dimension ([74], more on that later). Depending on the filling and the
ratio of U and J , the system is either a Mott insulator or it has the characteristics of a
superfluid. The ability to tune the hopping amplitude in (1.98) allows the switch between
the two. This is a remarkable interplay between theoretical prediction and experimental
realization.

The next modification will help to produce Peierls phases. The first addition is a
constant tilt in (1.71). Experimentally this can be achieved by tilting the lattice in a
gravitational potential, or by a constant acceleration [75]

H(t) = −J
L−1∑
x=0

(
a†x+1ax + H.c.

)
+ [K0 +K cos(ωt)]

L−1∑
x=0

xnx . (1.101)

The consequences of this type of driving were discussed in Ref. [76] and experimentally
realized in Refs. [66, 77].

The effects of a constant tilt for an infinite chain (limits of the summation in (1.101)
are ±∞) will be briefly reviewed in the following. For ω = 0:

H0 = −J
∞∑

x=−∞

(
a†x+1ax + H.c.

)
+K0

∞∑
x=−∞

xnx . (1.102)

It has been established that the Hamiltonian H0 is diagonalizable [78] and resulting eigen-
states are the so called Wannier-Stark states. The single-particle orbitals that diagonalize
H0 are

c†y =
∞∑

x=−∞

Jy−x(2J/K0)a†x (1.103)

The completeness of the Bessel functions ([79], a special case of Neumann’s addition
theorem)

∞∑
x=−∞

Jy+x(κ)Jy′+x(κ) = δy,y′ (1.104)

guarantees that [cy, c
†
y′ ] = δy,y′ and [cy, cy′ ] = [c†y, c

†
y′ ] = 0. In terms of the cy the Hamilto-

nian H0 becomes

H0 = −
∞∑

y=−∞

εyc
†
ycy , (1.105)

where εy = yK0. The energy spectrum, customarily referred to as the Wannier Stark
ladder, is composed of equally spaced energy levels, that are K0 apart. For strongly
tilted lattices K0 � J the Wannier-Stark states (1.103) are highly localized, which means
that tunneling is inhibited. This is one of the reasons why it is difficult to observe
the Bloch oscillations of an electron in a crystal [80]. The Hamiltonian that describes
the electrons’ motion is very similar to (1.102) where an externally applied electric field
would correspond to the tilting term in (1.102). This leads to the following very non-
intuitive prediction: A strong electric field localizes the electrons instead of exciting Bloch
oscillations.
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To continue with the time-dependent problem, one can transform H(t) again with a
variant of (1.76):

W (t) = ei[K0t+K/ω sin(ωt)]
∑L−1
x=0 xnx , (1.106)

which changes the Hamiltonian (1.101) [Eq. (1.77)] into

H ′(t) = −J
L−1∑
x=0

(
a†x+1axe

i[K0t+K/ω sin(ωt)] + H.c.
)
. (1.107)

Applying the Jacobi Anger expansion (1.83) leads to

H ′(t) = −J
L−1∑
x=0

∞∑
n=−∞

(
Jn(K/ω)a†x+1axe

i(K0+nω)t + H.c.
)
. (1.108)

The time average determines the effective Hamiltonian. The additional tilt has an inter-
esting consequence: It can be calibrated to be resonant with the driving frequency

K0 = Nω , (1.109)

where N ∈ Z. With this one finds

Heff =
1

T

∫ T

0

dtH ′(t) (1.110)

= (−1)N+1JJN(K/ω)
L−1∑
x=0

(
a†x+1ax + H.c.

)
. (1.111)

This result is remarkable: In the effective Hamiltonian tunneling is restored. The reso-
nance condition (1.109) can be interpreted as follows: The periodic drive provides quanta
of energy Nω which are resonantly absorbed by the system. The localized states can use
this energy to bridge the gaps K0 in the Wannier-Stark ladder and reestablish tunneling
with Jeff = (−1)NJJN(K/ω) (Fig. 1.3). For N > 0 the tunneling is suppressed in the limit
of large frequencies K/ω � 1, which is markedly different to the coherent destruction of
tunneling discussed earlier. In the literature this is known as photo assisted tunneling [81]
(see Fig. 1.4). Having established the mechanism behind photo assisted tunneling, the
tool that will lead to the main idea behind the engineering of artificial gauge potentials
can finally be introduced.

The next incremental change to (1.101) is a phase of the modulation:

V (t) =
L−1∑
x=0

{
[K0 +K cos(ωt+ θ)]xa†x+1ax + H.c.

}
. (1.112)

Similar types of driving were discussed in Refs. [82–84]. In a ring it leads to the directed
transport of particles. Proceeding as before one can transform the system into a moving
frame with

W (t) = ei
∑L−1
x=0 [K0t+K/ω sin(ωt+θ)]xnx . (1.113)
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(a)

(b)

(c)

Figure 1.4: Illustration of photo assisted tunneling. Black bars represent the on site
energies in a lattice. (a) No lattice tilt, tunneling with amplitude J . (b) Tunneling is
inhibited by a constant tilt of the lattice K0. (c) Photo assisted tunneling: Through the
resonant absorption of Nω from the modulation (greyed out energy levels) tunneling is
reinstated with the renormalized hopping amplitude Jeff = (−1)NJJN(K/ω)

Again, to calculate the Hamiltonian in the moving frame, a differential equation involving
the appropriately modified version of (1.79) can be employed:

H ′(t) = −J
L−1∑
x=0

(
a†x+1axe

i[K0t+n(ωt+θ)] + H.c.
)
, (1.114)

Combined with the resonance condition K0 = Nω the effective Hamiltonian is

Heff = (−1)N+1JJN(ω/K)
L−1∑
x=0

(
a†x+1axe

iθN + H.c.
)
. (1.115)

This is essentially what was found before but with an additional phase accompanying the
hopping term. It is the advertised Peierls phase, named after his work in Ref. [85]. As
was discussed in Ref. [82], this result is surprising, since a shift of phase in the driving is
simply a shift of the origin in time. The authors proceed to explain that at some point the
driving field had to be turned on, and that event fixes a phase of the driving field. This
initial condition is “remembered” in the coherent evolution of the system, and hence has
real physical consequences. For ring (periodic boundary conditions) this leads to a ground
state with non-zero current and similarly for open boundary conditions the presence of a
phase θ will result in directed transport of particles. A simple way of understanding this
is to transform the system into momentum space

ax =
1√
L

L−1∑
l=0

akle
−iklxakl , (1.116)

akl =
1√
L

L−1∑
x=0

axe
iklxakl , (1.117)
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where

kl =
2π

L
l , l ∈ Z . (1.118)

After a bit of algebra the calculation concludes with

Heff = (−1)N+1JJN(ω/K)
L−1∑
x=0

2 cos(kl +Nθ)a†klakl . (1.119)

The addition of the Peirls phase in (1.115) shifts the minimum of the band. For most of
the work in this thesis the first Brillouin zone is chosen to be either [−π, π] or [0, 2π]. Both
choices are equivalent and since kl + 2π ≡ kl, the non overlapping intervals [−π, 0] and
[π, 2π] can be identified with each other. For θ = 0 the crystal momentum of the ground
states is either kl = 0 if N is even or kl = ±π if N is uneven. The term Nθ in (1.119)
shifts the ground state to momenta other than 0,±π, which explains the occurrence of
a non-zero current. Incidentally, in momentum space, the Bessel function flattens the
band relative to the unmodulated, non-tilted lattice, which is how coherent destruction of
tunneling appears in momentum space. Experimentally, this type of driving was studied
in Ref. [86] where they found the center of mass oscillations of a cloud of ultra cold atoms
in a driven optical lattice.

In summary: Despite the conceptually simple changes to the one dimensional Bose-
Hubbard model, it was shown how slight modifications to the potential drive allowed to
engineer precises changes to the tunneling amplitudes. Its control over the Peierls phases
is what makes Floquet engineering an especially powerful tool. Crucially, they are the
connection between the modulation of the lattice and the effect of gauge fields in Bose-
Hubbard models. In the next chapter on the shaking of optical lattices, more time is
spent on explaining this in detail.

The simple drive in (1.112) is not the only way to engineer Peirls phases. Just to give
a few examples: The use of resonant two photon Raman transitions [41, 87] was one of the
first proposed methods. This was studied experimentally by the authors of Refs. [88–91].
Another proposal involves the use of internal degrees of freedom of the trapped atoms [92]
which was implemented in [93]. A more comprehensive overview of the arsenal of related
theoretical and experimental techniques can be found in the Refs. [36, 42].

The above considerations are not limited to bosons. It is relatively straightforward
to adapt the above analysis to fermions. Most systems studied in the literature are also
not limited to one dimension. Most current research is geared toward two or more real or
even synthetic dimensions. More involved driving schemes could also be imagined, such
as

V (t) =
L−1∑
x=0

(
f(t, x)a†x+1ax + H.c.

)
. (1.120)

The transformation into the moving frame can be generalized to

W (t) = ei
∫ t
ϑ dτ

∑L−1
x=0 f(τ,x)xnx , (1.121)

For which the zeroth order contribution to the effective Hamiltonian is

Heff =
L−1∑
x=0

[
Jeff(x, ϑ)a†x+1ax + H.c.

]
. (1.122)
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with

Jeff(x, ϑ) =
1

T

∫ T

0

dt eiλ(x,ϑ,t) , (1.123)

where

λ(x, ϑ, t) =

∫ t

ϑ

dτ {x[f(x+ 1, t)− f(x, t)] + f(x+ 1, t)} . (1.124)

This opens up even more possibilities for band shaping. The authors of Ref. [94] used this
more general approach as a proposal to study the zeros of the Riemans zeta function. The
limits of this approach with regard to lattice shaking and the generation of homogeneous
magnetic fields is explained in the next chapter. As a final remark, it should be noted
that one can implement more complicated driving protocols by considering multiple dis-
crete steps with different lattice modulations. Further discussion of these possibilities is
included in the next chapter.

1.4 Heating

Heating in periodically driven interacting systems is not only of theoretical interest, it
is very relevant for determining the feasibility of experimental proposals. If the effective
Hamiltonian can only accurately describe the system dynamics on time scales that cannot
be observed, then its relevance for real world experiments would be severely limited. This
is of special importance for large systems and, in particular the thermodynamic limit
N,L → ∞. There are many examples of systems, for which it has been shown that in
this limit a periodic drive will eventually cause heating to infinite temperatures [95–99].

The heating mechanism of main concern in Floquet systems is caused by the absorption
of energy from the drive. In interacting systems many-body processes that are resonant
with the driving frequency can constitute one such an absorption channel. As pointed out
in Ref. [36], the Bose Hubbard model with potential driving and interactions serves as a
good example for illustrating this. Ref. [36] explains in detail how the Floquet Magnus
expansion [73] breaks down once the system is in the vicinity of avoided crossings [100] in
the quasienergy spectrum. For the sake of completeness the first few orders of the Floquet
Magnus [101, 102] expansion are given here

HF =
∞∑
i=0

H
(i)
F (1.125)

H
(0)
F =

1

T

∫ T+t0

t0

dtH(t) , (1.126)

H
(1)
F =

1

2!iT

∫ T+t0

t0

dt

∫ t

t0

dt′[H(t), H(t′)] , (1.127)

H
(2)
F =

1

3!i2T

∫ T+t0

t0

dt

∫ t

t0

dt′
∫ t′

t0

dt′′
(

[H(t),[H(t′), H(t′′)]]

+[H(t′′), [H(t′), H(t)]]
)
,

(1.128)

In the next paragraph the argument made in Ref. [36] is summarized in conjunction with
Refs. [73] and [100]. In a way similar to the discussion in Ref. [36], Fig. 1.5 shows the
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Figure 1.5: Quasienergy spectrum of (1.96) for four particles on four sites. The driving
parameters are ω = 20J and K = 2ω. The interaction U is changed in units of J . The
first Brillouin zone is ε/J ∈ (−10, 10). The quasienergies are displayed in the extended
zone scheme. They are clearly periodic with a period 20J . First avoided level crossing
with the Mott level ε/J ≈ 0 is visible at U/J ≈ 13. The more significant crossing appears
at U/J ≈ ω/J = 20.

quasienergy spectrum of a relatively small system of four particles of the Hamiltonian in
Eq. (1.96). The quasienergies were calculated by evaluating U(T, 0), after one period of
the driving. To calculate U(T, 0) the implementation of the explicit Runge-Kutta method
of order 8(5, 3) [103] was used. It is provided by the integrate module in Python’s scipy
library [104]. The spectrum is displayed in the extended zone scheme. Displaying it
this way has the advantage of displaying clearer origins of the quasienergy levels once
they start to wrap around the first Brillouin zone ε ∈ (−10J, 10J). For U/J . 1.6 the
quasienergies can be sorted into ground and excited states within their respective zones.
Once the highest level of the second Brillouin crosses into the first one this ordering
is no longer meaningful. For 1 < U/J < 10 the level that lies close to ε ' 0 is best
characterized by the Mott state, i.e. a configuration with one particle on each site.
This is to be expected for a strongly interacting system. The slanted levels clearly scale
linearily with U . They are thus easily identified with states that can be traced back to
those having particle hole excitations in the undriven Hamiltonian. The first few level
crossings U/J > 3 barely interfere with the Mott state since they are exact level crossings.
The first visible avoided crossing is visible at U/J ≈ 13. It involves the Mott level and
many levels featuring particle hole excitations. Since it is an avoided crossing, it is to be
expected that the underlying Floquet Hamiltonian strongly couples the Mott configuration
to configurations with particle hole excitations. As the author of Ref. [36] points out,
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this is where the Floquet Magnus expansion (1.125) and (1.63) starts to break down.
He asserts that the underlying perturbation theory of (1.125) (developed in Ref. [73])
requires a well ordered spectrum. Even though this ordering into ground and excited
states stops being strictly meaningful for smaller interaction strengths U/J < 13, the
coupling to configurations with higher particle hole excitations is small and interferes very
little with the Mott level. In this regime HF or Heff still offer good effective descriptions
of the system, i.e. the expansions (1.125) and (1.63) can be salvaged. The underlying
perturbation theory and the Floquet Magnus expansion respectively completely break
down once the coupling strengths between levels participating in a level crossing become
significant, which is exactly what happens at the avoided crossings in Fig1.5. The next,
much more significant avoided crossing appears once U/J = 20, i.e. where the drive is
resonant with the interaction strength. This is not only the reason behind the breakdown
of (1.125) but is also what is assumed to cause the heating to infinite temperatures. The
cause of heating to infinite temperatures is not settled in the scientific community. In
e.g. [105] the conclusion that the mixing of all available eigenstates of the unperturbed
Hamiltonian at the large avoided crossings is really an expression of quantum ergodicity is
contradicted by studying a one-particle problem with localization. An in-depth discussion
of the current state of this discussion is beyond the scope of this work.

For bigger and bigger systems the spectrum in Fig. 1.5 will become more and more
populated, which ultimately results in dense bands in the thermodynamic limit 2.

Despite the many-body resonances and the heating collapse of the inverse frequency
expansion, there are examples of systems, where the spectrum remains within the first
Brillouin zone [98] in the thermodynamic limit. Furthermore, even if heating occurs,
there is a pre-thermal regime in which Heff , HF accurately describe the systems evolution
[96, 107–110]. There is more evidence that the timescale of the pre-thermal regime grows
exponentially with ω [109]. Whether or not there is a usable frequency regime is of course
always limited by the approximations underlying the model. Increasing the frequency of
the driving might cause inter band transitions, which are not accounted for in the simple
Bose-Hubbard models of the previous sections.

As a takeaway message it should be noted that as long as the drive frequency ω >
|εmin− εmax| where the εmin/max are the biggest and smallest quasienergies of the spectrum
of the effective Hamiltonian, it will provide an adequate description of the system. For
large interacting systems this is still true for a reasonably long time as long as ω � U .

1.5 Summary

This chapter has aimed at providing a thorough introduction to Floquet theory for classi-
cal and quantum mechanical systems. A stability analysis of two specific examples of Hill’s
equation showed the elegance of Floquet theory in the context of time periodically varied
classical systems. Section 1.2 explained how both worlds, the classical and the quan-
tum mechanical, are linked by the monodromy matrix, which becomes the time evolution

2Closely related to the dense bands is the discussion around the adiabatic limit [106] in Floquet
systems. The question is whether an energy eigenstate will end up in a well-defined state once the drive
is slowly switched on and dense bands form. The authors of Ref. [106] argue that in general the formation
of bands make the adiabatic limit ill defined, but that is of no concern for most realistic scenarios of this
limitation.
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operator after one period of the variation. This relationship helps connect the abstract
math with concepts that are more common in physics, such as the Floquet Hamiltonian
and the effective Hamiltonian. The following section reviewed the approaches developed
in Refs. [57–59]. The most notable approach mentioned is the construction of the effec-
tive Hamiltonian, which allows for the systematic separation of the short and long term
dynamics. This characteristic expresses itself explicitly in the effective Hamiltonian’s in-
dependence from the initial time and the so-called “kick”-operators. In the review of the
effective Hamiltonian, many examples were provided, a pattern that continued through-
out Section 1.3 where, among other things, the use of Floquet engineering to generate
Peierls phases was explained. The chapter concluded with a brief discussion of heating,
an essential concern for proposals related to Floquet engineering.



Chapter 2

Artificial magnetic fields

2.1 Quantum simulation

The method of simulating one system with the help of another system is well established
and has long been used by physicists, engineers and architects. A notable recent fluid
dynamic example is the simulation of the hexagonal cloud formation on Saturn (see e.g.
[111]) with a laboratory model [112]. A remarkable example of simulation in civil engi-
neering is the U.S. Army Corps of Engineer’s physical model of San Francisco Bay [113].
It was completed in 1957 and was used to study the impact of two large dams in the
area. An intriguing example of simulation in architecture is the hanging chains Antoni
Gaudi used to model the structural design of the Sagrada Familia [114]. Nowadays, in the
realm of classical physics, real world models are often replaced by computer simulation.
This approach quickly fails in quantum physics due to the vast size of many-body Hilbert
spaces, even when the systems are relatively small. The Hilbert space of qubits scales
as 2N , with the number of bits N . Achievements in the simulation of quantum circuits
with classical methods of computations are with 45 qubits [115] and more recently with
49 qubits [116]. The size of the Hilbert space of N bosons on L lattice sites is

dimHN,L =

(
N + L− 1

L

)
. (2.1)

Even for a relatively small system of 38 particles on 38 sites it would take roughly twelve
zetabytes to store the coefficients of a state with single precision. This is roughly the
total annual cloud data traffic of 2018 [117]. Since real world quantum systems involve
many more particles, a more efficient means of analyzing larger systems would be very
useful. It is not only the size and the limits of classical computation that make quantum
simulation preferable. Another reason is that some quantum systems lie in a range of
parameters that are as impossible to study in a laboratory as Saturn’s atmosphere is to
scale on earth.

As noted in the previous chapter, the idea of quantum simulation was popularized by
Feynman [24]. The continuous advancement of experimental control over a diverse set
of quantum systems makes this a highly interesting and rapidly growing field of research
[118–122].

Roughly speaking, quantum simulation can be split into two approaches: Digital quan-
tum simulation and analog quantum simulation. In digital quantum simulation a quan-

39
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tum computer is used as a universal quantum simulator. To perform a simulation physical
states are encoded in quantum bits. Their evolution is then controlled subsequently ap-
plying quantum gates [123–125]. Refs. [37, 124, 126, 127] are often cited in this context
because, they appear to be promising platforms for scaling to meaningful system sizes.
Analog simulation is more in vein with the non quantum examples mentioned above: One
quantum system whose properties can be precisely controlled emulates another system
whose parameter regime lies out of reach. This is especially relevant for ultracold gases
[17, 40, 128, 129]. Superconducting circuits [38] and photonics [39] are used for both,
digital and analog simulation approaches. There also proposals for hybrid simulators
such as photons and polaritons [130] of a hybrid system consisting of photons and su-
perconducting qubits [131]. These are just a few examples and this list is by no means
comprehensive.

2.2 Artificial magnetic fields

The challenge at the center of this chapter is simulating the spectrum of electrons moving
on a lattice under the influence of a uniform magnetic field. The intricate fractal structures
that these spectra show are known as “Hofstadter Butterflies” [132, 133]. The parameter
that determines the visibility of the fine fractal features is the ratio (see e.g. [132])

α = Tcyclotron/Tqm =

(
a2m

2π~

)/(mc
eB

)
=

a2B

2π~c/e
(2.2)

where Tcyclotron is the period of the cyclotron orbit of a free electron with charge e subject
to a uniform magnetic field with strength B (c is the speed of light) and Tqm as the
period associated with the time it takes an electron with crystal momentum p = 2π~/a to
traverse a lattice spacing a. Once α is markedly different from zero, the fractal structures
in the spectrum become visible. Since lattice spacings in typical crystals are only a few
angstrom wide it takes enormous field strengths of the order B = 105T to achieve this.
This is in the range of field strengths encountered close to neutron stars. To create the
Hofstadter butterfly with electrons in a laboratory, lattices with larger spacings must be
used. For example in [134] they exploited moiré superlattices to make the Hofstadter
butterfly appear.

This is where ultra cold quantum gases present an opportunity. Compared to typical
condensed matter systems, their environment is much more easily manipulated by the
laser fields that hold them in place. The caveat is of course, that neutral atoms only
interact weakly with magnetic fields. This shortcoming can be overcome with Floquet
engineering, because it can be used to engineer an artificial magnetic field. In our work
on realizing uniform synthetic magnetic fields by periodically shaking an optical square
lattice [1] we made a detailed proposal on how a periodic modulation can be used to
simulate a magnetic field with ultra cold atoms. This chapter is devoted to reporting on
this work in more detail.

The field of research investigating the generation of artificial magnetic fields and artifi-
cial gauge fields in general, is steadily growing. This is not surprising given their ubiquity
and importance in fundamental physics. They are most prominently featured classical
electrodynamics. The concept of gauge invariance and its connection to the gauge fields
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is indeed so fundamental, that it is one of the unifying features when physics is described
on both cosmological scales and those of elementary particles. The modern mathematical
framework of fiber bundles [135] elegantly connects these concepts to the Berry phase
[136], which is a geometric phase that plays a major role in the quantum Hall effect [137]
and more generally in the description of the topological aspects of matter. The possibility
of developing a tool-box to access these phases makes this research very enticing, since
it has the potential to open the doors to hitherto inaccessible or uncontrollable energy
scales. In addition to the cold atoms systems [41, 90, 138–145], (some recent reviews
[42, 146–148]), other platforms for simulating these phases include light in photonic lat-
tices [149–153], phonons in ion traps [154, 155], microwave networks [156], sound and light
in cavity optomechanics [157], and mechanical systems [158, 159]. A detailed review of
these efforts can be found in [160].

This chapter mostly focuses on the shaking of optical lattices [139–142, 145] as a
method for creating uniform artificial magnetic fields. In the section on Floquet engineer-
ing (1.3) in the previous chapter, it was briefly explained how the periodic acceleration of
a lattice can be used for engineering the tunneling terms of a lattice Hamiltonian. In this
chapter, this method will be studied in much greater detail. Shaking is one of the simplest
methods, because it does not require the use of additional lasers (see Section 2.4). It also
does not require any knowledge of the internal structure of the atoms beyond trapping
and cooling them, and is thus a very general method that can be applied to different
species of fermions and bosons alike. The driving schemes in this chapter are based on
resonant shaking [90, 139, 142–144, 155, 161]. As in the examples in the previous chapter,
these schemes involve some resonance of the shaking frequency with a static tilt. This
chapter presents both, uniform and split shaking schemes and highlights some of their
advantages and disadvantages.

Another method of generating and controlling Peierls phases involves two photon
Raman transitions. A laser-induced tunneling scheme was employed e.g. in [90, 143, 144].
The effect of the additional Raman lasers can be seen as a moving lattice on top of a static
one [1]. One can also make use of the internal structure of atoms to generate the relevant
phases [41, 92, 138]. The generation of a magnetic field is not limited to ultracold atoms in
optical lattices, creating Peierls phases in photonic crystals is detailed in [151, 162, 163].

The rest of this chapter is structured as follows: First the effect of a magnetic field
on a charged particle in a lattice is explained in detail. Then a thorough account of
the transformations of the laboratory frame into the moving frame of the shaking lattice
is given. After that the observation that uniformly shaken lattices are not sufficient to
simulate a homogeneous magnetic field will be discussed. Then more elaborate schemes
to compensate for the shortcomings of the uniform shaking schemes are presented. The
more elaborate schemes are evaluated with respect to their performances. Finally, the
moving lattice method is contrasted with the shaking method.

2.3 Peierls phases and magnetic fields

In this section the effect of a magnetic field on a charge confined to a lattice will be
reviewed. A charge is coupled to a magnetic field via the standard method of minimal



42 CHAPTER 2. ARTIFICIAL MAGNETIC FIELDS

coupling. The magnetic field and the vector potential are related by

B(x) = ∇×A(x) (2.3)

The Hamiltonian for a charge exposed to a lattice potential in the presence of a magnetic
field is thus

H(q) =

∫
dxΨ†(x)

{
1

2m
[p− qA(x)]2 + V (x)

}
Ψ(x) , (2.4)

Ψ(x) is the field operator in position space with

[Ψ(x),Ψ(x′)] = [Ψ†(x),Ψ†(x′)] = 0 , [Ψ(x),Ψ†(x′)] = δ(x− x′) (2.5)

and the lattice potential is spatially periodic V (x + a) = V (x) where a is some lattice
vector. The integration, if not otherwise indicated, encompasses the crystal volume. To
establish the link between the tight-binding approximation of this Hamiltonian and the
regular tight-binding approximation for H(0), the latter will be reviewed first.

The regular tight binding approximation can be found by expanding the field operators
into Wannier states [22]

Ψ(x) =
∑
j

w(x− xj)aj , (2.6)

where the sum runs over all lattice sites xj. and [aj, ak] = [a†j, a
†
k] = 0 and [aj, a

†
k] = δjk.

The Wannier functions are defined as (see e.g. [164])

w(x− xj) =
V

(2π)3

∫
BZ

dkψ0k(x)eik·xj . (2.7)

where the ψ0k(x) are the Bloch functions belonging to the lowest lying Bloch band, V is
the volume of the unit cell in the lattice and BZ refers to the first Brillouin zone. The
energies involved are assumed to be small, so that no mixing with higher bands occurs.
This justifies dropping the band index. The tight binding approximation is then

H(0) =
∑
〈j,k〉

Jjka
†
jak +

∑
j

εjnj (2.8)

where the first sum runs over all neighbors 〈j, k〉 and it is assumed that due to the strong
localization of the Wannier orbitals long range tunneling no longer occurs.

Jjk =

∫
dxw(x− xj)

∗
[

p2

2m
+ V (x)

]
w(x− xk) , (2.9)

εj =

∫
dxw(x− xj)

∗
[

p2

2m
+ V (x)

]
w(x− xj) . (2.10)

In order to accommodate the vector potential one can choose a different local gauge of
the Wannier orbitals and expand the field operator according to

Ψ(x) =
∑
j

w(x− xj)e
iq
∫ x
xj

dx′·A(x′)
aj (2.11)
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Inserting this expansion into H(q) then modifies the hopping amplitudes

Jjk(q) =

∫
dxw(x− xj)

∗

× e−iq
∫ x
xj

dx′·A(x′)
{

[p− qA(x)]2

2m
+ V (x)

}
e

iq
∫ x
xk

dx′·A(x′)

× w(x− xk) .

(2.12)

The exponential can be commuted with the momentum operator by using

pe
iq
∫ x
xj

dx′·A(x′)
= e

iq
∫ x
xj

dx′·A(x′)
[p + qA(x)] (2.13)

which eliminates the vector potential in the parenthesis in (2.12). Combining the remain-
ing exponentials yields

Jjk(q) = eiq
∫ xj
xk

dx′·A(x′)

∫
dx eiq

∮
γ dx′·A(x′)w(x− xj)

∗
[

p2

2m
+ V (x)

]
w(x− xk) (2.14)

where the path γ : xj → x → xk → xj. It is assumed that the flux encapsulated by this
path vanishes, since it assumed that A(x) does not vary much on the scale of a lattice
site. Under this assumption, the on-site energies εj remain unchanged. Finally it can be
shown that

Jjk(q) = eiq
∫ xj
xk

dx′·A(x′)Jjk (2.15)

= eiφj,kJjk (2.16)

The phases

φj,k = iq

∫ xj

xk

dx′ ·A(x′) (2.17)

are called the Peierls phases and they are the key ingredient to describe the effect of a
magnetic field on a charge in a lattice. The substitution

a†jak = Tjk → Tjke
iφj,k (2.18)

is commonly reffered to as the Peierls substitution [132]. With this change, the tight
binding Hamiltonian becomes

H(q) =
∑
〈jk〉

Jjka
†
jake

iφj,k +
∑
j

εjnj (2.19)

In the following the considerations above will be applied to a square lattice. In the
calculation it is assumed that the on-site potential and the hopping amplitude is negative
and constant. The tight binding model then becomes

HH = −J
∑
j,k

(
a†j,k+1aj,ke

iθyj,k + a†j+1,kaj,ke
iθxj,k + H.c.

)
. (2.20)

This is the famous Harper-Hofstadter Hamiltonian. Note that instead of summing over
neighbors, the index j now explicitly indicates horizontally aligned sites (x-direction) and
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k vertically aligned ones (y-direction). The Peierls substitution for the square lattice is
given by

â†j+1,kâj,k = T̂ xj,k −→ T̂ xj,k e
iθxj,k , (2.21)

â†j,k+1âj,k = T̂ yj,k −→ T̂ yj,k e
iθyj,k (2.22)

and the phases are (see Eq.(2.17))

θxj,k = q

∫ xj+1,k

xj,k

dx ·A(x) , (2.23)

θyj,k = q

∫ xj,k+1

xj,k

dy ·A(x) , (2.24)

where dx(dy) indicates integration along the x(y)-direction. It is sometimes desirable to
connect both the Peierls phases and the vector potential to a manifestly gauge invariant
quantity. It’s common to choose a closed loop to determine the flux

Φγ =

∫
S

B · dS =

∮
γ

A(x) · dl , (2.25)

where Φγ is the flux passing through the surface S which is bounded by the path γ.
A characteristic flux increment in the lattice is the flux per plaquette of the lattice. It
is given by the accumulated phase of a particle traveling counter clockwise around one
plaquette of the lattice (Fig. 2.1).

Φ(j, k) = θxj,k + θyj+1,k − θxj,k+1 − θxj,k . (2.26)

Since the goal of this chapter is to present a way to generate Peierls phases through
shaking, and since the phases are not themselves gauge invariant, the flux is a good way
to characterize the synthetic field independent of the gauge.

Figure 2.1: The accumulated phase of a particle looping around a plaquette of the lattice
defines the flux per plaquette Φ.
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Figure 2.2: Hofstadter Butterfly. Energy spectrum of a charge on a square lattice for
different values of the flux Φ with 2000× 2000 sites and periodic boundary conditions in
x- and y-directions. For |Φ| > 2π the spectrum repeats itself.

Additionally, theses phases are intended to simulate a uniform magnetic field. Two
suitable choices for the vector potential are the symmetric gauge A(x) = B/2(−y, x, 0) or
the Landau gauge A(x) = −B(y, 0, 0). Both of them generate a uniform magnetic field
orthogonal to the lattice plane. The simplicity of the Landau gauge makes it the most
suitable to be simulated through shaking. The phases in this gauge are

θxj,k = Φk , θyj,k = 0 . (2.27)

A particle moving along the x-direction picks up a y-dependent phase. Movement in
the y-direction does not change the phase. In Fig. 2.2 the famous Hofstadter butterfly is
shown. It displays the spectrum of the Harper-Hofstadter Hamiltonian (2.20) for a uniform
magnetic field orthogonal to the lattice for a range of Φ. Periodic boundary conditions in
both x- and y-direction were assumed. The spectrum repeats once |Φ| > 2π, which can
be seen in e.g. (2.27).

2.4 Lattice acceleration

Now the effects of a time dependent acceleration of the lattice in the x-direction is con-
sidered. There are various ways of achieving this experimentally: Either shaking can
be generated through the introduction of the variation of a frequency difference in two
counter propagating lasers with the help of acousto-optic modulators [63, 65, 66, 69], or
if the lattice is created by reflection of a mirror, the mirror can be moved physically by
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a piezo actuator [67, 68, 145]. In the rest frame of the lattice the periodic acceleration
results in an inertial force. This section is dedicated to the discussion of the emergence
of the inertial force. More specifically the focus will lie in motivating the transformations
that take the system from the laboratory frame into the rest frame of the lattice. This
section is based on the appendix in [1].

In [165] and [166] a unitary representation of the Galilean line group is constructed.
This is the starting point of a many-body generalization. In [167] a summary of these
transformation rules can be found. The classical Hamiltonian of a single-particle with
mass m in one dimension, subject to a lattice potential that is shifted by the general
displacement d(t), is

H(t) =
p2

2m
+ V [x− d(t)] (2.28)

The Galilean coordinate transformation into the rest frame of the lattice is

x′ = x− d(t) , p′ = p−mḋ(t) , (2.29)

The Hamiltonian in the accelerated frame then becomes

H ′(t) =
p′2

2m
+ V (x′) +mx′d̈(t) +

m

2
ḋ(t)2 +md(t)d̈(t) . (2.30)

As expected, the potential no longer depends on time and an inertial force term mx′d̈(t)
appears. The last two terms do not couple to either p′ or x′ and represent a time dependent
shift of the overall energy. In the following the representation of the Galilean line group
derived in [165] is used to implement the transformation for a quantized version of (2.28):

Ûd(t) := e−i(m2 ḋ(t)d(t)+mḋ(t)x̂)eid(t)p̂ . (2.31)

Ûd(t) is a unitary operator and p̂ and x̂ have the canonical commutation relations [x̂, p̂] = i.
To avoid confusion between the classical and the quantum mechanical variables, hats were
introduced. Ûd(t) is interpreted as the composition of a position shift by d(t) followed by
the shift of the momentum. The Hamiltonian in the moving frame is

Ĥ ′(t) = i
[
∂tÛd(t)

]
Û †d(t) + Ûd(t)Ĥ(t)Û †d(t) (2.32)

=
p̂2

2m
+ V (x̂) +md̈(t)x̂+

m

2
d̈(t)d(t) (2.33)

The Hamiltonian in (2.30) can be converted into the one above by subtracting the total
time derivative

d

dt

m

2
d(t)ḋ(t) . (2.34)

The authors of [168] argued that the last term in (2.33) is dependent on the cocycle
representation and hence does not posses any physical significance. It should be noted
however, that the authors of [169] argue that even for non-relativistic systems, terms that
depend on the mass can potentially cause a phase difference if one keeps track of the
proper time of two different systems. Without going into the subtleties of that discussion
and for the sake of completeness the term is kept as is for now.
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It is possible to adapt the transformation Ûd to a many-body quantum formulation.
In the continuum the many-body Hamiltonian of the shaken lattice is:

H(t) =

∫
dxΨ†(x)

[
−∇

2

2m
+ V (x− d(t)ex)

]
Ψ(x) , (2.35)

Hats were not used to indicate the quantum nature of e.g. the field operators Ψ. This
helps to keep the notation consistent with the previous section and to sets the notation
apart from the single-particle description. As before, the commutation relations in (2.5)
hold. The generalization of (2.31) to a many-body formulation is

Ud(t) = U1(t)U2(t)U3(t) (2.36)

where

U1(t) = e−im
2
ḋ(t)d(t)

∫
dxΨ†(x)Ψ(x)

U2(t) = e−imḋ(t)
∫

dxΨ†(x)xΨ(x)

U3(t) = eid(t)
∫

dxΨ†(x) 1
i
∂xΨ(x) .

(2.37)

Transforming the Hamiltonian in Eq. (2.35) results in

H ′(t) = i[∂tUd(t)]U
†
d(t) + Ud(t)H(t)U †d(t) (2.38)

=

∫
dxΨ†(x)

[
−∇

2

2m
+ V (x) +md̈(t)x+

m

2
d̈(t)d(t)

]
Ψ(x) . (2.39)

This equation is consistent with the single-particle result in Eq. (2.33). Assuming a square
two dimensional lattice, in the tight binding approximation the above Hamiltonian is
(2.6)-(2.8)

H(t) = H0 +Hs(t) , (2.40)

where

H0 = −J
∑
j,k

(a†j,k+1aj,k + a†j+1,kaj,k + H.c.) , (2.41)

Hs(t) =
∑
j,k

[
jmd̈(t) +

m

2
d̈(t)d(t)

]
nj,k (2.42)

where J was defined in (2.9). As before the lattice spacing was kept at a = 1. From now
on the last term of Hs(t) is dropped, since for a single particle it only serves to contribute
a global time dependent phase. This leaves the inertial term,

Hs(t) =
∑
j,k

jmd̈(t)nj,k (2.43)

which grows linearily along the x-direction of the lattice.
It is interesting to note that when taken by itself U2 in (2.37) only regauges the

momentum. This part of the transformation is renamed

W (t) = U2(t) (2.44)

= e−imḋ(t)
∫

dxΨ†(x)xΨ(x) (2.45)
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since it plays the exact same role as the gauge transformation (1.76). To show its full
effect its inverse is applied, i.e. a shift of the momentum back into the laboratory frame:

H ′′(t) = i [∂tW (t)]W †(t) +W (t)H ′(t)W †(t) (2.46)

=

∫
dxΨ†(x)

[
1

2m
[i∇+mḋ(t)ex]

2 + V (x) +
m

2
d̈(t)d(t)

]
Ψ(x) . (2.47)

In this frame the connection between the acceleration, encoded in the lattice displacement
d(t), and a magnetic field is made explicit. Without the last term, the above Hamiltonian
is just a version of (2.4) with a vector potential ḋ(t)ex, which couples to the mass of the
particle. It is this term that makes shaking a viable contender for the simulation of a
magnetic field.

Lattice shaking

In the previous paragraphs the effect of lattice acceleration on the rest frame of the lattice
was explained in detail. In [1] shaking does not soley refer to a periodic displacement,
but is rather more general. Apart from a periodic displacement it also features a constant
acceleration and the temporal phase of the driving is allowed to vary in the y-direction.
The introduction to Floquet engineering (Section 1.3) explained in detail the process of
how a sinusoidal drive in combination with a constant acceleration causes a renormal-
ization of the hopping amplitude [see e.g. (1.119)] and an accompanying phase. As will
be explained later, unless the temporal phase of the drive is allowed to vary, the Peierls
phases will end up uniform and the flux per plaquette (2.26) will vanish. With these
assumptions the Hamiltonian in the shaking frame is

H ′(t) = H0 + V (t)

= H0 +
∑
j,k

j[K0 + f(ωt+ θk)]nj,k , (2.48)

K0 corresponds to a static tilt, and f [ω(t + T )] = f(ωt) is a T periodic driving function
with ω = 2π/T . A comparison of Eq. (2.48) with Eq. (2.43) reveals that f(ωt) is the
time dependent contribution to the acceleration of the displacement d(t). Thus f(ωt) is
associated with the inertial force resulting from shaking the lattice. H0 is the same as the
one in (2.42) . Just as in the section on Floquet engineering it can be used as a starting
point to derive a time independent effective Hamiltonian. Also, as was explained above,
the constant tilt is not necessarily generated by acceleration. The same effect can be
achieved in a gravitational field gradient [86], a magnetic gradient [144] or by applying a
dipole potential [143].

With this choice of the displacement md̈(t) = K0 + f(ωt+ θk) the inverse momentum-
shift operator in (2.45) is

W (t) = ei
∑
j,k[K0t+F (ωt+θk)−F (θk)]jnj,k , (2.49)

where

F (ωt) =

∫ t

0

dt′ f(ωt′) (2.50)

is identified as the velocity of the shaking.
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2.5 Sinusoidal shaking

The following represents a simple continuous shaking scheme:

f(ωt) = K sin(ωt) , K0 = Nω . (2.51)

Aspects of this scheme were already discussed in the section on Floquet engineering, albeit
only in one dimension. The effective Hamiltonian (1.119) has renormalized tunneling
amplitudes in x-direction Jeff = JJN(κ) where κ = K/ω and a hopping term that was
accompanied by a phase exp(iφ).

In two dimensions, the additional degree of freedom θk will introduce some important
qualitative additions to the derivation of the effective Hamiltonian. These additions will be
clarified in the next few paragraphs. Just as in the section 1.3 the Hamiltonian (2.48) can
be transformed into a moving frame. As explained in Section 2.4, the transformation into
the moving frame (2.49) is a momentum shift that will cause the appearance of Peierls
phases in the transformed lattice Hamiltonian [(2.45) + tight binding approximation].
Together with the explicit form of the shaking (2.51), the momentum shift operator (2.49)
that shifts the momenta back into the lab-frame is

W (t) = ei
∑
j,k jnj,k{Nωt−κ[cos(ωt+θk)−cos(θk)]} (2.52)

Using the formalism developed in section 1.3, the transformed Hamiltonian [see e.g. from
Eq.(1.77) onward] is

H ′(t) = H ′x(t) +H ′y(t) (2.53)

H ′x(t) = −J
∑
j,k

a†j+1,kaj,kfx(t; j) + H.c., (2.54)

H ′y(t) = −J
∑
j,k

a†j,k+1aj,kfy(t; j, k) + H.c., (2.55)

fx(t; k) = exp
(

i {Nωt− κ[cos(ωt+ θk)− cos(θk)]}
)
,

fy(t; j, k) = exp
(
− i jκ{[cos(ωt+ θk+1)

− cos(θk+1)]− [cos(ωt+ θk)− cos(θk)]}
)
.

(2.56)

Shifting the sin(θ) in (1.83) by π/2 yields the Jacobi-Anger expansion

eiz cos(θ) =
∞∑

n=−∞

inJn(z)einθ . (2.57)

Using this expansion in (2.56) and averaging over one period of the driving will result in
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the effective Hamiltonian

Heff = Hx
eff +Hy

eff (2.58)

= −Jxeff

∑
j,k

a†j+1,kaj,ke
−iNθkeiκ cos(θk) + H.c.

−
∑
j,k

Jyeff(j, k)a†j,k+1aj,ke
ijκ[cos(θk+1)−cos(θk)] + H.c.,

(2.59)

Jxeff = JJN(κ),

Jyeff(j, k) = JJ0

[
2jκ sin

(
θk+1 − θk

2

)]
, (2.60)

Because of the phases accompanying the tunneling terms this already looks promising.
This is a necessary condition for the simulation of a uniform magnetic field. The above
Hamiltonian allows for the direct computation of the flux per plaquette as defined in
(2.26)

Φ(j, k) = −Nθk + κ cos(θk) +Nθk+1 − κ cos(θk+1)

+ (j + 1)K0

[
cos(θk+1)− cos(θk)

]
− jK0

[
cos(θk+1)− cos(θk)

]
= N (θk+1 − θk) ,

In general this does not have to be a uniform flux. The Landau gauge (2.27) can be
emulated by choosing

θk = αk (2.61)

since θk, the temporal off-set of the shaking between different rows of the lattice, is a free
parameter. With this choice, the flux per plaquette

Φ = αN (2.62)

is uniform. The parameter with which an experimenter would control the field strength is
α. It must be noted, that the sinusoidal shaking scheme produces a reasonable effective
Hamiltonian within the constraints of the tight binding approximation. It does not suffer
from potential divergences due to interactions and is an appropriate description of the
system for large frequencies as long as ω does not excite transitions between higher lying
Bloch bands.

The sinusoidal driving scheme was originally proposed in [139] and it does indeed
generate a uniform flux. A simple scheme to generate the a synthetic uniform magnetic
field would have been found had it not been for the non-uniform hopping amplitudes in
(2.59). For the field to be truly uniform, the effective tunneling amplitudes Jx,yeff have to be
uniform as well. While this is true for Jxeff , Jyeff is, however, strongly position dependent,
as displayed in Eq.(2.60) after inserting (2.61). In Ref. [170] the authors clarified, that
this method is only useful for a limited region around the origin of the lattice, where the
non-uniformity is small.
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In Ref. [1] we argue that this limitation cannot be overcome by using other forms of
continuous driving schemes, such as the sinusoidal one explained above. In the next few
paragraphs, this point will be reiterated. The goal is to prove that a non-zero uniform
magnetic flux cannot coexist with uniform magnitude of effective hopping amplitudes,
when considering a Hamiltonian with a periodic driving such as that shown in Eq.(2.48).
The Hamiltonian is made a bit more concise by writing

Ĥlatt(t) = Ĥ0 +
∑

jD(t, k)n̂j,k . (2.63)

If D(t, k) were dependent on j, shaking would no longer be an adequate description of
the lattice manipulation. The unitary transformation in Eq. (2.49) is

W (t) = ei
∫ t
0

∑
j,k jD(t′,k)n̂j,kdt′ . (2.64)

The transformed Hamiltonian becomes

H ′(t) = −J
(∑

j,k

f ′x(t; k)a†j+1,kaj,k + f ′y(t; j, k)a†j,k+1aj,k + H.c.

)
(2.65)

where

f ′x(t; k) = ei
∫ t
0 D(t′,k)dt′ (2.66)

f ′y(t; j, k) = ei
∫ t
0 j[D(t′,k+1)−D(t′,k)]dt′ . (2.67)

Again, the effective Hamiltonian is defined as H ′eff = 1
T

∫ T
0
Ĥ ′(t)dt. The following will show

that uniformity of the magnitude of the effective hopping implies that the magnetic flux
is zero everywhere. An important assumption for this statement is the time independence
of |J |. This assumption is implicit in Ĥ0 of Eq. (2.48), which is a static tight-binding
Hamiltonian with constant tunneling matrix elements [Eq. (2.42)].

Just as in Ref. [1], the focus will lie on the hopping matrix elements in the y-direction
(this was the issue in Ref. [170]). To that extent, the squared modulus of the time-averaged
(possibly complex), dimensionless effective hopping amplitude is considered

C = |Jyeff(j, k)|2 /J2 (2.68)

=
1

T 2

∫ T

0

∫ T

0

eij[G(t,k)−G(t′,k)]dtdt′ , (2.69)

where J is the (constant and uniform) magnitude of the hopping energy in the undriven
Hamiltonian and

G(t, k) =

∫ t

0

[D(t′, k + 1)−D(t′, k)]dt′ . (2.70)

In this section the following condition will be proven: if C as defined in (2.69) is inde-
pendent of j, k, then the magnetic flux of the time-averaged driven Hamiltonian must be
zero.
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If Eq. (2.69) is true for all j with C constant, then it must be true in particular for
j = 0. This implies that C = 1. If j = 2q , q ∈ Z\0, then from Eq. (2.69) follows

1 =
1

2T 2

∫ T

0

∫ T

0

(
ei2q[G(t,k)−G(t′,k)]

+e−i2q[G(t,k)−G(t′,k)]
)

dtdt′
(2.71)

=
1

T 2

∫ T

0

∫ T

0

cos
(

2q[G(t, k)−G(t′, k)]
)

dtdt′

=
1

T 2

∫ T

0

∫ T

0

×[
1− 2 sin2

(
q[G(t, k)−G(t′, k)]

)]
dtdt′ ,

and thus

0 =

∫ T

0

∫ T

0

sin2
(
q[G(t, k)−G(t′, k)]

)
dtdt′ . (2.72)

The integrand in the above equation is positive and the last equation only holds under
the condition

G(t, k)−G(t′, k) = πl(k) , (2.73)

where l(k) ∈ Z. Differentiating with respect to t leads to

D(t, k + 1)−D(t, k) = 0 . (2.74)

Therefore it can be concluded that D(t, k) = D(t) must be independent of k. This means
that all the Peierls phases vanish and hence the magnetic flux is zero. In conclusion
it has been shown that a uniform mass implies a zero flux, and thus a non-zero flux is
incompatible with a uniform mass in this simple but general shaking scheme. Thus, it is
clear, that more involved driving protocols are needed to generate an artificial uniform
magnetic field. This will be investigated in the next section.

2.6 Split driving

In this section, more involved driving schemes will be presented. They circumvent the
limitations created by the non-uniform tunneling amplitudes outlined above. In our work
[1], several schemes in which one cycle of the driving is split into multiple operations were
proposed. This avoids the non-uniformity caused by the continuous drive. Schemes of
this type are aptly named “split driving” schemes. A thorough formalism of such schemes
was developed in [57].

2.6.1 Two-step split driving

In the following the findings of Refs. [161] and our work in [1] are summarized. The
two steps in their shaking protocol are: 1. Sinusoidal shaking of the system as in Eq.
(2.48) sinusoidally but with the complete suppression of tunneling in the y-direction. This



2.6. SPLIT DRIVING 53

Figure 2.3: Two-step split driving. In the first step the system is evolved over M periods
T with the sinusoidally shaken Hamiltonian Hx(t) (2.48)(tunneling in the y-direction
suppressed), and then it is evolved with Hy(t) (no shaking, tunneling in the x-direction
suppressed). This cycle repeats after τ = 2∆t, which is one period of the scheme.

can be accomplished by changing the lattice potential. 2. Reestablishing the tunneling
in the y-direction, halting the shaking and suppressing the tunneling in x-direction. A
driving protocol of this type breaks one of the assumptions made in the derivation of the
impossibility of having uniform flux and uniform hopping at the same time: The kinetic
energy is now time dependent.

First, in order to derive the effective Hamiltonian, one period of the driving is redefined
as τ = 2∆t = 2MT , where M ∈ Z and ∆t = MT is the duration of each of the split
driving steps. This is illustrated in Fig. 2.3. The time-evolution operator over one period
of the cycle τ is given by

U(τ) = UyUx, (2.75)

Again, Ux generates the time-evolution of the shaken system without tunneling in the y-
direction and Uy without tunneling in the x-direction and shaking. The effective Hamilto-
nian during the first step of the cycle and hence the time evolution is given by Eq. (2.59)]:

Ux = e−i∆tHx
eff . (2.76)

With neither shaking nor tunneling in the x-direction the evolution in the second step is

Uy = e−i∆tHy ,

Hy = −Jy
∑
j,k

a†j,k+1aj,k + H.c. (2.77)

With the use of the Baker-Campell-Hausdorff (BCH) formula both steps in (2.75) can be
combined into a single approximate evolution over the period of one cycle τ :

U(τ) = e−i∆tHye−i∆tHx
eff ' e−i∆t(Hy+Hx

eff) (2.78)

= e−iτHsplit
eff , (2.79)

where τ = 2∆t and the new split effective Hamiltonian was introduced

Hsplit
eff = −Jxeff/2

∑
j,k

a†j+1,kaj,ke
iNθke−iκ cos(θk) − Jy/2

∑
j,k

a†j,k+1aj,k + H.c. (2.80)
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The above approximation is the first order term in ∆t in the Trotter expansion of

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · · , (2.81)

where
eAeB = eC . (2.82)

As long as ∆t is small enough this approximation is justified. For details see e.g. Ref. [57].
The split effective Hamiltonian Hsplit

eff no longer possesses the non-uniformity of the
tunneling. Both Jxeff and Jy are independent of the lattice coordinates and since Jy is a
free parameter the choice Jxeff = Jy can be made. The problem now is that the flux is no
longer uniform. Calculation of the flux per plaquette [Eq.(2.26)] results in

Φ(j, k) = N (θk+1 − θk)− κ [cos(θk+1)− cos(θk)] .

= Nα− κ {cos[(k + 1)α]− cos(kα)} , (2.83)

where the choice θk = αk was made once again. The non-uniformity caused by

κ {cos[(k + 1)α]− cos(kα)} (2.84)

is bounded by κ and hence can be controlled and made small. In Fig. 2.4 the quasienergies
εn of the fully time dependent system are plotted. As explained in Section 1.2 of Chapter 1
the εn can be calculated by taking the natural logarithm of the eigenvalues of (2.75) 1.
In Ref. [1] the first resonance K0 = ω was examined and open boundary conditions were
chosen. Fig. 2.4 shows that small amplitudes of the driving parameter κ = 0.2 reproduce
the spectrum of the Harper-Hofstadter Hamiltonian (2.20). Since the system is quite
small and because edges of the lattice are present, the fractal structures are much less
pronounced than in Fig. 2.2. To make the wings of the butterfly appear more clearly,
the quasienergies of the bulk and edge states were colored differently. Bulk states are
marked with violet dots and edge states with orange ones. An edge state is considered to
be any state, that has more than 50% of its weight on the edge of the lattice. The edge is
taken to be two sites thick. In the present work the system size has been increased from
8 × 8 in Ref. [1] to 16 × 16 sites. This makes the butterfly more recognizable. Once the
magnitude of the driving parameter κ increases the spectrum becomes visibly deformed
and, as can be seen in Fig. 2.4 for κ = 0.8, the spectrum is severely distorted due to the
non-uniformity of the flux.

In practice, being confined to small values of κ means that both Jxeff and Jyeff are small
(see e.g. J1(κ) in Fig. 1.3). This in turn implies that the system’s dynamics is slow and
the effective Hamiltonian has a relatively tight spectrum. This means lower temperatures
are required to resolve the fine gaps. The next scheme will omit this short-coming by
introducing two more steps in the driving procedure.

2.6.2 Four-step split driving

The impetus of this section is to present a solution for the removal of the inhomogeneous
flux caused by (2.84) in (2.83). Two key insights helped to accomplish this in Ref. [1].

1The data for Fig. 2.4 was created with the implementation of the explicit Runge-Kutta method of
order 8(5, 3) [103] provided by the integrate module of python’s scipy library [104].
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Figure 2.4: Quasienergies εn for a sinusoidal split driving. (a) Weak driving, κ = 0.2,
The spectrum is almost exactly that of the Harper-Hofstadter Hamiltonian. (b) Stronger
driving, κ = 0.8, the spectrum is visibly distorted. System parameters: 16 × 16 lattice,
J = 1, ω = 1000J . Violet/orange dots indicate edge/bulk states. An edge state has more
than 50% of its weight on the edge.

The first is relatively simple and has already been mentioned here: it consists of extending
(2.75) by introducing two additional steps. The second one is a bit more subtle and makes
use of Eq. (1.81) to remove the unwanted phases. The four-step time evolution operator
is defined

U(τ) := UyUβUxUα . (2.85)

The two operators Ux, Uy are the same as in (2.75). The two new ones are given by
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Figure 2.5: Four-step split driving: One cycle of the driving is divided into four-steps,
where at first the system is pulsed by a linear potential Hα followed by shaking with
tunneling in the y-direction suppressed [(Hx(t)], then pulsing with the linear potential Hβ

and finally evolving with Hy where tunneling in the x-direction is suppressed.

Uα = e−i∆tHα

Hα = − (κ/∆t)
∑
j,k

jnj,k cos(θk) .
(2.86)

Hα is a linear potential along the x-direction lasting for a time ∆t with no tunneling in
either direction. The steepness of the linear ramp for each row k depends on θk. After
evolving the system with Ux [Eq. (2.76)], the pulse

Uβ = e−i∆tHβ

Hβ = (κ/∆t)
∑
j,k

jnj,k cos(θk) = −Hα .
(2.87)

is applied and the final step is Uy as defined in Eq. (2.77). To calculate the four-step split
effective Hamiltonian UβUxUα has to be computed. Using Eq. (1.81) one finds

UβH
x
effUα = ei∆tHαHx

effe
−i∆tHα (2.88)

= − (Jxeff/2)
∑
j,k

a†j+1,kaj,ke
iNθk (2.89)

So that
U(τ) ' e−iτH4-split

eff , (2.90)

where τ = 4∆t and the four-step split effective Hamiltonian is

H4-split
eff = − (Jxeff/4)

∑
j,k

a†j+1,kaj,ke
−iNθk − (Jy/4)

∑
j,k

a†j,k+1aj,k + H.c. . (2.91)

Finally, the flux and the tunneling amplitudes are uniform over the entire lattice. Indeed,
for Jxeff = Jy the Hamiltonian H4-split

eff is the Harper-Hofstadter Hamiltonian [(2.20)] for
a uniform magnetic field that is perpendicular to the lattice [(2.27)]. In Fig. 2.6 the
quasienergy spectrum2 for κ = 0.2 is shown. As was the case for the two-step split
driving, barely distinguishable from the energy spectrum of the Hofstadter model. A

2The data for Fig. 2.4 was created with the implementation of the explicit Runge-Kutta method of
order 8(5, 3) [103] provided by the integrate module of python’s scipy library [104].
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Figure 2.6: Quasienergies εn for the four-step split driving scheme. (a) Weak driving,
κ = 0.2, The spectrum is almost exactly that of the Harper-Hofstadter Hamiltonian
[(2.20)]. (b) Stronger driving, κ = 1.841, the spectrum almost exactly replicates that of
the Harper-Hofstadter Hamiltonian. System parameters: 8×8 lattice, J = 1, ω = 1000J .
Violet/orange dots indicate edge/bulk states. An edge state has more than 50% of its
weight on the edge.

detailed examination of the spectrum shows that it is as precise as the two-step scheme
for weak driving. The situation drastically changes for strong driving: The spectrum
agrees well with that of the Harper-Hofstadter Hamiltonian [see (2.20)]. In Fig. 2.6b the
quasienergy spectrum for κ = 1.841 can be seen. This is where Jxeff = 0.582J takes its
largest value. The four-step split driving fixes the problem of being confined to small
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values of κ and in principle allows a speedup of the system’s dynamics and hence permits
an increase in the size of the gaps in the quasienergy spectrum.

As pointed out in Ref. [1], there is another four-step driving scheme, which also leads
to a uniform flux. It was proposed in Ref. [171]. That proposal makes use of (real)
oscillating magnetic fields and thus is different from the shaking scheme proposed here
(see also Refs. [57, 172, 173]).

The four-step split driving results in the desired condition of completely eliminating the
unwanted phase terms. However it introduces additional complexity into the experimental
realization of the system, and so it is worth considering whether it is possible to find a
means of suppressing these terms within the two-step approach, by altering the form of
the periodic driving function f(ωt) in Eq. (2.48).

2.6.3 Two-step split driving with other waveforms

The added complexity in the four-step driving scheme results in an additional complication
in eventual experimental implementations. Even though it completely eliminated non-
uniformities in both the flux and the tunneling amplitudes it is worthwhile to see whether
there are simpler two-step protocols. One way to make adjustments is to alter is the
shape of the waveform of the driving. Interestingly, one can find an exact form of the
effective hopping amplitude for a more general waveform. In Chapter 1, Section 1.2, a
general expression for the hopping amplitude was given in Eq. (1.123). Continuing from
there, the anti-derivative of the acceleration as defined in Eq. (2.50) is restated

F (ωt) =

∫ t

0

dt′ f(ωt′) . (2.92)

This implicitly entails that the shaking starts at t = 0, in contrast to other analyses,
where shaking starts at t = −∞. If furthermore a temporal phase is introduced, the
above equation becomes ∫ t

0

dt′ f(ωt′ + θ) = F (ωt+ θ)− F (θ) . (2.93)

With this the effective tunneling amplitude (1.123) for a single link, the following can be
computed:

Jxeff/J =
1

T

∫ T

0

dt exp

(
−iV0t− i

∫ t

0

dt′f(ωt′ + θ)

)
. (2.94)

The tunneling in the other direction is given by the complex conjugate of this expression.
The tilt V0 = Nω is assumed to be resonant so that Eq. (2.92) can be written in terms of
F as

Jxeff/J =
1

T

∫ T

0

dt exp {−iNωt− i [F (ωt+ θ)− F (θ)]}

=
1

T
eiF (θ)

∫ T

0

dt exp [−iNωt− iF (ωt+ θ)] . (2.95)
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The periodicity of f(ωt) implies that, F (ωt) and exp[iF (ωt)] are T -periodic. Therefore
its Fourier series is

eiF (ωt) =
∞∑

m=−∞

γme
imωt . (2.96)

For sinusoidal driving, this Fourier series is the Jacobi-Anger expansion (1.83). Substi-
tuting this expression in Eq. (2.95) results in the expression

Jxeff/J =
1

T
eiF (θ)

∫ T

0

dt exp (−iNωt)
∑
m

γme
im(ωt+θ) . (2.97)

After exchanging the order of integration and summation, the final expression reads

Jxeff/J = γNe
i(Nθ+F (θ)) . (2.98)

The hopping in the x-direction is modified by a factor γN and a phase of Nθ + F (θ) is
acquired. For sinusoidal shaking the renormalization factor is γN = JN(κ) and the phase
is Nθ − κ cos(θ) which is consistent with (2.59). The flux per plaquette is

Φ(j, k) = Nα− κ [F ((k + 1)α)− F (kα)] . (2.99)

Since f(ωt) and F (kα) are periodic, it is impossible to make a non-trivial choice f(ωt) 6= 0
so that Φ is constant. It is possible, however, to design a function f(ωt) that produces
a flux that is constant for large areas of the lattice and only deviates from this constant
value for some k, as will be explained in the next section.

2.6.4 δ-kick driving

A candidate for such a function f(ωt) was given in Ref. [1]:

f(ωt) =K{δ[t− (T/2−∆/2)− nT ]

− δ[t− (T/2 + ∆/2)− nT ]} , nT < t ≤ (n+ 1)T ,
(2.100)

where n is an integer and the ω dependence is implicit in T = 2π/ω. Since f(ωt) is the
acceleration of the shaking, this was named kicked driving [1]: In each interval of the
protocol, two kicks separated by the interval ∆ act on the system. Fig. 2.7 compares the
velocity function F (kα) for kicked driving and sinusoidal driving. The non-uniformity in
the flux of the sinusoidal protocol stems from the spatial dependence of F (kα). This is
illustrated in Fig. 2.7a where the red dots indicate the spatial dependence for α = 2π/16.
This is what causes the distortions in the quasienergy spectra in Fig. 2.3. For kicked
driving the flux remains mostly homogeneous, except for the values where F (kα) abruptly
changes. This is exemplified in Fig. 2.8, where the flux per plaquette is plotet for a
16 × 16 lattice. For two-step split driving with a sinusoidal acceleration the areas over
which the non-uniformity spreads is much larger than for the kicked drive. In addition
the flux remained constant over large areas for the kicked driving protocol. The spatial
dependence of the flux per plaquette can be made clearer by only analyzing its variation in
the y-direction, since it does not depend on the x coordinate. This is done in Fig. 2.9. For
three different values of α and δ. In Fig. 2.9a (∆ = 0.08T ) the value α = π/2 is highly
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Figure 2.7: The velocity function F (kα) [(2.50)] for two different driving schemes: (a) In
sinusoidal driving, the spatial inhomogeneity of the flux results from the values of F (kα)
for α = 2π/16 indicated by red dots. (b) In kicked driving the flux that results from this
drive is mostly uniform, except for the k’s that lie adjacent to the discontinuity.

commensurate with the driving period T and the flux oscillates rapidly. This would
create a highly non-uniform magnetic field. The only way to lessen the impact of those
oscillations on the uniform part of flux is by reducing κ (with the same caveat that this
will also result in slowing the system’s dynamics). Fig. 2.9b[∆ = 0.08T ] shows that the
oscillation frequency can be reduced by tuning α = 0.55π slightly away from this value.
In Fig. 2.9c the oscillations are reduced even further by keeping α = 0.55π and reducing
∆ = 0.02T . The flux remains uniform over almost 50 lattice sites, which means that
for these sites the resulting synthetic magnetic field would behave as desired: Particles
confined to these sites would behave as if they were exposed to a uniform magnetic field.

One way of studying this parameter space in a concise manner is by exploring the
variance of the flux as a function of α and ∆. The variance is defined as

σ2
Φ =

1

L

∑
k

(Φ(j, k)− Φ̄)2 (2.101)

where Φ̄ is the average flux and L is the number of sites of the lattice in the y-direction.
In Eq. 2.101 j can be chosen arbitrarily, since Φ(j, k) in Eq. (2.99) is independent of
j. In Fig. 2.10 an overview of the behavior of the flux is shown and illustrated for two
different parameter regimes. Once α/T is tuned away from a highly commensurate value
the variation of Φ(j, k) becomes much smoother as a function of α and ∆, and generally
decreases as a function of ∆.

For kicked driving the effective tunneling amplitude can be calculated using (2.95):

Jxeff =
2J

π
sin (π∆/T ) sin (κ/2) , (2.102)

where the same resonance condition N = 1 as for sinusoidal driving was used. In Fig. 2.11a
the quasienergy spectrum is shown for a lattice with 16×16 sites. The driving parameter
is κ = 0.2 and the kick-spacing has a value of ∆ = T/32. The spectra were computed
with the same method as the previous spectra. The delta distribution was approximated
with

δN(ωt) =
1

2π

sin[(N + 1/2)ωt]

sin(ωt/2)
(2.103)
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Figure 2.8: Flux in a 16× 16 lattice for sinusoidal two-step split driving (left) and kicked
two-step split driving (right). In the case of the kicked driving the non-uniformities only
appear for certain values of k while they affect a larger area in the case of sinusoidal
driving. Parameters of the system are: κ = 0.5, α = 0.6, T = 2π and ∆ = T/4
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Figure 2.9: Here the variation of Φ(k) [see Eq. (2.99)] is shown in the y-direction for three
different combinations of α and ∆. (a): α = π/2 and ∆ = 0.08T produced an highly
oscillatory flux. This happens because α is highly commensurate with the period T = 2π
(b): α = 0.55π and ∆ = 0.08T . Tuning away from the highly commensurate value of α
greatly reduces the frequency of the oscillations. (c): α = π/2 and ∆ = 0.02T reduces
the oscillations even further. The flux remains uniform over a range of almost 50 sites.

where N = 120, and Jy = Jxeff (given by Eq. (2.102)). The result visibly agrees with
the Hofstadter spectrum, but shows small distortions due to the discontinuities produced
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(a)

(b) (c)

Figure 2.10: Shown is the variance of the flux per plaquette σ2
Φ [see Eq. (2.101)] as a

function of α and ∆. (a) Overview of σ2
Φ for the entire meaningful parameter regime of

α and ∆. Discontinuities arise for values where α and T are highly commensurate. (b)
for the value α = π/2 which is highly commensurate with the driving period T , σ2

Φ is
clearly peaked. The variation in Φ(j, k) is generally reduced by decreasing ∆ once α is
tuned away from this value. (c) In a regime, without any significant commensurate values
of T/α the variance σ2

Φ is much smoother. System parameters are: T = 2π, κ = 1 and
L = 1500.

by commensurable values of α/T . These distortions are enhanced for κ = π, where Jeff

reaches its highest value. Clearly most of the spectrum is still reproduced well except of
course for the aforementioned discontinuities. Away from these discontinuities variations
in the flux decay smoothly as explained in Fig. 2.10.

2.6.5 Benchmarking of driving schemes

To make the comparison of the various driving schemes more quantitative, a figure of
merit was introduced in [1]:

χ2 =
∑
n

|εHof
n − εn|2 , (2.104)

where the εHof
n are the energies of the Hofstadter Hamiltonian and the εn the quasi-energies

belonging to the respective driving scheme. The apparent distinct appearance of the edge
states generated by the individual shaking protocols (compare for example the orange
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Figure 2.11: Quasienergies εn of the effective Hamiltonian for the kicked two-step split
driving scheme. (a) Weak driving, κ = 0.2: The spectrum is very close to that of the
Harper Hofstadter Hamiltonian [(2.20)]. Some slight deviations are visible due to the non-
uniformity induced by the kicks. (b) Stronger driving , κ = π. The slight alterations of
the spectrum produced by weak driving are much more pronounced. System parameters:
16× 16 lattice, J = 1, ω = 1000J and ∆ = T/32.

colored points in Fig. 2.4a with the ones in Fig. 2.6a) is not addressed by χ2 and will not
be studied in this work. It would of course be an interesting extension of the benchmarking
performed in this section. Fig. 2.12 shows χ2 for the three different driving schemes as a
function of the synthetic magnetic flux parameter α. The four step-split driving scheme
and the two-step kicked scheme are comparable. The kicked driving scheme notably
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Figure 2.12: χ2 is shown [Eq. (2.104)]. Two-step sinusoidal, kicked and four-step driving
schemes are compared for κ = 0.2. The kicked driving scheme and the four-step driving
scheme are comparable, apart from the values of α, where the spectrum shows disconti-
nuities in the kicked drive case. The two-step sinusoidal scheme performs notably worse
than the other two except for α = 0, π.

deviates for sharply defined values of α, which originate from commensurate values of α
and the period T . The four step driving is only matched by the two-step driving for the
two values α = 0, π. Otherwise, the two-step sinusoidal scheme is the least accurate out
of the shaking protocols.

The previous analysis can be extended to studying the dependence of χ2 on κ for
a fixed value of α. This is shown in Fig. 2.13. This time, χ2 is portrayed for the three
driving schemes at a fixed value of the flux α. The error in the two-step sinusoidal protocol
initially dips for very small values of κ, where it compares favorably with the four-step
procedure. The error in two-step scheme then grows monotonically with κ. The error of
the kicked protocol increases for α = π/2. This value produces a large variation in the
flux (see e.g. Fig. 2.9) whose amplitude grows with κ. Tuning away from this value to
α = 51π/100 improves the condition and it keeps decreasing as a function of κ. The four-
step protocol decreases monotonically with κ. Even though the two energy scales of ω and
K become eventually comparable, the high frequency approximation not only stays valid
but actually improves. This is not uncommon in Floquet systems. Since both K and ω
remain large compared to J , the hopping term in the time-dependent Hamiltonian is still
dominated by the time dependent part which leads to the improvement in performance.
The four-step driving protocol’s error will eventually grow due to higher-order terms in
the Trotter expansion (2.81). In the limit ω � Jxeff , Jy these errors are very small. In the
high frequency limit the errors in the other schemes are not due to the Trotter expansion
result from non-uniformities of the flux. These grow as κ grows, which is what was
confirmed in Fig. 2.13. It must be stressed, however, that χ2 takes the entire spectrum
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Figure 2.13: χ2 for two-step sinusoidal, two-step kicked and four-step driving is shown as
a function of κ for α = π/2. The error in the four-step protocol decreases monotonically
as κ grows. As predicted, the error grows for the two-step sinusoidal scheme. The kicked
scheme performs equally poorly because α is highly commensurate with T . Tuning the
flux slightly to α = 51π/100 changes this behavior and the kicked protocol performs
better as κ increases. The figure is taken from Ref. [1] and was compiled for lattices of
8× 8 size.

into consideration. Even if a deviation described by χ is large this does not mean that
there might not be other observables to that show no deviation. For the kicked system
this could be the Hall drift [90, 174], in areas of the lattice where the flux remains uniform.

Moving Lattices

This section details another method to create Peierls phases. In [1] this method was
presented as a moving potential on top of a static lattice. These moving lattices are
typically generated by an additional set of lasers that interact via Raman transitions
with the atoms trapped in the lattice [143, 144]. The frequency of the moving lattice is
determined by the additional lasers by ω = ω1 − ω2 and its position dependence is given
by their wave vector difference q = k1 − k2. In the tight binding approximation such a
lattice potential manifests as

V (t) = 2K
∑
j,k

nj,k cos(ωt+ qxj + qyk) . (2.105)

Again, the lattice spacing is set to a = 1. Before the implication of this potential are
explored the consequences of a more general term are explained. As in [1] it employs the



66 CHAPTER 2. ARTIFICIAL MAGNETIC FIELDS

resonant single harmonic modulation of the form

V (t) =
∑
j,k

jωnj,k +K
∑
j,k

[
nj,kv(j, k)eiωt + H.c.

]
(2.106)

Using the same reasoning that lead to (2.59) an effective Hamiltonian can be derived ([1]):

Heff =
∑
j,k

(
Jx(j, k)a†j+1,kaj,ke

iφj,k + Jy(j, k)a†j,k+1aj,k

)
+ H.c. . (2.107)

The renormalized hopping amplitudes are

Jx(j, k) = Jx J1 (2κ|δxv(j, k)|) , (2.108)

Jy(j, k) = Jy J0 (2κ|δyv(j, k)|) , κ = K/ω

and the δx,y denote the operations:

δxv(j, k) = v(j + 1, k)− v(j, k),

δyv(j, k) = v(j, k + 1)− v(j, k) .
(2.109)

The phase is given by
φj,k = arg[−δxv∗(j, k)] . (2.110)

The effective Hamiltonian for sinusoidal driving [Eq. (2.59)] is reproduced for

v(j, k) = jeiθk/2i . (2.111)

for the moving lattice potential

v(j, k) = eiqxjeiqyk . (2.112)

This function does not increase in the x-direction as (2.111) does and keeps a constant
modulus over the entire lattice. As a result of this the effective tunneling amplitudes are
constant as a function of the lattice coordinates:

Jx(j, k) = Jx J1

(
2
√

2κ
√

1− cos qx

)
,

Jy(j, k) = Jy J0

(
2
√

2κ
√

1− cos qy

)
.

(2.113)

When this result is compared with the tunneling amplitudes of the effective Hamiltonian
of the sinusoidal shaking scheme Eq. (2.59) it’s clear that both approaches produce a
uniform flux but they remain very different. The moving lattice method thus does not
have to grapple with the non-uniform tunneling amplitudes.

2.7 Summary and conclusions

In this chapter the effect of a magnetic field on a charge in lattice was introduced. The
Hofstadter butterfly, i.e. the spectrum of such a system is incredibly difficult to observe
in conventional systems where the charge carriers are electrons and the lattice spacings
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are just a few Angstrom wide. This difficulty suggests that a possible solution would be
to use a quantum simulator to generate such a spectrum. After a general introduction to
the effect of a electromagnetic gauge potential on a charge in a two dimensional lattice
was given, the process of how lattice acceleration can generate similar physics for neutral
atoms trapped in a shaking optical lattice was explained. The schemes that were put
forward in our work in Ref. [1] were then presented in detail. One of the most simple
schemes, that of sinusoidal shaking, produced a uniform flux, but also came with the
caveat of inhomogeneous tunneling amplitudes. This shortcoming could not be fixed by
other wave-forms of the shaking, therefore more elaborate driving protocols are needed to
generate the Harper-Hofstadter Hamiltonian. Two-step sinusoidal driving was explained
as a scheme that showed promise, as it produced constant effective hopping amplitudes
but a non-uniform flux still resulted. The severity of spatial variation in the flux could
be controlled, however, by the magnitude of the driving parameter κ. To circumvent
the slow dynamics, the two-split driving scheme was generalized to a four step variant,
which produced an effective Hamiltonian with both a uniform flux and uniform hopping
amplitudes. The two-step method could be improved upon by a kicked drive, which would
show spatial variations of the flux for discrete values of one of the lattice coordinates, and
would stay constant for areas in the lattice of a significant size, even for large values of
the effective hopping amplitudes.

The focus on square lattices does not imply that these methods are limited to such.
As long as the system permits shaking in one particular direction, the methods studied
in this chapter should be generalizable to other forms of two or even three dimensional
lattices. Some of potential two dimensional structures are triangular, honeycomb or brick
wall lattices. The honeycomb lattice is important for simulating the Haldane model
[145] and graphene [175, 176]. The brick wall lattice, which is topologically equivalent
to the Haldane lattice was produced in [145, 177]. Triangular lattices produce their own
challenges, as they produce staggered flux configurations [141]. In Ref. [178] the authors
presented a scheme for realizing a uniform flux Φ = π/2 with a time modulated triangular
potential.

In conclusion, the methods that were presented in this chapter should be applicable
to any system where shaking is a viable option. Possibly the most important systems are
comprised of ultracold atoms in optical lattices. Apart from geometrical considerations,
the system needs to allow for a parameter regime, where ω sets the biggest energy scale.
In particular, omega should not drive inter band transitions, as this would break one of the
assumptions implicit in the tight binding approximation. In the context of this chapter,
this means that ω � Jeff , Jx, Jy. In a typical lattice, J ≈ 100Hz so a few kilohertz of the
driving frequency should be sufficient. This should, in theory, allow for the study of the
entire Hofstadter butterfly spectrum and respectively the Chern bands or Hall physics
that are associated with it. Finally it should be noted that the resolution of the fine gaps
in the Hofstadter spectrum is in principle limited by temperature of the lattice atoms,
which can be as low as a few 10nK.
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Chapter 3

Floquet magnetic monopole

3.1 Introduction

Ever since the surprisingly simple and elegant mechanism discovered by Paul A. M.
Dirac [179] offered an explanation for the quantization of the electric charge, magnetic
monopoles have become the subject of numerous investigations. Even before this renewed
vigor in the search for magnetic monopoles, they presented a curious hypothetical case
that would make Maxwell’s equations more symmetric. In the following, a short, non-
exhaustive summary of the historical developments and the motivation for the research
of magnetic monopoles is given. An excellent review of the history, experimental and
theoretic state of the research on magnetic monopoles can be found in this review article:
Ref. [180]. A great overview on the theoretical front is provided in Yakov M. Shnir’s book
[181].

The study of magnetic monopoles revolves either around the implications of their
existence or the question of if they appear in a field theory as a fundamental particle.
These two focuses often go together, however, this chapter centers on the study of some
of the consequences of the existence of a special case of monopole.

Dirac’s work [179] investigated the consequences of a magnetic monopole within the
context of quantum mechanics. Strikingly, he showed that the string-like singularity of the
vector potential accompanying a monopole, even though highly contentious in classical
theory, does not produce any fundamental problems in a quantum mechanical context. As
noted earlier, the Dirac monopole mandates the quantization of the electric and magnetic
charges. Some time passed before it could be shown that magnetic monopoles are indeed
particle solutions appearing in a (Yang-Mill’s) field theory. In honor of its discoverers
it was named the Wu-Yang monopole [182]. After this discovery, a grand unified theory
(GUT) also predicted monopoles. These, so-called t’ Hooft monopoles [183], are super-
heavy particles that would have been produced in a early universe and sparked a flurry
of cosmological research [184–191] . Most notably, there is almost no trace of magnetic
monopoles [185] in the universe, posing a formidable riddle as to why they are not observed
[185, 186, 188]. With t’ Hooft monopoles beyond the reach of the energy of earthbound
accelerators, efforts continued to find monopoles in other field theories [192, 193].

The prediction of monopoles by GUTs, their mysterious absence and the fact that
they offer a very simple explanation for the quantization of electric charge all explain the
appeal of magnetic monopoles in fundamental physics research.

69
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It is interesting to note that the study of magnetic monopoles is not limited to high
energy physics and cosmology. The concept of topology links magnetic monopoles to
condensed matter systems. As mentioned in Chapter 2, the role of topology in physics
[135] provides a common framework for high energy physics, cosmology and certain phe-
nomena in condensed matter physics. Topological phase transitions [194] are one famous
example. D. J. Thouless, F. D. M. Haldane and J. M. Kosterlitz were awarded with the
Nobel prize in 2016 for discovering these transitions. Magnetic monopoles represent one of
the simplest expressions of a non-trivial topology. In this light, they also have enormous
theoretical and experimental appeal in condensed matter systems. Indeed, even within
the context of cosmology, condensed matter systems were explicitly proposed in Ref. [195]
as a platform for analogous experiments.

There have been plenty of proposals recently for the realization of monopoles in solid
state systems [196–202]. Those include spin ice [196, 197], artificial spin ice [203], spin
liquids [200], charges close to surfaces [198, 202] and chiral magnets [199]. Some of these
have been realized experimentally in both spin ice [204–206] and artificial spin ice [207–
210]. A monopole was also simulated with a thin magnetic needle [211] and in a different
experiment monopoles were connected to the unwinding of skyrmions [212].

Ultra cold atoms, with their high degree of tunability also attracted their share of
proposals. The creation of magnetic monopoles was proposed for spinor condensates
[213–215] and as an emergent quasiparticle from an impurity in a superfluid [201]. An
experiment involving a spinor condensate is presented in [216].

With the promise of synthezising abelian and non-abelian gauge fields [146] with ul-
tracold atoms, it even seems feasable to observe the emergence of monopoles through the
simulation of gauge fields [146, 217–221] . Through the link with topoplogy, monopoles
also arise in a more abstract parameter space, which also attracted attention [43, 222–227].

The new possibilities offered by ultra cold atom systems and their high degree of con-
trollablility opens the window to the study of signatures of magnetic monopoles that do
not have an immediate counterpart in GUTs. For example, monopoles that are simulated
or appear as quasiparticles could become time dependent. In the context of Floquet engi-
neering, the implications of a time periodic magnetic monopole, i.e. a Floquet magnetic
monopole, has some merit as an interesting avenue of research. This will be the focus of
this chapter. It is an initial look into the effects of a magnetic monopole whose charge
has a simple periodic time dependence.

In Section 3.2 some introductory remarks on the Dirac monopole will be made. The
appearance of magnetic charges in Maxwell’s equations, as well as their quantum me-
chanical implications, are also commented upon. These remarks are mostly based on the
treatment in [181]. Section 3.3 focuses on a charge coupled to a magnetic monopole with a
rapidly oscillating magnetic charge. The quantum mechanical problem will be addressed
in the large frequency limit. At the end of Section 3.3 these results are compared to an
electric charge confined to a sphere, with a monopole at its center. The chapter concludes
with a short discussion and outlook.
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3.2 Magnetic monopoles

This section provides a short overview of some basic properties of magnetic monopoles.
A more detailed analysis can be found in [180]. As mentioned in the introduction, the
addition of magnetic monopoles into the Maxwell equations makes them more symmetric
[228]

∂αF
αβ = µ0J

β
e (3.1)

∂αF
αβ∗ =

1

c
Jβm (3.2)

where Fαβ is the Faraday tensor, Fαβ∗ = εαβγδFγδ/2 its dual, c is the speed of light, µ0

the free space magnetic permeability, Je = (cρe, je) the electric four current density and
Jm = (cρm, jm) the magnetic four current density. The Einstein summation convention
is implied. In the manifest covariant form, the symmetry of Maxwell’s equations is the
most apparent. The Faraday tensor is related to the vector potential through

Fαβ = ∂αAβ − ∂βAα . (3.3)

The components of the vector potential are A = (φ/c,A), where the electric and magnetic
field is given by

E = −∇φ− ∂tA (3.4)

B = ∇×A (3.5)

The modified Maxwell equations have an additional symmetry and are invariant under
the transformation(

E′

B′

)
=

(
cos[θ] sin[θ]
− sin[θ] cos[θ]

)(
E
B

)
,

(
j′e
j′m

)
=

(
cos[θ] sin[θ]
− sin[θ] cos[θ]

)(
je
jm

)
(3.6)

This symmetry is sometimes useful when performing specific calculations. This set of
expressions marks the end of the presentation of the classical manifestation of a magnetic
monopoles in Maxwell’s equations in this chapter.

It is possible to just work with the physical fields and not worry about the issues
arising from the fact that there is an apparent contradiction when combining the time-
like component of Eq. (3.2) with (3.5), which results in

∇ ·B = ∇ · ∇ ×A 6= 0 . (3.7)

The contradiction appears on the right hand side of this equation, which has to be zero,
and thus forbids monopoles, if they are derived from a single vector potential. As written
above this would not be an issue, if it wasn’t for the Aharonov-Bohm effect in quan-
tum mechanics: A charge that never directly couples to a magnetic field can acquire a
phase through a vector potential. This phase acquisition can have real physical conse-
quences. The gauge-independent so-called Aharonov-Bohm phase can be interpreted as
a consequence of the topology of the gauge field, as will be explained shortly.
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3.2.1 Dirac’s monopole

A magnetic monopole can be reconciled with Maxwell’s equations through several ap-
proaches. In the following paragraph, Dirac’s solution is presented. The idea behind
Dirac’s approach is to remove the charges as sources from the Maxwell’s equations and
keep the original formulation intact. In practice this means that Jm = 0 in Eq. (3.2). The
Coulomb like, spherically symmetric magnetic field originating from a magnetic charge at
the origin is

Bm =
g

4π

r

r3
, (3.8)

where r = (x, y, z) denotes a position in space, r =
√
x2 + y2 + z2 and g is the magnetic

charge. The famous Dirac potential [179], which he proposed for the production of such
a field is

A =
g

4π

( −y
r(r − z)

,
x

r(r − z)
, 0

)
, (3.9)

which is singular along the positive z-axis. Carefully evaluating the curl of this field yields
[181]

B =
g

4π

r

r3
− gzθ(z)δ(x)δ(y) (3.10)

where z = (0, 0, 1). The first term corresponds to (3.8). The second one represents a line
singularity, also known as the Dirac string, and is a consequence of the singular behavior
of A along the positive z-axis. This singularity plays a crucial role in guaranteeing that
∇·B = 0 and provides a physical interpretation of the origin of a monopole field. A quick
calculation shows that, as demanded by Maxwell’s equations,∫

Bε

dV∇ ·B =

∫
∂Bε

da ·
[ g

4π

r

r3
− gzθ(z)δ(x)δ(y)

]
= g − g = 0 , (3.11)

where Bε is an infinitesimal ball with radius ε and ∂Bε as its boundary and da is a surface
increment. The singular nature of the vector potential “repairs” Gauss’ law. Indeed, the
Dirac potential can be shown to result from an infinitely tightly wound solenoid [229]

A = − g

4π

∫ ∞
0

dl′ × r− r′

(r− r′)3
, (3.12)

where r′ is a source point on the solenoid and dl′ is a line increment along the line
going from z = 0 to z = ∞. In accordance with classical electromagnetism, it is thus
appropriate to think about a monopole as an infinitely long and tight solenoid that ends
at the position where the spherically symmetric magnetic field originates. The string
can be of no physical significance, since its position can easily be changed with a gauge
transformation: Take Eq. (3.9) and consider placing the singularity along the negative
z-axis

A′ =
g

4π

( −y
r(r + z)

,
x

r(r + z)
, 0

)
. (3.13)

This potential is connected to (3.9) by the transformation

A′ = A +∇Λ , (3.14)
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where
Λ =

g

2π
φ (3.15)

where φ is the polar angle in polar coordinates. This shows that the position of the string
is completely arbitrary[180]. Even configurations where two strings join at the position
of the pole’s location exist [181]. This ambiguity is very problematic in classical physics.
In the context of quantum mechanics this ambiguity is a blessing in disguise, because the
Dirac string leads to the quantization of the charge. To be more precise: The requirement
that it remains unobservable leads to the quantization of the charge.

The next paragraph explains how the charge quantization is derived. Schrödinger’s
equation for an electron coupled to a vector potential is expressed as:

HΨ(r) =
1

2M
(p− eA)2 Ψ(r) = EΨ(r) (3.16)

where M is the mass of the charge e. The vector potential can be “gauged” away at the
expense of a local phase of the wave function, so that the solution to (3.16) becomes

Ψ(r) = Ψ0(r)eie
∫
γ dl′·A(r′) (3.17)

where Ψ0(r) is a solution to (3.16) without A, and dl′ is a line increment of the path γ.
The contribution of the singular part of the vector potential now becomes of interest, i.e.
that of the Dirac string.

Its contribution will be singled out through its magnetic field, which vanishes when
outside the solenoid, and is of infinite strength inside. A charge taking a closed path
around the string will pick up the phase

e

∮
γ

dl′ ·Astring (3.18)

where Astring indicates the singular part of the vector potential

∇×Astring = Bstring = gzθ(z)δ(x)δ(y) . (3.19)

Now the restriction that the Dirac string is not observable will be applied. This condition
is equivalent to demanding the singlevaluedness of the wavefunction after looping around
the string. The single valuedness of the wavefunction translates into the condition

e

∮
γ

dl′ ·Astring = 2πn , n ∈ Z . (3.20)

The left hand side can be evaluated using Stoke’s theorem, which results in

e

∮
γ

dl′ ·Astring = e

∫
S

da · zgθ(z)δ(x)δ(y) (3.21)

eg = 2πn , (3.22)

where S is the surface enclosed by γ and pierced by the solenoid. This is the famous
charge quantization condition. The above argument, however, is not the only possible
way to argue for charge quantization. It might seem surprising, but other conceptions
of monopoles lead to the same result. In the next section, the charge quantization is
re-derived with the help of the Wu-Yang monopole.
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3.2.2 Wu-Yang monopole

The Wu-Yang monopole differs from Dirac’s monopole on a conceptual level. Dirac’s
potential (3.9) allowed the maintenance of Maxwell’s equations without the addition of
magnetic charges, through the introduction of classically meaningless singular strings. In
a quantum mechanical context these strings are not a deficiency, since they imply the
quantization of the electric charge. Just the existence of a single magnetic monopole in
all of the universe would require that all electric charges are quantized.

The Wu-Yang monopole circumvents the singularities and maintains Jm in Eq. (3.2).
The key difference lies in the choice to discard the use of a single vector potential [135]

A =


AS =

g

4π

( −y
r(r − z)

,
x

r(r − z)
, 0

)
, z 6 0

AN =
g

4π

( −y
r(r + z)

,
x

r(r + z)
, 0

)
, z > 0 .

(3.23)

Note that A is not singular anywhere. As already mentioned in the previous section
[Eq. (3.14)] AS and AN are connected by a gauge transformation

AN −AS = ∇Λ (3.24)

Indeed A is now in accordance with the extended Maxwell equations∫
Bε

dV∇ ·B =

∫
∂Bε

da · ∇ ×A

=

∮
∂BN

ε

da ·AN +

∮
∂BS

ε

da ·AS

=

∮
γε

dl ·
(
AN −AS

)
=

g

2π

∮
γε

dl · ∇φ

= g ,

(3.25)

where ∂BN,S
ε denotes the northern and southern hemisphere of the Bε and the γε is a path

running around the equator.
Arguing the charge quantization condition is even simpler for the Wu-Yang monopole

than it was for Dirac’s monopole.
Again a wavefunction fulfilling Eq. (3.16), but now with A as defined in (3.23), is

considered. Consequently, this wavefunction can be split into a part ΨN that is defined on
the northern hemisphere and ΨS, which is defined on the southern hemisphere. A gauge
transformation connects the two functions according to

ΨS(r) = e−ieΛΨN(r) . (3.26)

The entire wavefunction covering northern and southern hemisphere has to be single
valued. Specifically at the equator (θ = π/2) and for φ = 0, 2π, single-valuedness is
only possible if eg = 2πn, which again is the quantization condition derived for Dirac’s
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monopole. In conclusion, with Dirac’s monopole no changes need to be made to Maxwell’s
equations, while Wu-Yang’s monopole is consistent with the introduction of magnetic
charges into Maxwell’s equations. Both monopoles result in the same charge quantization
condition.

3.3 A Floquet-Dirac monopole

In this section the quantum mechanical problem of a charge coupled to a time dependent
magnetic monopole is examined. As before, minimal coupling is used to couple the charge
to the time dependent vector potential

H(t) =
1

2M
[p− eA(t, r)]2 , (3.27)

where A(t, r) is Dirac’s potential (3.9) with

g → g{1− 2Θ[sin(ωt− π)]} = gf(t) , (3.28)

where Θ(·) is the unit step function (see Fig. 3.1). This means that the charge changes its
polarity in a step-like manner from positive to negative with the frequency ω. This time
dependence was chosen so that at each point in time, the charge quantization condition
(3.22) is trivially fulfilled.

Expanding the square in Eq. (3.27) leads to

H(t) =
1

2M
p2 − e

2M
[pA(t, r) + A(t, r)p] +

e2

M
A(t, r)2 (3.29)

A(t, r) can be shown to be in the Coulomb gauge by considering∫
Bε

dV∇ ·A =

∫
∂Bε

da ·A = 0 . (3.30)

−0.5 0.0 0.5 1.0 1.5 2.0
t/T

−1

1

f
(t

)

Figure 3.1: The magnetic charge g(t) = gf(t) changes its polarity with the period T =
2π/ω in a step-like manner, to ensure that at each instance in time eg = 2πn.
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The last equation holds thanks to the fact that A ∝ eφ, where eφ is the unit vector in the
φ-direction. Conveniently this implies that [p,A] = 0:

pAΨ = −i∇ · (AΨ) (3.31)

= −iΨ∇ ·A− iA · ∇Ψ (3.32)

= ApΨ . (3.33)

With the Coulomb gauge established, Eq. (3.29) simplifies to

H(t) =
1

2M
p2 − e

M
pA(t, r) +

e2

2M
A(t, r)2 (3.34)

Due to the step-like shape of f(t) (f(t)2 = 1 in Fig. 3.1), the last term is time independent.
With the introduction of

C(r) =

( −y
r(r − z)

,
x

r(r − z)
, 0

)
(3.35)

Eq. (3.34) can be written as

H(t) =
p2

2M
− 1

4π

ge

M
f(t)p ·C(r) +

1

32π2

e2g2

M
C(r)2 . (3.36)

It is helpful to identify [57]

H0 =
p2

2M
+

1

32π2

e2g2

M
C(r)2 (3.37)

V = − 1

4π

ge

M
p ·C(r) . (3.38)

The goal of this section is to study the high frequency behavior of H(t), so it is subjected
to the expansion in Eq. (1.63). Considering the specific form of f(t) and V , Eq. (1.63)
becomes

Heff = H0 +
π2

24ω2
[[V,H0], V ] +O(1/ω3) (3.39)

= H0 +
1

768ω2

g2e2

M3
[[p ·C(r),p2],p ·C(r)]

+
1

768π2ω2

g4e4

M3
[[p ·C(r),C(r)2],p ·C(r)] .

(3.40)

The above expression for Heff reveals that H0 is a highly non-trivial Hamiltonian featuring
the singular static potential e2g2/32π2MC(r)2. The Hamiltonian H0 represents the time
averaged Hamiltonian H(t) and in the limit of ω →∞. The following section is dedicated
to solving the static Schrödinger equation H0Ψ = EΨ.

3.3.1 High frequency limit

The time-independent problem (3.16) has been solved classically as well as quantum
mechanically. Both solutions are presented in [180, 181]. Extensive use of symmetries can
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help in finding the classical trajectories or eigenfunctions of the stationary Schrödinger
equation. Unfortunately, at the time this thesis was written, none of these symmetries
seemed to apply to the problem described in this section. However, some strategies for
finding exact solutions put forth in [181] proved tremendously helpful.

The stationary Schrödinger equation under consideration is

H0Ψ = EΨ[
− ∆

2M
+

1

32π2

e2g2

M

1

r2

r + z

r − z

]
Ψ = EΨ[

− 1

r2
∂rr

2∂r −
1

r2 sin(θ)
∂θ sin(θ)∂θ −

1

r2 sin(θ)2
∂2
θ +

b

a

1

r2

1 + cos(θ)

1− cos(θ)

]
Ψ =

E

a
Ψ .

(3.41)

In the last equation the switch to spherical coordinates

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

(3.42)

was made and the constants

a =
1

2M
, b =

e2g2

32π2M
(3.43)

were introduced. No previous account of Eq. (3.41) or its solutions could be found at the
time of writing this thesis. The only reference that provided some guidance to solving
this problem was the solution to the static problem Eq. (3.16) given in e.g. Ref. [181].
This solution was then modified to accommodate the potential in Eq. (3.41)

Vs =
1

32π2

e2g2

M

1

r2

r + z

r − z , (3.44)

which is singular along the line z > 0. This term is responsible for preventing the more
elegant use of the algebraic methods made possible by making use of symmetries. In the
following a detailed account of an explicit solution to Eq. (3.41) is given. Because no prior
solution to this problem was known to the author, there is some additional merit in such
an exhaustive treatment.

Separations of variable

The first step in finding the eigenfunctions of H0 is separating the angular and radial
variables of Ψ:

Ψ(r, θ, φ) = R(r)Y (θ, φ) (3.45)

inserting this into (3.41) yields [
−∂rr2∂r − r2E

a

]
R(r) = λR(r) (3.46)[

1

sin(θ)
∂θ sin(θ)∂θ +

1

sin(θ)2
∂2
φ −

b

a

1 + cos(θ)

1− cos(θ)

]
Y (θ, φ) = λY (θ, φ) (3.47)
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where λ is the separation constant.
Furthermore, Ψ is separated into an azimuthal and a polar part

Y (θ, φ) = ϑ(θ)ϕ(φ) (3.48)

which leads to the two equations[
sin(θ)∂θ sin(θ)∂θ − sin(θ)2 b

a

1 + cos(θ)

1− cos(θ)
− λ sin(θ)2

]
ϑ(θ) = βϑ(θ) (3.49)

−∂2
φϕ(φ) = βϕ(φ) (3.50)

Angular part of Ψ

Eq. (3.50) can be integrated immediately, which results in

ϕ(φ) = D1e
i
√
βφ +D2e

−i
√
βφ (3.51)

Following the standard procedure, the choice D2 = 0 can be made. This choice implies
β = m2 ∈ Z, since the wave function has to be single valued.

This can be reinserted into (3.49). A change of variables will help to cast (3.49) into
a form that will be more amenable:

z = cos(θ) (3.52)

∂θ =
dz

dθ

d

dz
= −
√

1− z2∂z (3.53)

Note that z is not the z-coordinate. Eq. (3.49) then becomes[
−2z∂z + (1− z2)∂2

z − λ−
b(1 + z)2 + am2

a(1− z2)

]
ϑ(z) = 0 (3.54)

This is where the solution deviates from the method presented in [181]. Here, one has to
look for solutions of the form

ϑ(z) = (1− z)µ(1 + z)νF (z) (3.55)

Inserting this expression into Eq. (3.54) will yield a condition for µ and ν , resulting in
the elimination of the singularities at z = ±1. This is expressed as:(−4µ2 +m2 + 4b/a

2(z − 1)
+

4ν2 −m2

2(z + 1)
− µ2 − 2µν − µ− ν2 − ν − λ+ b/a

)
F (z) (3.56)

−2[ν − µ+ (1− µ− ν)z]∂zF (z) + (1− z2)∂2
zF (z) = 0 (3.57)

The aforementioned singularities are eliminated when making the choice

µ = ±1

2

√
m2 + 4b/a , ν = ±m

2
(3.58)

After making the substitution x = (1 − z)/2 (x is just an ad-hoc variable) this can be
brought into the form

−(2µν + µ+ 2ν2 + ν + λ)F (x)+[1 + 2µ− (2 + 2µ+ 2ν)x]∂xF (x)

+ x(1− x)∂2
xF (x) = 0 .

(3.59)
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This is the standard form of the hypergeometric differential equation

− ABF (x) + [C − (A+B + 1)x]∂xF (x) + x(1− x)∂2
xF (x) = 0 (3.60)

which is solved by

F (x) = D1 2F1(A,B,C;x) +D2 (−1)1−Cx1−C
2F1(1 +A−C, 1 +B−C, 2−C;x) , (3.61)

where 2F1(A,B,C;x) is the ordinary hypergeometric function. The constants are

AB = λ+ ν + 2ν2 + µ+ 2νµ (3.62)

A+B = 1 + 2µ+ 2ν (3.63)

C = 1 + 2µ (3.64)

which can be solved for A and B

A =
1

2
+ ν + µ−

√
a+ 4b− 4aλ

2
√
a

(3.65)

B =
1

2
+ ν + µ+

√
a+ 4b− 4aλ

2
√
a

(3.66)

As in [181] it can be demanded that the first argument of the hypergeometric function is
some negative number −l where l ∈ N0 to ensure that the expansion of 2F1 in z is finite.
This is important in guaranteeing that Ψ is regular. For now

m > 0 . (3.67)

With this choice, the first independent solution of (3.61) (D2 = 0) can be selected.
Crucially, it fixes λ (l > µ):

λ =
a+ 4b

4a
−
(
l +

1

2
+ ν + µ

)2

(3.68)

It is found that

F (z) ∝ 2F1[−l, 1 + l + 2µ+ 2ν, 1 + 2µ, (1− z)/2] (3.69)

In the following, the use of the connection of the hypergeometric functions to the Jacobi
polynomials is made [230]

P (α,β)
n (z) =

Γ(a+ n)

Γ(a)Γ(n+ 1)
2F1[−n, 1 + n+ α + β, 1 + α, (1− z)/2] , (3.70)

where Γ(·) denotes the gamma-function. The Jacobi Polynomials are represented as:

P (α,β)
n (z) =

(−1)n

2nn!
(1− z)−α(1 + z)−β

dn

dzn
{

(1− z)α+n(1 + z)β+n
}

(3.71)

Everything can now be put together (α = 2µ, β = m = 2ν > 0) resulting in the solution
of the angular part of the wave function

ϑl,m(z)ϕm(φ) ∝ eimφ(1− z)−µ(1 + z)−ν(−1)l
dl

dzl
{

(1− z)2µ+l(1 + z)m+l
}
. (3.72)
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If it was only necessary to find a mathematical solution to Eq. (3.41) then the heavy lifting
would be over. However, since this is a physical problem, the regularity of ϑ(z) at z = ±1
has to be guaranteed. Additionally, it must be shown that a complete orthonormal set
can be constructed from ϑ(z), ensuring that the Hilbert space associated to H0 is not
trivially empty.

Indeed, from the above definition it can be shown that ϑl,m(z) is a regular function at
the poles as long as −l 6 m. This extends the range of m for which the lower bound of
zero was set in (3.67).

In the following the accordance of the lower bound −l 6 m with the normalization
condition will be demonstrated.∫ 2π

0

dφϕm(φ)∗ϕm′(φ)

∫ π

0

sin(θ)dθ ϑl,m(θ)ϑl′,m′(θ) = δm,m′δl,l′ (3.73)

The φ part is fulfilled so the more involved θ integral remains to be checked. Without
loss of generality, it is assumed that l′ > l∫ 1

−1

dz ϑl,m(z)ϑl′,m(z) =

∫ 1

−1

dz (1− z)−2µ(1− z)−m

× (−1)l+l
′ dl

dzl
{

(1− z)2µ+l(1 + z)l+m
}

× dl
′

dzl′

{
(1− z)2µ+l′(1 + z)l

′+m
} (3.74)

=
l∑

n=0

(
l

n

)
(−1)n(l + 2µ)!

(l + 2µ− n)!

(l +m)!

(m+ n)!

×
∫ 1

−1

dz (1− z)l−n(1 + z)n

× dl
′

dzl′

{
(1− z)2µ+l′(1 + z)l

′+m
}

(3.75)

The polynomial (1 − z)l−n(1 + z)n can be expanded and partially integrated until the
respective power of z is exhausted. The evaluation of terms such as

dl
′−k

dzl′−k
(1− z)2µ+l′(1 + z)l

′+m

∣∣∣∣1
−1

(3.76)

is what remains. If the lower bound −l 6 m is ensured, this expression always vanishes.
The calculations above have established the following condition: as long as l 6= l′ the two
solutions are orthogonal.

The final task is to find the normalization constant of of (3.72) for l = l′. The following
calculation can be made:

N 2 =

∫ 1

−1

dz ϑl,m(z)ϑl,m(z) = 21+2l+m+2µΓ(1 + l)Γ(1 + l +m)Γ(1 + l + 2µ)

Γ(2 + 2l +m+ 2µ)

×
(

Γ(1 + l + 2µ)

Γ(1 + 2µ)
+

Γ(1 + l +m)

Γ(1 +m)

) (3.77)
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So that for −l < m

Yl,m(z, φ) =
eimφ

√
2πN

(1− z)−µ(1 + z)−m/2(−1)l
dl

dzl
{

(1− z)2µ+l(1 + z)l+m
}
, (3.78)

This completes the construction of the angular part of the wavefunction Ψ.

Connection to the free space solution

A simple check can be conducted to provide further support for the validity of Yl,m(z, φ):
It must reproduce the properties of the free space solution for g = 0. Superficially, the
condition −l < m is surprising, since it does not coincide with the commonly expected
bounds −l < m < l. It is also not at all obvious that the free space separation constant
in Eq. (3.68) will become λ = −l(l + 1) once g = 0.

For the lower bound −l < m < 0, an inspection of Eq. (3.68) reveals that:

λ = −l(l + 1) (3.79)

which correctly reproduces the free space limit. Since m has no upper bound it is not
immediately evident how Eq. (3.68) fits the common free space bounds on m. The upper
bound 0 < m < l is disguised by the way m is counted, and is not due to the regularity
of Yl,m(z, φ), which is always guaranteed for m > 0.

For m > 0 Eq. (3.68) implies

λ =
1

4
−
(
l +

1

2
+m

)2

(3.80)

= −(l +m)(l +m+ 1) (3.81)

= −l′(l′ + 1) (3.82)

where l′ = l + m was introduced. This correctly reproduces the canonical form. l > 0
still has to hold true, which implies that all the allowed values of m for a fixed l′ lie in
the range l′ − l = m < l′. This concludes the usual 2l + 1 degeneracy of the eigenvalue
λ = −l(l+ 1) and thus reproduces the free space result. It can further be shown that the
wave function correctly reproduces the expected free space expressions.

Radial part of Ψ

The separation constant is λ < 0 for all values of the magnetic charge, m and l. This
implies that the centrifugal potential is always repulsive [181]. Therefore it can be con-
cluded that there are no bound solutions. The radial part of the Schrödinger equation
is

−1

2M

(
2

r
∂r + r2∂2

r +
λ

r2

)
R(r) = ER(r) (3.83)

The physically viable solution to this equation is

R(r) ∝ 1√
kx
J1+4λ(kx) (3.84)

where k =
√

2ME
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3.3.2 Charge confined to a sphere

A simple way to investigate the consequences of adding of the unusual potential (3.44) is
to confine the charge to a sphere. In this way, the radial solution is no longer of interest
and the problem above can be compared to a static monopole at a center of said sphere.

The latter system is described by the Hamiltonian

HHaldane = Λ2/2MR2 (3.85)

where Λ = r × [−i~∇ + eA(r)]. The spectrum of HHaldane as found in [231] and [232] is
given by the Landau levels

EHaldane = [l(l + 1) + (2l + 1)s]/2MR2 , (3.86)

where l and 2s = n are integer.
What happens if (3.41) is constricted to a sphere? From Eq. (3.47) and Eq. (3.41) the

energies come out to

E =
−λ

2MR2
(3.87)

At this point the quantization of the charge eg = 2πn can be reintroduced into the
equations, resulting in µ =

√
m2 + n2/2. As explained earlier, for m > 0 the change

l→ l −m with the upper bound m < l can be made. Altogether this yields

E =
1

2MR2

{
l(l + 1)− 1

2
(2l + 1)

(
|m| −

√
m2 + n2

)
+

1

2

(
|m|
√
m2 + n2 −m2

)} (3.88)

It is interesting to note that the above equation coincides with Eq. (3.86) for m = 0.
As m grows larger, it slowly approaches the free space solution. This can be seen in
Fig. 3.2 where it is clearly shown that the degeneracy of the free space (or Landau levels)
is partially lifted.

3.4 Summary and outlook

The main result of the work in this chapter is the construction of the Hilbert space
belonging to an electric charge coupled to a Dirac monopole whose magnetic charge rapidly
switches polarity. The surprising aspect of this result is that the Schrödinger equation
could be solved, despite the line-like singularity in the potential Vs in (3.44). This problem
and its solution in other contexts has not been previously published. That is not to say
that the mathematical tools to find such a solution are not well established, because they
are.

However, as in the case of the static monopole, no bound solutions to the problem
exist. To ameliorate this fact and in order to study the discrete angular energy spectrum,
the charge was confined to a sphere. The spectrum was compared to both sets of special
conditions: A charge on a sphere with a regular magnetic monopole and that of the large
frequency limit of an oscillating magnetic charge.
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Figure 3.2: λ for two different values of (a) n = 1 and (b) n = 3. For m = 0 the energies
EHaldane and E are the same. As the value of |m| increases, the energies approach the
degenerate free space levels indicated by thin black lines. As opposed to the free space
levels and the EHaldane the modified energies partially lift the degeneracy for a given l.

The results presented in this chapter create a foundation on which to build a more
comprehensive analysis of the Floquet magnetic monopole. Several things were not ad-
dressed with sufficient rigor, and are the subject of the author’s ongoing research. Two
of these are the convergence of the large frequency expansion in Eq. (3.39) and the iden-
tification of gauge invariant observables, which make a convincing case for the physical
nature of the time independent Hamiltonian H0. A appropriate candidate for such an
observable would be the scattering cross-section of Vs.
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Chapter 4

Kinetic driving

In Chapter 2 periodically shaking a two-dimensional lattice was investigated as a means
for generating an artificial magnetic field. As noted in Chapter 2, shaking falls under the
category of potential or diagonal driving, because the time periodic terms only affect the
on-site potential terms for both the lab and the lattice frame. Naturally, other forms of
driving have been considered experimentally and theoretically. Given the typical structure
of tight binding models

H = HT +Hpot +Hint , (4.1)

where HT is the kinetic energy, Hpot describes the on-site energies and Hint the on-site
interactions. Driving can be divided into three broad categories: 1. potential driving,
2. interaction driving and 3. kinetic driving. In the previous chapters, the way poten-
tial driving modifies the tunneling dynamics in the high-frequency limit was discussed
in detail. The second category involves time-periodic manipulations of the interaction
energy. Experimentally this manipulation can be accomplished via Feshbach resonances
[18]. This type of periodic modulation was considered e.g. in Refs. [233–236] and it can
produce dynamical gauge potentials: In the high frequency limit the hopping amplitudes
aquire phases, depending e.g. on the number of particles occupying its neighboring site
[237]. An interesting opportunity these unusual phase factors offer is the simulation of
anyon physics [238]. Although these are not fundamental particles in three dimensions
they can be fundamental in two. Apart from that, anyons are important quasiparticles in
Hall-physics [239].

This chapter focuses on the study of the third category, namely kinetic driving. Os-
cillations of the tunneling amplitude are used in lattice modulation spectroscopy of cold
atoms [240–243] and are usually done in such a way that the hopping amplitude is sub-
ject to a small variation around a large constant value. In the work presented here [2]
the nearest-neighbor hopping amplitude is allowed to vary between negative and posi-
tive values. It is an unusual form of a periodic time dependence, which produces an
equally unusual effective Hamiltonian. The new Hamiltonian will feature various long-
and short-range interaction terms and different types of correlated hoppings. Because
of its atypical nature, this effective Hamiltonian is an example of a periodically driven
system that possesses new and interesting properties that warrant study for their own
sake. This fact sets it apart from those used simply as tools for simulation. Indeed, as
this chapter will show, this effective Hamiltonian produces a very intriguing ground state
that will be investigated thoroughly in the next two chapters.

85
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This chapter is structured as follows: In Section 4.1 the effective Hamiltonian is derived
for periodic and hard wall boundary conditions. The section is completed by commenting
on various extensions of the kinetically driven Bose-Hubbard model. In Section 4.2 the
specific form of cosinusoidal driving is discussed by studying the effective Hamiltonian in
position space as well as momentum space. In position space the large frequency approxi-
mation produces a host of correlated hoppings, as well as local and non-local interactions.
The range of these interactions and hoppings is detailed for large system sizes. This is fol-
lowed by an investigation of various momentum space observables, where strong evidence
for quasi-condensation in two non-zero momentum modes has been compiled. From these
preliminary observations a simple description of the ground state for small values of the
driving parameter emerges. This is detailed in Section 4.2.3. An intuitive picture forms,
explaining the peaks in the momentum density. For larger values of the driving parameter,
this simple picture breaks down and a cat-like ground state emerges. In Section 4.2.5 this
breakdown in the context of a quantum phase transition is investigated. Through the use
of various measures, a Kosterlitz-Thouless transition from Mott to superfluid is found to
take place in a physically meaningful regime of the driving. Section 4.3 is concerned with
hard wall boundary conditions, in which the effective Hamiltonian for cosinusoidal driving
is specified and the ground state properties are discussed once again. In Section 4.4 a
potential experimental implementation of the proposed kinetic driving is discussed.

4.1 Kinetic driving of a Bose-Hubbard model

The model at the center of this chapter is the kinetically driven one-dimensional Bose-
Hubbard model

H(t) = −J(t)
∑
x

(
a†x+1ax + H.c.

)
+
U

2

L−1∑
x

nx(nx − 1) . (4.2)

The summation limits are not yet specified, in order to accommodate both periodic and
hard wall boundary conditions. As in the previous chapters, the creation and annihilation
operators are bosonic, U is the Hubbard interaction energy and J(t) is some T -periodic
function with zero time average. As in all previous models, the lattice spacing is set to
a = 1, ~ = 1. L is the number of lattice sites.

This section is dedicated to the derivation of the effective time independent Hamilto-
nian. Its quasienergy spectrum will then be compared to the spectrum calculated through
U(T, 0), the time evolution after one period of the driving. As explained in detail in
Chapter 1, both the quasienergies calculated with U(T, 0) and those of the exact effective
Hamiltonian should coincide in the limit of large frequencies.

The methods used to derive the effective Hamiltonian are the same as the ones pre-
sented in Chapter 1 (see e.g. (1.77) and following). The effective Hamiltonian will be
derived for both: periodic and hard wall boundary conditions (HWBC). The derivation
begins with the introduction of periodic boundary conditions (PBC), i.e. a ring lattice
or simply: a ring. The differences and similarities between both types of boundary con-
ditions (periodic, hard walls) will become an important theme in this and the following
chapter. The boundary conditions have significant consequences both physically and
mathematically.
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4.1.1 Periodic Boundary Conditions

The kinetically driven Hamiltonian for PBC, i.e. aL = a0, is

Hpbc(t) = −J(t)
L−1∑
x=0

(
a†x+1ax + H.c.

)
+
U

2

L−1∑
x=0

nx(nx − 1) . (4.3)

The calculation of the effective Hamiltonian proves to be simpler in the momentum repre-
sentation, which differentiates it from the calculations in previous chapters. To that extent
a†x, ax have to be represented in momentum space. The difference between plane wave
modes and stationary modes will become important later so Eq. (1.117) from Chapter 1
is repeated here:

ax =
1√
L

L−1∑
l=0

e−iklxakl , (4.4)

akl =
1√
L

L−1∑
x=0

eiklxax , (4.5)

where

kl =
2π

L
l , l ∈ Z . (4.6)

The completeness of the plane wave mode functions exp(iklx) in combination with the
PBC guarantees the preservation of the commutation relations [akl , akm ] = [a†kl , a

†
km

] = 0

and [akl , a
†
km

] = δkm. In the momentum representation the Hamiltonian becomes:

Hpbc(t) = −2f(t)
L−1∑
l=0

cos(kl)a
†
kl
akl +

U

2L

L−1∑
l,m,n,p=0

δkl+km,kn+kpa
†
kp
a†knakmakl . (4.7)

The δkl+km,kn+kp ensures quasimomentum conservation. For all momenta the condition

kl+L = kl (4.8)

is implied. The cos(kl) in the first term in Eq. (4.7) together with f(t) constitutes the
instantaneous dispersion relation of the band. Kinetic driving is thus a specific form
of direct band driving. For most numerical computations the Brillouin zone [0, 2π) was
chosen. This affects the summation limits and the specific numerical implementations,
but has no bearing on the physical interpretation. To keep the presentation symmetric,
all the figures and most of the text will reference the Brillouin zone (−π, π]. The two
choices are switched between by identifying (−π, 0] with (π, 2π].

The unitary transformation

W (t) = e
−2iF (ωt)

∑L−1
kl=0 cos(kl)a

†
kl
akl , (4.9)

where

F (ωt) =

∫ t

0

dt′ f(t) (4.10)
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facilitates the transformation into the moving frame. The transformed Hamiltonian is
given by [see Eq. (1.77)]

H ′pbc(t) = iẆ (t)W (t)† +W (t)H(t)W (t)† . (4.11)

A slightly more involved calculation compared to that in Chapter 1 [(1.80)] has to be
completed in order to find the Hamiltonian in the moving frame. One can reuse the
technique however and define

f(λ) : = e−iλ cos(ku)a†kuakua†kpa
†
kn
akmakle

iλ cos(ku)a†kuaku

= U(λ)a†kpa
†
kn
akmaklU

†(λ) .
(4.12)

Differentiation with respect to λ results in

∂λf(λ) = i cos(ku)U(λ)
[
a†kpa

†
kn
akmakl , a

†
ku
aku

]
U †(λ)

= i cos (ku) (δlu + δmu − δnu − δpu) f(λ) ,
(4.13)

which implies that

f(λ) = eiλ cos(ku)(δlu+δmu−δnu−δpu)a†kpa
†
kn
akmakl . (4.14)

Using this in Eq. (4.11) gives

H ′pbc(t) =
U

2L

L−1∑
l,m,n,p=0

δkl+km,kn+kpe
2iF (ωt)[cos(kl)+cos(km)−cos(kn)−cos(kp)]a†kpa

†
kn
akmakl .

(4.15)

As in the previous chapter the periodicity of f(t) implies that F (t) is periodic as well.
This means that the Fourier series

e2iF (ωt)g(kl,km,kn,kp) =
∞∑

q=−∞

γq(kl, km, kn, kp)e
iqωt (4.16)

can be used. Here

g(kl, km, kn, kp) = cos(kl) + cos(km)− cos(kn)− cos(kp) . (4.17)

Inserting the above expression into Eq. (4.15) and performing a subsequent time average
over one period of the driving, results in the expression

Heff
pbc =

1

T

∫ T

0

dτH ′(τ)

=
U

2L

L−1∑
l,m,n,p=0

δkl+km,kn+kpγ0(kl, km, kn, kp)a
†
kp
a†knakmakl .

(4.18)

This is the effective Hamiltonian. As long as ω � UN where N is the number of particles
in the system, this time-independent effective Hamiltonian should be a good approxi-
mation. It guarantees that the quasienergies do not wrap around the zone edges of the
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first Brillouin zone (0, ω) in the frequency domain. Consequently the quasienergies can
be ordered and thus it is reasonable to identify ground and excited states. It is shown
in Section 4.2 that the effective Hamiltonian resulting from cosinusoidal driving, which
has a naturally well-ordered spectrum and possesses a well defined ground state, indeed
reproduces the quasienergy spectrum, confirming that this interpretation is justified.

Unlike the result in the potential driving case, where only the nearest neighbor hop-
ping amplitudes were renormalized, the situation is much more complicated for kinetic
driving. In the momentum representation the γ0(kl, km, kn, kp) are the scattering am-
plitudes of two particles with incoming momenta kl, km and outgoing momenta kn, kp.
The kinetic drive renormalizes those amplitudes, which very much depend on the incom-
ing and outgoing momenta. For the time independent system the scattering amplitudes
are constant γ0(kl, km, kn, kp) = 1, which reproduces the interaction term in momentum
space. The renormalization of the scattering amplitudes has significant consequences:
It produces non-local interactions and correlated hopping terms in position space. This
effect is studied in detail in Section 4.2 (cosinusoidal driving).

The interaction energy U is a global scaling factor. A change of U results in a
rescaling of time in the evolution of the system. The effect of a temporal off-set of
the drive will be considered in the next chapter. In general, if a temporal offset were
to be present, as defined in the previous chapters [see e.g. (2.93)] then the extra phase
exp[−iF (θ)g(kl, km, kn, kp)] would appear in the above summation [82].

4.1.2 Hard wall boundary conditions

A standard way to accommodate HWBC is to extend the lattice by two sites, on which
the walls are assumed to be placed, i.e. x = 0, L+1. Placing the walls forces a0, aL+1 = 0,
so that the summation in Eq. (4.2) is changed to

Hhw(t) = −J(t)
L∑
x=1

(
a†x+1ax + H.c.

)
+
U

2

L∑
x=1

nx(nx − 1) . (4.19)

A mode expansion satisfying these boundary conditions facilitates the derivation of the ef-
fective Hamiltonian. The natural choice is an expansion into stationary sinusoidal modes.
The creation and annihilation operators in position space are expanded according to

ax =

√
2

L+ 1

L∑
l=1

sin(k̃lx)ak̃l (4.20)

ak̃l =

√
2

L+ 1

L∑
x=1

sin(k̃lx)ax (4.21)

where the new wave vector
k̃l = πl/(L+ 1) (4.22)

has to be defined so that ak̃l and a†
k̃m

satisfy the bosonic commutation relations and the

boundary conditions. The first Brillouin zone now is (0, π). The system is still periodic
with respect to 2π, but the Brillouin zone is twice as dense as for PBC and (π, 2π) is
missing from it.
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The derivation of the effective Hamiltonian is in perfect analogy to the one for PBC.
The only difference is the reduced symmetry. A consequence of this is the loss of quasi-
momentum conservation, leading to a more complicated effective Hamiltonian. In the
stationary wave representation, after transforming into the moving frame and performing
a subsequent time average over one period, the equation that results is:

Heff
hw =

2U

(L+ 1)2

L∑
x=1

L∑
l,m,n,p=1

sin(k̃lx) sin(k̃mx) sin(k̃nx) sin(k̃px)

× γ0(k̃l, k̃m, k̃n, k̃p)a
†
k̃p
a†
k̃n
ak̃mak̃l .

(4.23)

For PBC and the plane wave modes, the sum over x positions produced the Kronecker
delta, ensuring momentum conservation. Here the sum remains and presents an additional
complication in the renormalization of the scattering amplitudes. This has several conse-
quences, one of them being that the numerical and analytic investigation of the problem
becomes more difficult. This is the reason why the ring is more extensively discussed in
this chapter. In Chapter 5 more importance is given to HWBC.

4.1.3 Stationary and truncated plane waves

Even though the plane wave representation is not the natural choice for HWBC it still is
a valid expansion with a minor change: The plane wave modes have to be truncated at
the positions of the walls:

φkl(x) =

{
eixkl , x ≤ L

0 , x = 0, L+ 1
(4.24)

These mode functions preserve the bosonic commutation relations and help to compare
observables in HWBC and PBC. Employing the truncated plane wave mode functions
results in:

ak̃l =

√
2

L(L+ 1)

L∑
m=1

L∑
x=1

φklx sin(k̃lx)akm , (4.25)

Although this transformation is trivial in the continuum, the difference in the definitions
of k̃l [(4.22)] and km [(4.6)] make it less trivial in discrete space.

4.1.4 Extensions

For PBC and HWBC it is possible to introduce complications into the driven Bose-
Hubbard model in Eq. (4.2), such as an additional constant tunneling term, an on-site
potential, a tilt or a single-site impurity. For all these cases it is still possible to derive
an effective Hamiltonian. These complications introduce new energy scales, which have
to comply with the high frequency regime. Without detailing their individual properties,
it is still informative to state how kinetic driving affects their respective representations
in momentum space.

The model that covers all the above complications is

H̃(t) = Hkin(t) +Hpot +Hint . (4.26)
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The individual terms are

Hkin(t) = −[J0 + J(t)]
∑
x

(a†x+1ax + H.c.) , (4.27)

Hpot =
∑
x

Kxnx , (4.28)

Hint =
U

2

∑
x

nx(nx − 1) . (4.29)

The renormalization of the scattering amplitudes in momentum space for the interaction
term has been calculated in the previous sections. The new additions are a hopping term
that is constant in time and the on-site potential term Hpot, which is the only term that
requires some care when deriving the effective Hamiltonian. The transformation defined
in Eq. (4.9) can be used to transform the system into the moving frame and perform a
subsequent time average. The time independent term −J0

∑
x(a
†
x+1ax + H.c.) commutes

with W (t) so that it is not affected by the transformation.
When evaluating the transformation (4.11) an expression similar to Eq. (4.12) (PBC)

is obtained:

f ′(λ) = e−iλa†kuakua†klakme
iλa†kuaku

= eiλ cos(ku)(δmu−δlu)a†klakm . (4.30)

Periodic boundary conditions

The effective Hamiltonian for the PBC is

H̃eff
pbc = H0

kin +Heff
pot +Heff

int , (4.31)

where

H0
kin = −J0

L−1∑
x=0

(a†x+1ax + H.c.) , (4.32)

Heff
pot =

1

L

L−1∑
x=0

L−1∑
l,m=0

Kxe
i(kl−km)xβ0(kl, km)a†klakm , (4.33)

Heff
int = Heff

pbc , (4.34)

where β0(kl, km) is defined indirectly through the expansion

e2iF (ωt)h(kl,km) =
∞∑

q=−∞

βq(kl, km)eiqωt (4.35)

and

h(kl, km) = cos(kl)− cos(km) . (4.36)

The term Heff
pbc is given in Eq.(4.18)
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Hard wall boundary conditions

For HWBC the expressions are very similar to those of the ring. The use of the new mode
functions yields

H̃eff
hw = H0

kin +Heff
pot +Heff

int , (4.37)

where

H0
kin = −J0

L∑
x=1

(a†x+1ax + H.c.) , (4.38)

Heff
pot =

2

L+ 1

L∑
x=1

L∑
l,m=1

Kx sin(k̃lx) sin(k̃mx)β0(k̃l, k̃m)a†
k̃l
ak̃m , (4.39)

Heff
int = Heff

hw . (4.40)

These expressions are the culmination of the derivations of general expressions for kinetic
driving and will become useful in the next chapter.

4.2 Cosinusoidal driving of the ring

The specific waveform
f(t) = J cos(ωt) (4.41)

and its general effects will now be studied in detail. This waveform is central to the
discussion of our work in Ref. [2]. It produces a rich set of interesting effects that made
its investigation a very fruitful process. The cosinusoidal waveform implies

F (ωt) =
J

ω
cos(ωt) . (4.42)

In turn the expression

γ0 = J0{2κ[cos(kl) + cos(km)− cos(kn)− cos(kp)]} (4.43)

is found. κ = J/ω will be referred to as the driving parameter. The effective Hamiltonian
explicitly becomes

Heff
pbc =

U

2L

L−1∑
l,m,n,p=0

δkl+km,kn+kp

× J0{2κ[cos(kl) + cos(km)− cos(kn)− cos(kp)]}a†kpa
†
kn
akmakl .

(4.44)

The spectrum of quasienergies for (N,L) = (8, 8) is shown in Fig. 4.1 (N is the number
of particles).
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Figure 4.1: Quasienergies of Heff
pbc for (a),(b) (N,L) = (8, 8) and (c) (N,L) = (6, 6) ; N =

number of particles; L = number of lattice sites. For κ = 0 the spectrum is gapped.
Each level is characterized by a number of particle-hole excitations. εn = 0 corresponds
to the Mott state, which corresponds to a configuration with one particle per site. Once
κ increases, the degeneracy of energy levels is lifted and dense bands start to form. In
(a),(b) the ground and first excited state form their own band, which is clearly separated
from the others. This feature depends on the available momenta. The momenta k = ±π/2
must lie within the Brillouin zone, i.e L/4 = n, where n is an integer. (a) Entire spectrum
for (N,L) = (8, 8), (b) zoom-in for (N,L) = (8, 8) and (c) zoom-in for (N,L) = (6, 6).
The gap between the first and second excited state is no longer present.
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The spectrum is clearly gapped for κ = 0. Each level represents a set of particle-hole
excitations. The ground state is the Mott state, in which each particle occupies exactly
one site. The first excited energy is degenerate and is marked by at least one hole and
one double occupation, contributing one unit of U to the energy. The higher excited,
highly degenerate energy levels feature configurations of two, three or more particles on
one site. The highest excited state has the energy 8(8− 1)U/2 = 28U . Once κ increases
the degeneracy of the levels is lifted and dense bands start to form. For κ > 0.4 the ground
and first excited state conspire to form a well separated level. This feature depends on
the presence of k = ±π/2 in the Brillouin zone, i.e. L/4 = n with n some integer. This
can be seen when comparing Fig. 4.1b and Fig. 4.1c. The gap between first and second
excited state in Fig. 4.1b [(N,L) = (8, 8)] is no longer visible in Fig. 4.1c [(N,L) = (6, 6)].
An explanation of this effect is given in the next chapter. It is quite involved and obscured
by the effective Hamiltonian.

To see how well the quasienergies of the effective Hamiltonian agree with those ob-
tained from the time evolution operator of the fully time-dependent system (4.2), the
operator was evaluated after one period for various fillings and lattice sizes. For the time
dependent calculation the parameters ω = 1000U and J ∈ [0, 800U ] were chosen. With
ω � N(N−1)U/2 there is no danger of the quasienergies wrapping around the zone edges
of the first Brillouin zone and the spectrum is well ordered so that the identification of
the ground and further excited states is meaningful. The figure of merit χ2 [Eq. (2.104)]

χ2(κ) =
∑
n

[εn − εpbc
n (κ)]2 (4.45)

[Chapter 2, Eq. (2.104)] is used to quantify the agreement between the effective quasiener-
gies εpbc

n (κ) and the quasienergies εn derived from the time evolution. The results of this
comparison can be seen in Fig. 4.2. The agreement is very good and even for moderate
values of κ no significant deviation from the numerically calculated quasienergies can be
detected. In conclusion, Heff

pbc can be confidently used to analyze the system for ω � UN
and κ < 0.8 with this excellent agreement between the time dependent simulation and
effective Hamiltonian.

4.2.1 Atypical hoppings and interactions

The effective Hamiltonian in the momentum representation does not provide intuitive
access to the interpretation of the renormalized scattering amplitudes. It helps to con-
sider Heff

pbc in the position representation to make the impact of the renormalization more
transparent. To that extent, the expansion of the akl in Eq. (4.5) can be used to revert
to real space. In position space the effective Hamiltonian becomes

Heff
pbc =

N−1∑
w,x,y,z=0

Qwxyza
†
wa
†
xayaz , (4.46)

where

Qwxyz =
U

2L3

L−1∑
l,m,n=0

ei[kl(x−z)+km(x−y)−kn(x−w)]

× J0{2κ[cos(kl) + cos(km)− cos(kl + km − kn)− cos(kn)]} .
(4.47)
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Figure 4.2: χ2(κ) of Eq. (4.45) for various fillings. The agreement of the effective Hamil-
tonian with the numerical simulation is excellent for all values of κ

In Eq. (4.47) momentum conservation has been used. Despite the complicated nature of
the amplitudes Qwxyz, they are readily interpreted as representative of various correlated
hoppings, as well as local and non-local interactions. In the following a range of processes
that are important for small values of κ will be identified.

Some of the important correlated hopping processes, which are connected to spe-
cific Qwxyz, are illustrated in Fig. 4.3. When inspecting Eq. (4.47), it can be seen that
Qw+d,x+d,y+d,z+d = Qwxyz, where d is a lattice vector, which means that each specific Qwxyz

represents a whole class of processes. This is an expression of rotational symmetry in the
ring. For example, the on-site energies Qxxxx are all captured by Q0000. Furthermore Q2121

represents nearest-neighbor interactions. Q1100 is a doublon hopping amplitude (two par-
ticles tunneling together). Q1120, Q0312 are examples of correlated hopping amplitudes,
where the former is the energy cost of two particles hopping on-top of each other, and
the latter the cost for the inverse process. Q2220, Q2110 both represent density dependent
hopping terms. This can involve both neighboring and more distant sites. The magni-
tudes of these amplitudes can be seen in Fig. 4.3a and Fig. 4.3b. An illustration of these
processes is shown in Fig. 4.3c. As expected, for κ = 0 only the on-site interaction en-
ergy Q0000 = U/2 is different from zero. Increasing κ renormalizes the on-site interaction
potential and causes the appearance of a plethora of atypical hoppings and interaction
amplitudes.

It is interesting to note that the nearest-neighbor hopping is completely eliminated
from the effective Hamiltonian. This is not surprising, given that direct time averaging
Eq.(4.2) eliminates nearest-neighbor hopping completely. The higher order terms in the
expansion of Heff

pbc are naturally higher order processes. In principle all these processes are
arbitrarily long ranged. For κ < 0.3 only a few of those make a significant contribution,
which makes the problem tractable in this range. For κ > 0.3 more sophisticated methods
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are required in order to explain the system’s properties. In the next few paragraphs, a
more detailed study of the range dependence of the Qwxyz is given.
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Figure 4.3: (a) All interaction/hopping energies for L = 8 in units of U . The renormalized
on-site energy Q0000 dominates. Due to the rotational symmetry each Qwxyz represents a
whole class of processes. (b) Magnification of the hopping/interaction processes arising
due to kinetic driving: Q2121 is the nearest-neighbor energy, the other Qwxyz are explained
in (c): Magenta (light gray) particles indicate positions after a hopping event.
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The long range behavior of the Qwxyz is now explored in a more systematic manner
and in more detail than in [2]. In Fig. 4.4 w is fixed to zero 1, κ = 0.5 and a lattice with
L = 40 sites was chosen. The biggest distance between two sites is 20 sites. In Fig. 4.4a

(a)

(b)

0 5 10 15 20
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[|Q

w
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y
z
|/U

]

Figure 4.4: (a) |Q0xyz| for κ = .5 and L = 40 are shown. The size of the black spheres

represent |Q0xyz|.(b) log-plot of the |Q0xyz| as a function of R =
√
x2 + y2 + z2. The

amplitudes decrease exponentially indicating an effectively finite range of the atypical
hopping and interaction terms.

the magnitudes |Qwxyz| represented by black spheres can be seen to decrease rapidly the
further away they are from the origin. The log-plot in Fig. 4.4b shows the decrease of the
amplitudes as a function of the distance R =

√
x2 + y2 + z2. The slowest decaying points

suggest an exponentially decaying upper bound for |Q0xyz| as a function of R:

maxR(|Q0xyz|) = e−aR , (4.48)

1This choice equally represents all other w due to rotational symmetry
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where maxR(·) means the biggest value at a given distance R. In Fig. 4.5 the scaling of a as
a function of lattice size is shown for the parameters κ = 0.5 for up to 48 sites. The decay
rate a∞ = a(L → ∞) approaches the value 1.73, which was calculated by averaging of
the last three values of a(L). The numerical evidence suggests that the atypical hoppings
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1.73

a
(L

)

(b)

0.3 0.4 0.5 0.6 0.7 0.8
κ

1.6

10.00

1.8

2.0

a
∞

Figure 4.5: Decay rate of the slowest decaying maxR(|Q0xyz|) = exp(−aR) for up to L = 48
(κ = 0.5). The decay rate a approaches a∞ = 1.73. (b) The decay rates a∞ for a range
of values of κ.

and interactions are not infinitely long ranged. The findings also suggest that the decay is
bound by an exponential law. The dependence of the decay rate on the system size shows
a saturation of the decay, which points towards a well-defined limit of a∞ = a(L → ∞).
This limit was studied for a range of κ relevant to this work. The numerical findings
imply that the Qwxyz behave consistently over the parameter range that was studied. This
concludes the study and discussion of the various amplitudes of the effective Hamiltonian
in position space.

4.2.2 Momentum density

The impetus of this section is the analysis of the momentum density and the one-particle
reduced density matrix (one-RPDM) of the ground state and first excited state of the
effective Hamiltonian Heff

pbc. Calculations with the effective Hamiltonian were performed
using exact diagonalization (ED) techniques. More advanced numerical methods such as
the density matrix renormalization group (DMRG) techniques are very difficult to use for
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Hpbc due to the highly non-local nature of the effective Hamiltonian in position and or mo-
mentum space. ED was performed with either the “linalg.eig” routine of NumPy [244] or,
when only the ground state or low lying excitations were required, the “linalg.sparse.eigsh”
solver (implicitly restarted arnoldi method by [245]) from the SciPy module [104]. The
limits for reasonable computation times given the available resources for this thesis are
Hilbert space dimensions of dim(H) < 12000 which roughly corresponds to (N,L) in the
range (9, 8) or less. This section will focus on unit filling, which means that the biggest
system under investigation will be (N,L) = (8, 8).

The first observable of interest is the momentum density

ρ(k) =
1

N
〈nk〉

=
1

L

L−1∑
j,l=0

eik(x−y)P (1)
xy ,

(4.49)

where

P (1)
xy =

1

N
〈a†xay〉 (4.50)

is the one-particle reduced density matrix. For κ = 0 the effective Hamiltonian is identical
to

Hpbc(0) =
U

2

L−1∑
x=0

nx(nx − 1) . (4.51)

For unit filling, i.e. one particle per site, the ground state of this Hamiltonian is simply
the Mott state

|Mott〉 = |10, · · · , 1L〉 , (4.52)

with energy ε0 = 0. The momentum density of this state is constant ρMott(k) = 1/8.
For a system size of size (N,L) = (8, 8) (unit filling) the momentum density is shown in
Fig. 4.6. Once κ increases, two peaks form at ±π/2 for both the ground and first excited
state. This feature is less visible for the third excited state. It is not present at all for the
fourth and higher lying excited states.

The next section addresses the question of whether the formation of the peaks is
correlated with some form of quasi condensation. In the following, for the sake of brevity,
the term condensate is used, even though no true condensates can form in one dimension
and therefore only quasi condensation exists.

Condensation is not only signaled by the formation of the peaks in ρ(k) but also by
the macroscopic occupation of one or more natural orbitals. The natural orbitals are
the eigenvectors of the one-particle reduced density matrix. Their respective eigenvalues
signify the orbitals’ occupations. The one-RPDM in momentum space is defined as:

P
(1)
q,k =

1

N
〈a†qak〉 (4.53)

In Fig. 4.7 P
(1)
q,k is illustrated for the ground state for four exemplary values of κ. The

values represented on the diagonals in Fig. 4.7 correspond to the momentum density. The
four points (∓π,±π) are repeated for a more symmetric appearance and belong to the
diagonal. The one-particle reduced density matrices are all diagonal, which means that
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(a)

(b)

Figure 4.6: (a) Momentum density ρ(k) of the ground state for (N,L) = (8, 8) as a
function of κ. Two peaks form at k = ±π/2. (b) ρ(k) of the first excited state shows
very similar properties to that of the ground state, with the obvious difference that their
formation is less smooth.

the natural orbitals are just plane waves. Their occupation as a function of κ is shown
in Fig. 4.8. At κ = 0 all natural orbitals are equally occupied and the ground state is
maximally fragmented. This is to be expected of the Mott state. Once κ increases a
two-fold degenerate eigenvalue grows at the expense of the others. This indicates the
formation of a fragmented condensate. The natural orbitals belonging to this eigenvalue
are the plane waves with k = ±π/2 (Fig. 4.7). This is in stark contrast to the more
common Mott-superfluid transition of the undriven Bose-Hubbard model, where a single
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Figure 4.7: Shown is P
(1)
q,k = 〈a†qak〉/N in the ground state for four different values of the

κ. Two clear peaks at (p, q) = (±π/2,±π/2) form for increasing κ. For a more symmetric
appearance the (k, q) = ±(π, π) and (k, q) = ±(π,−π) are repeated - hence the latter two
points belong to the diagonal. The density matrices are diagonal, therefore the natural
orbitals are just plane waves. The pictures are very similar for the first excited state

condensate forms at k = 0 if J > 0 (positive effective mass). A more detailed discussion
of the properties of the Mott-superfluid transition is given in Section 4.2.5.

4.2.3 Dipole states

For values of κ < 0.3 it is possible to explain the formation of the peaks by closer
examination of the numerically calculated ground state. In Fig. 4.9 the weights of various
configurations for several values of κ are shown for the ground state. In the position
representation the ground state is a superposition of

|Ψ0〉 =
∑
{nα}

cn|n0, ..., nN〉 (4.54)

where {nα} means summing over all unique configurations for which
∑

x nx = N . In
Fig. 4.9 |1012〉, |030〉, etc. are shorthand for a single particle-hole pair, a single triple
occupation and so forth. For κ < 0.3, states that we dub dipole states in [2] play the most
important role, apart from the Mott state which is the biggest contributor to |Ψ0〉 for all
four values of κ. The plateaus in Fig. 4.9 are a manifestation of the rotational symmetry
of |Ψ0〉.
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Figure 4.8: The eigenvalues νn of the one-RPDM for (a) the ground and (b) first excited
state are shown here. (a) The magnitude indicates the occupation of the respective natural
orbital. For κ = 0 all orbitals are equally occupied and the fragmentation of the ground
state is maximal. As κ increases two degenerate orbitals emerge at the expense of the
others, indicating the formation of a fragmented condensate. The degeneracy of each νn
is listed in the legend. Except for the discontinuity, the first excited state (b) shows very
similar behavior.

A more quantitative analysis for κ < 0.3 can be made by considering the variational
ansatz

|ξ〉 = α|Mott〉+ β|D〉 , (4.55)

where

|D〉 =
1√
2L

L−1∑
x=0

(
Dx +D†x

)
|Mott〉 (4.56)

and

Dx = a†xax+2 . (4.57)

|D〉 is normalized and so is |Mott〉, which implies α2 + β2 = 1. Since the numerical
investigation showed all coefficients to be real α, β are taken to be real as well. Now the
goal is to minimize the energy 〈Hpbc〉 with respect to |ξ〉 (the κ suppressed to minimize
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Figure 4.9: The weights |cn|2 of the configurations forming the ground state for (N,L) =
(8, 8) are shown. n indexes the configuration by weight. The |Mott〉 state has the largest
weight for all four values of κ. For κ < 0.3, the second largest contribution to the |Ψ0〉 is
made by configurations with a doublon hole pair |1012〉, dubbed dipole states. For larger
κ triple occupations |030〉, extended dipoles |01112〉 or multiple double occupations |022〉
become more important.

clutter):

〈Hpbc〉 = α2〈Mott|Hpbc|Mott〉+ β2〈D|Hpbc|D〉+ 2αβ〈Mott|Hpbc|D〉 (4.58)

This expression shows that if 〈Mott|Hpbc|D〉 > 0 the energy is minimized for sgn(αβ) < 0.

Using the normalization of |ξ〉 α results in the expression (taken from the appendix of
[2])

〈Hpbc〉α = α2(A− C) + α
√

1− α2B + C , (4.59)
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where

A = 〈Mott|Hpbc|Mott〉 = 2
∑
x 6=y

Qxyyx (4.60)

B = 2〈Mott|Hpbc|D〉 = 8
√
N
(∑
x 6=0

+
∑
x6=0,2

)
Q2xx0 (4.61)

C = 〈D|Hpbc|D〉 =2
∑
x 6=y

Qxyyx + 4
∑

x 6=0,2,4

Q4xx0 + 4
∑

x 6=0,2,4

Q4,x,x+2,2 − 4
∑
x6=0,2

Q0xx0

+
(

2
∑
x 6=2

x 6=N−2

+6
∑
x 6=0,2
x6=N−2

)
Q2,x+2,x,0 +

(
8
∑
x 6=0

−4
∑
x6=2

)
Q2xx2

+ 2
(∑
x 6=0

+
∑
x 6=0,2

+
∑
x 6=0

x 6=N−2

+
∑
x 6=0,2
x6=N−2

)
Q2xx,N−2 + 8Q4220

− 4Q2442 − 6Q2222 .

(4.62)

Minimizing Eq. (4.59) with respect to α yields

α0 =



√
1

2
+

1

2

(
1 +

2B2

(A− C)2

)− 1
2

for B < 0

−

√
1

2
+

1

2

(
1 +

2B2

(A− C)2

)− 1
2

for B > 0

(4.63)

The comparison 〈Hpbc〉α0 with the exact ground state energy can be seen in Fig. 4.10
For values of κ < 0.3 the energy of the variational state and the exact ground state agree
reasonably well, beyond that value of the driving parameter the variational approximation
fails. The term that is key in reducing the energy is

〈Mott|Hpbc|D〉 = 4
√
N

(∑
x 6=0

+
∑
x 6=0,2

)
Q2xx0 . (4.64)

The amplitude Q2xx0 mediates between Mott and Dipole states. It also represents a
density dependent next-to-nearest neighbor hopping of a single particle. The momentum
density of the variational state is given by

ρ(k) =
1

N

(
1 +

4αβ√
N

cos(2k) +
3β2

N
cos(4k)

)
(4.65)

〈Mott|Hpbc|D〉 > 0 for lattices with up to 90 sites, and therefore sgn(αβ) < 0. This
implies that ρ(k) develops two peaks at ±π/2 just as it did for the ground state of the
full effective Hamiltonian.

From the above analysis an intuitive physical picture emerges. If the assumption is
made that the Mott state serves as a background of constant density for a single particle,
then that particle can become delocalized through next-to-nearest neighbor hopping. In
the language of an oversimplified one-particle model, this can be summarized with

H = J(κ)
∑
x

(a†x+2ax + hc) (4.66)
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Figure 4.10: The exact ground state energy ε0 of the effective Hamiltonian and the min-
imized variational energy 〈Hpbc〉α0 are shown. Around κ ≈ 0.3 both energies start to
diverge notably.

In the momentum representation this simply reads

H = 2J(κ)
∑
kl

cos(2kl)a
†
kl
akl (4.67)

The dispersion is cosinusoidal but oscillates with twice the frequency of the one resulting
from nearest-neighbor hopping (see Fig. 4.11). Depending on the sign of J(κ) the low-
est energies are either connected to the k = 0, π-orbitals if J(κ) < 0 (positive effective
mass) or k = ±π/2 orbitals if J(κ) > 0 (negative effective mass). When identifying
〈Mott|Hpbc|D〉 > 0 with the negative effective mass J(κ) the simple picture of a ground
state constituted by single particles preferring orbitals at k = ±π is confirmed. Once the
driving strength increases past κ ≈ 0.3, this picture breaks down. More and more config-
urations start contributing to the ground state and a fundamentally different description
is needed to explain the emerging phenomena.

In part, this has to do with a phase transition occurring at κ ≈ 0.42, which will
be explored in great detail in Section 4.2.5. The dipole approximation described here
belongs to the Mott-insulating regime, and it only partially accounts for the condensation
at ±π/2, as will be shown below. An extensive study has been performed with various
Hilbert-space truncations to find a suitable approximation to the regime κ > 0.3, where
the condensate forms. These efforts did lead to a better understanding of the nature of
the fragmented condensate. This will be addressed in more detail in Chapter 5

4.2.4 Two-particle momentum density

The previous section detailed the evidence of the formation of a fragmented condensate
at the momenta k = ±π/2, which was signaled by two peaks in the momentum density.
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The goal of this section is to further investigate the nature of the ground and first excited
state. A natural extension of the previous measures is the two particle momentum density

ρ(2)(q, k) =
1

N2
〈nqnk〉 (4.68)

=
(N − 1)

NL2

∑
w,x,y,z

eiq(w−x)eiq(y−z)P (2)
wyxz

+
δkq
NL

∑
w,z

eiq(w−z)P (1)
wz ,

(4.69)

where

P (2)
wxyz =

1

N(N − 1)
〈a†wa†xayaz〉 (4.70)

is the two-particle reduced density matrix. For κ = 0 the system is in the Mott state
and the two-particle momentum density is given by

ρ(2)(q, k) =
1

N2
[(N − 2) +N2 δqk] , (4.71)

which implies peaks along the line q = k and a constant background of (N − 2)/N2, and
can be seen in Fig. 4.12. Once the driving parameter increases, two peaks develop at
(q, k) = ±(π/2, π/2). This is clearly correlated with the onset of condensation at the two
momenta k = ±π/2. Again, this is due to the fragmentation of the condensate. Most
notable is the absence of the peaks of the cross-correlations (q, k) = ±(−π/2, π/2). Unlike
the one-PRDM this provides a crucial hint about the nature of the fragmentation.
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cos(2k)
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Figure 4.11: Dispersion relation for the undriven Bose-Hubbard model with next-to-
nearest neighbor hopping (black solid line) J > 0 (negative effective mass), and nearest-
neighbor hopping (blue dashed line) for J < 0 (positive effective mass).
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In principle there are two types of idealized states, consistent with the fragmented
nature of the condensate and the appearance of the one-PRDM in the regime where the
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Figure 4.12: The figures show the two particle momentum density ρ(2)(q, k) in the ground
state. Just as for the one-RPDM two distinct peaks emerge at (q, k) = ±(π/2, π/2).
Unlike the one-RPDM the off-diagonal elements are not strictly zero for neither κ = 0
nor κ = 0.6. Most notable is the absence of cross-correlations at (q, k) = (∓π/2,±π/2)
indicating a Schrödinger cat-like nature of the ground state for κ ≥ 0.5.
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Figure 4.13: ρ(2)(q, k) at κ = 0.6 for the ground state |Ψ0〉 to the third excited state |Ψ3〉.
The cat-correlations (see text or Fig. 4.12) are lost for the second and third excited state.
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condensate has formed. The first is a simple product state, where half the particles occupy
−π/2 and the other half are located in π/2

|Fock〉 =
1

(N/2)!

(
a†π/2

)N/2 (
a†−π/2

)N/2
|0〉 . (4.72)

Crucially, this state would show four peaks in ρ(2)(q, k), two at (q, k) = (±π/2,±π/2) and
two at (q, k) = (∓π/2,±π/2). This is plainly not the case here, as can be seen in Fig 4.12.
The other many-body state complying with strong fragmentation is the Schrödinger cat
state

|cat〉 =
1√
2N !

[
(a†π/2)N + (a†−π/2)N

]
|0〉 . (4.73)

This state is consistent with both the one-RPDM and the two-particle momentum density.
As shown in Fig. 4.13, the first excited state displays very similar behavior for κ = 0.6.
The cat-like nature of ground and first excited state persists for even larger values of the
driving parameter. The formation and properties of the cat-like ground and first excited
state will be the center of attention in the next chapter.

The simple dipole approximation in Eq. (4.55) cannot account for the features of the
ground state in the condensed regime. Even though its energy does not match that of the
true ground state, other qualities might still be the same as those of the ground state.
This is not true for the cross-correlations of ρ(q, k), since they are not small enough when
compared to the two peaks at ±(π/2, π/2). More importantly the dipole approximation
does not have superfluid correlations. This will be addressed in the next section.

4.2.5 Mott to superfluid transition

This section is devoted to the study of a quantum phase transition of the effective Hamilto-
nian. In particular, the existence of numerical evidence of a Mott to superfluid transition,
similar to that of the one-dimensional Bose-Hubbard model, will be investigated.

This section focuses on two measures, which characterize the Mott to superfluid tran-
sition. Both of them are known to work well with smaller system sizes. This is important
in the context of this work, since more advanced numerical approximation schemes, that
allow for larger system sizes such as DMRG, cannot be directly implemented for the ef-
fective Hamiltonian. The first method that is presented makes use of finite size scaling
and the second is based on Luttinger liquid theory. Both of them are reviewed for the
Bose-Hubbard model, to show that they produce adequate results, even for small systems.

Vanishing of the Mott gap

An important property of the superfluid phase is that in the thermodynamic limit a
particle-hole excitation can delocalize with no energy cost. On the other hand, as the
name Mott-insulator suggests, the same is not true in the Mott phase. Delocalization
costs a finite amount of energy, which means that particle transport requires some amount
of impetus. This finite amount (of energy) is the Mott gap ∆, and its presence is an
important characteristic of the Mott phase. Following the procedure laid out in Ref. [246]
this gap can be defined as

∆(N) = E(N,N + 1)− 2E(N,N) + E(N,N − 1) , (4.74)
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where E(L,N) is the ground state energy of a system with L sites and N particles. ∆(N)
thus compares the ground state energy of a system with N sites and N particles to a
system that has an additional particle or hole. If ∆(N) vanishes in the thermodynamic
limit L,N → ∞, then a particle-hole excitation can delocalize at no energy cost and
the system is superfluid. Here, the thermodynamic limit is extrapolated from finite size
system scaling: the effective Hamiltonian (4.44) was diagonalized for increasing system
sizes N = 5, 6, 7, 8 and the scaling of the gap was then fitted to

∆(N) = ∆∞ + d/N +O(1/N2) , (4.75)

with a least-squares fit. ∆∞ is then extracted from the intercept (d/N = 0). Even though
the system sizes involved in this procedure are quite small, the point of transition is
predicted quite well for the undriven Bose-Hubbard model J(t) = J [Eq. (4.2)]. From
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Figure 4.14: (a) Linear regression of ∆(N) [Eq. (4.75)] for N = 5, 6, 7, 8 for the undriven
Bose-Hubbard model J(t) = J [Eq. (4.2)]. The dots represent the numerically computed
value and the lines the linear regresssion. The colors match the respective value of J/U .
(b) Values of ∆∞ represented by the intercept of the linear regression in (a). For J/U ≈
0.32 the gap vanishes, marking the Mott to superfluid transition

Fig. 4.14 the critical value J/U ≈ 0.32 can be determined. This is very close to the
critical value J/U ≈ 0.3, that is found for much larger systems [247, 248]. For the effective
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Hamiltonian, the same calculation was performed. The results are shown in Fig. 4.15.
Fig.4.15a shows the gap ∆(N) as a function of 1/N for the system sizes N = 5, 6, 7, 8 and

(a)

0.00 0.05 0.10 0.15 0.20 0.25
1/N

0.0

0.5

1.0
∆
/U

κ = 0.0

κ = 0.3

κ = 0.6

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.25

0.50

0.75

1.00

∆
∞
/U

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
κ

0.00

0.25

0.50

0.75

1.00

∆
ic ∞
/U

Figure 4.15: (a) The gap ∆(N) and its dependence on the lattice size N is displayed.
Each point was calculated for unit filling. The lines represent the least squared fit used
to calculate the ∆∞ in the thermodynamic limit. (b) ∆∞ corresponding to the intercept
of the linear regression in (a). Error bars represent the statistical uncertainty of the
fitting procedure. For κ ≈ 0.42 the gap vanishes, signaling the transition from Mott to
superfluid transition. (c) ∆ic

∞ for the case of incommensurate filling. In contrast to the
commensurate case, the system remains superfluid throughout the driving range.

unit filling. As was calculated for the Bose-Hubbard model, linear regression was used to
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extract ∆∞ in the thermodynamic limit. The deviation from the fitting procedure can be
seen in the error bars in Fig.4.15b, where ∆∞ is shown over a range of κ. Even though
the error is quite large, a clear trend can be seen. At κ = 0 the gap ∆∞ = U , which is
the value it has to be for a Mott insulator. At κ ≈ 0.42, the gap vanishes and remains
closed, indicating a Mott to superfluid transition. To see whether or not this method
produces consistent results with incommensurate fillings of N − 2, particles on N sites
were investigated as well. The gap then becomes

∆ic(N) = E(N,N − 1)− 2E(N,N − 2) + E(N,N − 3) . (4.76)

In Fig. 4.15c the gap ∆ic
∞ remains consistently zero, signaling that the system remains

superfluid over the entire range of driving. This is what would be expected from Luttinger
liquid theory [248], where a non-commensurate system falls into a different universality
class than the commensurate case and the system is expected to remain superfluid over
the entire range of κ. Luttinger liquid theory will be the focus of the next section. Since
the error in the gap calculation is quite large, another method is employed to locate the
phase transition.

Luttinger liquid parameter

In one-dimensional interacting systems of bosons and fermions Tomonaga-Luttinger liquid
(TLL) theory [249, 250] provides a unifying framework with which both particle types can
be treated. An important tool for sorting out the properties of these systems are their
various correlation functions. Most importantly, these correlations posses a power-law
decay [251]. Another important feature is that the low-energy excitations of a TLL have
a linear dispersion law, which, after Landau’s superfluidity criterion [252], makes them
true superfluids in one dimension. A TLL is described by two parameters: the interaction
parameter (also called stiffness or Luttinger parameter Kb), which provides the asymptotic
behavior of all correlation functions, and the velocity v of the phononic excitations, which
have a linear dispersion relation. Both of these parameters enter the TLL Hamiltonian
[74], describing the behavior of the collective excitations in the liquid (Ref. [74] uses the
convention K ′b = 1/Kb):

H =
v

2π

∫
dx

{
1

Kb

Π(x)2 +Kb [∂xΦ(x)]2
}
, (4.77)

where Φ(x) is the phase of the density modulations and Π(x) = ∂xθ(x) its conjugate
variable. θ(x) can be interpreted as the superfluid phase of the liquid. In the following, v
and Kb are determined numerically, so their values in terms of e.g. the Fermi velocity and
the magnitude of the interactions of the underlying particles are not of relevance here (for
more information see e.g. [74]). The explicit value of the Luttinger parameter Kb depends
not only on the interactions of the underlying particles but also on the presence of an
underlying lattice and on the commensurability of its filling. The commensurability of the
filling is defined by the ratio p = L/N . This ratio determines certain universal values of
Kb which can be used to determine the phase of the liquid. Here two types of fillings are
considered. For unit filling, Kb takes the universal value Kb = ∞ in the Mott-insulator
regime. In the superfluid regime Kb = 1/2. For an incommensurate filling, Kb = 1, which
implies superfluid correlations.
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As in Ref. [2] Kb is extracted from the density-density correlation function [253]

N(r) =
1

N

N∑
x=1

〈nxnx+r〉 − 〈nx〉〈nx+r〉 , (4.78)

which asymptotically decays as [248]

N(r →∞) =
−1

2Kb (πr)2 + A
cos (2πr)

r2/Kb
+ . . . . (4.79)

Instead of fitting N(r) directly to Eq. (4.79), however, evaluating its Fourier transform,
N(k), and estimating Kb from its derivative yields more stable results [254]:

1

2πKb

= limk→0
N(k)

k
. (4.80)

In Fig. 4.16 this method is used to extract the phase transition for the undriven Bose-

0.0 0.1 0.2 0.3 0.4 0.5
J/U

0.0

0.5

1.0

1.5

K
b

Mott insulator

superfluid

Figure 4.16: Using Kb in Eq. (4.80) determines the Mott to superfluid transition for
the undriven Bose-Hubbard model [Eq. (4.2), J(t) = J ]. The system size was set to
(N,L) = (8, 8). For J/U < 0.28 the values of Kb diverge. The Kosterlitz-Thouless
transition from Mott to superfluid phase is taken to occur for Kb = 0.5. The value for
which this happens is κ ≈ 0.283 which is not far from the value found in Fig. 4.14.

Hubbard model for (N,L) = (8, 8). For a finite sized system, the presence of the Mott
phase in the thermodynamic limit is indicated by diverging values of Kb. These lie outside
the range of Kb shown in Fig. 4.16 for J/U < 0.15. Once J/U increases Kb continues drop-
ping in magnitude. The transition between the Mott state and the TLL is of Kosterlitz-
Thouless type for all commensurate fillings. In the superfluid phase, for unit filling, the
universal value is Kb = 1/2. For the finite sized system under consideration, this is the
criterion that determines the critical point of the transition [74, 248]. In Fig. 4.16 it can
be seen that this happens at J/U = 0.28, which is close to the value that was calculated
in the previous section, where J/U ≈ 0.32. This confirms that the TLL method is also
adequate for determining the critical point of the phase transition.

In Fig. 4.17a N(k) is shown for a few values of κ for the ground state of Heff
pbc for 8

sites and unit filling. It can be used as a proxy for the dispersion relation of the density
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fluctuations. For small κ < 0.3 the system has a gap and the N(k) displays quadratic
behavior close to the origin, which corresponds to Kb = ∞. Beyond κ = 0.3 the linear
behavior of N(k) close to the origin becomes clear. This is correlated with the vanishing
of the gap (Fig.4.15). This is additional evidence that justifies the use of TLL theory
to determine the Mott-to-superfluid transition. In Fig. 4.17b the Mott to superfluid
transition can be located at κ ≈ 0.48. This is close to the value determined through
the calculation of the Mott gap. Given that the gap calculation had quite large errors,
this can still be considered a good agreement. Doping the system slightly immediately
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Figure 4.17: a) Fourier transformation of N(r) for various driving amplitudes κ in the
commensurate case of (N,L) = (8, 8). For small values of κ (solid lines) the system
is gapped, which is consistent with the quadratic behavior of N(k) close to the origin.
For larger κ (dashed lines) the gap vanishes. For these values N(k) is linear for small
k. b) Luttinger parameter, Kb, calculated from the Fourier transformation of the density
correlation Eq. (4.80). For commensurate filling (black triangles) Kb diverges as κ reduces,
indicating the Mott phase. When Kb passes through the universal value Kb = 1/2, the
system transitions to the superfluid phase. By contrast, an incommensurate system of 6
bosons in an 8-site lattice (blue circles) is superfluid for all non-zero values of κ. In this
case, as κ→ 0, Kb approaches unity, as expected for a such a system (for incommensurate
fillings the universal value is Kb = 1).

produces superfluidity. The system will only be Mott insulating for κ = 0 . Once κ grows,
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superfluid correlations become instantly apparent. This is marked by Kb < 1 [248]. In
Fig. 4.17b the blue circles shows the Luttinger parameter for an incommensurate filling
(N,L) = (6, 8). For all values of κ > 0 the blue circles are consistently smaller than 1,
indicating superfluid correlations. As expected, this is consistent with the universality
class of Kb = 1. This further strengthens the reliability of this manner for extracting Kb.

The superfluid correlations appearing in the numerical investigation of our system are
another reason why the variational ansatz in Eq. (4.55) has to fail for κ > 0.4. Evaluation
of N(r) for |ξ〉 gives

N(r) =
1

N
(1− α2)(2δ0 − δr,2 − δr,−2) (4.81)

which is short ranged and cannot produce the types of correlations described by Eq. (4.79).

4.2.6 Spectral function

The unusual nature of the system prompted an additional test of the TLL picture in
Ref. [2]. The goal was to determine the linearity of the dispersion relation of the low
lying excitations through an additional method, which in theory would allow for the
determination of the second parameter describing the TLL v, i.e. its group velocity. In
[2] this was achieved by using the method developed in [254, 255]. They made use of a
spectral function to determine the dispersion relation of the low lying excitations.

The zero temperature spectral density function used here is defined as

A(ω, k) =
∑
n

∣∣∣〈Ψn|a†k|Ψg〉
∣∣∣2 δ(ω − ωn) . (4.82)

where |Ψn〉 is the n-th excited state in the N + 1 particle system, |Ψg〉 is the ground state
of N particles and ωn = En(N,N +1)−E0(N,N). En(N,N +1) is the energy of the n-th
excited state in the N+1 particle system. To smooth out the spectral function A(ω, k), it
was convoluted with a narrow Lorentzian. Sharp peaks in A(ω, k) indicate quasiparticle
excitations, from which the dispersion relation ω(k) can be inferred. In the upper panels
of Fig. 4.18, the results obtained for a system clearly located in the superfluid regime
(κ = 0.53) are shown. For each value of momentum, the spectral function shows a single
sharp peak, whose location shifts as the momentum changes. The contour plot of A(ω, k)
reveals that this momentum dependence corresponds to two regions of linear dispersion,
centered on k = ±π/2 exactly where the two condensates formed. Even though the double
dip structure is unusual, it is consistent with a picture where the low lying excitations
have a linear dispersion.

As explained in Chapter 1 (Section 1.4), the thermodynamic limit of a Floquet system
with interactions is not necessarily well defined because of the many-body resonances that
occur once UN(N − 1)/2 is of the order of the driving frequency. However, due to the
existence of a long pre-thermal regime, an investigation of the thermodynamic limit is not
completely unreasonable. An in-depth study of the heating that occurrs in a kinetically
driven Hamiltonian would be an interesting endeavor by itself, but it is beyond the scope
of this thesis.
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Figure 4.18: The spectral density (left panels) and line shape (right panels) A(ω, k) of
a single quasiparticle excitation. The red lines in the left panels indicate the dispersion
relation ω(q); the velocity of excitations (the other Luttinger parameter) being given by
the slope of these curves at k = ±π/2. Upper plots are for the superfluid regime κ = 0.53,
the lower panels for the Mott insulating regime κ = 0.1 for N = 8.

4.3 Cosinusoidal driving with hard wall boundary

conditions

The effective Hamiltonian for HWBC and cosinusoidal driving (4.43) in the stationary
wave representation is [Eq. (4.23)]

Heff
hw =

2U

(L+ 1)2

L∑
x=1

L∑
l,m,n,p=1

sin(k̃lx) sin(k̃mx) sin(k̃nx) sin(k̃px)

× J0{2κ[cos(k̃l) + cos(k̃m)− cos(k̃p)− cos(k̃n)]}
× a†

k̃p
a†
k̃n
ak̃mak̃l .

(4.83)

Some important differences between Heff
hw and Heff

pbc were already mentioned at the end of
Section 4.1. An important difference to the ring is the lack of momentum conservation,
which can be seen in the residual sum over x and the explicit appearance of the stationary
waves. Other changes due to the boundary conditions are the momenta k̃l = πl/(L+ 1).
With the reduction of symmetry it is also not possible to study the effective hopping and
interaction terms as concisely as in Section 4.2. The Qwxyz defined in Eq. (4.47) can no
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longer be chosen in such a way that Q0xyz is representative for all possible hopping and
interaction terms since those will clearly depend on where w is positioned relative to the
walls.

Furthermore, the presence of the walls alters the density correlation functions [248] in
such a way that the numerical study of the phase transition is no longer applicable, since
the system now really is too small. Some measures remain useful however, and they help
to analyze and understand the system. These include the momentum density, the one-
RPDM and the two particle momentum density. The spectrum shows some interesting
differences to PBC. The well separated ground doublet that formed for increasing κ is no
longer present for HWBC.
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Figure 4.19: Quasienergies of Heff
hw for (a),(b) (N,L) = (8, 8). For κ = 0 the spectrum

is gapped. Each level is characterized by a number of particle-hole excitations. εn = 0
corresponds to the Mott state implying one particle per site. (b) zoom-in for (N,L) =
(8, 8).

4.3.1 Momentum density

In the same way as for PBC, the momentum density for HWBC of the ground and
first excited state can be calculated as a function of the driving parameter κ. For a
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better comparison with PBC, the truncated plane wave transformation (4.25) was used
for the computation of the momentum density. This is shown in Fig. 4.20. Curiously, the
momentum density ρ(k) for HWBC behaves in a very similar way to those of the ring.
Incidentally there is no visible discontinuity in ρ(k) for the first excited state as there was
for PBC. Another difference to PBCs is that the peaks are not quite as pronounced and
consequently momenta other than k = ±π/2 contribute more. Again, higher excited states
lose the double peak feature. The natural orbitals are no longer just plane waves in the

(a)

(b)

Figure 4.20: (a) Momentum density ρ(k) of the ground state for (N,L) = (8, 8) as a
function of κ for HWBC. Just as for PBC two peaks form at k = ±π/2. (b) ρ(k) of the
first excited state shows the same behavior as the ground state. In contrast to PBC, there
is no discontinuity at κ = 0.2.
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truncated plane wave representation. As a general rule it can be stated that interactions
with the wall are energetically costly so the system tries to avoid them. In the bulk of
the lattice the natural orbitals behave more like plane waves again. In standard Bose-
Einstein condensate (BEC) theory, the distance required for the condensate to “repair”
the presence of an obstacle is known as the healing length. In the numerical calculation
of one-PRDM in the truncated plane wave representation, non-negligible imaginary off-
diagonal contributions are present. This is illustrated in Fig. 4.21. For PBC this was not
the case and in the plane wave representation the one-PRDM is a real valued diagonal
matrix (Fig. 4.7). In the next chapter the nature of the natural orbitals will be discussed
in greater detail. Fig. 4.22 shows that the occupation of the natural orbitals displays an
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Figure 4.21: One-RPDM evaluated for the ground state for κ = 0.75 and HWBC in the
truncated plane wave representation. When compared with Fig. 4.7, the matrix is no
longer diagonal and real. This is due to the fact that the truncated plane waves are not a
natural choice for HWBC and that the density close to the walls is reduced in the ground
state.

on-set of condensation for κ > 0.3, as for PBC. Each of the four eigenvalues of the one-
PRDM is two-fold degenerate. Together with the momentum density these two findings
present remarkable similarities to the ring.

4.3.2 Two-particle momentum density

As computed for the PBC the two-particle momentum density was calculated for HWBC.
The results can be seen in Fig. 4.23. An easy comparison with PBC is ensured by using
the truncated plane wave representation. It is notable that the ground state for HWBC
remains Schrödinger cat-like. The first excited state shows very similar correlations to
that of the ground state. In Fig. 4.24 the higher excited states are shown for κ = 0.6.
As for PBCs the cat like correlations disappear for the second and higher excited states.
These findings will be discussed in greater detail in the following chapter.

4.4 Experimental implementation

The cosinusoidal kinetic driving proposed in this chapter is quite unusual as it requires
a sign change of the tunneling amplitude. The method proposed in [2] makes use of
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Figure 4.22: The eigenvalues νn of the one-RPDM for (a) the ground and (b) first excited
state with HWBC are shown. (a) The magnitude indicates the occupation of the respec-
tive natural orbital. As for the ring, an increase in κ produces two degenerate orbitals
that are more and more occupied. Again, this indicates the formation of a fragmented
condensate. The degeneracy of each νn is listed in the legend. The most occupied orbitals
are also not quite as populated as for the ring.

the lattice shaking technique. As discussed in detail in Chapter 1 and Chapter 2, this
technique allows for the precise control of the tunneling amplitude. When the lattice is
shaking with a large enough frequency Ω, the effective value of the tunneling amplitude
is renormalized to an effective value. For sinusoidal shaking the effective tunneling am-
plitude is Jeff = JJ0 (K/Ω), where the amplitude of the shaking K was first introduced
in Eq. (1.71). Fig. 4.25 shows Jeff for a range of Ω/K. At K/Ω ' 2.404 the zeroth order
Bessel function passes its first zero and the effective tunneling amplitude vanishes.

A slow alternation of the shaking parameters can now be envisioned [256], so that
Jeff follows the change of the parameter K(t)/Ω on a time scale much larger than the
shaking period τ = 2π/Ω. If this is done periodically with a frequency ω � Ω around
the first root of the Bessel function, the effective tunneling amplitude will become time
dependent and it will oscillate between positive and negative values. If a suitable choice
of K(t) is made, a waveform of the driving such as in Eq. (4.2) with J(t) = J cos(ωt) can
be envisioned. For the applicability of the effective Hamiltonians (4.44) and(4.23) in the
large frequency regime, the hierarchy of the driving frequencies J, UN(N − 1) < ω � Ω
has to hold true.

For example, systems in which these conditions can be implemented include those
with 87ˆRb [65, 257] and potassium-39 [258]. For a single-band BH model optical lattice
depths of V0 > 6Er are required, where Er is the recoil energy. All but the nearest-neighbor
hopping terms are then suppressed. Since the shaking frequencies have to be smaller than
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Figure 4.23: The two particle momentum density ρ(2)(q, k) of the ground state for HWBC
is shown. As in PBC two distinct peaks emerge at (q, k) = ±(π/2, π/2). Again, most
notable is the absence of cross-correlations at (q, k) = ±(−π/2,−π/2), indicating a
Schrödinger cat-like nature of the ground state for κ ≥ 0.5.
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Figure 4.24: ρ(2)(q, k) at κ = 0.6 for the ground state |Ψ0〉 to the third excited state |Ψ3〉
with HWBC. The cat-correlations (see text or Fig. 4.12) are lost for the second and third
excited state.

the excitation energy to the next band, several tens of kilohertz are permissible. The
bare tunneling J that remains is of the order 100 Hz. This is sufficient to satisfy the first
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Figure 4.25: Sinusoidal lattice shaking produces an effective tunneling Jeff = JJ0(K/Ω)
where Ω is the frequency of the shaking and K is its amplitude. A periodic variation
of K/Ω around the first root of the Bessel function results in an oscillation of Jeff with
same periodicity in the shaded region. In the large frequency regime, this yields the
Hamiltonians (4.44) or (4.23) depending on the boundary conditions.

condition, J < Ω, and leaves a reasonable range of available frequencies for ω at which
the tunneling is modulated. The interactions can be adjusted, by means of Feshbach
resonances, to fit into the required hierarchy.

Heating due to the drive is another important aspect in a possible experimental imple-
mentation. As discussed in Chapter 1 (Section 1.4) heating to an “infinite temperature”,
known as the eigenstate thermalization hypothesis, is a serious obstacle to preserving the
quantum coherence. As long as the driving frequencies are much larger than the energy
scales given by the undriven Hamiltonian, a long-lived prethermal regime can be assumed
[108, 110]. In this regime, heating is an exponentially small function of the driving fre-
quency. This leaves a relatively long time-scale in which the dynamics of the system can
be approximated well by the effective Hamilonian. The Bose-Hubbard model in particular
is known to have this property [259], so there is a high level of confidence that there is
sufficient time to observe some of the unusual properties discussed in this chapter.

The momentum density or the other signatures discussed in this chapter can be re-
vealed experimentally. Time-of-flight methods are the most readily available for this.
The stability of the states that were presented in this chapter will be a topic in the next
chapter. All together an experimental realization and the observation of the properties
presented in this chapter are feasible.

4.5 Summary and conclusions

In this chapter, the kinetically driven Bose-Hubbard model was studied. First, the gen-
eral effective Hamiltonians for PBC and HWBC were derived without choosing a specific
waveform. In Section 4.2 the ring was investigated with a cosine waveform. The analysis
was based on the findings in [2]. The process by which renormalized hopping ampli-
tudes produce atypical interactions and correlated hoppings was discussed. Numerical
inspection showed that these interactions have a limited reach, and yet also have some
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remarkable effects. A notable result was the formation of a fragmented condensate at
k = ±π/2. For κ < 0.3, with the help of a variational ansatz [dipole states Eq. (4.55)],
an intuitive explanation for the formation of these peaks was given:

∑
xQ2xx0 was in-

terpreted as a next-to-nearest neighbor single-particle hopping amplitude giving rise to
a negative effective mass, in conjunction with a dispersion relation that has two minima
at k = ±π. This simple picture had to be abandoned once the condensate fully formed.
The dipole states cannot describe the two-particle momentum density nor the fluctua-
tions that arise as κ > 0.3. The study of the Mott gap and TLL theory helped to unveil
a Kosterlitz-Thouless phase transition from Mott to superfluid phase at κ ≈ 0.48. The
expected universal behavior of ∆ and Kb for different commensurabilities of the filling re-
inforced the validity of the application of both approaches. Finally, the spectral function
further solidified the linear dispersion of the energetically low lying density fluctuations.

The two-particle momentum density firmly ruled out a simple product state as an
approximation for the ground state of the effective Hamiltonian. A much better candidate
is the Schrödinger cat state in Eq. (4.73). This is quite remarkable by itself and a thorough
explanation of its formation is given in the next chapter.

In Section 4.3 a similar analysis as that for the ring was performed for HWBC. The
presence of the walls made the study of the phase transition nearly impossible with the
methods employed in this chapter. Despite this, evidence that condensation takes place
was found. The momentum density and two particle momentum density for the ground
and first excited states appeared to be in a similar range to those in PBC. This means
that both the ground and first excited states are best described as Schrödinger cats. This
will also be of interest in the next chapter.

Finally an experimental implementation was discussed and it was found to be feasible.



Chapter 5

Protected cat states from kinetic
driving of a boson gas

5.1 Introduction

This chapter is based on the author’s work in the article [3], which addresses the generation
of cat states through kinetic driving. This work is a continuation of that presented in
the previous chapter and provides substantial additions to the analysis presented in it.
One of the most curious predictions of the laws of quantum mechanics is the existence
of macroscopic superposition states (MQS). In the famous thought experiment by Erwin
Schrödinger [260] a cat is locked up in a box with a devious mechanism that ties the
demise of the cat to the decay of a small amount of radioactive substance. The quantum
mechanical nature of the decay creates a superposition state of a dead cat and alive cat,
a so-called Schrödinger cat state or simply cat state. This is very much at odds with
humans’ perception of macroscopic objects. The superposition of dead and alive would
immediately turn into one of the two options if an attempt is made to observe the cat.
This discontinuity in the evolution of the wave function [261] is known as wave function
collapse. The Schrödinger cat paradox is often resolved by looking to the environment.
Since the box is not a perfectly isolated system, its environment will become entangled
with the cat state and produce a statistical mixture before an observer can cause the
collapse. In fact, an observer or a measuring apparatus is often understood as a special
kind of dissipative environment inducing the collapse [262–264]. In general, the bigger a
system, the more difficult it is to shield it from such a dissipative environment, which in
turn accelerates the effect of decoherence [263].

Cat states represent a form of entanglement where the amount of particles sharing their
fate in a particular measurement is taken to an extreme. Even without the macroscopic
aspect, entanglement induces a zoo of contradictions between classical and quantum logic.
Some notable examples include the quantum eraser [265, 266], ghost imaging [267–269],
delayed choice inference [270–273] and, arguably the most important, the violation of
Bell’s inequalities [274–277].

As a special form of extreme entanglement, cat states are of great fundamental inter-
est themselves. They are central to proposals testing macroscopic realism [278–282]. At
the heart of macroscopic realism lies the question of whether there can be an observer-
independent description of macroscopic objects that keeps the laws of quantum mechan-
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ics intact at the micro-level [281]. Other possible applications of cat states are atom
interferometry beyond the Heisenberg limit [283], precision measurements [284], quantum
information tasks [285] and quantum metrology [286].

The difficulty in creating and maintaining a cat state is produced by the coupling
to the environment, which quickly decoheres the superposition into a statistical mixture
[263, 264, 287]. The main challenge therefore is to overcome the decohering effects of the
environment to make the state live long enough to permit the probing coherence between
the two macroscopically distinct states.

This is the context in which the present work is best appreciated. The cat-like states
of the previous chapter, which were found in a kinetically driven Bose-Hubbard model,
show resilience against collapse into one of their branches in both the ring and hard-wall
case. Most importantly, the circular boson superfluid preserves the MQS when subjected
to a spurious flux. Similarly, the gas between hard walls is fundamentally unaltered
by a velocity drift due to gauge invariance. Another important feature is that the two
condensates share the depletion cloud (labeled reduction cloud here), which provides a
degree of protection against atom losses. The findings in this chapter are the result of the
work presented in Ref. [3].

This chapter is organized as follows: In Section 5.2, a non-exhaustive summary of
theoretical and experimental research efforts concerning cat states is given. In Section 5.3
the generation of a cat state in the ring is discussed in detail. The section begins with
the failures of various perturbative treatments of the effective Hamiltonian, most notably
the failure of a naive application of Bogoliubov-de Gennes theory. In Section 5.3.3 a
non-perturbative treatment of the strong driving limit is developed. It provides a solid
qualitative understanding of the formation of the cat state through the interplay of attrac-
tive interactions in momentum space [288] and a particular case of a pairing interaction
commonly encountered in the so-called Richardson-Gaudin pairing models. These play
an important role in the context of nuclear physics and small grain superconductivity
[289, 290]. According to the work presented here, the two condensates that participate
in the ground state of the kinetically driven ring share a common reduction cloud that
is a result of the pairing interaction. In the subsequent Section 5.4 the many-body prop-
erties of the true ground state in the ring case are highlighted. Since there are many
Fock-configurations that contribute to both condensates, no simple criterion for assigning
a single configuration to either branch of the cat exists. A symmetry argument helps
to precisely define both branches that make up the cat state. For the ring, the effective
Hamiltonian yields an unconventional particle current operator which yields a vanishing
expectation value for the ground state and the cat branches. In a time-of-flight experi-
ment, however, the behavior of the two cat branches would be markedly different. The
same many-body plane wave analysis is performed for hard-wall boundary conditions
which is followed by Section 5.5 on the study of harmonic confinement. Section 5.6 fea-
tures a discussion of different figures of merit that help to characterize the quality of the
cat state. The section includes a short review of various measures that were proposed
in the literature and the introduction of a new measure. Section 5.7 investigates the
preparation of the cat state for both hard walls and the ring. Finally in Section 5.8 the
system’s resilience with regard to collapse of the cat state is discussed. In particular, the
possibilities for decay due to spurious rotations or velocity drifts, atom losses and diagonal
impurities are discussed. Additionally, thermal excitations and coupling to an environ-
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ment as possible causes of collapse are considered. The chapter ends with a summary and
conclusions.

5.2 Literature overview

There has been continuous interest in proposals and experiments for the creation of su-
perpositions of macroscopically distinct states, or cat states for short. Even though this
seems to be a simple enough definition of what constitutes a cat state, the notion of
‘macroscopic’ and ‘distinct’ are by themselves a subject of debate. This is, in part, due
to the complicated nature of quantum many-body systems, in which many different con-
figurations can intervene in any given state. Some aspects of these complications are
reviewed in Section 5.6. Cat states have also been proposed and produced for a consider-
able variety of systems. Continuous superpositions of macroscopically distinct states (i.e.
double condensates [291, 292]), not usually referred to as cat states, are not included in
this discussion. They require a more specific treatment, like the one found in [293]. In the
following a non-exhaustive overview of the literature on macroscopic quantum systems
and cat states is given.

Over the past 25 years, many experiments have produced cat states. The first forays
with cold atoms produced a correlated superposition of atoms in spatially separated states
[294]. Although not yet macroscopic it was an important stepping stone. A mesoscopic
superposition of internal states was realized in [295]. A promising avenue in superconduct-
ing devices for the generation of MQS is the use of superconducting quantum interference
devices (SQUIDs) [296, 297] which are based on the earlier work on the macroscopic
quantum behaviour in those systems [298–300]. Cooper pair boxes [301] are a related
type of device. The quantum interference of very large molecules is another avenue to
test size constraints on quantum coherence. Molecules as big as C60 [302] and beyond
[303–305] are known to show quantum behavior in double-slit type experiments. Large
molecules are also the subject of studies examining the transition of macroscopically dis-
tinct states involving different magnetic orientations [306–308]. Just like for ultracold
atoms, trapped ion systems also offer a great level of control and tunability, which makes
them a successful test-bed for cat state preparation. In [309] four ions were entangled.
This number was increased from six [285] to up to fourteen [310]. Photonic systems also
proved to be a successful platform for many cat state realizations. Small cat states were
produced within the optical range [311, 312] and the microwave range [313, 314]. In the
optical range these have been increased considerably to involve hundreds [315] or even
hundreds of millions [316] of photons. In the microwave range the size of the cats has
been increased up to hundreds of photons [317]. Cat states have also been produced for
micromechanical oscillators [318]. An interesting example of such a preparation involves
an optical levitating submicron particle [319]. In ultracold bosonic systems, a spinor cat
was realized in a double-well [320].

A plethora of theoretical proposals have focused on the study and generation of cat
states. Early studies focused on superconducting devices [278, 321] which also included the
coupling to a micromechanical resonator [322]. Optomechanical oscillators that have been
investigated can be found in [323–326]. Optical systems are equally great for exploring
MQS. The superposition of coherent states was proposed in [327]. With the assistance of
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cavity collisions, few-atom systems can also exhibit cat states of the Greenberger-Horne-
Zeilinger (GHZ) type [328].

Given the excellent level of control that ultracold atoms offer, it comes as no surprise
that a large number of proposals can be found in this category. Examples are found in
Refs. [329–343]. Since this work is mostly centered around ultracold atoms, the charac-
terization of these proposals provided here contains more detail. The various approaches
can be divided according to the spatial distribution of the macroscopically distinct states
and the macroscopic observable that differentiates the two branches of the cat state. Pro-
posals where the position of two or more atom clouds is the observable distinguishing
the branches are found in Refs. [329, 330, 333, 336, 342, 344]. The relative phase of
two clouds may also play a role in distinguishing the branches [332, 335, 343] so that the
spatial distribution of the atoms remains similar in either one. The branches may also
occupy the same region of space but populating modes which differ in the density profile
[345, 346]. In a manner similar to SQUIDs, superfluid currents can also occur for ultra-
cold atoms confined to a ring [338–341]. The superposition of states with different phase
profiles (and thus different superfluid currents) then constitutes the cat state. In ring
lattices with attractive interactions, described by the attractive Bose-Hubbard model, a
cat state may be expressed in the correlated hopping of atoms concentrated on a given
site [334]. The atom spin is also a useful observable to distinguish cat branches [347]
which can also be correlated with the position of the condensate [331].

Out of these proposals, various guiding principles for the preparation of a cat state
can be summarized. Direct cooling to a ground state that is a MQS is very difficult.
This is mainly due to the tiny difference in energy between ground and first excited state
[348]. The other methods can be broadly split into the three categories: (i) projective
measurement, (ii) dynamic evolution, and (iii) adiabatic preparation.

Examples for projective measurements can be found in Refs. [335, 349], where the
authors proposed the creation of macroscopic superpositions of atoms by some form of
measurement on a Bose Einstein condensate. These setups commonly begin with a contin-
uous superposition of macroscopically different states, which is then subject to a limited
measurement that is unable to resolve the difference between two distinct eigenvalues of
the measured observable. A similar proposal was made in Ref. [332] for the relative phase
of two interfering condensates.

Refs. [283, 327, 336, 341, 342] are in the second category. Dynamic preparation refers
to an initial state evolving in such a way that a cat state appears during its evolution.
Proposals of this type were realized in the photonic system found in Ref. [313]. The
preparation of an initial state is sometimes achieved by abruptly changing a parameter.
This can be a sign of the interaction in a bosonic atom gas [336], or a sudden change in
the tunneling phase [341].

Adiabatic preparation refers to the slow change of a parameter of the system. If the
system is initially prepared in the ground state, then during the change of a parameter
the initial state follows the lowest lying energy level. This method has also been proposed
to yield cat states [329, 336]. In Ref. [329] the authors propose producing the initial state
through cooling, which is then adiabatically transformed into a cat state. This method
was also implemented in [297], where a superposition of two macroscopically different flux
states was created by driving a SQUID towards a level anti-crossing. The difficulties in
preparing MQS states in rotating rings is discussed in Ref. [339].
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Finally, the mechanisms that destroy the MQS state may be addressed. The main
cause of the fast decay of a Schrödinger cat state is the collapse into one of its branches
due to decoherence [262]. The detailed mechanism is very sensitive to the particular
physical realization but, as already stated, it is a general trend that the larger and more
different the superposed branches are, the faster the collapse is. Particle losses are known
to be sources of such a collapse in ultracold atoms [329] or photonic systems [350]. The
interaction of a BEC with its depeletion cloud can also play a role in the decoherence
of a MQS of a boson condensate in two immiscible internal states [331]. In Ref. [336]
both the lasers that trap a condensate and its thermal cloud are the main contributors
to decoherence. There are also effects that counteract decoherence. The authors of [341]
identified inhomogeneities in a ring and in [342] interactions help to delay the decay of
the cat state. A discussion of the robustness of the more general concept of fragmented
states, of which cat states are a subset, can be found in Ref. [351]. The resilience to
collapse is one of the interesting features of the setups considered in this chapter. Section
5.8 contains a discussion of the possible mechanisms that may cause a collapse of the cat
state.

5.3 Cat state from kinetic driving in the ring

In this section, a varied assortment of analytical tools are used to study the formation of
the cat state. A brief review: The kinetically driven BH model in one dimension, with
PBC (4.3) and unit filling went through a quantum phase transition of the Kosterlitz-
Thouless type. The Mott-insulating state at κ = 0 (κ = J/ω) transitioned to a fragmented
superfluid state for κ ' 0.48. The fragmented quasi-condensate that formed condensed at
the non-zero momenta k = ±π/2. The condensation is clearly signaled by the formation
of peaks in the momentum density at k = ±π/2 and in the two-particle momentum
density 〈n(q)n(k)〉 at (q, k) = (±π/2,±π/2) (Figs. 4.6 and 4.13). The absence of peaks at
(q, k) = (±π/2,∓π/2) was the first strong indication that the ground state in the strong
driving regime is cat-like and not a mere product state.

For the undriven Bose-Hubbard model the occupation of the zero momentum state is
favored due to the minimization of the kinetic energy between adjacent sites. Deep in the
superfluid regime, interactions are a small perturbation to this state. Even though they
are small, they are essential for superfluidity. For the kinetically driven model, however, it
is much less clear why ±π/2 is favored in the superfluid regime. Primarily this is because
of the many correlated hoppings and local and non-local interaction terms in Heff

pbc [see

Eq. (4.46)]. In fact, nearest-neighbor hopping is completely suppressed in Heff
pbc.

Some important symmetries can be pointed out before reviewing the more detailed
analysis. The Hamiltonian Heff

pbc is invariant under the transformation k → −k (time
inversion) and k → ±π+ k. Both these symmetries highlight the importance of the pairs
of states with the momentum eigenvalues 0, π and ±π/2. Both pairs remain invariant
under the aforementioned symmetry transformations. This explains why a macroscopic
occupation of π/2 has to go along with the equally occupied momentum −π/2. This does
not explain, however, why they are macroscopically occupied in the first place.

In the Mott insulating regime, a qualitative explanation of the occupation for ±π/2
has been developed. It involved the dipole states in Eq. (4.55), concluding that an effective
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next to nearest-neighbor tunneling can explain the onset of the peaks for small values of
κ. This picture, however, completely breaks down in the superfluid regime. The next few
sections will be dedicated to elucidating a more apt description of the superfluid regime.
To begin this analysis some insightful failures will be discussed.

5.3.1 Two-mode model

The simplest possible approximation assumes only two modes that intervene in the for-
mation of the ground state in the superfluid regime. A radical truncation of the effective
Hamiltonian in momentum representation Heff

pbc [Eq.(4.44)] to the two modes k = ±π/2
yields

H2LS =
U

2L

(
2N2 −N − n2

a − n2
b + a†

2
b2 + b†

2
a2
)
, (5.1)

where a = aπ/2 and b = a−π/2 and na,b the respective number operator. This approxima-
tion is named the two-level approximation. Interestingly, the above Hamiltonian can be
diagonalized exactly with the canonical transformation,

c =
1√
2

(a+ b) , (5.2)

d =
1√
2

(a− b) , (5.3)

which leads to

H2LS =
U

2L
(2N2 − 2N − 4ncnd) , (5.4)

The normalized ground state of the above Hamiltonian is

|Ψ〉 =
1

(N/2)!

1

2N/2
(a†

2 − b†2)N/2|vac〉 . (5.5)

This state does not yield the two-particle momentum density, which was observed numer-
ically. If one takes the ratio of cross to diagonal correlations

χ = 〈nanb〉/〈nana〉 (5.6)

as a measure to compare the numerical results of the previous chapter to the state in
Eq. (5.5) then one can show analytically that for (5.5) in the thermodynamic limit χ = 1/3.
This is much larger than the numerical results for the ground state of Heff

pbc where χ� 1.
For an ideal cat state

(2N !)−1/2[(a†)N ± (b†)N ]|vac〉 (5.7)

this ad hoc measure would yield χ = 0. The discrepancy between the state in Eq. (5.7)
and Eq. (5.5) comes from the “center” configuration |(N/2)a, (N/2)b〉 when Eq. (5.5)
is expanded by means of a binomial expansion. Its contribution is simply too large to
accurately capture the two-momentum density of the state in (5.7). This can also be
appreciated in Fig. 5.1. The failure of H2LS to accurately capture the properties of the
ground state of Heff

pbc highlights the importance of modes other than ±π/2. Taking these
into account would result in a more accurate description.
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Figure 5.1: Two-particle momentum density for the two-mode approximation (left
panel) and for the full effective Hamiltonian (right panel) at κ = 0.7. The ratios
〈nπ/2nπ/2〉/〈n−π/2nπ/2〉 are, respectively, 4.3 and 45.5. This implies that the ground state
of the two-mode approximation is much less cat-like than that of the full model.

5.3.2 Failure of Bogoliubov-de Gennes theory

The previous two-mode approximation is the closest analog to the Gross-Pitaevskii (GP)
solution of the undriven Bose-Hubbard model. For the GP a fully occupied mode

(N !)−1/2(a†)N |vac〉 . (5.8)

is considered. Using this as a point of departure and replacing the operators a, b in Heff
pbc

or H2LS with c-numbers would only work if both modes a and b were macroscopically
occupied in all the intervening configurations. This, however, is not the case for the
ground state of either Heff

pbc or H2LS, as can be seen numerically for the former, and
analytically for the latter.

Regardless of these difficulties, the introduction of a depletion cloud for both modes
±π/2 by performing a naive Bogoliubov calculation might yield meaningful results.

To start, a single condensate can be assumed to be in an unspecified momentum mode
kv, replacing akv , a

†
kv
→ √N0 in Heff

pbc [Eq. (4.44)], where N0 is the number of atoms in the
condensate. Following the usual steps of Bogoliubov-de Gennes theory, terms of O(N2

0 )
and O(N0) are extracted from the effective Hamiltonian while neglecting higher order
contributions. Retaining terms up to O(N2

0 ) results in

hmf =
U

2L
N2

0 (5.9)

The next leading order in N0 is

hbg =
UN0

2L

∑
kp 6=kv

[
4a†kvakv + g(κ, kp)

(
akpa2kv−kp + a†kpa

†
2kv−kp

)]
(5.10)

where

g(κ; kv, kp) = J0 {2κ [2 cos(kv)− cos(kp)− cos(2kv − kp)]} (5.11)
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In the following a non-number conserving variant of Bogoliubov theory is applied. This
method reproduces the linear dispersion relation for the low-lying excitations of the de-
pletion cloud of the undriven Bose-Hubbard model in one dimension. The non-number
conserving variant requires the introduction of a chemical potential into (5.10)

hBdG = hmf + hbg − µN0

∑
kp

a†kpakp (5.12)

= hmf − µN0 + hbg − µ
∑
kp 6=kv

a†kpakp (5.13)

Minimizing hmf − µN0 with respect to N0 yields µ = UN0/N . Inserting this back into
Eq. (5.13) gives

hBdG =
U

2L

−N2
0 +N0

∑
kp 6=kv

2a†kpakp + g(κ; kv, kp)
(
akpa2kv−kp + a†kpa

†
2kv−kp

) (5.14)

This can now be subjected to the Bogoliubov transformation

akp = αckp + βc†2kv−kp . (5.15)

From this choice follows [akp , a
†
kp

] = α2 − β2 = 1. This calls for the parameterization

α = cosh(φ) , β = sinh(φ) (5.16)

The diagonalization of hBdG requires

2αβ + g(κ; kv, kp)(α
2 + β2) = 0 (5.17)

which implies that
tanh(2φ) = −g(κ; kv, kp) . (5.18)

Finally one finds for hBdG

hBdG =
U

2L

−N2
0 +N0

∑
kp 6=kv

(−1 +
√

1− g(κ; kv, kp)2

+
∑
kp 6=kv

2
√

1− g(κ; kv, kp)2c†kpckp


(5.19)

The first interesting feature of this Hamiltonian is that the first sum is minimized for
kv = ±π/2, since the root vanishes for these two values of kv. This is a strong hint that
kv = ±π/2 plays a special role in the formation of the condensates. There is, however,
an immediate issue with this result: the excitation energy of all the quasiparticles ckp
vanishes, which makes the model nonsensical.

The introduction of a second condensate by making the substitutions

aπ/2 →
√
N0e

iϕ+ , a−π/2 →
√
N0e

iϕ− , (5.20)
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where the ϕ± allows for a possible phase between the condensates does not fare bet-
ter. The reason for this is that it takes into account terms such as a†π/2a

†
−π/2aka−k →

N0aka−k exp[i(ϕ+ − ϕ−)]. The numerical studies, however, have shown that these terms
barely contribute to the ground state. Neglecting terms of this type assumes condensates
that are completely independent, which is equivalent to studying a single condensate and
its depletion cloud. Since the single condensate approach already failed, a more sophisti-
cated method is required.

5.3.3 Large κ limit

The simple Bogoliubov-de Gennes approach of the previous section did not advance the
understanding of the large κ limit. In the following a new concept will help to understand
the formation of the cat state. Going back to Heff

pbc in Eq. (4.44) one can identify the
scattering processes that dominate when κ becomes comparable to 1 or larger. Since the
J0(x) has its largest value for x = 0 one can take the argument of the Bessel function in
Eq. (4.44) and set it to zero

cos(kl) + cos(km)− cos(km + kl − kn)− cos(kn) = 0 , (5.21)

a condition that is independent of κ and which includes momentum conservation kl+km =
kn + kp. The above condition is fulfilled by the three equations:

kl = kn , km = kn , kl + km = ±π . (5.22)

The first two conditions mark the absence of collisions. The three equations can be viewed
as four planes in the first Brillouin zone of (kl, km, kn)-space. This is illustrated in Fig. 5.2.
A point on any of these planes represents a scattering event with an amplitude U/2L.
These events are the dominant contributors to Heff

pbc for large κ. In the limit κ→∞ they

Figure 5.2: The four planes (each plotted with a different color) containing the scattering
amplitudes in Heff which are independent of κ. Only the first Brillouin zone in kl, km, kn-
space is shown.
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Figure 5.3: Ground state energy comparison of Heff
pbc and H∞ for (N,L) = (8, 8). For

increasing κ the ground state energy of Heff
pbc approaches that of the asymptotic model.

This convergence was checked for multiple system sizes and fillings.

are the only amplitudes surviving since limx→∞ J0(x) = 0. The effective Hamiltonian in
this limit is

H∞ =
U

2L

2N2 −N −
∑
k

n2
k +

∑
k 6=k′

k+k′ 6=π

a†π−ka
†
kaπ−k′ak′

 . (5.23)

Even though this Hamiltonian is technically only exact for κ =∞ it aptly describes many
of the properties of Heff

pbc even for more moderate values of κ. Figs. 5.3 and 5.4a reveal

that, for 0.5 < κ < 1, the ground state energy and the momentum density of Heff
pbc are very

close to those of Hinf . A comparison of Fig. 4.12 and Fig. 5.4b shows that the two-particle
momentum densities are also very similar. This justifies making Hinf a reference for the
parameter regime of moderate κ. H∞ is simplified by removing the scaling factor U/2L,
and the terms that are constant for a given N :

h∞ = −
∑
k

n2
k +

∑
k 6=k′

k+k′ 6=π

a†π−ka
†
kaπ−k′ak′ . (5.24)

The first term is an attractive on-site interaction in momentum space (as noted in
Ref. [288]). The second term in Eq. (5.24)

hpf =
∑
k 6=k′

k+k′ 6=π

a†π−ka
†
kaπ−k′ak′ (5.25)

will be referred to as the pairing force term. In Hpf a pair of particles is defined as any
two particles whose momenta sum up to π. This is different for a normal superfluid where
pairs interact in collisions of momenta k′+k = 0. This Hamiltonian, referred to as the toy
model from this point on, qualitatively captures the properties of the true ground state
in the superfluid sector for a broad range κ (κ ∼ 0.5 and larger).
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Figure 5.4: (a) Momentum density 〈nk〉/N for the ground state of Heff
pbc for κ = 0.7 and

Hinf for (N,L) = (8, 8). For both of them clearly separated peaks around k = ±π/2 are
visible. Bottom: two-particle momentum density for the ground state of Hinf . Again,
two peaks around ±π/2 are visible with negligible cross correlations, indicating a cat-like
ground state.

5.3.4 Connection to the Richardson model

The toy model (5.24) has some very interesting connections to other fields of physics. hpf

is a variant of the second term of the pairing-force Hamiltonian

H =
∑
k

2εknk − g
∑
k′,k

a†ka
†
kak′ak′ . (5.26)

An exact solution for this Hamiltonian was found by Richardson in Ref. [289]. Ever since
this work, models of this type that can be solved exactly, have been found, which are
known under the umbrella term Richardson-Gaudin models. His theory was rediscovered
and successfully applied to mesososcopic superconducting metallic grains [352, 353]. It
also plays an important role in nuclear physics and in the theory of superconductivity.
An excellent review on exactly diagonalizable Richardson-Gaudin models can be found in
Ref. [290]. Despite the sophistication of the strategies that are used to solve Hamiltonians,
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such as the one detailed in Eq. (5.26), they are of no help with regard to the full diagonal-
ization of h∞. The main reason for this failure is the first term in h∞ which is quadratic
in nk. Despite this shortcoming, many of the techniques developed by Richardson in [289]
can be employed to further understand the properties of h∞.

A particle pair in the toy model is created by

B†k = a†π−ka
†
k (5.27)

Following Ref. [289], a seniority operator

νk = |nk − nπ−k| (5.28)

can be defined which counts the number of unpaired particles with momentum k 1. It
should be noted that

[h∞, νk] = 0 , (5.29)

which leads to the definition of the seniority of an eigenstate of h∞ as its eigenvalue with
respect to

ν =
1

2

∑
k

νk . (5.30)

This operator measures the total number of unpaired particles. The factor 1/2 accounts
for double counting.

Because seniority is a constant of motion, [h∞, ν] = 0, it allows for a helpful block-
diagonalization of h∞, since only configurations with the same seniority are connected by
h∞. In particular, states that do not contain any pairs (ν = N) are eigenstates of the
pairing term with eigenvalue 0 and thus eigenstates of h∞. States with the lowest energy
within the class of ν = N are of the type |Nk 6=±π/2〉. Their energy is −N2, where |Nq〉 is
a state with N particles in momentum q.

With regard to the ground state, an important sector in the block-diagonalized Hamil-
tonian is ν = 0. This is the set of states that only contains configurations with paired
particles. These states are referred to as fully paired states. Within this set of states,
only |N±π/2〉 involves the exclusive occupation of a single mode, since ±π/2 are the only
two momenta in which two particles can occupy the same mode and be paired at the
same time. Similarly to |Nk 6=±π/2〉, these modes benefit the most from the “on-site” at-
tractive interaction in momentum space. Unlike |Nk 6=±π/2〉, they are not eigenstates of
the repulsive pairing term hpf . This is because of the contribution∑

k 6=±π/2

a†π−ka
†
k

(
aπ/2aπ/2 + a−π/2a−π/2

)
+ H.c. (5.31)

included in hpf . States involving only π/2 or −π/2 or both are expected to further
lower their energy by mixing with configurations which include pairs with k 6= ±π/2.
These states will be referred to as the reduction cloud of the ±π/2 condensates. This
is to emphasize that the reduction cloud is qualitatively different from the conventional
depletion cloud.

1Seniority in Ref. [289] was defined formally differently because of its application to fermions.
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The differences between the reduction cloud and the depletion cloud are: Pairs of the
reduction cloud have a total momentum π (in contrast to zero for the depletion cloud)
and, most importantly, the reduction cloud is shared by the two condensates. This can
be seen in Eq. (5.31): a pair (k, π − k) does not carry information on whether or not it
originated from a condensate pair (π/2, π/2) or (−π/2,−π/2).

A simple variational calculation shows that mixing |N±π/2〉 with other fully paired
configurations (but containing at least one k 6= ±π/2) further lowers the energy beyond
−N2.

5.3.5 Variational ground state

A variational calculation similar to the one in Section 4.2.3 can be performed to further
elucidate the role of the reduction cloud. The calculation starts with the state

|Ψ(α)〉 = α|F 〉+ β|R〉 (5.32)

=
α√
2

(|N−π
2
, 0〉+ |0, Nπ

2
〉)

+
β√

2(L− 2)
(|(N − 2)−π

2
, 0π

2
〉+ |0−π

2
, (N − 2)π

2
〉

×
∑
k 6=±π

2

|1k, 1π−k〉 ,

(5.33)

where α, β are real and α2 + β2 = 1. Here F stands for fragmented condensates and R
for reduction cloud. The energy of this state is

E(α) = 〈Ψ(α)|h∞|Ψ(α)〉 (5.34)

= α2(EF − ER) + α
√

1− α2 V + ER , (5.35)

which is minimized for α = α0 with

α0 = −sgn(V )

√
1

2
+

(
1 +

2V 2

(EF − ER)2

)−1/2

. (5.36)

The various parameters are

EF = 〈F |h∞|F 〉 = −N2 , (5.37)

V = 2〈F |h∞|R〉
=
√
N(N − 1)(L− 2) ,

(5.38)

ER = 〈R|h∞|R〉
= −N2 + 4N + L− 9 .

(5.39)

For unit filling (N = L) the energy reduction (N,L) = (8, 8) due to the reduction cloud is
E(α)− ER = −8.19 (here, EF = −64, E(α0) = −72.2 and the numerically exact ground
state energy is Egs = −83.2). For N > 9 one can prove generally that

E(α) < EF . (5.40)
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In the limit of large N , one obtains

E(α0)− EF = −N
√
N . (5.41)

This clearly shows how the mixing with a cloud of pairs lowers the energy of the fully
occupied modes±π/2. For simplicity the inclusion of |(N−2)−π/2, 2π/2〉, |2−π/2, (N−2)π/2〉
was omitted, as it would have necessitated the introduction of yet another independent
parameter, without further elucidating the effect of interactions of the condensate with
its cloud.

In order to better understand the benefit of the cat state nature of the condensate, a
product state may be chosen as |F 〉 in Eq. (5.33):

|Ψc(α)〉 = α|F̃ 〉+ β|R̃〉 (5.42)

= α|(N/2)−π
2
, (N/2)π

2
〉

+
β√

2(L− 2)
(|(N/2− 2)−π

2
, (N/2)π

2
〉

+ |(N/2)−π
2
, (N/2− 2)π

2
〉)
∑
k 6=±π

2

|1k, 1π−k〉 .
(5.43)

The key difference between (5.43) and (5.33) is that the two condensate terms in the
reduction cloud of (5.43) can mix because of the pair interaction term, namely,

〈(N/2− 2)−π
2
, (N/2)π

2
|h∞|(N/2)−π

2
, (N/2− 2)π

2
〉

= N/2(N/2− 1) 6= 0 .
(5.44)

By contrast, this mixing does not affect (5.33) because their counterparts are not con-
nected by h∞:

〈(N − 2)−π
2
, 0π

2
|h∞|0−π

2
, (N − 2)π

2
〉 = 0 . (5.45)

Again

Ẽ(α) = α2(EF̃ − ER̃) + α
√

1− α2 Ṽ + ER̃ (5.46)

is minimized, where

EF̃ = 〈F̃ |h∞|F̃ 〉 = −N2/2 , (5.47)

Ṽ = 2〈F̃ |h∞|R̃〉
=
√
N(N/2− 1)(L− 2) ,

ER̃ = 〈R̃|h∞|R̃〉
= −N2/4 + 3N/2 + L− 9 .

(5.48)

The α̃0 that minimizes Ẽ(α) can be calculated using (5.36), with Eqs. (5.37)-(5.39)
replaced by (5.47)-(5.48).

Not only is Ẽ(α̃0) > E(α0) but the overall contribution of the reduction cloud to the
state is altered. For unit filling N = L, the change introduced to ER̃ due to the overlap
in Eq. (5.44) causes limL→∞ α̃

2
0 = 1 as opposed to limL→∞ α

2
0 = 1/2. The closer α̃0 is
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to one, the less important the contribution of the reduction cloud to |Ψc〉 and to Ẽα̃0 , as
can be seen in Eq. (5.46) and the normalization condition for α, β. This means that the
reduction cloud in |Ψc(α̃0)〉 loses importance once the system size increases, which is not
the case for |Ψ(α0)〉. Even for moderate sizes, such as (N,L) = (8, 8), α̃2

0 = 0.92, whereas
α2

0 = 0.76 (the bigger α the smaller the weight of the reduction cloud). It should be noted
that (5.33) and (5.43) are just approximate ansätze, hence the weight of the condensate
does not need to vanish in the thermodynamic limit, as would be expected for an exact
description.

It is important to emphasize that there is a possibility for |N±π/2〉 to mix with other
fully paired states of the type |(N − 2)±π/2, 1k, 1π−k〉 with k 6= ±π/2 as the reason for
reducing the energy thanks to the pairing interactions in Heff

pbc. By contrast, states of the
type |Nk〉 with k 6= ±π/2 cannot lower their energy, since the pairing term does not allow
them to mix with other configurations. As already noted, they are eigenstates of h∞.

5.3.6 Exact ground state in the large κ limit

Both an inspection of the numerically-found ground state and the fact that all the mo-
menta k 6= ±π/2 play an equivalent role suggest that the ground state of h∞ (for L/4 an
integer) can be written as the fully paired state

|Ψ0〉 =

N/2∑
m=0

(N−2m)/2∑
l=0

Cm,l
[
|(N − 2m− 2l)−π

2
, (2l)π

2
〉+ |(2l)−π

2
, (N − 2m− 2l)π

2
〉
]

×
∑

∑
nk=m

Q{nk}
∑
P

|P{nk}〉 .
(5.49)

The sum over {nk} contains all possible occupation numbers nk of the pairs (k, π − k),
each one characterized by the momentum k satisfying 0 ≤ k < π/2, so that in each
sequence {nk}, a given number nk represents the two-mode state |nk, nπ−k〉 containing n
particles in momentum k and n particles in momentum π−k. The sum over P represents
a summation over all possible permutations of the sequence of pair occupation numbers.
Each permutation P acting on {nk} yields a unique sequence of the respective sequence
of pair occupations {nk} distributed throughout the set available momenta (always with
k 6= ±π/2). The resulting configuration represented by |P{nk}〉 must have the same
weight as |{nk}〉. This ansatz (5.49) is expected to be the exact ground state of the toy
model.

The above state may be elucidated further by expanding it according to its leading
contributions. If Qm is defined as Q{nk} for the particular sequence in which m particle
pairs transferred to the reduction cloud are concentrated in one mode pair [as usual,
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labeled (k, π − k) with k 6= ±π/2], then it is found that

|Ψ0〉 =C0,0Q0

(
|N−π

2
, 0π

2
〉+ |0−π

2
, Nπ

2
〉
)

+

C1,0Q1

(
|(N − 2)−π

2
, 0π

2
〉+ |0−π

2
, (N − 2)π

2
〉
) ∑
k 6=±π/2

|1k, 1π−k〉

+ C0,1Q0

(
|(N − 2)−π

2
, 2π

2
〉+ |2−π

2
, (N − 2)π

2
〉
)

+ C1,0Q2

(
|N − 4)−π

2
, 0π

2
〉+ |0−π

2
, (N − 4)π

2
〉
) ∑
k 6=±π/2

|2k, 2π−k〉+ . . . ,

(5.50)

where the terms are written in order of decreasing value of |Cm,lQm|2, as obtained numer-
ically for the case of (N,L) = (8, 8) 2.

The expansion (5.50) explains most of the features that were observed for the ground
state of Heff

pbc. The first term can be identified as the ideal Schrödinger cat-like super-
position of the two macroscopically occupied orbitals ±π/2 (sometimes called a NOON
state). The second term is the largest contribution to the reduction cloud. The third term
represents an internal exchange of one pair between the two main configurations of the
fragmented condensate, without the reduction cloud intervening. The fourth term repre-
sents the exchange of four particles between the fragmented condensate and the reduction
cloud all going to the same mode pair.

The many-body states (5.49) and (5.50) show very clearly that the reduction cloud is
shared by the two branches (or macroscopically distinct configurations) of the cat state.
This fact eliminates the naive picture of the cat state formed by two macroscopic branches
each carrying its own depletion cloud.

As was noted earlier, when a pair of total momentum π is created, it can originate from
either condensate at π/2 or −π/2. This implies that, as shown in Eqs. (5.49) and (5.50),
such a pair (with k 6= ±π/2) factors out from a coherent, still cat-like superposition of
the two different macroscopic branches.

It must be noted that block diagonalization is of great help in reducing the numerical
overhead when studying the ground states. For ν = 0 and unit filling, one only has to
consider

(
N−1
N/2

)
configurations instead of

(
2N−1
N

)
3. For (N,L) = (8, 8) this already makes

a big difference. Instead of 6435 configurations, one only has to work with 70. This
allows the system size to be increased up to 18 particles on 18 sites. Fig. 5.5 shows the
scaling of the energy per particle as a function of the system size. The energy drops in a
zig-zag pattern. This is connected to the fact that only when ±π/2 are among the allowed
momenta, do fully paired states involving the occupation of just two modes, namely, ±π/2
appear. This is possible only when L/4 is an integer.

5.3.7 First excited state

Numerical inspection shows that the ground and the first excited states of both Heff
pbc and

h∞ differ in their behavior under time reversal, i.e., the transformation that changes the

2Since they are multiplying non-normalized many-body states, these decreasing coefficients are not
necessarily correlated with the relative weight, within the many-body ground state, of a given type of
configuration.

3N bosons distributed in L sites yield
(
N+L−1

N

)
distinct configurations.



5.4. MANY-BODY PLANE WAVES 139

4 6 8 10 12 14 16 18
N

−20

−15

−10

−5

E
gs

(N
)/
N

Figure 5.5: Energy per particle of the ground state of h∞ for different system sizes with
unit filling N = L. Sizes for which L/4 is not an integer, k± π/2 is not part of the set of
momenta and its ground state has therefore a slightly higher energy per particle than an
adjacent system for which L/4 is an integer.

sign of all momenta (k → −k)

TakT
† = a−k . (5.51)

While the ground state is symmetric with regard to time inversion, the first excited state
is antisymmetric. For the toy model, the first excited state is very similar to (5.49) and
(5.50) except for the relative sign between |(N −2m−2l)−π/2, (2l)π/2〉 and |(2l)−π/2, (N −
2m− 2l)π/2〉, which is flipped. As a consequence, the first excited state does not have any
configurations for which N − 2m− 2l = 2l.

The energy spectrum for a few low-lying energy levels of Heff
pbc for κ = 0.8 is shown in

Fig. 5.6. The lowest-lying doublet formed by the two very similar states is isolated from
the higher-lying excited states. The values of |Cm,l| in (5.49) for a given m, l are different
in the ground and the first excited state. This is correlated with the fact that the two
lowest-energy states are not degenerate (see Fig. 5.6). The non-degeneracy is discussed
in the next section.

5.4 Many-body plane waves

5.4.1 Many-body plane waves in the ring

As pointed out in Section 4.2.2, the natural orbitals (defined as the eigenstates of the
reduced one-particle density matrix) of Heff

pbc have been found to be just plane waves. Of
them, the two most occupied ones have momenta ±π/2 for both the ground state and the
first excited state. Moreover, it was also found that the ground state and the first excited
state are symmetric and antisymmetric under time reversal for Heff

pbc in the superfluid
regime. Importantly, this result coincides with the fact that the coefficients of the ground
state wave function in the momentum Fock representation are real. These properties



140CHAPTER 5. PROTECTED CAT STATES FROMKINETIC DRIVINGOF A BOSONGAS

0 1 2 3 4 5 6 7 8 9 10
energy level

2.2

2.4

2.6

E
/U

Figure 5.6: Low-lying energy levels of Heff
pbc for κ = 0.8 for (N,L) = (8, 8). The lowest two

energy levels form an almost degenerate doublet, separated by a large energy gap from
the rest of the spectrum.

suggest an interesting relation between the ground state |Ψ0〉 and the first excited state
|Ψ1〉, namely, as the symmetric and antisymmetric superposition of two collective plane
waves with average momentum ±π/2. This leads to the following approximation:

|Ψ0〉 ' |C(π/2)〉
|Ψ1〉 ' i|S(π/2)〉 (5.52)

where

|C(k)〉 ≡ 1√
2

[|Φ(k)〉+ |Φ(−k)〉]

|S(k)〉 ≡ −i√
2

[|Φ(k)〉 − |Φ(−k)〉] ,
(5.53)

and |Φ(k)〉 = |Nk〉 is a many-body state with all particles in momentum k, its wave
function being

〈x1, . . . , xN |Φ(k)〉 = L−N/2 exp(ik
∑
i

xi) , (5.54)

where xi is the space coordinate of the i−th boson. Here letters C and S were chosen
to signal the sin(kx) and cos(kx) wave functions that these states become in the single-
particle (N = 1) case. In this limit, |Φ(k)〉 is the single-particle state with the wave
function L−1/2 exp(ikx).

In Fig. 5.7 the wave function of the numerical and ideal plane wave orbitals for
(N,L) = (8, 8) are plotted. The difference between the numerical and the ideal can-
not be distinguished with the naked eye. The highly correlated nature of the macroscopic
occupation of momenta ±π/2, as shown in Fig. 5.1 on the right, is not produced by
an exact cat state such as that in (5.53), but a more complicated superposition that is
best approximated by Eq. (5.49). A relevant question at this point is whether or not it
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Figure 5.7: Exact (dots) and ideal (dashed lines) natural orbitals in the ring. The real
part of the wave function is plotted.

is possible to separate the two branches of the cat-like state without having to invoke
any approximation. Remember, the numerically obtained states involve thousands of
momentum configurations.

Equations (5.52) and (5.53) give a simple way out: The two cat branches can be
identified if |C(π/2)〉 and |S(π/2)〉 are replaced by the true ground and first excited
states. Inverting (5.53) leads to the proposal

|Ψ±〉 =
1√
2

(|Ψ0〉 ± |Ψ1〉) (5.55)

and the expressions

|Ψ0〉 =
1√
2

(|Ψ+〉+ |Ψ−〉) (5.56)

|Ψ1〉 =
1√
2

(|Ψ+〉 − |Ψ−〉) (5.57)

with the orthogonality of |Ψ0〉 and |Ψ1〉 guaranteeing

〈Ψ+|Ψ−〉 = 0 . (5.58)

In Fig. 5.8 the two-particle momentum density of |Ψ±〉 is shown. The distinct single
peaks at ±(π/2, π/2) clearly confirm that the criterion (5.55) is adequate for cleanly
constructing the two cat branches. It should be emphasized that Fig. 5.8 shows 〈nqnk〉/N2

for a numerically obtained state |Ψ±〉 involving thousands of momentum configurations of
which |N±π/2〉 ≡ (N !)−1/2(a†±π/2)N |vac〉 is only that with the largest weight. Specifically,

for N = L = 8, the states |N±π/2〉 add up to a normalization weight of approximately
50%.

The remarkable result is that a decomposition in cat branches such as that shown in
(5.56) with the results of Fig. 5.8 is also possible for a boson gas between hard walls, as
will be discussed in the next section.
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Figure 5.8: Two-particle momentum density of |Ψ±〉 = 1√
2
(|Ψ0〉 ± |Ψ1〉) constructed from

the superposition of the ground and first excited states. The isolated peaks clearly suggest
that the ground state is formed by two many-body configurations akin to collective plane
waves. Here κ = 0.7.

Before analyzing the hard-wall boundary conditions, the nondegeneracy of the ground
state doublet shown in Fig. 5.6 should be commented on: In the particular case of N = 1,
(5.52) yields two degenerate states, since cos(πx/2) and sin(πx/2) are wave functions
connected by a symmetry operation, namely, a space translation of one lattice spacing.
Interestingly, the same analysis for N particles shows that |C(π/2)〉 and |S(π/2)〉 differ
by a global 1/N translation. For N > 1, 1/N is less than a lattice spacing and thus
such a translation does not yield a degenerate state. However, practical degeneracy is
obtained for N � 1. This argument, developed for noninteracting bosons, provides a
semiquantitative explanation of the small but nonzero splitting of the interacting ground
state doublet shown in Fig. 5.6. It also suggests that this splitting vanishes in the
thermodynamic (N →∞) limit.

Particle current

It is tempting to view the branches (5.55) as many-body plane waves traveling with
an average momentum of ±π/2. This picture is, however, proved invalid under closer
inspection. The already unusual effective Hamiltonian (4.44) yields an equally unconven-
tional particle current operator Ieff

pbc. If, as a result of a twist in the periodic boundary

conditions (aL = e−iθa0), all allowed momenta are shifted by an amount θ, the ma-
trix elements in Heff

pbc change accordingly. The space-averaged particle current operator,

I = L−1∂Heff
pbc, /∂θ can thus be written as

Ieff
pbc =

Uκ

L2

L−1∑
l,m,n,p=0

J1[2κF (kl, km, kn, kp)]

×G(kl, km, kn, kp)a
†
kp
a†knakmaklδkl+km,kn+kp ,

(5.59)

where J1 is the first-order Bessel function and

G(kl, km, kn, kp) = sin(kl) + sin(km)− sin(kn)− sin(kp) . (5.60)
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Clearly, the expectation value of Ieff
pbc vanishes for a state of the type |Φ(k)〉 = |Nk〉 where

all particles have the same momentum k. Numerically, it is confirmed that

〈Ψ±|Ieff
pbc|Ψ±〉 = 〈Ψ0,1|Ieff

pbc|Ψ0,1〉 = 0 . (5.61)

However, despite this apparent lack of dynamics, the two branches |Ψ±〉 will behave
very differently in a time-of-flight experiment in which the crystal momentum in the
lattice becomes the linear momentum in the vacuum as the confining optical lattice is
switched off. Moreover, it is found, that in the presence of a finite twist in the periodic
boundary conditions, the ground state carries a nonzero current, which is to be expected
of a superfluid. Interestingly, the nonzero value of the current depends crucially on the
presence of the reduction cloud.

5.4.2 Many-body plane waves for hard walls

In Section 4.3 a remarkable discovery was made. Even for hard wall boundary conditions
the two-particle momentum density showed correlated peaks at ±π/2 in the truncated
plane wave representation. This of course means that the state remains cat-like even
though the hard walls introduce a strong coupling between single-particle modes with
momentum k and −k. As noted in Section 4.3, a lot of the numerical tools to study the
hard wall case are no longer applicable for an investigation of the effective Hamiltonian
Heff

hw in Eq. (4.83). For example, it was no longer computationally affordable to investigate
the Mott to superfluid transition with the methods used for the ring. Less hampered by
system size are, of course, the analytic approaches developed here. The analytic methods
strongly relied on momentum conservation, which ultimately facilitated the derivation of
h∞. For example, the use of momentum conservation is crucial for deriving Eq. (5.22).
Only in the high frequency limit was it possible to develop a microscopic picture of the
ground state and explain the cat-like features of Heff

pbc in the superfluid regime. This is

no longer possible for Heff
hw due to the residual sum over x in Eq. (4.83) and the use of

stationary waves [see Eq. (4.21)]. The difference between HWBC and PBC is also present
in the numerical analysis. For (N,L) = (8, 8) the double peak structure of the momentum
density in Fig. 4.20 does collapse for κ > 0.8 into a single peak at k = 0 (not shown). Not
all is lost however: since large values of κ are inherently less physical (see Section 4.4 of the
previous chapter), κ < 0.8 is still the physically most relevant regime of the driving, and
it is this regime where the system displays its most interesting properties. The numerical
methods developed in the previous section still apply as well. In fact, they were originally
developed to deal with the HWBC and to reach a better numerical understanding of the
cat-like nature of the ground state in a box.

As in Eq (4.83), the wave vector k̃l = π/(L + 1) references the stationary waves in
Eq. (4.21) as opposed to the plane wave expansion (4.5). As in the ring case, symmetry
can be used. Space inversion around the midpoint of the chain is represented by the
transformation

Iak̃lI
† =

{
−ak̃l l even

ak̃l l uneven ,
(5.62)

where I is the spatial inversion operator. It was confirmed numerically that the ground
state is symmetric under I, while the first excited state is antisymmetric. As shown in
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Section 4.3 of the previous chapter, the momentum density of both the ground and first
excited state are very similar.

As in the previous section, these properties can be used to form an approximate picture
of the wave function of the ground and first excited states. Specifically the approximations

|Ψ0〉 ' |C(π/2)〉 (5.63)

|Ψ1〉 ' |S(π/2)〉 , (5.64)

can be made. The coordinates in (5.54) refer to the midpoint between the walls. For
hard walls, the appropriateness of this approximation can, once again, be inferred from
an analysis of both the approximate and numerically-exact natural orbitals. The reduced
one-particle density matrix for |C(k)〉 and |S(k)〉 is

ρ(1)(x, x′) =
1

L
cos[k(x− x′)] (5.65)

=
1

L
[cos(kx) cos(kx′) + sin(kx) sin(kx′)] . (5.66)

This result means that the natural orbitals are

φ0(x) = cos(kx) , φ1(x) = sin(kx) . (5.67)

These can then be compared with the numerically obtained natural orbitals. In Fig. 5.9
a direct comparison between the degenerate, most occupied orbitals for (N,L) = (8, 8)
and the approximate natural orbitals in (5.67) is drawn. For k = π/2 the numerically
exact and the approximate solutions are very similar. The numerically exact state obeys
the boundary conditions, so its orbitals decline more gradually close to the walls. This
can be ameliorated by multiplying the truncated plane waves implicit in (5.63) and (5.64)
by an envelope function that smoothly goes to zero at the walls. This envelope function
is also one of the reasons for the broken symmetry between 0 and π, since the envelope
function’s discontinuity at the walls will imbalance the momentum distribution.

The above analysis of symmetries and natural orbitals strongly supports the relevance
of the approximate picture (5.63) proposed above. As was done for the ring, the relations
(5.53) can be employed to identify the cat branches between hard walls.

The above findings strongly support the approximate picture given in Eqs. (5.63) and
(5.64). This conclusion is further strengthened by the fact that the ground state and the
first excited state are, respectively, even and odd under space inversion (always within
the convention that, when expanded into momentum Fock states in the stationary wave
representation, the ground and first excited state only have real coefficients).

These symmetry considerations then imply that the ground state and the first excited
state are, respectively, cosine-like and sine-like (with respect to the midpoint). Therefore
the cat branches can be expected to be:

|Ψ±〉 =
1√
2

(|Ψ0〉 ± i|Ψ1〉) . (5.68)

This expectation is confirmed in Fig. 5.10, where the numerical momentum-momentum
correlation is shown for the branches |Ψ±〉. As argued for the ring, the orthogonality of



5.4. MANY-BODY PLANE WAVES 145

1 2 3 4 5 6 7 8
x

−1.0

−0.5

0.0

0.5

1.0

Figure 5.9: The solid lines represent the two most occupied natural orbitals at κ = 0.8
for 8 particles on 8 sites. They are plotted continuously to better compare them with the
analytically obtained orbitals from the ansatz in (5.63). Points indicate the value of the
wave function at the sites. The numerically exact orbitals and the approximation show
good agreement in the center of the lattice. At the edges the agreement fades. This is
due to the highly discontinuous nature of the truncated plane waves at the edges, while
the stationary waves are not discontinuous at all.
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Figure 5.10: Momentum correlations of the states |Ψ±〉 constructed from the superposition
of the ground and first excited states [see (5.68)] for κ = 0.8. The isolated peaks clearly
indicate that the ground state can be viewed as the superposition of two collective plane
waves between the walls.

|Ψ0〉 and |Ψ1〉 guarantees 〈Ψ+|Ψ−〉 = 0. The outcome is such that for the hard-wall case
the ground and first excited states can again be written as

|Ψ0〉 =
1√
2

(|Ψ+〉+ |Ψ−〉) (5.69)

|Ψ1〉 =
−i√

2
(|Ψ+〉 − |Ψ−〉) , (5.70)

where |Ψ±〉 represent complex but strictly orthonormal many-body configurations with
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a preferential occupation of momenta ±π/2. The two orthonormal branches of the cat
state are identified with |Ψ±〉.

As for the ring, the states |Ψ±〉 yielding the simple-looking result in Fig. 5.10 involve
thousands of momentum configurations.

The low-lying excitation energies are shown in Fig. 5.11. The ground state and first
excited state are much less separated from the higher-lying excitations than for the ring.
The comparison of the various energy differences in the ring and in the hard-wall cases
takes us to the question of the fragility of the cat-like correlations against temperature
and finite-time state preparation. This problem is addressed in Section 5.7.

0 1 2 3 4 5 6 7 8 9 10
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Figure 5.11: Low-lying energy levels for Heff
hw and κ = 0.8. The gap between the lowest

two states and the rest of the spectrum is considerably smaller than it is for the ring-case
(Fig. 5.6).

5.5 Harmonic confinement

Although the trapping of ultracold atoms between hard-wall boundaries has been realized
experimentally [354], the more common trapping potential is of parabolic shape. In [3]
the surviving properties of the effective Hamiltonians discussed previously were analyzed
by the addition of

V (xj) = V0

∑
j

(xj − x0)2 nj , (5.71)

to the fully time dependent Hamiltonian in Eq. (4.2). The center of the box is indicated
by x0 and nj is the standard number operator.

To analyze the system, it was initially prepared in the Mott state. Then the amplitude
of the time dependent driving was slowly ramped up. In [3] it was reported that the
momentum density function and the natural orbital occupation strongly mimics that of
a flat potential V0 = 0. When κ is ramped up from zero, two natural orbitals become
more and more occupied once again. As for the ring and the hard walls, these orbitals
correspond to the momenta±π/2. This points toward the formation of a cat state. For the
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larger values of V0 = 0.04/U and V0 = 0.08/U these features continue to be pronounced.
The cat-like features even survive random potentials. This remains true, as long as the
amplitude of the energy of the disorder potential does not cause a localization of the
particles. With this it can be concluded that the cat state features are preserved in spite
of these local on-site potentials.

5.6 Measuring “cattiness”

Quantifying a given state’s cat-like quality or “cattiness” [355] is neither a simple nor
a straightforward task. A number of measures for the quality of cat states have been
proposed in the literature [278, 356, 357]. A rough categorization of the various ways to
gauge the quality of a cat state can be drawn from the summary in Ref. [356]. Measures
that define the effective size of a superposition compare it to a perfect cat state, which is
made from a orthonormal superposition of two macroscopic states. The work in Refs. [358–
361] can be filed under this category. Fluctuations of the relative particle numbers are
used as a characterization in Refs. [347, 362]. In Refs. [342, 363, 364] information-
theoretical considerations form the base of quantifying “cattiness”. The magnitude of
the off-diagonal correlations is used to distinguish between mixed and pure states in
Refs. [279, 280, 344, 365]. Finally, the more measurement-based approaches are discussed
in Refs. [337, 366–369].

The characterization of the various ground states in this section is based on the
measurement-based definition of cat quality introduced in [337]. Their measure is best fit-
ted to the situation encountered in the previous sections. This is mostly because it allows
the inclusion of more than two modes and it requires the identification of the respective
branches of the cat state. If the superposition

|Ψ〉 = |A〉+ |B〉 (5.72)

is considered then the method in Ref. [337] rates a cat state by how well branch A and
B can be distinguished from each other after a measurement. A and B do not have to
be orthogonal. More precisely, it quantifies the probability of successfully inferring the
two n-particle reduced density matrices (n-PRDMs) ρ

(n)
A and ρ

(n)
B [370] related to the

respective branches after a n-particle measurement. Formally this translates to

P (n) =
1

2
+

1

4
||ρ(n)

A − ρ
(n)
B || . (5.73)

where || · || is the trace norm ||ρ|| = ∑i |λi| with λi the eigenvalues of ρ. Identical branches
would mean that the probability of inferring the branch from an n-particle measurement
is P = 1/2. This means that performing a measurement does not increase the knowledge
about either branch. A perfect cat state collapses the probability to P (1) = 1 after a
single measurement. The effective size of the superposition is determined by the amount
of measurements it takes to differentiate the branches. The more particles it takes, the
smaller is its size.

As in Ref. [3], Eq. (5.73) is used without invoking an effective cat size. This would
require a value of confidence which is an additional parameter determined by the user of
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the measure. Only measurements up to two particles are considered. Both branches A
and B are sharply defined by the splitting in Eq. (5.56) in the plane wave representation.

The properly normalized components of the one-PRDM and two-PRDM are

ρ
(1)
il =

1

N
〈a†kiakl〉 (5.74)

ρ
(2)
ijlm =

1

N(N − 1)
〈a†kia

†
kj
aklakm〉 (5.75)

In Fig. 5.12 P (n) is presented as a function of κ for n = 1, 2. As κ grows, the probability
of inferring A or B evidently rises in both the ring and the hard walls. For κ < 0.75 the
biggest probabilities reached for the ring are P (1) = 0.93 and P (2) = 0.98, whereas for the
hard walls they are P (1) = 0.88 and P (2) = 0.95. In the ring, P (n) closely approaches the
theoretical limit P (1) = 0.94 (P (2) = 0.98) given by the pairing model. Even in the limit
κ → ∞, the ground state is not a perfect cat, since the pairs in the reduction cloud are
shared by both condensate branches. A measurement of the momentum of a particle in
the reduction cloud carries no information about which branch it belongs to.

The probability of collapsing the state after a two-particle measurement is consistently
higher in both the ring and the hard walls. The apparent discontinuity in the ring for low
values of κ stems from a discontinuity in the first excited state, which does not develop
its peaks at ±π/2 in the momentum density gradually (see Fig. 4.6). This discontinuity
was not investigated in detail.

Finally, in Fig. 5.13 the scaling of P (1) as a function of increasing system size is shown.
The pairing model predicts that P (1) increases with N but it appears to be bounded by
a value below unity for N →∞. This is due to the presence of the reduction cloud.

An additional, complementary figure of merit C was defined in [3] to quantify cattiness:

C ≡
∑
k

pk(|〈A|ξk〉| − |〈B|ξk〉|)2 (5.76)

where

pk = 〈Ψ|nk|Ψ〉/N (5.77)

is the probability of finding momentum k in a one-particle measurement, and

|ξk〉 =
nk
µ2
k

|Ψ〉 , (5.78)

with µ2
k ≡ 〈Ψ|n2

k|Ψ〉, is the normalized many-boson state after projecting out config-
urations with momentum k unoccupied. The cattiness C is an intuitively constructed
measure. As in Ref. [337], it is designed to be based on a measurement procedure. The
idea is to infer the quality of the superposition by correlating it with the extent to which
|ξk〉 overlaps with |A〉 or |B〉, i.e., with the ability to predict the outcome of the second
one-particle measurement from the result of the first measurement.

For an ideal cat, C = 1. For a non-cat state (|A〉 = |B〉 in (5.72)), C = 0. In Fig.
5.14 the results for the ring and hard-wall boundary conditions are shown. Again, the
discontinuity for the ring stems from a discontinuity in the nature of the first excited
state. In the Mott insulating regime C is very close to zero and increases notably after
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Figure 5.12: Figure of merit based on the probability P (n) of inferring the branch A or B
after an n particle measurement: (a) ring, (b) hard walls. The apparent discontinuity in
the ring at κ ' 0.3 is due to a discontinuity in the behavior of the first excited state. The
probabilities of inferring the cat state for the hard-wall case is consistently lower than for
the ring.

the transition. As for (5.73), the fact that C < 1 for large κ is related to the presence of
the reduction cloud, i.e., the multi-mode nature of the ground state.

The quantitative measure (5.76) is particularly simple to apply when only two modes
are involved. In the following C is calculated for one of the states proposed in [358]

|Ψ〉 =
1

K
(|A〉+ |B〉) (5.79)
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Figure 5.13: Scaling of P (1) with system size for the pairing model. For up to 16 particles
on 16 sites the probability steadily increases.
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Figure 5.14: Figure of merit C, defined in Eq. (5.76). As before, the discontinuity in the
ring result arises from the behavior of the first excited state. C < 1 for large κ because
both branches share the reduction cloud. The largest values reached are: C = 0.79 for
the ring, C = 0.85 for the pairing model and C = 0.51 for hard walls.

where

|A〉 = |N, 0〉 , (5.80)

|B〉 =
1√
N !

(cθa
† + sθb

†)N |vac〉

=
1√
N !

∑
l

(
N

l

)
clθs

N−l
θ

√
l!(N − l)!|l, N − l〉 ,

(5.81)
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Figure 5.15: Cattiness C for (5.79). For θ = π/2, 3π/2 the state is a perfect cat, for
θ = 0, π it has no cat state feature.

where cθ ≡ cos θ and sθ ≡ sin θ. With this the closed expressions

C(θ) =
∑
k

fk(|〈A|ξk〉| − |〈B|ξk〉|)2 (5.82)

=
1

NK4

(
1

M2
1

(N + 2NcNθ + g1)(N − g1)2 +
g3

2

M2
2

)
(5.83)

can be calculated, where

M2
1 =

1

K2

(
N2 + 2N2cNθ +

1

N !

N∑
l=0

(
N

l

)2

c2l
θ s

2(N−l)
θ l2l!(N − l)!

)
(5.84)

M2
2 =

1

N !K2

N∑
l=0

(
N

l

)2

c2l
θ s

2(N−l)
θ (N − l)2l!(N − l)! (5.85)

and

g1 =
1

N !

N∑
l=0

(
N

l

)2

c2l
θ s

2(N−l)
θ l!(N − l)!l (5.86)

g2 =
1

N !

N∑
l=0

(
N

l

)2

c2l
θ s

2(N−l)
θ l!(N − l)!(N − l) (5.87)

5.7 State preparation

Based on the analysis provided in our work in Ref. [3], the preparation of the cat state is
now analyzed. As it is the ground state of the system, it can be expected to naturally fall
into this state as the system is cooled. However, the cat state consists of a superposition
of two branches which are degenerate in energy and yield a splitting that vanishes in the
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thermodynamic limit. As a consequence, cooling the system towards zero temperature
will just result in a classical mixture of the two branches [348]. Here the feasibility of
preparing the cat state will be studied by adiabatic manipulation, as considered in [329,
336]. Working with the full time-dependent Hamiltonian (4.3), the system is initialized
in the Mott state, with one particle occupying each lattice site, and κ is slowly ramped
up over many thousands of driving periods from an initial value of zero to a final value
of κ = 0.8, as shown in Fig. 5.16a. When this final value is reached, κ is held constant.

To give an indication of the degree to which the instantaneous state of the system
exhibits cat correlations during this process, the two-particle reduced density matrix at
momenta (π/2, π/2) is evaluated, that is χ ≡ 〈nπ/2nπ/2〉 is computed. As was seen above,
this quantity has a large value when the system is in a cat-like state and is small otherwise.
So it acts as a reasonable alternative figure of merit to characterize the expected cat nature
of the state that is reached by slowly ramping up the driving amplitude.

Fig. 5.16b shows the behaviour of χ for periodic boundary conditions (the ring)
for various ramp speeds. It can clearly be seen that as the ramp speed decreases, the
final value of χ increases, indicating that the cat state is being prepared with greater
fidelity. This can be understood from the quasienergy spectrum of the system, shown
in Fig. 5.17a. For small κ the system is a Mott insulator, and so the ground state is
separated from the next excited states by a gap of order U . Accordingly, as long as
the ramp-speed is sufficiently slow with respect to the gap, ∆/∆̇ � 1, the adiabatic
approximation holds and the system safely remains in the ground state. Once the Mott
gap closes, and the system becomes superfluid, the two lowest-lying states become an
almost degenerate doublet. To form the cat correlations, the system must remain in this
doublet, without being excited to higher excited states, which again imposes an adiabatic
limit on the speed of the ramp (actually, as noted below, the system barely occupies the
first excited state due to symmetry). As the gap is smaller here than in the Mott regime,
the adiabaticity requirement is more stringent, and it is only fulfilled when the ramp-time
is of the order of 6400T . For more rapid ramps, χ shows an oscillatory behaviour arising
from the excitation of higher states, which decreases the value of the cat correlations. To
confirm this interpretation, the overlap (squared) of the final state with the true ground
state of the system for κ = 0.8 was examined. For a ramp-time of 1600T , for example,
this takes a value of 0.842, indicating that a substantial proportion of the state has been
excited out of the ground state. For the slowest ramp, however, this value rises to 0.999,
demonstrating that the procedure indeed has excellent fidelity.

Fig. 5.16(c) shows the corresponding results for the hard-wall case. In contrast to the
ring, however, even the slowest ramp speeds used are not able to prepare a cat state with
comparable fidelity. As is shown in Fig. 5.17b, this is a consequence of the differences in
the energy spectrum produced by the change in boundary conditions. For hard walls the
lowest doublet of states in the superfluid regime is barely separated from the next-highest
states, as can be seen explicitly by comparing Fig. 5.11 with Fig 5.6. Again the overlap
of the obtained state with the actual ground state of the system is examined. It reveals
that even for a ramp-time of 6400T the fidelity is substantially lower (' 0.902) than for
the corresponding case of the ring, As a result, slower ramp-speeds would be needed to
prepare a cat state, with time scales at least an order of magnitude longer than for the
case of a ring.

Interestingly, for both the ring and the hard-wall case, the overlap of the final state
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Figure 5.16: The full time-dependent system is initialized in a Mott state, and κ ramped
linearly from 0 to a value of 0.8 over a time-interval (the ramp-time), and then held
constant for the same time interval (a) Time-dependence of the driving parameter, κ.
(b) Cat correlation χ for a ring system. The black line is for a ramp-time of 1600T ,
the red line for 3200T and the blue line for 6400T . As the ramp-time is increased, the
final value of χ becomes closer to that of the system’s true ground state (dashed curve),
and the oscillations reduce in amplitude, indicating that the cat state is being prepared
with greater fidelity. (c) As in (b) but for a hard-wall system. The final value of χ is
lower, and even for the slowest ramp-time, the oscillations in χ remain significant. Even
slower ramps would be needed to prepare the cat state with adequate fidelity. Physical
parameters: U = 1, ω = 50. The figure is taken from [3].

with any single excited state is very small. In particular, the overlap with the (also
cat-like) first excited state is essentially zero because the ramp-up driving respects the
symmetry of the ground state.

5.8 Resilience to collapse

This section focuses on the resilience of the cat state against collapse into one of its
branches once it has been prepared. Here collapse or decay means its projection into one
branch due to energy lowering or information retrieval. In this context the meaning of
collapse is extended to include a long period of time, in which the state remains in either
of its branches after the decay takes place.

For a boson gas in a ring, one possible cause of collapse is the appearance of a spurious
external flux (i.e. a rotation drift of the optical lattice) that breaks the degeneracy of the
opposite-momenta condensates. This mechanism may be relevant in a SQUID [296, 297],
where the Josephson coupling generates a periodic flux dependence, which yields a double-
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Figure 5.17: Quasienergy spectrum as a function of κ for (a) periodic boundary conditions,
and (b) hard walls. Note how in (a) the ground state manifold is always isolated from
the rest of the spectrum, but that in (b) the ground-state merges into the spectrum as κ
increases. This makes adiabatic preparation of the cat state far more challenging for the
case of hard walls.

well potential that can be easily imbalanced. Here the physics is different: an external
flux merely introduces a shift in the average momentum of the two condensates while
preserving the cat structure. In the case of a box (hard wall), the situation is even
simpler, as any velocity drift can be gauged away.

Particle losses can be a cause of MQS collapse [329, 350]. In order for this to be
an efficient decay mechanism it is necessary for the emitted atom to carry information
on the cat branch it comes from. Assuming that it is possible upon detection to know
the momentum the atom had in the optical lattice, that information retrieval might be
sufficient to cause the collapse. However, this is not clearly the case if the atom with
nonzero momentum in the lattice actually had zero group velocity before being emitted
(see section 5.4.1). For the reduction cloud, the situation is more radical: even if one
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was able to know the initial crystal momentum of the detected atom, if this momentum
happens to belong to the reduction cloud (i.e. it is different from ±π/2), then it carries
no information whatsoever on the branch state, since the reduction cloud is identically
shared by the two ±π/2-momentum condensates.

A similar discussion of atom losses applies to a kinetically-driven boson gas between
hard walls.

The interaction with the thermal cloud has sometimes been identified as a possible
cause of cat state collapse [336]. Thermal excitations have not been investigated here,
but the existing experience on conventional boson gases teaches that quasiparticles often
tend to reflect the structure of the depletion cloud. The fact that the reduction cloud is
common to the two macroscopic condensates strongly suggests that the same is true for
the quasiparticles. Thus the assertion that the thermal cloud cannot cause the decay of
the MQS state appears to be an educated conjecture.

Diagonal impurities may also break the cat structure. Both for impurity disorder (see
section 5.7) and for isolated impurities, the cat structure remains intact within a range of
nonzero impurity strength.

Finally, standard decoherence can be a cause of preventing the preparation of a pure
cat state, i.e., dephasing caused by coupling to an external dissipative environment [261–
264]. Cold atom systems tend to be quite isolated and thus quite insensitive to external
sources of dissipation. For the present system, there is an additional, more profound rea-
son to believe that dynamic decoherence is not operating here. A necessary condition for
an environment to cause the collapse of a cat state is that it couples to the system observ-
able whose eigenstates (the “pointer basis” of Ref. [262]) characterize the cat branches.
It is difficult to think of a dissipative environment that meets those requirements here,
considering that the branches of the present state collectively populate nonzero momen-
tum states while yielding individually a zero current average, due to the counterintuitive
current operator (see section 5.4.1).

Altogether, there seem to be a number of reasons for asserting that the cat states in
the ground doublet of a kinetically driven boson gas are quite resilient. Although it has
not been explicitly investigated, it seems reasonable to venture that this unusual MQS
robustness will survive in the thermodynamical limit. Thus a picture emerges of a many-
body state with a practically hidden cat structure that only blossoms when subject to
the invasive momentum-measurement of a time-of-flight experiment.

5.9 Summary and conclusions

This chapter investigated, in detail, the Schrödinger cat state that is produced by kinet-
ically driving a Bose-Hubbard model. As noted in Ref. [2] and in the previous chapter,
such a boson system has a preference for collectively populating the states of momentum
±π/2 (in units of the inverse lattice spacing). The main feature of the kinetic driving
and the cat states which it generates, are several mechanisms that offer protection from
collapse.

The exploration of the cat-like nature of the ground state has provided a deeper un-
derstanding of the atypical many-body problem it was based on. It is fortunate that the
ring system can be approximated by a Hamiltonian that has properties already encoun-
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tered in the Richardson-Gaudin model, for medium and large driving amplitudes. The
effective system also includes an attractive interaction in momentum space [288] and a
peculiar pairing rule that links momenta k, π−k (instead of the conventional k,−k). This
unusual pairing interaction gives rise to a modified depletion cloud which is shared by the
two condensate branches and which is called a “reduction cloud” to clearly distinguish it
from the qualitatively different depletion cloud of the conventional, undriven BH model.

The simplified toy model just described does not apply so well to the boson gas between
hard walls. Yet many of its features can still be qualitatively understood in terms of
an ensemble of atoms with highly correlated momenta. This picture is quantitatively
confirmed by analyzing the many-body ground state in the representation of truncated
plane waves (see Fig. 5.10). The case of harmonic confinement was also studied and
the same structure of many atoms with a high momentum correlation was found, which
underlines the robustness of the effect.

The aspects of the ground state that have been investigated include its intrinsic quality
as a cat state, the feasibility of its preparation, and its resistance to collapse. The emerging
picture is that of a boson system whose ground doublet is formed by two cat-like states.
It must be asserted that the ground states’ preparation is feasible, its cat quality is
acceptable and its resilience to collapse is remarkable.

The cat branches differ in the momentum that is macroscopically occupied. Despite
their nonzero momentum, each cat branch has, separately, a zero average current. This
counterintuitive result is directly linked to the exotic character of the effective Hamilto-
nian, which results in an atypical current operator as well. The atom momenta can be
measured in a time-of-flight experiment, since upon removal of the confining optical lattice
the crystal momentum within the lattice becomes the linear momentum in free space. In
such an experiment the majority of atoms are expected to flock in a given direction that
varies randomly from run to run. In such a scenario one could investigate the statistics
of correlations between detected momenta at different times, thus probing the reduction
cloud of the fragmented condensate and its resulting correlations.

In the presence of a finite effective flux, the kinetically driven boson gas displays
a nonzero current whose very existence is crucially dependent on the presence of the
reduction cloud. This may be viewed as a new form of superfluidity. There are two
main differences with conventional superfluidity which were identified so far. First of
all, the pairing in the reduction cloud binds particles with momenta k and π − k, unlike
in the conventional case, where pair particles have momenta k, −k. Secondly, in the
conventional case, the condensate is able to carry current by itself, the depletion cloud
being necessary only for making that current robust, which is the essence of superfluidity.
In the system investigated here, preliminary results (which have not been reported here
in detail) suggest that a non-zero current in the presence of an external flux is obtained
only from the interference between the reduction cloud and the (condensate) branches of
the cat state.

The present work paves the way for the study of a novel class of low-energy robust cat
states that can be realized in cold atom setups and other similar systems.



Conclusions and Outlook

This thesis has investigated three highly intriguing systems that have time periodic vari-
ation as a central feature.

In Chapter 2 shaking was used as a means to create a uniform synthetic magnetic field
for ultra cold atoms in a square optical lattice. Various driving schemes were investigated
and compared. The comparison of the shaking protocols exposed their various strengths
and weaknesses with regard to potential experimental implementations. Various gauge
transformations, which helped in the derivation of the effective Hamiltonians, as well as
transformations representing a change of a frame of reference, were identified.

These results support the conclusion that no simple continuous shaking protocol can
produce a strictly uniform field and therefore more involved schemes, such as split driving
protocols, are required.

The two-step split driving scheme with a sinusoidal waveform performs well for small
values of the driving parameter but, as the driving parameter is increased, it produces
visibly distorted spectra when compared to the Hofstadter butterfly. Small values of the
driving parameter imply that the dynamics in the shaken system are slower than those
in the static system. In an experimental implementation, this leads to long observation
times that can be problematic because of heating.

The four-step split driving protocol produces spectra that are in excellent agreement
with the Hofstadter butterfly. It performs well over a broad range of driving parameters
and, in particular, for larger values of the effective hopping amplitude when compared to
the two-step sinusoidal shaking. This fixes the shortcoming of slow system dynamics.

The two-step kicked driving scheme improves the sinusoidal wave-form at the expense
of producing strong isolated discontinuities in the magnetic flux.

There are several subjects of further study that would complement the research pre-
sented in this chapter. An experimentally relevant factor would be the inclusion of in-
teractions and the heating that is caused by the shaking. As mentioned at the end of
Chapter 2, this research could be extended to other lattice geometries and possibly even
three dimensions.

The theme of magnetic fields and, more broadly, that of gauge potentials was continued
in Chapter 3. It focused on a rapidly oscillating charge in a magnetic monopole. This
Floquet magnetic monopole is purely hypothetical, but recent advances in designing and
creating artificial gauge potentials might make the realization of such a system possible.
Some foundations were laid in the analysis of this system and the spectrum of a charge
coupled to such a monopole was derived. This system is the subject of an on-going
investigation with the goal of identifying and calculating gauge invariant quantities such
as the scattering cross section.

Chapters 4 and 5 continue the investigation of unusual Floquet systems. Here, a
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Bose-Hubbard chain with a time periodically modulated kinetic energy was studied.
In the ring, the system produces a very interesting transition from a Mott insulator

to a fragmented superfluid that condenses at non-zero momenta. In position space, the
effective model describing the system produces a multitude of local and non-local inter-
actions as well as correlated hoppings. This complexity was manageable in the Mott
insulating regime, but a more involved approach based on the momentum representation
was required to explain the features of the superfluid. In the end, it was concluded that
the state in the superfluid regime is best described by a Schrödinger cat state.

The formation of this state and its properties were at the center of Chapter 5. Its
formation is explained as resulting from the interplay of on-site attractive interactions in
momentum space and a pairing interaction term. The analysis also exposes the role of
a special type of depletion cloud, labeled as the reduction cloud, and which is shared by
both condensates.

The ground state was investigated with respect to its intrinsic quality as a cat state,
the feasibility of its preparation, and its resistance to collapse. A picture of a boson
system emerges whose ground doublet is formed by two cat-like states. It can be fairly
asserted that their quality and preparation feasibility are acceptable and its resilience to
collapse is remarkable.

In the presence of a finite effective flux, the kinetically driven boson gas displays a
non-zero current whose sheer existence depends crucially on the presence of the reduc-
tion cloud. This may be viewed as a new form of superfluidity. The highly interesting
mechanism responsible for supporting superfluidity in the kinetically driven boson gas is
actively being investigated. This subject is a natural and exciting extension of the work
presented here.

There are many other possible extensions of the work on kinetically driven boson gases:
A rigorous investigation of the thermodynamic limit; a study of different waveforms of
the driving; the effects of kinetic driving in two or more dimensions; boson mixtures; and
a more comprehensive study of the decoherence of the cat-like ground state.

As mentioned in the introduction, this thesis has focused solely on bosons, so another
logical and exciting extension of the present work would be the investigation of similar
questions in fermion systems.

Finally, the experimental implementation of the peculiar kinetic driving presented in
this thesis would be highly intriguing, because it would reveal whether or not the intriguing
properties that have been discovered theoretically can be replicated in the real world.



Appendix

Numerical methods

General remarks

A brief overview of the numerical methods used in this thesis will be provided here.
The two languages that were chosen to perform most of the numerical computations are
Python [371] and Fortran. Python is an interpreted (no compilation step), general purpose
language. Because Python is a strongly and dynamically typed language with high level
features, it is ideal for quickly implementing ideas and prototyping algorithms.

These characteristics also make it a powerful scripting language that can be used to
interface with programs written and compiled in other languages. Python comes with
very well-developed and documented scientific libraries, as well as libraries for data visu-
alization. The two scientific libraries essential to this thesis were NumPy [244] and SciPy
[104]. Data visualization in this thesis was performed with the Matplotlib library [372].

Despite the performance features of NumPy and SciPy, Python is slow when large
dense matrices have to be generated from scratch. Fortran was chosen to complement
Python to compensate for this shortcoming. In some instances an increase in speed of
100× or better was achieved by switching to Fortran.

Fortunately, NumPy contains the module “f2py” (Fortran to Python) that allows for
a simple compiling and wrapping of Fortran subroutines, so that they can be imported
and executed within a Python script. This allowed for the seamless generation and han-
dling of large matrices with Fortran subroutines and their subsequent processing with
the convenience of Python. This interplay between the two languages also facilitated the
prototyping of algorithms with Python and their implementation in Fortran.

Another major benefit of Python and Fortran are their cross platform capabilities.
Most of the scripts and Fortran routines for this thesis were written on a Windows ma-
chine. The compilers and interpreters for both languages work just as well, if not better
on Unix based machines. This meant that it was no problem to use the same unmodified
code developed on a Windows machine on a cloud computing instance with Linux.

The rapid and efficient deployment of both languages was facilitated by using the free
student edition of Pycharm. Pycharm is an integrated development environment (IDE)
that supports window splitting, automatic indentation, code completion, and many more
advanced features that help in writing and executing Python scripts.

Some resource intensive calculations were outsourced to cloud computing platforms
such as Amazon’s aws cloud computing services (aws.amazon.com) and sabalcore (sabal-
core.com). The first one offers free and for-pay services whereas the second had an offer
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of 500 core hours of free usage for students.

Specific numerical methods

In the early stages of this work, QuTiP [373] was an immensely useful library for both
quickly grasping principles of scientific programming in the context of quantum mechanics
and quickly generating results without in-depth knowledge of the various algorithms and
routines. This is an honorable mention, since QuTiP was not used to generate published
results and was discarded in favor of more specialized tools early on in the thesis.

The numerical methods used frequently that were not written from scratch are eigen-
solver routines integrated in NumPy and SciPy. For full exact diaogonalization the
“linalg.eig” routine of NumPy was used. For determining only the lowest few eigenvalues
and eigenstates the “sparse.linalg.eigsh” solver (implicitly restarted arnoldi method by
[245]) of SciPy was employed.

Three different methods for time evolution purposes were used throughout the the-
sis: The first is a self implemented Runge-Kutta-Fehlberg method (RKF45) with step
size control in Fortran (described in Ref. [49]), the second is the explicit Runge-Kutta
method of order 8(5, 3) [103] provided by the integrate module of Python’s SciPy library
(“integrate.ode”) and the third is the “integrate.odeint” routine of the same module.

Remarks Hilbert space basis and Hamiltonian construction

Two items that produced significant improvements in the speed of my calculations will
be commented on briefly here. Both of them might be of relevance for projects that deal
with small-sized bosonic systems. The Hilbert space basis in this thesis was constructed
with an amazingly simple recursively defined (Python-)function

def basis(L,N):
if L == 1 :

yield [N, ]
else :

for j in range(N+1):
for i in basis(L-1,N-j):

yield [j,]+i

where L is the number of sites in a lattice and N the number of particles. Mark A. Valdez
made me aware of this method, for which I am forever grateful, because it replaced a
cumbersome and slow explicit algorithm that I wrote myself. Unfortunately I could not
find the original author.

All operators and Hamiltonians whose representation in a given basis could not be
simply derived by hand required a numerical evaluation of their matrix elements. To
make these calculations efficient, a quick referencing of a basis state was required. This
was accomplished with a very simple hashing scheme. In order to identify a basis vector



Appendix 161

with a number, its Fock representation was complimented with a one at the beginning:

...

|0, 1, 2, 0, 0, 3, 0, 2〉 → 101200302

|0, 1, 2, 0, 0, 3, 1, 1〉 → 101200311

|0, 1, 1, 1, 0, 3, 1, 1〉 → 101110311

...

This scheme allowed for a quick lookup of the basis vectors and it did not require any
binning, due to the small numbers involved.
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[141] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock,
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(2011).
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[265] M. O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982).

[266] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 75,
3034 (1995).

[267] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, Phys. Rev. Lett.
74, 3600 (1995).

[268] R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H.
Baldwin, and A. G. Truscott, Nature 540, 100 (2016).

[269] P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, Nat.
Photonics 10, 167 (2016).

[270] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys. Rev. Lett. 84, 1
(2000).

[271] Y. Aharonov, Science 307, 875 (2005).

[272] Y. Aharonov, E. Cohen, D. Grossman, and A. Elizutr, EPJ Web. Conf. 70, 00038
(2014).

[273] X.-S. Ma, J. Kofler, and A. Zeilinger, Rev. Mod. Phys. 88, 015005 (2016).

[274] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).

[275] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

[276] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

[277] W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, Phys. Rev. A 59, 4150 (1999).

[278] A. J. Leggett, J. Phys. Condens. Matter 14, R415 (2002).

[279] E. G. Cavalcanti and M. D. Reid, Phys. Rev. A 77, 062108 (2008).
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