
UNIVERSIDAD COMPLUTENSE DE MADRID 
  FACULTAD DE INFORMÁTICA 

 DEPARTAMENTO DE INGENIERÍA DEL SOFTWARE E INTELIGENCIA ARTIFICIAL 
 
 

   
 
 

TESIS DOCTORAL 
Stereo vision-based perception, path planning and navigation strategies for 

autonomous robotic exploration  
Percepción basada en visión estereoscópica, planificación de trayectorias y estrategias de 

navegación para exploración robótica autónoma 
 
 

MEMORIA PARA OPTAR AL GRADO DE DOCTOR 

PRESENTADA POR 

Raúl Correal Tezanos 
 
 

Directores 
 

 Gonzalo Pajares Martinsanz 
José Jaime Ruz Ortiz 

 
 
 
 

Madrid, 2015 
 
 
 
 
 
 
©Raúl Correal Tezanos, 2015 



UNIVERSIDAD COMPLUTENSE DE MADRID 
 

FACULTAD DE INFORMÁTICA 
Departamento de Ingeniería del Software e Inteligencia Artificial 

 
 
 

 
 
 

  
PERCEPCIÓN BASADA EN VISIÓN ESTEREOSCÓPICA, 
PLANIFICACIÓN DE TRAYECTORIAS Y ESTRATEGIAS 

DE NAVEGACIÓN PARA EXPLORACIÓN ROBÓTICA 
AUTÓNOMA 

 

 

Memoria para optar al grado de doctor, presentada por 
 

Raúl Correal Tezanos 

 
 

Dirigida por 
 

Gonzalo Pajares Martinsanz 
Jose Jaime Ruz Ortiz 

 
Madrid, 2015 



 
  



UNIVERSIDAD COMPLUTENSE DE MADRID 
FACULTAD DE INFORMÁTICA 

Departamento de Ingeniería del Software e Inteligencia Artificial 

 

 
 

PhD thesis 
 
 

STEREO VISION-BASED PERCEPTION, PATH 
PLANNING AND NAVIGATION STRATEGIES FOR 

AUTONOMOUS ROBOTIC EXPLORATION 
 
 
 

Dissertation submitted to obtain the Ph. D. Degree by: 
 

D. Raúl Correal Tezanos 
 
 

Supervisors: 
 

Dr. D. Gonzalo Pajares Martinsanz 
Dr. D. Jose Jaime Ruz Ortiz 

 

Madrid (Spain), 2015 



 

 



ABSTRACT 
 
 
This thesis is concerned with the development of a visual-based autonomous navigation 
strategy for robotic exploration of planetary surfaces. The collection of subsystems, modules 
and software presented in this work have been developed from the ground up, as most of the 
existing tools in this domain are proprietary of national space agencies, usually not 
accessible to the research community. A multi-layer modular software architecture with 
several hierarchical levels has been designed to host the series of algorithms that implement 
the autonomous navigation strategy and ensure software portability, reusability and 
hardware independence. This work also includes the design and implementation of a 
framework aimed to support the development of the navigation strategies. It is partially 
based in open source tools and component of the self at the reach of any 
researcher/institution, with adaptations and extensions. The framework provides 3D 
simulation capabilities and models of robotic vehicles, including mechanical design and 
sensors, and operational environments, emulating planetary surfaces like Mars, for analysis 
and validation of the developed navigation approaches and strategies at the functional level. 
The framework also includes debugging and monitoring capabilities. 
 
The present thesis is composed of two main parts: in the first part it is addressed the design 
and development of rover’s high-level autonomy capabilities, focusing in autonomous 
navigation, supported by a purposely designed simulation and monitoring framework. A set 
of field experiments, with a physical robot and real hardware, have been carried out, 
detailing results, algorithms’ processing time and the overall system’s behavior and 
performance. As a result, the perception system has been identified as a crucial component 
within the navigation strategy and, therefore, the main focus of potential system’s 
optimizations and enhancements. As a consequence, in the second part of this work, the 
problem of stereo matching and features' correspondence between pair of images and high-
quality 3D reconstruction of unstructured natural, rough environments is addressed. A 
number of matching algorithms, image processes and filters have been analyzed. It is 
generally assumed the intensities of corresponding points in two images of a stereo pair are 
equal. However, it has been verified that this assumption is often false, even though they 
both images are acquired from a vision system composed of two identical cameras. 
Consequently, an automatic expert system is proposed for automatic intensity correction in 
stereo pairs of images and 3D terrain reconstruction based on the novel application of image 
processes not applied so far to the stereo vision field. Such processes are homomorphic 
filtering and histogram matching. They are intended for correcting intensities of the stereo 
pair coordinately, adjusting one image as a function of the other. Additionally, results have 
been further enhanced by applying a purposely designed process directed by clusters based 
on the principle of spatial continuity to eliminate false positives and erroneous 
correspondences. A study of the effects of applying such filters to the input images, in a pre-
matching and post-matching steps correspondingly, has been carried out and the 
performance verified favorably. The application of these processes has allowed obtaining a 
higher number of valid correspondences in contrast to performing the stereo matching 
process without applying them, achieving significant improvements in the disparity maps 
and, therefore, in the overall perception and 3D reconstruction processes. 

 
Keywords:  robotics, rovers, planetary exploration, mobile robots, simulation, software 
architecture, path planning, stereo-vision, matching, correspondence, image processing. 
 



 



RESUMEN 
 
En esta tesis se trata el desarrollo de una estrategia de navegación autónoma basada en 
visión artificial para exploración robótica autónoma de superficies planetarias. Se han 
desarrollado una serie de subsistemas, módulos y software específicos para la investigación 
desarrollada en este trabajo, ya que la mayoría de las herramientas existentes para este 
dominio son propiedad de agencias espaciales nacionales, no accesibles a la comunidad 
científica. Se ha diseñado una arquitectura software modular multi-capa con varios niveles 
jerárquicos para albergar el conjunto de algoritmos que implementan la estrategia de 
navegación autónoma y garantizar la portabilidad del software, su reutilización e 
independencia del hardware. Se incluye también el diseño de un entorno de trabajo 
destinado a dar soporte al desarrollo de las estrategias de navegación. Éste se basa 
parcialmente en herramientas de código abierto al alcance de cualquier investigador o 
institución, con las necesarias adaptaciones y extensiones, e incluye capacidades de 
simulación 3D, modelos de vehículos robóticos, sensores, y entornos operacionales, 
emulando superficies planetarias como Marte, para el análisis y validación a nivel funcional 
de las estrategias de navegación desarrolladas. Este entorno también ofrece capacidades de 
depuración y monitorización. 
 
La presente tesis se compone de dos partes principales. En la primera se aborda el diseño y 
desarrollo de las capacidades de autonomía de alto nivel de un rover, centrándose en la 
navegación autónoma, con el soporte de las capacidades de simulación y monitorización del 
entorno de trabajo previo. Se han llevado a cabo un conjunto de experimentos de campo, con 
un robot y hardware real, detallándose resultados, tiempo de procesamiento de algoritmos, 
así como el comportamiento y rendimiento del sistema en general. Como resultado, se ha 
identificado al sistema de percepción como un componente crucial dentro de la estrategia de 
navegación y, por tanto, el foco principal de potenciales optimizaciones y mejoras del 
sistema. Como consecuencia, en la segunda parte de este trabajo, se afronta el problema de la 
correspondencia en imágenes estéreo y reconstrucción 3D de entornos naturales no 
estructurados. Se han analizado una serie de algoritmos de correspondencia, procesos de 
imagen y filtros. Generalmente se asume que las intensidades de puntos correspondientes en 
imágenes del mismo par estéreo es la misma. Sin embargo, se ha comprobado que esta 
suposición es a menudo falsa, a pesar de que ambas se adquieren con un sistema de visión 
compuesto de dos cámaras idénticas. En consecuencia, se propone un sistema experto para 
la corrección automática de intensidades en pares de imágenes estéreo y reconstrucción 3D 
del entorno basado en procesos de imagen no aplicados hasta ahora en el campo de la visión 
estéreo. Éstos son el filtrado homomórfico y la correspondencia de histogramas, que han 
sido diseñados para corregir intensidades coordinadamente, ajustando una imagen en 
función de la otra. Los resultados se han podido optimizar adicionalmente gracias al diseño 
de un proceso de agrupación basado en el principio de continuidad espacial para eliminar 
falsos positivos y correspondencias erróneas. Se han  estudiado los efectos de la aplicación 
de dichos filtros, en etapas previas y posteriores al proceso de correspondencia, con 
eficiencia verificada favorablemente. Su aplicación ha permitido la obtención de un mayor 
número de correspondencias válidas en comparación con los resultados obtenidos sin la 
aplicación de los mismos, consiguiendo mejoras significativas en los mapas de disparidad y, 
por lo tanto, en los procesos globales de percepción y reconstrucción 3D. 
 
Palabras clave: robótica, rovers, exploración planetaria, robots móviles, simulación, 
arquitectura software, planificación de trayectorias, visión estéreo, correspondencia, 
procesado de imágenes. 



 



CONTENTS 

INTRODUCTION .......................................................................................................................................................... 1 

1.1 Antecedents and Problems Identification .................................................................................... 1 

1.2 Motivation and objectives ................................................................................................................... 5 

1.2.1 Motivation ........................................................................................................................................... 5 

1.2.2 Objectives ............................................................................................................................................ 6 

1.3 Contributions ............................................................................................................................................ 8 

1.4 Dissemination of Results .................................................................................................................. 11 

1.5 Contents ................................................................................................................................................... 16 

ROBOTIC SPACE EXPLORATION. AUTONOMY ........................................................................................... 19 

2.1 Background ............................................................................................................................................ 19 

2.2 Autonomy ................................................................................................................................................ 23 

2.3 Rover’s Operation ................................................................................................................................ 24 

SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK ........................................................................... 27 

3.1 Background ............................................................................................................................................ 27 

3.2 Framework Structure and Design ................................................................................................. 30 

3.2.1 Simulation ........................................................................................................................................ 33 

3.2.2 Control Center ................................................................................................................................ 39 

AUTONOMY FOR PLANETARY EXPLORATION ROVERS: ARCHITECTURE AND NAVIGATION
 ................................................................................................................................................................ ......................... 43 

4.1 Background ............................................................................................................................................ 43 

4.1.1 MER Mission .................................................................................................................................... 46 

4.1.1.1 Rover Description ............................................................................................................. 46 

4.1.1.2 Rover Autonomy ............................................................................................................... 47 

4.2 Software Architecture Design ......................................................................................................... 51 

4.3 Autonomous Navigation Strategy ................................................................................................. 57 

4.3.1 Perception Subsystem................................................................................................................. 59 

4.3.2 Mapping of the Environment ................................................................................................... 67 

4.3.3 Path Planning .................................................................................................................................. 78 

4.3.3.1 Compute Candidate Paths ............................................................................................. 80 

4.3.3.1.1 Straight Paths................................................................................................................. 82 

4.3.3.1.2 Arcs .................................................................................................................................... 83 

4.3.3.1.3 Splines ............................................................................................................................... 90 



4.3.3.2 Candidate Path Selection ............................................................................................. 110 

4.3.3.3 Determine Traversed Cells ......................................................................................... 112 

4.3.3.3.1 Straight Paths............................................................................................................... 112 

4.3.3.3.2 Arcs .................................................................................................................................. 114 

4.3.3.3.3 Splines ............................................................................................................................. 116 

4.3.3.4 Path’s Safety Evaluation ............................................................................................... 118 

4.3.4 Navigation ...................................................................................................................................... 126 

4.3.4.1 Proportional Control ..................................................................................................... 128 

4.3.4.2 Straight Trajectories ...................................................................................................... 129 

4.3.4.3 Arc Trajectories ............................................................................................................... 129 

4.3.4.4 Splines ................................................................................................................................. 132 

4.3.4.5 Position Estimation ........................................................................................................ 136 

4.3.5 Processes and Control Flow ................................................................................................... 142 

4.4 Testing, Experiments and Validation ......................................................................................... 145 

4.4.1 Testing and Validation of Algorithms ................................................................................. 145 

4.4.2 Field Testing .................................................................................................................................. 150 

4.4.2.1 Mobile Robotic Platform .............................................................................................. 150 

4.4.2.2 Time Performance Analysis of the Navigation Strategy ................................. 151 

4.4.2.3 Path Planning and Navigation Performance ....................................................... 156 

THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS. A TESTBED 
FOR STEREO VISION ALGORITHMS .............................................................................................................. 159 

5.1 Stereoscopic Vision ........................................................................................................................... 160 

5.2 Background .......................................................................................................................................... 163 

5.2.1 Revision of Methods................................................................................................................... 166 

5.3 Stereo Testbed .................................................................................................................................... 168 

5.3.1 Requirements ............................................................................................................................... 169 

5.3.2 Design .............................................................................................................................................. 171 

5.3.3 Integrating Algorithms within the Testbed ..................................................................... 175 

5.3.4 Experiments and Results ......................................................................................................... 180 

5.3.4.1 Use Case: Matching Algorithms Comparison ...................................................... 180 

5.3.4.2 Use Case: from the Simulated to the Real World ............................................... 187 

AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION BASED ON ENHANCED 
STEREO VISION BY THE APPLICATION OF NOVEL IMAGE FILTERS .............................................. 193 

6.1 Motivational research of the proposed strategy ................................................................... 193 

6.2 Introduction ......................................................................................................................................... 195 



6.3 Histogram Matching.......................................................................................................................... 199 

6.3.1 Introduction .................................................................................................................................. 199 

6.3.2 Description of the Method ....................................................................................................... 201 

6.4 Homomorphic Filtering ................................................................................................................... 202 

6.5 Clustering Filter .................................................................................................................................. 203 

6.6 Expert System Design....................................................................................................................... 205 

6.6.1 Reasoning for Knowledge Extraction ................................................................................. 205 

6.6.2 Automatic Image Processing Modules ............................................................................... 206 

6.7 Experiments and Results ................................................................................................................ 210 

6.7.1 Histogram matching .................................................................................................................. 212 

6.7.2 Homomorphic Filtering ............................................................................................................ 217 

6.7.3 Clustering Filter ........................................................................................................................... 219 

CONCLUSIONS AND FUTURE WORK............................................................................................................. 223 

7.1 Conclusions ........................................................................................................................................... 223 

7.2 Future Work ......................................................................................................................................... 228 

RESUMEN EN ESPAÑOL ..................................................................................................................................... 231 

8.1 Introducción ......................................................................................................................................... 231 

8.2 Motivación ............................................................................................................................................ 235 

8.3 Objetivos ................................................................................................................................................ 236 

8.4 Resultados ............................................................................................................................................. 238 

8.5 Conclusiones ........................................................................................................................................ 242 

8.6 Trabajos Futuros ................................................................................................................................ 248 

REFERENCES ........................................................................................................................................................... 251 





ACRONYMS LIST 
 

 

2D – 2 dimensions 

3D – 3 dimensions 

AI – Artificial Intelligence 

ANW - Autonomous Navigation Workshop 

API - Application Programming Interface 

APXS - Alpha Proton X-Ray Spectrometer 

ASTRA - Advanced Space Technologies for Robotics and Automation 

BISMARC - Biologically Inspired System for Map-based Autonomous Rover Control 

BM - Block-Matching 

BOCM – Boletín Oficial de la Comunidad de Madrid 

BOE – Boletín Oficial del Estado 

CAMPOUT – Control Architecture for Multirobot Outpost 

CCD – Charge-Coupled Device 

CDF – Cumulative Distribution Function 

CIB - Constant Image Brightness 

CLARAty - Coupled Layer Architecture for Robotic Autonomy 

CMU - Carnegie Mellon University 

CNES - Centre National d'Etudes Spatiales 

CNRS - Centre National de la Recherche Scientifique 

CNSA - China National Space Administration 

COTS - Components Of The Self 

CPU – Central Processing Unit 

DARPA - Defense Advanced Research Projects Agency 



DASIA - international conference on DAta Systems In Aerospace 

DEM - Digital Elevation Model 

DRC - DARPA Research Challenge 

DTE - Direct-to-Earth 

EDRES - Environnement de Développement pour la Robotique d'Exploration Spatiale 

ESA – European Space Agency 

ESTEC - European Space research and TEchnology Centre 

FC - Forward Control 

FOV - Field Of View 

FPGA - Field Programmable Gate Arrays 

FRM - Functional Reference Model 

GESTALT - Grid-based Estimation of Surface Traversability Applied to Local Terrain 

GFE - Government Funded Equipment 

GPS – Global Positioning System 

GUIDE - Graphical User Interface Development Environment 

HAL - Hardware Abstraction Layer 

HSV - Hue Saturation Value 

ICE – Internet Communication Engine 

IDEA - Intelligent Distributed Execution Architecture 

IDL - Interface Definition Language 

IMU - Inertial Measurement Unit 

ISRO - Indian Space Research Organisation 

JAXA - Japanese Space Agency 

JPL - Jet Propulsion Laboratory 

MAM - Mobility Avionics Module 

MER - Mars Exploration Rovers 



MIPS - Million of Instructions Per Second 

MOBC - Multi-Objective Behavior Control 

MRPT - Mobile Robot Programming Toolkit 

MSL - Mars Sciences Laboratory 

NASA – National Aeronautics and Space Administration 

NCC - Normalized Cross Correlation 

NF - Nominal Feedback 

NNF - Non-nominal Feedback 

OBSW – OnBoard SoftWare 

ORCCAD - Open Robot Controller Computer Aided Design 

OS – Operating System 

OSRF - Open Source Robotics Foundation 

PC – Personal Computer 

PROM - Programmable Read-Only Memory 

RAM - Random Access Memory 

RAT - Rock Abrasion Tool 

RGB – Red Green Blue 

ROAMS - Rover Analysis, Modeling and Simulation 

ROS - Robot Operating System 

RP - Robot-Procedures 

RT - Robot-Task 

SAD - Sum of Absolute Differences 

SGBM - Semi-Global Block Matching 

SIFT - Scale-Invariant Feature Transform 

SIFT - Scale-Invariant Feature Transform 

SLAM - Simultaneous Localization and Mapping 



SRI – Stanford Research International 

SSD - Sum of Squared Differences 

SW - Software 

TES - Thermal Emission Spectrometer 



FIGURES LIST 
 

 

FIGURE 1. FRAMEWORK CONCEPTUAL ARCHITECTURE AND SUBSYSTEMS ........................................................ 31 

FIGURE 2. SUBSYSTEMS OF THE FRAMEWORK, TOOLS AND TECHNOLOGIES USED ON ITS DEVELOPMENT ... 32 

FIGURE 3. A) MER ROVER (COURTESY OF NASA/JPL) AND B) ITS MODEL CREATED FOR GAZEBO WITHIN 
THE FRAMEWORK .............................................................................................................................................. 37 

FIGURE 4. SIMULATED MARS-LIKE TERRAINS WITH DIFFERENT ILLUMINATION CONDITIONS ...................... 38 

FIGURE 5. DEBUGGING VIEW OF THE CONTROL CENTER SHOWING CAPTURED IMAGES, COMPUTED MAPS 
AND PLANNED AND EXECUTED TRAJECTORIES ON THE TERRAIN .............................................................. 41 

FIGURE 6. ONBOARD SOFTWARE LAYERED ARCHITECTURE ................................................................................. 54 

FIGURE 7. DIAGRAM OF THE ROVER’S AUTONOMOUS NAVIGATION PROCESSES ................................................ 58 

FIGURE 8. DIAGRAM OF THE ROVER’S STEREO VISION SYSTEM ............................................................................ 60 

FIGURE 9. SCHEME PRESENTING THE CALIBRATION PROCESS USING A CALIBRATION OBJECT NAMED 
CHESSBOARD....................................................................................................................................................... 61 

FIGURE 10. SCHEME PRESENTING THE RECTIFICATION PROCESS (NATIONAL, 2013) ................................... 62 

FIGURE 11. A RIGHT-IMAGE MATCH OF A LEFT-IMAGE FEATURE MUST OCCUR ON THE SAME ROW AND AT 
THE SAME COORDINATE POINT OR TO THE LEFT, BETWEEN THE MINIMUM AND MAXIMUM DISPARITY 
SEARCH RANGE ................................................................................................................................................... 63 

FIGURE 12. DISPARITIES COMPUTATION FOR A PAIR OF IMAGES OBTAINED FROM THE SIMULATOR............ 64 

FIGURE 13. DISPARITY FILTERING BASED ON CLUSTERS, A) BEFORE AND B) AFTER THE PROCESS .............. 66 

FIGURE 14. CAMERA’S AND ROVER’S REFERENCE SYSTEMS ................................................................................. 68 

FIGURE 15. DISCRETIZATION OF THE TERRAIN FOR INTERNAL REPRESENTATION: A) A GRID WHERE EACH 
CELL ENCODES THE TERRAIN’ ELEVATION IN THAT AREA, B) USUALLY REPRESENTED AS A GRAY-
SCALED IMAGE .................................................................................................................................................... 70 

FIGURE 16. A) HEIGHT MAP BUILT FROM A SINGLE PERCEPTION AND B) FINAL MAP AFTER THE 
INTERPOLATION PROCESS ................................................................................................................................ 72 

FIGURE 17. INTERPOLATION PROCESS TO FILL GAPS IN THE MAP BASED ON NEIGHBORING CELLS’ VALUES73 

FIGURE 18. AREA CAPTURED BY TWO PERCEPTIONS (RED AND BLUE) WITH A CERTAIN OVERLAPPING 
(PURPLE REGION). GREEN LINES REPRESENT DIRECTION OF PERCEPTION ............................................. 75 

FIGURE 19. A) MERGED HEIGHT MAP RESULTED FROM TWO SINGLE PERCEPTIONS FROM THE SAME 
LOCATION AND B) INTEGRATED HEIGHT MAP AFTER SEVERAL PERCEPTIONS FROM DIFFERENT 
LOCATIONS .......................................................................................................................................................... 77 

FIGURE 20. PATH PLANNING PROCESS WITHIN THE ROVER’S AUTONOMOUS NAVIGATION STRATEGY ......... 80 

FIGURE 21. A) A SET OF CANDIDATE STRAIGHT PATHS OR B) ARCS PROJECTED ONTO THE HEIGHT MAP OF 
THE AREA AND AN EXAMPLE OF SPLINE (MAGID ET AL., 2006) ............................................................... 81 

FIGURE 22. AN ARC AB IS DEFINED BY ITS LENGTH, ANGLE (Α) AND RADIUS (R) ............................................ 83 

FIGURE 23. A SET OF CANDIDATE ARCS ESTABLISHING A BEAM WIDTH OF A) 60º, B) 120º AND C) 150º . 84 



FIGURE 24. GENERATING CANDIDATE ARCS WITH THE VARIABLE RADIUS METHOD ........................................ 85 

FIGURE 25. GENERATING CANDIDATE ARCS WITH THE EQUIDISTANT ENDING POINTS METHOD ................... 87 

FIGURE 26. GEOMETRY CONSIDERATIONS FOR THE EQUIDISTANT ENDING POINTS METHOD ......................... 88 

FIGURE 27. EXAMPLE OF A SPLINE TRAJECTORY .................................................................................................... 90 

FIGURE 28. EXAMPLE OF TRAJECTORY COMPUTATION USING THE SPLINES METHOD (BLUE) IN COMPARISON 
TO THE FIXED-LENGTH CANDIDATE PATHS METHOD (BLACK) .................................................................. 92 

FIGURE 29. SPLINE PASSING THROUGH A SET OF DEFINED CONTROL POINTS (RED) ....................................... 96 

FIGURE 30. COMPUTING A NEW CONTROL (PASSING) POINT (RED) TO AVOID A NON-NAVIGABLE AREA 
ALONG THE TRAJECTORY .................................................................................................................................. 99 

FIGURE 31. ITERATIVE PROCESS FOLLOWING A SPIRAL PATTERN TO COMPUTE A NEW CONTROL (PASSING) 
POINT TO AVOID A NON-NAVIGABLE AREA .................................................................................................. 100 

FIGURE 32. ITERATIVE PROCESS FOLLOWING A SPIRAL PATTERN TO COMPUTE A NEW CONTROL (PASSING) 
POINT TO AVOID A NON-NAVIGABLE AREA .................................................................................................. 102 

FIGURE 33. SEVERAL STEPS COMPUTING NEW CONTROL (PASSING) POINTS (RED) TO AVOID NON-
NAVIGABLE AREAS ALONG THE TRAJECTORY FOLLOWING THE OVERALL FITTING METHOD ................ 104 

FIGURE 34. SEVERAL STEPS COMPUTING NEW CONTROL (PASSING) POINTS (RED) TO AVOID NON-
NAVIGABLE AREAS ALONG THE TRAJECTORY FOLLOWING THE PROGRESSIVE FITTING METHOD ........ 106 

FIGURE 35. SOME WAYPOINTS (RED) CAN BE SAFELY REMOVED FROM THE TRAJECTORY ........................... 108 

FIGURE 36. EXAMPLE OF TRAJECTORY COMPUTATION USING THE SPLINES METHOD (BLUE) IN COMPARISON 
TO THE FIXED-LENGTH CANDIDATE PATHS METHOD (BLACK) ................................................................ 110 

FIGURE 37. DETERMINING THE SET OF CELLS TRAVERSED BY A GIVEN PATH BY DIVIDING IT IN SMALLER 
STRETCHES ........................................................................................................................................................ 112 

FIGURE 38. DETERMINING THE SET OF CELLS TRAVERSED BY A GIVEN ARC BY DIVIDING IT IN SMALLER 
STRETCHES ........................................................................................................................................................ 114 

FIGURE 39. DETERMINING THE SET OF CELLS TRAVERSED BY A GIVEN SPLINE-BASED TRAJECTORY BY 
DIVIDING IT IN SMALLER STRETCHES ........................................................................................................... 117 

FIGURE 40. 3D AREA AFFECTED WHEN CHECKING ROVER SAFETY ................................................................... 119 

FIGURE 41. SET OF CELLS CONSIDERED TO COMPUTE A) EXCESSIVE STEP, EXCESSIVE ROUGHNESS AND C) 
EXCESSIVE TILT ................................................................................................................................................ 120 

FIGURE 42. ROVER MODEL IN A SIMULATED TERRAIN AND PATH PLANNING PROCESS WITH A) STRAIGHT 
AND B) ARC CANDIDATE TRAJECTORIES ....................................................................................................... 127 

FIGURE 43. COMPUTATION OF REFERENCE POINTS (XREF, YREF) ALONG THE ARC TO COMMAND THE CONTROL 
ALGORITHM AT REGULAR TIME INTERVALS................................................................................................. 130 

FIGURE 44. APPROXIMATING AN INTERVAL’S LENGTH BY ADDING UP THE LENGTHS OF ITS STRETCHES .. 132 

FIGURE 45. COMPUTATION OF REFERENCE POINTS (XREF, YREF) ALONG THE TRAJECTORY TO COMMAND THE 
CONTROL ALGORITHM AT REGULAR TIME INTERVALS ............................................................................... 134 

FIGURE 46. ROVER’S FEEDBACK CONTROL AND POSITION ESTIMATION .......................................................... 136 

FIGURE 47. PATH OF WHEELS THROUGH A TURN ................................................................................................. 137 

FIGURE 48. MOBILE PLATFORMS’ WHEEL NUMBERING ...................................................................................... 139 



FIGURE 49. SEVERAL NAVIGATION CYCLES –WAYPOINTS- ARE USUALLY NECESSARY TO REACH A GIVEN 
LOCATION .......................................................................................................................................................... 143 

FIGURE 50. AUTONOMOUS NAVIGATION PROCESSES AND CONTROL FLOW ..................................................... 144 

FIGURE 51. ROVER ROUTE COMPOSED OF SEVERAL WAYPOINTS ...................................................................... 146 

FIGURE 52. MULTIPLE WAYPOINTS PATH, SHOWING THE PLANNING AREA (YELLOW) AND FOLLOWED 
TRAJECTORY (RED) .......................................................................................................................................... 148 

FIGURE 53. MOBILE PLATFORM USED FOR FIELD TESTING AND ITS EQUIVALENT SIMULATED MODEL IN THE 
FRAMEWORK .................................................................................................................................................... 151 

FIGURE 54. POSITIONING ERROR AT TARGET LOCATION FROM NAVIGATION TESTS, AVERAGE ERROR AND 
STANDARD DEVIATION .................................................................................................................................... 157 

FIGURE 55. STEREO SYSTEM OF PARALLEL AXES. (X0, Y0) AND (X0’, Y0’) ARE THE IMAGES CENTRAL POINTS 
AND (X, Y) AND (X’, Y’) THE COORDINATES OF POINT P IN EACH IMAGE OF THE PAIR (BHATTI, 2012)
 ................................................................................................................................................................ ............ 161 

FIGURE 56. DEPTH AND DISPARITY ARE INVERSELY RELATED, SO FINE-GRAIN DEPTH MEASUREMENT IS 
RESTRICTED TO NEARBY OBJECTS ................................................................................................................. 161 

FIGURE 57. SYNTHETIC STEREO IMAGES OBTAINED FROM THE SIMULATED ENVIRONMENT AND DISPARITIES 
MAP COMPUTED WITH THE BM ALGORITHM. RIGHT SIDE BAR REPRESENTS DISPARITY VALUES 
(MAXIMUM: 64 PIXELS) .................................................................................................................................. 163 

FIGURE 58. DISPARITIES COMPUTED WITH THE BM ALGORITHM APPLIED TO REAL IMAGES ...................... 164 

FIGURE 59. DISPARITIES COMPUTED BY THE BM ALGORITHM.......................................................................... 165 

FIGURE 60. STEREO TESTBED USER INTERFACE .................................................................................................. 173 

FIGURE 61. INPUT STEREO IMAGES AND GROUND TRUTH DATA (HIRSCHMÜLLER AND SCHARSTEIN, 2007)
 ............................................................................................................................................................................ 181 

FIGURE 62. DISPARITIES MAPS PRODUCED BY THE DIFFERENT STEREO ALGORITHMS INCLUDED WITHIN 
THE TESTBED .................................................................................................................................................... 183 

FIGURE 63. COMPARISON OF MATCHING ALGORITHMS’ RESULTS IN TERMS OF RIGHT AND WRONG 
PERCENTAGE OF CORRESPONDENCES ........................................................................................................... 185 

FIGURE 64. COMPARISON OF MATCHING ALGORITHMS’ RESULTS IN TERMS OF RIGHT, WRONG AND FALSE 
MATCHES ........................................................................................................................................................... 187 

FIGURE 65. DISPARITY MAP OBTAINED FOR THE INPUT IMAGES USING: C) LANKTON, D) LANKTON MODE 
FILTER, E) ALAGOZ (GLOBAL ERROR ENERGY MINIMIZATION), F) ALAGOZ (GROWING LINE), G) 
OGALE, H) ABBELOOS ..................................................................................................................................... 189 

FIGURE 66. (A), (B) IMAGES TAKEN FROM THE ONBOARD VIDERE STEREOCAMERA, (C) STEREO PROCESS 
RESULTS USING THE BLOCK-MATCHING ALGORITHM AND (D) USING THE SEMI-GLOBAL BLOCK 
MATCHING ALGORITHM .................................................................................................................................. 190 

FIGURE 67. COMPARISON OF DISPARITIES COMPUTED BY THE BM AND SGBM ALGORITHMS .................... 191 

FIGURE 68. HOMOMORPHIC FILTERING PROCESS ................................................................................................ 203 

FIGURE 69. EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION ARCHITECTURE ......................................... 206 

FIGURE 70. EXAMPLE OF TERRAIN IMAGES CAPTURED WITH THE STEREOSCOPIC SYSTEM .......................... 210 

FIGURE 71. RIGHT AND WRONG DISPARITIES COMPUTED BY THE SGBM ALGORITHM ................................. 211 



FIGURE 72. CORRESPONDING LEFT, RIGHT AND CORRECTED RIGHT IMAGE RGB CHANNELS’ HISTOGRAMS
 ............................................................................................................................................................................ 212 

FIGURE 73. CORRESPONDING GRAYSCALE LEFT, RIGHT AND CORRECTED RIGHT IMAGE HISTOGRAMS ...... 214 

FIGURE 74. DISPARITY COMPUTED BY THE SGBM STEREO MATCHING ALGORITHM PERFORMED ON THE A) 
ORIGINAL IMAGES, B) IMAGES WITH HISTOGRAMS MATCHED CHANNEL BY CHANNEL, C) IMAGES 
CONVERTED TO GRAYSCALE AND MATCHING THEIR HISTOGRAMS .......................................................... 214 

FIGURE 75. RIGHT AND WRONG DISPARITIES COMPUTED BY THE SGBM ALGORITHM WHEN APPLYING THE 
HISTOGRAM MATCHING TECHNIQUE ............................................................................................................. 215 

FIGURE 76. A) ORIGINAL IMAGES, B) IMAGES AFTER APPLYING HOMOMORPHIC FILTERING, C) DISPARITY 
MAP (SGBM ALGORITHM) FROM THE ORIGINAL IMAGES D) DISPARITY MAP (SGBM ALGORITHM) 
FROM THE FILTERED IMAGES ......................................................................................................................... 217 

FIGURE 77. COMPARISON OF DISPARITIES COMPUTED BY THE SGBM ALGORITHM WHEN APPLYING THE 
HOMOMORPHIC FILTERING TECHNIQUE ....................................................................................................... 219 

FIGURE 78. (A) CLUSTERS DETECTED BY THE FILTERING ALGORITHM AND (B) FINAL DISPARITIES 
COMPUTATION AFTER FILTERING OUT THESE ERRORS.............................................................................. 219 

FIGURE 79. OBJECTS IN THE ENVIRONMENT, EVEN THOUGH THEY HAVE DIFFERENT DISPARITY VALUES 
THAN THEIR NEIGHBORS, DO NOT FORM SEPARATE CLUSTERS................................................................ 221 

 

  



TABLES LIST 
 

 

TABLE 1. NAVIGATION PROCESS TIMING ............................................................................................................... 147 

TABLE 2. COMPUTING TIME ON A PC INTEL CORE2 1.86 GHZ. ........................................................................ 149 

TABLE 3. COMPUTING TIME ON A PC104 AMD LX800, 500 MHZ. ............................................................... 153 

TABLE 4. CPUS’ COMPUTING POWER EMPLOYED IN EXPERIMENTS AND SPACE MISSIONS ........................... 155 

TABLE 5. STEREO ALGORITHMS PERFORMANCE ON A PC INTEL CORE2 1.86 GHZ. ..................................... 184 

TABLE 6. RESULTS OBTAINED BY THE STEREO MATCHING ALGORITHM IMPLEMENTED IN THE EXPERT 
SYSTEM USING AS INPUT THE ORIGINAL IMAGES AND THE ONES WITH THE HISTOGRAMS MATCHED
 ............................................................................................................................................................................ 216 

TABLE 7. RESULTS OBTAINED BY THE STEREO MATCHING ALGORITHM IMPLEMENTED IN THE EXPERT 
SYSTEM USING AS INPUT THE ORIGINAL IMAGES AND AFTER THE HOMOMORPHIC FILTERING PROCESS 
ONES ................................................................................................................................................................... 218 

TABLE 8. RESULTS OBTAINED BY THE STEREO MATCHING ALGORITHM AFTER THE APPLICATION OF THE 
HOMOMORPHIC FILTERING AND CLUSTERING FILTER PROCESSES .......................................................... 220 





 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
 

Chapter 1 
 
 

INTRODUCTION 
 

 

In this chapter the antecedents of the research lines presented in this thesis 
and the problems identified are introduced and outlined. The motivation 
leading to the work described in this document as well as the goals expected 
to achieve are listed. The contributions made by the present thesis are stated 
as well as the organization and structure of the document. 

 

 

1.1 Antecedents and Problems Identification 
 

Robotic surface planetary exploration is a challenging endeavor, with critical safety 

requirements and severe communication constraints. A certain level of local autonomy for 

onboard robots is an essential feature, so that they can make their own decisions 

independently of ground control, minimizing the requirements of continuous support from 

human operators on Earth, reducing operational costs and maximizing the scientific return 

of the mission. Operational costs are referred to the costs derived to the mission 

maintenance and support once the aircraft has been launched and the robot is operating in 

the target planet; therefore, these costs can be reduced by increasing the level of rover’s 

onboard autonomy. As for the scientific return of the mission, an increased level of onboard 

autonomy allows the robot to make its own decision on the field, reducing the dependency 

on human operators’ decisions; it speeds up the navigation process and ultimately increases 

the scientific return of the mission as the rover is able to travel longer distances within the 

mission lifespan, minimizing the time it spends waiting for Earth resolutions and performing 

a higher number of experiments to collect scientific data. 

 

1 
 



Chapter 1: INTRODUCTION  
 

There is a growing demand for autonomy capabilities for future planetary missions. Next 

missions are expected to be highly autonomous, where scientists on Earth will designate 

target destinations on the basis of images acquired and downloaded from the rover. 

Autonomous navigation is one of the most crucial and yet risky aspects of these operations. 

The vehicle has to be able to travel from one location to another to take measures, samples 

and perform scientific experiments. If the vehicle drives into a too steep area, runs over a 

rock, a hollow or a rise or a soft sand area, to name some potential hazardous situations, it 

may tip over, run aground, get stuck or lose traction, and that may put the whole mission at 

risk, as nobody can get there to help the rover get out and keep going. To achieve this, the 

robot must perform a series of tasks; an exploratory navigation strategy consists of an 

iterative perception-mapping-path planning-navigation cycle. The rover must perceive the 

environment making use of the appropriate sensors; create an internal representation of the 

robots’ surroundings; and compute safe and suitable trajectories to get to the location it has 

been commanded. 

 

However, one of the firsts and main difficulties researchers have to face when working in 

this domain is existing frameworks and tools to support research are usually proprietary to 

space agencies, and out of reach of most researchers. Moreover, it is indispensable to make 

extensive use of simulation that allow the creation of models to replicate the vehicle, sensors, 

terrain and operational conditions and tools that support the development of the necessary 

algorithms to implement a visual-based autonomous navigation approach for robotic space 

exploration and allow the analysis of algorithms’ performance and functional validation of 

approaches, autonomy strategies and data monitoring. Therefore, this obstacle must be 

overcome somehow. In this case, the strategy followed has been designed a framework, 

based on the integration and adaptation of existing tools, purposely focused in this domain to 

support the developments and research works, and design and develop an autonomous 

navigation strategy. 

 

Within autonomous navigation, perception is one of the most crucial yet challenging tasks. 

Stereo cameras are the preferred device for 3D environment perception in many outdoor 

applications. Stereoscopic vision is a mechanism to obtain depth or range data based on 

images. It consists of two cameras separated by a given distance so that two differing views 

2 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

of the same scene are obtained, similar to human binocular vision. This pair of images is the 

input to the matching process. By comparing both images, relative depth information is 

obtained, in the form of disparities, which are inversely proportional to distance to objects. 

The difference in position of a set of features or pixels from one image relative to the other is 

then computed, usually along the horizontal axis. Depth can be established by triangulation 

of the disparities obtained from the matching process, provided that the position of centers 

of projection, the focal length and the orientation of the optical axis are known. It can then be 

reprojected to 3D space using a perspective transformation, obtaining a set of world 

coordinates. 

 

Stereo matching is a heavily researched area with a prolix published literature and a broad 

spectrum of heterogeneous algorithms available in diverse programming languages. 

However, there is no single approach that could be considered as the best one, able to solve 

every possible problem. Usually, each technique is suitable for a set of conditions but not for 

others. Therefore, as in every area of research, the first step is to analyze the state of the art 

to verify if there is already any solution or technique fulfilling the concrete needs and to what 

extent. This is, in fact, one of the main difficulties researches in the stereo vision area –as in 

many other areas- face, as this task is not trivial at all, given the broad range of available 

resources and literature, so a considerable effort has to be made to analyze it in order to 

determine what strategy may fit each concrete set of requirements. This difficulty is due 

mainly to the heterogeneous nature of the available algorithms and techniques. This 

heterogeneity and the lack of standardization makes the state of the art analysis, algorithms’ 

evaluation and comparison a hard, complicated and time consuming task.  

 

Once a technique or algorithm has been evaluated as promising to be tested for robotic 

navigation in natural terrains, new problems have to be usually faced when applying such 

techniques to real settings in contrast to its application to laboratory and controlled 

environments, as many published works are based on. The problem of correspondence in 

stereoscopic systems stems from the fact that images from cameras, although similar, show 

different intensity levels for the same physical entity in the 3D scene. The main reason for 

this feature lies in the different response from the camera sensors to the signal light from the 

scene and also from the different mapping of the scene over each image due to the different 

3 
 



Chapter 1: INTRODUCTION  
 

relative points of view of each camera. That makes necessary to devote a major research 

effort to correct these deviations typical of any stereo system. This problem is not yet 

satisfactorily solved, particularly in unstructured and uncontrolled environments. That is the 

main reason why literature about this topic is so broad.  

 

This fact allows deducing that the problem concerning the low efficiency of some algorithms 

comes from their application to real images, which requires a global solution to this general 

problem. This justifies the need for a pretreatment of the images. The aim is to achieve the 

maximum similarity in the spectral levels of the stereo pair images, at the pixel level, which 

is exactly what happens in the case of the simulated images. Therefore, methods capable of 

correcting the differences in both images, from the radiometric point of view, are necessary. 

 

Finally, the main purpose of the perception phase and the use of stereo vision, is to perform a 

3D terrain reconstruction that serves the robot to create an internal representation of its 

environment and plan suitable paths and trajectories to effectively navigate from one 

location to another. That requires a high-quality reconstruction of the surface and the 

development of a system capable of performing such a task, similar to that a human expert 

would do in a similar situation. Therefore, the necessary knowledge has to be mapped into 

the system following the logical strategy the expert human applies. 

 

The work presented in this thesis is framed in the design and development of a visual-based 

robotic autonomous navigation for space exploration. Although focused in this domain, it can 

be easily ported and equally applied to many terrestrial applications. Any application where 

a robot has to autonomously traverse a natural, rough terrain with not a priori information, 

so that the environment is unknown and it has to be explored and discovered and the robot 

goes making use of stereo cameras for 3D perception, will face analogous difficulties and 

conditions. Some examples of similar terrestrial applications are autonomous robotic 

patrolling in rural environments, such as fire detection in forests, or border or agrarian 

facilities monitoring and surveillance. Therefore, future research works and projects focused 

in these areas of application can also benefit from the work presented in this thesis. 

 

4 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

1.2  Motivation and objectives 
 

1.2.1 Motivation 
 

The research work objective of this thesis is part of a collaboration between the Universidad 

Complutense of Madrid and the company TCP and Sistemas e Ingeniería in the area of 

planetary exploration rovers’ autonomous navigation. Both entities were involved in two 

projects, entitled: AUTOROVER: estudio de autonomía basada en imágenes para rovers de 

exploración planetaria and Visión estereoscópica para Auto-rover: estudio de autonomía 

basada en imágenes. The former comes from the participation of the mentioned company in 

the public call 2259/2007 (BOCM 272 of 15/11/2007) to promote innovation of the 

Community of Madrid in the aerospace sector with funding from the European Regional 

Foundation (Reference 04-AEC0800-000035/2008). The latter corresponds to an extension 

of the previous program within the National Research Program in the Aerospace sector after 

the order PRE/998/2008 (BOE 11/04/2008) Ministry of the Presidency (reference SAE-

20081093). Both projects are framed into the area of robotic autonomous navigation on the 

Mars surface, which main objective is the design and development of a vision-based system 

for autonomous navigation of planetary exploration rovers. 

 

The research works of the mentioned projects have been carried out in the computer science 

school at the Complutense University of Madrid under the direction of the supervisors of this 

thesis. 

 

From the point of view of its industrial utility, the developed work stems from the need 

raised by the European Space Agency for its next robotic mission to Mars called ExoMars, 

where a rover will travel across the Martian surface to search for signs of life. The primary 

objective is to land the rover at a site with high potential for finding well-preserved organic 

material, particularly from the very early history of the planet. It will collect samples with a 

drill and analyze them with next-generation instruments, establishing the physical and 

chemical properties of these samples. This future rover is intended to be highly autonomous. 

The rover will build a 3D model of its environment using stereo images and analyze it in 

5 
 



Chapter 1: INTRODUCTION  
 

order to establish scientific targets. It will then navigate autonomously to the selected target 

to make use its robotic arm and instruments to collect and analyze data. The intentions are 

to decrease by three or more the time NASA’s last rovers took to plan and schedule its 

actions to get the samples, what would increase dramatically the scientific return of the 

mission. 

 

The agency is in need of tender multiple contracts to the European industry for the design 

and development of the numerous systems that integrate a mission of such a complexity and 

these features. The works presented in this thesis are focused on developing the autonomous 

capabilities of the robotic vehicles, and more specifically on the navigation system, with 

particular emphasis on the perceptual subsystem, based on stereoscopic vision. 

 

Moreover, from the technological point of view, motivation is prompted by the fact of trying 

to improve the results obtained by the stereo matching algorithms, considering the problems 

of its application to real settings and images, which involves some complexities and issues 

not taken into account in many related published works, performed in controlled 

environments or limited to synthetically generated images. 

 

1.2.2 Objectives 
 

In view of the considerations expressed in the preceding paragraphs, the following research 

objectives are proposed: 

 

1. Conduct a study and analysis of the autonomy capabilities for planetary exploration 

vehicles, with special emphasis in autonomous navigation. Understand the current state 

of the art in this domain and in the available technologies and tools related to the 

development of these research topics. 

2. Design and development of a framework that supports the development of autonomy 

capabilities, navigation strategies, algorithms and its functional validation, given the lack 

6 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

of availability and accessibility to equivalent environments, which has typically been 

under the purview of national space agencies. 

3. Creation of the necessary simulation models to replicate the vehicle, sensors, terrain and 

operational conditions, including aspects such as vehicle kinematics and dynamics, 

contact forces, gravity, or friction to analyze the interaction of the rover with the 

environment with the appropriate level of fidelity. The goal is to emulate the whole 

operation process of the rover on a planet surface. 

4. Design and development of a visual-based autonomous navigation system for robotic 

space exploration so that a vehicle is able to travel from one location to another to take 

measures, samples and perform scientific experiments. The rover’s onboard autonomy 

entails the set of algorithms that shall be embedded on the robot to provide this with the 

necessary intelligence and capabilities to make its own decision, dealing with unknown 

environments and unexpected situations, minimizing the dependency on ground control 

operators. 

5. Design of a modular and scalable software architecture to structure and organize the 

previously developed set of algorithms so that each subsystem is independent from one 

another and are able to interact with each other to achieve the desired high-level 

autonomy capabilities. 

6. Conduct a set of experiments, both using the simulation capabilities of the framework 

and carry out a field testing campaign with a physical robot and real hardware, in order 

to analyze and validate the autonomy capabilities of the developed autonomous 

navigation system and the usefulness of the framework to support such developments 

and testing. 

7. Analyze the results obtained from the experiments and the performance of the 

navigation system. 

8. Validate the designed navigation strategy, software architecture and developed 

algorithms. 

7 
 



Chapter 1: INTRODUCTION  
 

9. Identify the potential areas for improvement and develop the necessary tools to assist in 

the identification of such areas. Make these tools available to the research community 

whenever possible. 

10. Develop the methods and techniques previously identified as areas for improvement 

within the autonomous navigation strategy; develop the necessary tools to assist in the 

creation of this methods and technologies. 

11. Identify future lines of research. 

12. Dissemination of the obtained results, knowledge, findings and developments through 

scientific publications or other mechanisms like software release whenever possible. 

 

1.3 Contributions 
 

From the proposed objectives and considering the previously highlighted aspects, the aim is 

to solve the considered problems and provide the scientific community with a set of solution 

strategies and tools that can also be spread to other problems of similar nature. The 

contributions made by this research are summarized in the following points: 

 

1. A study and analysis of the autonomy capabilities for planetary exploration vehicles have 

been conducted, with special emphasis in autonomous navigation. The current state of 

the art in this domain and in the available technologies and tools related to the 

development of these research topics has been also analyzed. This work is described in 

chapter 2 of this thesis. 

2. A framework that supports the development of the autonomy algorithms, including the 

navigation strategies and its functional validation, has been designed and developed, 

supported by some third party tools and packages. This work has been motivated by the 

lack of availability and accessibility to equivalent environments, which has typically been 

under the purview of national space agencies. This work is described in chapter 3 of this 

thesis and in Correal and Pajares (2011a) and Correal et al. (2014b). 

8 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

3. Simulation models to replicate a robotic space exploration vehicle, sensors, terrain and 

operational conditions, including aspects such as vehicle kinematics and dynamics, 

contact forces, gravity, or friction have been created, emulating the whole operation 

process of the rover on a planet surface. This work is described in chapter 3 of this thesis 

and in Correal and Pajares (2011a) and Correal et al. (2014b). 

4. A visual-based autonomous navigation system for robotic space exploration has been 

designed and developed from the ground up, supported by some third party libraries. It 

allows a robotic vehicle to travel autonomously from one location to another, taking 

measures, samples and performing scientific experiments. The rover’s onboard 

autonomy entails the set of algorithms that shall be embedded on the robot to provide 

this with the necessary intelligence and capabilities to make its own decision, dealing 

with unknown environments and unexpected situations, minimizing the dependency on 

ground control operators. It includes de design and development of several exploratory 

navigation strategies to autonomously compute trajectories in planetary, distant 

environments. This work is described in chapter 4 of this thesis, based on Correal and 

Pajares (2011b) and Correal et al. (2014b). 

5. A modular, scalable and layer-based software architecture has been designed. It is crucial 

to structure and organize the set of algorithms that comprises the rover’s onboard 

intelligence, so that each subsystem is independent from each other and are able to 

interact with each other to achieve the desired high-level autonomy capabilities. This 

work is described in chapter 4 of this thesis and in Correal and Pajares (2011b) and 

Correal et al. (2014b). 

6. A set of experiments have been conducted, using the simulation capabilities of the 

framework and a real robot and devices, validating both the autonomy capabilities of the 

navigation system and the role of the framework to support such developments and 

testing. This work is described in chapter 4 of this thesis and in Correal and Pajares 

(2011b) and Correal et al. (2014b). 

7. Some areas for improvement have been identified, mainly related to the perception 

subsystem. Several methods and techniques have been developed to improve these 

9 
 



Chapter 1: INTRODUCTION  
 

results. One of such techniques is histogram matching. It normalizes the images of the 

stereo pair adjusting the color distribution of one image with respect to the other. This 

technique enhances the contrast of images using cumulative distribution functions to 

transform the intensity values of an image, or the values in the colormap of an indexed 

image, so that the histogram of the output image approximately matches the histogram 

of the other image, approximating both illumination components. This process, when 

applied to the input images previous to the stereo matching process led to achieve an 

important improvement in the results within the perception phase. This work is 

described in chapter 6 of this thesis and in Correal et al. (2014a). 

8. Another significant contribution to the improvement of the perception phase within a 

robotic explorer has been the application to the input images of a technique called 

homomorphic filtering; which eliminates the illumination component of an image while 

preserving reflectance. When applied to the input images prior to the stereo matching 

process it led to achieve an important improvement of the results obtained from the 

perception subsystem. This work is described in chapter 6 of this thesis and in Correal et 

al. (2013). 

9. A third technique, designed, developed and integrated within the autonomous navigation 

system, led to an improvement of the robot’s perception phase is clustering filter. This 

process, based on the philosophy of clusters, is applied after the computation of 

disparities to eliminate correspondence errors, taking out false positives. It consists in 

grouping pixels in connected components based on the principle of spatial continuity. 

The result of the process is a list of clusters that can be analyzed to be kept or filtered 

out. This process, when applied to the map of disparities computed after the stereo 

matching process led to achieve an important improvement in the results within the 

perception phase. This work is described in chapter 6 of this thesis and in Correal et al. 

(2013). 

10. An open-source project has been initiated as part of this thesis, consisting in a testbed 

aim to assists the stereo vision algorithms state of the art’s analysis and aid researches to 

analyze, evaluate and compare stereo matching methods. It integrates a series of 

heterogeneous algorithms, and some pre and post filtering techniques, adapting and 

10 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

standardizing their interfaces so they can work together and combine processes to 

obtain improved results in comparison to applying each process separately. This testbed 

has been put at the service of the research community and downloaded over one 

thousand times up to now, denoting a strong interest. Several new contributions have 

been received so far from the community and the next version of the testbed is currently 

under development. This work is described in chapter 5 of this thesis. 

11. An automatic expert systems for image correction and terrain reconstruction in stereo 

vision applications has been proposed and developed.  It is based on three stages where 

the main underlying idea is the successive application of automatic image processes, 

mapping the expert knowledge. This expert system is able to automatically adjust the 

intensities of the input stereo pair. It also proves the constant image brightness (CIB) 

assumption is often erroneous. This work is described in chapter 6 of this thesis, based 

on Correal et al. (2014a). 

12. Conclusions and promising future research lines have been identified and detailed in 

chapter 7 of this thesis. 

13. As it can be inferred from the above paragraphs, results, knowledge and findings have 

been disseminated through scientific publications. Some software has been released, in 

the form of an open-source project, as indicated before. The list of published papers is 

enumerated next, indicating their main contributions. 

 

1.4 Dissemination of Results 
 

Dissemination of results, to date, is summarized in the following works: 

 

1. Odwyer and Correal (2008). “Experiences in Producing a Preliminary Navigation OBSW 

Prototype for the Exomars Rover Based on EDRES”. This paper has been published in the 

proceedings of the ESA Workshop on Advanced Space Technologies for Robotics and 

Automation (ASTRA), 2008, ESA/ESTEC Noordwijk (The Netherlands). ExoMars is a 

European led exploration mission to Mars including a surface rover. The ExoMars 

11 
 



Chapter 1: INTRODUCTION  
 

navigation flight software will have to meet ESA (European Space Agency) mission 

requirements and as such will be subject to strict development methods and standards. 

Typically, the software development process for OBSW starts with no code, an 

engineering design and a software requirements set then iterates with testing until a 

flight software is available and validated.  In this case, in the B1 phase and before a 

mature SW (Software) design has been elaborated, preliminary OBSW (OnBoard 

SoftWare) has been produced. This task facilitated the assessment of previously 

developed code modules and algorithms based on (but not limited to) EDRES 

(Environnement de Développement pour la Robotique d'Exploration Spatiale / Space 

Exploration Robotics Development Environment). EDRES (Maurette and Rastel, 2002) is 

the result of thirteen years of software development for autonomous rovers at CNES 

(2014). It consists of a collection of algorithms, applications and tools covering the 

majority of the functions required for autonomous movement generation and execution 

for exploration rovers. EDRES addresses in a very comprehensive way the need to 

design, simulate and evaluate complex strategies and architectures related to rover 

design and software development. It contains a rich set of resources useful for the 

software development of any given rover. EDRES has been built to serve as a workshop 

for the creation of new algorithms, tools or applications. This paper focuses on the 

assessment of the flight suitability of heritage code developed by CNES, encompassing its 

ability to run on the flight processor, its performance and its flight-worthiness in terms 

of issues such as compliance with flight software standards. It has involved porting the 

developed SW from a PC and Linux environment to a more flight representative 

processor, a LEON2-Pender board with RTEMS. An evaluation of the performance of the 

navigation SW running on the flight representative processor has been also done. This 

paper details the experiences and lessons learnt during the porting process and the 

subsequent study to analyze the performance of the navigation SW within the scope of 

the early phases of the ExoMars rover project. This work is introduced in chapter 1 of 

this thesis. 

2. Correal and Pajares (2010). "Framework for Simulation and Rover' Visual-Based 

Autonomous Navigation in Natural Terrains". This paper has been published in the 

proceedings of the 7th Workshop RoboCity2030-II, Madrid, Spain. It presents the design 

12 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

and implementation of a framework aimed to support simulation and development of 

natural terrain autonomous navigation approaches, such as planetary exploration rovers. 

Most of the tools in this domain are proprietary of national space agencies usually not 

accessible to the research community. In this paper, we address the feasibility of 

developing high-level autonomy strategies, such as autonomous navigation, for analysis 

and validation at the functional level, based in open source tools, at the reach of any 

researcher/institution. We also present stereovision-based perception algorithms, path 

planning and navigation approaches developed onto this framework and how rover, 

sensors and terrain models have been created within this environment to support these 

studies. The integration of these tools under a simulated domain makes the main finding 

of this paper. This work is developed and described in detail in chapters 3 and 4 of this 

thesis. 

3. Correal and Pajares (2011a). “Modeling, simulation and onboard autonomy software for 

robotic exploration on planetary environments”. This paper has been published in the 

proceedings of the International Conference on DAta Systems In Aerospace (DASIA) 

2011, Malta. It presents the design and implementation of a framework aimed to support 

development of planetary exploration rovers autonomy approaches. Most of the tools in 

this domain are proprietary of national space agencies and commonly not accessible to 

the research community. In this paper, we present a framework based on open source 

tools with some adaptations/extensions, at the reach of any researcher/institution. 

Vehicle, sensors and terrain models have been created to simulate the operational 

environment. Visual-based autonomous navigation capabilities have been developed; 

analysis and functional level validation of approaches and strategies have been carried 

out supported by this framework. This work is developed and described in detail in 

chapters 3 and 4 of this thesis. 

4. Correal and Pajares (2011b). “Onboard Autonomous Navigation Architecture for a 

Planetary Surface Exploration Rover and Functional Validation Using Open-Source 

Tools”. This paper has been published in the proceedings of the ESA International 

Conference on Advanced Space Technologies in Robotics and Automation, 2011. In the 

planetary domain there exist severe communication constraints linking planets like Mars 

13 
 



Chapter 1: INTRODUCTION  
 

and the ground station on Earth, such as signals delays and communication windows. 

This makes critical the necessity of having onboard local autonomy, allowing deployed 

vehicles making its own decisions independently of ground control, maximizing the 

scientific return of the mission and reducing operational costs and risks. This paper 

outlines a visual-based autonomous navigation approach and software architecture for 

exploration rovers’ onboard autonomy in planetary environments. A framework with 

simulation and monitoring capabilities is presented, developed to support this research, 

allowing analysis of performance and behaviors to evaluate feasibility of strategies and 

early functional validation of approaches. Some of these capabilities are partially 

supported by COTS (Components Of The Self) and open-source packages. This work is 

developed and described in detail in chapter 4 of this thesis. 

5. Correal et al. (2013). “Mejora del Proceso de Correspondencia en Imágenes 

Estereoscópicas Mediante Filtrado Homomórfico y Agrupaciones de Disparidad”. This 

paper has been published in Revista Iberoamericana de Automática e Informática 

Industrial, vol. 10, issue 2, 178-184. In this work the problem of the matching process in 

stereo images of terrains obtained with a Videre STH-DCSG 9mm stereoscopic system is 

addressed. A number of matching algorithms, which are part of the overall stereoscopic 

process whose purpose is to perform a 3D reconstruction for autonomous navigation of 

robots in unstructured natural environments, are used. First, a study of the effects of 

applying homomorphic filtering on the input images as a pre-matching step is 

performed. By that filtering a significant improvement in the disparity map is achieved, 

obtaining a higher number of true correspondences in contrast to perform the process 

without filtering. After that, the resulting disparity map is again filtered using a process 

directed by clusters and based on the principle of spatial continuity to eliminate false 

positives and erroneous correspondences. Both filtered constitute the main contribution 

of the work. This work is developed and described in detail in chapter 6 of this thesis. 

6. Correal et al. (2014a). “Automatic Expert System for 3D Terrain Reconstruction Based on 

Stereo Vision and Histogram Matching”. This paper has been published in Expert 

Systems with Applications. 41, pp. 2043-205. It proposes an automatic expert system for 

3D terrain reconstruction and automatic intensity correction in stereo pairs of images 

14 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

based on histogram matching. Different applications in robotics, particularly those based 

on autonomous navigation in rough and natural environments, require a high-quality 

reconstruction of the surface. The stereo vision system is designed with a defined 

geometry and installed onboard a mobile robot, together with other sensors such as an 

Inertial Measurement Unit (IMU), necessary for sensor fusion. It is generally assumed the 

intensities of corresponding points in two images of a stereo pair are equal. However, 

this assumption is often false, even though they are acquired from a vision system 

composed of two identical cameras. We have also found this issue in our dataset. Because 

of the above undesired effects the stereo matching process is significantly affected, as 

many correspondence algorithms are very sensitive to these deviations in the brightness 

pattern, resulting in an inaccurate terrain reconstruction. The proposed expert system 

exploits the human knowledge which is mapped into three modules based on image 

processing techniques. The first one is intended for correcting intensities of the stereo 

pair coordinately, adjusting one as a function of the other. The second one is based in 

computing disparity, obtaining a set of correspondences. The last one computes a 

reconstruction of the terrain by reprojecting the computed points to 2D and applying a 

series of geometrical transformations. The performance of this method is verified 

favorably. This work is developed and described in detail in chapter 6 of this thesis. 

7. Correal et al. (2014b). “Autonomy for Ground-level Robotic Space Exploration: 

Framework, Simulation, Architecture, Algorithms and Experiments". This paper has been 

published in ROBOTICA Journal. June 2014, pp. 1–32. Robotic surface planetary 

exploration is a challenging endeavor, with critical safety requirements and severe 

communication constraints. Autonomous navigation is one of the most crucial and yet 

risky aspects of these operations. Therefore, a certain level of local autonomy for 

onboard robots is an essential feature, so that they can make their own decisions 

independently of ground control, reducing operational costs and maximizing the 

scientific return of the mission. In addition, existing tools to support research in this 

domain are usually proprietary to space agencies, and out of reach of most researchers. 

This paper presents a framework developed to support research in this field, a modular 

onboard software architecture design and a series of algorithms that implement a visual-

based autonomous navigation approach for robotic space exploration. It allows analysis 

15 
 



Chapter 1: INTRODUCTION  
 

of algorithms’ performance and functional validation of approaches and autonomy 

strategies, data monitoring and the creation of simulation models to replicate the vehicle, 

sensors, terrain and operational conditions. The framework and algorithms are partly 

supported by open-source packages and tools. A set of experiments and field testing, 

with a physical robot and hardware, are described as well, detailing results and 

algorithms’ processing time, which experience an incremented of one order of magnitude 

when executed in space-certified like hardware, with constrained resources, in 

comparison to using general purpose hardware. This work is developed and described in 

detail in chapters 3 and 4 of this thesis. 

 

1.5 Contents 
 

This dissertation is structured in chapters. These chapters are organized according to the 

natural order of the research works carried out, the distribution of which is given below: 

 

1. First chapter. Introduction, the objectives of the thesis are considered and studied, as 

well as motivations and introduction of proposals, as set forth in the preceding sections. 

2. Second chapter. Robotic Space Exploration. Autonomy, gives an overview of the robotic 

planetary exploration domain. Introduces the topic of autonomy, focusing on its 

implications to the robotics area in general and more concretely to the space robots. An 

overview of the rover’s operations and activities performed on a target planet is given, 

along with the autonomy approaches commonly followed for this kind of missions. 

3. Third chapter. Software Development Support Framework, gives an overview of the 

difficulties faced by researchers in the robotic planetary exploration domain and how the 

lack of facilities, vehicles and resources represent a challenge hard to overcome. A 

framework to support research in this domain is proposed, along with its requirements 

and design. 

4. Fourth chapter. Autonomy for Planetary Exploration Rovers: Architecture and Navigation, 

outlines the design of a multilayer and modular onboard software architecture for the 

16 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

rover’s control and a series of algorithms that implement a visual-based autonomous 

navigation strategy for robotic space exploration. A set of experiments are described, 

including results and algorithms’ processing time details. 

5. Fifth chapter. The Perception Phase within the Autonomous Navigation Process. A Testbed 

for Stereo Vision Algorithms, details the design of a testbed that aims to centralize and 

standardize the broad range and heterogeneity of stereo matching algorithms, focusing 

in the application of stereo-based methods to real situations. This work has led the 

creation of an open-source project, already made available to the research community, 

and counting with one thousand downloads to date. 

6. Sixth chapter. Automatic Expert System for 3d Scene Reconstruction Based on Enhanced 

Stereo Vision by the Application of Novel Image Filters, addresses the problem of 

computation of correspondences in pairs of images obtained with a real stereoscopic 

system and the necessity of the application of methods to correct the differences 

between both images of the pair. The effects of applying techniques such as 

homomorphic filter and histogram matching on the input images as a pre-matching step 

are detailed as well as the development of a novel filtering process, directed by clusters 

and based on the principle of spatial continuity, performed on the resulting disparity 

map to eliminate erroneous correspondences. Also an automatic expert system for 3D 

terrain reconstruction and automatic intensity correction in stereo pairs of images based 

on the previously introduced techniques is proposed. This expert system exploits the 

human knowledge, which is mapped into three modules, based on these image 

processing techniques. 

7. Seventh chapter. Conclusions and Future Work, outlines the general lines followed, 

making an overall assessment of the work done. Prospective research lines are suggested 

and future improvements and extensions of the proposed methods are proposed. 

 
 

17 
 



Chapter 1: INTRODUCTION  
 

18 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Chapter 2 

 
 

ROBOTIC SPACE EXPLORATION. AUTONOMY 
 

 

This chapter gives an overview of the robotic planetary exploration domain, 
stating the past and current world-wide interest in this domain by national 
space agencies and the research community by summarizing the set of 
missions accomplished so far, as well as some scheduled in the short and mid-
terms. An introduction on the topic of autonomy is also included, focusing on 
its implications to the robotics area in general and more concretely to the 
space robots, indicating how it serves the whole mission and its necessity and 
benefits. Finally, an overview of the rover’s operations and activities 
performed on a target planet is given, along with the autonomy approaches 
commonly followed for this kind of missions. The subsystems constituting an 
autonomous navigation system are introduced, indicating the present work is 
mainly focused in the perception stage. This chapter pretends to serve as an 
introduction to frame the context and scope of the work introduced as well as 
the justification of the research lines presented. 

 

 

2.1 Background 
 

Planetary exploration has always fascinated mankind. Over the last decades, a number of 

missions have been developed with the purpose to explore the outer space and gather data 

about the climatology, composition or conditions of our neighbor planets and surroundings. 

Some of these consist of probes, satellites or even surface modules. In the last years, there 

has been an increasing interest in celestial body and planetary exploration using mobile 

robots. Last space operations have done an extensive use of robotics systems so far and it is 

foreseeable that will be the case in the future, as there is a number of missions scheduled for 

the next years. 

 

19 
 



Chapter 2: ROBOTIC SPACE EXPLORATION. AUTONOMY  
 

So far, it has been possible for the first time in the history of humanity to drive a vehicle on 

the surface of Mars at the same time than performing scientific experiments and gathering 

crucial information about the planet. The closest pictures ever have been taken from the 

actual surface of the red planet, rocks and soil composition have been analyzed, meteorology 

information has been obtained and invaluable data have been collected. All of that would not 

have been possible without deploying (semi) autonomous robotic vehicles onto the surface. 

 

The first successful robotic mission to Mars was the Pathfinder (Stone, 1996; Mishkin et al., 

1998), from NASA (2014), launched in 1996. It included a lightweight wheeled robot to show 

the viability of sending a load of scientific instruments to another planet with a simple 

system at a reduced cost. It travelled approximately 100 meters in total, never more than 

12 m from the Pathfinder station, during its 83 sols -Martian days- of operation. 

 

The MER (Mars Exploration Rovers) mission (Crisp et al., 2003) by NASA, deployed two twin 

rovers, Spirit and Opportunity, on opposite sides of Mars in January 3 and January 24, 2004, 

with the primary goal of searching for clues of past water activity on Mars, characterizing a 

wide range of rocks and soils. The mission, originally scheduled for 3 months duration, was 

an unprecedented success. At the time of this writing, it has been in operation for more than 

10 years, with more than 40 Km distance travelled and hundreds of thousands of Mars’ 

images sent back to Earth. Next, the NASA Phoenix spacecraft landed on the surface of Mars 

in 2008 (Smith et al., 2008). It was not a mobile robot, but it included a number of scientific 

instruments that allowed scientists to make a historic discovery, confirming the existence of 

water ice near the surface beside the Lander. 

 

The latest NASA robotic mission to Mars is the MSL (Mars Sciences Laboratory) (Grotzinger 

et al., 2012). A car-sized robot –Curiosity- was deployed on Mars in Aug. 2012. Curiosity is 

about twice as long (about 3 meters, 10 feet) and five times as heavy (900 Kg, 2000 pounds) 

as the previous twin Mars Exploration Rovers. It is capable of rolling over obstacles up to 65 

centimeters high (25 inches) and travel up to 200 meters (660 feet) per day on Martian 

terrain. The main scientific goals of the MSL mission are to help determine whether Mars 

could ever have supported life, determining the role of water, and to study the climate and 

geology of Mars. The mission will also help prepare for future human exploration. 

20 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Besides the current economic circumstances and budget constraints, there is still a patent 

world-wide interest in this kind of mission. Both ESA (2014) and NASA have several 

missions scheduled to continue the exploration of our solar system planets and beyond. 

There is a great indecision on possible missions. However after the discovery of water in 

Mars, found by the Phoenix mission, it may impulse the schedule and development of new 

missions to Mars, and maybe other planets, to deepen into this fact and get new evidences. 

The ultimate goal seems to be the future human exploration of Mars and returning to the 

Moon. 

 

Establishing if life ever existed on Mars is one of the outstanding scientific questions of our 

time. NASA Mars exploration strategy is known as “follow the water”. Water is a key because 

almost everywhere we find water on Earth, we find life. To address this important goal, the 

ESA has established the ExoMars programme to investigate the Martian environment and 

demonstrate new technologies, paving the way for a future Mars sample return mission in 

the 2020's. The ExoMars program consists of two phases: the first, an Orbiter plus an Entry, 

Descent and Landing Demonstrator Module, will be launched in 2016; and the other, which 

features a mobile robot, will be launched in 2018. Both missions will be carried out in 

cooperation with Roscosmos (2014), the Russian Federal Space Agency. The ExoMars rover 

will travel across the Martian surface to search for signs of life. The primary objective is to 

land the rover at a site with high potential for finding well-preserved organic material, 

particularly from the very early history of the planet. It will collect samples with a drill and 

analyze them with next-generation instruments, establishing the physical and chemical 

properties of these samples. This future rover is intended to be highly autonomous. The 

rover will build a 3D model of its environment using stereo images and analyze them in 

order to establish scientific targets. It will then navigate autonomously to the selected target 

and use its robotic arm and instruments to collect and analyze data. The intentions are to 

decrease by 3 or more the time NASA’s last rovers took to plan and schedule its actions to get 

the samples, what would increase dramatically the scientific return of the mission. 

 

The Astrobiology Field Laboratory Mission is expected to be launched by NASA in 2016 to 

Mars (Beegle et al., 2007). It’s intended for this mission to last one Martian year, with a 

possible extension of another year. It will study the chemistry associated with life, looking 

21 
 



Chapter 2: ROBOTIC SPACE EXPLORATION. AUTONOMY  
 

for components such as nitrogen and carbon. It will have a high level of autonomy, being able 

to perform fully autonomous long-distance navigation, avoiding hazards, instrument 

placement and science investigations. 

 

The MoonNext mission is expected to be launched by ESA in 2018, with destination to the 

Moon. It will include a rover which will perform geochemical and seismic activity measures, 

as well as some biological experiments. Given the “short” distance from Earth to Moon, the 

rover can be tele-operated, so there are less needs for autonomy than in the case of Mars. 

The landing process is intended to be autonomous and avoid hazards in order to reach 

precisely the desired landing site. 

 

There are also other planned missions such as Mars Sample Return, which objective is to 

reach Mars, collect some samples, leave Mars and get those samples to Earth to be analyzed 

in full detail. Both NASA and ESA are interested in this project, so it could finally end up 

being a multi-billion international mission. There is still no clear date for launching this 

mission, although NASA expects it being possible before 2030. 

 

Besides NASA and ESA, other national space agencies have shown interest in robotic space 

exploration. The China National Space Administration (CNSA) has developed a space 

program in several phases. The first spacecraft of the program, the Chang'e 1 lunar orbiter, 

was launched on October 2007. A second orbiter, Chang'e 2, was launched on 1 October 

2010. Chang'e 3, which includes a lander and rover, was launched on December 2013 and 

successfully soft-landed on the Moon. It will be followed by a sample return mission, Chang'e 

5 scheduled for 2017. Chandrayaan-1 was India's first unmanned lunar probe. It was 

launched by the Indian Space Research Organisation (ISRO, 2014) in October 2008, and 

operated until August 2009. The mission included a lunar orbiter and an impactor. A second 

phase is planned to be launched by 2017, including a wheeled rover that will move on the 

lunar surface and will pick up soil or rock samples for on-site chemical analysis. The 

Japanese Space Agency (JAXA, 2014) has planned also a multi-phase mission to the moon. 

The first spacecraft of the program, an unmanned lunar orbiter, was launched on September, 

2007. SELENE-2, Japan's first lunar lander and rover, is expected to be launched in 2017. It 

will consist from one large lander and a small-sized rover, about 100 Kg., with some 

22 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

penetrators. The program also includes a lunar sample return mission (SELENE-3), a mission 

to Mars, in order to collect data for future manned expeditions. 

 

2.2 Autonomy 
 

There are several definitions for autonomy. Depending on the concrete technology or 

application field, the definition of autonomy can be slightly different. The more general 

definition of autonomy can be “the self-government of an individual”. This concept can be 

applied to many cases and situations. It can be applied to people, situations, systems or even 

robotics for example. In robotics the concept of autonomy is applied to the situations when a 

system –robot– is able to make some decisions by itself without human intervention. This 

autonomous decision making is supported by different techniques, like algorithms or 

artificial intelligence. 

 

Also, sometimes the differences between a robot and a machine are not clear. There can be 

many ways to define what a robot is. Prof. Mataric gives this definition; “A robot is an 

autonomous system which exists in the physical world, can sense its environment, and can 

act on it to achieve some goals” (Mataric, 2007). Deepening in Prof. Mataric definition, a 

robot must be autonomous and acts according to its own decision. It must exists in the real 

world and therefore deal with the physics laws. Must be able to get information about itself 

and its surrounding environment through its sensors and act and change or affect in some 

way this environment using its actuators (wheels or arms among others). Following the 

previous definition, a car for instance is not a robot. A car is physical and has sensors and 

actuators, but it doesn’t make any decision by itself nor has any goal. As another example, a 

robot simulation in the computer is not a robot either. It can make decision, but it doesn’t 

exist in the real world. 

 

Autonomy can be also though as the amount of intervention required for controlling a robot. 

It can be placed teleoperation in one extreme of the line and full autonomy on the other. In 

teleoperation constant interaction is needed, a person is remotely controlling the robot. 

When full autonomy is achieved, the human interaction is minimized or even eliminated 

23 
 



Chapter 2: ROBOTIC SPACE EXPLORATION. AUTONOMY  
 

from the equation. The autonomy level measures the percentage of time that the robot is 

carrying out its task on its own; the amount of intervention required measures the 

percentage of time that a human operator must be controlling the robot. These two 

measures sum to 100%. Teleoperated robots are fully controlled by a human operator 

(Yanco and Drury, 2004). 

 

Generally a hybrid approach it’s been the most widely used and successful one so far. 

Depending on the concrete application and scenario, different percentages and weight to 

each approach must be given. The operators may be in the need to override the robot’s 

decisions because any hazard or unexpected change, or the robot may need to take control if 

a communication loss happens. This has been called adjustable autonomy, making possible 

to adjust the levels to concrete situations and develop mixed approaches. 

 

2.3 Rover’s Operation 
 

Robotic planetary exploration is a very challenging domain. Once a robotic vehicle has been 

deployed on the targeted planet surface, it has to deal with unexpected situations and non-

predictable local conditions, ideally without any or minimum dependency on ground control. 

The constraints on communications, with signal delays up to 40 min from Earth to Mars, and 

the restricted availability of satellites orbiting the target planets, limiting communications to 

10-minutes periods twice a day in the case of Mars, makes teleoperation an unfeasible 

approach. This makes imperative the necessity of a certain level of autonomy. Otherwise, the 

rover would require continuous support from human operators, slowing down the mission 

pace, given the communications constraints, and raising maintenance costs. A higher level of 

autonomy would reduce the operational burden and cost, freeing more resources for 

scientific exploration. 

 

In terms of autonomy, mobile robotic planetary missions achieve planetary surface 

exploration using a human-robot system that operates in a semi-autonomous fashion 

(Biesiadecki et al., 2005; Leger et al., 2005; Maimone et al., 2006a). That is, it incorporates 

remote planning, command sequencing and visualization of rover activity sequences and 

24 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

related data products by an Earth-based science-engineering team. The rovers perform 

autonomous execution of a daily sequence of commands, developed on ground control every 

day by human experts and sent to the rovers as a to-do list for that day.  

 

Among the multiple operations a rover shall perform, navigation is one of the most critical. It 

implies the capacity of the robot to travel from one location in the planet to another by itself 

performing scientific experiments, avoiding obstacles and hazards such as tipping over, 

falling in cracks or getting stuck in soft sand, that may put the whole mission at risk. 

Autonomous navigation is commanded by specifying explicit surface coordinates to be 

reached using onboard sensing, perception, motion planning and execution. Mission 

operators provide a global path plan in the form of a series of waypoints that is executed and 

evaluated onboard the rover. Often, the goal waypoint at the furthest extent of a long 

traverse is beyond the reliable field of view of the rovers’ mast-mounted navigation cameras, 

in which case the rover is commanded to drive itself –autonomously- into areas never before 

seen in images sent to Earth (at least not at sufficient resolution to locate potential obstacles 

in advance). 

 

In general, an autonomous navigation system consists of three main subsystems: perception, 

path planning and path execution. The perception subsystem receives inputs from the 

onboard sensors, in the case of planetary rovers usually utilizing passive imaging sensors 

such as stereo cameras, producing local area terrain maps containing elevation data and 

detected hazards. The path planning subsystem allows the robot to navigate through 

obstacles, and finding the path in order to reach the target without collision. It is often 

decomposed into path planning and trajectory planning. Path planning is to generate a 

collision free path in an environment with obstacles and optimize it with respect to some 

criteria. Trajectory planning is to schedule the movement of a mobile robot along the 

planned path. 

 

The path execution subsystem receives a path to execute from the path planning subsystem 

and controls the vehicle’s motion. In this stage, the robot must monitor its motions to track 

the path and verify that it is moving according to the plan until the goal is reached. It must 

25 
 



Chapter 2: ROBOTIC SPACE EXPLORATION. AUTONOMY  
 

also monitor the environment to ensure that no unexpected obstacle blocks its movements. 

The focus for this work is the perception subsystem. 

 

In order to design, develop and test an autonomous navigation system for a planetary rover, 

intense research work on earth is required prior to any launching. And that requires the 

appropriate infrastructure and facilities, which is the focus of the next chapter. 

 
 

26 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Chapter 3 

 
 

SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK 
 

 

This chapter gives an overview of the difficulties faced when research works 
in the robotic planetary exploration domain is undertaken. Existing tools to 
support research in this domain are usually proprietary to space agencies, 
and out of reach of most researchers. This lack of facilities, vehicles and 
resources represent a challenge hard to overcome for many research groups. 
Even though in the case of teams having access to the necessary resources, 
there are many chances they will not be available until later phases of the 
mission. A framework to support research in this domain is proposed, along 
with its requirements and design. The framework has been developed from 
the ground up, as there is not any equivalent framework available to be used, 
by integrating existing resources and tools with new developed ones. The 
creation of the framework has been partly supported by open-source 
packages. It allows analysis of algorithms’ performance and functional 
validation of approaches and autonomy strategies, data monitoring and the 
creation of simulation models to replicate the vehicle, sensors, terrain and 
operational conditions. Despite this framework is not part of the research 
objectives of this work, it has been crucial to support the developments and 
achievements presented in this thesis. It is a necessary resource that 
constitutes a contribution itself. The work described in this chapter is based 
on Correal and Pajares (2011a) and Correal et al. (2014b). 
 

 

3.1 Background 
 

The study of autonomy for robotic space exploration implies algorithms and 

hardware/software interface definitions cannot be done exclusively at the theoretical level. 

To develop, test and validate strategies and approaches before launching, the operational 

settings shall be replicated with as much fidelity as possible. Field testing for missions to 

Mars is usually performed at locations such as Rio Tinto or Tenerife (Spain), where terrain 

27 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

and soil characteristics are similar to the red planet. However, the necessary infrastructure 

and high cost to take the team and equipment to those locations means that testing can only 

be carried out sporadically or at last phases. Some institutions, like NASA or ESA, build an 

indoor/outdoor Mars-like terrain and have replicas of the robotic vehicles to do extensive in-

house testing. However, it still requires too many resources, usually out of reach to 

researchers from other kind of institutions working in this domain. 

 

An affordable alternative to test and evaluate autonomy approaches is simulation. Widely 

used in many other disciplines, it allows virtual replication of the operational settings, where 

algorithms can be developed and tested. The purpose is not to eliminate field testing, which 

is absolutely necessary, but to make possible and affordable the development and functional 

validation of autonomy approaches when a physical vehicle is not available, or not yet, and 

the software is not mature enough to test with the real hardware, testing feasibility and 

performance at initial phases. It reduces the dependability on the physical devices and limits 

the expensive field testing to last phases for final validation. It also makes possible the 

development of algorithms and functional validation by researchers from a given institution, 

leaving field testing and final validation to other teams at other institution with access to the 

necessary facilities and resources. 

 

Nevertheless, simulation has its limitations. A complete and detailed emulation of some 

features such as meteorological phenomena, physical and mechanical forces or sophisticated 

terramechanics may be complex and hard to achieve (Thueer et al., 2007; Iagnemma et al., 

2011; Smith et al., 2013; Zhou et al., 2014). However, it is important to note that depending 

on the scope of the research to be supported by the framework just the necessary aspects 

and features with the appropriate level of fidelity have to be modeled. It is not within the 

scope of this work to focus on aspects such as mechanical or electrical design, dynamics, 

forces or weather conditions on the planet. In case of this work, the objective is to support 

the design and development of high-level autonomous navigation approaches, for analysis of 

strategies and validation of algorithms at the functional level. The key requirement is closing 

the control loop perception-action-perception, executing multiple steps of sensors and image 

acquisition, path planning and navigation. 

 

28 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

To make use of a framework that provides these capabilities, three main approaches can be 

considered: 1) have access to an already existing framework purposely developed to support 

research in this specific domain; 2) develop a tailored framework from the ground up 

specifically designed to include the necessary features and meet the requirements or 3) 

create a framework integrating and adapting existing tools and components, each one 

providing part of the required functionality. 

 

Using already existing tools purposely developed to support space robotic exploration 

research is undoubtedly the best choice. Since they are already developed and validated, it 

relieves the burden of creating such a complex framework, and allows the focus to be on 

autonomy research, which is the main purpose of this work. There are just a handful of these 

frameworks. ROAMS (Rover Analysis, Modeling and Simulation) (Yen et al., 1999; Jain et al., 

2003) from NASA/JPL (Jet Propulsion Laboratory), includes high-fidelity models for rover 

kinematics and dynamics, terrains, wheel-soil contact, power, sensors and actuators like 

cameras, inertial units and motors. The VIPER system (Edwards et al., 2001), from NASA, is a 

high-fidelity virtual reality environment. It models 3D terrains and onboard cameras to 

simulate environment perception, forward kinematics and environment physics. 

LiveInventor (Neveu and Shirley, 2003) also from NASA Ames Research Center, is an 

interactive development environment for robot autonomy which integrates a physically-

based simulation library with a 3D rendering environment. It includes kinematics modeling, 

a physics simulation library, an embedded scheme interpreter and a distributed 

communication system. In Europe, EDRES (Maurette and Rastel, 2002; Odwyer and Correal, 

2008) by CNES allows creating terrains and rover models, simulating sub-systems like 

locomotion, localization, perception and control. It includes libraries for computer vision 

processes, autonomous navigation algorithms and interfaces with rover hardware and 

devices. 3DROV (Poulakis et al., 2008), developed by TRASYS Space for ESA, allows creating 

rover models, sensor and scientific instruments, including mechanical, power and thermal 

subsystems, as well as planetary environment models including ephemeris, terrain and 

atmospheric conditions, a generic onboard controller and a ground control station module. 

The main problem with these environments is they are proprietary to the institutions and 

national space agencies and not publicly available to the research community unless through 

29 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

direct contract. There was an initiative from NASA/JPL to release ROAMS, but unfortunately 

it was never accomplished. 

 

Regarding the second approach of developing a tailored framework from the ground up, the 

main advantage is that it guarantees that all requirements will be met by adjusting to each 

concrete necessity and projected feature. However, given the inherent complexity of building 

such a framework and the many technologies involved, the effort to create such a framework 

may be greater than the one to develop autonomy algorithms, which is the actual purpose, 

thus deflecting from the objective of this work. 

 

Therefore, the approach followed in this work has been the integration of already available 

software packages and tools, each one supplying part of the functionality, building up a 

framework providing equivalent capabilities to the space agencies’ ones, inaccessible to the 

research community. These components must be adapted and interfaced to work together. It 

represents a balanced approach between development effort and obtained capabilities. The 

design of such a framework to support development and validation of autonomy algorithms 

for space robotic exploration is presented next. 

 

3.2 Framework Structure and Design 
 

The main purpose of the framework is to support the development of autonomy algorithms 

and its functional validation. A crucial capability of the framework must be the simulation, so 

that it is capable of providing the algorithms the necessary data from the emulated sensor, as 

well as executing the resulting actuation commands in the simulated environmental and 

operational conditions. These algorithms shall be developed with the support of the 

framework but with complete independence on it nor the simulator. This way, the transition 

from the simulation to the real hardware will be smooth; once in the target platform, the 

algorithms will receive data from real sensors instead from simulated ones, remaining them 

unaware of this change or needing just small adaptations, depending on the level of fidelity 

of the simulated models. 

 

30 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

The framework has been designed as a composition of subsystems with interfaces between 

them, where functions like simulation of operational conditions, sensors data production, 

control algorithms execution, software debugging, data visualization or communications are 

independent from each other. The conceptual architecture design of the framework is shown 

in Figure 1. It consists of three main subsystems, namely: 1) Simulation Environment, which  

emulates the rover hardware and sensors, kinematics and dynamics, terrain and 

environment models, physical forces and interactions, 2) Control Center, for data monitoring, 

control and visualization and 3) Onboard Software, which implements the rover intelligence, 

decision making capabilities and algorithms for autonomous navigation. 

 

 
Figure 1. Framework conceptual architecture and subsystems 

 

The system is based on the integration of available tools and components. Figure 2 shows 

some of the technologies, software packages and tools used to create each subsystem. Some 

of them are in turn built up of other components; just the ones directly used for this work 

will be mentioned and discussed within this document, although shown in the figure for 

complementary information. The higher development efforts have been put in the onboard 

software and control station subsystems, both developed from the ground up, with the 

support of some third-party libraries, as well as the models –rover and terrain- for the 

simulator. 

 

31 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

 
Figure 2. Subsystems of the framework, tools and technologies used on its development 

 

The main advantages of this modular design are reuse and maintainability, so that any 

subsystem or module can be independently updated or replaced. For instance, the control 

station could be replaced by another visualization or control software in the future, just 

complying with or adapting the communications and interface to the system, while the 

autonomy algorithms and the simulator remains unaltered. Same happens with the 

simulator, which could be replaced or upgraded, being it transparent to other modules. And 

above all, the control algorithms and autonomous capabilities, which are the main focus of 

this work and research interests, can be developed with independence to the simulation or 

monitoring and visualization subsystems. 

 

XML is used to structure files to store system configuration parameters for the different 

subsystems. Some sample configuration parameters are rocks’ size, pose and orientation, 

rover’ wheels size, chassis measures, joints, torques or gains for the simulation subsystem or 

camera’s field of view and focal length, resolution, stereo base, planning distance, navigation 

distance or security thresholds for the navigation control software. Many of these 

configurable parameters are cited along the text. 

 

In order to use the framework, each subsystem includes an API (Application Programming 

Interface) specifying a set of functions that accomplish specific tasks that allow interacting 

with specific components. For instance, the robot can communicate with the control center 

to send its telemetry and status data for monitoring purposes using its API. Also, from its 

onboard control software the robot is able of getting readings from sensors or commanding 

actuators as if they were physically connected by making use of the simulator API and the 

communications and abstraction layers. More details on the architecture are given in 

following sections. 

32 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

3.2.1 Simulation 
 

The main purpose of the simulation environment is to replicate the operational conditions, 

closing the control loop. The necessary data to feed the control algorithms is obtained from 

the plant, which has to be modeled; it then computes an output to be sent back to the plant to 

simulate the effects it produces. In this case, the plant is a simulated rover, terrain and its 

interactions, and the controller is the rover onboard software and autonomy algorithms. 

Inputs to the controller are sensor readings obtained from the plant –stereo camera images, 

IMU (Inertial Measurement Unit) data, etc. and outputs computed trajectories, sent to the 

rover decomposed in lower level motor commands to generate motion. 

 

The space rovers’ simulation domain requires some concrete capabilities not supported by 

many simulation frameworks. The following is a list of main requirements for this 

framework: 

 

1) Capability of creating 3D models and simulate the 3D space. It implies creating models of 

rough terrains with rocks, craters, cracks and slope areas to emulate a Mars-like 

environment, and the capability of creating complex 3D robot models.  

2) Simulation shall include aspects such as vehicle kinematics and dynamics, contact forces, 

gravity, or friction to analyze the interaction of the rover with the environment.  

3) Capability of including or creating models of the vehicle’s sensors and actuators, such as 

stereo cameras, inertial measurement units and motors.  

 

The goal is that the whole operation process of the rover can be modeled; meaning having a 

rover on a Mars-like terrain capable of taking images from its cameras, as well as other 

measures from its sensors, and process them to build a map of the environment so it can 

make its own decision and compute suitable trajectories to travel from one location to 

another. 

 

There are also some other non-functional requirements of principal importance for this 

framework such as versatility, flexibility, support, maintainability, extensibility, maturity, 

reliability, learning effort, platform, interfaces, source code openness, developers/users 

33 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

community size and activity and third party available tools. For instance, source code 

openness is one of the crucial aspects. Not having access to the source code prevents us from 

having the complete control of what is going on below the surface as well as the inability to 

carry out any necessary adaptations and extensions to the original software. Moreover in the 

space robots field, which is a very critical domain where all processes have to be under 

complete control and access of the development engineers. Besides, as opposite to open-

source form, the classic close code industrial approach creates a complete dependability on 

the owner company; in case that company decides to suspend the project development or 

support for any strategic reasons, the work would be critically affected, as there is no access 

to its sources to make the necessary changes or extensions to continue the efforts and 

research lines. 

 

As introduced before, the framework has been built employing available software packages 

and tools. To achieve the mentioned requirements and capabilities, several candidates have 

been analyzed such as Matlab/Simulink (Timothy, 2010), an environment for multi domain 

simulation and Model-Based Design for dynamic and embedded systems, Microsoft Robotics 

Developer Studio, a Windows-based environment to create robotics applications using 

Microsoft Visual Programming Language, Webots from Cyberbotics (Michel, 2004), a 

development environment used to model, program and simulate mobile robots, 

Player/Stage/Gazebo (Gerkey et al., 2003), a set of software tools for robot and sensor 

applications, DynaMechs (McMillan, 2003), a Multibody Dynamic Simulation Library, Vortex 

Simulation Toolkit (CMLabs, 2003), a development platform for physically accurate 

modeling of ground vehicles, terrain, soil, machines, robots, and other real-world objects, 

Darwin2k (Leger, 1999), a free, open source dynamic simulation and automated design 

synthesis package for robotics, RobotSim from Cogmation robotics (Cogmation, 2010), a 3D 

physics enabled robotic simulator enabling robot and environment modeling, Simbad 

(Hugues and Bredeche, 2006), an open source Java3d robot simulator for scientific and 

educational purposes, and the Mobile Robot Programming Toolkit (MRPT) (Blanco, 2010), 

an open source C++ library to design and implement algorithms related to Simultaneous 

Localization and Mapping (SLAM), computer vision and motion planning or CARMEN 

(Montemerlo et al., 2003), an open-source collection of software to provide basic navigation 

primitives for mobile robot control which includes 2D simulation capabilities. Although a 

34 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

detailed discussion on the evaluation of this packages is beyond the scope of this thesis, and 

more details can be found in Correal et al. (2011a) or Staranowicz and Mariottini (2011), a 

comparison between Gazebo, selected as the simulation capabilities provider for this 

framework, and some other popular simulation tools is indicated next as a function of the 

functional and non-functional requirements stated previously. 

 

Webots (Michel, 2004) is a development environment used to model, program and simulate 

mobile robots. It has 3D simulation capabilities, including rigid body dynamics simulation. 

One of its main strengths is the fact that it is developed by a company, which, as opposite to 

some collaborative development projects, ensures current maintainability and support. 

Some of the main drawbacks of Webots are the fact that it is not for free, although it supports 

an educational version, and it is not open-source. Not having access to the source code is the 

main drawback of this tool for the reasons introduced before: there is no control of what is 

going on below the surface, the simulator cannot be adapted or extended by ourselves and 

there is a complete dependability on the owner company and the continuity of the product. 

 

Carmen (Montemerlo et al., 2003) was a popular open-source collection of software started 

at CMU (Carnegie Mellon University) several years ago. It provides some simulation 

capabilities and basic navigation primitives for mobile robot control. If offers interfaces to 

some general purpose mobile platforms, typically used for academic research, such as ATRV, 

B21R, Pioneer I and II, Nomadic, etc. As introduced before, the capability to create 3D 

simulations, including models of terrains, and simulate perception in the 3D space using 

sensors such as cameras to capture images from within the environment is mandatory for 

this domain. However, CARMEN just provides basic 2D simulation capabilities; it does not 

allow to create complex 3D robot models like a Martian rover, as shown in Figure 3, or 

modeling 3D rough terrains with rocks, craters, cracks, slope areas, etc. simulating a Mars-

like environments, as shown in Figure 4. 3D simulation capabilities to create and operate 

with such models are indispensable for this research domain and to support these 

developments. Moreover, CARMEN last release was done in 2008; it is a discontinued project 

with no activity for 6 years already; it has no maintainability, support nor active users’ 

community nowadays. Therefore, CARMEN does not include the specified capabilities for this 

framework nor meets the requirements summarized at the beginning of this section. 

35 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

Maybe the most popular framework nowadays for robotics is ROS (Robot Operating System) 

(Quigley et al., 2009). ROS is an open-source, meta-operating system for robots. It provides 

some services expected from an operating system, including hardware abstraction, low-level 

device control, implementation of commonly-used functionality, message-passing between 

processes, and package management. It also provides tools and libraries for obtaining, 

building, writing, and running code across multiple computers. ROS simulation capabilities 

are supported by Gazebo (Koenig and Howard, 2004). Gazebo is actually the simulation 

provider selected for this framework. Therefore, ROS and this framework share the same 

simulation capabilities. However, Gazebo is not interfaced through ROS; instead, the stand-

alone version of Gazebo has been employed. The reason is ROS communications framework, 

although extremely useful for many projects and configurations, introduces the overhead of 

the messaging system, based on a publish/subscribe paradigm, which can accumulate 

hundreds of processes in complex systems. This is not a distributed system; its architecture 

is designed as independent subsystems and modules, but they all are in the same machine, as 

can be seen in Figure 6. Therefore, this overhead and delays due to the use of TCP 

communications and the management of publishers and subscribers by the ROS core is 

unnecessary for us. 

 

Based on the above considerations, Gazebo (Koenig and Howard, 2004) has been selected as 

the simulation capabilities provider for this framework. It is an open-source multi-robot 

simulator for outdoor environments that allows 3D real-time scene rendering and simulation 

of rigid-body physics, necessary for rover navigation and control. Gazebo is a very well-

known tool, having a broad, growing and very active community of users and developers. It 

has been out for more than 10 years, being widely used by the robotics community, so that it 

is a quite mature package. New versions, capabilities and bug fixes are continuously released. 

Gazebo has lately experienced a colossal development effort and sophistication process by 

OSRF (the Open Source Robotics Foundation), as it was recently selected by DARPA (Defense 

Advanced Research Projects Agency) as the GFE (Government Funded Equipment) robotics 

simulator for its last challenge, DRC (DARPA Research Challenge). It is available at no cost 

and its source code is open, meaning it is possible to perform any necessary modifications 

and extensions to adapt it to the concrete needs and requirements. Therefore, Gazebo meets 

36 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

the set of functional requirements and the criteria established for this framework stated at 

the beginning of this chapter. 

 

Using Gazebo, a Mars-like terrain, including mounds, depressions, craters and rocks, has 

been created. Different texture maps can be used to cover the mesh, increasing the level of 

realism. Additional objects, such as rocks, can be added to the scene by creating its 3D model 

–mesh, and specifying attributes such as texture, position, orientation and size. Illumination 

conditions can be controlled -light direction and intensity, introducing shadows in the 

environment to create effects such as morning or evening light, Figure 4 shows two 

simulated Mars-like terrains with different rock distributions and illumination conditions. 

 

A model of a planetary robot has been created based on the NASA’s MER rover. Figure 3 

shows the MER rover built by NASA/JPL and a simulated model of this rover created for 

Gazebo within the framework. Each piece of the rover is modeled independently, 

establishing links between parts and creating a complete solid body. Mobile elements, such 

as wheels or servomotors, are linked to other bodies by joints, where torque, controller 

gains, limits and direction of rotation can be established. It has boogie suspension, six 

independent wheels, four of them steerable, an IMU, a front low stereo camera for hazards 

detection and another one on top of a mast for navigation on a pan&tilt unit with two 

degrees of freedom. 

 

  
a) b) 

Figure 3. a) MER rover (courtesy of NASA/JPL) and b) its model created for Gazebo within the 
framework 

 

37 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

Gazebo also includes models of some common sensors and devices, such IMUs, servo motors 

or stereo cameras, with configurable parameters such as field of view, resolution or stereo 

base. The 3D rendering engine incorporated within the simulator allows taking images of the 

environment from the rover’s onboard cameras. Figure 4(a) shows an image of a rough 

terrain obtained from the framework taken with a 45º FOV (Field Of View) simulated stereo 

camera and (b) an image of a softer terrain with a different rock distribution and 

illumination conditions taken from a 75º FOV stereo camera model. Images are fed to the 

rover controller, which uses them to produce maps of the environment and compute suitable 

trajectories to be sent back to the simulator for execution. It makes possible closing the 

control loop, enabling the rover moving safely through the terrain so that autonomous 

navigation developments and approaches can be analyzed. 

 

  
a) b) 

Figure 4. Simulated Mars-like terrains with different illumination conditions 
 

Another important feature included within the Gazebo simulator is a dynamics engine which 

computes rigid-body physics, modeling the rover-terrain interactions and object collisions. If 

the rover is directed towards an obstacle, a collision will occur, blocking the rover’s way and 

preventing it from moving forward in case the obstacle is heavier than the force the wheel’s 

motors can produce.  

 

As the main purpose of the framework is to be used as a software development support and 

research platform, easy and quick configuration of the system is crucial. The simulator 

38 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

allows setting environment-related values such as terrain relief and complexity, soil texture, 

light direction and intensity or gravity by a series of configuration files where parameters 

can be easily set. Model related features such as rocks’ size, pose and orientation, rover’ 

wheels size, chassis measures, joints, torques, gains, camera lenses’ field of view and 

resolution among others can also be configured. 

 

The alteration of any of these parameters have an important impact on the internal rover’s 

software computations and external behavior, since the analysis, measure and 

characterization of these aspects are one of the main purposes of this framework. This 

parameterization allows experimenting with different mechanical designs and hardware 

characteristics and configurations as well as with algorithms behaviors and adaptations. 

 

The simulator has some limitations though. It does not allow analyzing aspects such as 

meteorological influence, advanced mechanics and locomotion. Sophisticated wheel-soil 

contact forces cannot be modeled nor phenomena such as slipping or sinking. More 

information on rover slip management and prediction can be found in (Yen, 2008; Ward and 

Iagnemma, 2008; Iagnemma and Ward, 2009).  However, it is important to emphasize that 

those are not the focus of this research work. The aim is to develop high-level autonomous 

navigation strategies, analyze their performance and validate them at the functional level. 

Central issues in the development of such strategies are the design and analysis of 

perception and stereo vision algorithms, particularly how they process the images and 

produce different maps and terrain representations. Map building, path planning, control 

algorithms, onboard decision-making techniques or sensor fusion techniques are within the 

focus of this research. 

 

3.2.2 Control Center 
 

The control center is a purposely developed graphical interface application to visualize data 

and measures. It receives rover’s telemetry data and monitors its behavior and performance. 

Communication with the rest of the subsystems is by TCP/IP connections, both for receiving 

data and sending commands. The control center has two working modes: operation and 

39 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

debug. In the operation mode activity plans are sent to the rover, representing its daily 

activities. It includes tasks such as scientific instruments usage, resource management, a 

perception plan or sequences of preprogrammed moves for blind navigation, established by 

human operators. Currently, only autonomous navigation commands are sent, designating a 

concrete target location, a series of waypoints relative to the rover position or a direction to 

follow. 

 

The main efforts so far have been put in debugging capabilities, where the control center 

receives real-time data from the rover as it navigates. This is not possible in operation mode, 

where communications constraints limit connections to short periods a day. However, in 

debugging mode, communication is permanently established in order to facilitate data 

monitoring and analysis. This way the rover’s activities are monitored at all times, which is 

crucial for understanding what the robot is doing and what the onboard algorithms are 

computing.  

 

Data received are stored in log files and kept within the control center for historical purposes 

and later analysis. The data stored includes periodical rovers’ status, alarms and messages 

received asynchronally from the robot whenever an event occurs, data from sensors (such as 

IMU or encoders), images from cameras, intermediate results from the stereo process for 

debugging purposes, final, merged and intermediate maps generated, candidate trajectories 

evaluated for path planning, intermediate products in the mapping and path planning 

process for debugging purposes, localization estimation and multitude of traces along the 

processes for debugging purposes. All these data are stored with a timestamp in operational 

log files. 

 

When using the control center in debugging mode, a replica of the terrain model used in the 

simulator is also shown within the graphical interface. Figure 5 shows the debugging view of 

the control center. A rover model is displayed at the location received by telemetry on a 3D 

terrain reconstruction. In debugging mode, communications are real-time, meaning the 

rover is monitored online, and the operator can follow in real-time where the rover is and 

the activities it is performing. In this mode, latency, bandwidth constraints or satellite passes 

are not simulated, as this mode is envisioned for developing and debugging purposes. In the 

40 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

lower part the captured images from the onboard cameras are displayed, as well as the 

computed maps. Three different trajectories are shown on the terrain displayed in the 

control center as the rover navigates: 1) the one computed by the rover, 2) the one actually 

executed (green trajectory in Figure 5) and 3) the one the rover perceives it has followed 

from its sensors’ readings (red trajectory in Figure 5). 

 

 
Figure 5. Debugging view of the control center showing captured images, computed maps and planned 

and executed trajectories on the terrain 
 

Communication between the rover and the simulator is done by establishing a TCP/IP 

connection and invoking a series of functions, an API, provided by Gazebo. The simulator acts 

as a server and the autonomy software as a client. In real settings, instead of with the 

simulator, the robot control software connects with the sensors by physical ports and 

busses. In the following chapter it is described how the control software architecture 

includes a HAL (Hardware Abstraction Layer) that guarantees independence between the 

autonomy algorithms and the simulator, so that it is transparent whether data comes from 

simulated sensors or from real devices. 

 

Communication between the rover and the Ground Station is supported by ICE (Henning, 

2010), a high performance and efficient open-source object-oriented toolkit for distributed 

applications. It has its own IDL (Interface Definition Language), defining the data exchanged 

41 
 



Chapter 3: SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK  
 

between systems. This middleware eases the communications protocol between both 

subsystems, especially in debugging mode, where the control station is permanently 

receiving data. In a real setting configuration, there is constrained radio satellite-satellite 

communication. The Hardware Abstraction Layer isolates the high-level autonomy 

algorithms from the low-level communication means, making it transparent whether TCP/IP 

or radio connections are used. As the focus of this work is the autonomous navigation 

approaches, features such as the satellite’s latency, delays or bandwidth constraints have not 

been modeled, as they are considered out of scope at this stage, although they might be 

implemented in the future. 

 

The integration of the different software components together to build up a system has been 

achieved intra and inter-system. Within a given subsystem, intra-system cohesion among 

components has been achieved developing wrapper classes around each package/library’s 

native API and creating the necessary pieces to connect them and provide a homogeneous 

interface among components. Inter-system integration has been achieved creating 

communication interfaces, using both middleware and TCP/IP communications, following 

the client/server paradigm and creating a distributed system of independent modules. 

 

The main component of the system, the rover’s onboard software and autonomy algorithms, 

is described in detail in the next chapter. 

42 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Chapter 4 

 
 

AUTONOMY FOR PLANETARY EXPLORATION ROVERS: 
ARCHITECTURE AND NAVIGATION 

 

Robotic surface planetary exploration is a challenging endeavor, with critical 
safety requirements and severe communication constraints. Within a mission, 
autonomous navigation is one of the most crucial and yet risky aspects of 
these operations. Therefore, a certain level of local autonomy for onboard 
robots is an essential feature, so that they can make their own decisions 
independently of ground control, reducing operational costs and maximizing 
the scientific return of the mission. This chapter outlines two main issues: a) 
the design of a multilayer and modular onboard software architecture for the 
rover’s control and b) a series of algorithms that implement a visual-based 
autonomous navigation strategy for robotic space exploration. These 
strategies and algorithms have been implemented from the ground up, 
partially supported by open-source packages and libraries. A set of 
experiments using the simulation capabilities of the framework introduced in 
the previous chapter, as well as a set of field testing experiences using a 
physical robot and real hardware are described. Results and algorithms’ 
processing time are detailed. An increment of one order of magnitude has 
been experienced when the algorithms are executed in space-certified like 
hardware, with constrained resources, in comparison to using general 
purpose hardware. The work described in this chapter is based on Correal 
and Pajares (2011b) and Correal et al. (2014b). 

 

 

4.1 Background 
 

Onboard autonomy entails the set of procedures that shall be embedded on the robot to 

provide this with the necessary intelligence and capabilities to make its own decision, to deal 

with unknown environments and unexpected situations and minimize the dependency on 

ground control operators. The vehicle has to be able to travel from one location to another to 

take measures, samples and perform scientific experiments. Mobility is one of the most 

43 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

critical capabilities for an autonomous space exploration vehicle; if the vehicle drives into a 

too steep area, runs over a rock, a hollow, a rise or a soft sand area, to name some potential 

hazardous situations, it may tip over, run aground, get stuck or lose traction, and that may 

put the whole mission at risk, as nobody can get there to help the rover get out and keep 

going. 

 

As stated before, given the communication constraints (delays, communication windows), a 

planetary exploration robot cannot be remote controlled in most of the cases. Therefore, 

alternatives have been developed in order to have the robot doing its job. The most common 

techniques are directed driving, where a detailed human-made plan is sent to the rover and 

is executed, and autonomous driving, where a set of goals and objectives are sent to the 

robot and it decides how to reach them by itself. There are benefits and drawbacks when 

using each of those techniques. In this chapter they are analyzed from the point of view of 

resources usage, perception, planning, execution and adaptation. 

 

Regarding the resources usage, autonomous driving requires a more intense computation 

and sensor usage. This causes higher power consumption of CPU and onboard electronics 

and a longer execution time to reach the same goal than using directed driving. From the 

point of view of human resources, planning requires longer when done by humans operator 

than autonomously, in order to choose the appropriate waypoints when designing a blind 

drive for the rover, given the safety responsibility is placed on the operator. However, given 

the adaptability and learning human capabilities, this planning time can be dramatically 

decreased after some operations experience. That adaptability is also an important factor 

when facing new situations like new terrain types. While a human can adapt to it rapidly, an 

on-board software update involves a long development and testing process (Biesiadecki et 

al., 2005). 

 

When planning a path to the goal based on vision, the perception capabilities of a human 

operator are far more developed than computer vision techniques, what makes the planning 

process much faster and reliable, given it’s much easier to identify different terrain hazards. 

A computer vision system is limited in this sense, although the most common hazards like 

rocks and steps can be reliably detected with current technology. The human operator 

44 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

typically chose waypoints to avoid the most hazardous areas, thus taking advantage of the 

perceptual strengths of humans. However, if the goal of the rover is far away, the human 

operators are unable to plan the whole path from the actual position, based on the imagery 

sent back from the rover. It’s needed to advance towards the goal and get new perceptions as 

it get closer. Thus, although human planning offers more reliability, it’s also limited on the 

length of the path that can be built. The rover can be good detecting nearby hazards, but 

without a global planner there is a risk to get into dead-ends. A global and dynamic path 

planning is a clear necessity. 

 

During the trajectory execution, when driving in directed mode, the rover has limited ability 

to deal with errors or uncertainty, like slippage. It must assume it hasn’t deviate too far from 

the planned path so it won’t encounter any hazard. The plan must specify alternatives and 

halting criteria. However, while driving autonomously the rover can respond online to 

accumulate errors or unexpected hazards. 

 

Both driving methods, directed and autonomous, are complementary. The strongest point of 

the rover is the ability to close the loop and assess terrain not visible in the imagery available 

to the operators while planning the drive. On the other hand humans have a much more 

powerful perceptual abilities and adaptability to new situation and quick learning. A good 

selection of the right technique depending on the situation can lead to better overall 

performance. 

 

The NASA’s MER mission has been the most successful and relevant robotic mission to Mars 

so far. In the execution of this mission, a daily plan is elaborated from ground control and 

uploaded to the rover. Given the high cost and the criticality of planetary robotic missions, 

rovers have typically been operated in a very conservative way; in case the vehicle 

encounters a situation it cannot deal with, it just halts and waits for further instructions. 

Certain onboard autonomy is allowed only under concrete conditions of minimum risk; the 

most used method was to plan the first steps of a long traverse in a directed way, and let the 

rover continue autonomously until available time is exhausted or the goal is reached. 

 

45 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

Given its importance and crucial role this mission has played in the history of space 

exploration, an overview of the mission and the autonomy capabilities of the rovers are 

given next as an analysis of the state of the art in this domain. 

 

4.1.1 MER Mission 
 

In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and 

Opportunity, on the surface of Mars. The mission was scheduled for a 3-months period 

duration; however, one of the vehicles is still operating on the Martian surface, 10 years 

later. During that time period, the onboard surface mobility intelligence was used 

successfully to cover a distance of more than 40 km traversed combined by both rovers. It’s 

expected the likely end of mission is insufficient power due to dust build up on the solar 

arrays. 

 

4.1.1.1  Rover Description 
 

The MER rovers were big and heavy robots. They are comprised of a 1.2 m high body and 

168 Kg. Its chassis is of the type Rocker-bogey with 6 steering wheels of 25 cm of diameter 

each. The top speed is 5 cm/s. It communicates with ground control via an orbiter or Direct-

to-Earth (DTE) antenna. During nominal operation, the rover has a power requirement of 

100 W. It is battery powered, fed by a 1.3 m2 solar array, able to deliver a peak of power of 

140 W. Regarding its processing capabilities, the onboard computer is an RAD6000 CPU, at 

20 Mhz. with VxWorks. 3 Mb of PROM, 128 Mb of RAM and 256 Mb flash memory. 

 

Its payload was comprised of a Pancam to provide high spatial resolution on the morphology 

of the landing site, a mast-mounted NavCam pair, front and rear HazCam pairs, a SunCam, 

which is a sun sensor used to determine global bearing, IMU and encoders for odometry and 

navigational purposes. About its scientific instruments they include among others an Alpha 

Proton X-Ray Spectrometer (APXS), Rock Abrasion Tool (RAT) for removing surface dust and 

weathering, a microscopic imager, a Mössbauer spectrometer to determine the properties of 

iron bearing materials and a Mini-Thermal Emission Spectrometer (Mini-TES) to obtain 

46 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

mineralogical information for rocks and soils surrounding the rover capable of detecting 

silicates, carbonates, sulphates, phosphates, oxides, and hydroxides. 

 

4.1.1.2  Rover Autonomy 
 

Several autonomous navigation capabilities were employed in space for the first time in this 

mission (Maimone et al., 2006a). Due to communication constraints, the MER rovers are 

commanded once per Martian day (with occasional nighttime communications for science 

activity). A commands sequence detailing the activities (images, arm positioning, etc.) is sent 

in the morning. At the end of the sol, the rovers send the data and images collected during 

that day to ground control, through the Mars orbiters. That data, representing the last known 

state of the rover at the termination of the sol activity, are then used for the operation team 

to plan the next set of science and mobility activities to be sent to the rover the next day. 

Those unsupervised plans last approximately for four hours. Once the rovers receive the 

plan, they will have to execute it on their own, without further instructions from Earth.  

 

The MER operations approach is a form of adjustable autonomy via mixed modes of manual 

and autonomous commands for sequencing the rover as introduced before. The autonomy in 

this system is mainly associated with navigation rather than science or mission planning and 

scheduling. Autonomous navigation is commanded by specifying explicit surface coordinates 

to be reached using onboard sensing, perception, motion planning and execution. Mission 

operators provide a global path plan in the form of a series of waypoints that is executed and 

evaluated onboard the rover. If the ultimate goal is beyond the reliable field of view of the 

rovers’ mast-mounted stereo navigation cameras data available on ground, the rover is 

commanded to drive blindly for the known part of the way and then switches to autonomous 

navigation to drive for whatever time remains in the day into areas never seen before in 

images sent to Earth. Blind drives can be several tens of meters. About 25% of the distance 

traversed on Mars by the rovers is driven autonomously, detecting and/or avoiding 

obstacles and processing images for position updates using Visual Odometry. So far the 

longest contiguous autonomous drive made by Spirit was 78 meters. And the longest made 

by Opportunity was 280 meters. 

47 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

MER rovers use stereo image processing to gather geometric information about its 

surrounding terrain (Maimone et al., 2007). This is done by automatically matching and 

triangulating pixels from a pair of stereo-rectified images to generate 3D points representing 

the terrain. This technology was already used in the previous Pathfinder mission. However 

these rovers count with much more powerful CPUs than before that allow more complex and 

accurate computer vision algorithms.  

 

The surface navigation system performs terrain hazard detection based on the images 

coming from the stereo vision system and analyzes the rover surroundings geometrically. It 

then builds a map representing traversable areas within the local terrain. It measures small 

patches of terrain to build and maintain a grid-based rover-centered map to determine 

where is safe for it to traverse through. Either the hazcams or the navcams can be used for 

autonomous navigation. Hazcams were designed with a wide field of view and narrow 

baseline in order to see more than the full width of the rover a short distance ahead, at most 

3-4 meters. This is an important feature for obstacle avoidance and turning operations 

safety. The navcams, on the contrary, were designed with a narrower FOV and a wider 

baseline, so they can see further in order to verify traversability (Maimone et al., 2006b). 

 

Next, a path planning algorithm calculates the best way to achieve the desired goal given the 

previously built map while avoiding hazards and obstacles. The algorithm developed to 

accomplish this procedure is called Grid-based Estimation of Surface Traversability Applied 

to Local Terrain (GESTALT) system (Biesiadecki and Maimone, 2006). It uses the previously 

created map, divided into cells of approximately 20 cm, to determine how safe the rover 

would be at each point in terms of tilt, roughness and step hazards. 

 

Several driving modes were developed for this system: 1) Directed Drive executes a planned 

course without any onboard compensation for position or attitude drift. 2) Terrain 

Assessment drive looks for geometric hazards (e.g., rocks, ditches), but it does not measure 

any slip. 3) Local Path Selection drive corrects for heading changes and anything measured 

by Visual Odometry and Terrain Assessment, instead of just blindly following a Directed Drive. 

Visual Odometry updates the rover's position but it does not check for obstacles (Maimone et 

al., 2007). The selection of the mobility and navigation approach for a given traverse plan is 

48 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

determined by the engineers and mission managers based on the allocated driving time, 

amount of terrain visible, known hazards and level of uncertainty in rover position. 

 

These three capabilities are available in any combination, providing even greater benefits of 

autonomy and higher level capabilities. For example, Terrain Assessment alone provides a 

useful safe or not safe indication, but combined with Path Selection enables fully autonomous 

driving around obstacles. Adding Visual Odometry would make possible to navigate around 

obstacles in slippery areas as well. 

 

The Path Selection capability gives the rover autonomous decision and control authority to 

select its next drive direction, in contrast to Directed Drive, in which it follows a single 

predefined path. With Path Selection enabled, candidate motion paths are projected onto the 

traversability map and a weighted evaluation of the constituent grid cells is assigned to each 

path (Maimone et al., 2006a). To select from among multiple paths, waypoint path 

evaluations are assigned to all possible candidate paths according to how effectively each 

path would drive the rover toward its goal point. This is merged with the obstacle path 

evaluations when Terrain Assessment is enabled. Thus, many possible paths through the grid 

cell are evaluated for safety. These path-based safety evaluations, together with the goal 

location and current steering direction, are used to make the final selection of the next 

navigation step to execute. 

 

The navigation step size is configurable by human operators at anywhere from 35 cm to 1 m 

or more depending on a variety of operational factors, including terrain difficulty and overall 

distance goals for the day, but nominally 50 cm, arc length is used. This distance is 

configurable and limited by the quality and extent of stereo range data, and conservatism of 

flight controllers responsible for rover mission operations. The rover drives a fixed distance 

along the selected path before stopping to acquire new images for the next driving cycle.  

 

Typical computing time per cycle of this algorithm is around 70 seconds. On the MER flight 

processor, the stereo images processing algorithms can take 24 to 30 seconds per image pair 

to compute. During normal operations, at most 75 percent of the CPU time is available for 

autonomy software, but telemetry processing can sometimes reduce that number even more. 

49 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

While the rover is driving, its peak speed is 5 cm/sec, but it is typically operated at less than 

that (3.75 cm/sec) for power reasons. With computing time, the median net driving speed 

was about 0.6 cm/sec (Maimone et al., 2006b). 

 

The main restriction on the actual use of combinations of MER autonomous capabilities is 

processing time. The relatively slow speed of its space-qualified CPU, an architecture that 

prevents full benefits of the processor cache from being realized, and limited development 

time led to a system with very capable autonomy that can take minutes to process a single 

set of images. 

 

In order to navigate from one location to another, a global path plan is provided to the rover 

in the form of a series of waypoints leading to the goal location. Each waypoint is reached 

through incremental execution of navigation steps decided by cycles of Terrain Assessment 

and Path Selection. This process is repeated until the goal location is reached. Waypoints and 

goals have associated position tolerances, i.e., radial distances within which the waypoint or 

goal is considered reached. This capability is encapsulated in a single rover command called 

Goto Waypoint, which directs the rover to drive until the estimated position is within a 

specified tolerance of its commanded goal location, or until a specified timeout period 

expires. 

 

As the rover traverses and in order to perform successfully autonomous navigation, the 

onboard system must estimate and update its position and orientation. The orientation and 

attitude estimation is done thanks to the IMU, which gives high quality results. The 

position/location estimation is generally achieved via wheel odometry. However, in 

challenging and rough terrain this technique has some limitations. Due to slippage, sinkage 

and sliding factors, the wheel odometry can accumulate errors, leading to an increasing 

position uncertainty. It is necessary higher levels of sensing, perception, and autonomy to 

compensate for such errors. The system that MER rovers use for corrections in those 

situations is Visual Odometry. 

 

The Visual Odometry, or ego motion estimation (Olson et al., 2000), capability enables the 

rover to update its current position and/or attitude by comparing locations of features found 

50 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

in stereo image pairs correlating and matching them, both in 2D pixel coordinates and 3D 

world coordinates. A maximum likelihood estimator is applied to the computed 3D offsets 

between the features to produce the final motion estimate. This process takes about 160 sec, 

and it only converges successfully if the imaged terrain has a sufficient number of detectable 

features. The previously described Goto Waypoint command can be configured to restrict 

autonomously-commanded motions to ensure sufficient overlap between successive images 

(nominally 60%). 

 

During the operation time on Mars, there have been several MER software updates from 

Earth that have increased their capabilities and autonomy even further. The version used 

during the first stage of the mission had a very conservative approach regarding autonomy. 

It operated in a quite slow fashion due to it required imaging and terrain processing after 

each motion. It also checked for step obstacles within rover-sized disc, what made the rovers 

unable to autonomously drive over small mounds. 

 

There has been an unprecedented enormous amount of engineering data generated by this 

mission, very relevant to the field of robotics, both Earth-based and planetary. The MER 

mission has been the first using techniques like stereo vision, local map-based obstacle 

avoidance, and visual odometry for autonomous rover navigation in a planetary exploration 

mission. Its results have contributed substantially to the success of the mission and paved 

the way for increased levels of autonomy in future projects. For next mission, it’s foreseen 

the ability to navigate farther and safer. With the expected increased processing power of the 

onboard computers, next generation will benefit of more sophisticated approaches and 

algorithms. 
 

4.2 Software Architecture Design 
 

The development of intelligent capabilities for robotic systems is a challenging task. It 

involves the use of different technologies and the interaction between components in real-

time, as well as the management of the uncertainty arisen from the interaction of the robot 

with its environment. Thus a robot will face different situations during the course of a 

51 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

mission and must react to perceived events by changing its behavior according to corrective 

actions. 

 

A robotic system includes various subsystems coming from various fields of science and 

technology like mechanical engineering, automatic control, data processing and computer 

science. One of the main challenges designing complex systems is also the integration of low-

level functional modules with high-level decisional ones. The software for navigation and 

control embedded on the robotic explorers has to be organized into a given architecture. The 

design and the integration of such diverse components require a consistent architecture 

which altogether guarantees the integrity of the complete system. 

 

A control architecture provides a structured approach for design, specification, 

implementation and validation of a complex control system and its subsystems. It usually 

defines a paradigm or philosophy for structuring the problem and imposes constraints that 

guide the way the control problem can be solved. The goal of the control architecture is to 

organize coherently all subsystems so that the global system behaves in an efficient and 

reliable way to match the end-user's requirements. 

 

Robot control architectures can be broadly characterized as deliberative (based on 

planning), reactive (direct link between sensing and actuation), or a hybrid approach. One of 

the most well-known robot control architecture is the subsumption architecture, introduced 

by Brooks (1986), where layers of control are built to let the robot operate at increasing 

levels of competence. This conventional design has been widely used in many robotic 

developments. 

 

Typical robot and autonomy architectures are comprised of three levels - Functional, 

Executive, and Planning levels. Some architectures emphasize one area over the others and 

thus became more dominant in that domain (Nesnas et al., 2003). While some emphasize the 

planning aspects of the system (Firby, 1989; Estlin et al., 1999a), others emphasized the 

executive (Borrelly et al., 1998; Simmons and Apfelbaum, 1998), and others focus on the 

functional aspects of the system (Pardo-Castellote et al., 1998). There have also been efforts 

that aimed at blurring the distinction between the planning and executive layers (Fisher et 

52 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

al., 1997). Other architectures did not explicitly follow this typical breakdown. Some focused 

on particular paradigms such as fuzzy-logic based implementations (Konolige et al., 1997a) 

or behavior-based (Brooks, 1986; Arkin, 1989). There has also been considerable effort 

developing architectures that address multiple and cooperating robots scenarios (Parker, 

1995; Estlin et al., 1999b; Werger and Mataric, 2001). Some other general robotic 

architectures can be found in different works (Huntsberger et al., 1998; Kurien et al., 1998; 

Martin et al., 1994; Martin-Alvarez, 1999; Washington et al., 1999; Charmeau and Bensana, 

2005; Estlin et al., 2007). 

 

Some adaptations of the layered approach have been also applied to the planetary rovers’ 

control domain. That is the case of CLARAty (Coupled Layer Architecture for Robotic 

Autonomy) (Volpe et al., 2001; Nesnas et al., 2003), developed in a collaborative effort 

among several institutions such as California Institute of Technology’s, Jet Propulsion 

Laboratory, Ames Research Center and Carnegie Mellon University among others; the LAAS 

(LAAS Architecture for Autonomous Systems) architecture (Ghallab et al., 2001; Ingrand et 

al., 2007) developed by LAAS/CNRS and supported by ESA and CNES; The ESA’s Functional 

Reference Model (FRM) (Visentin, 2007); the ORCCAD (Open Robot Controller Computer 

Aided Design) architecture (Simon et al., 2006); the CNES’ ANW (Autonomous Navigation 

Workshop) simulator architecture (Glette, 2004); the Control Architecture for Multirobot 

Outpost (CAMPOUT) (Pirjanian et al., 2000; Pirjanian et al., 2001; Aghazarian et al., 2004); or 

IDEA (Intelligent Distributed Execution Architecture) developed also by NASA (Muscettola et 

al., 2002). 

 

The architecture presented in this chapter aims to control autonomous space robots from 

the low level control loop up to the mission planning and task execution. It is a domain-

specific robotic architecture that develops a framework for generic and reusable robotic 

components that can be adapted to a number of heterogeneous robot platforms. The 

architecture remains fairly general in order to properly design, easily integrate, test and 

validate a complex autonomous system. 

 

It has been designed with three main objectives: 1) reduce the effort to develop custom 

robotic infrastructure for every project or research endeavor; 2) facilitate the integration of 

53 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

new technologies onto existing systems; and 3) operate heterogeneous rovers with different 

physical capabilities and hardware architectures –both real and simulated- under a common 

framework. 

 

The proposed architecture is based on a layered paradigm, with several hierarchical levels; 

some key levels crucial to ensure the software portability, reuse and hardware independence 

have been included besides the typical three levels previously introduced. The main 

objective is that most of the software developed can be ported to different robots with 

minimum adaptations, just by configuring parameters according to mission requirements; 

this is especially important for the upper levels, that shall remain unaffected even though 

some lower-level modules may change. It also provides a framework which aims to simplify 

the integration of new technologies and enable the comparison of various elements. 

 

 
Figure 6. Onboard software layered architecture 

 

54 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

A scheme of the designed architecture can be seen in Figure 6, indicating the layers the 

architecture is composed of, as well as the modules that make each layer up. The software 

has been implemented in C++, so that each module is generally a separated class. 

 

This architecture consists of several different layers (physical, communication, abstraction, 

functional, execution and deliberative). The lowest layer is the physical level, where devices 

are electronically connected using the appropriate ports and buses. Next, communication and 

abstraction layers are placed on top. The former provides means of contacting with ground 

station, either using TCP/IP in debugging mode or satellite radio signals in operation mode. 

 

The abstraction layer defines the various generalities of the system to adapt the general 

components to a variety of real or simulated specific devices; it encapsulates the access to 

underlying hardware and devices by means of predefined interfaces, hiding to the high-level 

software the concrete characteristics of the specific hardware. This layer facilitates 

maintainability and adaptability; in case a device has to be replaced by another one from a 

different manufacturer (e.g. camera), or just the module containing the device driver has to 

be updated. This way the autonomy architecture can be easily adapted to different vehicles, 

whether it is the MER rover model, MSL, Exomars or any other. The abstraction layer is 

supported by the open-source project Player (Gerkey et al., 2003), which provides a network 

interface to a variety of robot and sensor hardware, allowing writing control programs for a 

wide spectrum of robots. It has one of the most active users and developers communities. It 

later evolved into ROS (Quigley et al., 2009). 

 

The functional layer includes all the basic built-in robot action and perception capabilities 

and provides the basic system functionality; it is where the actual autonomy algorithms lie. It 

does object-oriented system decomposition, so that this layer is made up of individual 

modules to achieve reusable and extendible components in order to provide algorithms for 

low and mid-level autonomy. These modules have a high level of cohesion and low 

interdependency, interconnected by establishing interfaces, though the use of APIs 

specifying a set of functions that accomplish specific tasks, to interact between them. As 

introduced before, this modularity facilitates maintainability, scalability and extensibility, 

where modules can be adapted, modified or even replaced in a transparent way to the rest of 

55 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

the modules, as long as it complies with the interface. For instance, the module that 

computes a height map is independent from the one that generates the 3D points cloud, 

which at the same time may come from a laser device, a stereo vision process or any other 

process or device; or a given stereo vision algorithms can be replaced by another one which 

better suit the needs, meet new requirements or just for performance analysis and 

comparison between algorithms.  

 

A leading design driver has been modularity, as the software is used as a research platform 

more than certifiable flight software at this point. Each level is decomposed in independent 

modules with defined interfaces among them. Each module, or subsystem, encapsulates 

concrete functionality. Communications among modules, within the same layer or between 

adjacent layers, is done by invoking the set of functions defined in the interface of each 

module. 

 

The execution layer is the interface between the deliberative and the functional levels. A light 

plan execution mechanism coordinates the execution of actions. It controls and coordinates 

dynamically the execution of the functions distributed in the modules according to the task 

requirements and the current state. Currently, a sequential control flow instantiates the 

corresponding modules in a sense-plan-act paradigm. Modules in the functional layer are 

activated by requests sent by this level, according to the task to be executed. They send data 

and reports upon completion to be used by other modules. 

 

On top, the highest-level deliberative layer provides the system’s high-level autonomy, which 

reasons and makes decisions about global resources and mission constraints; it controls the 

overall rover activities. The role of this decisional level is to create onboard actions plans 

considering mission constraints, time and available resources, monitoring operations, 

checking for plan deviation, dealing with unexpected problems, evaluating risks and 

generating contingency actions to adapt the plan whenever necessary. The decision layer 

receives information by querying the functional layer for predicted resource usage, state 

updates, and model information. This decision layer serves also as a monitor to the execution 

of the functional layer behavior, which can be interrupted and preempted depending on 

56 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

mission priorities and constraints. Currently, plans consist of lists of target locations sent to 

the rover from ground control. Our research has been focused on the functional layer. 

 

4.3 Autonomous Navigation Strategy  
 

There is a growing demand for autonomy capabilities for future planetary missions. Next 

missions are expected to be highly autonomous, where scientists on Earth will designate 

target destinations on the basis of images acquired and downloaded from the rover. In the 

case of the future ESA Exomars mission, it has been established that the rover must travel 

approximately 100 m per sol, a Martian day.  

 

ESA currently has the necessity to develop its own infrastructure and equipment for robotic 

explorers, and researchers from academia and industry have to be ready to respond to the 

incoming calls to provide the necessary technology. The onboard intelligence for the 

explorer vehicle is currently under analysis (Joudrier and Elfving, 2009). Different 

alternatives have been studied; the author of this thesis was part of a team that participated 

in the evaluation of a software developed by CNES, the French Aerospace Agency, called 

EDRES, as a potential flight software candidate for the future ESA’s rover, learning some 

important lessons from its analysis and evaluation (Odwyer and Correal, 2008). 

 

This section is devoted to the design and development of an autonomous navigation strategy 

for robotic planetary exploration. The objective is to create the necessary infrastructure and 

software for a navigation strategy to be used as a baseline for prospective missions, such as 

the forthcoming ESA’s mission Exomars, so it can be adapted, modified or extended 

according to the concrete needs, requirements and constraints of the mission. 

 

The emphasis has been put in the autonomous navigation capabilities of the rover. Each time 

the robot moves the whole mission is put at risk. The navigation process is initiated when a 

daily plan containing scheduled actions, or a navigation command when working in 

debugging mode, is received from ground control. The plan consists on a series of locations 

the rover shall visit and actions to perform scientific experiments and take measures with 

57 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

onboard instruments. The safety and integrity of the vehicle directly depends on the path the 

rover decides to follow. Therefore safe trajectories must be computed to guarantee 

avoidance of obstacles and prevent hazardous situations such as tipping over, getting stuck 

or losing traction.  

 

To achieve this, the robot must perform a series of tasks. The navigation system initiates a 

perception-mapping-path planning-navigation iterative cycle, see Figure 7: 1) perception: the 

rover must perceive the environment making use of the appropriate sensors, getting the 

necessary data; this is usually done by using stereo cameras and sensors such as IMUs and 

encoders; 2) mapping: an internal representation of the external world must be created, 

usually in the form of a map representing the surroundings of the robot; 3) path planning: 

the map created in the previous step is then used to compute safe and suitable trajectories 

that will be executed in the subsequent step; 4) navigation: so the robot is able to get to the 

location it has been commanded to following the path it has computed as a function of the 

perceptions it made of its environment. Each of these tasks is accomplished by the 

appropriate subsystem, described in following sections in detail. 

 

 
Figure 7. Diagram of the rover’s autonomous navigation processes 

 

Locations may be more or less apart from each other and a complete route to the 

commanded location cannot be compute in most cases, so several navigation cycles may be 

necessary to reach a given destination, decomposing it in waypoints, one per cycle. In each 

cycle, the rover plans and navigates a certain distance, according to the configured planning 

and navigation distances, described below. 

 

The navigation strategy presented in this section is somehow similar to the NASA/JPL 

approach created for the MER (Crisp et al., 2003) mission, which rovers have been operating 

on Mars for more than 10 years and have travelled above 40km. However, it is important to 

emphasize all these subsystems, modules and software introduced has been developed from 

58 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

the ground up. Even though agencies like NASA have a leading role in robotic space 

exploration, with years of experience and a number of successful missions accomplished, the 

technology and tools developed so far by these agencies -frameworks, simulators, tools, 

libraries or software- is proprietary to each institution/agency, not available to other 

institutions or to the research community. Therefore, every piece of software has been 

started from a blank page, as there are not any previous libraries or software from these 

national agencies or associated research group that may have been released to start form. 

Actually, the navigation strategy presented in this chapter introduces important differences 

and contributions with respect to the NASA/JPL’s approach; they are indicated when 

describing the approach in the corresponding section. 

 

All these modules have been entirely developed using C++ language, some pieces of pseudo-

code have been included for clarification; although some functionality, mainly the stereo 

vision related part, partially relied on the use of the OpenCV library (Bradski and Kaehler, 

2008).  This work has been also supported by the framework introduced in the previous 

chapter, purposely created to assist in the development of this navigation strategy; it has 

facilitated the testing, functional analysis and validation in the initial phases, without the 

need of an actual Martian rover and mars-like terrain, reducing the costs and speeding up the 

development process, as well as paving the way and smoothing the transition for field testing 

and final validation. 

 

4.3.1 Perception Subsystem 
 

Perception is a crucial step in the navigation process, see Figure 7. The effectiveness of the 

perception process has a strong impact on the subsequent map creation, terrain assessment 

and path computation processes, which directly affects the rover’s safety. A pair of cameras -

a stereo system- mounted on the robot, usually in a mast to get a higher view, is used to 

obtain 3D information from the environment. They are arranged horizontally separated by a 

given distance to obtain two differing views of a scene, in a manner similar to human 

binocular vision. By comparing both images, relative depth information can be obtained, in 

the form of disparities, which are inversely proportional to the distance to objects. The 

59 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

concept of disparity and how it is computed is explained in more detail in section 5.1 

Stereoscopic Vision. 

 

A sequential process has been designed and implemented to be included within the 

perception subsystem of the rover. This is the process embedded in the module identified as 

vision in the scheme of Figure 6. It consists on the next steps and processes: 1) calibration, 2) 

image rectification, 3) pre-processing, 4) matching, 5) post-processing and 6) triangulation, 

see Figure 8. As indicated previously, the development of the algorithms included in this 

subsystem has been partially supported by OpenCV (Bradski and Kaehler, 2008), a library of 

programming functions for real time computer vision, very well-known and widely used by 

the research community. 

 

 
Figure 8. Diagram of the rover’s stereo vision system 

 

A previous offline calibration process obtains the intrinsic and extrinsic parameters of the 

cameras like focal length, principal point or lens’ distortion model in case these are not 

provided by the manufacturer or just to experimentally check the values. Calibration is 

important for accuracy in 3D reconstruction. These values will be necessary later, in the 

triangulation phase to obtain depth data. Calibrating stereo cameras is usually dealt with by 

calibrating each camera independently and then applying geometric transformation of the 

external parameters to find out the geometry of the stereo setting. The method followed for 

calibrating the camera is the one proposed by Tsai (1986). The method is based on the 

knowledge of the position of some points in the world and the correspondent projections on 

60 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

the image. It required the camera to be pointed to a calibration grid, usually a chessboard-

like pattern, in different positions and orientations, see Figure 9. The first step is to solve a 

linear equation to find the extrinsic parameters R, T, being R and T the rotation and 

translation matrices of the cameras with respect a reference system, and then perform a 

nonlinear optimization process to obtain the origin of the coordinates in the reference 

system. The procedure can be iterated in order to improve accuracy.  

 

 
Figure 9. Scheme presenting the calibration process using a calibration object named chessboard 

 

The image rectification step ensures both images are vertically aligned, so that the different 

features mapped in the scene coincide horizontally -lines of the right and left images -with 

each other. Images shall be previously rectified, see Figure 10. This procedure optimizes the 

pixel matching process and save computing time during the depth determination process, by 

forcing the potential correspondence of a given pixel to be found within the same line on the 

other image, called the epipolar line. When working in simulation with synthetic images, this 

rectification process is unnecessary as they don’t have distortions caused by camera lenses 

or misalignment, unless such distortions are specifically introduced.  

 

61 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 
Figure 10. Scheme presenting the rectification process (National, 2013) 

 

In a previous pre-processing procedure, the input images can be normalized to reduce 

lighting differences and to enhance image texture (Bradski and Kaehler, 2008). This has been 

done by running a window of a given size -5-by-5, 7-by-7 (default), until 21-by-21 

(maximum)- over the image. The center pixel Ic under the window is replaced by min[max(Ic 

– I , – Icap), Icap], where I is the average value in the window and Icap is a positive numeric limit 

whose value can be established -30 by default. It can be also done by any other normalization 

method, Laplacian of Gaussian for instance, which runs a peak detector over a smoothed 

version of the image. 

 

Pixels from both images are then matched. As a result, a list of disparities, indicating the 

difference in position of each feature in one image (right) with respect to the other (left), is 

obtained. Those disparities are then transformed to distances –depth- by triangulation, 

explained later in more detail in section 5.1 Stereoscopic Vision. 

Initially, the block matching (BM) algorithm (Konolige et al., 1997b) has been selected to 

process these images, given its efficiency and efficacy, as shown in the results obtained from 

the experiments, and detailed below. This is the matching algorithm embedded in the 

62 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

module identified as stereo in the scheme of Figure 6. It is a dense method, trying to 

maximize the number of correspondences matching each pixel of the pair, which 

subsequently is used to create a depth map. This algorithm finds only strongly matching 

(high-texture) points between the two images. Thus, in a highly textured scene such as might 

occur outdoors in a forest, every pixel might have computed depth. In a very low-textured 

scene, such as an indoor hallway, very few points might register depth. Moreover, this 

algorithm is currently implemented as part of the standard and widely-used OpenCV library 

(Bradski and Kaehler, 2008). 

 

 
Figure 11. A right-image match of a left-image feature must occur on the same row and at the same 

coordinate point or to the left, between the minimum and maximum disparity search range 

 

Correspondence is computed by a sliding a small windows applying SAD (Sum of Absolute 

Difference) to find matching points between the left and right stereo undistorted, rectified 

images. For each feature in the left image, the corresponding row in the right image is 

searched for a best match. After rectification, each row is an epipolar line, so the matching 

location in the right image must be along the same row (same y-coordinate) as in the left 

image; this matching location can be found if the feature has enough texture to be detectable 

and if it is not occluded in the right camera’s view. If a pixel’s coordinate for a given feature 

in the left image is (x0, y0) then, for a horizontal frontal stereo system arrangement with 

parallel optical axes, the match (if any) must be found on the same row and at, or to the left 

of, x0; see Figure 11. With such geometry, x0 is at zero disparity and larger disparities are to 

the left. Large disparities represent closer distances. For cameras that are angled toward 

63 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

each other, the match may occur at negative disparities (to the right of x0). The search is 

bounded by a range, established by a minimum (usually 0) and maximum feasible disparity 

values. The computed disparity will be a value within such range. Reducing the number of 

disparities to be searched can help to cut down computation time by limiting the length of a 

search for a matching point along an epipolar line. 

 

  

  
Figure 12. Disparities computation for a pair of images obtained from the simulator 

 

The block matching algorithm (Konolige et al., 1997b) has been selected at this point as 

pretty good results are obtained when processing synthetic images generated from the 

simulator. Figure 12 shows a pair of stereo images (left and right) captured from the robot’s 

onboard cameras, in the simulated environment, and the computed map of disparities using 

this algorithm. However, given the modularity and flexibility in the design of the software 

architecture, the algorithm embedded into this module, or any other, could be easily 

replaced by another one in case a new approach or version is to be employed or the 

algorithm it not appropriate anymore, in case the nature of the input images or the 

operational conditions change. This actually happened when the system was ported from the 

64 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

simulated to the real world and images with different characteristics were employed, as 

described in section 4.4.2 Field Testing, later in this chapter. 

 

After correspondences computation, a post-filtering phase eliminates false matches, 

performing processes such as uniqueness check, texture evaluation and speckle filtering, 

overcoming random noise and avoiding speckle -local regions of large and small disparities. 

The uniqueness check process filters out wrong matches by checking the computed 

correspondence value in relation to a configurable uniqueness ratio (e.g.: 12), so that (match 

value – minimum match value) / minimum match value < uniqueness ratio. Regarding texture 

evaluation, to make sure there is enough texture to overcome random noise during 

matching, a limit is established on the SAD window response such that no match is 

considered whose response is below an established texture threshold (e.g.: 12). As for 

speckle filtering, block-based matching has problems near the boundaries of objects because 

the matching window catches the foreground on one side and the background on the other 

side. This results in a local region of large and small disparities called speckle. To prevent 

these borderline matches, a speckle detector can be set over a speckle window (ranging in 

size from 5-by-5 up to 21-by-21). As long as the minimum and maximum detected disparities 

are within an established speckle range, the match is allowed. 

 

Figure 13 shows the effect of this post-filtering phase applied to the disparity map obtained 

using the block matching algorithm with a pair of images obtained from a simulated 

environment. In Figure 13(c) it can be appreciated some erroneously computed 

correspondences in the left-bottom corner. They actually do not correspond to any area of 

the terrain to be mapped, but to part of the robot’s chassis seen from the cameras, that 

should not be taken into account when performing a 3D terrain reconstruction. As a result, 

these errors are removed, Figure 13(d). 

 

65 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

  
a) b) 

  
c) d) 

Figure 13. Disparity filtering based on clusters, a) before and b) after the process 
 

In the last step, knowing the geometric arrangement of the stereo-based system, depth data 

is derived from the obtained disparities by triangulation. Each pixel is translated into depth, 

getting Z values, which represents the third dimension in the scene. The result is a 3D points 

cloud representing the environment from the camera point of view. Then, a series of 

geometric transformations, taking into account the rover pose obtained from an onboard 

IMU and the pan tilt head position, translate these points to the rover reference system for 

3D terrain reconstruction. More details about this process can be found in sections 5.1 

Stereoscopic Vision and 6.6.2 Automatic Image Processing Modules. 

 

Algorithms included in this subsystem have been designed to be parametric and easily 

configurable. A configuration file allows establishing parameters and values so that many 

different configurations can be quickly set to test and evaluate its impact and performance 

on the overall navigation process. Some parameters for the perception process are camera’s 

resolution, focal length, horizontal and vertical fields of view, offset between perceptions as 

well as parameters for preprocessing and normalizing the images, the matching process and 

filtering the obtained disparities in the post-processing phase. 

66 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

4.3.2 Mapping of the Environment 
 

The result of the stereo process is a disparity image, representing correspondences –

matched pixels and features- in both images of the pair. This image is then reprojected to 3D 

space. This process transforms a single-channel disparity map to a 3-channel image 

representing a 3D surface. That is, for each pixel (x, y) and the corresponding computed 

disparity d=disparity(x, y), it computes: 

 

�

𝑋𝑋
𝑌𝑌
𝑍𝑍
𝑊𝑊

� = Q * �

𝑥𝑥
𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
1

�   (1) 

 

where Q is a 4x4 perspective transformation matrix in the form: 

 

Q = �

1 0 0 −𝐶𝐶𝑥𝑥
0 1 0 −𝐶𝐶𝑦𝑦
0 0 0 𝑓𝑓
0 0 −1/𝑏𝑏 (𝐶𝐶𝑥𝑥 − 𝐶𝐶𝑥𝑥′)/𝑏𝑏

�   (2) 

 

where f is the camera’s focal length, b is the stereo base –separation between both cameras 

of the stereo pair- and Cx and C’x are the principal point x coordinate in the left and right 

image respectively. The 3D coordinates are then (X/W, Y/W, Z/W). As a result, a cloud of 3D 

points is obtained, usually containing tens of thousands of points, one for each 

correspondence found. 

 

However, a list of 3D points is not an appropriate method of representing the environment 

for later terrain assessment and trajectory computation. A more appropriate representation 

is a height map, similar to the digital elevation model (DEM) obtained with instrumentation 

onboard aerial platforms. In our context, this map is to be represented as a rover-centered 

top-view grid of squares with height data representing the terrain's surface, including any 

obstacle. This is the process embedded in the module identified as mapping in the scheme of 

Figure 6 and Figure 7. 

 

67 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

To build this map as a function of the set of 3D points derived from the imagery captured 

from the onboard cameras, the cloud of 3D points resulted from the application of equation 

(1), which are expressed with respect to the camera’s coordinates system, has to be 

transformed into coordinates in the rover’s reference system, see Figure 14. 

 

 
Figure 14. Camera’s and rover’s reference systems 

 

This transformation has to take into account the rover’s attitude, obtained from the onboard 

IMU, and camera position –pan/tilt- when images were captured. It is done by: 

 
𝑃𝑃𝑅𝑅  = 𝑃𝑃𝐶𝐶   * P * R   (3) 

 

Where PR is the 3D point transformed to the rover’s reference system, PC is a 3D point 

expressed with respect to the camera’s reference system, R is a transformation matrix to 

match axes from both reference systems, detailed below, and P is the perspective matrix, 

computed as the composition of rotations about the three axes plus a translational vector: 

 
ROT = 𝑅𝑅𝑋𝑋 * 𝑅𝑅𝑌𝑌 * 𝑅𝑅𝑍𝑍   (4) 

 

where: 

 

68 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

𝑅𝑅𝑋𝑋 = �

1 0 0 0
0 cos (𝑟𝑟𝑝𝑝) −sin (𝑟𝑟𝑝𝑝) 0
0 sin (𝑟𝑟𝑝𝑝) cos (𝑟𝑟𝑝𝑝) 0
0 0 0 1

�   (5) 

 

𝑅𝑅𝑌𝑌 = �

cos (𝑟𝑟𝑦𝑦 + 𝑐𝑐𝑝𝑝) 0 sin (𝑟𝑟𝑦𝑦 + 𝑐𝑐𝑝𝑝) 0
0 1 0 0

−sin (𝑟𝑟𝑦𝑦 + 𝑐𝑐𝑝𝑝) 0 cos (𝑟𝑟𝑦𝑦 + 𝑐𝑐𝑝𝑝) 0
0 0 0 1

�   (6) 

 

𝑅𝑅𝑍𝑍 = �

cos (𝑟𝑟𝑟𝑟) −sin (𝑟𝑟𝑟𝑟) 0 0
sin (𝑟𝑟𝑟𝑟) cos (𝑟𝑟𝑟𝑟) 0 0

0 0 1 0
0 0 0 1

�   (7) 

 

being rr, rp, ry the robot’s roll, pitch and yaw angels respectively and cp, ct the camera’s pan 

and tilt angles respectively when the images where captured. The fixed translation from the 

camera’s to the rover’s reference system origin is also included into the perspective matrix: 

 

P = � 𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑋𝑋 𝑇𝑇𝑌𝑌 𝑇𝑇𝑍𝑍 1

�   (8) 

 

A last transformation is required to match the camera’s reference system axes with the 

rover’s, see Figure 14: 

 

R = �

0 1 0 1
0 0 1 1
−1 0 0 1
1 1 1 1

�   (9) 

 

At this point, the height map representing the terrain can be built. This height map, a grid, 

initially empty, is filled with information derived from the transformed 3D points cloud, see 

equation (3). For each 3D point (x, y, z) in the cloud, its corresponding location in the map –

grid- is computed as a function of (x, y) and the map’s resolution, and then the corresponding 

cell is assigned the height value –z-  of the point, see Algorithm 1. This height map can be 

thought of as a chessboard, where each square –cell- encodes a numeric value, representing 

69 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

the height/elevation of that terrain’s portion, Figure 15. It actually is a discretization of the 

terrain for a convenient representation. 

 

 

 

a) b) 
Figure 15. Discretization of the terrain for internal representation: a) a grid where each cell encodes 

the terrain’ elevation in that area, b) usually represented as a gray-scaled image 
 

When building a height map from the cloud of 3D points, it may happen there might be 

different height values computed for the same grid cell. This is especially true for the closest 

areas. The smaller the resolution of the map -less number of larger cells- the more points are 

used to compute the height associated to every single cell. On the other hand, for farther 

areas there is usually not enough information to fill every cell, resulting on empty areas in 

the grid. This is also the case for parts of the scene behind rocks or elevations, creating 

occluded areas. In cases when several computed height values belong to the same cell, 

different strategies to fuse data have been proposed to solve those ambiguities. These 

strategies are: 1) compute the average height from the set of data -3D points- belonging to 

the same cell in the map; 2) keep just the last value, replacing the stored height value by data 

from the 3D point currently being processed in case it provides information to the same cell; 

3) keep the highest value, consisting in taking the maximum height value from the set of 3D 

points contributing with data for each given cell, 4) take the lowest height value, equivalent 

to the previous strategy but keeping the minimum height value, or 5) keep the largest 

70 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

magnitude, consisting in keeping for each cell in the map the largest magnitude from among 

the set of height values of the 3D points contributing to the same cell, either positive -

elevation- or negative –depression. The latter is the default strategy, which is the most 

conservative one. This is the way we deal with uncertainty, by computing an average height 

value from the set of points that geographically belongs to the same cell according to the 

established data fusion strategy introduced previously. 

 
 

For each point P in the 3D points cloud 

 Determine the cell (x,y) the point P belongs to 

 Z = height value from point P 

  If (x,y) are within map’s limits 

    If Map(x,y) is empty or criterion == KEEP_LAST 

         Map(x,y) = Z 

    Else if criterion == AVERAGE 

         Add Z to the temporal sum for Map(x,y) 

         n(x,y) = n(x,y)+1  // to later compute average 

    Else if criterion == HIGHEST and Z > Map(x,y) 

         Map(x,y) = Z 

    Else if criterion == LOWEST and Z < Map(x,y) 

         Map(x,y) = Z 

    Else if criterion == MAXMIN and abs(Z) > abs(Map(x,y)) 

         Map(x,y) = Z 

 

Algorithm 1. Pseudo-code for the height map building process 
 

Figure 16(a) shows the result of building a map from the 3D points cloud following the 

Algorithm 1. In this figure, each pixel corresponds to a map’s cell. As indicated before, these 

are top-view rover-centered maps, representing the terrain shape storing height data on 

each cell; the color encodes the actual height value. From a close-up view, it can be seen as 

the example shown in Figure 15, which is a 32x32 grid; but these height maps can be in the 

order of 2000x2000 to represent an area of 10x10 m with a 5 cm resolution. It can be 

appreciated there are many gaps and areas with no information (black areas). These void 

areas have a significant influence and a negative impact in the subsequent path planning 

process; gaps will be taken as unknown areas and therefore any candidate path going 

71 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

though, or close, to these areas will be discarded for security reasons, as the path planning 

subsystem is usually configured very conservatively. 

 

  
a) b) 

Figure 16. a) Height map built from a single perception and b) final map after the interpolation 
process 

 

To minimize its impact, a post map building linear interpolation process has been designed. 

It tries to compute estimated height values for some of the empty portions of the map, see 

Figure 17. It is based on cell’s neighboring values. The process, which pseudo-code is shown 

in Algorithm 2, consists in the next: for a given empty cell in the map, check if its neighboring 

cells have height data; it can be configured to check the four closest or the eight closest 

neighbor cells. Data from surrounding cells are summed up and averaged to compute a mean 

height value provided at least a minimum number of neighbor cells, configured by the 

operator, have valid values to contribute to the height estimate for this given cell. In such a 

case, the cell is updated with the computed value. This process can be repeated a number of 

times on the same map, also configured by the operator, achieving a growing-area or blank-

shrinking effect. The proposed approach is configured to take into account the 8 closest 

neighbors’ values, with at least 2 of them containing valid values to obtain an estimation, and 

repeat the process 3 times. 

 

72 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

 

 
Figure 17. Interpolation process to fill gaps in the map based on neighboring cells’ values 

 

As a result of the interpolation process, a more completed map is obtained, shown in Figure 

16(b). It can be appreciated some gaps have disappeared; they have been filled out with 

height information from neighboring areas. This is especially true for the area closest to the 

robot, which are the most crucial portion of the map as the candidate paths leave from the 

robot’s current location. In these figures just a portion of the whole local map is shown, the 

part where there is data available, corresponding to the terrain in front of the robot 

appearing in the images just captured from the cameras in the previous perception stage. In 

these maps, the rover is located in the cone’s vertex of the mapped area; in the bottom-

center of the images shown in Figure 16. Now, the path planning process performed on this 

interpolated map will have more chances to produce a larger number of candidate paths to 

be evaluated, and therefore the whole process will be more effective, as the finally selected 

path will be chosen from a broader set of candidates. 

 
 

For the number of times N configured (default N = 3) 

 For each cell c in the grid map 

  For each neighbor nx of c (default x = 1..8) 

   If nx has valid data 

    estimatedValue = estimatedValue + value of nx 

    numNeigbors + 1 

  if  numNeigbors > Min. number of neighbors configured (default 2) 

   c = estimatedValue / numNeigbors 

 

Algorithm 2. Pseudo-code for the height map interpolation process 

73 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

As indicated previously, maps are built from the set of 3D points obtained as a result of the 

perception process. Cameras have a given horizontal and vertical field of view, so just a 

portion of the environment can be observed from the rover point of view. For some cameras, 

the data derived from the observable portion of the terrain may produce a too narrow map 

that may be inadequate to compute suitable trajectories to reach a given location, as large 

portions of the map will remain with no information, marked as unknown areas; any 

candidate path partially traversing an unknown area will be automatically discarded. A 

wider map can be obtained by performing more than one perception at each navigation 

cycle. As the stereo camera is mounted on a pan tilt head with two degrees of freedom, a 

configurable offset between perceptions can be established. A certain overlapping between 

images from different perceptions is desirable to avoid leaving unseen areas in between. 

 

The next example can illustrate how this perception strategy works: consider having a 

camera with 90º HFOV (Horizontal Field of View) for instance; if the perception strategy is 

configured so that the rover performs two perceptions at each navigation cycle pointing the 

camera with an offset of ±35º from the frontal line for each perception, almost a complete 

view of the front terrain would be obtained. In the case of the previous example, a 160º view 

of the frontal area is obtained and therefore can be mapped. It is sketched in Figure 18. 

Yellow lines represent 0º and ±90º. The blue area is the portion of the terrain captured when 

moving the camera 35º left from the front line; in that case a view of the area comprised 

between 80º and -10º is obtained. The red area is the portion of the terrain captured when 

moving the camera -35º right from the front line; in that case a view of the area comprised 

between 10º and -80º is obtained. To sum up, a 160º view of the terrain can be captured for 

subsequent mapping with a 20º area of overlapping –the purple area- to avoid gaps and 

unknown areas in between. 

 

Therefore, more than one perception is typically performed on each navigation cycle to build 

a local map. It is important to differentiate between local and global maps. A local map is the 

one produced by the rover as a result of the perception process at each navigation cycle –

comprising one or more pair of images, as indicated before, see Figure 18. As a result, the 

portion of the terrain visible from the rover’s camera from the robot’s current location is 

74 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

mapped. On the other hand, the global map is the map of the area maintained by the rover, 

built from the integration of the set of local maps created in previous navigation cycles.  

 

 
Figure 18. Area captured by two perceptions (red and blue) with a certain overlapping (purple 

region). Green lines represent direction of perception 
 

Just a relative portion of the mapped environment around the rover’s current position is 

kept in the map, forgetting old and distant data from farther regions the rover has previously 

traversed. This is because two main reasons: 1) memory constraints, a rover, as any 

embedded system, will not usually have enough space to store everything; maps can become 

gigantic after weeks or months of navigation. Therefore, just a given area around the rover is 

maintained, discarding information from farther areas; and 2) the rover follows an 

exploratory approach, discovering new regions as it navigates; usually the rover will be 

always moving forward, and rarely going back to areas it has already traversed. Therefore, 

the maps of these far regions already traversed can be forgotten -erased from the rover 

internal memory-, although they can be sent to Ground Control to be kept. 

 

A trade-off between the global map’s size and resolution must be made. The larger the area 

to be kept, the more memory space will be needed to store the map. The same happens with 

the map’s resolution -the number of cells in the grid map-, representing the squared size of 

the terrain chunk represented by each cell. These values are configurable; nominally the area 

maintained in the global map is 10x10 m with a 5 cm resolution -cells’ size. 

 

75 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

As indicated previously, the global map is built from the integration of the set of local maps 

created as the rover moves forward and new areas are discovered. Therefore, the map has to 

be updated with information from new perceptions; new data is merged with previous 

available information. To accomplish this task, a merge maps process has been designed and 

included within the module identified as mapping in the scheme of Figure 6. It is described in 

Algorithm 3. mapSrc represents the new local map while mapDest represents the global map. 

 
 

mapSrc  // source map to be merged 

mapDest // source map to be merged and resulting merged map 

 

For each cell (x,y) in mapDest 

 If criterion == SRC_PRTY and mapSrc(x,y) is NOT empty 

  mapDest(x,y) = mapSrc(x,y) 

 Else if criterion == DEST_PRTY AND mapDest(x,y) is empty 

  mapDest(x,y) = mapSrc(x,y) 

 Else if criterion == SAME_PRTY 

  If criterion == AVERAGE 

    If mapDest(x,y) is empty 

        mapDest(x,y) = mapSrc(x,y) 

   else if mapSrc(x,y) is NOT empty 

        mapDest(x,y) = ( mapSrc(x,y) + mapDest(x,y) / 2.0 ) 

   Else if criterion == HIGHEST 

    If mapDest(x,y) is empty 

        mapDest(x,y) = mapSrc(x,y) 

   else if mapSrc(x,y) is NOT empty AND mapSrc(x,y) > mapDest(x,y) 

        mapDest(x,y) = mapSrc(x,y) 

   Else if criterion == LOWEST 

    If mapDest(x,y) is empty 

        mapDest(x,y) = mapSrc(x,y) 

   else if mapSrc(x,y) is NOT empty AND mapSrc(x,y) < mapDest(x,y) 

        mapDest(x,y) = mapSrc(x,y) 

   Else if criterion == MAXMIN 

    If mapDest(x,y) is empty 

        mapDest(x,y) = mapSrc(x,y) 

   else if mapSrc(x,y) is NOT empty AND abs(mapSrc(x,y)) > abs(mapDest(x,y)) 

        mapDest(x,y) = mapSrc(x,y) 

 

Algorithm 3. Pseudo-code for the height maps merge process 

76 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

When merging data from two maps, it may happen there might be different height data for 

the same area or grid cell. In such cases, different merging strategies have been implemented 

to solve those ambiguities. They are: 1) source map priority, consisting in giving priority to 

the new computed map over the previously stored information; in this case, taking the global 

map as starting point, data contained in the newly created local map is copied onto the 

previous global map; 2) destination map priority, consisting in giving priority to the 

previously stored map over the new computed; in this case, taking the global map as starting 

point, data from the newly created local map will be used just to fill void areas in the 

previous global map; 3) same priority, consisting on, instead giving priority to the old or new 

data, compute a new height value as a function of both. In this case, several approaches can 

be followed such as computing the average height value, take the highest or lowest value or 

take the largest magnitude, either positive -elevation- or negative –depression. This is also a 

way to deal with uncertainty, computing height value from more than one source according 

to the established merging strategy introduced previously. The first one is the default 

strategy, prioritizing the more recent computed data over the previously stored one. Figure 

19(a) shows a local map built from two single merged perceptions and in Figure 19(b) it can 

be seen an updated global map integrated after several navigation cycles. 

 

  
a) b) 

Figure 19. a) Merged height map resulted from two single perceptions from the same location and b) 
integrated height map after several perceptions from different locations 

 

As maps are always stored as rover-centered top-view grids, when updating the global map 

with a new local map, it has to be taken into account the rover’s displacement from the 

77 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

previous navigation cycle. The related translation has to be computed to perform the 

necessary transformations onto the global map so that both maps, global and local, are 

centered at the same location prior to be merged. Therefore, the current rover’s pose is 

estimated, as detailed in 4.3.4 Navigation section, and position and orientation deltas 

computed and applied to re-center the global map. 

 

Values such as map’s size, resolution, interpolation parameters or merging data strategy can 

be configured by the operator according to the mission requirements and constraints with 

the proposed flexible architecture. 

 

4.3.3 Path Planning 
 

Once the environment has been perceived and an internal representation has been built, the 

rover shall compute paths to safely drive from one location to another, see Figure 7. Path 

planning is a heavily researched area, where many techniques and strategies have been 

already published. Most approaches typically establish an initial and final point within the 

map and a trajectory between them is computed, relying upon a correct and complete map. 

However, many of these approaches and search algorithms cannot be applied to the problem 

of robotic navigation in planetary environments, as there are a number of constraints that do 

not normally occur in conventional problems, or not all at the same time. Some of these 

factors are: 1) There is not a priori information about the operational environment; there are 

no maps from Mars or any other planets, at least with the necessary resolution required for 

surface rover navigation; 2) A map has to be progressively built once the rover is on the 

target planet, from in-situ progressive perceptions; 3) the map built at each point is not 

complete, there may exists unknown areas with no information; 4) the target location may 

be beyond the current map’s limits, in areas not seen yet by the robot; 5) the world cannot be 

represented as binary, free or occupied space, each cell have a range of possible values 

representing height data, where traversability has to be evaluated as a function of the rover 

characteristics and mission constraints; 6) the robot is not a point, so several cells, or a given 

portion of the map, are involved when computing rover safety at a given location, depending 

on the resolution of the map created; 7) the rover is non-holonomic and has certain mobility 

78 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

constraints, depending on the mechanical design, restricting the set of trajectories it can 

perform and 8) there is not any accurate and global localization system such as GPS on Earth, 

so the rover has to deal with position uncertainty. 
 

In this problem domain, an exploratory approach must be followed where the rover partially 

perceives the environment to build a map of the visible areas as it travels around, computing 

trajectories to target locations, computing stretch to intermediate waypoints within the 

portion of the environment discovered so far. The path planning approach described in this 

section has been designed and developed specifically for such purpose from the ground up. 

This is the strategy embedded in the module identified as path planning in the scheme of 

Figure 6. 

 

The rover is typically commanded to a given location, so it is to be sent to a particular point 

in the world. This location is specified metrically, in length units. The path planning strategy 

is basically a set of routines that decide the next best direction for the rover to move, as a 

function of the portion of the world already seen, data from sensors and a desired waypoint 

goal. The available information about the terrain is evaluated to determine all possible 

moves the robot may perform. The developed path planning strategy consists on the next set 

of steps, see Figure 20: 

 

1) The configuration –stored onboard the robot and/or established by ground 

operators- is read to obtain parameters necessary for the path planning process such 

as type and number of candidate paths to compute, beam width or planning distance 

among others. Details about these parameters are given below. This step is actually 

done just the first time the system is initiated; parameter values are updated as the 

appropriate command is received from ground control. 

2) A set of candidate motion paths, or a more complex curve –spline, are projected onto 

the height map. This process takes into account the set of parameters taken from the 

previous step. 

3) The algorithm chooses one of the candidates among the set of paths; the one that will 

best help to reach the designated goal location. 

4) The list of cells traversed for a given candidate path is determined. 

79 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

5) The set of cell traversed by each path is evaluated to assess rover’s safety along each 

given path. 

6) The path is considered as safe/unsafe as a result of the evaluation of the constituent 

grid cells. In case the path is unsafe for the rover, the algorithm goes back to the step 

3) to choose another candidate in an iterative process. 

7) The parameters or equations describing the selected trajectory is then sent to the 

low-level controller, and the rover is commanded to move. The navigation subsystem 

is in charge of this task, explained in detail in the subsequent section. 

 

 
Figure 20. Path planning process within the rover’s autonomous navigation strategy 

 

4.3.3.1 Compute Candidate Paths 
 

Three different strategies to compute candidate paths following an exploratory approach 

have been developed and included within the rover’s navigation system: 1) straight paths; 2) 

80 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

arcs; or 3) splines, see Figure 21. The system’s operators configure the type of paths to be 

computed by the rover as a function of the environment’s complexity, rover mechanical 

characteristics and mission’s safety constrains. 

 

 
 

 

 

a) b) c)  
Figure 21. a) A set of candidate straight paths or b) arcs projected onto the height map of the area and 

an example of spline (Magid et al., 2006) 
 

The robot plans the next move according to the designated type of path. Every candidate 

path has its origin on the current rover location and ends on a given point as a function of the 

type of path to be computed (straight/arc), planning distance and other parameters such as 

number of candidate paths to be computed or beam width. 

 

Straight paths are trajectories forming a straight line from the current robot location to a 

calculated final point. Arcs describe a trajectory with a given constant curvature from the 

current robot location to a calculated final point. Splines are mathematical representations to 

build complex curves constructed in the way they pass through a sequence of points, called 

control points. 

 

In case the system is configured to compute spline trajectories, there will not be multiple 

candidate paths, just one. Therefore, the processes’ flow is a bit different in this case. In 

Figure 20, the dotted line shows the flow in case of computing a spline; the select candidate 

step is skipped. If the path described by the spline is not safe, the path is modified in an 

iterative process and adjusted according to different strategies, detailed below. The solid line 

denotes the processes’ flow in case of computing multiple straight candidate paths or arcs. 

 

81 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.3.1.1 Straight Paths 
  

In case the robot is configured to compute straight paths, the algorithm starts by computing 

the Euclidean distance from the current location to the designated goal, to check if the rover 

has already reached its goal, or at least a point within a configurable tolerance perimeter 

around it. If so, the navigation cycle has completed and the traverse will terminate 

successfully. In any other case, a set of equidistant candidate motion paths are projected onto 

the height map. The heading for each path is calculated as a function of the number of 

candidate paths and the beam’s width, see Algorithm 4. In Figure 21(a) it can be seen 23 

candidate paths with 180º beam width; it implies each path will be approximately be 8.2º 

separated from each other. 

 
 

distanceToGoal = euclideanDistance(currentLocation, goalLocation) 

angleToGoal = computeAngle(currentLocation, goalLocation) 

 

pathHeadingDelta = BEAM_WIDTH / (NUMBER_OF_PATHS-1) 

 

For each pi in NUMBER_OF_PATHS 

 pathHeading = currentRobotOrientation – BEAM_WIDTH/2 + i*pathHeadingDelta 

 pathDeviation = atan2(sin(pathHeading-angleToGoal), cos(pathHeading-angleToGoal)) 

 

 If distanceToGoal > PLANNING_DISTANCE 

   pathLength = PLANNING_DISTANCE 

 Else 

   pathLength = distanceToGoal 

 

 determineSetOfCells(pathType, pathHeading, pathLength) 

 

Algorithm 4. Pseudo-code for the computation of straight candidate paths within the path planning 
process 

 

Next, for each candidate path, its heading and deviation from the goal location is computed. 

Each of these paths are defined by its heading and length; they will all have the same length 

and will differ in their heading. The path’s length is determined by the planning distance 

configuration parameter. This value is usually in the order or 1-5 meters. In case the 

82 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

remaining distance from the current location to the goal is shorter than the configured 

planning distance, this remaining distance will be used as maximum length to compute the 

set of candidate paths, as it is enough to reach the goal. 

 

4.3.3.1.2 Arcs 
 

The type of candidate paths can be also established to be arcs. An arc is a portion of the 

circumference of a circle. In Figure 22, the arc is the blue part of the circle, going from point A 

to B. Strictly speaking, an arc could be a portion of some other curved shape, such as an 

ellipse, but it almost always refers to a circle. To avoid all possible mistake, it is sometimes 

called a circular arc. 

 

 
Figure 22. An arc AB is defined by its length, angle (α) and radius (r) 

 

Arcs are defined by its length and angle. The angle α of an arc is defined as the smaller angle 

formed by the two lines created from points A and B to the center of the circumference. The 

length of an arc is the distance along the curved line forming the arc between points A and B. 

It would be measured in distance units, such as meters. It is longer than the straight line 

distance between its endpoints. The formula to compute the arc length is shown below: 

 
  arc length = r α  (10) 

 

where r is the radius of the arc and α is the angle. 

 

83 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

In case of computing candidate paths as arcs, the algorithm starts, as in the previous case, by 

computing the Euclidean distance from the current location to the designated goal, to check 

if the rover has already reached it, or at least a point within the tolerance perimeter. If so, the 

navigation cycle has completed and the traverse will terminate successfully. In any other 

case, a set of equidistant candidate motion paths are projected onto the height map. In Figure 

23 it can be seen 23 candidate arcs with different beam’s width. In all these examples the 

robot is located in the confluence of the candidate arcs, heading upwards; however, the robot 

could actually have any orientation, and the arcs beam will be calculated accordingly. 

 

   
a) b) c) 

Figure 23. A set of candidate arcs establishing a beam width of a) 60º, b) 120º and c) 150º 
 

It can be observed the beam is symmetrical; therefore the method just makes the 

calculations for half of the paths, mirroring the computed coordinates along the axis of 

symmetry to create the other half paths. There have been designed and implemented two 

different methods to compute the set of candidate arcs: 1) variable radius method and 2) 

equidistant ending points. 

 

4.3.3.1.2.1 Variable Radius 
 

In the variable radius method the algorithm projects a set of arcs by computing different 

circumferences or varying radius between the minimum and maximum exploration radius, 

and according to the planning distance and number of candidate path parameters. Figure 24 

shows a set of circumferences projected to the right of the robot; analogously, the same set of 

84 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

circumferences and arcs are created for the left side, in a symmetrical process. All these 

circumferences have their origin along the same axis, which is the axis perpendicular to the 

robot current heading. 

 

 
Figure 24. Generating candidate arcs with the variable radius method 

 

The radius for each circumference is calculated so that they are proportionally distributed 

along the X axis between the minimum and maximum exploration radius, established by 

configuration, and according to the number of arcs to compute: 

 

Δr =  MAX_EXPL_RADIUS – MIN_EXPL_RADIUS
(NUMBER_OF_PATHS/2) – 1

 (11) 

 

where Δr is the radius increment between two adjacent circumferences. The algorithm 

determines the radius for each circumference as: 

 
ri = MIN_EXPL_RADIUS + (i * Δr) (12) 

 

85 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

Each candidate path, marked in red in Figure 24, is formed by the arc delimited from the 

current robot location (x, y) to the confluence of each of these circumferences with the 

circumference formed by the planning distance (xi, yi). To compute each arc i, it is necessary 

to obtain the coordinates of the origin (xci, yci) of the circumference that passes by the points 

(x, y) and each (xi, yi). All these circumferences have their origins along the axis 

perpendicular to the robot current heading, yci = y. Therefore, (xci, yci) = (ri, y). 

 

The angle corresponding to a given arc can be computed as: 

 

α i = π - tan-1 (𝑦𝑦𝑖𝑖−𝑦𝑦𝑐𝑐𝑐𝑐)
(𝑥𝑥𝑖𝑖−𝑥𝑥𝑐𝑐𝑐𝑐)

 (13) 

 

The algorithm to compute the set of candidate arcs is shown in Algorithm 5. 

 
 

(x, y) = currentLocation 

distanceToGoal = euclideanDistance(currentLocation, goalLocation) 

 

Δr = (MAX_EXPL_RADIUS – MIN_EXPL_RADIUS) / ( (NUMBER_OF_PATHS/2) – 1) 

 

For each pi in NUMBER_OF_PATHS / 2 

 ri = MIN_EXPL_RADIUS + (i * Δr) 

 

 (xci, yci) = (ri, y) 

 

 αi = π - atan2 (yi-yci, xi-xci) 

 

 obtainListOfCells(xci, yci, ri, αi) 

 

Algorithm 5. Pseudo-code for the computation of arc candidate paths within the path planning process 
following the variable radius method 

 

4.3.3.1.2.2 Equidistant Ending Points 
 

In this method for generating candidate arcs, called equidistant ending points, a set of points 

are equidistantly placed along the planning perimeter as a function of the number of 

86 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

candidate arcs and the beam’s width, which determines the opening of the beam containing 

the set of arcs. This is the preferred method and the one configured by default for the rover, 

as it computes a set of equidistant arcs and covers more homogeneously and symmetrically 

the area to be explored. Figure 25 shows 15 end points, represented by the red circles, 

equidistantly distributed along a 100º beam. 

 

 
Figure 25. Generating candidate arcs with the equidistant ending points method 

 

The algorithm starts by computing the set of circumferences that contain each arc from the 

robot current location to each of the ending points. A circumference is defined by the next 

equation: 

 
(x – a)2 + (y – b)2 = r2 (14) 

 

where the point (a, b) is the origin of the circumference, (x, y) is any point in the perimeter of 

the circumference and r is the radius. 

 

It is important to note that the origin of those circumferences are all located along the axis 

perpendicular to the robot current heading (X). Therefore, the problem is formulated as to 

obtain the equations of the circumferences passing by two points, the current robot’s 

87 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

location and each of the ending points located around the planning perimeter, having its 

origin in the X axe, see Figure 26. 

 

 
Figure 26. Geometry considerations for the equidistant ending points method 

 

To compute the set of ending points (xi, yi), the algorithm first calculates the angle increment 

(Δα) to distribute the set of ending points as a function of the beam width and the number of 

candidate arcs, using the next equation: 

 

Δα =  BEAM_WIDTH
NUMBER_OF_PATHS−1

 (15) 

 

Now, having the angle each ending point in the planning perimeter forms with respect to the 

robot’s current location (x, y) and orientation α, their coordinates can be computed as: 

 
xi = x + PLANNING_DISTANCE * cos(α ± i*Δα) (16) 

 

yi = y + PLANNING_DISTANCE * sin(α ± i*Δα) (17) 

 

It is also necessary to compute the coordinates of the origins (xci, yci) for the circumferences 

that passes by the points (x, y) and each (xi, yi). As in the previous case, all these 

circumferences have their origins along the axis perpendicular to the robot current heading, 

88 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

therefore yci = y. To obtain xci it is enough to compute the circumference radius. Replacing (a, 

b) in equation (14) by (xi, yi) we obtain: 

 
(x – xi)2 + (y – yi)2 = r2 (18) 

 

Therefore, r can be calculated as: 

 

r = �(𝑥𝑥 –  𝑥𝑥𝑖𝑖)2  +  (𝑦𝑦 –  𝑦𝑦𝑖𝑖)2 
(19) 

 

so that (xci, yci) = (ri, y). Now, the candidate path i can be obtained as the arc formed by the 

circumference with origin (xci, yci) and delimited by the points (x, y) and (xi, yi). The angle αi 

corresponding to this arc can be computed as before according to the equation (13).  

 

The algorithm to compute the set of candidate arcs using the equidistant ending points 

method is shown in Algorithm 6. 

 
 

(x, y) = currentLocation 

α = currentOrientation 

 

distanceToGoal = euclideanDistance(currentLocation, goalLocation) 

 

Δα = BEAM_WIDTH / (NUMBER_OF_PATHS-1) 

 

For each pi in NUMBER_OF_PATHS / 2 

 αi = α + (i*Δα) 

 

 xi = x + PLANNING_DISTANCE * cos(αi) 

 yi = y + PLANNING_DISTANCE * sin(αi) 

 

 ri = sqrt( pow(x-xi,2) + pow(y-yi,2) ) 

 

 (xci, yci) = (ri, y) 

  

 αi = π - atan2 (yi-yci, xi-xci) 

89 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 

 obtainListOfCells(xci, yci, ri, αi) 

 

Algorithm 6. Pseudo-code for the computation of arc candidate paths within the path planning process 
following the equidistant ending points method 

 

4.3.3.1.3 Splines 
 

A more sophisticated strategy to compute trajectories to a given location through 

complicated environments has been designed and incorporated within the rover’s 

autonomous navigation system. It is based on the calculation of splines. 

 

Splines are piecewise polynomial functions defined through a finite set of control points, 

with a high degree of smoothness at the places where the polynomial pieces connect; a key 

property of spline functions is that they are continuous at the control points (also known as 

knots). Figure 27 shows an example of spline passing by a set of established control points 

(in red). 

 

 
Figure 27. Example of a spline trajectory 

 

Any spline function of degree k on a given set of knots can be expressed as a linear 

combination of B-splines of that degree. A B-spline (B for Basis) is a polynomial function of 

degree k in a variable x. It is defined over a range t0 ≤ x ≤ tm, m = k+1, where x = tj define the 

places where the pieces meet, knots. Each piece of the function is a polynomial of degree k 

between and including adjacent knots. If there are n control points, P1, P2,…,Pn, k must be at 

least 2 (linear), and can be no more than n (the number of control points / knots). The order 

90 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

of the curve (linear, quadratic, cubic,...) is therefore not dependent on the number of control 

points. 

 

As introduced before, the rover traverses the environment in a series of navigation cycles, 

see Figure 7. Within the navigation process, the rover spent most of its time stopped in a 

given location performing computations –perception, mapping and path planning processes- 

rather than actually driving across the terrain. Against the more simplistic method of 

computing a set of fixed-length candidate straight paths or arcs, using this technique, just 

one variable-length candidate path is computed. The objective is to adapt the trajectory to 

the characteristics of the traversed terrain, being a much more flexible method than previous 

approaches. 

 

This method ensures the computed trajectory drives the rover as far as possible from its 

current location and as close as possible to its target. Using this path planning technique the 

rover can goes farther on each cycle before physically stops to make a new perception. It 

reduces the number of cycles needed to reach a given target, implying a much more fluent 

navigation process, reducing the total time the robot stands still performing computations, 

with the consequent time saving. It increases the overall navigation process’ efficiency, 

allowing the rover to reach farther destinations in less time. In contrast, the design and the 

algorithms to implement this technique are more complex and the navigability map has to be 

previously computed, as opposite to the straight paths or arcs methods, as detailed later in 

4.3.3.4 Path’s Safety Evaluation section. 

 

This path planning method follows an iterative process, refining the trajectory from the 

current robot location to a given goal to find an efficient, feasible and collision free path 

through the unstructured environment. As these two points (start and goal) are necessary to 

compute a trajectory, in case the goal location is established too far, beyond the map’s 

boundaries, a sophisticated method has been designed to find a suitable intermediate goal 

within the map’s limits.  

 

 

91 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.3.1.3.1 Establishing an Intermediate Goal 
 

In case the goal lies beyond map’s limits, the algorithm starts by initially establishing a 

search perimeter as a function of the map’s size by computing the maximum area centered at 

the current’s robot location (x, y) and circumscribed within the map’s limits. This radius of 

this perimeter is actually half of the map’s size. In Figure 28 it is represented by the yellow 

circle. 

 
Figure 28. Example of trajectory computation using the splines method (blue) in comparison to the 

fixed-length candidate paths method (black) 
 

Next, the point (x0, y0), where the straight line l formed from the robots’ current location to 

the goal intersects with this search perimeter, is computed. The equation that defines a 

straight line l is: 

 
y = mx + b (20) 

 

where m is the slope and b the Y-intercept (where the line intersects the Y axis). The slope m 

can be computed as: 

 

92 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

m =  𝑦𝑦𝐺𝐺 − y
𝑥𝑥𝐺𝐺  −x

 (21) 

 

where (x, y) is the current’s robot location and (xG, yG) is the established goal location, both 

known, see Figure 28, b can be calculated as: 

 

b = y
𝑚𝑚𝑚𝑚

 (22) 

 

replacing (x, y) by the current’s robot location and m by the value computed from equation 

(21). 

 

The equation defining a circumference can be seen in equation (14). Replacing the origin, 

which is the current’s robot location (x, y), we obtain: 

 
(x0  – x)2 + (y0  – y)2 = r2 (23) 

 

where r is the known search radius and (x0, y0) the coordinates of the point where the search 

perimeter and the line l joining the robot’s current location and the goals Intersect. 

Therefore, to obtain the (x0, y0) coordinates, replacing x and y in equation (23) we obtain an 

equation in the form: 

 
x02 + y02 + Dx0  + Ey0  + F = 0 (24) 

 

Now, from equation (20), y0 can be expressed as: 

 
y0  = mx0  + b (25) 

 

Replacing y0 in equation (24) by the expression from equation (25), we get a regular 

quadratic equation. The two roots of the quadratic equation can be then obtained, x1 and x2. 

Replacing both values in equation (20), the respective y1 and y2 can be calculated. They 

represent two crossing points of line l with respect to the circumference, (x1, y1) and (x2, y2). 

The Euclidean distance is them calculated from each of those points to the goal location. The 

shortest one will determine the coordinates for (x0, y0). 

93 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

It is important to recall when using the spline-based path planning method, a complete 

navigability map has to be previously computed; it implies evaluating every cell in the map 

to assess rover safety on each possible location and pose in the map prior to the path 

planning process, as opposite to the straight paths or arcs methods. The navigability 

evaluation process is detailed later in 4.3.3.4 Path’s Safety Evaluation section 

 

If the cell to which (x0, y0) belongs in the map is navigable –safe- for the rover, it is 

established as the intermediate goal (xg, yg) and the algorithm will then try to compute a 

suitable trajectory from the robot’s current location to that intermediate goal. In case the cell 

is non-navigable, an iterative process is started to find an alternative point (xi, yi) within the 

search perimeter. This process computes equidistant points to the right and left of (x0, y0) 

alternately until the limits of a given search cone is reached, delimited by β, Figure 28. If any 

of those points belongs to a navigable cell, it is established as the intermediate goal (xg, yg). 

 

The distance between those alternate points is established as a function of the map’s 

resolution –cell’s size- so that each point belongs to a different cell; this is to avoid checking 

the navigability of the same cell for two adjacent points, which will return the same value. To 

do that, the coordinates of each alternative point (xi, yi) are computed as: 

 
xi = x + r * cos(α ± i * Δα) (26) 

 
yi = y + r * sin(α ± i * Δα) (27) 

 

where r is the established search radius, i is the ith alternative point along the search 

perimeter (it can be positive or negative, depending if it is located to the left of right of the 

crossing point (x0, y0)) and Δα is the angle increment computed as a function of the map’s 

resolution –cell’s size (res): 

 

Δα =  𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟

 (28) 

 

In case all points/cells along the perimeter within the search cone α belong to non-navigable 

areas, the search radius r is iteratively decreased in fixed steps -measured in meters- and the 

94 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

process is repeated until a suitable waypoint is found or the search radius reaches the 

minimum established length; in that case, an error is reported indicating a safe path to the 

established goal cannot be computed from the robot’s current location using this technique. 

 

The algorithm to compute an intermediate goal is shown in Algorithm 7. 

 
 

(x, y) = currentLocation 

α = currentOrientation 

(xG, yG) = goalLocation 

r = searchRadius 

 

While (r > MINIMUM_SEARCH_RADIUS) 

 Compute circumference equation as (x0 – x)2 + (y0 – y)2 = r2 

 Compute line equation as y = mx + b 

 Compute crossing points (x1, y1) and (x2, y2) 

 

 If (euclideanDistance((x1, y1), (xG, yG)) < euclideanDistance((x2, y2), (xG, yG))) 

  (x0, y0) = (x1, y1) 

 Else 

  (x0, y0) = (x2, y2) 

 

 col = (MAP_SIZE / 2) + (x0 / MAP_RESOLUTION) 

 row = (MAP_SIZE / 2) - (y0 / MAP_RESOLUTION) 

 

 If Map(col, row) is navigable 

  return (x0, y0) as (xg, yg) 

 

 // Alternate candidate points 

 Δα = MAP_RESOLUTION / r 

 

 n = β / Δα  // number of points to check along the perimeter within the cone 

 

 For each point i in n/2 

  xi = x + r * cos(α ± i*Δα) 

  yi = y + r * sin(α ± i*Δα) 

 

  col = (MAP_SIZE / 2) + (xi / MAP_RESOLUTION) 

  row = (MAP_SIZE / 2) - (yi / MAP_RESOLUTION) 

95 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 

  If Map(col, row) is navigable 

   return (xi, yi) as (xg, yg) 

 

 r = r - radiusDecrement 

 

Algorithm 7. Pseudo-code for the computation of an intermediate goal within the path planning 
process following the spline-based method 

 

4.3.3.1.3.2 Computing a Spline Trajectory 
 

Once a goal location has been established, either because the commanded location is within 

the map or computed following the previously described strategy, the spline-based 

algorithm will try to find a path to it. As introduced previously, a spline f(x) interpolating on 

the partition x0 < x1 < … < xn-1 is a function for which f(xk) = yk. It is a piecewise polynomial 

function that consists of n-l polynomials fk defined on the ranges [xk, xk+1]. Furthermore, fk 

are joined at xk (k = 1,… n-2) such that f’k and f’’k are continuous (Wolberg, 1988). An 

example of a spline passing through n data points, see Figure 29. 

 

 
Figure 29. Spline passing through a set of defined control points (red) 

 

Cubic splines are the most popular. The goal of cubic spline interpolation is to get an 

interpolation formula that is continuous in both the first and second derivatives, both within 

the intervals and at the interpolating nodes. This will produce a smoother interpolating 

function. In general, if the function we want to approximate is smooth, then cubic splines will 

do better than piecewise linear interpolation. 

 

96 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Therefore, given a set of control points (xk, yk), or knots, the algorithm must determine the 

polynomial coefficients, in the form dx3 + cx2 + bx + a, for each partition such that the 

resulting polynomials pass through the control points and the slope is continuous at each 

point. In each interval the four coefficients [a-d] are different. The kth polynomial piece, fk, is 

defined over the fixed interval [xk, xk+l] and has the cubic form: 

 

fk(x) = d(x-xk)3 + c(x-xk)2 + b(x-xk) + a (29) 

 

The following constraints must be satisfied: 

 
yk = a (30) 

 

yk+1  = dΔxk3 + cΔxk2 + bΔxk + a (31) 

 
y‘k = b (32) 

 
y'k+1  = 3dΔxk2 + 2cΔxk + b (33) 

  

y'‘k = 2c (34) 

 
y''k+1  = 6dΔxk + 2c (35) 

 

where Δxk = xk+1 - xk. Therefore, solving the coefficients, it is obtained: 

 

a = yk (36) 

 
b = 𝑦𝑦𝑘𝑘′  (37) 

 

c = 1
Δ𝑥𝑥𝑘𝑘

�3 Δ𝑦𝑦𝑘𝑘
Δ𝑥𝑥𝑘𝑘

− 2𝑦𝑦𝑘𝑘′ − 𝑦𝑦𝑘𝑘+1′ � (38) 

 

d = 1
Δ𝑥𝑥𝑘𝑘

2 �−2 Δ𝑦𝑦𝑘𝑘
Δ𝑥𝑥𝑘𝑘

+ 𝑦𝑦𝑘𝑘′ − 𝑦𝑦𝑘𝑘+1′ � (39) 

 

97 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

where Δyk = yk+1 - yk. The algorithm returns a set of polynomials pk (k = 1,… n-1), where n is 

the number of control points. Each polynomial is defined by their coefficients [a-d]. All these 

polynomials together define the computed spline-based trajectory from the robot’s current 

location (x, y) to the goal. 

 

The algorithm to compute the polynomials defining a spline-based trajectory is shown in 

Algorithm 8. 

 
 

controlPointsList  // set of k control points 

 

For each control point k in controlPointsList   

 ak = yk 

 bk = yk’ 

 ck = (1 / (xk+1 - xk)) * ( 3*((yk+1 - yk) / (xk+1 - xk)) – 2*yk’ - yk+1’ 

 dk = (1 / (xk+1 - xk)^2) * ( -2*((yk+1 - yk) / (xk+1 - xk)) + yk’ + yk+1’ 

 

 polynomialList.add(ak, bk, ck, dk) 

 

return polynomialList 

 

Algorithm 8. Pseudo-code for the computation of the polynomials that define a spline-based trajectory 
within the path planning process 

 

4.3.3.1.3.3 Checking Navigability and Adapting the Trajectory 
 

As introduced before, this path planning method follows an iterative process, refining the 

trajectory in incremental steps to find a safe, collision-free path to the goal through the 

environment. Initially a trajectory passing by just two control points, the current and goal 

locations, is computed; the resulting cubic spline between only two points degenerates to a 

straight line. 

 

The set of cells traversed by the spline is obtained, as detailed in section 4.3.3.3.3 Splines, 

and its traversability evaluated, detailed in 4.3.3.4 Path’s Safety Evaluation. If every cell in 

the map along the itinerary is evaluated as safe, the path is returned and the path planning 

98 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

process done. In case the path traverses trough an obstacle, non-navigable or unknown 

areas, the spline is manipulated to guide the path around the obstacle. This manipulation is 

achieved by the introduction of additional control points, detailed below, so a new spline is 

computed that passes through these points. This process is repeated until a completely safe 

path is obtained, the established maximum number of iterations is achieved (e.g.: 500) or the 

complexity of the trajectory computed so far is too high, meaning there have been included 

too many control points, established as a density value indicating the maximum number of 

points allowed per meter (e.g.: 3). 

 

Three different strategies have been designed to manipulate the spline and compute 

additional control points in order to guide the trajectory through safe areas: 1) Simple 3-

points trajectory; 2) overall fitting; and 3) progressive fitting. 

4.3.3.1.3.3.1 Simple 3-points Trajectory 
 

This is the first and simplest approach. The trajectory is always computed using just three 

points: 1) initial, 2) goal and 3) an intermediate point to avoid a given obstacle, except the 

first iteration where just the initial and goal points are included. 

 

 
Figure 30. Computing a new control (passing) point (red) to avoid a non-navigable area along the 

trajectory 
 

Following this strategy, once an initial spline-based trajectory has been computed, the 

process iterates trough the list of cells in the map traversed by the computed path. In case a 

cell is evaluated as non-navigable, the algorithm tries to find a navigable cell, close to the 

non-navigable one, to be used as passing (control) point. A new spline-based trajectory will 

be then computed so that it passes by the initial, goal and the newly computed passing point, 

99 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

to avoid the obstacle, non-navigable area (the brown irregular area). Figure 30 shows how a 

computed trajectory (solid line) passes through a non-navigable area; a new control point 

(red) is computed so that a new trajectory (dashed line) can be obtained to avoid that area. 

 

To compute that new control point, the algorithm iterates around the detected non-

navigable cell following a spiral pattern until a navigable cell is found or it reaches the map’s 

limits, see Figure 31. For each candidate cell along the spiral, it is evaluated the rover safety 

as if it were centered at that location, according to the strategy detailed in 4.3.3.4 Path’s 

Safety Evaluation, see Figure 41. Whenever a navigable, safe cell is found, the coordinates of 

its central point is calculated and introduced in the control points’ list to compute a new 

spline-based trajectory. Any intermediate control point –cell- checked so far is stored in a 

list, so that it is not used again in future iterations, as the same result -an unsafe path- will be 

obtained. 

 

 
Figure 31. Iterative process following a spiral pattern to compute a new control (passing) point to 

avoid a non-navigable area 
 

The process is repeated until a safe trajectory is found or the maximum number of iterations 

has been reached. The algorithm to compute a spline-based trajectory using the simple 3-

point trajectory method is shown in Algorithm 9. The computeSpline method is described in 

Algorithm 8. 

 

 

 

100 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

do 

 controlPointsList.add(currentLocation) 

 controlPointsList.add(goalLocation) 

 P = computeSpline(controlPointsList) 

 numIteration++ 

 

 P is safe 

 

 For each cell c along the path P 

  If c is not navigable 

   P is not safe 

   px = computeAlternateControlPoint(c) 

 

   controlPointsList.clear() 

   controlPointsList.add(px) 

   break   // do not check any more cells 

While (P is not safe and numIteration < MAX_ITERATIONS) 

 

If (P is safe) 

 return P 

Else 

 return NULL 

 

Algorithm 9. Pseudo-code for the computation of a spline-based trajectory using the simple 3-point 
trajectory method 

 

The main advantage of this approach is it is simple and easier to implement. It is suitable for 

low-density obstacle, non-navigable areas. However, for complex environments, by using just 

one passing point may not be possible to compute a safe path through to the goal. 

4.3.3.1.3.3.2 Overall Fitting 
 

The main difference with respect to the previous method is the strategy for computing new 

control points and that the number of control –passing- points is not so limited. There is an 

established maximum number of control points per meter anyway. 

 

101 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

As in the previous strategy, the process first computes an initial spline-based trajectory 

including the initial and goal locations. It then iterates trough the list of cells in the map 

traversed by the computed path. Differently than before, the algorithm detects the non-

navigable areas (not cells) the trajectory goes through, and tries to find an alternative control 

point -navigable cell- for each. To compute new control points, the algorithm calculates the 

portion of the trajectory that traverses a given non-navigable area. It then determines the 

cell to which the central point of that portion of trajectory belongs to and iterates around, as 

before, following a spiral pattern until a navigable cell is found or it reaches the map’s limits, 

see Figure 32. As before, at each candidate cell along the spiral, rover’s safety is evaluated. 

Whenever a navigable, safe cell is found, the coordinates of its central point is calculated and 

introduced in the control points’ list to compute a new spline-based trajectory. 

 

 
Figure 32. Iterative process following a spiral pattern to compute a new control (passing) point to 

avoid a non-navigable area 
 

A new spline-based trajectory is then computed so that it passes by the initial, goal and the 

list of newly computed passing points, to avoid every obstacle and non-navigable areas along 

the route. The navigability of the trajectory is checked and the process is repeated. On each 

iteration, any control point along the route before the first crash point is maintained while 

the rest, from that crash point forward, are erased from the list. Therefore, the next 

computed trajectory will pass through the previous safe points plus the new computed 

control points from the first crash point detected on. 

  

102 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

The process is repeated until a safe trajectory is found, the maximum number of iterations 

has been reached or the trajectory become too complex (a maximum number of control 

points have been reached). The algorithm to compute a spline-based trajectory using the 

overall fitting method is shown in Algorithm 10. The computeSpline method is described in 

Algorithm 8. 

 
 

distanceToGoal = euclideanDistance(currentLocation, goalLocation) 

 

controlPointsList.add(currentLocation) 

 

do 

 controlPointsList.add(goalLocation) 

 P = computeSpline(controlPointsList) 

 numIteration++ 

 

 P is safe 

 

 For each cell c along the path P 

  If c is not navigable 

   P is not safe 

   px = computeAlternateControlPoint(c) 

   controlPointsList.remove(control points beyond c) 

   controlPointsList.add(px) 

While (P is not safe and numIteration < MAX_ITERATIONS and controlPointsList.size() < 

distanceToGoal*TRAJECTORY_COMPLEXITY) 

 

If (P is safe) 

 return P 

Else 

 return NULL 

 

Algorithm 10. Pseudo-code for the computation of a spline-based trajectory using the overall fitting 
method 

 

The main advantage of this approach is that it may be possible in some cases to adjust the 

trajectory in just one shot, as it computes an intermediate point for every obstacle along the 

route at the same time. This may be the case in low-density obstacle areas. However, on each 

103 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

iteration the adaptations may cause that recursively some portions of the new trajectory 

pass through non-navigable areas, forcing more recalculations in the future; it is a collateral 

effect of computing several control points at the same time. Moreover, as the trajectory 

suffers from many changes along the process, it becomes more complex on each iteration, 

creating too sinuous and long trajectories to reach the goal, as it separates more from 

obstacles on each iteration, see Figure 33. 

 

 

 

 
Figure 33. Several steps computing new control (passing) points (red) to avoid non-navigable areas 

along the trajectory following the overall fitting method 
 
 

104 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

4.3.3.1.3.3.3 Progressive Fitting 
 

To avoid such complexity and the computation of too sinuous and long trajectories, the 

progressive fitting method fits the trajectory progressively along the path. Similarly to the 

previous approach, this method allows multiple control points; it is also subject to an 

established maximum allowed number of points. The process first computes an initial spline-

based trajectory including the initial and goal locations. It then iterates trough the list of cells 

in the map traversed by the computed path to detect non-navigable areas (not cells). 

However, instead computing an alternative control point for each of those areas, it fits the 

trajectory progressively, step by step, adjusting the curve to avoid each non-navigable area 

one at a time. The procedure can be thought as drawing an (elastic) line between the initial 

and end points and with the finger drag the line to avoid each obstacle and go around, see 

Figure 34. The process to find alternative control point is the same as in the previous 

method, see Figure 32. 

 

 

 
 

105 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 
Figure 34. Several steps computing new control (passing) points (red) to avoid non-navigable areas 

along the trajectory following the progressive fitting method 
 

Trajectories are less sinuous than using the previous strategy; they are simpler and more 

flexible, and also take less computation cycles to be computed. The process is repeated until 

a safe trajectory is found, the maximum number of iterations has been reached or the 

trajectory become too complex (a maximum number of control points have been reached). 

The algorithm to compute a spline-based trajectory using the progressive fitting method is 

shown in Algorithm 11. The computeSpline method is described in Algorithm 8. 

 
 

distanceToGoal = euclideanDistance(currentLocation, goalLocation) 

 

controlPointsList.add(currentLocation) 

controlPointsList.add(goalLocation) 

 

do 

 P = computeSpline(controlPointsList) 

 numIteration++ 

 

 P is safe 

 

 For each cell c along the path P 

  If c is not navigable 

   P is not safe 

   px = computeAlternateControlPoint(c) 

   controlPointsList.add(px) 

   break; 

While (P is not safe and numIteration < MAX_ITERATIONS and controlPointsList.size() < 

distanceToGoal*TRAJECTORY_COMPLEXITY) 

106 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

If (P is safe) 

 return P 

Else 

 return NULL 

 

Algorithm 11. Pseudo-code for the computation of a spline-based trajectory using the progressive 
fitting method 

 

 

Regardless of the strategy followed to compute a spline-based trajectory, in case a safe path 

to the goal cannot be found, if the goal location was commanded by the system’s operators 

the robot informs it hasn’t been able to find a safe path to the goal through the environment 

and waits for new instructions. In case the goal location is an intermediate goal computed by 

the spline-based path planning algorithm, see section 4.3.3.1.3.1 Establishing an 

Intermediate Goal, a new alternative intermediate goal is computed and the process is 

started over. Even though this last strategy may seem a long process, it is still much faster 

than wait for operators’ instructions, which usually causes the rover to delay its operations 

until next day. Meanwhile, it is worthy to try to compute al alternative path. 

 

4.3.3.1.3.4 Smoothing the Trajectory 
 

If the spline-based trajectory has been computed following the overall or progressive fitting 

approaches, it may contain a large number of passing points, waypoints, as a consequence of 

the several iterations performed. An optimization process has been designed in order to 

simplify it and try to create a smoother trajectory. 

 

After computing a spline-based trajectory, it may happen some intermediate waypoints may 

be unnecessary. Initially, each waypoint along the route can just be reached from the 

previous waypoint. However, there are situations where a given waypoint could be reached 

safely from an even previous waypoint than its immediate predecessor. For instance, Figure 

34(c) shows a trajectory computed after several iterations containing five waypoints: the 

initial and goal locations and three intermediate waypoints. A safe route can be planned from 

107 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

the second to the fourth waypoint, so that the one in the middle, the third one, can be safely 

removed, see Figure 35. 

 

 
 

 
Figure 35. Some waypoints (red) can be safely removed from the trajectory 

 

In such cases, some waypoints can be removed from the trajectory and still reach the goal 

safely. The fewer waypoints, the simpler and smoother the trajectory will be. This often 

happens in cases where several waypoints are more or less aligned. Analogously to the 

assumption that the shortest distance between two points is a straight line, it is also true a 

polynomial curve passing by two waypoints will be always equal or shorter than a curve 

passing by three or more waypoints. 

 

Therefore, the smoothing procedure consists of checking the safety of alternative trajectories 

created by selectively removing waypoints from the original trajectory; the first and last 

waypoints cannot be removed. The process starts by computing the trajectory resulting from 

removing the second waypoint; in case the resulting trajectory is safe, it is definitely 

removed and the process is started all over again, as it may happen a waypoint previously 

marked as not removable can be removed now, as the path has changed. If the resulting 

108 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

trajectory is not safe, the waypoint is kept and the next one is removed to check the 

trajectory’s safety; this process goes on until the second to last waypoint is reached. The 

procedure ends when no waypoints can be removed, see Algorithm 12.  

 
 

While (not changes) 

 

 changes = FALSE 

 

 For each control point px along the path 

  controlPointsList.remove(px) 

  P = computeSpline(controlPointsList) 

 

  P is safe 

 

  For each cell c along the path P 

   If c is not navigable 

        P is not safe 

        break; 

 

  If (P is not safe) 

   controlPointsList.add(px) 

  Else 

   changes = TRUE 

 

Algorithm 12. Pseudo-code for spline-based trajectories’ smoothing 
 

The spline-based trajectories strategy represents a significant advantage with respect to the 

straight paths and arcs computation, and to the NASA/JPL’s approach. Following this 

strategy, the maximum planning distance, fixed for the straight paths and arcs approaches, is 

dynamically set depending on the quality of the map created and how far a path to the goal, 

or to get closer to the goal, can be computed on each situation, see Figure 36. 

 

109 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 
Figure 36. Example of trajectory computation using the splines method (blue) in comparison to the 

fixed-length candidate paths method (black) 
 

4.3.3.2 Candidate Path Selection 
 

The path selection capability actually gives the rover autonomous decision and control 

authority to select its next drive direction. In the case of straight paths or arcs, to select from 

among multiple candidates, each of them is examined in order according to how effectively it 

would drive the rover toward its goal point. The path that would lead more directly toward 

the goal or closer is given the highest evaluation priority. 

 

In case the set of candidate paths are straight paths, each one has a value associated that 

indicates its deviation from the goal. This value is computed as a function of the path’s 

heading with respect to the goal location from the current robot’s pose, shown in Algorithm 

4. The path with the minimum absolute deviation with respect to the goal location is selected 

first for safety evaluation, see Algorithm 13. The path selected is removed from the list of 

candidate paths, so that in case it is evaluated as unsafe, next time another path will be 

selected from the set of remaining candidates. 

 

 

110 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

minDeviation = P0.pathDeviation 

x = 0 

 

For each Pi in pathsList 

 If (abs(Pi.pathDeviation > minDeviation)) 

  x = i 

  minDeviation = Pi.pathDeviation 

 

remove Px from pathsList 

return Px 

 

Algorithm 13. Pseudo-code to select the most directed path from a set of candidate straight paths 
 

If the candidate paths are arcs, the one which end-point is closer to the goal location is 

chosen as the first to be evaluated, see Algorithm 14. This value is computed as a function of 

the Euclidean distance from the path’s end point to the goal. As before, once a path has been 

selected for safety evaluation, it is removed from the list of candidate paths. The strategy 

continues following an increasing distance order. 

 
 

minDistance = P0.distanceToGoal 

x = 0 

 

For each Pi in pathsList 

 If (Pi.distanceToGoal < minDistance) 

  x = i 

  minDistance = Pi.distanceToGoal 

 

remove Px from pathsList 

return Px 

 

Algorithm 14. Pseudo-code to select the closest ending path from a set of candidate arcs 
 

In case the computed trajectory is a spline, there is not a set of candidates to select from, as 

there is just one candidate path. In this case, this step is skipped and the algorithm continues 

to the next phase, to determine the set of cells traversed by a given path. 

111 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.3.3 Determine Traversed Cells 
 

Once a path has been selected, or computed in the case of splines, the list of cells traversed 

by the path on the grid map has to be determined. To do this, the algorithm goes over the 

path by dividing it into smaller stretches. The xi and yi coordinates of each stretch are 

computed then to determine the cell in the map it belongs to. The size of these stretches is 

nominally a third part of a cell’s size –the map’s resolution. 

 

4.3.3.3.1 Straight Paths 
 

In the case of straight paths, defined by its heading and length, each stretch is equidistantly 

distributed along the path and also along the X and Y axes, see Figure 37. 

 

 
Figure 37. Determining the set of cells traversed by a given path by dividing it in smaller stretches 

 

Therefore, a constant increment in these axes can be computed for each stretch, as: 

 
Δx = s * cos(α) (40) 

 
Δy = s * sin(α) (41) 

 

112 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

where s is the stretch’s length -a third of a cell- and Δx and Δy are the coordinates increment 

along the X and Y axes respectively. 

 

The coordinates of each stretch j are computed as: 

 
xj = j * Δx (42) 

 
yj = j * Δy (43) 

 

The cell to which each stretch’s coordinates belongs to is calculated from the central point of 

the map, which is the current rover’s location, and as a function of the cells’ size, which is the 

map’s resolution. 

 
col = cr + (xj / res) (44) 

 
row = cr - (yj / res) (45) 

 

where cr denotes the cell in the map where the rover is –map’s center- and res is the map’s 

resolution –cell’s size. The algorithm to compute the set of cells traversed by a given straight 

is shown in Algorithm 15. 

 
 

previousRow = 0; 

previousCol = 0; 

stretchlength = MAP_RESOLUTION / 3 

 

deltaX = stretchlength * cos(pathHeading) 

deltaY = stretchlength * sin(pathHeading) 

 

For each stretch j in pathLength / stretchlength 

 x = j * deltaX 

 y = j * deltaY  

 

 col = (MAP_SIZE / 2) + (x / MAP_RESOLUTION) 

 row = (MAP_SIZE / 2) - (y / MAP_RESOLUTION) 

113 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 

 If (row != previousRow || col != previousCol) 

  listOfCells.add(row,col)  // add this cell to the list 

  previousRow = row; 

  previousCol = col; 

 

Algorithm 15. Pseudo-code for the computation of the set of cells traversed by a candidate straight 
path 

 

As more than one stretch may belong to the same cell, which is actually done on purpose, and 

is the reason because the stretches’ size is configured as one third of the cell’s size, it is 

checked they are not repeated, so that the result is a list of the unique cells traversed by a 

given path on the current map. 

 

4.3.3.3.2 Arcs 
 

Regardless of the method employed to compute the set of candidate arcs, variable radius or 

equidistant ending points method, to determine the list of cells traversed by the arc on the 

grid map, the algorithm also divides the arc into smaller stretches, computing the x and y 

coordinates of each stretch, see Figure 38. 

 

 
Figure 38. Determining the set of cells traversed by a given arc by dividing it in smaller stretches 

 

114 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

The coordinates of each stretch are computed by calculating the angle increment to go over 

αi, the angle defining the arc, stretch by stretch from the beginning (x, y) to the end point (xi, 

yi). This angle increment is computed by dividing the stretch size - third of a cell’s size as in 

the case of straight paths- by the radius of the circumference, as shown in equation (10), 

using the equation: 

 

Δα =  𝑟𝑟𝑟𝑟𝑟𝑟/3
𝑟𝑟𝑖𝑖

 (46) 

 

where res is the cell’s size in the map and ri is the computed radius for the circumference 

describing a given arc i. The coordinates for each stretch j are computed using the next 

equations: 

 

xj = xci + r * cos(α + j * Δα) (47) 

 
yj = y + r * sin(α + j * Δα) (48) 

 

That computes arcs to the right of the rover. As the left arcs are symmetrical to the right 

ones, to obtain the coordinates of those to the left the next formula can be used to compute 

the x coordinate (the y coordinate is the same computed for its symmetrical arc to the right): 

  
xj = x – ( xci - r * cos(j * Δα) ) (49) 

 

Finally, the algorithm has to determine the set of cells in the map traversed by each arc. To 

do that, it computes the cell which coordinates for each stretch (xj,, yj) corresponds to, using 

the equation (44) and  equation (45), see Algorithm 16. 

 
 

(x, y) = currentLocation 

α = currentOrientation 

  

(xci, yci) // center of the circumference 

ri        // radius of the circumference 

αi       // portion of the circumference –angle- described by the arc 

115 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 

initialRow = MAP_SIZE / 2   // the robot is located at the map center 

InitialCol = MAP_SIZE / 2   // the robot is located at the map center 

previousRow = 0; 

previousCol = 0; 

stretchlength = MAP_RESOLUTION / 3 

 

Δα = stretchlength / ri 

 

For each angle increment j in αi / Δα 

 xj = xci + r * cos(α + j * Δα) 

 yj = y + r * sin(α + j * Δα) 

 

 // Do this also for the symmetric arc, computed as: 

 xj = x – ( xci - r * cos(α + j * Δα) ) 

 

 col = (MAP_SIZE / 2) + (xj / MAP_RESOLUTION) 

 row = (MAP_SIZE / 2) - (yj / MAP_RESOLUTION) 

 

 If (row != previousRow || col != previousCol) 

      listOfCells.add(row,col)  // add this cell to the list 

      previousRow = row; 

      previousCol = col; 

 

Algorithm 16. Pseudo-code to obtain the set of cells traversed by a candidate arc 
 

As in the previous case, more than one stretch may belong to the same cell, so it is checked 

they are not repeated and the result is a list of the unique cells traversed by a given path on 

the current map,  

 

4.3.3.3.3 Splines 
 

Regardless of the method employed to compute a spline-based trajectory, to determine the 

list of cells traversed by the trajectory on the grid map, as with previously described types of 

paths, the algorithm divides the trajectory into smaller stretches, computing the x and y 

coordinates of each stretch, see Figure 39. 

 

116 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Figure 39. Determining the set of cells traversed by a given spline-based trajectory by dividing it in 

smaller stretches 
 

The coordinates of each stretch are computed by calculating each interval’s length to go over 

the trajectory’s section Px, stretch by stretch from the beginning (xk, yk) to the end point 

(xk+1, yk+1). The distance between stretches shall be, as with previous methods, the third of a 

cell’s size. So, the interval’s length is divided to obtain the number of stretches: 

 

n =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑃𝑃𝑘𝑘,𝑃𝑃𝑘𝑘+1)
𝑟𝑟𝑟𝑟𝑟𝑟/3

 (50) 

 

where res is the cell’s size in the map. The coordinates for each stretch j are computed using 

the next equations: 

 
(xj, yj)= (ak + bk(j/n) + ck(j/n)2 + dk(j/n)3) (51) 

 

Finally, the algorithm determines the set of cells in the map traversed by each arc by 

computing for each stretch (xj,, yj) the cell which coordinates corresponds to, using the 

equation (44) and equation (45), see Algorithm 17. 

 
 

initialRow = MAP_SIZE / 2   // the robot is located at the map center 

InitialCol = MAP_SIZE / 2   // the robot is located at the map center 

previousRow = 0; 

117 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

previousCol = 0; 

stretchlength = MAP_RESOLUTION / 3 

 

For each polynom Pk in polynomialList 

 

 length = euclideanDistance((xk, yk), (xk+1, yk+1)) 

 n = length / stretchlength 

 

 For each j in n 

  (xj, yj)= (ak + bk(j/n) + ck(j/n)^2 + dk(j/n)^3) 

 

  col = (MAP_SIZE / 2) + (xj / MAP_RESOLUTION) 

  row = (MAP_SIZE / 2) - (yj / MAP_RESOLUTION) 

 

  If (row != previousRow || col != previousCol) 

        listOfCells.add(row,col)  // add this cell to the list 

       previousRow = row; 

        previousCol = col; 

 

Algorithm 17. Pseudo-code to obtain the set of cells traversed by a spline-based trajectory 
 

It is also checked cell are not repeated and the result is a list of the unique cells traversed by 

the trajectory on the map, as more than one stretch may belong to the same cell. 

 

4.3.3.4 Path’s Safety Evaluation 
 

For a given selected path, terrain traversability and rover integrity has to be evaluated in 

order to declare a path safe, and decide if the rover shall describe that trajectory and 

navigate through that path. Therefore, the rover has to have the ability to evaluate the shape 

of the nearby terrain and determine potential hazards that may hurt the rover along a path. 

 
To assess rover’s safety, the path safety evaluation algorithm evaluates height values of the 

list of cells in the map, computed in previous steps, traversed by a given candidate path. It 

has into account safety parameters and constraints established for the mission as well as the 

mechanical characteristics of the rover, like chassis measures. This is because a rover is 

typically larger than a cell in the map. The chassis’ measures of a rover like spirit and 

118 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

opportunity from the MER mission (Crisp et al., 2003) are 2.3 x 1.6 m, and the typical map’s 

resolution –cell’s size- is 5 or 10 cm. Therefore, supposed the rover centered in a given cell in 

the map, to evaluate the potential safety of the vehicle in that position, the set of cells 

underneath the rover –footprint- have to be evaluated. 

 

In Figure 40, the red cell, under the rover platform, indicates the cell in the map where the 

rover is centered. Green cells, the area under the wheels, define the footprint of the rover. 

However, given the criticality of the navigation task, and following a conservative approach, 

to consider a given location –cell- as safe, it has to be safe for the vehicle whatever its 

orientation is. To do that, rover-sized diameter circumference is computed, represented by 

the yellow circumference in the figure, to include the set of cells underneath the rover having 

this any possible orientation; it delimits the area to be evaluated to assess rover safety when 

it is centered at a concrete location –cell. The intuitive effect of this representation is that the 

appearance of an obstacle in the local map tends to grow beyond the obstacle’s physical 

boundaries by half the vehicle width in all directions. 

 

 
Figure 40. 3D area affected when checking rover safety 

 

Following the same conservative approach, unknown areas are considered by default as non-

navigable, so that a void cell within the delimiting area would cause to mark the central cell 

(red) as unsafe, and therefore to invalidate the whole candidate path. However, a parameter 

119 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

permits configuring the system to avoid the influence of this unknown areas in the planning 

process. 

 

  
a) b) 

Figure 41. Set of cells considered to compute a) excessive step, excessive roughness and c) excessive 
tilt 

 

To assess safety and assign a value to the corresponding cell in the map, three potential 

hazards are evaluated: tilt, roughness, and step. 

 

• Excessive step: indicates if there is a too large step within the rover-sized area in the 

map. To determine it, the maximum height difference between any pair of adjacent 

cells in the designated area is computed, identifying the largest step. The set of cells 

considered in the determination of this value can be seen in Figure 41(a), red cells 

within the perimeter. 

• Excessive roughness: indicates how rough or uneven the underlying terrain is within 

the rover-sized area in the map. To determine it, the maximum height difference 

among all cells within the designated area is computed. The set of cells considered in 

the determination of this value can be seen in Figure 41(a), red cells within the 

perimeter. 

• Excessive tilt: indicates if the underlying terrain is too inclined so that it may cause 

the rover to tip over. To determine it, the slope is computed as a function of the 

120 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

maximum height difference among the set of peripheral cells, where front and back 

wheels rest, within the designated area, which are the responsible for the rover tilt. 

The set of cells considered in the determination of this value can be seen in Figure 

41(b), red cells along the perimeter. 

 

Therefore, for each cell, three values are calculated, corresponding to step, roughness and tilt 

hazards. Algorithm 18 shows the pseudo-code to analyze each of these situations for each of 

the cells a given candidate path is made up. 

 

The first step is to compute the radius of the robot in terms of cells, as a function of its 

chassis’ measures and the resolution of the map –cell’s size. During path evaluation, in case 

any part of this rover-sized area is beyond map’s limits, the cell is marked as unsafe, 

returning a maximum value for risk; it will cause the whole path to be invalidated. This is a 

rare situation nevertheless, as every path starts at the current robot’s location, which is at 

the center of the map, and the size of the map is usually several meters around and the  

planning distance is not typically configured large enough to exceed map’s limits. 

 

Then, for every cell within the rover-sized evaluation area, it is checked if any of them has an 

unknown value. In such a case, the maximum risk value is returned. By default, the system is 

conservatively configured to reject any path including cells with no information, as they 

cannot be evaluated and therefore the safety of the rover along that path cannot be 

guaranteed. However, this is a configuration parameter than can be set by the operators. In 

this case is where the interpolation process, detailed in 4.3.2 Mapping of the Environment 

section, makes a major contribution, in an attempt to minimize the number of void cells. 

 

In case the previous conditions are met, values for each of the potential hazards are 

computed for each cell as indicated before; a maximum step value is computed as the 

maximum height difference between any pair of adjacent cells in the designated area; a 

maximum roughness value is computed as the maximum height difference among all cells 

within the designated area; and a maximum tilt value is computed as the arcsin of the 

121 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

maximum height difference among just the set of peripheral cells divided by the rover’s 

diameter, following the next formula: 

 

tilt = arcsin �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑡𝑡 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑡𝑡
ROBOT_BASELENGTH

� (52) 

 

where maxHeight and minHeight denote the maximum and minimum height values found 

among the set of cells considered, see in Figure 41(b). 

 
 

x = MAP_SIZE / 2   // the robot is located at the map center 

y = MAP_SIZE / 2   // the robot is located at the map center 

 

maxStep = 0 

 

minRoughnessHeight = Map(x,y) 

maxRoughnessHeight = Map(x,y) 

 

minTiltHeight = Map(x,y) 

maxTiltHeight = Map(x,y) 

 

robotRadiusInCells = (ROBOT_BASELENGTH / 2) / MAP_RESOLUTION 

 

For each cell c in listOfCells 

 

 //check limits 

 if (c-robotRadiusInCells < 0 || c+robotRadiusInCells >= MAP_SIZE) 

  return MAX_VALUE 

 

 // go over the rover-sized area horizontal and vertically 

 For each i from c–robotRadiusInCells to c+robotRadiusInCells 

  For each j from c–robotRadiusInCells to c+robotRadiusInCells 

   If euclideanDistance((x,y), (i,j)) <= robotRadiusInCells 

         If Map(i,j) == UNKNOWN && not UNKNOWN_OK 

              return MAX_VALUE 

 

         // Check excessive step hazard 

        For each k from i–1 to i+1 

             For each l from j–1 to j+1 

122 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

                   If abs(Map(i,j) - Map(k,L) > maxStep) 

                        maxStep = abs(Map(i,j) - Map(k,L) 

 

         // Check excessive roughness hazard 

         If (Map(i,j) < minRoughnessHeight) 

              minRoughnessHeight = Map(i,j) 

         else if (Map(i,j) > maxRoughnessHeight) 

              maxRoughnessHeight = Map(i,j) 

 

         // Check excessive tilt hazard 

        If euclideanDistance((x,y), (i,j)) == robotRadiusInCells 

              If (Map(i,j) < minTiltHeight) 

                   minTiltHeight = Map(i,j) 

              else if (Map(i,j) > maxTiltHeight) 

                   maxTiltHeight = Map(i,j) 

 

 stepHazard = maxStep 

 roughnessHazard = maxRoughnessHeight - minRoughnessHeight 

 tiltHazard = asin((maxTiltHeight – minTiltHeight) / ROBOT_BASELENGTH 

 

Algorithm 18. Pseudo-code to check potential hazards for the set of cells forming a given candidate 
path 

 

Finally, for the candidate path selected for evaluation, the computed values for the potential 

hazards of each cell of the path are compared with the thresholds configured by the 

operators of the system, indicating the maximum allowed values for each of the potential 

hazardous situations identified previously. In case any of them exceeds any of the thresholds, 

the cell is marked as unsafe, and the whole candidate path is discarded. In such a case, the 

second best path is chosen for evaluation and the process is repeated, see Algorithm 19. 

 
 

If pathType == SPLINE 

 return pathsList(0) 

Else 

 While there are paths in pathsList 

  If pathType == STRAIGHT 

   Px = getMostDirectedPath(pathsList) 

  Else 

123 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

   Px = getClosestEndingArc(pathsList) 

 

  For each cell c in Px 

   If c.stepHazard > STEP_THRESHOLD || 

      c.roughnessHazard > ROUGHNESS_THRESHOLD || 

      c.tiltHazard > TILT_THRESHOLD) 

           safePath = FALSE 

 

  If safePath == TRUE 

   return Px 

 

Algorithm 19. Pseudo-code to select a path from the set of candidate paths 
 

One of the main contribution of this navigation strategy with respect to similar approaches, 

as the one developed by NASA/JPL for the MER mission, is actually this path evaluation 

approach and the computation of navigability. The strategy presented in this section 

computes values and evaluates just the cells that are part of any candidate path instead 

computing a value for each cell in the map, except for the case of the splines approach, where 

the entire map shall be initially evaluated. This approach avoids spending computation 

power and time calculating cells’ values that will never be used. 

 

To get a sense of the computation savings following this approach, a typical map of 10x10 m 

and 10 cm cell’s resolution contains 10,000 cells. If the system is configured to plan 23 

candidate paths for instance with a 3 m planning distance, where each path is composed of 

30 cells roughly, it implies the set of paths is constituted by around 700 cells at most. This 

number is actually lower, as many cells are shared between several paths, especially in the 

area closer to the rover, where candidate paths are all together, see Figure 23; this shared 

cells are evaluated just once. It means just 7%, at most, of the cells need to be evaluated, 

while 93% of the cells in the map are not part of any candidate path and will never be taken 

into account for the path evaluation process. Therefore, it is unnecessary to compute a 

traversability value for them, with the consequent computing resources and time savings. In 

case of increasing the resolution, the optimization achieved following this strategy is even 

greater; in the same previous example but with a 5 cm map’s resolution, following an 

124 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

analogous analytical process, the percentage of cells part of any path decreases to a mere 

3.5%; generalizing, this percentage decreases as resolution increases. 

 

Moreover, the optimization in the computing resources saving goes even further. Instead 

evaluating the set of cells part of any candidate path, the algorithm choses the most 

promising path among the set of candidates. Traversability of cells affecting that candidate 

path, and just those cells, is then checked, assessing potential hazards. If safety constraints 

are met the path is declared safe and selected to be sent to the navigation module to be 

executed. Otherwise, the process is repeated with the next most promising candidate. In 

some cases, if the first or second path examined is actually selected, just about 0.1-0.3% of 

the cells will be evaluated. This also represents a major improvement and contribution with 

respect to other comparable approaches. 

 

The system allows a system’s operator to establish a series of parameters for this path 

planning module, known as the safety parameters, setting the maximum allowed threshold 

values for each of the previously indicated potential hazards –step, roughness and tilt-, to be 

evaluated and taken into account by the path planning process while computing trajectories. 

Other configurable parameters affecting the path planning module are also: number of 

candidate paths, type (arcs, lines, splines), planning distance, navigation distance, chassis 

measures, body clearance, wheel’s diameter or wheels’ separation among others, so that the 

impact altering any of these mechanical design or mission constraints parameters can be 

evaluated straightforward. 

 

In case no suitable path is found among the set of candidates, several strategies has been 

designed to deal with this situation; the desired behavior can be established by the operator, 

specifying one of the following strategies: 1) report an error and wait for a new plan: this is 

the most conservative approach, it prevents the robot of making any decision, relying on 

ground-control operators; however, the rover has to wait until the next communication 

window to inform, and the activities will not be resumed until next, or later, day; 2) repeat 

the planning process increasing the number of candidate paths: the number of these paths 

will be multiplied by a factor of n, specified in the robot configuration file –and also 

commanded, as well as the number of attempts before announcing no suitable path was 

125 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

found; 3) make new perceptions to extend and update the internal map model, usually 

pointing at different directions than previous perceptions; this offset can be specified in the 

robot configuration file –and also commanded; 4) compute backwards paths to move away 

from the non-navigable areas and plan again: this is the most risky strategy. In case of 

computing backwards paths, chances are the portion of the terrain necessary for the 

computation has already been perceived and stored within the map. In such cases, paths can 

be computed without taking new images. Otherwise, the camera shall be rotated to face the 

rear area to take new images to update the map. 

 

4.3.4 Navigation 
 

The locomotion in planetary rovers is usually achieved through six wheels. Each wheel pair 

is suspended on an independently pivoted bogie (the articulated assembly holding the wheel 

drives), and can be independently steered and driven. All wheels can be individually pivoted 

to adjust the rover height and angle with respect to the local surface, and to create a sort of 

walking ability, particularly useful in soft, non-cohesive soils like dunes. 

 

Besides planning distance, related to the length of the candidate paths to be projected on the 

map, there also exist another key parameter: navigation distance. It specifies how long the 

selected path will be actually followed. Figure 48 shows the rover stopped at a given location 

performing the path planning process. In Figure 42(a) the navigation strategy has been 

configured to compute a set of straight paths, while in Figure 42(b) it computes a set of 

candidate arcs. The outer circular area represents the planning distance, and the inner 

circular area represents the navigation distance. 

 

Navigation distance is commonly set shorter than planning distance to avoid getting too close 

to obstacles or non-navigable areas right at the end of a given executed trajectory that may 

prevent the rover to move forward in the next navigation cycle. As an example, planning 

distance can be configured to 3 meters and navigation distance to 2 meters. In case the 

estimated remaining distance from the current rover’s location to its goal is shorter than the 

126 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

planning distance, both the planning and the navigation distances are set to this estimated 

remaining distance. 

  
a) b) 

Figure 42. Rover model in a simulated terrain and path planning process with a) straight and b) arc 
candidate trajectories 

 

Depending on the type of path computed –straight, arc or spline- the desired turn and 

navigation distance, or the equations describing the trajectory, is sent to the navigation 

subsystem, see Figure 7, so the rover is commanded to move and the low-level controller can 

actually drive the robot along the path. This is the process embedded in the module 

identified as navigation in the scheme of Figure 6. 

 

In the case of straight path, the trajectory is defined by its angle and length -navigation 

distance; the vehicle must turn-in-place about the vehicle center of rotation to face the 

computed path’s heading. Turns-in-place can be commanded using absolute or relative 

reference headings or specific cartesian coordinates of a location toward which to face. Arcs 

are defined by their angle, radius and length -navigation distance; in this case the rover does 

not need to turn-in-place, but configure the adequate velocities of each wheel to describe the 

computed arc according to its defining parameters. As for the splines, they are defined by the 

set of polynomial equations describing the trajectory; each of the equations describes a 

curve, where each one is concatenated with the next to create the complete trajectory. 

 

 

127 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.4.1 Proportional Control 
 

To execute the commanded trajectories, the rover implements a P (Proportional) controller, 

estimating its position for corrections. A proportional control system is a type of linear 

feedback control system. In the proportional control algorithm, the controller output is 

proportional to the error signal, which is the difference between the desired value (setpoint) 

and the actual value (process variable). In other words, the output of a proportional 

controller is the multiplication product of the error signal and the proportional gain. This can 

be mathematically expressed as: 

 
Pout = Kp * e + p0 (53) 

 

where Pout is the output of the proportional controller; Kp is the proportional gain; e is the 

current error, computed as the difference between the current and desired signal values; and 

p0 is the controller output with zero error. 

 

Two proportional controllers have been implemented for the robot navigation, to compute a 

desired linear and angular velocity values respectively, see Algorithm 20. 

 
 

(xref, yref) = referenceLocation 

αref = referenceOrientation 

 

setTimer(controlFrecuency) 

 

While (ev > ev-max || ew > ew-max) 

 

 (x, y) = currentLocation 

 

 ev = euclideanDistance((x, y), (xref, yref)) 

 

 If there is any αref 

  ew = currentRobotOrientation - αref 

 Else 

  ew = currentRobotOrientation - atan2(yref - y, xref - x) 

128 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

 v = Kv * ev 

 w = Kw * ew 

 

 setRobotSpeed(v, w) 

 

 waitForTimer() 

 

Algorithm 20. Pseudo-code to implement the proportional controllers for trajectories’ execution 
 

A waypoint has an associated position tolerance, i.e., a radial distance within which the 

waypoint is considered reached. This is indicated through two configuration parameters, 

position tolerance error (ev-max) and orientation tolerance error (ew-max), establishing the 

tolerance perimeter around the waypoint and the orientation accuracy respectively. 

 

Maximum and minimum linear and angular velocities are established so that they cannot be 

exceeded, no matter the results of the control law’s computations are, for security reasons, 

and also to avoid too slow motion when the rover is close to the desired –reference- position. 

 

4.3.4.2 Straight Trajectories 
 

In case the navigation trajectory is a straight path, defined by its angle (α) and length (l), the 

robot first turns in place to face the path’s heading (α). The controller’s parameters αref is set 

to the path’s heading and (xref, yref) to the robot’s current location, to complete the turn in 

place, and next it advances straightway for the established navigation distance, setting the 

controller’s parameters αref to robot’s current orientation and (xref, yref) to the robot’s current 

location plus the path I’s length minus the navigation distance. 

 

4.3.4.3 Arc Trajectories 
 

In case the navigation trajectory is an arc, defined by their angle (α), radius (r) and length (l), 

an algorithm divides the arc into intermediate reference points, in a similar process 

described above to determine what cells in the map are traversed by an arc shown in Figure 

129 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

38. The coordinates of each intermediate reference points (xref, yref) are used to command the 

control algorithm (Algorithm 20) at regular time intervals, see Figure 43. Each blue marker 

denotes a reference point. 

 
Figure 43. Computation of reference points (xref , yref) along the arc to command the control algorithm 

at regular time intervals 
 

As those reference points are generated at periodical time intervals, the distance between 

them depends on the frequency they are generated. The location of each reference point is 

computed as a function of the estimated distance traveled by the rover at a given nominal 

speed in the time elapsed. From equation (10) it can be inferred: 

 
  lref = r αref (54) 

 

To compute αref, and determine the coordinates of the point (xref, yref), it can be done by: 

 

  αref = 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟

 = 𝑣𝑣 ∗ Δ𝑡𝑡 
𝑟𝑟

 (55) 

 

where v is the robot’s nominal speed, Δt is the time elapsed from the beginning of the 

trajectory navigation process and r is the radius that defines the arc. As a result, αref 

designates a concrete point in the arc (xi, yi), see Figure 43, with respect to the circumference 

of radius r and origin (xc, yc). The coordinates of a concrete reference point can be then 

130 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

computed, and established as the next waypoint to be reached and passed to the control 

algorithm, using the next formulas: 
xref = xc + r * cos(αref) (56) 

 

yref = yc  + r * sin(αref) (57) 

 

In this case there is no orientation (αref) for a given reference point to be passed to the 

control algorithm (Algorithm 20), just its position (xref, yref), see Algorithm 21. 

 
 

(x, y) = currentLocation 

xref = x 

yref = y 

 

// compute arc’s end-point 

xn = xc + r * cos(α) 

yn = yc + r * sin(α) 

 

t0 = currentTime() 

 

setTimer(timeInterval) 

 

// generate reference points while end-point not reached 

While (euclideanDistance((xref, yref), (xn, yn)) > TOLERANCE_PERIMETER) 

 

 t = currentTime() 

 

 αref = (NOMINAL_SPEED * (t - t0)) / r 

 

 xref = xc + r * cos(αref) 

 yref = yc + r * sin(αref) 

 

 call control algorithm to go to (xref, yref) 

 

 waitForTimer() 

 

Algorithm 21. Pseudo-code to compute intermediate waypoints -reference points- to describe an arc 
trajectory 

131 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.4.4 Splines 
 

In case the navigation trajectory is a spline-based trajectory, it is defined by a set of 

polynomial equations –intervals-, where each one describes a curve between two adjacent 

control points; the concatenation of all of them creates the complete trajectory. Each 

polynomial equation for an interval is defined by their coefficients in the form dx3 + cx2 + bx + 

a, see section 4.3.3.1.3.2 Computing a Spline Trajectory. There is actually two polynomials, 

one to compute the x coordinate and another for y. The variable (x) can be given a value in 

the range [0, 1], where 0 denotes the interval’s starting point and 1 the interval’s end point. 

Therefore, to compute a concrete location –coordinates- along the trajectory, it is enough to 

give x a value within the range and solve the previous equation; the y coordinate is computed 

equivalently. For instance, the coordinates of the interval’s midpoint can be computed 

solving the equation with the value 0.5. 

 

The length of each interval can be computed in a similar process than the one followed to 

determine which cells are traversed by the trajectory in the map shown in section 4.3.3.3.3 

Splines. The interval’s trajectory is divided into stretches. The total length of the interval is 

approximated by adding up the lengths of each of those stretches, computed as the Euclidean 

distance between the coordinates of two adjacent stretches, see Figure 44. In the figure, the 

trajectory is shown in red and stretches in yellow. 

 

 
Figure 44. Approximating an interval’s length by adding up the lengths of its stretches 

 

The algorithm to compute an interval’s length is shown in Algorithm 22. 

 

132 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

// compute interval’s start-point 

x = getPolynomValue(Pk, 0) 

y = getPolynomValue(Pk, 0) 

length = 0 

 

n = number of points used to approximate interval’s lengths 

 

For each j in n 

 xj = getPolynomValue(Pk, j/n) 

 yj = getPolynomValue(Pk, j/n) 

 

 length += euclideanDistance((xj, yj), (x, y)) 

 

 x = xj 

 y = yj 

 

return length 

 

Algorithm 22. Pseudo-code to calculate an interval’s length for a spline-based trajectory 
 

In order to describe a computed spline-based trajectory, the navigation algorithm divides 

each interval into intermediate reference points, following an analogous process to describe 

an arc trajectory, see section 4.3.4.3 Arc Trajectories. The coordinates of each intermediate 

reference points (xref, yref) are used to command the control algorithm (Algorithm 20) at 

regular time intervals, see Figure 45. Blue markers indicate reference points, and red 

markers are the control points that delimits each interval. 

 

As before, those reference points are generated at periodical time intervals; therefore, the 

distance between them depends on the frequency they are generated. The location of each 

reference point is computed as a function of the estimated distance traveled by the rover at a 

given nominal speed in the time elapsed. Distance traveled can be computed by  

 
  d = v * Δt (58) 

 

133 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 
Figure 45. Computation of reference points (xref , yref) along the trajectory to command the control 

algorithm at regular time intervals 
 

where v is the robot’s nominal speed, Δt is the time elapsed from the beginning of a given 

interval’s trajectory navigation process. To determine the coordinates for each reference 

point, knowing the distance traveled by the rover so far, it is necessary to calculate at which 

point, along the trajectory, the reference point shall be located. A point along a polynomial 

spline-based trajectory is denoted by a value in the range [0, 1]. Therefore, knowing the 

distance traveled and the interval’s length, it can be computed as: 

 
  i = d / length (59) 

 

where i is a value in the range [0, 1], d is the traveled distance computed using equation (58) 

and length is the interval’s length, computed as previously indicated, see Algorithm 22. 

Therefore, the coordinates of a concrete reference point can be then calculated, and 

established as the next waypoint to be reached to be passed to the control algorithm, using 

the next formulas: 

 
xref = x + Pk(i) (60) 

 
yref = y + Pk(i) (61) 

 

134 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

where (x, y) is the rover’s initial location, and Pk(i) is the value of the polynomial equation Pk 

at the point i. 

 

In this case there is no reference orientation (αref) for a given waypoint –reference point- to 

be passed to the control algorithm (Algorithm 20), just its position (xref, yref), see Algorithm 

23. 

 
 

(x, y) = currentLocation 

 

For each polynom Pk in polynomialList 

 length = computeIntervallenght(Pk) 

 

 // compute interval’s end-point 

 xk = x + getPolynomValue(Pk, 1) 

 yk = y + getPolynomValue(Pk, 1) 

 

 t0 = currentTime() 

 

 setTimer(timeInterval) 

 

 // generate reference points while interval’s end-point not reached 

 do 

 

  t = currentTime() 

 

  i = (NOMINAL_SPEED * (t - t0)) / length 

 

  xref = x + getPolynomValue(Pk, i) 

  yref = y + getPolynomValue(Pk, i) 

 

  call control algorithm to go to (xref, yref) 

 

  waitForTimer() 

 

 While (euclideanDistance((xref, yref), (xk, yk)) > TOLERANCE_PERIMETER) 

 

Algorithm 23. Pseudo-code to compute intermediate waypoints -reference points- to describe a 
spline-based trajectory 

135 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

4.3.4.5 Position Estimation 
 

To execute the commanded path, the rover low-level control shall estimate its position (x, y) 

at all times along the way, see Figure 46.  

 

 
Figure 46. Rover’s feedback control and position estimation 

 

The position estimation is addressed following the differential steering model. The method 

for estimating the rover’s location is equivalent for both the simulated 6-wheels rover, 

shown in Figure 3, and the 4-wheels rover used for field testing, shown in Figure 53. This 

model can be used to predict how a robot will respond to changes in its wheel speed and 

what path it will follow under various conditions. The model can also be used to calculate a 

robot's position in dead-reckoning or localization by odometry applications (techniques that 

estimate a robot's position based on distances measured with odometer devices mounted on 

each wheel) (Lucas, 2000). At the end of each step, sensors provide a reasonably accurate 

estimation of the rover’s new position. The relative position and orientation of the rover can 

be reasonably inferred using odometry and provided as input. 

 

It is worth emphasizing that the equations given next represent an elementary model for the 

motion of a robot or vehicle. They describe the robot's position and orientation as a function 

of the movement of its wheels, but ignore the underlying physics involved in making that 

motion happen. Issues such as torques and forces, friction, energy and inertia are not taken 

into account in this model. In technical terms, this method of describing motion is referred to 

as a kinematics approach. It ignores the causes of motion (which would be the dynamics 

approach) and focuses on the effects. In this initial and simplified approach, it is also ignores 

details of motors, gearing, electromagnetics, power supplies, and other engineering 

136 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

considerations that make wheel-based actuators possible. However, this initial approach is 

enough to estimate robot movement for the scope of this work. As indicated at the beginning 

of this thesis, the objective is to design and develop high-level autonomous navigation 

approaches, for analysis of strategies and validation of algorithms at the functional level and 

not analyzing aspects such as advanced mechanics and locomotion or sophisticated wheel-

soil contact forces, which is more proper of a mechanical focus on the rover design. 

Moreover, regarding global positioning errors, in the case of planetary robot where an 

exploratory strategy based on the computation of candidates paths is followed, it is not 

required that the rover motion exactly matches that which was commanded, but it does 

assume that wherever the rover ended up, its relative position and orientation can be 

reasonably inferred and provided as input, as sensors are expected to provide a reasonably 

accurate estimate. 

 

 
Figure 47. Path of wheels through a turn 

 

Going back to the differential drive model, it is usually applied to a wheeled mobile robot 

whose movement is based on two separately driven wheels placed on either side of the robot 

body. If both drive wheels turn in tandem, the robot moves in a straight line. If one wheel 

rotates faster than the other, the robot follows a curved path inward toward the slower 

wheel. If the wheels turn at equal speed, but in opposite directions, the robot pivots. Thus, 

steering the robot is just a matter of varying the speeds of the drive wheels, see Figure 47. 

 

137 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆 give the displacement (distance traveled) for the left and right wheels respectively, r 

is the turn radius for the inner (left) wheel, b is the distance between wheels (from center-to-

center along the length of the axle) and θ is the angle of the turn in radians. 𝑆𝑆𝑆𝑆 is the speed 

at the center point on the main axle. It will be treated the axle's center point as the origin of 

the robot's frame of reference. 

 

This exactly matches the model of the real robot used for field testing shown in Figure 53. As 

for the case of the 6-wheeled simulated model, shown in Figure 3, its mechanical 

configuration allows a steering robot system, where the steering wheels are turned to face 

the preferred direction and then the traction wheels are actuated to move the robot towards 

the indicated direction, like in a car. However, given the focus of this work is the high-level 

autonomous navigation strategy, for simplicity it has been approximated to the differential 

drive model, so that the same model and approach will be used for both, the simulated and 

the real robots. 

 

Following Figure 47, the next relationships are observed: 

 

SL = r θ (62) 
 

 

SR = (r + b) θ (63) 
 

 

SM =  �𝑟𝑟 + 𝑏𝑏
2
� θ (64) 

 

 

Once established the simple geometry for the differential steering system, it is easy to 

develop algorithms for controlling the robot's path. In our case, as our robot’s have more 

than one wheel per side, see Figure 48, a mean on the wheel’s speed for each side of the 

robot is calculated to comply with the differential drive model, following the next equation: 

 

𝑣𝑣𝐿𝐿 =  𝑣𝑣1+ 𝑣𝑣3+(𝑣𝑣5)
𝑛𝑛
2�

  (65) 

 

138 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

𝑣𝑣𝑅𝑅 =  𝑣𝑣2+ 𝑣𝑣4+(𝑣𝑣6)
𝑛𝑛
2�

  (66) 

 

where vx is the velocity of wheel x, vL and vR are the calculated mean velocity of left and right 

wheel(s) respectively and n is the number of wheels. Velocities are expressed in meters per 

second. 

 

  
Figure 48. Mobile platforms’ wheel numbering 

 

Once computed the right and left velocities, the linear and angular velocities of the system 

can be derived as: 

 

v = 𝑣𝑣𝐿𝐿 + 𝑣𝑣𝑅𝑅 
2

 (67) 

 

w = 𝑣𝑣𝐿𝐿− 𝑣𝑣𝑅𝑅 
𝑏𝑏

 (68) 

 

where v is the linear velocity of the system, expressed in meters per second, and w is the 

angular velocity of the system, expressed in radians per second. It can be then decomposed 

in vx, vy, calculating the orientation increment. 

 
∆θ = 𝑤𝑤 ∗ 𝑡𝑡 (69) 

 
θ = 𝜃𝜃 +  Δ𝜃𝜃 (70) 

 

139 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

𝑣𝑣𝑥𝑥 = 𝑣𝑣 ∗ cos (𝜃𝜃) (71) 

 
𝑣𝑣𝑦𝑦 = 𝑣𝑣 ∗ sin (𝜃𝜃) (72) 

 

where Δθ is the orientation increment (delta) in a given period of time (t), which is the 

control cycle frequency, in our case 20 ms. θ represents the current robot’s orientation, in 

radians, and vx and vy the velocities of the system in the X and Y axes. Orientation computed 

by this method is typically very noisy and accumulate errors very quickly; therefore, IMUs 

and sensor fusion strategies –kalman filter- are usually employed to compute the robot’s 

orientation. Having these vx and vy velocities, the distance increment –relative position- can 

be calculated by: 

 
∆𝑝𝑝𝑥𝑥 = 𝑣𝑣𝑥𝑥 ∗ 𝑡𝑡 (73) 

 
∆𝑝𝑝𝑦𝑦 = 𝑣𝑣𝑦𝑦 ∗ 𝑡𝑡 (74) 

 

And so the new rover’s position will be: 

 
x = 𝑥𝑥 + ∆𝑝𝑝𝑥𝑥 (75) 

 
y = 𝑦𝑦 + ∆𝑝𝑝𝑦𝑦  (76) 

 

There is a source of uncertainty, as the position estimation in differential-drive mobile 

robots suffers from systematic and non-systematic errors. The non-systematic errors are 

independent of the robot, caused by effects such as wheel slippage, traction loss or an 

imperfect floor surface. They cannot be compensated for as they are random errors. 

 

For the systematic errors, there are two dominant sources: unequal wheel diameters (Ed) 

and the uncertainty about the effective wheelbase (Eb). These errors are vehicle-specific and 

don't usually change during a run (although different load distributions can change some 

140 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

systematic errors quantitatively). It is important to note that Eb has an effect only when the 

robot is turning, while Ed affects only straight line motion, as was shown by Borenstein and 

Feng (1995). Ed and Eb are dimensionless values, expressed as fractions of the nominal value. 

 

Regarding Ed, most mobile robots use rubber tires to improve traction. These tires are 

difficult to manufacture to exactly the same diameter. Furthermore, rubber tires compress 

differently under asymmetric load distribution. Usually, in planetary rovers’ designs metal 

wheels are employed instead of rubber tires, avoiding this effect. However, for any robot 

using this kind of tires, as the one employed for field trials, shown in Figure 53, this effect 

must be taken into account. It can be defined as: 

 
𝐸𝐸𝑑𝑑 =  

𝐷𝐷𝑅𝑅
𝐷𝐷𝐿𝐿

 (77) 

 

where DR and DL are the actual wheel diameters. 

 

Uncertainty in the effective wheelbase (Eb) is caused by the fact that rubber tires contact the 

floor not in one point, but rather in a contact area. The resulting uncertainty about the 

effective wheelbase can be on the order of 1% in some commercially available robots. This 

error can be defined by: 

 

𝐸𝐸𝑏𝑏 =  
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (78) 

 

where b is the wheelbase of the vehicle. Odometry can be improved generally by measuring 

the individual contribution of these two dominant errors sources, and then counter-acting 

their effect in software, as shown in (Borenstein and Feng, 1995). 

 

There are also some other ways to deal with uncertainty in localization in this domain. These 

position estimation errors are commonly eliminated when the rover receives its daily 

activities plan from ground control. Scientists on Earth provide position and orientation 

corrections using data they have available, both from the rover instruments and sensors and 

from orbiters, resetting errors. Another technique commonly used for autonomous robot re-

141 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

localization in robotic planetary exploration is visual odometry (Angelova et al., 2007; 

Helmick et al., 2009). It is a process for determining the position and orientation of a robot 

by analyzing the associated camera images, using sequential images to estimate the distance 

travelled. The process consists of detecting and extracting certain features and matching 

them across consecutive frames by correlation, estimating the camera motion from the 

optical flow. However, the navigation algorithm does not require that the rover motion 

exactly match that which was commanded, as each waypoint, or next portion of the path, is 

computed from the current location and the height map is updated every cycle with new data 

from perceptions. It first checks if the rover has already reached its goal, within some 

tolerance perimeter around it. If so, the navigation process has completed and the traverse 

will terminate successfully. Otherwise, a new waypoint and a path to it is computed and sent 

to the low level controller to execute the trajectory. While the rover is driving its next step, it 

will not use its imaging sensors to look for obstacles. Other types of safeguarding are enabled 

while driving, like tilt sensors and inertial measurement units, but no additional high-level 

terrain-based planning or sensing need to be performed. 

 

For this navigation subsystem several parameters can be established by the operator such as 

the nominal and maximum linear and angular velocities, maximum steering angle or 

localization accuracy, to establish a tolerance perimeter around the waypoint to determine 

when it has been reached. 

 

4.3.5 Processes and Control Flow 
 

As introduced previously, the rover reaches a commanded location by performing 

subsequent navigation cycles, moving from one waypoint to the next, see Figure 7. These 

waypoints cannot be computed from the beginning, as there is no a priori information. 

Therefore, the navigation strategy follows an exploratory approach; at each cycle, the rover 

stops to perceive the environment and update its map, determines a new waypoint in the 

route and computes a trajectory to it. Figure 49 shows the rover model in a terrain in the 

simulator. The goal location has been set several meters away from the rover, marked with 

an end-of-race flag. The red path is the result of the concatenation of a series of paths, 

142 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

computed one at each cycle, where the end point of each one concurs with the starting point 

for the next. The intermediate waypoints are represented by blue flags in the figure. 

 

 
Figure 49. Several navigation cycles –waypoints- are usually necessary to reach a given location 

 

To accomplish this, the autonomous navigation system, is composed of a set of subsystems, 

as seen before, and each one comprises a series of processes. Figure 50 shows these 

subsystems, which are mainly: configuration, robot, communications, vision, mapping, path 

planning and navigation, as well as the data flow among them. The configuration subsystem 

includes modules to parse configuration files with mission and operation parameters, which 

can be updated anytime by the operator. These parameters are stored in an internal data 

structure and used throughout the system by all modules. The robot subsystem includes 

functions to manage the robot’s hardware, devices, sensors and actuators, creating a 

hardware-independent interface to the rest of subsystems and modules. The communications 

subsystem contains the downlink and uplink modules to manage the rover interactions with 

ground control, receiving activity plans and commands and sending back data from sensors, 

messages, alarms, status information and computation results. The modules within the vision 

subsystem make the system’s perception up, processing the acquired images, executing the 

stereo process, producing a cloud of 3D points and performing the necessary system 

reference transformations. The mapping subsystem manages the rover’s internal map of the 

world created from perceptions; it includes features such as building a map, updating it with 

new data when available, merging maps and evaluating certain areas within the map to 

143 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

identify safe or non-navigable areas for the rover. Modules within the path planning 

subsystem receive updated maps and compute suitable trajectories to given locations as a 

function of the configuration parameters, meeting mission criteria and safety constraints. In 

this module, the estimation of the rover’s location and orientation are computed from 

onboard sensors data, such as encoders or inertial measurement units. The navigation 

subsystem coordinates the system’s autonomous navigation capabilities. It acts as a central 

manager where other processes are instantiated from as required, organizing the obtained 

results and data flows. Once a suitable trajectory has been computed, the execute path 

module decomposes it in the appropriate motion commands to be sent to the rover’s low 

level controller. 

 

 
Figure 50. Autonomous navigation processes and control flow 

 
 
 
 
 
 

144 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

4.4 Testing, Experiments and Validation 
 

4.4.1 Testing and Validation of Algorithms 
 

A visual-based autonomous navigation strategy is a complex software system, comprised of 

large amounts of code and algorithms performing computations interacting among them. 

Before embedding the software into a physical robotic platform, it is advisable testing the 

approaches and algorithms and validate them, to avoid damaging the hardware, usually quite 

expensive, which would increase the costs and delay the project planning. The framework 

introduced in this chapter and its simulation capabilities have been exhaustively used for 

this purpose. A large set of tests have been performed both during development and in final 

test campaigns. 

 

In this chapter results, measures of performance and computing times are presented, 

obtained from a concrete test and settings; pretending to serve as an example to illustrate 

the system performance. Equivalent results have been obtained for the complete set of tests 

performed, according to the parameters established in each case. The scenario consists on a 

Mars-like terrain model, as the one shown in Figure 4, and a robotic vehicle model, based on 

the NASA MER mission rover, shown in Figure 3. Some of the most relevant system 

parameters have been configured as follows: 

 

• Stereo camera resolution: 640x480  

• Stereobase (separation): 9 cm 

• Camera focal distance: 3 mm 

• Camera field of view: 94º (horizontal), 69º (vertical) 

• Two perceptions per cycle, ± 35º each from the front line  

• Stored terrain map’s size: 10x10 m 

• Terrain map’s resolution: 5 cm (grid cell’s size) 

• Mapping interpolation method: average of the 8 nearest-neighbors, with at least 2 

valid values 

• Path planning method: straight paths 

145 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

• Number of candidate paths: 23  

• Planning distance: 1.5 m 

• Navigation distance: 1 m 

• Maximum step hazard allowed: 8.5 cm 

• Maximum roughness hazard allowed: 13 cm 

• Maximum tilt hazard allowed: 20º 

• Nominal speed: 5 cm/s 

 

These parameters values have been configured in a very conservative way, as in real mission 

scenarios; a low nominal speed has been set as well as short planning and navigation 

distances, forcing the rover making perceptions more frequently to update the map and 

planning short paths, maximizing safety. In case the rover traverses a flat and low-risk 

terrain, the operators may set less conservative parameters. 

 

Having the rover in a random location, a target position 4.8 m ahead and 2.3 m right, is 

commanded to the robot from the control station. The autonomous navigation process 

described previously, sketched in Figure 50, is initiated. It starts by perceiving the 

environment, then it updates its map and computes a trajectory. Using the control center in 

debugging mode, telemetry is continually received in real-time, so that the rover location is 

known at all times. Figure 51 shows how the robot performs 6 navigation cycles to reach the 

commanded target location and the sequence of intermediate waypoints and paths to them it 

computes from the starting to the goal location, as well as the distances traveled between 

each pair of waypoints. 

 

 
Figure 51. Rover route composed of several waypoints 

146 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

The straight distance to the goal location is 5.32 m. However, terrain roughness, rocks and 

obstacles prevent the rover to go directly, computing suitable trajectories according to safety 

criteria and mission parameters established. The rover performs six navigation cycles, 

travelling a total distance of 5.88 m in 9:29 min. Table 1 shows the navigation process timing 

during this test, measured in seconds. Computation time accounts for the period of time the 

rover is stopped performing internal calculations, in seconds. Navigation time measures the 

period the rover is actually moving through the terrain, in seconds. Turn indicates how much 

the rover rotates, in radians, to face the selected path direction on each cycle and how long it 

takes. And distance accounts for the actual distance traveled on each cycle, in meters. 

 
Table 1. Navigation process timing 

Cycle 
Total time 

(s) 
Comp. 

time (s) 
Nav. 

time (s) 
Turn (rad) 

Distance 
(m) 

1 85 52 33 0.29 (9s) 1.05 
2 79 46 33 -0.43 (12s) 0.88 

3 68 47 21 0  (0 s) 1.00 
4 118 62 55 1.29 (40s) 0.60 

5 105 63 41 -0.43 (12s) 1.29 
6 114 78 35 -0.43 (12s) 1.06 

 9:29 5:48 3:38  5.88 
 

The computation time is usually higher than navigation time. The rover drives short 

distances, taking not very long to navigate. An influencing factor that increases the 

computation time is also the time required to move the pan/tilt, pointing the camera 

towards the right direction previous the perception process. Two perceptions are performed 

each cycle; first, the camera is pointed to the left a given offset from the central position to 

take a pair or images. Then, the camera is moved to the right to take another pair of images, 

and finally it is left in the central position. Just those three moves take approximately 28-30 

seconds out of the computation time each navigation cycle. There is also another interesting 

aspect influencing the computation time. As the algorithm evaluates candidate paths in order 

starting with the more directed one to the target, the more paths are evaluated the more the 

computation time increases. That can be seen in cases like cycle 4; where the selected path is 

1.29 radians from the current orientation, indicating many paths have been evaluated. 

Concretely, seven paths were evaluated in cycle 4 in contrast with just one path in cycle 3.  

147 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

Regarding navigation time, the robot is configured to drive at a nominal speed of 5 cm/s. 

This is a low speed, making an efficient use of energy, which is a limited resource in robotic 

planetary explorer, usually obtaining it from solar panels, and a conservative approach, 

ensuring the robot can frequently check its inertial measurement unit as it drives to 

guarantee its safety. Also, in this experiment the candidate paths are computed as straight 

trajectories; the rover makes on-site turns to face the selected path before actually following 

it, Figure 52 shows a sequence of moves through the environment; four navigation cycles are 

shown. The planning area configured for the path planning module is represented by the 

yellow circle, establishing the maximum length for the set of candidate paths to be computed 

and evaluated on each cycle; then the selected path is followed for a given navigation 

distance, represented by the red trail in the figure. 

 

  

  
Figure 52. Multiple waypoints path, showing the planning area (yellow) and followed trajectory (red) 

 

When the path planning module is configured to compute straight candidate paths, the 

longer the turns to face the selected path the longer time it takes. That is the case in cycle 4, 

where the rover takes 40 out of the 55 seconds of the navigation time to turn 1.29 rad. 

148 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Straight trajectories computation is a simple strategy, and the least computational resources 

demanding one, but a very interesting approach to be used for comparison with others 

methods such as arcs or the more sophisticated splines. The distance driven each cycle is not 

always the same, as it depends on the localization estimation from odometry and the 

tolerance perimeter established around the waypoint to determine when it has been 

reached. 

 

Besides times per navigation cycle, accurate measures on several processes’ computing 

demands have been obtained from the framework. As it runs on a desktop PC, which is not a 

real-time system, and these processes share the processor with other tasks executed in the 

system, CPU clock tics have been counted for each process, shown in Table 2. In the space 

exploration domain only certified hardware can be employed, where resources are 

considerably constrained; so it must be expected processes will take longer. 

 
Table 2. Computing time on a PC Intel Core2 1.86 Ghz. 

Function 
Computing 
time (ms) 

Stereo matching 410-480 
 Disparity filtering 90-130  

Computing 3D points 430-470 
 Reprojection 210-320  
Height map construction 70-90  

Height map interpolation < 10  
Height map update < 10  

Merge height maps < 10  
Path planning process 40-50  

 

The actual CPU computing time at each navigation cycle, the time the rover is busy with 

calculations, excluding camera moves, is 2-3 seconds. It can be seen that the heaviest 

processes are the computer vision related ones. The entire perception process takes between 

360 to 600 ms. The disparity filtering process is part of the stereo matching algorithm. The 

stereo matching process is very dependent of the images’ resolution, as the stereo algorithm 

has to deal with every pixel in both images looking for matches, many of them several times 

depending on the established search window. In this case 640x480 images, 5x5 windows and 

149 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

a maximum disparity value of 64 pixels have been used. Reprojection is part of the 3D points 

computation, including perspective transformations, where the points list is transformed to 

the rover reference system. Operations with height maps depend on map’s size and 

resolution; for these experiments a 10x10 meters map with 5 cm resolution has been 

configured. 

 

At this point, the algorithms have evolved through an iterative code refinement process and 

thoughtful testing, simulation experiments have been carried out and measures and 

performance data have been obtained from the framework; the software can be considered 

mature enough to be tested with real hardware in a physical platform. 

 

4.4.2 Field Testing 
 

The ultimate step in the validation process is field testing, where strategies and procedures 

are tested under real settings, analyzing measures and data obtained to assess its 

performance and correctness. This section describes the characteristics and configuration of 

the mobile platform used for testing and experiments, time performance analysis of 

embedded algorithms and path planning and navigation accuracy details. 

 

4.4.2.1 Mobile Robotic Platform 
 

The navigation system has been ported to a mobile robotic platform; the Movirobotics MR7, 

shown in Figure 53, along with its simulated model created for the framework. It is a 

powerful 4-wheeled all-terrain rover with 60 kg payload and maximum speed of 1.8 m/s. It 

weighs 28 kg, has a clearance of 11cm and 30cm diameter wheels. It is not steerable, turning 

by differential drive. Although its design does not exactly match a typical Martian rover, it is 

still an adequate platform to test the navigation strategy. Regarding sensors, the platform 

has been equipped with a Videre stereo camera STH-DCSG 9mm (base-line), a pan/tilt unit, 

an inertial measurement unit and wheel encoders. It counts with an onboard PC104, AMD 

LX800 processor. 

150 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

In order to verify and validate the system and to demonstrate the flexibility of the 

framework and the utility of the simulation subsystem, a correlation between the virtual and 

the hardware tests have been accomplished by importing the design of the MR7 rover in the 

framework and modeling all its subsystems, as shown in Figure 53. Equivalent tests have 

been carried out, to compare results obtained using the simulation tool and models, 

analogous to the ones presented in the previous chapter (Table 2), and results obtained 

using the real hardware in a physical environment (Table 3). 

 

  

  
Figure 53. Mobile platform used for field testing and its equivalent simulated model in the framework 
 

4.4.2.2 Time Performance Analysis of the Navigation Strategy 
 

The porting process has consisted on four main steps: 1) adaptation of the hardware 

abstraction layer; 2) replication of the runtime environment in the onboard computer, to 

execute the navigation system in the robot; 3) system and parameters configuration and 4) 

algorithms’ adaptations to the real operational conditions, filling the gap between the 

simulated and the real world.  

151 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

Adapting the hardware abstraction layer implies including and developing the necessary 

drivers to manage the concrete underlying hardware and robot’s devices so that the porting 

is a transparent process to the higher-level software, which remains unaware. For the 

replication of the runtime environment, as the development host and the robot onboard PC 

have both an equivalent operative system, based on Linux, the porting process has been 

greatly simplified, just taking the binaries and the right version of the required dynamic 

libraries and dependencies. In case they were different systems, the source code shall be 

specifically adapted and recompiled to use the libraries and services provided by the target 

platform. Once the navigation system has been ported to the target platform, the robot 

mechanical description –body and wheels’ size, clearance, camera fixing position, and other 

parameters have to be adjusted, as well as mission, operational and safety constrains, 

including perception, mapping, path planning and navigation parameters. 

 

Finally, although a given algorithm may work reasonably well in simulation, it may fail or 

produce incorrect results under real conditions and may need to be adapted. The most 

critical points of the system are the processes handling data coming from sensors, which are 

the interfaces with the external world. Unless purposely designed, simulated sensors tend to 

deliver perfect, error-free data; that is almost never the case when working with real devices. 

In this case, the main and more complex source of data is the stereo camera; the stereo vision 

process is critical as perception is the entry point to the internal rover computations. It 

determines the quality of the data obtained from the environment, used to create and update 

the world map, which directly influences the path planning process and ultimately the whole 

rover navigation capabilities; once the pair of images has been obtained and processed, the 

subsequent processes perform mostly derivations and transformations of this input, so it is a 

critical piece the rest of the system depends on. 

 

Images from real stereo vision systems can be slightly misaligned, due to the visual system 

mechanical configuration, as well as differences between images of the pair usually appear 

due to the different characteristics of each optic, illumination effects, focus and shutter 

settings on each lens. None of these effects are typically present in synthetic images. Figure 

66 shows a pair of stereo-images taken with the onboard camera, where some illumination 

differences can be appreciated between them. It can be seen the algorithm finds a small 

152 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

number of correspondences, insufficient for a quality 3D terrain reconstruction and 

mapping. After some tests with the physical robot and devices, it was determined some 

adaptations to the stereo matching algorithm were necessary to handle these issues. Details 

on the analysis, algorithms’ adaptations carried out and obtained results can be found in 

(Correal et al., 2013), and will be addressed more deeply in following chapters. In advance, it 

can be said these adaptations have consisted basically in using a different matching 

algorithm, the semi-global block-matching, and the implementation of a series of processes 

to manipulate the input images and filter the obtained correspondences, such as the 

homomorphic filtering, histogram matching and clustering filter, described in detail in 

chapter 6. The results can be observed in Figure 66(d), where a much higher number of 

matches are obtained for the same images. These results are systematically extrapolated to 

the whole set of images obtained during the field testing campaign. This was actually the 

main issue encountered when ported the system from the simulated to the real world. The 

subsequent processes involved in the rover’s navigation, like map building/merging or path 

planning, needed no further adaptations other than adapting the configuration parameters 

according to the real platform and operational conditions such as chassis measures, planning 

and navigation distances, security thresholds or camera’s focal length, resolution and stereo 

base, as they depend on the data obtained from the perception module. 

 
Table 3. Computing time on a PC104 AMD LX800, 500 MHz. 

Function 
Computing 

time  

Stereo matching 29.25-29.45 s 
 Disparity filtering 1.02-1.16 s 

Computing 3D points 3.66-3.85 s 
 Reprojection 2.15-2.95 ms 
Height map construction 460-560 ms 

Height map interpolation 120-130 ms 
Height map updating < 10 ms 

Merge height maps < 10 ms 
Path planning process 440-610 ms 

 

Table 3 shows processes’ computing time obtained from the set of field testing experiments 

executed on the robot’s onboard processor. Same perception, mapping and navigation 

153 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

parameters have been used in simulation tests. It can be observed that processes take about 

one order of magnitude higher than when executed on the development PC, shown in Table 

2. It is due to the constrained processing capabilities of the robot’s onboard computer. 

However, it is comparable to the hardware used for planetary missions. As introduced 

before, in the space domain only certified hardware can be employed onboard spacecrafts, 

where resources are considerably constrained compared to common desktop computers; it 

is actually like using hardware from a decade ago or so. 

 

The stereo process is the most demanding one; it is actually a bottleneck of the system. 

Besides the limited computing resources, processing real images makes finding matches 

harder, given the influence of illumination, optics’ differences, misalignments, lack of 

homogeneity and texture richness, increasing the processing time in contrast to using 

synthetic generated images. To give some context to these numbers, they can be compared 

with the ones obtained from the NASA MER mission, focusing in the stereo correlation 

process, which is the most demanding and critical one. A simple stereo correspondence 

approach, a block matching algorithm based on sum of absolute differences with 7x7 

windows, was employed by NASA. They downsample images to 256x256 and the algorithm 

takes about 30 seconds to compute; while the same algorithm runs at 30 Hz for 320×240 

disparity maps on a 1.4 GHz Pentium M in other applications (Matthies et al., 2007). This is 

the same approach initially implemented to process simulated images, described in section 

4.3.1 Perception Subsystem, later discarded in favor of a more sophisticated algorithm, the 

semi-global block-matching, Figure 66(d). In this case, a processing time close to 30 seconds 

was obtained in the onboard robot CPU, shown in Table 3. Within this time a series of filters 

purposely developed to enhance the results, both before and after the correspondence 

process, are also executed (Correal et al., 2013). Besides the higher number of 

correspondences obtained because of the algorithm itself, images are not downsampled, 

using the full 640x480 size, obtaining even more matches. 256x256 images can produce 

65,536 potential matches, while 640x480 images contain 307,200 pixels. It results in a much 

more complete and correct 3D terrain reconstruction, increasing mission safety and having 

an important impact on the subsequent path planning process. 

 

154 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

To put in relation the processing times obtained from the robot used in the field experiments 

and check the applicability of the navigation strategy to real operational settings, Table 4 

shows computing power of several CPUs and boards used in these experiments as well as 

processors used in previous and prospected planetary mission. MIPS (Million of Instructions 

Per Second) are used as a measure for comparison. Algorithms were initially tested in 

simulation in a desktop computer, a PC Intel Core2 1.86 GHz. processor (1 Gb. RAM, 4 Mb. 

cache size, 1066 MHz. bus speed), obtaining the measures shown in Table 2. The MR7 rover 

used in field testing experiments, shown in Figure 53, includes a PM-LX 800 board (1 Gb. 

RAM, 128 Kb. cache size, 400 MT/s memory bus speed), obtaining the processing times 

shown in Table 3. The robot is currently being updated to use a PCM-3363 board with a 

higher computing power; preliminary tests show the stereo matching algorithm that takes 

about 30 s in the current onboard computer, is executed in this new board in around 1 

second. 

 
Table 4. CPUs’ computing power employed in experiments and space missions 

Robot/Board CPU MIPS 
MER Rover BAE RAD6000 (up to 25MHz) 35 

Curiosity Rover BAE RAD750 (up to 200MHz) 400 
MR7 Rover AMD LX800 500 MHz 1000 
PCM-3363 Atom D525 Dual Core 1.8 GHz 4500 

Exomars Rover ??? >1000 
 

Increasingly higher computing capabilities are expected for future space missions. For the 

next Exomars mission the rover’s onboard computer requirements is currently being 

analyzed; no concrete data is yet available but Thales Alenia Space, the main contractor, 

indicated a significant computational performance will be required, suggesting onboard 

computer power of at least 1000 MIPS. NASA just announced plans for a robust multi-year 

Mars program, including a new robotic science rover based on the Mars Science Laboratory 

(MSL) architecture set to launch in 2020; no data are yet available regarding computing 

power requirements. 

 

There are alternatives to increase computing power. A promising line is exploiting flight 

qualified field programmable gate arrays (FPGAs) as computing elements. To increase speed 

155 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

further, the most time-consuming vision functions, like the SAD algorithm for stereo vision, 

can be moved into the FPGA logic. The implementation can been designed to be highly 

parallel and pipelined. It considerably reduces the computation time while improving the 

quality of disparity data allowing developing more sophisticated approaches and algorithms 

that can reduce noise, improving performance at occluding boundaries, reducing pixel 

locking, and attempting to learn predicting slippage ahead of the vehicle by regressing past 

slippage experience against the visual appearance of the terrain. Actually, JPL is developing a 

new flight computing system, called the Mobility Avionics Module (MAM), around the Xilinx 

Virtex-II Pro FPGA as the main computing element (Matthies et al., 2007). This FPGA 

includes PowerPC 405 (PPC405) processor hard cores that can be clocked at up to 300 MHz; 

the rest of the FPGA logic can be clocked at approximately 100 MHz. Initial tests show the 

entire stereo process, together with running rectification, pre-filtering and triangulation on 

the PPC405 takes 250 ms/frame. This is a vast speed-up over the MER flight processor 

capabilities. 

 

4.4.2.3 Path Planning and Navigation Performance 
 

In a set of 40 field testing experiments carried out using the mobile platform shown in Figure 

53, the rover was placed at different random locations within the environment, containing 

rocks and obstacles. For each test, the rover is commanded a target position, as a relative 

displacement from its current location. In these experiments displacements are between 10-

15 m ahead and ±5 m right/left. On each test, the rover tries to reach the commanded target 

position exploring the environment and computing suitable sub-trajectories, choosing 

among a set of candidate paths on each cycle. The process is the one described in section 

4.3.4 Navigation, where each cycle consists in: a) perception; b) mapping updating; c) path 

planning; d) navigation to an intermediate target point. Thus, a set of cycles are required 

before the final position is reached. Regarding the results, both the global positioning error 

and the errors at each cycle have been analyzed. Figure 54 shows the global position errors 

for the set of experiments. Results obtained indicate the rover reaches its final target location 

with an average positioning error of 0.84 m and a standard deviation of 0.07 m. No 

orientation error is computed as the rover is commanded to reach a certain position, but 

156 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

without any specific orientation. Regarding the errors measured along the path, the average 

positioning error on each cycle is 0.08 m with a standard deviation of 0.007 m and an 

orientation error of 0.07 rad with a 0.006 rad of deviation (with a configured navigation 

distance of 1 m). These errors have been computed comparing rover positioning with 

ground-truth data, by measuring locations and rover’s position using a laser telemeter, 

which has 1 mm. of accuracy. 

 

Regarding global positioning errors, sensors are expected to provide a reasonably accurate 

estimate of the rover’s new position. Following the same approach JPL did for their Mars 

rovers (Goldberg et al., 2002), an exploratory strategy based on the computation of 

candidates paths does not require that the rover motion exactly match that which was 

commanded, but it does assume that wherever the rover ended up, its relative position and 

orientation can be reasonably inferred and provided as input. Based on the results above and 

this reasoning, it can be inferred the navigation approach performs as expected, which 

allows validating the strategy and the proposed framework. 

 

 
Figure 54. Positioning error at target location from navigation tests, average error and standard 

deviation 
 
 

 

 

157 
 



Chapter 4: AUTONOMY FOR PLANETARY EXPLORATION ROVERS  
 

 

158 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
 

Chapter 5 
 

 

THE PERCEPTION PHASE WITHIN THE AUTONOMOUS 
NAVIGATION PROCESS. A TESTBED FOR STEREO VISION 

ALGORITHMS 
 

 

The perception phase within a robot’s autonomous navigation system is a 
crucial step. It greatly influences the subsequent mapping and path planning 
phases, and therefore the whole navigation process as well as its safety and 
effectiveness. In the case of this work, perception is based on a stereo vision 
system. Some problems have been experienced working with this system; 
specifically noted when porting the algorithms from the simulated to the real 
world, as introduced in the Field Testing section in the previous chapter. This 
fact is detailed, as well as the characteristics of a tool specifically designed 
and built to address this problem: a testbed that aims to centralize and 
standardize the broad range and heterogeneity of existing stereo matching 
approaches, focusing in its application to real situations. It allows for 
configuring and executing algorithms, as well as comparing results, in a fast, 
easy and friendly setting. Algorithms can be combined so that a series of 
processes can be chained and executed consecutively, using the output of a 
process as input for other; additional filtering and image processing 
techniques have been included within the testbed for this purpose, such as 
homomorphic filtering, histogram matching and clustering filter, explained in 
detail in subsequent chapters. The testbed has been conceived as a 
collaborative and incremental open-source project, where its code is 
accessible and modifiable, with the objective of receiving contributions and 
release future versions to include new algorithms and features. It is actually 
available online for the research community; it counts a thousand downloads 
already. The usage of the testbed and its utility and application to a real 
problem is detailed in the form of use cases and experiments; it is illustrated 
how the testbed aided in the problem of porting the system from simulated to 
real settings, demonstrating its utility and usability. It has been crucial to 
support the developments and achievements presented in this thesis; a 
necessary resource that constitutes a contribution itself. 

159 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

5.1 Stereoscopic Vision 
 

In the domain of robotic autonomous navigation in natural, rough terrain and planetary 

rovers for space exploration, one of the most important features is 3D perception and terrain 

reconstruction for path planning and navigation.  

 

Machine vision is an excellent sensor, widely used for a multitude of different applications. 

Concretely, stereoscopic vision has been widely used in many autonomous navigation 

approaches and space missions so far for 3D scene reconstruction. It is a mechanism to 

obtain depth or range data based on images. This process is similar to human binocular 

vision and our intuitive perception of depth, where the farther the objects are in the scene 

the less their position change when closing our eyes alternately. A similar principle happens 

in stereo vision: objects lying more far away correspondingly have a small difference, or 

disparity, between the images of the stereo pair.  

 

According to Barnard and Fishler (1982) or Cochran and Medioni (1992) the classical 

problem of stereo analysis consists mainly of the following steps: image acquisition, camera 

modeling, feature extraction, image matching and depth determination. Of these, the 

matching process is the key step, described below. 

 

To do that, the system consists of two cameras separated by a given distance, base-line (b), 

see Figure 55, so that two differing views of a scene are obtained, similar to human binocular 

vision. This pair of images is the input to the matching process; it is the process of identifying 

features in both images and compute the difference in position of that set of features or 

pixels from one image relative to the other, usually along the horizontal axis, obtaining a set 

of correspondences or disparities. Disparity is defined as the subtraction, from the left image 

to the right image, of the 2D coordinates of corresponding points in image space. 

 

160 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Figure 55. Stereo system of parallel axes. (x0, y0) and (x0’, y0’) are the images central points and (x, y) 

and (x’, y’) the coordinates of point P in each image of the pair (Bhatti, 2012) 
 

As a result of the matching process, relative depth information is obtained, which are 

inversely proportional to distance to objects. Since depth is inversely proportional to 

disparity, there is obviously a nonlinear relationship between these two terms. When 

disparity is near 0, small disparity differences make for large depth differences. When 

disparity is large, small disparity differences do not change the depth by much. The 

consequence is that stereo vision systems have high depth resolution only for objects 

relatively near the camera, see Figure 56. 

 

 
Figure 56. Depth and disparity are inversely related, so fine-grain depth measurement is restricted to 

nearby objects 

161 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

Depth can be established by triangulation of the obtained disparities, provided that the 

position of centers of projection, the focal length and the orientation of the optical axis are 

known. Focal length, usually represented in millimeters (mm), is the basic description of a 

photographic lens. It is not a measurement of the actual length of a lens, but a calculation of 

an optical distance from the point where light rays converge to form a sharp image of an 

object to the digital sensor or 35mm film at the focal plane in the camera. The focal length of 

a lens is determined when the lens is focused at infinity. The focal length tells the angle of 

view—how much of the scene will be captured—and the magnification—how large 

individual elements will be. The longer the focal length, the narrower the angle of view and 

the higher the magnification. The shorter the focal length, the wider the angle of view and the 

lower the magnification. The line from the camera center perpendicular to the image plane is 

called the principal axis or optical axis of the camera. The plane parallel to the image plane 

containing the optical center is called the principal plane or focal plane of the camera. The 

relationship between the 3D coordinates of a scene point and the coordinates of its 

projection onto the image plane is described by the central or perspective projection. 

 

Therefore, the point's coordinates in the camera system reference can be computed as (X’, Y’, 

Z) for the first camera and (X. Y, Z) for the second. It can be calculated how far away the 

matched point is (depth Z) by derivation of the next expression: 

 

Z
Xfx ''=⋅γ

     Z
Xfx =⋅γ

 
(79) 

 

)'(
)'(

xx
XXfZ

−
−

=
γ  

(80) 

 

knowing the camera intrinsic parameters: focal length (f), camera baseline (b), and pixel 

dimension γ. 

 

 

162 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

5.2 Background 
 

As introduced in the previous chapter, a visual-based autonomous navigation software that 

allows a robot to move safely through an unknown terrain has been designed and created 

(Correal and Pajares, 2011b). It uses stereo cameras mounted on the robot and builds a map 

of the environment as a result of a series of computations performed on the input images, 

described with more detail below. 

 

In the initial phases of the development of the autonomous navigation software, when there 

wasn’t any vehicle available, it was emulated using the simulation capabilities of the 

framework, where vehicles and terrains were replicated. Images of simulated terrains were 

captured from simulated cameras. Several stereo algorithms were evaluated to produce the 

disparity maps of those images. The stereo vision process was based in the Block-Matching 

(BM) algorithm (Konolige, 1997b). It produced very satisfactory results, finding almost 

100% of the potential matches. Figure 57 shows an example of synthetically generated 

images from the simulator and the disparity map obtained using this algorithm. 

 

  

  
Figure 57. Synthetic stereo images obtained from the simulated environment and disparities map 

computed with the BM algorithm. Right side bar represents disparity values (maximum: 64 pixels) 

163 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

The problem arose when the navigation software was ported to a real robot, equipped with a 

stereoscopic system of parallel optical axes Videre STH-DCSG-9 color 640x480, with two 

3mm lenses. The same algorithm that obtained very satisfactory results with the synthetic 

images did not performed so well with the real ones. This was detected during the field 

testing phase, as indicated in the corresponding section of the previous chapter. Figure 58 

shows a pair of real images obtained with this system and the disparity map the BM 

algorithm produces. 

 

  

  
Figure 58. Disparities computed with the BM algorithm applied to real images 

 

The pair of images shown in the previous Figure 58 contains 370,200 pixels, and 157,049 of 

them have potential matches; the other pixels belong to remote areas with no computable 

disparity, like the sky. The BM algorithm is able to find 57,598 correspondences, 

representing 36.68% of the total possible matches, see Figure 59. This results in a poor 3D 

reconstruction of the environment, producing a map with large empty areas, where accurate 

trajectories for robot navigation cannot be computed. This problem appears systematically 

in all stereo pairs analyzed from the real system, due to some factors present in the real 

world that do not occur in simulation, such as the different response from the camera 

164 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

sensors to the light from the scene; it produces different intensity levels, critically affecting 

the disparity computation. Therefore, some other algorithm has to be employed. 

 

 
Figure 59. Disparities computed by the BM algorithm 

 

A thoughtful analysis of available literature and existing stereo matching algorithms must be 

made in order to verify if there is any existing algorithm able to fulfill the requirements. It 

has been identified this situation happens recurrently; whenever the nature of the input 

images, the camera manufacturer or the operational conditions change the results are highly 

affected, and it is required to adapt the algorithms and its parameters or even design a new 

solution and implement a brand new and different approach and algorithm. 

 

Actually, an analogous analysis process was already performed in previous phases when 

algorithms to process the synthetically generated images from the simulator were studied to 

be incorporated into the perception subsystem, described in section 4.3.1 Perception 

Subsystem, for the planetary exploration rover. As a result, the BM algorithm was selected 

then for implementation and included within this rover’s autonomous navigation system, 

obtaining quite good results, see Figure 57. Now, this analysis must be repeated again to 

identify a suitable algorithm to process real images. 

 

In accomplishing such a task, analyzing available literature and resources, some problems 

have to be faced: algorithms are implemented in different languages, input/output formats 

165 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

differ from one to another, tuning parameters requires often recompilation, etc. what slows 

down the process. This is that has motivated the design of a stereo testbed, described in this 

chapter, and where it provides a real advantage. As detailed next, it allows testing many 

different algorithms, easily tuning its parameters and comparing results in a very short time 

with just a few clicks, saving lots of time. The performance of the algorithms included within 

the testbed can be checked without the need to write any code, avoiding unnecessary efforts. 

This will facilitate the task of choosing a particular algorithm for stereovision when required, 

e.g.: for inclusion in the architecture proposed in the previous chapter. 

 

5.2.1 Revision of Methods 
 

Stereo vision is a heavily researched field; a vast amount of published literature and a wide 

range of algorithms, techniques, implementations and libraries are available (Scharstein and 

Szeliski, 2002; Tombari et al., 2011). However, there is no single approach that could be 

considered the best one, able to solve every possible problem. Usually, each technique is 

suitable for a set of conditions but not for others. 

 

A review of the state of the art in stereo matching allows us to distinguish two main classes 

of techniques: feature-based (sparse) and area-based (dense) methods (Ozanian, 1995). 

Feature-based methods use sets of pixels with similar attributes, picking out feature points 

of high distinctiveness, either pixels belonging to edges (Grimson, 1985) or the 

corresponding edges themselves (Ayache and Feverjon, 1987); leading to a sparse depth 

map used mainly for object segmentation and recognition, sometimes reconstructing the rest 

of the surface by interpolation (Pajares et al., 2000a; Pajares and Cruz, 2006). Examples of 

feature-based approaches are SIFT (Scale-Invariant Feature Transform) or FAST (Features 

from Accelerated Segment Test). Area-based stereo algorithms are used instead to find 

matches for all points in the images; they use correlation between brightness (intensity) 

patterns in the local neighborhood of a pixel in one image with respect to the other (Baker, 

1982); the number of possible matches is intrinsically high. These methods are useful if the 

system needs to recover the detailed geometry of the scene, in order to facilitate obstacle 

166 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

avoidance or object recognition. The work presented in this thesis is devoted solely to this 

last approach. 

 

For any project that uses stereo vision, there is usually a set of requirements to be met. The 

first step is to analyze the state of the art, verify if there is already any algorithm or 

technique fulfilling the needs and to what extent. In case there is not any, a new strategy has 

to be developed, either from scratch or based on previous developments and existing 

approaches. This evaluation phase is not trivial at all. Given the range of available resources 

and literature, it is necessary to make a considerable effort to analyze and determine what 

strategy may fit each concrete set of requirements. This becomes especially crucial when 

stereo-based techniques are to be applied to real situations. Several problems arise when 

theoretical methods or strategies are to be investigated for posterior application in real 

scenarios. This chapter analyses such problems and provides a testbed for solving them. 

 

One of the difficulties is checking the availability of a suitable implementation. Many 

algorithms and techniques are outlined within the published literatures, described in more 

or less detail depending on each publication; sometimes the level of detail covered is enough 

to implement it using any programming language, but sometimes it is not. There exist also 

some online sites containing stereo vision algorithms; in some cases they are available to be 

downloaded just in binary format, which may require a concrete platform such as Linux, 

Windows or any other system. In other cases source code access may be granted, finding 

algorithms implemented in C/C++, Java, Matlab or any other language, requiring compilation 

before using it. There are a series of computer vision libraries in a variety of languages, 

where some code has to be written to make use of them. This heterogeneity in the available 

resources and the lack of standardization makes the state of the art analysis, algorithms 

evaluation and comparison a hard, complicated and time consuming task. Therefore, it is 

crucial to establish a common framework where this broad spectrum of heterogeneous 

resources could be put together facilitating its analysis and comparison, and where they can 

be integrated to obtain even more sophisticated approaches. 

 

A previous work in classification and characterization of stereo correspondence algorithms 

was made at Middlebury College by (Scharstein and Szeliski, 2002), where the authors 

167 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

presented a taxonomy of two-frame dense methods. They developed a stand-alone software 

containing some representative stereo algorithms implemented in C++ and a collection of 

multi-frame data sets. Despite the fact that it is a very interesting, useful approach and a 

reference work in the field, it presents some significant drawbacks. The source code has to 

be compiled by the user, which is not a trivial step. As the authors point out, while it is still 

being maintained, it does not represent an implementation of state of the art stereo methods. 

Also, in case a new algorithm is to be added in the future, as new approaches are constantly 

coming up, the internal software structure should be analyzed to understand where to 

properly insert it and the interdependencies with other modules, and recompile all together 

again. As the authors point out, there is no documentation provided beyond the comments 

embedded in the source code, what may be challenging for non-expert users. In addition, it 

does not allow including algorithms developed in different languages; despite many available 

algorithms are implemented in C++, there are also a large amount of resources developed 

using other technologies such as Java or Matlab. In this case, just C++ code can be integrated. 

Finally, given the lack of a graphical user interface, they proposed a sophisticated mechanism 

for specifying parameter values and input images that supports recursive script files, which 

syntax is not trivial. New scripts shall be created in case additional algorithms or images are 

included in a predefined structure of directories. Results are stored in text files, lacking of 

any graphical representation. 

 

5.3 Stereo Testbed 
 

This section describes the design and implementation experience of an open-source testbed 

to centralize, standardize and facilitate the evaluation, functional analysis and comparison of 

heterogeneous stereo vision matching algorithms. It allows the integration of different 

approaches and algorithms, both existing and forthcoming ones, developed by different 

authors in diverse languages, together under a common testbed representing a new 

approach in relation to previous works in the field. Additionally, this testbed includes a set of 

pre and post-filtering processes in order to correct problems derived from the illumination 

conditions in outdoor environments and remove spurious matched pixels, both representing 

important contributions. 

168 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Some other contributions of the presented testbed to the computer vision community with 

respect to previous related works cited above are: 

 

• Portability, as the testbed is architecture and operative system independent. 

• Openness of source code allowing analysis of algorithms and adaptations. 

• Scalability of the system to incorporate new published algorithms and contributions 

in a collaborative and incremental approach. 

• Flexibility in the inclusion of these algorithms in different programming languages. 

• Use of diverse image formats. 

• Graphical interface for friendly interaction and configuration of tests and algorithms. 

• Graphical presentation of results. 

 

This is intended with the aim of providing an efficient tool to apply stereovision-based 

strategies in real applications with high degree of efficiency and accuracy. Researches and 

developers will find a useful tool to guarantee the success and progress of their works when 

stereo-vision based methods are to be applied. This makes the main contribution of this 

work with a high content of applicability. The first version of this stereo testbed is already 

available online (Correal, 2012), and have had one thousand downloads up to now, denoting 

a strong interest by the research community. 

 

5.3.1 Requirements 
 

The main objective of the testbed is to focus on the problems of distribution of resources and 

lack of standardization, centralizing heterogeneous resources under a common framework. 

It purports to serve as a starting point, bringing different algorithms and approaches 

together in an organized way, facilitating its analysis, evaluation and comparison of results 

and reducing the necessary effort. The lack of standardization is one of the main issues. 

Implementations of some of the algorithms proposed in the literature can be found, however 

they are written in different languages and for different platforms, making its evaluation 

hard and time consuming. For that reason, this testbed aims to serve as a common platform 

to integrate such a variety, being language and platform transparent. 

169 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

To allow algorithms and processes to interface with each other, inputs and outputs must be 

standardized, so that results from some processes can be used as inputs for others. It eases 

also the evaluation and comparison of algorithms by presenting results from different 

approaches in a common format, such as disparities obtained, right and wrong matches or 

processing time. The testbed shall support working with images in several formats (e.g.: jpg, 

bmp, png, pnm, etc), to use them as input for the algorithms, including and managing them in 

a straightforward way. It allows several algorithms to be compared using the same input 

images or a given algorithm to be tested using different images. Ideally each stereo pair 

would include ground truth information to verify the obtained results with trustworthy data, 

although this shall not be a requirement as this data is not always available. 

 

Given the parametric nature of the stereo matching process and the large amount and 

variety of algorithms that can be included in the testbed, the algorithms selection and its 

configuration shall be done in an easy and straightforward way. This is important for testing 

purposes, as algorithms’ parameters have to be frequently adjusted, given they critically 

influence the result and performance. There shall be no need to get into the source code for 

parameters definition or to modify its values, as it would require to recompile, implying a 

considerable effort to analyze and understand the code. Ideally it shall provide a graphical 

interface, both for configuration and presentation of results, avoiding the use of scripts and 

input/output text mode. 

 

As researchers in the stereo vision community work in heterogeneity of platforms; the 

testbed shall be easily portable, capable of work in a multitude of systems, ideally avoiding 

recompilation of sources, which is often a challenge, achieving the highest possible degree of 

platform independency and portability. Regarding source code, although C++ is the dominant 

language for computer vision algorithms, many researchers use languages such as Java or 

Matlab to implement their works. The testbed shall allow for the inclusion of these 

heterogeneous resources without requiring to rewrite them in any other language, taking 

advantage of the work already done; it ease the necessary effort to integrate new resources 

into the testbed and allow to concentrate efforts in its evaluation instead. It leads to a core 

requirement of the testbed, which is openness. Researchers may have access to the sources 

of the algorithms included on it to extend or adapt any piece of code to each concrete needs, 

170 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

as well as to include new algorithms and processes. However, it shall be also possible to 

include resources in a closed form, such as libraries or compiled code, for cases where an 

author decides not to release its code or they are just not allowed to do it. 

 

The testbed is expected to be a dynamic and evolutionary platform growing over time, in a 

collaborative and incremental development, releasing new and more sophisticated versions 

periodically including more algorithms and capabilities. For that reason, besides the 

capability of including new algorithms on a given local copy of the testbed, there shall be 

means to contribute with new resources to be included in subsequent releases. 

 

5.3.2 Design 
 

After a thoughtful analysis, Matlab has been chosen as the development platform to build up 

the testbed, as it allows meeting the set of requirements introduced in the previous section. 

Matlab is a well-known programming environment for algorithm development, data analysis, 

visualization and numerical computation. It is widely used in academic, research institutions 

and industrial enterprises, with a large community of users and a broad range of specific 

packages and toolboxes that help to reduce considerably the development efforts. 

 

Regarding the requirement of addressing the heterogeneity of available resources, Matlab 

allows interfacing with programs written in other languages, such as C, C++, Java and 

Fortran, avoiding the need to rewrite them. Currently, there is a large number of stereo 

vision algorithms available implemented in C++. However, the number of stereo and 

computer vision resources available for the Matlab community is growing, as every day more 

researchers implement their algorithms directly using Matlab code. Computer vision 

libraries, such as the well-known OpenCV (Bradski and Kaehler, 2008) can be also interfaced 

with Matlab. It also allows addressing the fact the research community works in 

heterogeneity of platforms as there exist Matlab versions for different platforms such as 

Windows, Linux and Mac, so the stereo testbed and the algorithms included on it are easily 

portable, and capable of executing in a multitude of systems, avoiding recompilation of 

sources and meeting the transparency and OS independency requirements. 

171 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

The testbed code itself is open and accessible, as it has been developed using Matlab code, as 

well as most of the algorithms included in the testbed, meeting the openness requirement, so 

they can both be extended and adapted to each concrete needs. But it allows also for the 

inclusion of resources in closed-source, as libraries or compiled files, using MEX-files -Matlab 

Executable. They are dynamically linked subroutines produced from C, C++ or Fortran that, 

when compiled, can be run from within Matlab in the same way as .m files -open source files- 

or built-in functions. Besides protecting the source code when access to it is not allowed, this 

format is more efficient, as these files execute much faster than interpret code. Although the 

speed of the stereo process is usually crucial and it is known code executed from Matlab is 

slower than native languages like C/C++, even for MEX-compiled files, it is important to 

emphasize the main focus of the presented stereo tested is not to include or evaluate the 

most efficient or real-time algorithmic implementation. In contrast, it is to facilitate the 

functional analysis of algorithms, checking performance and validating approaches, saving 

the effort of implementing algorithms just to test how they work. Once a concrete algorithm 

or process has been identified as functionally appropriate for a given set of requirements, 

efforts can be focused in coding just that one and in the most efficient way. There exist 

multiple approaches to optimize algorithms for embedded and real-time systems such as 

using low level languages -C, assembler-, using multi-processor boards for parallel 

computing or coding the algorithm in a FPGA (Darabiha et al., 2006; Lim et al., 2012). 

 

Inputs and outputs have been standardized to ease algorithms integration with the testbed 

and to interface processes with each other. As introduced before, besides the stereo 

matching algorithms, the testbed includes a set of pre and post-filtering processes to correct 

problems derived from the illumination conditions and remove spurious matched pixels. 

Input to any matching algorithm has been established as a pair of stereo images and a 

structure with corresponding parameters’ values, while the expected output is a disparity 

matrix. Any process or filter applicable prior to the matching step receive the stereo pair and 

parameters as input and return the same pair of images modified according to each process’ 

functionality; post-filters take the disparities matrix computed in the matching process and 

return the improved and enhanced results, also as a disparities matrix. 

 

172 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

To include any given algorithm within the testbed it does not require an intimate 

understanding of the algorithm. Actually it can be used as a black box. The only requirement 

is to adapt the parameters of the algorithm, generally by creating a wrapper, to transform 

the standardized inputs from the testbed described above to the format required by the 

concrete algorithm and the equivalent for the outputs. This standardization mechanism 

allows not just an easy integration of algorithms with the testbed but the possibility to 

interface with each other and chain processes. The only steps left are the inclusions of the 

algorithm in the appropriate list within the user interface, described below, include its call in 

the testbed code and add a graphical panel to tune its parameters, if any. Places in code to 

accomplish these steps are localized and details are clearly indicated within the testbed 

source code. Anyway, as indicated in the requirements section, new algorithms can be sent to 

the maintainers of the project for its inclusion in future versions. Once an algorithm has been 

integrated into the testbed, just a few clicks are necessary to select, configure and execute it. 

 

 
Figure 60. Stereo Testbed user interface 

 

173 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

To meet the requirement of creating a friendly user interface, the Matlab Graphical User 

Interface Development Environment –GUIDE- has been employed. It includes common 

components such as textboxes, labels, lists, radio/check buttons and panel, allowing the user 

to easily select, configure and execute any of the algorithms included. A series of contextual 

panels are presented to the user to set parameters’ values in a straightforward way, avoiding 

any source code recompilation to adjust these values. Figure 60 shows the testbed graphical 

user interface. 

 

Processes are organized in three categories within the user interface: pre-filters, matching 

algorithms and post-filters. Pre-filters refer to processes performed on the images before 

executing the matching algorithm, like adjusting images’ intensities. The algorithms list 

includes the set of stereo matching algorithms available within the current version of the 

testbed. Processes listed in the post-filters list check the computed disparities and filter out 

wrong matches, improving and optimizing results. To set a chain of processes, each one is 

selected and configured independently. Once an algorithm has been selected from its list, its 

parameters, if any, are displayed within the graphical interface along with its default values, 

so they can be tuned to be adapted to the input images and application. It is then introduced 

in the Processes list, which contains the chain of algorithms to be executed so far. The order 

of execution and parameters of any process can be modified at any time using the 

appropriate controls within the user interface. Also, processes can be removed and included 

in the execution chain at any time, easily checking how it affects the whole process. 

 

Input images can be loaded from a standard open dialog box, either from the datasets 

provided with the testbed or from anywhere in the system or external devices. As required, 

many different formats are supported: bmp, gif, jpg, pbm, pcx, pgm, png, pnm, ppm and tiff 

among others. Ground truth information can be optionally specified and loaded if available; 

it is actually an image representing real disparities. Ground-truth data, although not 

mandatory, is very useful for algorithms evaluation. After an algorithm is executed, the 

testbed reports the total number of potential matches, the number of right, wrong, false and 

missed correspondences obtained according to this ground truth data, both in absolute 

values and percentages. Final results and intermediate products are displayed as images, 

graphs or messages in console, including information such as the number of 

174 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

correspondences found, number of right, wrong and missed matches or execution time, 

easily comparing results from different algorithms; extended information is presented in 

case ground truth data is available. 

 

5.3.3 Integrating Algorithms within the Testbed 
 

For the first version of the testbed, a number of stereo matching algorithms and some 

additional image processes have been included. From the two approaches for stereo 

algorithms introduced previously, this work focuses on the area-based (dense) methods, 

given its applicability to this research domain, which is robotic autonomous navigation in 

outdoor terrains. However, the same approach is valid for featured-based and other stereo 

algorithms. They are listed below, as mentioned before, grouped in three categories: pre-

filters, processes executed on the input images, matching algorithms, the actual correlation, 

matching algorithms, and post-filters, processes that filter out wrong matches and improve 

results, as well as a series of datasets for testing purposes. 

 

Pre-filters: 

 

• Homomorphic filtering (Gonzalez and Woods, 2008; Pajares and Cruz, 2007): based 

on the assumption that images can be expressed as the product of illumination and 

reflectance components. Illumination is associated with low frequencies of the 

Fourier transform and reflectance with high frequencies. Thanks to the product and 

applying logarithms followed by high pass filtering, illumination component can be 

eliminated. This allows retain only the reflectance associated with intrinsic 

properties of the objects in the scene. In this implementation there are two different 

filters available: a Butterworth High Pass (Butterworth, 1930) and a Gaussian filters. 

They can be applied in the RGB o HSV color models. 

• Histogram Matching (Jensen, 1982; Gonzalez and Wintz, 1987): normalizes the 

images of the stereo pair, adjusting the color distribution of one image with respect 

to the other. It can be performed in the grayscale, RGB o HSV color models. 

175 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

• Adjust image intensity: adjust the intensity values such that 1% of data is saturated 

at low and high intensities, increasing the contrast of each image of the stereo pair. 

 

Matching algorithms: 

 

• Sum of Absolute Differences, SAD (Barnea and Silverman, 1972): a classical 

approach. It measures similarity between image blocks by taking the absolute 

difference between each pixel in the original block and the corresponding pixel in the 

block being used for comparison. These differences are summed to create a simple 

metric of block similarity. In this implementation, three similarity measures can be 

applied: SAD, zero-mean SAD or locally scaled SAD. 

• Sum of Squared Differences, SSD (Shirai, 1987): measures similarity between image 

blocks by squaring the differences between each pixel in the original block and the 

corresponding pixel in the block being used for comparison. In this implementation, 

three similarity measures can be applied: SSD, zero-mean SSD or locally scaled SSD. 

• Normalized Cross Correlation, NCC (Faugeras and Keriven, 1998): a common 

matching technique to tolerate radiometric differences between stereo images. In 

this implementation, two similarity measures can be applied: NCC or zero-mean NCC. 

• 3D Stereo Disparity (Lankton, 2007): estimates pixel disparity by sliding an image 

over another one used as a reference, subtracting their intensity values and gradient 

information (spatial derivatives). It also performs a post filtering phase, segmenting 

the reference image using a “Mean Shift Segmentation” technique, creating clusters 

with the same disparity value, computed as the median disparity of all the pixels 

within that segment. 

• Region Based Stereo Matching (Alagoz, 2008): provides two different algorithms 

based on region growing: a) Global Error Energy Minimization by Smoothing 

Functions method, using a block-matching technique to construct an Error Energy 

matrix for every disparity found and b) Line Growing method, locating starting 

points from which regions will grow and then expanding them according to a 

predefined rule. 

176 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

• Stereo Matching (Ogale and Aloimonos, 2005; Ogale and Aloimonos, 2007): develops 

a compositional matching algorithm using binary local evidence which can match 

images containing slanted surfaces and images having different contrast. It finds 

connected components and for each pixel, picks the shift which corresponds to the 

largest connected component containing that pixel, while respecting the uniqueness 

constraint. 

• Optical Flow (Ogale and Aloimonos, 2005; Ogale and Aloimonos, 2007): similar to the 

previous stereo matching algorithm, but the main difference is this considers the 

shifts are two dimensional, unlike the previous one that considered just horizontal 

shifts, and connections across edges parallel to the flow being considered must be 

severed. 

• Stereo Matching (Abbeloos, 2010): implements a fast algorithm based on sum of 

absolute differences (SAD), matching two rectified and undistorted stereo images 

with subpixel accuracy. 

• Enhanced Normalized Cross Correlation (Psarakis and Evangelidis, 2005): 

implements a local (window-based) algorithm that estimates the disparity using a 

linear kernel that is embodied into the normalized cross correlation function leading 

to a continuous function of subpixel correction parameter for each candidate right 

window. It presents two modes: a) a typical local mode where the disparity decision 

regards the central pixel only of each investigated left window and b) a shiftable-

window mode where each pixel is matched based on the best window that 

participates into, no matter what its position inside the window is. 

• Block-Matching (Konolige, 1997b): based on sum of absolute differences between 

pixels of the left and right images. This algorithm is optimized by applying the 

epipolar constraint, searching for matches only over the same horizontal lines which 

cross the two images, what necessarily implies the two images of the stereo pair 

must have previously been rectified. The OpenCV 2.3.0 (Bradski and Kaehler, 2008) 

implementation is used for this process. 

• Semi-Global Block-Matching (Hirschmüller, 2005): a dense hybrid approach that 

divides the image into windows or blocks of pixels and looks for matches trying to 

minimize a global energy function, based on the content of the window, instead of 

177 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

looking for similarities between individual pixels. It includes two parameters that 

control the penalty for disparity changes between neighboring pixels, regulating the 

"softness" in the changes of disparity. The OpenCV 2.3.0 (Bradski and Kaehler, 2008) 

implementation is used for this process. 

• Variational Stereo Correspondence: implements a modification of the variational 

stereo correspondence algorithm described in (Kosov et al., 2009), consisting on a 

multi-grid approach combined with a multi-level adaptive technique that refines the 

grid only at peculiarities in the solution, allowing the variational algorithm to achieve 

real-time performance. It includes also a technique that adapts the regularizer, used 

in the variational approach, as a function of the current state of the optimization. The 

OpenCV 2.3.0 (Bradski and Kaehler, 2008) implementation is used for this process. 

• Growing Correspondence Seeds (Cech and Sara, 2007): a fast matching algorithm for 

binocular stereo suitable for large images. It avoids visiting the entire disparity space 

by growing high similarity components. The final decision is performed by 

Confidently Stable Matching, which selects among competing correspondence 

hypotheses. The algorithm is not a direct combination of unconstrained growth 

followed by a filtration step. Instead, the growing procedure is designed to fit the 

final matching algorithm in the sense the growing is stopped whenever the 

correspondence hypothesis cannot win the final matching competition. 

 

Post-filters: 

 

• Clustering: to remove false matches after disparities computation. The algorithm 

groups pixels in connected components based on the principle of spatial continuity, 

where pixels belonging to the same region are all reachable from any other pixel 

from the same region, either by direct contact or at very short distance. Once clusters 

have been computed, they are filtered out depending on certain configurable criteria 

such as cluster’s size or density. 

 

 

 

 

178 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Datasets: 

 

• Middlebury: a subset of the well-known Middlebury datasets (Scharstein and 

Szeliski, 2002). They have been taken using structured light under controlled 

conditions and include ground truth data, very useful for assessing algorithms’ 

correctness. 

• Gazebo: a set of synthetic images of terrains simulated in Gazebo (Koenig and 

Howard, 2004). 

• MER: images taken from the Spirit and Opportunity spacecrafts launched in 2004 as 

part of the MER Mission to Mars (Goldberg et al., 2002). 

• Videre mini: images of terrains captured with a Videre STH-DCSG color stereo 

camera, using standard 3mm miniature lenses, separated 9 cm and 640x480 pixels 

resolution. 

• Videre Var-C: images of terrains captured with a Videre STH-DCSG-VAR color stereo 

camera, using standard 8mm C-Mount locking lenses, separated 15 cm and 640x480 

pixels resolution. 

• Others: a set of terrain images obtained online, for further testing. 

 

All these algorithms have been adapted to ensure compatibility to be included within the 

testbed; their inputs and outputs have been standardized to interact with each other and 

with the testbed itself. For extended details on the insights of each algorithm, understanding 

of their performance, implementation details and how they differ from the other to confirm 

which one could better suit each own needs and requirements, it is recommended to consult 

the available literature associated to each algorithm, as a thoughtful analysis of these aspects 

is out of the scope of this work and heavily depends on the concrete application and 

constraints of each project. 

 

For an initial version of the testbed, the selection of the algorithms to be included into the 

testbed does not try to represent a sampling of state of the art algorithms. The main 

objective is to demonstrate the integration of heterogeneous algorithms developed by 

different authors using different programming languages. Some of them had to be 

179 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

implemented while others had an implementation already available; some are older, the 

classical approaches, although still very commonly applied, while others are quite recent; 

others, such as the Block-Matching (Konolige, 1997b), Semi-Global Block-Matching 

(Hirschmüller, 2005) and Variational Stereo Correspondence, are part of well-known and 

popular libraries in the computer vision community, in this case part of the OpenCV library 

(Bradski and Kaehler, 2008). This variety of algorithms has been actually chosen that way on 

purpose, in an attempt to balance approaches from different ages and diverse technologies, 

to be integrated together under the common testbed framework. 

 

As shown in (Scharstein and Blasiak, 2014) and (Geiger et al., 2014), the immense number of 

dense stereo matching algorithms makes the idea of implementing all of them a titanic, and 

almost unachievable, effort; a definitely not attainable for an initial version. Besides, new 

approaches are continuously coming up and being published. For that reason the testbed has 

been conceived as an incremental development, open to collaborations to produce more 

sophisticated versions with more algorithms and features over time. The algorithms 

selection presented here constitutes just a first attempt to demonstrate how a set of fairly 

random and diverse algorithms are integrated together. 

 

5.3.4 Experiments and Results 
 

5.3.4.1 Use Case: Matching Algorithms Comparison 
 

In this section, an experiment carried out to evaluate the performance and results of the set 

of matching algorithms included in the testbed is described. The same stereo pair has been 

used as input as a representative example to test every algorithm and obtain results from 

comparison; analogous results have been obtained in other experiments using different 

input images, around 20 pairs. 

 

This reference stereo pair, shown in Figure 61, belongs to the Middlebury dataset 

(Scharstein and Szeliski, 2002). Although they are not images of terrain intended for 

navigation purposes in autonomous robots, they are very suitable for assessing the results 

180 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

and validate algorithms correctness, as they have been taken in an illumination controlled 

environment and include ground truth data. Input images, Figure 61, have a 437x370 

resolution (161,690 pixels) and 151,707 possible matches, as some regions do not contain 

disparity information (dark blue areas in Figure 61). 

 

  

  
Figure 61. Input stereo images and ground truth data (Hirschmüller and Scharstein, 2007)  

 

Using the stereo testbed, each algorithm has been executed several times adjusting its 

parameters, taking the execution that produced the best results. Figure 62 shows disparities 

maps obtained from the execution of these algorithms. NCC and ZNCC algorithms do not 

produce any results for these input images. 

 

 

 

 

 

181 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

   
a) SAD b) ZSAD c) LSAD 

   
d) SSD e) ZSSD f) LSSD 

No results produced 

  

g) NCC / ZNCC h) (Lankton, 2007) i) Global Error Energy 
Minimization (Alagoz, 2008) 

   

j) Line Growing (Alagoz, 2008) 
k) Stereo Matching (Ogale and 

Aloimonos, 2005; Ogale and 
Aloimonos, 2007) 

l) Optical Flow (Ogale and 
Aloimonos, 2005; Ogale and 

Aloimonos, 2007) 

182 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

   

m) Stereo Matching (Abbeloos, 
2010) 

n) Enhanced Normalized Cross 
Correlation (Psarakis and 

Evangelidis, 2005) 
o) BM (Konolige, 1997a) 

   

p) SGBM (Hirschmüller, 2005) 
q) Variational Stereo 

Correspondence (Kosov et al., 
2009) 

r) Growing 
CorrespondenceSeeds (Cech 

and Sara, 2007) 
Figure 62. Disparities maps produced by the different stereo algorithms included within the testbed 

 

Table 5 shows the numerical results, including the total number of matches found, broken 

down in right, wrong, false and missed correspondences, and execution time. Right matches 

(Mr) counts the set of correspondences computed by the algorithm that coincide with 

ground truth data or its value differs in just 1 disparity value, while wrong (Mw) indicates the 

number of computed correspondences that do not coincide with ground truth data or have a 

difference of more than 1; meaning the computed disparity value for that pixel differs in 

more than 1 from the one stored as ground truth; false (Mf) account correspondences 

computed by the algorithm that do not appear in the ground truth data and therefore should 

not have been detected as a match, while missed (Mm) are those pixels which in spite of 

having a correspondence in ground truth data the algorithm was not able to compute. 

 

 

 

 

183 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

Table 5. Stereo algorithms performance on a PC Intel Core2 1.86 GHz. 

Algorithm Matches Time 
(s) Found Right Wrong False Missed 

SAD 137,039 44,170 
(29.12%) 

85,320 
(56.24%) 

7,549 22,217 640 

ZSAD 138,122 59,035 
(38.91%) 

71,544 
(47.16%) 

7,543 21,128 653 

LSAD 138,096 58,623 
(38.64%) 

71,930 
(47.41%) 

7,543 21,154 657 

SSD 137,065 46,891 
(30.91%) 

82,628 
(54.47%) 

7,546 22,188 662 

ZSSD 138,121 59,998 
(39.55%) 

70,580 
(46.52%) 

7,543 21,129 692 

LSSD 138,097 59,604 
(39.29%) 

70,946 
(46.77%) 

7,574 21,157 683 

NCC 0 0 
(0.00%) 

0 
(0.00%) 

0 0 647 

ZNCC 0 0 
(0.00%) 

0 
(0.00%) 

0 0 665 

3D Stereo Disparity (Lankton, 
2007) 

161,690 117,578 
(77.5%) 

34,129 
(22.5%) 

9,983 0 185 

Global Error Energy Minimization 
(Alagoz, 2008) 

117,281 46,824 
(30.86%) 

64,758 
(42.69%) 

5,699 21,408 6,289 

Line Growing (Alagoz, 2008) 11,065 137 
(0.09%) 

10,833 
(7.14%) 

95 122,020 2,223 

Stereo Matching (Ogale and 
Aloimonos, 2005; Ogale and 
Aloimonos, 2007) 

147,777 111,387 
(73.42%) 

26,291 
(17.33%) 

10,099 13,828 7 

Optical Flow (Ogale and 
Aloimonos, 2005; Ogale and 
Aloimonos, 2007) 

148,053 110,508 
(72.84%) 

27,454 
(18.1%) 

10,091 13,544 19 

Stereo Matching (Abbeloos, 2010) 157,475 79,638 
(52.49%) 

67,928 
(44.78%) 

9,909 4,141 21 

Enhanced Normalized Cross 
Correlation (Psarakis and 
Evangelidis, 2005) 

161,320 118,942 
(78.40%) 

32,398 
(21.36%) 

9,980 367 22 

Block-Matching (Konolige, 1997a) 116,184 107,281 
(70.72%) 

3,174 
(2.1%) 

5,729 41,252 2 

SGBM (Hirschmüller, 2005) 130,677 118,026 
(77.8%) 

5,486 
(3.6%) 

7,165 28,195 2,5 

Variational Stereo Correspondence 
(Kosov et al., 2009) 

161,489 828 
(0.55%) 

150,688 
(99.33%) 

9,973 121 2,5 

Growing Correspondence Seeds 
(Cech and Sara, 2007) 

161,690 101,719 
(67.05%) 

49,988 
(32.95%) 

9,983 0 11,5 

 

The total number of matches found (MF) is equal to the sum of right, wrong and false 

matches, equation (81); the number of matches found minus false plus missed matches adds 

up the total number of potential matches (M), equation (82). The percentage shown besides 

right and wrong matches is computed with respect to the total number of potential 

correspondences the image has; in the example used in this section, Figure 61, it is 151,707 

pixels. Best results have been highlighted on each column, meaning an algorithm obtaining 

184 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

over 70% of potential correspondences while producing less than 5% of error -wrong 

matches. Figure 63 shows these results graphically. 

 
MF = Mr + Mw + Mf (81) 

 
M = MF – Mf + Mm (82) 

 

It is possible to observe the variety of results as well as how different algorithms perform 

with the same input images. Most of them find a large number of matches, although in some 

cases they make a large number of mistakes when results are compared with ground truth 

data; that is the case of the classical and simplest approaches –SAD, SSD and NCC. Regarding 

computation time, those take up to two orders of magnitude longer than newer algorithms. 

This is due to modern approaches that are usually more sophisticated and specifically 

designed to improve performance in terms of correctness and computing time. However, 

that does not mean some algorithms is incorrect or should be dismissed, as the results are 

very dependent of the input images; it is just a matter of finding the most appropriate 

approach to each concrete needs and application. 

 

 
Figure 63. Comparison of matching algorithms’ results in terms of right and wrong percentage of 

correspondences 
 

185 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

There are some factors to be considered when analyzing these results. From Table 5, it can 

be observed in all cases that there are a number of false positives. The ground truth data 

contains 9,983 pixels, in the case of the left image, with no disparity information –dark blue 

areas in Figure 61. It is due in part to occlusions and to the method the authors have used to 

compute them, as many of the algorithms tested are actually able to find matches in those 

areas. When comparing results with ground truth data, any correspondence found in that 

area will be counted as false match. There is also another important aspect to be considered. 

As both images from the pair are taken at the same time from different points of view, there 

are certain areas of the scene seen from one camera but not from the other. That is the case 

of the leftmost and rightmost areas, depending on which image is taken as a reference, 

causing a band in the disparities map of a certain width, coinciding with the configured 

maximum value of disparity to be searched, observed in many results in Figure 62. Pixels 

from these areas cannot be matched as they belong to portions of the scene that are not 

present in both images. However, ground truth data provided in this dataset contains 

disparity information for the whole image, including those areas, and they are considered as 

missed correspondences in the results shown in Table 5. 

 

For this experiment and this concrete stereo pair, the Semi-Global Block Matching (SGBM) 

algorithm (Hirschmüller, 2005) obtains the best results in terms of number of right, wrong, 

false and missed matches among the set of algorithms tested. It is able to find a large set of 

matches, most of them correct, see Figure 64. Resulting false matches are due to the lack of 

information in some areas of the ground truth data as introduced before, as this algorithm is 

capable of computing correspondences in those areas. Most of the missed matches obtained 

are due to the portion of the scene present in one image but not in the other –vertical left or 

right bands, see Figure 62; this is an unavoidable fact, but the ground truth data contains 

information for this area also (see Figure 61) causing those missed correspondences. 

 

This SGBM algorithm presents a very good performance in terms of computation time in 

comparison to other approaches. It must be taken into account when executing code from 

Matlab, computing time is increased as compared to other implementations. Once a given 

algorithm has been selected for a concrete application and characteristics of the operational 

settings and input images, it can be implemented in a much more efficient way using either 

186 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

native languages such as C++ or assembler, or even codified and parallelized using FPGAs 

(Darabiha et al., 2006; Lim et al., 2012). 

 

 
Figure 64. Comparison of matching algorithms’ results in terms of right, wrong and false matches 

 

5.3.4.2 Use Case: from the Simulated to the Real World 
 

This section details a use case to illustrate the usage of the testbed and its utility and 

application to a real problem. As introduced before at the beginning of this chapter, at the 

initial phases of the development of the autonomous navigation software there wasn’t any 

vehicle available and the operational environment and vehicle were simulated within the 

framework. Images of simulated terrains were captured from simulated cameras. A problem 

187 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

was detected when the algorithm used for processing the synthetic images was used with 

real images; it did not produce satisfactory results and new algorithms had to be analyzed. 

 

For 3D reconstruction, and in order to create a reliable map of the terrain, it is desirable to 

achieve the greatest possible number of pixel correspondences between the input stereo 

images. It happens that each algorithm performs well with a series of images, usually taken 

in controlled environments in regards to the lighting and texture. However, they do not 

usually produce good results when conditions change. Such is the case of some algorithms 

evaluated with the real images captured from the robot’s camera. 

 

The first step that has been considered is the assessment of the behavior of some 

representative algorithms with real images captured. A complete taxonomy of stereo 

correspondence algorithms can be found in (Scharstein and Szeliski, 2002), where a 

thorough analysis and a comparative evaluation of a large number of algorithms is made. 

More recently, (Tombari et al., 2011) also examines the state of the art algorithms and 

evaluation for its applications to 3D objects recognition. The objective is to determine which 

one has a better performance for subsequent adaptation to the real case 

 

In this scenario, the testbed has resulted of invaluable help. It has been used to test a set of 

real images with different matching algorithms, analyzing its results and performance. 

Figure 65 shows the disparity maps obtained when applying some of these stereo algorithms 

to the pair of input images. The ones shown in the figure belongs to the Lankton method 

(Lankton, 2007), based on the growth of regions; it is divided into two phases; in the first 

one, a starting point is located so that the region will grow from; in a second stage, the region 

related to each starting point expands according to a predefined rule. This method also 

implements a 2D filter based on the statistical mode to replace pixels with low confidence 

level by information obtained from neighboring pixels with higher reliability. (Alagoz, 2008) 

applies a region-based method that implements a filter to eliminate unreliable disparities; it 

in turn has two variants: Global Error Energy Minimization and Line Growing. It is also 

shown the results obtained when applying the methods developed by Ogale and Aloimonos, 

(2005); Ogale and Aloimonos (2007); Abbeloos (2010), all based on the sum of absolute 

differences (SAD). 

188 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

  
a) b) 

    
c) d) 

    
e) f) 

    
g) h) 

Figure 65. Disparity map obtained for the input images using: c) Lankton, d) Lankton mode filter, e) 
Alagoz (Global Error Energy Minimization), f) Alagoz (Growing Line), g) Ogale, h) Abbeloos 

 

189 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

All these approaches have been tested with real images, without satisfactory results, as 

shown in Figure 65. None of these disparity maps are correct or usable for a 3D scene 

reconstruction. The Lankton (2007) method computes a series of regions where every pixel 

of the region is adjusted to the same disparity value, which is far from what a disparity map 

of a terrain would be, which should be similar to the ones shown in Figure 66 (c) of (d). The 

other methods, (Alagoz, 2008, Ogale and Aloimonos, 2005; Ogale and Aloimonos, 2007; 

Abbeloos, 2010), compute a too noisy map, not usable either for a 3D reconstruction of the 

terrain. This behavior is extensible to the complete set of analyzed images captured with the 

real stereoscopic system. 

 

  

 

a) b)  

   
c) d)  

Figure 66. (a), (b) Images taken from the onboard Videre stereocamera, (c) stereo process results 
using the block-matching algorithm and (d) using the semi-global block matching algorithm 

 

From the set of algorithms tested and integrated within the testbed, it was verified the best 

results for the set of captured images were obtained using the Semi-Global Block Matching 

algorithm (Hirschmüller, 2005), implemented in the OpenCV library. Other authors have 

evaluated matching algorithms (Scharstein and Szeliski, 2002; Tombari et al., 2011) and 

190 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

agree that SGBM has an excellent quality and runtime relationship. SGBM divides the image 

into windows or blocks of pixels and searches for correspondences trying to minimize an 

energy function globally, instead of looking for similarities between individual pixels. It 

includes two parameters that control the penalty for disparity changes between neighboring 

pixels, while allowing regulate the "softness" in those disparity changes. 

 

This algorithm is appropriate for images where texture is more or less uniform and have low 

variation in the spectral levels of its pixels. The energy reduction function detects 

correspondences in regions where the Block-Matching algorithm fails, as it is a local method 

based on SAD which does not generate significant differences within neighboring pixels. 

 

The disparities map obtained using the SGBM algorithm with respect to BM is shown in 

Figure 66 (d). It finds 144,827 matches, achieving a great improvement with respect to the 

57,598 correspondences obtained from the BM algorithm, see Figure 67. The behavior of the 

algorithms described thus far is similar for the set of real images analyzed. As a result, the 

BM algorithm was replaced by the SGBM algorithm in the robot onboard software. 

 

 
Figure 67. Comparison of disparities computed by the BM and SGBM algorithms 

 
 
 
 
 
 

191 
 



Chapter 5: THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS  
 

 
 

192 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
 

Chapter 6 
 

 

AUTOMATIC EXPERT SYSTEM FOR 3D SCENE 
RECONSTRUCTION BASED ON ENHANCED STEREO VISION 

BY THE APPLICATION OF NOVEL IMAGE FILTERS 
 

 

This chapter addresses the problem of computation of correspondences in 
pairs of images obtained with real stereoscopic systems. It has been observed 
that the problem concerning the low efficiency of many matching algorithms 
when they are applied to real images are due to differences in intensities in 
both images of the stereoscopic pair. It requires a global solution to this 
general problem. This chapter addresses this problem by proposing an 
automatic expert system for 3D scene reconstruction based on stereovision 
with automatic intensity correction through the application of some of the 
filters included in the testbed introduced in the previous chapter. The 
proposed expert system exploits the human knowledge which is mapped into 
three modules based on image processing techniques. The first one is 
intended for correcting intensities of the stereo pair coordinately. The second 
one is based in computing disparity, obtaining a set of correspondences. The 
last one computes a reconstruction of the terrain by reprojecting the 
computed points to 2D and applying a series of geometrical transformations. 
The performance of this method is verified favorably. The work described in 
this chapter is based on Correal et al. (2013) and Correal et al. (2014a). 
 
 

6.1 Motivational research of the proposed strategy  
 

As already mentioned, the perception of the environment and the information extracted 

from the pair of images is a crucial factor for the autonomy and navigation capabilities of a 

robot; as the result of the stereo process a set of 3D points that represent the part of the 

visible environment are obtained. This 3D-points structure represents distances to objects in 

193 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

the scene, by which the robot can calculate safe routes through the environment and 

navigate autonomously to a particular target. Therefore, the mapping, path planning and 

navigation processes are heavily dependent on the result of the perception process and more 

specifically of the matching process. Within this process, false positives, obtained when 

computing correspondences of pixels between images, will cause errors in the produced 

map; missed matches, will cause voids in the map; both factors will have a major impact in 

the environment reconstruction and subsequent processes. To perform a high-quality 

environment reconstruction is desirable to avoid gaps or areas without information, as well 

as avoid mistakes in the disparities calculation.  

 

According to results obtained in the previous chapter, the use of the SGBM algorithm implies 

a significant improvement in the level of efficiency of the process regarding the use of the BM 

algorithm. It has been shown that the SGBM algorithm was able to find 144,827 matches with 

the sample images presented in Figure 66. The obtained disparities map using this algorithm 

with respect to using BM is notable, which computed just 57,598 correspondences. However, 

it is observed the SGBM algorithm introduces some error. Concretely, following with the 

previous example, 10,738 pixels were erroneously matched; these are called false positives. 

The fact of introducing such errors has important consequences for the 3D reconstruction, 

where such correspondences can be considered as –nonexistent- objects in the environment, 

which can represent obstacles to the robot and areas that cannot be navigate through. 

Therefore, aside from those errors, only 134,089 of the computed correspondences are 

correct, representing 85.38% of the total correspondences contained in that pair of images. 

 

Different methods and strategies for 3D environment reconstruction using stereo vision 

have been applied in different works (Goldberg et al., 2002; Bakambu et al., 2006; Morisset et 

al., 2009; Lin and Zhou, 2009; Xing-zhe et al., 2010; Song et al., 2012). Most matching 

algorithms are based on the minimization of differences, using correlation between 

brightness (intensity) patterns in the local neighborhood of a pixel in one image with respect 

the other (Baker, 1982).  

 

A number of matching algorithms, as part of the overall stereo process aimed to perform a 

3D reconstruction for robotic autonomous navigation in natural and unstructured 

194 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

environments, have been analyzed and tested, including the ones integrated into the testbed 

introduced in the previous chapter. Most of them give unsatisfactory results, as seen from 

the results presented in section 5.3.4. This fact allows us to deduce that the problem 

concerning the low efficiency of some of the above algorithms comes from their application 

to real images. It has been observed that the problem concerning the low efficiency of some 

of these algorithms comes from their application to real images, due to differences in 

intensities in both images of the stereoscopic pair. Because of the above undesired effects 

and differences in illumination, the stereo matching process is significantly affected, as many 

correspondence algorithms are very sensitive to these deviations in the brightness pattern, 

leading to a poor and inaccurate computation of disparities and resulting in an inaccurate or 

incorrect terrain reconstruction. 

 

While most existing strategies focus in the problem of computation of disparities and the 

matching process, there is little work devoted to the correction and validation of the input 

images, beyond vertical alignment and rectification (Papadimitriou and Dennis, 2006; Kang 

and Ho, 2012). Therefore, as mentioned before, it is necessary a global solution to this 

general problem, a method capable of correcting the differences in both images of the pair. 

 

6.2 Introduction 
 

The problem of correspondence in stereoscopic systems stems from the fact that images 

from cameras, although similar, show different intensity levels for the same physical entity in 

the 3D scene. The main reason for this feature lies in the different response from the camera 

sensors to the signal light from the scene and also from the different mapping of the scene 

over each image due to the different relative points of view of each camera. That makes 

necessary to devote a major research effort to correct these deviations typical of any stereo 

system. This problem is not yet satisfactorily solved, particularly in unstructured and 

uncontrolled environments. That is the main reason why literature about this topic is so 

broad.  

 

195 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

The constant image brightness (CIB) approach assumes that the intensities of corresponding 

points in two images of a stereo pair are equal. This assumption is central to much of 

computer vision works. However, surprisingly little work has been performed to support 

this assumption, despite the fact the many of the algorithms are very sensitive to deviations 

from CIB. In Cox and Hingorani (1995) a study revealed that after an examination of 49 

images pairs contained in the SRI JISCT stereo database (Bolles et al., 1993), a dataset that 

includes images provided by research groups at JPL, INRIA, SRI, CMU, and Teleos, the 

constant image brightness assumption is indeed often false. The same issue has been also 

found in the set of stereo images taken from out robot’s camera, the Videre STH- DCSG 9 mm. 

 

This justifies the need for a pretreatment of the images. The aim is to achieve the maximum 

similarity in the spectral levels of the stereo pair images, at the pixel level, which is exactly 

what happens in the case of the simulated images. Therefore, it is necessary a method 

capable of correcting, from the radiometric point of view, the differences in both images, 

confirming the need for the research work presented in this chapter. 

 

There exist several strategies to correct intensity values (brightness) in images. Next, some 

of the most commonly used techniques are introduced: 

 

(1) Histogram equalization is a method used in image processing for contrast adjustment 

using the image's histogram (Pajares and Cruz, 2007; Laia et al., 2012). This method usually 

increases the global contrast, especially when the usable data of the image is represented by 

close contrast values. Through this adjustment, the intensities can be better distributed on 

the histogram. This allows for areas of lower local contrast to gain a higher contrast. 

 

(2) In Kawai and Tomita (1998) authors propose a method to calibrate intensity for images 

based on segment correspondence. First, the edges are detected in each image. Each section 

is defined as a segment by dividing the edges using some characteristic points such as 

turning, wiggle, inflection, transition, etc. This data is then converted into boundary 

representation. The intensity information consists of the intensity value and a derivative at 

the point, which is the point where the derivative is the smallest point in the neighborhood 

in the direction of the normal in the region. The segment divides regions with different 

196 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

intensities. The correspondence of the segments between I1, the reference image, and an 

image to be corrected I2 is obtained using a segment-based stereo method, finding similar 

boundaries in I1 and I2. Next, the intensity correspondences between images is found, as the 

correspondence between the points is obtained from the segment correspondences. The 

intensity calibration equation between images (I1, I2) is derived from the distribution. If the 

correspondence is correct, the points are distributed on a straight line, and a straight line is 

fitted using the next equation: I2(0) = a I1 + b, where a and b are coefficients and Ii(n) is the 

image after the nth iteration. The image I2(0) is calibrated based on this equation, and a 

refined image I2(1) is calculated. The process is repeated using subsequently refined image, 

until I2(n) ≈ I1. 

 

(3) Homomorphic filtering (Pajares and Cruz, 2007; Gonzalez and Woods, 2008). It is a 

filtering process in the frequency domain to compress the brightness based on the lighting 

conditions, while enhancing the contrast from the reflectance properties of the objects. It is 

based on the fact that each image is formed by the concurrence of two-component image: 

reflectance and illumination. The illumination component comes from the light conditions in 

the scene when the image is captured and may change as the light conditions also change. 

The reflectance component depends on how the objects in the scene reflect light, which is 

determined by the intrinsic properties of the objects themselves, which (usually) do not 

change. In many practical applications it is useful to enhance the reflectance component, 

while the illumination is reduced.  

 

(4) In Cruz et al. (1995a); Cruz et al. (1995b) Pajares et al. (1998a) authors have applied 

different learning and optimization-based strategies, including Bayesian (Pajares and Cruz, 

2002b), neural networks (Pajares and Cruz, 2001), optimization (Pajares et al. 1998c), 

perceptron, self-organizing feature maps (Pajares and Cruz, 2002a), hebbian learning 

(Pajares and Cruz, 1999), support vector machines (Pajares and Cruz, 2003), simulated 

annealing (Pajares and Cruz, 2004), fuzzy clustering (Pajares and Cruz, 2000b) and fuzzy 

cognitive maps (Pajares and Cruz, 2006) to learn these claimed differences between the two 

images in the stereoscopic pair. The main idea was to estimate appropriate parameters that 

allow intensities correction.  

 

197 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

The methods described in points (1) and (2) are intended to correct and adjust brightness in 

images. However, the main drawback of these approaches is that they were originally 

designed for single images; and even in stereo vision scenarios, they are typically applied 

separately, processing each image of the pair independently of one another. However, as 

introduced before, most matching algorithms are based in correlation between brightness 

patterns in the local neighborhood of each pixel to find its correspondence in the other 

image. The method described in (3), although used in some computer vision applications 

(Ponomarev, 1995; Hailan, 2012), it has never been actually applied to stereo pair of images 

to be used subsequently as input for stereo matching algorithms. The methods described in 

(4) are based on learning and optimization strategies, where a set of sample patterns are 

always required. This represents an important drawback because it is usually hard to verify 

if all the scenarios have been incorporated during the training phase to integrate all relevant 

information. This could be especially dramatic when unknown scenarios appear for the first 

time and the system has not been trained, a common situation in robot navigation. 

 

As introduced before, when working in stereo vision applications, a method to correct these 

deviations and problems derived from the illumination conditions adjusting the pair of 

images coordinately is needed, or one as a function of the other, to compensate for those 

differences typical of all stereoscopic system. Thus, the idea presented in this chapter is to 

apply an automatic image correction strategy for 3D terrain reconstruction, similar to that a 

human expert would apply to a similar problematic situation. This knowledge is mapped into 

the presented design following the logical strategy the expert human applies. In this scheme 

the problem concerning with different illumination patterns receives special attention from 

the point of view of human reasoning. 

 

To do that, an expert system has been designed and implemented so that it makes use of 

some of the previously introduced techniques; concretely two of them stand out: a) 

homomorphic filtering and b) histogram matching, based on the previously introduced (1) 

histogram equalization approach. In the case of the homomorphic filtering, the process is 

applied to eliminate the illumination component of the input images while preserving the 

reflectance. In the case of the histogram matching approach, the histograms of both images 

of the stereo pair are obtained and compared; they are then automatically matched to adjust 

198 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

their intensity levels, both channel by channel in RGB images or converting them to grayscale 

images and matching then their histograms, previous to the stereo matching process.  

 

This reasoning or knowledge, based on several stages, is the kernel of the proposed expert 

system. The strategy followed is the application of some pretreatment to the images so that 

the maximum similarity in the spectral levels of the images can be achieved. Although the 

main stage is the one concerning the image processing phase, the other stages are 

conveniently linked to form the body of the proposed reasoning. Each stage is designed for a 

given purpose and specific processes are applied for achieving the goal at each stage. 

 

First, a study of the effects of applying both the homomorphic filtering and the histogram 

matching processes on the input images as a pre-matching step is performed. By means of 

this filtering, a significant improvement of the disparity map is achieved, getting a higher 

number of true correspondences in contrast to the results obtained by the correspondence 

processes without these filtering. Then, an additional and novel filtering process directed by 

clusters and based on the principle of spatial continuity is performed on the resulting 

disparity map to eliminate false positives and erroneous correspondences. These filtering 

processes, along with the design and development of the automatic expert system, constitute 

the main contributions of this chapter. 

 

6.3 Histogram Matching 
 

6.3.1 Introduction 
 
Histogram equalization (not histogram matching) is a method used in image processing for 

contrast adjustment using the image's histogram (Pajares and Cruz, 2007; Laia et al., 2012). 

This method usually increases the global contrast, especially when the usable data of the 

image is represented by close contrast values. Through this adjustment, the intensities can 

be better distributed on the histogram. This allows for areas of lower local contrast to gain a 

higher contrast. Histogram equalization accomplishes this by effectively spreading out the 

most frequent intensity values. Consider a discrete grayscale image {x} and let ni be the 

199 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

number of occurrences of gray level i. The probability of an occurrence of a pixel of level i in 

the image is: 

 
px(i) = p(x=i) = ni/n, 0 ≤ i < L (83) 

 

L being the total number of gray levels in the image, n being the total number of pixels in the 

image, and px(i) being in fact the image's histogram for pixel value i, normalized to [0, 1]. The 

Cumulative Distribution Function (CDF) corresponding to px is: 

 

cdfx(i) = Σ px(j) (84) 

 

which is also the image's accumulated normalized histogram. Then, a transformation of the 

form y = T(x) produces a new image {y}, such that its CDF will be linearized across the value 

range, i.e. cdfy(i) = iK for some constant K. The properties of the CDF allows to perform such 

a transform; it is defined as: 

 
y = T(x) = cdfx(x) (85) 

 

The T function maps the levels into the range [0, 1]. In order to map the values back into 

their original range, the following transformation needs to be applied on the result: 

 

y’ = y (max{x} - min{x}) + min{x} (86) 

 

This method can also be used on color images by applying the same method separately to the 

Red, Green and Blue components of the RGB color values of the image. Different histogram 

equalization methods have been applied in stereo vision (Cox and Hingorani, 1995; 

Nalpantidis and Gasteratos, 2010; Zhang et al., 2010; Liling et al., 2012). 

 

 

 

200 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

6.3.2 Description of the Method 
 

Comparing the intensity histograms of the stereo images it has been found that 

corresponding pairs of histograms could vary significantly. As introduced before, there are 

several techniques for histogram equalization, typically applied to single images (Acharya 

and Ray, 2005; Pajares and Cruz, 2007). Some have been applied to stereo vision (Cox and 

Hingorani, 1995; Nalpantidis and Gasteratos, 2012; Zhang et al., 2010; Liling et al., 2012). In 

this work, an automatic histogram matching procedure has been implemented. This 

technique enhances the contrast of images using cumulative distribution functions to 

transform the values in an intensity image, so that the histogram of the output image 

approximately matches a reference; in this case it uses the histogram of one of the images in 

the stereo pair to adjust the other, approximating both illumination components. 

 

The algorithm chooses the grayscale transformation T of the reference histogram to 

minimize: 

 
min |c1(T(k))-c0(k)| (87) 

 

where c0 is the cumulative histogram of the image to be adjusted and c1 is the cumulative 

sum of the reference histogram for all intensities k. This minimization is subject to the 

constraints that T must be monotonic and c1(T(a)) cannot overshoot c0(a) by more than half 

the distance between the histogram counts at a. The procedure uses the transformation b = 

T(a) to map the gray levels in X to their new values. 

 

In the case of having a stereo pair of images, A and B, this process is performed from the 

histograms hA and hB, respectively, from which are obtained cumulative probability values 

for each gray level ka and kb to the respective images A and B as follows, 

 

0 0
( ) ( );     ( ) ( )

a bk k

a i b i
i i

P k p k P k p k
= =

= =∑ ∑  (88) 

 

201 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

The matching procedure is to find for each value P(kb) associated with the intensity level kb, 

which is the closest P(ka) so that it allows to exchange the value kb by ka in the image. After 

this exchange of intensity levels a new transformed image B’ is obtained. 

 

6.4 Homomorphic Filtering 
 

The homomorphic filtering technique is based on the fact that each image is formed by the 

concurrence of two image components (Pajares and Cruz, 2007; Gonzalez and Woods, 2008): 

reflectance (r) and illumination (i). The first comes from the nature of the objects in the 

scene and how they reflect the light according to the intrinsic properties of the materials of 

which they are composed. The second is the result of the surrounding light in the scene. The 

CCD-based cameras used in our experiments are mainly impressed by the incidence of light. 

The homomorphic filtering process eliminates the illumination component of the input 

images while preserving reflectance, which is supposed most similar between the two 

stereoscopic images. The idea is that the same object must produce similar intensity levels 

on both the right and left images, achieving maximum similarity in the spectral levels of the 

stereoscopic pair, as it happens in the case of simulated images. 

 

The homomorphic filtering technique has not been used so far for stereoscopic applications. 

It can be applied on the two images independently as described below. On each of the images 

in the RGB color model the corresponding transformation is applied to the HSI model. Two 

intensity images in this model are obtained related to the respective right and left images of 

the stereoscopic pair. An image is formed by the algebraic product of reflectance and 

illumination components: 

 
I(x, y) = r(x, y) i(x, y) (89) 

 

The natural logarithm is applied to I(x, y), obtaining: 

 
ln I(x, y) = ln r(x, y) + ln i(x, y) (90) 

 

202 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

At this point it is possible to apply the Fourier transformation of the sum of the results 

obtained by the logarithm, achieving the transform of the sum: 

 
Z(u, v) = Fi(u, v) + Fr(u, v) (91) 

 

Since the materials of the objects in the scene are different, the reflectance component has 

high variations in the boundaries between objects. Therefore, the reflectance component is 

associated with the high frequencies present in the image while the intensity is associated 

with the low ones. Once the components are separated by applying the Fourier 

transformation, if a high-pass filtering is applied, the low frequencies (illumination) are 

removed, while preserving the high frequencies (reflectance). After filtering, the inverse 

Fourier transformation is applied and then the exponential function as inverse to the initial 

logarithmic transformation. The procedure can be seen as a succession of processes such as: 

f(x, y) -> ln -> DFT -> H(u, v) -> DFT-1 -> exp -> g(x, y). Thus, a filtered image is achieved, retaining 

the reflectance component without the illumination component. 

 

 
Figure 68. Homomorphic filtering process 

 

6.5 Clustering Filter 
 

The objective of the filtering process after the computation of disparities is to eliminate 

correspondence errors that may have occurred, taking out false positives. According to the 

experiments carried out, it happens that in most cases these do not appear scattered 

throughout the image, but are located in groups of pixels with very high disparity, close to 

203 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

the maximum. This same behavior has been appreciated for all terrain images captured with 

the stereo system used in these experiments. 

 

Given the problem domain, robot navigation in unstructured natural terrain and, when 

designing the filter described in this section it has been taken into account the following 

premise: the input images are taken from natural terrains, composed of just one single 

continuous and connected component without discontinuities; in the environment there is 

not any discontinuity, as may be the case of some laboratory or indoors scenes which may 

contain separate objects and what is sought it is the identification of certain elements. In the 

natural terrain images case, a dense map is built from the calculated disparities, where the 

ground is taken as a whole, despite there might exist some gaps, being this a single and 

unique connected component. 

 

The method described in this section is based on the philosophy of clustering. The result of 

the process is a list of clusters. It consists in grouping pixels in connected components based 

on the principle of spatial continuity. The pixels belonging to the same spatially connected 

region have the property that they are all reachable from any pixel of the region without 

leaving it; therefore, they must be in contact with each other, either directly or separated by 

a very short distance. Despite the presence of voids, gaps or pixels for which a value of 

correspondence has not been obtained, it does not cause the segmentation of the image in 

more than one component. Applying this filter, a list of clusters is obtained, where each one 

may represent one of these elements: 1) a large cluster composed by the majority of the 

computed correspondences, identifying the terrain itself; 2) isolated clusters that represent 

correspondence errors; or 3) isolated clusters that correspond to unconnected terrain areas, 

see Figure 78. 

 

This is true for all the experiments performed with a large set of images captured with a real 

stereoscopic system. In all experiments, virtually every cluster except the principal one are 

formed by false positives and thus can be eliminated. Only in some very specific cases, some 

clusters represent small portions of terrain isolated from the rest. In such cases, the loss of 

pixels because the application of this filter is very small and not significant, less than 0.1 % of 

the pixels of the image, which is an acceptable magnitude; disregarding these pixels has 

204 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

almost no impact on the 3D reconstruction process. Anyway, these clusters can be often 

found very close to the principal cluster, and just by increasing slightly the configurable 

connection distance parameter, the algorithm will consider them part of the principal cluster 

and will not be filtered out. 

 

Further details and an example of the application and performance of this filter can be found 

later in the experiments and results section of this chapter. 

 

6.6 Expert System Design 
 

6.6.1 Reasoning for Knowledge Extraction 
 

As mentioned before, based on a logical human reasoning, the proposed expert system is 

designed according to the modular architecture displayed in Figure 69. It contains three 

stages, which are sequentially linked to form the expert system as a whole. Each stage 

contains the required automatic image and data processing modules. 
 

(1) Image Processing: performs the automatic processes necessary to adjust intensities in 

the stereo pair of images coordinately. 
 

(2) Stereo Matching: is the process of identifying features in both images, searching for 

correspondences, including any subsequent process to filter out any potential mismatch or 

error. 
 

(3) 3D Scene Reconstruction: once the list of correspondences has been computed, data is 

reprojected from 3D to a 2D plane, in order to build the 3D scene reconstruction. That data is 

fused with information coming from other sensors, like an IMU to obtain the robot pose, and 

a series of mathematical 3D transformations are executed to transform data from the camera 

reference system to the robot and world reference systems. 

 

205 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

 
Figure 69. Expert System for 3D Scene Reconstruction Architecture 

 

6.6.2 Automatic Image Processing Modules 
 

Following the three previous stages, at each stage a sequence of image processing techniques 

are applied for automatic purposes, they are outlined in the graphic displayed in Figure 69, 

being grouped and linked conveniently. In this work, emphasis has been put in the first step 

mainly, where the images are automatically corrected, one as a function of the other, as a 

human expert would perform. 

 

(1) Image Processing: Performs the automatic processes necessary to adjust intensities in the 

stereo pair of images coordinately. This process is guided by the intuitive human criterion 

that two images of the same scene will be alike according to the similarity of their 

corresponding spectral values.  

 

Currently, two processes have been included within this module: histogram matching and 

homomorphic filtering. By now, there is not any automatic method for selecting what is the 

most suitable strategy to be applied, but the operator of the system configures it to indicate 

which filter to use. It is envisioned adding the capability of automatically select which filter 

to be used as a function of the input images, cited as future works later in this thesis. 

 

206 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

As can be seen in Figure 69, the expert system has been designed to be very modular, so that 

it will be very maintainable an easy to extend. In that sense, any of these filters proposed in 

this work could be replaced by a new version or even a new algorithm to test its effect on the 

overall system. In the near future, when the automatic strategy selection capabilities will be 

included, it would not be necessary to replace one algorithm by another, but just adding new 

filters and update the selection criteria so that the system be able to choose among a broad 

range of algorithms and image filters processes to be applied as a function of the application 

and the input images. 

 

Further details on the application of the image filters included on this expert system as well 

as some results on their performance can be found in the experiments and results section of 

this chapter. 

 

(2) Stereo Matching: Once intensities of the input images have been adjusted, the common 

way to determine depth, with two stereo cameras, is by calculating disparity, see section 5  

Stereoscopic Vision for further details.  

 

It may be interesting to recall at this point the two main classes of disparity computation 

processes: feature-based and area-based methods (Ozanian, 1995). Briefly, feature-based 

methods use sets of pixels with similar attributes, either pixels belonging to edges (Grimson, 

1985) or the corresponding edges themselves (Ayache and Faverjon, 1987); leading to a 

sparse depth map used mainly for object segmentation and recognition. Area-based stereo 

techniques use pixel by pixel correlation between brightness (intensity) patterns in the local 

neighborhood of a pixel in one image with respect the other (Baker, 1982); that is the reason 

why it is so important to coordinately adjust the intensities in both images of the pair are 

previously to the matching process, done in step (1). 

 

As the application of the present work is scene reconstruction for path planning and robotic 

navigation, the objective is to obtain the highest possible number of disparities. Therefore, 

the matching process employs an area-based method, where the number of possible matches 

is intrinsically high; concretely, the SGBM algorithm (Hirschmüller, 2005) has been 

employed, a dense hybrid approach that divides the image into windows or blocks of pixels 

207 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

and looks for matches trying to minimize a global energy function, based on the content of 

the window, instead of looking for similarities between individual pixels. Again this 

represents the mapping of the expert knowledge for the proposed expert system. From the 

point of view of the computational approach, it includes two parameters that control the 

penalty for disparity changes between neighboring pixels, regulating the "softness" in the 

changes of disparity. Further details on the application of this algorithm to terrain images as 

well as post-processing methods to filter out mismatches correspondences can be found in 

Correal et al. (2013). 

 

(3) 3D Scene Reconstruction: After disparities have been computed in the previous stage, and 

following the previously commented human intuitive perception of depth, according to the 

position of each object in the scene perceived by each eye a human estimates the size and 

location of an object in the world with respect to him/her point of view. This is carried out by 

association in brain; unlike the human approach the proposed machine vision system applies 

a mathematical triangulation method to find distances. The human does not compute 

distances but only locations. Moreover, the system only deals with parallel optical axes and 

humans have the ability to apply convergence. Regarding this, some stereovision matching 

systems have applied vergence (Krotkov, 1989). Nevertheless, the main effort in machine 

vision has been put on parallel systems that apply the concept that humans can see also in 

the far distance. This is the approach proposed in this expert system. 

 

To reproject the 3D scene to 2D for digital representation, it is necessary to correctly match a 

point of the environment, seen in both stereo images, with pixel coordinates (x’, y’) in the 

first image and (x, y) in the second, see Figure 55. Knowing the robot current location in the 

world coordinates system and the position of the camera with respect to it, as the camera is 

mechanically fixed to the robot, the position of the camera in world coordinates is a 3D point 

Cw. To transform any point Pw (Xw, Yw, Zw) into the camera’s coordinate system: 

 
Pc = R (Pw−Cw) (92) 

 

208 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

where Pc is the point coordinates in the camera coordinates system, R is a rotation matrix. 

The transformation from world to camera coordinates in homogeneous coordinates: 

 

�

𝑋𝑋𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐
1

� =  �𝑅𝑅 −𝑅𝑅𝑅𝑅𝑤𝑤
0 1 ��

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

� (93) 

 

The rotation matrix R and the translation vector Cw define the camera’s extrinsic 

coordinates, namely its orientation and position, respectively, in world coordinates. The 

matrix R transforms from world to camera coordinates. 

 

�𝑅𝑅 −𝑅𝑅𝑅𝑅𝑤𝑤
0 1 � = �𝑅𝑅 0

0 1� �
𝐼𝐼 −𝐶𝐶𝑤𝑤
0 1 � (94) 

 

where I is a 3 x 3 identity matrix. 

 

As a result of this process, a cloud of 3D points, expressed in the camera coordinates system, 

is obtained, representing the perceived environment. The position of these points shall be 

transformed to the world coordinate system (O, X, Y, Z), which is independent of the camera, 

to represent the terrain, objects and obstacles independently of where the camera is. The 

“Sensor Fusion. Reference Systems Transformations” process, see Figure 69, performs the 

transformation between these coordinate systems, from point (Xc, Yc, Zc) in camera 

coordinates to its location (Xw, Yw, Zw) in world coordinates, once the Z component has been 

computed thanks to the stereovision system. 

 

In order for the system to automatically reconstruct the surface of the terrain, it is necessary 

to know the robot pose at the moment the images were captured, expressed as position (X, Y, 

Z) and orientation (roll, pitch and yaw). The rover’s position is estimated from odometry, as 

indicated in section 4.3.4.5 Position Estimation, and orientation data is obtained from an 

onboard Inertial Measurement Unit (IMU). This rover’s pose data is used then to transform 

the points cloud obtained as a result of the stereo process for a correct 3D scene 

reconstruction. 

 

209 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

6.7 Experiments and Results 
 

The images used for this study were acquired with a commercially available Videre 

stereoscopic system of parallel optical axes STH-DCSG-9 color, with two optics separated 

9cm, 640x480 pixels resolution and 3mm miniature lenses. They were captured in different 

locations, days, hours and illumination conditions, see Figure 70. This was intended to verify 

the robustness of the proposed approach against high variability in the environment. 

 

These digital images were captured and stored as 24-bit color images with resolutions of 

640x480 pixels, and saved in RGB raw format (BMP) so no data is lost by compression. Two 

sets of 90 pair of images were captured and processed. In all of them, it has been observed 

differences in the illumination pattern, as it can be expected in any stereo system due to the 

inherent differences in the cameras and optics characteristics. 

 

   

   

   
Figure 70. Example of terrain images captured with the stereoscopic system 

210 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

For the rest of this section, the pair of images shown in Figure 70 (top left) will be used as 

representative example to illustrate the performance of the proposed system. Analogous 

results have been obtained using any other stereo pair from these sets of images. It has been 

arrived to this result after the analysis of 180 stereo pairs of images; thus for simplicity the 

analysis is carried out with the stereo pair shown in Figure 70 (top left). The images of this 

pair have 307,200 pixels. From those, this concrete example stereo pair has 156,111 

potential matches, the rest belong to remote areas, like sky, with no computable disparity. 

 

The Semi-Global Block Matching (SGBM) algorithm (Hirschmüller, 2005) has been employed 

to carry out these tests as, according to results obtained in the previous chapter, see section 

5.3.4 Experiments and Results, the use of this algorithm implies a significant improvement in 

the efficacy and efficiency of the process with respect to any other matching algorithm. It is, 

therefore, a promising algorithm to be employed as a baseline and try to improve results, so 

that the most can be taken out of the stereo process. Executing the Semi-Global Block 

Matching (SGBM) algorithm on the original images, that is without any previous image 

processing, it is able to compute 143,296 correspondences. From those, 120,738 are right 

while 22,558 are incorrectly matched pixels, see Figure 71. The algorithm also misses 35,373 

matches that should have been detected. Therefore, 77.34% of total possible 

correspondences have been detected by the stereo matching algorithm. Figure 74(a) shows 

graphically the set of disparities obtained. 

 

 
Figure 71. Right and wrong disparities computed by the SGBM algorithm 

211 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

6.7.1 Histogram matching 
 

In this experiment, instead using the images directly as input to the stereo matching images, 

the proposed expert system performs an automatic histogram matching process at the initial 

stage, adjusting the right image as a function of the left one, remaining this unaltered. To 

analyze these results, examining the images of the stereo pair and comparing their 

histograms it can be seen they have different intensity distributions, see Figure 72 and 

Figure 73. These figures show corresponding histograms of left, right and corrected right 

images, both in RGB and grayscale respectively, ranging [0, 255] in the X axis and number of 

pixels of each value in the Y axis. The resulting histograms after the matching process can be 

observed in the last column.  

Left image Right Image Corrected right image 

   

   

   
Figure 72. Corresponding left, right and corrected right image RGB channels’ histograms 

 

212 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

When working in the RGB space, each channel is adjusted separately. From Figure 72, it can 

be noticed some channels are more alike than others; in this pair of images the blue channels 

are particularly dissimilar, which could be also appreciated straight away by a human expert 

observing the images, see Figure 70. However, other channels dissimilarities can go 

unnoticed to the naked eye. 

 

Despite both images capture the same scene –with a little variation in the point of view- and 

have been taken simultaneously with two identical cameras, their histograms show different 

spectral levels. They should be identical theoretically, but they are not in the practice, 

reinforcing the hypothesis that the constant image brightness (CIB) assumption, introduced 

previously by what it is assumed that the intensities of corresponding points in two images 

of a stereo pair are equal, is indeed often false. 

 

It can be noticed how the resulting histograms of the right image after the matching process 

are more similar to the reference left image. As a result, for this pair of images, the stereo 

matching process, using the same algorithm, is able to compute 4.86% more correct matches, 

see Table 6 and Figure 75. That implies obtaining 5,870 right correspondences more, what 

translates in 5,870 3D points more the reprojection process will be able to use to build a 

reconstruction of the terrain. Moreover, the number of errors is reduced; fewer wrong 

matches are computed and fewer correspondences missed. Concretely, after matching the 

histograms the stereo algorithm returns 31.8% fewer errors and 16.7% fewer missed 

matches than using the original images. Summarizing, when the system performs the 

automatic histogram matching of each channel separately previous to the stereo process, for 

this example the matching algorithm finds 5,870 new correspondences, which also means 

5,870 fewer misses than before, and prevent 7,173 mistakes, or incorrectly matched pixels. 

The resulting computed disparities can be seen in Figure 74 (b). 

 

There is another approach for automatic histogram matching. This is converting the images 

to grayscale and then matching their histograms, see Figure 73, instead adjusting each RGB 

channel separately. 

 

 

213 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

Left image Right Image Corrected right image 

   
Figure 73. Corresponding grayscale left, right and corrected right image histograms 

 

Following this strategy of matching the histograms of the converted grayscale images, the 

stereo algorithm is able to compute more disparities than adjusting each channel 

independently; concretely, it computes 15.92% right matches more, 19.217 points, with 

respect to performing the stereo process on the original images, see Figure 75. That 

increment in the number of points computed has a great impact on the reprojection and 

terrain reconstruction processes. In addition, the number of wrong and missed matches 

decreases, obtaining 9,208 fewer errors, 40.8% less than before, see Table 6. The resulting 

computed disparities can be seen graphically in Figure 74 (c). 

 

   
a) b) c) 

Figure 74. Disparity computed by the SGBM stereo matching algorithm performed on the a) original 
images, b) images with histograms matched channel by channel, c) images converted to grayscale and 

matching their histograms 
 

Table 6 shows the results obtained when performing the stereo matching process alone or in 

combination with the histogram matching filter. Potential matches accounts for the total 

number of possible matches in this pair of images. Matches found accounts for the number of 

matches computed by the stereo algorithm. Right matches count the set of correctly 

computed correspondences; these are the ones that coincide with ground truth data. Wrong 

214 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

matches indicate the number of correspondences computed by the algorithm that do not 

coincide with ground truth data and therefore should not have been detected as a valid 

match. Missed matches are those ones that, in spite of having a valid correspondence, the 

algorithm is not able to compute. The percentages shown below right and missed matches 

are computed with respect to the total number of potential correspondences. The number of 

matches found is equal to the sum of right and wrong matches; the number of matches found 

minus wrong plus missed matches adds up the total number of potential matches. 

 

Ground truth is established by creating templates where all pixels with no possible disparity, 

like the sky, very far areas and portions of the scene than cannot be seen from both images 

(left-most vertical area) are removed. Results obtained from the stereo process are 

compared against this template and the set of matches labeled as correct are supervised by a 

human expert to double check for possible mismatches. 

 

 
Figure 75. Right and wrong disparities computed by the SGBM algorithm when applying the histogram 

matching technique 
 

Results in Table 6 show that a higher number of right correspondences are computed and 

fewer errors are made when images are preprocessed before the stereo process. This means 

that the automatic process of matching the histograms results in a significant improvement 

of the stereo process, and therefore of the terrain reconstruction expert system, verifying 

215 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

and supporting the initial hypothesis. The results obtained in this example are extensible to 

the whole set of images, over 180 pairs. 

 

It can be also observed better results are obtained when images are converted to gray scale 

before matching their histograms previous to the stereo matching process instead first 

matching the histograms of each channel separately and then converting the images to gray 

scale previous to the stereo process. These results are influenced by the matching algorithm 

used in the stereo process. In this case, the SGBM algorithm computes correspondences 

based on intensity values of each candidate pixel and its surroundings on gray scale images. 

In case it receives RGB images, the algorithm initially converts them to gray scale. The 

process of converting an image from RGB to gray scale is done by eliminating the hue and 

saturation information while retaining the luminance. Therefore, when the histogram 

matching process is initially performed on RGB images on each channel separately and then 

converted to gray scale, hue and saturation information is removed after the histogram 

matching process is done, altering the input images and influencing the results obtained by 

the stereo matching algorithm. However, if RGB images and first converted to gray scale the 

hue and saturation information are removed from both images of the pair prior to the 

histogram matching process, where pixels intensities are then matched, obtaining better 

results by the SGBM stereo matching algorithm. Results may differ in case of implementing a 

different design of a stereo matching algorithm able to work directly on RGB images using 

the information of the three different channels to compute correspondences. 

 
Table 6. Results obtained by the stereo matching algorithm implemented in the expert system using as 

input the original images and the ones with the histograms matched 

Stereo matching algorithm 
Original 
Images 

Histogram 
Matching 

(RGB) 

Histogram 
Matching 

(Gray) 
Total image’s pixels 307,200 307,200 307,200 

Potential matches 156,111 156,111 156,111 
Matches found 143,296 141,993 153,305 

Right matches 
(%) 

120,738 
77.34% 

126,608 
81.1% 

139,955 
89.65% 

Wrong matches 22,558 15,385 13,350 
Missed matches 
(%) 

35,373 
22.66% 

29,503 
18.9% 

16,156 
10.35% 

216 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

6.7.2 Homomorphic Filtering 
 

The homomorphic filtering process has been implemented and integrated both, within the 

testbed introduced in previous chapter in the so called pre-filters category, and within the 

automatic expert system. Using any of them, a chain of processes is configured so that the 

pre-filter “homomorphic filtering” is first applied to the input images and the result is passed 

to the SGBM matching algorithm for disparities computation. The high-pass filter applied in 

this work, as part of the homomorphic filtering process, is a second order Butterworth filter 

(Butterworth, 1930). The result of the process and its effect on the subsequent disparity map 

can be shown in Figure 76. 

 

  
a) 

  
b) 

  
c) d) 

Figure 76. a) Original images, b) images after applying homomorphic filtering, c) disparity map (SGBM 
algorithm) from the original images d) disparity map (SGBM algorithm) from the filtered images 

217 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

When the homomorphic filtering process is applied to the input images prior to the matching 

algorithm, it can be observed the disparity computation process is improved. The same 

matching algorithm used previously –SGBM- is able to find 11,497 more right 

correspondences than using the original images directly as input, for the pair of images used 

as example so far. In this case it computes 132,235 right matches out of the possible 156,111, 

meaning 84.71%, representing an improvement of 7.37%, see Table 7. It can be seen using 

this method, besides increasing the number of right correspondences, the number of wrong 

matches has dramatically decreased, having a great impact when performing the subsequent 

3D terrain reconstruction. These results can be graphically seen in Figure 77. 

 
Table 7. Results obtained by the stereo matching algorithm implemented in the expert system using as 

input the original images and after the homomorphic filtering process ones 

Stereo matching algorithm 
Original 
Images 

Homomorphic 
Filtering 

Total image’s pixels 307,200 307,200 

Potential matches 156,111 156,111 
Matches found 143,296 141,200 

Right matches 
(%) 

120,738 
77.34% 

132,235 
84.71% 

Wrong matches 22,558 8,965 
Missed matches 
(%) 

35,373 
22.66% 

23,876 
15.29% 

 

However, it has been observed that the process introduces some new errors. In the image 

shown in Figure 76 (d), they are represented by the reddish areas in the upper part. These 

errors are wrong matches, or false positives. Specifically, for this example 10,136 false 

positives were detected. It is a collateral effect of using the homomorphic filtering. This 

commonly happens in areas where textures are more uniform, and whose values of disparity 

are close to the maximum value, previously set as the search boundary of the algorithm. The 

same effect has been appreciated in all experiments using images captured with the stereo 

system. These false positives have to be removed from the disparities map; otherwise these 

will be considered as nearby objects and taken as obstacles. Therefore, it is necessary to 

filter out these errors before proceed to the reconstruction phase. To do that, a novel process 

has been developed, the clustering filter. 

 

218 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Figure 77. Comparison of disparities computed by the SGBM algorithm when applying the 

homomorphic filtering technique 
 

6.7.3 Clustering Filter 
 

The clustering filter process has been implemented and integrated both, within the testbed 

introduced in previous chapter in the so called post-filters category, and within the 

automatic expert system. As before, chain of processes is configured so that this post-filter 

applied to the disparity map after the stereo matching process. 

 

  
a) b) 

Figure 78. (a) Clusters detected by the filtering algorithm and (b) final disparities computation after 
filtering out these errors 

 

Applying this technique to the disparity computation example shown in Figure 76, it can be 

verified the process detects 13 clusters. A large, principal cluster representing the terrain 

219 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

itself and a series of smaller clusters formed by groups of false positives, see Figure 78 (a). 

The final result of filtering all these clusters out but the principal is shown in Figure 78 (b). 

The filtering of these errors is achieved without causing any considerable collateral loss of 

right matches, obtaining an improved and error-free disparity map and a subsequent more 

dense and correct 3D terrain reconstruction and environment representation, see Table 8. 

 

Table 8. Results obtained by the stereo matching algorithm after the application of the homomorphic 
filtering and clustering filter processes 

Stereo matching algorithm 
Original 
Images 

Homomorphic 
Filtering 

Clustering 
Filter 

Total image’s pixels 307,200 307,200 307,200 
Potential matches 156,111 156,111 156,111 
Matches found 143,296 141,200 135,086 

Right matches 
(%) 

120,738 
77.34% 

132,235 
84.71% 

131,862 
84.47% 

Wrong matches 22,558 8,965 3,224 
Missed matches 
(%) 

35,373 
22.66% 

23,876 
15.29% 

24,249 
15.53% 

 

The described procedure is configurable, being possible to vary both the spatial 

neighborhood relation (4 or 8), used to expand each region to compute the different 

connected components, and the connection distance, which is the maximum distance, or gap, 

allowed between two pixels to be considered as part of the same region. It can also be 

specified what clusters are to be kept or removed. It can be indicated as a function of its size, 

filtering out the smallest clusters, below a given threshold, or the opposite, keeping the 

largest cluster, about a given threshold. In the experiments carried out with the set of terrain 

images captured with the real stereoscopic system it has been considered eight neighbors 

relation and as maximum connection distance of just one pixel. The approach followed with 

regards the computed clusters has been keeping just the principal one. 

 

It is important to clarify that the presence of rocks or other objects in the images does not 

cause the detection of them as separate clusters. This method performs grouping based on 

the spatial continuity of the correspondences found, regardless of its value. As for the objects 

in the scene, as they are in direct contact with the ground, they do not generate any 

disconnected component that may form an independent cluster (Correal et al., 2013). This is 

220 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

illustrated in Figure 79, where diverse objects and bushes appear in the environment but 

they do not form a separate component of grouped pixel separate from the rest. Such items, 

even though they present a different disparity value than their neighbors, as they are in 

direct contact with them, do not form any disjointed component and therefore do not cause 

to be detected as an independent cluster. 

 

  

  
a) b) 

Figure 79. Objects in the environment, even though they have different disparity values than their 
neighbors, do not form separate clusters 

 

It is possible to conclude the application of a homomorphic filtering process to remove the 

illumination component of the stereo pair prior to the matching algorithm, and a subsequent 

clustering process, to filter out wrong matches, introduce significant improvements in the 

disparity map computation. It has an important impact and represents an advance in the 

matching process for real images. 

 

Images used in this experiment, are just a representative example to illustrate the 

differences found in the algorithms when using synthetic or real images and the applicability 

of some image filtering; analogous results have been obtained from a large set experiments 

using 180 different stereo pairs, taken with a general-purpose low-cost stereo system under 

221 
 



Chapter 6: AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION  
 

different illumination conditions, days and locations. Thus the results expressed above are 

valid for the whole set of experiments carried out. 

 
 

222 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 
Chapter 7 

 
 

CONCLUSIONS AND FUTURE WORK 
 

 

At this point it is necessary to lay out an overall balance on the followed 
research lines, leading to the following conclusions. Moreover, a number of 
prospects regarding the research topics addressed and future expansion 
possibilities are open. In this chapter the contributions made and the most 
important conclusions derived from them are synthesized. The core of the 
research involved the development of a vision-based autonomous navigation 
system for planetary exploration rovers; a framework to support these 
developments, including simulation and modeling capabilities; analysis and 
identification of the critical points and areas for improvement, concentrated 
in the perception subsystem; use and development of techniques such as 
homomorphic filtering, histogram matching and clustering filter to improve 
the results of the stereo matching process when working with images of 
terrains taken from real environments with common and real devices; and 
development of a testbed where the techniques mentioned above, as well as a 
number of heterogeneous methods from different authors and sources, are 
integrated to facilitate the study and analysis of the state of the art in stereo 
matching methods, which constitutes one of the main current open research 
areas, as evidenced in the literature. 

 

 

7.1 Conclusions 
 

In this thesis it has been presented a study and analysis of the autonomy capabilities for 

planetary exploration vehicles in current and future space exploration missions, according to 

the stated objective 1, with special emphasis in autonomous navigation, with the aim to 

reduce missions’ operational costs by increasing the level of onboard autonomy. 

 

223 
 



Chapter 7:  CONCLUSIONS AND FUTURE WORK  
 

A framework has been purposely created to support autonomy developments, testing and 

functional validation of approaches and strategies in the robotic space exploration domain, 

according to the stated objective 2. The justification of the creation of such a framework has 

emerged from the lack of availability and accessibility to environments able to support this 

type of research, which has typically been under the purview of national space agencies. It is 

partially based on the integration of existing components, open-source tools and packages, 

with adaptations and extensions. 

 

The integration of different pieces of software together to build up a system has been 

achieved intra and inter system homogenizing interfaces by creating wrappers and 

communication interfaces. Software reuse is never a trivial task, as many authors have 

documented before (Garlan et al., 2009), usually taking far longer than anticipated and 

resulting in sluggish, huge, brittle and difficult to maintain code. The main drawbacks when 

working with open-source resources is the fact of relying on sometimes non-proven or 

immature tools, not supported by a company, where the lack of documentation in many 

cases makes the learning process hard and time consuming. However, in this case, using 

existing software and libraries have greatly eased and sped up the development process; 

accessibility to source code have enabled obtaining a complete control over processes, 

subsystems and modules’ internals, making possible carry out the necessary adaptations and 

extensions to its original capabilities. 

 

A simulation model of a robotic vehicle based on the NASA’s Spirit and Opportunity rovers 

has been developed, including its sensors and actuators, according to the stated objective 3. 

The simulation capabilities, based in Gazebo, has some limitations though; aspects such as 

meteorological conditions, advanced mechanical interactions, sophisticated wheel-soil 

contact forces and phenomena like slipping or sinking cannot be emulated. However, it is 

important to emphasize this was not the aim of this research. Instead, it is focused on 

supporting the development of high-level autonomous navigation strategies, analyzing its 

performance and validating them at the functional level. Despite these limitations, the 

simulator fulfills the necessary requirements to carry out these developments and 

validations. 

 

224 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Supported by the previous framework, an autonomous navigation system for a robotic 

explorer has been designed and developed from the ground up, according to the stated 

objective 4. A navigation strategy comparable to the works from NASA have been adopted, 

but some new tactics have been designed and developed. One of such strategies that 

differentiate this work to the NASA approach has to do with the computation of the 

traversability map, evaluating just the strictly necessary areas and cells of the map, speeding 

up its computation. Also, besides computing straight candidate paths or arcs, a more 

sophisticated path planning strategy based on splines have been designed. It maximizes and 

optimizes the navigation process by computing the largest possible safe path within the 

available map, minimizing the number of required perceptions stages and saving a large 

amount of time the rover spent stopped performing computation; it speeds up the overall 

navigation process with respect to the original MER mission approach, ultimately increasing 

the scientific return of the mission. 

 

According to objective 5, a software architecture based in a layered model has been designed 

with the purpose to be used as a dynamic research platform. Each level is composed by a set 

of independent and highly configurable modules, where algorithms can be easily updated or 

replaced, and more sophisticated and advanced functionality can be integrated over time. 

This has been actually verified when porting the system from the simulated to the real world, 

where the perception module had to be modified, replacing some algorithms while the rest 

of the system remained unaltered and unaware of these changes, confirming the success and 

utility of the modular design. Devices and hardware independence have been achieved by 

implementing an abstraction layer. It makes possible porting the designed autonomous 

navigation system to different vehicles, just by adapting this hardware abstraction layer to 

the concrete robotic platform, while the rest of the layers and modules remain unaltered.  

 

The navigation system has been tested both, in simulation and with a physical mobile robot, 

according to the stated objective 6. Once the navigation system were mature enough and 

validated in simulation, it was ported to a physical robotic platform for field testing and final 

validation. This portage resulted in a smooth process thanks to the extensive preceding test 

campaigns in simulation and the modularity of the architecture.  

 

225 
 



Chapter 7:  CONCLUSIONS AND FUTURE WORK  
 

Following the objective 7, analysis of results revealed computation resources requirements 

are in accordance to the ones available in previous missions and to the capabilities of present 

and future flight processors used for space mission. The designed navigation system 

performance have been validated according to the results obtained from the field testing 

campaign, as stated in objective 8. It is important to note that these developments are not 

only valid for space exploration but also for terrestrial applications in outdoor, natural 

environments such as patrolling and surveillance, borders’ security, carriage of goods or 

country and forests’ firefighting to name a few. 

 

Results revealed also the perception process, based in stereovision, is one of the most critical 

and consuming processes, in terms of resources and computing requirements, identifying 

this as the focus of potential optimization efforts, in accordance to objective 9. In the process 

of analyzing the state of the art in stereovision algorithms, it has been detected the broad 

range of publications and the heterogeneity of the available resources makes this analysis a 

hard and complex task. To assist that task, a flexible testbed with a friendly interface has 

been designed and created, part of the objective 9. Major contributions of this stereo testbed 

with respect to previous related works, like the Middlebury stereo correspondence software 

(Scharstein and Szeliski, 2002), are: a graphical interface that allow a friendly interaction for 

selection and configuration of algorithms and its parameters and the avoidance of the use of 

scripts; it allows to perform multitude of tests in very short time; graphical representation of 

results for easy analysis and comparison; use of different formats of input images, not 

constrained to the set of images distributed with the testbed; portability, architecture and 

operative system independence, as the testbed can been executed in different platforms 

without the recompiling the source code or configuring a runtime environment, representing 

one of the most important contributions; flexibility in the inclusion of algorithms written in 

different source languages, as well as easy connection with computer vision libraries such as 

OpenCV; openness of source code, so users can adapt both the algorithms and the testbed or 

its graphical interface to their concrete needs, and include new features, what represents a 

crucial aspect, as published algorithms may serve as inspiration for others, who can extend 

or adapt them to achieve more robust and optimized approaches over time the whole 

community can benefit from; scalability, as it has been designed to evolve and include more 

algorithms, image processes and functionality over time, receiving contributions from the 

226 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

research community as new works are published; once integrated, new algorithms can be 

easily tested and compared with others, analyzing its strengths and weaknesses to assess its 

contribution to the state of the art. 

 

A series of heterogeneous stereo matching algorithms and image processes have been 

adapted, standardized and integrated into the testbed, taking advantage of the large 

collection of existing resources and work already done by the research community. This 

integration and standardization process does not require a major effort as the testbed is 

designed to be very flexible and allow the inclusion of algorithms written in different 

programming languages. The set of stereo algorithms has been analyzed. The testbed allows 

testing many algorithms varying its parameters in a very short time, until the most suitable 

one for each concrete application is identified. It prevents the implementation of algorithms 

just for testing purposes, what can be done within the testbed, representing a considerable 

saving of time and effort, demonstrating the utility of the testbed. 

 

The undertaken research is motivated by the evidence of the unfavorable performance of 

various matching algorithms against real images of uncontrolled and unstructured outdoor 

environments. As a result, it has been verified several processes when combined to be 

executed consecutively, results in a major improvement when computing stereo 

correspondences. Therefore, following the stated objective 10, an automatic expert systems 

for image correction and terrain reconstruction in stereo vision applications has been 

proposed. It adjusts these intensities by the automatic successive application of a 

combination of processes and filters in three consecutive stages, mapping the expert 

knowledge. These processes include previous treatments on the input images and filtering 

techniques following the matching phase. 

 

One of such identified techniques is the histogram matching process, used to automatically 

adjust the intensity of one image of the pair as a function of the other. Another applied 

technique is the homomorphic filtering; it removes the illumination component of the input 

stereoscopic images, causing an improvement in the disparity map. The homomorphic 

filtering process however introduces some errors; they can be easily filtered with clusters-

based process following the principle of spatial continuity, which eliminates false positives. 

227 
 



Chapter 7:  CONCLUSIONS AND FUTURE WORK  
 

Both processes applied together represent a breakthrough and a significant improvement in 

the efficiency of the matching process for real terrain images, assuming a minor additional 

computational cost with respect to applying solely the matching process, although it does not 

suppose a significant overhead. Once the intensities have been corrected by applying these 

methods, the stereo matching process is able to obtain a larger number of correspondences, 

reducing also errors and missed matches, what have a great impact in the subsequent 3D 

reprojection and terrain reconstruction processes. It also probes the constant image 

brightness (CIB) assumption is often erroneous. 

 

The proposed expert system could be extended to be applied to other applications such 3D 

object segmentation and recognition. This expert system has been designed with an open 

architecture, so that in the future it will be possible to replace or add new modules, being of 

particular interest to study different stereo matching algorithms, or to add a knowledge-base 

for improving image correction based on the accumulated knowledge. 

 

7.2 Future Work 
 

There is still room for improvements in the subsystems, methods and tools proposed. In 

addition, there are many open research lines within the context of the work associated with 

this thesis. Next, some of the most promising lines of future related research are indicated. 

 

Within the support framework, the control center can be extended to allow operators to 

create sophisticated plans of activities to be uploaded to the rover, including usage of 

scientific instruments, and modeling communication constraints to emulate the real 

interplanetary communications cycle. Including 3D reconstruction capabilities from rover 

imagery may support the operator/researcher plans design, as well as incorporating tests 

automation capabilities for debugging purposes. Regarding simulation, terrains and rovers 

models can be further sophisticated by including phenomena such as soft sand, wheels’ 

slipping and sinking, as well as models of scientific instruments that the robot should use to 

perform experiments and energy usage models, which have an important impact on the 

228 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

overall autonomy strategy. Current devices, sensors and actuators’ models can be extended 

with noise and error models to enhance algorithms’ management of uncertainty. 

 

New and more sophisticated navigation strategies can be designed. Stereo vision algorithms 

to manage shadows, environmental dust or sun glaring can be analyzed, as well as visual 

odometry techniques to correct localization errors accumulated from mechanical odometry. 

The rover can also be provided with onboard task planning capabilities by incorporating AI 

(Artificial Intelligence) planners, taking into account aspects such as rover resources, power 

consumption, instruments usage, solar panels loading rate or sun position when designing 

activities and contingency plans. 

 

Regarding the initiated stereo testbed open-source project, it can be extended to include new 

matching algorithms and more image processes as well as extended functionality such as test 

automation capabilities, scheduling a series of tests to be executed without supervision 

during low activity periods or by night; this way, lots of data from different tests can be 

gathered together for later analysis, automatically storing it to be presented in a structured 

mode to ease its subsequent analysis. This analysis can be somehow automated, reporting 

evaluations, comparisons and elaborated conclusions from the raw gathered data. Some 

contributions have been already received from a number of authors to be integrated into the 

next version of the testbed. 

 

Further research can be done to enhance the current image filters and processes, or design 

new techniques for automatic image correction. Potential enhancements in the clusters-

based filter can be done to take into account the disparity values from pixels within a given 

cluster in comparison with nearby clusters and as a function of the separation distance, to 

automatically determine if the cluster should be removed or kept. The use of techniques such 

as simulated annealing to remove exceptional errors that could stand for isolated pixels after 

disparities computation and filtering can be analyzed. 

 

A current disadvantage of the current expert system’s proposed approach is precisely the 

lack of awareness of the system regarding how to perform the histogram matching process 

in the most effective way. It may occur that matching each RGB channel separately lead to 

229 
 



Chapter 7:  CONCLUSIONS AND FUTURE WORK  
 

obtain results not as good as they could be performing the process over previously gray 

scale-converted images. Therefore, the capability of automatically select the most 

appropriate image process and optimally configure its parameters as a function of the 

concrete application and operational conditions is a promising line of work, ensuring the 

maximum effectiveness and adaptation of the system. 

 

As a final conclusion, it can be said incoming missions to Mars, other planets and celestial 

bodies in the Solar system are currently being scheduled. Once a first approach to an 

autonomous navigation system, a series of algorithms and techniques and the basic and 

necessary infrastructure has been developed, which has been the focus of this work, more 

sophisticated algorithms and navigation strategies can be analyzed, designed and developed 

with the support of the created tools, that make possible to design future rovers more 

autonomous, robust and reliable, advancing the state of the art in this domain and taking 

mankind to the next level in robotic planetary exploration. 

 

230 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

 

RESUMEN EN ESPAÑOL 
 

8.1 Introducción 
 
 
La exploración de superficies planetarias mediante el uso de robots o rovers, términos que se 

usarán indistintamente para referirnos a la misma entidad, es una tarea complicada, con 

requisitos de seguridad críticos y grandes limitaciones de comunicación. Por lo tanto es 

esencial un cierto nivel de autonomía local a bordo de los robots, de manera que éstos 

puedan tomar sus propias decisiones de forma independiente del control de Tierra, lo que 

reduce los costes operativos y maximiza el retorno científico de la misión. Además, existe 

una creciente demanda de las capacidades de autonomía para futuras misiones planetarias. 

Se espera que las siguientes misiones incluyan un alto nivel de autonomía, donde los 

científicos en Tierra simplemente designen localizaciones a visitar por el rover sobre las 

imágenes adquiridas y descargadas previamente. 

 

La navegación autónoma es uno de los aspectos más importantes y arriesgados de estas 

operaciones. El vehículo tiene que ser capaz de trasladarse de un lugar a otro para tomar 

medidas, muestras y realizar experimentos científicos. Si el vehículo llega a una zona muy 

empinada, pasa sobre una roca, un hueco o por un área arenosa, por citar algunas situaciones 

potencialmente peligrosas, éste puede volcar, encallar, atascarse o perder tracción, y poner 

toda la misión en riesgo, ya que nadie puede ayudar al vehículo a salir y continuar. Para 

lograr esto, el robot debe realizar una serie de tareas específicas basadas en una estrategia 

de navegación exploratoria consistente en un ciclo iterativo de percepción-mapeado-

planificación de trayectorias-navegación. Es decir, el rover debe percibir su entorno 

haciendo uso de los sensores apropiados; crear una representación interna del entorno; y 

calcular trayectorias seguras y adecuadas para llegar a la ubicación que haya sido 

comandado. 

 

231 
 



RESUMEN EN ESPAÑOL  
 

Sin embargo, una de las primeras y principales dificultades que los investigadores en este 

ámbito tienen que afrontar es que las herramientas existentes para apoyar la investigación 

suelen ser propiedad de las agencias espaciales, fuera del alcance de la mayoría de 

investigadores. Además, es indispensable hacer un uso extensivo de la simulación, que 

permita la creación de modelos que repliquen el vehículo, los sensores, el terreno y las 

condiciones operacionales, así como de herramientas que apoyen el desarrollo de los 

algoritmos necesarios para conseguir una estrategia de navegación autónoma basada en 

visión artificial para exploración robótica de planetas, que permita analizar y validar de 

manera funcional los algoritmos y métodos de autonomía, así como la monitorización de 

datos. Por lo tanto, esta dificultad debe ser superada de algún modo. En el caso de la 

propuesta que se presenta, la estrategia seguida ha sido diseñar a propósito un entorno de 

trabajo, basado en la integración y adaptación de herramientas existentes, enfocado en el 

ámbito de exploración planetaria para apoyar los desarrollos y trabajos de investigación, así 

como el diseño y desarrollo de una estrategia de navegación autónoma. 

 

Dentro de la navegación autónoma, la percepción es una de las tareas más cruciales. Las 

cámaras estéreo resultan ser el dispositivo preferido para la percepción de entornos 3D en 

muchas aplicaciones de exteriores. La visión estereoscópica es un mecanismo para obtener 

datos de profundidad o de rango basados en imágenes. Para la obtención de la visión 

estereoscópica se dispone de un dispositivo consistente en dos cámaras separadas por una 

distancia dada de manera que se obtienen dos puntos de vista diferentes de una misma 

escena que se proyectan sobre cada una de las cámaras para obtener un par de imágenes 

estereoscópicas, de forma similar a la visión binocular humana. Este par de imágenes 

constituye la entrada al proceso de correspondencia estéreo. Al comparar las dos imágenes, 

se obtiene información relativa de profundidad, en forma de desigualdades, que son 

inversamente proporcional a la distancia a los objetos. Este proceso calcula la diferencia en 

la posición de un conjunto de características o píxeles de una imagen con respecto a la otra, 

generalmente a lo largo del eje horizontal. La profundidad a la que se encuentran los objetos 

en la escena se establece mediante la triangulación de las disparidades obtenidas del proceso 

de correspondencia, siempre que la posición de los centros de proyección, la distancia focal y 

la orientación de los ejes ópticos sean conocidas. A continuación se realiza una reproyección 

232 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

al espacio 3D mediante una transformación de perspectiva, obteniendo un conjunto de 

coordenadas con respecto al sistema de referencia del mundo. 

 

El cálculo de correspondencias en imágenes estéreo es un área muy investigada, que cuenta 

con una extensa base de literatura publicada y un amplio espectro de algoritmos 

heterogéneos disponibles en diversos lenguajes de programación. Sin embargo, no existe un 

enfoque único que pueda ser considerado como el mejor, capaz de resolver todos los 

problemas posibles. Por lo general, cada técnica es adecuada para un conjunto de 

condiciones pero no para otras. Por lo tanto, como en todos los ámbitos de la investigación, 

el primer paso consiste en realizar un análisis del estado del arte para verificar si ya existe 

alguna solución o técnica capaz de satisfacer las necesidades concretas y en qué medida. Esta 

es, de hecho, una de las principales dificultades que investigadores en el área de la visión 

estéreo –como en otras muchas áreas- han de afrontar, ya que esta tarea no es trivial en 

absoluto, dada la amplia gama de recursos y literatura disponible, de manera que es 

necesario realizar un considerable esfuerzo para analizarlo a fin de determinar qué 

estrategia puede adaptarse a cada conjunto concreto de requisitos. Esta dificultad se debe 

principalmente a la naturaleza heterogénea de los algoritmos y técnicas disponibles. Esta 

heterogeneidad y falta de estandarización hacen del análisis del estado del arte, así como de 

la evaluación y comparación de algoritmos, una tarea difícil, complicada y lenta. 

 

Una vez que una técnica o algoritmo ha sido evaluado como prometedora para ser probado 

para navegación de robots en terrenos naturales, surgen nuevos problemas cuando se 

aplican en entornos reales, en contraste con su aplicación a entornos controlados y de 

laboratorio, lo que ocurre en una infinidad de trabajos publicados. El problema de la 

correspondencia en sistemas estereoscópicos deriva del hecho de que las imágenes de las 

cámaras, aunque similar, muestran diferentes niveles de intensidad para la misma entidad 

física en la escena 3D. La razón principal de esta característica radica en la diferente 

respuesta de los sensores de la cámara a la luz de la escena, así como a la diferencia en la 

proyección de la escena sobre cada imagen debido a los diferentes puntos de vista relativos 

de cada cámara. Eso hace necesario dedicar un importante esfuerzo de investigación para 

corregir estas desviaciones típicas de cualquier sistema estéreo. Este problema no ha sido 

todavía satisfactoriamente resuelto, especialmente en entornos no controlados ni 

233 
 



RESUMEN EN ESPAÑOL  
 

estructurados. Esta es la razón principal por la que la literatura sobre este tema es tan 

amplia. 

 

Este hecho permite deducir que el problema relativo a la baja eficiencia de algunos 

algoritmos proviene de su aplicación a imágenes reales, lo que requiere una solución global a 

este problema general. Esto justifica la necesidad de un tratamiento previo de las imágenes. 

El objetivo es conseguir la máxima similitud en los niveles espectrales de las imágenes del 

par estéreo, a nivel de píxel, que es exactamente lo que sucede en el caso de las imágenes 

simuladas. Por lo tanto, son necesarios métodos capaces de corregir las diferencias en ambas 

imágenes desde el punto de vista radiométrico. 

 

Por último, el propósito principal de la fase de percepción y el uso de la visión 

estereoscópica, es realizar una reconstrucción 3D del terreno que sirva al robot para crear 

una representación interna de su entorno y poder planificar rutas y trayectorias adecuadas 

para navegar de forma efectiva de un lugar a otro. Eso requiere una reconstrucción de alta 

calidad de la superficie y el desarrollo de un sistema capaz de realizar tal tarea, similar a la 

que un experto humano haría en una situación similar. Por lo tanto, el conocimiento 

necesario tiene que ser proyectado en el sistema siguiendo la estrategia lógica que un 

experto aplicaría. 

 

El trabajo que se presenta en esta tesis, aunque está centrado en la navegación autónoma de 

robots basada en visión para aplicaciones de exploración espacial, puede ser fácilmente 

portado y aplicado en entornos terrestres. Cualquier aplicación en la que un robot tenga que 

atravesar de forma autónoma un terreno natural y abrupto sin información a priori, en la 

que el entorno sea desconocido y tenga por tanto que ser explorado y descubierto a medida 

que el robot avance haciendo uso de cámaras estéreo para una percepción 3D, se enfrentará 

a análogas dificultades y condiciones. Algunos ejemplos de aplicaciones terrestres similares 

son patrullaje autónomo con robots en entornos rurales, tales como detección de incendios 

en bosques, vigilancia en instalaciones agrarias o control fronterizo. Por lo tanto, futuros 

proyectos y trabajos de investigación en estas áreas de aplicación también pueden 

beneficiarse de los trabajos presentados en esta tesis. 

234 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

8.2  Motivación 
 

El trabajo de investigación de esta tesis es parte de una colaboración entre la Universidad 

Complutense de Madrid y la compañía TCP Sistemas e Ingeniería en el área de navegación 

autónoma de rovers de exploración planetaria. Ambas entidades han participado en dos 

proyectos, titulados: AutoRover: estudio de Autonomía Basada en Imágenes para rovers de 

exploración planetaria y Visión estereoscópica párrafo Auto-rover: estudio de Autonomía 

Basada en Imágenes. El primero proviene de la participación de la mencionada empresa en la 

convocatoria pública 2259/2007 (BOCM 272 de 15/11/2007) para promover la innovación 

de la Comunidad de Madrid en el sector aeroespacial con financiación de la Fundación 

Regional Europea (Referencia 04-AEC0800-000035 / 2008). El segundo corresponde a una 

extensión del programa anterior dentro del Programa Nacional de Investigación en el sector 

aeroespacial, según el orden PRE / 998/2008 (BOE 11/04/2008) Ministerio de la 

Presidencia (de referencia SAE-20081093). Ambos proyectos se enmarcan en el área de 

navegación autónoma de robots sobre la superficie de Marte, cuyo objetivo principal es el 

diseño y desarrollo de un sistema basado en visión para navegación autónoma de rovers de 

exploración planetaria. 

 

Los trabajos de investigación relacionados con los proyectos anteriormente mencionados se 

han llevado a cabo en la Facultad de Informática de la Universidad Complutense de Madrid 

bajo la dirección de los supervisores de esta tesis. 

 

Desde el punto de vista de su utilidad industrial, el trabajo desarrollado se debe a la 

necesidad planteada por la Agencia Espacial Europea para su próxima misión robótica a 

Marte llamada ExoMars, donde un rover navegará a través de la superficie marciana en 

búsqueda de señales de vida. El objetivo principal es aterrizar el vehículo en un lugar con 

alto potencial para la búsqueda de material orgánico bien conservado, sobre todo desde los 

inicios de la historia del planeta. Se recogerán muestras con un taladro y serán analizados 

con instrumentos de última generación para el establecimiento de las propiedades físicas y 

químicas de estas muestras. Este futuro rover estará diseñado para ser altamente autónomo. 

El rover construirá un modelo 3D de su entorno utilizando imágenes estéreo, que analizará 

con el fin de establecer los objetivos científicos más adecuados. A continuación, navegará de 

235 
 



RESUMEN EN ESPAÑOL  
 

forma autónoma al destino seleccionado y hará uso de su brazo robótico e instrumentos a 

bordo para recoger y analizar datos. La intención es disminuir por tres o más el tiempo que 

los últimos rovers de la NASA necesitaban para planificar y programar sus acciones para 

obtener las muestras, lo que aumentaría drásticamente el retorno científico de la misión. 

 

La Agencia está en la necesidad de licitar múltiples contratos a la industria europea para el 

diseño y desarrollo de los numerosos sistemas que integran una misión de una complejidad 

y características como éstas. Los trabajos presentados en esta tesis se centran en el 

desarrollo de las capacidades autónomas de vehículos robóticos, y más concretamente en el 

sistema de navegación, con especial énfasis en el subsistema de percepción, basado en visión 

estereoscópica. 

 

Por otra parte, desde el punto de vista tecnológico, los presentes trabajos están motivados 

por el hecho de tratar de mejorar los resultados obtenidos a partir de los algoritmos de 

correspondencia estereoscópica, teniendo en cuenta los problemas de su aplicación a 

situaciones e imágenes reales, lo que implica ciertas complejidades y problemas no tenidos 

en cuenta en muchos trabajos y publicaciones relacionadas, que suelen estar realizados en 

entornos controlados o limitados a imágenes generadas sintéticamente. 

 

8.3  Objetivos 
 

En vista de las consideraciones indicadas en los párrafos anteriores, se proponen los 

siguientes objetivos de investigación: 

 

1. Llevar a cabo un estudio y análisis de las capacidades actuales de autonomía de los 

vehículos de exploración planetaria, con especial énfasis en la navegación autónoma. 

Comprender el estado del arte en este campo y en las tecnologías y herramientas 

disponibles relacionadas con el desarrollo de esta área de investigación. 

 

2. Diseño y desarrollo de un entorno de trabajo que apoye el desarrollo de las 

capacidades de autonomía, estrategias de navegación, algoritmos y su validación 

236 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

funcional, dada la falta de disponibilidad y accesibilidad a entornos equivalentes, 

típicamente de acceso limitado para las agencias espaciales nacionales. 

 

3. Creación de los modelos de simulación necesarios para replicar el vehículo, sus 

sensores, el terreno y las condiciones operacionales, incluyendo aspectos tales como 

la cinemática y la dinámica del vehículo, fuerzas de contacto, gravedad o fricción para 

analizar la interacción del rover con su medio con el nivel apropiado de fidelidad. El 

objetivo es emular todo el proceso de operación del rover en una superficie 

planetaria. 

 

4. Diseño y desarrollo de un sistema de navegación autónomo basado en visión artificial 

para exploración espacial robótica de forma que un vehículo sea capaz de 

desplazarse de un lugar a otro para tomar medidas, muestras y realizar 

experimentos científicos. La autonomía de un rover implica el conjunto de algoritmos 

que han de ser embarcados en el mismo para proporcionar a éste la inteligencia y 

capacidades necesarias para tomar sus propias decisiones, operar en entornos 

desconocidos y manejar situaciones inesperadas, minimizando la dependencia de los 

operadores de control en Tierra. 

 

5. Diseño de una arquitectura software modular y escalable para estructurar y 

organizar el conjunto de algoritmos previamente desarrollados de manera que los 

subsistemas sean independientes y a la vez capaces de interactuar entre sí para 

lograr las capacidades deseadas de autonomía de alto nivel. 

 

6. Realizar una serie de experimentos, tanto haciendo uso de las capacidades de 

simulación del entorno de trabajo como llevando a cabo una campaña de 

experimentos de campo con un robot físico y hardware real, a fin de analizar y 

validar las capacidades de autonomía del sistema de navegación autónomo 

desarrollado y la utilidad del entorno de trabajo para apoyar este tipo de desarrollos 

y pruebas. 

 

237 
 



RESUMEN EN ESPAÑOL  
 

7. Analizar los resultados obtenidos tras los experimentos realizados y el 

comportamiento del sistema de navegación. 

 

8. Validar la estrategia de navegación diseñada, la arquitectura software y los 

algoritmos desarrollados. 

 

9. Identificar las potenciales áreas de mejora y desarrollar las herramientas necesarias 

para facilitar la identificación de dichas áreas. Poner estas herramientas a disposición 

de la comunidad científica siempre que sea posible. 

 

10. Desarrollar los métodos y técnicas previamente identificadas como áreas de mejora 

dentro de la estrategia de navegación autónoma; desarrollar las herramientas 

necesarias para facilitar la creación de estos métodos y tecnologías. 

 

11. Identificar líneas futuras de investigación. 

 

12. Difusión de los resultados obtenidos, conocimientos, descubrimientos y desarrollos a 

través de publicaciones científicas o de otros mecanismos como la publicación de 

software siempre que sea posible. 

 

8.4 Resultados 

 
A partir de los objetivos propuestos y teniendo en cuenta los aspectos anteriormente 

destacados, el propósito es resolver los problemas considerados y proporcionar a la 

comunidad científica un conjunto de estrategias de solución y herramientas que también 

pueden propagarse a otros ámbitos de naturaleza similar. Los resultados y aportaciones 

realizadas por esta investigación se resumen en los siguientes puntos: 

 

1. Se ha realizado un estudio y análisis de las capacidades de autonomía para vehículos 

de  exploración planetaria, con especial énfasis en navegación autónoma. El estado 

actual del arte en este campo y en las tecnologías y herramientas disponibles 

238 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

relacionadas con los propuestos temas de investigación ha sido asimismo analizado. 

Este trabajo se describe en el capítulo 2 de esta tesis. 

 

2. Se ha diseñado y desarrollado un entorno de trabajo para apoyar el desarrollo de los 

algoritmos de autonomía, incluyendo las estrategias de navegación y su validación 

funcional, creado en parte integrando herramientas y algunos paquetes de terceros. 

Este trabajo ha sido motivado por la falta de disponibilidad y accesibilidad a 

herramientas equivalentes, típicamente de acceso limitado para las agencias 

espaciales nacionales. Este trabajo se describe en el capítulo 3 de esta tesis y en 

Correal y Pajares (2011a) y Correal et al. (2014B). 

 

3. Se han creado modelos de simulación para replicar un vehículo robótico de 

exploración espacial, sus sensores, terrenos y las condiciones operacionales, 

incluyendo aspectos tales como la cinemática y la dinámica del vehículo, la fuerza, la 

gravedad, o fricción, emulando el proceso completo de operación del rover sobre una 

superficie planetaria. Este trabajo se describe en el capítulo 3 de esta tesis y en 

Correal y Pajares (2011a) y Correal et al. (2014B). 

 

4. Se ha diseñado y desarrollado desde el inicio un sistema de navegación autónoma 

basado en visión para exploración espacial robótica, apoyándose en librerías 

específicas de terceros. Éste permite que un vehículo robótico se desplace de un 

lugar a otro de forma autónoma, tomando medidas, muestras y realizando 

experimentos científicos. Esta autonomía conlleva un conjunto de algoritmos que 

deberán ser embarcados en el robot para dotar a éste con la inteligencia y 

capacidades necesarias para tomar sus propias decisiones, operar en entornos 

desconocidos y manejar situaciones inesperadas, minimizando la dependencia de 

operadores de control en Tierra. Ello incluye el diseño y desarrollo de varias 

estrategias de navegación exploratoria para calcular trayectorias de forma autónoma 

en entornos planetarios remotos. Este trabajo se describe en el capítulo 4 de esta 

tesis, y está basado en Correal y Pajares (2011b) y Correal et al. (2014B). 

 

239 
 



RESUMEN EN ESPAÑOL  
 

5. Se ha diseñado una arquitectura software modular, escalable, basada en capas. Ésta 

es fundamental para estructurar y organizar el conjunto de algoritmos de los que se 

compone la inteligencia embarcada en el rover, de modo que cada subsistema sea 

independiente de los demás y capaz de interactuar con otros para lograr alcanzar el 

alto nivel de autonomía deseado. Este trabajo se describe en el capítulo 4 de esta 

tesis y en Correal y Pajares (2011b) y Correal et al. (2014B). 

 

6. Se han realizado un conjunto de experimentos, tanto utilizando las capacidades de 

simulación del entorno de trabajo desarrollado como un robot real con sus 

dispositivos, validando tanto las capacidades de autonomía del sistema de 

navegación como el papel del entorno de trabajo para apoyar tales desarrollos y 

pruebas. Este trabajo se describe en el capítulo 4 de esta tesis y en Correal y Pajares 

(2011b) y Correal et al. (2014B). 

 

7. Se han identificado potenciales áreas de mejora, principalmente relacionadas con el 

subsistema de percepción. Se han desarrollado varios métodos y técnicas para 

mejorar estos resultados. Una de estas técnicas es la correspondencia de histogramas. 

Ésta normaliza la imagen del par estéreo ajustando la distribución de color de una 

imagen con respecto a la otra. Esta técnica mejora el contraste de las imágenes 

utilizando funciones de distribución acumulada para transformar los valores de 

intensidad en una imagen, o los valores del mapa de colores de una imagen indexada, 

de manera que el histograma de la imagen de salida coincide aproximadamente con 

el histograma de la otra imagen, aproximando ambas componentes de iluminación. 

Este proceso, cuando se aplica a las imágenes de entrada antes del proceso de 

correspondencia estéreo, conlleva una mejora significativa de los resultados de la 

fase de percepción, pasando de una detección del 77% de las correspondencias 

existentes a casi un 90%, ver Table 6 y Figure 75. Este trabajo se describe en el 

capítulo 6 de esta tesis y en Correal et al. (2014a). 

 

8. Otra contribución significativa a la mejora de la etapa percepción de un explorador 

robótico ha sido la aplicación a las imágenes de entrada de una técnica llamada 

filtrado homomórfico, que elimina la componente de iluminación de una imagen, 

240 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

preservando la reflectancia. Cuando se aplica a las imágenes de entrada antes del 

proceso de correspondencia estéreo, se consigue una mejora significativa de los 

resultados obtenidos por el sistema de percepción, pasando de una detección del 

77% de las correspondencias existentes a casi un 85%, y consiguiendo sobre todo 

una reducción significativa en el número de errores cometidos durante el proceso 

que no se conseguía anteriormente, de alrededor de un 250%, ver Table 7 y Figure 

77. Este trabajo se describe en el capítulo 6 de esta tesis y en Correal et al. (2013). 

 

9. Una tercera técnica ha sido diseñada, desarrollada e integrada en el sistema de 

navegación autónoma para mejorar el proceso de percepción del robot; ésta se ha 

denominado filtrado por agrupación. Este proceso, basado en la filosofía de clusters o 

grupos, se aplica después del cálculo de disparidades para eliminar errores de 

correspondencia, descartando falsos positivos. Consiste en la agrupación de píxeles 

en componentes conectados, basados en el principio de continuidad espacial. El 

resultado del proceso es una lista de grupos que son analizados para mantenerlos o 

filtrarlos. Este proceso, cuando se aplica sobre el mapa de disparidades obtenido 

después del proceso de correspondencia estéreo, conduce a alcanzar una mejoría 

significativa de los resultados de la fase de percepción, consiguiendo reducir 

significativamente el número de correspondencias erróneas producidas por el efecto 

colateral de la aplicación del filtrado homomórfico, de alrededor de un 280%, ver 

Table 8 y Figure 78. Este trabajo se describe en el capítulo 6 de esta tesis y en Correal 

et al. (2013). 

 

10. Se ha iniciado un proyecto de código abierto como parte de esta tesis, que consiste en 

un banco de pruebas para algoritmos de visión estéreo para facilitar el análisis del 

estado del arte y dar soporte a los investigadores para analizar, evaluar y comparar 

métodos de correspondencia estéreo. Éste integra una serie de algoritmos 

heterogéneos, y algunas técnicas de pre y post filtrado, adaptando y estandarizando 

sus interfaces de manera que éstos puedan trabajar conjuntamente y combinar 

procesos para obtener resultados mejorados en comparación con la aplicación de 

cada proceso por separado. Este banco de pruebas ha sido puesto libremente al 

servicio de la comunidad científica, y ha sido descargado más de mil veces hasta la 

241 
 



RESUMEN EN ESPAÑOL  
 

fecha actual, lo que denota un gran interés. Varias nuevas contribuciones han sido 

recibidas hasta el momento desde la comunidad y la próxima versión del banco de 

pruebas está actualmente en desarrollo. Este trabajo se describe en el capítulo 5 de 

esta tesis. 

 

11. Se ha propuesto y desarrollado un sistema experto de carácter automático para la 

corrección de imágenes y reconstrucción del terreno en aplicaciones de visión 

estéreo. Consta de tres etapas, donde la idea principal subyacente es la aplicación 

sucesiva de procesos automáticos a imágenes, reproduciendo el conocimiento del 

experto humano. Este sistema experto es capaz para ajustar automáticamente las 

intensidades del par estéreo de entrada. En este planteamiento también se 

demuestra que la suposición de brillo constante (CIB) es, con frecuencia, errónea. 

Este trabajo se describe en el capítulo 6 de esta tesis y en Correal et al. (2014a). 

 

12. Un conjunto de conclusiones y líneas de investigación futuras han sido identificadas y 

detalladas en el capítulo 7 de esta tesis. 

 

13. Como se puede inferir de los párrafos anteriores, los resultados, conocimiento y 

descubrimientos han sido difundidos no solo mediante la liberación de código fuente, 

como se ha indicado anteriormente, sino también a través de publicaciones 

científicas; la referencia Correal et al. (2014a), que es la única de la que se tienen 

estadísticas de uso, ha sido visto o descargado en más de 900 ocasiones hasta la fecha 

actual.  

 

8.5 Conclusiones 

 
En esta tesis se ha presentado un estudio y análisis de las capacidades de autonomía de 

vehículos de exploración planetaria para las misiones actuales y futuras, de acuerdo con el 

objetivo 1, con especial énfasis en navegación autónoma, y con el objetivo de reducir los 

costes operaciones de estas misiones incrementando el nivel de autonomía a bordo. 

 

242 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Se ha creado un entorno de trabajo específicamente diseñado para facilitar desarrollos de 

autonomía, pruebas y validación funcional en el dominio de la exploración espacial robótica, 

de acuerdo con el objetivo 2. La justificación de la creación de dicho entorno de trabajo surge 

de la falta de disponibilidad y accesibilidad a entornos capaces de apoyar este tipo de 

investigaciones, típicamente propietarios de agencias espaciales nacionales. El que aquí se 

presenta está parcialmente basado en la integración de componentes, herramientas y 

paquetes de código abierto existentes, con las necesarias adaptaciones y extensiones. 

 

Se ha realizado una integración intra e inter sistema de los diferentes componentes software 

utilizados para crear esta infraestructura, a través de la creación de envolturas e interfaces 

de comunicaciones. La reutilización de software nunca es una tarea trivial, como muchos 

autores han documentado (Garlan et al., 2009). Habitualmente suele llevar más tiempo de lo 

previsto y resultar en un código vago y difícil de mantener. Los principales inconvenientes 

cuando se trabaja con recursos de código abierto estriban en el hecho de depender de 

herramientas a veces no probadas o inmaduras, no soportadas por una empresa, donde la 

falta de documentación en muchos casos hace que el tiempo de aprendizaje sea un proceso 

lento y difícil. Sin embargo, en este caso, el uso de software y librerías existentes ha facilitado 

y acelerado en gran medida el proceso de desarrollo; la accesibilidad al código fuente ha 

permitido mantener un control total sobre los procesos, subsistemas e interioridades de 

cada módulo, así como realizar las adaptaciones y ampliaciones necesarias a las capacidades 

originales. 

 

Se ha desarrollado un modelo simulado de un vehículo robótico basado en los diseños de los 

rovers Spirit y Opportunity de la NASA, incluyendo sus sensores y actuadores, de acuerdo 

con el objetivo 3. El simulador empleado, Gazebo, posee algunas limitaciones; sin embargo, 

aspectos tales como condiciones meteorológicas, interacciones mecánicas avanzadas, fuerzas 

de contacto rueda-suelo y fenómenos como deslizamiento o hundimiento no pueden ser 

emulados. Por otra parte, es importante enfatizar que esto no era realmente el objetivo de 

esta investigación, sino que ésta está centrada en el desarrollo de estrategias de navegación 

autónoma de alto nivel, análisis y validación de su rendimiento y funcionamiento a nivel 

funcional. A pesar de estas limitaciones, el simulador cumple con los requisitos necesarios 

para llevar a cabo estos desarrollos y validaciones. 

243 
 



RESUMEN EN ESPAÑOL  
 

Con el apoyo del entorno de trabajo introducido anteriormente, se ha desarrollado por 

completo y desde el principio un sistema de navegación autónomo, alcanzando el objetivo 

propuesto 4. Se ha partido de una estrategia de navegación comparable con trabajos previos 

de NASA, sin embargo, se han diseñado y desarrollado algunas tácticas nuevas. Una de esas 

estrategias que diferencian este trabajo del enfoque propuesto por NASA está relacionada 

con el cálculo del mapa de navegabilidad, evaluando solamente las áreas y celdas del mapa 

estrictamente necesarias, lo que permite acelerar el cálculo computacional. Además, aparte 

del cálculo de trayectorias basado en tramos rectos o arcos candidatos, se ha diseñado una 

estrategia de planificación de trayectorias más sofisticada basada en splines.  Ésta maximiza y 

optimiza el proceso de navegación, ya que calcula la ruta segura más larga posible dentro del 

mapa disponible, minimizando el número de percepciones necesarias y ahorrando gran 

cantidad del tiempo que el rover permanece parado realizando cómputos. Esto acelera el 

proceso de navegación general con respecto al enfoque original de la misión MER, y en 

última instancia aumenta el retorno científico de la misma. 

 

En relación con el objetivo 5, se ha diseñado una arquitectura software basada en un modelo 

multi-capa con el propósito de ser usada como una plataforma dinámica de investigación. 

Cada nivel está compuesto por un conjunto de módulos independientes y altamente 

configurables, donde los algoritmos pueden ser fácilmente actualizados y/o reemplazados, 

así como integrar con el tiempo funciones más sofisticadas y avanzadas. Esto se ha verificado 

cuando se realizó el portado del sistema de un entorno simulado al mundo real; el módulo de 

percepción visual tuvo que ser modificado, reemplazando algunos algoritmos, mientras que 

el resto del sistema se mantuvo inalterado, confirmando por lo tanto la utilidad y el éxito del 

diseño modular. La independencia de los dispositivos y hardware se ha alcanzado mediante 

la implementación de una capa de abstracción. Esto hace posible portar el sistema de 

navegación entre diferentes vehículos, simplemente adaptando esta capa de abstracción de 

hardware a la plataforma robótica concreta, mientras que el resto de capas y módulos 

permanecen inalterados. 

 

El sistema de navegación ha sido probado tanto en simulación como en un robot móvil, de 

acuerdo con el objetivo 6. Una vez que los algoritmos se consideraron suficientemente 

maduros y validados en simulación, fueron portados a una plataforma robótica física para 

244 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

una campaña de pruebas de campo y validación final. Esta migración resultó ser un proceso 

suave gracias a las extensas campañas de prueba realizadas previamente en simulación y a la 

naturaleza modular de la arquitectura. 

 

Siguiendo el objetivo 7, el análisis de los resultados ha revelado que las necesidades de 

recursos de computación son acordes a las disponibles en misiones previas y a las 

capacidades de los procesadores actuales y futuros utilizados para misiones espaciales. El 

comportamiento y rendimiento del sistema de navegación diseñado se ha validado de 

acuerdo con los resultados obtenidos de las pruebas de campo, como se esperaba del 

objetivo 8. Es importante resaltar que estos desarrollos no son solamente válidos para la 

exploración espacial sino que también lo son para aplicaciones terrestres en entornos 

naturales exteriores, tales como patrullaje y vigilancia, seguridad de fronteras, transporte de 

mercancías o apoyo a la extinción de incendios en bosques, por nombrar algunos. 

 

El análisis de los resultados ha revelado también que el proceso de percepción, basado en 

visión estéreo, es uno de los más críticos y exigentes, en términos de recursos y requisitos de 

computación, identificando a éste como el foco de los potenciales esfuerzos de optimización, 

de acuerdo al objetivo 9. En el proceso de análisis del estado del arte en algoritmos de visión 

estéreo, se ha detectado que la amplia gama de publicaciones y la heterogeneidad de los 

recursos disponibles hacen de este análisis una tarea difícil y compleja. Para facilitar dicha 

tarea, se ha diseñado un banco de pruebas flexible con una interfaz amigable, como parte del 

objetivo 9. Las principales aportaciones del banco de pruebas estéreo presentado con 

respecto a trabajos anteriores relacionados, entre los que destaca el software de 

correspondencia estéreo de Middlebury (Scharstein y Szeliski, 2002), son: a) el diseño de 

una interfaz gráfica que permite una interacción amigable para la selección y configuración 

de los algoritmos y sus parámetros evitando así el uso de scripts; b) la posibilidad de realizar 

multitud de pruebas en muy poco tiempo; c) la inclusión de una representación gráfica de los 

resultados para facilitar el análisis y la comparación; d) la capacidad para usar diferentes 

formatos de imágenes de entrada, no limitados al conjunto de imágenes distribuidos con el 

banco de pruebas; e) la portabilidad, e independencia de la arquitectura y del sistema 

operativo, ya que el banco de pruebas se puede ejecutar en diferentes plataformas sin tener 

que recompilar el código fuente ni configurar un entorno de ejecución, lo que representa una 

245 
 



RESUMEN EN ESPAÑOL  
 

de las contribuciones más importantes; f) la flexibilidad en la incorporación de algoritmos 

escritos en diferentes lenguajes, así como la fácil conexión con librerías de visión por 

computador tales como OpenCV; g) la apertura del código fuente, por lo que los usuarios 

pueden adaptar tanto los algoritmos como el propio banco de pruebas o su interfaz gráfica a 

sus necesidades concretas, e incluir nuevas características, lo que representa un aspecto 

crucial, ya que los algoritmos publicados pueden servir de inspiración para otros, que 

pueden extender o adaptar ellos mismos para lograr enfoques más robustos y optimizados 

con el tiempo de los que toda la comunidad pueda beneficiarse; h) la escalabilidad, ya que ha 

sido diseñado para evolucionar con el tiempo e incluir funcionalidades adicionales, 

algoritmos y procesos de imagen, recibiendo contribuciones de la comunidad investigadora a 

medida que se publican nuevos trabajos; una vez integrados nuevos algoritmos, éstos 

pueden ser fácilmente probados y comparados con otros, analizando sus fortalezas y 

debilidades para evaluar su contribución al estado del arte. 

 

Se han adaptado, estandarizado e integrado en el banco de pruebas un conjunto de 

algoritmos heterogéneos de correspondencia estéreo y procesado de imágenes, haciendo uso 

de la gran colección de recursos existentes y de la labor ya realizada por la comunidad 

investigadora. Este proceso de integración y normalización no ha requerido un gran 

esfuerzo, ya que el banco de pruebas es muy flexible y permite la inclusión de algoritmos 

escritos en diferentes lenguajes de programación. Se ha analizado este conjunto de 

algoritmos estéreo, ya que el banco de pruebas permite probar muchos algoritmos variando 

sus parámetros en muy poco tiempo, justamente hasta que se identifica el algoritmo más 

apropiado para cada aplicación concreta. Esto evita el tener que implementar algoritmos 

sólo para las pruebas, lo que supone un considerable ahorro de tiempo y esfuerzo, 

demostrando la utilidad de dicho banco. 

 

La investigación realizada está motivada por la evidencia del funcionamiento desfavorable 

de diversos algoritmos de correspondencia con imágenes reales pertenecientes a entornos 

de exteriores no controlados ni estructurados. Como resultado, se ha comprobado que 

cuando se combinan varios procesos y se ejecutan de forma consecutiva, se obtiene una 

mejora significativa a la hora de calcular correspondencias estereoscópicas. Por lo tanto, 

siguiendo el objetivo 10, se ha propuesto un sistema experto para la corrección automática 

246 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

de imágenes y reconstrucción de terrenos en aplicaciones de visión estéreo. Dicho sistema 

ajusta las intensidades de las imágenes mediante la aplicación sucesiva de una combinación 

de técnicas y filtros en tres etapas consecutivas, emulando el conocimiento del experto. Entre 

estas técnicas se incluyen tratamientos previos a las imágenes de entrada y técnicas de 

filtrado posterior a la fase de búsqueda de correspondencias. 

 

Una de esas técnicas identificadas es la correspondencia de histogramas, utilizada para 

ajustar la intensidad de una de las imágenes del par en función de la otra, haciendo coincidir 

automáticamente sus histogramas. Otra de las técnicas que se ha aplicado ha sido el filtrado 

homomórfico, que elimina la componente de iluminación de las imágenes estereoscópicas de 

entrada, causando una mejora en el mapa de disparidad. Sin embargo, el filtrado 

homomórfico introduce algunos errores; éstos pueden ser fácilmente filtrados a través de un 

proceso posterior basado en agrupación siguiendo el principio de continuidad espacial, que 

elimina falsos positivos. Ambos procesos aplicados en conjunto representan un gran avance 

y una mejora significativa en la eficiencia del proceso de correspondencia de imágenes reales 

de terrenos, asumiendo un pequeño coste computacional adicional con respecto a la 

aplicación únicamente del proceso de correspondencia, aunque no supone una carga 

significativa. Una vez que las intensidades han sido corregidas, el proceso estéreo es capaz de 

obtener un mayor número de correspondencias, además de reducir errores, lo que supone 

un gran impacto en los posteriores procesos de re-proyección 3D y reconstrucción del 

terreno. Esto también prueba que la suposición de brillo constante en las imágenes (CIB) es a 

menudo incorrecta.  

 

El sistema experto propuesto puede extenderse para aplicarse en otras áreas tales como 

segmentación y reconocimiento de objetos 3D. Este sistema experto se ha diseñado con una 

arquitectura abierta, de forma que en el futuro sea posible sustituir o añadir nuevos 

módulos; siendo esto de especial interés para el estudio de diferentes algoritmos de 

correspondencia estéreo, o para agregar una base de conocimiento para mejorar la 

corrección de imágenes basada en el conocimiento acumulado. 

 

247 
 



RESUMEN EN ESPAÑOL  
 

8.6 Trabajos Futuros 
 

Todavía hay espacio para mejoras en los subsistemas, métodos y herramientas propuestas. 

Además, existen muchas líneas de investigación abiertas dentro del contexto del trabajo 

asociado con esta tesis. A continuación se indican algunas de tales líneas de investigación 

futuras relacionadas más prometedoras. 

 

En relación al entorno de soporte, el Centro de Control puede extenderse para permitir a los 

operadores crear planes de actividades que puedan ser enviados al vehículo, especificando el 

uso de la instrumentación científica, y modelando las limitaciones y restricciones en las 

comunicaciones para emular el ciclo real interplanetario. Se pueden incluir capacidades de 

reconstrucción 3D a partir de imágenes del rover para facilitar a los 

operadores/investigadores el diseño de estos planes, así como incorporar capacidades de 

automatización de pruebas con el propósito de depuración. En cuanto a la simulación, los 

modelos de terrenos y rovers se pueden sofisticar mediante la inclusión de fenómenos tales 

como arena, deslizamiento y hundimiento de ruedas, modelos de instrumentos científicos 

que el robot debe utilizar para realizar experimentos en el planeta y modelos de uso de 

energía, lo que tiene un impacto importante en la estrategia global de autonomía. Los 

actuales modelos de dispositivos, sensores y actuadores se pueden extender con modelos de 

ruido y error para mejorar la gestión de la incertidumbre por parte de los algoritmos. 

 

Se pueden diseñar nuevos y más sofisticados algoritmos de visión estéreo para el manejo de 

sombras, polvo ambiental y sol deslumbrante, así como técnicas de odometría visual para 

corregir errores de localización acumulados por la odometría mecánica. Se puede dotar al 

rover con capacidades de planificación de tareas a bordo mediante la incorporación de 

planificadores de inteligencia artificial, que tengan en cuenta aspectos tales como los 

recursos del rover, el consumo de energía, uso de instrumentos, tasa de carga de los paneles 

solares o la posición del sol en el diseño de los planes de actividades y de contingencia. 

 

En cuanto al proyecto de código abierto del banco de pruebas de visión estéreo, éste se 

puede extender para incluir nuevos algoritmos de correspondencia y procesos de imagen, así 

como funcionalidad tal como la capacidad de automatización de pruebas, programando una 

248 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

serie de pruebas para ser ejecutadas sin supervisión durante períodos de baja actividad o 

por la noche; de este modo se puede reunir una gran cantidad de datos procedentes de 

diferentes experimentos para su posterior análisis, almacenándolos automáticamente y 

presentándolos de un modo estructurado de forma que facilite su análisis. Este análisis 

puede ser también hasta cierto punto automatizado, elaborando informes con evaluaciones, 

comparaciones y conclusiones obtenidas a partir de los datos recogidos. Ya se han recibido 

algunas contribuciones de varios autores que se integrarán para la próxima versión del 

banco de pruebas. 

 

Se pueden realizar trabajos de investigación para mejorar los actuales filtros y procesos de 

imagen, o diseñar nuevas técnicas para la corrección automática de imágenes. Se pueden 

realizar mejoras en el filtro basado en agrupación para tener en cuenta los valores de 

disparidad de los píxeles que forman un determinado grupo en comparación con otros 

grupos cercanos en función de la distancia que los separa, de tal forma que se pueda decidir 

automáticamente si un grupo ha de ser mantenido o eliminado. En esta línea es posible 

analizar el uso de técnicas tales como simulated annealing para eliminar errores 

excepcionales que pudieran darse en píxeles aislados con posterioridad al cómputo de 

disparidades y filtrado. 

 

Una desventaja actual del enfoque propuesto para el sistema experto es precisamente la falta 

de conocimiento del sistema en cuanto a la forma de realizar el proceso de correspondencia 

de histogramas de la manera más eficaz. Puede ocurrir que al emparejar cada canal RGB de 

las imágenes de entrada por separado se obtengan resultados no tan buenos como podrían 

derivarse si el proceso de correspondencia de histogramas se hubiera realizado sobre las 

imágenes convertidas previamente a escala de grises. En este sentido, se perfila como trabajo 

futuro la capacidad de seleccionar automáticamente el proceso más adecuado configurando 

óptimamente sus parámetros en función de la aplicación concreta y las condiciones 

operativas, asegurando la máxima eficacia y adaptación del sistema. 

 

Como conclusión final, se puede decir que actualmente están siendo programadas futuras 

misiones a Marte, otros planetas y cuerpos celestes en el sistema solar. Una vez que se ha 

desarrollado una primera aproximación a un sistema de navegación autónomo, una serie de 

249 
 



RESUMEN EN ESPAÑOL  
 

algoritmos y técnicas y la infraestructura básica necesaria, que es el foco del trabajo de esta 

tesis, se pueden analizar, diseñar y desarrollar algoritmos y estrategias de navegación más 

sofisticadas con el apoyo de las herramientas creadas a tal efecto, que permitan diseñar 

futuros rovers con mayor autonomía, robustos y fiables, que permitan avanzar el estado del 

arte en este dominio y contribuir en la medida de lo posible a llevar a la humanidad al 

siguiente nivel en la exploración planetaria robótica. 

 

 

250 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

REFERENCES 
 
 

Abbeloos, W. (2010). Stereo Matching (available on-line at 

http://www.mathworks.com/matlabcentral/fileexchange/28522-stereo-matching). 

 

Acharya, T.; Ray, A., (2005). Image Processing: Principles and Applications. Wiley Interscience. 

 

Aghazarian, H.; Pirjanian, P.; Schenker, P.; Huntsberger T. (2004). An Architecture for Controlling 

Multiple Robots. NASA Tech Briefs. NPO-30345. 

 

Alagoz, B. (2008). Obtaining Depth Maps from Color Images By Region Based Stereo Matching 

Algorithms. OncuBilim Algorithm and Systems Labs, vol. 8, no. 4, pp. 1-13. 

 

Angelova, A.; Matthies, L.; Helmick, D.; Perona, P. (2007). Learning and prediction of slip from visual 

information. Journal of Field Robotics, vol. 24, issue 3, pp 205–231. 

 

Arkin, R.C. (1989). Motor schema based mobile robot navigation. International Journal of Robotics 

Research, vol. 4(8), pp 92-112. 

 

Ayache, N.; Faverjon, B. (1987). Efficient Registration of Stereo Images by Matching Graph 

Descriptions of Edge Segments. International Journal of Computer Vision, vol. 1, pp 107-131. 

 

Bakambu, J. N.; Allard, P.; Dupuis, E. (2006). 3D Terrain Modeling for Rover Localization and 

Navigation. In proceeding of the 3rd Canadian Conference on Computer and Robot Vision, p. 61. 

 

Baker, H.H. (1982). Building and Using Scene Representations in Image Understanding. AGARD-LS-

185. Machine Perception, 3.1-3.11. 

 

Barnard, S.; Fishler, M. (1982). Computational stereo. ACM Computing Surveys, vol. 14, pp. 553–572. 

 

Barnea, D.I.; Silverman, H.F. (1972). A Class of algorithms for fast digital Image registration. IEEE 

Trans. Computers, vol. 21, pp. 179-186. 

 

251 
 

http://findarticles.com/p/articles/mi_qa3957


REFERENCES  
 

Beegle, L.; Wilson, M.; Abilleira, F.; Jordan, J.; Wilson, G. (2007). A Concept for NASA’s Mars 2016 

Astrobiology Field Laboratory. ASTROBIOLOGY, vol. 7, number 4, 2007. © Mary Ann Liebert, Inc. DOI: 

10.1089/ast.2007.0153. 

 

Bhatti, A. (2012). Current Advancements in Stereo Vision. InTech. 

 

Biesiadecki, J.; Leger, C.; Maimone, M. (2005). Tradeoffs between directed and autonomous driving on 

the Mars Exploration Rovers. International Symposium of Robotics Research, vol. 26 no. 1, pp. 91-104. 

 

Biesiadecki, J.; Maimone, M. (2006). The Mars Exploration Rover surface mobility flight software: 

Driving ambition. Proceeding of the IEEE Aerospace Conference, Big Sky, MT, vol. 5, p. 15. 

 

Blanco, J. L. (2010). Development of Scientific Applications with the Mobile Robot Programming 

Toolkit. The MRPT reference book, Spain. 

 

Bolles, R. C.; Baker, H. H.; Hannah, M. J. (1993). The JISCT Stereo Evaluation. ARPA Image 

Understanding Workshop, pp. 263-274. 

 

Borenstein, J.; Feng, L. (1995). Measurement and Correction of Systematic Odometry Errors in Mobile 

Robots. IEEE Journal of Robotics and Automation, May 1995, vol. 12, issue 6, pp. 869-880. 

 

Borrelly et al. (1998). The ORCCAD Architecture. International Journal of Robotics Research, vol. 17 

no. 4, pp. 338-359. 

 

Bradski, G.; Kaehler, A. (2008). Learning OpenCV. Computer Vision with the OpenCV Library. O'Reilly 

Media 

 

Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE Transactions on 

Robotics and Automation, vol. 2, number 1, pp. 14-23. 

 

Butterworth, S. (1930). On the Theory of Filter Amplifiers. In Wireless Engineer (also called 

Experimental Wireless and the Wireless Engineer). Vol. 7, pp. 536–541. 

 

Cech, J.; Sara, R. (2007). Efficient Sampling of Disparity Space for Fast and Accurate Matching. In Proc. 

BenCOS Workshop of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1-8. 

252 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Charmeau, M. C.; Bensana, E. (2005). AGATA, A Lab Bench Project for Spacecraft Autonomy. i-SAIRAS 

2005 - The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 

Vol.- No. 603. 

 

CMLabs Simulations. (2003). Vortex Developer Guide: A Manual for the Vortex Simulation Toolkit. 

Montreal, Canada. 

 

CNES (2014). Centre national d'études spatiales (available online at http://www.cnes.fr). 

 

Cochran, S. D.; Medioni, G. (1992). 3-D surface description from binocular stereo. IEEE Trans. on 

Pattern Analysis and Machine Intelligence, Vol. 14, no. 0, pp. 981–994. 

 

Cogmation Robotics Inc. (2010). RobotSim documentation (available online at 

http://www.cogmation.com/pdf/robotsim/doc.pdf). Manitoba, Canada. 

 

Correal, R.; Pajares, G. (2010). Framework for Simulation and Rover' Visual-Based Autonomous 

Navigation in Natural Terrains. 7th Workshop RoboCity2030-II, Madrid, Spain. 

 

Correal, R.; Pajares, G. (2011a). Modeling, simulation and onboard autonomy software for robotic 

exploration on planetary environments. International Conference on DAta Systems In Aerospace 

(DASIA), Malta, pp. 1-21. 

 

Correal, R.; Pajares, G. (2011b). Onboard Autonomous Navigation Architecture for a Planetary Surface 

Exploration Rover and Functional Validation Using Open-Source Tools. ESA Intl. Conf. on Advanced 

Space Technologies in Robotics and Automation (ASTRA 2011), ESA/ESTEC, Noordwijk, The 

Netherlands, pp. 1-8. 

 

Correal, R. (2012) Matlab Central (available on-line at 

http://www.mathworks.com/matlabcentral/fileexchange/36433) 

 

Correal, R.; Pajares, G.; Ruz, J. J. (2013). Mejora del Proceso de Correspondencia en Imágenes 

Estereoscópicas Mediante Filtrado Homomórfico y Agrupaciones de Disparidad. Revista 

Iberoamericana de Automática e Informática Industrial, vol. 10, issue 2, pp 178-184. 

 

253 
 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Charmeau,+M&fullauthor=Charmeau,%20M.%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Bensana,+E&fullauthor=Bensana,%20E.&charset=UTF-8&db_key=AST
http://www.mathworks.com/matlabcentral/fileexchange/36433


REFERENCES  
 

Correal, R.; Pajares, G.; Ruz, J.J. (2014a). Automatic Expert System for 3D Terrain Reconstruction Based 

on Stereo Vision and Histogram Matching. Expert Systems with Applications, no. 41, pp. 2043-2051. 

 

Correal, R.; Pajares, G.; Ruz, J.J. (2014b). Autonomy for Ground-level Robotic Space Exploration: 

Framework, Simulation, Architecture, Algorithms and Experiments. ROBOTICA Journal. June 2014, pp. 

1–32. 

 

Cox, I. J.; Hingorani, S. L. (1995). Dynamic histogram warping of image pairs for constant image 

brightness. In IEEE Proc. Int. Conf. on Image Processing Proceedings, vols I-III, pp. B366-B369, IEEE 

Computer Soc Press.  

 

Crisp, J. A.; Adler, M.; Matijevic, J. R.; Squyres, S. W.; Arvidson, R. E.; Kass, D. M. (2003). Mars 

Exploration Rover Mission. Journal of Geophysical Research, vol. 108, issue E12. 

 

Cruz, J.M., Pajares, G., Aranda, J. (1995a). A neural network model in stereovision matching. Neural 

Networks, vol. 8, no. 5, pp 805-813. 

 

Cruz, J.M.; Pajares, G.; Aranda, J.; Vindel, J.L. (1995b). Stereo matching technique based on the 

perceptron criterion function. Pattern Recognition Letters, vol. 16, pp. 933-944. 

 

Darabiha, A.; MacLean, W. J.; Rose, J. (2006). Reconfigurable hardware implementation of a phase-

correlation stereoalgorithm. Machine Vision and Applications. May 2006, Vol. 17, Issue 2, pp 116-132. 

 

Edwards, L.; Fluckiger, L.; Nguyen, L.; Washington, R. (2001). VIPER: Virtual Intelligent Planetary 

Exploration Rover. Int’l Symposium on Artificial Intelligence and Robotics & Automation in Space (i-

SAIRAS), Quebec, Canada. 

 

ESA (2014). European Space Agency (available online at http://www.esa.int/ESA). 

 

Estlin, T. et al. (1999a). Using continuous planning techniques to coordinate multiple rovers. 

Proceedings of the IJCAI Workshop, Sweden, pp 4-45. 

 

Estlin, T., et al. (1999b). An Integrated Architecture for Cooperation Rovers. Symposium on AI 

Robotics Automation Space Noordwijk, The Netherlands, pp. 255-262. 

 

254 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Estlin, T. et al. (2007). Increased Mars Rover Autonomy using AI Planning, Scheduling and Execution. 

IEEE International Conference on Robotics and Automation. Roma, Italy, pp 4911–4918. 

 

Faugeras, O.; Keriven, R. (1998). Variational Principles, Surface Evolution, PDE’s, Level Set Methods 

and the Stereo Problem. IEEE Transactions on Image Processing, vol. 7 (3), pp. 336-344. 

 

Firby, R. (1989). Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale University, 

Department of Computer Science. 

 

Fisher, F. et al. (1997). An automated deep space communications station. Proceedings IEEE 

Aerospace Conference, Colorado, vol. 3, pp. 153-162. 

 

Garlan, D.; Allen, R.; Ockerbloom, J. (2009). Architectural Mismatch: Why Reuse is Still So Hard. IEEE 

Software, vol. 26, no. 4, 66-69. 

 

Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. (2014). The KITTI Vision Benchmark Suite. (Available online 

at http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo). 

 

Gerkey, B.; Vaughan, R.; Howard, A. (2003). The Player/Stage Project: Tools for Multi-Robot and 

Distributed Sensor Systems. In Proceedings of the International Conference on Advanced Robotics, 

Coimbra, Portugal, pp. 317-323. 

 

Ghallab, M.; Ingrand, F.; Lemai, S.; Py, F. (2001). Architecture and Tools for Autonomy in Space. 6th 

International Symposium on Artificial Intelligence and Robotics & Automation in Space, Quebec. 

 

Glette, K. (2004). Motion Control for a Planetary Exploration Rover with Six Steerable Wheels. MSc 

Thesis. Norwegian University of Science and Technology. 

 

Goldberg, S.; Maimone, M.; Matthies, L. (2002). Stereo Vision and Rover Navigation Software for 

Planetary Exploration. IEEE Aerospace Conference, Big Sky, Montana (USA), vol. 5, pp. 2025–2036. 

 

Gonzalez, R. C.; Wintz, P. (1987). Digital Image Processing, Addison-Wesly, Reading, MA. 

 

Gonzalez, R. C.; Woods, R.E. (2008). Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ. 

 

255 
 

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo


REFERENCES  
 

Grimson, W.E.L. (1985). Computational Experiments with a Feature-based Stereo Algorithm. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 7, pp. 17-34. 

 

Grotzinger, J. P. et al. (2012). Mars Science Laboratory Mission and Science Investigation. Space 

Science Reviews, vol. 170, issue 1-4, 5-56. 

 

Hailan, G.; Wenzhe, L. (2012). A Modified Homomorphic Filter for Image Enhancement. In proceedings 

of the International Conference on Computer Application and System Modeling, pp 176-180. 

 

Helmick D.; Angelova A.; Matthies, L. (2009). Terrain adaptive navigation for planetary rovers. Journal 

of Field Robotics, Vol. 26, issue 4, pp 391-410. 

 

Henning, M.; Spruiell, M. (2010). Distributed Programming with Ice. ZeroC, Inc. 

 

Hirschmüller, H. (2005). Accurate and Efficient Stereo Processing by Semi-Global Matching and 

Mutual Information. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 807-

818. 

 

Hirschmüller, H.; Scharstein, D. (2007). Evaluation of cost functions for stereo matching. In IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1-8. 

 

Hugues, L.; Bredeche, N. (2006). Simbad : an Autonomous Robot Simulation Package for Education and 

Research. International Conference on Simulation of Adaptive Behavior, Rome, Italy, pp. 831-842. 

 

Huntsberger, T.; Kubota, T.; Rose, J. (1998). Integrated Vision/control System for Autonomous 

Planetary Rovers. IAPR Workshop on Machine Vision Applications. Japan, pp. 34-37. 

 

Iagnemma, K.; Ward, C. (2009). Classification-Based Wheel Slip Detection and Detector Fusion for 

Mobile Robots on Outdoor Terrain, Autonomous Robots, Vol. 26, pp. 33-46. 

 

Iagnemma, K.; Senatore, C.; Trease, B.; Arvidson, R.; Shaw, A.; Zhou, F.; Van Dyke, L, and Lindemann, R. 

(2011). Terramechanics Modeling of Mars Surface Exploration Rovers for Simulation and Parameter 

Estimation. Proceedings of the ASME International Design Engineering Technical Conference, pp. 805-

812. 

 

256 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Ingrand, F.; Lacroix, S.; Lemai, S.; Py, F. (2007). Decisional autonomy of planetary rovers. Journal of 

Field Robotics, vol. 24, issue 7, pp. 559–580. 

 

ISRO (2014). Indian Space Research Organisation (available online at http://www.isro.org). 

 

Jain, A.; Guineau, J.; Lim, C.; Lincoln, W.; Pomerantz, M.; Sohl, G.; Steele, R. (2003). ROAMS: Planetary 

Surface Rover Simulation Environment. Int’l Symposium on Artificial Intelligence and Robotics & 

Automation in Space (i-SAIRAS), Nara, Japan, vol.2, pp. 861-876. 

 

JAXA (2014). Japanese Space Agency (available online at http://global.jaxa.jp). 

 

Jensen, J.R. (1982). Introductory Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ 

 

Joudrier, L.; Elfving, A. (2009). Challenges of the ExoMars Rover Control. American Institute of 

Aeronautics and Astronautics, AIAA 2009-1807, Seattle, Washington (USA), pp. 109-120. 

 

Kang, Y.; Ho, Y. (2012). Efficient Stereo Image Rectification Method Using Horizontal Baseline. 

Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 7087, pp. 301-310. 

 

Kawai, Y.; Tomita, F. (1998). Intensity calibration for stereo images based on segment 

correspondence. IAPR Workshop on Machine Vision Applications, Makuhari, Chiba, Japan, pp. 331-

334. 

 

Koenig, N.; Howard, A. (2004). Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot 

Simulator. In Proc. of the International Conference on Intelligent Robots and Systems, Sendai, Japan, 

vol. 3, pp. 2149-2154. 

 

Konolige, K. et. al. (1997a). The saphira architecture: A design for autonomy. Journal of Experimental 

and Theoretical AI, vol. 9(1), pp. 215-235. 

 

Konolige, K. (1997b). Small vision system: Hardware and implementation. In Proceedings of the 

International Symposium on Robotics Research, Hayama, Japan, pp. 111–116. 

 

Kosov, S.; Thormaehlen, T.; Seidel, H.P. (2009). Accurate Real-Time Disparity Estimation with 

Variational Methods. International Symposium on Visual Computing, pp. 796-807. 

257 
 



REFERENCES  
 

Krotkov, E.P. (1989). Active Computer Vision by Cooperative Focus and Stereo. Springer, New York. 

 

Kurien, J.A.; Nayak, P.; Williams, B. (1998). Model-Based Autonomy for Robust Mars Operations. 

Founding Convention of the Mars Society, pp. 421-428. 

 

Laia, Y.; Chunga, K.; Chena, C.; Lina, G.; Wangb, C. (2012). Novel mean-shift based histogram 

equalization using textured regions. Expert Systems with Applications, vol. 39, issue 3, pages 2750–

2758. 

 

Lankton, S. (2007). 3D Vision with Stereo Disparity (available on-line at 

http://www.shawnlankton.com/2007/12/3d-vision-with-stereo-disparity). 

 

Leger, C. (1999). Automated Synthesis and Optimization of Robot Configurations: An Evolutionary 

Approach. PhD thesis. The Robotics Institute, Carnegie Mellon University. 

 

Leger, C.; Trebi-Ollennu, A.; Wright, J. et al (2005). Mars Exploration Rover surface operations: Driving 

Spirit at Gusev Crater.  In proceedings of the IEEE International Conference on Systems, Man, and 

Cybernetics, Waikoloa, HI, pp. 1815-1822. 

 

Liling, Z.; Yuhui, Z.; Quansen, S.; Deshen, X. (2012). Suppression for Luminance Difference of Stereo 

Image-Pair Based on Improved Histogram Equalization. In proceedings of the Computer Science and 

Technology, vol. 6, pp. 107-118. 

 

Lim, Y. K.; Kleeman, L.; Drummond, T. (2012). Algorithmic methodologies for FPGA-based vision. 

Machine Vision and Applications, vol. 24, issue 6, pp. 1197-1211. 

 

Lin, L.; Zhou, W. (2009). Interested Sample Point Pre-Selection Based Dense Terrain Reconstruction 

for Autonomous Navigation. Third International Symposium on Intelligent Information Technology 

Application, vol. 3, pp. 339-343. 

 

Lucas, G.W. (2000). A Tutorial and Elementary Trajectory Model for the Differential Steering System of 

Robot Wheel Actuators. The Rossum Project (available online at 

http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html) 

 

258 
 

http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html


 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Magid, E.; Keren, D.; Rivlin, E.; Yavneh, I. (2006). Spline-Based Robot Navigation. Proceedings of the 

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2296-

2301 

 

Maimone, M.; Biesiadecki, J.; Tunstel, E.; Cheng, Y.; Leger. C. (2006a). Surface navigation and mobility 

intelligence on the Mars Exploration Rovers. Intelligence for Space Robotics, Chapter 3, TSI Press. 

 

Maimone, M.; Johnson, A.; Cheng, Y.; Willson, R.; Matthies, L. (2006b). Autonomous Navigation Results 

from the Mars Exploration Rover (MER) Mission. Springer Tracts in Advanced Robotics, vol. 21, pp. 3–

13. 

 

Maimone, M.; Leger, C.; Biesiadecki, J. (2007). Overview of the Mars Exploration Rovers' Autonomous 

Mobility and Vision Capabilities. IEEE International Conference on Robotics and Automation (ICRA) 

Space Robotics Workshop, Roma, Italy. 

 

Martin, A.; Peuter, W.; Putz, P. (1994). A Unified Control Architecture for Planetary Rovers. I-SAIRAS 

94, 3rd International Symposium on Artificial Intelligence, Robotics and Automation for Space. 

California. 

 

Martin-Alvarez, A. (1999). Advanced Design and Implementation of a Control Architecture for Long 

Range Autonomous Planetary Rover. International Symposium on Artificial Intelligence, Robotics and 

Automation in Space. Noordwijk, The Netherlands. 

 

Mataric, M.J. (2007). The Robotics Primer. The MIT Press. 

 

Matthies, L. et al. (2007). Computer Vision on Mars. International Journal of Computer Vision, vol. 75, 

issue 1, pp. 67-92. 

 

Maurette, M.; Rastel, L. (2002). Planetary rover simulation and operation. ESA Workshop on Advanced 

Space Technologies for Robotics and Automation (ASTRA), ESA/ESTEC, Noordwijk, The Netherlands. 

 

McMillan, S. (2003). DynaMechs: A multibody dynamic simulation library. Available online at 

http://dynamechs.sourceforge.net/. 

 

259 
 



REFERENCES  
 

Michel, O. (2004). Webots: Professional Mobile Robot Simulation. International Journal of Advanced 

Robotic Systems, Vol. 1, Num. 1, pages 39-42. 

 

Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.; Wilcox, B. H. (1998). 

Experiences with operations and autonomy of the Mars Pathfinder microrover. In Proceedings of the 

IEEE Aerospace Conference, Snowmass, Colorado (USA), vol. 2, pp. 337-351. 

 

Montemerlo, M.; Roy, N.; Thrun, S. (2003). CARMEN: Carnegie Mellon Robot Navigation Toolkit. 

 

Morisset, B. et al. (2009). Leaving flatland: toward real-time 3D navigation. In proceeding of the IEEE 

International Conference on Robotics and Automation, pp 3384-3391. 

 

Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; Plaunt, C. (2002). IDEA: Planning at the Core of 

Autonomous Reactive Agents. 3rd International NASA Workshop on Planning and Scheduling for 

Space. 

 

Nalpantidis, L.; Gasteratos, A. (2010). Stereo vision for robotic applications in the presence of non-

ideal lighting conditions. Image and Vision Computing, vol. 28, pp. 940–951. 

 

NASA (2014). National Aeronautics and Space Administration (available online at 

http://www.nasa.gov). 

 

National Instruments. (2013). NI Vision 2013 Concepts Help (available on-line at 

http://zone.ni.com/reference/en-XX/help/372916P-01/nivisionconceptsdita/guid-c9c3535b-faf7-

4ade-9166-513a49d1b90a/). 

 

Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Estlin, T.; Kim, W.S. (2003). CLARAty: An 

Architecture for Reusable Robotic Software. SPIE Aerosense Conference, Florida, Vol. 5083, pp. 253-

264. 

 

Neveu, C.; Shirley, M. (2003). LiveInventor: An interactive development environment for robot 

autonomy. International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-

SAIRAS), Japan. 

 

260 
 

http://zone.ni.com/reference/en-XX/help/372916P-01/nivisionconceptsdita/guid-c9c3535b-faf7-4ade-9166-513a49d1b90a/
http://zone.ni.com/reference/en-XX/help/372916P-01/nivisionconceptsdita/guid-c9c3535b-faf7-4ade-9166-513a49d1b90a/


 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Odwyer, A.; Correal, R. (2008). Experiences in Producing a Preliminary Navigation OBSW Prototype 

for the Exomars Rover Based on EDRES. ESA Workshop on Advanced Space Technologies for Robotics 

and Automation (ASTRA 2008), ESA/ESTEC, Noordwijk, The Netherlands. 

 

Ogale, A. S.; Aloimonos, Y. (2005). Shape and the Stereo Correspondence Problem. Intl. Journal of 

Computer Vision, Vol. 65, no. 3, pp. 147-162. 

 

Ogale, A.S.; Aloimonos, Y. (2007). A Roadmap to the Integration of Early Visual Modules, Intl. Journal. 

of Computer Vision. Vol. 72, no. 1, pp. 9-25. 

 

Olson, C.; Matthies, L.; Schoppers, M.; Maimone, M. (2000). Robust stereo ego-motion for long distance 

navigation. International Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, 

vol. 2, 453 – 458. 

 

Ozanian, T. (1995). Approaches for Stereo Matching - A Review. Modeling Identification Control, vol. 

16 (2), pp. 65-94. 

 

Pajares, G.; Cruz, J.M.; Aranda, J. (1998a). Stereo matching based on the self-organizing feature-

mapping algorithm. Pattern Recognition Letters, vol. 19, pp. 319-330. 

 

Pajares, G.; Cruz, J. M.; López-Orozco, J.A. (1998b). Improving Stereovision Matching through 

supervised learning. Pattern Analysis and Applications, vol. 1, pp. 105-120. 

 

Pajares, G.; Cruz, J.M.; Aranda, J. (1998c). Relaxation by Hopfield Network in Stereo Image Matching. 

Pattern Recognition, vol. 31, nº 5, pp. 561-574. 

 

Pajares G.; Cruz, J. M. (1999). Stereo Matching using Hebbian learning. IEEE Transactions on Systems 

Man and Cybernetics, Part B: Cybernetics, vol. 29, nº 4, pp. 553-559. 

 

Pajares, G.; Cruz, J. M.; López-Orozco, J.A. (2000a). Relaxation Labeling in Stereo Image Matching. 

Pattern Recognition, vol. 33, pp. 53-68. 

 

Pajares G.; Cruz, J. M. (2000b). A new learning strategy for stereo matching derived from a fuzzy 

clustering method. Fuzzy Sets and Systems, vol. 110, nº 3, pp. 413-427. 

261 
 



REFERENCES  
 

Pajares, G.; Cruz, J. M. (2001). Local stereovision matching through the ADALINE neural network. 

Pattern Recognition Letters, vol. 22, nº 14, pp. 1457-1473. 

 

Pajares, G.; Cruz, J. M. (2002a). A Probabilistic Neural Network for Feature Selection in Stereovision 

Matching. Neural Computing and Applications, vol. 11, nº 2, pp. 83-89. 

 

Pajares, G.; Cruz, J. M. (2002b). The non-Parametric Parzen's window in stereovision matching. IEEE 

Transactions on Systems Man and Cybernetics, Part B: Cybernetics, vol. 32, nº 2, pp. 225-230. 

 

Pajares, G.; Cruz, J. M. (2003). Stereovision matching through Support Vector Machines. Pattern 

Recognition Letters, 24(15), pp. 2575-2583. 

 

Pajares, G.; Cruz, J. M, (2004). On combining support vector machines and simulated annealing in 

stereovision matching. IEEE Trans. Systems Man and Cybernetics, Part B, vol. 34(4), pp. 1646-1657. 

 

Pajares, G.; Cruz, J.M. (2006). Fuzzy Cognitive Maps for Stereovision Matching. Pattern Recognition, 

vol. 39, pp. 2101-2114. 

 

Pajares, G.; de la Cruz, J. M. (2007). Visión Por Computador: Imágenes Digitales Y Aplicaciones. 

Editorial Ra-ma. Ch. 4, pp. 102–105. 

 

Papadimitriou, D. V.; Dennis, T. J. (1996). Epipolar line estimation and rectification for stereo image 

pairs. IEEE Transactions on Image Processing, vol. 5, issue 4, pp. 672–676. 

 

Pardo-Castellote, G. et.al, (1998). Controlshell: A software architecture for complex electromechanical 

systems. International Journal of Robotic Research, vol. 17, no. 4, pp. 360-380. 

 

Parker, L. (1995). Alliance: An architecture for fault tolerant multi-robot cooperation. ORNL TM12920, 

Oak Ridge National Laboratory, Oak Ridge, TN, vol. 14, pp. 220-240. 

 

Pirjanian, P. et al. (2000). CAMPOUT: A control architecture for multi-robot planetary outposts. 

Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems 

III, pp. 221-230. 

 

262 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Pirjanian, P.; Huntsberger, T.; Schenker, P. (2001). Development of CAMPOUT and its further 

applications to planetary rover operations: A multirobot control architecture. Proc. SPIE Sensor 

Fusion and Decentralized Control in Robotic Systems IV, pp. 108-119. 

 

Ponomarev, V.; Pogrebnyak, O. (1995). Image enhancement by homomorphic filters. In proceedings of 

the Conference on Applications of Digital Image Processing, San Diego, CA, Vol. 2564. 

 

Poulakis, P.; Joudrier, L.; Wailliez, S.; Kapellos, K. (2008). 3DROV: A Planetary Rover System Design, 

Simulation and Verification Tool. Int’l Symposium on Artificial Intelligence, Robotics and Automation 

in Space (i-SAIRAS), Los Angeles, USA. 

 

Psarakis, E. Z.; Evangelidis, G. D. (2005). An enhanced correlation-based method for stereo 

correspondence with subpixel accuracy. IEEE Int. Conf. on Computer Vision, vol. 1, pp. 907–912. 

 

Quigley, M.; Conley, K.; Gerkey, B. (2009). ROS: An open-source robot operating system. Open-Source 

Software Workshop, IEEE ICRA. 

 

Roscosmos (2014). Russian Federal Space Agency (available online at http://www.roscosmos.ru). 

 

Scharstein, G.; Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo 

correspondence algorithms. Intl. Journal of Computer Vision. Vol. 47, pp. 7–42. 

 

Scharstein, D.; Blasiak, A. (2014) Middlebury stereo evaluation site. (Available online at 

http://vision.middlebury.edu/stereo/eval). 

 

Shirai, Y. (1987). Three-dimensional Computer Vision. Springer-Verlag, Berlin. 

 

Simmons, R.; Apfelbaum, D. (1998). A Task Description Language for Robot Control. IEEE/RSJ 

Intelligent Robotics and Systems. Conf. Canada, vol. 3, 1931–1937. 

 

Simon, D.; Arias, S.; Pissard-Gibollet, R. (2006). Orccad, a framework for safe control design and 

implementation. CAR'06, 1st National Workshop on Control Architectures of Robots: software 

approaches and issues. Montpellier, France 

 

263 
 

http://vision.middlebury.edu/stereo/eval/


REFERENCES  
 

Smith, P.H. et al. (2008). Introduction to special section on the Phoenix Mission: Landing Site 

Characterization Experiments, Mission Overviews, and Expected Science. Journal of Geophysical 

Research, vol. 113, E00A18. 

 

Smith, W.; Melanz, D.; Senatore, C.; Iagnemma, K.; Peng, H. (2013). Comparison of DEM and Traditional 

Modeling Methods for Simulating Steady-State Wheel-Terrain Interaction for Small Vehicles. 7th 

Americas Regional Conference of the ISTVS, Tampa, FL, USA. 

 

Song, W. et al. (2012). Intuitive Terrain Reconstruction Using Height Observation-Based Ground 

Segmentation and 3D Object Boundary Estimation. Sensors Journal, Vol. 12, pp. 17186-17207. 

 

Staranowicz, A.; Mariottini, G. L. (2011). A survey and comparison of commercial and open-source 

robotic simulator software. International Conference on PErvasive Technologies Related to Assistive 

Environments (PETRA), Crete, Greece. 

 

Stone, H. W. (1996). Mars Pathfinder Microrover, A Small, Low-Cost, Low-Power Spacecraft. AIAA 

Forum on Advanced Developments in Space Robotics. 

 

Thueer, T.; Krebs, A.; Siegwart, R.; Lamon, P. (2007). Performance comparison of rough-terrain 

robots—simulation and hardware. Journal of Field Robotics, vol. 24(3), pp. 251-271. 

 

Timothy, D. (2010). MATLAB Primer, Eighth Edition. CRC Press. Print ISBN: 978-1-4398-2862-5. 

 

Tombari, F.; Gori, F.; Di Stefano, L. (2011). Evaluation of Stereo Algorithms for 3D Object Recognition. 

IEEE Intl. Conf. of Computer Vision, pp. 990-997. 

 

Tsai, R. (1986). An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. 

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, pp. 

364-374. 

 

Visentin, G. (2007). Autonomy in ESA Planetary Robotics Missions. Technical report, ESA, Noordwijk, 

The Netherlands. 

 

264 
 



 
STEREO VISION-BASED PERCEPTION, PATH PLANNING AND 

NAVIGATION STRATEGIES FOR AUTONOMOUS ROBOTIC EXPLORATION 
 

Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; Das, H. (2001). The CLARAty Architecture for 

Robotic Autonomy. In Proceedings of IEEE Aerospace Conference, Big Sky, Montana (USA), vol. 1, pp. 

121-132. 

 

Ward, C.; and Iagnemma, K. (2008). A Dynamic Model-Based Wheel Slip Detector for Mobile Robots on 

Outdoor Terrain, IEEE Transactions on Robotics, Vol. 24, No. 4, pp. 821-831. 

 

Washington, R.; Golden, K.; Bresina, J. (1999). Plan Execution Monitoring and Adaptation for Planetary 

Rovers. Electronic Transactions on Artificial Intelligence, vol. 4, pp. 3-21. 

 

Werger, B.; Mataric, M. (2001). From Insect to Internet: Situated Control for Networked Robot Teams. 

Annals of Mathematics and AI, vol. 31, issue 1-4, pp. 173-197. 

 

Wolberg, G. (1988). Cubic Spline Interpolation: A Review. Technical Report CUCS-389-88. Department 

of Computer Science Columbia University New York. 

 

Xing-zhe, X. et al. (2010). 3D Terrain Reconstruction for Patrol Robot Using Point Grey Research 

Stereo Vision Cameras. International Conference on Artificial Intelligence and Computational 

Intelligence (AICI), Vol. 1, pp. 47-51. 

 

Yanco H.A.; Drury J. (2004). Classifying human-robot interaction: an updated taxonomy. IEEE 

International Conference Systems, Man and Cybernetics, vol. 3, pp. 2841–2846. 

 

Yen, J.; Jain, A.; Balaram, J. (1999). ROAMS: Rover Analysis, Modeling and Simulation Software. Int’l. 

Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS), Noordwijk, the 

Netherlands, pp. 1-3. 

 

Yen. J. (2008). Slip validation and prediction for Mars Exploration Rovers. Sensor & Transducers 

Magazine. Vol. 90, pp. 233-242.  

 

Zhang, K.; Lafruit, G.; Lauwereins, R.; Van Gool, L. (2010). Joint integral histograms and its application 

in stereo matching. In proceedings of the International Conference on Image Processing, pp. 817-820. 

Hong Kong, China, pp. 817-820. 

 

265 
 



REFERENCES  
 

Zhou, F.; Arvidson, R.; Bennett, K.; Trease, B.; Lindemann, R.; Iagnemma, K.; Senatore, C.; Belluta, P.; 

and Maxwell, S. (2014). Simulations of Mars Rover Traverses. Journal of Field Robotics, Volume 31, 

Issue 1, pp. 141-160. 

 
 

266 
 


	Tesis Raúl Correal Tezanos
	PORTADA
	ABSTRACT
	RESUMEN
	CONTENTS
	CHAPTER 1. INTRODUCTION
	1.1 Antecedents and Problems Identification
	1.2  Motivation and objectives
	1.2.1 Motivation
	1.2.2 Objectives

	1.3 Contributions
	1.4 Dissemination of Results
	1.5 Contents

	CHAPTER 2. ROBOTIC SPACE EXPLORATION. AUTONOMY
	2.1 Background
	2.2 Autonomy
	2.3 Rover’s Operation

	CHAPTER 3. SOFTWARE DEVELOPMENT SUPPORT FRAMEWORK
	3.1 Background
	3.2 Framework Structure and Design
	3.2.1 Simulation
	3.2.2 Control Center


	CHAPTER 4. AUTONOMY FOR PLANETARY EXPLORATION ROVERS: ARCHITECTURE AND NAVIGATION
	4.1 Background
	4.1.1 MER Mission
	4.1.1.1  Rover Description
	4.1.1.2  Rover Autonomy


	4.2 Software Architecture Design
	4.3 Autonomous Navigation Strategy
	4.3.1 Perception Subsystem
	4.3.2 Mapping of the Environment
	4.3.3 Path Planning
	4.3.3.1 Compute Candidate Paths
	4.3.3.1.1 Straight Paths
	4.3.3.1.2 Arcs
	4.3.3.1.2.1 Variable Radius
	4.3.3.1.2.2 Equidistant Ending Points

	4.3.3.1.3 Splines
	4.3.3.1.3.1 Establishing an Intermediate Goal
	4.3.3.1.3.2 Computing a Spline Trajectory
	4.3.3.1.3.3 Checking Navigability and Adapting the Trajectory
	4.3.3.1.3.3.1 Simple 3-points Trajectory
	4.3.3.1.3.3.2 Overall Fitting
	4.3.3.1.3.3.3 Progressive Fitting

	4.3.3.1.3.4 Smoothing the Trajectory


	4.3.3.2 Candidate Path Selection
	4.3.3.3 Determine Traversed Cells
	4.3.3.3.1 Straight Paths
	4.3.3.3.2 Arcs
	4.3.3.3.3 Splines

	4.3.3.4 Path’s Safety Evaluation

	4.3.4 Navigation
	4.3.4.1 Proportional Control
	4.3.4.2 Straight Trajectories
	4.3.4.3 Arc Trajectories
	4.3.4.4 Splines
	4.3.4.5 Position Estimation

	4.3.5 Processes and Control Flow

	4.4 Testing, Experiments and Validation
	4.4.1 Testing and Validation of Algorithms
	4.4.2 Field Testing
	4.4.2.1 Mobile Robotic Platform
	4.4.2.2 Time Performance Analysis of the Navigation Strategy
	4.4.2.3 Path Planning and Navigation Performance



	CHAPTER 5. THE PERCEPTION PHASE WITHIN THE AUTONOMOUS NAVIGATION PROCESS. A TESTBED FOR STEREO VISION ALGORITHMS
	5.1 Stereoscopic Vision
	5.2 Background
	5.2.1 Revision of Methods

	5.3 Stereo Testbed
	5.3.1 Requirements
	5.3.2 Design
	5.3.3 Integrating Algorithms within the Testbed
	5.3.4 Experiments and Results
	5.3.4.1 Use Case: Matching Algorithms Comparison
	5.3.4.2 Use Case: from the Simulated to the Real World



	CHAPTER 6. AUTOMATIC EXPERT SYSTEM FOR 3D SCENE RECONSTRUCTION BASED ON ENHANCED STEREO VISION BY THE APPLICATION OF NOVEL IMAGE FILTERS
	6.1 Motivational research of the proposed strategy
	6.2 Introduction
	6.3 Histogram Matching
	6.3.1 Introduction
	6.3.2 Description of the Method

	6.4 Homomorphic Filtering
	6.5 Clustering Filter
	6.6 Expert System Design
	6.6.1 Reasoning for Knowledge Extraction
	6.6.2 Automatic Image Processing Modules

	6.7 Experiments and Results
	6.7.1 Histogram matching
	6.7.2 Homomorphic Filtering
	6.7.3 Clustering Filter


	CHAPTER 7. CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work

	RESUMEN EN ESPAÑOL
	8.1 Introducción
	8.2  Motivación
	8.3  Objetivos
	8.4 Resultados
	8.5 Conclusiones
	8.6 Trabajos Futuros

	REFERENCES


