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Abstract 

The integration of functional polymers in organic electronics has attracted great interest for their 

potential application in photovoltaics or diodes due to their characteristics such as high chemical 

tenability, low temperature processing, light weight and durability, among others. The 

incorporation of polymers into nowadays devices, that tend towards miniaturization, rises several 

challenges. In general, the macroscopic properties of polymers are closely related to their structure, 

that is hierarchical, from the nanometer to the millimeter scale. Hence, from a fundamental 

viewpoint, understanding the effect of the above mentioned miniaturization in the structure and 

physical phenomena would provide control over the properties of the nanoscaled polymer 

materials, helping in the design of new potential applications. In this Thesis we have attempted 

to fulfill the objective of preparing binary systems formed by pairs of functional polymers or pairs 

of organics materials, and understanding the modification of certain polymer properties when 

nanostructuring them, mainly in their surfaces.  

For the preparation of these binary systems we employed different methodologies: direct solution 

blending (Chapter 3, blends of donor/acceptor organic compounds, Chapter 4, blends of 

semiconducting and ferroelectric polymers), bilayer structures from semiconducting/ ferroelectric 

polymers, prepared by sequential spin coating (Chapter 4) and nanostructuring of a ferroelectric 

polymer in the form of nanospheres to be incorporated in a semiconducting polymer film (Chapter 

4). In Chapter 3, the conduction mechanism and the molecular dynamics on a bulk heterojunction 

formed by a binary blend of donor/acceptor organic compounds have been studied by dielectric 

spectroscopy. In Chapter 4, the modification of the ferroelectric properties in poly(vinylidene 

fluoride- trifluoroethylene) copolymers due to nanostructuring and to the combination with a 

semiconducting polymer have been addressed by Piezoresponse force microscopy. 

Nanostructured functional polymer surfaces were prepared by laser techniques, mainly Laser 

Induced Periodic Surface Structures (LIPSS). In Chapter 5, we first report on the creation of 

LIPSS on a model polymer: polystyrene. This allowed us to address all the possible characteristics 

of the material and the substrate that may affect the formation and quality of LIPSS (Chapter 5). 

The obtained know-how from that study is the basis of the surface nanostructuring of functional 

systems, like a semiconducting polymer, poly(3-hexylthiophene), P3HT (Chapter 5), and a more 

complex binary system formed by bilayer of semiconducting/ferroelectric polymer (Chapter 6). 

In this latter case, the challenge of using laser techniques to structure a non-absorbing polymer 

(the ferroelectric one) is tackled. In Chapters 5 and 6, the inner crystalline structure of the polymer 
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thin films has been addressed by using X ray scattering techniques in grazing incidence geometry. 

The main results of this work are the understanding on the modification of the conduction 

mechanism in a binary system with respect to the one component mechanism, the control over 

the parameters that rule the formation of LIPSS on a polymer thin film, its application to more 

complicated functional polymer structures and the modification of the ferroelectricity in 

ferroelectric polymer nanostructures due to the presence of a semiconducting polymer adjacent 

phase. The main conclusion of this Thesis is that, it is very important to comprehend the role of 

fundamental parameters on the underlying physical processes in the construction of a functional 

polymer surface by nanostructuring. 
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Resumen 


La integración de polímeros funcionales en la electrónica orgánica es de gran interés por su 

potencial aplicación en dispositivos fotovoltaicos y diodos, debido principalmente a 

características tales como la alta resistencia química, la posibilidad de procesado a baja 

temperatura, su ligereza y durabilidad, entre otras. La incorporación de polímeros en los 

dispositivos actuales que tienden a la miniaturización afronta varios retos. En general, las 

propiedades macroscópicas de polímeros están estrechamente relacionadas con su estructura, que 

es jerárquica desde la escala de los nanómetros a la milimétrica. Por lo tanto, desde el punto de 

vista fundamental, comprender el efecto de la mencionada miniaturización en la estructura y los 

fenómenos físicos de estos polímeros proporcionaría control sobre las propiedades de los 

materiales poliméricos incorporados en dispositivos ayudando al diseño de nuevas aplicaciones 

potenciales. En esta Tesis hemos tratado de cumplir con el objetivo de preparar sistemas binarios 

formados por pares de polímeros funcionales o pares de materiales orgánicos, y comprender las 

variaciones de ciertas propiedades del polímero cuando se nanoestructura, sobre todo cuando se 

crean superficies nanoestructuradas. 

Para la preparación de estos sistemas binarios se emplearon diferentes metodologías: la mezcla 

directa en solución (Capítulo 3, mezclas de los compuestos orgánicos donadores / aceptores, 

Capítulo 4, mezclas de polímeros semiconductores y ferroeléctricos), las estructuras de dos capas 

de polímeros semiconductores / ferroeléctricos, preparadas por ‘spin coating’ secuencial 

(Capítulo 4) y nanoestructuración de polímero ferroeléctrico en forma de nanoesferas que se 

incorpora a una película de polímero semiconductor (Capítulo 4). En lo que se refiere al estudio 

de procesos físicos fundamentales en estos sistemas, en el Capítulo 3, el mecanismo de 

conducción y la dinámica molecular en una heterounión en volumen formada por la mezcla de 

compuestos orgánicos donador / aceptor se ha estudiado mediante espectroscopia dieléctrica. En 

el Capítulo 4, la modificación de las propiedades ferroeléctricas en copolímeros al azar de 

poli(fluoruro de vinilideno) y poli(trifluoroetileno) debida a nanoestructuración y a la 

combinación con polímeros semiconductores han sido abordadas por Microscopía de 

Piezorespuesta. Por otro lado, se han creado superficies nanoestructuradas de polímeros 

funcionales mediante técnicas láser, principalmente se crearon Laser Induced Periodic Surface 

Structures (LIPSS) en un polímero semiconductor, y también en un polímero modelo. Mediante 

el estudio sistemático de la creación de LIPSS en el polímero modelo, poliestireno, evaluamos el 

efecto de las características del material y del sustrato en la calidad de las estructuras obtenidas 

(Capítulo 5). El conocimiento adquirido en ese estudio permitió afrontar la nanoestructuración de 
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superficies de sistemas funcionales, tales como superficies de polímero semiconductor, poli(3

hexiltiofeno), P3HT (Capítulo 5), y la superficie de un sistema binario más complejo formado por 

dos capas de polímero semiconductor / polímero ferroeléctrico (Capítulo 6). En este último caso, 

se añadía el reto de la utilización de técnicas láser para estructurar un polímero no absorbente (el 

ferroeléctrico). En los Capítulos 5 y 6, la estructura cristalina interna de las películas delgadas de 

polímero se ha estudiado mediante el uso de técnicas de dispersión de rayos X en geometría de 

incidencia rasante. 

Los principales resultados de este trabajo son la comprensión de la modificación del mecanismo 

de conducción en un sistema binario con respecto al mecanismo de un único componente, el 

control sobre los parámetros que gobiernan la formación de LIPSS en una película fina de 

polímero, y su aplicación a estructuras más complicadas de polímeros funcionales, y finalmente 

la modificación de la ferroelectricidad en nanoestructuras de polímeros ferroeléctricos, debido a 

la presencia de una fase adyacente polímero semiconductor. 

Para terminar, la conclusión principal de esta tesis es que, es crucial comprender el papel de los 

parámetros fundamentales en los procesos físicos subyacentes en la construcción de una 

superficie nanoestructurada de polímeros funcionales. 
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Polymers, also known as macromolecules, are the type of materials probably most used in 

everyday life [1]. Their unique combination of properties, like low weight, flexibility and low 

cost provides versatility for a handful of applications [1]. Polymers are long chain molecules 

consisting of a large number of repeated units linked by covalent bonds [2]. The origin of 

polymers as a user material can be traced in history back to the beginning of last century [1]. 

However, it was after the Second World War that polymer production blasted with the 

development of acrylic polymers, polystyrene (PS), nylon, polyurethanes and specially, 

polyethylene (PE) [3]. These mentioned polymers were named as commodity polymers, since 

they became indispensable in food and goods packaging, cabling or tubing [4]. However, in the 

last decades, with the development of modern synthesis techniques for polymer synthesis [4] 

material scientists are seeking to develop functional polymers with very specialized properties for 

applications like tissue engineering [5], drug delivery [6], polymeric sensors [7] and flexible 

electronic devices [8], among others. Specifically, in this last mentioned field, a strong research 

effort is focused on the development of plastic solar cells and in the use of polymers for 

information storage. In organic solar cells, the idea is to use semiconducting polymers to harvest 

energy directly from sunlight and convert it into electricity [9]. An organic solar cell is an 

electricity generating device comprised of thin layers of conductors, and photoelectrically active 

organic compounds. Organic photovoltaics offer light-weight, low-cost, flexible and easily 

scalable energy conversion. They convert energy based on a donor and an acceptor material [10], 

which can be two different organic dyes, a polymer and a small molecule, a polymer and an 

ensemble of semiconductor or oxide nanoparticles, or variations on these combinations. Research 

on the use of polymers for low cost-low weight information storage has progressed through the 

preparation of nanostructured polymers with a particular property that can be used as a 0-1 

information unit. One of the properties employed for that purpose is ferroelectricity. Some 

polymers, like odd numbered nylons [11] and poly(vinylidene fluoride) (PVDF) based polymers 

[12] exhibit ferroelectricity and are suitable materials for the development of information storage 

applications [8]. 

In many of the applications mentioned above, polymers are processed within nano to microscale 

dimensions. This may have some impact on their properties when compared to those of the same 

bulk polymer [13]. In this Thesis, the preparation of nanostructured polymers with interest in 

photovoltaics and in ferroelectric information storing applications has been tackled. This 

Introduction is structured in the following way: Firstly, a short description of the main general 

polymer properties is presented. Secondly, we have prepared a review of the state of the art in the 

field of semiconducting polymers for photovoltaics. Later on, nowadays research on ferroelectric 

polymer miniaturization for information storing is revisited. Finally, we have described different 

methods for nanostruscturing polymers in general, and functional polymers, like ferroelectric and 
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semiconducting polymers, in particular. We conclude the Introduction with a presentation of the 

structure of this Thesis. 

1.1 Polymers and their main properties 

A polymer molecule is obtained from a low molar mass compounds through a polymerization 

process. The number of the chemical repeat units which build the polymer chain is called the 

degree of polymerization (N) [2]. Since most of the polymerization reactions result in a mixture 

of macromolecules with a broad range of molar masses, the mass must be expressed statistically 

in order to describe the distribution of chain lengths. The most commonly used are the number 

average molar mass (Mn) and the weight average molar mass (Mw) [2]. Mn is defined as: 

തതത തܯൌ∑ ݊ܯ  ൌ
∑ே

∑ே

ெ  
  (1- 1)
 

 

is the number of molecules of molar mass ܰWhere ܯ 

molecules. The Mw is given by: 

തതതത௪ܯത

݊, and  is the numerical fraction of those 

ൌ
∑ேெ

మ 

∑ே	ெ 
 (1- 2)
 

Typical molecular weight distribution of a polymer is shown in Figure 1.1. In most cases the 

തതതത തതത w and Mn are equal only for . M തrelationship between the average molar massesܯത௪ܯ follows 

a perfectly monodisperse polymer. 

Figure 1.1 Typical molecular weight distribution of a polymer. 
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Thus polydispersity index (PDI) is defined as the ratio between the weight-average and number

ೢெൌ ܲܫܦ average molar mass, i.e. 
ெ 

and is a characteristic feature of a polymer since it is a way 

of describing the width of the molecular mass distribution [2]. 

When a polymer consists of only one type of repeating unit (A) is known as homopolymer 

(…-A-A-A-A-…). However, variations of the chemical structure by combining different 

monomers (A, B, etc.) give rise to copolymers. According to the relative position of the different 

components, copolymers can be classified into block copolymers, random copolymers and 

gradient copolymers [14]. Schematics of homopolymer and copolymer molecular structures are 

shown in Figure 1.2. In random copolymers the repeating units can be found at any site, without 

following any pattern. However, if the two monomers are linked with a short-range order with 

preferred sequences over the long range they form block copolymers (Figure 1.2b). 

Figure 1.2 (a) Homopolymer and different classes of copolymers (unit A , unit B ): (b) 

radom copolymer and (c) block copolymer. 

Since polymers are long chain molecular structures, with a statistically defined molecular weight, 

in almost all cases it is thermodynamically not possible to obtain a polymer material which is 

hundred per cent crystalline. When a polymer is cooled down from its melt, depending on the 

cooling conditions and on the polymer properties, the system can be either into the glassy state or 

into the semicrystalline state. In the glassy state, the chains are frozen in a disordered state, and 

at certain temperatures above what is defined as the glass transition temperature (Tg), they start 

to exhibit segmental dynamics [2], i.e. cooperative motions of long segments of the chain. In the 

case of semicrystalline polymers, crystals are organized in a hierarchical way, exhibiting different 

degrees of ordering depending on the length scale explored. 

Figure 1.3 displays schematically structures found in a semicrystalline polymer that exhibits 

spherulitic morphology. From microns to Angstroms, different levels of organization are found. 

On the micrometer scale, superstructures like spherulites [2] or axialites [15] are found. These 

superstructures are formed by stacks of almost parallel crystal lamellae with amorphous material 

sandwiched between adjacent crystals (shown in Figure 1.3b) [14]. The polymer crystal lamellae 
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consists of one-dimensional chain-fold sequences (Figure 1.3c). Different from the classical 

polymers which crystallize in spherulites, conjugated polymers like poly(3-alkylthiophene)s 

(P3ATs) rather crystallize in nanorod or nanofiber, and particular details will be illustrated 

specifically. 

Figure 1.3 Morphological hierarchy exhibited by crystallizing PE from the melt. (a) 

spherulites, (b) lamellar crystals, (c) crystal units, (d) chain arrangement and (e) chain unit 

[16]. 

1.2 Semi-conducting organic materials for photovoltaics 

As mentioned before, energy conversion in organic photovoltaics (OPVs) is based on the 

formation of a heterojunction between a donor (D) and an acceptor (A) material. A particular case 

of this heterojunction is formed by a polymer that acts as a donor and a low molecular weight 

organic compound acting as an acceptor.   

In general, when a conducting material absorbs a photon from the solar spectrum, an excited state 

is formed. In semiconductors like silicon, the exciton binding energy is very small and therefore 

the electron and the hole can separate producing a current. This is called the photovoltaic effect 

[17]. In the case of organic materials, the process is similar, but the difference relies on the binding 

energy of the exciton, which is very high in organics systems. Current cannot be generated without 

dissociation of the exciton. That means that the electron and the hole in the exciton need to be 

separated so that they can move away from each other and generate current. To overcome this 

problem, the structure of the organic cells includes two materials, an electron donor and an 

electron acceptor. This formulation is called heterojunction. In it, there is an interface between 

those two materials that the excitons must reach in order to disassociate. To design efficient 

organic solar cells one should consider the distance that the exciton needs to diffuse during its 

lifetime in order to reach this interface. If the interface is further than the distance that the exciton 

can diffuse within its lifetime, no current will be produced. To properly formulate a heterojunction 

for OPVs these issues need to be considered. On one side, thinner films will allow shorter 

distances to the interface for the exciton to diffuse, but they have the drawback of poor photon 

absorption. One of the most promising heterojunction is called bulk heterojunction (BHJ), created 
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by two interpenetrating network of the donor and acceptor materials [18]. The photoexcitation 

recombination lengths in organic systems are typically around 10 nm. Therefore, the length scale 

for self-assembly between must be of the order of 10–20 nm. The formation of the D/A 

interpenetrating networks requires that the component materials phase separate with domains in 

the range of 10 – 20 nm, that the interfacial energy favors high surface area and that both 

components fully percolate establishing connected pathways to the electrodes [19,20]. The 

interfacial area between the donor material and the acceptor is a critical factor for the performance 

of the OPVs [9,21]. To maximize these interfacial area, several methodologies have been 

introduced, like enhancing phase separation by solvent or thermal annealing [22,23] or by 

building tailor made geometries like interdigitated blends [24]. In the list of organic compounds 

that can act as donor and acceptor, the paradigmatic pair formed by a conjugated polymer and a 

fullerene derivative is the most studied [25]. In general, polymers are known for their excellent 

electrical insulation properties. However, there exists a class of polymer materials, whose special 

chemical structure enables electrical current transport. They are known as semi-conducting 

polymers or intrinsically conducting polymers, or also conjugated polymers. Their main chain 

consists of alternating single and double bonds. The study of conjugated polymer materials started 

in 1977, when Heeger, MacDiarmid and Shirakawa discovered the conductivity of polyacetylene 

(PA), for which they were awarded the Nobel Prize in Chemistry in 2000 [26]. Examples of 

semiconducting polymers are shown in Figure 1.4. 

Figure 1.4  Molecular structure of some semiconducting polymers [27]. 

The conductivity of conjugated polymers is generally described by using energy bands originated 

from energy levels associated with their peculiar orbital structure. Conjugated polymers have 
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backbones of continuous sp2 hybridized carbon centers. The valence electron of each of these 

centers resides in a pz orbital, orthogonal to the other three -bonds [27]. All the pz orbitals 

combine with each other to form a delocalized set of orbitals that extend to what is called the 

conjugation length. These combined conjugated  orbitals form a one dimensional energy band. 

In conjugated polymers, the force along the chain is strong due to σ- and π-bonds while between 

chains, weaker van der Waals forces or hydrogen bonds interaction act. This results in anisotropic 

carrier mobilites. Thus conjugated polymers are also called ¨quasi-one-dimensional¨ 

semiconducting materials [27].  

The energy gap (Eg) of conjugated polymers decreases with increasing the conjugation length 

[28]. In general, the gap (around 2 eV) is too large to be overcome by thermal activation. In terms 

of light absorption, only wavelengths corresponding to photon energies higher than Eg are 

absorbed, and since the band gap of organic semiconducting polymers is around 2 eV (620 nm), 

they exhibit a strong light absorption in visible [29]. 

Among the most promising semiconducting polymer materials to be used in OPVs as donors are 

P3ATs conjugated polymers, with rigid main chains and flexible side chains. The rigid 

conjugated main chain provides the semiconducting character and the flexible side chain 

prevents strong main chain interaction and favors the solubility and processability of the material 

[30-32]. 

1.2.1 The donor: poly(3-hexylthiophene-2,5-diyl) (P3HT) 

Belonging to this family, Poly(3-hexylthiophene-2,5-diyl) (P3HT) has been used in this Thesis as 

a semiconducting polymer. The chemical structure of P3HT is shown in Figure 1.5a, and it 

consists of a π-conjugated backbone of thiophene units and pendant alkyl groups. 

Figure 1.5  Chemical structure of (a) P3HT and (b) the regiochemical isomers [33]. 

Depending on the position of the lateral alkylic chain with respect of the main chain axes, P3HT 

can be found in the form of three different regioisomers: head-to-head coupling (HH), head-to

tail coupling (HT), and tail-to-tail coupling (TT). The polymer can present different degrees of 

regioregularity depending on the combination of the four types of couplings, as illustrated in 
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(Figure 1.5b): HT-HT, HT-HH, TT-HT, and TT-HH [34]. Regioregular P3HT (RR-P3HT) is 

referred to the case in which the main chain is formed only by HT-HT coupling, whereas 

regiorandom or irregular P3HT contains a mixture of the different couplings [33]. Due to the 

geometry of the HT couplings, regiorandom P3HT exhibits a short and random conjugation length 

due to twists away from planarity, whereas RR-P3HT can form planar conformation with 

extended π-conjugation, and self-assembles into a well-organized structure that favors the 
2V-1increase in the charge mobility (10-2-10-3 cm s-1), making it a promising material for its 

applications in electronic devices, for example, OPVs cells, organic field-effect transistors 

(OFETs), and organic light-emitting diodes (OLEDs) among others [27,35-37].  

In terms of molecular packing, the chemical incompatibility between the conjugated 

polythiophene backbone and the alkyl side chains gives rise to a semicrystalline arrangement as 

the one shown in Figure 1.6. 

Figure 1.6 ( Top) Schematic of the semicrystalline structure of P3HT at three main length 

scales: (a) edge-on and (b) face-on crystallite orientation and (Bottom) corresponding 

X-ray diffraction patterns taken by Grazing Indicence Wide Angle X-Ray Scattering 

(GIWAXS). Image (a) comes from [38], c and d are edited from [39]. 

The backbone tends to self-assemble into π-stacked polythiophene, forming two-dimensional (2D) 

sheets [40]. The periodic microstructure of P3HT exhibits a hierarchical order in three different 
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length scales: a π-π stacking distance of 0.38 nm between RR-P3HT sheets, a distance of 1.6 nm 

between RR-P3HT backbones separated by alkyl side chains, and semi-crystalline lamella with a 

periodicity of 28 nm. The amorphous zones of P3HT consist of end chains and tied segments (red 

lines in Figure 1.6a) [38]. In thin films, the P3HT molecules exhibit preferential orientations with 

the chain axis aligned along the substrate and the π-conjugated sheets either edge-on (Figure 1.6a) 

or flat-on (Figure 1.6b) with respect to the substrate [41]. The two different orientations can be 

identified by Grazing Incidence Wide-Angle X-Ray Scattering (GIWAXS). Details of GIWAXS 

measurements will be described in Chapter 2. As an example, Figure 1.6c and 1.6d present 2D 

GIWAXS patterns for edge-on and face-on orientations, showing different intensity distributions 

of the (100) reflections due to layer structure and the (010) reflections due to π-π stacking [39]. 

For the edge-on crystals, the preferential orientation is with the (100)-axis normal to the film and 

the (010)-axis in the plane of the film (Figure 1.6c). In contrast, for the face-on orientation, the 

crystallites are preferentially oriented with the (100)-axis in the plane and the (010)-axis normal 

to the film (Figure 1.6d) [39]. 

1.2.2 The acceptor: [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) 

Fullerene derivatives are generally the organic molecules used as acceptors in OPVs [42-47]. The 

most widely used in combination with P3HT is [6,6]-phenyl C61-butyric acid methyl ester 

(PC61BM), a C60 fullerene molecule functionalized with diazoalkanes, which is a solution 

processable material [42-46,48-50]. More recently, a similar material, but with a C70 fullerene 

instead of the C60 has been also used (Figure 1.7) [51]. Comparing with its counterpart PC61BM, 

PC71BM possesses stronger absorption in the visible range and therefore an increased sunlight 

harvesting [10,52]. 

Figure 1.7  Chemical structure of PC71BM [51]. 

1.2.3 P3HT/PCBM blends 

It is now generally accepted that the morphology of P3HT/PCBM blends consists of at least three 

phases: a polymer-rich ordered domain, a disordered domain where amorphous polymer chains 

are mixed with the fullerene derivative; and, at high fullerene contents a fullerene-rich domain 
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[48,53]. The development of the morphology and the thermodynamics of it has been widely 

studied [21,41,42] and several studies have addressed the impact of the developed morphology 

on the performance of the devices [54-57]. 

However, the role of the developed morphology on both charge generation and transport 

mechanism through the different phases is also a key factor to rationalize the design of new 

systems that improve device performances [58,59]. The precise mechanism of charge transport 

on these blend systems is not fully understood. As mentioned before, the conduction mechanism 

in P3HT is related to the motion of charge carriers delocalized along the macromolecular chains. 

However, both chemical inhomogeneity and structural disorder (crosslinks, dead ends, 

crystallinity, etc.) inherent to polymers, limit the conjugation length. The direct current (dc) 

electrical conductivity in materials with disorder can be described by a phonon-assisted hopping 

of electrons among randomly distributed localized states [60-62]. Charge transport can occur, not 

only on the macromolecular backbone (intra-chain hopping) but also between different 

macromolecules (inter-chain hopping) [60-62]. Thus, the degree of disorder can determine charge 

transport in OPVs [63]. In this respect, the need to understand and characterize the charge carrier 

energy levels of the different phases on a BHJ has been addressed. Sweetman et al. [64] have 

characterized the position of the valence bands in the different phases of a collection of polymer-

D/A material blends by a combination of different techniques. They have demonstrated the 

existence of energetic offsets between the different phases. These energetic offsets are key factors 

in order to improve charge separation and reduce recombination in polymer solar cells. In this 

Thesis, we have attempted to address this issue by experimentally studying the molecular 

dynamics of P3HT/PC71BM blends by dielectric spectroscopy. 

1.3 Polymers for data storing applications 

Information technology is a very important part of our lives nowadays (mobile phones, personal 

computers, videogames, etc.). They all use data storing devices, that are becoming smaller and 

smaller. In general, they are built from semiconductors technology. However, there is an 

increasing demand for higher capacity and lower consumption. Recently ferroelectric polymers 

have been explored to provide such functionalities framed in the field of all-organics electronic 

prototypes. Layer by layer approaches have been used to fabricate devices, such as diodes [65] 

[66], and transistors [8], where thin films of ferroelectric polymers with other materials, such as 

semiconducting polymers [67] and inorganic alloys [68]. One of the potential applications of 

ferroelectric polymers is as memory storing media [69-71], taking profit of the ferroelectric 

character of these systems and of the easiness to be structured at the nanoscale.  

Ferroelectricity, named in analogy with ferromagnetism, is the property of certain dielectrics that 

exhibit spontaneous electric polarization. This polarization can be reversed in direction by the 
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application of an appropriate electric field. In ferroelectric materials, their crystals are formed by 

structural units that can be considered as small electric dipoles. These electric dipoles may 

spontaneously line up forming domains. The orientation of these domains can be tuned by 

applying an external electric field. Reversing the external field reverses the predominant 

orientation of the ferroelectric domains, although there will be a lag of the orientation behind the 

change of the field. This lag of electric polarization behind the applied electric field is the 

ferroelectric hysteresis. The ferroelectricity was first discovered by Valasek in 1921 in the 

Rochelle salt (KNaC4O6·4H2O) [72], and ferroelectric devices are now widely used in transducers 

(since ferroelectric materials are piezoelectric), thermistors, sensors and memory capacitors 

[73,74]. Compared with inorganic compounds, the study of the ferroelectricity in polymers started 

some decades later in particular in 1969 by Kawai [75]. Although several other polymers like 

nylon also exhibits ferroelectricity [11,76], PVDF based polymers are the most attractive ones 

because of their large remnant polarization, short switching time and good thermal stability 

[77,78]. Ferroelectric electronic memories are devices which retain retrievable digital data over a 

time interval using materials that exhibit ferroelectricity. Random copolymers of PVDF and 

polytrifluoroethylene, (PTrFE) Poly(vinylidene fluoride -trifluoro ethylene), with abbreviated 

name P(VDF-TrFE), have been considered as potential candidates to be included in novel 

electronic devices [79-82]. The electric bistability of ferroelectric materials can be used for 

ferroelectric random access memory (FeRAM) and ferroelectric field-effect transistors (FeFET) 

[79-83]. 

In the seek of better performances, ferroelectric polymers have been combined with 

semiconducting polymers [84-86]. These blends merge the polarization switching ability of 

ferroelectrics, with the conductivity and rectification properties of semiconducting polymers and 

they can be used as storage media [65]. In all ferroelectric capacitors the read-out of the 

polarization charge is destructive [87]. However, in combination with a semiconducting polymer, 

the distribution of charges in the semiconducting polymer phase prevents this destruction, 

allowing multiple reading cycles [65]. In this line, Jonas and coworkers [66] fabricated regular 

arrays of P(VDF-TrFE) nanodots embedded in organic layers of P3HT to be used as organic high 

density non-volatile memories.  

1.3.1	 Ferroelectric polymers: PVDF and copolymers of PVDF with PTrFE, 

P(VDF-TrFE) 

The chemical structure of PVDF and that of the copolymers with TrFE is presented in  Figure 1.8, 

PVDF is a semicrystalline material that has several crystalline forms [88]. The α form, which is 

the one obtained under normal processing conditions, is not ferroelectric, since, due to the 
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conformation of the chain in the crystal structure, the dipole moments inside the molecule cancel 

each other [88]. 

Figure 1.8 (a) The chemical formula of P(VDF-TrFE) random copolymer, and (b) scheme 

of the β phase crystal structure: (left) in ab plane, and (right) along the c axis [89]. 

To obtain other polar crystalline phases from PVDF, and therefore, to induce ferroelectricity, it is 

necessary crystallize under pressure or strain, in order to force the chains into a polar 

conformation [78,88]. However, the copolymer P(VDF-TrFE) crystallizes into a polar phase, 

named  phase [90], under normal processing conditions. In  Figure 1.8b, a scheme of the 

crystalline  phase of the P(VDF-TrFE) copolymers is presented. In this phase, the molecules are 

in a distorted, all-trans (TTTT) zigzag planar configuration. The dipoles formed by the hydrogen 

and fluorine atoms lead to a large spontaneous electric polarization along the b axis parallel to the 

C-F dipole moment, and perpendicular to the polymer chain ( Figure 1.8b) [89]. The  phase of 

the copolymers transits to a non-polar paraelectric phase at a given temperature, the Curie 

temperature, Tc [91,92]. 

In the  phase of P(VDF-TrFE), the crystals are formed by structural units that can be considered 

as small electric dipoles. These electric dipoles may spontaneously line up forming domains. The 

orientation of these domains can be switched by applying an external electric field, as is 

schematically shown in Figure 1.9. A change in the sign of the electric field produces a 180º 

rotation of dipole moments formed -CF2- around the chain axis, provided the electric field is larger 

enough to overcome the energy barrier for dipole rotation [88]. Reversing the external field 

reverses the predominant orientation of the ferroelectric domains, although there will be some 

ferroelectric hysteresis [93]. Typical hysteresis loops are shown in Figure 1.9b, where the 

dependence of the electric displacement versus the applied electric field is presented. The 

polarization would show a similar dependence. This permanent polarization present even under 

the release of the electric field can be used for memory devices associating the polarization states 
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+Pr and -Pr with a Boolean 1 and 0 information bits [87]. The field needed to trigger this flipping 

is called the coercive field (Ec). 

Figure 1.9 (a) schematic molecular structure and Ferroelectric switching [94], and (b) 

typical hysteresis loop (electric Displacement (D) versus electric field (E)) for P(VDF-

TrFE) polymer [81]. 

1.3.2	 Fundamental aspects in ferroelectric polymers to be taken into account 

for applications 

Building electronic devices based on ferroelectric polymers is a task where many fundamental 

aspects of polymers physics need to be taken into account. In general, these devices are based on 

polymer thin films post-processed in certain ways. The applicability of ferroelectric polymers is 

based on the remnant polarization which originates from the alignment of intrinsic dipole 

moments inside the crystalline phase, and thus the control of the crystalline domains is a crucial 

aspect. 

When a thin film of P(VDF-TrFE) is obtained from deposition of a solution on a given substrate, 

the interaction between polymer chains and substrate significantly affects the molecular chain 

orientation [95]. For example thin films prepared by spin coating and subsequently melted and 

recrystallized show different orientation of the polarization due to the preferential orientation of 

the crystals with the b axis, which is the responsible for the ferroelectricity [96-98]. Two typical 

orientations of the crystalline P(VDF-TrFE) lamella can be obtained. They are named edge-on 

and face-on orientation, and are schematically shown in Figure 1.10a and Figure 1.10b 

respectively. On the edge-on orientation, lamellae are perpendicular to the substrate, with the 

chain direction parallel to it [99], while in the face-on morphology, the chain direction is 

perpendicular to the substrate as the lamellae are parallel to it. These crystalline orientations are 

commonly investigated by using GIWAXS, like the crystalline structure of thin P3HT films 
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mentioned in Section 1.2.1. Typical 2D GIWAXS patterns of P(VDF-TrFE) film with the two 

different lamellae orientations are displayed in Figure 1.10b and Figure 1.10c. The high intensity 

of the (110)/(200) reflections on the meridian indicates the preferential existence of edge-on 

lamellae whereas the strong intensity of these reflections on the equator is due to the presence of 

face-on lamellae [100]. It has been observed that in ultrathin films of P(VDF–TrFE) the thermal 

history and thickness rule the crystal orientation and its correlation with local polarization reversal 

[101,102]. Also it has been shown that the Tc depends on the film thickness [103,104]. 

Figure 1.10  Two typical P(VDF-TrFE) chain orientation: (a) edge-on and (b) face-on [105], 

and corresponding 2D GIWAXS patterns: (c) edge-on and (d) face-on. Images c and d are 

edited from [99] and [100]. 

To be included in applications like high-density data storage devices, the ferroelectric polymers 

should be processed in the micro and even nanoscale. The idea is to be able to isolate ferroelectric 

domains in such a way that they can act as independent bits for writing/reading stored information. 

The use of nanopatterned surfaces in organic ferroelectric devices has shown to improve the 

ferroelectric response of the polymers [106,107], enhancing the storage information density by 

controlling molecular architecture [100,108]. In this sense, arrays of P(VDF-TrFE) nanostructures, 

in the form of nanogratings [100,109], nanorods [79,110], nanopillars [111,112] or other objects 

with nanometer sizes [113] have been fabricated and its ferroelectricity has been studied. In these 
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works research has been focused on the modification of aspects like crystallinity, preferential 

orientation of the crystalline domains, crystal sizes due to confinement, since at least one of the 

feature dimensions has nanoscale lengths [101,114,115]. In studies on thin films of P(VDF-TrFE) 

under different crystallization conditions it has been found that flat-on crystals do not display 

polarization switching, whereas the edge-on crystals do, upon application of a vertical electric 

field, and the edge-on lamella exhibit the same coercive field, independently of the film thickness. 

[101]. 

In the case of ferroelectric/semiconducting polymers, one of the advantages is that the above 

mentioned structures can be fabricated from solution or melt processing. Due to their high 

enthalpy of mixing, phase separation occurs between the two polymers, forming a composite 

material with both ferroelectric and semiconducting areas. By changing the blend ratios, the 

conductive and ferroelectric properties and their individual area can be tuned [8]. 

1.4 Controlled morphology of polymer nanostructure 

Controlling the morphology of phase separated blends or modifying the surface of functional 

polymers will enhance the suitability for these systems for potential applications. In this Thesis 

we have explored the possibilities for controlling phase separation, by several techniques, 

including polymer blending in a bilayer morphology, preparation of ferroelectric nanospheres and 

subsequent embedding of them into a semiconducting polymer, nanostructuring of polymer layers 

and bilayers by laser techniques, among others, in order to explore the appropriate route for 

applicability. The state of the art of the nanostructuring techniques used in this Thesis is reviewed 

below. 

1.4.1 Polymer nanoparticles 

Nanoparticles (NPs) exhibit unique physical properties different to those of the same bulk material 

due to the large surface area-volume ratio and new confinement effects [116]. Polymer NPs can 

be prepared by single polymer materials or combining different ones, such as pair of donor 

polymer/acceptor systems [117-119] or core-shell structures [120] among others. Besides 

applications, polymer NPs have been used as an appropriate morphology to study physical 

properties under 3D confinement [121-123]. In this sense it has been observed that the Tg in 

amorphous polymer NPs increases compared to the bulk, due to the decrease of entropy of 

polymer chains in these confined conditions as less polymer conformations become available 

[121,122,124,125]. In the case of semicrystalline polymer NPs, they exhibit reduced crystal size 

and the increase of the grain boundaries, which, for P3HT and P(VDF-TrFE), has probed to 

enhance their applicability in OPVs and miniaturized electronic devices [123,126]. 
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The formation of polymer NPs can be categorized into two groups: 1) polymerization from its 

monomers [119] and 2) nanoprecipitation from the previously synthetized polymer [119]. In latter 

case, different methods, such as solvent evaporation and nanoprecipitation [119,121,127] have 

been developed. In this way, polymer NPs from polymers as diverse as polystyrene (PS) [122,127], 

polyethylmethacrylate (PEMA) [121], poly(L-lactid acid)-b-poly(ethylene oxide) copolymers 

(PLLA-b-PEO) [128], P3HT [117,123] or P(VDF-TrFE) [126] have been prepared. Once polymer 

NPs are obtained, they can be used alone or embedded in other polymer matrix to enhance the 

sought properties. 

1.4.2 Surface modification methods 

Modification of functional polymer surfaces is required for a variety of applications, which can 

go from the preparation of substrates for cell adhesion [129], microelectronic devices or 

superhydrophobicity [130]. Fabrication and modification of polymer surfaces at the nano and 

microscale, can be achieved by means of two main lines of work: The first one consist of adapting 

techniques that are already suitable for that purpose at the macroscale such as nanoimprinting 

[131,132], or direct laser writing [133,134]. The second line would be to take profit of instabilities 

occurring at polymer surfaces and be able to control them for the pursued purpose. These 

instabilities include wrinkling due to mismatching between the mechanical properties of two 

layers [135], polymer thin film dewetting [136,137], phase separation of polymer blends, among 

others. In this Thesis, two main techniques have been used to modify surfaces: dewetting of 

polymer surfaces by the influence of the substrate and formation of periodic structures induced 

by laser. 

Dewetting of polymer films 

Dewetting is referred as the process in which a non-wetting thin liquid film on a substrate breaks 

up into droplets. It plays an important role in industrial process as lubrication, liquid coating, 

printing and spray quenching [138]. Dewetting is considered a surface instability. Once the 

instability occurs, its relaxation towards equilibrium produces the modification of the surface 

topography to minimize the surface energy [139]. The resulting morphology arises from the 

balance between destabilizing (Van der Waals forces, polar interactions or electrostatic 

interactions) and stabilizing forces (surface tension) [140]. Controlling the resultant morphology 

in a dewetting surface can provide an interesting tool to obtain complex patterns via self

organization that otherwise would be very difficult to obtain. Recently, the use of patterned 

substrates [140,141] has allowed to obtain undulating polymer surfaces, where the surface 

undulations are in phase with the underlying substrate patterns, or a variety of ordered arrays of 

aligned droplets, isolated strips of polymers, etc. 
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The wettability of the substrate by the polymer solution also affects the final morphology [142]. 

In order to characterize the wettability of the substrate and its surface energy, contact angle (CA) 

measurements are performed. In this Thesis we have observed that dewetting of a polymer on top 

of another polymer layer can be triggered by the thickness of the bottom polymer layer. This 

opens the possibility of forming binary self-organized polymer surfaces with complementary 

properties by careful choice of the polymer substrate and its thickness.  

Laser induced periodic surface structures (LIPSS) 

Laser techniques are employed in material processing and, more specifically, surfaces 

modification [143], since the interaction of laser light with a material can induce changes to the 

local chemistry, the local crystal structure or the local morphology [143]. 

Compared with other lithography processes, including soft lithography [144-146], nanoimprint 

lithography [131,132] and templating by anodic aluminium oxide (AAO) membranes [113] 

among others, laser nanostructuring techniques avoid the need for sophisticated facilities like 

clean rooms or the fabrication of delicate stamps, and they can be applied to different polymer 

materials in large areas [133,134,147]. Laser Interference Lithography (LIL) has been used to 

create linear grooves in polymer surfaces with the only requirement that the polymer absorbs 

efficiently the employed laser light [147]. These techniques involve the interference of two or 

more laser beams in the polymer surface. With only one laser beam, periodic structures on 

polymer surfaces can also be obtained. In particular, Laser Induced Periodic Surface Structures 

(LIPSS) on polymers, which can be obtained by using intense laser pulses, is considered a 

potential alternative strategy to lithography processes for obtaining functional nanopatterned 

polymer surface structures [148-150], and is one of the techniques employed in this Thesis to 

modify polymer surfaces. LIPSS have been observed and studied since first reported by Birnbaum 

in a series of semiconductor materials [151]. After that LIPSS have been produced on different 

materials using lasers with pulse duration ranging from nano- to femtoseconds and wavelengths 

from the IR to the UV spectral regions [133,148,152-154]. 

To obtain LIPSS, the polymer surface is exposed to a given number of pulses of a linearly 

polarized laser beam within a narrow fluence range well below the ablation threshold [155-157]. 

It is important to note that ripples formation is originated from a self-organization process and not 

caused by ablation, being the amount of material removed during laser irradiation negligible [158]. 

Figure 1.11 displays the schematic of LIPSS formed on a film. For LIPSS formed with 

nanosecond laser pulses, two main stages can be considered: (i) interference at the surface, and 

(ii) surface response to it. The interference between the incident and reflected/refracted laser light 
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with the scattered light near the surface, results in LIPSS with a characteristic size in the order of 

magnitude of the wavelength of the laser beam. 
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θ 

Film surface 

LIPSS 
λ 

Figure 1.11  Schematic of surface corrugation of LIPSS formed on a film. 

) and to the angle ofλ) is related to the laser wavelength ( ܮThe period of the obtained ripples ( 

incidence of the radiation. The spacing of the structures can be described by the following 

expression [143]: 

ܮ ൌ  
ఒ

(1- 3)
ିୱ୧୬ ఏ 

the incidence angle of the laser θis the effective refractive index of the material, and ݊ Where 

beam with respect to the normal to the sample plane. 

The features of LIPSS might be affected by the polymer properties, which are dependent not only 

on the chemical composition, but also on the polymer state. However, the mechanism of ripple 

formation on polymer surfaces is complex and still not completely well understood. Various 

processes have been proposed to be involved in the formation mechanism, for example, processes 

like thermal and nonthermal scissoring of polymer chains, amorphization, local surface melting, 

ablation, photooxidation, material transport and rearrangement, have been suggested to have a 

role in ripples formation [150,155,157,159-161]. More recently it has been reported that when a 

polymer film is irradiated with a laser beam at a wavelength efficiently absorbed, the surface 

temperature increases and in order to obtain LIPSS, the temperature should be enough to grant 

polymer chain mobility. In particular, temperature should be either above Tg for the case of 

amorphous polymer, allowing polymer chains to rearrange [148,149], or above its melting 

temperature (Tm) in the case of a semicrystalline polymer so that melting of the surface crystallites 

occurs providing enough polymer dynamics [162] and the redistribution of the material [161]. 

Despite the number of works published on the temperature evolution during LIPSS formation 

[149,155,163], several key issues remain unclear: how does the temperature evolve during pulses 
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accumulation in polymer surface? Does the underlying substrate have any influence on LIPSS 

formation? Csete et al observed [161] that linear LIPSS are formed in films with thickness above 

a minimum thickness value. Thus, they are obtained for free-standing films with thicknesses in 

the range of microns, whereas for supported films thinner than 60 nanometers the line-shaped 

structures are transformed into droplets, due to laser induced polymer melting and subsequent 

dewetting on the substrate.  

Another important prerequisite for LIPSS formation is that the material has a moderate or good 

light absorption at the specific irradiation wavelength. However, in the case of ferroelectric 

polymers like the PVDF based copolymers, no structuring takes place due to the poor optical 

absorption of PVDF in the UV-visible region. Additionally, its semicrystalline spherulitic 

morphology also further hinders the material reorganization during irradiation [149,164]. This 

absorption limitation has been recently overcome by preparing a bilayer polymer film in which 

the bottom layer absorbs light at the specified wavelength, while the top layer is formed by the 

non-absorbing polymer [164]. Based on this approach, LIPSS can be obtained for other non

absorbing polymers, which greatly broaden the range of applications of the technique. 

The fact that LIPSS can be prepared either in spin-coated or in free standing polymer films, makes 

it a potential method to obtain large processed surface area and good quality samples. The 

characteristic surface structure formed by this method, can be used to tailor a great variety of 

surface properties such as adhesion and friction, or color generated by superficial gratings 

[133,162,165]. 

1.5 Outline of the Thesis 

In summary, in this Thesis, the possibility of controlling the surface structure of functional 

polymers with applications in electronic devices and OPVs has been explored. The Thesis has 

been organized in the following way: The materials and the variety of techniques employed are 

explained in chapter 2. After that, in chapter 3 the results on the relation between the conductivity 

mechanism and molecular dynamics in blends from a donor polymer and an acceptor molecule 

are presented. In chapter 4, several approaches to control phase separation in polymer blends from 

two functional polymers, a ferroelectric and a semiconducting one are explored. In chapter 5, the 

surface modification of a model polymer by laser pulses is related to the thermal and optical 

properties of the substrates employed. The obtained knowledge is again used to induce periodic 

surface structures in a functional polymer, a semiconducting polymer. In chapter 6, an approach 

to obtain these periodic surface structures by repeated pulsed laser illumination in non-absorbing 

functional polymers (ferroelectric polymer) is shown. Finally, in chapter 7, the conclusions of this 

work are enumerated. 

20 



 

  

   

 
 

  

  
 

  
  

    
  

    

 
   

      
 

  

  
    

   

 

  
   

 

    
  

 

    
  

   
 

 
   

   
 

  
   

  

1.6	 References 

[1]	 Chanda, M. and Roy, S. K. Industrial Polymers, Specialty Polymers, and Their Applications. Vol. 
74 (CRC press, US, 2008). 

[2]	 Strobl, G. R. The Physics of Polymers: Concepts for Understanding Their Structures and Behavior. 
(Springer, Berlin Heidelberg, 1997). 

[3]	 McKelvey, J. M. Polymer Processing. (John Wiley & Sons, New York, 1962). 

[4]	 Braun, D., Cherdron, H., Rehahn, M., Ritter, H. and Voit, B. Polymer Synthesis: Theory and 
Practice: Fundamentals, Methods, Experiments.  (Springer, Verlag Berlin Heidelberg, 2012). 

[5]	 Freed, L. E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K. and 
Langer, R. Biodegradable Polymer Scaffolds for Tissue Engineering. Nature Biotechnology 12, 
689-693 (1994). 

[6]	 Pandey, R. and Khuller, G. K. Polymer Based Drug Delivery Systems for Mycobacterial Infections. 
Current Drug Delivery 1, 195-201 (2004). 

[7]	 Osada, Y. and Rossi, D. E. D. Polymer Sensors and Actuators. (Springer, Verlag Berlin 
Heidelberg, 2000). 

[8]	 Naber, R. C. G., Asadi, K., Blom, P. W. M., de Leeuw, D. M. and de Boer, B. Organic Nonvolatile 
Memory Devices Based on Ferroelectricity. Advanced Materials 22, 933-945 (2010). 

[9]	 Mayer, A. C., Scully, S. R., Hardin, B. E., Rowell, M. W. and McGehee, M. D. Polymer-based 
Solar Cells. Materials Today 10, 28-33 (2007). 

[10]	 Hou, J. and Guo, X. in Organic Solar Cells: Materials and Device Physics   (ed Choy)  17-42 
(Springer, 2013). 

[11]	 Mathur, S. C., Scheinbeim, J. I. and Newman, B. A. Piezoelectric Properties and Ferroelectric 
Hysteresis Effects in Uniaxially Stretched Nylon-11 Films. Journal of Applied Physics 56, 2419
2425 (1984). 

[12]	 Mao, D., Quevedo-Lopez, M. A., Stiegler, H., Gnade, B. E. and Alshareef, H. N. Optimization of 
Poly(vinylidene fluoride-trifluoroethylene) Films as Non-volatile Memory for Flexible 
Electronics. Organic Electronics 11, 925-932 (2010). 

[13]	 Zhang, C., Guo, Y. and Priestley, R. D. Glass Transition Temperature of Polymer Nanoparticles 
under Soft and Hard Confinement. Macromolecules 44, 4001-4006 (2011). 

[14]	 Sperling, L. H. Introduction to Physical Polymer Science.  (John Wiley & Sons, New York, 2005). 

[15]	 Bassett, D. C., Keller, A. and Mitsuhashi, S. New Features in Polymer Crystal Growth from 
Concentrated Solutions. Journal of Polymer Science Part A: General Papers 1, 763-788 (1963). 

[16]	 Hu, W. Polymer Physics: A Molecular Approach.  (Springer Verlag, Wien, 2013). 

[17]	 Hersch, P. and Zweibel, K. Basic Photovoltaic Principles and Methods.  (Solar Energy Research 
Inst., Golden, CO (USA), 1982). 

[18]	 Heeger, A. J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the 
Mechanism of Operation. Advanced Materials 26, 10-28 (2014). 

[19] 	 Westacott, P., Tumbleston, J. R., Shoaee, S., Fearn, S., Bannock, J. H., Gilchrist, J. B., Heutz, S., 
deMello, J., Heeney, M., Ade, H., Durrant, J., McPhail, D. S. and Stingelin, N. On the Role of 
Intermixed Phases in Organic Photovoltaic Blends. Energy & Environmental Science 6, 2756
2764 (2013). 

[20]	 Huang, Y., Kramer, E. J., Heeger, A. J. and Bazan, G. C. Bulk Heterojunction Solar Cells: 
Morphology and Performance Relationships. Chemical Reviews 114, 7006-7043 (2014). 

[21]	 Ruderer, M. A., Guo, S., Meier, R., Chiang, H.-Y., Koerstgens, V., Wiedersich, J., Perlich, J., 
Roth, S. V. and Mueller-Buschbaum, P. Solvent-induced Morphology in Polymer-Based Systems 
for Organic Photovoltaics. Advanced Functional Materials 21, 3382-3391 (2011). 

21 



 

   
 

   
 

  

   
 

   

  
   

   
 

  

     

    
   

    
  

 
  

   
   

 

  

 
 

    

     
   

   

 
 

    
 

  

   
  

 

   
 

  

    
   

[22]	 Chen, D., Nakahara, A., Wei, D., Nordlund, D. and Russell, T. P. P3HT/PCBM Bulk 
Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Letters 11, 
561-567 (2011). 

[23]	 Erb, T., Zhokhavets, U., Hoppe, H., Gobsch, G., Al-Ibrahim, M. and Ambacher, O. Absorption 
and Crystallinity of Poly(3-hexylthiophene)/fullerene Blends in Dependence on Annealing 
Temperature. Thin Solid Films 511–512, 483-485 (2006). 

[24]	 Balderrama, V. S., Albero, J., Granero, P., Ferre-Borrull, J., Pallares, J., Palomares, E. and Marsal, 
L. F. Design, Fabrication and Charge Recombination Analysis of an Interdigitated Heterojunction 
Nanomorphology in P3HT/PC70BM Solar Cells. Nanoscale 7, 13848-13859 (2015). 

[25]	 García-Valverde, R., Cherni, J. A. and Urbina, A. Life Cycle Analysis of Organic Photovoltaic 
Technologies. Progress in Photovoltaics: Research and Applications 18, 535-558 (2010). 

[26]	 Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. and Heeger, A. J. Synthesis of 
Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. Journal 
of the Chemical Society, Chemical Communications, 578-580 (1977). 

[27]	 Heeger, A. J. Semiconducting Polymers: the Third Generation. Chemical Society Reviews 39, 
2354-2371 (2010). 

[28]	 Blom, P. W. M. and Vissenberg, M. C. J. M. Charge Transport in Poly(p-phenylene vinylene) 
Light-emitting Diodes. Materials Science and Engineering: R: Reports 27, 53-94 (2000). 

[29]	 Heeger, A. J. Semiconducting and Metallic Polymers:  The Fourth Generation of Polymeric 
Materials. The Journal of Physical Chemistry B 105, 8475-8491 (2001). 

[30]	 Garnier, F. Scope and Limits of Organic–based Thin–film Transistors. Philosophical Transactions 
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 355, 
815-827 (1997). 

[31]	 Kelley, T. W., Baude, P. F., Gerlach, C., Ender, D. E., Muyres, D., Haase, M. A., Vogel, D. E. and 
Theiss, S. D. Recent Progress in Organic Electronics:  Materials, Devices, and Processes. 
Chemistry of Materials 16, 4413-4422 (2004). 

[32]	 Tsutsui, T. and Fujita, K. The Shift from “Hard” to “Soft” Electronics. Advanced Materials 14, 
949-952 (2002). 

[33]	 Pappenfus, T. M., Hermanson, D. L., Kohl, S. G., Melby, J. H., Thoma, L. M., Carpenter, N. E., 
da Silva Filho, D. A. and Bredas, J.-L. Regiochemistry of Poly(3-hexylthiophene): Synthesis and 
Investigation of a Conducting Polymer. Journal of Chemical Education 87, 522-525 (2010). 

[34]	 Chen, T.-A., Wu, X. and Rieke, R. D. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) 
Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. Journal of the 
American Chemical Society 117, 233-244 (1995). 

[35] 	Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. 
Chemistry of Materials 23, 733-758 (2011). 

[36]	 Wang, C., Dong, H., Hu, W., Liu, Y. and Zhu, D. Semiconducting π-conjugated Systems in Field
effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 112, 2208-2267 
(2012). 

[37] 	 AlSalhi, M. S., Alam, J., Dass, L. A. and Raja, M. Recent Advances in Conjugated Polymers for 
Light Emitting Devices. International Journal of Molecular Sciences 12, 2036-2054 (2011). 

[38]	 Brinkmann, M. and Wittmann, J. C. Orientation of Regioregular Poly(3-hexylthiophene) by 
Directional Solidification: A Simple Method to Reveal the Semicrystalline Structure of a 
Conjugated Polymer. Advanced Materials 18, 860-863 (2006). 

[39]	 Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. 
M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P. and de Leeuw, D. M. Two
dimensional Charge Transport in Self-organized, High-mobility Conjugated Polymers. Nature 401, 
685-688 (1999). 

[40]	 Prosa, T. J., Winokur, M. J., Moulton, J., Smith, P. and Heeger, A. J. X-ray Structural Studies of 
Poly(3-alkylthiophenes): An Example of an Inverse Comb. Macromolecules 25, 4364-4372 
(1992). 

22 



 

 
 

 
 

 
 

 

  
 

 

   
 

 

   
   

  

    
   

  

      
   

 

      
  

   
 

  
  

  

   
 

  

      

  

    
 

 
 

   
  

   

   
 

  

 
     

[41] 	 Brady, M. A., Su, G. M. and Chabinyc, M. L. Recent Progress in the Morphology of Bulk 
Heterojunction Photovoltaics. Soft Matter 7, 11065-11077 (2011). 

[42]	 Moulé, A. J. and Meerholz, K. Controlling Morphology in Polymer–fullerene Mixtures. Advanced 
Materials 20, 240-245 (2008). 

[43]	 Zhao, J., Swinnen, A., Van Assche, G., Manca, J., Vanderzande, D. and Mele, B. V. Phase 
Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. The Journal 
of Physical Chemistry B 113, 1587-1591 (2009). 

[44]	 Hopkinson, P. E., Staniec, P. A., Pearson, A. J., Dunbar, A. D. F., Wang, T., Ryan, A. J., Jones, 
R. A. L., Lidzey, D. G. and Donald, A. M. A Phase Diagram of the P3HT:PCBM Organic 
Photovoltaic System: Implications for Device Processing and Performance. Macromolecules 44, 
2908-2917 (2011). 

[45]	 Lilliu, S., Agostinelli, T., Pires, E., Hampton, M., Nelson, J. and Macdonald, J. E. Dynamics of 
Crystallization and Disorder during Annealing of P3HT/PCBM Bulk Heterojunctions. 
Macromolecules 44, 2725-2734 (2011). 

[46]	 Parnell, A. J., Cadby, A. J., Mykhaylyk, O. O., Dunbar, A. D. F., Hopkinson, P. E., Donald, A. M. 
and Jones, R. A. L. Nanoscale Phase Separation of P3HT PCBM Thick Films As Measured by 
Small-Angle X-ray Scattering. Macromolecules 44, 6503-6508 (2011). 

[47]	 Newman, C. R., Frisbie, C. D., da Silva Filho, D. A., Brédas, J.-L., Ewbank, P. C. and Mann, K. 
R. Introduction to Organic Thin Film Transistors and Design of n-channel Organic 
Semiconductors. Chemistry of Materials 16, 4436-4451 (2004). 

[48]	 Yin, W. and Dadmun, M. A New Model for the Morphology of P3HT/PCBM Organic 
Photovoltaics from Small-angle Neutron Scattering: Rivers and Streams. ACS Nano 5, 4756-4768 
(2011). 

[49] 	 To, T. T. and Adams, S. Modelling of P3HT:PCBM Interface Using Coarse-Grained Forcefield 
Derived from Accurate Atomistic Forcefield. Physical Chemistry Chemical Physics 16, 4653
4663 (2014). 

[50]	 Vajjala Kesava, S., Dhanker, R., Kozub, D. R., Vakhshouri, K., Choi, U. H., Colby, R. H., Wang, 
C., Hexemer, A., Giebink, N. C. and Gomez, E. D. Mesoscopic Structural Length Scales in 
P3HT/PCBM Mixtures Remain Invariant for Various Processing Conditions. Chemistry of 
Materials 25, 2812-2818 (2013). 

[51]	 Romero-Borja, D., Maldonado, J.-L., Barbosa-García, O., Rodríguez, M., Pérez-Gutiérrez, E., 
Fuentes-Ramírez, R. and de la Rosa, G. Polymer Solar Cells Based on P3HT:PC71BM Doped at 
Different Concentrations of Isocyanate-treated Graphene. Synthetic Metals 200, 91-98 (2015). 

[52]	 Li, L., Zhang, F., Wang, J., An, Q., Sun, Q., Wang, W., Zhang, J. and Teng, F. Achieving EQE of 
16,700% in P3HT:PC71BM Based Photodetectors by Trap-assisted Photomultiplication. 
Scientific Reports 5, 9181-9187 (2015). 

[53]	 Kohn, P., Rong, Z., Scherer, K. H., Sepe, A., Sommer, M., Müller-Buschbaum, P., Friend, R. H., 
Steiner, U. and Hüttner, S. Crystallization-Induced 10-nm Structure Formation in P3HT/PCBM 
Blends. Macromolecules 46, 4002-4013 (2013). 

[54]	 Nicolet, C., Deribew, D., Renaud, C., Fleury, G., Brochon, C., Cloutet, E., Vignau, L., Wantz, G., 
Cramail, H., Geoghegan, M. and Hadziioannou, G. Optimization of the Bulk Heterojunction 
Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of 
the Semiconducting Polymer and Device Performance. The Journal of Physical Chemistry B 115, 
12717-12727 (2011). 

[55]	 Wang, T., Pearson, A. J., Lidzey, D. G. and Jones, R. A. L. Evolution of Structure, Optoelectronic 
Properties, and Device Performance of Polythiophene: Fullerene Solar Cells During Thermal 
Annealing. Advanced Functional Materials 21, 1383-1390 (2011). 

[56]	 Machui, F., Langner, S., Zhu, X., Abbott, S. and Brabec, C. J. Determination of the P3HT:PCBM 
Solubility Parameters Via a Binary Solvent Gradient Method: Impact of Solubility on the 
Photovoltaic Performance. Solar Energy Materials and Solar Cells 100, 138-146 (2012). 

[57]	 Deribew, D., Pavlopoulou, E., Fleury, G., Nicolet, C., Renaud, C., Mougnier, S.-J., Vignau, L., 
Cloutet, E., Brochon, C., Cousin, F., Portale, G., Geoghegan, M. and Hadziioannou, G. 

23 



 

   
  

 
 

   
  

    
  

 

   
  

   
  

     
  

    
    

    
  

    
 

     
 

  

   
 

 

    
     

 

    
   

  
  

   
    

   

  
 

    
  

      

  

Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer 
Incorporation into P3HT:PCBM Blends. Macromolecules 46, 3015-3024 (2013). 

[58]	 Moliton, A. and Hiorns, R. C. Review of Electronic and Optical Properties of Semiconducting π
conjugated Polymers: Applications in Optoelectronics. Polymer International 53, 1397-1412 
(2004). 

[59]	 Cheung, D. L., McMahon, D. P. and Troisi, A. Computational Study of the Structure and Charge
transfer Parameters in Low-molecular-mass P3HT. The Journal of Physical Chemistry B 113, 
9393-9401 (2009). 

[60]	 Ezquerra, T. A., Rühe, J. and Wegner, G. Hopping Conduction in 3,4-cycloalkylpolypyrrole 
Perchlorates: A Model Study of Conductivity in Polymers. Chemical Physics Letters 144, 194
198 (1988). 

[61]	 Wegner, G. and Ruhe, J. The Structural Background of Charge-carrier Motion in Conducting 
Polymers. Faraday Discussions of the Chemical Society 88, 333-349 (1989). 

[62] 	 Capaccioli, S., Lucchesi, M., Rolla, P. A. and Ruggeri, G. Dielectric Response Analysis of a 
Conducting Polymer Dominated by the Hopping Charge Transport. Journal of Physics: 
Condensed Matter 10, 5595 (1998). 

[63]	 McMahon, D. P. and Troisi, A. Organic Semiconductors: Impact of Disorder at Different 
Timescales. ChemPhysChem 11, 2067-2074 (2010). 

[64]	 Sweetnam, S., Graham, K. R., Ngongang Ndjawa, G. O., Heumüller, T., Bartelt, J. A., Burke, T. 
M., Li, W., You, W., Amassian, A. and McGehee, M. D. Characterization of the Polymer Energy 
Landscape in Polymer:Fullerene Bulk Heterojunctions with Pure and Mixed Phases. Journal of 
the American Chemical Society 136, 14078-14088 (2014). 

[65]	 Asadi, K., de Leeuw, D. M., de Boer, B. and Blom, P. W. M. Organic Non-volatile Memories 
from Ferroelectric Phase-separated Blends. Nature Materials 7, 547-550 (2008). 

[66]	 Nougaret, L., Kassa, H. G., Cai, R., Patois, T., Nysten, B., van Breemen, A. J. J. M., Gelinck, G. 
H., de Leeuw, D. M., Marrani, A., Hu, Z. and Jonas, A. M. Nanoscale Design of Multifunctional 
Organic Layers for Low-power High-density Memory Devices. ACS Nano 8, 3498-3505 (2014). 

[67]	 Cai, R., Kassa, H. G., Marrani, A., van Breemen, A. J. J. M., Gelinck, G. H., Nysten, B., Hu, Z. 
and Jonas, A. M. An Organic Ferroelectric Field Effect Transistor with Poly(vinylidene fluoride
co-trifluoroethylene) Nanostripes as Gate Dielectric. Applied Physics Letters 105, 113111-113115 
(2014). 

[68]	 Bae, I., Kim, R. H., Hwang, S. K., Kang, S. J. and Park, C. Laser-induced Nondestructive 
Patterning of a Thin Ferroelectric Polymer Film with Controlled Crystals using Ge8Sb2Te11 
Alloy Layer for Nonvolatile Memory. ACS Applied Materials & Interfaces 6, 15171-15178 (2014). 

[69]	 Kusuma, D. Y. and Lee, P. S. Ferroelectric Tunnel Junction Memory Devices Made from 
Monolayers of Vinylidene Fluoride Oligomers. Advanced Materials 24, 4163-4169 (2012). 

[70]	 Khan, M. A., Bhansali, U. S. and Alshareef, H. N. High-performance Non-volatile Organic 
Ferroelectric Memory on Banknotes. Advanced Materials 24, 2165-2170 (2012). 

[71]	 Hwang, S. K., Bae, I., Kim, R. H. and Park, C. Flexible Non-volatile Ferroelectric Polymer 
Memory with Gate-controlled Multilevel Operation. Advanced Materials 24, 5910-5914 (2012). 

[72]	 Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt. Physical Review 17, 475-481 
(1921). 

[73]	 Haertling, G. H. Ferroelectric Ceramics: History and Technology. Journal of the American 
Ceramic Society 82, 797-818 (1999). 

[74]	 Ghayour, H. and Abdellahi, M. A Brief Review of the Effect of Grain Size Variation on the 
Electrical Properties of BaTiO3-based Ceramics. Powder Technology 292, 84-93 (2016). 

[75] 	 Heiji, K. The Piezoelectricity of Poly (vinylidene fluoride). Japanese Journal of Applied Physics 
8, 975-976 (1969). 

[76]	 Nalwa, H. S. Ferroelectric Polymers: Chemistry: Physics, and Applications. (CRC Press, US, 
1995). 

24 



 

      
  

   
  

   

  
 

 

      
  

  

     
    

  
 

   
 

  

  
 

  

 
   

 
  

   

    

     
 

   

   

 

  
 
 

 

   

     
 

  

    
  

[77]	 Noda, K., Ishida, K., Kubono, A., Horiuchi, T., Yamada, H. and Matsushige, K. Remanent 
Polarization of Evaporated Films of Vinylidene Fluoride Oligomers. Journal of Applied Physics 
93, 2866-2870 (2003). 

[78]	 Furukawa, T., Date, M. and Fukada, E. Hysteresis Phenomena in Polyvinylidene Fluoride Under 
High Electric Field. Journal of Applied Physics 51, 1135-1141 (1980). 

[79]	 Ducharme, S. and Gruverman, A. Ferroelectrics: Start the Presses. Nature Materials 8, 9-10 (2009). 

[80]	 Mandal, D., Yoon, S. and Kim, K. J. Origin of Piezoelectricity in an Electrospun Poly(vinylidene 
fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. 
Macromolecular Rapid Communications 32, 831-837 (2011). 

[81]	 Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W., Touwslager, F. J., 
Setayesh, S. and de Leeuw, D. M. High-performance Solution-processed Polymer Ferroelectric 
Field-effect Transistors. Nature Materials 4, 243-248 (2005). 

[82]	 Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K. and Lin, L. Direct-write Piezoelectric Polymeric 
Nanogenerator with High Energy Conversion Efficiency. Nano Letters 10, 726-731 (2010). 

[83]	 Dawber, M., Rabe, K. M. and Scott, J. F. Physics of Thin-film Ferroelectric Oxides. Reviews of 
Modern Physics 77, 1083-1130 (2005). 

[84]	 van Breemen, A., Zaba, T., Khikhlovskyi, V., Michels, J., Janssen, R., Kemerink, M. and Gelinck, 
G. Surface Directed Phase Separation of Semiconductor Ferroelectric Polymer Blends and their 
Use in Non-volatile Memories. Advanced Functional Materials 25, 278-286 (2015). 

[85]	 Khikhlovskyi, V., van Breemen, A. J. J. M., Michels, J. J., Janssen, R. A. J., Gelinck, G. H. and 
Kemerink, M. 3D-morphology Reconstruction of Nanoscale Phase-separation in Polymer 
Memory Blends. Journal of Polymer Science Part B: Polymer Physics 53, 1231-1237 (2015). 

[86] 	 Braz, T., Ferreira, Q., Mendonça, A. L., Ferraria, A. M., do Rego, A. M. B. and Morgado, J. 
Morphology of Ferroelectric/conjugated Polymer Phase-separated Blends Used in Nonvolatile 
Resistive Memories. Direct Evidence for a Diffuse Interface. The Journal of Physical Chemistry 
C 119, 1391-1399 (2015). 

[87]	 Scott, J. F. Ferroelectric Memories.  (Springer, Verlag Berlin Heidelberg, 2000). 

[88]	 Lovinger, A. J. Ferroelectric Polymers. Science 220, 1115-1121 (1983). 

[89]	 Mao, D., Gnade, B. E. and Quevedo-Lopez, M. A. in Ferroelectrics - Physical Effects  (ed Lallart) 
(InTech, 2011). 

[90]	 Furukawa, T. Ferroelectric Properties of Vinylidene Fluoride Copolymers. Phase Transitions 18, 
143-211 (1989). 

[91]	 Kim, K. J., Kim, G. B., Vanlencia, C. L. and Rabolt, J. F. Curie Transition, Ferroelectric Crystal 
Structure, and Ferroelectricity of a VDF/TrFE(75/25) Copolymer 1. The Effect of the Consecutive 
Annealing in the Ferroelectric State on Curie Transition and Ferroelectric Crystal Structure. 
Journal of Polymer Science Part B: Polymer Physics 32, 2435-2444 (1994). 

[92]	 Choi, J., Borca, C. N., Dowben, P. A., Bune, A., Poulsen, M., Pebley, S., Adenwalla, S., Ducharme, 
S., Robertson, L., Fridkin, V. M., Palto, S. P., Petukhova, N. N. and Yudin, S. G. Phase Transition 
in the Surface Structure in Copolymer Films of Vinylidene Fluoride (70%) with Trifluoroethylene 
(30%). Physical Review B 61, 5760-5770 (2000). 

[93]	 Fang, D. and Liu, J. Fracture Mechanics of Piezoelectric and Ferroelectric Solids. (Springer, 
Berlin, 2013). 

[94]	 Hu, W. J., Juo, D.-M., You, L., Wang, J., Chen, Y.-C., Chu, Y.-H. and Wu, T. Universal 
Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films. 
Scientific Reports 4, 4772-4779 (2014). 

[95]	 Tsutsumi, N., Yoda, S. and Sakai, W. Infrared Spectra and Ferro-electricity of Ultra-thin Films of 
Vinylidene Fluoride and Trifluoroethylene Copolymer. Polymer International 56, 1254-1260 
(2007). 

25 



 

 
  

 

   
  

 

       
    

      
 

    
 

   

  
 

  
 

 

  
  

  

   
  

      

  

 
 

    
   

 

  
  

 

   
   

 

    
 

 

   
  

  

[96]	 Park, Y. J., Kang, S. J., Park, C., Kim, K. J., Lee, H. S., Lee, M. S., Chung, U.-I. and Park, I. J. 
Irreversible Extinction of Ferroelectric Polarization in P(VDF-TrFE) Thin Films upon Melting and 
Recrystallization. Applied Physics Letters 88, 242908 242901-242903 (2006). 

[97]	 Lee, J. S., Prabu, A. A. and Kim, K. J. Annealing Effect upon Chain Orientation, Crystalline 
Morphology, and Polarizability of Ultra-thin P(VDF-TrFE) Film for Nonvolatile Polymer 
Memory Device. Polymer 51, 6319-6333 (2010). 

[98]	 Bune, A. V., Fridkin, V. M., Ducharme, S., Blinov, L. M., Palto, S. P., Sorokin, A. V., Yudin, S. 
G. and Zlatkin, A. Two-dimensional Ferroelectric Films. Nature 391, 874-877 (1998). 

[99]	 Kang, S. J., Bae, I., Shin, Y. J., Park, Y. J., Huh, J., Park, S.-M., Kim, H.-C. and Park, C. 
Nonvolatile Polymer Memory with Nanoconfinement of Ferroelectric Crystals. Nano Letters 11, 
138-144 (2011). 

[100] 	 Martinez-Tong, D. E., Soccio, M., Garcia-Gutierrez, M. C., Nogales, A., Rueda, D. R., Alayo, N., 
Perez-Murano, F. and Ezquerra, T. A. Improving Information Density in Ferroelectric Polymer 
Films by Using Nanoimprinted Gratings. Applied Physics Letters 102, 191601-191605 (2013). 

[101]	 Wu, Y., Li, X., Weng, Y., Hu, Z. and Jonas, A. M. Orientation of Lamellar Crystals and Its 
Correlation with Switching Behavior in Ferroelectric P(VDF-TrFE) Ultra-thin Films. Polymer 55, 
970-977 (2014). 

[102]	 Zhu, H., Yamamoto, S., Matsui, J., Miyashita, T. and Mitsuishi, M. Ferroelectricity of 
Poly(vinylidene fluoride) Homopolymer Langmuir-blodgett Nanofilms. Journal of Materials 
Chemistry C 2, 6727-6731 (2014). 

[103] 	 Prabu, A. A., Kim, K. J. and Park, C. Effect of Thickness on the Crystallinity and Curie Transition 
Behavior in P(VDF/TrFE) (72/28) Copolymer Thin Films using FTIR-transmission Spectroscopy. 
Vibrational Spectroscopy 49, 101-109 (2009). 

[104] 	 Tsutsumi, N., Ueyasu, A., Sakai, W. and Chiang, C. K. Crystalline Structures and Ferroelectric 
Properties of Ultrathin Films of Vinylidene Fluoride and Trifluoroethylene Copolymer. Thin Solid 
Films 483, 340-345 (2005). 

[105]	 Lau, K., Liu, Y., Chen, H. and Withers, R. L. Effect of Annealing Temperature on the Morphology 
and Piezoresponse Characterisation of Poly(vinylidene fluoride-trifluoroethylene) Films via 
Scanning Probe Microscopy. Advances in Condensed Matter Physics 2013, 5 (2013). 

[106]	 Cauda, V., Stassi, S., Bejtka, K. and Canavese, G. Nanoconfinement: an Effective Way to Enhance 
PVDF Piezoelectric Properties. ACS Applied Materials & Interfaces 5, 6430-6437 (2013). 

[107]	 Cauda, V., Torre, B., Falqui, A., Canavese, G., Stassi, S., Bein, T. and Pizzi, M. Confinement in 
Oriented Mesopores Induces Piezoelectric Behavior of Polymeric Nanowires. Chemistry of 
Materials 24, 4215-4221 (2012). 

[108]	 Chen, X.-Z., Li, Q., Chen, X., Guo, X., Ge, H.-X., Liu, Y. and Shen, Q.-D. Nano-Imprinted 
Ferroelectric Polymer Nanodot Arrays for High Density Data Storage. Advanced Functional 
Materials 23, 3124-3129 (2013). 

[109] 	 Li, Z.-D., Shen, Z.-K., Hui, W.-Y., Qiu, Z.-J., Qu, X.-P., Chen, Y.-F. and Liu, R. Pattern Transfer 
of Nano-scale Ferroelectric PZT Gratings by a Reversal Nanoimprint Lithography. 
Microelectronic Engineering 88, 2037-2040 (2011). 

[110]	 Garcia-Gutierrez, M.-C., Linares, A., Martin-Fabiani, I., Hernandez, J. J., Soccio, M., Rueda, D. 
R., Ezquerra, T. A. and Reynolds, M. Understanding Crystallization Features of P(VDF-TrFE) 
Copolymers under Confinement to Optimize Ferroelectricity in Nanostructures. Nanoscale 5, 
6006-6012 (2013). 

[111]	 Kassa, H. G., Nougaret, L., Cai, R., Marrani, A., Nysten, B., Hu, Z. and Jonas, A. M. The Ferro- 
to Paraelectric Curie Transition of a Strongly Confined Ferroelectric Polymer. Macromolecules 
47, 4711-4717 (2014). 

[112] 	 Chen, D., Zhao, W. and Russell, T. P. P3HT Nanopillars for Organic Photovoltaic Devices 
Nanoimprinted by AAO Templates. ACS Nano 6, 1479-1485 (2012). 

26 



 

  
 

 
 

  
  

  

 
 

  

  
    

  
 

 
   

  
 

 

   
     

 

 
 

 

  
 

 

  
 

 

  
  

     
 

 

   
  

 

  
 

 

 
  

[113] 	 Hong, C.-C., Huang, S.-Y., Shieh, J. and Chen, S.-H. Enhanced Piezoelectricity of Nanoimprinted 
Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss. Macromolecules 
45, 1580-1586 (2012). 

[114] 	 Yang, L., Li, X., Allahyarov, E., Taylor, P. L., Zhang, Q. M. and Zhu, L. Novel Polymer 
Ferroelectric Behavior via Crystal Isomorphism and the Nanoconfinement Effect. Polymer 54, 
1709-1728 (2013). 

[115]	 Hahm, S.-W., Kim, D. and Khang, D.-Y. One-dimensional Confinement in Crystallization of 
P(VDF-TrFE) Thin Films with Transfer-printed Metal Electrode. Polymer 55, 175-181 (2014). 

[116]	 Liz-Marzán, L. M. and Kamat, P. V. Nanoscale Materials. (Springer, US, 2003). 

[117] 	 Landfester, K., Montenegro, R., Scherf, U., Güntner, R., Asawapirom, U., Patil, S., Neher, D. and 
Kietzke, T. Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a 
Miniemulsion Process. Advanced Materials 14, 651-655 (2002). 

[118]	 Kietzke, T., Neher, D., Landfester, K., Montenegro, R., Guntner, R. and Scherf, U. Novel 
Approaches to Polymer Blends Based on Polymer Nanoparticles. Nature Materials 2, 408-412 
(2003). 

[119]	 Rao, J. P. and Geckeler, K. E. Polymer Nanoparticles: Preparation Techniques and Size-control 
Parameters. Progress in Polymer Science 36, 887-913 (2011). 

[120]	 Lu, X.-Y., Wu, D.-C., Li, Z.-J. and Chen, G.-Q. Polymer Nanoparticles. Progress in Molecular 
Biology and Translational Science 104, 299-323 (2011). 

[121] 	 Martínez-Tong, D. E., Soccio, M., Sanz, A., García, C., Ezquerra, T. A. and Nogales, A. Chain 
Arrangement and Glass Transition Temperature Variations in Polymer Nanoparticles under 3D
Confinement. Macromolecules 46, 4698-4705 (2013). 

[122] 	 Martínez-Tong, D. E., Cui, J., Soccio, M., García, C., Ezquerra, T. A. and Nogales, A. Does the 
Glass Transition of Polymers Change Upon 3D Confinement? Macromolecular Chemistry and 
Physics 215, 1620-1624 (2014). 

[123] 	 Labastide, J. A., Baghgar, M., Dujovne, I., Venkatraman, B. H., Ramsdell, D. C., Venkataraman, 
D. and Barnes, M. D. Time- and Polarization-resolved Photoluminescence of Individual 
Semicrystalline Polythiophene (P3HT) Nanoparticles. The Journal of Physical Chemistry Letters 
2, 2089-2093 (2011). 

[124] 	 Mi, Y., Xue, G. and Wang, X. Glass Transition of Nano-sized Single Chain Globules. Polymer 43, 
6701-6705 (2002). 

[125] 	 Guo, Y., Morozov, A., Schneider, D., Chung, J. W., Zhang, C., Waldmann, M., Yao, N., Fytas, 
G., Arnold, C. B. and Priestley, R. D. Ultrastable Nanostructured Polymer Glasses. Nature 
Materials 11, 337-343 (2012). 

[126]	 Martínez-Tong, D. E., Soccio, M., Sanz, A., García, C., Ezquerra, T. A. and Nogales, A. 
Ferroelectricity and Molecular Dynamics of Poly(vinylidenefluoride-trifluoroethylene) 
Nanoparticles. Polymer 56, 428-434 (2015). 

[127]	 Zhang, C., Pansare, V. J., Prud'homme, R. K. and Priestley, R. D. Flash Nanoprecipitation of 
Polystyrene Nanoparticles. Soft Matter 8, 86-93 (2012). 

[128]	 Lee, J., Cho, E. C. and Cho, K. Incorporation and Release Behavior of Hydrophobic Drug in 
Functionalized Poly(d,l-lactide)-block–poly(ethylene oxide) Micelles. Journal of Controlled 
Release 94, 323-335 (2004). 

[129]	 Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C. and Stratakis, E. Tuning Cell Adhesion 
by Controlling the Roughness and Wettability of 3D Micro/nano Silicon Structures. Acta 
Biomaterialia 6, 2711-2720 (2010). 

[130] 	 Li, X.-M., Reinhoudt, D. and Crego-Calama, M. What do We Need for a Superhydrophobic 
Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces. 
Chemical Society Reviews 36, 1350-1368 (2007). 

[131] 	 Aryal, M., Trivedi, K. and Hu, W. C. Nano-Confinement Induced Chain Alignment in Ordered 
P3HT Nanostructures Defined by Nanoimprint Lithography. ACS Nano 3, 3085-3090 (2009). 

27 



 

  
 

 
   

   
  

  

   
  

     
 

 

   
  

    
  

 
    

 
     

    
   

   

   
  

  

  
  

 
 

    
  

 

 

     

 

     

 

   
 

[132] 	 Pfadler, T., Coric, M., Palumbiny, C. M., Jakowetz, A. C., Strunk, K.-P., Dorman, J. A., 
Ehrenreich, P., Wang, C., Hexemer, A., Png, R.-Q., Ho, P. K. H., Mueller-Buschbaum, P., 
Weickert, J. and Schmidt-Mende, L. Influence of Interfacial Area on Exciton Separation and 
Polaron Recombination in Nanostructured Bilayer All-polymer Solar Cells. ACS Nano 8, 12397
12409 (2014). 

[133] 	 Rebollar, E., Castillejo, M. and Ezquerra, T. A. Laser Induced Periodic Surface Structures on 
Polymer Films: From Fundamentals to Applications. European Polymer Journal 73, 162-174 
(2015). 

[134]	 Martín-Fabiani, I., Siegel, J., Riedel, S., Boneberg, J., Ezquerra, T. A. and Nogales, A. 
Nanostructuring Thin Polymer Films with Optical Near Fields. ACS Applied Materials & 
Interfaces 5, 11402-11408 (2013). 

[135] 	 Rodríguez-Hernández, J. Wrinkled Interfaces: Taking Advantage of Surface Instabilities to Pattern 
Polymer Surfaces. Progress in Polymer Science 42, 1-41 (2015). 

[136]	 Chen, X.-C., Li, H.-M., Fang, F., Wu, Y.-W., Wang, M., Ma, G.-B., Ma, Y.-Q., Shu, D.-J. and 
Peng, R.-W. Confinement-induced Ordering in Dewetting and Phase Separation of Polymer Blend 
Films. Advanced Materials 24, 2637-2641 (2012). 

[137]	 Luo, C., Xing, R. and Han, Y. Ordered Pattern Formation from Dewetting of Polymer Thin Film 
with Surface Disturbance by Capillary Force Lithography. Surface Science 552, 139-148 (2004). 

[138] 	 Craster, R. V. and Matar, O. K. Dynamics and Stability of Thin Liquid Films. Reviews of Modern 
Physics 81, 1131-1198 (2009). 

[139] 	 Reiter, G., Sferrazza, M. and Damman, P. Dewetting of Thin Polymer Films at Temperatures 
Close to the Glass Transition. The European Physical Journal E 12, 133-138 (2003). 

[140] 	Mukherjee, R., Sharma, A. and Steiner, U. in Generating Micro- and Nanopatterns on Polymeric 
Materials  217-265 (Wiley-VCH Verlag GmbH & Co. KGaA, 2011). 

[141] 	 Roy, S., Ansari, K. J., Jampa, S. S. K., Vutukuri, P. and Mukherjee, R. Influence of Substrate 
Wettability on the Morphology of Thin Polymer Films Spin-coated on Topographically Patterned 
Substrates. ACS Applied Materials & Interfaces 4, 1887-1896 (2012). 

[142] 	 Jurak, M. and Chibowski, E. Wettability and Topography of Phospholipid DPPC Multilayers 
Deposited by Spin-coating on Glass, Silicon, and Mica Slides. Langmuir 23, 10156-10163 (2007). 

[143]	 Bäuerle, D. W. Laser Processing and Chemistry. (Springer, Verlag Berlin Heidelberg, 2011). 

[144] 	 Schift, H. Nanoimprint Lithography: An Old Story in Modern Times? A Review. Journal of 
Vacuum Science & Technology B 26, 458-480 (2008). 

[145] 	 Guo, L. J. Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials 
19, 495-513 (2007). 

[146]	 Na, S.-I., Kim, S.-S., Jo, J., Oh, S.-H., Kim, J. and Kim, D.-Y. Efficient Polymer Solar Cells with 
Surface Relief Gratings Fabricated by Simple Soft Lithography. Advanced Functional Materials 
18, 3956-3963 (2008). 

[147]	 Martin-Fabiani, I., Riedel, S., Rueda, D. R., Siegel, J., Boneberg, J., Ezquerra, T. A. and Nogales, 
A. Micro- and Submicrostructuring Thin Polymer Films with Two and Three-beam Single Pulse 
Laser Interference Lithography. Langmuir 30, 8973-8979 (2014). 

[148] 	 Martín-Fabiani, I., Rebollar, E., Pérez, S., Rueda, D. R., García-Gutiérrez, M. C., Szymczyk, A., 
Roslaniec, Z., Castillejo, M. and Ezquerra, T. A. Laser-induced Periodic Surface Structures 
Nanofabricated on Poly(trimethylene terephthalate) Spin-coated Films. Langmuir 28, 7938-7945 
(2012). 

[149]	 Rebollar, E., Perez, S., Hernandez, J. J., Martin-Fabiani, I., Rueda, D. R., Ezquerra, T. A. and 
Castillejo, M. Assessment and Formation Mechanism of Laser-induced Periodic Surface 
Structures on Polymer Spin-coated Films in Real and Reciprocal Space. Langmuir 27, 5596-5606 
(2011). 

[150]	 Bolle, M., Lazare, S., Le Blanc, M. and Wilmes, A. Submicron Periodic Structures Produced on 
Polymer Surfaces with Polarized Excimer Laser Ultraviolet Radiation. Applied Physics Letters 60, 
674-676 (1992). 

28 



 

  
  

  
 

 
  

 
 

  
 

 

   

 
   

  

 
 

  

  

 
  

 
  

 
  

   

 

 
  

  
 

 
  
 

[151] 	 Birnbaum, M. Semiconductor Surface Damage Produced by Ruby Lasers. Journal of Applied 
Physics 36, 3688-3689 (1965). 

[152]	 Rebollar, E., Perez, S., Hernandez, M., Domingo, C., Martin, M., Ezquerra, T. A., Garcia-Ruiz, J. 
P. and Castillejo, M. Physicochemical Modifications Accompanying UV Laser Induced Surface 
Structures on Poly(ethylene terephthalate) and Their Effect on Adhesion of Mesenchymal Cells. 
Physical Chemistry Chemical Physics 16, 17551-17559 (2014). 

[153] 	 Ivanov, M. and Rochon, P. Infrared-laser-induced Periodic Surface Structure in Azo-dye Polymer. 
Applied Physics Letters 84, 4511-4513 (2004). 

[154]	 Rebollar, E., Vazquez de Aldana, J. R., Martin-Fabiani, I., Hernandez, M., Rueda, D. R., Ezquerra, 
T. A., Domingo, C., Moreno, P. and Castillejo, M. Assessment of Femtosecond Laser Induced 
Periodic Surface Structures on Polymer Films. Physical Chemistry Chemical Physics 15, 11287
11298 (2013). 

[155] 	 Csete, M. and Bor, Z. Laser-induced Periodic Surface Structure Formation on Polyethylene
terephthalate. Applied Surface Science 133, 5-16 (1998). 

[156] 	 Csete, M., Hild, S., Plettl, A., Ziemann, P., Bor, Z. and Marti, O. The Role of Original Surface 
Roughness in Laser-induced Periodic Surface Structure Formation Process on Poly-carbonate 
Films. Thin Solid Films 453–454, 114-120 (2004). 

[157] 	 Csete, M., Eberle, R., Pietralla, M., Marti, O. and Bor, Z. Attenuated Total Reflection 
Measurements on Poly-carbonate Surfaces Structured by Laser Illumination. Applied Surface 
Science 208–209, 474-480 (2003). 

[158] 	 Pérez, S., Rebollar, E., Oujja, M., Martín, M. and Castillejo, M. Laser-induced Periodic Surface 
Structuring of Biopolymers. Applied Physics A 110, 683-690 (2013). 

[159] 	 Bolle, M. and Lazare, S. Characterization of Submicrometer Periodic Structures Produced on 
Polymer Surfaces with Low-fluence Ultraviolet Laser Radiation. Journal of Applied Physics 73, 
3516-3524 (1993). 

[160] 	 Bolle, M. and Lazare, S. Large Scale Excimer Laser Production of Submicron Periodic Structures 
on Polymer Surfaces. Applied Surface Science 69, 31-37 (1993). 

[161] 	 Csete, M., Marti, O. and Bor, Z. Laser-induced Periodic Surface Structures on Different Poly
carbonate Films. Applied Physics A 73, 521-526 (2001). 

[162]	 Rodríguez-Rodríguez, Á., Rebollar, E., Soccio, M., Ezquerra, T. A., Rueda, D. R., Garcia-Ramos, 
J. V., Castillejo, M. and Garcia-Gutierrez, M.-C. Laser-Induced Periodic Surface Structures on 
Conjugated Polymers: Poly(3-hexylthiophene). Macromolecules 48, 4024-4031 (2015). 

[163] 	 Tsutsumi, N. and Fujihara, A. Pulsed Laser Induced Spontaneous Gratings on a Surface of 
Azobenzene Polymer. Applied Physics Letters 85, 4582-4584 (2004). 

[164] 	 Martínez-Tong, D. E., Rodríguez-Rodríguez, Á., Nogales, A., García-Gutiérrez, M.-C., Pérez-
Murano, F., Llobet, J., Ezquerra, T. A. and Rebollar, E. Laser Fabrication of Polymer Ferroelectric 
Nanostructures for Nonvolatile Organic Memory Devices. ACS Applied Materials & Interfaces 7, 
19611-19618 (2015). 

[165] 	 Cui, J., Rodríguez-Rodríguez, Á., Hernández, M., García-Gutiérrez, M.-C., Nogales, A., Castillejo, 
M., González, D. M., Müller-Buschbaum, P., Ezquerra, T. A. and Rebollar, E. On the Laser 
Induced Periodic Surface Structures of P3HT and of its Blend with PC71BM. Submitted to ACS 
Applied Materials & Interfaces (2016). 

29 





 

  

 

 

  

2 

Samples & techniques 

This chapter is composed of three parts. Part 1 gives a description of all the materials involved 

in the Thesis. Part 2 provides a detailed description of the experimental techniques related to the 

preparation of polymer nanoparticles and thin films. In Part 3 the characterization techniques 

used for the evaluation of physical and structural properties of the studied polymers are explained. 
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2.1 Materials 

In this part, the polymers used to prepare NPs or thin films are introduced. Besides, some non

polymer materials like the fullerene derived material PC71BM and solvents are presented here. 

2.1.1 Poly(3-hexylthiophene-2,5-diyl), P3HT 

The chemical structure of poly(3-hexylthiophene-2,5-diyl), (P3HT) [1] has been presented in 

Chapter 1 (Section 1.2.1). Two batches of P3HT with similar molecular weight were used (batches 

M101 and M102). Both of them are obtained from Ossila Ltd., and the detailed characteristics are 

displayed in Table 2.1. 

Table 2.1 Details of P3HT. 

Polymer Mw (g/mol) PDI Regioregularty 

P3HT M102 65,200 2.2 95.7% 

P3HT M101 65,500 2.04 96.6% 

P3HT from batch M101 was used for casting films in the dielectric spectroscopy study, while 

batch M102 was used for thin films preparation and LIPSS formation. 

2.1.2 Poly(vinylidene fluoride -trifluoro ethylene), P(VDF-TrFE)  

The chemical structure of P(VDF-TrFE) copolymers has been shown previously [2] (Chapter 1, 

Section 1.3.1). In this work, P(VDF-TrFE) was purchased from Piezotech S.A.S. (France) and 

used as received. Details and information for the P(VDF-TrFE) copolymer used in this Thesis are 

listed in Table 2.2. 

Table 2.2 Details of P(VDF-TrFE) copolymer. 

Polymer Ratio of VDF:TrFE Mw (g/mol) PDI 

P(VDF-TrFE) 76:24 367,000 1.72 

P(VDF-TrFE) pellets were used for preparing NPs and thin films. 
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2.1.3 Poly(styrene), PS 

Poly(styrene) (PS) is an aromatic polymer derived from petroleum, and synthesized from phenyl

ethylene monomer [3]. The chemical structure is shown in Figure 2.1, and it consists of a long 

hydrocarbon chain where alternating carbon centers are attached to the aromatic benzene ring 

[3,4]. The free-radical polymerized atactic PS is an amorphous polymer, which is in a glassy state 

at room temperature, and it present a Tg, around 106 ºC. Moreover, PS exhibits excellent 

mechanical properties, safe and easy-processing, making it widely used in food packaging, 

appliances, consumer electronics and medical applications [5]. 

Figure 2.1 The chemical structure of PS. 

In this work, PS was obtained from Polymer Source Inc (Batch P8647-S), and details are listed in 

Table 2.3. 

Table 2.3 Details of PS. 

Polymer Mw (g/mol) PDI 

PS 555,00 1.07 

PS thin films were prepared by spin coating on silicon, glass and quartz substrates. 

2.1.4 [6,6]-phenyl C71-butyric acid methyl ester, PC71BM 

The structure of [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) has been described in 

Chapter 1 (section 1.2.2). In this work, PC71BM with a molecular mass of 1031 g/mol was 

purchased from Ossila Ltd. (Product Code M113). The used PC71BM batch is a mixture of 95% 

PC71CBM and 5% PC61BM as specified by the manufacturer. Throughout this work, PC71BM was 

used in solution for preparing blend films with P3HT.  
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2.1.5 Solvents 

Several solvents were used in this work for the different polymer materials and preparation 

methods. Information of solvents used is listed in the Table 2.4. 

Table 2.4  Information of solvents. 

Boiling Water Density Polymers 
Solvent 

Point oC miscibility (25 ºC) g/mL dissolved 

Trichloromethane 

(Chloroform) 
CHCl3 61.2 No 1.489 

P3HT 

PC71BM 

PS 

P3HT 
Tetrahydrofuran THF 66 Yes 0.8892 

P(VDF-TrFE) 

N,N
dimethylacetamide 

DMA 165 Yes 0.937 P(VDF-TrFE) 

Methyl ethyl ketone MEK 78 No 0.805 P(VDF-TrFE) 

Others solvents were also used, for example, acetone  was used to clean all glass containers and 

substrates, and 2-propanol was used for cleaning silicon substrates. Piranha solution (H2O2:H2SO4 

=1:3) was prepared to treat silicon wafers in order to enhance hydrophobicity of its surface for 

spin coating in particular cases. Additionally, glycerol and paraffin oil were used for CA 

measurements. 

2.2 Preparation of samples 

In this section, the different preparation methods of the samples involved in this Thesis will be 

described. 

2.2.1 Casted films of P3HT and P3HT/PC71BM blends 

Polymer blends of the semiconducting polymer P3HT and PC71BM were prepared for dielectric 

spectroscopy characterization. For this purpose, the corresponding amounts of P3HT and PC71BM 

for each blend (50/50 and 90/10) were dissolved in CHCl3 at a total concentration of 120 g/L, 

sealed and stirred at 400 rpm for 20 hours at room temperature. The mixture P3HT/PC71BM 

solution was carefully casted on an electrode, which was previously cleaned in ultrasonic bath 
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and dried under nitrogen flow. Then, films were dried at room temperature for 2 days, and moved 

into a vacuum oven to continue drying at room temperature for one week in order to eliminate 

residual solvent. Following the same procedure, P3HT films were prepared. The resulting films 

thicknesses are around 0.2 mm as measured by a micrometer. 

2.2.2 P(VDF-TrFE) nanoparticles 

The dialysis nanoprecipitation, first mentioned by C. Zhang et al in 2012 for nanoprecipitation of 

PS nanospheres [6], is used in this Thesis to prepare P(VDF-TrFE) NPs. 

Figure 2.2 Scheme of the precipitation method. 

This protocol is illustrated in Figure 2.2. First P(VDF-TrFE) polymer solution was prepared at a 

fixed concentration of 5 mg/mL, using DMA as solvent and stirring 20 hours at room temperature. 

Then the polymer solution was transferred into a dialysis membrane, which was previously 

cleaned with distilled water and DMA. The membrane, after being sealed at both ends, was 

immersed in a large volume of distilled water. The different concentration of DMA inside and 

outside the membrane results in DMA and water molecular exchange to establish chemical 

equilibrium. Low concentration of polymer solution is required to ensure that the polymer chains 

are in a dispersed state and able to separate into nanodomains. During the dialysis procedure, 

water refreshment was needed for several times to overcome the chemical equilibrium, till DMA 

in the membrane was completely replaced. The resulting NPs suspension was filtered through a 

syringe filter in order to remove large aggregates [7]. 

2.2.3 Polymer thin films by spin coating 

Spin coating method, due to its easy and fast operation, low cost and the fact that produces 

relatively flat surfaces, has become one of the most popular methods for thin films preparation 

[8,9]. 
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The schematic of the spin coating process is displayed in Figure 2.3. The whole process can be 

divided into several stages: (i) a polymer solution is deposited on a substrate, which can be silicon, 

glass, etc., depending on the demands, (ii) the substrate is rapidly accelerated to the desired 

rotation rate, and liquid flows radially, owing to the action of centrifugal force, (iii) the film 

becomes thinner slowly and (iv) solvent evaporation dominates drying. The steps (iii) and (iv) are 

controlled by the solution viscosity and the solvent evaporation, which can impact on the final 

coating thickness and on the roughness [9]. 

Figure 2.3 Schematic of spin coating for producing a thin film. 

Polymer thin films studied in this Thesis will be introduced below. Two spin coaters, one home

made equipment and a commercial one (Laurell, WS-650 Series), were used with similar rotation 

speed, under ambient condition. 

Single layer thin films 

PS SINGLE LAYERS 

PS thin films were prepared by spin coating using the home-made spin coater. All substrates, 

silicon wafers (100) (Wafer World Inc.) polished on both surfaces, glass (microscope slides, 

Thermo Scientific) and quartz substrates (UQG Optics) were cut into pieces of 1 cm × 1 cm and 

cleaned with CHCl3. PS was solved in CHCl3 by stirring for 10 min at 300 rpm at room 

temperature and afterwards it was filtered by using a syringe with a filter. A fixed amount of 

0.2 mL of polymer solution was instantly dropped on a substrate placed in the center of a rotating 

metallic horizontal plate, with a rotation speed of 2380 rpm kept during 2 min. The thickness of 

PS thin films was adjusted by modifying the concentration of the polymer solution. An initial PS 

solution with concentration of 30 g/L was diluted into 25, 20, 15, 10 and 8 g/L, and then 

spin-coated onto the substrates under the same rotation conditions. The relationship of thickness 

of prepared films and their concentration is displayed in Figure 2.4. 
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Figure 2.4  Dependence of thickness of PS films on the solution concentration for the 

different substrates: silicon ( ), glass ( ) and quartz ( ). 

PS free-standing films were also prepared by casting PS solution (with concentration of 60 g/L) 

onto glass substrates. Samples were dried in vacuum oven at room temperature for one week, and 

then manually removed from substrate. The thickness of free-standing PS film, measured by a 

micrometer was 150 μm. 
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Figure 2.5  Thickness of the prepared P3HT films as a function of concentration. 
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P3HT thin films were prepared using the spin coater Laurell. P3HT (M101) powder was dissolved 

in CHCl3 with a concentration of 32 mg/mL, stirring for 30 minutes at room temperature. The 

prepared solution was diluted into various concentrations: 28, 24, 20, 16, 12 and 8 mg/mL. 

Conductive Silicon wafers were cut into pieces of 2 cm × 2 cm, cleaned by acetone and 2

propanol and then dried under Nitrogen flow. A fixed volume of 0.2 mL solution was spin-coated 

on silicon wafer at 2400 rpm for 2 min. The film thickness was varied by varying the solution 

concentration. The concentration dependence for the thickness of the prepared P3HT films is 

displayed in Figure 2.5. 

P(VDF-TRFE) SINGLE LAYERS 

P(VDF-TrFE) thin films were prepared following a similar protocol than that used for preparing 

P3HT films. First P(VDF-TrFE) was dissolved in MEK with a concentration of 20 mg/mL, 

stirring for 3 hours at 72 ºC. Then, it was diluted into different concentrations: 17, 15, 12, 10, 7, 

5, 4, 3 and 2 mg/mL. Non-conductive Silicon wafers were cleaned as explained previously for the 

preparation of P3HT thin films. A fixed volume of 0.2 mL of the P(VDF-TrFE) solution was 

spin-coated on the silicon wafer fixed at the Laurell spin coater, with 2400 rpm for 2 min. The 

relationship between the thickness and the solution concentration is shown in Figure 2.6. 
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Figure 2.6  Dependence of thickness of P(VDF-TrFE) films on the concentration. 

Bilayers 

The bilayers were prepared using the procedure introduced in a previous work [7]. First P3HT 

(M102) was spin-coated on conductive silicon using the same conditions as the ones used for 
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P3HT single layers. Afterwards, solutions of P(VDF-TrFE) in MEK with different concentration 

were spin-coated on the top of the prepared P3HT films. Since MEK does not dissolve P3HT, 

bilayers of the two different polymers are formed. In this set of experiments, different 

concentrations of both polymers are prepared, and thus bilayers with different thicknesses are 

obtained. 

P3HT/P(VDF-TrFE) blends thin films 

P3HT/P(VDF-TrFE) 50/50 wt% blends were prepared by spin coating using the Laurell spin 

coater. The same amount of P3HT and P(VDF-TrFE) (12 mg) were dissolved in their co-solvent 

THF with a total concentration of 24 mg/mL. The blend was stirred for 4 hours at 41 oC and then 

diluted into 16 mg/mL and 8 mg/mL, respectively. The conductive silicon wafers were first 

treated with piranha solution and then put onto the hot plate pre-heated to 41 oC. After that, the 

blend was dropped onto the pre-heated silicon wafers immediately and spin-coated at 2400 rpm 

for 2 min.  

P3HT layer with embedded P(VDF-TrFE) nanoparticles 

In order to dry the P(VDF-TrFE) NPs prepared as described in section 2.2.2, water was removed 

by lyophilization process at -100 ºC. For that, the sample is frozen while being centrifuged and 

the pressure is reduce to sublimate the frozen liquid and extracte it. As a result, the nanoparticles 

are recovered in the form of a liquid free-powder. Once dried, P(VDF-TrFE) NPs were 

redispersed in a non-solvent, CHCl3 in this case, by ultrasonication for 15 min at room 

temperature. Afterwards, the same amount of P3HT, which is soluble in CHCl3, was added to the 

suspension, and further ultrasonicated for 15 min. In this way, NPs were dispersed in a P3HT 

solution in CHCl3. The solution was then spin-coated at 2400 rpm for 2 min using the homemade 

spin coater onto the conductive silicon wafers previously treated by piranha solution. The 

schematic is shown in Figure 2.7. 

Figure 2.7  Schematic of the preparation of P3HT film with embedded P(VDF-TrFE) NPs. 
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By tuning the concentration of the solution, different thicknesses of the nanocomposites were 

obtained. 

2.2.4 Laser induced periodic surface structures (LIPSS) 

LIPSS on PS film 

Laser irradiation of PS films was carried out in ambient air under normal incidence, with the 

linearly polarized laser beam of a Q-switched Nd:YAG laser (Lotis TII LS-2131M, pulse duration 

τ = 8 ns full width half-maximum) at a repetition rate of 10 Hz. The fourth harmonic, at a 

wavelength λ = 266 nm was used for the experiments, since at this wavelength PS absorbs 

efficiently with an absorption coefficient of 1.6×105 m-1, measured by UV-Vis spectroscopy. The 

fluence of irradiation was determined by measuring the laser energy in front of the sample with a 

joulemeter (Gentec-E, QE25SP-H-MB-D0) and by calculating the area of the irradiated spots 

after delimitating the beam with an iris of 0.29 cm diameter. The spin-coated PS films were 

irradiated as a function of the number of pulses (up to several thousands) at a constant fluence of 

10 mJ/cm2, and moreover, with a constant number of pulses in the range of fluences of 

7−13 mJ/cm2. 

LIPSS on P3HT single layer and P3HT/P(VDF-TrFE) bilayer 

P3HT single layers and P3HT/P(VDF-TrFE) bilayers were irradiated by using the second 

harmonic, with a wavelength of λ= 532 nm, of the Q-switched Nd:YAG laser Lotis TII LS-2131M, 

since P3HT absorbs efficiently at this wavelength (= 8.62×106 m-1). The repetition rate was 

kept at 10 Hz. The irradiation of P3HT single layers was performed with 3600 pulses at a fluence 

in the range from 23.4 to 31.2 mJ/cm2, as determined by measuring the laser energy in front of 

the sample and considering an irradiated spot with a diameter of 5 mm. Bilayers were irradiated 

at a constant fluence of 26 mJ/cm2 with 3600 pulses. 

2.3 Physical and structural characterization 

2.3.1 Scanning probe microscopy (SPM) 

Atomic force microscopy (AFM) 

Since the invention of the atomic force microscope (AFM) by Gerd Binnig, Calvin F. Quate and 

Christoph Gerber in 1986 [10], a whole family of scanning probe microscopy (SPM) techniques 

based upon different physical interactions has been developed. AFM has become an important 

technique to provide images of samples in various environments (vacuum, atmosphere, and liquid) 

with three-dimensional information at the nanometer scale in real space [11,12]. 

41 



 

 

 

 

 

 

 

 

 

 

 

 

 

The basic principle of AFM techniques is the measurement of the vertical motion of a cantilever 

beam with ultra-small mass as it scans a surface. At the end of the cantilever a tip is attached 

which detects the topography of the sample surface. The nanoscale probe is usually made of Si3N4 

or silicon. The imaging modes of AFM are divided into three major categories according to 

whether the tip contacts the sample: the contact mode, tapping mode, and non-contact mode [13

15]. The schematic illustration of the setup and working principle of AFM is shown in Figure 2.8. 

As the probe approaches the surface, the force caused by the interaction between the sample and 

the tip induces either a deflection of the cantilever probe (contact mode) or an amplitude change 

(tapping mode) [16]. The force is measured by detecting the deflection of the cantilevers. To do 

that, a laser beam is reflected from the reverse side of the cantilever surface onto a position

sensitive array of photodiodes (a quadrant photodiode detector divided into four parts). The 

reflected light position on the photodetector, which indicates the deflection of the cantilever, is 

detected and converted to an electrical signal read by a computer, and thus the surface information 

is recorded [16,17]. 

Figure 2.8  Schematic diagram of atomic force microscopy [17]. 

The measurement of the different interactions between the tip and the sample surface led to the 

creation of a variety of other scanning probe microscopies, such as the magnetic force microscopy 

(MFM) which measures the magnetic structure of the surface [18], Kelvin probe force microscopy 

(KPFM) which measures the local surface potential [19], quantitative nanomechanical mapping 

(QNM) which measures the mechanical properties at the nanoscale [19,20], piezoresponse force 

microscopy (PFM) which measures the ferroelectric response of the films [21,22], and conductive 

AFM (C-AFM) which measures the electrical conductivity [23]. All these SPM techniques 

provide us the unique opportunity to characterize different properties at the nanoscale. 

42 



 

 

 

 

   

 

 

 

 

  

 

 

 

Piezoresponse force microscopy (PFM) 

PFM is performed using AFM in Contact Mode. The main principle is based on the reverse 

piezoelectric effect, which means that the applied electric field affects the ferroelectric sample 

resulting in a change of its dimensions [24]. The tip used in PFM is usually made of, or coated 

with, a conductive material, and acts as a top electrode. The schematic of the principle of PFM 

and the material surface response are presented in Figure 2.9. 

Figure 2.9 (a) Schematic diagram of PFM and (b) Response of material surface [25]. 

The AFM probe tip scans the surface while an Alternating Current (ac) voltage is applied between 

the tip and the sample. Because of the reverse piezoelectric effect the sample will locally expand 

or contract according to the electric field, and this change is measured by the deflection of the 

cantilever having its tip in contact with the sample. If the initial polarization of the electrical 

domain of the sample is parallel to the applied electric field, the domain would experience a 

vertical expansion. Such expansion can bend the AFM cantilever upwards, resulting in an 

increased deflection compared to the signal before applying the electric field. Conversely, if the 

initial domain polarization is anti-parallel to the applied electric field, the domain would contract 
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resulting in a decreased cantilever deflection. In such situation, the amount of cantilever deflection 

change is directly related to the amount of expansion or contraction of the sample electric domains, 

hence proportional to the applied electric field. If the polarization vector is perpendicular to the 

electric field, there is no piezoelectric deformation along the field direction, but a shear strain 

appears in the ferroelectric material, leading to displacements of the sample surface parallel to 

itself, along the polarization direction. By analyzing the PFM amplitudes and the PFM phases of 

the normal and torsion cantilever vibrations, the topographical features and the ferroelectric 

response of a ferroelectric sample can be measured simultaneously. If the bias turns into a field 

of magnitude above its coercive field, the ferroelectric domains will align along the direction of 

the field. Due to the hysteresis, when the field is turned off, the dipole moment of the molecules 

will remain pointing towards the direction imposed [25,26]. 

Conductive Atomic Force Microscopy (C-AFM) 

The operation of the conductive AFM is similar to PFM, by using an AFM probe coated by a 

conductive layer as a nanometer-scale electrical probe. A bias voltage is applied between the tip 

and the sample and while the conductive probe scans the sample surface in contact, the electric 

current between the sample and the tip is measured through an electric current amplifier. In this 

way, the topography and the conductivity over the sample surface can be obtained simultaneously. 

There are two standard measuring geometries [27]. As shown in Figure 2.10, the vertical geometry 

measures the out-of-plane current through the material between the AFM probe and a conductive 

substrate, whereas the horizontal geometry measures in-plane current through material between 

the AFM probe and a patterned electrode on an insulating substrate. In operation, current may be 

recorded at a constant voltage as a function of position, for current mapping, or recorded as a 

function of voltage at a sample position, for current-voltage (I-V) characterization [28-30]. 

Figure 2.10 Schematic illustration of (a) the vertical geometry and (b) the horizontal 

geometry for C-AFM measurements [27]. 
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Applications of SPM in this Thesis 

TOPOGRAPHIC FEATURES 

The morphology of prepared samples was inspected under ambient conditions using a Multimode 

8 AFM (Bruker) with a Nanocope V controller (Bruker). The topography AFM images were 

collected in tapping mode using silicon probes NSG-30 (NT-MDT) which are standard 

rectangular shape silicon cantilevers and have a typical tip curvature radius of ~ 6 nm. 

Topographical images were collected from multiple locations to examine the film uniformity. 

Analysis and output of images were carried out using the NanoScope Analysis software 1.50 

(Bruker). 

Additionally, thickness of the spin-coated films, including single layer and bilayer films, was 

measured by AFM in tapping mode. A scratch was made on the surface of the films and the step 

between the substrate and the polymer layer was quantified in different locations of several 

samples. The average roughness Ra, which indicates the arithmetic average of the deviations in 

height from the center plane of the sample.was obtained by the software Nanoscope Analysis 1.50. 

PFM 

PFM measurements were carried out using the same equipment, in the piezoresponse mode. The 

microscope was used in contact mode, using mild measuring conditions in order to avoid 

damaging the samples. To ensure electrical contact, the sample was glued to the conducting 

substrate by conductive epoxy (CW2400, Chemtronics). The probes used are SCM-PIC (Bruker) 

which are coated with a conductive PtIr layer and have a low spring constant (0.2~0.4 N/m) and 

a tip with radius of ca. 20 nm. The PFM out-of-plane signal was taken by applying an ac voltage 

of 2 V at a frequency of 60 kHz between sample and tip. 

Hysteresis cycles were recorded applying a tip bias ramp from -12 to 12 V at a frequency of 0.1 

Hz and collection of 1024 points. Local poling was carried out using the tip as the top electrode 

and applying, in every case, a dc bias (± 12 V) for 100 s. The control of points and lines drawn in 

the ferroelectric phase was made by the Point & Shoot protocol, available in the Nanoscope 8.15 

software. 

C-AFM 

AFM measurements were done using the same microscope equipped with a C-AFM module, and 

employing the same conductive tip as the one used in PFM mode. The sample was fixed as in 

PFM measurements. As the conducting probe scans the sample, a bias of -5 V was applied, and 

the current was measured by a preamplifier. 
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2.3.2 X-Ray scattering 

Working principles 

X-rays are electromagnetic waves with wavelength in the range of 10−11−10−8 m produced when 

an electron beam is accelerated by a sufficiently high-voltage electric field [31], or when highly 

accelerated electron beams bombard metallic targets under vacuum. X-ray scattering and 

diffraction was are well established techniques for investigating the structure of matter [32]. The 

conventional application of X-ray scattering is performed in transmission geometry, in which X

rays are normal to the surface of the sample. The schematic X-ray scattering in transmission 

geometry is shown in Figure 2.11. 

Figure 2.11 Schematic of X-ray scattering process. 

When an X-ray with a wavelength λ is scattered, a scattering vector, q, can be defined as the 

ሬሬሬԦ ሬሬሬሬԦܭ and the scattered vector పܭdifference between the incident wave vector 

ሬԦ ሬሬሬሬሬԦ ሬሬሬሬሬԦሬ ൌ ଝࡷ െ  (1 -2)  ࢌࡷ

, that is 

ሬሬሬԦ ሬሬሬሬԦܭandపܭAs shown in Figure 2.11a, the angle between 

same because the scattering is elastic, that is, there is no change in the photon energy, and thus: 

หࡷଝห ൌ หࢌࡷห ൌ  
࣊

 (2- 2) ሬሬሬሬሬԦ ሬሬሬሬሬԦ
ࣅ

The modulus of the scattering vector is ݍ ൌ
ସగ

ఒ 
sin ી. 

According to the Bragg´s law [33], the relation between the length-scale of order d, radiation 

wavelength λ and scattering angle 2θ can be expressed as: 

 ൌ ࢊ	
ࣅ

 ܑܛ ીܖ
 (2- 3) 

The relationship between q and the d is established as: 

 ൌ  
࣊

ࢊ
 (2- 4) 

 is 2θ. The moduli of the momenta are the 
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Structural information on the desired length-scale, from atomic level (unit cell of the crystals) up 

to several micrometers (spherulites), can be investigated by studying different ranges of the 

magnitude of the scattering vector q, through different ranges of the scattering angle θ [34]. The 

larger scattering angle, the smaller length scale probed. For polumer materials, two different 

modes, Small Angle X-Ray Scattering (SAXS) and Wide Angle X-Ray Scattering (WAXS), are 

normally performed. WAXS, with scattering angle 2 θ> 3º , identifies the structure of crystal 

unit cell at atomic length scale, while SAXS studies the microstructure at larger length scales, 

with a small scattering angle 2 θ < 1º. 

Besides the classical X-ray diffraction and scattering performed in laboratory based sources, 

analysis of polymer thin films and in-situ experiments, which need high brilliance or low exposure 

time, are typically performed by using synchrotron radiation facilities. Synchrotron radiation is 

produced when electrons orbit in a magnetic field and lose energy continuously in the form of 

electromagnetic radiation emitted tangentially from the orbit [35]. The sketch of a synchrotron 

radiation facility is illustrated in Figure 2.12. 

Figure 2.12 Scheme of a synchrotron radiation ring [36]. 

Electrons, once produced by an electron gun, are accelerated in a linear accelerator (Linac), and 

then are transferred to the circular accelerator, synchrotron, guided by a bending magnet where 

they are strongly accelerated till reaching energies of several millions of electron volts (MeV). 

Once the electrons reach the expected energy, they enter the storage ring and can be considered 

in a quasistationary situation. The storage rings consist of a circular ring-like structure in which 

the electrons follow circular paths at speed close that of light. The circular trajectory is defined 

by an array of magnets, called bending magnets, located at defined places of the ring. X-ray 

radiation is produced tangentially to the ring by “bremsstrahlung” effect when the electrons are 

force to curve their trajectories by the action of the bending magnets. Additional auxiliary 

components such as insertion devices (either undulators or wigglers) may be used to in orther to 

increment the photon energy obtained from the bending magnets radiation characteristics (broad 
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band, narrow band, etc.). These X-rays are guided into the beamlines (work stations) to perform 

experiments [32,37]. 

X-ray scattering application in this Thesis 

Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing Incidence Wide Angle 

X-ray Scattering (GIWAXS) experiments were performed by using synchrotron radiation at 

DUBBLE beamline (BM26B) of the European Synchrotron Radiation Facility (ESRF) in 

Grenoble, France. A conceptual scheme of the set-up is shown in Figure 2.13. 

Figure 2.13 Conceptual scheme of a GISAXS and GIWAXS experiment. αi and α are the 

incidence angle and exit angle, respectively. ω is the scattering angle out of the meridian. 

As presented in Figure 2.13, a X-ray beam is directed on a sample surface with an incident angle 

αi, respect to the surface. The X ray beam is scattered by the sample, and then recorded by a 

detector. A vertical plane, known as the scattering plane is defined by both the incident and 

reflected beams which intersects the detector along the meridian, m-m line (ω = 0º). GISAXS 

patterns show the scattering intensity collected by the detector above the horizon line (h-h, exit 

angle α = 0°) which corresponds to the intersection of the sample plane with the detector plane. 

By introducing the orthogonal scattering vector qz and qy, structural information perpendicular 

and parallel to the film plane can be obtained. Each point (y,z) of the pattern is defined by the 

angular coordinates (ω, α) or by means of the corresponding components (qy, qz) of the reciprocal 

scattering vector q. The angles and the components of the reciprocal vector are related by the 

expressions [32]: 
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sin߱ cos(5 -2) ࢻ
 

ࢠ ൌ 
࣊

 ࣅ
ሺࢻ ࢙  ࢙ ሻࢻ   (2- 6) 

In this work, an X-ray wavelength of λ=0.103 nm, with a beam size (horizontal× vertical) of 

0.7 mm × 0.3 mm in the sample was employed for the measurements. In grazing incidence 

experiments, the sample was placed with its surface horizontal and parallel to the X-ray beam and 

at a height which intercepted half of the beam intensity. Then, the sample was tilted in order to 

reach an incidence angle between the sample surface and the beam, with an exposition time of 5 

s for each incident angle. Different incidence angles of 0.14, 0.2, 0.3 and 0.4º were used in order 

to obtain information at different depth of the film. GISAXS patterns were taken using a Pilatus 

1M detector of 981 × 1043 pixels, pixel size 172 m × 172 m, located at 7.2 m from the sample. 

For GIWAXS measurements the sample-to-detector distance is reduced in relation to that used in 

GISAXS. In this case the scattered intensity was recorded by a Frelon detector of 2048 × 2048 

pixels with a size of 46.8 μm × 46.8 μm per pixel. A sample-detector distance of 79.3 mm was 

used. As in the case of GISAXS measurements, the incidence angle (i) was set to 0.14-0.4º. 

Patterns acquired with an exposition time of 10 s were corrected from background scattering. 

Both GISAXS and GIWAXS patterns were analyzed by the Fit2D software [38]. 

2.3.3 Broadband dielectric spectroscopy (BDS) 

Working principle 

Broadband Dielectric Spectroscopy (BDS) is an experimental technique to study the molecular 

dynamics of a variety of materials within a large frequency range at different temperatures. BDS 

enables the study of relaxation phenomena with applications in liquid state physics, material 

science, biology, and engineering [39]. BDS measures the complex dielectric permittivity ߝ∗ ൌ 

ᇱሺ߱ሻ െߝ ߝ݅  ᇱᇱሺ߱ሻ as a function of frequency in a wide temperature range, where the dielectric 

permittivity ε’ is the real component, the dielectric loss ε’’ is the imaginary component, and ߱ is 

.݂߱ ൌ ߨ2  the angular frequency of the external electric field 

Results of dielectric experiments can be presented using three different representations as a 

function of frequency in order to emphasize particular aspects of the dynamics: the complex 

permittivity ε*, the complex conductivity σ* = σ’ + iσ’’ and the complex electric modulus 

M* = M’ + iM’’. In the case of conducting polymers, it is difficult to describe their dynamics 

using the dielectric permittivity, as the conductivity contributes to a sharp increase in the ε’’ 

function at low frequencies and can mask the segmental relaxation of the polymer chain [39]. 

This difficulty can be avoided by analyzing the dielectric properties of semiconducting polymers 
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by using either the electric modulus formalism M*(ω) or the electric conductivity σ* (ω) 


representations to represent the dielectric data. 


These complex quantities ε*, σ*, and M* are related one to each other according to the following 


equations [39,40]: 


ଵ ଵ 
 (2- 7) 

ఠబఌൌ
ሻᇲᇲିఌ ᇲሺఌ

ൌሻ߱ሺ∗ܯ
ఌ∗ሺఠሻ 

ൌ 
ఙ∗ሺఠሻ

The real part M’ and imaginary part M’’ of M* can be determined from permittivity 

ଵ
ൌሻ݂ሺ∗ܯ
ఌ∗ 
ൌ ܯ′′ᇱ ൌܯ ݅  

ఌ´ ఌ´´

ఌ´మାఌ´´మ  ݅  ఌ´మାఌ´´మ (2- 8)
 

While 

´´ߝ ߱݅ߝ´ߝ(9 -2)  ൌ ߝ߱ ´ൌ݅ߪ´´  ൌߝ∗ሻ݂ሺߪ ߝ݆߱  ሻ݂ሺ∗ߪ 

All these representations are completely equivalent but they emphasize different aspects of the 

underlying mechanisms of charge transport. 

To obtain all the above mentioned dielectric magnitudes, a parallel plate capacitor is formed with 

the sample as a dielectric. Then the impedance is measured as a function of frequency. From the 

measured impedance values and the geometric factors of the capacitors, *, M* or * can be 

obtained [39]. 

Application of BDS in this Thesis 

In the studies performed in this Thesis, samples were casted onto circular gold coated metal 

electrodes. Then, an upper gold coated metal disc (1 cm in diameter) was placed on top of the 

samples. BDS measurements were performed over a broad frequency window, 10-1 < f (Hz) < 107 

and a temperature range of - 150 < T (ºC) < 150. Data were taken upon heating. To cover the 

above mentioned frequency range, a Novocontrol ALPHA dielectric interface integrated in a 

broadband dielectric spectrometer was employed. The temperature was controlled by a nitrogen 

jet (QUATRO from Novocontrol) with a temperature error during every single frequency sweep 

of ± 0.1 °C. 

2.3.4 UV-Vis-NIR spectroscopy 

Working principle 

UV-Vis-NIR absorption spectroscopy is a measurement of light attenuation when it passes 

through a sample. When a sample is exposed to the light energy that matches the energy difference 

between a possible electronic transition within the molecule, a fraction of the light energy is 

absorbed by the molecule and the electrons are promoted to the higher energy state orbital [41]. 
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A spectrometer records the degree of absorption by a sample at different wavelengths and the 

resulting plot of absorbance (A) versus wavelength () gives the absorption spectrum. 

When monochromatic radiation passes through a homogeneous solution in a cell, the intensity of 

the emitted radiation depends on the optical path (l) and concentration (c) of the solution. 

According to the Beer-Lambert Law, the concentration of a substance in solution is directly 

proportional to the absorbance, A, of the solution. I0 is the intensity of the incident radiation and 

I is the intensity of the transmitted radiation. The ratio I/I0 is called transmittance (T), and 

absorbance and transmittance are related by the expression [41,42] 

݈ܿൌ ߝ
்

బூ݃ܣܮ ൌ  
ூ 
ൌ Log

ଵ
 (2- 10) 

where  is the extinction coefficient, i.e. a constant which only depends on the nature of the 

molecule and the radiation wavelength. 

In the case of films we can simplify this expression as 

ܣ݈ (11 -2)  ൌ ߙ

where  is the absorption coefficient at a given wavelength and l is the film thickness. 

Application of UV-Vis-NIR spectroscopy in this Thesis 

Based on the Beer-Lambert Law equation, the absorption coefficient of the different polymer 

films, including PS, P(VDF-TrFE), P3HT and its based blends are measured in this work. 

Absorption spectra of polymer films were obtained from a UV-Vis-NIR spectrophotometer (UV

3600, Shimadzu), in the wavelength range from 190 nm to 1100 nm. The spectrophotometer is 

interfaced to a personal computer loaded with the UVProbe software. The baseline was obtained 

by scanning two clean quartz windows, and the absorption spectrum of each sample was measured 

with the film deposited on a quartz window. 

The measured films, P3HT and its based blends were spin-coated from their solutions slowly onto 

2 mm thick quartz wafers while PS and P(VDF-TrFE) films were prepared by drop casting. The 

thickness of the samples was estimated to be between 300 and 500 nm by confocal microscopy. 

2.3.5 Contact angle measurements 

The wettability can be characterized by contact angle (CA) measurements in a simple, rapid and 

sensitive way. From the CA measurements it is possible to calculate the surface free energy by 

using different methodologies.  

One often applied model is the one by Owens, Wendt, Rabel and Kaelble (OWRK-model) which 

considers the geometric mean of the dispersive and polar parts of the liquid surface tension and 
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of the solid surface energy [43,44]. According to the Young’s equation there is a relationship 

between the CA (), the surface tension of the liquid ( ߛ), the interfacial tension between the 

liquid and solid ( ߛ௦) and the surface free energy of the solid ( ߛ௦): 

ߠݏܿ (12 -2) ௦ൌߛ ߛ௦ߛ

The interfacial tension ߛ௦ is calculated based on the two surface tensions ߛ௦  and ߛ  and the 

interactions between the phases. These interactions are interpreted as the geometric mean of a 

dispersive part ߛௗ and a polar part ߛ of the surface tension or surface free energy: 

ൌ ࢙ࢽ  ࢙ࢽ െ ࢽ ሺට࢙ࢽ
ࢊࢽࢊ  ට࢙ࢽ

ࢽ
 ሻ (2- 13)

At least two liquids with known dispersive and polar parts of the surface tension are required to 

determine the surface free energy of the solid, wherein at least one of the liquids must have a 

polar part > 0. Substituting this expression in the Young equation a linear equation of the type 

y = slope x + c can be obtained: 

ఊሺଵାୡ୭ୱ ఏሻ ൌ ටߛ௦
ඨ
ఊ

ఊ






  ඥߛ௦
ௗ (2- 14)

ଶටఊ
 

In this expression y and x contain the known quantities (the CA and the dispersive and polar parts 

of the surface tension of the liquids chosen as tests). The dispersive and polar parts of the solid 

surface energy are contained in the axis intercept and in the slope. These parameters can be 

evaluated creating a regression line when contact angles of at least two test liquids are measured. 

In this case the liquids listed in Table 2.5 are employed. 

A different model is the one based on Young-Dupre theory that was later improved by van Oss, 

Chaudhury and Good [45,46]. This model gives information on the Liftshitz-van der Waals and 

electron-donor and electron-acceptor components, allowing the assessment of both apolar and 

polar interactions respectively. To that purpose the following equation is used: 

ଵ/ଶሻି௦ߛ
ା 2ሺߛଵ/ଶሻିߛௗ௦ൌ 2ሺߛ  ሻ1 ܿݏߠ ሺߛ 

ௗሻଵ/ଶ  2ሺߛ௦ାߛ   (2- 15) 

where is the CA of the liquid drop on the solid surface and ߛ  is the surface free energy of the 

liquid probe. ߛ௦ௗ and ߛ
ௗ are the apolar components of the solid and the liquid, respectively; ߛ௦ା 

and ߛ
ା are the electron-acceptor (polar ones), while ߛ௦ି  and ߛ

ି are the electron-donor 

components of the surface free energy of solid and liquid, respectively. The term ߛ௦ௗ of a solid 

surface is calculated using the CA value of an apolar liquid probe. The total liquid free energy is 

the sum of the apolar component and the polar one, and since for apolar liquids ߛ
ା ൌ 	 ߛ 

ି ൌ 0, 

then, ߛ ൌ ߛ
ௗ. In this case Equation (2- 15) can be rewritten as: 
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 (2- 16)/4ଶሻܿߠݏ ሺ1 ൌ ௗߛ
௦ߛ

In this Thesis, the use of paraffin oil as apolar liquid allowed us to calculate ߛ௦ௗ, employing the 

values of the surface free energy components listed in Table 2.5. Once ߛ௦ௗ is known, the unknown 

values of ߛ௦ା and ߛ௦ି were calculated by solving the equation (2- 15) for the pair water-glycerol 

(using again the corresponding parameters listed in Table 2.5). 

Finally, to determine the total surface energy of the polymer films (ߛ௦ ) equations (2- 15) and (2- 

16) are used, which relate the total surface energy with dispersion (ߛ௦ௗ ) and acid-base (ߛ௦
 ) 

components: 

௦ ൌߛ ௦ௗ ߛ ௦ߛ
 (2- 17) 

௦ߛ
 ൌ 2ሺߛ௦ାߛ௦ିሻଵ/ଶ (2- 18) 

Table 2.5 Surface free energy components of the liquids probes (mJ m-2). 

Liquid 

Water 72.8 21.8 51 25.5 25.5 

Glycerol 64 34 30 3.92 57.4 

Paraffin oil 28.9 28.9 0 0 0 

In this work, the CA measurements were carried out at room temperature and ambient humidity 

using a pocket goniometer PG2 (FIBRO system) [47]. The CA values were determined by the 

sessile drop technique. Two polar liquids, water and glycerol, and one apolar liquid, paraffin oil, 

were chosen (glycerol and paraffin oil were supplied by sigma-Aldrich). During measurements, 

a droplet of each liquid probe with a volume of around 5 L was deposited on a dry and clean 

polymer surface. Static CA values were measured inmediately after the formation of sessile drops 

of liquid on the surface. For each sample, at least three measurements were carried out and the 

results readily averaged. Figure 2.14 presents an example of CAs measurement for water dropped 

at P3HT thin film.  

Figure 2.14 Example of CA measurements with a drop of water on the P3HT thin film. 
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Conductivity and relaxation of 

P3HT/PC71BM bulk blends 
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In this chapter we have characterized a series of P3HT/PC71BM blends by broadband dielectric 

spectroscopy. By means of this technique both the molecular dynamics of the side chains and the 

electrical conductivity have been investigated over a wide temperature and frequency ranges. 

From the low temperature dependence of the electrical conductivity we have been able to 

determine the energetic offsets of the different systems. In addition, from the dependence of the 

electrical conductivity with temperature in the high temperature range, estimates of an energy 

disorder parameter were calculated and the results were compared with those obtained in the 

literature through measurements of the hole and electron mobilities. From both kinds of 

estimations we propose that conductivity spectroscopy can be a suitable technique for addressing 

these questions. 

3.1 Samples 

P3HT and P3HT/PC71BM blend were prepared following the protocol described previously in 

Chapter 2. (Section 2.2.1). The details of prepared samples and labels are shown in Table 3.1. 

Table 3.1  Labels of prepared samples according their corresponding concentration. 

Label 
P3HT 
(mg) 

PC71BM 
(mg) 

Chloroform 
(mL) 

Concentration 

(mg/mL) 

HTCBM10 90 10 1 100 

P3HT 120 - 1 120 

HTCBM50 50 50 0.6 167 

3.2 Absorption properties 

UV-Vis spectra of P3HT and its blends with PC71BM are collected in Figure 3.1. Pristine P3HT 

exhibits a broad and structured maximum in the region between 500 and 650 nm, with three well 

resolved bands at 520 nm, 556 and 606 nm indicated by arrows in Figure 3.1. These three bands 

are typically attributed to the ordered lamellar phase of P3HT and are related to the π–π* transition 

[1]. The band at 556 nm can be attributed to the absorption of extended conjugation lengths and 

the band at 606 nm is attributed to the interchain interaction. Also in Figure 3.1, the UV-Vis 

spectra for PC71BM has been presented. PC71BM exhibit a non-negligible absorption in the 

500-620 nm range and a very intense absorption band around 240 nm. The UV-Vis absorption 

spectrum for the HTCBM10 blend is very similar to that of pristine P3HT. However, an 
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enhancement of the low energy band (located at 606 nm) and also an increase of absorption in the 

300-400 nm regions are observed. The presence of vibronic structure in the as-cast P3HT indicates 

that it is possible to reach an ordered state via the  casting process. Upon the addition of PC71BM, 

the loss of vibronic structure indicates a disruption of internal order within the P3HT phase. It is 

known that at low concentration, fullerene derivatives mix with the amorphous phase of P3HT. 

Also, it has been reported that at this low concentrations, fullerene derivatives are mixed into the 

amorphous part, and they can act as nucleating agents for the P3HT chains [2]. This would explain 

the relative increase of the 606 nm shoulder in the absorption spectrum of HTCBM10 sample 

compared to that of P3HT. This effect points towards an incipient blue shift in this sample. 
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Figure 3.1 UV–Vis absorption spectra of P3HT film (black), HTCBM10 (dashed blue), 

HTCBM50 (dashed dotted red) and PC71BM (dashed dotted dotted green). Arrows indicate 

the position of the most characteristic bands of P3HT. Curves have been normalized to the 

sample thickness. 

A more significant difference is observed in the spectrum of the HTCBM50 sample in comparison 

with that of P3HT. This blend exhibits an absorption maximum at 479 nm with shoulders at 515 

and 550 nm accompanied by a reduced maximum at 606 nm. The reduction of this band suggests 

that the presence of PC71BM induces a weakening of the interchain interaction. This disordering 

effect of fullerene derivatives on the crystalline phase of P3HT has been previously discussed [3]. 

Also, a new band appears at 378 nm, that is consistent with the absorption of PC71BM and 

therefore can be attributed to PC71BM rich regions [4]. The blue shift in the HTCBM50 sample 

has been attributed in the literature not only to a decrease in the average conjugation length caused 

by increased chain disorder, resulting in a weakening of the interchain interaction but also to a 

non-photoinduced charge transfer between P3HT and fullerene derivative molecules [5]. 
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3.3	 Electric conductivity and dielectric relaxation of P3HT and 

P3HT/PC71BM 

3.3.1 Electric conductivity and dielectric relaxation of P3HT 

Figure 3.2 shows the temperature and frequency dependence of the real part of conductivity (σ’) 

values of the pure P3HT casted film. σ’ increases with frequency, and with temperature. Two 

main temperature regions are observed. Below -75 ºC, σ’(ω) increases linearly with frequency in 

the whole frequency range. Above -75 ºC, a plateau appears at the low frequency side where σ’(f) 

is frequency independent up to a certain frequency (critical frequency Fc) above which the 

conductivity bends, increasing linearly with frequency. The plateau value of ’ increases with 

temperature. This plateau value of σ’(f) corresponds to the dc conductivity (σdc) [6]. 

Figure 3.2  Dependence of the real part of the ac conductivity (σ’) with frequency and 

temperature for pristine P3HT. 
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Values of Log10(dc) and Log10(Fc) are represented in Figure 3.3a and Figure 3.3b respectively, 

as a function of the reciprocal temperature. As observed in Figure 3.3a, Log10(dc) increases with 

increasing temperature at the shadowed zone in a nearly linear fashion (Arrhenius behavior) up 

to a certain temperature (around 330 K). The continuous line represents the linear fitting at 

selected temperatures. 
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Figure 3.3  (a) dc conductivity (σdc) of P3HT as a function of the reciprocal temperature 

(green continuous line represents linear fitting at selected range of temperatures), and (b) 

critical frequency (Fc) as a function of reciprocal temperature. 

Comparing Figure 3.3a and b, it is possible to observe that the plateau value dc and the critical 

frequency Fc follow a very similar behavior. The relation between the σdc and Fc is shown in 

Figure 3.4. 
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Figure 3.4  Results of dc electric conductivity (dc) of P3HT on a Log - Log scale as a 

function of the critical frequency (Fc). 

In fact, as observed in Figure 3.4, the logarithm of the critical frequency Log10(Fc) vs Log10(σdc) 

exhibits a nearly linear tendency in almost the whole frequency range with a slope close to 1. This 

dependency is known as the Barton-Nakajima Namikawa (BNN)-relation and it indicates that the 

dc and ac conductivity are based on the same mechanism of charge transport [6]. 

Figure 3.5a and b show plots of the real and imaginary part of the complex permittivity (*=’

i’’) for P3HT as a function of frequency for selected temperatures. In systems with a strong 

conduction component and alternative representation of the dielectric values can be used in order 

to emphasize particular aspects of the dynamics. Precisely, the complex dielectric constant (*), 

the complex conductivity (*=’+i’’) and the complex dielectric modulus (M*=M’+iM’’) 

representations can be used [6]. All these magnitudes can be considered as different 

representations of the same process, related by equation (2-7). 

Depending on the aspect to be emphasized, it may be convenient to choose a particular one of 

those representations. 

As observed in Figure 3.5a, the dielectric permittivity ’ exhibits a step like behavior, whereas 

the dielectric loss ’’ is dominated by conductivity effects characterized by a strong increase as 

frequency decreases. This is particularly significant at high temperatures. At low temperatures a 

maximum in ’’ is observed, indicated by arrows in the figure. This maximum shifts towards 
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higher frequencies as temperature increases, which may indicate the presence of a dipolar 

relaxation. However, at high temperatures, this contribution is hidden by the presence of another 

feature in the form of a linear decay of Log10(’’) with Log10(f), that can be associated with a 

conduction process. For P3HT, at low temperatures, Log10(’) follows a linear monotonic 

increase with Log10(f). 
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Figure 3.5  (a) Real and (b) imaginary parts of the complex dielectric permittivity, (c) real 

part of the complex conductivity and (d) imaginary part of the dielectric modulus as a 

function of frequency for selected temperatures for P3HT: ( ) 123 K, ( )173 K, ( ) 223 

K, ( ) 273 K, ( ) 323 K, ( ) 373 K. The arrows in (b) and (c) indicate the presence of a 

dielectric relaxation process. 

3.3.2	 Electrical conductivity and dielectric relaxation of P3HT/PC71BM 

blends 

Figure 3.6 shows the dielectric relaxation data obtained for a HTCBM50 blend. Figure 3.6a and 

Figure 3.6b show the values of the real and imaginary part of * as a function of frequency for 

selected temperatures respectively. These results are qualitatively similar to those obtained for 

P3HT. The dielectric permittivity ’ exhibits a step like behavior, whereas the dielectric loss ’’ 

is dominated by conductivity effects with and incipient maximum in ’’ at high temperatures. As 
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commented above, for this case, some features are better observed in the conductivity (’, Figure 

3.6c) and the dielectric modulus (M’’, Figure 3.6d) representations. At low temperatures, 

Log10(’) follows a monotonic increase with Log10(f). In this case the dielectric process observed 

in the ’’ plot can be detected superimposed at low frequencies. At higher temperatures Log10(’) 

exhibits a plateau at low frequencies together with a quasilinear increase above the critical 

frequency. In the dielectric modulus representation (Figure 3.6d), the imaginary part, M’’, 

exhibits a clear maximum. At elevated temperatures this maximum is bimodal with a shoulder 

appearing at lower frequencies. 
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Figure 3.6 (a) Real and (b) imaginary part of the complex dielectric permittivity, (c) real 

part of the complex conductivity and (d) imaginary part of the dielectric modulus M’’ as a 

function of frequency for selected temperatures for HTCBM50 ( ) 123 K, ( ) 173 K, ( ) 

223 K, ( ) 273 K, ( ) 323 K, ( ) 373 K. Continuous lines through the data points in M’’ 

are guides to the eye. 

In order to separate the conduction process from the dipolar contributions, the dielectric modulus 

representation has been used [7-10]. The evolution of the position of these maxima in M” is 

presented in Figure 3.7b in logarithmic scale where the frequency of faster process (F1), i.e. the 

one appearing first at lower temperatures, and that of the slowest one (F2), appearing at higher 

temperatures, have been plotted as a function of the reciprocal temperature. The faster process 

exhibits an Arrhenius behavior from very low temperature up to around 330 K. The activation 
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energy for the fastest process can be estimated to be Ea,1= 200 meV (see Table 3.2). As observed 

in Figure 3.7b, the frequency of maximum M’’ for the slower relaxation, F2, exhibits similar 

values and temperature dependency than those of the critical frequency Fc from the conductivity 

representation. Therefore, in a first approach we can assume that both correspond to the same 

physical process, i.e., the conduction process. 
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Figure 3.7 (a) dc conductivity (dc) and (b) characteristic frequency (Fc) for HTCBM10 

(Crossed Symbols) and HTCBM50 (Filled symbols). In (a) dc as a function of the 

reciprocal temperature obtained from the dependence of ’ vs f. In (b) Frequencies at which 

M’’ exhibits a maximum. () Maximum in M” for the fast process (F1) and () maximum 

in M” for the slow process (F2). In (b) circles represent Fc obtained from the ’ 

representation. The conductivity of P3HT (open symbols) is also included for comparison. 

The representation of dc as a function of Fc was shown in Figure 3.8, like P3HT, dc and Fc also 

fulfill the BNN relation in the case of the blends. However, despite the qualitative similarities in 
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the behavior of pure P3HT and the P3HT/PC71BM blends, several quantitative differences are 

found that will be discussed below. 
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Figure 3.8 dc conductivity (dc) as a function of the critical frequency (Fc) HTCBM10 

(Crossed Symbols) and HTCBM50 (Filled symbols). P3HT was also included (open 

symbols) for comparison. Fc is obtained from the ’ representation. 

3.4 Relaxation behavior of P3HT and fullerene based blend 

3.4.1 Dipolar relaxation at low temperature process 

As observed in the dielectric modulus representation, a fast relaxation appears at low temperatures. 

This fast relaxation observed both in the neat P3HT and in the blends follows an Arrhenius 

behavior in a wide temperature range, from low temperature up to around 330K. The fact that this 

relaxation appears in the neat polymer and in the blends suggests that it can be assigned to a 

process occurring in the polymer. Its Arrhenius behavior and the low temperatures where this 

relaxation can be observed are characteristics of local motions. The activation energy from this 

relaxation is very similar in P3HT and in the blends, with a value of around 200 meV (see Table 

3.2). It is well known that P3HT develops a nanophase separated morphology where main chains 

form a layered crystalline structure with hexyl groups between layers [11]. This organization 

resembles that of other comb-like polymers with a lateral alkyl chain like poly(n-alkyl acrylates) 

[12], poly(n-alkyl methacrylates) [12,13] or poly(alkylene oxides) [14]. Recently, Arbe et al. have 

studied by Neutron Spin Echo, with selective labeling, the dynamical behavior of two poly(alkyl 
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methacrylates) with different number of carbons in the side chain, precisely nCs = 4 and nCs =6 

[15]. They found a peculiar dynamic behavior for the side chain group which they interpret as due 

to the strong dynamical asymmetry between the main chain and the side chain. In this work, the 

observed low temperature relaxation in P3HT, can be associated to the motion of three to four 

CH2 as well as the local motion of loose chain ends within amorphous alkyl chains [16]. In 

principle, this process should be very similar to the so called 2 process described for polyethylene 

(PE) exhibiting activation energies between 200 and 250 meV [15]. The activation energy for this 

PE-like relaxation is not significantly affected by the presence of the PC71BM component in the 

blends suggesting that the local dipolar relaxation of the hexyl chains is not modified by the 

fullerene derivative. It is worth mentioning that at higher temperatures the Arrhenius behavior of 

the fast process tends to be arrested. This is likely due to changes in the main chain conformation 

as it will be discussed in the following section. 

Table 3.2  Activation energy for the dipolar process (Ea
dipolar) obtained from the Arrhenius 

representation (Figure 3.7), and for the conduction process (Ea 
dc), obtained from the Arrhenius 

representation of Log dc versus 1/T at low temperatures (Figure 3.7). Energetic disorder 

parameter  estimated from equation (3- 4) assuming the same dependency for dc than for  

ܑ܌ܗܘܔ܉ܚ
۳܉

(meV) 

 (meV) σ(meV) ܋܌ો
 ۳܉

(T<240 K) (240<T<285 K) 

P3HT 204 300 100 

HTCBM10 183 238 110
 

HTCBM50 186 165 114 

3.4.2 Electrical conductivity at high temperature 

As reviewed in the introduction, in P3HT electrical conductivity arises from the delocalization of 

the π-bonds formed from overlapping pz-orbitals. The energy gap of these systems decreases with 

increasing the conjugation length [17]. RR-P3HT is known to have relatively high hole mobilities 

due to the self-organization produced by the regular side-chains which induce a well-ordered two 

dimensional lamellar structure [18]. In general, electrical conductivity, σdc is expressed as:  

ሻିଵ݉ܵܿሺ݁ൌ ߤ݊  ௗߪ  (3- 1)
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where  (cm2 V-1  s-1) is the electrical mobility and n the number density of charge carriers of 

charge e. Although there is not a general unified view about the electric conduction mechanism 

in semiconducting polymers it has been accepted that in several cases their electrical conductivity 

can be well described by the theory of hopping conduction between localized states in a three

dimensional system with a certain level of disorder [19]. According to the theory of hopping 

conduction between localized states in a three-dimensional disordered material, the probability of 

hopping, W, of a charge carrier between two sites separated by a distance R is given by: 

 (3- 2) ೌିாexpሺ ሻെ2ܴߙሺ∝ exp ܹ	
் 
ሻ

where  is the inverse localization length and Ea is the energy barrier between the energy state of 

the two sites. At low temperatures, due to energetic considerations, hopping is possible not only 

between nearest neighbors but also among remote sites being the hopping frequency small. In this 

case electrical conductivity can be described by Mott’s law of variable-range hopping (VRH 

model) as: 

   (3- 3)	expሺെ బ்ߪ	ௗ ൌߪ
்భ/ర
ሻ

If one considers that conductivity heterogeneity exists in the material, like for example in granular 

materials, then intergrain distance and grain energy play a role and conductivity becomes 

percolation controlled [20,21]. In this case a T-1/4 temperature dependence of log conductivity is 

predicted at low temperatures while a stronger temperature dependence, T-a (1/2 < a < 1), is 

expected at higher temperatures. In some cases, high heterogeneity in conductivity may produce 

conducting “islands” embedded in non-conducting regions. Then fluctuation induced tunneling 

among conducting regions is possible as reported for highly doped polyacetylene [22]. It is worth 

mentioning that at high temperatures thermal activation provokes that hopping between nearest

neighbors is more likely to occur. In this case the electrical conductivity is expected to follow a 

standard Arrhenius temperature dependence as described by equation (3- 3) and observed 

experimentally for several semiconducting polymers [23,24]. In order to discuss the conduction 

mechanism in our materials we have plotted in Figure 3.9, the dependence of the derivative of the 

logarithm of the conductivity with respect to the reciprocal temperature. In this representation an 

Arrhenius dependency should appear as a constant whose level is directly proportional to the 

activation energy (proportionality constant R, being R the gas constant). According to Figure 3.9 

the conductivity process for P3HT and the blends exhibits an Arrhenius temperature dependence 

from low temperature up to around 240 K. The activation energy for the conduction process (slow 

process) can be estimated from this graph and it has been presented in Table 3.2. This behavior is 

compatible with equation (3- 3)  considering the relatively high temperature range investigated 

(T > 143 K) in comparison with other studies [21,24]. 
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As mentioned above, the conductivity in a semiconductor is proportional to both the mobility of 

the charge carriers and the density of them. Both magnitudes depend on temperature. Several 

authors have studied the dependence of hole mobility with temperature in P3HT [25-27]. Mozer 

et al [26] performed time-of-flight (ToF) experiments in order to determine the hole mobility in 

RR-P3HT and found that the zero field mobility presents an activation energy of 290 meV, very 

similar to the one found in this work for the conduction process in P3HT at low temperatures. 

This suggests that the density of carriers in this low temperature regime can be considered nearly 

constant. In P3HT and in the blends, the low temperature Arrhenius behavior is lost at 

temperatures around 240 K (indicated in Figure 3.9 by the first from low temperature dashed line). 

In the temperature range above 240 K stronger temperature dependence seems to appear, that can 

be interpreted in terms of the Gaussian Disorder Model [28]. 
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Figure 3.9 Derivative of the logarithm of the conductivity with respect to the reciprocal 

temperature, scaled by –R, as a function of the reciprocal temperature for P3HT (open 

symbols), HTCBM10 (crossed Symbols) and HTCBM50 (filled symbols). Dashed lines 

indicate the change in tendency, from an Arrhenius behavior (lower temperature) to a T-2 

dependency (See Log10(σdc) vs Log10(Fc) in Figure 3.10) (region between the lines). 

This model takes into account that hopping across a material with disorder takes place among 

sites whose energies follow a certain distribution, Gaussian for example. In this case, Monte Carlo 

simulation techniques have shown that the zero field electrical mobility can follow a non-

Arrhenius temperature dependence of the type: 

 (3- 4) ሻଶሻ/3݇ܶexpሺെሺ2ߪ 	ൌ 	 ߤሻܶሺߤ
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Where  is the width of the Gaussian distribution, 0 is a prefactor and k is the Boltzman constant. 

Under this framework the conductivity results might be interpreted [28]. Taking into account that 

conjugated polymers, as any other polymer, are highly disordered molecular solids and due to the 

more or less random positions of the chemical and conformational defects, there can be a broad 

distribution of effective conjugation lengths of the chain segments. Assuming that the bulk 

conductivity might follow the same temperature dependence as that of the hole mobility, the 

conductivity has been plotted in a semilogarithmic scale as a function of the inverse of the square 

temperature (Figure 3.10), in order to calculate the energetic disorder.  

1 2 3 4 5 

105/T2 (K-2) 
Figure 3.10 Conductivity (dc) as a function of the square of the reciprocal temperature for 

P3HT (open symbols), HTCBM10 (crossed Symbols) and HTCBM50 (filled symbols). 

The area between the dashed lines corresponds to the region of linearity, from which the 

energetic disorder values have been calculated. 

A clear linear tendency is observed for P3HT and for the blends, in the temperature range from 

240 K to 285 K (1.74 10- K-2 to 1.2 10 5 K 2) (shadowed area in Figure 3.10). From this linear 

dependency, a value of  = 100 meV for the energetic disorder is obtained. The value for the 

energetic disorder estimated here is similar to the ones obtained for neat P3HT obtained by ToF 

measurements (70 meV obtained by Mosser et al. [26] and 120 meV by Shen et al.[27]) 

supporting the validity of the present approach. At temperatures above 285 K, the linearity is lost. 
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This effect has also been observed in mobility measurements on neat P3HT, although occurring 

at higher temperatures [27]. Yawaza et al. investigated by Infrared Spectroscopy and Nuclear 

Magnetic Resonance the dependency with temperature of the molecular motions in P3HT [29,30]. 

They observed that the onset of the twisting motions of thiophene ring, that is the responsible for 

the decrease in the conjugation length, occurs at temperatures slightly below room temperature, 

that is where we observe the loss of linearity in the Log10(dc) vs 1/T2 plot. This twisting motion 

in the main chain induces a transition from a crystal to a plastic crystal phase in P3HT, in which 

the translational order is preserved, but the main chain presents some twisting mobility. They 

attribute to this phenomenon the blue shift observed in the intrachain band observed by UV-Vis 

spectroscopy [29,30]. It is worth mentioning that the glass transition temperature of P3HT has 

been reported [31] to be around 283 K, which is the temperature where the loss of linearity in the 

Log10(dc) vs 1/T2 plot is observed. Correlating this interpretation with our results, the deviation 

from linearity in Figure 3.10 and the subsequent decrease in the conductivity at temperatures 

around 330 K can be attributed to both the twisting relaxation of the thiophene rings and the onset 

of the glass transition of P3HT. Also these effects can be the responsible for the curvature of the 

Arrhenius plot corresponding to the high frequency fast process discussed in the previous section. 

3.4.3	 Estimation of the energetic offsets in the blends of P3HT/PC71BM by 

BDS 

It has been suggested that charge separation and recombination in polymer solar cells can be 

affected by the energetic offsets between the charge transport energy levels in different 

morphological phases of polymer/fullerene BHJ [32,33]. BHJ are multiphase systems [34] that 

draw a complicated energy landscape. For P3HT/PCBM blends it is accepted that the BHJ 

consists of a P3HT crystalline phase, an amorphous P3HT rich region mixed with fullerene 

molecules and depending on the concentration of PCBM, a segregated PCBM crystalline phase 

[35,36]. For pure P3HT, variations in regioregularity of the system affect the crystallinity, and 

therefore induce changes in the band gap of the polymer [37,38]. Also, it is acknowledged that 

the interactions between the amorphous P3HT chains and the fullerene derivative molecules 

modify the energy landscape for charge transport. Therefore, the characteristic heterogeneity of 

BHJ induces energetic offsets between the different phases that may favor the charge transport 

[33]. In fact, our results show that the dc conducting behavior in the P3HT/PC71BM blends is 

manifested at lower temperatures than in P3HT. A plateau in ’ at low frequencies is observed in 

the blends for temperatures as low as 140 K, whereas in P3HT this plateau does not appear until 

T= 190 K. In the low temperature range (T< 240 K) the activation energy of the conduction 

process is smaller in the blends than in the neat P3HT (See Table 3.2). This effect is more 

pronounced in the HTCBM50 sample, which is the one with higher amount of PC71BM. Also in 
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agreement with these results, Mauer et al. [25] have reported much lower temperature dependence 

of the hole and electron mobilities in a 1/1 P3HT/PCBM blend than the one obtained for hole 

mobility in pristine P3HT. In line with that, the blends used here exhibit a similar tendency, 

showing a decrease in activation energy at low temperatures with increasing the PC71BM amount. 

This decrease in activation energy in the presence of the fullerene derivative might be understood 

in the context of the intimate interaction between P3HT and PC71BM molecules. As mentioned 

above, the observed blue shift in the UV absorption spectrum in the blends have been attributed 

in the literature to a decrease in the interchain interactions [3] and also to a non photoinduced 

charge transfer between the two molecules [5]. As observed, there is a difference of approximately 

135 meV between the activation energy at low temperature for P3HT and that of the HTCBM50 

system. This value is in accordance with the value for the energetic offset obtained by Sweetnam 

et al. [33] by cyclic voltammetry, UV−Vis spectroscopy, and ultraviolet photoelectron 

spectroscopy. In that work the authors emphasize the role of intermolecular interactions between 

the fullerene derivative and the polymer in the energetic offset in the local polymer band gap. The 

agreement between the energetic offset obtained by Sweetnam et al. [33] and the one estimated 

here from the differences in activation energy encourages us to propose conductivity spectroscopy 

as a simple method for estimating the energy offsets in polymer/fullerene BHJ.  

3.5 Conclusion 

We have investigated the dynamics and frequency dependent conductivity of P3HT and blends 

with PC71BM by means of BDS. A low temperature relaxation is observed in P3HT, that is 

attributed to the local motion of the hexyl lateral chains, and that is very similar to a polyethylene

like relaxation and to the one observed in other comb like polymers with hexyl lateral chains. This 

relaxation is also observed, and not affected by the presence of PC71BM in the blends. The other 

process observed in the present experiments is a conduction process. The dependence with 

temperature of the conductivity can be separated into two regions: The low temperature region, 

where the conductivity exhibits an Arrhenius behavior, and the high temperature region, where 

the temperature dependence of the conductivity can be described by the Gaussian Disorder model. 

In the low temperature region, the activation energy decreases when increasing the PC71BM 

content. The variation of the activation energy provides estimation for the energetic offsets in the 

valence band of the system, induced by the presence of the fullerene derivative molecules. In the 

high temperature region, we have estimated an energetic disorder parameter which appears to be 

independent of the amount of PC71BM. 
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In this chapter, we report on the preparation and characterization of several architectures of 

P3HT/P(VDF-TrFE) blends. The first architecture is obtained by spin coating after direct solution 

blending. The second blend architecture investigated is a mixture of ferroelectric polymer NPs 

embedded in a continuous P3HT matrix. The ferroelectric behavior of these nanocomposites was 

evaluated. It was shown before that the P(VDF-TrFE) NPs are ferroelectric when they are 

measured independently. Here we investigate how this ferroelectricity is affected by the 

surrounding semiconducting polymer matrix. Finally, a bilayer blend architecture which consists 

of a bottom layer of P3HT and a top layer of P(VDF-TrFE) has been prepared. The effect of the 

different thicknesses of each of the layers on the obtained morphology is addressed.  

4.1	 Thin films of phase separated P3HT/P(VDF-TrFE) blends 

prepared by solution mixing  

The description of the preparation of thin films from blends of P(VDF-TrFE) and P3HT 50/50 

wt% was shown in Chapter 2 (Section 2.2.3.3). 

4.1.1	 Topography of P3HT/P(VDF-TrFE) blend prepared from direct solution 

mixing 

In order to obtain blend films with different thickness, the total concentration of polymer in the 

solution was varied. The topography of the spin-coated blend films was characterized by AFM in 

tapping mode and the corresponding height images are shown in Figure 4.1a-c. 

As observed in Figure 4.1a-c it looks as if there were two different type of domains, with a clear 

height difference, which may be an indication of phase separation. This result is further confirmed 

by the height profile below its corresponding topography map, from which it is observed that the 

differences between the height on higher and lower domains increases as the concentration of the 

solution increases. With such a large difference in the height of the domains, it is complicated to 

estimate the average thickness by the method described in Chapter 2 (Section 2.3.1.1). In this case, 

therefore, we have estimated two thickness values of the separated domains for each sample, the 

higher domain and the lower domain. These results are plotted as a function of concentration and 

presented in Figure 4.2. The thicknesses of both domains increase with the concentration at 

differently extent. More specifically, the lower domains exhibit smaller thickness increase than 

the higher ones. The thickness of the higher domains is less homogeneous than that of the lower 

ones. 
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Figure 4.1 AFM height images (5 μm × 5 μm) of P3HT/P(VDF-TrFE) 50/50 wt% blend 

films spin-coated from solution with different total concentrations at 41oC (THF as solvent): 

(a) 8 g/L, (b) 16 g/L and (c) 24 g/L, respectively. The corresponding tapping phase maps 

are also presented in the bottom row (d-f). The plots in the middle are the height profiles 

along the blue lines displayed in height images. 
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Figure 4.2 Estimation of the film thickness of two domains in the blend films deposited 

onto conductive silicon wafers as a function of the solutions concentration. The continuous 

lines are used to guide the eye. 
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Figure 4.1d-e shows the corresponding tapping phase images. Comparison of height and tapping 

phase images reveals that the areas with different height exhibit different mechanical properties. 

The domains with similar mechanical properties have a characteristic size of around 500 nm. This 

is an indication of phase separation, although the morphology depends slightly on the thickness 

of the film. In fact, the domain sizes are decreasing with increasing the thickness, implying higher 

mixing in the thicker films. Tapping images shown in Figure 4.1d-f allow concluding that there 

are two different types of domains in the sample. However, with the only information provided 

by tapping AFM, it is not possible to assign different domains to each component, or, to the bare 

silicon substrate. 

In order to clearly identify whether the domains observed in Figure 4.1 correspond to areas rich 

in each of the two components of the blends, or, on the contrary, they correspond to bare silicon, 

selective AFM based techniques were employed. On one hand, C-AFM measures the hole current 

between the tip and the sample, and therefore is sensible to the semiconducting part of the blend, 

the P3HT rich phase. On the other hand, PFM measures the expansion of the domains under an 

applied field on the tip, and therefore, is sensible to the ferroelectric part of the blend, P(VDF-

TrFE), in this case. Both techniques have been described in Chapter 2 (Section 2.3.1.2 and section 

2.3.1.3). 

4.1.2	 Identification of the P3HT and P(VDF-TrFE) phases in the blend by 

electric AFM techniques: C-AFM and PFM 

C-AFM on P3HT/P(VDF-TrFE) blends 

The hole current between the tip and the sample was used to map the surface of the blends, by 

using C-AFM with an applied voltage of -5 V between the substrate and the tip. Films with two 

different thicknesses, 8 g/L and 24 g/L are characterized. The obtained map of the hole current 

across the semiconducting/ferroelectric polymer blends together with its topography, is shown in 

Figure 4.3a, b. As mentioned above, since P3HT is a semiconducting polymer and P(VDF-TrFE) 

is a ferroelectric polymer, the contrast in the electrical current map arises from this different 

conducting character of P3HT and P(VDF-TrFE) domains. Regions that present hole current 

(negative current values in Figure 4.3), would correspond to P3HT rich domains (yellow regions 

or white circles in the current map, Figure 4.3), whereas regions with zero current are those in 

purple color within the green circles and correspond to non conducting domains. 

The hole current between the tip and the sample was used to map the surface of the blends, by 

using C-AFM with an applied voltage of -5 V between the substrate and the tip. Films with two 

different thicknesses, 8 g/L and 24 g/L are characterized. The obtained map of the hole current 

across the semiconducting/ferroelectric polymer blends together with its topography, is shown in 
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Figure 4.3a, b. As mentioned above, since P3HT is a semiconducting polymer and P(VDF-TrFE) 

is a ferroelectric polymer, the contrast in the current map arises from this different character of 

P3HT and P(VDF-TrFE) domains. Regions that present hole current (negative current values in 

Figure 4.3), would correspond to P3HT rich domains (yellow regions or white circles in the 

current map, Figure 4.3), whereas regions with 0 current values that do not exhibit any charge 

motion (purple colors or green circles), correspond to not conducting domains. 

Figure 4.3 (a, b) AFM height topography (5 μm× 5 μm) and (c, d) C-AFM maps of 

P3HT/P(VDF-TrFE) (50/50) blend on conductive silicon of (left column) 8 g/L and (right 

column) 24 g/L. Selected domains are marked with the circles. 

Comparing the current maps with the corresponding height images, it is possible to conclude that 

the areas that show non-zero hole current are those with higher height in the topography. Provided 

that hole current in this binary systems can only occur in the P3HT phase, it is possible to conclude 

that these higher regions are P3HT rich domains. 

Ferroelectricity of P(VDF-TrFE) domains 

The PFM maps on the thinner and thicker films of P3HT/P(VDF-TrFE) blend are presented in 

Figure 4.4. 
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Figure 4.4 AFM height topography (5 μm× 1 μm) and PFM maps of the intensity and 

out-of-plane phase maps of (left column) 8 g/L and (right column) 24 g/L spin-coated 

P3HT/P(VDF-TrFE) (50/50) blend on conductive silicon. Regarding the maps, the top 

panel correspond to the topography maps, the mid panel correspond to the PFM amplitude 

maps and the bottom panels corresponds to the out-of-plane PFM phase. Corresponding 

phase shift as a function of the applied bias for marked domains are shown in the bottom: 

(a, b) 8 g/L and (c, d) 24 g/L. The color of the curves indicates from which marked regions 

in the PFM panels they have been obtained.  

In Figure 4.4, the top images display the topography obtained in contact mode, leading to basically 

the same results as the ones obtained by tapping mode (Figure 4.1). The PFM results shown in 

the same figure (central and bottom panels) for the films with two different thicknesses, are the 

PFM out-of-plane amplitude and out-of-plane phase respectively. As described in Chapter 2 

(Section 2.3.1.2) this out-of-plane response is related to the deformation of the ferroelectric 

material under the effect of the applied field, due to the reverse piezoelectric effect and it can 

provide information on the polarization state of the ferroelectric polymer. In this way, regions 

with non-zero values of the measured out-of-plane amplitude indicate that the measured domains 

present a component of the polarization in the direction of the applied field. The out-of-plane 

phase values measured are due to the lag between the applied alternating field and the shift in the 
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polarization due to that field. Since, from the two components of the blends, only the ferroelectric 

polymer presents a net polarization that can be shifted by the applied field, PFM experiments 

allow identifying the ferroelectric domains in the blend. In this case, for the studied system and 

other similar ones [1] consisting of a semiconducting/ferroelectric mixture, C-AFM and PFM are 

complementary AFM based techniques to identify one and the other component. Comparing the 

height and PFM results, it is possible to assign for 8 g/L film, the lower height regions to those 

zones exhibiting ferroelectric response, as observed both in the values of PFM out-of-plane 

amplitude and the out-of-plane phase. As observed in the maps, the out-of-plane phase present a 

larger lag with respect to the applied field in the regions with lower height. By presenting the 

phase shift as a function of the applied voltage, it is possible to observe that in the domains with 

larger height, the phase transits from one value to another, and the transit occurs at 0 V. Reversing 

the sign of the voltage produces exactly the same shift in the phase, and the transit occurs at 0 V 

no matter the starting and finishing sign of the voltages. However, in the domains with lower 

height, the transit occurs at a non zero voltage value, called the coercive voltage Vc and the 

out-of-plane phase shows some hysteresis. This is related to the permanent polarization in the 

material that gives rise to the ferroelectric effect, since, these materials have a net polarization 

even in the absence of an applied voltage. These results together allow the final assignation of the 

different domains in the blends, where regions with higher heights correspond to P3HT rich 

domains and regions with lower height correspond to P(VDF-TrFE) rich domains.  

The non-zero voltage at which the out-of-plane phase suddenly changes, the coercive voltage, is 

of about 0.25 V for the ferroelectric domains in the case of the thinner films and of 0.28V in the 

case of the thicker films. The coercive field is calculated from dividing the coercive voltage by 

the thickness of the system. For the 8 g/L sample, the thickness of the ferroelectric domains is in 

the range of 7 nm. This gives a coercive field value of around 36 MV/m. In the case of the 24 g/L 

sample, the thickness of the ferroelectric domains has been estimated to be 18 nm, and the 

coercive voltage is around 0.28 V. With those values a coercive field of around 15 MV/m is 

estimated. These values are similar to the ones reported for spin-coated P(VDF-TrFE) thin films 

[2]. 

In all this section we have observed that, even though P3HT and P(VDF-TrFE) domains are 

separated, their final morphology can only be slightly tuned by controlling the film thickness via 

the concentration of the spin-coated solution. But in general, the final morphology consists of a 

random distribution of P(VDF-TrFE) and P3HT domains without having control of their size, 

shape and distribution, and therefore they are hard to be considered in the design of a hypothetical 

device. 
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4.2	 P(VDF-TrFE) nanoparticles embedded in P3HT continuous 

films 

To achieve a higher control in the morphology of phase separated ferroelectric/semiconducting 

polymer blends, we have designed a procedure where the P(VDF-TrFE) domains have a 

preformed shape. For that we have prepared phase separated P3HT/P(VDF-TrFE) blends by 

dispersing P(VDF-TrFE) NPs in a continuous P3HT matrix.  

4.2.1	 Preparation of the semiconducting polymer/ferroelectric polymer 

nanoparticles blends 

P(VDF-TrFE) NPs were prepared by using dialysis nanoprecipitation described in Chapter 2 

(Section 2.2.2.2). The morphology and size distribution of the prepared P(VDF-TrFE) NPs has 

been studied previously [3]. The P(VDF-TrFE) NPs, were dried by lyophilization, and 

subsequently were redistributed in a P3HT solution in CHCl3. This protocol was design on the 

hypothesis that the P(VDF-TrFE) NPs will not be modified in this redispersion since P(VDF-

TrFE) is insoluble in CHCl3. In this way, P3HT/ P(VDF-TrFE) NPs composites were prepared. 

The thickness of the prepared P3HT/P(VDF-TrFE) NPs composites and their labels are listed in 

Table 4.1. 

Table 4.1 Details of the prepared P3HT/P(VDF-TrFE) NPs composites and the estimated 

thickness. 

Label 
P3HT 
(mg) 

P(VDF-TrFE) 
nanoparticles 

CHCl3 

(mL) 

Total 
concentration 

(mg/mL) 

Thickness 
(nm) 

HT/Fr1 2.5 2.5 1 5 34±2 

HT/Fr2 5 5 1 10 180±41 

HT-1 2.5 - 1 2.5 29±2 

HT-2 5 - 1 5 48±4 

For the same concentration of P3HT, thicker films are obtained in the presence of P(VDF-TrFE) 

NPs. This effect is more evident in the case of the films prepared from higher concentration. 

4.2.2	 Topography of P3HT/P(VDF-TrFE) nanoparticles composites 

The topography images of P3HT films with embedded P(VDF-TrFE) NPs are displayed in Figure 

4.5. The corresponding neat P3HT thin films prepared from solutions with the same concentration 
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than that of nanocomposites are also presented for the sake of comparison (Figure 4.5a and c). 

P3HT films, both with concentration of 2.5 g/L (labeled as HT-1) and 5 g/L (labeled as HT-2), 

form homogeneous continuous films with roughness values lower than 5 nm. However, 

nanocomposites formed by the P(VDF-TrFE) NPs embedded in the continuous P3HT films, 

HT/Fr-1 and HT/Fr-2 exhibit particle-like protuberances that can be attributed to the NPs 

distributed throughout the P3HT film (Figure 4.5b and d). 

Figure 4.5  AFM topography (5 μm× 5 μm) of (top) height and (middle) tapping phase 

images for (a, e) HT-1 film, (b, f) HT/Fr-1 film, (c, g) HT-2 film and (d, h) HT/Fr-2. The 

bottom figures are height profiles corresponding to the line marked in the height images. 

The tapping phase images of HT/Fr-1 and HT/Fr-2 reveal that these particles-like protuberances 

are from a different phase than the continuous matrix. From the topography we can say that the 

dispersion procedure does not affect the morphology of the ferroelectric NPs. The difference in 

thickness between HT/Fr-2 and that of pure P3HT film (HT-2, Table 4.1), together with the 

particle shape protuberances observed in Figure 4.5 indicates that P(VDF-TrFE) NPs can be 

buried inside P3HT and therefore produce an increase of the film thickness. This effect is weaker 

in the case of HT/Fr-1, due to fewer amount of P(VDF-TrFE) NPs used. 

The different solution concentration produces different thickness for the continuous P3HT film. 

Because of that, the height of the P(VDF-TrFE) protuberances is larger in the case of HT/Fr-1, as 

can be observed in the height profiles, corresponding to the marked lines in the tapping height 

images (Figure 4.5). This observation indicates that only a part of the P(VDF-TrFE) NPs is 
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covered by P3HT in the case of the HT/Fr-1 sample whereas in the HT/Fr-2 sample, a large 

portion of the P(VDF-TrFE) NPs is buried inside the P3HT film. In the next paragraph we will 

study the effect of this situation on the ferroelectric properties of both systems.  

4.2.3	 Evidence of ferroelectricity in the P3HT/P(VDF-TrFE) nanoparticles 

composites 

The ferroelectric properties of the embebded ferroelectric NPs were tested by PFM. Figure 4.6 

shows the height maps obtained in contact mode AFM for the nanocomposites studied. After 

locating in the height image regions where the particles were observed (marked with a blue square 

in the Figure 4.6), PFM as a function of the applied voltage was performed. For the sake of 

comparison, PFM measurements as a function of the applied voltage were also performed in 

regions without particles (marked with a red square in Figure 4.6). The change in the out-of-plane 

PFM phase as a function of the applied voltage in both type of regions is presented in Figure 4.6c 

and d for the HT/Fr-1 sample and Figure 4.6e and f for the HT/Fr-2 sample. 

Figure 4.6 AFM tapping images (5 μm× 1 μm) of (a) HT/Fr-1 and (b) HT/Fr-2. Below each 

height image its corresponding PFM phase shift is displayed as a function of applied 

electric field in regions (c, e) without NPs and (d, f) with NPs. Colors of the curves 

correspond to the color of the marking squares in the AFM height images.  
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As expected, the out-of-plane PFM phase shows no hysteresis in the continuous P3HT phase. 

However, in both nanocomposites, the out-of-plane PFM phase shows a small hysteresis when 

the PFM experiment is carried out on the protuberance region. The existence of this hysteresis 

verifies that the P(VDF-TrFE) NPs into the nanocomposite have ferroelectric properties. The 

hysteresis area of the protuberances in the HT/Fr-2 sample is smaller (Figure 4.6 right). This result 

will be discussed later. 

In order to address if the presence of the ferroelectric NPs modify the semiconducting polymer 

film, in the P3HT/P(VDF-TrFE) nanocomposites C-AFM was performed. In this way, a current 

map of the polymer nanocomposites surface was obtained by applying a tip bias of -5 V. Figure 

4.7 shows topography and current map acquired on the P3HT/P(VDF-TrFE) nanocomposites of 

HT/Fr-1. Comparing the topography with the current image simultaneously recorded, it is 

possible to observe regions with different conductivity properties. The yellow regions in current 

map are those zones that show non-zero current, and therefore, they can be attributed to 

conductive P3HT. Blue regions, are those that present zero values of the current, and as observed, 

they correspond to the protuberances in the topography, and therefore, can be associated to 

P(VDF-TrFE) NPs. The regions of P3HT surrounding the ferroelectric NPs exhibit non-zero 

current but slightly lower than that of the regions located far away of the ferroelectric NPs. As it 

has been pointed out by Khikhlovskyi et al. [1], the polarization sign of the ferroelectric domains 

affect the charge transport of the surrounding semiconducting polymer. This might be the reason 

for the inhomogeneity of the charge transport in the P3HT regions.  

Figure 4.7 C-AFM measurement for HT/Fr-1 (a) height image and (b) current image (dc 

tip bias, -5 V). 

Summarizing, these results allow us to deduce that the protuberances observed in the topography 

images are the ferroelectric polymer NPs, and that their ferroelectric properties are kept in the 

nanocomposites, allowing them to be considered as suitable systems for information storage by 
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PFM. However, the small hysteresis shown by the ferroelectric NPs will produce a low contrast 

with respect of the non-ferroelectric behavior of the continuous P3HT film. In order to improve 

that, we have explored the possibility of enhancing the ferroelectricity by annealing the system.  

4.2.4	 Annealing effect on the ferroelectric response for P(VDF-TrFE) 

nanoparticles 

Since the ferroelectricity of the P(VDF-TrFE) is originated from the presence of permanent 

dipoles in the crystalline phase and from its response to an external electric field, the larger the 

crystal size, the more the ferroelectric effect will be enhanced. It has been previously proven in 

the literature that the preparation of P(VDF-TrFE) in the form of NPs, lowers the crystallinity 

with respect to that of the bulk [3]. On the other hand, in the literature it has also been 

demonstrated that, when compared with continuous P(VDF-TrFE) films, nanoconfinement offers 

the advantage of limiting the extension of the switch of the polarization, allowing the selective 

writing of small regions [2,4-6]. To enhance the crystallinity, a well-known method is to anneal 

P(VDF-TrFE) at temperatures close to its Curie temperature Tc [7-10]. With this idea in mind, the 

as-prepared nanocomposites were isothermally annealed at 130 ºC for 30 minutes. This 

temperature was chosen since it is below ferro-para transition of the P(VDF-TrFE) [3,11]. The 

topography of the samples after annealing is shown in Figure 4.8. Compared with the as-prepared 

P3HT/P(VDF-TrFE), one can observe that the annealing process does not modify the morphology 

of the system that still consists in nearly spherical protuberances out of a continuous film. 

Figure 4.8 AFM height images (5 μm× 5 μm) after isothermal annealing at 130 ºC for 

30 minutes for (a) HT/Fr-1 and (b) HT/Fr-2. 

In order to assess the enhancement of the ferroelectric properties, similar PFM experiments to the 

ones described in the previous section (Section 2.3.1.2 and 2.3.1.4) were performed. Figure 4.9 

presents the out-of-plane PFM phase as a function of the applied tip bias for the two annealed 
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P(VDF-TrFE)/P3HT nanocomposites, for sample HT/Fr-1. The curves corresponding to the as

prepared samples are plotted here again for the sake of comparison. A clear change is observed 

in the hysteresis shown by the nanocomposites after annealing. The hysteresis is larger after 

annealing, indicating an increase of the coercive field. To understand this effect, one should 

consider that in ferroelectric polymers, the ferroelectricity is related to the 180º-flipping of 

permanent dipoles in the crystals formed by the fold packed of long chains. Thus, their 

ferroelectric properties are intimately dependent upon the internal crystal structure, 

nanoconfinement effects and inter-domain interactions or coupling, etc. [12]. It has been reported 

that narrow hysteresis cycles are due to small ferroelectric domains that are able to accommodate 

only a few dipoles, thus decreasing cooperative coupling among domains [13]. Due to the 

preparation procedure of the P(VDF-TrFE) NPs (Chapter 2, Section 2.2.2.2) they have 

isotropically distributed crystals and have lower crystallinity and higher amount of the 

paraelectric phase compared to that of the bulk [3]. Besides, due to the geometric confinement, 

the crystal growth of P(VDF-TrFE) NPs is restricted [14], and may contain only a small 

ferroelectric domain. As a result, the ferroelectric domains would be confined to each NP, and 

therefore, they will not have almost coupling interaction among them [15] finally resulting in a 

reduction of the spontaneous polarization and thus small hysteresis [16]. The observed widening 

of the hysteresis upon annealing can be attributed to the increase in crystallinity. Annealing the 

nanocomposites at temperatures close to their Curie temperature increases the crystallinity in the 

NPs and removes possible gauche defects [10], increasing therefore the size of the ferroelectric 

domains. This has the effect of enhancing the ferroelectric properties, probably due to an increase 

and perfection of the crystalline domains and therefore, to an increase in the ferroelectric domains. 

The coercive field is calculated from dividing the coercive voltage by the thickness of the system 

(diameter in case of the nanospheres). In the case of the as-prepared HT/Fr-1 sample, the average 

diameter of the P(VDF-TrFE) NPs is in the range of 280 nm [3]. This gives a coercive field value 

of around 1.8 MV/m, considering the coercive voltage is around 0.5 V (Figure 4.8a). This 

obtained value of Ec for the embedded P(VDF-TrFE) NPs is much lower compared with the one 

corresponding to spin-coated thin films (25 MV/m) [2] or bulk samples (50 MV/m) [17]. Also, 

higher values of Ec have been reported in other P(VDF-TrFE) nanostructures with similar 

characteristic size such as nanopillars [6], nanoarrays obtained from nanoimprinting (size 80 nm) 

[18], with Ec around 10 MV/m. One should consider that these nanostructures have been 

generated by processes that imply annealing at high temperatures and under the effect of pressure, 

which would enhance the crystallinity and the crystal size. Also, in those cases, the interaction 

between polymer chains and the supporting substrates may template the crystallinity and therefore, 

increase the ferroelectric domains [19]. The low value of Ec obtained for the as prepared P(VDF-

TrFE) NPs embedded in P3HT could offer advantages in order to incorporate the NPs in devices 
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such as FeRAM, since it will allow reading and writing information by polarization switching 

with low electric fields. However, it will show a very small ferroelectric contrast. In the case of 

the annealed nanocomposites, for the thinner sample (HT/Fr-1) the coercive field is similar to that 

reported for nanopillars [6] and nanoarrays obtained from nanoimprinting [18], in the present case 

10 MV/m. For the thicker films (HT/Fr-2), the coercive field is smaller, and both systems exhibit 

a good ferroelectric contrast, combining the two appropriate requirements for FeRAM devices.  
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Figure 4.9 PFM phase shift as a function of applied electric field for HT/Fr-1: (a) as

prepared sampe, and (b) after annealing sample. 

4.3 Study of P(VDF-TrFE)/P3HT morphology in bilayer system 

As we showed before, phase separation of the investigated P3HT/P(VDF-TrFE) 50/50 wt% blend 

results in a distribution of irregular shaped domains of each polymer. Alternatively, we have 

proposed a method to control at least the shape of the ferroelectric domains. In the present section, 

bilayered blends of the two polymers are described. 

Samples including P(VDF-TrFE) and P3HT single layers, as well as bilayers are prepared 

according to the procedure introduced in Chapter 2 (Section 2.2.3.1 and 2.2.3.2). The following 

labeling code has been assigned to the samples. Samples are labeled as NXXYY, where XX 

corresponds to the concentration in g/L of the solution used to prepare the P3HT layer and YY 
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corresponds to the concentration in g/L used to prepare the P(VDF-TrFE) layer. As an example, 

a sample labeled as N0802 corresponds to a bilayer formed by a P3HT layer obtained by spin 

coating a 8g/L solution and a P(VDF-TrFE) layer obtained by spin coating on top of the 

previously formed P3HT layer from a 2 g/L solution. 

4.3.1 Topography and thickness of P3HT and P(VDF-TrFE) single layers 

Figure 4.10 AFM topography (5 μm× 5 μm) of monolayers of P(VDF-TrFE) on silicon: (a) 

Samples N0003, (b) N0007 and (c) N0015. (d). Dependence of the thickness (open symbols) 

and the roughness (filled symbols) of the thin films prepared from different solution 

concentration. (O) P(VDF-TrFE) and () P3HT single layers. Bottom: AFM topography 

of the single layers of P3HT (e) N0800, (f) N1600 and (g) N2000. 

Figure 4.10 (a-c) shows the topography of spin-coated thin films of P(VDF-TrFE) directly onto a 

silicon substrate, with different concentrations. For very low concentrations, the topography 

consists of a smooth surface with low roughness, with small protuberances. The topography of 

the P3HT single layer films is presented in Figure 4.10(e-g), from which we can find the surface 
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of the P3HT films exhibits a fibrillar morphology, more or less packed depending on the 

concentration of the solution. More concentrated solutions give rise to a more packed morphology, 

whereas in the thinner films obtained from less concentrated solutions, the mesh of fibrils is looser. 

Figure 4.10d shows the dependence of the thickness and roughness of P3HT and P(VDF-TrFE) 

single layers as a function of concentration. The thickness of both single layers increases almost 

linearly with the solution concentration. The P(VDF-TrFE) films have a roughness below 1 nm, 

regardless of the thickness. The roughness of the P3HT films increases with thickness and tends 

to a constant value for thicker films.  

The dependence of the total thickness of the prepared bilayers, as a function of P(VDF-TrFE) 

concentration is shown in Figure 4.11. As it was shown in Figure 4.10, the thickness of single 

layers of P(VDF-TrFE) prepared directly onto a silicon substrate increases almost linearly with 

the solution concentration. However, this is not the case for the P(VDF-TrFE) layers prepared on 

top of a P3HT film. In the case of the bilayer, the thickness of the P(VDF-TrFE) layer obtained 

from low concentrations does not increase linearly or it does not increase at all with increasing 

the concentration. In the case of P(VDF-TrFE) films prepared on thicker P3HT substrates, the 

thickness dependence with the concentration is even more complex, exhibiting a local maximum 

around 3 g/L. 

Figure 4.11  Thickness of the bilayers as a function of the concentration of the P(VDF-

TrFE) solution in MEK. Different series correspond to different thickness of the P3HT 

substrate according to the code: () N00XX, () N08XX, () N12XX, () N16XX and 

() N20XX. Continuous lines are eye guides.  
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4.3.1 Dewetting for the prepared bilayers 

Figure 4.12 shows the topography of bilayers formed by spin coating P(VDF-TrFE) solutions on 

top of P3HT films with different thicknesses. As observed, in the formed polymer bilayers, the 

morphology of the bottom one, i.e, the P3HT layer, will affect the quality of the top one, i.e, 

P(VDF-TrFE) layer. The effect is more obvious in the P(VDF-TrFE) film formed from the lowest 

concentration solution NXX02. In this case, the P(VDF-TrFE) film exhibits dewetting regardless 

of the thickness of the underlying P3HT layer, as revealed by the existence of holes in the surface. 

However, the size of such holes depends on the thickness of the bottom layer. The holes are 

relatively small and dispersed for sample N0802, but as the thickness of the bottom layer increases 

the size of the holes increases and finally, as for example in sample N2002 they coalesce and the 

surface consists of an imperfect honey comb structure with walls and pores. Similar tendency is 

observed for NXX03 samples, although the coalescence between different holes is not observed 

in this case. Finally, for thicker top layers, almost no dewetting is observed, although the surface 

is rougher as the bottom layer thickness increases. 

Figure 4.12 AFM topography of different P(VDF-TrFE) solutions on silicon supported 

P3HT films with different thicknesses. In the figure, the concentration of the P3HT solution 

from which the P3HT layers were prepared is shown. 
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4.3.2 Determination of the hole nature by PFM and C-AFM 

To check whether the holes in samples NXX02, shown in Figure 4.12 are dry holes or if the 

bottom of them is formed by a thinner continuous ferroelectric polymer, AFM based techniques 

that provide contrast between both polymers, were used. As already stated in the case of the 

system of ferroelectric polymer NPs on a P3HT matrix, PFM maps can be obtained, taking 

advantage of the ferroelectricity of the P(VDF-TrFE) copolymer (top layer). On the other hand, 

considering that P3HT is a p-type semiconducting polymer, C-AFM experiment should show hole 

mobility in the P3HT domains.  

Figure 4.13 shows the PFM and C-AFM maps of a N1602 bilayer. In the case of the PFM map 

(Figure 4.13b), it can be observed that the regions that offer a non-negligible PFM amplitude, and 

therefore, those that are ferroelectric, are those that are higher in the topography, whereas the 

bottom of the holes do not show piezo electric response, and therefore they are not ferroelectric. 

This result indicates that the morphology of the P(VDF-TrFE) layer in this case consists of dry 

holes. To further confirm this conclusion, C-AFM current images are shown in Figure 4.13d. The 

current image of the sample with hole morphology shows that top layer is not conductive but the 

bottom of the holes exhibits finite current, evidencing that this part of the hole is P3HT.  

Figure 4.13  C-AFM measurements for the N1602 bilayer, (a) and (c) height images, (b) 

PFM out of phase amplitude, (d) C-AFM current image. 
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4.3.3 Characterization of the surface energy of the P3HT substrates 

In order to understand why the thickness of the underlying P3HT substrate affects the obtained 

dewetting pattern obtained for P(VDF-TrFE) top layer, the CA of P(VDF-TrFE) polymer 

solutions on those substrates, was measured. The dependence of the CA for the different P(VDF-

TrFE) concentrations is presented in Figure 4.14. 

Figure 4.14 Contact angle CA, measured by the sessile drop method, of the different 

concentration of P(VDF-TrFE) solution on top of P3HT layers of different thickness: () 

N00XX, () N08XX, () N12XX, () N16XX and () N20XX. Drop of 2 g/L (left inset) 

and 7 g/L (right inset) P(VDF/TrFE) solution in MEK on a silicon wafer coated with a 

P3HT film prepared from a 8 g/L solution in CHCl3. 

As observed in Figure 4.14, for the same P(VDF-TrFE) solution concentration, the wetting is 

almost independent of the thickness of the P3HT substrate. However, for a given thickness of the 

P3HT substrate, the solutions with lower concentration wet better the substrate than the ones with 

higher polymer concentration. This observation indicates that the samples that present a stronger 

dewetting effect when spin-coated with the creation of holes, however, are those whose starting 

solution wets the P3HT better. This effect might be related to the solvent evaporation rate during 

the spin-coating. As the solution wets better the substrate, the area exposed to evaporation is larger. 

In this way, the solvent would evaporate more efficiently, not allowing the polymer to be evenly 

distributed, and therefore producing a film with holes. In order to further understand the 

differences between the final morphology depending on the characteristics of the bottom P3HT 

layer, the surface energy of each of the substrates has been characterized.  
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The origin of the observed effect of hole formation dependence with the P3HT layer thickness for 

the same P(VDF-TrFE) concentration must be found then on the long range interaction in the 

bilayer system. To quantify these interactions, surface free energy of the different samples was 

calculated. To do that two different procedures were used as explained in Chapter 2 (Section 

2.3.5). The measurement of the CA of different liquids having different polarities is needed. In 

this case, water, glycerol and paraffin oil were used. The obtained CA of the above mentioned 

liquids on the surfaces of a bare silicon wafer, on P3HT films with different thicknesses on silicon 

and on a P(VDF-TrFE) film are shown in Table 4.2. 

Table 4.2 CA values for P3HT and P(VDF-TrFE) single layers with different thicknesses 

for different liquids. 

Sample Water Glycerol Paraffin oil 

2400 89±9 90±2 35±1 

0004 87±1 74.5±0.1 32.1±0.6 

Silicon 0000 63±5 69±2 18±4 

P3HT 

0800 96±1 88±1 30.9±0.5 

1600 95.5±0.3 90±2 36±3 

P(VDF-TrFE) 
0002 - 73±1 32.0±0.1 

The surface free energy and its components were first determined by the OWRK-model detailed 

in Chapter 2 (Section 2.3.5), so that information about the polar part and the dispersive part is 

obtained. The calculated values are listed in Table 4.3. 

Table 4.3 Surface free energy and its components (in mJ m-2) for the different P3HT and 

P(VDF-TrFE) single layers with different thicknesses and for bare silicon as determined 

by the OWRK method. Errors are estimated in ca. 10%. 

࢙ࢽ
 ࢙ࢽ ࢊ࢙ࢽ 

Silicon 14.7 23.5 38.2 

N0800 1.6 23.5 25.1 

P3HT N1600 2.0 21.8 23.8 

N2400 3.5 20.9 24.4 

N0002 5.1 24.7 29.8 
P(VDF-TrFE) 

N0004 4.5 24.6 29.1 
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From these results it is observed that in the case of P3HT the polar component increases when 

thickness increases while the dispersive component decreases. Considering that in P(VDF-TrFE) 

the apolar component is the most important one, this could explain that wetting of P(VDF-TrFE) 

on P3HT is less efficient when P3HT thickness increases. Additionally, although slightly, the 

total surface energy of P3HT decreases with its thickness, which implies a decrease in the 

wettability. The surface free energy was also calculated by the van Oss-Chaudhury-Good method, 

and the results obtained by this method are listed in Table 4.4. 

Table 4.4 Surface free energy and its components (in mJ m-2) for the different P3HT and 

P(VDF-TrFE) single layers with different thicknesses and for bare silicon as calculated by 

the van Oss, Chaudhury and Good method. Errors are estimated in ca. 10%. 

࢙ࢽ ା࢙ࢽ ି࢙ࢽ ࢊ࢙ࢽ
 ࢙ࢽ 

Silicon 27.5 28.2 0.09 3.2 30.7 

N0800 24.9 3 0.005 0.24 25.1 

P3HT N1600 23.6 1.9 0.013 0.31 23.9 

N2400 23.8 5.9 0.13 1.75 25.6 

P(VDF-TrFE) N0004 24.7 4 1 4 28.7 

The results obtained by this method are similar to the ones shown for the OWRK method. Thus, 

the polar component increases for P3HT as its thickness increases. In fact, both the 

electron-acceptor and the electron-donor components increase, corresponding to the acidic and 

basic character respectively, while in contrast the apolar component remains constant or slightly 

decreases.  

These results are in accordance with AFM results of bilayers that showed that when spin-coating 

of P(VDF-TrFE) onto P3HT layer is performed, the stronger dewetting effect occurs for thicker 

P3HT substrates. 

4.4 Conclusion 

In this chapter we have presented different approaches to control the phase separation in binary 

systems composed of a semiconducting polymer P3HT and a ferroelectric random copolymer 

P(VDF-TrFE). In the first part, the morphology and characteristics of the system obtained by spin 

coating the two polymers blended on a common solvent is described. Results show that phase 

separation gives rise to films of P3HT/P(VDF-TrFE) with roughness comparable to film thickness. 
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Secondly, we propose a method to obtain controlled size domain of the phase separated system, 

consisting in distributing P(VDF-TrFE) NPs in a P3HT solution. By spin coating this system, the 

obtained morphology consists of a continuous film of P3HT with protuberances arising from the 

P(VDF-TrFE) NPs. The two components can be distinguished by C-AFM and PFM. To 

understand the influence of NPs under confinement and the embedded substrates, we measured 

the ferroelectricity of the nanocomposites. In the NPs the crystal size and crystallinity are limited 

by confinement, and therefore the ferroelectric domains are restrained, thus exhibiting a narrow 

hysteresis loop. Annealing around its Curie temperature can enhance the ferroelectric properties 

due to the induced increase of crystallinity and crystalline size. And lastly, P3HT/P(VDF-TrFE) 

bilayers have been prepared. We have observed that the thickness of the P3HT layers affects the 

dewetting of the upper P(VDF-TrFE) layer. By performing CA measurements with different 

liquids, we have been able to obtain the total surface energy and its components of P3HT and 

P(VDF-TrFE) layer, and infer the reason for this dewettingto to take place. 
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Influence of substrate and film thickness 

on polymer LIPSS formation 
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This chapter is structured in two different parts. In the first one, a precise description of LIPSS 

formation in films with different thicknesses of a model polymer, polystyrene, is given. The 

relation between the quality of the ripples induced by multipulse laser irradiation of polymer films, 

substrate properties, and the number of pulses was established. In the second part of the chapter, 

LIPSS formation in a functional polymer, poly(3 hexyl thiophene) (P3HT) spin-coated film with 

different thicknesses was studied, and the LIPSS created on these P3HT films provide a new 

possibility to prepare solar cells based on this type of nanostructures. 

5.1 Samples 

Spin coated films of PS and P3HT have been prepared following the protocols explained in 

Chapter 2 (Section 2.2.3.1). The details of the PS samples and the corresponding labels are listed 

in Table 5.1. The thicknesses of the prepared PS thin films as a function of solution concentration 

were presented in Figure 2.4. 

Table 5.1  Labels of PS films for the different solution concentrations. 

Substrate Silicon Glass Quartz 
PS 

casting 

Concentration 
(g/L) 

Label 

8 

Si08 

10  

Si10 

15  20  

Si15 Si20 

25  

Si25 

30  

Si30 

10  20  

G10 G20 

10  20  

Q10 Q20 

60  

PS60 

5.2 Absorption properties 

UV-Vis absorption spectra of PS and P3HT films were recorded in order to choose the irradiation 

wavelength at which the materials efficiently absorb, and they are shown in Figure 5.1. According 

to the spectra it is clear that PS absorbs significantly in the UV region while P3HT absorbs more 

efficiently in the Vis region. As stated in the introduction (Section 1.4.2.1), the requirement for 

LIPSS formation is that the polymer efficiently absorbs laser light. For this reason PS was 

irradiated at 266 nm, since at this wavelength its absorption coefficient is 1.6 ×105 m-1 while 

P3HT was irradiated at 532 nm and the absorption coefficient at this wavelength is 8.62 × 105 m-1. 
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Figure 5.1 UV-Vis-NIR absorption spectra for PS (black line) and P3HT (purple line). 

Spectra have been normalized to the sample thickness. The vertical dashed line in the figure 

correspond to the wavelengths of 266 nm and 532 nm. 

5.3	 Study of LIPSS formation on a model polymer: polystyrene 

Assessment of the effect of film thickness and substrates on the 

quality of the generated structures 

5.3.1 Effect of the number of pulses on LIPSS formation 

In order to understand the effect of varying the number of pulses (N) on the quality of the formed 

LIPSS patterns, PS films were irradiated at a fixed fluence of F=10 mJ/cm2 and a repetition rate 

of 10 Hz varying N up to 6000. AFM height images of the silicon supported thin films as a 

function of N are shown in Figure 5.2 for the sample Si30 with a thickness of 434 ± 10 nm. 

As observed in Figure 5.2, to obtain relevant features in the surface of the polymer film, it is 

necessary to irradiate with a relative large number of pulses. The periodic surface structures are 

not formed until the number of pulses is around 3600. However, before the LIPSS are formed, 

irradiation with a low number of pulses affects the roughness of the PS surface. The right panel 

of Figure 5.2 shows that the surface roughness increases in the time period previous to LIPSS 

formation, referred to hereafter as incubation regime. Also in that plot, the values of both period 

(L) and height (H) of the LIPSS are shown.  
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Figure 5.2 (Left panel) AFM height images (5 μm × 5 μm) of Si30 (434 nm) (a) non

irradiated and irradiated at 266 nm with a fluence of 10 mJ/cm2 with (b) 600, (c) 1200, (d) 

1800, (e) 3600, (f) 4300, (g) 4800, and (h) 6000 pulses. (Right panel) Roughness, (Ra, black 

squares), Period (L, ) and height (H, ) as a function of number of laser pulses for Si30 

irradiated at constant fluence of 10 mJ/cm2. The dashed lines are plotted to guide the eye. 

As previously reported [1], when a polymer film is exposed to the laser light, the uneven film 

surface scatters it due to its roughness and the scattered waves interfere with the incident laser 

beam, resulting in a modulated distribution of the energy on the surface [1]. This energy induces 

a modulated change in temperature in such a way that when this temperature is higher than the 

glass transition temperature of the irradiated polymer, a softening of the outermost layer occurs, 

allowing diffusion of the polymeric chains [2]. 

As shown in Figure 5.2, repetitive irradiation produces changes in the topography of the polymer 

surface and ripples morphology develops after a sufficient number of laser pulses. Considering 

laser irradiation as the only heating source of the polymer film, the corresponding temperature 

increase can be estimated by solving the one–dimensional heat equation as previously done in 

similar works [1]. Thus, the temperature at a given time (t) and different depth (x) from the surface 

should follow the equation [1,3] 

డమ்ሺ௫,௧ሻ
െ ܽଶ డ்ሺ௫,௧ሻ (5- 1)ିܨఈ௫݁ܲሺݐሻ 

ఈ


ൌ െ

డ௧మడ௫

ఘ
ൌଶܽ Where 


 being ρ the density, c the specific heat at constant pressure, κ the thermal 

conductivity, and α the absorption coefficient. F0 is the incident fluence, 10 mJ/cm2 in this work 

and P(t) is a function that describes the temporal shape of the laser pulse; for the fourth harmonic 

of the Q-switched Nd:YAG laser, this function is approximated by a modified Gaussian beam: 

ଶ௧
ൌሻݐሺܲ
ఛమ
exp െ ቀ

ఛ

௧ቁ
ଶ
൨ ݐ  0 (5- 2) 

Where the t factor ensures that intensity vanishes at t =0 and  is the pulse duration, in this case 8 

ns. The function is normalized to unity in the whole temporal range: 
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Formally, the heat conduction equation (5- 1) is solved as 

,´ݔሺ ܭ (4 -5)  ሻ´ݐ ܬሻ´, ,ݔ´ݐ ;ݐ ,ݔሺ  ´ݐ݀  ´ݔ݀ ܩሺݔ ሻݐ ൌ ܶ	

Where K is the initial temperature , ܬሺݐ ,´ݔ´ሻ is defined as 

െ 
௫ఈ√ఛ  (5- 5) ቕ


ቔexpሻଶെݐሺൌ ݐ expሻ´ݔ´, ܬሺݐ

:Ο is the kernel of the operator, with a relation with heat-equation operator ሻ´ݔ´,ݐ, ;ݐ  and ܩሺݔ

Ο ൌ  
డ

డ௧ 
െ 
డమ 

డ௫మ
 (5- 6) 

Satisfying  

ܩ	ሺΟݔ ;ݐ ,ݔ ሻ ൌ´ݐ ,´ ߲ሺݔ´ െ ݔሻ߲	 ሺݐ െ ݐ´ሻ (5- 7) 

and known from quantum mechanics as 

ܩሺݔ ;ݐ ,ݔ  ሻ ൌ´ݐ ,´
ଵ

 ݔ݁
ସగሺ௧ି௧´ሻ ඥ 

ቂെ 
ሺ௫ି௫´ሻమ 

ସሺ௧ି௧´ሻ 
ቃ (5- 8) 

Finally the temperature is given by 


ஶ
ିஶ 

 ´ݐ݀
௧
ܶ  ൌ  

ଵ
 ݔ݁

ସగሺ௧ି௧´ሻ ඥ 
െ 
ሺ௫ି௫´ሻమ 

ସሺ௧ି௧´ሻ 
ex݀ݔ´ ቂ ቃ pሺെݐ´ሻଶ exp ቀ

ିఈ√ఛ

 
ቁ |ݔ´|   (9 -5) ܭ

This function is a solution of equation (5- 1), which can be verified by applying partial derivatives 

with the appropriate boundary conditions. The temperature is obtained by calculating numerically 

the integral of equation (5- 9) considering an initial temperature of 23 ºC. The integration is also 

performed for negative x values, but since the absolute value of the integrand is taken, it is 

guaranteed that the derivative at x = 0 vanishes. Physical properties used for the calculations are 

listed in Table 5.2. 

For a single pulse, the variation of the calculated temperature at the surface as a function of the 

time elapsed from the beginning of the pulse is presented in Figure 5.3a. The result shows that, 

once the first pulse reaches the film, the temperature of the surface increases since the laser energy 

absorbed by PS is transformed into heat. As the pulse finishes, the surface of the sample starts to 

cool down due to the dissipation of heat into the cooler surrounding bulk material. The highest 

temperature achieved at the polymer surface by the initial single pulse is estimated to be around 

32 ºC, far below the Tg of PS, which is 105 ºC. Although at first glance it seems that the 

temperature for long times is similar to the initial temperature, a small positive offset is still 

present at the time the next pulse arrives (0.1 s later than the onset of the previous one for the 

repetition rate of 10 Hz). Accumulation of laser pulses on the irradiated spot induces subsequent 
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cycles of heating and cooling. Assuming that none of the physical magnitudes of the polymer 

change with temperature, one can estimate that each pulse will heat the sample and that the surface 

will be at a slightly higher temperature than the previous one after the arrival of the next laser 

pulse, as shown in Figure 5.3b. A minimum number of pulses is therefore necessary to ensure that 

the surface temperature overcomes the Tg. Thus, with this approximate estimation of the 

temperature increase, this number of pulses is estimated to be, in this case, larger than 200. This 

result suggests that the increase on roughness observed in Figure 5.2 (right panel) during the 

incubation regime before LIPSS formation occurs when the temperature has increased above the 

Tg of PS. In fact, for the sample Si30 slight changes in roughness are observed by AFM inspection 

already after irradiation with 450 pulses. After laser induced local heating, the material cools 

down and surface inhomogeneities are expected to be enhanced as the next pulse would find a 

rougher surface, thus facilitating the feedback mechanism needed for LIPSS formation [4]. It 

should be contemplated that here we performed a simplified temperature calculation where the 

temperature dependence of the polymer physical parameters was not considered. Additionally, 

the possible changes in the thermal properties of the surface during the transformations caused by 

the previous laser pulses (i.e., incubation effects) were also neglected. Nevertheless, considering 

only the thermal effects induced by every laser pulse and the repetitive heating/cooling cycles the 

calculation can explain LIPSS formation and supports the presence of the feedback mechanism. 

Table 5.2 Linear absorption coefficient (α) at 266 nm, specific heat (c), density (ρ), thermal 

conductivity (κ) and refractive index at 266 nm (n), of PS material and of the supporting 

substrates. 

PS Silicon Quartz Glass 

α (m-1) 1.6 ×105 1.97 ×108 [5,6]  3 [7] ~ 108 

c (J/(Kg·K)) 1223 [8] 703 [9] 710 [9] 858 [9] 

ρ (Kg·m-3) 1043 [41] 2330 [9] 2649 [9] 2510 [9] 

κ (W/(m·K)) 0.11 [8] 163.3 [9] 10.7 [9] 1.11 [9] 

n 1.49 [10] 1.9 [5,11] ~1.5 [12] 1.51 [13] 
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Figure 5.3 (a) Time dependence of the surface temperature irradiated after the first pulse 

at 266 nm at a fluence of 10 mJ/cm2 at the indicated depths. (b) Temperature estimation at 

the polymer surface (0 nm) upon irradiation with successive laser pulses. 

5.3.2 Influence of the film thickness on LIPSS formation 

To assess the influence of film thickness in the LIPSS formation, PS thin films with thickness 

values ranging from 70 nm to 150 × 103 nm were irradiated at fixed values of fluence, 10 mJ/cm2, 

and number of pulses, N = 4800. Figure 5.4 shows the corresponding AFM topography images. 

For the thinnest film, Si08 (Figure 5.4a), disordered LIPSS are formed. This is in agreement with 

previous results by Csete et al. [30] reporting about the existence of a critical thickness below 

which line-shaped structure cannot be formed. In contrast for thicker films, Si10 (Figure 5.4b), 

Si30 (Figure 5.4e) and PS60 (Figure 5.4f), parallel ripples are observed. Curiously enough, in the 

case of films with intermediate thicknesses, Si15 Figure 5.4c), Si20 (Figure 5.4d) and Si25 (not 

shown), distorted LIPSS decorated with droplet-like entities can be observed. The thickness 

dependence of the period and height of LIPSS is also displayed in Figure 5.4g and Figure 5.4h. 

The period and height values of the obtained LIPSS in Si10, Si30 and PS60 are similar (around 

220 nm and 50 nm respectively). In contrast, films with intermediate thickness exhibit larger 

average period, around 270 nm, and deeper structures. From the above results it is possible to 

conclude that, for silicon supported thin films, a critical range of film thicknesses exist at which 

the formation of well-ordered LIPSS is hindered.  

The variation of the Ra with the number of pulses in the incubation regime for samples with 

different thicknesses is shown in Figure 5.5a. The roughness starts increasing slowly for a low 

number of pulses, and at a given value of N, around 600 in this case, the surface starts to corrugate. 

Changes are more significant for the film Si30 (434 ± 10 nm thick), in comparison to thinner 

films.  
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Figure 5.4 (Left) AFM height images (5 μm × 5 μm) of PS films with different thicknesses 

irradiated at a fluence of 10 mJ/cm2 and number of pulses of 4800: (a) Si08, (b) Si10, (c) 

Si15, (d) Si20, (e) Si30 and (f) PS60. (Right) (g) Period length (L) and (h) the LIPSS height 

(H) as a function of the film thickness for PS film at a fluence of 10 mJ/cm2 and number of 

pulses of 4800. Lines are plotted to guide the eyes. 
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Figure 5.5 (a) Ra as a function of number of laser pulses for Si10 ( ) Si20 ( ), Si30 ( ). 

(Right) AFM height images of (b) Si10, (c) Si20 and (d) Si30 irradiated at constant N = 600. 

Dashed lines are plotted as a guide for the eyes. 
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For a given sample, once well-defined LIPSS are formed, the period and heights have values 

around 220 nm and 50 nm respectively except for the case of Si20 for which both values are larger, 

in particular around 270 nm and 120 nm respectively. The differences observed for the polymer 

films with different thicknesses in terms of modification onset and LIPSS properties cannot 

simply be explained by considering exclusively the heating/cooling effects induced by repetitive 

irradiation discussed in the previous paragraph. Hence, the influence of the silicon substrate will 

be discussed in the following section. As it will be shown, specifically for silicon substrates, the 

laser irradiation of the PS films of different thicknesses provokes the substrate temperature to 

increase very fast (Table 5.3). However, the heat is effectively dissipated on the basis of the high 

thermal diffusivity of silicon (Table 5.3). Thus, the high thermal conductivity and thermal 

diffusivity of silicon makes the cooling of the polymer material heated by the laser pulse to be 

more efficient for thinner films. Accordingly, the silicon substrate acts as a thermal heat sink 

making that thinner films need more irradiation energy, in terms of either pulses or fluence, in 

order to reach similar temperature values than those reached by thicker films [14]. In this case, a 

thin film like Si10 (132 nm) needs a higher number of pulses than a thicker one in order to exhibit 

morphological changes as shown in Figure 5.5a. To further corroborate this effect additional 

irradiations varying laser fluence were performed. In this case, two films with different 

thicknesses, Si10 (132 nm) and Si20 (278 nm) were irradiated at different fluences, 7 and 12 

mJ/cm2. Figure 5.6 shows the corresponding AFM topographic images. In the case of the thinner 

film, Si10, irradiation with 7 mJ/cm2 does not induce any significant morphological change 

(Figure 5.6a). However, an evident change in roughness can be detected for Si20 at the same 

irradiation conditions (Figure 5.6d). 

Figure 5.6  Fluence effect on Si10 (upper row) and Si20 (bottom row), irradiated at 266 

nm with 4800 pulses and (a, d) 7 mJ/cm2, (b, e) 10 mJ/cm2 and (c, f) 12 mJ/cm2. 
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For a fluence of 12 mJ/cm2 LIPSS obtained at the thinner film Si10 are conspicuously disrupted 

(Figure 5.6c) indicating that this fluence is above the optimal fluence range at which LIPSS are 

optimally formed (Figure 5.6b). It is known that dealing with LIPSS in polymers when the fluence 

is above certain limit, the whole polymer film is thermally affected and devitrification of the 

complete film can take place leading to dewetting and/or material ablation [15]. In the case of 

Si20, the irradiation at 12 mJ/cm2 leads to the increase of the superficial temperature and to the 

heating of deeper material [1] inducing the formation of more ordered ripples (Figure 5.6f) in 

comparison to the irradiation at 10 mJ/cm2 (Figure 5.6e). 

In order to explain the singular behavior of the PS films with intermediate thicknesses in the range 

200-400 nm, for which droplet-like entities are observed upon irradiation with 4800 pulses at 10 

mJ/cm2 (Figure 5.4d) we can consider different facts. On the one hand, the heat dissipation by the 

substrate of the heat generated by surface irradiation is less efficient than for the thinner Si10 film, 

but still it plays a role since, as shown in Figure 5.5, a higher amount of pulses is needed in order 

to modify the polymer surface in comparison to thicker films. On the other hand, we can consider 

the optical properties of the silicon, in particular the refractive index at 266 nm, which for silicon 

is higher than for PS. When the laser light reaches the substrate, in the case of silicon, the 

reflection from the substrate may introduce additional thermal effects and thus, less ordered 

LIPSS are expected. In fact in the case of Si20 the higher values of period and height (Figure 5.4) 

suggest that the heat remains longer. Thus, a softer material exists for longer time with lower 

superficial viscosity allowing the development of ripples with larger periods. Additionally, the 

height of the nanostructures in this sample is also higher, suggesting that more material is heated 

upon irradiation and this fact cannot be explained considering only heating by absorption of the 

laser light discussed in the previous paragraph. As shown in Figure 5.3 while for a depth of 50 

nm, which results to be the typical height of the LIPSS obtained for most of the PS samples 

studied in this work, the temperature is slightly lower but similar than the one at the surface, for 

a depth of 280 nm the temperature increase is smaller than 3 ºC. 

In order to go deeper into the role of the substrate in LIPSS formation, experiments with different 

substrates will be discussed in the next section. 

5.3.3 Effect of substrate on LIPSS formation 

To evaluate the role of the substrate on LIPSS formation in PS, thin films of the polymer were 

prepared onto silicon, glass and quartz. These three substrates were selected on the basis of their 

different thermal and optical properties. Again, LIPSS were prepared by irradiation with 4800 

pulses at a fluence of 10 mJ/cm2 of spin-coated PS films from solutions with two different 

concentrations, 10 g/L and 20 g/L. The topography images of the nanostructured samples onto 

different substrates and two different thicknesses are presented in Figure 5.7. 
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Figure 5.7  (Left) AFM height images (5 μm × 5 μm) of PS with 10 g/L (upper) and PS 20 

g/L (bottom) deposited on different substrates: (a, d) Silicon (Si10, Si20), (b, e) Glass (G10, 

G20) and (c, f) quartz (Q10, Q20). (Right) (g) Period length (L) and (h) height (H) of 

formed ripples for PS with 10 g/L (filled symbols) and 20 g/L (open symbols) deposited 

on different substrates: silicon ( ), glass ( ) and quartz ( ). Films were irradiated at 266 

nm using a fluence of 10 mJ/cm2 and constant number of pulses of 4800. 

Figure 5.7 demonstrates that the formed nanostructures on the polymer surface depend on the 

underlying substrate. Although linear ripples are formed on the film with thickness around 120 

nm for all the substrates, different levels of order can be visualized. While the polymer on silicon, 

Si10, forms rather continuous and homogeneous ripples (Figure 5.7a), LIPSS induced in the 

polymer on quartz, Q10 (Figure 5.7c), although well-defined, appear disturbed in several places. 

In contrast, LIPSS generated on the polymer on glass, G10 (Figure 5.7b), consists of several 

domains, disrupted or with coalescence between ripples. At a first glance it appears that less

ordered LIPSS form on a thicker PS film of 260 nm in all the three substrates. However, the 

sample on silicon (Figure 5.7d) presents a significant lower order than the others characterized by 

distorted lines decorated by drop-like structures. The dependence of the period and ripple height 

on different substrates is presented in Figure 5.7g and Figure 5.7h. There is a clear influence of 

the nature of the substrate in the period of the LIPSS especially for thinner PS films. While LIPSS 

on quartz (Q10) and glass (G10) exhibit similar period values (L ≈ 170 nm), a larger L is obtained 

for LIPSS on silicon (Si10) (L ≈ 220 nm). Although weaker, a similar trend is observed for the 

thicker films. Substrate seems to have little effect on the ripples height in the case of thin films, 

but in the case of the thicker ones the height of the LIPSS obtained on glass is smaller than the 

observed for silicon (Si20) and quartz (Q20). 
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As mentioned before, when a laser pulse reaches the polymer surface the radiation can be reflected, 

scattered and/or absorbed. The fraction which is absorbed by the polymer transforms into heat 

while the rest of the energy, if the film is thin enough, eventually may reach the underlying 

substrate and be dissipated by it. The amount of energy at a given depth x from the surface can be 

determined by the Beer-Lambert law (introduced in Chapter 2 Section 2.3.4). For instance, for a 

434 nm thick PS sample (PS30), 93 % of the incident energy is transmitted and it will reach the 

substrate. Thus, the thermal properties of the substrate can be relevant. The differences observed 

in the morphology of the LIPSS formed on PS films with different thicknesses and deposited onto 

different substrates may be explained on the basis of the substrate physical properties, in particular 

to their thermal and optical properties. For a single pulse, the temperature increase at the substrate 

surface due to the transmitted light through the PS film can be estimated by using the values of 

the corresponding physical properties listed in Table 5.2 as: 

(5- 10)
ிఈൌ Δܶ
ఘ 

Where F is the fluence, α the absorption coefficient, c the specific heat and ρ the density. The 

estimated temperature increase has been calculated using the value of the incoming fluence and 

the values are reported in Table 5.3. 

Considering the high amount of energy transmitted through the polymer film and reaching the 

substrate (as high as 93% even in the thickest supported sample Si30 studied here), the estimated 

temperature increase has been calculated using the value of incoming fluence and the estimated 

temperatures obtained are listed in Table 5.3. 

Table 5.3 Temperature increase (ΔT), Thermal diffusivity (D), and thermal diffusion time 

(td) of the substrates. 

 Silicon Quartz Glass 

ΔT (K) 1.2×103 1.6×10-5 460 

D (m2/s) 9.97×10-5 5.7×10-6 5.15×10-7 

td (ns) 2.6×10-4 - 0.19 

After the fast increase of temperature the heat is dissipated depending on the thermal conductivity 

of the substrate. The thermal diffusion time, td, is given by [1,16]: 

ௗݐ ൌ 
ଵ

 (5- 11)
ఈమ
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Where D is thermal diffusivity of the material expressed by ܦ ൌ  
ச

ୡ
. The calculated parameters 

are listed in Table 5.3. 

Although for silicon the temperature increase is higher than for glass, the thermal diffusivity is 

two orders of magnitude larger, and thus, the thermal diffusion time is shorter. In the case of 

quartz, it can be considered that temperature does not increase upon irradiation since the 

absorption at 266 nm is negligible. Accordingly, the mismatch in thermal conductivities between 

the polymer, PS, and the substrate in the case of glass and quartz, is smaller than when the 

substrate is silicon. This could explain the similar results obtained for irradiation of the different 

film thicknesses on glass and quartz. Additionally, only thermal effects need to be considered for 

these two substrates since their refractive index is roughly the same than the one of PS. Therefore, 

the reflection effects at the polymer-substrate interface are less important than in the case of the 

silicon substrate. 

5.4 Study of LIPSS formed on P3HT films  

After assessing the different factors which may have an effect on the formation of LIPSS patterns 

of good quality in thin films of a model polymer [17], in this section we will apply the obtained 

knowledge to the case of a functional polymer: P3HT. For that, P3HT films of different 

thicknesses were prepared. Figure 5.8 shows the thickness and roughness dependence of the spin

coated (SC) P3HT films with the solution concentration. A nearly linear relationship between the 

P3HT film thickness and its solution concentration can be observed. The upper row in Figure 5.8 

exhibits AFM topography images of SC P3HT films of selected solution concentrations covering 

the full range of film thicknesses investigated.  

The as-prepared SC films present a characteristic morphology of semicrystalline P3HT consisting 

of needle crystals [18]. The roughness of the SC films increases with thickness, levelling off for 

thicker samples. LIPSS formation in these films depends on thickness as exemplified by the 

bottom row in Figure 5.8. While, under the same irradiation conditions (26 mJ/cm2, 3600 pulses), 

thin films of ≈ 41 ± 15 nm (Figure 5.8e) do not exhibit LIPSS, those with intermediate thicknesses, 

in the range of ca. 80-280 nm (Figure 5.8f and g) present a regular periodic relief with a period of 

ca. 430 nm. As described in the previous section, in general, thinner films need more irradiation 

energy, in terms of either pulses or fluence, in order to reach similar temperature values than those 

reached by thicker films. Specifically for silicon substrates, the laser irradiation of the polymer 

film provokes the substrate temperature to increase very fast. However, the heat is effectively 

dissipated on the basis of the high thermal diffusivity of silicon. Thus, the high thermal 

conductivity and thermal diffusivity of silicon makes the cooling of the polymer material heated 

by the laser pulse to be more efficient for thinner films. In the case of thicker films, although they 
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show the presence of LIPSS (Figure 5.8h), these are significantly distorted in comparison with 

those formed in intermediate thickness films. For these samples, in a first approach, roughness 

may play a significant role on the quality of LIPSS producing complex light scattering processes 

on the sample surface leading to non-parallel interferences It is important to mention that in the 

case of P3HT it is needed to heat the polymer above its Tm, which is around 240 ºC, in order to 

provide enough polymer dynamics and allow the redistribution of the material. 

Figure 5.8  Thickness (■) and roughness (●) dependence of the SC P3HT films on the 

solution concentration (middle row). Selected AFM topography images (5 μm ×5 μm) of 

SC P3HT (upper row) films before irradiation prepared from (a) 8 (b) 12 (c) 20 and (d) 28 

g/L, and after irradiation at a fluence of 26 mJ/cm2 with 3600 pulses from (e) 8 (f) 12 (g) 

20 and (h) 28 g/L.  

GISAXS technique can be useful to characterize structural order in LIPSS formed on polymer 

films as it provides statistical information integrated over a large sample area of the material 

surface [1,18,19]. Figure 5.9 shows a series of GISAXS patterns of irradiated films as a function 

of the concentration taken with an incidence angle of i=0.2o. 
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Figure 5.9 GISAXS patterns taken with an incidence angle of i = 0.2o for P3HT LIPSS 

films prepared from (a) 8, (b) 12, (c) 20 and (d) 28 g/L solutions with LIPSS generated at 

a fluence of 26 mJ/cm2 with 3600 pulses. The horizontal black lines are the detector inter

module gaps. 

For the thinner (8 g/L, 41 ± 15 nm, Figure 5.9a) and the thicker (≥ 28 g/L, ≥ 370 nm, Figure 5.9d) 

irradiated P3HT samples the scattering patterns show the characteristic scattering features as those 

of unstructured spin-coated films [18]. On the contrary, GISAXS patterns of the intermediate 

films (12-20 g/L, 80-280 nm, Figure 5.9b,c) exhibit vertical diffraction maxima which are 

characteristic features of a LIPSS and can be described as produced by a quasi-one-dimensional 

grating [20]. Figure 5.10 shows scattering intensity profiles at αi = 0.2o taken at an exit angle = 

0.15o from the GISAXS patterns. While the intensity profiles for the thinner and thicker irradiated 

films exhibit no features, those of the intermediate films show vertical diffraction maxima. It is 

observed that the number of scattering maxima increases with the concentration, i.e. film 

thickness. The number of scattering maxima, which is associated to the structure factor of the 

lattice [20], is related to the level of order of the structure [18]. The inset of Figure 5.10 shows 

the thickness dependence of the number of scattering maxima observed in the GISAXS pattern. 

It is clear that LIPSS films prepared from solutions with polymer concentration between 16 g/L 

and 20 g/L are those exhibiting a richer GISAXS pattern in terms of the number of scattering 

maxima. These results are in agreement with AFM images (Figure 5.8) which reveal that optimal 

LIPSS, understood as those with a higher order, appear within this polymer solution concentration 

range. 

The semicrystalline nature of P3HT as well as of most poly(alkylthiophene) polymers [21,22], is 

a key feature of their film morphology and plays a capital role in the performance of a posterior 

organic solar cell. Therefore, characterization of the effect of LIPSS treatment on the crystallinity 

of P3HT:PCBM films provides greater insight on polymer film solar cell-relevant features. 
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Figure 5.10  Selected horizontal line cuts in logarithmic scale from the 2D GISAXS data 

taken at an exit angle = 0.15o, for LIPSS generated at 26 mJ/cm2 with 3600 pulses on 

P3HT films prepared from different solution concentrations (g/L) as labeled. Patterns were 

shifted vertically for the sake of comparison. The inset displays the number of scattering 

maxima obtained from GISAXS patterns as a function of thickness. The continuous line is 

a guide for the eye.  

Figure 5.11 shows GIWAXS patterns illustrating the evolution of the structure of P3HT SC films 

before and after generation of LIPSS with solution concentration. It is known that quantitative 

analysis of GIWAXS patterns requires a thorough knowledge of the scattering pattern in the 

reciprocal space [23,24]. The real to reciprocal space transformation has been accomplished 

according to the procedure described in ref [25]. In this case, the intensity of the GIWAXS

ൌோݍand ofzscattering patterns are represented as a function of the reciprocal scattering vectors q

 are the scattering vectors.zqandyq,xqwhereଶ
௬ ଶݍ

௫ݍට 

The SC films exhibit the characteristic three meridional reflections (h00) of the crystalline phase 

of P3HT which are higher orders of the (100) reflection (Figure 5.11a-d). The equatorial reflection 

is attributed to the superposition of the (020) and (002) reflections [26,27]. These GIWAXS 

patterns are in agreement with previous studies reporting a crystal distribution of P3HT sheets 

formed by the stacking of the thiophene rings on a mainly edge-on configuration, with 

polymer backbone chains parallel to the substrate [27]. P3HT films with LIPSS exhibit similar 

reflections as observed in Figure 5.11e-h. In addition, by visualizing the reciprocal space patterns 

for the different samples a significant crystal orientation is suggested. The interlayer distance 
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between 2D sheets of conjugated polythiophene backbones separated by planes of alkyl side 

chains has been calculated in 1.58 ± 0.02 nm and 1.60 ± 0.03 nm for unstructured and LIPSS 

films respectively, and the the stacking distance between polythiophene backbones is 0.38 ± 

0.02 nm in both cases. These results are in agreement with previous reports [26,27]. 

Figure 5.11 Upper row: GIWAXS patterns in reciprocal space taken with an incidence 

angle i =0.2o for the SC P3HT films prepared from different solution concentrations: (a) 

8 (b) 12 (c) 20 and (d) 28 g/L and bottom row: corresponding irradiated P3HT films (26 

mJ/cm2, 3600 pulses) prepared from different solution concentrations: (e) 8 (f) 12 (g) 20 

and (h) 28 g/L Intensity scale is logarithmic. 

Qualitative information about the crystallinity can be obtained by the radial integration of the 

GIWAXS pattern in the meridian direction shown in Figure 5.12. For the sake of comparison, the 

data have been normalized to the intensity of the main maximum. 

From Figure 5.12, we can find that the crystalline structure is similar for non-nanostructured 

P3HT and for P3HT with LIPSS films. If one considers the intensity ratio among the consecutive 

maxima, then it is possible to infer that the crystallinity of the spin-coated films tends to be 

reduced as the thickness of the film decreases. Crystallization under the confined environment 

imposed by a thin film has been reported to have a negative impact on the crystallinity of the 

polymer film [28-30]. Although films with LIPSS exhibit crystallinity it is clear that the 

irradiation reduces the crystalline phase as deduced from the decrease of the ratio between the 
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intensity of the main maximum in relation to the consecutive orders. This effect is consistent with 

previous resonance Raman spectroscopy observations indicating that the amount of non-ordered 

phase in P3HT films with LIPSS increases upon irradiation [30]. Heating due to the laser 

irradiation occurs in the nanosecond range as explained before while the subsequent cooling down 

after the pulse action takes place in a microsecond/millisecond range. This fast quenching 

precludes the recovery of the initial crystallinity of the spin-coated film.  
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Figure 5.12  GIWAXS (αi =0.2o) intensity profiles, normalized to the main maximum, 

across the meridian direction for the SC P3HT films (solid symbols) and for the laser 

irradiated films (open symbols) prepared from different solution concentrations: (■) 8, (▲) 

12, (●) 20 and (♦) 28 g/L.  

All the results presented so far refer to films with LIPSS prepared at a single fluence of 

26 mJ/cm2 and 3600 pulses. LIPSS films have been prepared in a broader range of fluences 

irradiating with 3600 pulses. Figure 5.13a and Figure 5.13b show in a 3D plot the surfaces 

defining the heights and the period of the LIPSS obtained from AFM measurements as a 

function of the fluence for the different thicknesses investigated. For the thinnest film 

(41 ± 15 nm) no LIPSS are formed (see Figure 5.8e). As one can see, once the LIPSS are 

formed on P3HT film their period is almost constant around a value of 432 ± 29 nm, while 

the height of the LIPSS exhibits dependence with both fluence and initial thickness of the 
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spin-coated precursor film. Deeper LIPSS are obtained for films thicknesses between 100 

and 250 nm, with values up to 100 nm. This thickness range corresponds to the region of 

optimal LIPSS formation according to AFM (Figure 5.8) and GISAXS (Figure 5.9). For 

thicker films the height of the obtained LIPSS decreases down to few nanometers. 

Figure 5.13 3D plots showing the surfaces defining the (a) period and (b) heights of the
 

LIPSS (3600 pulses) as a function of the fluence for the different thicknesses investigated. 


5.5 Conclusion 

In this chapter LIPSS formation in polystyrene, considered as a model polymer, has been reported 

upon irradiation at 266 nm since at this wavelength PS absorbs efficiently. In particular the effect 

of the number of pulses, the film thickness and the supporting substrates properties on the quality 

of LIPSS have been studied. It has been shown that LIPSS can be obtained with different degrees 

of order by adjusting the film thickness and the substrate used for supporting the PS films. The 

thinner (< 200 nm) and thicker (> 400 nm) films can form parallel LIPSS, whereas less-ordered 

LIPSS with drop-like structure form in the films with intermediate values of thickness (200-400 

nm). When the polymer film is irradiated the energy absorbed provokes a temperature increase 

and in order to induce morphological modification the temperature should be high enough to grant 

significant polymer chain mobility. In this case, PS must be heated above its glass transition 

temperature, which is 105 ºC. The estimation of temperature upon irradiation with successive 

pulses shows that at least 200 pulses are needed. In a first step changes in roughness occur, in 

what we call incubation regime, and after a larger number of pulse, around 3600, LIPSS are 

formed. 
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The supporting substrates can influence the LIPSS formation process. Thus, differences observed 

in the fluence and number of pulses needed for the onset of morphological modifications is 

explained considering the differences in thermal conductivity between the polymer and the 

substrate. The quality of the LIPSS can be also affected by the optical properties of the substrate 

which determine the energy reflected by it. Similar to the study on PS, LIPSS formation in P3HT 

spin-coated films has been studied. In this case thin films have been deposited on silicon and have 

been irradiated at 532 nm as P3HT is a strong absorbing material at this wavelength. LIPSS 

formation takes place optimally in certain range of thicknesses between 80 and 280 nm and for a 

fluence range between 22 and 31 mJ/cm2
. The initially smooth surface increases its roughness as 

a consequence of the heating of polymer film, in this case above the Tm, around 240 ºC. It is 

important to mention that thick films present larger roughness values which may affect the quality 

of LIPSS since complex light scattering processes may occur leading to non-parallel interferences. 

P3HT LIPSS films prepared in this way has been thought to be used in OPVS devices, although 

the preparation and characterization of such devices using present technology are still under way 

[31]. 

5.6 References 

[1]	 Rebollar, E., Pérez, S., Hernández, J. J., Martín-Fabiani, I., Rueda, D. R., Ezquerra, T. A. and 
Castillejo, M. Assessment and Formation Mechanism of Laser-Induced Periodic Surface 
Structures on Polymer Spin-Coated Films in Real and Reciprocal Space. Langmuir 27, 5596-5606 
(2011). 

[2]	 Li, M., Lu, Q. H., Yin, J., Qian, Y. and Wang, Z. G. Effects of Post-thermal Treatment on 
Preparation of Surface Microstructures Induced by Polarized Laser on Polyimide Film. Materials 
Chemistry and Physics 77, 895-898 (2003). 

[3]	 Csete, M. and Bor, Z. Laser-induced Periodic Surface Structure Formation on Polyethylene
terephthalate. Applied Surface Science 133, 5-16 (1998). 

[4]	 Mate, C. M., Toney, M. F. and Leach, K. A. Roughness of Thin Perfluoropolyether Lubricant 
Films: Influence on Disk Drive Technology. IEEE Transactions on Magnetics 37, 1821-1823 
(2001). 

[5]	 Green, M. A. Self-consistent Optical Parameters of Intrinsic Silicon at 300 K Including 
Temperature Coefficients. Solar Energy Materials and Solar Cells 92, 1305-1310 (2008). 

[6]	 Lasagni, F. A. and Lasagni, A. F. Fabrication and Characterization in the Micro-nano Range: 
New Trends for Two and Three Dimensional Structures. Vol. 10 (Springer Berlin Heidelberg, 
2011). 

[7]	 Beder, E. C., Bass, C. D. and Shackleford, W. L. Transmissivity and Absorption of Fused Quartz 
Between 0.22 μ and 3.5 μ from Room Temperature to 1500°C. Applied Optics 10, 2263-2268 
(1971). 

[8]	 Mark, J. E. Physical Properties of Polymers Handbook. (Springer, New York, 2007). 

[9]	 Crystran Ltd, P., UK,. Quartz Crystal (SiO2), <http://www.crystran.co.uk/optical
materials/quartz-crystal-sio2> (2016). 

[10]	 De Nicola, S., Carbonara, G., Finizio, A. and Pierattini, G. Measurement of the Temperature 
Dependence of Quartz Refractive Indices. Applied Physics B 58, 133-135 (1994). 

121 

http://www.crystran.co.uk/optical


 

  
  

   
 

 

      
    

   

   
 

   
 

  
   

 

       

 

 

     

   
  

      
 
  

 
  

 

 
  

    
   

  

   
 

 

   

  

     
 

   
  

[11]	 Li, H. H. Refractive Index of Silicon and Germanium and its Wavelength and Temperature 
Derivatives. Journal of Physical and Chemical Reference Data 9, 561-658 (1980). 

[12]	 Malitson, I. H. Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the 
Optical Society of America 55, 1205-1209 (1965). 

[13]	 Palik, E. D. Handbook of Optical Constants of Solids. Vol. 3 (Academic press, US, 1998). 

[14]	 Fardel, R., Nagel, M., Lippert, T., Nüesch, F., Wokaun, A. and Luk’yanchuk, B. S. Influence of 
Thermal Diffusion on the Laser Ablation of Thin Polymer Films. Applied Physics A 90, 661-667 
(2008). 

[15] 	 Rebollar, E., Castillejo, M. and Ezquerra, T. A. Laser Induced Periodic Surface Structures on 
Polymer Films: From Fundamentals to Applications. European Polymer Journal 73, 162-174 
(2015). 

[16]	 Vogel, A. and Venugopalan, V. Mechanisms of Pulsed Laser Ablation of Biological Tissues. 
Chemical Reviews 103, 577-644 (2003). 

[17]	 Cui, J., Nogales, A., Ezquerra, T. A. and Rebollar, E. Influence of substrate and film thickness on 
polymer LIPSS formation. Applied Surface Science, In press (2016). 

[18]	 Rebollar, E., Rueda, D. R., Martín-Fabiani, I., Rodríguez-Rodríguez, Á., García-Gutiérrez, M.-C., 
Portale, G., Castillejo, M. and Ezquerra, T. A. In Situ Monitoring of Laser-induced Periodic 
Surface Structures Formation on Polymer Films by Grazing Incidence Small-Angle X-ray 
Scattering. Langmuir 31, 3973-3981 (2015). 

[19]	 Martín-Fabiani, I., Rebollar, E., Pérez, S., Rueda, D. R., García-Gutiérrez, M. C., Szymczyk, A., 
Roslaniec, Z., Castillejo, M. and Ezquerra, T. A. Laser-induced Periodic Surface Structures 
Nanofabricated on Poly(trimethylene terephthalate) Spin-coated Films. Langmuir 28, 7938-7945 
(2012). 

[20]	 Rueda, D. R., Martin-Fabiani, I., Soccio, M., Alayo, N., Perez-Murano, F., Rebollar, E., Garcia-
Gutierrez, M. C., Castillejo, M. and Ezquerra, T. A. Grazing-incidence Small-angle X-ray 
Scattering of Soft and Hard Nanofabricated Gratings. Journal of Applied Crystallography 45, 
1038-1045 (2012). 

[21]	 Bolognesi, A., Porzio, W., Provasoli, F. and Ezquerra, T. The Thermal Behaviour of Low
molecular-weight Poly(3-decylthiophene). Die Makromolekulare Chemie 194, 817-827 (1993). 

[22]	 Bolognesi, A., Porzio, W., Zhuo, G. and Ezquerra, T. The Thermal Behaviour of Poly(3
octylthienylene) Synthesized by an Ni-Based Catalyst: DSC, Optical Microscopy and XRD 
Analyses. European Polymer Journal 32, 1097-1103 (1996). 

[23]	 Baker, J. L., Jimison, L. H., Mannsfeld, S., Volkman, S., Yin, S., Subramanian, V., Salleo, A., 
Alivisatos, A. P. and Toney, M. F. Quantification of Thin Film Crystallographic Orientation Using 
X-ray Diffraction with an Area Detector. Langmuir 26, 9146-9151 (2010). 

[24]	 DeLongchamp, D. M., Kline, R. J. and Herzing, A. Nanoscale Structure Measurements for 
Polymer-fullerene Photovoltaics. Energy & Environmental Science 5, 5980-5993 (2012). 

[25]	 Jiang, Z. GIXSGUI: a MATLAB Toolbox for Grazing-incidence X-ray Scattering Data 
Visualization and Reduction, and Indexing of Buried Three-dimensional Periodic Nanostructured 
Films. Journal of Applied Crystallography 48, 917-926 (2015). 

[26]	 Wu, Z., Petzold, A., Henze, T., Thurn-Albrecht, T., Lohwasser, R. H., Sommer, M. and Thelakkat, 
M. Temperature and Molecular Weight Dependent Hierarchical Equilibrium Structures in 
Semiconducting Poly(3-hexylthiophene). Macromolecules 43, 4646-4653 (2010). 

[27]	 Kohn, P., Rong, Z., Scherer, K. H., Sepe, A., Sommer, M., Mueller-Buschbaum, P., Friend, R. H., 
Steiner, U. and Huettner, S. Crystallization-Induced 10-nm Structure Formation in P3HT/PCBM 
Blends. Macromolecules 46, 4002-4013 (2013). 

[28]	 Capitán, M. J., Rueda, D. R. and Ezquerra, T. A. Inhibition of the Crystallization in Nanofilms of 
Poly(3-hydroxybutyrate). Macromolecules 37, 5653-5659 (2004). 

[29]	 Ma, Y., Hu, W. and Reiter, G. Lamellar Crystal Orientations Biased by Crystallization Kinetics in 
Polymer Thin Films. Macromolecules 39, 5159-5164 (2006). 

122 



 

   

 

 
 

  
 

[30]	 Rodríguez-Rodríguez, Á., Rebollar, E., Soccio, M., Ezquerra, T. A., Rueda, D. R., Garcia-Ramos, 
J. V., Castillejo, M. and Garcia-Gutierrez, M.-C. Laser-Induced Periodic Surface Structures on 
Conjugated Polymers: Poly(3-hexylthiophene). Macromolecules 48, 4024-4031 (2015). 

[31]	 Cui, J., Rodríguez-Rodríguez, Á., Hernández, M., García-Gutiérrez, M.-C., Nogales, A., Castillejo, 
M., González, D. M., Müller-Buschbaum, P., Ezquerra, T. A. and Rebollar, E. On the Laser 
Induced Periodic Surface Structures of P3HT and of its Blend with PC71BM. Submitted to ACS 
Applied Materials & Interfaces (2016). 

123 





 

 

  

 

   

6 

On the laser induced surface structures 

of ferroelectric polymers 

125 



 

 

126 




 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, bilayer films were prepared selecting P3HT as bottom and P(VDF-TrFE) as upper 

layer, respectively, and varying the thicknesses of both layers. LIPSS on a non-absorbing polymer, 

in this case P(VDF-TrFE), can be fabricated by using nanosecond laser pulses. Samples were 

irradiated at a wavelength of 532 nm and a laser fluence of 26 mJ/cm2 with a constant number of 

pulses of 3600, since the previous chapter has proved that these conditions are the optimal ones 

for LIPSS formation on P3HT thin films. Different structures, from grating-like to rod-like 

structures can be obtained by varying the thickness of the upper layer and the bottom layer. Those 

results indicate that both the bottom layer and the upper layer thickness can influence the 

nanostructure formation on P(VDF-TrFE). The crystallinity and orientation of both components 

are studied by GIWAXS and GISAXS, while the ferroelectricity of formed P(VDF-TrFE) 

nanostructure is characterized by PFM. 

6.1 Samples 

Preparation of bilayer films has been illustrated in Chapter 2 in Section 2.2.3.2. Bilayers were 

prepared in a broad range of thickness of the two components, P3HT and P(VDF-TrFE). The 

labels of the prepared bilayers, together with the concentration of both components are listed in 

Table 6.1. Regarding P(VDF-TrFE) single layer, due to its weak absorption coefficient, no LIPSS 

are formed independently of the film thickness and the irradiation conditions. In fact, high 

fluences and larger number of pulses leads to material ablation without formation of any ordered 

or periodical structures [1]. Thus, these films have not been irradiated and are shadowed in green 

in Table 6.1. For a P(VDF-TrFE) concentration of 2 g/L dewetting is clearly observed as shown 

in Chapter 4, and thus these films have not been irradiated either. 

Table 6.1 Labels as a function of the concentration of the two components for the prepared 

bilayer films. Samples shadowed in green are those non-irradiated. 

P3HT 
P(VDF-TrFE) (g/L) 

(g/L) 

0  2  3  5  7  12  15  

0 - 0002 0003 0005 0007 0012 0015 

8 0800 0802 0803 0805 0807 0812 0815 

12 1200 1202 1203 1205 1207 1212 1215 

16 1600 1602 1603 1605 1607 1612 1615 

20 2000 2002 2003 2005 2007 2012 2015 
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6.2 Characterization of polymer bilayers 

6.2.1 As-prepared polymer bilayers 

The topography of the spin-coated bilayer films formed by P3HT and P(VDF-TrFE) was 

examined by AFM, and the thickness and surface average roughness as a function of the 

concentration of both P3HT and P(VDF-TrFE) are shown in Figure 6.1. Figure 6.1a shows that 

for P3HT and P(VDF-TrFE) single layers, a nearly linear relationship between the film thickness 

and its solution concentration can be observed. For the prepared bilayers, the thickness also 

increases gradually with the concentration of both components. The thicknesses of the single 

layers on silicon as a function of solution concentration were presented in Figured 2.5 and 2.6. 

The roughness of the prepared bilayers (Figure 6.1b) is relatively high when the upper layer is 

prepared by spin coating of a solution with low P(VDF-TrFE) concentration (2 and 3 g/L) since 

dewetting takes place as it has been discussed in Chapter 4. Increasing the concentration of the 

upper layer leads to smoother films, with average roughness ranging from 0.8 to 1.2 nm. These 

roughness values are comparable to the roughness of a pure P(VDF-TrFE) film. 

Figure 6.1 3D plot of (a) thickness and (b) Ra of bilayers as a function of the P3HT and 

P(VDF-TrFE) concentrations.  

Figure 6.2 shows as an example 5 μm × 5 μm AFM topography images of the spin-coated bilayer 

films based on P3HT layers with a constant thickness of 150 nm (16 g/L) and different 

concentrations of P(VDF-TrFE). For the sake of comparison, P3HT (16 g/L) and P(VDF-TrFE) 

(3 g/L) are also presented in Figure 6.2a and b. For both single layers, AFM images show a 

continuous surface without dewetting and agglomerates. The P3HT single film exhibits a 

roughness of 3.4 ± 0.2 nm, while the P(VDF-TrFE) single film shows a roughness of 0.5 nm. The 
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roughness values of the two single films are related to the presence of crystallites on the surface, 

since both polymers are semicrystalline.  

Figure 6.2 AFM topography images (5 μm × 5 μm) of single layers of (a) P3HT 16 g/L, (b) 


P(VDF-TrFE) 3 g/L, and P3HT /P(VDF-TrFE) spin-coated bilayer films: (c) 1603,(d) 1605, 


(e) 1612 and (f)1615. 

Figure 6.2c–f show AFM topography images of the bilayer films with different thickness of the 

upper layer from 12 nm (1603) to 95 nm (1615). Dewetting takes place for the sample 1603, 

(Figure 6.2c) while the increase of P(VDF-TrFE) concentration leads to the formation of 

continuous upper film. Roughness of the spin-coated film decrease from 3 to 1 nm, comparable 

with that of P(VDF-TrFE) single film. 

6.2.2 Nanostructure formation on bilayer films 

LIPSS can only be formed on polymer surfaces by nanosecond laser irradiation when the laser 

wavelength is within the region in which the polymer has a strong absorption. For this reason, the 

UV-Vis absorption spectra for P3HT and P(VDF-TrFE) were measured in order to determine the 

absorption coefficient of both materials. The spectra of P3HT has been previously shown in 

chapter 5 and in Figure 6.3 is displayed in comparison to the spectra corresponding to P(VDF-

TrFE). All data are normalized to the film thicknesses. The results reveal that the P3HT has an 

absorption coefficient α at 532 nm of 86200 cm-1, while the α for P(VDF-TrFE) at that wavelength 

is much smaller, in particular 461 cm-1. 
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Figure 6.3  UV-Vis-NIR absorption spectra for P3HT (purple) and P(VDF-TrFE) (red). 

Spectra have been normalized to the sample thickness. The vertical dashed line in the figure 

corresponds to the wavelengths 532 nm. 

In Chapter 5 it was shown that in P3HT single layer films irradiated with a laser at the wavelength 

of 532 nm with 3600 pulses, and a fluence of 26 mJ/cm2, parallel well-ordered LIPSS can be 

obtained within a thickness range from 80 to 280 nm (concentration 12 to 20 g/L) [2]. In particular, 

a film thickness larger than 50 nm is needed to induce the formation of periodic structures while 

LIPSS start to distort when the thickness is larger than 280 nm. Bilayers with P3HT 

concentrations in the range 8-20 g/L and P(VDF-TrFE) concentration in the range 3-15 g/L were 

irradiated at the same conditions that have been shown to be optimal for LIPSS formation in P3HT 

single layers, i.e. 26 mJ/cm2 and 3600 pulses. Figure 6.4 shows AFM topography images of the 

bilayers based on P3HT 16 g/L and different thickness of the upper layer from 12 to 96 nm. P3HT 

single layer film irradiated under the same condition is also presented in Figure 6.4a for 

comparison. 

From the Figure 6.4 it is clear that the thickness of the upper layer influences the structures formed 

upon irradiation and the effect becomes especially important for thicker upper layers. When the 

P(VDF-TrFE) layer is thin and with slight dewetting, as is the case of the sample 1603 (Figure 

6.4b), laser irradiation induces LIPSS formation on P3HT layer and favours additional dewetting 

of the upper ferroelectric layer. For the samples 1605 and 1607 (Figure 6.4c and d) LIPSS are 

clearly formed with a period around 425 nm, similar to the one observed for the P3HT single 

layers. For a further increase of the upper layer thickness (samples 1612 and 1615, Figure 6.4e 

and f), in the range from 60 to 90 nm, the LIPSS start to distort and the patterns change from 

parallel ripples to an isotropic distribution of short rod-like structures with no preferential 

orientation. 
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Figure 6.4  AFM topography images (5 μm×5 μm) of films irradiated at 532 nm with a 

fluence of 26 mJ/cm2 and 3600 pulses: (a) P3HT single layer film (16 g/L) and 

P3HT/P(VDF-TrFE) bilayer films: (b) 1603,(c) 1605, (d) 1607, (e) 1612 and (f) 1615. 

Ripple periods and heights for bilayer films with various thicknesses are plotted in Figure 6.5. 

LIPSS for P3HT single layer film with different thickness irradiated under the same condition are 

also plotted for comparison. For those bilayer films in which LIPSS are formed, the period and 

height values are similar to those observed for the P3HT single layers. However, for P(VDF-TrFE) 

concentration above 7 g/L, corresponding to a thickness of 40 nm, no LIPSS are obtained and the 

height of formed rod-like nanostructure decreases in comparison to the height of LIPSS. 

To rule out the possibility of discontinuity of the ferroelectric upper layer C-AFM measurements 

were performed. Figure 6.6 shows the height and corresponding C-AFM current image for the 

nanostructured bilayer 1603, by applying a constant voltage of -5 V. 

In the case of the bilayer film 1603, in which the upper P(VDF-TrFE) layer is not continuous (see 

Figure 6.2), also a conductivity contrast can be observed. It seems that there is a non-continuous 

upper layer which is non-conducting and can be assigned to P(VDF-TrFE) while in the bottom 

layer there are regions with different conductivity. Those regions that exhibit higher conductivity 

correspond to the valleys of the LIPSS and those showing lower conductivity correspond to the 

ridges, similar to previously reported results [3]. The difference in conductivity in LIPSS can be 

explained considering the crystallinity decrease in P3HT when is melted upon laser irradiation. 

This provokes that ridges have a lower molecular order than that of the valleys [3]. 
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Figure 6.5 Variation of period L (filled symbols) and height H (half filled symbos) of 

LIPSS as a function of thickness of P3HT layer: ( ) 8 g/L, ( ) 12 g/L, ( ) 16 g/L and 

( ) 20 g/L. Lines are shown as visual guides. Values corresponding to LIPSS formed on 

P3HT single layers with different thicknesses irradiated under the same condition are also 

plotted (P(VDF-TrFE) concentration 0 g/L) for comparison. 

Figure 6.6  C-AFM measurement of the P3HT/P(VDF-TrFE) bilayer 1603, irradiated at 

532nm, 26 mJ m-2 and 3600 pulses, measured at a constant bias of -5 V. (a) height and (b) 

current maps. 

In Figure 6.7, corresponding to the bilayer 1605, it can be observed that the sample is not 

conducting, confirming that the upper layer must be the P(VDF-TrFE) film, homogeneously 

covering the P3HT layer. 
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Figure 6.7 C-AFM measurement of the P3HT/P(VDF-TrFE) bilayer 1605, irradiated at 

532 nm, 26 mJ m-2 and 3600 pulses, measured at a constant bias of -5 V. (a) height and (b) 

current maps. 

6.2.3 Structural characterization of LIPSS by GISAXS 

GISAXS experiments have been performed on nanostructured bilayer films, since they can 

provide statistical information over a large sample area on the structural order of LIPSS formed 

in polymers [4-6]. The GISAXS measurements were performed with incidence angle i range 

from 0.14 to 0.4º for all samples. Figure 6.8 displays characteristic GISAXS patterns of selected 

bilayer films, with P3HT 16 g/L as bottom layer and different thickness of P(VDF-TrFE) as upper 

) is associated to the ് 0௬ݍlayer. The number of scattering maxima out of the meridian (i.e., for 

structure factor of the lattice [7] and reflects the level of order of the structure [6]. For the thinnest 

upper layer irradiated (sample 1603) and the thicker ones (samples 1612 and 1615), the scattering 

patterns show similar scattering features as those unstructured spin-coated films (see Chapter 5). 

In contrast, GISAXS patterns corresponding to the bilayers with intermediate thickness of the 

upper layer (1605 and 1607) exhibit vertical diffraction maxima, which are characteristic of 

LIPSS formation [2]. These features can be described as produced by a quasi-one-dimensional 

grating [7]. 

Figure 6.8  GISAXS patterns taken with an incidence angle of i=0.2o for P3HT/P(VDF-


TrFE) bilayer films irradiated at 26 mJ/cm2 and 3600 pulses: (a) 1603, (b) 1605, (c) 1607, 


(d) 1612 and (e) 1615. 
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Figure 6.9 shows horizontal line cuts from the 2D GISAXS data at αi = 0.2º taken at an exit angle 

α = 0.15º. The GISAXS intensity profiles show no features for 1603, 1612 and 1615, while those 

bilayers with intermediate thickness of the upper layer (1605 and 1607) exhibit vertical diffraction 

maxima. All these results are in agreement with the AFM study (Figure 6.4). 
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Figure 6.9 Selected horizontal line cuts from the 2D GISAXS data taken at an exit angle 

=0.15o, in logarithmic scale, for LIPSS generated at 26 mJ/cm2 and 3600 pulses on 

P3HT/P(VDF-TrFE) bilayer films prepared from P3HT of 16 g/L as bottom film covered 

with different solution concentrations of P(VDF-TrFE) layer: 3 g/L (black), 5 g/L (red line), 

7 g/L (green), 12 g/L (blue) and 15 g/L (cyan). Patterns were shifted vertically for the sake 

of comparison.  

GISAXS measurements were also performed at different incident angles to probe the structure of 

the bilayer at different depths. The results for the bilayer 1605 are shown as an example in Figure 

6.10. Figure 6.11 shows the scattering intensity profiles at an exit angle =0.15o. Although the 

intensity decreases as the incident angle increases, the number of maxima remains constant for i 

= 0.14, 0.2 and 0.3o, while the low intensity for i = 0.4º does not allow to distiguish clearly the 

scattering maxima. This is due to the fact that when the incident angle is close to the critical angle 

(for the lowest angles used), the refracted beam is nearly parallel to the film interface, and coupled 

into waveguide modes, increasing the effective path-length of the beam through the sample, which 

thereby increases the intensity of the scattering. For higher incident angles well above the critical 

angle, the beam probes deeper material and the reflected beam becomes weaker, thus the detected 

intensity decreases. Since the order of patterns is related to the number of GISAXS scattering 

maxima [6], we can deduce that the order of formed LIPSS are the same from the surface to the 
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Figure 6.10  GISAXS patterns of P3HT/P(VDF-TrFE) bilayers 1605 nanostructured with 

LIPSS, measured with different incident angles: (a)  αi = 0.14º, (b) αi = 0.2º, (c) αi = 0.3º 

and (d) αi = 0.4º. 
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Figure 6.11 Selected horizontal line cuts from the 2D GISAXS data taken at an exit angle 

=0.15o, of different incident angles: 0.14º (black),0.2º (red), 0.3º (green) and 0.4º (blue), 

in logarithmic scale, for LIPSS generated at 26 mJ/cm2 and 3600 pulses on 

P3HT/P(VDF-TrFE) bilayer films. Patterns were shifted vertically for the sake of 

comparison. 

6.2.4 Crystalline structure of bilayer films by GIWAXS 

GIWAXS study of P3HT single layer films has proved that changes in the crystalline structure 

take place upon irradiation as shown in Chapter 5. In this chapter we attempt to investigate the 

changes induced in P(VDF-TrFE) and whether the presence of this upper layer influences the 

changes occurring at the bottom P3HT one. Thus, crystalline structure of the bilayer films is 
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investigated as a function of the P(VDF-TrFE) film thickness. The 2D X-ray scattering patterns 

of the as spin-coated bilayers (top) and of the irradiated films (bottom) for various thicknesses of 

the P(VDF-TrFE) upper layer are presented in Figure 6.12. For the sake of comparison, the 2D 

patterns of P(VDF-TrFE) and P3HT single layer films are also presented in Figure 6.12. 

Figure 6.12 GIWAXS patterns taken with an incidence angle αi =0.2o of the spin-coated 

(upper row) bilayer films with different thickness of P(VDF-TrFE) layer deposited on the 

P3HT film: (a) 1603, (b) 1605, (c) 1612 and (d) 1615. Bottom row presents corresponding 

GIWAXS patterns of the irradiated bilayer (26 mJ/cm2, 3600 pulses): (e) 1603, (f) 1605, 

(g) 1612 and (h) 1615 g/L. GIWAXS patterns of single layers of P(VDF-TrFE) 15 g/L and 

P3HT 16 g/L are displayed in the top right corner for comparison. 

As described in Chapter 5, in P3HT single layers the three meridional reflections (h00) are 

consecutive orders of the (100) reflection with a q-value of 3.8 nm-1 [8]. The equatorial weak 

reflection with a reciprocal scattering vector q-value of 16.39 nm-1 is attributed to the 

superposition of the (020) and (002) reflections [9,10]. In addition, the meridional reflections 

reveal that the P3HT thin film is uniaxially oriented with mainly an edge-on configuration, which 

corresponds to the usual conformation adopted by P3HT films consisting of polymer chains 

parallel to the substrate [46]. A similar orientation is observed for the film nanostructured with 

LIPSS as previously discussed in Chapter 5.  

From the 2D GIWAXS pattern of P(VDF-TrFE) single layer film shown in Figure 6.12, both 

polymer chain and lamellae orientation of the polymer can be characterized [11]. There is an 
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intense reflection on the meridian with a reciprocal scattering vector of approximately 

q = 14.3 nm-1. This reflection arises from either the (110) or (200) plane of an orthorhombic 

crystal lattice in which the similar lattice spacing of (110) and (200) gives rise to a pseudo

hexagonal diffraction pattern [12,13]. The reflection of P(VDF-TrFE) appearing at the meridian 

direction suggests that the P(VDF-TrFE) crystals have preferential orientation aligned along the 

film surface normal with the polymer chains lying on the surface [12]. 

The characterization of the single layers allows the analysis of the GIWAXS patterns of the 

P3HT/P(VDF-TrFE) bilayers. For all the spin-coated bilayer films (Figure 6.12 a-d), four semi

ring reflections are observed at the meridian direction. The crystalline reflections of the two 

components distribute independently, indicating that both polymers do not mix together. Thus, 

the inner three meridional reflections h00 with q value located at 3.86, 7.42 and 11.26 nm-1, are 

those consecutive orders of the (100), (200), and (300) reflections of P3HT crystals aligned 

parallel to the surface normal. That at qz = 14.1 nm-1 is attributed to P(VDF-TrFE) and its intensity 

increases when increasing P(VDF-TrFE) thickness.  
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Figure 6.13  GIWAXS (αi =0.2º) intensity profiles, normalized to the main maximum, 

across the meridian direction for the spin-coated (continuous lines) and for the irradiated 

films (26 mJ/cm2, 3600 pulses, dashed lines) bilayers prepared from different relative 

thickness: 1603 (red), 1605 (green), 1612 (cyan) and 1615 (magenta). Pattern profile of 

P(VDF-TrFE) single layers is also displayed (olive) for comparison. 
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Figure 6.13 presents the GIWAXS intensity profiles across the meridian direction by the radial 

integration of the 2D GIWAXS patterns as a function of the thickness of the upper layer. For the 

sake of comparison, the data have been normalized to the intensity of the main maximum. 

Comparing the GIWAXS patterns and the intensity profiles of the irradiated bilayers with those 

of the spin-coated bilayers, several interesting changes can be observed. After irradiation, the 

scattering intensity for P3HT decreases in comparison to that of P(VDF-TrFE), which could be 

due to the reduced crystallinity of P3HT when LIPSS are formed [3] as previously shown and 

discussed in Chapter 5. In contrast P(VDF-TrFE) (200/110) reflections become sharper in all 

irradiated samples, which could be related to an increase of the domain size [14] as a consequence 

of the heating and cooling cycles taking place upon laser irradiation. 

6.3	 Mechanism of LIPSS formation in non-absorbing polymer 

films 

Since LIPSS are not formed in the P(VDF-TrFE) single layers upon laser irradiation, the 

development of periodic nanostructures on the bilayer must be associated with the P3HT bottom 

layer. As the P(VDF-TrFE) absorbs very weakly at the irradiating laser wavelength of 532 nm, 

the laser beam passes through the upper polymer layer without significantly altering its energy 

before reaching the P3HT bottom layer. Then, structuring takes place just as in the P3HT single 

layers film shown in Chapter 5, heating the polymer above its melting temperature, in case of 

P3HT around 240 ºC [15,16], in such a way that the polymer segments acquire enough mobility 

as to rearrange following the modulation imposed by the laser. Afterwards, heat dissipation from 

the P3HT allows cooling and fixing the nanostructure of the bottom layer while heating the 

P(VDF-TrFE) on top. This heat transfer is expected to melt the ferroelectric polymer, since 

temperature is above its Tm, which is 150 ºC [17,18], gaining mobility and accommodating on the 

pattern of the bottom layer. This is observed for upper layers thinner than 40 nm. However, for 

thicker upper layers, rod-like structures are formed rather than LIPSS. In principle this could be 

influenced either by the bottom layer structure or by the agglomeration of P(VDF-TrFE) during 

the melting and recrystallization process. When P(VDF-TrFE) recrystallizes from melt, the 

growing crystals and the heterogeneous material distribution on P3HT structure give rise to large 

domain and more perfect crystals. This has been evidenced in GIWAXS patterns, which show 

sharper crystal reflections for the irradiated P(VDF-TrFE) samples. 

To answer whether the structures observed upon irradiation of thicker upper layers are due to the 

bottom layer or to the upper one, the laser-irradiated 1605 bilayer was washed with MEK for 

30 minutes at 72 ºC, which completely dissolves the upper P(VDF-TrFE) layer. The topography 

of the washed sample is displayed in Figure 6.14b, and for comparison the irradiated bilayer 

before being washed is also shown. 
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Comparing the AFM images of the irradiated bilayer film before and after the selective removal 

of P(VDF-TrFE), it can be observed that the morphology does not change. This result reveals that 

the disordered rod-like structures are formed in P3HT layer and again the upper P(VDF-TrFE) 

accommodates on the pattern of the bottom layer. Further proof of this are the GISAXS patterns 

obtained at different incidence angles, i.e. different depths analyzed (Figure 6.14c-f), which show 

no vertical diffraction maxima, indicating that no periodic structures are formed. So, even if also 

for thick P(VDF-TrFE) upper layers the laser light reaches the P3HT and is efficiently absorbed 

inducing the heating and melting of the material, a mechanical constraint exists caused by the 

upper layer, which prevents LIPSS formation. P3HT cannot rearrange freely during the time it is 

melted and the formation of grating-like structure is not possible. 

Figure 6.14  AFM images of the P3HT/P(VDF-TrFE) bilayer film 1615 irradiated at 26 

mJ/cm2 with 3600 pulses (a) before and (b) after immersing in MEK for 30 min at 72 ºC. 

The corresponding height profiles are below the height images. GISAXS pattern of bilayers 

1605 LIPSS with different incident angles: (c) αi=0.14º, (d) αi=0.2º, (e) αi=0.3º and (f) 

αi=0.4º. 

6.4 Ferroelectric response of nanostructured bilayers 

Figure 6.15 shows the PFM phase shifts as a function of the applied tip bias for the 1605 bilayer. 

Both the non-irradiated bilayer film and the nanostructured one exhibit polarization reversibility, 

139 



 

  

 

 

 

 

    

 

  

 

 

 

 

 

 

i.e., the polarization directions can be switched at both polarities of tip voltage. The coercive field 

in the case of non-irradiated bilayer films can be estimated to be Ec = (25 ± 10) MV/m, considering 

that the thickness of P(VDF-TrFE) layer is 25 ± 5 nm. This value is similar to those found in 

previous works for continuous films of this ferroelectric polymer [11,19]. Then, nanostructured 

bilayers also exhibit a ferroelectric response, with a coercive field Ec = (30 ± 10) MV/m 

considering the same P(VDF-TrFE) thickness than the initial one. Evidence of ferroelectricity in 

the nanostructured layer further supports that the top layer follows the topography of the P3HT 

one. 
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Figure 6.15  PFM phase shift as a function of applied electric voltage for P3HT/P(VDF-

TrFE) 1605 bilayer: spin-coated bilayer film (red) and bilayer with LIPSS (black). 

Figure 6.16 shows the topography, PFM amplitude and PFM phase images obtained 

simultaneously for an area of 5 μm ×1 μm of the spin-coated and irradiated bilayers 1605 and 

1615. The topographic images of the spin-coated bilayers show smooth surfaces and neither the 

PFM amplitude nor the phase shift show any contrast along the entire area, which indicates a non

preferential orientation of the polymer dipoles in the as casted films. In the case of the 

nanostructured bilayers PFM was carried out by scanning the tip in a direction parallel to the 

LIPSS to minimize the possible damage caused by tip-surface interaction. For the bilayer 1605 

there is no preferential ferroelectric response indicating that the laser induced ripples do not align 

the P(VDF-TrFE) dipole moment in any preferential direction. However, there are some P(VDF-

TrFE) droplets on top of the LIPSS in which the ferroelectric amplitude signal seems to have a 

different value which could be related to different crystallinity inside the droplets. In the case of 

1615 there are clear differences both in the PFM amplitude and phase indicating a different 

crystalline structure which must be related to the different processes occurring upon laser 
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irradiation in this case. As mentioned, for upper layers thicker than 40 nm, the P3HT cannot 

rearrange freely after being heated by the laser due to a constraint induced by the upper layer, and 

this can cause an inhomogeneous heating of the P(VDF-TrFE) over it and thus a different 

crystalline structure. 

Figure 6.16  Left column: topography, PFM amplitude, and PFM phase shift of the bilayer 

spin-coated films for (top) 1605 and (bottom) 1615. Right Column: topography PFM 

amplitude and PFM phase shift of the bilayer LIPSS irradiated at 26 mJ/cm2 with 3600 

pulses for (top) 1605 and (bottom) 1615. 

6.5 Ferroelectric information storage on polymer bilayers 

PFM has the potential to achieve ultrahigh density and high rate data storage in ferroelectric 

materials using the tip as a stylus to write the information by applying a bias above the coercive 

field of the material. Reading is carried out by monitoring the piezoelectric response of the sample, 

which gives different contrast between written and unwritten zones. The right panel of Figure 

6.17 shows the topographic and ferroelectric state of the nanostructured bilayer 1605 after poling 

at three different points with 12 V during 100 s. The corresponding images before poling are also 

shown for comparison. Assuming that the electrical poling generates circular domains of about 

130 ± 20 nm in diameter, the data storage density is estimated to be 37 Gbit/inch2. The average 

size of the spot obtained in these nanostructured systems is smaller than the ones obtained for as 
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prepared bilayers which have a size of 400-800 nm [1]. Also there is a decrease of the spot size 

in comparison to single layers and to systems nanostructured by other techniques as NIL [11]. 

Figure 6.17  Left column: topography, PFM amplitude, and PFM phase shift of the 

nanostructured bilayer 1605 before poling. Right Column: topography, PFM amplitude and 

PFM phase shift of the nanostructured LIPSS (1605) after poling at three points at 12 V 

for 100 s. 

It is important to mention that at least at laboratory times the bilayers nanostructured by laser 

retain the dipole information. Additionally, the fact that the bilayer architectures can be operated 

by a few volts and with high writing speed, comply with the requirements for developing 

applications in non-volatile organic memories.  

6.6 Conclusion 

Laser-induced periodic surface structures can be prepared on polymer thin films, despite the 

absence of light absorption at the wavelength of the irradiating laser, by using a bilayer approach. 

We have shown that the nanostructuring of a P3HT layer, by laser irradiation at 532 nm, covered 

by a thin layer of a non-absorbing polymer, in this case, the ferroelectric polymer P(VDF-TrFE), 

allows the development of a grating-like structure on the surface. This approach will be useful 

not only for the case of P(VDF-TrFE) but for any other non-absorbing polymer, making this 

technique more versatile and thus paving the way for a wider range of applications. The range of 

thicknesses of the upper layer which leads to the formation of LIPSS has been determined. In this 

case, for a thickness larger than 40 nm, no periodic structures are formed, neither in the upper 

layer nor in the bottom P3HT one. This can be explained considering a mechanical restriction 

which prevents P3HT rearrangement. The presence of LIPSS preserves the ferroelectric 

properties of the P(VDF-TrFE), as evidenced by PFM and the laser fabricated nanogratings are 

proposed as appropriate systems for non-volatile organic memories. 
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7 

Conclusions 

In this Thesis we have developed different procedures to prepare nanostructured functional 

polymers and we have attempted to understand some of the underlying modifications of 

fundamental physical processes that this nanostructuring imposes. 

The main conclusions of this Thesis are listed below. 

	 The dynamics and charge transport of a functional blend with applications in organic 

photovoltaics as bulk heterojunctions have been investigated by dielectric spectroscopy. 

At low temperature of P3HT in blends of it with PC71BM is mainly due to the local motion 

of the lateral hexyl chains in P3HT, and is nearly unaffected by the presence of the other 

component of the blend: PC71BM. In terms of charge transport, the conductivity of these 

blends exhibits two different behaviors in different temperature ranges. At lower 

temperatures the conductivity can be described by an Arrhenius behavior whereas it 

follows the Gaussian Disorder model in the higher temperature region. By this analysis 

we were able to estimate the energetic offsets of the bulk heterojunction system due to 

the presence of the PC71BM. 

	 The combination of a semiconducting polymer as P3HT and a ferroelectric polymer, as 

P(VDF-TrFE) in blends provides a two-fold functionality, but the need of control on the 

domains obtained by direct mixing is a drawback. We have been able to design strategies 

to prepare blends with controlled morphology. Precisely, ferroelectric polymer 

nanoparticles embedded in a continuous P3HT matrix, or bilayers of both polymers. In 

both cases we have proved that the functionality of each of the components is preserved. 

	 In the case of the bilayers we have observed that the thickness of the P3HT bottom layer 

plays a crucial role in the morphology of the upper P(VDF-TrFE) layer. We have 

concluded that the polar component of the surface energy is the responsible for this 

behavior. 

	 Nanostructuring functional polymer surfaces is often the way to implement these 

materials in devices. We have demonstrated that the functional nanostructured surfaces 

of P3HT can be fabricated by the repetition of pulsed laser irradiation, creating Laser 

Induced Periodic Surface Structures (LIPSS). We have carried out a deep study on the 
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creation of LIPSS on a model polymer, polystyrene for which the most important thermal 

characteristics are known and tabulated in the literature. By the careful assessment of all 

the relevant parameters of the studied system, like thickness, substrate and light 

absorption coefficient, we have been able to model the distribution of temperatures in the 

film during irradiation. The results allow us to determine the optimal conditions for 

LIPSS formation, that were later applied to functional polymer (P3HT). 

	 With the above knowledge, we have been able to create LIPSS on the ferroelectric 

polymer P(VDF-TrFE). P(VDF-TrFE) has a weak absorption at the laser wavelength, and 

therefore it cannot form LIPSS on its own. By preparing a bilayer structure with a light

absorbing polymer as bottom layer, in this case P3HT, laser irradiation induces LIPSS 

formation on the P(VDF-TrFE) layer. However, the perfection of these LIPSS depends 

on the thickness of both layers. 

	 The crystal structure and orientation of P(VDF-TrFE) do not significantly change upon 

irradiation, as we have concluded from grazing incident X ray diffraction. Thus, its 

ferroelectric character would not be affected. PFM techniques evidenced that P(VDF-

TrFE) LIPSS preserve the ferroelectric properties on the bilayer polymer system.  
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