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Abstract

In the fight against climate change, Offshore wind energy is at the forefront, in the devel-
opment phase. The problem with turbines anchored to the seabed lies in the enormous
cost of installation and maintenance, leading to the theoretical approach of floating off-
shore wind turbines. However, floating turbines are exposed to new wave loads and
stronger wind loads. To enable their implementation while maximizing the electricity
production and ensuring the protection of the structure, more accurate predictive models
than the physical and statistical ones found in the literature are needed for the metocean
(meteorological and oceanographic) variables involved.

This project aims to model the wind speed in the time domain, the significant waves
height in the frequency domain and the misalignment between wind and waves direction
in the time domain, applying Machine Learning techniques.

Offshore data collection as well as an exploratory data analysis and data cleaning phases
have been carried out. Subsequently, the following algorithms were applied to train the
models: Linear Regression, Support Vector Machines for Regression, Gaussian Process
Regression and Neural Networks. Nonlinear Autoregressive with exogenous input neural
networks (NARX) have proved to be the best algorithm both for wind speed and mis-
alignment forecasting and the most accurate predictive model for significant waves height
prediction has been the Gaussian Process Regression (GPR).

In this project we demonstrated the ability of Machine Learning algorithms to model wind
variables of a stochastic nature and waves. We emphasize the importance of evaluating
the models through techniques such as Learning Curves to make better decisions to
optimize them. This work not only makes predictive models available for later use, but
it is also a pioneer in misalignment modelling, leaving a door open for future research.
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Resumen

En la lucha contra el cambio climático, la energía eólica marina se sitúa en cabeza encon-
trándose en fase de desarrollo. El problema de las turbinas ancladas al lecho marino reside
en el enorme coste de instalación y mantenimiento, llevando al planteamiento teórico de
turbinas eólicas marinas flotantes. Estas, sin embargo, están expuestas a nuevas cargas
de olas y cargas de viento más fuertes. Para hacer posible su implantación maximizando
la producción eléctrica a la vez que asegurando la protección de la estructura, se necesita
disponer de modelos predictivos más precisos que los físicos y estadísticos de la literatura
para las variables metoceánicas (meteorológicas y oceánicas) implicadas.

El objetivo de este proyecto es modelar la velocidad del viento en el dominio del tiempo,
la altura significativa de la ola en el dominio de la frecuencia y la desalineación entre la
dirección del viento y de las olas en el dominio temporal, aplicando técnicas de Apren-
dizaje Automático.

Se ha llevado a cabo una fase de recopilación de datos medidos en alta mar, así como
el análisis exploratorio y limpieza de los mismos. Posteriormente, para el entrenamiento
de los modelos se aplicaron los algoritmos: Regresión Lineal, Máquinas de Vectores So-
porte para Regresión, Proceso de Regresión Gausiano y Redes Neuronales. Las redes
neuronales autorregresivas no lineales con entrada externa (NARX) han resultado ser el
mejor algoritmo tanto para la predicción de la velocidad del viento como para la desalin-
eación y para la altura significativa de la ola el modelo predictivo más preciso ha sido el
proceso regresivo gausiano (GPR).

En este proyecto demostramos la capacidad de los algoritmos de Aprendizaje Automático
para modelar las variables del viento de naturaleza estocástica y del oleaje. Destacamos
la importancia de la evaluación de los modelos mediante técnicas como las Curvas de
Aprendizaje para tomar mejores decisiones en la optimización de los mismos. Este trabajo
no pone solo a disposición modelos predictivos para su posterior uso, además es pionero en
el modelado de la desalineación dejando una puerta abierta a futuras investigaciones.
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Chapter 1

Introduction

Nowadays, one of the greatest global challenges the society is facing is Climate Change. As
The United Nations Framework Convention on Climate Change (UNFCCC) recognized
[1], the governments worldwide must bet on the development, application and diffusion
of new technologies which will promote the exploitation and use of renewable energies,
reducing the emissions of greenhouse gases and mitigating the global warming [2], [3].

In contrast to Onshore (On-land) Wind Energy, an already mature technology [4], Off-
shore Wind Energy has appeared in the last two decades as a promising solution for some
of the disadvantages of the on-land wind turbines. This allows us to take advantage of
stronger and more constant winds that are produced in the open sea due to the absence of
geographical accidents that stop them as on land. The US Department of Energy (DOE)
claims that Offshore wind has the potential to generate more than 2.000 GW of capacity
per year which is nearly double the current electricity generated in USA [5].

However, the big problem is the cost of installing the turbine offshore and the cost of
its maintenance. Numerous research lines have been opened looking for optimal location
and orientation for the installation of the turbines anchored to the seabed.

In the interest of reducing installation costs and increasing energy production capacity,
emerge the idea of installing offshore wind farms in deeper waters resulting in the design
of the new Floating Offshore Wind Turbines (FOWTs). FOWTs expands the
area for wind energy development, taking advantage of stronger and steadier winds than
near the coast and reducing the visual impact and noise pollution caused by OWT near
the coast and on-land turbines [6]. Although their installation is simpler, they pose new
challenges to be faced: the buoyancy of the turbine and the structure control.

Optimal blade, tower and floating platform control systems are needed to overcome wind
and wave loads and minimize fatigue to which turbines are exposed [6].

To collaborate with current projects involved in this recent technology in increasing de-
velopment, the present project is proposed:
“Machine Learning Applied to Wind and Waves Modelling”.

1



2 1.1. MOTIVATION

1.1 Motivation

Machine Learning is a discipline of Artificial Intelligence whose potential lies in the pro-
cessing of Big Data and the ability it gives to computers to learn rules and patterns
inferred from raw gathered data. The need to optimize decisions, e.g. structure design
decisions in scientific projects, considering those rules and behaviors observed in the data
can not be covered by humans and conventional models. Therefore, Machine Learning
techniques are revolutionizing the way we work with the available data and it is starting
to be applied more and more in practically all fields of research.

The problem that appears with wind energy is the need to forecast wind power generation
and therefore the wind speed on which it depends. In particular, floating offshore wind
turbines (FOWTs) are exposed to even stronger winds and ocean conditions too. The
stability of FOWTs is affected significantly more than if they were anchored to the seabed
by the impact of new loads from waves and currents they are subjected to. This requires
further studies on meteorological and oceanic (metocean) conditions to reduce the main-
tenance costs and apply the results in the optimal control of power generation combined
with the damping of new oscillations generated in the floating platform, highlighting four
main types of platforms as seen in 1.1 in the quest to create reliable FOWTs.

.
Figure 1.1. Typical floating wind turbines platforms types

Models with good performance for wind and waves forecasting are essential, but very few
acceptable results are available in the literature for floating wind energy requirements.
Besides, authors and researchers involved in wind and waves modelling have considered
constant wind direction values (based on statistic probabilities from the concrete location
for a potential wind farm construction) and null misalignment between wind and waves.
Intuitively it is logical to think that misalignment is null since the wind is the main source
that propitiates the generation of waves. Notwithstanding, some recent researches have
observed that wind and waves direction are significantly misaligned most of the time
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and they increase the overall loading on the support structure so this as yet unknown
phenomenon has a greater impact on FOWTs than any previous author might have
imagined.

In this work, we have carried out an analysis of wind and waves data and we apply
different Machine Learning techniques to model wind and waves features implicated in
the FOWT operation. This project is also a pioneer in the study of misalignment and its
modelling. The results may be useful in projects involved in the optimization of turbines
control strategies while producing more energy, achieving the offshore wind energy to
being a reliable energy source and bringing governments closer to integrating floating
offshore wind farms into electricity grids.

1.2 Goals

A literature research work and the development of wind, waves and misalignment between
wind and waves models with Machine Learning as well is carried out. This study is
oriented to its application on floating offshore wind turbines, thus this will be taken into
account, e.g. for the station selection from which the data is collected.

In particular, the objectives of the project are set out below:

• Study of the literature on the treatment and analysis of wind and waves data.

• Study of wind, wave and misalignment, if developed, previous modelling approaches
as well as techniques used.

• Selection, comprehensive analysis and preprocessing of Metocean historical data.

• Modeling of wind and waves in the time and frequency domain by the application
of Machine Learning techniques

• Models comparison.

• Presentation of the results obtained in each phase of the project.

1.3 Work plan

A work plan was designed at the beginning of the project as an indicative work guide.
Figure 1.2 shows every task with an assigned start and end date. Some tasks are concur-
rent.
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Figure 1.2. Project Work plan

1.4 Repository

The code generated during the project development is shared in a public Github repos-
itory which can be accessed at the following link: https://github.com/MontseSacie/
Machine_Learning_Applied_to_Wind_and_Waves_Modelling.

https://github.com/MontseSacie/Machine_Learning_Applied_to_Wind_and_Waves_Modelling
https://github.com/MontseSacie/Machine_Learning_Applied_to_Wind_and_Waves_Modelling
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1.5 Structure of the project

To describe the work carried out in each phase of the project, we have divided the memory
into the following chapters:

■ Chapter 1 picks up the introduction where we exposed the motivation behind this
research, the initial objectives and the work plan to get them.

■ Chapter 2 is the State of Art. It summarized the research context around Offshore
wind energy and previous results about wind and waves forecasting found in the
literature.

■ Chapter 3 (Materials and methods) is a theoretical chapter where we explain algo-
rithms and methods used in data preparation and modeling phases.

■ Chapter 4 describes the Data collection process, justifying the selected location
of buoy station from where we gather the data as well as explaining the data set
variables meaning. This chapter together with chapter 5 and 6 form the data
preparation phase.

■ Chapter 5 includes the Exploratory Data Analysis techniques and data cleaning
methods applied to the data set. Exploratory Data analysis pretends to get an
understanding of data and data cleaning is applied to delete missing values and
outliers.

■ Chapter 6 explains how we have structured data sets and which variables include
each one for model training.

■ Chapter 7, 8 and 9 present the modeling results for wind speed, significant waves
height and wind-waves misalignment forecasting respectively. In each chapter dif-
ferent Machine Learning techniques applied are described and we finish each chap-
ter with a section where we compared different algorithms’ performance and decide
which is the best.

■ Chapter 10 presents the conclusions of the project and future work.

After the bibliography, the following parts of this document translated into Spanish are
placed as an appendix:

A. Introduction

B. Conclusions and Future work





Machine Learning Applied
to Wind and Waves Modelling

Montserrat
Sacie Alcázar

Chapter 2

State of art

The problem faced in this project is analyzing and modelling wind and wave loads by
Machine Learning techniques and study how they affect the FOWTs motion.

We divide it into three parts:

• The study of wind as a perturbation in the time domain. It is intended to forecast
Wind Speed in the time domain.

• The study of waves as a perturbation in the frequency domain. We will train models
to predict Wave Significant Height.

• The study of misalignment between wind and waves. Models to forecast the mis-
alignment in the time domain will be created.

2.1 Research context

The first offshore wind park was installed in Vindeby(Denmark) in 1991 and it was
composed of 11 turbines installed at the distance from shore of 2 meters, with a power of
450 kW each one resulting in a total capacity of 4.95 MW [7]. Since then, offshore wind
farm deployment has grown exponentially, in an initial phase in North and Baltic seas
and progressively in new markets outside Europe [8].

According to annual statistics released by WindEurope, the European wind energy asso-
ciation, Europe connected 502 new offshore wind turbines to the grid across 10 projects
which increased the energy capacity in 3627 MW. Figure 2.1 shows a Europe new’s record
off Offshore Wind installations in 2019 translated into 3,6 GW of new wind capacity. In-
side Europe, The UK has incorporated almost half of new capacity (47, 2%) followed by
Germany (30, 5%), Denmark(10, 4%) and Belgium (10, 3%). We can mention Portugal
installed this past 2019 8,4MW of offshore wind energy while Spain installed two turbines
corresponding to 5 MW of new net capacity [9].

7
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Figure 2.1. New wind farms installed in Europe from 2009 to
2019. Picture downloaded from WindEnergyReview

The International Renewable Energy Agency (IRENA) estimates that Asia would dom-
inate global offshore wind power installations by 2050, followed by Europe and North
America as seen in figure 2.2 [10].

Figure 2.2. Global offshore wind installed capacity evolution es-
timated until 2050 by IRENA statistics. Image ob-
tained from Irena-offshore-wind-statistics.pdf

In the course of the growth of offshore wind energy, the first 80 KW floating wind turbine
was deployed off the coast of Apulia (Italy) in 2007 by Blue H Technologies of the Nether-

https://energyindustryreview.com/renewables/europes-new-record-for-offshore-wind-installations/
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf
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lands. It was a prototype with a tension-leg platform and was operative during a year
gathering wind and waves sea conditions data. At present, the ambition of governments
to integrate more wind energy generation in the national power grid does not stop grow-
ing and floating offshore wind energy is a promising technology in which almost every
country is investing. Highlights the world’s first floating wind farm, the 30-MW Hywind
Scotland Pilot Park, under development which has five turbines. There are still no inte-
grated and operational floating wind farms. This recent technology is still immature and
not yet consolidated in society, so many investigations are still open.

2.1.1 Lines of study

Simulations and studies involved in technology advance for floating offshore wind energy
may be framed in four areas:

• Platform designing

• Control Strategies planning

• Aero and hydrodynamic modelling

• External wind and waves loads modelling.

All line of works are connected and collaborate to get reliable turbine prototypes since
results and decisions in one area may affect the decisions from another as seen in figure
2.3.

.
Figure 2.3. Components and dynamics present in the model of a

FOWT. Downloaded from researchgate.net

The transition from the installation of turbines in shallow waters of 20 meters deep to
20-40 km off the coast raises the need to design a floating structure that will limit the

https://www.researchgate.net/publication/336006050_Modelado_y_control_de_turbinas_eolicas_marinas_flotantes/figures?lo=1
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turbines foundation costs [11]. During platform designing, it must be considered the
buoyancy requirement so a first-order static stability analysis will partially determine the
architecture selected for the platform. More decisive factors studied are the mooring line
system selected to prevent the platform from drifting, the installation difficulty analy-
sis, the maintainability as well as the corrosion resistance. The corrosion is caused by
continuous-wave loads crashing against the platform. Moreover, the turbine weight, tower
top motion and control system might generate vibrations on the platform so a thorough
study of platform movements in the 6 degrees of freedom is carried out. Thus the expected
movement ranges and damping mechanisms to dissipate the possible vibrations are es-
tablished. Figure 1.1 from previous chapter showed the four main structures designs: the
barge platform consisted on a floating structure which achieve stability through the use
of distributed buoyancy, the semi sumergible one, the spar structure formed by an under-
water monopole and the tension leg platform (TLP). The first three are loosely moored
to the seabed and their installation is easier while the TLP is more firmly connected to
the seabed and it increases the stability of structure [12].

The second area listed includes blade pitch, generator torque and tower damping control
strategies. The first two are called active control systems because they consist of taking
decisions in real-time. Blades control tries to regulate the angle of the blades according
to wind speed and wind direction so for higher wind speeds blades are turned to decrease
the sustainability of the blades and vice versa. The objective is maximizing electricity
production as time as protecting blades to be twisted. The rotor and generator are
also regulated to prevent high wind speeds damaging it and overloading the electric
transformation system. In the case of tower damping control, we are talking about
passive control. The vibrations generated in the tower by loads in fore-aft and side-side
directions are dissipated by a mass damping system calibrated before being collocated in
the nacelle of the turbine.

To optimize control strategies and reduce the fatigue produced in the structure, the
aerodynamic and hydrodynamic to which the different parts of the turbine are exposed
must be analyzed and they must include metocean conditions [13]. So wind and waves
loads must be modelled. This project is therefore part of the fourth presented research
line.

2.2 Wind forecasting

2.2.1 Motivation

Given the stochastic and intermittent nature of wind, numerous authors and researchers
have employed their efforts to develop the best wind predictive models.

Wind power prediction models, dependent of wind speed forecasting, have been carefully
studied [14] as these predictions are given to the power system regulators which must
make detailed scheduled plans for energy supply. Wind power generation P is determined
fundamentally by wind speed υ(m/s) as seen in equation (2.1) where ρ is density of
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air(kg/m3) and A is the swept area of the wind turbine.[15].

P =
1

2
ρAυ3 (2.1)

Thus, we will review in this section models developed to forecast wind speed.

2.2.2 Time-scales of predictions

A point of interest in wind forecasting is the moment in time covered by predictions made
with a model. Thus, forecasting models can be separated into four categories[16]:

(1) Very short-term forecasting. Models give wind predictions from 30 s to 30
minutes ahead the moment of forecasting. Applications inside this category are
related to electricity market clearing and regulatory actions.

(2) Short-term forecasting Predictions are made with data from 30 minutes to 6
hours ahead. These models are oriented to help the Economic Load Dispatch
planning and taking load increment/decrement decisions.

(3) Medium-term forecasting. Models are accurate while forecasting wind con-
ditions of a time moment from 6 hours to 1 day ahead. Some applications of
medium-term wind forecasting are taking generator decisions and planning opera-
tional security strategies for the electricity market a day ahead.

(3) Long-term forecasting. Predictions from 1 day to 1 week or more ahead are
obtained by models classified in this category. These models are essential for the
strategy of Maintenance and reserve requirements decisions.

In this project we are going to train models for short-term forecasting (1 hour ahead of
the forecasting moment).

2.2.3 Models classification

According to type of techniques employed, Metocean forecasting models can be separated
into (1) Naive,(2) physical, (3) statistical and (4) intelligent models.

2.2.3.1 Naive models

Persistence Method also called the ”Naive method” [16] is the reference method in
industrial applications. It consist of the assumption that the wind speed at time t+△t
is the same as it was at time t. Despite its simplicity, it is really effective for very
short-term and short-term predictions and continues to be used in some cases when its
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performance is good enough and other more complex physical and statistics methods do
not achieve a significant improvement [17]. Thus this model is considered in literature the
benchmark model to compare the performance of later models with so after evaluating
the increasing/decreasing of RMSE or MSE to the persistence one, just in the decreasing
case the new model is said to be good enough and can be a substitute [18].

2.2.3.2 Physical models

Physical models are based on mathematics and physical considerations like terrain, obsta-
cle, pressure or temperature to estimate wind speed. They involve simulating variations
in wind flow throughout the farm to estimate its speed and direction at each generator[19].

In this category class, NWP (Numerical weather predictions) and mesoscale models
stand out [20]. They are so antique since weather forecasting have been applied in
many fields such as weather information for humanity by meteorologists or first wind
applications [21]. NWP models solve complex mathematical functions dependent on
weather data like temperature, pressure, surface roughness and obstacles. Generally,
the main drawbacks of these models are computational complexity and susceptibility to
unstable weather. Moreover their performance is good for long-term predictions . Table
2.1 lists some physical NWP models.

Model Developer Comments

GFS NCEP

- Predicts weather 16 days ahead
- Formed by 4 models: atmosphere, ocean,
land/soil and ice models
-It is usually re-optimized and works on
data from NOAA.

ECMWF model ECMWF

- Beside the numerical weather forecasting,
it monitors planetary systems that influence
weather.
- Time horizon of predictions: medium range
(15 days) and large range (30 days)

HARMONIE-AROME AEMET

- It has a 48-hour time frame
-The available surface variables are:
temperature, pressure, wind, precipitation,
cloudiness, electrical discharges
and maximum streak.

Table 2.1. Physical Models examples

2.2.3.3 Statistical models

Statistical models do not need a physical model of the farm. Instead, their background
is formed by statistical distributions and algorithms. They are designed by curve fitting
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and their model is adjusted by comparing the actual data and the immediate past and
predicted one, which make them effective for short-term forecasting [22].

The stochastic behavior of the wind leads us to define it as a set of random variables vt
representing the speed for every moment in time t. Thus statistical models try to find
patterns between these variables from historical data. Statistical models are subdivided
into time-series models and neural networks (NN) for time-series distribution prediction.
Auto-Regressive Movil Average ARMA models are the main time-series based statistical
models accurate for very short-term and short-term predictions. They are formed by one
AR (Autoregressive) model and one MA (Movil Average) model [23] .

An AR model explain the current value of a variable in moment t as a combination of
some previous values for this variable plus an error term:

yt = a0 + a1 · yt−1 + ...+ ap · yt−p + et

where ai are coefficient models and et is the “white error”. The order p of the equation
marks the number of predecessor values needed for prediction. Authors of [24] proposed
an AR model considering the non-normal wind speed distribution and proposing use
separating monthly data from several years of wind time series.

In MA models, the value of the variable to be estimated depends on an independent term
µ and a weighted sequence of q errors (q is the equation order) corresponding to the
predecessors as is formulated in equation (2.2). θi are models parameters and et−i is the
error in the t− i moment.

yt = µ− θ1et−1 − θ2et−2 − ...− θqet−q + et (2.2)

Therefore, ARMA model arises from joining the AR and MA model formulated below
(Note that the coefficient µ doesn’t appear because it has been joined to a0):

ARMA(p, q) = yt = a0 + a1 · yt−1 + ...+ ap · yt−p + et − θ1et−1 − θ2et−2 − ...− θqet−q

In [25], authors used an ARMA model to average hourly wind-time series forecasting
obtaining that error compared to the persistence model was 1% better for 1 hour ahead
predictions and between 12% and 20% for 10−12 h ahead forecasts. While ARMA models
assume that the data underlying process is stationary (median and variance are constant
over time) and autocovariance depends on the time lag, it has been observed that many
time series are not stationary so they tend to show time-changing means and/or variances.
In this case, the variant of the ARMA model, ARIMA (Auto-Regressive Integrated
Moving Average) model is used. It is a non-stationary model also called an ”integrated
process” [26]. To deal with nonstationary, ARIMA makes a simple transformation. Given
the time serie characterised by a non constant mean plus an error:

xt = µt + εt

If the mean is decomposed with constant parameters through time plus a white error as
follows

xt = β0 + β1t+ at
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and we subtract to it xt−1 = β0 + β1(t − 1) + at−1 = β0 − β1 + β1t + at−1 we obtain a
stationary model:

xt − xt−1 = β1 + at − at−1

Another ARMA variant is the ARX or ARMAX model which is an ARMA model with
a exogenous input variable. Equation (2.3) shows the ARX model estructure, explained
in detail in bibliography [27].

y(t)+a1y(t− 1)+ ...+anay(t−na) = b1u(t−nk)+ ...+ bnb
u(t−nb−nk+1)+ e(t) (2.3)

2.2.3.4 Intelligent Models

Artificial Intelligence-based models are the most recent and last models authors have
focused on. They include the use of methods of artificial intelligence such as Fuzzy Logic
or Machine Learning methods like artificial Neural Networks (ANN), Support Vector
Machines (SVM), Random Forests and Gaussian Process Regression (GPR). They use
historical data to train and tune the model parameters instead of having a predefined
model as statistics one. Their objective is minimizing the error calculated by the difference
between actual and predicted wind speed of training data [19]. One of the decisive
reasons for applying Machine Learning techniques is that prior models assumptions, such
as normality, linearity and homogeneity took in statistical methods are not necessary [28]
making easier to non experts on data domain apply ML algorithms.

A GMDH-based abductive neural network model for mean hourly wind speed time-series
forecasting in May month is proposed in [18] as an ANN approach that outperforms
the benchmark persistence model accuracy [29]. The Group Method of Data Handling
(GMDH) is an application based on an iterated polynomial regression that is able to
produce a high-degree polynomial model with significant model predictors. One of the
benefits of abducted networks versus other network variants is the faster model devel-
opment, the convergence without the risk of falling into a local minimum and almost
no intervention of user by automating input data selection. [18]. In [30], a comparison
between Adaptative Linear Element (ADALINE), Radial Basis Function(RBF) and Feed
Forward Back-propagation (FFBP) neural networks(NN) in 1-hour ahead wind speed
forecasting is done. A back-propagation (BP) NN is obtained by its authors as the most
optimal model experimented with an RMSE of 1,254.

In [31], Traybeb Brahimi and his team propose an ANN model to predict daily wind speed
with meteorological measurements ATMP, WDIR, GHI (Global Horizontal Irradiance),
Relative Humidity and PRES as input features selected between the 13 attributes avail-
able in their data set. The same authors [31] also applied Random Forest, Random Tree,
and SVM techniques to compared every model trained with a cross-validation scheme.
The optimum network they obtained with one hidden layer and 30 neurons gives them an
RMSE of 0.8078 with the optimal cv-scheme: 70% data examples for training and 30%
for validation. Comparing the five algorithms, they found out the random forest presents
higher performance than the rest of the algorithms [31]. In the same line, Senthil Kurman
compares some variants of ANN namely Back Propagation Network (BPN), Radial Ba-
sis Function(RBF) and Nonlinear Autoregressive neural network with exogeneous inputs
(NARX) ([32]).In his paper, Senthil remarks on the importance of the feature selection
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process and his results confirm it: RBF model without previous feature selection tech-
nique application obtained an RMSE of 1,2963 and nevertheless the RMSE boils down
to 0,7040 by applying the Mutual Information (MI) technique before RBF training. The
NARX model has utilized for the time series oriented data composed by reflected short-
wave radiation, wind direction, ambient air temperature, relative humidity, shortwave
radiation and wind speed in t − 1, t − 2 and t − 3 time delays features. For BPN and
NARX models although their errors are greater, it is significantly lesser when applying
MI feature selection.

Breaking with the above, authors in [22] address the Long-term wind speed forecasting
by chained patterns-based models that form a forecasting system.

Concerning other ML algorithms, some researchers have explored Support Vector Ma-
chines as a modern promising ML technique. Particularly relevant are the results and tests
during modelling carried out in [33]. Authors of this paper have applied a faster compu-
tationally variant of SVM, Least-Squared Support Vector Machine (LS-SVM) technique
for short-term wind speed forecasting. It’s striking how they have trained and optimally
configured independent models for each season of the year which can be a good prac-
tice to get more accurate models. Thus they obtained RMSEs of 1,650 (Spring), 1,209
(Summer), 1,584 (Fall) and 1,216 (winter).

2.3 Waves forecasting

2.3.1 Motivation

Metocean conditions affect the stability of the FOWT to a greater degree than if they
were anchored to the seabed. However, the effect of waves is not usually considered,
though they are the main source of disturbances for floating structures. In the best cases,
the wave model is simplified just defining sea states (SNN) based on wind speed.

Waves forecasting has been traditionally applied in Weather systems forecasting [34],
shipping and naval engineering. Some results from the literature are the start point in
offshore wind energy research. Moreover, waves energy is considered one of the most
promising renewable energy resources. Thus waves energy converters (WECs) have been
studied during the last three decades and numerous researchers groups study the sea
state for waves power production and waves forecasting applied to these systems [35]. In
fact, WindWave is a current national research project in development which studies the
combination of a floating wind turbine and a WEC to generate energy [36]. In this project
which arises from the collaboration between the Complutense University of Madrid and
País Vasco University, the tutor and co-tutor of this final degree project are part of the
team and the author is collaborating with the project since the start of this work.

On the other hand, the wave direction is typically represented by a misalignment relative
to the wind, until recently considered null in most designs of FOWTs. [37]. Most of the
research works carried out so far do not consider the wind and waves correlation neither
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the misalignment between them but some studies have realized that this misalignment is
significant at deep sea and it causes large loads on the tower in the side-side direction,
which has very little structural damping compared to the fore-aft direction.

The above reasons lead us to point out the importance of Waves loads and misalignment
modelling to make FOWT a reliable wind energy source. Waves models from other
authors as well as some exceptions of studies in recent literature that address the issue of
misalignment have been found and their results will be reviewed and commented in this
section.

2.3.2 Significant waves height models

Significant wave height (WVHT feature in data set) denoted in literature as Hs is the
average of the highest one-third (33%) of waves (measured from trough to crest) that
occur in a given period known as “wave-peak spectral period” or “dominant wave period”,
Ts (DPD feature in our data set) [38]. These features together with the average wave
period (APD feature) denoted in the bibliography by Tm, are widely used to describe
ocean state in coastal, marine engineering as well as in recent studies in offshore energy
investigation.

Figure 2.4. Ocean measurements description (left sub-image)
and Significant wave height (Hs) representation in
one wave diagram (right sub-image). Images ob-
tained from www.marine_science.com and paper [39]
respectively

Waves models are classified into the same categories as wind models according to the fore-
cast time horizon (very short-term, short-term, medium-term an long-term predictions)
and the modelling technique used (physical, statistical, intelligent or hybrid models).

In paper [34], authors present a linear regression and dressing combined model to post-

https://sites.google.com/a/ddsd40.org/david-douglas-h-s-marine-sciences/Home/waves
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process the significant wave height predictions made by the numerical weather prediction
model used by the European Centre for Medium-Range Weather Forecasting (ECMWF).
The wave model predicts the directional wave spectra at each grid point and some input
features that it received are historical DPD, APD and WVHT. They conclude that the
ensemble model of ECMWF has better skills than persistence model and the main im-
provement achieved by the post-processing model is to better forecast the uncertainty of
wave state. Significant waves height have been addressed also by Fuzzy logic approaches
[40] and it was demonstrated that outperformed the forecasting made with statistical
ARMAX models. Getting closer to the techniques used in this project, authors from
[34] model the WVHT feature with Support Vectors Machine for Regression (SVR) and
compare results with ANN, Multi-layer Perceptron (MLP) and Radial Basis Function
(RBF) models. Data set used in [34] collect data from September and December of two
years gathered from the NDBC center. Data from one year was selected as a training
set and the other year data for the testing set. For validating, a 10-fold cross-validation
configuration was applied. They conclude that optimal parameters for their objective
of SVM are C = 100 and ε = 0, 001. Parameters selected for RBF kernel function are
γ = 0, 01 and p = 1.0 for the polynomial kernel function. On the other hand, the best
topology found by a trial and error is a three-layer feed-forward network with Sigmoid
Transfer function and 7×15×1 neurons in the input × hidden × output layers [34].Errors
obtained for testing set are: RMSE = 0, 21 for SVM with RBF kernel, RMSE = 0, 26
for SVM with Polynomial kernel, 0, 23 for MLP artificial neural network and 0, 25 for
RBF ann. SVM is shown in this study that generalizes better than ANN obtaining bet-
ter RMSE and they are considered by authors as a more reliable technique for offshore
energy application.

2.3.3 Wind-wave misalingment studies

Misalignment between waves and wind (as represented in 2.5) is defined as the time
difference between the direction of the wind (in degrees, origin at 0 (N) and clockwise)
and the mean direction of the waves [41]. Under ideal conditions (straight shoreline,
constant wind and deep waters), the difference is zero by definition. But in high seas,
this value is rarely null due to different physical and orographic conditions.
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Figure 2.5. Misalignment angle between wind and waves to which
the turbine is attached [42]

One of the exceptional studies found in the literature that take into account the mis-
alignment is the work by [43]. Despite it is focused on structural control, it highlights
the importance of considering wind-wave misalignment when analyzing loads of offshore
wind turbines. In [44], the response of turbine structure from an Offshore wind farm to
the directional spreading of waves in the inline (thrust) direction and crosswise direction
(the perpendicular direction to inline one) is studied. Although structure response to
forces isn’t clear, they conclude with a clear wind-wave misalignment influence on the
turbine observed. In the same line, [45] investigates the responses of a spar, tension
leg platform (TLP) and two semi-submersible floating wind turbines in selected wind
and waves misalignment conditions. Although some misalignment conditions result in
increased motions both parallel and perpendicular to wave direction, aligned wind and
waves cause the largest short-term tower base fatigue damage for the studied platforms
and conditions. The same author [45] compares the dynamic response of a representative
TLP-WT in both aligned and misaligned conditions.

Recently, authors in [46] have carried out statistical analysis for different properties of
wind and wave loading such as wind-wave misalignment, significant wave height and wind
velocity, in order to predict long-term metocean conditions, on monopile WTs.

2.4 Frequency domain vs. time domain in modelling

In the field of real data modelling, we can address a modelling problem in the time domain
or in the frequency domain.

When we have a continuous set of observations ordered in the timeline and separated
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equally in spaced intervals, we are talking about time series [47]. The time domain
analysis is a widely used analysis approach of nature phenomena whose variation is related
to the moment in time we observe them. Physic, statistical and recently intelligent
models try to forecast the state of the phenomena in a future moment (t) by learning
from phenomena state in past moments in time (t-1, t-2,...). This is called time series
forecasting. In this project, we will forecast wind speed and wind-waves misalignment
in the time horizon. In the scientific community when we talk about study the waves
direction respect to the wind direction (misalignment) we say that we are analysing the
waves in the time domain.

On the other hand, the Spectral or frequency domain analysis tries to predict or
describe some phenomena by learning the frequency with which it is repeated in relation
to the state of other variables or phenomena. In this work, we will predict the significant
waves height in the frequency domain considering other variables as model input such as
wind speed or waves direction.
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Chapter 3

Materials and methods

3.1 Used databases

The data used in this project corresponds to standard meteorological and descriptive
wave data obtained from the National Oceanic and Atmospheric Administration
(NOAA) in the USA.

.
Figure 3.1. Header from National Data Buoy Center website.

Image captured from www.ndbc.noaa.gov.

Data measurements are taken offshore by floating buoys distributed through the U.S
and international waters maintained by the National Data Buoy Center (NDBC).
The NDBC is part of the NOAA’s National Weather Service and makes available their
databases with historical and real-time data on their web page for researching community
and any interested user to be downloaded.

3.2 Machine Learning

”Machine Learning is the field of
study that gives computers the ability
to learn without being explicitly
programmed”

Arthur Samuel, 1959

21
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3.2.1 Introduction

Machine Learning or ML is an area of Artificial Intelligence focused on the study of
algorithms that allows mathematical models executed on computers to learn from expe-
rience. The term Machine Learning appears in 1959 and is due to Arthur Samuel who
first applied ML in the development of a game that learned to play checkers in 1952. To
this day, this discipline of computer science continues to grow into a powerful collection
of algorithms widely applied in data science and modelling projects which allows for the
automation of learning.

.
Figure 3.2. Disciplines involved in a data modelling process

The idea behind the Machine Learning methods is that the models ”learn” from input
data examples formed by considered domain characteristics or features values and they
update by themselves the value of parameters to adapt their response to the observed
reality.

We can already see the enormous potential of ML, which gives intelligent systems the
ability to change the program that runs on them just by analyzing and inferring infor-
mation from the big data received without being explicitly programmed. This learning
process is assimilated into the way human beings learn from experience and data they re-
ceived from outside. However, when dealing with complex problems from different fields
such as medicine, engineering, social sciences or any statistical analysis project, which
handles a large amount of data, human computational capacity is not sufficient. There-
fore, ML let us create applications that can overcome complex challenges like the piloting
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of an autonomous helicopter, handwriting recognition, computer vision, recommending
systems developing, etc.

3.2.2 Workflow of a standard ML application

When Machine Learning is applied in a project, a series of standard steps are met re-
gardless of the ML algorithm selected (see figure 3.3).

.
Figure 3.3. Functional diagram of Machine Learning project

workflow. Image retrieved from www.datanami.com

The starting point that motivates to apply Machine Learning is the approach of a problem
or complex task which involves a huge amount of data that needs to be sold. For instance,
the problem that exists when we talk about eolic energy is that we need to know the
amount of electricity power turbines will be able to produce, in order to allocate demand
among power plants to minimize generation costs and ensure that the population’s energy
demand can be met. The electrical energy produced by a turbine depends on factors such
as the wind speed. Consequently, there is a need to predict wind speed in the near future
and this task will be addressed by applying ML techniques.

The first step of the project is Data preparation which includes the search and collection
of the data and the pre-processing of data gathered. We can find data sets available in
databases that we can use as input data for the algorithm. In other cases, data must be
generated or built by us for the concrete project we are addressing, which may require
some time. The data collected must be examined and pre-processed to adapt it to the
format of the model input.

Features extraction is the process before the training phase when we reduce the dimension
of raw data collected to more manageable groups for processing. We start from a large
data pool with several variables and rows, so it can be necessary to split it into some data

https://www.datanami.com/?s=Machine+Learning+pipeline
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sets and combine some variables to give rise to a single feature of the model’s input data
set[48]. These two phases can consume the 50-70 % of the ML project time because it
is not a trivial activity and requires expert knowledge of the domain and data handling
until obtaining useful and clean data sets for model training.

In modelling phase, the ML algorithm is executed and trained. The algorithm receives
constantly input data examples and is updating model parameters. After training, the
model is tested with new examples that were not included in the training data set. The
performance of the model on these examples is measured and until errors calculated aren’t
considered good enough, it goes back to previous phases. That’s why in picture 3.3 all
phases are connected with the previous one forming a cycle. While applying techniques
to analyze the results and observe if our model suffers from bias or variance, we will
decide whether to collect more data or reduce data set size as well as change features to
retrain the model and test it again.

After optimizing the data set, tuning model parameters and training the model as many
times as needed, we obtain the model to apply to real-time data or to predict future
features, covering our initial problem. Models are usually optimized and retrained over
time as the reality we know at any given time changes.

3.2.3 ML types

ML problems are classified into 3 types according to the form of the input data set or
’training’ data set that the algorithm receives:

• Supervised Learning. Applications in which training data comprises examples
of input feature values and their corresponding expected output (one or more val-
ues) or ’target’ vector are known as supervised learning problems. The supervised
learning algorithms use the known outputs of training examples to optimize their
performance so after the training phase they can predict output for a new input
example not present in training data set[49].
In supervised learning, we distinguish between classification and regression prob-
lems. In classification problems, the output can take a number of discrete values,
i.e. each input example belongs to one of the few available output classes. In con-
trast, if the expected output consist of one or more continuous variables, then the
problem is called a regression problem.

• Unsupervised Learning. In some pattern recognition problems, the training
data consist of input examples with features but there is not a target value or
expected result. These problems are called unsupervised learning problems and
the main objective can be discovering groups of similar examples within the data
(clustering), determine the distribution of data within the input space (density
estimation) or project data from a high-dimensional space down to low dimension
in order to compress data or visualize it [49].

• Reinforcement learning. Reinforcement learning algorithms are typically present
in games where there is a reward and there are different tactics or actions that can
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be chosen in each situation. The objective is to maximize the reward and the al-
gorithm discovers optimal actions and outputs reachable by a process of trial and
error instead of receiving them as training examples as in supervised learning.

The aim of the regression analysis commented above is to construct mathematical models
that describe or explain relationships that may exist between variables [50]. This project
covers the supervised problem of Regression, as we want to construct models to forecast
wind and waves features (continuous variables) by inferring relationships between the
predicted feature and predictors. However, we will deal with some unsupervised learn-
ing problems during the data preparation phase so unsupervised methods will be also
explained here below.

3.2.4 Model representation

First of all, we establish the used notation to define the elements of a regression model
across the project:

− Input variables or predictors. A vector x(i) = [x
(i)
1 , x

(i)
2 , ..., x

(i)
n ], x(i) ∈ Rn corre-

sponds to features vector from the ith sample of the data set that algorithm receives
as input. n ∈ R is the number of variables or columns in the data set. The space
of input values is also denoted as X.

− Output variable or target. y is the dependent variable of x, i.e. the model
output value y(i) is given by the ith input values vector, x(i). The targets are the
known outputs of the model for training and testing sets in Supervised Learning
problems. The target space is also represented as Y .

− Model Parameters. θ = [θ0, θ1, ..., θn] is the parameters vector that model opti-
mize when is in training phase. These parameters are considered just on algorithms
interpreted in terms of weight-space view, like Linear Regression. Instead, other
algorithms make their inferences in the space of functions, the function-space view
[51].

− Model definition or hypothesis function. h(θ) is the model or mathematical
function that predicts an output h(θ)i given an input vector xi. The form of this
function depends on the selected algorithm.

− Predictive output. The predictive value for an input example x(i) obtained by
the trained model will be denote as ŷi or hθ(x(i)).

− Data set. D = {(x(i), y(i)) | i ∈ [1,m]} represents a data set consisting ofm labeled
examples (rows) in total and n features(columns).We add a first column full of 1s
that corresponds to θ0.Thus the data set is a table of size m× (n+ 1).

When we index the number of examples in a data set, we will use superscript i and when
we are referring to components of a vector-like x or θ we will use j sub-index. On some
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occasions, i could appear as sub-index for convenience and better reading but it continues
indicating the number of the example. We will also denote the space of input variables
with X and will use Y to denote the space of output values.

On this point, to describe the supervised learning problem slightly more formally, our
goal is:

Given a training set, to learn function h : X → Y so that h(x) is a good
”predictor” for the corresponding value of y.

We can measure the accuracy of our model or hypothesis function by using a cost func-
tion J(θ0, ..., θn) [52] dependent on the vector of parameters learnt θ. Thus, learning
algorithms try to minimize the cost function by updating the parameters iteratively ap-
plying an algorithm typically Gradient descent.

3.2.5 Data pre-processing

In Machine Learning, we are usually working with multidimensional data sets whose
features are of different nature. That means features values range can be so different one
to another as well as features values can be not distributed around the same mean point.
Not scaled and not normalized data could lead to a bad combination of features in
algorithms running. For instance, a feature x1 whose values are within a range [1,1000]
when combined with values from a variable x2 withing a range of [0, 1] would have much
more influence in the modelling than the last. [53].

In this line we address the z-score method for data normalization and feature scaling
if needed to be applied in the PCA algorithm explained in this chapter too.

3.2.5.1 Z-score

z−score technique is applied to a data set when it needs to be normalized and scaled. This
method transforms every feature value as time as maintains its distribution. Given the
training set x(1), x(2), ..., x(m) we must normalize and scale the data. Firstly, we compute
the mean of each jth feature (data set column) µj as follows

µj =
1

m

m∑
i=1

x
(i)
j

Normalizing data consists on replacing each x
(i)
j by x

(i)
j −µj where i indicate the concrete

data example and j the number of feature or component of the example.

Then, feature scaling consist on dividing the new x
(i)
j by the standard deviation of j

feature sj.Thus the z − score value for each x
(i)
j is

z
(i)
j =

x
(i)
j − µj

sj
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3.2.6 Unsupervised Learning

3.2.6.1 LDOF algorithm

Local Distance-Based Outlier Factor (LDOF) is calculated as part of an outliers detection
algorithm. LDOF measures the relative location of a point to its neighbors to determine
how much deviates from the neighborhood [54]. Depending on the data set, a threshold
is chosen with which to compare the LDOF factor. If the threshold is passed by a point,
this will be considered to be an outlier.

LDOF computes distance for observations to its k-nearest neighbors and compares the
distance with the average distances between the nearest neighbours.

The k-nn distance of a point xp , given the set of k-nearest neighbours Np can be calculated
as follows:

dxp :=
1

k

∑
xi∈Np

dist(xi, xp)

On the other hand, we need to know the KNN inner distance of xp obtained by the
following expression:

Dxp :=
1

k(k − 1)

∑
xi,xi′∈Np,i ̸=i′

dist(xi, xi′)

Finally, the local distance-based outlier factor of xp is defined as [54]

LDOFk(xp) :=
dxp

Dxp

3.2.6.2 PCA algorithm

PCA formulation
The motivation for applying Principal Components Analysis (PCA) algorithm on our
data sets is to overcome the unsupervised problem of dimension reduction. This can be
useful to

• Speed up the learning algorithms

• Reduce our complex data sets to a 2-dimension or 3-dimension set in order to
visualize it.

Therefore, given the training set {x(1), x(2), ..., x(m)} where x ∈ Rn, PCA algorithm reduce
the data from n-dimensions features to k-dimensions. This is achieved by looking for a
k-dimensional space where to project data points so the average squared projection error
is minimum. This space will be represented by k directional vectors {u1, u2, ..., uk} called
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Figure 3.4. Single value decomposition function call in Matlab

eigenvectors.k is in fact the number of principal components we want to obtain for each
training example.

Before applying PCA, we normalize the data and if it is necessary we scale it so we
replaced each x

(i)
j by its z-score value:

x
(i)
j =

x
(i)
j − µj

sj

Then we can compute the PCA, starting by calculating the covariance matrix Σ ∈ Rn×n

as showed in equation (3.1).

Σ =
1

m

m∑
j=1

(x(i))(x(i))T (3.1)

Then, eigenvectors are calculated by the single value decomposition function of Σ (see

Matlab command in 3.4). where U =

 | | ... |
u1 u2 ... un

| | ... |

 ∈ Rn×n. k eigenvectors will be

the k first columns of matrix U .

Now, we calculate the projection of the points xi ∈ Rn on the k-dimensional space
resulting in new data sets whose examples will be represented by z(i) ∈ R(k). Equation
(3.2) shows how obtained principal components based points from the k eigenvectors.

z(i) = Ureducex
(i)

=

 | | ... |
u1 u2 ... uk

| | ... |

T

x(i), ∀i ∈ [1,m]
(3.2)

Reconstruction of original data
Given the original training set {(x(i), y(i)) | ∀i ∈ [1,m]}, when we apply PCA algorithm
we obtain a new training set {(z(i), y(i) | ∀i ∈ [1,m]} where predictors are composed by k
principal components instead of n features as in the original set. Now, we can obtain an
approximation of the original x(i) by transforming the corresponding z(i).
Considering Ureduce as a matrix formed by k first columns of U obtained in and re-
membering the equation to obtain z(i) (3.2), x(i)

approx for all i ∈ [1,m] can be obtained
as

x(i)
approx = Ureduce · z(i)

Optimal selection of k parameter
Before applying PCA, we must choose the number of principal components k we want to
obtain for the new data set. The aim is to select the smallest k that will allow retaining
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the greatest percentage of data variation, usually 95% or 99%. We decide to consider
99%.

The experimental process can be try PCA by computing Ureduce and {z(1), z(2), ..., z(k)}
with k = 1, k = 2 and so on until 99% of data variation is retained. This is the same
as check if the ratio calculated as the division of the average squared projection error by
the total variation of data is less than 1%, as seen in equation (3.3).

1
m

∑m
i=1 x

(i) − x
(i)
approx

2

1
m

∑m
i=1 x

(i)2
≤ 0.01? (3.3)

As computing this equation is computational inefficient, there is another way to calculate
the ratio explained below.

Given a k value and the diagonal and square matrix S =


S11 0 0 ... 0
0 S22 0 ... 0
0 0 S33 ... 0
0 0 0 ... Snn

 as

an output of the svd calling (3.4), we can compute the ratio as follows

1−
∑k

i=1 Sii∑n
i=1 Sii

(3.4)

where Sii are the diagonal components of matrix S. Now we will check if the expression
(3.4) is less or equal than 0,01 or 0.05 in the case of 99% or 95% of variance is maintained
respectively.

3.2.7 Supervised learning Algorithms

In this subsection we will intend to explain the mathematical theory behind the supervised
algorithms applied in the training phase:

1. Linear Regression

2. Gaussian Process Regression

3. Support Vector Machine for Regression.

4. Artificial Neural Networks

3.2.7.1 Linear Regression

Model representation

Linear Regression is the simplest model of regression in terms of implementation and
interpretability.The hypothesis function establishes a linear relationship between input
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variables and output as follows:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (3.5)

where θ0, θ1, ..., θn are model parameters and x1, ..., xn is the representation for the com-
ponents of an input example. θ0 represents the bias or offset, multiplied by an ’additional’
input feature added to data set whose value is always one, i.e. x0 = 0 ∀i ∈ [0, n] [51].
The hypothesis function can be vectored for further implementation as follows:

hθ(x) =
[
θ0 θ1 ... θn

] 
x0

x1

...
xn

 = θTx

When x has an unique component and therefore θ =
[
θ0 θ1

]
, we are talking about

univariate linear regression. If input examples have more than one feature instead,
we are in a multivariate linear regression problem.

Optimization algorithm

The cost function used to measure the accuracy of the hypothesis function is 1
2
multiplied

by the ”Squared error function” or ”Mean squared error” (MSE) which is the mean of
differences between the predicted value and actual output value for every examples in
data set, as seen in equation (3.6).

J(θ0, θ1, ..., θn) =
1

2m

m∑
i=1

(ŷi − yi)
2 =

1

2m

m∑
i=1

(hθ(xi)− yi)
2 (3.6)

In the execution of the algorithm, it is intended to update θ parameters vector for every
input training examples (x(i), y(i)) by minimizing the cost function. This is achieved
by applying the batch gradient descent method. It consist on getting the new value of
each θj by subtracting from the current θj the partial derivative jth component of the
cost function J(θ0, ..., θn) as seen in algorithm equation (3.7).The updating process is
repeated iteratively until the cost function J converges to a global minimum, i.e., when
the decreases of J(θ0, ..., θ1) is less than a constant ε established by us.

repeat until convergence:{

θj = θj − α
∂

∂θj
J(θ) = θj − α

1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j ∀j ∈ [0, n] (3.7)

}
given a learning rate α and m training examples.

Intuitively, we must consider that if we choose a too small α, the gradient descent com-
putation could be so slow but if α is too large, the gradient descent could overshoot
the minimum, making impossible to converge or even generating the diverging of the
algorithm.
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3.2.7.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric, Bayesian approach to regression
[51].

This algorithm instead of learning concrete values for parameters of a defined model infers
the probability distribution over all admissible functions that fit the data (function-space
view).

Bayesian linear model

To understand the Bayesian approach working on Gaussian Process, we first address the
case of linear regression:

y = θT × x. (3.8)
remembering θ is the parameters vector and x is the input features vector.

Known the training data set, D = {X, y} of n observations containing predictors of every
example in X and targets in y, the Bayesian treatment of linear regression calculate
a prior distribution p(θ) on the parameter θ and recalculate the distribution (posterior
distribution) based on observed data set D, computed by Bayes’ Rule:

posterior =
likelihood× prior
marginal likelihood (3.9a)

p(θ | y,X) =
p(y | X, θ) · p(θ)

p(y | X)
(3.9b)

The marginal likelihood of the denominator in explaining equation (3.9a) or p(y | X) in
equation (3.9b) is the normalizing constant given by:

p(y | X) =

∫
p(y | X, θ) · p(θ) dθ

The likelihood p(y, θ) corresponds to the multiplication of the likelihood for each case
yi. Assuming that h(θ) and y just differ in the noise factor θ0 and θ0 follows a Gaussian
Distribution, θ0 ∼ N (0, σ2

n), the likelihood is calculated as follows:

p(y, θ) =
n∏

i=1

p(yi | xi, θ)

=
n∏

i=1

1√
2πσn

exp (−(yi − θTxi)
2

2σ2
n

)

=
1

(2πσ2
n)

n
2

exp (− 1

2σ2
n

|y − θTX|2)

= N (θTX, σ2
nI)

(3.10)

On the other hand, the prior term included in the equation (3.9), p(θ) must be assigned
before any training according to the previous knowledge we estimate on data. It will be
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considered that θ follows a Gaussian distribution with a zero mean and a variance Σp

which represent the co-variance matrix of weights [51].

θ ∼ N (0, Σp)

Developing the above expression, we establish that p(θ, y) ∼ N (θ = 1
σ2
n
A−1Xy,A−1)

where θ is the mean of θ components and A−1 is the co-variance matrix from the posterior
distribution, given A by the expression:

A = σ−2
n XXT +Σ−1

p

At this point, we can calculate the predictive distribution f∗ of a set of unseen points or
test set x∗ as follows

p(f∗ | x∗, X, y) =

∫
p(f∗ | x∗, θ)p(θ, y) dθ

= N (
1

σ2
n

xT
∗A

−1Xy, xT
∗A

−1x∗)

Gaussian Process Regression

The difference between GPR and Bayesian treatment made to linear regression is that
GPR isn’t parametric while LR is, so instead of calculating the parameters linear function
probability distribution, GPR calculates the probability distribution of all functions that
could fit data and finally calculate the posterior distribution of test set points.

The Gaussian process (GP) can be defined as a multi-variate collection which follows a
Gaussian distribution as well as any subset of variables from this collection have a joint
Gaussian distribution. That means that if a data set (x1, x2) ∼ GP(µ,Σ) then we confirm
that x1 ∼ N (µ1, Σ11) were Σ11 is a sub-matrix of Σ or what it is the same the latent
variable f(x1) is Gaussian.

Gaussian process comes specified by a mean function m(x) and the Kernel co-variance
function k(x, x′) of a real process f(x) ∼ GP(m(x), k(x, x′)). Our previous knowledge
about the space of functions is reflected in the selection of the mean and the co-variance
matrix of the prior f(x) as well as the possibility of incorporating noise with the same
distribution:

y ∼ GP(m(x), k(x, x′) + δijσ
2
n)

GPR hyper parameters tuning

In the model selection, we can specify the form of the mean function and the co-variance
kernel function which will be tuned during the optimization phase. Among the kernel
functions are constant, linear square exponential, Matern kernel or a combination of some
of them [55]. For instance, it is widely used the combination of the constant kernel with
the Radial Basis Function (RBF) kernel:

k(x, x′) = σ2
f exp (−

1

2l2
x− x′2)

where σ2
f and l are the hyperparameters must be tuned.
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3.2.7.3 Support Vector Machine for Regression

Support vector Machine also called “large margin classifier” is a Machine Learning classi-
fication technique that tries to find the line or hyper plane that best separate observations
of the training set into different output classes, by maximizing the distance of observations
to decision boundaries called ”support vectors” (see figure 3.5).

Figure 3.5. Support vector machines for classification represen-
tation. Image downloaded from www.coursera.com

Depending on the data, linear or nonlinear kernel functions can be chosen to obtain
optimal support vectors. As this algorithm proved to be very promising in classification
problems, concepts of SVM have been generalized to regression problems, resulting in
Support Vector Machines for Regression or Support Vector Regression algorithm.

We can see the regression problem as a classification problem with infinite output classes
(continuous output variable). Thus SVR introduces a ϵ-sensitive region around the func-
tion y we want to predict, called the ϵ-tube. SVR optimization problem consists of find
the tube that best approximates the continuous-valued function [56].

Model representation

We are trying to find a function (linear or not)

f(x) = θTx+ b

considering the goal of
min 1

2
∥θ∥2

and constraints [57]:
∥yi − θixi∥ ≤ ϵ

https://www.researchgate.net/figure/General-classification-hyperplane-representation-of-SVM-algorithm_fig5_330557084
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3.2.7.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) or just Neural Networks (NNs) are computing systems
inspired by the biological neural networks that constitute animal brains [58].

Neural networks locate its origin in neuro-rewiring experiments which proved that con-
crete parts of the brain tissue able to interpret a concrete type of input signals (sound,
touch,etc.) could learn to interpret other type of signals by just changing the input
connections (see figure 3.6). Thus leads us to conceive of a neural network as a brain
algorithm that learns by itself to interpret input signals no matter what type they are.

Figure 3.6. Example of a neuro-rewiring experiment about the
Auditory cortex of brain learning. Image obtained
from www.coursera/Machine-learning

Model representation

Artificial NN is a computational solution to modern-day machine learning applications.
Simulating brain neurons that receive input information by dendrites, process it and give
an output by axons connected to other neurons; an intelligent neuron model can be seen
in figure 3.7. An artificial neuron receive input examples with n features by neuron inputs
wires and return an output hθ(x) = f(x) taking parameters of the models or ”weights”
assigned to each input wire and an activation function f assigned to neuron also known
as Transfer function. x0 corresponds to the bias unit.

https://www.coursera.org/learn/machine-learning/lecture/IPmzw/neurons-and-the-brain
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Figure 3.7. Artificial neuron model

In the neuron model, hθ(x) = f(θ0+ θ1 ·x1+ θ2 ·x2+ ...+ θn ·xn) where f is the Transfer
function assigned to the neuron. Some f functions from which we can choose are:

• Linear transfer function (also called Purelin) : f(hθ(x)) = hθ(x). This function
is the linearly one usually used in the output layer of the neural network.

• Log-sigmoid transfer function (also called Logsig): f(hθ(x)) = 1
1+exp−hθ(x)

.
This function returns values between 0 and 1 and it useful in classification problems
where 1 means belonging to a class and 0 the opposite.

• Hyperbolic tangent sigmoid transfer function (also called Tansig): f(hθ(x)) =
2

1+exp−2·hθ(x)
−1. This function is commonly configured in neurons from hidden lay-

ers and it returns values between −1 and 1.

A neural network is thus a group of neurons structured by layers where the outputs of
the neurons from one layer are the inputs of the neurons in the next layer (see diagram
3.9).
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Figure 3.8. Artificial neural network model

Notation used in neural network (see figure 3.9) is:

• L = the total number of network layers.

• sj = number of neurons of layer j. The input layer contains as many inputs as
features that form the training examples.

• a
(j)
i = activation of neuron i in layer j. a0(j) is the bias unit (neuron) of this layer.

• θ(j) = matrix of weights of connecting wires from layer j to layer j + 1. If layer j
contains sj neurons and layer j + 1 contains sj+1 neurons (without including the
bias unit in both), then the size of matrix θj will be sj+1 × (sj + 1). Thus θ

(j)
ir

corresponds to the weight of the wire that connect neuron xi from layer j with
neuron xr of layer j + 1.

Mathematically, we calculate a
(j)
i by the following expression :

a
(j)
i = f(θ

(j−1)
i,0 x0 + θ

(j−1)
i,1 x1 + ...+ θ

(j−1)
i,sj+1

xsj+1
) = f(z

(j)
i )

we represent the hypothesis hθ(x) as follows:

hθ(x) = aj+1 = f(zj+1)

where in this case j = last hidden layer and j + 1 = output layer.

Optimization algorithm
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Figure 3.9. Forward and Backward propagation learning
algorithm scheme. Image downloaded from
www.researchgate.net

Backpropagation algorithm is a neural-network terminology used to refer to minimiz-
ing the cost function J(θ) just like we do with gradient descent in other ML techniques
such as linear regression [59].

Given the cost function J(θ) ,for instance Mean Squared error function, our goal is
minimize the cost J giving a optimal selection of parameters θ:

min
θ

J(θ)

Considering the notation ∆
(l)
ij to denote the partial derivative of J(θ) for layer l and θi,j:

∂

∂θli,j
J(θ)

The backpropagation algorithm can been stated in the following steps:

• Given the training set {{x(1), y(1)}, {x(2), y(2)}, ..., {x(m), y(m)}}, we set firstly∆l
i,j :=

0 for all i, j, l.

• For i = l to m:

– Set a(1) = x(i)

– Perform forward propagation to compute a(l) for l = 2, 3, ..., L.
– Using y(i), compute δ(l) = a(l) − y(l)

– Compute δ(l−1), δ(l−2), ..., δ(2)

https://www.researchgate.net/figure/Architecture-of-three-layer-feed-forward-ANN-with-back-propagation-algorithm_fig1_280575557


38 3.2. MACHINE LEARNING

– We set ∆(l)
i,j := ∆

(l)
i,j + a

(l)
j δ

(l+1)
i

– Hence we update our new ∆ matrix we obtain the partial derivative of J(θ)
(to update θ parameters as in equation (3.7) in Linear Regression section):

∂

∂θli,j
J(θ) = D

(l)
i,j

where
D

(l)
i,j :=

1

m
(∆

(l)
i,j + λθi, j(l))

if j ̸= 0 or
D

(l)
i,j :=

1

m
∆

(l)
i,j

if j = 0

Some variants of the backpropagation optimization algorithm that have been used in this
project are:

• Stochastic Gradient Descent. SGD consists of updating parameters θ in the
negative direction of the gradient g (for a minimization objective) by taking a sub-
set or “mini-batch” of data size (m) [60].

• Lavenberg-Marquardt. The Lavenberg-Marquardt algorithm also knows as the
damped least-squares method works with a loss function (the sum of squared errors)
and its main advantage is the speed up compared to SGD [61].

Finally, we highlight there is no rule to select initial parameters of neural networks such
as the number of hidden layers and neurons. The unique way to do that is by trial and
error to get an intuition about what will work better for our concrete problem solving
applying NN, which can be time-consuming [62].

NAR and NARX neural networks

Nonlinear autoregressive neural network (NAR) a Nonlinear autoregressive with exoge-
nous neural networks (NARX) are models that can be trained to forecast any feature in
the time domain.

Both NAR and NARX relates the current value of the time series to the past value of the
time series. Moreover, the NARX network relates the current value of time series with
current or past external series (other features time series that influence the time series
we want to forecast)[63]. Thus, NAR model which predict y(t) series can be represented
by the following expression:

y(t) = f(y(t− 1), y(t− 2), ..., y(t− d)

The number of input parameters is established by choosing a delay d which means that
d past values of y are considered together as predictors to forecasting y(t).

On the other hand, NARX model can be represented with the function:
y(t) = f(x(t− 1), ..., x(t− d), y(t− 1), ..., y(t− d))
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3.2.8 Evaluation

3.2.8.1 Accuracy Metrics

Three metrics have been computed to evaluate the performance of forecasting models:

• Mean Square Error (MSE). It measures the average of the straight line distance
of the output estimated by the model and the real output for every samples in the
data set. MSE will be used as the cost function to minimize in the training phase.
It is obtained with the following expression:

MSE =
1

m

m∑
i=1

(h(θ)i − yi)2

• Root Mean Square Error (RMSE). The RMSE error is the square root of
MSE. It allows us to compare trained models by comparing RMSE for testing
sets. Thus RMSE is calculated as follows:

RMSE =

√√√√ 1

m

m∑
i=1

(h(θ)i − yi)2

The smaller the RMSE, the closer the predicted and observed values are.

• Mean absolute error (MAE). The Mean absolute error performance function is
as its name indicates an average of absolute errors that we try to minimize in ML
problems. It is used as an additional performance measure for its simplicity. It is
calculated as:

MAE =
1

m

m∑
i=1

(h(θ)i − yi)

• R-Squared (R2). The R-Squared or coefficient of determination measure what
extent the variance of the dependent output variable is explained by the variance
of the independent input variable in a regression model. R-squared values range
from 0 to 1. An R-squared of 1 means that variation in a dependent variable is
completely explained by independent variables. For instance, this metric is useful
to distinguish a case where the model is very accurate because most output values
in the training set are the same. In this case, a model consisting of a constant will
be even more accurate on training examples than a complex model, but it does not
represent the whole population and it will possibly have a very high RMSE on new
data examples but a small R. The calculation of this metric for a trained model is
provided by the Regression Learner tool in Matlab.

• Success Rate (%). The success rate is the percentage of accurate predictions
made by the model. Given the maximum value taken by the feature we want to
predict as max, the success rate of a model for this variable prediction is calculated
as follows

% = (1− RMSE

max
) · 100
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3.2.8.2 Train/Validation/Test sets

The main technique used to validate our models is the partition of the original data set
into three subsets (Holdout validation scheme):

• Training set. The data set used in the training phase of the model

• Validation set. This data set is used to apply trained models on new non-observed
examples and assesses the performance of the model. It also allows selecting the
model which best fits to the validation set, i.e. for outputs observed in validation
set we choose the model which makes the least RMSE in predictions.

• Testing set This set of non-observed data examples by the model is used to eval-
uate the performance of the selected model and decide whether it needs to be
optimized and which techniques should be applied next or decide if choose another
model.

The percentages we have applied to divide the large data sets used for training is 60%,
20% and 20% (see figure 3.10).

Figure 3.10. Diagram of division of original data set into train-
ing, validation and testing sets using percentages
60%, 20% and 20% of data rows respectively to
form each one.
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3.2.8.3 K-fold cross validation method

The k-fold cross validation or CV is one of the most commonly applied technique to
evaluate machine learning model accuracy on unseen data. This method takes advantage
of the complete data set by training the model several times with different training set and
tests its performance on a different subset of data not used for training in each iteration.

The general procedure of the method [64] is as follows:

1. Shuffle the data set randomly.

2. Choose the parameter k which is the number of equal-sized folds or subset of data
examples in which we want to divide the original data set. (see figure 3.11) .

3. For each fold:

a. Train the model which out-of-fold data examples.
b. Assesses model performance using in-fold data by calculating the accuracy

measure or error.

4. Calculate the average test error overall folds errors. If we have calculated for each
fold i , an error measure Ei, the performance of the model corresponds to

E =
1

k

k∑
i=1

Ei

Figure 3.11. Diagram of k-fold cross-validation algorithm rep-
resented for k = 10. Image obtained from http:
//karlrosaen.com/ml/learning-log/2016-06-20/

CV has been applied to training in data set of a unique year in order to compare the
accuracy of different models on these data. After selecting the best one who fits the

http://karlrosaen.com/ml/learning-log/2016-06-20/
http://karlrosaen.com/ml/learning-log/2016-06-20/
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data, we retrained the model with the entire training set applying the Holdout validation
scheme and tested its accuracy on the testing set.

3.2.8.4 Diagnosing Bias or Variance

After the training phase, if we obtain a model with an unacceptable misclassification
ratio, it is so important to figure out if it suffering from high Bias or high Variance.

For this purpose, we study the tendency of growth or decrease of the training error and
the validation error, depending on the hyper-parameters selected for our algorithm. We
can be in two situations(3.12):

• If Jtrain(θ) is high and Jcv(θ) is high too, that means our model suffers from
high bias (underfitting problem).

• If Jtrain(θ) is low but Jcv(θ) is far greater, it indicates our model is suffering
from high variance (overfitting problem). In overfitting problems the error
for training examples is pretty good but the model can not generalize well for new
data examples.

.
Figure 3.12. Representation of Bias and Variance areas depen-

dent of the model complexity. Image downloaded
from www.model-tunin-with-validaton.

To prevent overfitting, one of the techniques used is Regularization.

3.2.8.5 Learning Curves

Learning curves are useful plots to evaluate the learning performance of our model over
experience [65] how well is our algorithm working and check if we need to improve its

https://dziganto.github.io/cross-validation/data%20science/machine%20learning/model%20tuning/python/Model-Tuning-with-Validation-and-Cross-Validation/


CHAPTER 3. MATERIALS AND METHODS 43

performance. In these plots we represent the errors Jtrain and Jcv (or Jtest) as a function
of the number of training examples m used for algorithm training.

Trying to train the algorithm with higher m values each time and plotting Jtrain and Jcv
for each m give us a sight of the evolution of errors and how far or close are both of them.

If our hypothesis has high bias, the cross-validation error Jcv and the test error Jtest
tends to decrease for higher training set sizes m because more data leads to a better
generalization for new examples. However the training error Jtrain will increase until
being so close to Jcv value (see figure 3.13). Intuitively, if our model is so simple to fit
the data (underfit), more data implies more points to fit by model function so training
error will increase.

Figure 3.13. General learning curves obtained for an underfit
model. Image downloaded from www.modelDesin.es

As seen on the graphic, when a model suffers from high bias getting more training data
examples will not help much.

In the case of a model with high variance, the model is almost perfectly fit to training
data set so the training error is low. If we get more training data, the Jtrain may increase
a bit but it will continue being a good error. By contrast, the Jcv for little m is pretty
higher than Jtrain and for higher m values it will tend to decrease getting close to Jtrain
as seen in figure 3.14.

https://dragonnotes.org/MachineLearning/ModelDesign
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Figure 3.14. General learning curves obtained for an overfit
model. Image downloaded from www.modelDesin.es

In the last case, getting more training examples is likely to help to achieve the Jgoal or
what is considered by us a good and acceptable error.

3.2.9 Optimization methods

3.2.9.1 Regularization

Regularization is an optimization technique that consist of adding to the cost function a
regularization term (see equation (3.11)) that alter the values of the learned parameters
θ.

λ

2m

n∑
j=2

θ2j (3.11)

where λ is the regularization parameter. Choosing a value for λ is the critical point when
applying regularization. Given the cost equation now by the following expression:

J(θ) =
1

2m

m∑
i=1

(h(θ)i − yi)2 +
λ

2m

n∑
j=2

θ2j

If λ is too little the penalization onto high will be insignificant so the parameters θ can
be greater and model may suffer from high variance (overfit). In the opposite site, if we
take a large λ, θ parameters will be smallest in order to let the model to minimize the
cost function so model may suffer from high bias (underfit). Therefore, a good practice
is trying different values of λ and select one intermediate λ which allows minimize both
the Jtrain(θ) and Jcv(θ), as seen in figure 3.15.

https://dragonnotes.org/MachineLearning/ModelDesign


CHAPTER 3. MATERIALS AND METHODS 45

Figure 3.15. Model errors dependent on the regularization pa-
rameter value chosen. Image downloaded from
www.regularization.es

3.2.9.2 Other decisions for optimization

Generally, low order polynomials as hypothesis function or the simplest models have
high bias (or low variance) while high-order polynomials and complex models have high
variance [66]. Table 3.1 shoes certain decisions that may help to optimize our model after
evaluating if it suffers from high bias or high variance as well as not to waste time on
useless tests.

To fix high bias To fix high variance
Try getting additional features Get more training examples
Try adding polynomial features Try select smaller set of features
Try decreasing regularization parameter Try increasing regularization parameter
*For ANN: selecting more complex
architecture (more neurons and hidden
layers)

*Try selecting a simplest
neural network architectura

Table 3.1. Optimization decisions to fix underfitted (first column)
or overfitted (second column) models

http://www.saberismywife.com/2016/12/13/Machine-Learning-6/
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3.3 Matlab

Figure 3.16. Matlab’s logo.
Image downloaded from www.matlab_logo.es

In this project, Matlab has been chosen as the language and development environment
for data preprocessing implementation techniques and Machine Learning application.
Matlab is specially recommended for visualizing data as it has a wide variety of plots
and its computationally efficient for making math vectored operations with huge amounts
of data. It offers us useful toolboxes too in addition to all necessary courses and docu-
mentation by Mathworks platform.

https://1000marcas.net/matlab-logo/
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Chapter 4

Data Collection

To apply Machine Learning algorithms in model training, it is crucial to gather sufficient
and effective data first.

After a previous data sources search, NOAA database has been considered the most
advantageous for this project as it meets the following requirements to ensure the quality
and accuracy of our models:

• Data sets must be in the public domain or accessible for scientific research pur-
poses. Most of the data sets that collect useful wind and wave characteristics
founded belong to monetized private investigations and therefore we couldn’t have
access to them. By contrast, NOAA run by American Government is put at the
service of the scientific community and all users have free access.

• Metocean data must be measured offshore because our models goal is fore-
casting wind and wave behaviour to which FWTs are exposed. FWTs are installed
about 20-40 km off the coast as well as NDBC buoys installed offshore (see figure
4.1).

• The data set must contain historical data from previous years (at least 5
years) to ensure a statistical significance and a effective training. This will let us
combining it in various time-series data and trying train models which distinguish
data behaviour patterns from point anomalies.

• We are looking for Wind and Waves features obtained in the same geo-
graphic location. Building a model to forecast misalignment between wind and
waves will generate more realistic and representative results if all input features
have been measured at the same station.

• It is a beneficial factor to have real-time data for the evaluation of the trained
models in order to predict recent results. Of the more than 300 National Data
Buoys Stations, we have selected one that has available real-time data.

49
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Figure 4.1. NDBC floating buoy from station 46098, Waldport
(Oregon)

4.1 Santa Maria station, California

The selected NDBC station with moored buoy offshore for data gathering has been Santa
Maria station, located in Pacific Ocean, in the Northwest of California (see figure 4.2).
We have downloaded the meteorological files from last 10 years as well as Real-Time files
from January to April 2020. Santa Maria data has been considered by experts in the

Figure 4.2. Santa Maria Station marked on map, saw in NOAA
website station finder

creation of a metocean data set for offshore project [67] too, which give us a guarantee
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that we have chosen a station of interest for offshore applications. One of the decisive
reasons for choosing this station has been the moderate state and stability of the weather
and sea state, without the presence of huge disturbances or abrupt weather phenomena
that could position this location as unsuitable for the installation of a offshore wind farm
and could affect the wind and waves models development in the project. However, the
main reason for select this station has been the availability of historical and real-time
measurements of the wind and waves essential variables [67]:

• Wind speed

• Significant wave height

• wave peak-spectral period

• wind direction

• and wave direction

The station measurement characteristics are summarized in table 4.1.

Station Id 46011

Buoy model 3-meter foam buoy w/ seal cage

Geo-location coordinates 34.956 N 121.019 W (34°57’22” N 121°1’7” W)

Site elevation Sea level

Air temp height 3.7 m above site elevation

Anemometer height 4.1 m above site elevation

Barometer elevation 2.7 m above mean sea level

Sea temp depth 1.5 below water line

Water depth 464.8 m

Watch circle radius 811 yards

historical data From 1980 to February,2020

Real - time data Last 45 days

Table 4.1. Characteristics of Santa Maria Station and measure-
ments conditions

4.2 Features description

Standard Meteorological Data files contains one row for hourly atmospheric, wind and
waves variables averaged values actually measured generally for 8 minutes period. His-
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torical data files are classified by year while real-data files contain last 45 days measures.
The same meteorological features and units are available in both type of files. The most
significant differences between them are the missing values’ representation; numbers of
9’s in historical files and ’MM’ characters in real-time and the reports of measures in
Real-Time files, given each 10 min instead of each hour.

Figure 4.3. Header of a data file which shows features and units,
downloaded from webpage

The following table describes variables considered that could be useful for this project:

Variable
Name

Characteristic
Name Units Description

YY Year yr Year when the row measure-
ments were taken

MM Month mo Month when the row mea-
surements were taken

DD Day dy Day when the row measure-
ments were taken

hh Hour hr Hour when the row mea-
surements were taken

mm minute mn

First Minute of the 10 min-
utes while measurements
are being taken.This value
is always 0 in NDBC histor-
ical files and 50 in real-time
file we’ve accessed.

WDIR Wind direction degT
Wind direction measured
in degrees clockwise from
North

WSPD Wind speed m/s
Wind speed measured in the
same 8 minutes period than
Wind direction.

GST Gust speed m/s
Maximum peak 5 or 8 sec-
ond gust speed during 8th
minutes interval.
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WVHT Significant wave
height m

Significant wave height in
meters calculated as the av-
erage of the three highest
waves observed during a 20
minutes period.

DPD Dominant wave
period s

The period of seconds when
the maximum wave energy
takes place.

APD Average wave
period s

The average wave period
calculated considering all
waves during the 20-minute
period.

MWD Waves direction
in DPD degT

The direction from which
waves are coming during the
Dominant wave period.

PRES Sea level pres-
sure hpa

Sea Level pressure is di-
rectly measured offshore by
sensors installed in buoys.

ATMP Air temperature degC

The air temperature in Cel-
sius degrees is taken from 3
metres to 12 metres above
the sea level, depending
on the height of the buoy
model.

WTMP Sea surface tem-
perature degC

This variable is measured by
buoys at the depth refer-
enced to the hull’s waterline
while fixed platforms sea
surface temperature mea-
sures are commonly refer-
enced to Mean Lower Low
Water (MLLW)

DEWPT Dewpoint tem-
perature degC

This is the temperature at
which the air is saturated
with water vapour. It is
taken at the same height as
ATMP.

TIDE Water Level ft
the water level above or be-
low Mean Lower Low Water
(MLW) in feet.
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Table 4.2. Metocean variables accessed together with the actual
characteristic they represent, the units of measure-
ments and a short description [68]
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Chapter 5

Exploratory Data Analysis and data
cleaning

”EDA is more an art or even a bag of
tricks, than a science”

Irving John Good, 1983

In this initial stage of the project, it is intended to examine and gain insight into the raw
data collected. The statistician John W.Turkey first defined this data analysis philosophy
in 1977, coined Exploratory Data Analysis or EDA.

EDA encompasses the visualization of the row data, the calculation of metrics that sum-
marize the distribution of data such as the median or standard deviation, and data re-
expression techniques including scaling, cleaning missing values or normalizing variables
values [69].

Scaling and normalizing data as well as cleaning missing values are steps of what is called
Data Cleaning. Although Data Cleaning and EDA can be considered as differentiated
processes in the data science field [70], it is a very good practice applying techniques
from both indistinctly during the Data Preparation phase for analysis and further
use. In consequence, it makes a lot of sense to us starting with EDA by making a visual
inspection of data loaded and after knowing the data model we have available, we will
handling missing data and anomalies; explained in the Data Cleaning section, to continue
then applying other interesting EDA techniques on the clean data set.

The interest in applying EDA is the flexibility to explore the data without having a
hypothesis or prior knowledge of the domain. After analyzing data distribution and
correlations between variables, we can be motivated to make choices like increase the
dimensionality of the data set, select a subset of features or include new variables to
achieve a more accurate model training. In any case, changes made to the data set must
be no intrusive either change the data real distribution [71]. They just modify the way
to represent reality enabling us to better understand it.
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5.1 Data loading

Data files are downloaded from the Santa Maria Station web page [72] and saved into the
current directory, to be then read and stored in a Matlab Table type.

In the function implemented for data loading (see function 5.1), we distinguish between
historical or real time files in a if-else instruction because the URL constructed within
the function to download a historical data file is different from a real time file one.
Furthermore, the units of variables are assigned and the first variable name is modified
because by default is read with the comment symbol concatenated at the beginning.

Figure 5.1. Implementation of data loading function

5.2 Visual inspection of data

Loading function called in main file ExploratoryDataAnalysis.mlx makes the data table
read with scrolling to be displayed (see figure 5.2 and 5.3).
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Figure 5.2. Call to 2019 data loading and data table displayed

Figure 5.3. Continuation of data table displayed

Taking a first look at data and features (columns) has helped us to find out the following
aspects:

• Data types - We check that data types for every column read are numbers (int or
float type) and we establish the ranges of the values of variables.

• Columns with too little data examples available - When we look around, we
discover some variables do not have any information.Particularly, last three columns
are completely null (full of 9 series in historical files). These columns correspond
to variables dewp (dewpoint temperature), vis (station visibility limited for buoys
from 0 to 1.6 nautical miles) and tide (The water level in feet above or below
Mean Lower Low Water). These variables seem not to be closely related with
wind and waves forecast as they are not deemed necessary for offshore wind energy
applications in the creation of metocean data set for fowt simulations [67]. With
this in mind, we will handle them in Cleaning data section.

• Dates and Times - First five columns represents time information (year, month,
day, hour and minute respectively) of row measurements.They have been coded as
one variable,Date, for time series visualization.On the other hand, we observe that
minutes columns (mm) is always equals to 50 in historical files. The same is not
true for real-time files which contains rows for each 10 minutes measurements. It
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seems that rows which mm column different from 50 contains NaN values in some
important columns like wvht (Significant wave height) or dpd (Dominant wave
period) as we can see in figure 5.4. This factor should be considered in Feature
Engineering section because mm variable in the training set does not provide useful
information and the accuracy of the model may be affected.

Figure 5.4. Real-Time data table displayed after loading process

The loaded data model we will work on is represented in the following diagram:
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Figure 5.5. Data model diagram before cleaning process.
Red features represent null variables and orange one
are available just in Real-Time file.

Null variables will be directly discarded. In figure 5.6, Data distribution of waves, wind,
temperature and pressure features have been graphed for year 2018.
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(a) Wind features

(b) Waves features

(c) Temperature and Pressure features

Figure 5.6. Wind (a), Waves (b), Temperature and Pressure (c)
features time series for 2018
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5.3 Data cleaning

Incorrect records on a data set has an unimaginable impact on the quality of the con-
clusions and results given by the algorithm that uses it. Indeed, Data cleaning is a
time-consuming process that takes care of inspecting for missing values and inconsisten-
cies and errors in data, cleaning them by fixing or removing these registers discovered
and verifying correctness of data after cleaning.

We will apply it to the data set of each year in two phases addressed in the following
subsections:

• Missing data handling

• Outliers detection

Finally, we will represent features time series to compare it with those represented before
the clean-up to ensure that no error has been made and the distribution of data is
maintained.

5.3.1 Missing data handling

The missing values in meteocean data set can be caused by a specific fault in the bouy
sensors or by the lack of measuring in the selected station buoy.

Features preparation

First step has been to select useful variables, discarding null variables observed in the
previous section. dewp, vis and tide from every table load and pitdy from real time
table have been excluded (see figure 5.7).

Figure 5.7. Features not completely null selected from data tables
read

There are three types of techniques for handling missing data:

• Imputation. Imputation consists of fill in or impute missing values in a data set.
It is common to replace missing values with a mean value of the affected variable
for all data set examples or with a close value in time series.
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• Interpolation. the interpolation method aims to mathematically estimate the
missing value at the point, considering the rest of the points in data set.

• Deletion. This technique is based on eliminating the rows of the data set that
contain missing values

Among the three types of techniques, we have applied deletion. This decision is taken
because of the large amount of data available on the website (annual data sets since 1980)
and the lack of expert knowledge of the domain necessary to interpolate or estimate the
missing registers. Therefore, rows containing missing values in at least one of the selected
columns have been deleted. According to the percentage amount of clean data that passed
the filter in relation to the total data in a year read table, loading more data from previous
years has been considered.

To visualize the amount of missing data for each year by the date and by feature, we have
plotted a graphic with date in the x-axis and two categories, missing value (Rejected) or
valid one (Useful), in the y-axis. This will allow us to carry out the classification of the
data rows according to the indexes matrix. The index 1 indicate there is a missing value
in that position(see figure 5.8)1.

Figure 5.8. Call to cleaning function and plot cleaning results for
2019 read data

We must ensure that we have sufficient examples of data so that all the dates are rep-
resented in them and our models are accurate to forecast variables at any time of the
year.

We have loaded year data files from 2010 to 2019 and Real time data files which have
been published on the web progressively over the past few months of 2020.

Data from 2019

We observe data rows from 2019 contains missing values in all features (see figure 5.9).
At first glance, the variables that contain the most missing values are Wind direction,
Wind speed and Peak of gust speed. On the other hand, in the month of October, there
are no rows of measurements available in the data set so we will focus on getting data
for October from other years.

1Code implemented of cleaning and plotCleaningResult functions can be consulted in the repository.
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Figure 5.9. Missing values plot for 2019

The results of 2019 data cleaning are summarized in the table 5.1 which shows the number
of initial rows in data set, the number of rows after cleaning process, the number of deleted
rows (the difference between previous ones) and the percentage of rows removed from the
total number of rows available before cleaning.

Data Cleaning results - 2019

Rows before cleaning 16214

Rows after cleaning 5803

Rejected rows 10411

% of rejected rows 64.2099

Table 5.1. Data cleaning summary results for 2019 data set

Data from 2018

Data from 2018 is surprisingly complete and it does not have a sigle missing value as it
can be seen from the plot in the figure 5.12 and check in table 5.2.
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Figure 5.10. Missing values plot for 2018

Data Cleaning results - 2018

Rows before cleaning 8716

Rows after cleaning 8716

Rejected rows 0

% of rejected rows 0

Table 5.2. Data cleaning summary results for 2018 data set

Data from 2017

Data from 2017 is has just 1 row with missing values for wind speed, significant wave
height, average wave period and dominant wave period features, as shown below.
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Figure 5.11. Missing values plot for 2017

Data Cleaning results - 2017

Rows before cleaning 8685

Rows after cleaning 8684

Rejected rows 1

% of rejected rows 0.0115

Table 5.3. Data cleaning summary results for 2017 data set

Data from 2016

Data from 2016 does not have any missing value as it happened with 2018 data set.
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Figure 5.12. Missing values plot for 2016

Data Cleaning results - 2016

Rows before cleaning 8669

Rows after cleaning 8669

Rejected rows 0

% of rejected rows 0

Table 5.4. Data cleaning summary results for 2016 data set

Data from 2015

In the 2015 data set, we observe wind speed, wind direction and peak of gust speed
columns are full of missing values until June approximately. However, we distinguish
columns like dominant wave period or average wave period that contains both missing
values and available measurements along year time line (see figure 5.13).
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Figure 5.13. Missing values plot for 2015

Data Cleaning results - 2015

Rows before cleaning 8738

Rows after cleaning 5358

Rejected rows 3380

% of rejected rows 38.6816

Table 5.5. Data cleaning summary results for 2015 data set

Data from 2014

We explore the plot for the last historical data table load from 2014. It seems in plot
5.14 that many rows contains at less one missing value. We will check it numerically , as
shown in table 5.6.
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Figure 5.14. Missing values plot for 2014

Data Cleaning results - 2014

Rows before cleaning 8750

Rows after cleaning 2444

Rejected rows 6306

% of rejected rows 72.0686

Table 5.6. Data cleaning summary results for 2014 data set

Data from last 45 days (Real-Time)

As it is obvious, the number of rows in Real-Time data table load is fewer in number
than those in the data tables from previous years.Before calling plotting the cleaning
results, we have order the rows in table from the oldest data (row one) to the most recent
date(last row) in order to be able to plot it chronologically as we have done with data
tables above. This data will be used for testing our models after training phase. Let’s
explore in detail the plot showed in figure 5.15.
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Figure 5.15. Missing values plot for last 45 days data or Real-
time data

Data is available from mid-February to the end of March and there are missing values are
located in sea surface temperature, air temperature, sea level pressure, waves direction
and average wave period columns. Looking at the table 5.7, we are shocked that more
than 83% of rows have been deleted for having missing values, but if we look at the table
after cleaning (see figure 5.16) we confirm our assumption that the rows with the value
50 in minutes or mm column are the only without any missing value.

Data Cleaning results - Last 45 days

Rows before cleaning 6464

Rows after cleaning 1039

Rejected rows 5425

% of rejected rows 83.9264

Table 5.7. Data cleaning summary results for Real-time data set
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Figure 5.16. Real-time data table fragment after cleaning process

In essence, we have found that loaded data from 2018 and 2017 is pretty complete while
data tables from 2019 ans 2016 contained more than 60 % of rows with one or more
missing values. In order to have sufficient data examples for optimization model phase
and compensate deleted rows previously, we decide to load and clean data from years
2013, 2012, 2011 and 2010 too (Graphics and percentages obtained for these years are
available in repository).

5.3.2 Outliers detection

Detecting outliers or anomalies in data is one of the core problems of data-mining to be
addressed when preprocessing data sets in order to develop models by machine learning
techniques. Some ML algorithms, like logistic or linear regression, are sensitive to features
distributions of inputs examples and patterns contained in the data. The problem comes
when outliers distort the actual distribution of data resulting in less accurate models and
ultimately poorest results [73].

Outliers can be caused by human errors, errors in data recording or collection, envi-
ronmental conditions, unusual phenomena (hurricanes, typhoons,etc.) or a faulty and
non-calibrated sensor. Detecting these anomalies is a challenge and risky task because
the normal and unusual behaviour definitions vary greatly depending on the correction
technique used.

We have decided to apply the majority voting method consisting of execute more
than one anomalies detection algorithm and consider anomalies just those points classi-
fied as outliers by at least two of the run algorithms.
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Particularly, we will use Box-plot and Local distance-based outlier factor (LDOF)
techniques independently so outliers will be points classified as anomalies by both algo-
rithms. In the implementation of the LDOF (the main function is showed in figure 5.17)
150 has been chosen for k considering this value enough to obtain n accurate results
according to Mahmoodi and Ghassemi in their study [74].

It is important to clarify that in the case of wind and wave direction variables we cannot
apply the above techniques because they are circular variables [75]. That means they are
not in a linear scale so an angle of x is the same angle as x + k × 360 for real positive
x and natural k values. Moreover, every value taken by wind and wave direction after
doing mod operation with reference to 360º will be inside the range [0, 360) so that, it
not makes sense to apply outlier or ”out of range” points identification. We are going to
use CircStat toolbox to explore the directional variables [76] in next subsections.

Figure 5.17. Local distance-based outlier factor function imple-
mentation in Matlab

Boxplots for features of interests are represented in figure 5.18 before deleting outliers (left
column) and after deletion (right column). As we observe, the majority voting method
implies that not all outliers identified with the boxplot method are eliminated. Intuitively,
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this technique is in line with the objective of eliminating the minimum number of rows
as possible from the data, since by deleting a row with an anomalous value we also delete
the useful values of the rest of the variables.

(a) Wind speed (b) Gust speed

(c) Wave significant height (d) Dominant wave period

(e) Average wave period (f) Atmosphere Pressure

(g) Air temperature (h) Sea surface temperature

Figure 5.18. Boxplot before (left) and after (right) outlier dele-
tion for wind speed (a), Gust speed (b), Hs (c), Tp

(d), Tz (e), Atmosphere pressure(f), Air temp. (g)
and Sea surface temp.(h) features

The results of outliers deletion are presented in the table 5.8. Among the 71031 rows of
the total data set (from 2010 to Real-time), 1749 outliers have been identified with at
least one anomalous value and have been deleted.
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Used technique Number of identificated outliers
Boxplot 5330
LDOF 4820
Final number of deleted outliers 1749

Table 5.8. Outliers detection and deletion results

After data cleaning, we have plotted each feature time-series using clean data and row
data collected without cleaning in order to ensure that the distributions of them are the
same and we have not made any mistakes during the cleaning process that could have
modified it. As seen in figure 5.19, deleting outliers is especially significant as we see how
the maximum extreme values disappear with these points deletion, creating the visual
effect of expansion of the graph (upper limit is reduced). We can zoom in on figures in
Matlab to check the distribution with more guarantee.

(a) Wind features

(b) Wave features

(c) Air temperature and pressure features

Figure 5.19. Features time series before (left) and after (right)
Data cleaning process
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5.4 Univariate analysis

The first analysis made to data will be the separate study of each main metocean charac-
teristic taken from the buoy location without caring about relationships or causes. The
main features to study are those we want to model in the project:

• Wind speed (m/s)

• Significant waves height (m)

• Wind direction (º)

• Waves direction (º)

Descriptive statistics including central tendency measures (mean, median and mode),
spread measures (range of values, standard deviation, variance and quartiles) and shape
descriptive measures (central moment, maximum and minimum values) are calculated for
each feature.

Finally, we will look for the best density distribution that fits to each feature for the
examples in the data set. We will compare the results with Stewart’s ones obtained in
their analysis and creation of a metocean database and data prototypes of 27 NOAA
stations data [67].

We will use for this purpose

• Statistics functions

• histograms with fit line to data distribution (histfit)

Data from the year 2018 have been used in this study, although results can be extrapolated
to another year’s data. Data from this year has been selected because it is one of the
annual data sets loaded from the page with less missing values and anomalous points
detected.

Wind speed (WSPD)

Wind speed variable is one of the characteristic we want to model in this project. Statis-
tical measures for annual wind speed are summarized in table 5.9
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Wind speed (m/s)

mean 6.0450

median 6
Central

measures
mode 6.4

range 15.4

std 3.1328

variance 9.8145

Spread

measures

quartiles [0, 3.4, 6, 8.5, 15.4]

central mom. 5.1228

max. 15.4
Shape

measures
min. 0

Table 5.9. Descriptive statistics calculated for annual Wind speed
(units: m/s)

Median and mean wind speed values are almost equal while mode is a bit higher. Winds
in Santa Maria station appears to be stable which makes this location suitable for FOWT
installation. Histogram of WSPD observations distribution is plotted in figure 5.20. We
can observe wind speed data is a bit left skewed.

Figure 5.20. Wind speed histfit plot

As Stewart claims in [67], Weibull distribution best fit to Wind speed data.

Significant Waves height (WVHT)
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Significant Waves Height is another important feature to consider. Descriptive statistics
of WVHT are listed in table 5.10.

Significant waves height (m)

mean 1.9779

median 1.87
Central

measures
mode 1.67

range 4.82

std 0.7523

variance 0.5660

Spread

measures

quartiles [0.67, 1.42, 1.87, 2.39, 5.49]

central mom. 0.4237

max. 5.49
Shape

measures
min. 0.67

Table 5.10. Descriptive statistics calculated for annual Sig.
waves height (units: m)

Histogram plot for WVHT (figure 5.21) reveals that Gamma distribution best fit to data,
coinciding again with Stewart [67].

Figure 5.21. Significant waves height histfit plot

Wind direction (WDIR) and Waves direction (MWD)
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Wind and waves directions are circular variables so the way they have been explored was
different. For this purpose, we used the toolbox CircStat of Matlab [76].

Firstly, we have plotted the wind rose of Santa Maria station (see figure 5.22) to visualize
the relation between wind speed and wind direction.

Figure 5.22. Wind rose plot

Descriptive statistic for wind direction are summarized in table 5.11

Wind direction (º)

mean -39.74

median -41.99
Central

measures
R 0.6936

std 44.85Spread

measures variance 17.56

Shape

measures
central mom. 1

Table 5.11. Descriptive statistics calculated for annual Wind di-
rection (units: º)

On the other hand, waves direction statistics measures are listed in table 5.12
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Waves direction (º)

mean -67.54

median -58
Central

measures
R 0.7846

std 37.61Spread

measures variance 12.34

Shape

measures
central mom. 1

Table 5.12. Descriptive statistics calculated for annual waves di-
rection (units: º)

If we compare central measures of wind direction with those of waves direction, we can
confirm that the misalignment between both directions is remarkable, since the WDIR
mean is approximately 30º away from MWD mean. Circular variables are best fit by the
Von Mises distribution or the circular normal distribution according to literature [67].

The same analysis has been made for the rest of the features available in the data set
which can be found in ExploratoryDataAnalysis.mlx file in the repository.

5.5 Correlation analysis

Exploring and measuring the correlation between a predictive variable and the rest of the
available features is fundamental to making a good selection of predictors. This means
that including insignificant variables loosely related to the target variable in the training
set could lead us to obtain a poorest performance model as well as an increment of the
computational cost. By contrast, predictors must not be highly correlated with each
other

To measure the linear correlation we have calculated Pearson and Spearman correla-
tion coefficients for pair-wise features, paying particular attention to the relationship
of all variables with respect to:

• wind speed

• wind direction

• waves significant height

• and waves direction
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After calculating correlation coefficients, we have found that Pearson and Spearman’s
coefficients are similar for huge amounts of data and we draw the same conclusions from
both. Thus just Pearson coefficients are presented here (Spearman’s coefficients are
available in the repository).

5.5.1 Annual correlation

Annual correlation matrixes for 2016, 2017 and 2018 years have been calculated to prove
the hypothesis that the annual correlation remains between variables regardless of the
concrete year. Table 5.13 shows the Pearson correlation matrix for 2018.

Firstly, we can say wind speed is linearly correlated with Wind direction (0.3782), sig.
waves height (0.4425) and Avg. waves period (-0.4823). The correlation with Gust speed
is not revealing since GST and WSPD can be considered the same variable keeping a
linear correlation of 0.9951.

Secondly, for significant waves height we observe a little correlation temperature and
pressure features which could be considered for select these variables as predictors for
WVHT prediction models.

Wind direction is not highly correlated with any feature. It is correlated with wind
speed (0.3782), Avg. waves period (-0.2850), Dominant waves period (-0.1214) and pres-
sure (-0.1360).Finally, waves direction feature keeps a linear correlation with wind speed
(0.1473), significant waves height (0.3576), Dominant waves period (-0.4391) and Waves
surface temperature (-0.2695).
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Chapter 6

Feature selection and extraction

In machine learning, feature selection also known as variable subset selection is the
process of selecting a subset of relevant predictors from all existing features for the mod-
elling.

The main reasons for applying feature selection are the reduction of the algorithm training
time, enhanced generalization which prevents models from over-fitting improving their
performance and the simplification of the data sets for easier understanding. The premise
to use feature selection is that data contains some features that are either redundant or
irrelevant [77]. A redundant variable between predictors is one variable that is highly
correlated with one or more other predictors. On the other side, a predictor is considered
irrelevant if it is poorly correlated or uncorrelated with the predictive feature.

Feature selection methods are classified in

(1) Filter based. They use a proxy measure like variance or correlation with the
predictive variable, to evaluate the importance of predictors and score a feature
subset [77]. After selecting important features, we can train any model using them.

(2) Wrapper based. Wrappers methods consist of testing all possible combinations
of features for training the selected algorithm and keep the features subset which
minimizes the error rate of the model. This is computationally expensive and
unfeasible for the computer on which the project is being carried out. Moreover
this is dependent on the selected training algorithm while Filter based is not.

(3) Embedded. Embedded methods are a group of techniques that perform feature
selection as part of the model learning process [77].

We will use the filter method F-test which calculates a univariate feature ranking (based
on co-variance measure) where all predictors are ordered by importance in the data set
and they have an associated weight. This method has been chosen for its low computa-
tional running cost and effectiveness for regression problems with continuous variables as
predictors [78].
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Complementing the feature selection, feature extraction or data combination consists
of introducing new features in data sets generated from the transformation and/or com-
bination of some existing variables. Data combination techniques allow to include new
information in data set extracted from some variables combined by mathematical trans-
formations. At the same time, a new variable can replace some existing previous features,
thus reducing the dimension of the data set without losing significant information or even
increasing it, so we may obtain better model accuracy.

We will create manually some new variables as well as we will apply the Principal Com-
ponent Analysis (PCA) method in the case that model training seems to be too slow.

6.1 Features extraction: MIS

For Misalignment forecasting, we will combine Wind direction (WDIR) and Waves direc-
tion (MWD) to obtain the new feature that represents the wave and wind misalignment:
MIS.

To obtain the misalignment we first subtract the angle of the wind and waves direction.
Then we calculate the rest by dividing the resultant angle by 180º. This can be made by
the function mod in Matlab, as shown in the code 6.1.

Figure 6.1. Code implemented to obtain the new feature MIS
(wind - waves misalignment) in º

By calculating the mod, we always obtain the smaller angle between the wind and waves
direction as seen in a example in the figure 6.2.
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Figure 6.2. Angle between wind and waves taken as MIS feature
diagramm

6.2 Data set

6.2.1 data10_Real_clean

Row data loaded at the start of the project from 2010 to 2020 (Real Time) have been
saved after cleaning process in data10_Real_clean data set.

Then, we have selected the following subsets of data:

• data2018: data from 2018 used for training models.

• data10_18: data from 2010 to 2018 used for training models with a huge amount
of data.

• data2019: data from 2019 applied to test additionally the models with the best
performance.

• dataRealTime: data from 2020 applied also to test the best trained models

6.3 Features selection

We have applied F-Test into data for each predictive feature to find out which features
have a higher importance score. We also have considered correlation coefficients obtained
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in the previous chapter to select variables for training models. Every feature subset
selection shares that do not contain minutes variable, since it has always the same value
so mm feature has been deleted from data10_Real_clean.

6.3.1 F-test for wind speed forecasting

On the one hand, the Gust speed feature, which is a component of the wind speed,
can be considered the same variable as speed so it is excluded from potential predictors
to calculate their F-score. Different features subset will be taken for models training
according to the F -score test results as well as common sense when thinking of the
physic nature of wind speed and its relationship with the rest of the phenomena.

Figure 6.3 shows the F -test scores1. Wind direction and Significant Wave height (and
therefore Average wave period and Dominant wave period) seem to be important features
while the year has 0 importance because we are considering just data from 2018 to
calculate the F-score.

Figure 6.3. F-test scores bars plot for features to predict wind
speed. Infinite and finite values are distinguished by
the bar color

According to ρ-value interpretation, if ρ ≤ 0.05 we have strong evidence about the null
hypothesis. It is equivalent to say that a score ≤ − log(0, 05) ≃ 1, 3 indicates that the
feature is insignificant. In this case, every feature except YY have a score higher than
the threshold described.

Then we look at the Pearson correlation matrix for 2018 to check that no pair of indepen-
1The infinite values have been represented in bars plot as the maximum score between features.

Infinite measures are given by F-test when ρ-value is less than esp(0) = 4.4907 · 10−324 so log(ρ) would
be almost infinite.
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dent variables are correlated with a coefficient higher than 0,8. In this case, it would rule
out one of them to avoid redundant information in data sets. We see that ATMP and
WTM have a coefficient of 0,8448 which makes sense since both features are temperatures
measures so we will include just one of them as a predictor.

On the other hand, Significant wave height (WVHT), Dominant wave period (DPD),
Average Wave period(APD) and Waves direction will not be included as predictors for
wind speed forecasting because physically these variables can be considered as dependent
from wind state variables.

Figure 6.4 summarize initial data subset for wind speed forecasting, according to the
above justification.

Figure 6.4. Potential predictors for WSPD forecasting

Date features are necessary to keep the data in order on the timeline for later combination
of some values of different rows for time series forecasting as we will explain in the data
combination section.

6.3.2 F-test for significant waves height prediction

As we have done for WSPD, for selecting features to Wave Significant height prediction,
we apply first the same F -scored and we analyse correlation between WVHT and rest of
features as well as each pair of potential predictors correlation.

Before F -test application, YY variable has been scrapped and also GST because it is
considered the same variable as WSPD. Figure 6.7 shows that Wind speed and Waves
direction are highly significant for WVHT prediction, as we have imagined because wind
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speed is the main source that generates waves so probably their values tendency would
be strongly related.

Figure 6.5. F-test scores bars plot for features to predict wind
speed. Infinite and finite values are distinguished by
the bar color

Looking at the correlation matrix, as stated above, ATMP and WTMP are highly corre-
lated with a Pearson coefficient of 0.8448. This could be redundant so we select WTMP
instead of ATMP in this case because of its higher F-score and physical intuition.

For WVHT characterization in the frequency domain, we will consider WSPD, WDIR
and MWD as main potential predictors. Physically the wave height is determined by the
current wind speed but it can also be affected by previous waves. This intuition leads us
to consider directional variables too. WTMP and PRES variables are left in the data set
for possible subset selection for training.
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Figure 6.6. Potential predictors for WVHT prediction

6.3.3 F-test for misalignment forecasting

F-test scores calculated for the misalignment feature shows that Dominant waves period,
Pressure, Significant waves height, Wind speed and Waves surface temperature features
are the most significant.

Figure 6.7. F-test scores bars plot for features to forecast mis-
alignment. Infinite and finite values are distin-
guished by the bar color

For misalignment time series forecasting we select as potential predictors in addition to
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MIS: WVHT, WSPD, PRES and WTMP as seen in figure 6.8. In spite of having a high
F-test score, DPD is physically dependent of the waves height so we decide to exclude it
as potential predictor.

Figure 6.8. Potential predictors for MIS forecasting

6.4 Data combination

Time series forecasting models receive as input a set of predictors based on a temporal
window of consecutive samples (rows) of the data [79]. Thus for applying ML techniques
we must combine data rows to create new variables in each row corresponding to the
predictive variable and other predictors dated some hours before.

For instance, if we want to forecast next hour wind speed (t) by considering as input
wind speed in the previous 3 hour (t-1, t-2 and t-3), we would have the temporal window
showed in figure 6.9.
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Figure 6.9. Temporal window to predict next hour WSPD with
WSPD in the previous 3 hours as predictors

To get a data set with features from the temporal window 6.9 in each row we do the
following data combination in the data set for each distinct pack of 4 contiguous rows:

Figure 6.10. Data rows combination to relate WSPD in time t
(predictive feature) with WSPD in t-1, t-2 and t-3
as predictors

The data combination represented in the diagram 6.10 has been done to get data sets for
wind speed and misalignment forecasting changing the time window longitude. All data
sets are saved in the repository. Files to generate the data sets from original ones are
also available in the repository with names like “1hourbeforeWSPD.m”.

In the case of neural networks (NAR and NARX), the Neural Net Time series toolbox has
been used where we establish a delay (how many hours before forecasting moment t to
consider predictors in the time window) and it makes automatically the data combination.
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Predictors (values in the moment t) and targets are given to the toolbox in separated
arrays.
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Chapter 7

Wind speed forecasting: algorithms
application

In this part of the work, we proceed to train our models for Wind speed forecasting in
the time domain. We applied the following Machine Learning algorithms:

• Linear Regression (LR)

• Support Vector Machines for Regression (SVR)

• Gaussian Process Regression (GPR)

• Nonlinear Autoregressive Neural Network (NAR)

• Nonlinear Autoregressive with External input Neural Network (NARX)

Models are trained to forecast the next hour’s wind speed by trying different com-
binations of features of data set data2018. If needed, more data from other years is added
to the training set during optimization phase.

For regression algorithms application, in the Regression Learner app, the holdout valida-
tion scheme is configured with a held-out data subset of 20%. That means that 20% of
8581 rows are used for validating the models with unseen observations.

In the case of artificial neural networks, the data set has been split in training (70%),
validation (15%) and testing (15%) sets.

Finally, the best models have been additionally tested with data from 2019 and 2020
(“Real Time”) as a demonstration of its performance. The performance is measured with
the RMSE error (units are m

s
).
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7.1 LR

Linear regression has been the first algorithm we applied because of its simplicity and
easy understanding. Model variants: linear, interactions linear, robust linear and stepwise
linear have been performed in next hour wind speed forecasting giving all models except
Robust variant equal results as seen in table 7.1. Thus we select, for instance, the
Interactions linear regression model to train with wind speed registers from 1 hour to 6
hours before as predictors, obtaining the results summarized in 7.2.

wind speed input Model type RMSE MAE R-squared Success rate

1 h-before

Linear 1.0546 0.7837 0.89 93.15%

Interactions linear 1.0546 0.7837 0.89 93.15 %

Robust linear 1.0558 0.7819 0.89 93.14 %

Stepwise linear 1.0546 0.7837 0.89 93.15 %

Table 7.1. Validation results of linear regression models trained
with wind speed an hour before as predictor for next
hour wind speed forecasting

Model name wind speed inputs RMSE MAE R-squared Success rate

wind_lr1 1 h-before 1.0546 0.7837 0.88 93.15 %

wind_lr2 2 h-before 1.0529 0.7837 0.89 93.16 %

wind_lr3 3 h-before 1.0539 0.7852 0.89 93.16 %

wind_lr4 4 h-before 1.0578 0.7872 0.89 93.13 %

wind_lr5 5 h-before 1.0624 0.7868 0.89 93.10 %

wind_lr6 6 h-before 1.0639 0.7886 0.89 93.09 %

Table 7.2. Validation results of linear Regression models trained
with wind speed from 1-hour to 6-hours before as pre-
dictors for next hour wind speed forecasting

The wind_lr2 model with two last hours wind speed as input shows the best cross vali-
dation error. Figures 7.1 shows its performance for the 20% hold-out validation data by
plotting the true response (training targets) for the first 100 observations of validation
set and the predicted output for these observations.
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Figure 7.1. Validation responses compared with predicted outputs
by wind_lr2 model for 100 first validation observa-
tions subset of data from 2018

We perform wind_lr2 model to forecast wind speed with 2019 and Real time data rows,
obtaining a RMSE of 1.1237 and 1.1723 respectively.

7.2 SVR

Support vector machines for regression model is firstly trained with data from 2018 and
two last hours wind speed variables as predictors. Different configurations are tried
obtaining the best results (listed in the table 7.3) with Gaussian kernel function, a box
constraint of 9.78 and ε = 0.066.

Model name inputs in time predictors RMSE MAE R-squared Success rate

wind_svm1 2 h-before WSPD 1.0359 0.7664 0.89 93.27 %

Table 7.3. Validation results of Regressive SVM model for next
hour wind speed forecasting with last two wind speed
values as input

To decide what to do to optimize the wind_svm1 model, we first plot its learning curves
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(figure 7.2) by training the model with different subsets of m training examples and
calculating the training and validation RMSE for each m. The reference error represented
as green discontinuous line as we explained is selected according to the range of errors
found in the literature for models that predict the same variable as the one studied with
the learning curves. This reference error is just a indicative little profitable value whose
only purpose is be able to evaluate our model and decide whether to continue optimizing
it or not.
As in literature the RMSE for wind speed forecasting with intelligent models vary between
1.650 and 0, 7040, we stablish the reference error to 0.9.

In figure 7.2 we appreciate that wind_svm1 model suffers from high bias which means
the model is underfitted. Thus try adding additional features (corresponding to other
physic characteristics or more variables representing WSPD from hours in the past) as
predictors could help to improve the RMSE.

Figure 7.2. Learning curves plot for wind_svm1 model

Table 7.4 shows results given by the two best SVM optimized models trained:

• wind_svm2 model with wind speed from 1 to 10 hours before the moment we want
to forecast the speed as predictors, linear kernel function, a box constraint of 6.1141
and ε = 0.1377.

• wind_svm3 model which receive as input wind speed from 1 to 14 hours before and
configured with gaussian kernel function, a box constraint of 0.5056 and ε = 0.0096.
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We reach the best RMSE equals to 0.9985 with wind_svm3 model.

Model name inputs in time predictors RMSE MAE R-squared Success rate

wind_svm2 10 h-before WSPD 1.0148 0.7654 0.90 93.41 %

wind_svm3 14 h-before WSPD 0.9985 0.7574 0.89 93.52 %

Table 7.4. Validation results of Regressive SVM models
wind_svm2 and wind_svm3 for next hour wind speed
forecasting

The wind_svm3 model gives a RMSE of 1.1462 for the year 2019 and 1.1722 for Real
time wind speed forecasting. Response plot of wind_svm3 for data from 2019 can be
seen in figure 7.3

Figure 7.3. Responses for data from 2019 compared with pre-
dicted outputs by wind_svm3 model for 500 first ob-
servations

7.3 GPR

Table 7.5 includes the performance measures for the Gaussian Process Regression model
configured with the isotropic matern 5/2 kernel function, a kernel scale of 0.0164 and
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σ = 0.0057 as hyperparameters which gives us the best results between GPR configured
models trained with data rows from 2018 and just one predictor: the current wind speed.
Thus if t is the moment to forecast wind speed, the predictor will be wind speed one hour
before (at t− 1 in time).

Model name inputs in time predictors RMSE MAE R-squared Success rate

wind_gpr1 1 h-before WSPD 1.0424 0.7746 0.89 93.23 %

Table 7.5. Validation results of wind_gpr1 model for next hour
wind speed forecasting

The wind speed predictions given by wind_gpr1 model for 100 first observations of vali-
dation set are compared with true wind speed values in figure 7.4.

Figure 7.4. Validation responses compared with predicted out-
puts by wind_gpr1 model for 100 first observations
of 2018

As seen in learning curves plot 7.5, predictions error of wind_gpr1 is so close to the
reference error selected by us which is a good indicative of the good performance of
the model. Even so, we tried to train some more GPR models, highlighting the results
for wind_gpr2 and wind_gpr3 models (see table 7.6). In this case, models are trained
with Wind speed (WSPD), Air temperature (ATMP) and Pressure (PRES) in t − 1
(wind_gpr2) and t− 1, t− 2 (wind_gpr3) as predictors.
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Figure 7.5. Learning curves plot for wind_gpr1 model

Model name inputs in time predictors RMSE MAE R-squared

wind_gpr2 1 h-before WSPD, ATMP,PRES 1.0258 0.7630 0.89

wind_gpr3 2 h-before WSPD,ATMP,PRES 1.0774 0.7731 0.88

Table 7.6. Validation results of wind_gpr2 and wind_gpr3 mod-
els for next hour wind speed forecasting

Model name Success rate

wind_gpr2 93.34 %

wind_gpr3 93.00 %

Table 7.7. Success rate of wind_gpr2 and wind_gpr3 models

Finally, RMSE for 2019 and Real Time data has been calculated as seen in table 7.8
for the three previous GPR models to observe which one generalize better for new data
forecasting.
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Model name RMSE (2019) RMSE (Real Time) % 2019 % 2020

wind_gpr1 1.1274 1.1721 92.67 % 92.38 %

wind_gpr2 1.1344 1.1670 92.63 % 92.42 %

wind_gpr3 1.1102 1.1538 92.79 % 92.50 %

Table 7.8. RMSE and success rate obtained for 2019 and 2020
(Real time) next hour wind speed forecasting with
wind_gpr1, wind_gpr2 and wind_gpr3 models

Although wind_gpr3 model seems to generalize a bit better than other two, it also receives
6 input parameters as predictors which could be more computationally expensive. Thus,
we propose wind_gpr2 as a possible good choice to real wind speed forecasting.

7.4 NAR

As explained in chapter 3, Nonlinear Autoregressive Neural Networks predict series y(t)
given as input the same variable with a delay d established, i.e. the mathematical ex-
pression of the model follows the following form

y(t) = f(y(t− 1), y(t− 2), ..., y(t− d))

As there is not a concrete criteria to select the number of neurons or delay for the neural
network, we start with a network of 15 neurons at the hidden layer and a delay of 6
(see figure 7.6). Generally, NAR are used with just one hidden layer so all NAR models
trained here will have one hidden layer.

Figure 7.6. wind_nar1 nonlinear autoregressive neural network
structure diagram

Table 7.9 shows the results obtained with the wind_nar1 network.
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Model

name

Nº

neurons

Nº

delays

RMSE R-squared Success

rateTrain Valid. Test Train Valid. Test

wind_nar1 15 6 1.0235 1.0581 1.0871 0.94 0.93 0.94 92.94 %

Table 7.9. Results for wind_nar1 model trained with data from
2018 for next hour wind speed forecasting

As seen, testing and validation RMSE are a bit higher than training RMSE. We decide
to plot the learning curves (see figure 7.7) to try to optimize the model .

Figure 7.7. Learning curves for wind_nar1 model

Evaluating the distance between training and validation error curves which is higher than
in other previous learning curves plots, we could say the wind_nar1 model is suffering
from high variance so it may help select a simpler structure for the neural network or use
more training examples from other years. Some of the best NAR models obtained during
the optimization phase are presented together with RMSE and R squared on table 7.10.
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Model

name

Input

data

Nº

neurons

Nº

delays

RMSE R-squared

Train Valid. Test Train Valid. Test

wind_nar2
2016

to 2018
15 6 1.0303 1.0628 1.0389 0.95 0.94 0.94

wind_nar3 2018 15 1 1.0537 1.0821 0.9762 0.94 0.93 0.94

Table 7.10. Results of wind_nar2 and wind_nar3 models train-
ing for next hour wind speed forecasting

Model name Success rate

wind_nar2 93.25 %

wind_nar3 93.66 %

Table 7.11. Testing success rate for wind_nar2 and wind_nar3
models

The Learning curves plot for the wind_nar2 model (figure 7.8) shows an improvement in
prediction with respect to wind_nar1 learning curves showed in figure 7.7.

Figure 7.8. Learning curves for wind_nar2 model
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Despite consider only the wind speed of the previous hour as predictor, the wind_nar3
model gives us the best testing RMSE : 0.9762 (the RMSE of wind speed forecasting for a
20% unseen data). Thus the model is applied to forecast WSPD of 2019 giving a RMSE
of 1.1496 and a RMSE for real time data of 1.1713.

Figure 7.9. Forecasting response of wind_nar3 model for data of
2019

7.5 NARX

Nonlinear Autoregressive with External Input (NARX) neural networks differ from NAR
networks in that they receive as input in addition to the variable to be predicted, past
values of other variables. Thus the mathematical expression of the model would be for a
given delay d and inputs variables x and y.

y(t) = f(x(t− 1), ..., x(t− d), y(t− 1), ..., y(t− d))

Guided by results obtained for NAR models, we started trying simple NARX architecture
and training them with data from 2018 as we thought they would give us lower RMSE.
Table 7.12 shows best three trained models, highlighting the wind_narx2 whose archi-
tecture is represented in figure 7.10. All three models receive as input features: WSPD,
ATMP, PRES and WDIR of previous d hours (remembering d is the stablished delay).
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Figure 7.10. wind_narx2 nonlinear autoregressive with external
input neural network architecture diagram

Model

name

Nº

neurons

Nº

delays

RMSE R-squared

Train Valid. Test Train Valid Test

wind_narx1 10 1 1.0179 1.0889 1.0066 0.95 0.94 0.95

wind_narx2 5 3 0.9993 1.0162 0.9988 0.95 0.95 0.95

wind_narx3 9 6 0.9868 1.0630 0.9893 0.95 0.94 0.95

Table 7.12. Results of wind_narx1, wind_narx2 and
wind_narx3 models for next hour wind speed
forecasting

Model name Success rate

wind_narx1 93.46 %

wind_narx2 93.51 %

wind_narx3 93.58 %

Table 7.13. Testing success rate for wind_narx1, wind_narx2
and wind_narx3 models for next hour wind speed
forecasting

To compare the three models we use them to forecast the wind speed of 2019 and 2020.
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Model name RMSE (2019) RMSE (Real Time) % (2019) % (2020)

wind_narx1 1.1517 1.1828 92.52 % 92.32 %

wind_narx2 1.1124 1.1340 92.78 % 92.63 %

wind_narx3 1.1309 1.1758 92.66 % 92.36 %

Table 7.14. RMSE and success rate of three NARX best trained
models for 2019 and 2020 (Real time) next hour wind
speed forecasting

Results summarized in table 7.14 shows that wind_narx2 is a bit better than others by
forecasting wind speed with new data as input as time as the structure and computation-
ally cost of execute the network is lower. Thus wind_narx2 could be choosen between
the three models. Figure 7.11 shows wind_narx2 forecasting response for data of 2019.

Figure 7.11. Forecasting response of wind_narx2 model for data
of 2019

7.6 Models comparison

The best way to compare the peformance of models obtained by applicating the different
algorithms for the next hour wind speed forecasting is to put together into a table the best
model for each ML technique together with the validation RMSE and also the RMSE given
for 2019 and 2020 data forecasting. Validation RMSE for neural networks correspond to
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the test RMSE due to CV scheme applied to NN is training-validation-testing data set
partition and testing RMSE is more significative than validation one.

Algorithm Model Name
RMSE

(validation)

RMSE

(2019)

RMSE

(2020)

Success rate

(validation)

LR wind_lr2 1.0529 1.1237 1.1723 93.16 %

SVR wind_svm3 0.9985 1.1462 1.1722 93.52 %

GPR wind_gpr2 1.0285 1.1344 1.1670 93.32 %

NAR wind_nar3 0.9762 1.1496 1.1713 93.66 %

NARX wind_narx2 0.9988 1.1124 1.1340 93.51 %

Table 7.15. Best models for WSPD forecasting obtained by
each ML algorithm together with validation RMSE,
RMSE for 2019 and Real Time (2020) data and the
validation success rate.

Table 7.15 list the most optimized model for each ML technique applied. Even when
wind_nar3 gives the best validation sucess rate (93.66%), it generalize worst for 2019
and 2020 data forecasting as we observe in RMSE for 2019 and 2020 columns. Thus, the
algorithm that performs the best with a validation RMSE of 0.9988 (second lowest) and
the lowest RMSE for 2019 (1.1124) and 2020 (1.1340) is Nonlinear Autoregressive
with external input neural network (NARX) algorithm and best configuration
found is that applied to train the wind_narx2 model:

■ Data set: data from 2018

■ Predictors: WSPD, ATMP, PRES, WDIR

■ Nº neurons in the hidden layer: 5

■ Nº input delays: 3 hours before forecasting moment (t)

wind_narx2 model has a success rate of 93.51% so we conclude it has a good perfor-
mance. Figure 7.12 shows the predicted against true first 200 output values from 2020,
for wind_narx2 model.
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Figure 7.12. Predicted against true responses for wind_narx2
model for 200 first observations of data from 2020
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Chapter 8

Significant waves height prediction:
algorithms application

Waves modelling in the frequency domain consists of characterizing or predicting the
waves state, based on known wind and weather measurements. Concretely, we will predict
the significant height of waves given wind features as well as waves direction, temperature
value or pressure as models input.

Machine learning algorithms applied are:

• Linear Regression (LR)

• Support Vector Machines for Regression (SVR)

• Gaussian process regression (GPR)

• Feed-forward backprop ANN

The cross-validation schemes used for several models have been: cross-validation with 5
sub-folders and holdout validation scheme configured with a held-out data subset of 20%.

On the other hand, for artificial neural networks training, the data set used has been split
in training (70%), validation (15%) and testing (15%).

RMSE error has been used to measure models’ performance whose units are meters (m).

8.1 LR

Linear Regression is used considering the great causality and high relation of the waves
height attributed to the wind speed primarily. Moreover, significant waves height keeps

109
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a relation with wind direction and waves direction, so these features may be interesting
to include as model inputs.

Firstly, a LR model has been trained with WSPD feature as input, using the 5-fold cross
validation scheme to partition the data from 2018 (training data set). Table 8.1 shows
the results of training this first model: waves_lr1.

Model name predictors RMSE MAE R-squared Success rate

waves_lr1 WSPD 0.6747 0.5149 0.20 87.71 %

Table 8.1. Validation results of LR waves_lr1 model

The validation RMSE obtained for waves_lr1 model is a bit bad compared with most
RMSE for significant waves height prediction found in literature (≈ 0.25) as well as R-
squeared indicate that just 20% of data variation is explained by the predictor selected
(WSPD).RMSE for 2019 data prediction given by waves_lr1 is 0.8209 and 0.6223 for
Real time data. True responses and predictions made by the same model on first 500
observation for data of 2019 can be seen in figure 8.1.

Figure 8.1. Forecasting response of waves_lr1 model for data of
2019

Optimization phase in this case is poorly significant because Linear regression model
is too simple to explain or describe the significant waves height. Thus, including waves
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direction and wind direction as predictors in addition to the wind speed, we only managed
to improve the validation error to 0.6290 (see table 8.2).

Model name predictors RMSE MAE R-squared Success rate

waves_lr2 WSPD, MWD, WDIR 0.6290 0.4749 0.29 88.54 %

Table 8.2. Validation results of LR waves_lr2 model

waves_lr2 model gives a RMSE of 0.7877 for 2019 data and 0.5692 for Real time data
predictions.

8.2 SVR

Support Vector Machines with Gaussian kernel function are applied firstly to model
WVHT with predictors: WSPD, MWD and WDIR. This model gives a validation RMSE
of 0.5889 as seen in table 8.3 and a little R-squared value of 0.37. That can indicate us
that we need more information (features) to describe more precisely the waves state in
the selected location of Santa Maria station.

Model name predictors RMSE MAE R-squared Success rate

waves_svm1 WSPD, MWD, WDIR 0.5889 0.4312 0.37 89.27 %

Table 8.3. Validation results of SVM waves_svm1 model

Predictions made by waves_svm1 model are represented against true responses for 2018
data in figure 8.2, placing the waves direction on the x-axis and wave height value on the
y-axis.
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Figure 8.2. Forecasting response of waves_svm1 model for data
of 2018

Learning curves for waves_svm1 (figure 8.3) fluctuate making noisy movements and are
so irregular while not decreasing. Learning curves theory says that training data set could
be unrepresentative for the problem [65], so we select WTMP as additional predictor to
train model. Moreover, if validation curve is lower than training curve in some points
it may be because it is simpler to predict it than training set. To avoid the influence
of one training-validation sets selection, we will use instead of 20% hold-out CV scheme
(applied in waves_svm1 training); the 5-fold CV for next models training we will carry
out.
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Figure 8.3. Learning curves plot for waves_svm1 model trained
with data from 2018 and using 5-fold Cross Valida-
tion scheme

Two models have been obtained after optimization phase giving a better RMSE as can
be seen in the table 8.5.

Model name predictors RMSE MAE R-squared Success rate

waves_svm2
WSPD, MWD, WDIR,

WTMP
0.5679 0.4082 0.43 89.66 %

waves_svm3
WSPD,MWD,WDIR,

WTMP,PRES
0,5203 0,3709 0,52 90.52 %

Table 8.4. Validation results of SVM waves_svm2 and
waves_svm3 models

Although waves_svm3 gives a smaller validation error than waves_svm2; it generalize a
little worst for WVHT forecasting of 2020 (see table 8.5).Considering also that is better
to use a model with less input variables, we would choose waves_svm2 as best SVM
model between obtained models.
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Model name RMSE (2019) RMSE (Real Time) % (2019) % (2020)

waves_svm2 0.8174 0.6149 85.11 % 88.80 %

waves_svm3 0.8019 0.7015 85.39 % 87.22 %

Table 8.5. RMSE and sucess rate of waves_svm2 and
waves_svm3 models for data of 2019 and 2020 (Real
Time)

Validation predicted response and true response for waves_svm2 model have been plot
(see figure 8.4). It shows a higher accurate predictions compared with the predictions
made by waves_svm1 model (figure 8.2).

Figure 8.4. Forecasting response of waves_svm2 model for data
of 2018

8.3 GPR

Gaussian Process Regression algorithm is applied firstly using WSPD as input model
and in a second model using MWD and WDIR too as predictors. Results summarized in
table 8.6 shows that the second model trained is better.



CHAPTER 8. SIGNIFICANT WAVES HEIGHT PREDICTION: ALGORITHMS
APPLICATION 115

Model name predictors RMSE MAE R-squared Success rate

waves_gpr1 WSPD 0.6655 0.5080 0.22 87.88 %

waves_gpr2 WSPD, WDIR, MWD 0.5820 0.4373 0.40 89.39 %

Table 8.6. Validation results for GPR waves_gpr1 and
waves_gpr2 models

Although waves_gpr2 has a good performance, if we want to optimize it, considering the
reference RMSE of 0.3, we could say that the model suffers from high bias by observing
its learning curves plot (8.5).

Figure 8.5. Learning curves plot for waves_gpr2 model trained
with data from 2018

Adding PRES and WTMP as predictors in addition to WSPD, MWD and WDIR as well
as using a data set with 2017 and 2018 data rows for training; we obtain the waves_gpr3
model which gives a validation RMSE of 0.5021, a RMSE for 2019 data of 0.7312 and
0.6940 for Real Time data (see table 8.7).



116 8.4. FEED-FORWARD ANN

Model name predictors RMSE MAE R squared
RMSE

(2019)

RMSE

(2020)

waves_gpr3
WSPD, WDIR,

MWD, PRES,

WTMP

0.5021 0.3755 0.54 0.7312 0.6940

Table 8.7. Validation and testing results for GPR waves_gpr3
model

Model name
Success rate

(validation)

Success rate

(2019)

Success rate

(2020)

waves_gpr3 90.85 % 86.68 % 87.36 %

Table 8.8. Validation and testing success rates for GPR
waves_gpr3 model

8.4 Feed-forward ANN

Feed-forward Backprop Artificial Neural Networks (ANN) are pretty used in modeling
letting us create different networks with different number of hidden layers and number of
neurons in each layer to best overcome the regression problem.

Main parameters that we select while configuring our ANN are:

• Nº of hidden layers

• Nº of neurons for each hidden layer

• Training function (Lavenberg-Marquardt, gradient descent,...)

• Transfer function in neurons of each layer (Tansig, Purelin or Logsig). We will
apply in all models trained the Tansig function in neurons from hidden layers and
Purelin in the output layer.

We start with a simple network to evaluate its performance in Significant waves height
prediction. Table 8.9 shows configuration for waves_ann1 network and table 8.10 sum-
marize results of training the neural network with data from 2018.
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Model name Predictors
Training

Function

Nº hidden

layers
Nº neurons/layer

waves_ann1
WDIR, WSPD,

MWD
Trainlm 1 15

Table 8.9. waves_ann1 model parameters selected for training

Model name
RMSE R-squared

Train Valid. Test Train Valid. Test

waves_ann1 0.5130 0.5533 0.5365 0.73 0.68 0.70

Table 8.10. training, validation and testing results for ann
waves_ann1 model

Model name Success rate

waves_ann1 90.22 %

Table 8.11. Testing success rate for waves_ann1 model

It is remarkable how the R-squared is larger for one of the simplest neural networks
trained than for other algorithms like SVR or GPR used in WVHT prediction. It is a
good indication that the neural network captures the information present in data and
learns from it pretty well.
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Figure 8.6. Learning curves plot for waves_ann1 model trained
with data from 2018

Learning curves plotted for waves_ann1 model (figure 8.6) are decreasing for larger num-
ber of training examples (m) as expected and comparing them with the reference error
line, we could say this neural network suffers from high bias. To fix high bias, we try
some more complex configurations of neural network, taking into account that a too com-
plex network would be very computationally costly and not a feasible solution in FOWT
applications context.

Table 8.12 shows best networks architecture found which give a good testing RMSE (see
table 8.13) of the order of 0.4. Both waves_ann2 and waves_ann3 models are trained
with data from 2018.
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Model name Predictors
Training

Function

Nº hidden

layers
Nº neurons/layer

waves_ann2
WDIR, WSPD,

MWD, PRES,

WTMP

Trainlm 4 25 x 20 x 15 x 7

waves_ann3
WSPD, WDIR,

MWD, PRES,

WTMP

Trainlm 4 20 x 25 x 7 x 2

Table 8.12. waves_ann2 and waves_ann3 models parameters se-
lected for training

Model name
RMSE

Train Valid. Test

waves_ann2 0.4531 0.4948 0.4619

waves_ann3 0.4214 0.4947 0.4517

Table 8.13. training, validation and testing RMSE for ann
waves_ann2 and waves_ann3 models

Model name Success rate

waves_ann2 91.59 %

waves_ann3 91.77 %

Table 8.14. testing success rate for ann waves_ann2 and
waves_ann3 models

The waves_ann3 model (diagram 8.7) gives an RMSE of 0.8112 for 2019 and 0.7421 for
2020 data.

Figure 8.7. waves_ann3 architecture diagramm
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8.5 Models comparison

As we did in the previous chapter, we compare best models trained with each ML tech-
nique applied to significant waves height prediction. Table 8.15 list these models in order
to compare their performance.

Algorithm Model Name
RMSE

(validation)

RMSE

(2019)

RMSE

(2020)

Success rate

(validation)

LR waves_lr2 0.6290 0.7877 0.5692 88.54 %

SVR waves_svm2 0.5679 0.8174 0.6149 89.66 %

GPR waves_gpr3 0.5021 0.7312 0.6940 90.85 %

Feed-forward

ANN
waves_ann3 0.4517 0.8112 0.7421 91.72 %

Table 8.15. Best models for WVHT prediction obtained by each
ML algorithm together with validation RMSE and
RMSE for 2019 and Real Time (2020) data.

The best algorithm to predict the Significant waves height turns out to be the Gaussian
process regression (GPR) with the second lowest validation RMSE (0.5021) and best
RMSE for 2019 (0.7312) and 2020 predictions (0.6940). waves_gpr3 model training
context which gives the best results of every GPR model trained consist of:

■ Data set: data from 2018

■ Predictors: WSPD, WDIR, MWD, PRES, WTMP

With a success rate of 90.85 %, we claim the waves_gpr3 model has an acceptable
predictive performance although it could be improved. Predicted against true responses
plot for first 200 observations from 2020 for waves_gpr3 model can be seen in figure 8.8.
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Figure 8.8. predicted against true response for waves_gpr3 model
for 200 first observations of data from 2020
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Chapter 9

Misalignment forecasting:
algorithms application

Wind and waves misalignment forecasting is a novel and pioneering task carried out in
this project.

Algorithms applied for Misalignment forecasting have been:

• Linear Regression (LR)

• Gaussian Process Regression (GPR)

• Support Vector Machines for Regression (SVR)

• Nonlinear Autoregressive Neural Network (NAR)

• Nonlinear Autoregressive with External Input (NARX)

Models trained forecast the next hour misalignment (short-term forecasting). For
neural networks, the data set has been split in training (70%), validation (15%) and
testing (15%) sets while for the rest of algorithms a hold validation scheme is configured
with a held-out data subset of 20% (validation data set).

RMSE is measured in angle degrees and best models have been additionally tested with
data from 2019 and 2020 (“Real Time”).

9.1 LR

First linear regression model trained gives a good error in comparison with the initial
reference error of 90º, as seen in table 9.1. However the R-squared value (0.33) indicates
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that this model does not capture much information from data and it can be optimized.
mis_lr1 model has been trained with data from 2018.

Model name Inputs in time Predictors RMSE MAE R-squared Success rate

mis_lr1 1 h-before MIS 53.9260 32.6721 0.33 70.04 %

Table 9.1. Validation results of mis_lr1 LR trained model for
next hour misalignment forecasting

Figure 9.1 shows the predicted and true response for validation subset of data rows from
2018.

Figure 9.1. Validation responses compared with predicted outputs
by mis_lr1 model for 100 first observations of the
validation subset of data from 2018

We managed to improve the model a little bit by adding WTMP, WSPD and PRES
1-hour before values in addition to MIS feature as predictors. Results given by mis_lr2
model are listed in the table 9.2.
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Model name Inputs in time Predictors RMSE MAE R-squared Success rate

mis_lr2 1 h-before
MIS, WSPD,

WTMP,

PRES

52,1342 30,8361 0.35 71.04 %

Table 9.2. Validation results of mis_lr2 LR trained model for
next hour misalignment forecasting

The little improvement of mis_lr2 model compared to mis_lr1 model can be appreciated
in figure 9.2. (The 100 observations plotted in figure 9.1 and 9.2 are not exactly the same
because validation set is a randomly selection of 20% of rows before training the model).

Figure 9.2. Validation responses compared with predicted outputs
by mis_lr2 model for 100 first observations of the
validation subset of data from 2018

Finally, we test the mis_lr2 model with data from 2019 obtaining a RMSE of 62.4652
and a RMSE of 66.2944 for Real Time data.
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9.2 SVR

Support Vector Regression with Gaussian kernel function has been applied selecting as
predictor the current misalignment to predict it in the next hour. First SVR model
trained with data from 2018 gives a RMSE of 54.8385 as shown in table 9.3.

Model name Inputs in time Predictors RMSE MAE R-squared Success rate

mis_svm1 1 h-before MIS 54.8385 29.9080 0.31 69.53 %

Table 9.3. Validation results for mis_svm1 model for next hour
misalignment forecasting

Learning curves for this model are as expected so good, even achieving a validation error
in one point lower than 50 º (see figure 9.3).

Figure 9.3. Learning curves plot for mis_svm1 model

To ensure the performance of this model, we test the mis_svm1 with data from 2019 and
2020, obtaining RMSE values of 63.5201 and 65.4028 respectively. In order to improve
these numbers, we try some models training obtaining similar RMSE. The mis_svm2
model trained (see results in figure 9.4) gives best RMSE for 2019 of 61.7990 and 64.3001
for Real Time data .



CHAPTER 9. MISALIGNMENT FORECASTING:
ALGORITHMS APPLICATION 127

Model name Inputs in time Predictors RMSE MAE R-squared Success rate

mis_svm2 1 h-before
MIS, WSPD,

WTMP
51.9623 31.9612 0.32 71.13 %

Table 9.4. Validation results for mis_svm2 model for next hour
misalignment forecasting

Figure 7.2 shows the true and predicted responses made by mis_svm2 for 2018 data
registers.

Figure 9.4. Validation responses compared with predicted outputs
by mis_svm2 model for 100 first validation subset
observations of data from 2018

9.3 GPR

Gaussian Process Regression first model has been trained with misalignment from this
moment as predictor to next hour misalignment forecasting. We observe in table 9.5 that
mis_gpr1 model gives a good RMSE of 52.0531 although R-squared is still too little. We
try to add WTMP and WSPD as predictors getting a RMSE of 51.5981.
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Model name Inputs in time Predictors RMSE MAE R-squared

mis_gpr1 1 h-before MIS 52.0531 31.4042 0.38

mis_gpr2 1 h-before MIS, WSPD, WTMP 51.5981 31.2231 0.39

Table 9.5. Validation results for mis_gpr1 and mis_gpr2 trained
models for next hour misalignment forecasting

Model name Success rate

mis_gpr1 71.08 %

mis_gpr2 71.33 %

Table 9.6. Success rate for mis_gpr1 and mis_gpr2 models

We plot learning curves for mis_gpr2 stablishing a reference error of 50º (30º less than
90º which has been considered the criteria or top margin to determine if RMSE value is
good). Figure 9.5 shows this model is good-fit and validation curve is located below the
training curve which is one of the objectives in Machine Learning models. Thus in this
case we finished the optimization phase.

Figure 9.5. Learning curves plot for mis_gpr2 model
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Plot of predicted and true responses for mis_gpr2 (figure 9.6) reveal too the distribution
of misalignment registers values from the data set used.

Figure 9.6. True and predicted responses plot for mis_gpr2
model for data from 2018

mis_gpr2 model is tested for data from 2019 and Real Time, giving RMSE values of
59.7840 and 62.7212 respectively.

9.4 NAR

Nonlinear Autorregressive Neural Networks have been found out to capture pretty well
the information into the data set for misalignment forecasting. Every networks trained
in this chapter (NAR and NARX explained in the next section) have one hidden layer.

First NAR model consist of a neural network with one hidden layer with 10 neurons that
receive misalignment from one previous hour of forecasting as input (the delay is 1). This
first network (mis_nar1) has been trained with data from 2018 giving the results shown
in the table 9.7.
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Model

name

Nº

neurons

Nº

delays

RMSE R-squared

Train Valid. Test Train Valid. Test

mis_nar1 10 1 53.1438 54.0507 53.6406 0.60 0.59 0.62

Table 9.7. Results of mis_nar1 model training for next hour mis-
alignment forecasting

Model name Success rate

mis_nar1 70.20 %

Table 9.8. Success rate for mis_nar1 model

If we look at learning curves plot for mis_nar1 model (figure 9.7), we appreciate that
training error curve reaches the reference RMSE line and in general we can say that this
model is good fit. However, the validation curve is a little bit above the training curve so
we will try optimize the model. We try train more complex NAR establishing a higher
delay and choosing a greater number of neurons for the hidden layer.

Figure 9.7. Learning curves plot for mis_nar1 model

The best NAR optimized model which gives a bit better results than mis_nar1 is listed in
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the table 9.9. It should be mentioned that mis_nar1 has been configured with the training
function “Lavenberg-Marquardt” (Trainlm) while mis_nar2 model has been trained with
“Bayesian Regularization Backpropagation” function (Trainbr). Trainbr apply a training-
testing scheme data set partition (without validation subset). Thus validation RMSE is
not available for mis_nar2.

Model

name

Nº

neurons

Nº

delays

RMSE R-squared

Train Test Train Test

mis_nar2 23 4 50.3944 49.7858 0.66 0.63

Table 9.9. Results of mis_nar2 model training for next hour mis-
alignment forecasting

Model name Success rate

mis_nar2 72.00 %

Table 9.10. Testing success rate for mis_nar2 model

mis_nar2 gives a RMSE of 61.8016 for 2019 misalignment forecasting and a RMSE of
62.7157 for Real Time forecasting. Finally, we can see predicted against true responses
and MSE error (RMSE squared) plot for mis_nar2 in figure 9.8.

Figure 9.8. Forecasting response of mis_nar2 model for data of
2019
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9.5 NARX

Nonlinear Autoregressive with Exogenous Input Networks (NARX) trained outperforms
NAR models already exposed. First NARX with a remarkable good RMSE is mis_narx1
(see figure 9.9) whose training measures results are summarized in table 9.11. We used
as predictors MIS and WSPD of data set from 2018 and we trained the model with
“Trainlm” function.

Figure 9.9. mis_narx1 architecture diagramm

Model

name

Nº

neurons

Nº

delays

RMSE R-squared

Train Valid. Test Train Valid. Test

mis_narx1 10 2 51.6333 52.7523 49.0421 0.64 0.62 0.65

Table 9.11. Training, validation and testing results for
mis_narx1 model training for next hour mis-
alignment forecasting

Model name Success rate

mis_narx1 72.75 %

Table 9.12. Testing success rate for mis_narx1 model

Learning curves plot for mis_narx1 (figure 9.10) shows that validation and training RMSE
are close to the reference error as time as gap between validation and training curves is
significant which could mean mis_narx1 model suffers from high variance. We will try
to optimize it in order to get smaller validation RMSE despite obtaining a little higher
training RMSE. Selecting more training examples from data or configuring a simpler
neural network could help.
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Figure 9.10. Learning curves plot for mis_narx1 model

After optimization, we obtain a NARX model, mis_narx2, which improves RMSE values
for 2019 and Real time misalignment forecasting, compared with those for mis_narx1
model (see comparison in table 9.15). mis_narx2 model has been trained with data from
2010 to 2018 and taking same predictors as used for mis_narx1 training: MIS and WSPD
. Results are summarized in table 9.13.

Model

name

Nº

neurons

Nº

delays

RMSE R-squared

Train Valid. Test Train Valid. Test

mis_narx2 8 2 51.1227 50.5203 50.3699 0.67 0.68 0.68

Table 9.13. Training, validation and testing results for
mis_narx2 model training for next hour mis-
alignment forecasting

Model name Success rate

mis_narx2 72.02 %

Table 9.14. Testing success rate for mis_narx2 model
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Model

name

RMSE

(2019)

RMSE

(Real Time)

%

(2019)

%

(2020)

mis_narx1 59.3815 63.0830 67.01 % 64.95 %

mis_narx2 58.1550 61.5061 67.69 % 65.83 %

Table 9.15. RMSE and success rate for 2019 and 2020 MIS
forecasting comparison between mis_narx1 and
mis_narx2

Response plot for 2020 data obtained with mis_narx2 is showed in figure 9.11.

Figure 9.11. Forecasting response of mis_narx2 model for Real
time data (2020)

9.6 Models comparison

Best models obtained for wind-waves misalignment forecasting by applying different ML
algorithms are collected in table 9.16.



CHAPTER 9. MISALIGNMENT FORECASTING:
ALGORITHMS APPLICATION 135

Algorithm Model Name
RMSE

(validation)

RMSE

(2019)

RMSE

(2020)

Success rate

(validation)

LR mis_lr2 52.1342 62.4652 66.2944 71.04 %

SVR mis_svm2 51.9623 61.7990 64.3001 71.13 %

GPR mis_gpr2 51.5981 59.7840 62.7212 71.33 %

NAR mis_nar2 49.7858 61.8016 62.7157 72.34 %

NARX mis_narx2 50.3699 58.1550 61.5061 72.02 %

Table 9.16. Best models for misalignment forecasting obtained by
each ML algorithm together with validation RMSE
and RMSE for 2019 and Real Time (2020) data.

Table 9.16 reveals that Nonlinear Autoregressive with External Input (NARX)
Neural Networks outperformed the rest of algorithms for misalignment forecasting.
Even when NAR model gives a bit lower validation RMSE than NARX model, the last
one outperforms the first for 2019 and 2020 data. Thus, mis_narx2 gives a validation error
better than expected (50.3699) and best RMSE for 2019 (58.1550) and 2020 (61.5061)
data compared with those obtained by all trained models with different algorithms. The
optimal configuration and training choices made to train the mis_narx2 model are:

■ Data set: data from 2010 to 2018

■ Predictors: MIS and WSPD

■ Nº neurons in the hidden layer: 8

■ Nº input delays: 2 hours before forecasting moment (t)

The success rate of mis_narx2 model is 72.02% and predicted against true responses
of 200 first observations from 2020 plot for this model is represented in figure 9.12. The
performance of this model is not good enough for real predictions but these are the first
results of misalignment modelling and a good start point for other projects involved in
the misalignment forecasting task.
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Figure 9.12. predicted against true response for mis_narx2
model for 200 first observations of data from 2020
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Chapter 10

Conclusions and Future work

10.1 Conclusions

In this project we have achieved our main objective of modeling the stochastic wind and
waves loads which impact floating offshore wind turbines by carrying out all phases in a
Machine Learning process from scratch.

We can state that the data collection and data pre-processing phase have been crucial to
getting more accurate models by machine learning application. Moreover, data cleaning
and analysis led us to the more effective selection of predictors that greatly improves
the performance of the models as well as ensuring the reliability of such models to make
realistic predictions.

We explored some machine learning techniques to apply in next hour wind speed fore-
casting and compare their performance. We demonstrated that wind speed forecasting is
possible applying only ML techniques instead of traditional physical and statistical mod-
els commonly used for this while obtaining acceptable prediction errors. For the specific
case of data collected for this project from Santa Maria station (CA, USA) selected as a
potential wind farm location, NARX neural network model outperformed the rest of the
algorithms.

In the same line, ML techniques have been used to significant waves height prediction in
the frequency domain. Trained models with wind components and weather variables as
input have given similar RMSE to those found in literature and the GPR model proved
to be the most accurate in the concrete predictive context of this work.

In the literature we have not found models for wind-waves misalignment forecasting.
Therefore this project is a pioneer in this task. ML techniques have been applied for next
hour misalignment forecasting. Between all models trained, the NARX algorithm has
turned out to be the most efficient.
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Finally, we conclude after experienced the need to devote time to the correct evaluation of
models with techniques such as learning curves plot in order to make better optimization
decisions, as there would not be enough time to test all possible models and parame-
ter configurations. Given its complexity, with greater knowledge of optimization more
accurate models can be obtained.

Beyond the models’ results attained, an ML project has been developed following a proper
methodology and focusing on learning during the process.

10.2 Future Work

As a continuation of this project, it would be interesting to start by training the models
obtained here with data from other locations and comparing the results with those of this
work. This line would allow study how much the particular site for wind farm location
influences the models’ performance.

On the other hand, future works focused on optimizing the current models or outper-
forming current RMSE values with new models can experiment:

■ Collecting data features not considered here and applying advanced feature selection
techniques to create new data sets.

■ Applying ML techniques for wind and waves seasonal modeling. The phenomena of
wind and waves can be linked to the season. Thus training models for each season
separately may certainly improve the forecasting.

■ Explore deep learning algorithms or other ML techniques not applied in this work.

■ Carefully studying the computational cost of execution of the algorithms used both
in Data pre-processing and Modelling stages; trying to optimize the execution time
of them, in addition to the predictive error as was done in this project.

■ The creation of hybrid models can lead to the integration of these models into more
sophisticated predictive systems for wind power or wind and waves fatigue into the
turbine.

To conclude, misalignment models obtained here are undoubtedly an open door to many
other projects from different areas of the offshore wind energy research community, which
together seek the integration of floating wind farms into our society.
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Appendix A

Introducción

Actualmente, uno de los mayores retos globales a los que se enfrenta la sociedad es
combatir el cambio climático. Tal como declaró La Convención Marco de las Naciones
Unidas sobre el Cambio Climático (CMNUCC) [1], los gobiernos de todo el mundo deben
apostar por el desarrollo, aplicación y difusión de nuevas tecnologías que promuevan
la operación y uso de energías renovables; reduciendo así la emisión de gases de efecto
invernadero y mitigando por tanto el calentamiento global [2], [3].

A diferencia de la energía eólica terrestre, una tecnología ya madura [4]; la energía eólica
marina surge hace dos décadas como una solución prometedora que combate los incon-
venientes de las turbinas terrestres. Esta permite aprovechar los vientos más fuertes y
constantes que se generan en mar abierto debido a la ausencia de accidentes geográficos
que lo frenen como ocurre en tierra. El Departamento de Energía de los Estados Unidos
(USDOE) afirma que los vientos en alta mar tienen la capacidad de generar más de 2.000
GW anualmente, casi el doble de la electricidad actual generada en los Estados Unidos
[5].

Sin embargo, el gran problema asociado a la energía eólica marina es el coste de instalación
de la turbina en alta mar, así como el coste de mantenimiento. Numerosas líneas de
investigación buscan optimizar la localización y orientación hábiles para la instalación de
turbinas ancladas al lecho marino.

Con el interés de reducir los costes de instalación y aumentar la capacidad productiva de
energía, aflora la idea de instalar parques eólicos en aguas aún más profundas dando lugar
al diseño de las novedosas turbinas eólicas marinas flotantes. Las turbinas eólicas
flotantes expanden el área de implantación de energía eólica, aprovechando los vientos
más fuertes y estables que aquellos dados en zonas cercanas a la costa, así como reduce
la contaminación visual y sonora causada por las turbinas eólicas marinas cercanas a la
costa y turbinas terrestres [6]. Aunque su instalación es más simple, estas lideran nuevos
retos a los que hay que hacer frente: la flotabilidad de la turbina y el control estructural.

Se necesitan sistemas óptimos para el control de las palas, la torre y la plataforma flotante
que permitan a la turbina soportar las cargas de viento y olas a la que está expuesta, así
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como minimizar la fatiga que sufre [6].

En colaboración con los proyectos actualmente involucrados en esta reciente tecnología
en creciente desarrollo, se propone este proyecto:
“Aprendizaje Automático Aplicado al Modelado de Viento y Olas”.

A.1 Motivación

El Aprendizaje Automático es una disciplina de la Inteligencia Artificial cuyo potencial
radica en la capacidad de procesamiento de grandes cantidades de datos y la habilitación
de los computadores para aprender reglas y patrones inferidos de la gran masa de datos
recabados. La necesidad de tomar decisiones óptimas, por ejemplo, decisiones sobre el
diseño estructural dentro de un proyecto científico, considerando esas reglas y compor-
tamientos observados en los datos es una tarea incapaz de ser abarcada totalmente por
los humanos y los modelos tradicionalmente usados. Así, las técnicas de aprendizaje
automático están revolucionando la manera en que trabajamos con los datos de los que
disponemos, empezándose a aplicar cada vez más en prácticamente todos los campos de
investigación.

El problema que se plantea al hablar de energía eólica es la necesidad de predecir la
cantidad de energía eléctrica que se genera y por tanto la velocidad del viento de la que
depende. En particular, las turbinas eólicas marinas flotantes están expuestas a vientos
y condiciones oceanográficas mucho más duras. La estabilidad de estas turbinas se ve
afectada significativamente más que si se encontraran ancladas al lecho marino, debido
al impacto de esas cargas de olas y corrientes. Así se requieren estudios más precisos
sobre la condición meteorológica y oceanográfica (metoceánica) para poder reducir los
costes de mantenimiento y aplicar los resultados en un control óptimo, que maximice la
producción de energía eléctrica procedente del viento a la vez que controla los sistemas de
amortiguación de las nuevas oscilaciones generadas sobre la plataforma flotante; desta-
cando cuatro tipos principales de plataformas como vemos en la figura A.1 con el objetivo
de diseñar turbinas eólicas marinas flotantes fiables.
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.
Figure A.1. Tipos principales de plataforma para las turbinas

eólicas marinas flotantes

Disponer de modelos con buen rendimiento para la predicción de viento y olas es funda-
mental, sin embargo, hay pocos resultados aceptables disponibles en la literatura rela-
cionada con las necesidades que plantea la energía marina flotante. Además, autores e
investigadores involucrados en el modelado de viento y olas han venido considerando la
dirección del viento como constante (basándose en las probabilidades estadísticas cal-
culadas para una localización concreta considerada para la construcción de un parque
eólico) así como la desalineación entre el viento y olas nula. Intuitivamente es razonable
pensar que la desalineación es 0 ya que el viento es la principal fuente de generación
de las olas. A pesar de ello, algunos investigadores han observado recientemente que la
desalineación entre la dirección del viento y de las olas es significativa la mayor parte del
tiempo y esta aumenta la carga total que ataca la estructura de soporte de la turbina,
afectando a las turbinas eólicas marinas flotantes mucho más de lo que cualquier autor
previamente pudo llegar a imaginar.

En este trabajo, se lleva a cabo un análisis de los datos del viento y de las olas y la
aplicación de diferentes técnicas de Aprendizaje Automático para modelizar variables del
viento y olas implicadas en el funcionamiento de las turbinas eólicas marinas flotantes.
Este proyecto es además pionero en el estudio y modelado de la desalineación. Los
resultados pueden llegar a ser de utilidad para proyectos involucrados en la optimización
de las estrategias de control de las turbinas, así como en el aumento de la capacidad de
producción de energía, logrando que la energía eólica marina sea una fuente de energía
más segura y acercando a los gobiernos a la integración de parques eólicos marinos en la
red eléctrica.
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A.2 Objetivos

En este proyecto se llevará a cabo una investigación de la literatura y desarrollo de modelos
de viento, olas y desalineación entre el viento y las olas mediante el uso de algoritmos
de Aprendizaje Automático. Este estudio está orientado a ser aplicado en el ámbito de
las turbinas eólicas marinas flotantes, por lo que esto se tendrá presente durante todo el
proceso, por ejemplo, en la selección de la estación de donde se descargarán los datos.

En particular, los objetivos del proyecto se describen a continuación:

• Estudio de la literatura sobre el tratamiento y análisis de datos del viento y las
olas.

• Estudio de resultados previos de modelado de viento, olas y en caso de existir, de
desalineación, así como las técnicas usadas para ello.

• Selección, análisis y preprocesamiento de datos históricos metoceánicos.

• Modelado del viento en el dominio del tiempo y de las olas en el dominio del tiempo
y la frecuencia mediante la aplicación de técnicas de Aprendizaje automático.

• Comparación de los modelos.

• Presentación de los resultados obtenidos en cada una de las fases del proyecto.

A.3 Plan de trabajo

Al inicio del proyecto se diseñó un plan de trabajo a modo de guía para su desarrollo. La
imagen A.2 con dicho plan muestra cada tarea con una fecha de inicio y de finalización
asociadas. Algunas de estas tareas como se puede observar son concurrentes.
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Figure A.2. Plan de trabajo del proyecto

A.4 Repositorio

El código generado durante el desarrollo del proyecto se aloja en un repositorio público
de Github al que se puede acceder entrando en el siguiente enlace: https://github.com/
MontseSacie/Machine_Learning_Applied_to_Wind_and_Waves_Modelling.

https://github.com/MontseSacie/Machine_Learning_Applied_to_Wind_and_Waves_Modelling
https://github.com/MontseSacie/Machine_Learning_Applied_to_Wind_and_Waves_Modelling
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A.5 Estructura del proyecto

Para describir el trabajo desarrollado en cada fase del proyecto, dividimos la memoria en
los siguientes capítulos:

■ El capítulo 1 recoge la introducción donde se expone la motivación para la elabo-
ración de este trabajo de investigación, los objetivos iniciales y el plan de trabajo
para alcanzarlos.

■ El capítulo 2 es el Estado del Arte. Este resume el contexto de investigación creado
en torno a la energía eólica marina y los resultados previos sobre la predicción del
viento y las olas encontrados en la literatura.

■ El capítulo 3 (Materiales y métodos) es un capítulo teórico donde se explican los
algoritmos y métodos usados en las fases de preparación de datos y modelado.

■ El capítulo 4 describe el proceso de recopilación de datos, justificando la selección
de la estación en la que se encuentra la boya que mide los datos y explicando el
significado de las variables que conforman el conjunto de datos. Este capítulo junto
con el 5 y el 6 conforman la parte de ”Preparación o Preprocesamiento de Datos”
del proyecto.

■ El capítulo 5 incluye las técnicas de Análisis Exploratorio de Datos y métodos de
limpieza de datos aplicados sobre nuestro conjunto de datos. El Análisis Explorato-
rio de Datos permite la comprensión de los mismos y la limpieza de datos se aplica
para eliminar los valores faltantes o ”vacíos” y anómalos.

■ El capítulo 6 explica cómo se han estructurado los conjuntos de datos usados y qué
variables incluye cada uno para el entrenamiento de los modelos.

■ Los capítulos 7, 8 y 9 presentan los resultados del modelado de la velocidad del
viento, la altura significativa de la ola y la desalineación entre el viento y las olas
respectivamente. En cada capítulo se describen las diferentes técnicas de Apren-
dizaje Automático aplicadas y se concluye con una sección donde se compara el
rendimiento de cada algoritmo para decidir cuál es el mejor en ese caso.

■ El capítulo 10 presenta las conclusiones del proyecto y los trabajos futuros.

A continuación de la bibliografía, se incluyen como apéndice las siguientes partes tra-
ducidas al español de la memoria:

A. Introducción

B. Conclusiones y Trabajo Futuro
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Conclusiones y Trabajo Futuro

B.1 Conclusiones

En este proyecto se ha alcanzado el principal objetivo de modelar las cargas del viento y
olas de naturaleza estocástica que impactan significativamente sobre las turbinas eólicas
marinas flotantes; desarrollando cada una de las fases propias de un proceso de Apren-
dizaje Automático desde cero.

Podemos afirmar que las fases de recopilación de datos y preprocesamiento de datos
han sido fundamentales para conseguir modelos más precisos mediante la aplicación de
aprendizaje automático. Además, la limpieza y análisis de datos nos lleva a seleccionar
de forma más efectiva los predictores, mejorando enormemente el rendimiento de los
modelos, así como asegurándonos de su efectividad para realizar predicciones realistas.

Se exploraron diferentes técnicas de aprendizaje automático para ser aplicadas en la
predicción de la velocidad del viento una hora en el futuro y se comparó su rendimiento.
Demostramos que la predicción de la velocidad del viento es posible aplicando exclusi-
vamente técnicas de aprendizaje automático en lugar de usar los tradicionales modelos
físicos y estadísticos a la vez que obtenemos errores predictivos aceptables. Para el caso
concreto de datos recopilados en este proyecto de la estación de Santa Maria (CA, EEUU)
seleccionada como localización potencial para un parque eólico, el modelo de red neuronal
NARX supera al resto de algoritmos en cuanto a rendimiento.

En la misma línea, se han usado técnicas de aprendizaje automático para la predicción de
la altura significativa de la ola en el dominio de la frecuencia. Los modelos entrenados con
variables del viento y el tiempo como entrada han dado como resultado errores similares a
los encontrados en la literatura y el modelo GPR resultó ser el más preciso en el contexto
predictivo concreto de este trabajo.

En la literatura no hemos encontrado modelos para la predicción de la desalineación entre
el viento y olas. Por ello, este proyecto es pionero en dicha tarea. Se han aplicado técnicas
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de aprendizaje automático para la predicción de la desalineación para la próxima hora en
el futuro. Entre todos los modelos entrenados, el algoritmo NARX se ha mostrado como
el más eficiente de todos.

Finalmente, podemos remarcar tras la experiencia del desarrollo de este proyecto la necesi-
dad de dedicar tiempo a la correcta evaluación de los modelos mediante técnicas como los
gráficos de Curvas de Aprendizaje para tomar mejores decisiones de optimización; ya que
sería imposible probar todos los posibles modelos y configuraciones de parámetros. Dada
su complejidad, con un mayor conocimiento de optimización se pueden obtener modelos
más precisos.

Mas allá de los resultados dados por los modelos, aquí se ha desarrollado un proyecto
de Aprendizaje Automático siguiendo una metodología adecuada y centrándonos en el
aprendizaje durante el proceso.

B.2 Trabajo Futuro

Como continuación de este proyecto, sería interesante empezar entrenando los modelos
obtenidos aquí con datos de otras localizaciones y comparar los resultados con los de
este trabajo. Esta línea permitiría estudiar en qué medida influye el sitio concreto de
localización del parque eólico sobre el rendimiento de los modelos.

Por otro lado, los trabajos futuros centrados en la optimización de los modelos aquí
presentados o en la mejora de los errores mediante nuevos modelos pueden probar a:

■ Recopilar variables de datos no consideradas en este trabajo y aplicar técnicas
avanzadas de selección de variables para crear nuevos conjuntos de datos.

■ Aplicar técnicas de aprendizaje automático para el modelado del viento y las olas
por estación. Los fenómenos del viento y el oleaje pueden estar ligados a la estación
del año. Así entrenar modelos para cada estación de forma separada puede mejorar
las predicciones realizadas.

■ Explorar algoritmos de aprendizaje profundo y otros algoritmos de aprendizaje
automático que no se han aplicado en este proyecto.

■ Estudiar detenidamente el coste computacional de ejecución de los algoritmos uti-
lizados tanto en la fase de preparación de datos como en la de modelado; intentando
optimizar el tiempo de ejecución de los mismos, además del error predictivo como
se hizo en este proyecto.

■ La creación de modelos híbridos puede llevar a la integración de estos modelos en
otros sistemas predictivos más sofisticados para la energía eléctrica o fatiga causada
en las turbinas.

Para concluir, los modelos de desalineación obtenidos aquí son sin duda una puerta abierta
a muchos otros proyectos de diferentes áreas de la comunidad investigativa de la energía
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eólica marina, que junta busca la integración de los parques eólicos flotantes en nuestra
sociedad.
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